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Abstract

Single nucleotide polymorphisms (SNPs) are single base variations in DNA which give

genetic variation. However, SNPs can also be linked to the development of certain

diseases. Modified oligonucleotides used to probe biological changes and processes have

become an important focus of scientific research. Fluorescent tagging of DNA can be

used to sense SNPs in DNA targets through differences in emission intensity on the

formation of a duplex.

An anthracene-tagged DNA probe developed by Tucker et al. is able to discrim-

inate between a fully complementary DNA target sequence and one with a single base

difference. This thesis describes how SNP sensing with anthracene-tagged DNA has been

extended to SNPs in RNA targets and sequences associated with Alzheimer’s disease. A

novel method of quantitative SNP sensing of heterozygous SNP targets is also described.

Current SNP detection methods often involve converting RNA extracted from

cells into cDNA. In order to move towards detecting SNPs in biological samples, it

would be advantageous to target RNA directly. This work describes the experimental

and analysis steps involved in testing the anthracene-tagged DNA probes and their

target sequences in fixed and living cells in order to achieve in vitro SNP sensing. Further

investigation was carried out to target endogenous RNA expressed in cells using plasmids.

Cell delivery techniques were tested using fluorophore-tagged DNA which is ca-

pable of Förster resonance energy transfer (FRET) if the duplex is formed. Finally, a

new dual fluorophore DNA probe was designed for SNP sensing via FRET.
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Chapter 1

Introduction

1.1 Nucleic acids

1.1.1 DNA and RNA

Deoxyribonucleic acid (DNA) is a nucleic acid that contains all the instructions for the

make-up and functioning of all living organisms. DNA is a double helix formed of two

strands bound by hydrogen bonds (Figure 1.1). The two DNA strands consist of nu-

cleoside bases (Figure 1.2); the purines (adenine, guanine) and pyrimidines (cytosine,

thymine). There are specific base pairing rules: adenine and thymine bind together by

two hydrogen bonds; guanine and cytosine bind together by three hydrogen bonds (Fig-

ure 1.3). The nucleoside bases form bonds with deoxyribose sugars, which are held in

place by a carbon-oxygen-phosphorus (phosphodiester) repeating scaffold which forms a

polymer strand (Figure 1.4). The DNA double helix has a sugar-phosphate backbone,

hence the outer surface of DNA is negatively charged. [1] In the double helix the nucle-

obases are nearly perpendicular to the backbone since they stack on top of each other.

However, the stacked bases must twist, roll and slide in order to accommodate the helical

twist and stay in direct π-π van der Waals contact with neighbouring bases. There are

three main secondary structures for DNA double helices: A-DNA, B-DNA and Z-DNA
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(Figure 1.5). The differences are largely based upon variations in the sugar pucker and

helical twist. [2]

Figure 1.1: DNA oligonucleotide double helix.

Figure 1.2: Nucleotides that occur naturally in the DNA and RNA.
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Figure 1.3: Hydrogen bonding between base pairs.

Figure 1.4: Phosphodiester bonds forming the backbone of DNA. [2]
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Figure 1.5: Secondary structures of DNA duplexes. Image adapted from 3DNA,
http://x3dna.org

Ribonucleic acid (RNA) differs from DNA in three ways: RNA is mainly single-

stranded; contains uracil instead of thymine bases and features an extra 2�-hydroxyl

group. The presence of the 2�-hydroxyl group causes RNA helices to adopt the A-DNA

conformation. Base-pairing rules apply to RNA: adenine and uracil bind together by

two hydrogen bonds; guanine and cytosine bind together by three hydrogen bonds.

The stability of duplexes is RNA:RNA > RNA:DNA > DNA:DNA, although

stability is also sequence dependent. [3] DNA is generally more stable in comparison to

4



RNA, especially upon duplex formation, due to the presence of the 5-methyl group on

thymine.

Whilst DNA and RNA can be synthesised in a lab environment, nucleic acids

should also be considered in the natural setting of cells (Figure 1.6). Each cell nucleus

contains two copies of DNA, one originating from each parent. DNA sequences coding

for specific genes are transcribed in the cell nucleus to yield heterogeneous nuclear RNA.

Primary RNA transcripts are processed into mature RNA, which are then exported to

the cytoplasm. Ribosome-based protein synthesis takes place and the proteins are used

for the structure, function and regulation of the body’s tissues and organs. A ‘mistake’

in any part of this process or components can have serious consequences.

Figure 1.6: Schematic diagram of cell processes. Image adapted from National Human
Genome Research Institute.
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1.1.2 Modified nucleic acids

The fundamental structure of DNA can be modified in terms of the backbone, bases

and sugar. Modifications are usually purpose-driven, for example, to impart nuclease-

resistance or for electrochemistry.

Nucleotide modifications

Locked nucleic acids (LNA) are nucleotide analogs that contain an ethylene linkage

between the 2’ oxygen and the 4’ carbon of the ribose ring (Figure 1.7). They generate

the most stable hybrids measured with RNA (10 ◦C per modification. [4]) This may allow

LNA oligonucleotides to hybridise with complex RNA structures plus they possess high

nuclease resistance. [5]

Figure 1.7: Schematic representation of the sugar chemical structure adopted by DNA,
RNA and LNA monomer.

Nucleoside modifications

Saito and co-workers introduced base-discriminating fluorescent (BDF) nucleosides, de-

signed primarily for SNP analysis. [6] This is carried out by attaching a BDF to the

complementary section of the DNA proximal to the SNP site and measuring the subse-

quent modified output. Further fluorescent nucleoside analogs are described in a review

by Sinkeldam et al. [7]
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Nucleobase modifications

An example of a nucleobase analog is the 7-aminoquinazoline-2,4-(1H,3H )-dione which

is incorporated into a DNA oligonucleotide and senses mismatched pairing by display-

ing G-specific fluorescence enhancement. [8] This is particularly impressive since most

fluorophores are quenched in proximity to guanine residues. They suggest the key is

to introduce a heterocycle which is similar to native nucleobases and are capable of

Watson-Crick pairing. Further to that, a red-shifted absorption spectra relative to na-

tive nucleosides, permitting selective excitation, is highly desirable.

Sugar modification

2�OMe RNA has an extra methyl group on the 2� position compared to RNA. It is a

naturally occurring modification found in RNA which has increased binding affinity to

RNA target since the 2�OMe modified ribose sugars prefer to adopt a C3’-endo conforma-

tion. [9] 2�OMe RNA is popular for cell studies since it has increased nuclease stability.

They also bind well to regions of dsRNA, and therefore may have the ability to effi-

ciently hybridise to folded RNA in living cells. [10] There are studies into the potential

therapeutic benefits of 2�-O-alkyl oligoribonucleotides. [11]

Popular modifications, such as streptavidin, are to prevent probes migrating to

the nucleus and to help uptake by cells. [10] The most common modification to oligonu-

cleotides is the addition of fluorophores. Fluorescence is a powerful tool that can allow

oligonucleotides to be tracked and interactions be monitored. [12–14] Oligonucleotides

with a covalently bound fluorophore inserted within its sequence can exhibit different

fluorescence properties depending on whether the DNA is single stranded, duplexed to a

matching or mismatching sequence. [6–8, 15, 16] For example, thiazole orange (TO) is a

popular choice of fluorophore modification for oligonucleotides. [17–20] TO is popular for

two reasons; first it fluoresces only upon hybridisation (intercalates between base pairs),

and second, unlike many other fluorophores, its fluorescence is not greatly quenched by
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nearby guanine bases.

