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Abstract

Micro air vehicles (MAVs) is a technology that is becoming more and more important and
popular nowadays. It is used as a tool to deal with different tasks that were not possible in
the past. For most MAV models, the GPS sensor is the only way of estimating its pose in
the environment. However, besides the fact of not having a secondary position estimation
system besides the GPS, this is also risky because the GPS may fail like any other sensor.
To overcome this weakness and make the MAVs more robust to autonomous tasks, the
research community proposed many different localization systems for different con-
straints. In this chapter, the most popular, recent, and important MAV localization sys-
tems are reviewed, as well as the promising future works in this field.
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1. Introduction

One of the first uses of micro air vehicles (MAVs) was during the World War I [1]. Since then,

MAVs have been considered as a promising technology, and nowadays they are being used in

several different tasks, such as agriculture [2], patrolling [3], mapping [4], and delivering [5].

Compared to conventional human-crewed aerial vehicles, MAVs are a low-cost and entirely

suitable alternative for repetitive or high-precision demanding tasks. Besides, they are also

recommended for low-altitude flights and for those that demand a high range of maneuvers.

The estimation of the MAVs’ position, i.e., its localization in the world, is the main common

requirement between all the before mentioned tasks, even if they would be addressed by other

types of mobile robots rather than MAVs. For such complex tasks, localization and navigation

are fundamental capabilities that allow MAVs to accomplish their mission [6]. The localization
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for MAVs is usually solved by the global positioning system (GPS) [7], in which an embedded

GPS sensor communicates with different satellites that are orbiting the Earth to estimate the

position. Other MAV models rely on different ways of estimating their position, such as

inertial sensors or visual odometry algorithms. However, most of these models do not have a

second position estimation system in addition to the primary system, i.e., the GPS [7]. There-

fore, the MAVs that depend exclusively on GPS to estimate their position are more likely to fail

on their tasks or missions; once like any other sensor, the GPS might fail, and they do not have

a redundant position estimation system.

Even though it is widely used in different situations and for distinct goals, the GPS sensor is

vulnerable to some problems [8, 9]. The amount of satellites that are available to establish a

communication with the GPS influences the position estimation certainty, as well as the signal

quality between them. The signal might be affected by the weather, such as cloudy and rainy

days, and by obstacles, like high buildings or hills. Hence, the higher is the number of

connected satellites and the stronger is the signal, the lower is the GPS position estimation

error. In addition to this GPS weakness, there is another problem that might disturb the GPS

position estimation, the so-called Jamer guns. While the GPS sensor is reading the satellite

signal to estimate the position, these guns jam the signal, and hence, the estimation becomes

unreliable [10, 11].

The mobile robotics research community has investigated the MAV position estimation prob-

lem, and valuable works have been proposed. In general, it is addressed by them as the

localization problem from the mobile robotics field, in which the goal is to estimate the pose

of a robot, based on readings of its sensors, in an a priori knownmap [12]. The works proposed

by the community covers a considerable variety of approaches, in which the main differences

are the kind of data used to represent the environment and the technique used to estimate the

pose. Despite this diversity, one characteristic that most of them share is the use of visual data

from cameras to estimate the localization. This choice is made due to the advantages of

cameras to deal with this problem in comparison to the other sensors, such as the low weight

for MAVs, the distinct information from one image (color, depth, intensity, etc.), and the long-

distance range for the readings.

This chapter covers the most important proposed works that aimed to deal with visual MAV

localization problem. As aforementioned, there are two main topics that are worthy to be

covered when presenting this kind of works, which are the data used as a map and how the

estimation is calculated. Therefore, this chapter first presents a discussion about different maps

used so far, followed by the review of the localization itself. In addition to detailing and

comparing them, it also presents what the next trends or future work for this problem are.

2. Localization problem

Mobile robots aiming to perform tasks without human interference, i.e., autonomously, must

know their pose within the environment. The same necessity applies for MAVs that have only

GPS sensor as position estimation. Estimating the robot’s pose would be a simple task, but
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only if all the sensors of the robot were perfect and the environment fully static. Given that this

scenario is not realistic, in which the sensor readings are not precise and many agents are

moving through the environment, the difficulty level of the localization problem increases, and

hence, it is necessary to estimate the robot’s pose.

