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Chapter

A Review of Virtual Inertia
Techniques for Renewable
Energy-Based Generators
Ana Fernández-Guillamón, Emilio Gómez-Lázaro,
Eduard Muljadi and Ángel Molina-Garcia

Abstract

Over recent decades, the penetration of renewable energy sources (RES),
especially photovoltaic and wind power plants, has been promoted in most
countries. However, as these both alternative sources have power electronics at the
grid interface (inverters), they are electrically decoupled from the grid. Subse-
quently, stability and reliability of power systems are compromised. Inertia in
power systems has been traditionally determined by considering all the rotating
masses directly connected to the grid. Thus, as the penetration of renewable units
increases, the inertia of the power system decreases due to the reduction of directly
connected rotating machines. As a consequence, power systems require a new set of
strategies to include these renewable sources. In fact, ‘hidden inertia,’ ‘synthetic
inertia’ and ‘virtual inertia’ are terms currently used to represent an artificial inertia
created by inverter control strategies of such renewable sources. This chapter
reviews the inertia concept and proposes a method to estimate the rotational inertia
in different parts of the world. In addition, an extensive discussion on wind and
photovoltaic power plants and their contribution to inertia and power system
stability is presented.

Keywords: frequency control, grid stability, inertia, power systems,
inverter-interfaced renewable energy sources

1. Introduction

Imbalances between generation and consumption cause frequency variations in
a power system [1]. To maintain frequency in its nominal value, power systems rely
on synchronous machines connected to the grid, which store kinetic energy auto-
matically extracted in response to a sudden power imbalance [2]. However, due to
the new environmental policies and the limited fossil fuel reserves, conventional
generators are being replaced by renewable energy sources (RES)-based generators
[3]. Among the different RES available, the most promising for electrical power
generation are PV and wind power installations, which are inverter-interfaced RES
(II-RES) [4]. However, the massive penetration of II-RES into the grid can involve
several issues that should be taken into account [5]. First, as they depend on
weather conditions, these sources are intermittent and uncertain, placing stress on
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power system operation [6]. Moreover, as they are connected to the grid through
inverters which electrically decouple them from the grid [7], the effective inertia
of the power system can be reduced [8]. This inertia reduction affects the system
reliability, compromising the frequency stability [9]. The rotational inertia is
related to both nadir (minimum frequency) and rate of change of frequency
(ROCOF) [10]. In fact, larger nadirs and faster ROCOFs are obtained in low
rotational inertia power systems, subsequently making them more sensitive to
frequency deviations [11, 12]. As a result, over the last decade, several frequency
control techniques have been proposed to facilitate the massive penetration of
wind and PV resources into the grid [13]. In addition, recent contributions inves-
tigated the use of smart inverters with voltage and frequency support to enhance
grid stability [14]. Such solutions are commonly referred to as hidden, synthetic or
virtual inertia [15].

This chapter focuses on the current and future inertia concept for power sys-
tems. A methodology to estimate the current rotational inertia of power systems
based on their electricity generation mix is proposed. In addition, the possibilities of
wind and PV power plants to contribute to inertia and participate in frequency
control are also presented. The rest of the chapter is organized as follows. The
inertia analysis and swing equation of generators and current and future power
systems are presented in Section 2. In Section 3, the inertia constant estimation
methodology is explained, comparing the results to a previous report published by
the European Network of Transmission System Operators for Electricity (ENTSO-
E). Section 4 reviews different frequency control techniques for PV and wind
power plants. Finally, Section 5 gives the conclusion.

2. Inertia analysis in power systems

2.1 Inertial response of a synchronous generator: inertia constant

Rotating masses of a synchronous generator store kinetic energy Ekin following
Eq. (1), where J is the moment of inertia and ωr is the rated rotational frequency of
the machine [16]:

Ekin ¼
1
2

Jω2
r : (1)

Moment of inertia J is a measure of the resistance of an object to changes in its
rotational motion [17]. However, in power systems, it is common to express inertia
constant H instead of moment of inertia J. Actually, the inertia constant of a
generator determines the time interval during which an electrical generator can
supply its rated power only by using the kinetic energy stored in its rotating masses.
H is defined following Eq. (2), being Sr the rated power [18]:

H ¼
Ekin

Sr
¼

1
2

J ω2
r

Sr
: (2)

Work in [10] reviews the inertia constants H of conventional power plants
proposed in recent decades, which range between 2 and 10 s.

In power systems, the motion of each turbine-generator group is expressed as
Eq. (3), where Tm and Te are the mechanical torque of the turbine and the electro-
magnetic torque of the generator, respectively:
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2 H
dωr

dt
¼ Tm � Te, (3)

However, as P ¼ T � ω and considering the initial status as 0:

P ¼ P0 þ ΔP ¼ T0 þ ΔTð Þ � ωr0 þ Δωrð Þ, (4)

where ΔP ¼ ΔPm � ΔPe and ΔT ¼ ΔTm � ΔTe. Moreover, for small variations:

ΔP≃T0 � Δωr þ ΔT � ωr0, (5)

and in steady state:

Tm0 ¼ Te0,

ωr0 ¼ 1 pu:

(6)

In consequence, considering small variations around the steady state, Eq. (3) can
be rewritten as in Eq. (7) [19]:

2 H
dΔωr

dt
¼ ΔPm � ΔPe: (7)

Furthermore, some electrical loads connected to the grid are also frequency-
dependent, working as a load resource under frequency deviations (i.e., synchro-
nous machines). In this way, the electrical power of those loads can be expressed as:

ΔPe ¼ ΔPL þD � Δωr, (8)

where ΔPL is the power change of those loads independent from frequency
deviations and D is the damping factor (load-frequency response). Subsequently,
by including the damping factor in Eq. (7), it is modified to Eq. (9), which is usually
referred to as swing equation and represents the motion of a synchronous generator:

2 H
dΔωr

dt
¼ ΔPm � ΔPL þD � Δωrð Þ: (9)

2.2 Aggregated swing equation: application to power systems

To apply the swing Eq. (9) to a power system, all synchronous generators are
grouped in an equivalent rotating mass. This is carried out by determining the
equivalent inertia constant Heq of such generators:

Heq ¼

PSG
i¼1Hi � SB,i

SB
, (10)

where Hi and SB,i are the inertia constant and rated power of synchronous
generator i, SG is the total number of synchronous generators connected to the grid
and SB is the rated power of the power system.

