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Chapter

Biotribology of Mechanically and 
Laser Marked Biomaterial
Marcelo de Matos Macedo, Vikas Verma, 

Jorge Humberto Luna-Domínguez and Ronaldo Câmara Cozza

Abstract

The purpose of present work is to study the biotribological behavior of a 
mechanically and laser marked biomaterial. Sliding wear tests were conducted 
on ASTM F139 austenitic stainless-steel specimen, with polypropylene and AISI 
316 L austenitic stainless-steel balls, as counterbodies. During wear experiments, a 
liquid chemical composition was continuously fed between the specimen and the 
ball. The coefficient of friction acting on the tribological system “specimen – liquid 
chemical composition – ball” and the wear volume of the wear craters were calcu-
lated, and results were analyzed. The results have shown that the biotribological 
behavior of ASTM F139 austenitic stainless steel was influenced by mechanical 
or laser marking process, and its wear resistance was dependent on the kind of 
counterbody.

Keywords: biomaterial, austenitic stainless steel, laser treatment, wear resistance, 
wear volume, coefficient of friction

1. Introduction

The “ball-cratering wear test” has gained large acceptance at universities and 
research centers as it is widely used in studies focusing on the wear behavior of 
different materials [1–20]. Figure 1 presents a schematic diagram of the principle 
of wear test, where a rotating ball is forced against the tested specimen and liquid 
solution supplied between the specimen and the ball during the experiments.

The aim of the “ball-cratering wear test” is to generate “wear craters” on the 
surface of the specimen. Figure 2 presents an image of such crater, together with 
an indication of the crater diameter (d) (Figure 2a) and the wear volume (V) 
(Figure 2b [21]). The wear volume is determined as a function of “d,” using Eq. (1) 
[22], where R is the radius of the ball.

  V ≅   π  d   4  _ 
64R

   for d << R  (1)

In other line of research, the concept of “biotribology” has gained important 
spotlight in the area, including research works addressing the biotribological 
behavior of materials [23–29] used in the manufacturing of human body elements. 
Consequently, different laboratory techniques have been employed to reproduce 
conditions where there are friction and consequent wear of parts of the human 
mechanical structure with relative movement.
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However, wear tests conducted under the “ball-cratering” technique present 
advantages in relation to other types of tribological procedures, as it favors the 
desired analysis of the tribological behavior. Therefore, considering the need of tri-
bological characterization of biomaterials and the capacity that the “ball-cratering 
wear test” method presents to this goal, the purpose of this work is to study the 
biotribological behavior of mechanically and laser-marked ASTM F139 austenitic 
stainless-steel biomaterial.

Figure 2. 

Images of wear craters: (a) diameter – d and (b) wear volume – V [21].

Figure 1. 
“Ball-cratering wear test”: representative figure of its operating principle.
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2. Experimental details

2.1 Ball-cratering wear test equipment

Equipment with free-ball mechanical configuration (Figure 3a) was used for 
the sliding wear tests. Two load cells were used in the tribometer: one load cell to 
control the “normal force – N” applied on the specimen (Figure 3b) and the other 
load cell to measure the “tangential force – T” developed during the experiments 
(Figure 3c).

“Normal” and “tangential” force load cells have a maximum capacity of 50 N 
and an accuracy of 0.001 N. The values of N and T were registered by a data acqui-
sition system, in real time, during the sliding wear tests.

2.2 Materials

The tested specimen was an ASTM F139 austenitic stainless-steel biomaterial, 
marked mechanically and with a nanosecond Q-switched Nd: YAG laser. Its chemi-
cal composition is presented in Table 1.

Balls of polypropylene and AISI 316 L austenitic stainless steel, with diameter of 
D = 25.4 mm (D = 1″ – standard size), were adopted as counterbodies.

To simulate the fluid present in the human body, a chemical liquid solution of 
PBS – Phosphate Buffered Solution – was inserted between the specimen and the 
ball. It was composed by the materials mentioned in Table 2.

Table 3 shows the hardness (H) of the materials used in this work (specimen 
and test balls).

2.3 Ball-cratering wear tests and data acquisition

Table 4 presents the test conditions defined for the sliding wear experiments 
conducted in this research.

Following values of normal force (N) for the sliding wear experiments: 
NPP = 0.05 N and N316L = 0.40 N were defined as a function of density (ρ) of the  
ball material – polypropylene ⇒ρ PP = 0.91 g/cm3 and AISI 316 L austenitic stainless 
steel ⇒ρ 316L = 8 g/cm3. The rotational speed (n) of ball was 75 rpm. For n = 75 rpm 
and D = 25.4 mm, the tangential sliding velocity (v) of the ball is 0.1 m/s. Wear tests 
were conducted under a test time (t) of 10 min. With 0.1 m/s tangential sliding 
velocity and 10 min (600 s) test time, a sliding distance (S) of 60 m was calculated 
between the ball and the specimen.