Fluorophores do not have to be covalently attached to the nucleic acid backbone

to enable sensing with oligonucleotide-based probes. Alternative binding modes include

intercalation, groove-binding, end-stacking or electrostatic interactions. In most cases,

the fluorophores are non-emissive unless bound to DNA. Common examples include

ethidium bromide, SYBR Green I and DAPI. [21]

Förster resonance energy transfer (FRET) is the nonradiative transfer of excita-

tion energy between distinct chromophores, typically referred to as donors and accep-

tors. [22] This results in either an increase in fluorescence intensity or quenching, which

is the loss of fluorescence intensity. There are many literature examples of FRET and

quenching being utilised in nucleic acid studies. [23–28] Chapter 4 describes FRET in

further detail.

Backbone modification

Xeno nucleic acid (XNA) is the general term for synthetic alternatives to DNA or

RNA. [29, 30] Peptide nucleic acids (PNA) have peptide rather than sugar-phosphate

backbones (Figure 1.8). Therefore, unlike DNA, PNA have a neutral-charged backbone.

PNA are good candidates for targeting RNA in living cells because they have been shown

to form extremely stable hybrids with complementary DNA as well as RNA. However,

PNA is a rigid molecule and therefore expected to have poor access to highly folded

RNA structures, precluding hybridisation to complementary structures. [31] Seitz et al.

has utilised PNA probes for sensing with huge effect, in/out of cells and with DNA/RNA

targets (further discussed in Section 1.5).
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Figure 1.8: Comparison between PNA and DNA backbones. Image adapted from [32]
and [33].

FcNA is a new metal-based DNA where the sugar-phosphate-sugar unit is re-

placed with a synthetic ferrocene nucleic acid mimic (Figure 1.9).

Figure 1.9: The structure of (a) DNA (b) a form of FcNA, (Fc-TT)8, where T represents
the nucleobase thymine. [34]

The redox properties of ferrocene can provide useful electrochemical behaviour
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for probing binding mechanisms of various biologically relevant analytes such as pro-

teins, DNA, RNA and metals. Additionally the binding strength can be controlled by

manipulating the redox state of these metallocene nucleic acid motifs. [34, 35] A further

review of biorganometallic nucleic acid chemistry can be found. [36]

1.2 Oligonucleotide Synthesis and Characterisation

Chemists have been able to develop oligonucleotide synthesis in order to produce high

yields of pure DNA in the lab. An oligonucleotide is a short single-stranded chain

consisting of a number of nucleoside units linked together by phosphodiester bridges.

Generally, in oligonucleotide synthesis, phosphodiesters are formed between a 3�-hydroxyl

group bearing a phosphate derivative and a 5�-hydroxyl group of another nucleoside. [2]

Phosphoramidite oligonucleotide synthesis has inherently high coupling efficiency and

stable starting materials. Synthesis always begins on the 3� and usually on a solid

support. RNA and modified oligonucleotide synthesis have added complications and

often require more protecting groups to prevent side-reactions. Further details can be

found in Chapter 2.

Oligonucleotides are commonly characterised by HPLC and mass spectrometry.

High performance liquid chromatography (HPLC) purifies oligonucleotides by separating

a mixture using a buffer gradient on a column. Mass spectrometry measures the mass-

to-charge ratio of a sample in order to determine the content. An alternative method

of purification is gel electrophoresis, which separates DNA, RNA and proteins based on

size and charge.

Gel electrophoresis can also be used as a method of studying interactions since

it can distinguish between double-stranded and single-stranded oligonucleotides (native

gel). Alternatively, secondary structure can be lost and constituents be analysed (dena-

turing gel). The latter is useful for analysing digested samples.
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Oligonucleotides have a strong absorption spectra and concentration can be cal-

culated from it. UV-vis melting studies involve monitoring absorption over a range of

temperatures (several ramps). The transition between double and single stranded DNA

can be observed since the absorption of single stranded DNA is greater (Figure 1.10).

The point where 50% of DNA is single and double stranded is known as the melting

temperature (TM ). Melting temperatures allow the stability of oligonucleotides to be

quantified.

Figure 1.10: UV-vis melting study of a duplex structure transitioning to single strands.
The black line represents the point where the absorption is 0.5 i.e. 50% of the DNA is
single-stranded and 50% is double-stranded. This absorption is defined as the melting
temperature (TM ).

Fluorophore-tagged oligonucleotides can be tested using steady-state fluorescence

spectroscopy. This means that upon excitation of a chromophore (typically at its ab-

sorption maximum) with a light source providing a constant photon flow, an emission

spectrum is recorded, revealing the energy maximum and intensity of emission. [7] The

quantum yields of the tagged oligonucleotide can also be measured. The quantum yield

of a radiation-induced process is the number of times a specific event occurs per photon

absorbed by the system. The event in this case is fluorescence. It can also be described
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as the emission efficiency of a fluorophore. Although steady-state measurements are use-

ful in detecting changes in fluorescence intensity, their spectra give an average emission

profile of all excited fluorophores present in the sample. Therefore, this technique cannot

distinguish between individual fluorophores found in a heterogenous population, such as

those associated with different conformational states. Time-resolved measurements give

excited state lifetimes and insight into decay pathways of excited chromophores. Like

steady-state, time-resolved fluorescence spectroscopy also gives an averaged profile of the

excited chromophores in a sample. With deconvolution, however, it is possible to resolve

more than one decay pathway, each of which represents an average across a population.

Section 7.5 discusses time-resolved measurements in the context of fluorophore-tagged

oligonucleotides. Other fluorescent measurement techniques exist such as fluorescence

anisotropy and microscopy. [7]

The structure of oligonucleotides can be studied using circular dichroism (CD).

Optically active matter absorbs left and right hand circular polarised light slightly dif-

ferent. Right circular polarised light absorption is subtracted from left circular polarised

light absorption as a function of wavelength. Therefore the overall signal can be positive

or negative. The CD signal of DNA is not a sum of the CD spectra of the bases, but

is influenced by the 3D structure of the DNA. The benefits of CD that it requires very

little sample; non-destructive; and effects such as pH, denaturants, temperature on the

structure can be monitored. The drawbacks include solvent absorption interference in

the UV region and few buffers are non-absorbing below 200 nm. [37]

Additional techniques to study oligonucleotides include modelling, nuclear mag-

netic resonance (NMR) and electrochemistry.
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1.3 Single Nucleotide Polymorphisms (SNPs)

Figure 1.11: Schematic example of SNPs in DNA.The majority of SNPs in humans are
bi-allelic, which means for one base pair there could be two combinations. One or more
of these combinations can be associated with the development of a disease.

Each cell contains two copies of DNA called alleles; one from each parent. In some

regions, or for particular bases, the two alleles can be the same or different (Figure 1.11).

This is referred to as homozygous or heterozygous respectively. The allelic contribution

varies, which has an impact on human development and characteristics. For two people,

>99% of their DNA sequence is the same, with variations occurring every 1000 bases in

at least 1% of the population. [38] Single nucleotide polymorphisms (SNPs) are natural

variations of a single base within the genome and are chiefly responsible for genetic

diversity across the population. [39–41] SNPs are wide-ranging, and stable which makes

them exploitable for use in DNA research. [42] Although SNPs are beneficial in terms of

gene variation they are linked to diseases that have a genetic component (e.g. cancer [43,

44] and Alzheimer’s disease [45, 46]). SNPs are not thought to cause disease directly

but increase the likelihood of a person developing the disease. [47] For example, there

are three versions of a gene (allele) that codes for a protein associated with Alzheimer’s
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disease development; the two with SNPs increase the likelihood of the disease developing.

