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Abstract

Metal and metal oxide nanoparticles have attracted increased attention due to 
their unusual physical and chemical properties. The nature, dispersion, and size 
of the nanoparticles are key factors in determining the activity and selectivity 
of the supported catalysts. Supercritical fluid deposition (SCFD) is a promising 
method to deposit metallic nanoparticles and films on inorganic porous supports. 
CO2 is the most commonly used supercritical fluid (sc-CO2) for material synthesis 
because it is nontoxic, nonreactive, nonflammable, and inexpensive. This work 
presents the synthesis of cobalt, nickel, and ruthenium nanoparticles on MCM-
41, Al-MCM-41, MCM-48, and activated carbon supports in sc-CO2. Batch and 
continuous deposition are studied, with two high-pressure reactor configurations: 
column or alternative (sandwich). To avoid the length of the bed being too long, 
the reagents were separated into smaller amounts and placed alternately, keep-
ing the total mass of the precursor and support constant. The prepared samples 
were characterized by scanning electron (SEM/EDX) and transmission electron 
microscopy (TEM).

Keywords: metal, ruthenium, cobalt, nickel, supercritical fluids

1. Introduction

The chemical industry is partially responsible for the environmental problems 
caused by many of its processes, such as air pollution due to emissions produced by 
the incineration of fossil fuels. Thus, Green Chemistry emerges in response to these 
issues [1, 2]. This represents a constant motivation for the design of new processes 
that minimize the use of dangerous substances and the generation of polluting 
agents, maintaining the feature of the final product.

In this context, industrial processes should be designed to generate substances 
that are slight or not harmful to human health and the environment and, if it is pos-
sible, to use auxiliary agents (e.g., solvents) that are innocuous or with low toxicity. 
According to this dogma, in recent years, several investigations have been carried 
out involving the replacement of solvents used in many industries by other reaction 
media such as ionic liquids [3–5] or supercritical fluids (SCFs) [6–8].

Micro- and mesoporous materials are solid materials widely used in heterogeneous 
catalysis, due to their involvement in numerous reactions of industrial interest.  
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The deposition of metallic active phases on these substrates is of utmost importance in 
order to maintain the textural and structural properties and achieve good dispersion.

In this chapter, the study of supercritical carbon dioxide (sc-CO2) as a solvent to 
deposit metallic nanoparticles (Ni, Co, Ru) on microporous (activated carbon) and 
mesoporous substrates (MCM-41 and MCM-48) is presented.

Supercritical fluid technology satisfies the principles of Green Chemistry, 
because it is a reagent with low toxicity and whose critical parameters are easily 
accessible and, therefore, energy consumption is minimized. In addition, through 
its compression it can be recovered, thus avoiding its release into the atmosphere. 
The combination of all these aspects, together with its good transport properties, as 
will be discussed in detail below, makes sc-CO2 an excellent resource for developing 
new environmentally friendly technologies.

2. Supercritical fluids (SCFs)

A supercritical fluid (SCF) is defined as the state of a substance whose pressure 
and temperature are higher than their critical values [9]. In this state, the phase 
boundary between the liquid and the gas is interrupted at the critical point, which 
implies the formation of a homogeneous phase as observed in Figure 1. Therefore, 
it is possible for a substance to cross from the liquid to gaseous state passing through 
the supercritical region, without any phase transition (Figure 2).

Supercritical fluids have properties that are in many aspects unique and change 
considerably from those corresponding to the liquid or gaseous state of origin. 
Basically, SCFs have intermediate properties between those that characterize a liq-
uid and those of a gas [10]. The thermal conductivity of SCFs approximates that of 
liquids, indicating that they have better properties with respect to heat conduction 
[11]. SCFs tend to occupy the entire volume of the enclosure and do not present 
interfacial tension, a behavior similar to gases (Table 1). Similar to gases, the den-
sity of SCFs varies enormously with pressure and temperature, although densities 
very close to those of liquids are reached. Thus, the characteristic property of SCFs 
is the wide range of high densities that they can adopt depending on pressure and/
or temperature conditions. This differentiates them from liquids that are practi-
cally incompressible and from gases that have very low densities. These properties 
make FSC an effective medium for incorporating metals into porous solids.

Figure 3 presents the isotherms for a fluid, indicating the variation in density 
with pressure. It is noted that, above the critical point, there is only one phase and 
for high densities, the curve remains flat, indicating large variations in density for 
small increases in pressure.

Figure 1. 
Phases observed with a high pressure cell: (a) heterogeneous gas/liquid, (b) phase transition and (c) 
homogeneous in supercritical state.



3

Synthesis of Supported Mesoporous Catalysts Using Supercritical CO2

DOI: http://dx.doi.org/10.5772/intechopen.92740

Therefore, considering the direct ratio that exists between fluid density and 
solvation power, SCFs can greatly vary their solvation capacity by small variations 
in pressure and/or temperature. Consequently, knowledge of the thermodynamic 

Figure 2. 
P-T phase diagram.

Properties Gasa SCFb Liquidsa

Density (kg·m−3) 0.5–2.0 200–500 500–1500

Viscosity (mPa·s) 0.01–0.30 0.01–0.03 0.2–3.0

Diffusivity (m2·s−1) 10–5 10–7 10–9

Conductivity (W·m−1·K−1) 0.01–0.02 0.05–1.00 0.1–0.2
aProperties at room temperatures.
bProperties close to critical point.

Table 1. 
Typical values for supercritical fluids (SCFs) [10].

Figure 3. 
Pressure-density diagram.
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properties of SCFs and their behavior near the critical point is essential for the 
proper design of separation reactions and processes.

Thus, the main applications of supercritical fluids are [12–14]:

• Extraction: leaves no residue; high purity extracts are obtained and do not 
require high temperatures.

• Synthesis of materials: SCFs allow obtaining solid materials with controlled 
properties, among which the obtaining of aerogels and the synthesis of ultra-
fine particles (nanoparticles) with very uniform morphology, high purity, and 
free of solvent residues can be highlighted.

• Reaction medium: the existence of a single phase allows optimal mass and 
energy transfer.

Indisputably, the most used supercritical fluid in research and industrial appli-
cations is carbon dioxide (CO2). It is an innocuous, abundant, and inexpensive 
gas, with relatively low critical conditions (31°C and 71 bar) and therefore easy to 
operate.

Table 2 presents the temperature, pressure, and density conditions for different 
supercritical fluids [15].

2.1 Synthesis of materials in supercritical fluids

Currently, the material synthesis using SCFs represents a new area of 
research, particularly, in the field of nanoparticles. Polymeric materials, 
inorganic solids, and organic compounds, with uses in additives, medicines, 

SCF Name Tc
a Pc

b
ρc

c

C2H4 Ethylene 9.3 50.4 220

Xe Xenon 16.6 58.4 120

CO2 Carbon dioxide 31.1 73.8 470

C2H6 Ethane 32.2 48.8 200

N2O Nitrous oxide 36.5 71.7 450

C3H8 Propane 96.7 42.5 220

NH3 Ammonia 132.5 112.8 240

C3H8O 1-Propanol 235.2 47.6 270

CH4O Methanol 239.5 81.0 270

H2O Water 374.2 220.5 320

C7H8 Toluene 318.6 42.1 290

C4H10 n-Butane 152.0 38.0 228

C5H12 n-Pentane 196.6 33.7 232

C6H6 Benzene 289.5 49.2 300
aCritical temperature (°C).
bCritical pressure (bar).
cCritical density (kg m−3).

Table 2. 
Critical properties of different fluids.
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pigments, cosmetics, biomaterials, optics, catalysts, or adsorbents, have been 
synthesized with supercritical fluids [16].

