
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

125,000 140M

TOP 1%154

5,000

1

Chapter

Manipulating Complex Robot
Behavior for Autonomous and
Continuous Operations
Chengliang Liu, Liang Gong and Wei Zhang

Abstract

Service robot control faces challenges of dynamic environment and complex
behavior, which mainly include eye-hand coordination and continuous opera-
tions. However, current programming scheme lacks the ability of managing
such tasks. In this chapter, we propose a methodology of software development
paradigm for the continuous operation of the dual-arm picking robot. First, a
dual-arm robot is built for picking with the purpose of selectively harvesting
in plant factory. Second, a hierarchical control software is framed by means of
“Sense Plan Act” (SPA) paradigm. Third, based on the previous design, program-
ming concept, and the ROS system, the sub-node programming of visual module,
motion module, eye-hand coordination module, and task planning module are
implemented with a state machine-based architecture. The experimental results
show that if total number of targets within the visual field is not more than
three, the average picking time is less than 35 s. The fluency of concurrent task
management shows the feasibility of manipulating complex robot behavior for
autonomous and continuous operations with the finite state machine model and
task level architecture.

Keywords: dual-arm robot, complex behavior, continuous operation, robot operating
system (ROS), finite state machine

1. Introduction

With the development of technologies such as industrial robots and computer
image processing, a series of research and experiments on intelligent picking robots
have been carried out in Japan and other related countries, such as tomato, apple,
and grape picking robots [1]. Research on picking robots has focused on two parts:
the first is a hardware device that can achieve rapid picking, that is, how to design
a stable, efficient, and adaptable mechanical and visual sensing system, and the sec-
ond is to design intelligent software for continuous operations, that is, to accurately
identify, distinguish, and locate targets and to solve the problem of task planning
and task scheduling during continuous picking operations.

In the research field of picking robots, Kondo et al. [2] designed a tomato pick-
ing robot using a 7-degree-of-freedom manipulator. It used fingers and pneumatic
nozzles in conjunction with a color camera to complete the picking operation. The
experiment achieved a picking success rate of about 70% [3]. Tanigaki et al. [4]

Service Robotics

2

developed a cherry picking robot using a four-degree-of-freedom manipulator
and a specially designed end effector with suction and shear functions. The visual
part uses a light emitter, a photodetector, and a scanning device. The fruit was
picked in 14 s, and the success rate was about 84%. The CROPS plan completed
in 2014 was jointly completed by many European countries and units and aims
to develop a modular picking robot system for different mission scenarios. The
greenhouse bell pepper picking robot platform completed in the experiment in
the Netherlands [5] used a 9-degree-of-freedom manipulator, two color CCD
cameras and a depth-measuring camera, and its end effector was also equipped
with a small camera to complete the picking with higher accuracy. Taqi et al. [6]
have developed small household cherry tomato picking robots that can achieve
very accurate picking tasks in specific environments.

The continuous operation of the picking robot can make intelligent decisions on
multi-task under multi-objective scenarios and plan the operation according to the
picking needs. The research goal is that the picking robot system can intelligently
select and pick fruits that meet the picking conditions, thereby greatly improving
the degree of automation of the picking process and improving the quality of the
harvested fruits. Because the picking robot is still in the laboratory research stage,
the research on continuous operation is also very limited, and it is basically in its
infancy. Japan’s Nagata et al. [7] used the shape to judge and classify strawberry
quality. The accuracy in the experiment is acceptable, but the speed is much slower
than artificial. Zhao et al. [8] investigated the visual recognition of apple maturity,
using multi-spectral laser beams to complete fruit identification and positioning
and ripeness judgment. Guo [9] and others judged strawberry maturity based on
HIS color space algorithm. In the field test, the accuracy of the goal of picking
fruits with maturity of 80% or more was more than 90%. Wang [10] and Ling et al.
[11] carried out research on selective harvest information acquisition and path
planning of tomato picking robots. Multi-sensor information fusion method was
used for tomato quality detection and classification and selective picking decision.
The appearance maturity of the fruit is detected by the H-means in the computer
image, the fruits are classified in real time according to the agricultural industry
standards, and the selective harvesting decision is made through the progressive
identification of feature information and the fusion decision. At harvest time, path
planning is performed on multiple targets through an optimization algorithm and
then boxed by level.