In the same way, loads are reduced to an equivalent one with damping factor Deq.
If the power system under analysis is stable, an inaccurate value ofDeq will not have a
significant impact on the study. However, under disturbance situations, the value of
Deq can be a major contribution [20]. As variable frequency drives become more
common, the equivalent damping factor is expected to decrease [21].
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2.3 Hidden and virtual inertia emulation from RES: modified equivalent inertia
constant

In recent decades, several policies have promoted the penetration of RES-based
generation units, which have replaced synchronous generators directly connected
to the grid [22]. However, as some of them are II-RES (i.e., wind and PV), power
systems with a high penetration of those RES require new frequency control strat-
egies that emulate the behavior of conventional power plants under power imbal-
ance conditions [23]. Such techniques are commonly referred to as hidden,
synthetic, emulated or virtual inertia [15]. By including this emulation of inertia
into power systems, equivalent inertia Heq would be modified. Thus, it would have
two different components: (i) synchronous rotating inertia coming from synchro-
nous (conventional) generators HS and (ii) emulated/virtual inertia coming from
II-RES HV [24, 25]. Thus, Eq. (10) would become:

Heq ¼

XSG

i¼1
Hi � SB,i

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
HS

þ
XVG

j¼1
HV,j � SB,j

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
HV

SB
, (11)

where VG is the number of II-RES connected to the grid through emulation/
virtual control methods and HV is the inertia constant of the emulated/virtual
generation unit. This modified equivalent inertia expressed in Eq. (11) is graphically
illustrated in Figure 1, based on [26]. As can be seen, there are three different links
between the generation units and the grid frequency: (i) rotational synchronous
inertia from conventional generators, (ii) hidden inertia from VSWT and (iii)
virtual inertia from PV. This is because modern VSWT have rotational inertia stored
in their blades, drive train and electrical generator [27]. However, due to the
inverter and maximum power point tracking (MPPT) strategy, they cannot auto-
matically provide this inertia to the grid [28–31], being thus considered as ‘hidden’
from the power system point of view [32]. In fact, VSWT have inertia constants
comparable to those of conventional generators, as summarized in Figure 2. In
consequence, it is considered that the inertia provided by VSWT is ‘emulated’ [33].

Figure 1.
Power system with synchronous, hidden and virtual inertia.
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On the other hand, PV has no rotating masses [30]. Thus, PV power plants
cannot store kinetic energy and their inertia constant is H≃0 [31]. Consequently,
they cannot provide inertia unless it is synthetic/virtual, thus being usually referred
to as ‘emulated synthetic/virtual inertia’ provided by such PV power plants [34, 35].

Due to the repercussions of II-RES with regard to the rotating inertia of power
systems [36], they should start providing active power support under distur-
bances [37]. The specific literature includes several technologies that allow II-RES
to participate in frequency control by providing additional power under
disturbances [38–40].

3. Inertia estimation for power systems

Energy global statistics are provided by the International Energy Agency (IEA).
Considering Eq. (10) and the electricity supply within a year presented in [41], it is
possible to calculate the equivalent inertia Heq in different regions of the world.
According to each technology, the inertia constant H of conventional units is
estimated as the mean value of those presented in [10] (i.e., Hcoal ¼ 4 s, Hoil ¼ 4 s,
Hgas ¼ 5 s, Hnuclear ¼ 4 s, Hhydro ¼ 3:25 s). It is considered that II-RES are not
participating in frequency control (i.e., not contributing to the system inertia).

Figure 3 depicts the generation mix change between 1996 and 2016. Over these
two decades, the total electricity consumption increased by more than 80%. How-
ever, in the same time period, RES electricity generation only increased by 4%.
Based on the approach previously described to estimate Heq, Figure 4 depicts the
change between the inertia constant for the different continents between 1996 and

Figure 2.
Inertia constant values H for different wind turbine technologies.

Figure 3.
Generation mix in the world: change between 1996 and 2016. (a) Generation mix in 1996. (b) Generation
mix in 2016.
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2016. As can be seen, the inertia reduction in Asia, the USA and South America was
negligible (between 2.5 and 3%), whereas in Europe it decreased by nearly 20%.

In line with the inertia reduction suffered, RES supply in Europe increased by
nearly 20% (refer to Figure 5). Actually, ENTSO-E has already focused on the high

Figure 4.
Estimated equivalent inertia constants in the world by continent: change between 1996 and 2016.

Figure 5.
Generation mix in Europe: change between 1996 and 2016. (a) Generation mix in 1996. (b) Generation mix
in 2016.

Figure 6.
Equivalent inertia constants estimated in EU-28: change between 1996 and 2016.
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RES integration-low synchronous inertia problem. In one of their published reports,
ENTSO-E estimated the evolution of system inertia for different TYNDP scenarios
for 2030 in Europe and certain countries (i.e., the United Kingdom, France and
Germany), considering that II-RES do not contribute to inertia [42]. In those esti-
mations, Heq depends on the percentage of hours in a year that II-RES are working.
Thus, it is possible to compare the Heq estimated in this chapter with the values
obtained by ENTSO-E.

The transition of Heq in a number of European countries can be seen in Figure 6.
In [42], considering RES current generation rate: (i) Heq of Europe is within range
3.8–4.5 s; (ii) Heq of the United Kingdom is within range 3–4 s; (iii) Heq of France is
5 s and (iv) Heq of Germany is 3.5 s. Some discrepancies can be observed. The main
cause of these is the values of the inertia constant of conventional plants. In fact, if
the maximum value of H for all conventional plants is considered (i.e., Hcoal ¼ 5 s,
Hoil ¼ 5 s, Hgas ¼ 5 s, Hnuclear ¼ 4 s, Hhydro ¼ 4:75 s), the Heq results are nearly the
same as those presented in [42].