Despite its difficulty level, localization is a fundamental problem in the mobile robotics field [13].

It is defined as the robot’s pose estimation relative to a previously known environmental map

[12]. Even though its definition is simple, this problem has two main variations: local and global

estimations. In the former, the initial robot pose in the map is known, and the local localization

approach only tracks the robot as it moves through the environment. The error of the first pose

estimation is low, and the goal is to keep it low using the sensor readings and the motion

information from the robot. In contrast to the former variation, the second one is significantly

harder. In this case, the initial robot pose is unknown, and hence, the error of the pose estimation

is originally high. Instead of considering just a small part of the map at the beginning, in the

global localization, the whole map must be considered for the estimation since the initial pose is

unknown [14]. Figure 1 illustrates the differences between local and global localization. The

global localization is illustrated in Figure 1(a), in which the error estimation is high at the

begging, and the goal is to reduce it as the robot moves through the environment. The opposite

happens in Figure 1(b), which depicts the local localization. The error estimation begins consid-

erably low, and even though it increases through time, as well as the global localization, the goal

is to reduce it.

The most popular approaches that deal with localization in the mobile robotics field are

grouped either as probabilistic or as deterministic. In the first group, there are two main

approaches that are worth it to be mentioned, Kalman filter [15] and particle filter (Monte

Carlo) [16]. Even though both implement the Bayes filter, each one has its specific advantages,

and therefore, they are suitable for different situations and constraints. On the other hand, the

most popular approach for the second group is based on interval analysis, and the estimation is

defined through boxes that must be minimized [17]. As the goal of this chapter is not to go deep

into these approaches, the reader is invited to look at the references for more details about them.

Independent of the approach used to deal with the localization problem, all of them have the

same characteristics: as input, they require an environment representation, a sensor to read the

environment, and odometry data; and as output, the robot’s position in the environment

representation that was estimated, as shown by Figure 2. Hence, localization systems try to

find the best pose in the map that fits both the sensor reading and the odometry information.

The best the system is, the more accurate is the pose estimation. Figure 2 presents an example

of using Lidar and 2D map, but it is important to highlight that the same idea also applies to

other sensors or types of maps.

Even though the setup of the mobile robot localization problem seems quite simple, with input

and output well defined, the difficulty level is considerably high. The robot’s pose is not sensed

directly, it must be estimated, and that is where the problem lies. Usually, the robot’s sensors,

both to read the environment and to measure the odometry, are noisy, and hence, the data that

they provide does not correctly represent the real world. In addition to that, some types of

robots have restrictions about which kind of sensor they support, and they can not have the
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Figure 1. Comparison between the error estimation of (a) global and (b) local localization methods. Both localizations

were made considering the robot movement in a (c) 2D map.

Figure 2. The concepts of a localization system, in which a 2D map, sensor reading, and odometry information are used

as input in (a), processed by the system in (b), and the estimated robot’s pose is the output in (c).
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best sensor for their tasks. In MAVs, for example, a camera is the most popular sensor used for

this purpose, since they are smaller, lighter, and cheaper than most range-finder lasers, for

instance. However, using images to estimate the odometry information is not ideal, although

there are algorithms that compute this estimation.

The localization approaches overcome the noise data problem modeling the error of the

sensors. Besides, since just one reading is insufficient to the pose estimation, these approaches

also have to integrate the data over time to reduce the error estimation. In environments that

have different regions that look alike, such as a building with many corridors and doors, it is

quite impossible to estimate the robot’s pose considering just one reading. For example,

imagine that at some point, the robot is observing a door after having observed a wall and a

frame. Then, instead of searches for all the spots in the map that contain a door, the localization

system searches for spots that also matches with the wall and the frame. In this way, the past

observations are also considered when estimating the robot’s pose.

Despite the generic localization problem explanation presented so far, the research community

has explored the UAV localization problem throughout the years, and many different

approaches have been proposed. The most significant difference between them relies on the

map representation and also on the method that they use to compare the sensor readings and

the small parts of the map. The next section covers the most popular proposed approaches

aiming to deal with this problem and how they differ from each other.