This chapter mainly focuses on developing an intelligent software system for the
continuous operation of the dual-arm picking robot in a plant factory. Typically,
the semi-structure environment of the greenhouse poses challenges for autono-
mous operations of the robot, and the complex tasks mainly include identification
and positioning under variable light conditions, selective picking in multi-cluster
growth environment, and complex multi-task programming. For the difficulty of
developing the software system, a hierarchical modular software system framework
is designed. Moreover, a scheduling method of functional modules is designed
based on the idea of finite state machine for the complex multi-task planning
problem of tomato continuous picking process. The task scheduling design based
on the Finite State Machine (FSM) reduces the difficulty of development work and
improves the efficiency of development.

This chapter is organized as follows: Section 2 briefly describes the hardware
structure of a dual-arm robot, and Section 3 presents the software framework
with the highlights of deploying SMACH- and ViSP-based nodes in a ROS
development environment. The experimental results are also included at the end
of Section 3.

3

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

2. Hardware design of a dual-arm robot

The semi-structured operating environment in the plant factory is relatively
complicated, such as the occlusion of fruit branches and leaves, the challenging
grasping shape of the fruit, the changing light, and the variety of tasks, which
requires to consider the multi-tasking ability of the robot when designing the
hardware of the picking robot. At the same time, the complexity of the picking
environment requires that the execution of the robot be robust to the environment
in which the target is located, only in this way can it pick fruits in different states.
Based on the above two design goals, we designed a dual-arm picking robot to
simulate human picking operations.

2.1 Design of dual-arm robot body

The mechanical structure of the robot body mimics human arms, and the left
and right arms each have three joints: a vertical lift joint, a boom rotation joint, and
a forearm rotation joint. The vertical lifting joint is driven by a servo motor to drive
the roller screw. The actual effective stroke is about 300 mm. The big and small
arm joints are driven by a servo motor connected to a harmonic reducer. There is a
waist joint between the body and the base, which can provide 360° rotary motion.
The single-arm movement of the robot is similar to that of the SCARA robot. The
vertical positioning is achieved by the lifting joint, and the rotation of the large and
small arms realizes the positioning in the plane. There are three degrees of freedom
in motion. Each of the left and right forearms is designed with a mounting flange
surface, and end effectors can be installed as required. The dual-arm robot base is
installed on a mobile cart and is transported along the track to different picking
points for picking operations.

Due to the limitation of the freedom of the robot body, for complex tomato
picking environments, it is not enough to rely only on the freedom of the arms, so
we can use the design of the end effector to increase the freedom of our robot and
enable the robot to flexibly complete the picking operation. We designed a shearing
end effector on the cutting hand of the dual-arm robot and designed a suction-type
end sleeve on the auxiliary hand to fix the target tomato and assist the hand in pick-
ing (Figure 1).

Figure 1.
The structure of the robot body.

Service Robotics

4

Figure 3.
The picking robot tf coordinate system under Rivz.

2.2 Dual-arm robot coordinate system

As shown in Figure 2, the world coordinate system (x w , y w , z w) of the dual-arm
robot is built on the waist and coincides with the waist joint coordinate system. The
left and right arm coordinate systems (x l , y l , z l) and (x r , y r , z r) use the right-hand
principle, and the span direction at the zero position of the x axis is different from
the x axis of the world coordinate system by +45° and −45°. The z-axis direction is
vertically upward and is at the zero position at the lowest point. The x–y plane is
parallel to the world coordinate system x–y plane. The binocular camera coordinate
system is established at the intersection of the right-eye visual axis and the camera
lens. The coordinate system adopted by the bumblebee2 camera is the left-hand
principle. In order to be compatible with the entire system, the y-axis direction is
reversed.

We use the tf function package [12] provided by ROS to maintain the trans-
formation relationship between coordinate systems. After the robot model is built
according to urdf, the system will automatically broadcast the transformation
relationships between all the coordinate systems. The picking robot coordinate
system is shown in Figure 3.

Figure 2.
Robot coordinate system.

5

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

Based on the above coordinate system, using the rosrun tf view_frames
command, we can view the tf tree of the dual-arm picking robot, as shown in
Figure 4.

Figure 4.
The tf tree of robot.

Figure 5.
Picking robot communication architecture.

