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Chapter

Bright, Dark, and Kink
Solitary Waves in a
Cubic-Quintic-Septic-Nonical
Medium
Mati Youssoufa, Ousmanou Dafounansou

and Alidou Mohamadou

Abstract

In this chapter, evolution of light beams in a cubic-quintic-septic-nonical
medium is investigated. As the model equation, an extended form of the well-
known nonlinear Schrödinger (NLS) equation is taken into account. By the use of a
special ansatz, exact analytical solutions describing bright/dark and kink solitons
are constructed. The existence of the wave solutions is discussed in a parameter
regime. Moreover, the stability properties of the obtained solutions are investigated,
and by employing Stuart and DiPrima’s stability analysis method, an analytical
expression for the modulational stability is found.

Keywords: higher-order nonlinear Schrödinger equation, spatial solitons,
stability analysis method, modulational instability, optical fibers

1. Introduction

The study of spatial solitons in the field of fiber-optical communication has
attracted considerable interest in recent years. In a uniform nonlinear fiber, soliton
can propagate over relatively long distance without any considerable attenuation. The
formation of optical solitons in optical fibers results from an exact balancing between
the diffraction and/or group velocity dispersion (GVD) and the self-phase modula-
tion (SPM). The theorical prediction of a train of soliton pulses from a continuous-
wave (CW) light in optical fibers was first suggested by Hasegawa and Tappert [1, 2]
and first experimentally demonstrated by Mollenauer et al. [3] in single-mode fibers
in the case of negative GVD, in liquid CS2 by Barthelemy et al. in 1985 [4]. In
nonlinear optic, optical solitons are localized electromagnetic waves that transmit in
nonlinear Kerr or non-Kerr media with dispersion or (and) diffraction without any
change in shapes. In nonlinear media, the dynamics of spatial optical solitons is
governed by the well-known nonlinear Schrödinger (NLS) equation. Depending on
the signs of GVD, the NLS equation admits two distinct types of soliton, namely,
bright and dark solitons. The bright soliton exists in the regime of anomalous GVD,
and the dark soliton arises in the regime of normal GVD. The physics governing the
soliton differs depending on whether one considers a bright or a dark soliton and
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accordingly features distinct applications [5–8]. The unique property of optical soli-
tons, either bright or dark, is their particle-like behavior in interaction [9].

In addition to fundamental bright and dark solitons, various other forms and
shapes of solitary waves can appear in nonlinear media. Kink solitons, for example,
are an important class of solitons which may propagate in nonlinear media
exhibiting higher-order effects such as third-order dispersion, self-steepening,
higher-order nonlinearity, and intrapulse stimulated Raman scattering. In the set-
ting of nonlinear optics, a kink soliton represents a shock front that propagates
undistorted inside the dispersive nonlinear medium [10]. This type of solitons has
been studied extensively, both analytically and numerically [11–13]. These spatial
soliton solutions can maintain their overall shapes but allow their widths and
amplitudes and the pulse center to change according to the management of the
system’s parameters, such as the dispersion, nonlinearity, gain, and so on [14].

The cubic nonlinear Schrödinger equation (CNLSE) has been widely used to
model the propagation of light pulse in material’s systems involving third-order

susceptibility χ 3ð Þ, though, for moderate pulse intensity, the higher-order nonlinear-
ities are related to higher-order nonlinear susceptibilities (nonlinear responses) of a
material. For example, the cubic-quintic-nonlinear Schrödinger equation (CQNLSE)

models materials with fifth-order susceptibility χ 5ð Þ. This kind of nonlinearity (cubic-
quintic CQ) is named as parabolic law nonlinearity and existing in nonlinear media
such as the p-toluene sulfonate (PTS) crystals. The parabolic law can closely describe
the nonlinear interaction between the high-frequency Langmuir waves and the ion
acoustic waves by ponderomotive forces [15, 16], in a region of reduced plasma
density, and the nonlinear interaction between Langmuir waves and electrons. In
addition, CQ was experimentally proposed as an empirical description of special
semiconductor (e.g., AlGaAs, CdS, etc.) waveguides and semiconductor-doped
glasses, particularly for the CdSxSe1�x-doped glass, which exhibit a significant fifth-

order susceptibilities χ 5ð Þ as experimentally reported earlier [17, 18]. Moreover, using
high laser intensity, the saturation of nonlinearity has been established experimen-
tally in many materials such as nonlinear organic polymers, semiconductor-doped
glasses, and so on, which have the property that their absorption coefficient decreases

[19]. More generally, a self-defocusing χ 5ð Þ usually accounts for the saturation of χ 3ð Þ.
In recent years, many influential works have devoted to construct exact analyt-

ical solutions of CQNLSE, such as the pioneering work of Serkin et al. [20]. In
particular, Dai et al. [21–25] obtained exact self-similar solutions (similaritons),
their nonlinear tunneling effects of the generalized CQNLSE, and their higher-
dimensional forms with spatially inhomogeneous group velocity dispersion, cubic-
quintic nonlinearity, and amplification or attenuation.