2.1. Alternatives for UAV localization systems

In this section, we review the most important works proposed to deal with UAV localization

problem. First, this section presents an analysis of the environment representation that these

works used as a map, their advantages and disadvantages. Second, what these works use to

compare the sensor readings with different parts of the map. Then, Table 1 in this section

introduces other qualitative comparisons between these works, such as the single or multi

MAV pose estimation and indoor or outdoor localization.

2.1.1. Environment representation

The first environment representation presented here is the 2D satellite image map. In general,

it is downloaded beforehand from any imagery map source, either entirely or divided into

many small images to be stitched later, and then used by the localization approaches to the

pose estimation [18, 21, 26, 31]. Even though the research community does not that much

explore it, it is also possible to fly the MAV over the region of interest and build the 2D image

from the environment, to then use it as a map for the localization estimation. Also, another

common choice between the approaches that adopt this kind of map is to point the MAV

camera downwards. Then, the MAVs images are compared to different patches from the

satellite image map by different comparison methods. The advantages of using the 2D satellite

image as a map are the free access to this kind of data through Google Maps or any geograph-

ical imagery system (GIS), the excellent representation of the environment by colorful images,

and the world coverage. Usually, a GIS also provides the geographic coordinates of satellite
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images, and then, it is possible to infer the latitude and longitude of each pixel of that image.

Therefore, at the same time that a localization system estimates in which pixel from the satellite

image map the MAV’s pose is, it also estimates the pose in relation to the world, due to the

latitude and longitude information in the pixel. In contrast, the disadvantages of such kind of

map are the limited point of view (2D) and that some places of the world are not often visited

by satellites, and hence, the images are not updated. The comparison methods from the works

mentioned above are proposed aiming to be robust against such differences between the

outdated 2D satellite images and the MAV image [18, 21, 26, 31].

The disadvantage of a limited point of view from the 2D satellite images motivated the

researches to investigate the benefits of 3D maps [19, 20, 23, 30]. The authors argue that by

using 3D maps, it is possible to take advantage of the environment structures to estimate the

localization, besides the color of the map. Usually, the localization estimation is made based on

the 3D structure alignment or even the point cloud matching. For the 3D map case, the MAV

camera can be set in different angles, exploring different sights. As well as the 2D satellite

images, this kind of 3D representation can be either built right before the localization estima-

tion, as done by the works [20, 23], or downloaded from a GIS, as the case of [19]. Despite these

advantages in comparison to the 2D maps, 3D maps generally allocate more computational

resources than the 2D one, both to be stored and manipulated, and is not as easy to be found as

the 2D maps, what limits the places that it is possible to estimate the MAV’s pose.

It is important to highlight that even though flying the MAV before the localization estimation

to build the map provides a certainly updated map, for both 2D and 3D ones, this option

presents a trade-off. First, a human must pilot the MAV to gather 2D or 3D data from the

environment, to then submit it to a mapping approach. Second, it demands more time to start

the localization algorithm, since flying the MAV over an area takes more time than

downloading a map from a GIS.

In contrast to these two types of maps that represent the whole environment, other map

options are more straightforward in terms of details and what is represented. Instead of having

a map illustrating all the obstacles, free spaces, and etc., these simple maps only show the

position of a few markers. In this case, the idea is to measure the distance between the MAV

and all the markers within the map and then estimate the MAV’s pose. The type of the markers

also varies considerably, such as the case of WLAN access points [28], which are fixed in some

spots of the environment and whose received signal strength is measured as part of the

localization estimation, and ultraviolet LED markers [24], which emit light in frequencies that

are less common in nature than the visible light or infrared radiation. Then it increases the

precision of the distance measurement. In this work, the LED markers are not fixed, they are

embedded in every MAVs, and they have a mutual relative localization [24]. In more details,

they estimate a MAV’s pose to another MAV, instead of the global coordinate system. Another

marker that it is worth to be mention is the use of tether [27]. The tether reel is fixed in a specific

position, and the tether is attached to the MAV. For this case, the MAV is localized to the tether

reel by using mechanics model. In general, the use of markers map is adopted for indoor

localization, since the sensors that measure the markers have a more limited range than

cameras for the 2D or 3D maps presented earlier. The work that relies on ultraviolet LED
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markers is one exception for this indoor limitation, but this occurs because the MAV’s pose is

the estimation concerning other MAVs, not to the environment.