Service Robotics

6

2.3 Communication architecture of the dual-arm picking robot

The communication architecture of the dual-arm picking robot is shown in
Figure 5. The motor driver is a Gold series motor driver produced by Elmo and
is equipped with the same series of multi-axis controllers. The manufacturer has
provided a complete motor driver to multi-axis controller communication protocol
and communication protocol implementation and does not require customers to
conduct secondary development. The multi-axis controller uses Modbus TCP com-
munication as the communication between the lower computer and the industrial
computer. It is connected to it through an Ethernet cable.

3. Software frame design

In the process of programming, we generally manually divide the tasks of the
robot. Once the tasks are effectively divided, we can stack the tasks with the small-
est functional components, so the difficulty of task division is how to use human
prior knowledge to divide the minimum granularity of robot skills, which is a learn-
ing process. At the same time, how to easily and effectively combine the divided
components is also an important part of completing the task simulation.

The system architecture describes the functional structure of the subdivision
and the topological relationship between them and a series of specifications that
need to be set for subsequent development. The basic requirements of software
engineering include modularity, code reuse, and function sharing. Using a common
framework is helpful for decomposing development tasks and code migration.
Robot software also follows the general rules of software engineering. Architecture
is how you break up the robot’s functions and organize your code. A clear architec-
ture that matches the project directly determines your development efficiency and
even the success or failure of the final function. There are two main approaches to
robot system architecture: SPA architecture and behavior-based architecture.

3.1 SPA

The software system architecture is “Sense Plan Act”(SPA), as shown in
Figure 6. The robot maps the external environment space through sensors and uses
a certain modeling method to structure and model the perception information and
then analyzes the model to plan the robot’s actions. Finally, the action instructions
are executed in the environment to achieve a complete interactive process.

The typical software architecture in a SPA robot system is a three-layer archi-
tecture: the perception layer, the planning layer, and the motion control layer, as
shown in Figure 7. The perception layer receives and processes the sensor data, the
planning layer plans the motion trajectory, and the motion control layer ensures the
accurate execution of the movement. The SPA robot software system architecture

Figure 6.
SPA work pattern.

7

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

pays more attention to the perception and modeling of the world because this is the
basis for the accuracy of subsequent planning and movement.

3.2 Behavior-based architecture

The behavior-based software system architecture is a top-down software design.
The small functions of each robot are packaged into individual small modules. All
functional modules can be executed in parallel without prioritization. A robot task
can be understood as an organic composition of functional modules (Figure 8).

To a certain extent, all robot actions are responses to stimuli (inputs). This stress
mode avoids the thinking logic in the SPA architecture and facilitates the rapid
action response. In order to achieve the task, we can design a control scheme to
change the stress level of the action. Therefore, we need a global controller to coor-
dinate the choice of actions in order to achieve our intended purpose. The behavior-
based software design framework has good flexibility, but it increases the difficulty
of control. When multiple actions can affect the output, problems are easy to occur.

Therefore, combined with the SPA software architecture and behavior-based
software architecture, we design a software framework that combines the advan-
tages of both architectures for continuous operation of a dual-arm picking robot. Its
characteristics are as follows:

1. Hierarchical modular design: The software architecture absorbs the advan-
tages of the SPA architecture and also adopts a hierarchical design. The layered
design is mainly logical, which makes it easier for users to understand the
working mode of the robot. At the same time, it also absorbs the advantages
of behavior-based architecture, that is, functional modularity. Based on the

Figure 7.
SPA layered design.

Figure 8.
Action-based software system architecture.

Service Robotics

8

analysis and understanding of the robot’s internal architecture, we divide
the functions of the robot into seven modules, each of which is functionally
independent of each other. Combining the above two is a hierarchical modular
design, which divides the functional modules into a specific layer according to
the attributes of the functions, thus strengthening the logic of the system.

2. Finite state machine control: In order to solve the shortcomings of behavior-
based architecture, we have designed a task planning module based on finite
state machines, which is used to schedule and control the execution order of
each functional module to complete a specific task.

3.3 Hierarchical modular design

Layering is an important concept in software design. The division of layers
provides a framework for business decomposition and simplifies many thinking
processes. Considering the design characteristics of the software system and the
functional features of the robot, the entire software architecture can be divided
into four layers: presentation layer, application layer, sense layer, and data layer. The
hierarchical modular design architecture is shown in Figure 9.

