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Chapter

How Are Fractal Interpolation
Functions Related to Several
Contractions?
SongIl Ri and Vasileios Drakopoulos

Abstract

This chapter provides an overview of several types of fractal interpolation
functions that are often studied by many researchers and includes some of the latest
research made by the authors. Furthermore, it focuses on the connections between
fractal interpolation functions resulting from Banach contractions as well as those
resulting from Rakotch contractions. Our aim is to give theoretical and practical
significance for the generation of fractal (graph of) functions in two and three
dimensions for interpolation purposes that are not necessarily associated with
Banach contractions.

Keywords: attractor, contraction, fixed point, iterated function system,
fractal interpolation

1. Introduction

Interpolation is a method of constructing new data points within the range of
a discrete set of known data points or the process of estimating the value of a
function at a point from its values at nearby points. Although a large number of
interpolation schemes are available in the mathematical field of numerical analysis,
the majority of these conventional interpolation methods produce interpolants, i.e.,
functions used to generate interpolation, that are differentiable a number of times
except possibly at a finite set of points. Taking into account that the smoothness of a
function is a property measured by the number of continuous derivatives it has over
some domain, the aforementioned interpolants are considered smooth.

On the other hand, many real-world and experimental signals are intricate and
rarely show a sensation of smoothness in their traces. Consequently, to model these
signals, we require interpolants that are nondifferentiable in dense sets of points in
the domain. To address this issue, interpolation by fractal (graph of) functions is
introduced in [1, 2], which is based on the theory of iterated function system. A fractal
interpolation function can be considered as a continuous function whose graph is the
attractor, a fractal set, of an appropriately chosen iterated function system. If this
graph has a Hausdorff-Besicovitch dimension between 1 and 2, the resulting attractor
is called fractal interpolation curved line or fractal interpolation curve. If this graph has
a Hausdorff-Besicovitch dimension between 2 and 3, the resulting attractor is called
fractal interpolation surface. Various types of fractal interpolation functions have
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been constructed, and some significant properties of them, including calculus,
dimension, smoothness, stability, perturbation error, etc., have been widely
studied [3–5].

Fractal interpolation is an advanced technique for analysis and synthesis of
scientific and engineering data, whereas the approximation of natural curves and
surfaces in these areas has emerged as an important research field. Fractal functions
are currently being given considerable attention due to their applications in areas
such as Metallurgy, Earth Sciences, Surface Physics, Chemistry and Medical
Sciences. In the development of fractal interpolation theory, many researchers have
generalised the notion in different ways [6–9]. Two key issues should be addressed
in constructing fractal interpolation functions. They regard to ensuring continuity
and the existence of the contractivity, or vertical scaling, factors; see [10, 11]. In [12],
nonlinear fractal interpolation surfaces resulting from Rakotch or Geraghty con-
tractions together with some continuity conditions were introduced as well as
explicit illustrative examples were given.

The concept of iterated function system was originally introduced as a generalisa-
tion of the well-known Banach contraction principle. Since it has become a powerful
tool for constructing and analysing fractal interpolation functions, one can use the
well-known fixed point results obtained in the fixed point theory in order to con-
struct them in a more general sense. A comparison of various definitions of contrac-
tive mappings as well as fixed point theorems that can be used to construct iterated
function systems can be found in [13–15]. In [14], the authors proposed some iterated
function systems by using various fixed point theorems, but unfortunately, one does
not know whether fractal interpolation functions correspond to those may exist or
not. As far as we know, the first significant generalisation of Banach’s principle was
obtained by Rakotch [16] in 1962. Recently, a method to generate nonlinear fractal
interpolation functions by using the Rakotch or Geraghty fixed point theorem instead
of Banach fixed point theorem was presented in [12, 17, 18].

The aim of our article is to provide the connections between several fractal
interpolation functions and the contractions used to generate them; it is organised
as follows. In Section 2, we recall the results obtained in construction of fractal
interpolation curved lines and fractal interpolation surfaces by using Rakotch con-
tractions (or Geraghty contractions) instead of Banach contractions. In Section 3,
we only present the connection between fractal interpolation functions by using the
Banach contractions and fractal interpolation functions by using the Rakotch con-
tractions because in the case of Geraghty contractions, the existence of fractal
interpolation curved lines and fractal interpolation surfaces is similar to the case of
Rakotch contractions.

2. Preliminaries

Let X, ρð Þ and Y, σð Þ be metric spaces. A mapping T : X ! Y is called a Hölder
mapping of exponent or order a, if

σ T xð Þ,T yð Þð Þ≤ c ρ x, yð Þ½ �a

for x, y∈X, a≥0 and for some constant c. Note that, if a> 1, the functions are
constants. Obviously, c≥0. The mapping T is called a Lipschitz mapping, if amay be
taken to be equal to 1. If c ¼ 1, T is said to be nonexpansive. A Lipschitz function is a
contraction with contractivity factor c, if c< 1. We call T contractive, if for all x, y∈X
and x 6¼ y, we have σ T xð Þ,T yð Þð Þ< ρ x, yð Þ. Note that ‘contraction ) contractive )
nonexpansive ) Lipschitz’.
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An iterated function system, or IFS for short, is a collection of a complete metric
space X, ρð Þ together with a finite set of continuous mappings, f n : X ! X,

n ¼ 1, 2, … ,N. It is often convenient to write an IFS formally as X; f 1, f 2, … , fN
� �

or, somewhat more briefly, as X; f 1�N

� �

. The associated map of subsets
W : H Xð Þ ! H Xð Þ is given by:

W Eð Þ ¼ ⋃
N

n¼1
f n Eð Þ for all E∈H Xð Þ,

where H Xð Þ is the metric space of all nonempty, compact subsets of X with
respect to some metric, e.g., the Hausdorff metric. The map W is called the Hutch-
inson operator or the collage map to alert us to the fact thatW Eð Þ is formed as a union
or ‘collage’ of sets.