As a consequence, the development of various methods on the generation of par-
ticles with supercritical carbon dioxide (sc-CO2) has grown rapidly in the last decades 
[17]. Among them, the rapid expansion of supercritical solutions (REES) is one of 
the most studied and used precipitation processes on an industrial and/or laboratory 
scale [18, 19]. This method involves the rapid expansion of a pressurized solution 
through a needle, causing extremely rapid nucleation of the solid solute in micron-
ized form [20]. However, the rapid expansion of a supercritical solution in a liquid 
solvent (RESOLV) is an alternative to the REES technique [21]. In this case, expansion 
occurs in a liquid solvent instead of using sc-CO2 to prevent particle aggregation [22].

However, FSCs can inhibit dissolution, thereby causing novel synthesis mecha-
nisms, such as gas or supercritical anti-solvent (SAS) [23]. These procedures 
operate at high pressure and involve mixtures between an organic solution and a 
supercritical fluid [24]. As a consequence of high-pressure dissolution, the solu-
tion expands, and the solubility of the solute exhibits decrease rapidly. Finally, the 
mixture becomes supersaturated, and nanoparticles precipitate [25]. Similarly, 
particles of saturated gas solutions (PGSS) consist of dissolving a supercritical fluid 
in a solvent followed by rapid depressurization of this mixture through a nozzle that 
causes the formation of solid particles or liquid drops [26–29].

FSCs are also utilized in hydrothermal or solvothermal synthesis, participating 
through chemical reactions, such as hydrolysis and dehydration of solutions of 
metal salts in subcritical or supercritical water [30–32] or another solvent [33–35]. 
A novel recently synthesis technique is FSC microemulsion, in which water droplets 
in sc-CO2 function as a micro-reactor [36–39].

Therefore, it is important to highlight one of the main advantages offered by 
technology with supercritical fluids. Through a simple change in operating condi-
tions, it is possible to control the size and shape of the synthesized active phases. 
In this way it has been possible to produce a wide variety of materials, such as 
nanoparticles, powder coatings, films, core-shell particles, and nanocomposites.

Furthermore, it is complemented by certain organometallic complexes for 
the manufacture of different metals and metal oxides [40]. In the 1990s, several 
pioneering studies on the subject were reported [41–44] which subsequently led to 
the advancement and development of new processes, which can be summarized in 
the following fields:

• The use of organo-transition metal complexes as homogeneous catalysts for 
reactions in SCF and biphasic systems [45–48]

• Extraction of heavy metals from various matrices with SCF [49–51]

• Synthesis of inorganic powders with controlled size distribution by decompo-
sition of organometallic complexes in SCF [52–56]

• Impregnation of polymers with different metal complexes and the subsequent 
transformation of the metal precursor within such matrices [57–62]

• Incorporation of metallic nanoparticles in porous inorganic and carbonaceous 
substrates by deposition of SCF [63–65]

This chapter focuses on the last point, in order to contribute to developing the 
incorporation of metallic active phases in porous substrates by dissolving organo-
metallic complexes in sc-CO2.
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2.2 Supercritical fluid deposition

In recent years, the interest in nanostructured materials has grown enormously 
[66–69] due to the advantages they present in the area of heterogeneous catalysis. 
These are associated with its small size and, therefore, with its large specific surface.

In this way, several research studies have focused on improving the synthesis 
procedures of new catalytic materials, depositing metallic nanoparticles in porous 
materials (micro-, meso-, or macroporous), with high surface areas and uniform 
pore structures [70–74].

There are numerous techniques for incorporating metals on substrates, as well 
as for preparing supported metal films and/or nanoparticles, such as impregna-
tion, coprecipitation, sol–gel, chemical vapor deposition, or microemulsions using 
organic stabilizing agents. All exhibit different advantages and disadvantages, 
but, in general, the main drawback of these synthesis methods is the control of the 
dimensions and dispersion of the particles, as well as the metallic content in the 
matrix of the support.

Reproducibility, size control, and stabilization under severe operating condi-
tions are the most important challenges in the area of materials synthesis. In view 
of this, the use of supercritical fluids represents a promising synthesis method for 
the deposition of metallic nanoparticles on the solid surface and/or inside of porous 
substrates [75, 76]. Deposition with supercritical fluids (SCFD) is a very simple and 
ecological procedure [77, 78].

Reproducibility, size control, and stabilization under severe operating condi-
tions are the most important challenges in the area of materials synthesis. In view of 
this, the use of supercritical fluids represents a promising synthesis method for the 
deposition of metallic nanoparticles on the surface of solids and/or within porous 
substrates.

Among SCFs, sc-CO2 is the most widely used because it is abundant, inexpen-
sive, nonflammable, nontoxic, environmentally benign, and easily accessible and 
leaves no residues that cannot be treated. Furthermore, it has a critical temperature 
(Tc) of 31°C and a critical pressure (Pc) of 71 bars.

In addition to the environmental benefits, sc-CO2 has a high permeability index 
in almost all polymers, which makes it possible to incorporate metal precursors in 
various substrates. Furthermore, the dispersion of the particles, the diffusion rates 
in the substrate, and the separation of the SCF and the polymer chain of the metal 
of interest can be controlled through changes in temperature and pressure. These 
good sc-CO2 properties have also been used in many applications such as separa-
tions (extraction and purification), chemical reactions, chromatography, drying of 
materials, and the synthesis of nanostructured materials [79, 80].

The SCFD technique involves three main stages (Figure 4) [81]:

i. Dissolution of the metallic precursor

ii. Adsorption and absorption of the metallic precursor in the support

iii. Reduction of the precursor to its metallic form

Thus, the first stage consists of dissolving an organometallic precursor using 
sc-CO2 under optimal conditions to promote solubility in the medium: high pressure 
and moderate temperature. In the second phase, the resulting solution is exposed to 
the porous substrate with its subsequent adsorption on the support matrix, which 
represents the impregnation itself. Then the metal complex can be converted to 
its metal form as shown in Figure 4. Finally, the system decompresses slowly and 
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gradually until reaching atmospheric pressure. In this way, solvent residues and 
pore collapse are avoided, the very common difficulties in techniques for preparing 
catalysts.

The conversion of the adsorbed metal complex into metal nanoparticles can be 
carried out by different procedures. The conventional method is heating in an inert 
or hydrogen atmosphere, which can even be done before depressurization in the 
supercritical fluid phase.

Supercritical fluid reactive deposition (SCFRD) is a term used to refer to the case 
where metal reduction is performed in the synthesis process [82]. This technique 
is based on promoting the precipitation of metallic nanoparticles and their conse-
quent deposition and growth on the pore while the organic part of the precursor 
remains dissolved in the sc-CO2 and is released together with the gas [66, 83]. In 
this context, there are two possible ways: (i) injection of a reducing agent, such as 
H2 or an alcohol, or (ii) a heat treatment to cause decomposition of the precursor. 
Consequently, this single-stage process for the synthesis of catalysts makes it pos-
sible to reduce operating times compared to other conventional techniques.

2.2.1 Dissolution of the metallic precursor in sc-CO2

Dissolving the metal precursor in the supercritical phase is the first step in the 
deposition method. The metallic precursors can be organometallic or inorganic 
compounds, which will depend on the FSC used in the deposition. In particular, 
organometallic compounds have significant miscibility in SCFs such as sc-CO2 and 
have been extensively used in SCFD techniques. In the case of inorganic precur-
sors such as salts, they only show appreciable solubility in the case of critical and 
supercritical water [83].

