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Abstract

Organic acids constitute a group of organic compounds that find multiple 
applications in the food, cosmetic, pharmaceutical, and chemical industries. For 
this reason, the market for these products is continuously growing. Traditionally, 
most organic acids have been produced by chemical synthesis from oil derivatives. 
However, the irreversible depletion of oil has led us to pay attention to other 
primary sources as possible raw materials to produce organic acids. The microbial 
production of organic acids from lactose could be a valid, economical, and sustain-
able alternative to guarantee the sustained demand for organic acids. Considering 
that lactose is a by-product of the dairy industry, this review describes different 
procedures to obtain organic acids from lactose by using microbial bioprocesses.

Keywords: lactose, cheese whey, organic acids, acetic acid, lactic acid, citric acid, 
L-ascorbic acid, succinic acid, propionic acid, butyric acid, hyaluronic acid

1. Introduction

Organic acids (OAs) are compounds with relatively weak acidity properties 
[1, 2]. Carboxylic acids with one or more carboxyl groups (▬COOH) are the most 
common OAs, following the sulfonic acids (▬SO2OH). Under certain circumstances, 
alcohol (with a group ▬OH) can also act as acid. Other groups, like thiol (▬SH), 
enol, and phenol, also can confer acidity character to solutions, but all of them are 
very weakly acidic. Nowadays, many industrially produced organic acids (OAs) 
are synthesized from nonrenewable sources like petroleum oil [3]. Still, as can be 
expected, these sources could be depleted shortly, and it would lead to finding new 
renewable sources to produce OAs [4, 5].

Among others, a promising raw material is agro-industrial wastes (AIWs) 
[6, 7]. By its nature, AIWs could classify as complex organic compounds, which 
include mono- and polysaccharides, fats, and proteins. These raw materials are 
biotransforming by microbes in nature, so it is also able to metabolize AIWs into 
several OAs. Some of AIWs are by their constitution liquids like cheese whey (CW), 
molasses; but others are solids like bagasse, and citrus, potato, and banana peels. 
For liquid AIWs, the submerged fermentation (SmF), anaerobic or aerobic, is a 
suitable alternative [8–10], while solids could use the solid-state fermentation (SSF) 
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[8, 11–13]. Some revisions regarding the microbial production of OAs have been 
published [3, 14–16]. Also, some authors focused their attention on the use of AIWs 
in SSF to produce OAs [11–13, 17–19].

Volatile fatty acids (VFAs) are the smallest and simplest organic acids [20]. 
VFAs can be classified as short-chain fatty acids (SCFA, C2-C6 carboxylic acids), 
medium-chain fatty acids (MCFAs, C7-C12), long-chain fatty acids (LCFA, C13-
C21), and very-long-chain fatty acids (C22 and higher) [21, 22]. SCFAs and MSFAs 
are commonly involved in the anabolic process and in the energy metabolism of 
mammalian cells. SCFAs are produced by colonic bacteria and are metabolized by 
the liver and enterocytes, whereas MCFAs are gotten from triglycerides that are 
found, for example, in milk or dairy products [23, 24]. OAs have been used since 
time immemorial by humankind in the seasoning of foods and sauces, such as 
vinegar, and more recently has been widely used as food additives, preservatives, 
descaling and cleaning agents [3, 25, 26]. They can also be used as precursors of 
other more complex organic compounds of broad utility in fine and pharmaceuti-
cal chemistry [27, 28].

OAs have certain relevant usefulness characteristics like its preservative, buffer-
ing and chelating capacity, in addition to its traditional use as an acidulant in food 
formulations, and most of them are GRAS classified [9, 28]. Among others, the 
foremost OAs are citric, acetic, lactic, tartaric, malic, gluconic, ascorbic, propionic, 
acrylic, and hyaluronic acids [28]. Nowadays, citric acid is the most widely pro-
duced OA in the world [29, 30].

The preferred carbon source to achieve their biosynthesis is glucose. Other 
sugars like fructose, galactose, maltose, and cellobiose can be metabolized for many 
bacteria and yeast. While cellulose, lignin, and more complex polysaccharides could 
be adequately transformed by using fungi [31], in this review, however, are mainly 
discussed the different reports showing that lactose also can be used to produce 
organic carboxylic acids with different uses.