Therefore, it is of great interest to identify SNPs since they are molecular markers for

genetic diseases. [48] The majority of SNPs in humans are bi-allelic, which means for one

base pair there could be two combinations. The purines can either switch to the other

purine, and the same for pyrimidines. This is called transition. The alternative is a

purine switching to a pyrimidine and vice versa. This is called transversion. Two thirds

of human SNPs are of the transition variety, even though there is more opportunity for

a transversion to occur. [41]

In addition, there are insertion and deletion polymorphisms which cause a great

deal of genetic diversity. [49, 50] Base modifications, known as epigenetic changes, are

also commonly found in the genome. [51] Cytosine methylation at the 5 position is

a common epigenetic modification, but if misregulated can result in hyper- and hy-

pomethylated sites, which are associated with cancer development. [44] The newly de-

tected 5-hydroxymethylcytosine is also causing interest in genetic studies. [52] A final

example of a mutation is the conversion of guanine to 7,8-dihydro-8-oxoguanine (8-

oxoG). This causes DNA polymerase into base-pairing adenosine with 8-oxoG instead

of its expected cytosine base, since 8-oxoG mimics thymine. The subsequent guanine

to thymine transversion mutation can increase susceptibility to diseases and ageing, but

also as a biomarker for oxidative stress. [51]

1.3.1 Current SNP detection assays

Whole genome sequencing seems to be the answer to all SNP detection problems. Unfor-

tunately, this technology is currently too expensive and time-consuming for the average

patient. Therefore it has become important to develop a method that can detect SNPs

without requiring sequencing of the entire genome.

Rapid methods for detecting single nucleotide polymorphisms (SNPs) are of im-

portance to allow high throughput screening for genetic diseases. [40, 53] There is a high
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level of interest in developing convenient methods for detecting and quantifying a specific

sequence of DNA, in particular SNPs.

Engle et al. summarises common commercial techniques for detecting SNPs in

the genome. [54] Interest lies particularly in fluorescence-based detection methods. [38]

Fluorescence is a proven sensitive technique which is an effective reporter even at low

concentrations (< µM). It requires relatively simple equipment and many fluorescent

systems have been successfully commercialised. A selection of the most common SNP

detection techniques currently available shall now be described.

HyBeacon probes

When the HyBeacon probe hybridises to its complementary target there is a measurable

elevation in probe fluorescence emission (Figure 1.12). SNP sequences may be discrim-

inated by measuring the melting temperatures (TM ) of various probe/target duplexes

and exploiting the differences in TM that exist between different duplexes. The signal

is also allelic discriminatory since homozygous samples generate single melt peaks and

heterozygous samples generate multiple peaks. The disadvantages of this system are

that it requires heating and therefore could not be carried out in vitro. [55]
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Figure 1.12: Schematic of HyBeacon probes and target detection. HyBeacons consist of
oligonucleotide sequences with fluorophore moieties (F) attached to internal nucleotides
and 3�-end blockers to prevent PCR extension. The fluorescence emission is greater on
formation of duplexes, compared to single-stranded probes, allowing detection of target
sequences. [55]

Binary probes

Binary probes consist of two oligonucleotides which must bind adjacent to one another

on the target so that FRET can occur between the fluorophores attached to them re-

spectively (Figure 1.13). [56, 57] By having two oligonucleotides which require binding in

order to produce a fluorescent signal, this increases the sensitivity and specificity of the

system. However, the hybridisation kinetics can be a lot slower. Sandwich probes have a

similar concept to binary probes. Two quencher displacement reactions must take place

on two probes, in order to allow the fluorophore in the centre probe to fluoresce. [58]
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Figure 1.13: Schematic of binary probes target detection.

Molecular beacons

Molecular beacons (MB) are a popular choice for DNA and RNA detection. [59–62]

They consist of an oligonucleotide which forms a stem loop with a fluorophore and

quencher at either end of the strand (Figure 1.14). When MB’s are in single stranded

conformation, the fluorophore and quencher are in close proximity and the fluorescence

signal is quenched. When in a duplex, the fluorophore and quencher are separated and

fluorescence emission increases. MB’s rely entirely on the thermodynamics of binding

and are therefore not ideal for detecting minor changes in the DNA sequence such as

SNPs. [63]
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Figure 1.14: Schematic of molecular beacon probe target detection. The fluorescence is
quenched until the MB opens to hybridise to its target. [59]

Polymerase Chain Reaction (PCR)

Before DNA detection takes place, there must be enough DNA for analysis. An impor-

tant method in the field is polymerase chain reaction (PCR) which amplifies the specific

region of DNA or RNA under investigation. Figure 1.15 gives the general cycle of PCR,

which involves denaturing the DNA; annealing short strands of DNA called primers

to each strand; heating the system to extend the primer along the template DNA us-

ing deoxynucleotides (dNTPs) and DNA polymerase to produce double-stranded DNA,

and then the process repeats resulting in an exponential increase in product. This can

also be carried out in real-time and quantitatively (RT-qPCR) using fluorophore-tagged

primers. [64] PCR-based techniques are limited by the fidelity of reverse transcription.

Although sensitive, PCR is time and labour intensive, and often error prone (1.3 x 10−4

- 3 x 10−6 error rate (errors/base)). [65, and references therein] A further requirement is

that the original DNA/RNA is extracted and amplified outside of the cell. New develop-

ments with padlock probes and rolling circle amplification (RCA) have been described

as PCR within the cell.
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Figure 1.15: Schematic of the polymerase chain reaction. [66]

TaqMan probes

TaqMan R� (Applied Biosystems) is a relatively cheap PCR based technique. Although

used to monitor PCR in real time, TaqMan can be adapted for the analysis of poly-

morphisms. [67, 68] The TaqMan probe consists of an oligonucleotide, complementary

to the sequence of interest, located directly over the SNP. A fluorophore is covalently

attached to the 5� and a quencher at the 3�. When the probe is intact, the proximity of

the quencher to the fluorophore reduces the fluorescence signal observed. During PCR,

as the forward primer extends, the target specific probe is degraded by the 5�-3� exonu-

clease activity of the DNA Taq polymerase, releasing the fluorescence of the fluorophore.

With each round of amplification, there is an exponential increase in the fluorescence

intensity related to the accumulation of PCR product. Genotypes can be determined

according to the ratio of fluorescence attributable to each fluorophore on allele-specific

oligonucleotide probes, compared to controls. The TaqMan probe only binds when it is

a fully matching system, and is temperature dependent. The disadvantages of TaqMan

assays are that they are only suitable for genotyping one polymorphism at a time since

there is a limit to the number of fluorophore probes that can be read at once. PCR

clearly plays an important role in the TaqMan assay, however PCR in itself is error

prone. [65]
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Figure 1.16: Schematic of TaqMan probe mechanism. [67]

Fluorescence in situ hybridisation (FISH)

Fluorescent in situ hybridisation (FISH) uses fluorophore-tagged oligonucleotides to de-

tect and bind to specific DNA (chromosomes) and mRNA targets in individual cells

with high resolution. [69, 70] They are used in a variety of applications, such as gene

expression analysis. Novel probe designs, such as ECHO probes, are often tested in

cells using FISH-based techniques. [71] FISH is not ideal for SNP sensing since a single

base difference is not enough to disfavour an incorrect FISH probe from binding. [72]

The reliance on a high degree of complementarity causes strictly controlled conditions

to be implemented such as elevated temperature windows (Figure 1.17). Conventional

FISH protocols are cumbersome, time-consuming and not suitable for live cells, although

improvements are being made.
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Figure 1.17: Schematic of FISH: (a) DNA probe and target are required; (b) the DNA
probe is labelled before hybridisation; (c) the labelled DNA probe and the target DNA
are denatured (will require fixation of cell or tissue first); (d) the denatured probe finds
the target and anneals if they are complementary DNA sequences, the remaining un-
bound probe shall be washed away. Adapted from reference [73].

1.3.2 Future of SNP detection

Most sensing methods rely entirely on the thermodynamics of binding and are therefore

not necessarily capable of detecting minor changes in the DNA sequence such as SNPs

at room temperature. [63] The majority of the techniques described above rely on hy-

bridisation alone and require strict temperature windows. Therefore, this restricts the

temperatures at which sensing can be carried out, and hence limits applicability to live

cell studies.