The solubility and behavior of the precursor-SCF phase are very important 
parameters, since the adsorption of the precursor on the support depends on the 
concentration in the fluid phase. Some studies on the solubility of organometallic 
complexes in sc-CO2 have been reported in the literature. From the point of view of 
solubility in sc-CO2, the organometallic complexes can be diketones, dithiocarba-
mates, macrocycles, organophosphate reagents, hydroxamic acid, and other organic 
complexes. The organometallic precursors commonly used in the preparation of 
supported nanocomposites using SCFD are seen in Table 3.

2.2.2 Adsorption of the metallic precursor in the support

One of the most important aspects of the technique for preparing supported 
metals so that the particles are dispersed within the matrix is the absorption of the 
organometallic precursor in the substrate in the presence of SCF.

Similarly, in the event that the particles must be located on the surface of the 
support, the adsorption of the organometallic precursor on the surface in the 
presence of SCF plays an important role. Therefore, the study of the kinetics and 

Figure 4. 
Schematic diagram for supercritical fluid deposition method. (a) Organometallic precursor, (b) reducing 
agent, and (c) metal nanoparticles.
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thermodynamics of the absorption and desorption processes is beneficial for the 
development of this technology.

The resistance to mass transfer on the outer surface of the particle and/or 
diffusion within the particle governs the kinetics of adsorption or absorption. In 
the first case, the resistance is quantified by the external mass transfer coefficient 
of the precursor, while, in the second case, it is a combination of the coefficient of 
diffusion of the fluid in the pores and of the diffusion of the solute adsorbed on the 
surface of pores. In absorption, the diffusion of the precursor into the SCF has to be 
considered when the matrix is full.

3. The importance of catalytic support

Like with metals, choosing a suitable support is a key aspect of catalyst design. 
The main role of a catalytic support is to fix and disperse the active centers, typi-
cally small metal particles or metal oxides, that participate in the reaction of inter-
est. To maximize their efficiency, it is crucial to facilitate close contact between the 
reactive molecules with the nanoparticle-based surface atoms.

From these postulates, great efforts are made by several research groups to 
synthesize and optimize chemically stable support synthesis routes, with high and 
optimal surface areas to disperse active metallic phases.

Due to the high cost of certain metal catalysts such as noble metals, on an 
industrial scale, small particles with a good distribution and high surface/volume 
ratio are required.

Although the effective dispersion does not depend on the metal-support 
interaction, it is known that the morphology and physicochemical characteristics 
of the supports produce significant effects and can influence the catalytic activi-
ties. Carbonaceous materials, alumina and silica, are the commonly used catalytic 
supports.

β-Ketones β-Fluored ketones Cyclic ligands

Co Co(cp)2

Ni Ni(cp)2

Cu Cu(acac)2 Cu(hfac)2

Cu(tmhd)2 Cu(hfac)

Cu(tmod)2

Ru Ru(acac)3 Ru(cod)(tmhd)2

Rh Rh(acac)2 Rh(cod)(acac)

Pd Pd(acac)2 Pd(hfac)2 PdMe(cp)

Ag Ag(cod)(hfac); Ag(hfac)(hmte)
Ag(hfac)(tegme)

Pt Pt(acac)2 Pt(cod)me2

Ir Ir(cp)(cod)me

Au Au(acac)me2

acac—acetylacetonate; cod—1,5-cyclooctadiene; cp—cyclopentadienyl; hfac—hexafluoroacetylacetonate; hmte—
hexamethyltriethylene; me—methyl; tegme—tetraethylene glycol dimethyl ether; tmhd—tetramethylheptadionate; 
tmod—trimethyloctanedione.

Table 3. 
Summary of the organometallic precursors used in SCFD [83].
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3.1 Mesoporous supports

The main difference of mesoporous materials with zeolites is that the walls of 
their pores are not crystalline because they are made of amorphous silica, which 
does not have order at the atomic level. Thus, the order of these materials is related 
to the arrangement of the pores. Mesoporous materials have been studied as possi-
ble substitutes for zeolites, although their surface is also polar and they do not have 
the acidity of zeolites since they do not contain aluminum cations [84]. In addition, 
the size of their pores is greater than 2 nm, which means that there is no selectivity 
of form or present intra-particle diffusion problems [85].

Among the most studied mesoporous solids, a breakthrough originated in 1992 
when the Mobil Research and Development Corporation published the synthesis of 
a series of mesoporous silicates that they designated as the M41S family. The main 
porous solids in this family are named MCM-41, MCM-48, and MCM-50 [Mobil 
Composition of Matter (MCM)] [86, 87]. The solid MCM-50 has an unstable lamel-
lar structure, while the MCM-48 has a porous cubic metastable structure, which 
consists of two independent tri-directional channel systems (Figure 5).

The structure of MCM-41 silica is made up of a well-defined hexagonal network 
of unidirectional cylindrical pores, which provides the material with a high specific 
surface area (~1000 m2 g−1) and a high pore volume [88, 89].

In general terms, the synthesis of these solids is carried out through the interac-
tion between an inorganic phase and another micellar phase of an organic nature. 
The precursor agents of the structure or surfactants (templates) are characterized 
by being molecules with an amphiphilic character or also called “amphipathic mol-
ecules.” In other words, they have a hydrophilic end (soluble in water) and a hydro-
phobic end (rejects water), which is usually a hydrocarbon chain. Like any other 
surfactant, they form micelles when in aqueous solution under certain conditions 
because they have a hydrophobic and a hydrophilic chain that cannot be separated. 
The surfactant micelles serve as templates or molds and create the internal porosity 
of the solid.

The micellar arrangement, responsible for the structuring of the final material, 
was attributed to the presence of surfactant molecules in an aqueous medium, 
under certain conditions of temperature, pH, and concentration, forming ordered 
structures known as liquid crystals [90].

The mechanism of formation of mesoporous materials is generally carried out 
through the sol-gel process, which has a number of advantages over others such as 
low temperature and homogeneity at the molecular level.

This method usually involves the hydrolysis and condensation of the precursors, 
which can be metal alkoxides or inorganic or organic salts. Furthermore, organic or 

Figure 5. 
Members of the M41S family. Adapted from [161].
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aqueous solvents are used to dissolve the precursors. Occasionally, other substances 
are used to promote hydrolysis and condensation reactions [91]. Normally, the 
alkoxide groups are chosen in a sol-gel synthesis process as the silicon source. The 
reactivity of the chosen precursors largely depends on the degree of charge transfer 
and the ability to increase their coordination number.

Hydrolysis and condensation reactions are multistep processes, occurring 
sequentially, in parallel, and may be reversible. Condensation results in the forma-
tion of metal oxides or hydroxides, often with attached or attached organic groups. 
These organic groups may be due to incomplete hydrolysis or introduced as non-
hydrolysable organic ligands [92].

The dimension and size of the pore system are dictated by the dimension and size 
of the micelles in solution. In the case of the hexagonal MCM-41 material, the pore 
diameter is between 20 and 40 Å when the length of the alkyl chain in the surfactant 
varies between C8 and C16. Finally, by calcination, excess surfactant is removed.

The siliceous walls of these materials do not have any order and are full of struc-
tural defects resulting from the hydrolysis of the silica source and its subsequent 
condensation. This condensation is not complete, so silicon atoms remain attached 
to OH▬ groups on the walls, called silanol groups.

3.1.1 Synthesis of mesoporous support

In general terms, the synthesis of mesoporous solids is carried out through the 
interaction between an inorganic phase and another micellar phase of an organic 
nature. The precursor agents of the structure (surfactants or templates) have a 
hydrophilic end (soluble in water) and a hydrophobic chain (rejects water), which 
is usually a hydrocarbon chain. Generally, these two parts tend to separate if added 
to a mixture with other substances, which cannot be fulfilled because both ends are 
joined by a chemical bond.