4. II-RES frequency control strategies

4.1 Preliminaries

To maintain frequency within an acceptable range, generation and load in the
power system must be continuously balanced [43]. In fact, frequency variations
from the nominal value can cause several problems including under-/overfrequency
relay operations and disconnection of some loads from the grid, among others [44].
Thus, frequency stability is an essential issue for power systems [45].

With the increase in II-RES, the equivalent inertia constant of power systems is
reduced, subsequently obtaining (i) larger frequency deviations after an imbalance
and (ii) higher ROCOF [7, 46]. As a consequence, II-RES should start providing
active power support under disturbances [37].

4.2 PV power plant frequency control strategies

In order to provide additional active power during imbalanced situations, PV
power plants can integrate different solutions, mainly based on two principal
approaches: energy storage systems (ESS) or de-loading control strategies. More-
over, the technical challenge is more severe with PV power plants than with wind
generation, since PV systems cannot provide any inertial response unless special
countermeasures are adopted [47].

With regard to ESS, different solutions have been proposed in the literature to
be applied to PV systems. Although the relevant benefits of ESS to power system’s
operation is widely recognized, some significant challenges can be identified: (i) the
selection of a suitable technology to match the power system application require-
ments, (ii) an accurate evaluation of the energy storage facilities estimating both
technical and economic benefits and (iii) a cost decreasing to a realistically accept-
able level for deployment [48]. Among the different ESS, the battery energy storage
is considered by some authors as the oldest and most mature ESS [49]. In work [50],
it is concluded that the Li-Ion batteries are those that best suit frequency regulation
services. Batteries are limited in power, though present a high storage ratio [51–53];
on the other hand, supercapacitors have high levels of power with low energy
storage ratio. As a consequence, the battery-supercapacitor combination is pro-
posed as an interesting ESS solution [54]. Indeed, these technologies can help to
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solve the problem of the ‘intermittent’ nature of solar PV supply [55]. Additional
solutions for PV installations based on supercapacitors can be found in [56, 57].
Flywheels are another solution widely proposed as ESS, being applied from very
small micro-satellites to large power systems [58]. Work in [59] points out a great
benefit of flywheels backing up solar PV power plants, mainly focused on the cloud
passing, which can cope with the high cycles of the flywheel technologies. Indeed,
flywheels excel in short duration and high cycle applications [60]. Moreover, fly-
wheels have a high efficiency, usually in the range between 90% and 95%, with an
expected lifetime of around 15 years [61]. Different solutions propose hybrid ESS
coupled to PV power plants [53], such as a battery hybridization with mechanical
flywheel [62].

PV power plants usually work at the maximum power point (MPP) according to
ambient temperature T and solar irradiation G [63]. However, they can work below
their MPP, having thus some active power reserves (headroom) to supply in case of
a frequency deviation. This approach is usually referred to as de-loading technique
and is commonly proposed for PV installations [64, 65]. In this way, the PV plant is
operated at Pdel, below PMPP, so that some power reserves ΔP ¼ PMPP � Pdel are
available [66, 67]. As can be seen in Figure 7, Pdel can be related with two different
voltages: (i) over the maximum power point voltage, Vdel,1 >VMPP, and (ii) under
the maximum power point voltage, Vdel,2 <VMPP. However, due to stability prob-
lems, the de-loaded voltage corresponds to the higher value Vdel,1 [68]. This Vdel is
then added to the MPP controller reference, in order to also de-load the inverter.
This controller for de-loaded PV is modified in [69], such that the release of the
reserve is directly linked to both (i) the frequency excursion and (ii) the availability
of the reserve in the PV system. This controller is also proposed in [70].

4.3 Wind power plant frequency control strategies

Wind power plants can also participate in frequency control by using different
solutions. Apart from the use of ESS or working with the de-loading control strat-
egy, wind turbines can provide inertial response as conventional generators due to
the rotational inertia of the blades and generator [10].

With regard to ESS, wind power plants can also include batteries [71],
supercapacitors [72] and flywheels [73]. ESS are considered an alternative to com-
pensate the lack of short-term frequency response ability of wind power plants [74].
The utility-scale battery ESS helps to reduce the ROCOF, providing frequency
support and improving the system frequency response [75]. A battery ESS based on
a state-machine-based coordinated control strategy is developed in [76] to support

Figure 7.
De-loading techniques for PV power plants. (a) Vdel.1 > VMPP. (b) Vdel.2 < VMPP.
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frequency response of wind power plants, including both primary and secondary
frequency control. A real-time cooperation scheme by considering complementary
characteristics between wind power and batteries is discussed in [77] to provide
both energy and frequency regulation, considering the battery life cycle. The com-
bination of battery and supercapacitor is considered in [78] as an effective alterna-
tive to improve the battery lifetime and enhance the system economy. In this way,
an enhanced frequency response strategy is investigated in [79] to improve and
regulate the wind frequency response with the integration of ultra-capacitors. With
the aim of smoothing the net power injected to the grid by wind turbines (or by a
wind power plant), some authors propose to use flywheels [80, 81]. Flywheels are
also proposed to dynamically regulate the system equivalent inertia and damping,
enhancing the frequency regulation capability of wind turbines [38, 82] and also the
entire grid [83]. A coordinated regulation response of the turbine power reserves
and the flywheels while participating in primary frequency control is described in
[84]. Finally, other works include not only frequency response but also voltage
control by using flywheels [85, 86].

In line with PV installations, wind turbines also work in the MPP according to
the wind speed vw. As a consequence, the de-loading technique is considered as a
solution to provide additional active power in imbalanced situations with wind
turbines, by operating them in a suboptimal point through the de-loaded control
mode [87]. Wind turbines have two different possibilities to operate with the de-
loading technique (refer to Figure 8) [32]: (i) pitch angle control and (ii) overspeed
control. The pitch-angle control increases the pitch angle from β0 to β1 for a
constant vw; in this way, the supplied power Pdel is below the maximum power PMPP,
being thus a certain amount of power ΔP that can be supplied in case of frequency
contingency (Figure 8(a)) [88–91]. When this additional power ΔP is provided, the
pitch angle has to be reduced from β1 to β0. The overspeed control increases the
rotational speed of the rotor, shifting the supplied power Pdel towards the right of
the maximum power PMPP (Figure 8(b)) [87, 92, 93]. As in the pitch-angle control,
Pdel is below PMPP [71]. When the additional power ΔP is supplied, the rotor speed
has to be reduced from Ωdel to ΩMPP, releasing kinetic energy [39, 87, 92, 93].