If wn are contractions with corresponding contractivity factors sn for n ¼
1, 2, … ,N, the IFS is termed hyperbolic and the map W itself is then a contraction
with contractivity factor s ¼ max s1, s2, … , sNf g ([2], Theorem 7.1, p. 81). In what

follows, we abbreviate by f k the k-fold composition f ∘ f ∘⋯ ∘ f .
Definition 2.1. Let X be a set. A self-map on X or a transformation is a mapping

from X to itself.

i. A self-map f on a metric space X, ρð Þ is called a φ-contraction, if there exists a
function φ : 0,þ∞ð Þ ! 0,þ∞ð Þ with ϕ 0ð Þ ¼ 0 and ϕ tð Þ< t for all t>0 such
that for all x, y∈X, ρ f xð Þ, f yð Þð Þ≤φ ρ x, yð Þð Þ.

ii. We say that f is a Rakotch contraction, if f is a φ-contraction such that for any

t>0, α tð Þ≔ φ tð Þ
t < 1 and the function 0,þ∞ð Þ ∍ t ! φ tð Þ

t is nonincreasing.

iii. If f is a φ-contraction for some function φ : 0,þ∞ð Þ ! 0,þ∞ð Þ such that for

any t>0, α tð Þ≔ φ tð Þ
t < 1 and the function 0,þ∞ð Þ ∍ t ! φ tð Þ

t is nonincreasing

(or nondecreasing, or continuous), then we call such a function a Geraghty
contraction.

From [14], we have the following.

Theorem 2.1. Let X be a complete metric space and X; f 1�N

� �

be an IFS consisting

of Rakotch or Geraghty contractions. Then there is a unique nonempty compact set
K ∈H Xð Þ such that

K ¼ ⋃
N

n¼1
f n Kð Þ:

2.1 Fractal interpolation in 

Let N be a positive integer greater than 1 and I ¼ x0, xN½ �⊂. Let a set of
interpolation points xi, yi

� �

∈ I �  : i ¼ 0, 1, … ,N
� �

be given, where
x0 < x1 <⋯< xN and y0, y1, … , yN ∈. Set In ¼ xn�1, xn½ �⊂ I and define, for all
n ¼ 1, 2, … ,N, contractive homeomorphisms Ln : I ! In by

Ln xð Þ≔ anxþ bn,

where the real numbers an, bn are chosen to ensure that Ln Ið Þ ¼ In.
Let φ : 0,þ∞ð Þ ! 0,þ∞ð Þ be a nondecreasing continuous function such that for

any t>0, α tð Þ≔ φ tð Þ
t < 1 and the function 0,þ∞ð Þ ∍ t ! φ tð Þ

t is nonincreasing. Let

dn : I !  be a continuously differentiable function such that
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max
x∈ I

∣dn xð Þ∣ ≤ 1:

Now, consider an IFS of the form I � ;wn, n ¼ 1, 2, … ,Nf g in which the maps
are nonlinear transformations of the special structure

wn

x

y

� �

¼
Ln xð Þ

Fn x, yð Þ

� �

¼
anxþ bn

cnxþ dn xð Þsn yð Þ þ en

� �

,

where the transformations are constrained by the data according to

wn

x0

y0

� �

¼
xn�1

yn�1

� �

, wn

xN

yN

� �

¼
xn

yn

� �

for n ¼ 1, 2, … ,N, and sn are some Rakotch or Geraghty contractions.
Let us denote by C Dð Þ the linear space of all real-valued continuous functions

defined on D, i.e., C Dð Þ ¼ f : D !  j  f continuousf g. Let C ∗ Ið Þ⊂C Ið Þ denote
the set of continuous functions f : I !  such that f x0ð Þ ¼ y0 and f xNð Þ ¼ yN, that is,

C ∗ Ið Þ≔ f ∈C Ið Þ : f x0ð Þ ¼ y0, f xNð Þ ¼ yN
� �

:

Let C ∗ ∗ Ið Þ⊂C ∗ Ið Þ⊂C Ið Þ be the set of continuous functions that pass through

the given data points xi, yi
� �

∈ I �  : i ¼ 0, 1, … ,N
� �

, that is,

C ∗ ∗ Ið Þ≔ f ∈C ∗ Ið Þ : f xið Þ ¼ yi, i ¼ 0, 1, … ,N
� �

:

Define a metric dC Ið Þ on the space C Ið Þ by

dC Ið Þ g, hð Þ≔ max
x∈ x0, xN½ �

∣g xð Þ � h xð Þ∣

for all g, h∈C Ið Þ. Define a mapping T : C ∗ Ið Þ ! C Ið Þ for all f ∈C ∗ Ið Þ by

Tf xð Þ ≔ Fn L�1
n xð Þ, f L�1

n xð Þ
� �� �

¼ cnL
�1
n xð Þ þ dn L�1

n xð Þ
� �

sn f L�1
n xð Þ

� �� �

þ en

for x∈ xn�1, xn½ � and n ¼ 1, 2, … ,N. From [17], we have the following.
Theorem 2.2. Let I � ;wn, n ¼ 1, 2, … ,Nf g denote the IFS defined above. Let

each sn be a bounded Rakotch or Geraghty contraction. Then,

i. there is a unique continuous function f : I !  which is a fixed point of T;

ii. f xið Þ ¼ yi for all i ¼ 0, 1, … ,N;

iii. if G⊂ I �  is the graph of f , then

G ¼ ⋃
N

n¼1
wn Gð Þ:

An extremely explicit simple example is the following; cf. [12].
Example 1. Let φ tð Þ≔ t

1þt for t∈ 0,þ∞ð Þ. Let a set of data

xi, yi
� �

: i ¼ 0, 1, … ,N
� �

be given, where 0 ¼ x0 < x1 < … < xN ¼ 1 and yi ∈ 0, 1½ � for

all i ¼ 0, 1, … ,N. Let for all n ¼ 1, 2, … ,N, dn xð Þ≔ xn: Let for y∈ 0,þ∞½ Þ and
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n ¼ 1, 2, … ,N, sn yð Þ≔ y
1þny :That is, each sn is a Rakotch contraction (with the same

function φ) that is not a Banach contraction on 0,þ∞½ Þ. Let for all n ¼ 1, 2, … ,N,

wn x, yð Þ≔ anxþ bn, cnxþ dn xð Þsn yð Þ þ enð Þ,

where

an ¼ xn � xn�1, bn ¼ xn�1,

cn ¼ yn � yn�1, en ¼ yn�1:

Then, there exists a continuous function f : 0, 1½ � !  that interpolates the given

points xi, yi
� �

: i ¼ 0, 1, … ,N
� �

. Moreover, the graph G of f is invariant with respect to

0, 1½ � � ;w1,w2, … ,wNf g, i.e.,

G ¼ ⋃
N

n¼1
wn Gð Þ:

2.2 Fractal interpolation in 
2

LetM, N be two positive integers greater than 1. Let us represent the given set of

interpolation points as xi, y j, zi,j
� 	

∈K : i ¼ 0, 1, … ,M; j ¼ 0, 1, … ,N
n o

, where

x0 < x1 <⋯< xM, y0 < y1 <⋯< yN and zi,j ∈ a, b½ � for all i ¼ 0, 1, … ,M and j ¼

0, 1, … ,N. Set I ¼ x0, xM½ �⊂ and J ¼ y0, yN

 �

⊂. Throughout this section, we
will work in the complete metric space K ¼ D� , where D ¼ I � J, with respect to
the Euclidean, or to some other equivalent, metric.

Set Im ¼ xm�1, xm½ �, Jn ¼ yn�1, yn

 �

,Dm,n ¼ Im � Jn and let um : I ! Im, vn : J ! Jn,

Lm,n : D ! Dm,n be defined form ¼ 1, 2, … ,M and n ¼ 1, 2, … ,N, by

Lm,n x, yð Þ ¼ um xð Þ, vn yð Þð Þ ¼ amxþ bm, cnyþ dnð Þ:

Thus, for m ¼ 1, 2, … ,M and n ¼ 1, 2, … ,N,

am ¼
xm � xm�1

xM � x0
, bm ¼ xm�1 �

xm � xm�1

xM � x0
x0,

cn ¼
yn � yn�1

yN � y0
, dn ¼ yn�1 �

yn � yn�1

yN � y0
y0:

Furthermore, for m ¼ 1, 2, … ,M and n ¼ 1, 2, … ,N, let mappings Fm,n : K ! 

be continuous with respect to each variable. We consider an IFS of the form
K;wm,n,m ¼ 1, 2, … ,M; n ¼ 1, 2, … ,Nf g in which maps wm,n : D�  ! Dm,n � 

are transformations of the special structure

wm,n x, y, zð Þ≔ Lm,n x, yð Þ, Fm,n x, y, zð Þð Þ,

where the transformations are constrained by the data according to

wm,n

x0

y0
z0,0

0

B

@

1

C

A
¼

xm�1

yn�1

zm�1,n�1

0

B

@

1

C

A
, wm,n

x0

yN
z0,N

0

B

@

1

C

A
¼

xm�1

yn
zm�1,n

0

B

@

1

C

A
,
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wm,n

xM

y0
zM,0

0

B

@

1

C

A
¼

xm

yn�1

zm,n�1

0

B

@

1

C

A
, wm,n

xM

yN
zM,N

0

B

@

1

C

A
¼

xm

yn
zm,n

0

B

@

1

C

A

for m ¼ 1, 2, … ,M and n ¼ 1, 2, … ,N.
Let B Dð Þ denote the set of bounded functions f : D !  and

B ∗ Dð Þ ¼ f f ∈B Dð Þ : f x0, y0
� �

¼ z0,0, f x0, yN
� �

¼ z0,N,

f xM, y0
� �

¼ zM,0, f xM, yN
� �

¼ zM,Ng:

Let B ∗ ∗ Dð Þ⊂B ∗ Dð Þ be the set of bounded functions that pass through the given

interpolation points xi, y j, zi,j
� 	

∈K ¼ D� a, b½ � : i ¼ 0, 1, … ,M; j ¼ 0, 1, … ,N
n o

,

that is,

B ∗ ∗ Dð Þ ¼ f ∈B ∗ Dð Þ : f xi, y j

� 	

¼ zi,j, i ¼ 0, 1, … ,M; j ¼ 0, 1, … ,N
n o

:

Define an operator T : B ∗ Dð Þ ! B Dð Þ for all f ∈B ∗ Dð Þ by

Tf x, yð Þ ¼ Fm,n u�1
m xð Þ, v�1

n yð Þ, f u�1
m xð Þ, v�1

n yð Þ
� �� �

for x, yð Þ∈Dm,n, m ¼ 1, 2, … ,M and n ¼ 1, 2, … ,N. In [18], we see the
following.