2. The cheese whey and lactose

Lactose (C12H22O11, MW 342.297 g mol−1, IUPAC name: β-D-galacto-
pyranosyl-(1 → 4)-D-glucose) is a disaccharide present naturally in milk and dairy 
products [32]. Today lactose is produced mainly as sweet whey from cheese-making 
industry as a by-product [33]. Lactose contents in whole milk are 4.9% for cows, 
and 4.8% for sheep and goats [34]. Water (94% wt.), lactose (4.5% wt.), protein 
(0.6% wt.), mineral salts (0.35% wt.), ash (0.5% wt.), and some traces of fat 
(500 ppm) and lactic acid (500 ppm) are the main components in sweet whey [35].

There are numerous technologies for the processing of the whey generated from 
the production of the various types of cheese [36–39]. Almost all start with pas-
teurization of cheese whey (CW) to decrease the microbial bioburden and to reduce 
the degradation of lactose and whey proteins. Subsequently, solid–liquid separation 
stages are usually used to remove the casein micro-lumps and the fat that may still 
contain the CW, using clarifying and disk centrifuges, for this purpose [40].

The defatted and pasteurized CW can then be subjected to microfiltration to 
retain the bacteria debris, before proceeding to the separation of the proteins, lac-
tose, and mineral salts [41]. Membrane filtration has been used to isolate the whey 
proteins, mineral salts, and water present in CW [38, 42–44]. In this sense, ultrafil-
tration membranes can be suitable to isolate whey proteins, while nano-filters can 
separate the remaining lactose and mineral salts. Finally, the separated products are 
usually concentrated using evaporators, and dried, using technologies such as spray 
drying (SD) [45–48].
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The most valuable components of whey are, in this order, whey proteins, 
lactose, and mineral salts. From a conventional process of obtaining lactose from 
sweet whey, whey powder (on March/2020, 880 EUR/ton), as well as deproteinized 
whey powder, lactose powder, mineral salts powder, and powder of whey proteins, 
can be obtained. From the latter, which is the product with the highest added value 
(on March/2020, 2030EUR/ton), different whey proteins presentations are usu-
ally obtained, like whey protein concentrate (WPC), whey protein hydrolysates 
(WPH), and whey protein isolate (WPI) [49].

As worldwide milk and cheese production has seen a constant increment in 
recent years, several millions of tons of whey are produced annually as a by-product 
[50] (Figure 1). A significant portion of whey has been used as an animal [51] and 
human feed supplementation due to its content of value proteins and minerals 
[52–56]. However, the enormous volumes of whey generated often overcome in 
many places the capacity of dairy-waste treatment plants [57]. For this reason, have 
focused the attention of numerous researchers’ intent to valorize the whey and 
diminish the quantity of whey treated as waste [57–61].

Additionally, lactose is the component of whey that most contributes to the high 
biochemical oxygen demand (BOD) and chemical oxygen demand (COD) values 
in the dairy wastes [58, 62–64], bringing values around 30–50 and 60–80 kg m−3, 
respectively [58, 64]. The great volumes of whey generated in the dairy industry 
could be the main obstacle to the further growth of cheese production in the next 
years [57]. One of the direct ways to reduce the adverse effects on the environment 
exerted by whey is using lactose containing the whey [65]. Lactose or “milk sugar” 
is a disaccharide formed by galactose and glucose, has a sweetening power, slightly 
lower than sucrose [32, 66]. It is usually used as a food additive [33, 67] or as a start-
ing raw material for other products of agro-industrial interest [68, 69].