3.1.1.1 MCM-48

This support was prepared using a conventional hydrothermal method. 
For that, n-hexadecyltrimethylammonium bromide (2 g) was used as template 
[CH3(CH2)15N(Br)(CH3)3 ≥ 98%, Sigma-Aldrich], ammonium hydroxide to 
condition the basic medium (13 cm3, 20% as NH3), and absolute ethanol as solvent 
(18 cm3). The subsequent solution was stirred for 15 min, and the tetraethylortho-
silicate (TEOS) was added such as Si source. It is necessary that TEOS were added 
dropwise to avoid the quick condensation. Then, the solution was further stirred 
for 18 hours at 30°C. Afterward, the white precipitate was collected by filtration, 
washed with distilled water, and dried at 60°C overnight.

Finally, the template was removed by calcination with a heating rate of 
2°C min−1 at 550°C and maintained at 550°C for 8 hours in airflow.

3.1.1.2 MCM-41

The mesoporous substrates MCM-41 and AlMCM-41 were synthesized in a 
spherical way. For this, the commercial reagents that were used were the following:

• Surfactant: n-hexadecyltrimethylammonium bromide (C16TMABr)

• Silicon source: tetraethyl orthosilicate (TEOS)

• Aluminum source: sodium aluminate (NaAlO4)
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• Ethanol (EtOH)

• Ammonium hydroxide solution (NH4OH) 29% v/v

Thus, 1 g of C16TMABr was dissolved in 19.2 ml of water at room temperature 
and continuous stirring. Then 24 g of absolute ethanol and 5.9 g of NH4OH solu-
tion were added. Subsequently, 1.88 g of TEOS was added dropwise, to avoid rapid 
condensation of the Si source.

Ethanol is added to the preparation because it acts as a solvent, while water is 
a reagent for the hydrolysis reaction of TEOS. Ammonium hydroxide is used to 
achieve an alkaline medium and thus obtain discrete support particles. The mixture 
was kept under continuous stirring for 18 hours at 25°C. The resulting solid has the 
following molar composition:

  TEOS : 0.3  C  16   TMABr : 11  NH  3   : 144  H  2   O : 58 EtOH  

The AlMCM-41 sample was prepared similarly to the MCM-41 solid. The differ-
ence is the addition of 0.04 g of sodium aluminate before adding TEOS, with the 
ratio Si/Al = 20.

The final solid was obtained by vacuum filtration, with subsequent washes until 
neutral pH was reached. Then, the samples were dried for 24 h at 80°C, and, finally, 
they were calcined in airflow at 5°C min−1 up to 550°C to achieve the total elimina-
tion of the surfactant.

4. Metals in catalysis and their applications

The area of heterogeneous catalysis is constantly developing, establishing 
innovative synthesis methods and modern metal deposition techniques, creating 
original supports, or trying to discover the necessary physicochemical properties of 
the catalyst for each reaction.

In this context, noble metal-based catalyst systems exhibit high activities for 
most reactions and are commonly used in numerous industrial applications. The 
main problem with the use of noble metals as the active phase is that, despite acting 
as an inert reaction, over time they deactivate due to poisoning with contaminating 
substances, coke deposition, or leaching of the active phases.

From this perspective, the development and extensive use of catalysts based on 
non-noble metals, such as Ru, Co, and Ni, are considered to be preferred from an 
industrial point of view, mainly for economic reasons.

4.1 Cobalt-based catalysts

In heterogeneous catalysis, cobalt represents one of the most studied active 
phases for decades. In particular, 2700 tn Co(0) are used annually as a homoge-
neous or heterogeneous catalyst in petrochemicals or plastic industries. Cobalt is 
used in the production of ultra-resistant resins or plastics for different purposes.

In addition, Co is used for the production of alcohols and aldehydes and con-
sequently obtaining detergents. The active species can be metallic, cobalt oxide, 
hydroxide, or ionic.

On the other hand, there are numerous articles that report the behavior of 
cobalt-based catalysts applied in a wide variety of reactions of industrial signifi-
cance. Those involving the breaking of C▬H and C▬C bonds at low temperatures are 
important. In this sense, cobalt catalysts supported on zirconia, ceria, and alumina 
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have reported high catalytic activity, similar to that obtained with the noble metal 
[93–96]. These solids have also been used satisfactorily in the dry-steam reforming 
process [97] in order to obtain synthesis gas enriched with hydrogen.

Llorca [98] demonstrated that the dispersion and reducibility of the cobalt 
species together with the cobalt-support interaction have important effects on 
the catalytic performance, being the key parameters in the stability and selectiv-
ity of the process. In order to improve efficiency, the synergistic effect of cobalt 
with other metals such as Ni [99–101], Ru [102, 103], and Fe or Cu [104] is also 
investigated.

Furthermore, there is a large group of research that focus on developing new 
materials for the Fischer-Tropsch synthesis (FTS) [105–107]. In order to efficiently 
obtain hydrocarbon mixtures from syngas (CO2 and H2) derived from coal, natural 
gas, or biomass resources, cobalt-based catalysts are widely used in this type of 
process due to their selectivity towards long-chain paraffin and strong resistance to 
deactivation and because they are economically viable. The nature and structure of 
the catalytic support, as well as the dispersion of Co(0) metal sites and the reduc-
ibility of cobalt species, directly influence the FTS performance. As a consequence, 
several synthesis strategies have been studied in recent years.

In this context, in order to achieve a high dispersion of surface active cobalt spe-
cies, in some cases metal-support interaction is to stabilize the catalyst. Therefore, 
different supports have been studied such as titanium or magnesium oxides, 
zeolites, mesoporous silica (MCM-41 and SBA-15) [106, 108, 109], and carbon 
nanostructures (CNFs, MWCNTs, and CSc) [105, 110].

However, a strong interaction with the support can also decrease reducibility 
by creating nonreducible Co species such as CoAl2O4 and CoTiO3. For this reason, 
some noble metal promoters, such as Pt, Re, or Ru [111, 112], are used to optimize 
the reduction of cobalt oxides and to inhibit coke deposition during FTS.

Although these are the best-known application processes, there are other 
examples where promising developments are taking place.

Unsupported cobalt catalysts showed good activity for ammonia synthesis 
[113, 114], improving thermal stability when cerium or barium were incorporated 
as promoters.

On the other hand, there is great scientific and environmental interest in 
reducing or eliminating NOx emissions from combustion gases by means of selec-
tive catalytic reduction (SCR-NOx). Cobalt catalysts supported on zeolites (MFI 
or FER) showed an increase in catalytic activity directly related to metal charge 
[115, 116].

In this sense, great efforts are made to develop new catalysts based on Co and 
applied in the combustion of volatile organic compounds (VOCs) generated by 
industry, transports, and residential/service sector [117–119]. To this point, high 
catalytic yields have been reported for the VOC oxidation at low temperatures given 
by cobalt oxides such as Co2O3 and Co3O4. This carries considerable environmental 
and economic benefits compared to traditional thermal oxidation.

4.1.1 Deposition of cobalt using sc-CO2

Hunde and Watkins [120] were pioneers in the synthesis of cobalt and nickel on 
native silicon oxide using supercritical fluids. They also reported on the formation 
of Si-supported TaN and TiN films, without the need for a catalytic layer, by direct 
reduction of H2 present in the cobaltocene (CoCp2). For this, it was operated at a 
reduction temperature of cobaltocene in the range between 285 and 320°C and a 
pressure between 22.0 and 26.0 MPa. No significant deposition below 280°C was 
observed.
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4.2 Nickel-based catalysts

Nickel-based catalysts are widely used due to their high activity at room tem-
perature, leading to participation in the competitiveness of several industries.

The most important applications of this active phase include artificial fibers, 
vehicles parts, and nylon production. Adipic acid and caprolactam are obtained 
from the process of transforming benzene into cyclohexane using a nickel-based 
catalyst [121].