1. Presentation layer: Presentation layer has more business logic requirements.
We designed the presentation layer based on the QT architecture. The entire
presentation layer includes several main components as shown in Figure 10:
the RVIZ module displays the model of the robot and other visual informa-
tion; the image module displays the video image information collected by the
current robot; the node module monitors all current node information; and
the DashBoard module provides users with a function module for manually
operating the robot; shell module provides command line functions; console
module displays all log information executed by the system; reconfigure mod-
ule provides users with a convenient tool for changing model parameters; and
diagnostic module provides real-time robot monitoring information.

2. Application layer: Application layer focuses on the task execution of a single
robot. It is separated from the implementation of specific functions and uses a
combination of function modules to coordinate a task.

3. Sense layer: Sense layer is responsible for the interaction between the software
system and the hardware. There are both a visual module responsible for envi-

Figure 9.
Layered modular architecture design.

9

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

ronmental perception and a motion module responsible for the motion control
of the upper and lower computers. Sense layer is a description of the robot’s
capabilities.

4. Data layer: Data layer serves the data generated by the system. Part of the data
generated by the system is stored in a local database for real-time decision
making of the system. One part is uploaded to the server through the network
and is fused with data from other robots and other time dimensions to plan the
continuous operation of the robot.

The criteria for the division of functional modules are to reduce coupling, rela-
tively independent functions, and high code repeatability. According to the robot’s
task module, the software system can be divided into motion (motion_pkg), control
(control_pkg), vision (vision_pkg), visualization (visualization_pkg), collaboration
(coorperation_pkg), database (database_pkg), and network (network_pkg). Each
function module is represented as a function package at the file system layer. There
can be multiple nodes in a package, and different nodes can be written in different
programming languages.

3.4 Cooperative control of dual-arm picking based on FSM

3.4.1 SMACH

Finite state machine (FSM) is a mathematical model of computational science.
The objects it represents can be in a limited number of states at any one time. When
an external input occurs, the system responds to the external input, and the FSM can
conditionally transition from one state to another. This process is called an action.
In computer science, finite state machines are widely used for modeling application
behavior, hardware circuit system design, software engineering, compilers, network
protocols, and computation and language research. FSM can be defined by the pres-
ent state, condition, action, and substate. The specific interpretation is as follows:

Figure 10.
Presentation layer.

Service Robotics

10

1. Present state: The current state.

2. Condition: The premise of triggering an action can also be considered as an
event. When a condition is filled, an action will be triggered.

3. Action: The operation performed when the conditions are met and can be
regarded as a unit of calculation or transaction processing. After the action
is completed, it can be transferred to a new state, it can still be in the original
state, or it can be terminated.

4. Substate: The state after the present state transition. When different actions oc-
cur and different conditions are generated, a state may transition to a different
substate. Once the transition is completed, it becomes the present state.

As shown in Figure 11, a task can be represented by a state transition diagram.
SMACH [13–15], which refers to “State Machine,” is a powerful and scalable

Python-based library for hierarchical state machines. The SMACH library does not
depend on ROS and can be used in any Python project. The executive_smach stack,
however, provides very nice integration with ROS, including smooth actionlib inte-
gration and a powerful SMACH viewer to visualize and introspect state machines.
The SMACH core library is lightweight and mainly provides two interfaces: State
and Container.

State: The state represents the state being executed. Each state has some
potential outputs. The State class outputs the result by implementing the blocking
function execute().

Container: The container is a collection of one or more states that enforces
some strategy. The simplest container is a State machine. A SMACH state machine
can be viewed as a state flow graph, where each node is an execution state (the
robot is performing a certain action), and the edges connecting the nodes repre-
sent transitions between states. The State machine itself can also be regarded as
a state and has its own output, so they can be combined in layers to complete a
complex task.

Figure 12 shows an example state machine [16].

Figure 11.
Finite state machine.

11

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

SMACH uses action files to define communication protocols between different
states. The structure of the action file is simple and clear, as shown in Figure 13.
Three data definition areas are separated by three underscores. The first area defines
the message format of the request, and the middle area defines the returned result
(result message format, the bottom area defines the intermediate information
feedback) message format. Each area can contain multiple data type, and the system
will automatically compile the action file into three message files during the compi-
lation process, so the message format for communication between states is actually
the message format provided by ROS.