Current transcript analysis often involves reverse transcription of mRNA to cDNA.

Alternatively, genetic screening involves extracting DNA from a patient. Fluorescent

techniques, such as the examples described above, are then used in both scenarios.

The majority of probes only differentiate between wildtype and variant, and

provide no information on the variant identity. For example, TaqMan probes simply

distinguish homozygous from heterozygous DNA and are not set up for quantitative
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analysis. Allelic ratios can be determined by other techniques, but like so many tech-

niques described in this Introduction, they are not routine, quick or cheap.

Overall the current methods are lacking sensitivity and capability to do allelic

discrimination. There are several improvements required for current SNP detection

technologies:

- SNP sensing could be carried out using DNA samples (e.g. saliva) to save pa-

tients having to undergo a tissue extraction. Most current SNP detection assays are

carried out at elevated temperatures which cannot be easily applied to a biological en-

vironment. A method which can be used at room temperature and cell temperatures is

required.

- Fluorescence sensing has been utilised for in vitro detection of DNA and RNA

sequences, however, a single probe capable of discriminating between single DNA or

RNA bases in a cellular environment, has not been presented.

- Identifying SNPs within mRNA transcripts gives an idea of the role of gene

expression in disease development. It requires a more accurate analysis of SNPs than

those carried out for genomic DNA. For example, in the analysis of a SNP locus within

a heterozygous nucleic acid sample, at the DNA level this is 50-50 by definition, but

at the RNA level, this can vary from 0-100%, depending on the amount of mRNA

transcribed from each allele; such a variation may be crucial to understanding and

curing a particular condition. Further to that, mRNA targets within the cell are more

accessible and significantly more abundant than DNA targets.

- Fluorescent probes should ideally associate fluorescence enhancement with pos-

itive identification of a mismatch, rather than quenching. [8] Therefore, “switch on” or

ratiometric (described later) are the most desirable sensing systems. [21]

- Finally, SNPs could be detected using a single probe which indicates and quan-

tifies base variations by fluorescence differences. The probe has the ability to detect a

single base difference in a complementary strand of DNA and does not rely on differences
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in thermal hybridisation efficiency. SNP sensing which can determine base differences

and also has capabilities to discriminate between alleles has been demonstrated by the

Tucker group. This work shall now be described.

1.4 Anthracene

1.4.1 Anthracene and DNA

Anthracene is a polycyclic aromatic hydrocarbon (Figure 1.18). Anthracene derivatives

are well-known as intercalators and good fluorescent indicators. [74]

Figure 1.18: Anthracene molecule

Anthracene is a simple, versatile, and useful fluorophore used for tagging oligonu-

cleotides because it has well characterised properties such as its ability to form excimers

and undergo [4π+4π] photocycloaddition. [75–77] The main disadvantage of anthracene

is its excitation/emission spectra overlaps with the autofluorescence caused by amino

acids such as tryptophan in biological samples. [78] This means light absorption and emis-

sion at wavelengths that can interfere with the anthracene fluorescence signal. However,

there are microscopy and image analysis techniques to help overcome these problems,

which shall be discussed later.

Anthracene has been previously used as a sugar modification in oligonucleotides

with the addition of 2�-anthracene-modified uridine. [79] The modified oligonucleotides

bind to both DNA and RNA targets, proven by UV-vis melting studies. In fact, the an-
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thracene stabilised the duplex compared to an unmodified duplex control. This strongly

suggests that the anthracene intercalates in between base pairs in the DNA causing sta-

bility. Interestingly, a similar effect was not observed with RNA targets, although RNA

targets give a higher fluorescence emission response than equivalent DNA targets.

The main advantage of using anthracene as a fluorophore tag is because it is rel-

atively easy to fix anthracene to a specific position in the DNA. The simplest method is

to incorporate the anthracene monomer into the oligonucleotide backbone. [80] Incorpo-

ration of anthracene monomer was first carried out using a serinol linker. [81] However,

prochiral serinol caused a mixture of diastereomeric oligonucleotides to be produced.

Although these isomers could be separated, the linker stereochemistry was difficult to

assign with complete certainty. Subsequently a threoninol linker has been used for

anthracene incorporation. Threoninol has been used for other functionalised oligonu-

cleotide studies, and as an enantiopure starting material, removes the problem of gener-

ating diastereomers. [80, 82, 83] Molecules attached to the threoninol can be incorporated

at any position into oligonucleotides as base surrogates. This allows intercalation of the

molecule between base pairs upon hybridisation to an unmodified oligonucleotide. [84]

The advantages of anthracene-derived monomers in DNA synthesis are solubility

in organic solvent and incorporation into oligonucleotides on the synthesiser with high

yields. Once incorporated into DNA the anthracene emission signal is centred on 426

nm upon excitation at 350 nm (Figure 1.19). The Stokes shift is therefore 76 nm which

is big enough to observe a difference between the excitation and emission, but not too

big that there is an energy loss.
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Figure 1.19: Anthracene incorporated into DNA excitation (dashed line) and emission
spectra (solid line). λem = 426 nm and λex = 350 nm, respectively.

Pyrene has also been used which is second to anthracene in simplicity, although

it is a slightly bigger molecule (Figure 1.20). [6, 85]

Figure 1.20: Pyrene molecule

Saito et al. is the pioneer of nucleoside fluorophores, first developing a pyrene-

labelled 7-deaza-2�-deoxyadenosine (PyA). [85] An oligonucleotide containing PyA gives

fluorescence quenching upon duplex formation which can be measured to discriminate

a thymine base on the target DNA. All other base mismatches opposite PyA cause

an increase in fluorescence emission. The decreased fluorescence emission is due to
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the pyrene chromophore intercalating into the duplex, which was verified via modelling

studies and melting temperature measurements.

The insertion of two pyrene moieties into oligonucleotides was used to detect

deletion polymorphisms. [82] When the wild type oligonucelotide is hybridised, both

pyrene moieties intercalate and thus interaction between the two pyrenes is suppressed

by the intervening base-pair. Therefore, there is only monomer emission. For a deletion

mutant that lacks one nucleotide, a three-base bulge (including two pyrene moieties) will

be formed. In this case, two pyrene moieties should be close enough to exhibit excimer

emission (Figure 1.21).

Figure 1.21: Two pyrenes are able to discriminate between a deletion polymorphism. [82]

1.4.2 SNP sensing using anthracene

Given the properties of anthracene, a DNA probe with anthracene as a fluorescent tag

has been a focus of research for Tucker et al.. [81, 86] An alternative method is adopted,

compared to the H-bonding nucleoside derivatives described in Section 1.1.2, through

the use of an anucleoside linker group which can provide more versatility and synthetic

accessibility for the sensing of different SNPs.

The anthracene monomer is prepared from anthrone, according to standard pro-

cedures. [86, 87] The two anthracene monomers, l and d, are stereoisomers caused by

the threoninol unit (Figure 1.22).
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Figure 1.22: Anthracene steroisomer monomers

The anthracene monomer can be incorporated into oligonucleotides (details given

in Chapter 2). Once DNA anthracene probes are synthesised they can be used to sense

SNPs in DNA target sequences. There are two SNP sensing strategies, which shall be

fully explained in Chapter 3. The general SNP sensing idea is given in Figure 1.23. The

DNA anthracene probe can detect SNPs when a duplex is formed by distinct fluorescence

emission profiles.