Since the measurement of third-, fifth-, and seventh-order nonlinearities of silver
nanoplatelet colloids using a femtosecond laser [26], an extension of nonlinear
Schrödinger equation including the cubic-quintic-septic nonlinearity was used to
model the propagation of spatial solitons. In [27], for example, the authors performed
numerical calculations based on higher-order nonlinearity parameters including

seventh-order susceptibility χ 7ð Þ (a chalcogenide glass is an example). This seeds
several motivations to discover new features of solitons with combined effects of
higher-order nonlinear parameters. In this regard, Houria et al. [28] constructed dark
spatial solitary waves in a cubic-quintic-septic-nonlinear medium, with a profile in a

functional form given in terms of “sech
2=3”. They have also investigated chirped

solitary pulses for a derivative nonical-NLS equation on a CW background [29]. It is
obvious to notice that the contributions of the higher-order nonlinearities can give
way to generate stable solitons in homogeneous isotropic media and influence many
aspects of filamentation in gases and condensed matters [30–33].
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Recently, the study of modulational instability (MI) in non-Kerr media has
receiving particular attention. MI is a fundamental and ubiquitous process that
appears in most nonlinear systems [6, 9, 34–37]. This instability is referred to as
modulation instability because it leads to a spontaneous temporal modulation of the
CW beam and transforms it into a pulse train. During this process, small perturba-
tions upon a uniform intensity beam grow exponentially due to the interplay
between nonlinearity and dispersion or diffraction. As a result, under specific
conditions, a CW light often breaks up into trains of ultrashort solitons like pulses
[9]. To date, there has not been any report of MI in the cubic-quintic-septic-
nonical-nonlinear Schrödinger equation (CQSNNLSE).

Our study will be focused on the analysis of solitary wave’s solutions of systems
described by the higher-order NLSE named CQSNNLSE. We will discuss the model
with higher-order nonlinearities and explore the dynamics of bright, dark, and kink
soliton solutions. Finally, the linear stability analysis of the MI is formulated, and
the analytical expression of the gain of MI is obtained. Moreover, the typical
outcomes of the nonlinear development of the MI are reported.

2. Model equation

The dynamics of (1 + 1)-dimensional (one spatial and one temporal variables)
spatial optical solitons is the well-known nonlinear Schrödinger equation. If we
consider the higher-order effects, an extended model is required, and the propaga-
tion of optical pulses through the highly nonlinear waveguides can be described by
the CQSNNLSE:

Ez ¼ iα1Ett þ iα2|E|
2Eþ iα3|E|

4Eþ iα4|E|
6Eþ iα5|E|

8E, (1)

where E z, tð Þ is the slowly varying envelope of the electric field, the subscripts z
and t are the spatial and temporal partial derivatives in the frame moving with the
pulsed solutions, α1 is the parameter of diffraction or dispersion, and α2, α3, α4, and α5
are the cubic, quintic, septic, and nonical nonlinear terms, respectively. This model is
relevant to some applications in which higher-order nonlinearities are important.

For example, Eq. (1) with α1 ¼ 1
2, α4 ¼ 1, and α5 ¼ 0 was used to study numer-

ically the stability conditions of one-dimensional spatial solitons [38]. Recently,
Eq. (1) with α5 ¼ 0 was analyzed for systems that are valid for several types of
septic nonlinear materials [28]. Here, we consider arbitrary parameters
α j j ¼ 1, 2, 3, 4, 5ð Þ for the sake of a general analysis that is valid for several types of
nonical media.