Besides the maps presented in this section, other types were tested in the MAV localization

problem by the research community. However, they are really specific for a kind of sensor or

configuration, and our goal here is to cover the most popular and recent ones. About the types

of maps presented here, each one has its advantages and disadvantages, as well as its specific

constraints that fit better in some situations. For instance, the 2D satellite image is available on-

line and free but is not suitable for indoor localization. On the other hand, markers map is the

option that is most used for indoor localization, but usually, it requires many markers spread

through the environment, and it has a short range to be detected. Given that the map of a MAV

localization system is essential for the estimation, the type of the MAV, the environment, and

the embedded sensor must be taken into account to choose the type of map that fits the

constraints better.

2.1.2. Localization estimation methods

In addition to the environment representation, i.e., the map, the methods that estimate the

MAV’s pose also play an important role in localization systems. Usually, they receive as input

the map of the environment and the sensor reading, and then the goal is to find the part of the

map that best matches with the sensor reading. In Figure 2, the localization estimation method

is within the localization system, Figure 2(b), and together with the motion model, it is

possible to properly estimate the MAV’s pose, Figure 2(c).

Different from the previous section, which introduced the maps used by the MAV localization

systems in big groups, such as the 2D satellite images or the marker maps, the localization

estimation methods do not share the same similarity between themselves. Then, here they are

discussed individually, and as well as in the previous section, their advantages and disadvan-

tages are highlighted.

It is natural that the works that rely on 2D satellite image as a map have an estimation method

that is based on image comparison, since their sensor readings are images. The general idea is

to compare every MAV image with different patches from different poses within the map, and

the most similar one probably represents the MAV’s pose in the map. To extract the so-called

patches from the map, some global localization works use the Monte Carlo algorithm to

extract patches from the whole map [18, 31], whereas the local localization ones, given that

the MAV’s initial pose is known, only extract a patch from the initial pose and keep extracting

them as it moves through the environment [21, 26]. When comparing the MAV images against

the patches, each Monte Carlo-based work proposed a novel measurement model, in which

one has a new image descriptor called abBRIEF to robustly compute an image signature to the

comparison [31], and the other used SURF descriptors [32] and machine learning to compare

MAV images and the patches [18]. Both approaches can compute the similarity between all

pairs of MAV image and patch and find the most similar pair. On the other hand, the other

local localization approaches have a reduced search space, since they know the initial patch

from the satellite image. In this case, the image comparison is mainly made by two methods:
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either by template matching [22], in which a pixel-by-pixel comparison is performed between

two images, or by feature matching [26], that involves the detection, extraction and matching

of the features from the two images. In general, given that all these works rely on an image,

they use either features or image descriptors to represent the images and then perform the

comparison. In their proposal, they aim to overcome the problem of illumination and color

changes that occur when dealing with images and outdoor environment, as the case of MAV

localization systems.

The alignment technique is also used by other approaches to estimate the MAV’s pose, even

the ones that rely on 3D maps. In [23], the alignment is made considering the 2D keypoints

from the MAV image and the 3D landmarks of the 3D map. To do so, the authors cluster the

landmarks into visual words to speed up the matching and alignment with a nearest neigh-

bour search. This 2D to 3D alignment, or transformation, is also applied in another work [19].

Given that the map in this work is a 3D representation of the environment, but the MAV image

is a simple 2D RGB image, they have to transform the MAV image into a 3D data, to then align

the lines and edges detected in both. As these both works perform local localization, they have

an initial reduced search space, which helps them to have a good alignment at the beginning.

Besides the estimation methods presented so far, other ones are even more specific. In [25], for

instance, a robust and quick response landing pattern is designed to be visually detected

through images and then assist the MAV to its landing. In such a case, the pattern is the map,

and the computer vision method proposed by the authors of this work can detect the scale of

the map and then estimate the MAV localization. In [24] a markers detection-based approach

is also proposed to estimate the MAV's pose. However, in contrast to [25], in [24] the markers

are ultraviolet LED that are embedded in the MAVs. Hence, the estimation, in this case, is a

mutual one, i.e. one MAV estimates its pose in relation to another one and vice versa. First,

their algorithm detects the size of the markers in the image, and then it estimates the internal

distance between a pair of markers. Therefore, they can calculate the distance between two