Theorem 2.3. Let D� ;wm,n,m ¼ 1, 2, … ,M; n ¼ 1, 2, … ,Nf g denote the IFS
defined above. Assume that the maps Fm,n are Rakotch or Geraghty contractions with
respect to the third variable, and uniformly Lipschitz with respect to the first and second
variable. Then,

1. there is a unique bounded function f : D !  which is a fixed point of T;

2. f xi, y j

� 	

¼ zi,j for i ¼ 0, 1, … ,M and j ¼ 0, 1, … ,N;

3. if G⊂D�  is the graph of f , then

G ¼ ⋃
M

m¼1
⋃
N

n¼1
wm,n Gð Þ:

Let for all i ¼ 0, 1, … ,M and j ¼ 0, 1, … ,N, z0,j ¼ zi,0 ¼ zM,j ¼ zi,N and define

Fm,n x, y, zð Þ ¼ em,nxþ fm,nyþ gm,nxyþ sm,n zð Þ þ hm,n,

where sm,n are Rakotch or Geraghty contractions. Let

C ∗ Dð Þ ¼ f f ∈C Dð Þ : f x0, y0
� �

¼ z0,0, f x0, yN
� �

¼ z0,N,

f xM, y0
� �

¼ zM,0, f xM, yN
� �

¼ zM,Ng

and

C ∗ ∗ Dð Þ ¼ f ∈C ∗ Dð Þ : f xi, y j

� 	

¼ zi,j, i ¼ 0, 1, … ,M; j ¼ 0, 1, … ,N
n o

:
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Let C ∗
0 Dð Þ⊂C ∗ Dð Þ be the set of continuous functions f : D !  such that

f x0, 1� λð Þy0 þ λyN
� �

¼ z ∗ , ∗ ,

f xM, 1� λð Þy0 þ λyN
� �

¼ z ∗ , ∗ ,

f 1� λð Þx0 þ λxM, y0
� �

¼ z ∗ , ∗ ,

f 1� λð Þx0 þ λxM, yN
� �

¼ z ∗ , ∗

for all λ∈ 0, 1½ �, where for all i ¼ 0, 1, … ,M and j ¼ 0, 1, … ,N,

z ∗ ∗ ≔ z0,j ¼ zi,0 ¼ zM,j ¼ zi,N :

Let C ∗ ∗
0 Dð Þ≔ f ∈C ∗

0 Dð Þ : f xi, y j

� 	

¼ zi,j, i ¼ 0, 1, … ,M; j ¼ 0, 1, … ,N
n o

⊂C ∗ ∗ Dð Þ.

For f ∈C ∗
0 Dð Þ, we define T : C ∗

0 Dð Þ ! B Dð Þ by

Tf x, yð Þ ¼ Fm,n u�1
m xð Þ, v�1

n yð Þ, f u�1
m xð Þ, v�1

n yð Þ
� �� �

¼ em,nu
�1
m xð Þ þ fm,nv

�1
n yð Þ þ gm,nu

�1
m xð Þv�1

n yð Þ

þ sm,n f u�1
m xð Þ, v�1

n yð Þ
� �� �

þ hm,n

for x, yð Þ∈Dm,n, m ¼ 1, 2, … ,M and n ¼ 1, 2, … ,N.
Corollary 2.1 (see [18]) Let D� ;wm,n,m ¼ 1, 2, … ,M; n ¼ 1, 2, … ,Nf g denote

the IFS defined above. Then,

1. there is a unique continuous function f : D !  which is a fixed point of T;

2. f xi, y j

� 	

¼ zi,j for all i ¼ 0, 1, … ,M and j ¼ 0, 1, … ,N;

3. if G⊂D�  is the graph of f , then

G ¼ ⋃
M

m¼1
⋃
N

n¼1
wm,n Gð Þ:

The most simple example is the following; cf. [12].
Example 2. Let φ tð Þ≔ t

1þt for t∈ 0,þ∞ð Þ. Let a set of data

xi, y j, zi,j
� 	

: i ¼ 0, 1, 2; j ¼ 0, 1, 2
n o

be given, where 0 ¼ x0 < x1 < x2 ¼ 1, 0 ¼

y0 < y1 < y2 ¼ 1 and zi,j ∈ 0, 1½ � for all i ¼ 0, 1, 2; j ¼ 0, 1, 2. Let for all i ¼ 0, 1, 2 and
j ¼ 0, 1, 2,

z0,j ¼ zi,0 ¼ z2,j ¼ zi,2 ¼ 0:

Let for z∈ 0,þ∞½ Þ,

s1,1 zð Þ≔
z

1þ z
, s1,2 zð Þ≔

z

1þ 2z
,

s2,1 zð Þ≔
z

1þ 3z
, s2,2 zð Þ≔

z

1þ 4z
:

Then, s1,1, s1,2, s2,1, s2,2 are Rakotch contractions (with the same function φ) that are
not Banach contractions on 0,þ∞½ Þ. So, there exists a continuous function f :

0, 1½ � � 0, 1½ � !  that interpolates the given data xi, y j, zi,j
� 	

: i ¼ 0, 1, 2; j ¼ 0, 1, 2
n o

.