Figure 1.23: Anthracene SNP sensing

Further to SNPs the DNA anthracene probes are also able to detect epigenetic

changes such as methylated cytosine bases opposite the anthracene tag in comparison

to a cytosine base. [86]
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The DNA anthracene probes have minimal hybridisation efficiency requirements,

depending only on duplex formation. It is crucially different to other hybridisation-based

probes in two ways: 1) analysis is based on the strength of the signal generated upon

duplex formation not on how well the duplex forms to give a signal. This means the

assay can be done at room temperature and obviates the need to use narrow temperature

windows to ensure only one transcript binds. 2) There is no need to generate multiple

expensive fluorescent tagged DNA strands for the sensing process. By varying the linker

length between anthracene and the phosphodiester, different sensing capabilities between

the same target sequences are realised. [86] It has been shown to be biologically compat-

ible and applicable, since it has been shown to probe sequences with SNPs associated

with prostate cancer. [88]

It should be emphasised that the system is universal and can be tailored to target

SNPs. This has been unavailable to date and has great clinical and commercial potential.

In comparison to other commercial solutions, the DNA anthracene probe is sensitive at

low levels, no need for excessive amounts of DNA target, and doesn’t require the use of

tightly controlled thermodynamic conditions.

Aside from DNA anthracene probes there are other base discriminating fluo-

rophore oligonucleotide probes being used for SNP sensing described in the literature.

Notable advances include work by Seitz et al. on thiazole orange (TO) probes. Having

previously focussed on PNA based probes [89] the group have switched to DNA FIT

(forced intercalation) probes as they move towards cellular work. [90] TO provides an

emissive long wavelength fluorescence which is well suited to cell work because it does

not interfere with autofluorescence. However, the DNA TO probe (unlike the PNA TO

probe) can only detect if a target sequence is present or not and therefore is not suitable

for discriminating SNPs. Similar in terms of intercalation are the linear DNA probes

designed by Asanuma et al. [84] Multiple perylene molecules are incorporated into the

DNA backbone using d-threoninol, which quench each other in the single strand form,
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but intercalate and are highly emissive upon rapid hybridisation. The probes have been

further optimised for cell work and nuclease stability with 2�OMe RNA nucleotides and

anthraquinone quencher. Based upon the high signal to noise ratio, the authors claim

“this may be the most sensitive linear probe ever reported”. [91]

1.5 RNA SNP sensing

SNP genotyping in DNA is becoming easier with next-generation technologies becoming

more common. However, establishing SNP identity at the RNA level is crucial since this

allows the functional consequences of gene expression to be probed. For example, for

a particular heterozygous (i.e. 50/50) SNP locus in a DNA sequence associated with a

particular disease, it is the allelic ratio within the resulting mRNA transcripts that can

determine the phenotypic expression of the disease. [92]

At present, RNA sensing is carried out indirectly using reverse transcription of

the extracted RNA from cells to form cDNA. This is because RNA is inherently unstable

and degrades quickly outside of the cell. [93]

Seitz et al. have used FIT-PNA probes to target RNA in a cuvette environ-

ment, in preparation for targeting mRNA in live influenza infected cells. [94] The thi-

azole orange (TO) PNA probe gives 11-fold emission on binding to a complementary

RNA target. This is specific since emission does not change on binding to a ‘semi-

complementary’ strand however their system is not capable of SNP detection. A dual

fluorophore PNA FIT probe was next developed, which is used to target both DNA and

RNA in a cuvette. [95]

Dahan et al. tested both synthetic and extracted endogenous RNA in a spec-

trometer. Binary FRET probes were used (see Section 1.3.1), which were composed

of both 2�OMe RNA and LNA residues with phosphorothioate internucleotide linkage.

Several probes were designed to discriminate SNPs based on hybridisation. They were
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later used in live cell studies. [96]

1.6 Nucleic acid sensing in cells

Detecting a single base difference in nucleic acids is difficult enough within a cuvette

environment. The added complexity of a cellular environment introduces a whole new

level of challenges, but is worth attempting. Targeting DNA/RNA directly in the cell

avoids extraction and reverse transcription/amplification which are time-consuming and

often include inaccurate additional steps. Localisation and time-lapse information of

cellular processes such as RNA interference can be gained from in vitro studies.

The majority of cell studies are in fixed cells, not live cells. There are many

examples of probes targeting DNA/RNA in the cell; a selection of examples shall be

described. Oligonucleotide probe design and delivery are also important considerations

that shall be discussed.

1.6.1 Targeting DNA in cells

Targeting DNA directly in the cell is ambitious since there are only two copies and they

are relatively inaccessible in the nucleus. Fluorescence in situ hybridisation (FISH),

previously introduced, is commonly used in detection and localisation of DNA in situ. [69,

97]

’Not enough target’ is a common issue in sensing targets in cells and tissue. This

can be solved by amplifying the signal compared to background. One of the most exciting

solutions in the literature, initially developed by Nilsson et al., is being deemed as PCR in

the cell. The primary development was padlock probes, which are highly selective probes

that are converted into circular molecules only when the probes are able to match and

hybridise to a target sequence. [98] Rolling circle amplification (RCA) was conceived from

the idea of padlock probes being used to amplify target DNA (Figure 1.24). [99, 100] RCA
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can replicate circularised oligonucleotide probes using DNA polymerase and a single

primer in order to generate a linear DNA molecule of up to 1000 copies of tandemly

linked copies. Padlock probes and RCA have been added to a cellular environment so

that DNA target can be amplified inside the cell. [101]

Figure 1.24: Schematic of padlock probe and RCA sensing on a microchannel glass
surface. (A) Padlock probe introduced and hybridises to an immobilised primer DNA;
(B) target DNA introduced and hybridises to the padlock probe; (C) ligation of the
padlock probe; (D) RCA using polymerase; (E) fluorescent labelling by hybridisation of
fluorescently labelled DNA. [102]
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1.6.2 Targeting RNA in cells

Targeting RNA in cells is preferable to DNA since RNA is more abundant and accessible

in the cytoplasm. [103, 104] However, RNA does tend to have a high level of secondary

structure, and is often shrouded by proteins and enzymes. RNA also has a short lifetime

due to degradation, which is a natural cell process since more RNA is transcribed than

is ever accumulated. [93]

FISH can be used to target RNA in the cell. Detection of mRNA in vitro re-

quires either probes labelled with multiple fluorophores or multiple probes with single

fluorophores. [59, 70, 103]

There are many examples of oligonucleotide probes being used to probe RNA in

the cell. [105–107]. Thiazole orange (TO) PNA probes, previously mentioned, have been

used to target mRNA in live influenza infected cells. [94] Prior to cell work, the FIT-PNA

probes were thoroughly tested for stability at elevated temperatures in cell lysates and

in the presence of calf thymus DNA. The dual fluorophore PNA FIT probe has also been

used to target RNA in cells. [95] Simultaneous multicolour detection of multiple targets

is achieved by using more than one fluorophore probe (with distinguishable emission

wavelengths). PNA FIT probes were used for dual imaging of two viral mRNA targets

in live cells. [108] Simply, two different fluorescent probes were used to target two different

mRNA targets. This work does not provide any real advances aside from extra spatial

and temporal information. Crucially, the difficulty of delivering PNA probes into cells

is acknowledged.

Kubota et al. studied the targeting of intracellular RNA using doubly-labelled

TO nucleosides and probes (ECHO probes) respectively. [18, 109] The doubly-labelled

nucleoside causes a quenched fluorescence in the single-strand DNA probe, but upon

hybridisation to RNA target (including endogenous RNA in cells) causes a high level of

fluorescence emission. ECHO probes are capable of single mismatch detection, however

complex structural demands have often caused probe malfunctions in detecting endoge-
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nous RNA. The progression to cell work was always at the forefront since earlier work

switched the backbone to 2�OMe in order to increase tolerance of nucleases.

RNA sensing in cells often takes inspiration from siRNA knockdown and anti-

sense therapeutics. [110] RNA interference (RNAi) is a natural response within living

(eukaryotic) cells to double-stranded RNA which leads to control over how active genes

are. Small interfering RNA (siRNA), short double-stranded RNA, is known to trigger

gene silencing by interacting with and degrading mRNA. This can prevent translation

of potentially damaging proteins. Järve et al. tagged opposing strands of siRNA with

fluorophores capable of FRET in order to monitor siRNA degradation upon entry to and

within cells. [111] It was found to be a non-invasive monitoring technique and compatible

with RNAi.