3. Organic acid market: overview and perspectives

The citric acid (2415 kilo-tonne per annum (ktpa)), L-ascorbic acid (132 ktpa), 
tartaric acid (30 ktpa), itaconic acid (43 ktpa), and bio-acetic acid (1830 ktpa) 
were produced by microbial fermentation, while gluconic acid (50 ktpa, with a 
67:33 proportion between fermentative and chemical synthesis way), lactic acid 
(35 ktpa, 50:50), and malic acid (30 ktpa, 30:70) were produced by both fermen-
tation and chemical synthesis, and, finally, some organic acids, like formic acid 
(1150 ktpa), butyric acid (80 ktpa), propionic acid (50 ktpa), and fumaric acid  
(20 ktpa) were chemically synthesized [12, 70–72]. This outlook and its pro-
portions have not changed much today, and the global market of OAs shows a 

Figure 1. 
Worldwide production projections (in metric kilo-tonnes per annum) of milk, cheese, whey, and lactose 
powder up to 2028 [51].
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sustainable growth of 5.48% AAGR (average annual growth rate) in the last years 
and it is expected that it could increase globally up to US$9.29 billion by 2021 and 
US$11.39 billion by 2022 [3, 73–75].

Biosynthesis of an OA is obtained by the biochemical pathway of cellular 
metabolism, as the final end product or as an intermediate product of a path [26]. 
Bacteria and fungi are the most available and suitable living organisms for the 
industrial production of OAs. The microbial production of organic acids is usually 
an attractive route for industrial implementation compared to chemical synthesis 
because the conditions used in microbial bioprocesses tend to be less extreme (in 
terms of temperature, pressure, extreme pH) and more friendly to the environment 
[3, 76]. However, this may be effective only if the concentration of these acids in 
the fermentation broth are high enough (in the order of tens or hundreds of grams 
per liter), and these are obtained in reasonably short times [77]. Also, the microbial 
bioconversion of sugars into organic acids is frequently carried out by strict anaero-
bic microorganisms, with relatively long fermentation, reduced productivity, and 
low titers of organic acids in the fermentation broth [27]. Those facts conspire with 
its large-scale implementation, and to turn the biotechnology in an economically 
attractive choice to the production of organic acids (Figure 2) [3, 26, 78].

In this context, the processes of isolation and purification of organic acids 
become critical [78, 79]. Various alternatives for the isolation and purification of 
organic acids from fermentation broth or biomass have been used. Among the most 
used primary purification methods are precipitation with Ca-salt or hydroxide 
[77], ammonium salt, organic solvents [80], and ionic solutions [81]. Microbial 
fermentation can produce directly only a few organic acids [74], and even more 
scarce are the microorganisms that can use lactose to achieve this.

3.1 Acetic acid

Acetic acid (C2H4O2, MW 60.052 g mol−1, IUPAC name: Ethanoic acid) is a 
monocarboxylic acid commonly used as a chemical starting reagent in the produc-
tion of important chemicals, like cellulose acetate, polyvinyl acetate, and synthetic 
fibers. Vinegar (near 4% vol. acetic acid) is produced by fermentation of different 
carbon sources by acetic acid bacteria [82] and is widely employed in food prepa-
ration and cooking since ancient times. Currently, three-quarters of the world 
production is obtained by carbonylation of methanol (by chemical synthesis), 
basically from nonrenewable sources, while 10% is still obtained from the microbial 
biotransformation of sugars [83]. By 2014, the global acetic acid market reached 
12,100 ktpa, with an average price of US$ 550 per ton and average annual growth 
of 4–5% [14]. In 2018, world production reached 16,300 ktpa, near to US$ 12.48 
billion, forecasting production of 20,300 ktpa by 2024. China with 54% and the US 
(18%) are the largest producers [84, 85].

Figure 2. 
Worldwide production of some organic acids between 2018 and 2025. (A) High-, (B) medium -, and  
(C) low-level of global production.
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3.2 L-ascorbic acid

A case is the L-ascorbic acid (vitamin C, C6H8O6, MW 176.124 g mol−1, IUPAC 
Name: (5R)-[(1S)-1,2-Dihydroxyethyl]-3,4-dihydroxyfuran-2(5H)-one), one of the 
organic acids with the highest production and sales volumes today. Vitamin C can 
be obtained by microbial biosynthesis but from D-sorbitol [86].