Also, a large part of the production of oils and fats derived from natural sources 
and used as food products (palm and vegetable oils) depends on the utilization of 
nickel catalysts. Fertilizer production involves technological processes with nickel 
catalysts for the ammonia production.

However, its main application is in oil refining. Raney Ni catalyst is widely used 
in hydrodenitrogenation to reduce NOX and hydrodesulfurization to decrease SOX 
concentration so that it is possible to obtain concentrations of these pollutants with 
levels lower than those legally required.

In addition to these applications, nickel catalysts supported on aluminum and 
porous silica represent the preferred option for cracking and hydroprocessing due 
to their ability to adsorb large amounts of hydrogen, which increases the efficiency 
of the reactions. It is important to note that nickel is less expensive relative to other 
metals like platinum.

Another field of application is in the production of synthesis gas as an alternative 
to the use of fossil fuels. One of those production methods is the reforming with 
liquefied natural gas [122, 123], ethanol [124], or an aqueous fraction of bio-oil 
[125, 126]. Nickel catalysts showed a good yield towards hydrogen production at a 
considerably lower cost than other noble metals in both fixed-bed and fluidized-bed 
reactors. However, these catalysts have the disadvantage of being deactivated sig-
nificantly due to carbon deposition and sintering due to extremely severe operating 
conditions, leading to loss of active surface. For these reasons, there are continuous 
studies seeking to solve this problem facing it from different perspectives: the use of 
promoters (Zn, Mg, Zr, others [124, 126]), oxide supports (SiO2 or Al2O3 [123, 127]), 
and different recuperation treatments [128].

Nevertheless, the most attractive process for syngas production is the CO2 
reforming of CH4 or dry reforming (DRM) and all the side reactions also catalyzed 
by nickel.

These types of catalysts are replacing noble metals, such as Ru, Rh, and Pt, with 
DRM due to their availability and profitable viability. But, once again, its use is 
limited due to its high tendency to coke deposition and consequent deactivation. 
Side reactions, including CH4 cracking [129], lead to the generation of carbona-
ceous deposits [130]. Furthermore, the endothermic nature of the reaction indicates 
that it is necessary to operate at high temperatures, tending to metal sintering. In 
this regard, the main parameters to be taken into account to reduce coke formation 
and improve catalytic performance have been studied and published, such as the 
nature of the support [131–133], the catalyst preparation method [134, 135], and the 
presence of modifiers [136, 137].

At the same time, among the growing concern over the depletion of fossil fuel 
reserves and environmental pollution, the generation of hydrogen from renew-
able resources such as biomass is emerging as an attractive alternative to energy 
demands. The use of nickel catalysts in the biomass gasification process cannot only 
increase H2 yield but also decrease reactor size as a result of optimizing the reac-
tion rate. Due to the same difficulties mentioned above, various catalytic supports, 
such as alumina, silica, and magnesium, were developed with metallic additives to 
improve thermal stability like Rh, Ru, Co, Fe, and Cu [138, 139].
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Another instance is CO2 methanation, developed by Sabatier and Senderens 
[140], which was industrialized in 1970 thanks to the use of catalysts, mainly Rh, 
Ru, or Pd. Recently, several supported nickel-based catalysts have been tested with 
high selectivity towards methane and a relatively low price [141, 142].

In addition, there are several articles and patents [143, 144] on the use of nickel 
as a catalyst for the hydrogenation of organic compounds, due to its ability to 
mainly hydrogenate C〓C double bonds, carbonyl groups (aldehyde and ketone), 
nitro, nitrile, and oxime.

4.2.1 Deposition of nickel using sc-CO2

Up to now, there are few articles related to the deposition of Ni nanoparticles by 
SCFD on micro- and mesoporous supports.

Peng et al. [145] have shown that NiCp2 hydrogenolysis can take place by means 
of a low temperature autocatalyzed process (<70°C) in sc-CO2 in both carbon 
nanotubes and flat surfaces.

In this sense, Bozbag et al. [146] reported the synthesis of Ni/AC, using acti-
vated carbon and Ni(acac)2 as a precursor. The sc-CO2 was used at 30 MPa and 
60°C, followed by a heat treatment using H2 at atmospheric pressure, achieving 
metallic loads of up to 6.5 wt.% with an average nanoparticle size around 10 nm.

Similarly, Taylor et al. [147] prepared Ni catalysts supported on carbon nano-
tubes and aluminosilicates with sc-MeOH and Ni(acac)2, obtaining higher metal 
loads (60–70 wt.%). These were used in the production of hydrogen through the 
gasification of biomass in supercritical water.

Finally, the formation of a NiCp2 film on Si, TaN, and TiN by means of chemi-
cal fluid at temperatures between 175 and 200°C and pressures from 19 to 23 MPa 
was reported [120]. The films were found to be essentially free of ligand-derived 
contamination, using a high-pressure cold-wall reactor and, therefore, restricting 
deposition only to heated substrates.

4.3 Ruthenium-based catalysts

Ruthenium is a transition metal that belongs to group VIII and has properties 
similar to those of the platinum. Ru-based catalysts can have a high potential in 
oxidative catalytic reactions such as asymmetric epoxidation of alkenes, dihydrox-
ylation of olefins, or oxidative dehydrogenation of alcohols.

Ruthenium catalysts, mainly known industrially as Grubbs, are widely used in 
olefin metathesis reactions. They are widely applicable and requested due to their 
high tolerance to functional groups and stability [148, 149].

Similarly, in fine chemistry and pharmacy, Ru-based solids have been developed 
that facilitate hydrogen transfer. This alternative, which consists of adding hydro-
gen to a molecule from a source other than gaseous H2 in the presence of a catalyst, 
is increasingly being used in the area of organic industry. On the other hand, 
ruthenium complexes are used in the reduction of ketones, aldehydes and imines to 
produce alcohols and amines, respectively [150, 151].

Many studies are trying to replace iron and other transition metals in reactions 
that require high temperature and pressure to achieve sufficient productivity. This 
can be seen in the synthesis of ammonia, for example, for which various ruthenium 
catalysts supported on BaTiO2 [152] and carbon [153] have been tested.

In the energy field, a great deal of effort is devoted to finding materials that 
guarantee a safe and economical way to store hydrogen. Ruthenium-based catalysts 
are earning a significant place as a result of high yields. Akbayrak et al. [154, 155] 
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have reported that ruthenium supported on silica or nanotitania is one of the most 
active catalysts for the hydrogen generation from ammonia borane under mild 
conditions.

However, in general, most of the work focuses on hydrogenation reactions 
[156–158]. For example, in the industrial hydrogenation of benzene to obtain 
cyclohexane, nickel-based catalysts are used at temperature above 200°C and 
below 50 bars. These operating conditions lead to poor performance and promote 
undesired side reactions such as isomerization and hydrocracking, thus decreasing 
selectivity towards cyclohexane. In view of these arguments, numerous research-
ers are trying to replace this type of catalysts by others based on ruthenium alloys 
[156, 157].

Furthermore, as mentioned above, Raney nickel catalysts are used in the hydro-
genation of glucose. However, new ruthenium-based catalysts are being developed 
due to their resistance to chemical attack [158, 159].

Increasingly, new types of ruthenium-based catalysts catalyze multiple hydroge-
nation reactions, even under severe operating conditions, such as transforming CO2 
into formic acid below 20–40 MPa and 80–150°C [160].