There have been further advances for RCA and padlock probes. mRNA has now

been used as the target, although the first step in the protocol is the conversion of

mRNA to cDNA (complementary DNA). [112] RCA in vitro localises target molecules

and amplifies the mRNA in the cell for further probing. The padlock probe/RCA method

has the potential to distinguish between SNPs. [113] As with other probes the mismatch

is distinguished through a lack of binding/ligation of the padlock probe to the target.

1.6.3 Live cell work

Live cell DNA and RNA targeting is becoming increasingly popular. [18, 71, 114, 115]

Live cell work allows the understanding of complex dynamic cellular processes, for exam-

ple, detect and track specific endogenous RNAs in a living cell. Live cell work has more

logistical problems than fixed cell work. However, fixed cell work has some disadvan-

tages which have not yet been discussed. Fixed cells provide static rather than dynamic

views on oligonucleotide localisation. Cell fixation procedures may cause redistributions

or loss of target nucleic acid sequences. Fixation artifacts may interfere with in situ

hybridisation and/or analysis. [31]
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Fluorescence methods are popular in order to detect and track DNA and RNA in

living cells. [31] The challenge for fluorescent nucleic acid probes is the unbound probe

which cannot be easily washed away and causes background fluorescence. [109] FISH

in live cells is able to detect specific endogenous RNA species in living cells. [116, 117]

This works well in theory since RNA is mainly in a single-stranded state. DNA is more

difficult since it is double-stranded and requires denaturation (not compatible with live

cell studies). A more intrusive method to visualise DNA/RNA in living cells is by

incorporating fluorescent nucleotides using the cell’s own replication or transcription

machinery [118], or through binding of DNA or RNA-associating fluorescent dyes. [119]

This results in an overall labelling of cellular DNA or RNA in vitro, but does not allow

for the detection of defined DNA sequences or specific RNA molecules.

The live cell environment is very different to the cuvette and fixed cell. The

oligonucleotide probe design and delivery is crucial and shall now be discussed.

1.6.4 Delivery of oligonucleotide probes

The cellular plasma membrane is quite lipophilic and restricts the transport of various

molecules. Nucleic acid probes, as hydrophilic molecules, cannot freely traverse the

plasma membrane. [120] Therefore, nucleic acid probes require extra help in order to

be internalised to the cell intact. Several delivery methods such as microinjection and

electroporation are discussed in Chapter 4.

Migration to the nucleus is often an issue (especially if you are targeting RNA

in the cytoplasm). At minimum, the resident time of the probe in the cytoplasm needs

to be increased. One popular technique is binding biotin and streptavidin to probes to

prevent passage through nuclear pores. [57, 121]

Once the probe is inside the cell and intact, the next hurdle is to locate its target

and bind with it. As already mentioned, targeting DNA is difficult since it is in the

nucleus and is double-stranded. If RNA is to be probed, then the target gene should
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be chosen carefully. The target should be transcribed and present in the cell cytoplasm,

ready for probing. Initial steps such as using plasmids to over-express the target can be

used to ensure the probing is successful. This can be carried out using lentivirus, which

means the target RNA is present in next generation cells. [70, 122] An accessible mRNA

target should ideally be chosen (RNAfold Webserver) e.g. a loop rather than a stem.

Binding is also dependent on RNA secondary structure and proteins which bind along

its structure.

1.6.5 Probe design for cell work

The design of the oligonucleotide probe can help to alleviate the delivery issues described

above. Delivery and targeting have already been discussed but there are two remaining

important requirements for probes in cells: stability and detectability.

Oligonucleotide probes are at risk of digestion upon delivery and once within the

cell. This is the cell’s defence to attack foreign material using enzymes and nucleases.

Modified DNA, as discussed in Section 1.1.2, such as PNA, 2�OMe RNA and LNA, are

highly resistant to enzyme degradation. However, this can cause a change to thermo-

dynamics. Alternatively, attachment to nanomaterials such as nanoparticles (NPs) can

increase stability. Stability of oligonucleotide probes are particularly important when

fluorophores are involved, because digestion can cause false signals and high background.

In terms of detectability, fluorescent nucleic acid probes are a popular choice. [116,

123] In general, long wavelength, high intensity, long lifetime fluorophores are best suited

for cellular work since they are differentiable from the background. Dyes which easily

photobleach should be avoided (irreversible alteration causing loss of fluorescence). Fi-

nally, the fluorescence output of the probe must be compatible with the instrumentation

that is to be used for detection.

Wang et al. uses a combination of the above approaches in order to image mRNA

expression in live cells. The mRNA is targeted by PNA:DNA duplexes, which are de-
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livered into live cells attached to nanoparticles. The neutrally-charged PNA is shorter

than the DNA and is able to displace to bind to the mRNA with kinetic and thermo-

favorability. Finally, a fluorophore/quencher pair are attached to the duplex so binding

can be monitored in real-time. [124]

1.7 Quantitative SNP sensing and allelic discrimination in

cells

Current methods of SNP detection, including DNA anthracene probes, are able to de-

termine whether a SNP is present or not. However, humans have two copies of DNA

(alleles) which means there are several base pair combination possibilities. The homozy-

gous case occurs when the base pairs are the same. In the majority of cases the base pairs

are different; the heterozygous case. Most methods of SNP detection are unsuitable for

the hetereozygous case, and essentially require double the effort with a probe required

for each eventuality.

An interesting example of quantitative and allelic-specific FISH sensing by Hansen

et al. is provided. Single-molecule FISH (smFISH) uses multiple short oligonucleotides

to target specific mRNA sequences. [70, 125] Hansen et al. extends this to detect allele-

specific expression of mRNA and quantification of SNPs in mRNA within fixed cells. [126]

Fluorophore-tagged probes were designed to target either the maternal or paternal gene.

Therefore, despite SNPs being detected, multiple probes were required.

A further challenge for SNP sensing is allelic percentage contribution determina-

tion from mixtures of DNA and RNA targets respectively. This has been reported very

little in the literature. One example used rolling circle amplification for SNP sensing, and

was able to determine the allele frequency from mixtures of mutant-type and wild-type

DNA. [127] The mutant-type and wild-type DNA (fragments of human p53 gene) were

mixed at different ratios ranging from 0-100%. The padlock probes were designed to

36



ligate for mutant-type DNA, which results in dsDNA and a high level of SYBER Green

I (an intercalating dye) fluorescence emission. The wild-type DNA acts as background

signal since the ssDNA RCA product does not attract SYBER Green I binding. The

resultant mutant-type DNA to wild-type DNA fluorescence signal ratio is approximately

6:1. Therefore, when mutant-type and wild-type DNA are added in different ratios, a

fluorescence intensity graph can be produced where the % of alleles can be determined

(Figure 1.25).

Figure 1.25: Relationship between allele frequencies and relative fluorescence intensities
of the samples of mixed mutant-type and wild-type DNA with various ratios. [127]

Many probes are influenced by probe concentration, environment, excitation in-

tensities etc. Ratiometric measurements based upon the intensity ratios at two wave-

lengths alleviates most of these problems. [128, 129] Ratio SNP sensing can also help

with quantitative determination. [111, 130]
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1.8 Aims of the project

Single nucleotide polymorphisms (SNPs) provide important genetic diversity to the hu-

man genome but are also associated with common diseases. There is ongoing interest

in developing convenient methods for distinguishing between different bases within a

particular sequence of DNA. Commercially, SNPs can be thought of as molecular mark-

ers for genetic diseases. Current SNP detection methods often involve converting RNA

extracted from cells into cDNA, which is error prone and time-consuming. In order to

move towards detecting SNPs in biological samples, it would be advantageous to target

RNA directly.