Ascorbic acid, previously called hexuronic acid, is a soluble white solid and 
organic compound that presents itself as two enantiomers: L-ascorbic acid (vitamin 
C), and D-ascorbic acid, without any biological role found [87, 88]. Vitamin C is 
an essential nutrient for humans and many animals, and its deficiency can cause 
scurvy, in the past a common disease among sailors in long sea voyages [89]. It is 
used in as a food additive and a dietary supplement for its antioxidant properties 
[87, 88]. There is a report, however, that achieves the synthesis of vitamin C from 
the lactose present in the cheese whey, but through a defined group of chemical 
reactions [90]. In 2015 was produced 150.2 ktpa of ascorbic acid with a revenue 
of US$820.4 million. By 2017, China produced near to 95% of the world supply of 
vitamin C, having revenue of US$880 million [91].

3.3 Butyric acid

Butyric acid (C4H8O2, MW 88.106 g mol−1, IUPAC Name: Butanoic acid) is a 
mono-carboxylic acid, and it is an oily, colorless liquid that is soluble in water, etha-
nol, and ether. Salts of butyric acid are known as butyrates. Butyric acid is a chemical, 
commonly used as a precursor to produces other substances, like biofuel [92, 93], 
cellulose acetate [94, 95], and methyl butyrates [96], the two last coatings, and flavors 
compounds, respectively. Chemical synthesis is still the primary way of production 
of butyric acid due to the availability of raw material [92]. But some research explores 
the microbial biotransformation from renewable sources like agro-industrial wastes 
[72]. Clostridium tyrobutyricum can produce butyric acid from lactose, present in 
milk and cheese, along with H2, CO2, and acetic acid [97]. By 2016, the butyric acid 
worldwide market was around 80 ktpa, with a price of US$ 1800 per ton [98]. By 
2020, global production of butyric acid is expected to reach 105 ktpa [99].

3.4 Citric acid

Citric acid (C6H8O7, MW 192.123 g mol−1, IUPAC Name: 2-Hydroxy-propane-
1,2,3-tri-carboxylic acid) is a water-soluble tricarboxylic acid. Citric acid is widely 
used in the food and pharmaceutical industry due to its antimicrobial, antioxidant, 
and acidulant properties [100]. Citric acid can be produced from the citrus (like 
lemon, orange, lime, etc.), by chemical synthesis, or microbial fermentation [101]. 
Many microorganisms have been used to produce citric acid by microbial fermenta-
tion [102–104]. Among others, the fungus Aspergillus niger is the preferred choice to 
produce several useful enzymes and metabolites due to its ease of handling, and it 
being able to achieve high yields by using different cheaper agricultural by-products 
and wastes [101, 105]. By 2018, the worldwide citric acid production was more than 
2000 ktpa, more than a half was produced in China. The global citric acid market 
is projected to reach a level of around 3000 ktpa by 2024, growing at a 4% CAGR 
during this period.

3.5 Propionic acid

Propionic acid (C3H6O2, MW 74.079 g mol−1, IUPAC Name: Propanoic acid) 
is an organic acid, colorless oily liquid with an unpleasant smell. Propionic acid 
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(PA) is a valuable mono-carboxylic acid used in chemical, pharmaceutical, and 
food industries, as a mold inhibitor, as a preservative of foods, as a significant 
element in the vitamin E production, and as a chemical intermediate in the 
chemical synthesis of cellulose fiber, perfumes, herbicides, etc. [16, 106, 107]. 
Today, propionate is mainly obtained for two processes. From ethylene, a nonre-
newable source synthesized from oil, through the Reppe process [108], or from 
ethanol and carbon monoxide catalyzed by boron trifluoride (by the Larson 
process) [109].

Although chemical synthesis is the primary way of its production, the micro-
bial production of PA is gaining attention and importance due to the depletion 
of petroleum sources and due to pieces of evidence of the more environmentally 
friendly microbial process [107, 110]. Propionibacterium is the most employed 
microorganism used for PA large-scale production [107, 111]. In 2020, the world-
wide production of PA would reach 470 ktpa. The leading producers remain to be 
in Germany (BASF SE), USA (Dow Chemical Co. and Eastman Chemical), and 
Sweden (Perstorp). At the same time, the primary consumers are in the EU, USA, 
China, and India.