SMACH provides a general state type to support invocation while providing a
special state class SimpleActionState as a proxy for actionlib. During the construc-
tion of the SimpleActionState object, the corresponding actionlib client is started by
default. The user can define a goal in the constructor and create a callback function
to process the data returned by the actionlib server.

Figure 12.
SMACH state machine example.

Service Robotics

12

3.4.2 Hierarchical concurrent state machine design

For the picking robot to perform a continuous picking task, we can use the state
transition process to describe it. The detailed description of the state transition is
as follows: first enter the startup state, start the picking robot platform, wait for the
initialization of each component, and perform a startup self-test. If any component
fails to initialize and is in a fault state, the startup fails, and then the system is
placed in the error state, stopping working and the task ends.

If the startup is successful, the platform moves into the state, the mobile plat-
form moves to the first picking point, and data collection state and the tomato
scanning state are started at the same time. The data collection state collects tomato
information in the current status and uploads it to the database of the server;
the tomato scan state checks whether there are tomatoes suitable for picking in
the viewing area. If not, restart the platform moving state and move the robot to the
next picking point; if so, first analyze all the tomato position information and pass
the spatial attitude information of the first target tomato to the kinematics solution
state according to the predetermined rules, and then program performs kinematics
calculation and motion planning. If the tomato is unreachable, the information of
the next target tomato is passed to the kinematics solution state, and so on until the
last tomato is reached. If it is determined that the tomato is unreachable, the plat-
form is moved to the next picking point. If it is judged that the tomato is reachable,
the calculated right arm motion information is transmitted to the robot motion
state, and this state sends the trajectory information of the right arm motion to the
lower computer and simultaneously detects the joint motion position information
during the execution of the lower computer. After the right arm moves to the target
position, it enters the suction state. The system starts the suction device to fix the
tomatoes and move them to a suitable position, which is convenient for the left arm
to cut hands. The kinematics solution state is started again, and the left arm motion
information is solved and transmitted to the robot motion state to control the left
arm to move near the target. The start of the visual servoing state is close to the tar-
get tomato precisely, and the cutting state is started after the arrival, the pneumatic
shear transposition of the left arm is started, and the tomato is cut. After complet-
ing a tomato pick, pick the next goal planned. Repeat until the last picking point.

According to the task execution process and state transition process described
above, the designed state transition diagram is shown in Figure 14.

In SMACH, we use SimpleActionState to directly simulate the server side of
actionlib and define a state machine with 10 states to control the robot to complete a
comprehensive picking job.

Figure 13.
File format of action.

13

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

1. DO_START: start state.

2. DO_MOVEBASE: mobile platform mobile status.

3. DO_TOMATO_SCAN: tomato scanning status.

4. DO_SPATIAL_TEMPORAL: data collection status.

5. DO_KINEMATICS: state of kinematics solution.

6. DO_MOVE_ROBOT: left and right arm movement status.

7. DO_MOVE_ENDEFFECTOR: end effector status.

8. DO_ERROR: fault status.

9. DO_STOP: emergency stop status.

10. DO_VISUALSERVOING: visual servoing status.

3.5 Major software node design

Based on the software framework design and operation requirements of the
dual-arm picking robot, based on the functional division of each part, a vision
module, an eye-hand coordination module, and a task planning module are mainly
designed and installed in the industrial computer. Each module further refines

Figure 14.
Continuous picking status flow.

Service Robotics

14

the functions and can be divided into functional nodes. Nodes are the minimum
functional modules in ROS, which regard as the ultimate goal of the design.

3.5.1 Vision module node

In the dual-arm acquisition robot eye-hand system, the main component of
the “eye” is the camera, including a binocular camera mounted on the robot’s head
and a monocular camera mounted on the arm. Based on the ROS framework, we
designed three nodes to complete the environment perception function: binocular
camera image acquisition node (dual_eye_image_capture), monocular camera image
acquisition node (single_eye_image_capture), and image processing node (image_
processing). The actual recognition effect is shown in Figure 15. There are three valid
tomatoes in the image. The system recognizes all tomatoes and marks the positions
of the tomatoes in the picture that need to be picked first according to the rules.