The DNA anthracene probes described herein (Chapter 3) have been previously

shown to detect single base differences in DNA targets. [81, 86] The DNA anthracene

probes emission intensity upon hybridisation depends upon whether the target sequence

contains one base or another at a particular site.

The key questions for this project are:

1) Can DNA in situ studies be repeated in a cellular environment?

2) Can the anthracene DNA probes sense RNA?

Question 1) focuses on establishing the extent to which the DNA anthracene SNP sensing

effect developed by Tucker et al. can be observed in cells. This was with the aim

to carry out novel in vitro sensing by adding the fluorescent probes to fixed and live

cells. Cell loading conditions must be optimised so that variations in emission intensity

can be observed in cells. This includes testing to ensure duplexes are forming within

the cell (Chapters 4 and 5). It is important to establish that duplexes form within

the cell since the SNP sensing mechanism of the DNA anthracene probe relies upon

this. Finally, functionalised probes with two different fluorophores may be required to

facilitate quantitative measurements (Chapter 7).

Question 2) opens up the possibility of detecting RNA in a sequence selective
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manner using DNA anthracene probes (Chapter 3). A better understanding of the

properties of the system would allow targeting RNA in vitro, including in live cells.

The delivery of the probe into cells in order to target endogenous RNA would be a big

final step. This could be carried out using plasmid DNA and transfection (Chapter 6).

There are two DNA and RNA sequences that will be used as targets in studies: a well-

studied sequence for proof of principle, and a biologically relevant sequence associated

with Alzheimer’s disease.

In summary, the main aims of the project are to:

• To optimise design of fluorophore-tagged oligonucleotide probes that function through

changes in fluorescence emission upon DNA duplex formation (Chapter 3 and

Chapter 7).

• To develop imaging methods based on match- or mismatch-pairs to accurately

screen patients’ DNA for SNPs associated with diseases such as Alzheimer’s, or to

quantify specific mRNA strands on a cell-by-cell basis (Chapter 3). These measures

have not been available to date and have great clinical and commercial potential.

• To optimise regimes for loading probes into cells, imaging their location and quan-

tifying their fluorescence (Chapter 4).

• To develop a novel imaging strategy for quantifying and localising specific DNA

or mRNA in living cells (Chapter 5 and Chapter 6).
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Chapter 2

Materials and methods

2.1 Oligonucleotide synthesis

Unless otherwise stated, solvents and reagents were purchased from commercial suppliers

and used without further purification. Degassed HPLC-grade or MilliQ water was used

in all syntheses and studies of oligonucleotides.

Common equipment:

• Savant SPD131DDA SpeedVac Concentrator (Thermo Scientific);

• Dry block heating system (QBD1 Grant instruments, Cambridge);

• Biofuge Pico Heraeus centrifuge for 1.5 ml microfuge tubes with up to 16,060 x g

(Kendro Laboratory Products GmbH, Langenselbad, Germany);

• Lab dancer shaker (IKA).

Common buffers:

• 0.1 M pH 7.0 phosphate buffer (0.2 M mono-sodium NaH2PO4.2H2O and 0.2 M

di-sodium Na2HPO4)

• 5 M NaCl.
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2.1.1 Anthracene monomer synthesis

Anthracene monomer was required for insertion into the DNA sequence in order to

synthesise fluorescent probes. Synthesis of anthracene monomer is given in Figure 2.1.

Figure 2.1: Synthesis of the l-anucleosidic anthracene monomer. Reagents and condi-
tions: A) K2CO3, acetone, reflux o/n, 33%; B) i. 10% NaOH aq./EtOH (1:1), reflux
o/n; ii. conc. HCl, 92%; C) HBTU, DIPEA, DMF, 40 ◦C o/n, 36%; D) DMTrCl, DMAP,
pyridine, o/n, 22% E) (i− Pr2N)2PClO(CH2)2CN, DIPEA, anhy. DCM, 3h, 63%

Commercially available anthrone was reacted with ethyl bromoacetate to generate

the anthracene ester (1, Figure 2.1). Subsequent saponification yielded the corresponding

anthracene carboxylic acid 2 following acidification. Condensation of 2 with l-threoninol

and coupling agent HBTU yields the corresponding amide 3 bearing a 1, 3-bis alcohol.

Using standard reaction protocols, these alcohol functions were sequentially tritylated

to the mono-protected racemate 4, and then phosphitylated to generate the desired
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anthracene-tagged anucleosidic unit 5. A similar approach was used to generate alternate

tethered anthracene with threoninol configurations (l/d) or with various carbon linker

lengths. Modified anthracene monomer 5 was introduced into the central position of

a 15-mer oligonucleotide via solid phase synthesis on a 1.0 mmol scale with a stepwise

coupling yield of over 98%.

Unmodified and tagged oligonucleotides were synthesised as previously described

using the phosphoramidite method (Applied Biosystems 394). [77] Oligonucleotide reagents

and chemicals used were purchased from Link Technologies (Glasgow, UK), unless other-

wise stated. Standard DNA phosphoramidites used were Bz-A-CE, Ac-C-CE, dmf-G-CE

and U-CE. RNA 2�-OTBDMS phosphoramidites used were Bz-A-CE, Ac-C-CE, dmf-G-

CE and U-CE. DNA SynBaseTM CPG functionalised supports and RNA SynBaseTM

CPG columns were used respectively. The addition of protecting groups to all other

functional groups in the nucleosides prevents undesired side reactions. Once oligonu-

cleotide assembly was complete, all the protecting groups must be removed; a process

known as deprotection. DNA was deprotected on the synthesiser by the addition of

ammonia. This also cleaves the DNA from the solid support and into aqueous solution.

The solution was heated for 6 hours at 55 ◦C to carry out base deprotection as well as

phosphate deprotection.

2.1.2 DNA purification and characterisation

DNA is purified by reversed-phase HPLC (high pressure liquid chromatography) prepara-

tory using a buffer gradient of acetonitrile and water on a C18 generation packed axia

column. The buffer is removed using a rotary evaporator. The DNA is eluted with 1.5

ml HPLC-grade water which is then passed through a NAP-10 column (GE Healthcare)

to remove any salts. HPLC analytical can then be used to confirm the purity of the

DNA (see Appendix F for HPLC buffer, program details and results).

Electrospray negative time-of-flight (ESI TOF) mass spectrometry can be used
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to characterise the DNA by comparing it to the calculated theoretical molecular mass

(see Appendix F for mass spectrometry results).1

DNA concentration can be calculated using a Shimadzu UV-Vis 1800 spectropho-

tometer. The UV absorbance value was measured at 260 nm for a diluted sample of DNA

in water. 1 ml volume, 1 cm pathlength, quartz absorption cuvettes were used. The

concentration of the DNA can be calculated using the Beer Lambert law (Equation 2.1).

Extinction coefficients were found at IDT Biophysics2 and Ribotask Oligo Calculator.3

Anthracene extinction coefficient at 260 nm is � = 52000 M−1 [33], Cy3 � = 4930 M−1,

Cy5 � = 10000 M−1 and acridine � = 39500 M−1.4

c =
A

�l
(2.1)

2.1.3 RNA synthesis

RNA synthesis is similar to DNA; however there are two main differences. RNA nu-

cleotides have a 2� hydroxyl group, and thymine is replaced with uracil. Therefore

synthesis requires alternative phosphoramidites and the extra hydroxyl group causes a

more stringent deprotection process. [131] The RNA remains on the column until released

manually by 3:1 ammonia : ethanol solution. It was then heated for 6 hours at 55 ◦C

to carry out base and phosphate deprotection as before. The solvents were evaporated

prior to overnight tetra-n-butylammonium fluoride (TBAF) treatment, which removes

the TBDMS protecting group on the 2�-OH. A NAP-10 column was used to remove

salts. Isoproponal precipitation was carried out to concentrate the RNA and remove

any further salts. Finally, purification and characterisation were carried out as for DNA.