3.6 Lactic acid

Lactic acid (C3H6O3, MW 90.078 g mol−1, IUPAC Name: 2-Hydroxypropanoic 
acid) was the first organic acid commercially produced by microbial fermenta-
tion [112]. Bacterial fermentation of carbohydrates had been the main way for the 
industrial production of lactic acid (LA) with production level between 70 and 
90% for 2009 [113]. The rest of production was achieved by chemical synthesis 
mainly from acetaldehyde coming from crude oil [114]. A racemic mixture of LA 
commonly is obtained by chemical synthesis, while L-lactic acid can be obtained by 
homofermentative anaerobic bacteria like Lactobacillus casei and Lactococcus lactis. 
Otherwise, heterofermentative bacteria produced carbon dioxide, ethanol, and/or 
acetic acid in addition to LA [115].

LA is currently used and has been approved as a food additive, preservative, 
decontaminant, and flavoring agent (with a code E270) [116, 117]. Also, it is used 
for chemical synthesis [118], mainly to produce poly-lactic acid (PLA), a thermal- 
and bioplastic polyester with widespread use in many applications [119, 120]. 
PLA is used, for example, in medical implants [121], as plastic fiber material in 
3D-printing [122, 123], and as a decomposable packing material [124, 125].

In 2020, LA and PLA worldwide production will be around 1571 and 800 ktpa, 
respectively, with China, USA, EU, and Japan being the primary producers [126].

3.7 Succinic acid

Succinic acid (C4H6O4, MW 118.088 g mol−1, IUPAC Name: Butanedioic acid) 
has been widely used in many industries, as a food, detergent, and toner additive, 
for solders and fluxes, and as an intermediary commodity in the chemical and 
pharma industry [127]. After the increment of oil prices and diminishing availabil-
ity of nonrenewable sources, researchers turned their attention over to the renew-
able feedstocks to produce succinic acid. SA as an intermediate in many biochemical 
pathways could be produced by many microorganisms and use many carbon 
sources [127]. For instance, the anaerobic-facultative bacteria Actinobacillus succino-
genes can produce succinic acid from sugar cane molasses alone [128] or supplement 
with corn steep liquor powder [129].

Glucose as a carbon source has also been used to produce succinic acid by engi-
neering strains of Corynebacterium glutamicum [130], Escherichia coli [131], and 
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Saccharomyces cerevisiae [132]. Succinic acid (SA) is a bulk OA commodity, and by 
2010 the bioproduction was between 16 and 30 ktpa, and its expected annual growth 
was 10% [133], and by 2025, it is expected to exceed 115 ktpa [134].

3.8 Other acids

No reports of microbial obtention of tartaric (C4H6O6, dicarboxylic acid), 
itaconic (C5H6O4, dicarboxylic acid), and fumaric acid (C4H4O4, dicarboxylic acid) 
from lactose have been found. Some of those, however, can be obtained indirectly, 
since there are published studies of the biosynthesis of itaconic acid [135–137], 
fumaric acid [138, 139] from glucose, and the latter can be obtained from the 
chemical or enzymatic hydrolysis of lactose.

4. Microbial bioprocesses for obtaining organic acids based on lactose

Like other renewable sources based on residual plant biomass from agricultural 
productions rich in complex polysaccharides, lactose has been used as a starting 
raw material to establish bioprocesses to produce different organic acids. Although 
there are microbial enzymes capable of breaking the bonds of polysaccharides, this 
would involve energy and time, which in the case of lactose would be less compli-
cated and faster. In the case of lactose, this could become the starting material for 

Figure 3. 
Some of the organic acids that can be obtained microbially from lactose or whey.
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Name Source Microorganism(s) Culture conditions and 

production results*

Ref.