4.3.1 Deposition of ruthenium using sc-CO2

There are some articles that study ruthenium deposition on different micro- and 
mesoporous supports using supercritical fluids. In this context, Yen et al. [161] 
showed the synthesis of Ru-MCM-41 solids using Ru(cod)(thmd)2 as a precursor 
at 150°C, 10 MPa of CO2, and 10 MPa of H2. In this way, metallic nanoparticles are 
effectively distributed and dispersed with an average diameter of 3.4 nm. Likewise, 
Kim et al. [162] reported methods for preparing ruthenium nanodots on Si and 
HfO2 films. In this case, Ru3(CO)12 was used as a precursor and dissolved in sc-CO2 
for 1 h, at 90°C and 23 MPa.

On the other hand, activated carbon is one of the most used catalytic supports 
in recent times. Due to this, there are numerous works that analyze the deposition 
of ruthenium on activated carbon [163–165] with sc-CO2 and cosolvents such as 
methanol and ethanol. Operation variables such as temperature, pressure, and 
amount of cosolvent are optimized, being 45°C and 10 MPa the optimal conditions 
to obtain 2 wt.% of ruthenium.

5. Catalyst synthesis by SCFD

In this section, the supercritical fluid deposition will be developed for the syn-
thesis of cobalt-, nickel-, and ruthenium-based catalysts on mesoporous supports 
using batch and continuous systems and detailing different configurations of the 
high-pressure reactor.

5.1 Batch device

The batch deposition experiments were carried out in a stainless-steel high-pres-
sure vessel with an internal volume of 100 ml. The experimental setup operates up 
to 30 MPa pressure and 400°C maximum allowable working conditions (Figure 6).

A Milton Roy Dosapro metering pump (flow rate up to 6.2 L h−1 and a maxi-
mum pressure of 33 MPa) was used to supply the CO2 to the reactor. The fluid is 
pre-cooled in a bath with an ethylene glycol/water (50/50) mixture cooled with an 
immersion cooler to ensure the liquid state of CO2 for pumping.
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Mass flow meter and a pressure gauge are installed in the pump outlet. The sup-
port and organometallic precursor are placed separated by a metal mesh to facilitate 
the circulation of sc-CO2 and avoid its direct contact (Figure 7).

The reactor is equipped with two wall-mounted electrical resistors located to 
promote convective flow of sc-CO2 and a K thermocouple.

During the first step, a precursor is dissolved by sc-CO2 under optimal operation 
conditions to favor its solubility. Meanwhile, precursor adsorption onto the support 
from the medium takes place during the desired adsorption time. After this adsorp-
tion step, temperature is increased to 200°C to break down the organometallic 
compound, with its subsequent precipitation of the metallic nanoparticles during 
the desired decomposition time. Afterwards, the system is isochorically cooled 
down to subcritical conditions, and CO2 is released from the reactor over a period 
approximately 30 min, which implies a slowly depressurization to atmospheric 
pressure to avoid drag metallic nanoparticles which are adsorbed over the support 
surface.

5.1.1 Mass transfer limitations

Due to the configuration of the experimental device, the synthesis process is car-
ried out into the reactor without external stirring. To facilitate as far as possible the 
homogeneity of the solution, the electrical resistances are located at the bottom of 
the vessel, as it is shown in Figure 7, to favor the creation of convective currents.

Inside the high-pressure reactor, the support and precursor are located inside 
two glass vials separated by means of a wire mesh. The precursor is located in the 
lower part, and the support occupies the upper vial. This kind of configuration has 
been called “column” type.

Since the support is disposed as a fixed bed, it was decided to test whether all 
along the vial the same deposition was obtained or conversely there was some mass 
transfer limitation. For this reason, the metal content from the same sample was 
analyzed at three different heights. The results showed that there was a certain 
divergence, with a concentration gradient of up to 20% if the initial amount of sup-
port was too high, so a new configuration in the form of placing the reactants was 
contemplated in order to avoid the observed mass transfer limitations.

To avoid bed length which was too long, reagents were separated into smaller 
quantities in several vials and placed alternately, maintaining the total mass of 
both the precursor and support constant. This new configuration is called “sand-
wich,” and a scheme of it is presented in Figure 8. The results are compared in 
Table 4.

Surprisingly, the improvement allows obtaining nanocomposites with really 
higher metallic loadings to 16 wt.%, showing that the “sandwich” configuration 
improves mass transfer in the system.

Figure 6. 
Experimental device for the catalyst synthesis by batch SCFD.
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5.2 Continuous setup

The SCFD in continuous will be developed for synthesis of ruthenium-based 
catalysts. The continuous system is represented in Figure 9. CO2 is pumped with a 
Jasco model PU-2080 Plus HPLC pump, which operates with a flow range between 
1 μL to 10 ml min−1 and a maximum pressure of 22 MPa. The pump extraction line 
is cooled to guarantee the liquid state of the CO2. So as to maintain a constant flow 
throughout the experiments, a mass flow meter controller with Bronkhorst Coriolis 
sensor calibrated to CO2 combined with a controller model mini Cori-Flow (10–
100 g h−1) was established. In addition, a back-pressure valve is placed downstream 
of the reactor to control and manipulate the desired pressure. Finally, a Swagelok 

Figure 8. 
Distribution of catalytic support and organometallic precursor in a “sandwich” configuration.

Figure 7. 
Distribution of catalytic support and organometallic precursor within deposition chamber.
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Figure 9. 
Experimental device for the synthesis by SFRD in continuous mode.

Figure 10. 
Internal configuration of the high-pressure reactor in the continuous SCFD.

SS-4R3A relief valve is located to protect the system from overpressures, with a 
nominal pressure of up to 41 MPa at room temperature.

In this new configuration, the high-pressure container used in batch operation 
has been replaced by two sections located in horizontal position inside the furnace, 
as shown in Figures 9 and 10.

The first piece contains the organometallic precursor mixed with glass spheres 
to relief its dissolution into the CO2 flow. Afterwards, the solution goes through the 
second tube, where the support is located.

The depositions were carried out under controlled conditions of pressure at 
11 MPa and temperature at 60°C. The initial flow of CO2 used (45 g h−1) was suf-
ficient to dissolve the precursor and be saturated before contact with the catalytic 
support. This premise was based on the observations made in the experiments 
carried out in the visual cell.

6. Metallic species deposited with sc-CO2

6.1 Co-MCM-41 and Co-Al-MCM-41 catalysts

6.1.1 Physical, chemical, and textural properties

The adsorption and desorption experiments of N2 at −196°C together with the 
measures of small-angle X-ray scattering (SAXS) were used to study the effect of 

Batches wt.% Co

Column Sandwich

1 3.2 5.8

2 4.4 13.7

3 6.0 16.6

Table 4. 
Cobalt loading after each successive batch in column or sandwich configuration.
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sc-CO2 and the addition of Co on the hexagonal arrangement of the mesopores and 
pore size distribution in the prepared samples. Figure 11 presents the N2 adsorp-
tion/desorption isotherms obtained for the mesoporous support and the cobalt 
samples. All solids showed type IV adsorption isotherms, typical of mesoporous 
materials with a strong inflection at relative pressures P/P0 > 0.3, indicating the 
uniformity of the mesopore size distribution.

Table 5 presents the quantitative results of N2 adsorption and desorption for the 
samples with high and low cobalt content, which are compared with those obtained 
in their respective supports. In addition, the interplanar distance values d100 and unit 
cell parameter a0 are shown, obtained by SAXS. The interplanar distance “d100,” in 
the direction (1 0 0), was calculated using Bragg’s law (λ = 2 · dhkl · sin θ). Also, the 
unit cell parameter “a0” was determined, which indicates the distance between the 
center of two adjacent pores in the hexagonal structure (a0 = 2 · d100/√3) [166, 167]. 
Both parameters are included in Table 5, together with the average pore size of the 
synthesized samples, obtained from the BJH method.