To obtain the exact analytic optical solitary-wave solutions of Eq. (1), we can
employ the following transformation:

E z, tð Þ ¼ θ t þ βzð Þei kz�ωtð Þ ¼ θ ζð Þei kz�ωtð Þ: (2)

Here, θ ζð Þ is a real function and β is a real constant to be determined.
Upon substituting Eq. (2) into Eq. (1) and separating the real and imaginary

parts, one obtains

β ¼ 2α1ω, (3)

θζζ ¼
kþ α1ω

2

α1
θ� α2

α1
θ3 � α3

α1
θ5 � α4

α1
θ7 � α5

α1
θ9, (4)
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Eq. (4) represents the evolution of an anharmonic oscillator with an effective
potential energy V [28] defined by

V θð Þ ¼ � kþ α1ω
2

2α1
θ2 þ α2

4α1
θ4 þ α3

6α1
θ6 þ α4

8α1
θ8 þ α5

10α1
θ10: (5)

Integrating Eq. (4) yields

θζ
� �2 ¼ a1θ

2 � a2θ
4 � a3θ

6 � a4θ
8 � a5θ

10 þ 2ξ, (6)

where

a1 ¼
kþ α1ω

2

2α1
, an ¼ αn

nα1
n ¼ 2, 3,4, 5ð Þ, (7)

and ξ is the constant of integration, which can represent the energy of the
anharmonic oscillator [39].

In order to get the exact soliton solutions, we first rewrite Eq. (6) in a simplified
form by using transformation:

θ ζð Þ ¼ u1=2 ζð Þ: (8)

By substituting Eq. (8) into Eq. (6), we obtain a new auxiliary equation
possessing a sixth-degree nonlinear term:

1

4
uζ

� �2 ¼ a1u
2 � a2u

3 � a3u
4 � a4u

5 � a5u
6 þ 2ξ: (9)

To solve Eq. (9), we will employ three types of localized solutions named bright,
dark, and kink solitons. In the following, we solve Eq. (9) by using appropriate
ansatz and obtain alternative types of solitary-wave solutions on a CW background
and investigate parameter domains in which these optical spatial solitary waves
exist.

3. Exact solitary-wave solutions

In this section, we find bright-, dark-, and kink-solitary-wave localized solutions
of Eq. (9), by using a special ansatz:

3.1 Bright solitary-wave solutions

The bright solitary solutions of Eq. (9) have the form:

ub ζð Þ ¼ Ab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þNb cosh αbζð Þ
p , (10)

where Ab, Nb, and αb are real constants which represent wave parameters
(Ab and αb related to the amplitude and pulse width of the bright wave profiles,
respectively) to be determined by the physical coefficients of the model.

Substituting the ansatz Eq. (10) into Eq. (9), we obtain the unknown parameters
Ab, Nb, αb, and energy ξ:
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Ab ¼
ffiffiffiffiffiffiffi

2a1
a3

r

αb ¼
ffiffiffiffiffi

a14
p

Nb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a3
2 þ 4a1a5
a32

s

ξ ¼ a1a2
2a3

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

, (11)

with parametric conditions

a2a3 þ 4a1a4 ¼ 0,a1 >0, a3 >0, a3
2 þ 4a1a5 >0: (12)

Thus, the exact bright solitary-wave solutions on a CW background of Eq. (1)
are of the form:

Eb z, tð Þ ¼
2a1
a3

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a32þ4a1a5
a32

q

cosh
ffiffiffiffiffi

a14
p

t þ 2α1ωzð Þ
� �

8

>

<

>

:

9

>

=

>

;

1
4

� ei kz�ωtð Þ: (13)

3.2 Dark solitary-wave solutions

The dark solitary solutions of Eq. (9) take the form [40]:

ud ζð Þ ¼ Ad sinh αdζð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þNd sinh
2
αdζð Þ

q : (14)

Here Nd is a real constant supposed to be positive. Real parameters Ad and αd

are related to the amplitude and pulse width of the dark wave profiles, respectively.
By substituting the ansatz Eq. (14) into Eq. (9), we get the unknown parameters

Ad, αd, and energy ξ:

Ad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a1Nd

a3

r

αd ¼ ffiffiffiffiffi

a12
p

ξ ¼ a1
2a3

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

, (15)

subject to the parametric conditions

2 a2a3 þ 2a1a4ð Þ � a3 ¼ 0, a1 >0, a3 >0,a3
2 þ 4a1a5 >0: (16)

The exact dark solitary-wave solutions on a CW background of Eq. (1) are of the
form:

Ed z, tð Þ ¼ 2a1Nd

a3

sinh 2 ffiffiffiffiffi

a12
p

t þ βzð Þ
� �

1þNd sinh
2 ffiffiffiffiffi

a12
p

t þ 2α1ωzð Þ
� �

( )1
4

� ei kz�ωtð Þ: (17)
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3.3 Kink solitary-wave solutions

The kink solitary solutions of Eq. (9) are in the following form:

uk ζð Þ ¼ Ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tanh αkζð Þ
p

, (18)

where Ak and αk are real parameters related to the amplitude and pulse width of
the kink wave profiles, respectively.