Acetic acid, 
C2H4O2

WP Clostridium thermolacticum 
and Moorella 

thermoautotrophica

Anaerobic, batch, 58°C, 
pH 7.2, 300 h, 0.81 g g−1, 
98 mM

[144, 
145]

WP Acetobacter aceti Aerobic, continuous 
membrane bioreactor, 
at 303 K, D = 0.141 h−1, 
96.9 g L−1, 0.98 g g−1, 
4.82 g L−1 h−1

[146–
148]

CW Propionibacterium 

acidipropionici

Anaerobic, batch, 35°C, 
pH 6.5, 78 h, 0.11 g L−1 acetic 
acid + 0.33 g L−1 propionic 
acid

[149]

CW Lactobacillus acidophilus Anaerobic, 37°C, 72 h, 
pH 6.5, 7 g L−1

[150]

Acrylic acid, 
C3H4O2

SCW Clostridium propionicum Anaerobic, +propanoic and 
acetic acids, 33°C, pH 7.1, 
0.133 mmol g−1

[151]

L-Ascorbic acid, 
C6H8O6

CW Kluyveromyces lactis Aerobic, shake-flask, 48 h, 
30°C, 30 mg L−1

[140]

Gal Saccharomyces cerevisiae

Zygosaccharomyces bailii

Aerobic, shake-flask,144 h, 
30°C,0.40 g g−1, 70 mg L−1

[141]

Propionic acid, 
C3H6O2

SWP Propionibacterium 

acidipropionici

Anaerobic, fibrous bed bio-
reactor (immobilized cells), 
135 ± 6.5 g L−1

[152]

CW P. acidipropionici Anaerobic facultative, 
6.1 g L−1

[153]

Propionibacterium 

freudenreichii

Anaerobic, 8.2 g L−1

CW P. acidipropionici Anaerobic, 0.33 g L−1 [149]

Lactic acid, 
C3H6O3

SWP Lactobacillus casei Anaerobic, 36 h, pH 6.5, 
37°C, 33.73 g L−1

[154]

SWP Lactobacillus rhamnosus Anaerobic, 37°C, pH 6.2, 
200 rpm, 50 h, 143.7 g L−1

[155]

CW Lactobacillus acidophilus Anaerobic, 37°C, 72 h, 
pH 6.5, 42.62 g L−1

[150]

CW Mixed culture of acetogenic 
and fermentative bacteria

Dark anaerobic, 35°C, 
HDT = 1 day, 10.6 g L−1 day−1

[156]

Butyric acid, 
C4H8O2

CW Clostridium beijerinckii Anaerobic, 37°C, pH 5.5, 
0.08 g L−1 h−1, 12 g L−1

[157]

CW Clostridium butyricum Anaerobic, + 5 g L−1YE 
or + 50 μg L−1 biotin, 37°C, 
pH 6.5, 19 g L−1

[158]

Succinic acid, 
C4H6O4

CW Anaerobiospirillum 

succiniciproducens

Anaerobic+CO2, + Glu, 
pH 6.5, 39°C, 36 h, 
16.5 g L−1, 0.33 g L−1 h−1

[159]

CW Actinobacillus succinogenes Anaerobic+CO2, 38°C, 
pH 6.8, 48 h,28 g L−1, 
0.44 g L−1 h−1

[160]

PWP Enterobacter sp. LU1 Microaerobic, + Gly, 34°C, 
pH 7, 288 h, 69 g L−1

[161]
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the production by microbial bioprocesses, not only of the most demanded organic 
acids today but of other less-used ones that still not as highly in demand. However, 
subsequent studies must be carried out to make these technologies a viable and 
economically attractive alternative [3, 19].

Nowadays, however, some organic acids can be obtained by microbial biopro-
cesses directly from lactose (Figure 3), cheese whey, or both, using the different 
routes of their metabolisms (Table 1). The most demanded organic acids, like 
citric, acetic, and lactic acids, have been produced from whey (Table 1). Even 
more complex organic acids like poly-lactic and hyaluronic acids can also be pro-
duced from lactose. Another advantage of microbial production is related to the 
possibility of producing the racemic biological active acids exclusively. L-lactic 
acid is produced almost exclusively by lactic-acid bacterium Lactobacillus casei or 
L-ascorbic acid (vitamin C) by certain recombinant yeast strains of Kluyveromyces 
lactis or Saccharomyces cerevisiae [140, 141]. However, for some of the organic 
acids, the titers reached are still too low for these bioprocesses to be scaled to 
industrial production in an economically feasible way, and the chemical synthesis 
remains the most desired choice. At the industrial scale, to produce organic acids 
competitively, it would be necessary to have adequate sources of raw materials 
(cheap and renewable) and enhanced microbial strains (easy and safe to handle 
and able to work at high productivity). Also, it would be necessary to dispose 
of industrial facilities and technical expertise (technical constrains) to achieve it 
(Figure 4).