In order to provide an inertial response, at least one supplementary loop control
is introduced into the power controller to increase the generated power by the wind
power plant. This additional loop is only activated under power imbalances (i.e.,
frequency deviations), supplying the kinetic energy stored in the blades and gener-
ator to the grid as an additional active power for a few seconds [94]. The droop
control provides an additional active power ΔP proportional to the frequency
excursion Δf (see Figure 9), as the primary frequency control of conventional
power plants. The increase in the active power output then results in a decrease in

Figure 8.
De-loading techniques for wind power plants. (a) Pitch control. (b) Over-speed control.
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the rotor speed [95–99]. ΔP can be estimated following Eq. (12), being RWT the
droop control setting of the wind turbine:

ΔP ¼ �
Δf
RWT

(12)

The hidden inertia emulation technique is based on emulating the inertial
response of traditional synchronous generators. Two possibilities are found in the
specific literature, as presented in Figure 10: (i) one loop, where the additional
power is proportional to the ROCOF [100–102], and (ii) two loops, where the
additional power is proportional to the ROCOF and the frequency deviation. The
second strategy causes the frequency to return to its nominal value [103–105]. In
both cases, the rotor and generator speeds are reduced to release the stored kinetic
energy.

Figure 9.
Droop control for VSWTs. (a) Droop characteristic. (b) Block diagram of droop control.

Figure 10.
Hidden inertia emulation controllers. (a) One loop. (b) Two loops.

Figure 11.
Fast power reserve emulation technique [106]. (a) P – Ω curve. (b) Power variation.
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The fast power reserve approach is similar to the hidden inertia emulation
technique: an additional power is initially supplied, which makes the rotor speed to
decrease. However, in this technique, the additional active power ΔP has been
defined as a constant value independent of the system configuration and frequency
deviation [106–110] or variable (depending on the frequency deviation or mini-
mum rotor speed limits) [43, 111, 112]. The rotational speed decrease is then recov-
ered through a recovery period, which can cause a secondary frequency dip due to
the sudden decrease of the power generated by the wind power plant. As a conse-
quence, different recovery periods have been proposed in the last decade to avoid
this secondary frequency drop [43, 106, 108–111, 113, 114], even coordinating this
period with ESS [115]. Figure 11 shows the fast power reserve emulation control
proposed in [106].

5. Conclusions

In this chapter, we have conducted an extensive literature review of inertia of
power systems. A methodology to estimate the inertia constants of different power
systems is proposed and verified with the inertia constant results of ENTSO-E. The
contribution of wind and PV power plants as ‘hidden inertia’ and ‘virtual inertia,’
respectively, to participate in frequency control has also been discussed, providing
significant information for their participation in frequency control.

Acknowledgements

This work was supported by the Spanish Education, Culture and Sports Ministry
(FPU16/04282), Spanish Economy and Competitiveness Ministry and European
Union FEDER, which supported this work under Project ENE2016-78214-C2-1-R.

Conflict of interest

The authors declare no conflict of interest.

Abbreviations

DFIG double-fed induction generator
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PV photovoltaic
RES renewable energy sources
ROCOF rate of change of frequency
SCIG squirrel cage induction generator
VSWT variable speed wind turbine
WPP wind power plant

11

A Review of Virtual Inertia Techniques for Renewable Energy-Based Generators
DOI: http://dx.doi.org/10.5772/intechopen.92651



Author details

Ana Fernández-Guillamón1*†, Emilio Gómez-Lázaro2†, Eduard Muljadi3†

and Ángel Molina-Garcia1†

1 Department of Automatics, Electrical Engineering and Electronic Technology,
Universidad Politécnica de Cartagena, Cartagena, Spain

2 Renewable Energy Research Institute and DIEEAC-EDII-AB, Universidad de
Castilla-La Mancha, Albacete, Spain

3 Department of Electrical and Computer Engineering, Auburn University,
Auburn, AL, USA

*Address all correspondence to: ana.fernandez@upct.es

†These authors are contributed equally.

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

12

Power Systems



References

[1] Babahajiani P, Shafiee Q, Bevrani H.
Intelligent demand response
contribution in frequency control of
multi-area power systems. IEEE
Transactions on Smart Grid. 2018;9(2):
1282-1291

[2]D’hulst R, Fernandez JM, Rikos E,
Kolodziej D, Heussen K, Geibelk D,
et al. Voltage and frequency control for
future power systems: The ELECTRA
IRP proposal. In: 2015 International
Symposium on Smart Electric
Distribution Systems and Technologies
(EDST), IEEE. 2015. pp. 245-250

[3] Fernández-Guillamón A, Das K,
Cutululis NA, Molina-García Á.
Offshore wind power integration into
future power systems: Overview and
trends. Journal of Marine Science and
Engineering. 2019;7(11):399

[4] Shah R, Mithulananthan N, Bansal R,
Ramachandaramurthy V. A review of
key power system stability challenges
for large-scale PV integration.
Renewable and Sustainable Energy
Reviews. 2015;41(Supplement C):
1423-1436

[5] Cvetković M, Pan K, López CD,
Bhandia R, Palensky P. Co-simulation
aspects for energy systems with high
penetration of distributed energy
resources. In: AEIT International
Annual Conference; 2016. IEEE. 2017.
pp. 1-6

[6]Wang Y, Meng J, Zhang X, Xu L.
Control of pmsg-based wind turbines for
system inertial response and power
oscillation damping. IEEE Transactions
on Sustainable Energy. 2015;6(2):565-574

[7] Junyent-Ferr A, Pipelzadeh Y,
Green TC. Blending hvdc-link energy
storage and offshore wind turbine
inertia for fast frequency response. IEEE
Transactions on Sustainable Energy.
2015;6(3):1059-1066