The binocular camera acquisition node uses the two original images collected by
the left and right sensors of the Bumblebee2 camera to finally generate five images:
left and right eye corrected color images, left and right eye corrected gray images,
and 3D point clouds (Figure 16).

The collection process of the binocular camera is shown in Figure 17. The
camera’s original data are read, and the data are packaged into a Bell template
image; then, three color information is extracted from the Bell template image
and assembled into the original color image. The eye image data are used to obtain
corrected left and right eye color images and grayscale images. Next, the left and
right eye images are used for stereo matching through the principle of triangulation
to generate a 3D point cloud. In the end, all the five images generated were pub-
lished, and the algorithm used in the image acquisition process was provided by the
camera SDK.

Based on the above process, we designed the binocular collection program UML
as shown in Figure 18.

3.5.1.1 Monocular camera image acquisition node

For monocular vision, we use a Daheng Mercury series industrial camera MER-
500-7UC, which uses USB2.0 digital interface and provides free SDK and secondary

Figure 15.
Tomato identification interface.

15

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

development example source code under windows platform and Linux platform.
We use the usb_camera package provided by ROS to collect monocular images, as
shown in Figure 19.

3.5.1.2 Image processing node

The image processing node receives the collected planar image and point cloud
image and provides different image processing function interfaces according to
different business requirements. In the current task requirements, image process-
ing nodes are required to complete the accurate two-dimensional recognition

Figure 16.
Five pictures generated by Bumblebee2 camera. 1. Gray image of left eye after correction. 2. Color image of left
eye after correction. 3. Gray image of right eye after correction. 4. Color image of right eye after correction. 5.
Point cloud image.

Figure 17.
Binocular image acquisition flow chart.

Service Robotics

16

and accurate three-dimensional positioning of tomatoes. Therefore, the two-
dimensional image dataset of the scene and the three-dimensional point cloud data
are also required. Next, we introduce us from two directions. Image processing node
design: first is the architecture design and functional flow of the image processing
node as a functional interface, and the second is the specific implementation of
related image processing algorithms.

The entire software system is based on the C/S model architecture, using the
actionlib function package provided by ROS, with the task planning node as the
server, and requesting computing resources from the client of each functional unit.
Image processing nodes are no exception. After receiving the image processing
instructions and image data, the instructions are parsed to clarify the functional
requirements, and then the required image data are extracted, input into the algo-
rithm function for processing, and the results are finally returned to the server.

The specific processing flow is shown in Figure 20. After initializing the node
and actionlib server, start the service, wait for the goal sent by the client, and
subscribe to the processing function. After receiving the instruction, analyze the
source of the instruction. If the instruction originates from the spatial positioning
of tomatoes, the processing steps are: first, use the tomato recognition algorithm
based on image feature fusion to identify all tomatoes in the right eye image space
of the binocular camera. If there are no tomatoes, return the results; if tomatoes

Figure 18.
Binocular acquisition node UML design.

Figure 19.
Image captured by monocular camera.

17

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

are detected, plan the picking order. The rule is from bottom to top, left to right,
and calculate the spatial position of the pick point, and finally return the result to
the client. If the object recognition result triggers the harvesting task, the image
collected by the monocular camera is used to extract the central image feature of
the tomato.

According to the above process, the design program UML is shown in Figure 21.

3.5.2 Eye-hand coordination module node

3.5.2.1 Eye-hand collaboration process design

Our solution uses an eye-in-hand vision servo solution to achieve eye-hand
coordination, as shown in Figure 22. The picking robot obtains the image informa-
tion of the target fruit through a monocular camera installed on the picking hand,

Figure 20.
Image processing node flow chart.

Figure 21.
Image processing node UML design.

Service Robotics

18

extracts the position information of the tomato features in the two-dimensional
image, and makes a difference from the expected position information. The dif-
ference is used as the input of the visual servo control algorithm and then calculate
the control output in real time, that is, the speed vector of the end effector, and
then integrate this speed vector with time to calculate the next point that needs
to reach the target position. Cycle back and forth to get a trajectory that gradually
approaches the target position. The eye-hand correspondence is converted into the
amount of motion of the joint, and the end of the robot arm moves accordingly to
approach the target. The implementation process is shown in Figure 23.