Name Source Microorganism(s) Culture conditions and 

production results*

Ref.

Malic acid, 
C4H6O5

Milk Escherichia coli K-12 Stationary culture for 72 h at 
37°C, 168 mg g−1 DW

[162]

Gluconic acid, 
C6H12O7

CW Pseudomonas taetrolens Aerobic, + Glu, 30°C, 
aeration: 1 L min−1, 
350–500 rpm, pH 6.5, 
8.8 g L−1

[163]

Citric acid, 
C6H8O7

CW Aspergillus niger ATCC9642 Aerobic, +15% sucrose, 
30°C, 16 h, 106 g L−1

[164]

Lactobionic 
acid, C12H22O12

CW Pseudomonas taetrolens Aerobic, 30 °C, + Gly, 
aeration: 1 L min−1, 
350–500 rpm, pH 6.5, 
78 g L−1

[163]

CW Aerobic, + Lac, 30°C, 
aeration: 1 L min−1, 
350–500 rpm, pH 6.5, 
100 g L−1

Hyaluronic acid, 
(C14H21NO11)n

CCW, 
HCW

Streptococcus zooepidemicus Aerobic (1 vvm), 37°C, 
pH 6.7 and 500 rpm

[165]

Lac Lactococcus lactis Anaerobic, 1% 
Lac + 10 ng mL−1 nisin, 
30°C, 24 h (12 h after 
induction), 0.6 g L−1

[143]

WP: whey permeate; PWP: powder whey permeate; CW: cheese whey; SCW: sweet cheese whey; SWP: sweet whey 
powder; CCW: concentrate cheese whey; HCW: hydrolysate cheese whey; Gal: galactose; Gly: glycerol; Glu: glucose; 
Lac: lactose; YE: yeast extract; HDT: hydraulic detection time.
*In terms of concentration, yield, and/or productivity of the acid.

Table 1. 
Characteristics of some organic acids produced by bioconversion of lactose from commercial products or  
agro-industrial by-products.
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Figure 5. 
Some of the microbial metabolic pathways for the synthesis of organic acids.

The microbial bioprocesses could be enhanced through optimization of up- 
and downstream processes that must be combined with metabolic engineering to 
increase productivity. Also, genetic engineering techniques could be used to obtain 

Figure 4. 
Successful commercial production of organic acids by microbial biotransformations: keys to success.
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robust industrial strains that raise the expression levels of the genes involved in the 
metabolic pathways of synthesis of organic acids or repress others that deviate to 
produce unwanted by-products [142, 143].

Some of the identified metabolic pathways are associated with the tricarboxylic 
acid (TCA) cycle and demonstrate that most organic acids represent metabolites 
associated or partially associated with growth (Figure 5). A detailed study of these 
pathways can address the overexpression of some genes or repression of others 
using genetic engineering techniques.

5. Conclusion

Organic acids constitute a market with a sustained increase at present. Many of 
them are produced on a large scale by chemical synthesis from petroleum deriva-
tives. Still, more recently, other alternatives, cheap and renewable sources of raw 
materials, are being intensively studied, among which is whey. This trend will be 
reinforced soon, which, together with the improvement of microbial processes, will 
allow more and more bioprocesses to appear at the large scale, which will become 
the trend of this market in the future. Among the countries whose territories 
contain the majority of the companies dedicated to supplying the world demand 
for organic acids, the People’s Republic of China stands out, which is expected to 
continue to be the country that will dominate this market in the coming years.
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