Let dm,n : D !  be a function such that max x,yð Þ∈D∣dm,n x, yð Þ∣ ≤ 1,
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dm,n x0, yð Þ ¼ dm,n xM, yð Þ ¼ dm,n x, y0
� �

¼ dm,n x, yN
� �

¼ 0

and for some L1,L2 >0,

∣dm,n x, yð Þ � dm,n x0, y0ð Þ∣ ≤L1∣x� x0∣þ L2∣y� y0∣:

Let

Fm,n x, y, zð Þ ¼ em,nxþ fm,n yþ gm,nxyþ dm,n x, yð Þsm,n zð Þ þ hm,n,

where sm,n is a Rakotch or Geraghty contraction. For f ∈C ∗ Dð Þ, we define T :

C ∗ Dð Þ ! B Dð Þ by

Tf x, yð Þ ¼ Fm,n u�1
m xð Þ, v�1

n yð Þ, f u�1
m xð Þ, v�1

n yð Þ
� �� �

¼ em,nu
�1
m xð Þ þ fm,nv

�1
n yð Þ þ gm,nu

�1
m xð Þv�1

n yð Þ

þ dm,n u�1
m xð Þ, v�1

n yð Þ
� �

sm,n f u�1
m xð Þ, v�1

n yð Þ
� �� �

þ hm,n

for x, yð Þ∈Dm,n, m ¼ 1, 2, … ,M and n ¼ 1, 2, … ,N.
For the next, see [12] for details.
Corollary 2.2. Let D� ;wm,n,m ¼ 1, 2, … ,M; n ¼ 1, 2, … ,Nf g denote the IFS

defined above. If each sm,n be a bounded function, then.

1. there is a unique continuous function f : D !  which is a fixed point of T;

2. f xi, y j

� 	

¼ zi,j for all i ¼ 0, 1, … ,M and j ¼ 0, 1, … ,N;

3. if G⊂D�  is a graph of f , then

G ¼ ⋃
M

m¼1
⋃
N

n¼1
wm,n Gð Þ:

An especially simple example is the following; see [12].
Example 3. Let φ tð Þ≔ t

1þt for t∈ 0,þ∞ð Þ. Let a set of data

xi, y j, zi,j
� 	

: i ¼ 0, 1, 2; j ¼ 0, 1, 2
n o

be given, where 0 ¼ x0 < x1 < x2 ¼ 1, 0 ¼

y0 < y1 < y2 ¼ 1 and zi,j ∈ 0, 1½ � for all i ¼ 0, 1, 2; j ¼ 0, 1, 2. Here, a set of data points is

not necessarily the case that z0,j ¼ zi,0 ¼ z2,j ¼ zi,2 for all i ¼ 0, 1, 2; j ¼ 0, 1, 2. Let for
all i ¼ 1, 2; j ¼ 1, 2 and x, yð Þ∈ 0, 1½ � � 0, 1½ �,

dm,n x, yð Þ≔ 22 mþnð Þxm 1� xð Þmyn 1� yð Þn:

Let for z∈ 0,þ∞½ Þ,

s1,1 zð Þ≔
1

1þ z
, s1,2 zð Þ≔

z

1þ z
,

s2,1 zð Þ≔
z

1þ 2z
, s2,2 zð Þ≔

z

1þ 3z
:

8

Mathematical Theorems



Then, s1,1, s1,2, s2,1, s2,2 are Rakotch contractions (with the same function φ) that are
not Banach contractions on 0,þ∞½ Þ. So, there exists a continuous function f :

0, 1½ � � 0, 1½ � !  that interpolates the given data xi, y j, zi,j
� 	

: i ¼ 0, 1, 2; j ¼ 0, 1, 2
n o

.

3. Interconnections between FIFs and contractions

In this section, we only present the interconnections between FIFs resulting
from Banach contractions and FIFs resulting from Rakotch contractions because in
the case of Geraghty contractions, the existence of FICs and FISs is derived similarly
to the case of Rakotch contractions.

Connection 1

1.Each Banach contraction is a Rakotch contraction, since a self-map is a Banach
contraction if and only if it is a φ-contraction for a function φ tð Þ ¼ αt, for some
0≤ α< 1. There exist examples of Rakotch contraction maps that are not
Banach contraction maps on X ⊂ with respect to the Euclidean metric (see
[13]).

2.The Rakotch’s functional condition for convergence of a contractive iteration
in a complete metric space can be replaced by an equivalent (or another)
functional condition; for instance, a map is a Rakotch contraction if and only if
it is a φ-contraction for some nondecreasing function φ : 0,þ∞ð Þ ! 0,þ∞ð Þ

such that additionally φ tð Þ< t for t>0 and the map t ! φ tð Þ
t is nonincreasing

(see [19]).

Connection 2

1. C Ið Þ, dC Ið Þ

� �

, C ∗ Ið Þ, dC Ið Þ

� �

and C ∗ ∗ Ið Þ, dC Ið Þ

� �

are complete metric spaces,

where

dC Ið Þ f , gð Þ≔ max
x∈ I

∣ f xð Þ � g xð Þ∣

for all f , g∈C Ið Þ (see [2]).

2. B Dð Þ, dB Dð Þ

� �

, B ∗ Dð Þ, dB Dð Þ

� �

and B ∗ ∗ Dð Þ, dB Dð Þ

� �

are complete metric spaces,

where

dB Dð Þ f , gð Þ≔ sup
x, yð Þ∈D

∣ f x, yð Þ � g x, yð Þ∣

for all f , g∈B Dð Þ [10].