[8] Yang S, Fang J, Tang Y, Qiu H,
Dong C, Wang P. Synthetic-inertia-
based modular multilevel converter
frequency control for improved micro-
grid frequency regulation. In: 2018 IEEE
Energy Conversion Congress and
Exposition (ECCE); IEEE. 2018.
pp. 5177-5184

[9]Delille G, Francois B, Malarange G.
Dynamic frequency control support by
energy storage to reduce the impact of
wind and solar generation on isolated
power system’s inertia. IEEE
Transactions on Sustainable Energy.
2012;3(4):931-939

[10] Fernández-Guillamón A, Gómez-
Lázaro E, Muljadi E, Molina-García Á.
Power systems with high renewable
energy sources: A review of inertia and
frequency control strategies over time.
Renewable and Sustainable Energy
Reviews. 2019;115:109369

[11]Dehghanpour K, Afsharnia S.
Electrical demand side contribution to
frequency control in power systems: A
review on technical aspects. Renewable
and Sustainable Energy Reviews. 2015;
41:1267-1276

[12]Nguyen HT, Yang G, Nielsen AH,
Jensen PH. Combination of synchronous
condenser and synthetic inertia for
frequency stability enhancement in low
inertia systems. IEEE Transactions on
Sustainable Energy. 2018;10(3):997-1005

[13]Groß D, Bolognani S, Poolla BK,
Dörfler F. Increasing the resilience of
low-inertia power systems by virtual
inertia and damping. In: Bulk Power
Systems Dynamics and Control
Symposium (IREP). 2017

[14]Ustun TS, Aoto Y. Analysis of smart
inverter’s impact on the distribution
network operation. IEEE Access. 2019;7:
9790-9804

13

A Review of Virtual Inertia Techniques for Renewable Energy-Based Generators
DOI: http://dx.doi.org/10.5772/intechopen.92651



[15] Vokony I. Effect of inertia deficit on
power system stability-synthetic inertia
concepts analysis. In: 2017 6th
International Youth Conference on
Energy (IYCE); IEEE. 2017. pp. 1-6

[16]Ulbig A, Borsche TS, Andersson G.
Impact of low rotational inertia on
power system stability and operation.
IFAC Proceedings Volumes. 2014;47(3):
7290-7297

[17] Serway RA, Jewett JW. Physics for
Scientists and Engineers with Modern
Physics. Cengage Learning: Brooks/
Cole; 2018

[18]Uriarte FM, Smith C, Van
Broekhoven S, Hebner RE. Microgrid
ramp rates and the inertial stability
margin. IEEE Transactions on Power
Systems. 2015;30(6):3209-3216

[19] Fernández-Guillamón A, Vigueras-
Rodríguez A, Molina-García A. Análisis
y simulación de estrategias agregadas de
control de frecuencia entre grandes
parques eólicos y aprovechamientos
hidroélectricos [MS thesis]. Universidad
Politécnica de Cartagena; 2017

[20]Huang H, Li F. Sensitivity analysis
of load-damping characteristic in power
system frequency regulation. IEEE
Transactions on Power Systems. 2013;
28(2):1324-1335

[21] Tielens P, Van Hertem D. The
relevance of inertia in power systems.
Renewable and Sustainable Energy
Reviews. 2016;55:999-1009

[22] Fernández-Guillamón A, Vigueras-
Rodríguez A, Molina-García Á. Analysis
of power system inertia estimation in
high wind power plant integration
scenarios. IET Renewable Power
Generation. 2019;13(15):2807-2816

[23]Muñoz-Benavente I, Hansen AD,
Gómez-Lazaro E, García-Sánchez T,
Fernández-Guillamón A, Molina-García
Á. Impact of combined demand-
response and wind power plant

participation in frequency control for
multi-area power systems. Energies.
2019;12(9):1687

[24]Gu H, Yan R, Saha TK. Minimum
synchronous inertia requirement of
renewable power systems. IEEE
Transactions on Power Systems. 2017;
33(2):1533-1543

[25] Tielens P, Van Hertem D. Receding
horizon control of wind power to
provide frequency regulation. IEEE
Transactions on Power Systems. 2017;
32(4):2663-2672

[26] Kroposki B, Johnson B, Zhang Y,
Gevorgian V, Denholm P, Hodge B-M,
et al. Achieving a 100% renewable grid:
Operating electric power systems with
extremely high levels of variable
renewable energy. IEEE Power and
Energy Magazine. 2017;15(2):61-73

[27]Du P, Matevosyan J. Forecast system
inertia condition and its impact to
integrate more renewables. IEEE
Transactions on Smart Grid. 2018;9(2):
1531-1533

[28]Muyeen S, Takahashi R, Murata T,
Tamura J. A variable speed wind turbine
control strategy to meet wind farm grid
code requirements. IEEE Transactions
on Power Systems. 2010;25(1):331-340

[29] Zhao J, Lyu X, Fu Y, Hu X, Li F.
Coordinated microgrid frequency
regulation based on DFIG variable
coefficient using virtual inertia and
primary frequency control. IEEE
Transactions on Energy Conversion.
2016;31(3):833-845

[30]Hosseinipour A, Hojabri H. Virtual
inertia control of PV systems for
dynamic performance and damping
enhancement of dc microgrids with
constant power loads. IET Renewable
Power Generation. 2017;12(4):430-438

[31] Tielens P. Operation and control of
power systems with low synchronous
inertia [PhD thesis]. KU Leuven; 2017

14

Power Systems



[32]Yingcheng X, Nengling T. Review of
contribution to frequency control
through variable speed wind turbine.
Renewable Energy. 2011;36(6):
1671-1677

[33] Fischer M, Engelken S, Mihov N,
Mendonca A. Operational experiences
with inertial response provided by type
4 wind turbines. IET Renewable Power
Generation. 2016;10(1):17-24

[34] Tang ZX, Lim YS, Morris S, Yi JL,
Lyons PF, Taylor PC. A comprehensive
work package for energy storage
systems as a means of frequency
regulation with increased penetration of
photovoltaic systems. International
Journal of Electrical Power & Energy
Systems. 2019;110:197-207

[35] Yang L, Hu Z, Xie S, Kong S, Lin W.
Adjustable virtual inertia control of
supercapacitors in PV-based ac
microgrid cluster. Electric
Power Systems Research. 2019;173:
71-85