MAVs and their pose. In addition to that, in [27] tether-based feedback and inertia sensing are

used to estimate the MAV’s pose. In more details, the length, azimuth, and elevation angle of

the tether are the input for a mechanics model that calculates the absolutely straight tether

between the origin and the MAV. The work [28] also relies on a non-popular sensor to estimate

the MAV’s pose, and the goal is to detect access points (AP) and measure the received signal

strength. Then, they can estimate the MAV’s pose relative to the APs that have their positions

well defined in the map. A similar approach is proposed in [30], in which the MAV’s pose is

estimated in an urban environment by the transmission of beacons. They are located in

different buildings, and they provide a local frame of reference, supporting the MAVs for their

location estimation by providing the details of the area and height of the buildings. It is also

possible to say that sonar is another type of sensor not easily found embedded on MAVs, and

this is the sensor used in [29]. To estimate the MAV’s pose, the authors proposed a multi-ray

model based on the four sonars sensors embedded in a MAV. This model approximates a beam

pattern accurately, and it does not require high computational power.

In general, the localization estimation methods are responsible for comparing the sensor read-

ing and a sample of the map. In another way, it is also known as a transformation from the local
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coordinate system, i.e., the robot sensor reading, to a global one, i.e., the map. Given the works

presented in this section, we can notice that sometimes the sensor reading and the map are

different data, such as 2D images from a regular RGB camera and a 3D map. Also, in some

cases, these methods have to estimate the MAV’s pose based on an outdated map. Because of

that, they have to be robust against differences between the real and the mapped environment,

and even though they might not represent the same area, the pose should be estimated.

2.1.3. Summarization

Table 1 compiles the information presented in Section 2.2. This review shows how the type of

map and the sensor changes from system to system. Even though some approaches seems very

similar, such as [18, 31], they are still different. Hence, they have their own advantages and

disadvantages.

2.2. The future of UAV localization systems

Despite the great effort of the research community to deal with the MAV localization problem,

there is no solution that works for all the possible environments and constraints. This problem

varies considerably, such as the environment, which can be either indoor or outdoor, the

knowledge about the initial position, whether it is known or not, and the amount of MAVs

that are being localized, which can be single or multiple MAVs. Despite these difficulties, there

is also the map issue, which is caused either by a low updating frequency, such as a satellite

that takes some time to revisit a specific area, or by a quick environmental change, like a snowy

day that makes the whole environment become white.

To deal with the problem of the type of environment, the approaches that seem more likely to

work are the one that recognizes the objects within the environment and the other that deals

Paper Type of localization Type of map Indoor or outdoor Sensor Multiple or single MAV

[28] Local Access points Indoor RSS WLAN Single

[29] Local 2D map Indoor Sonars Single

[21] Local 2D Satellite image Outdoor Camera Single

[26] Local 2D Satellite image Outdoor Camera Single

[23] Local Point cloud Outdoor Camera Single

[19] Local 3D map Outdoor Camera Single

[25] Local Landing pattern Outdoor Camera Single

[27] Local Tether reel Both Tether Single

[24] Mutual LED markers Both Camera Multiple

[30] Global 3D map Outdoor LFR reader Multiple

[31] Global 2D Satellite image Outdoor Camera Single

[18] Global 2D Satellite image Outdoor Camera Single

Table 1. Comparison between all the discussed works in terms of different information.
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with 3D structures. Hence, independently of being indoor or outdoor, it would be possible to

recognize objects or detect the environment’s shape in both scenarios, to then continue the

pose estimation calculation. On the other hand, the problem of the outdated map could be

overcome by using deep learning, which provides robust solutions for different seasons or

illumination changes in images [33]. Another solution that is possible through the use of deep

learning is to teach a net to differentiate roads, buildings, and forest, to then segment both the

map and the MAV sensor readings. Hence, instead of, for instance, matching the color of

different pixels from MAV images and patches from the 2D satellite image map, the matching

would be done considering the classes of the environment, avoiding the problems caused by

color or illumination changes.

Due to the fact that MAV is a certainly popular technology and that it is being used in many

different tasks, another promising matter that should be investigated is the localization system

for multiple MAVs. As there will be even more MAVs flying and cooperating in the future, it is

essential to have localization approaches that take advantage of the high amount of MAVs

available in the air and, therefore, improve the pose estimation.
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