3.C ∗ ∗
0 Dð Þ, C ∗

0 Dð Þ, C ∗ ∗ Dð Þ, C ∗ Dð Þ and C Dð Þ are closed subspaces of B Dð Þ with
C ∗ ∗
0 Dð Þ⊂C ∗

0 Dð Þ⊂C ∗ Dð Þ⊂C Dð Þ⊂B Dð Þ and C ∗ ∗
0 Dð Þ⊂C ∗ ∗ Dð Þ⊂C ∗ Dð Þ

⊂C Dð Þ⊂B Dð Þ, and so they are complete metric spaces.
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Connection 3

Let dn : I !  be a continuously differentiable function such that

max
x∈ I

∣dn xð Þ∣ ≤ 1:

Then, by the Differential Mean Value Theorem and the extreme value theorem,
we can see that for some Ldn >0,

∣dn x0ð Þ � dn x00ð Þ∣ ≤Ldn ∣x
0 � x00∣,

where x0, x00 ∈ I. Hence, dn is Lipschitz continuous function defined on I satisfy-
ing max x∈ I∣dn xð Þ∣ ≤ 1, but the converse is not true in general.

Connection 4

1.The function dn xð Þsn yð Þ is a generalisation of the bivariable function dn xð Þy
with vertical scaling factors as (continuous) ‘contraction functions’. In fact, in
the case when 0< max x∈ I∣dn xð Þ∣< 1 (see [20], p. 3), obviously,

dn xð Þy ¼
dn xð Þ

max x∈ I∣dn xð Þ∣
max
x∈ I

∣dn xð Þ∣y:

Let sn yð Þ ¼ max x∈ I∣dn xð Þ∣y and d ∗
n xð Þ ¼ dn xð Þ

max x∈ I ∣dn xð Þ∣. Then dn xð Þy ¼

d ∗
n xð Þsn yð Þ, max x∈ I∣d

∗
n xð Þ∣ ¼ 1 and sn is a Banach (or Rakotch) contraction.

2.The functional condition max x∈ I∣dn xð Þ∣ ≤ 1 is essential in order to show the
difference between Banach contractibility of Fn �, yð Þ and Rakotch contractibility
of Fn �, yð Þ; compare with [20]. In fact, since φ tð Þ< t for any t>0,

∣Fn x, y0ð Þ � Fn x, y00ð Þ∣ ¼ ∣dn xð Þksn y0ð Þ � sn y00ð Þ∣

≤ max
x∈ I

∣dn xð Þksn y0ð Þ � sn y00ð Þ∣

≤ max
x∈ I

∣dn xð Þ∣φ jy0 � y00jð Þ

≤ max
x∈ I

∣dn xð Þky0 � y00∣,

where x, y0ð Þ, x, y00ð Þ∈
2. Hence, if max x∈ I∣dn xð Þ∣< 1, as can be seen, notwith-

standing each sn is a Rakotch contraction that is not a Banach contraction, each
Fn is Banach contraction with respect to the second variable because

∣Fn x, y0ð Þ � Fn x, y00ð Þ∣ ≤ max
x∈ I

∣dn xð Þky0 � y00∣:

On the other hand, if max x∈ I∣dn xð Þ∣ ¼ 1, then we conclude that each Fn is
Rakotch contraction with respect to the second variable whenever each sn is a
Rakotch contraction because

∣Fn x, y0ð Þ � Fn x, y00ð Þ∣ ≤ max
x∈ I

∣dn xð Þ∣φ jy0 � y00jð Þ:

10
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3.In Theorem 2.2, for all x, y0ð Þ, x, y00ð Þ∈ I � ,

∣Fn x, y0ð Þ � Fn x, y00ð Þ∣ ¼ ∣dn xð Þksn y0ð Þ � sn y0
0� �

∣ ≤ ∣sn y0ð Þ � sn y00ð Þ∣ ≤φ jy0 � y00jð Þ:

That is, each wn x, yð Þ is chosen so that function Fn x, yð Þ is Rakotch
contraction with respect to the second variable.

4.Even though sn :  !  are Rakotch contractions, wn : I �  are not in general
Rakotch contractions on the metric space I � , d0ð Þ, and thus, the IFSs
defined above are not IFSs of [14] (cf. second and third line in p. 215 of [2]).

Connection 5

In the case where the vertical scaling factors are constants, in [1], the existence
of affine FIFs by using the Banach fixed point theorem was investigated, whereas in
[20], a generalisation of affine FIFs by using vertical scaling factors as (continuous)
‘contraction functions’ and Banach’s fixed point theorem was introduced. Theorem
2.2 gives the existence of fractal interpolation curves by using the Rakotch fixed
point theorem and vertical scaling factors as (continuous) ‘contraction functions’.

Connection 6

The boundedness of sn is the essential condition to establish a unique invariant
set of an iterated function system. In the fractal interpolation curve with vertical
scaling factors as ‘contraction function’, 0< max x∈ I∣dn xð Þ∣< 1 (see [20]). Let
M≔ max x∈ I∣cnxþ f n∣ and h≥ M

1�max x∈ I ∣dn xð Þ∣. Then for all y∈ �h, h½ �,

∣Fn x, yð Þ∣ ¼ ∣cnxþ dn xð Þyþ f n∣ ≤Mþ max
x∈ I

∣dn xð Þky∣ ≤Mþ max
x∈ I

∣dn xð Þ∣h≤ h:

So, for all x, yð Þ∈ I � �h, h½ �, we can see that Fn x, yð Þ∈ �h, h½ �. That is, an IFS of the
form I � �h, h½ �;w1�Nf g has been constructed (cf. [21], p. 1897). ThusD snð Þ ¼ �h, h½ �
and sn yð Þ≔ max x∈ I∣dn xð Þ∣y is bounded inD snð Þ. Hence the boundedness of sn inD snð Þ
is the essential condition to establish a unique invariant set of an IFS (cf. [21], p. 1897).