3.5.2.2 ViSP

ViSP [17] is an open source visual servo framework developed and main-
tained by the Lagadic team of the French National Institute of Information and
Automation. It has the characteristics of hardware independence, scalability, and
portability. In addition, ViSP also provides a complete library of basic functions,
which can be combined with a variety of visual feature libraries; it also provides a
simulation environment and interfaces with various hardware. Based on ViSP, we

Figure 22.
Visual servo program of eye-in-hand.

Figure 23.
Eye-hand coordination process.

19

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

can complete functions such as visual tracking, fiducial marking, two-dimensional
contour tracking, pose estimation, and so on. The goal of ViSP is to provide devel-
opers with a tool for rapid development of visual servo functions. The software
framework of ViSP is shown in Figure 24. The entire framework is divided into
three modules: one module provides vision models, vision servo control algorithms,
and robot controller interfaces; the second module provides image processing algo-
rithms, tracking algorithms and other machine vision algorithms; and the last mod-
ule is a visualization module that provides a simulation and visual environment. All
these features make ViSP very suitable for use as a core part of our module.

3.5.2.3 Eye-hand collaboration module node design

The complete flowchart of eye-hand coordination is shown in Figure 25. After
the node is initialized, the system initializes and starts the ‘/visual_servo’ actionlib
service and subscribes to execute() to wait for the client to be awakened. After
receiving the service request, start the visual servo loop. In the loop, program
request the feature position of the tomato image from the vision module and make
a difference from the expected position. If the difference exceeds the threshold Δs
(Δs=2mm), the program will obtain the camera parameters, initialize the control
model, and call the ViSP library function vpServo() to calculate the control output
speed vector. Then, program integrates the velocity vector with time (t = 1s),
motion module controls robot to move to the output position, and requests the
tomato image feature position from the vision module again, then makes a dif-
ference with the desired position, and loops back and forth until the target image
feature. The difference between the position and the desired image feature position
is less than the threshold Δs, the visual servo loop is ended, and our execution result
is returned.

Figure 26 shows the design of the eye-hand coordination node class. There are
mainly two classes. The VisualServoCycleNode class is responsible for the loop and
interaction with other modules. The VisualServoControlNode module is responsible
for controlling the operation of the algorithm.

Figure 24.
ViSP software architecture.

Service Robotics

20

3.5.3 Task planning module node

The task planning module mainly completes the design and implementation of a
layered concurrent state machine for one pick, as shown in Figure 27:

Figure 25.
Eye-hand collaboration node flow chart.

Figure 26.
Eye-hand coordination node class design UML diagram.

21

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

First we initialize the node, state machine, and user intermediate data, and then
add the transformation relationship between the states of each state machine accord-
ing to the state transition of the task design. Use the transition keyword to control
the transition from the current state to the secondary state. At the same time, since
each state is SimpleActionState, each state implements an actionlib client by default.
You need to add an initialization function and a callback function callback() for each

Figure 27.
Task planning node flow chart.

Figure 28.
FSM in SMACH_viewer.

Service Robotics

22

state. Start a state machine visualization service IntrospectionServer in the node, so
that we can view the state transition diagram in SMACH_viewer and can monitor the
state transition in real time. The data details of each state are shown in Figure 28.

3.5.4 System node diagram

Figure 29 shows that the running node diagram after all ROS nodes in the
system is turned on. The node diagram is generated using the rqt_graph com-
mand. Each rectangular box represents a topic. The oval box represents a node,
and the arrowed lines represent the subscription relationship between each other.
Visualization of the node diagram makes the system architecture intuitive.

Since most of the eye-hand coordination and motion control are concurrent, the
fluency of multitasks is verified under two plant factories and three greenhouses
with different fruit status and illumination variations. The experimental results
show that if total number of targets within the visual field is not more than three,
the average picking time is less than 35 s.

4. Conclusion

The contribution of this research mainly orients around the software engineer-
ing for manipulating the complex robot behavior. Although service robot leverages
ROS for rapid development, classical tasks such as eye-hand coordination and
continuous operation in an open scenario have not been systematically addressed. In
this chapter, we advocate that if the complex robot behavior can be structured, then
they can be modeled as Finite State Machines (FSM), and a “Sense Plan Act” (SPA)
process can be implemented with a formal software architecture. Meanwhile, we
demonstrate that ViSP and SMACH in ROS are beneficial frameworks for develop-
ing a dual-arm robot for autonomously harvesting the fruits in plant factory, which
embodies the complexity of multi-task planning and scheduling in natural scenes.
The experimental results show that the software engineering paradigm effectively
improves the system reliability and scalability of the dual-arm harvesting robot.