The addition of aluminum to the MCM-41 support produces an approximate 
38% of decrease in BET surface, while the average pore size remains relatively con-
stant between 4.6 and 4.8 nm. On the other hand, beginning from the same amount 
of precursor, the Co content deposited in the Al-MCM-41 support is slightly higher 
than in the MCM-41 sample. It is known that the incorporation of Al to pure silica 
is done to give more acidity to the MCM-41 structure. Therefore, it is probably that 
there is a greater interaction as a consequence of the aluminum aggregate [92, 168].

Regarding the cobalt incorporation, the specific area decreases 9 and 20%, with 
the addition of 0.6 and 4.3 wt.% of Co to the MCM-41 support, respectively. On 
the other hand, the catalysts Co(0.8)-Al-MCM-41 and Co(5)-Al-MCM-41 show a 
decrease in the area of 7 and 12%, respectively. When the added Co content is high 
(4.3 and 5 wt.%), there is a slight decrease in the size of the porous cavities, as a 
consequence of the incorporation of Co inside the mesopores.

Consequently, to determine if cobalt incorporation affects the hexagonal 
arrangement of mesoporous channels, SAXS technique was used. In the case of 
amorphous materials such as MCM-41 and AlMCM-41, the regular arrangement or 

Figure 11. 
Adsorption/desorption isotherms of N2 at −196°C obtained for samples functionalized with Co on supports (A) 
MCM-41 and (B) Al-MCM-41.
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ordering of the pores produces reflections that appear as signals at low diffraction 
angles. The solids of the M41S family have easily identifiable diffractograms provid-
ing reflections (h k 0).

The results obtained by SAXS for the Co(x)-MCM-41 and Co(x)-Al-MCM-41 
materials are presented in Figure 12. The appearance of an intense diffraction peak 
at 2.4° is characteristic of the (1 0 0) plane of the supports and indicates an ordered 
porous structure. In addition, there are other weaker diffraction peaks at 4.3 and 
5.0° that correspond to the planes (1 1 0) and (2 0 0) and that verify the synthesized 
mesoporous structure.

As seen in Figure 12A, there are no notable changes in the shape and position 
of the diffraction peaks for the Co(x)-MCM-41 samples. On the other hand, when 
5 wt.% of Co is deposited on the Al-MCM-41 substrate (Figure 12B), a slight shift 
of the main peak occurs towards higher diffraction angles (2θ = 2.6°). This suggests 
that the deposited cobalt charge causes a slight loss of the hexagonal arrangement. 
Furthermore, the cobalt incorporation in both mesoporous supports produces a 
decrease in the intensity of the diffraction peaks, which indicates the disorder of the 
hexagonal arrangement, but not breakage of the pores [87].

6.1.2 Morphology

Figure 13 presents the SEM images obtained after the addition of cobalt on sup-
ports MCM-41 and Al-MCM-41 with sc-CO2 in batch conditions with “sandwich” 
reactor configuration (see Table 4).

It is observed that the procedure using supercritical fluids is a nonaggres-
sive methodology, since the spherical morphology of the catalytic supports is 
maintained, with an average diameter close to 500 nm. Furthermore, it should 
be noted that the individual deposited nanoparticles cannot be detected directly 
using the secondary electron mode. However, when images are obtained through 
backscattered electron mode (BSE), areas of high electron density are observed, 
corresponding to cobalt particles. In Figure 13, brighter regions are highlighted, 
indicating areas of high electron density, due to the presence of cobalt. These zones 
are well dispersed and correspond to cobalt nanoparticles. Using EDX, cobalt 
concentrations close to 5.9 and 5.1 wt.% were obtained for the Co(4.3)-MCM-41 and 
Co(5)-Al-MCM-41 catalysts, respectively.

Figure 14 presents the mapping of SEM images from sample Co-MCM-41. 
Different shades in the gray scale are associated with various emission lines. In this 

Catalysts % Coa SBET (m2 g−1) vp (cm3 g−1) tp
b d100

c a0
d

MCM-41 0 1295 0.194 4.6 3.7 4.3

Co(0.6) 0.63 1183 0.173 4.5 3.7 4.3

Co(4.3) 4.34 1034 0.085 3.9 3.7 4.3

Al-MCM-41 0 807 0.216 4.8 3.7 4.3

Co(0.8) 0.82 752 0.198 4.1 3.4 3.9

Co(5) 5.10 709 0.156 3.9 3.4 3.9
aDetermined by ICP (wt.%).
bAverage pore size (nm).
cInterplanar distance, d100 = λ/2·sen θ (nm).
dUnit cell parameter, a0 = 11,547·d100 (nm).

Table 5. 
Chemical, physical, and textural properties of co-mesoporous catalysts.
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way, each tone in the image refers to the unique energy emission of the element of 
interest. When the cobalt charge was 4.3 wt.%, internal Co species and spherical 
nanoparticles were seen on the external surface of the MCM-41 substrate. When the 
concentration of cobaltocene (organometallic precursor) used was greater than the 
calculated solubility limit (0.336 g L−1), the Co particles obtained had a diameter 
between 10 and 20 nm. Therefore, during the decomposition phase, the deposition 
of the nanoparticles occurs on the outer surface and inside the spherical particle of 
the support.

6.2 Ni-MCM-48 catalysts

6.2.1 Physical, chemical, and textural properties

The content of deposited nickel with sc-CO2 was close to 3 wt.%, and it was 
determined by ICP. Table 6 presents the surface and pore structure parameter of 
calcined MCM-48 and Ni-deposited catalyst. The BET surface area of the silica 
support MCM-48 is higher than the MCM-41, and this was 1641 m2 g−1. The pore 
volume and diameter were 0.9 cm3 g−1 and 3.6 nm, respectively. After incorporat-
ing 3 wt.% Ni with sc-CO2, the BET area and pore volume decrease close to 40.5%. 
The loss of textural properties is further accentuated compared to the catalyst 
with 5 wt.% Co. This can be associated with the fact that the ionic radius of nickel 
(0.78 Å) is higher than of Co (0.63 Å) and the solubility of nickel precursor (nick-
elocene) in sc-CO2 is up to 1.5 times less than that of cobaltocene.

The N2 adsorption/desorption isotherms (Figure 15) of the mesoporous MCM-
48 and Ni-MCM-48 show the typical features of a mesoporous silica material, and 
it can be classified as type IV according to the IUPAC [169]. First, a sharp nitrogen 
uptake at P/P0 in the range of 0–0.02 due to a monolayer adsorption on the walls of 

Figure 12. 
Results obtained by SAXS for co-functionalized on supports (A) MCM-41 and (B) Al-MCM-41.



Advances in Microporous and Mesoporous Materials

22

Figure 14. 
Mapping of the SEM images obtained for the Co-MCM-41 catalyst.

Catalysts % Nia SBET (m2·g−1) vp (cm3·g−1) tp
b

MCM-48 0 1641 0.90 3.6

Ni-MCM-48 3.0 977 0.45 1.4
aDetermined by ICP (wt.%).
bAverage pore size (nm).

Table 6. 
Chemical and textural properties of Ni-MCM-48 catalyst.

Figure 13. 
SEM images obtained by backscattering of (A) Co-Al-MCM-41 and (B) Co-MCM-41.
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MCM-48 is observed. This step is followed by an abrupt increase in the volume of 
nitrogen adsorbed at P/P0 in the range of 0.2–0.3 associated to capillary condensa-
tion of N2 in the channels of MCM-48, suggesting uniformity of the channels and a 
narrow pore size distribution [170].

6.2.2 Morphology

Table 7 shows the results of nickel content after the impregnation by SCFD in 
batch conditions with column and sandwich reactor configuration.