Connection 7

In view of a φ-contraction, the connections between the coefficients of y variable
are obtained as follows:

1.In the affine FIF (cf. [1], p. 308, Example 1), for all t>0,

φ tð Þ≔ max
n¼1, 2, … ,N

∣dn∣t,

where ∣dn∣< 1 for all i ¼ 1, 2, … ,N.

2. In the FIF with vertical scaling factors as (continuous) ‘contraction functions’
(cf. [20], p. 3), for all t>0,

φ tð Þ≔ max
i¼1, 2, … ,N

max
x∈ I

∣dn xð Þ∣t,

where dn xð Þ is Lipschitz function defined on I satisfying supx∈ I∣dn xð Þ∣< 1 for all
n ¼ 1, 2, … ,N.
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Connection 8

We refer to f of Theorem 2.2 as a nonlinear FIF. The reason is that the functions
Fn take the form

Fn x, yð Þ ¼ cnxþ dn xð Þsn yð Þ þ en,

where max x∈ I∣dn xð Þ∣ ≤ 1 and each sn is Rakotch contraction. That is, each Fn, in
general, is nonlinear with respect to the second variable (cf. [17]). In fact, in [2] or
[20], since 0< ∣dn xð Þ∣ � ∣dn∣< 1 or 0< max x∈ I∣dn xð Þ∣< 1 and

dn xð Þy ¼
dn xð Þ

max
x∈ I

∣dn xð Þ∣
max
x∈ I

∣dn xð Þ∣y,

we can see that

Fn x, yð Þ ¼ cnxþ dn xð Þyþ en ¼ cnxþ d ∗
n xð Þsn yð Þ þ en,

where d ∗
n xð Þ≔ dn xð Þ

max x∈ I ∣dn xð Þ∣ and sn yð Þ≔ max x∈ I∣dn xð Þ∣y, and thus, each sn is a special

Banach contraction and linear with respect to the second variable. Obviously, we
can say that nonlinear FIFs may have more flexibility and applicability.

Connection 9

1.The well-known FIS in theory and applications is generated by an IFS of the
form K,wm,n : m ¼ 1, 2, … ,M; n ¼ 1, 2, … ,Nf g under some conditions, where
the maps are transformations of the special structure

wm,n

x

y

z

0

B

@

1

C

A
¼

um xð Þ

vn yð Þ

Fm,n x, y, zð Þ

0

B

@

1

C

A
¼

amxþ bm

cnyþ dn

em,nxþ fm,nyþ gm,nxyþ dm,n x, yð Þzþ hm,n

0

B

@

1

C

A
,

where ∣dm,n x, yð Þ∣< 1 for all x, yð Þ∈D⊂
2. Then for all x, y, zð Þ, x, y, z0ð Þ∈K,

∣Fm,n x, y, zð Þ � Fm,n x, y, z0ð Þ∣ ¼ ∣dm,n x, yð Þz� dm,n x, yð Þz0∣

≤ max
x, yð Þ∈D

∣dm,n x, yð Þkz� z0∣:

That is, each wm,n x, y, zð Þ is chosen so that function Fm,n x, y, zð Þ is a Banach
contraction with respect to the third variable. So, the existence of bivariable FIFs
follows from Banach’s fixed point theorem. In fact, in [22], since for all

x, yð Þ∈D⊂
2, dm,n x, yð Þ � sm,n and 0≤ ∣sm,n∣< 1, we can see that each

wm,n x, y, zð Þ is chosen so that function Fm,n x, y, zð Þ is Banach contraction with
respect to the third variable. Also in [21], since

dm,n x, yð Þ ¼ λm,n x� x0ð Þ xM � xð Þ y� y0
� �

yN � y
� �

and

∣λm,n∣<
16

xM � x0ð Þ2 yN � y0
� �2 ,
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we can see that max x,yð Þ∈D∣dm,n x, yð Þ∣< 1, and so each wm,n x, y, zð Þ is chosen so

that function Fm,n x, y, zð Þ is a Banach contraction with respect to the third
variable.

2. In Theorem 2.3, for all x, y, zð Þ, x, y, z0ð Þ∈K ⊂
3,

∣Fm,n x, y, zð Þ � Fm,n x, y, z0ð Þ∣ ¼ ∣dm,n x, yð Þksm,n zð Þ � sm,n z0ð Þ∣

≤ ∣sm,n zð Þ � sm,n z0ð Þ∣ ≤φ jz� z0jð Þ:

That is, each Fm,n x, y, zð Þ is Rakotch contraction with respect to the third
variable. So, each wm,n x, y, zð Þ is chosen so that the function Fm,n x, y, zð Þ is a
Rakotch contraction with respect to the third variable.

Connection 10

In view of a φ-contraction, the connections between the coefficients of variable z
are obtained as follows:

1.In the affine FIS (cf. [22]), for all t>0,

φ tð Þ≔ max
m¼1, 2, … ,M

max
n¼1, 2, … ,N

∣dm,n∣t,

where ∣dm,n∣< 1 for all m ¼ 1, 2, … ,M and n ¼ 1, 2, … ,N.