Substituting Eq. (18) into Eq. (9), we get

Ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

� a3
4a5

r

αk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

� a3
2

4a5

s

ξ ¼ � a2
2

4a4

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

, (19)

under the parametric conditions

2a2a5 � a3a4 ¼ 0,a3
2 þ 4a1a5 ¼ 0,a3 >0, a5 <0: (20)

Thus, the exact bright solitary-wave solutions on a CW background of Eq. (1)
are of the form:

Ek z, tð Þ ¼ � a3
4a5

1þ tanh

ffiffiffiffiffiffiffiffiffiffiffiffi

� a32

4a5

s

t þ 2α1ωzð Þ
 !" #( )

1
4

� ei kz�ωtð Þ: (21)

The previous three exact solitary-wave solutions (13), (17), and (21) exist for the
governing nonical-NLS model due to a balance among diffraction (or dispersion)
and competing cubic-quintic-septic-nonical nonlinearities. For better insight,
we plot in Figure 1 the intensity profile on top of the related first two exact
solution solitons named bright and dark, corresponding to the CQNLS models

Figure 1.
Intensity |Ej(z, t)|

2 distribution of the (a) bright and (b) dark solitons given by Eqs. (14) and (17),
respectively, with the parameter values corresponding to CQNLS models as α1 ¼ 0:5, α2 ¼ 0, α3 ¼ 1, α4 ¼ 0,
α5 ¼ 0, k ¼ 1, and ω ¼ 1.

6

Nonlinear Optics - From Solitons to Similaritons



(with α4 ¼ 0,α5 ¼ 0) that is available in the current literature. As we can see from
Eq. (21), the kink solitons exist only if a5 6¼ 0, consequently α5 6¼ 0; thus, we cannot
plot the corresponding CQNLS kink solution.

4. Modulational instability of the CW background

One of the essential aspects of solitary waves is their stability on propagation, in
particular their ability to propagate in a perturbed environment over an appreciable
distance [41]. Unlike the conventional pulses of different forms, the solitons are
relatively stable, even in an environment subjected to external perturbations.

The previous three exact solitary-wave solutions given by the expressions (13),
(17), and (21) are sitting on a CW background, which may be subject to MI. If this
phenomenon occurs, then the CW background will be quickly destroyed, which
will inevitably cause the destruction of the soliton. It is therefore of paramount
importance to verify whether the condition of the existence of the soliton can be
compatible with the condition of the stability of the CW background. Since MI
properties can be used to understand the different excitation patterns on a CW in
nonlinear systems, in this section, we perform the standard linear stability analysis
[9, 34] on a generic CW:

E0 z, tð Þ ¼
ffiffiffiffiffiffi

P0

p

eiϕnl , (22)

in the system modeled by Eq. (1), where ϕnl ¼ P0 α2 þ α3P0 þ α4P0
2 þ α5P0

3
� �

z

is the nonlinear phase shift induced by self-phase modulation and non-Kerr quintic-
septic-nonical nonlinear terms, P0 being the initial power inside a medium
exhibiting optical nonlinearities up to the ninth order. A perturbed nonlinear back-
ground plane-wave field for the CQSNNLSE (Eq. (1)) can be written as

E z, tð Þ ¼
ffiffiffiffiffiffi

P0

p

þ a z, tð Þ
h i

eiϕnl , (23)

where a z, tð Þ is a small perturbation field which is given by collecting the Fourier
modes as

a z, tð Þ ¼ aþe
i Kz�Ωtð Þ þ a�e

�i Kz�Ωtð Þ, (24)

aþ and a� are much less than the background amplitude P0, and Ω represents
the perturbed frequency. Here, the complex field |a z, tð Þ|≪P0. Thus, if the
perturbed field grows exponentially, the steady state (CW) becomes unstable.
Inserting the expression of a perturbed nonlinear background Eq. (23) into Eq. (1),
with respect to Eq. (24), we obtain after linearization the following dispersion
relation:

K ¼ |α1||Ω|
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 � sgn α1ð ÞΩc
2

q

, (25)

where Ωc ¼ 1
ffiffiffiffiffi

⎸α1⎸
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2α2P0 þ 4α3P0
2 þ 6α4P0

3 þ 8α5P0
4

p

and sgn α1ð Þ ¼ �1

depending on the sign of α1 sgn α1ð Þ ¼ þ1, for α1 >0, and sgn α1ð Þ ¼ �1, for α1 <0½ �.
The dispersion relation (25) shows that the steady-state stability depends critically
on whether the light experiences normal or anomalous GVD inside the fiber. In the
case of normal GVD (α1 <0), the wave number K is real for all Ω, and the steady
state is stable against small perturbations. By contrast, in the case of anomalous
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GVD (α1 >0), K becomes imaginary for ⎸Ω⎸<Ωc, and the perturbation a z, tð Þ grows
exponentially with z. As a result, the CW solution E0 is inherently unstable for
α1 >0. This instability is referred to as modulation instability because it leads to a
spontaneous temporal modulation of the CW beam and transforms it into a pulse
train. Similar instabilities occur in many other nonlinear systems and are often
called self-pulsing instabilities [9, 42–45]. Then, by setting sgn α1ð Þ ¼ 1, one can
obtain the MI gain G ¼ 2⎸Im Kð Þ, where the factor 2 convert G to power gain. The
gain exists only if for |Ω|<Ωc and is given by

G Ωð Þ ¼ 2|α1Ω|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωc
2 �Ω2

q

: (26)

The gain attains its peak values when the modulated frequency reaches its
optimum value, i.e., its optimum modulation frequency (OMF). The OMF
corresponding to the gain spectrum (26) is given by

Ωop ¼ � Ωc
ffiffiffi

2
p , (27)

and the peak value given by

Gop ¼ G Ωop

� �

¼ |α1Ωc
2|: (28)

In Figure 2, we have shown the variation of OMF, computed from Eq. (27) as a
function of the GVD parameter (α1). The parameter values we have used are given
as [34]

P0 ¼ 15W,α2 ¼ 2736W�1=km,α3 ¼ 2:63W�2=km,

α4 ¼ �9:12� 10�4W�3=km,α5 ¼ 0:5W�4=km:
(29)

Figure 2.
Variation of optimum modulation frequency Ωop as a function of second-order dispersion α1.
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We can observe that the OMF increases (respectively decreases) with the
increasing α1 <0 (respectively with the increasing α1 >0).

Figure 3 shows the variation of MI gain as a function of the nonic nonlinearity α5.
The MI gain increases with the decreasing nonic nonlinearity. In Figure 4, as the
input power increases, the maximum gain also increases.

Figure 3.
Variation of the MI gain G as a function of the nonic nonlinearity α5, with the same parameter values as in
Figure 2.

Figure 4.
Variation of the MI gain G km�1ð Þ as a function of frequency Ω Hzð Þ, at a four-power level P0 for an
optical fiber. The other parameters are α5 ¼ 0:5ps2=km, α2 ¼ 2736W�1=km, α3 ¼ 2:63W�2=km,

α4 ¼ �9:12� 10�4W�3=km, α5 ¼ 0:5W�4=km.
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The MI gain spectrum in Figure 5 is a constitutive of two symmetrical sidebands
which stand symmetrically along the line Ω ¼ 0. The maximum gain is nil at the
zero perturbation frequency Ω ¼ 0; thus, there is no instability at the zero
perturbation frequency.

5. Conclusion

In this chapter, we have investigated the higher-order nonlinear Schrödinger
equation involving nonlinearity up to the ninth order. We have constructed exact
solutions of this equation by means of a special ansatz. We showed the existence of a
family of solitonic solutions: bright, dark, and kink solitons. The conditions on the
physical parameters for the existence of this propagating envelope have also been
reported. These conditions show a subtle balance among the diffraction or dispersion,
Kerr nonlinearity, and quintic-septic-nonical non-Kerr nonlinearities, which has a
profound implication to control the wave dynamics. Moreover, by employing Stuart
and DiPrima’s stability analysis method, an analytical expression for the MI gain has
been obtained. The outcomes of the instability development depend on the
nonlinearity and dispersion (or diffraction) parameters. Results may find straightfor-
ward applications in nonlinear optics, particularly in fiber-optical communication.
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Figure 5.
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