The first three experiments were carried out under the same conditions: 14 MPa, 
200°C, 1 h, and a reactor configuration in column. The nickel concentration in all 
of them was very similar, with an average value of 2.7 wt.% of nickel and a standard 
deviation lower than 0.1 wt.%, indicating the robustness of the SCFD process.

On the other hand, when studying the sandwich-type configuration of the 
reactor, in which several vials with precursor and support are placed alternately 
inside the reactor, they do not reveal a significant difference in the metallic charge 
as if it occurred with cobalt. Although depositions made in sequential charges have 
achieved increasing concentrations of metal, the rate of increase is considerably less 
from batch to batch, compared to cobalt. As observed in Table 7, the increase in 
nickel concentration after the second deposition is 52%, while it decreases to 14% 
after the third batch.

However, it is important to note that this type of configuration allows obtaining 
a greater amount of catalyst in a single operation.

In this way, it is observed that the SCFD method represents a valuable and versa-
tile technology, with reasonable reproducibility, that can be adapted and applied to 
other metal-support systems with acceptable efficiencies.

Instead, an electron microscopy (SEM/TEM) was used in order to study the 
morphology and the dispersion of the nickel nanoparticles incorporated by SCFD in 
batch and sandwich configuration. In this sense, Figure 16 shows spherical particles 
of support with an average diameter of about 200 nm and metallic nanoparticles 
dispersed on the surface.

Figure 15. 
Adsorption/desorption isotherms of N2 at −196°C obtained for samples (a) MCM-48 and (b) Ni-MCM-48.
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As occurred with the cobalt deposition, channels can be distinguished in 
Figure 16, which indicates that the high pressure of SCFD method does not modify 
the original structure of the support.

The distribution of the metal was observed by means of a mapping of the elec-
tron image (Figure 17). In these images, the homogenous distribution of the metal 
throughout the catalysts prepared by SCFD is observed, being perfectly distributed 
both surface and inside the support, without detecting any gradient of concentra-
tion or uncoated areas.

6.3 Ru-MCM-48 and Ru-C catalysts

6.3.1 Physical, chemical, and textural properties

Figure 18 shows the N2 adsorption/desorption isotherms for the AC support and 
Ru-based catalysts. According to the IUPAC classification, the N2 isotherms for AC 

Figure 16. 
TEM pictures of Ni-MCM-48 (A): BSE mode; (B and C) electronic image.

Figure 17. 
Mapping of the SEM images obtained for the Ni-MCM-48 catalyst. (A) Electron image, (B) NiKα, and (C) 
SiKα spectra.

Batches wt.% Ni column Batches wt.% Ni sandwich

1 2.8 1 2.5

1 2.8 2 3.7

1 2.6 3 4.2

Table 7. 
Nickel loading in batch with column or sandwich reactor configuration at 14 MPa, 200°C and 1 h.
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and Ru-AC catalysts are classified as type I. Generally, the microporous solids such 
as activated carbons and molecular sieve zeolites give type I isotherms [171].

The quantitative data obtained from the isotherms are presented in Table 8. 
The surface area obtained for the carbonaceous support was 794 m2 g−1, while the 
average diameter and pore volume were 2.1 nm and 0.77 cm3 g−1, respectively. By 
incorporating 4.3 wt.% Ru with supercritical CO2, the textural properties remain 
practically constant, being the surface area of 739 m2 g−1, the pore size of 2.0 nm, 
and the volume of 0.70 cm3 g−1. This behavior would indicate that ruthenium was 
successfully incorporated into the carbonaceous matrix, with high dispersion 
without collapsing the microporous structure.

On the other hand, when the ruthenium content was increased to 8 wt.%, the 
surface area decreased 30% compared to the initial AC. Also, pore size and volume 
decrease 23 and 12%, respectively.

In this way, it is verified that the supercritical fluid technology allowed to incor-
porate up to 8 wt.% of Ru in a microporous carbonaceous support in a satisfactory 
way without significantly altering the textural properties of the same.

Figure 18. 
Adsorption/desorption isotherms of N2 at −196°C obtained for (a) AC support, (b) Ru(4.3)-AC,  
and (c) Ru(8)-AC catalysts.

Catalysts % Rua SBET (m2·g−1) vp (cm3·g−1) tp
b

MCM-48 0 1641 0.90 3.6

Ru-MCM-48 3.0 977 0.45 1.4

AC 0 794 0.77 2.2

Ru(4.3)-AC 4.3 739 0.70 2.0

Ru(8)-AC 8 524 0.68 1.7
aDetermined by ICP (wt.%).
bAverage pore size (nm).

Table 8. 
Chemical and textural properties of Ru-based catalysts.
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Following the same line of research, when 4.7 wt.% Ru is incorporated into 
the MCM-48 mesoporous support, a 46% of decrease in the BET surface area is 
observed. Similar behavior shows the diameter and pore volume. This behavior was 
also observed with the incorporation of 3% Ni (see Section 6.2).

In this sense, it is observed that the modification of the textural properties of the 
synthesized catalysts depends on each particular case and factors like (i) the nature 
of the metal precursor used, (ii) the solubility of the precursor in sc-CO2, and (iii) 
the incorporated metal content. Evidently, the optimized P and T conditions influ-
ence the solubility of the precursor but do not affect the structure of the catalytic 
supports.

Figure 19. 
SEM images of (A and B) Ru-MCM-48 and (C) Ru-C catalysts prepared by SCFD in continuous mode.

Figure 20. 
Mapping of the SEM images obtained for the Ru-C catalyst. (A) Electron image, (B) SiKα, (C) CKα, and (D) 
RuKα spectra.
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6.3.2 Morphology

Figure 19 presents the SEM images obtained after the addition of ruthenium 
on supports MCM-48 and activated carbon with sc-CO2 in continuous conditions. 
Spherical particles with a size distribution between 200 and 500 nm were observed 
for MCM-48 support. Well-dispersed nanoparticles with an average diameter close 
to 10 nm were exposed on the MCM-48 surface (Figure 19A and B).

On the other hand, carbon active has a different morphology, irregularly shaped 
particles with very different sizes. Figure 19C presents the morphology corre-
sponding to the Ru-C catalyst. From this SEM image, it is not possible to observe 
the deposited metal phase, so the mapping of the obtained electronic image was 
performed (Figure 20).

It is observed that the metal is completely deposited on the surface of the acti-
vated carbon with homogeneous distribution. Increasing the concentration of metal 
in the catalyst, it still maintains a uniform distribution, without finding gradient of 
concentration.

7. Conclusions

Supercritical CO2 represents an optimal means to synthesize metallic nanopar-
ticles (cobalt, nickel, or ruthenium) on substrates such as MCM-48, MCM-41, 
Al-MCM-41, and activated carbon.

It has important advantages over other conventional means of preparation, such 
as complete synthesis in a single stage, without the need for subsequent calcination 
or reduction. Furthermore, the synthesis process is simple, using CO2 which is 
nontoxic, nonreactive, nonflammable, and inexpensive, with adequate pressure and 
temperature.

It is a process that can be performed in batch or continuous, optimizing the 
configuration of the reactor towards the sandwich arrangement of the support and 
organometallic precursor, thus obtaining a greater amount of catalyst in a single 
synthesis.

In this way, high metallic contents (close to 10%) are achieved with high disper-
sion and without significantly affecting the textural properties of the support.

Therefore, the effective deposition of different active phases on micro- and 
mesoporous substrates depends on each particular case and factors like the nature 
of the metal precursor used, the solubility of the precursor in sc-CO2, and the incor-
porated metal content. Evidently, the optimized P and T conditions influence the 
solubility of the precursor but do not affect the structure of the catalytic supports.

Finally, reactive deposition with supercritical CO2 represents an alternative for 
the reuse of CO2 captured in other processes.
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