2. In the FIS with vertical scaling factors as function (cf. [21]), for all t>0,

φ tð Þ≔ max
m¼1, 2, … ,M

max
n¼1, 2, … ,N

max
x∈ I

∣dm,n xð Þ∣t,

where dm,n xð Þ is Lipschitz function defined on I satisfying supx∈ I∣dm,n xð Þ∣< 1 for
all m ¼ 1, 2, … ,M and n ¼ 1, 2, … ,N.

Connection 11

The continuity of bivariable FIFs differ from the continuity of univariable FIFs.

1.The graphs of linear univariable FIFs are always continuous curves.

2.There are bivariable discontinuous functions that interpolate the given data;
(see for instance [23], p. 630, 631).

3.Theorem 2.3 ensures that attractors of constructed IFSs are graphs of some
bounded functions which interpolate the given data, but these graphs (i.e.,
the graphs of bivariable FIFs) are not always continuous surfaces. Some
continuity conditions of bivariable FIFs are given explicitly by Corollary 2.1
and Corollary 2.2.

Connection 12

The key difficulty in constructing fractal interpolation surfaces (or volumes)
involves ensuring continuity. Another important element necessary in modelling
complicated surfaces of this type is the existence of the contractivity, or vertical
scaling, factors.

13

How Are Fractal Interpolation Functions Related to Several Contractions?
DOI: http://dx.doi.org/10.5772/intechopen.92662



1.In order to ensure continuity of a fractal interpolation surface, in [22], the
interpolation points on the boundary was assumed collinear, whereas in [21],
vertical scaling factors as (continuous) ‘contraction functions’ were used.

2.A new bivariable fractal interpolation function by using the Matkowski fixed
point theorem and the Rakotch contraction is presented in [18]. In order to
ensure the continuity of nonlinear FIS, the coplanarity of all the interpolation
points on the boundaries instead of collinearity of interpolation points on the
boundary was assumed in [18], whereas in [12], vertical scaling factors as
(continuous) ‘contraction functions’ were used.

Connection 13

1.In Theorem 2.2, we can see that

an ¼
xn � xn�1

xN � x0
, bn ¼

xNxn�1 � x0xn
xN � x0

cn ¼
yn � yn�1

xN � x0
�
dn xNð Þsn yN

� �

� dn x0ð Þsn y0
� �

xN � x0
,

f n ¼
xNyn�1 � x0yn

xN � x0
�
xNdn x0ð Þsn y0

� �

� x0dn xNð Þsn yN
� �

xN � x0
:

Figure 1.
The graph of a fractal interpolation function (a) that is associated with Banach contractions, (b) that is not
necessarily associated with Banach contractions.
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2.In Corollary 2.1, we can see that

am ¼
xm � xm�1

xM � x0
, bm ¼

xMxm�1 � x0xm
xM � x0

,

cn ¼
yn � yn�1

yN � y0
, dn ¼

yNyn�1 � y0yn
yN � y0

,

gm,n ¼
zm,n � zm�1,nð Þ � zm,n�1 � zm�1,n�1ð Þ

xM � x0ð Þ yN � y0
� � ,

em,n ¼
yN zm,n�1 � zm�1,n�1ð Þ � y0 zm,n � zm�1,nð Þ

xM � x0ð Þ yN � y0
� � ,

fm,n ¼
xM zm�1,n � zm�1,n�1ð Þ � x0 zm,n � zm,n�1ð Þ

xM � x0ð Þ yN � y0
� � ,

hm,n ¼
x0y0zm,n � x0yNzm,n�1 � xMy0zm�1,n þ xMyNzm�1,n�1

xM � x0ð Þ yN � y0
� � � sm,n zM,Nð Þ:

Figure 2.
A fractal interpolation surface (a) that is associated with Banach contractions, (b) that is not necessarily
associated with Banach contractions.
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3.In Corollary 2.2, we can see that (compare with above coefficients)

gm,n ¼
zm,n � zm�1,nð Þ � zm,n�1 � zm�1,n�1ð Þ

xM � x0ð Þ yN � y0
� � ,

em,n ¼
yN zm,n�1 � zm�1,n�1ð Þ � y0 zm,n � zm�1,nð Þ

xM � x0ð Þ yN � y0
� � ,

fm,n ¼
xM zm�1,n � zm�1,n�1ð Þ � x0 zm,n � zm,n�1ð Þ

xM � x0ð Þ yN � y0
� � ,

hm,n ¼
x0y0zm,n � x0yNzm,n�1 � xMy0zm�1,n þ xMyNzm�1,n�1

xM � x0ð Þ yN � y0
� �

:

Figures 1(a) and 2(a) are associated with Banach contractions, whereas
Figures 1(b) and 2(b) are not necessarily associated with Banach contractions.

4. Conclusions and further work

We reviewed nonlinear fractal interpolation functions by using the Geraghty
fixed point theorem instead of the Banach fixed point theorem (or the Rakotch
fixed point theorem) since Banach contraction (or Rakotch contraction) is a special
case of Geraghty contraction. Theorems 2.1, 2.2 and 2.3 ensure that attractors of
constructed nonlinear iterated function systems are graphs of some continuous
functions which interpolate the given data. In particular, Examples 1, 2 and 3 show
that our results remain still true under essentially weaker conditions on the maps of
iterated function systems. The methods presented here can be directly extended to
piecewise fractal interpolation functions that are based on recurrent IFS. A premise
for future work is to extend these methods to hidden-variable fractal interpolation
surfaces as well as to identify the parameters of such surfaces.
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