[36] Li W, Du P, Lu N. Design of a new
primary frequency control market for
hosting frequency response
reserve offers from both generators and
loads. IEEE Transactions on Smart Grid.
2017;9(5):4883-4892

[37] You R, Barahona B, Chai J,
Cutululis NA, Wu X. Improvement of
grid frequency dynamic characteristic
with novel wind turbine based on
electromagnetic coupler. Renewable
Energy. 2017;113:813-821

[38] Attya A, Dominguez-Garcia J,
Anaya-Lara O. A review on frequency
support provision by wind power plants:
Current and future challenges.
Renewable and Sustainable Energy
Reviews. 2018;81:2071-2087

[39]Wang S, Tomsovic K. A novel active
power control framework for wind
turbine generators to improve frequency
response. IEEE Transactions on Power
Systems. 2018;33(6):6579-6589

[40] Ziping W, Wenzhong G, Tianqi G,
Weihang Y, Zhang H, Shijie Y, et al.
State-of-the-art review on frequency
response of wind power plants in power
systems. Journal of Modern Power
Systems and Clean Energy. 2018;6(1):
1-16

[41] International Energy Agency. Total
primary energy supply (TPES) by
source, year and country. Available
from: https://bit.ly/34YTcda. [Accessed:
17 October 2018]

[42] ENTSO-E. High Penetration of
Power Electronic Interfaced Power
Sources (HPoPEIPS). Available from: h
ttps://bit.ly/2x5fZrh

[43] Fernández-Guillamón A, Sarasúa JI,
Chazarra M, Vigueras-Rodríguez A,
Fernández-Muñoz D, Molina-García Á.
Frequency control analysis based on
unit commitment schemes with high
wind power integration: A Spanish
isolated power system case study.
International Journal of Electrical Power
Energy Systems. 2020;121:106044

[44] Bevrani H, Daneshmand PR. Fuzzy
logic-based load-frequency control
concerning high penetration of wind
turbines. IEEE Systems Journal. 2012;
6(1):173-180

[45]Ozer B, Arikan O, Moral G,
Altintas A. Extraction of primary and
secondary frequency control from
active power generation data of power
plants. International Journal of
Electrical Power & Energy Systems.
2015;73:16-22

[46]Nedd M, Booth C, Bell K. Potential
solutions to the challenges of low inertia
power systems with a case study
concerning synchronous condensers. In:
2017 52nd International Universities
Power Engineering Conference (UPEC);
IEEE. 2017. pp. 1-6

[47]Wang X, Yue M. Design of energy
storage system to improve inertial
response for large scale PV generation.

15

A Review of Virtual Inertia Techniques for Renewable Energy-Based Generators
DOI: http://dx.doi.org/10.5772/intechopen.92651



In: 2016 IEEE Power and Energy Society
General Meeting (PESGM). 2016.
pp. 1-5

[48] Luo X, Wang J, Dooner M, Clarke J.
Overview of current development in
electrical energy storage technologies
and the application potential in power
system operation. Applied Energy. 2015;
137:511-536

[49] Chen H, Cong TN, Yang W, Tan C,
Li Y, Ding Y. Progress in electrical
energy storage system: A critical review.
Progress in Natural Science. 2009;19(3):
291-312

[50] Akram U, Nadarajah M, Shah R,
Milano F. A review on rapid responsive
energy storage technologies for
frequency regulation in modern power
systems. Renewable and Sustainable
Energy Reviews. 2020;120:109626

[51]Marcos J, Storkël O, Marroyo L,
Garcia M, Lorenzo E. Storage
requirements for PV power ramp-rate
control. Solar Energy. 2014;99:28-35

[52] Salim NB, Aboelsoud H, Tsuji T,
Oyama T, Uchida K. Load frequency
control of two-area network using
renewable energy resources and battery
energy storage system. Journal of
Electrical Systems. 2017;13(2):348-365

[53] Zhao Z, Xiao H, Yang Y. Improved
coordinated control strategy of hybrid
energy storages in PV power smoothing.
Energy Procedia. 2018;145:151-156

[54] Cabrane Z, Ouassaid M,
Maaroufi M. Analysis and evaluation of
battery-supercapacitor hybrid energy
storage system for photovoltaic
installation. International Journal of
Hydrogen Energy. 2016;41(45):
20897-20907

[55] Chandra A. Supercapacitors: An
alternate technology for energy storage.
Proceedings of the National Academy of
Sciences. 2012;82:79-90

[56] Taghizadeh M, Hoseintabar M,
Faiz J. Frequency control of isolated
WT/PV/SOFC/UC network with
new control strategy for improving
SOFC dynamic response.
International Transactions on
Electrical Energy Systems. 2015;25(9):
1748-1770

[57] You S, Liu Y, Tan J, Gonzalez MT,
Zhang X, Zhang Y, et al. Comparative
assessment of tactics to improve
primary frequency response without
curtailing solar output in high
photovoltaic interconnection grids.
IEEE Transactions on Sustainable
Energy. 2018;10(2):718-728

[58]Mousavi GS, Faraji F, Majazi A, Al-
Haddad K. A comprehensive review of
flywheel energy storage system
technology. Renewable and
Sustainable Energy Reviews. 2017;67:
477-490

[59]Amiryar ME, Pullen KR. A review of
flywheel energy storage system
technologies and their applications.
Applied Sciences. 2017;7:286(1-21)

[60] Pullen KR. The status and future of
flywheel energy storage. Joule. 2019;
3(6):1394-1399

[61] Akinyele D, Rayudu R. Review of
energy storage technologies for
sustainable power networks. Sustainable
Energy Technologies and Assessments.
2014;8:74-91

[62] Barelli L, Bidini G, Bonucci F,
Castellini L, Fratini A, Gallorini F, et al.
Flywheel hybridization to improve
battery life in energy storage systems
coupled to res plants. Energy. 2019;173:
937-950

[63] Xin H, Liu Y, Wang Z, Gan D,
Yang T. A new frequency regulation
strategy for photovoltaic systems
without energy storage. IEEE
Transactions on Sustainable Energy.
2013;4(4):985-993