Figure 29.
System function node diagram.

23

Manipulating Complex Robot Behavior for Autonomous and Continuous Operations
DOI: http://dx.doi.org/10.5772/intechopen.92254

Author details

Chengliang Liu, Liang Gong* and Wei Zhang
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China

*Address all correspondence to: gongliang_mi@sjtu.edu.cn

Acknowledgements

This work was supported by the National Natural Science Foundation of China
(No. 51775333) and the Scientific Research Program of Shanghai Science and
Technology Commission (No. 18391901000).

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

24

Service Robotics

[1] Song J, Zhang T, Xu L, et al. Research
actuality and prospect of picking robot
for fruits and vegetables. Transactions
of the Chinese Society for Agricultural
Machinery. 2006;37:158-162

[2] Kondo N et al. Fruit harvesting
robots in Japan. Advances in Space
Research. 1996;18:181-184. DOI:
10.1016/0273-1177(95)00806-P

[3] Zhao Y, Wu C, Hu X, et al. Research
progress and problems of agricultural
robot. Transactions of the Chinese
Society of Agricultural Engineering.
2003;19:20-24

[4] Tanigaki K et al. Cherry-harvesting
robot. Computers and Electronics
in Agriculture. 2008;63:65-72. DOI:
10.1016/j.compag.2008.01.018

[5] Hemming J et al. A robot for
harvesting sweet-pepper in greenhouses.
In: Proceedings International Conference
of Agricultural Engineering. Zurich;
06-10 July 2014

[6] Taqi F et al. A cherry-tomato
harvesting robot. In: 18th International
Conference on Advanced Robotics
(ICAR); 10-12 July 2017. Hong Kong.
New York: IEEE; 2017. pp. 463-468

[7] Nagata M et al. Studies on automatic
sorting system for strawberry (part 3)
development of sorting system using
image processing. Journal of the Japanese
Society of Agricultural Machinery.
1997;59:43-48

[8] Zhaoxiang L, GANG L. Apple
maturity discrimination and positioning
system in an apple harvesting robot.
New Zealand Journal of Agricultural
Research. 2007;50:1103-1113. DOI:
10.1080/00288230709510392

[9] Guo F et al. Fruit detachment and
classification method for strawberry
harvesting robot. International
Journal of Advanced Robotic Systems.
2008;5(1):41-48. DOI: 10.5772/5662

[10] Wang X. Study on information
acquisition and path planning of
greenhouse tomato harvesting robot for
selective harvesting operations [thesis].
Zhenjiang: Jiangsu University; 2012

[11] Ling X, Zhao Y, Gong L, Liu C,
Wang T. Dual-arm cooperation and
implementing for robotic harvesting
tomato using binocular vision.
Robotics and Autonomous Systems.
2019;114(4):134-143

[12] Foote T. tf: The transform library.
In: IEEE Conference on Technologies for
Practical Robot Applications (TePRA);
22-23 April 2013. Woburn. New York:
IEEE; 2013. pp. 1-6

[13] Bohren J, Cousins S. The SMACH
high-level executive [ROS news]. IEEE
Robotics and Automation Magazine.
2010;17(4):18-20. DOI: 10.1109/
MRA.2010.938836

[14] Mcgann C et al. Model-Based,
Hierarchical Control of a Mobile
Manipulation Platform. Thessaloniki,
Greece: ICAPS Workshop Planning and
Plan Execution for Real-World Systems;
2009

[15] Meeussen W et al. Autonomous
door opening and plugging in with a
personal robot. In: IEEE International
Conference on Robotics and
Automation; 3-7 May 2010. Anchorage.
New York: IEEE; 2010. pp. 729-736

[16] Joseph H. Getting Started with
Smach [Internet]. 2018. Available from:
https://wiki.ros.org/smach/Tutorials/
Getting%20Started [Accessed: 21 March
2020]

[17] Marchand E et al. ViSP for visual
servoing: A generic software platform
with a wide class of robot control
skills. IEEE Robotics and Automation
Magazine. 2005;12(4):40-52. DOI:
10.1109/MRA.2005.1577023

References