All experiments were conducted without interruption, and the chemical liquid 
solution of PBS – Phosphate Buffered Solution – was fed between the specimen 
and the ball during the tests, under a frequency of 1 drop/10 s. Both the normal 
force (N) and the tangential force (T) were monitored and registered constantly. 
Finalizing the sliding wear tests, the diameters (d) of the wear craters were mea-
sured by optical microscopy, and their surfaces were analyzed by scanning electron 
microscopy.

Finally, the wear volume (V) was calculated by Eq. (1), and the coefficient of 
friction (μ) was determined using Eq. (2):

  μ =   T _ 
N

    (2)
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Figure 3. 
(a) “Ball-cratering” wear test equipment with “free-ball” mechanical configuration used for the sliding wear 
tests: (b) load cell mounted to control the normal force and (c) load cell positioned to measure the tangential 
force during the experiments.
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3. Results and discussion

3.1 Scanning electron microscopy

Figure 4 shows a scanning electron micrograph of the surface of a wear crater 
generated during the sliding wear tests.

Chemical element % (in weight)

C 0.023

Si 0.78

Mn 2.09

P 0.026

S 0.0003

Cr 18.32

Mo 2.59

Ni 14.33

Fe Balance

Table 1. 
Chemical composition of ASTM F139 austenitic stainless-steel biomaterial – in percentage weight.

Chemical element (g/l)

NaCl 8

KCl 0.2

Na2HPO4 1.15

KH2PO4 0.2

Table 2. 
Chemical composition of the PBS – phosphate buffered solution – in g/l.

Material Hardness – H

Specimen ASTM F139 austenitic stainless steel 180 HV

Test ball Polypropylene 55 – Shore D

AISI 316 L austenitic stainless steel 318 HV

Table 3. 
Hardness of the materials used in this work.

Normal force – NPP Ball of polypropylene 0.05 N

Normal force – N316L Ball of AISI 316 L austenitic stainless steel 0.40 N

Test ball rotational speed – n 75 rpm

Tangential sliding velocity – v 0.1 m/s

Test time – t 10 min

Sliding distance – S 60 m

Table 4. 
Test parameters for the ball-cratering wear tests under conditions of sliding wear.
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Occurrence of grooves, due to sliding movement between the ball and the 
specimen, was observed in the scanning electron micrograph. The result presented 
in Figure 4 is in qualitative agreement with the literature [30], where it is reported 
that the action of grooves on the surface of a material is characterized as a common 
tribological behavior of two metallic materials under relative movement.

3.2 Wear volume behavior

Figure 5 presents the behavior of the specimen in terms of wear volume (V) for 
the following conditions: mechanically and laser-marked specimen and different 
types of balls (counterbodies).

Figure 4. 
Scanning electron micrograph of the surface of a wear crater generated during the sliding wear tests.

Figure 5. 
Wear volume (V) behavior as a function of the type of marking process (“mechanical” or “laser”) and type 
of counterbody (ball of polypropylene or ball of AISI 316 L austenitic stainless steel). Maximum standard 
deviation reported: ±7 × 10−4 mm3.
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In addition, Figure 5 shows a decrease in wear volume under laser marking pro-
cess for both types of counterbodies. Decrease in wear volume is related to increase 
in local hardness of the specimen. Increase of hardness can be attributed to the action 
of laser on specimen surface. In relation to specimen marked mechanically, the pos-
sible increase of local hardness could have occurred due to local surface hardening.

However, the increase of local hardness caused by laser marking is higher than 
the local hardness caused by mechanical marking, justifying the results presented in 
Figure 5.

3.3 Coefficient of friction behavior

Figure 6 shows the behavior of the coefficient of friction (μ) for the conditions, 
which the specimen is marked mechanically and marked with laser, and for the 
different types of balls – counterbodies.

In the present tribological conditions, coefficient of friction was found lower 
for the wear tests conducted against polypropylene ball than AISI 316 L austenitic 
stainless-steel ball counterbodies.

4. Conclusions

The following conclusions can be drawn from the results obtained in this 
research, regarding to tribological behavior of ASTM F139 austenitic stainless steel:

• tribological behavior was influenced by the type of the marking process – 
“mechanical” or “laser” – applied for the investigated biomaterial;

• wear volume was found to be dependent on the normal force acting on the 
specimen, that is, they were dependent on the type of counterbody – ball of 
polypropylene or ball of AISI 316 L austenitic stainless steel; and

Figure 6. 
Coefficient of friction behavior (μ) as a function of the type of marking process (“mechanical” or “laser”) and 
type of counterbody (ball of polypropylene or ball of AISI 316 L austenitic stainless steel). Maximum standard 
deviation reported: ±0.03.
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• coefficient of friction was found dependent on the type of ball; the lower 
values of μ were observed under the use of polypropylene ball.

Nomenclature

d diameter of the wear crater (mm)
D diameter of the test ball (mm)
H hardness (HV)
n test ball rotational speed (rpm)
N normal force (applied on the specimen) (N)
R radius of the test ball (mm)
S sliding distance (m)
t test time (min)
T tangential force (developed during the wear tests) (N)
v tangential sliding velocity of the test ball (m/s)
V wear volume of the wear crater (mm3)

Greek letters

μ coefficient of friction
ρ density (g/cm3)
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