16

Power Systems



[64] Alatrash H, Mensah A, Mark E,
Haddad G, Enslin J. Generator
emulation controls for photovoltaic
inverters. IEEE Transactions on Smart
Grid. 2012;3(2):996-1011

[65] Zarina P, Mishra S, Sekhar P.
Deriving inertial response from a non-
inertial PV system for frequency
regulation. In: 2012 IEEE International
Conference on Power Electronics,
Drives and Energy Systems (PEDES);
IEEE. 2012. pp. 1-5

[66] Zarina P, Mishra S, Sekhar P.
Photovoltaic system based transient
mitigation and frequency regulation. In:
2012 Annual IEEE India Conference
(INDICON); IEEE. 2012. pp. 1245-1249

[67] García-Gracia M, El Halabi N,
Ajami H, Comech MP. Integrated
control technique for compliance of
solar photovoltaic installation grid
codes. IEEE Transactions on Energy
Conversion. 2012;27(3):792-798

[68]Moutis P, Vassilakis A, Sampani A,
Hatziargyriou N. DC switch driven
active power output control of
photovoltaic inverters for the provision
of frequency regulation. IEEE
Transactions on Sustainable Energy.
2015;6(4):1485-1493

[69]Mishra S, Zarina P, Sekhar P. A
novel controller for frequency
regulation in a hybrid system with high
PV penetration. In: 2013 IEEE Power
and Energy Society General Meeting
(PES); IEEE. 2013. pp. 1-5

[70] Zarina P, Mishra S, Sekhar P.
Exploring frequency control capability
of a PV system in a hybrid PV-rotating
machine-without storage system.
International Journal of Electrical Power
& Energy Systems. 2014;60:258-267

[71] Ziping W, Wenzhong G, Tianqi G,
Weihang Y, ZHANG H, Shijie Y, et al.
State-of-the-art review on frequency
response of wind power plants in power

systems. Journal of Modern Power
Systems and Clean Energy. 2017:1-16

[72] Xiong L, Li Y, Zhu Y, Yang P, Xu Z.
Coordinated control schemes of super-
capacitor and kinetic energy of DFIG for
system frequency support. Energies.
2018;11(1):103

[73] Jauch C, Hippel S. Hydraulic–
pneumatic flywheel system in a wind
turbine rotor for inertia control. IET
Renewable Power Generation. 2016;
10(1):33-41

[74]Wen J, Liu J, Long Y, Yao W.
Solution to short-term frequency
response of wind farms by using energy
storage systems. IET Renewable Power
Generation. May 2016;10:669-678

[75]Gonzalez-Longatt FM, Alhejaj SM.
Enabling inertial response in utility-
scale battery energy storage system. In:
2016 IEEE Innovative Smart Grid
Technologies-Asia (ISGT-Asia). 2016.
pp. 605-610

[76] Tan J, Zhang Y. Coordinated control
strategy of a battery energy storage
system to support a wind power plant
providing multi-timescale frequency
ancillary services. IEEE Transactions on
Sustainable Energy. 2017;8(3):1140-1153

[77]He G, Chen Q, Kang C, Xia Q,
Poolla K. Cooperation of wind power
and battery storage to provide
frequency regulation in power markets.
IEEE Transactions on Power Systems.
2017;32(5):3559-3568

[78] Bai L, Li F, Hu Q, Cui H, Fang X.
Application of battery-supercapacitor
energy storage system for smoothing
wind power output: An optimal
coordinated control strategy. In: 2016
IEEE Power and Energy Society General
Meeting (PESGM). 2016. pp. 1-5

[79] Tan Y, Muttaqi KM, Ciufo P,
Meegahapola L. Enhanced frequency
response strategy for a pmsg-based

17

A Review of Virtual Inertia Techniques for Renewable Energy-Based Generators
DOI: http://dx.doi.org/10.5772/intechopen.92651



wind energy conversion system using
ultracapacitor in remote area power
supply systems. IEEE Transactions on
Industry Applications. 2017;53(1):
549-558

[80] Gayathri NS, Kar IN. Smoothing of
wind power using flywheel energy
storage system. IET Renewable Power
Generation. 2017;11:289-298

[81]Díaz-González F, Sumper A, Gomis-
Bellmunt O, Bianchi FD. Energy
management of flywheel-based energy
storage device for wind power
smoothing. Applied Energy. 2013;110:
207-219

[82] Yao J, Yu M, Gao W, Zeng X.
Frequency regulation control strategy
for PMSG wind-power generation
system with flywheel energy storage
unit. IET Renewable Power Generation.
June 2017;11:1082-1093

[83] Zhao H, Wu Q, Hu S, Xu H,
Rasmussen CN. Review of energy
storage system for wind power
integration support. Applied Energy.
2015;137:545-553

[84]Díaz-González F, Hau M,
Sumper A, Gomis-Bellmunt O.
Coordinated operation of wind turbines
and flywheel storage for primary
frequency control support. International
Journal of Electrical Power Energy
Systems. 2015;68:313-326

[85] Ahmadi R, Ghardashi F, Kabiri D,
Sheykholeslami A, Haeri H. Voltage and
frequency control in smart distribution
systems in presence of der using
flywheel energy storage system. IET
Conference Proceedings. January 2013:
1307-1307

[86]Ghosh S, Kamalasadan S. An energy
function-based optimal control strategy
for output stabilization of integrated
DFIG-flywheel energy storage system.
IEEE Transactions on Smart Grid. 2017;
8(4):1922-1931

[87] Zhang X, Zha X, Yue S, Chen Y. A
frequency regulation strategy for wind
power based on limited over-speed de-
loading curve partitioning. IEEE Access.
2018;6:22938-22951

[88]Moutis P, Loukarakis E,
Papathanasiou S, Hatziargyriou ND.
Primary load-frequency control from
pitch-controlled wind turbines. In: 2009
IEEE Bucharest PowerTech; IEEE. 2009.
pp. 1-7

[89]Ma H, Chowdhury B. Working
towards frequency regulation with wind
plants: Combined control approaches.
IET Renewable Power Generation.
2010;4(4):308-316

[90]Moutis P, Papathanassiou SA,
Hatziargyriou ND. Improved load-
frequency control contribution of
variable speed variable pitch wind
generators. Renewable Energy. 2012;48:
514-523

[91] Žertek A, Verbič G, Pantoš M.
Optimised control approach for
frequency-control contribution of
variable speed wind turbines. IET
Renewable Power Generation. 2012;
6(1):17-23

[92] Castro LM, Fuerte-Esquivel CR,
Tovar-Hernández JH. Solution of power
flow with automatic load-frequency
control devices including wind farms.
IEEE Transactions on Power Systems.
2012;27(4):2186-2195

[93] Vidyanandan K, Senroy N. Primary
frequency regulation by deloaded wind
turbines using variable droop. IEEE
Transactions on Power Systems. 2013;
28(2):837-846

[94] Alsharafi AS, Besheer AH,
Emara HM. Primary frequency
response enhancement for future low
inertia power systems using hybrid
control technique. Energies. 2018;
11(4):699

18

Power Systems



[95] Ye H, Pei W, Qi Z. Analytical
modeling of inertial and droop
responses from a wind farm for short-
term frequency regulation in power
systems. IEEE Transactions on Power
Systems. 2016;31(5):3414-3423

[96] Fakhari Moghaddam Arani M,
Mohamed YAI. Dynamic droop control
for wind turbines participating in
primary frequency regulation in
microgrids. IEEE Transactions on Smart
Grid. 2018;9(6):5742-5751

[97] Lertapanon P, Wangdee W.
Analysis and modeling of wind turbine
generators considering frequency
controls. In: 2017 International Electrical
Engineering Congress (iEECON); IEEE.
2017. pp. 1-4

[98]Huang L, Xin H, Zhang L, Wang Z,
Wu K, Wang H. Synchronization and
frequency regulation of DFIG-based
wind turbine generators with
synchronized control. IEEE
Transactions on Energy Conversion.
2017;32(3):1251-1262

[99]Deepak M, Abraham RJ,
Gonzalez-Longatt FM, Greenwood DM,
Rajamani H-S. A novel approach to
frequency support in a wind integrated
power system. Renewable Energy. 2017;
108:194-206

[100] Gonzalez-Longatt F, Chikuni E,
Stemmet W, Folly K. Effects of the
synthetic inertia from wind power on
the total system inertia after a frequency
disturbance. In: Power Engineering
Society Conference and Exposition in
Africa; Citeseer. 2012. pp. 9-13

[101] Bonfiglio A, Invernizzi M,
Labella A, Procopio R. Design and
implementation of a variable synthetic
inertia controller for wind turbine
generators. IEEE Transactions on Power
Systems. 2019;34(1):754-764

[102] Liu K, Qu Y, Kim H-M, Song H.
Avoiding frequency second dip in

power unreserved control during wind
power rotational speed recovery. IEEE
Transactions on Power Systems. 2018;
33(3):3097-3106

[103]Morren J, de Haan SWH,
Kling WL, Ferreira JA. Wind turbines
emulating inertia and supporting
primary frequency control. IEEE
Transactions on Power Systems.
February 2006;21:433-434

[104]Díaz-González F, Hau M,
Sumper A, Gomis-Bellmunt O.
Participation of wind power plants in
system frequency control: Review of
grid code requirements and control
methods. Renewable and Sustainable
Energy Reviews. 2014;34:551-564

[105]Dreidy M, Mokhlis H, Mekhilef S.
Inertia response and frequency control
techniques for renewable energy sources:
A review. Renewable and Sustainable
Energy Reviews. 2017;69:144-155

[106] Tarnowski GC, Kjar PC,
Sorensen PE, Ostergaard J. Variable
speed wind turbines capability for
temporary over-production. In: Power
& Energy Society General Meeting,
2009. PES’09. IEEE. 2009. pp. 1-7

[107] Keung P-K, Li P, Banakar H,
Ooi BT. Kinetic energy of wind-turbine
generators for system frequency
support. IEEE Transactions on Power
Systems. 2009;24(1):279-287

[108] El Itani S, Annakkage UD, Joos G.
Short-term frequency support utilizing
inertial response of DFIG wind turbines.
In: 2011 IEEE Power and Energy Society
General Meeting; IEEE. 2011. pp. 1-8

[109]Hansen AD, Altin M, Margaris ID,
Iov F, Tarnowski GC. Analysis of the
short-term overproduction capability of
variable speed wind turbines.
Renewable Energy. 2014;68:326-336

[110]Hafiz F, Abdennour A. Optimal use
of kinetic energy for the inertial support

19

A Review of Virtual Inertia Techniques for Renewable Energy-Based Generators
DOI: http://dx.doi.org/10.5772/intechopen.92651



from variable speed wind turbines.
Renewable Energy. 2015;80:629-643

[111] Kang M, Kim K, Muljadi E,
Park J-W, Kang YC. Frequency control
support of a doubly-fed induction
generator based on the torque limit.
IEEE Transactions on Power Systems.
2016;31(6):4575-4583

[112] Fernández-Guillamón A,
Villena-Lapaz J, Vigueras-Rodríguez A,
García-Sánchez T, Molina-García Á. An
adaptive frequency strategy for variable
speed wind turbines: Application to high
wind integration into power systems.
Energies. 2018;11(6):1-21

[113] Liu K, Qu Y, Kim H-M, Song H.
Avoiding frequency second dip in
power unreserved control during wind
power rotational speed recovery. IEEE
Transactions on Power Systems. 2017;
33(3):3097-3106

[114] Fernández-Guillamón A,
Vigueras-Rodríguez A, Gómez-
Lázaro E, Molina-García Á. Fast power
reserve emulation strategy for VSWT
supporting frequency control in
multi-area power systems. Energies.
2018;11(10):2775(1-20)

[115]Wu Z, Gao DW, Zhang H, Yan S,
Wang X. Coordinated control strategy
of battery energy storage system and
PMSG-WTG to enhance system
frequency regulation capability. IEEE
Transactions on Sustainable Energy.
2017;8(3):1330-1343

20

Power Systems