Single-strand RNA is highly susceptible to degradation by nucleases; therefore extra

precaution was taken during the deprotection and purification stages. This included:

1
Mongo Oligo Mass Calculator v2.06, http://library.med.utah.edu/masspec/mongo.htm

2
IDT, http://biophysics.idtdna.com/UVSpectrum.html

3
Ribotask, www.ribotask.com

4
Glen Research Corporation, http://www.glenresearch.com/Technical/Extinctions.html
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working in a sterile flow hood; nuclease decontamination spray (RNAse AWAY R�) used

on all equipment; gloves at all times and autoclaved MilliQ water.

The synthesis and experimental details of modified Cy3 and Cy5 tagged DNA is

presented in Chapter 4.

2.2 Fluorescence and lifetime studies

The fluorescence emission of the DNA probes can be measured using a Shimadzu RF-

5301 PC spectrofluorophotometer. 1 µM DNA probe samples are prepared in 1 ml of

buffer solution (10 mM phosphate, 100 mM NaCl, pH 7.0). 1 ml volume, 1 cm path-

length, quartz emission cuvettes were used. The target is titrated in 0.5 equivalence

steps in order to observe any differences in emission. An excess of target is added to

ensure there is 1:1 binding. 5-10 minutes between titration’s allows the DNA strands to

anneal. DNA anthracene probe excitation (λex) is 350 nm and the emission is measured

over a range of 370-570 nm (370-680 nm for Cy3 modified probes). The spectrofluo-

rophotometer slit widths are 3 nm for excitation and 5 nm for emission, unless otherwise

stated. The percentage change in emission compared to the probe alone is measured

at the wavelength 426 nm, which is the peak emission wavelength of anthracene, unless

otherwise stated. Excitation scans monitor emission at 426 nm (570 nm for Cy3 modified

probes) using an excitation slit width of 1.5 nm and emission slit width of 3 nm.

The quantum yield of DNA anthracene probes were measured using 1 µM DNA

probe, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm. The

slit widths were 3 nm for excitation and 10 nm for emission. Quantum yields (Φ) were

determined relative to quinine sulphate (Φf = 0.546).

Lifetime measurements are carried out with an Edinburgh Instruments FLS920

spectrometer. The laser used was an Edinburgh Instruments EPL-376 pulsed diode laser

with a 50 ns pulse excitation wavelength of 376 nm and the emission was detected using
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a Hamamatsu R928 PMT. The multi-exponential decays were fitted using Edinburgh

Instruments F900 or FAST software. An exponential function was fitted with opti-

mised parameters by minimising χ2 values. Data was corrected using an IRF file (50 µl

LUDOX R� TM-40 colloidal silica (Sigma-Aldrich) in 1 ml water).

2.3 Melting studies

The melting temperature (Tm) of duplex DNA were obtained on a Varian Cary-5000

by measurement of the change in absorbance at 260 nm as a function of temperature.

The melting temperature Tm is defined as the temperature at which 50% of the DNA

is part of a duplex and 50% is single-stranded. 5 µM samples of DNA probe and target

were prepared in 500 µl of buffer solution (10 mM phosphate, 100 mM NaCl, pH 7.0).

500 µl volume, 1 cm pathlength, quartz absorption cuvettes were used. The sample was

heated from 15 ◦C to 85 ◦C and vice versa, repeatedly. The absorbance was measured at

increments of 0.5 ◦C at a wavelength of 260 nm. Sufficient time is allowed between each

temperature change to allow stabilisation of the sample. The melting temperature error

values are limited to the instrumental error (0.5 ◦C).

2.4 Circular dichroism

Spectra were recorded on a Jasco J-810 spectropolarimeter between 200 and 400 nm

(200-680 nm for Cy3 modified probes). Other settings were: data pitch 0.2 nm; contin-

uous scans at 200 nm/min; bandwidth 1; slitwidth 1000 µm; 1 second response; scan

accumulation 10. The sample solutions were as follows: 5 µM each DNA strand, 10

mM pH 7.0 phosphate buffer, 100 mM NaCl. 1 ml volume, 1 cm pathlength, quartz

absorption cuvettes were used. Scans were baseline corrected with buffer solution.
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2.5 Nuclease studies

To test the stability and specificity of the DNA it was incubated at 37 ◦C in cell lysate

extracted from CHO cells (see below), and emission spectra collected at intervals over a

2 hour period. To test degradation, DNA was incubated with DNase I (Sigma-Aldrich)

for 2 hours, added to CHO cell lysate and emission spectra collected.

2.6 Cell culture

Reagents and chemicals used were purchased from Sigma-Aldrich (Gillingham, UK),

unless otherwise stated.

Common equipment:

• Biofuge Pico Heraeus centrifuge for 1.5 ml microfuge tubes with up to 16,060 x g

(Kendro Laboratory Products GmbH, Langenselbad, Germany);

• Hettich Mikro 22R refrigerated centrifuge for 1.5 ml microfuge tubes with up to

21,910 x g (Andreas Hettich GmbH, Tuttlingen, Germany);

• Biofuge Primo Heraeus centrifuge for up to 50 ml tubes with up to 2576 x g

(Thermo Electron Corporation, Waltham, USA);

• Sanyo CO2 incubator (Sanyo Electric CO, Japan);

• Leica DM IL inverted microscope (Leica Microsystems, USA);

• CellStar incubator (Borolabs Ltd. Basingstoke, UK);

• Sanyo/Gallenkamp orbital shaker (Loughborough, UK).

Common buffers:

• Tris-Acetate-EDTA (TAE) buffer (40 mM Tris-base, 20 mM glacial acetic acid, 1

mM EDTA);

46



• Phosphate-Buffered Saline (PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4,

1.76 mM KH2PO4 pH 7.4);

• NP40 (Igepal) Lysis buffer (1% (v/v) NP40, 10 mM Tris pH 7.5 (Fisher Scientific),

150 mM NaCl, 1 mM EDTA pH 8, 0.01% (w/v) sodium azide and 1x protease

inhibitor cocktail (Roche)).

Human embryonic kidney (HEK), Chinese hamster ovary (CHO) and HeLa cells

were cultured for use. HEK/CHO cells were supplied by Cancer Research UK and HeLa

cells were a gift from Dr. Nik Hodges. They were grown at 37 ◦C in a humidified

atmosphere of 5% CO2. Cells were maintained by regular passage in DMEM (Sigma-

Aldrich). This medium was supplemented with 10% heat-inactivated fetal bovine serum

(FBS), 2 mM L-glutamine, 100 U/ml penicillin and 50 U/ml streptomycin (gibco R� by

Life Technologies).

Cell lysate: Confluent plates (10 cm diameter) of CHO cells were washed with

PBS and lysed on plates by adding 200 µl of lysis buffer. Cells were scraped quickly

with a cell scraper (Fisher Scientific) and transferred into 1.5 ml microfuge tubes. The

cells were lysed for 10 mins on ice and centrifuged for another 10 min (21,910 x g, 4 ◦C).

The supernatant was used directly in different assays or stored at −80 ◦C in 10% (v/v)

glycerol.

2.7 Transfection

2.7.1 Fixation

For cell fixation, 3 x 105 CHO cells were seeded in DMEM on Mattek dishes (P35G-1.5-

20-C, MatTek Corp.). The cells were fixed and permeabilised using −20 ◦C methanol

for 5-10 minutes. 0.025 µg/µl DNA in PBS was added to cells for 1 hour and then

rinsed with PBS solution. If DNA was added sequentially the next strand was added for
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a subsequent 1 hour and then rinsed with PBS solution. Alternative fixatives include

formaldehyde with or without triton.

2.7.2 Lipid based transfection

For chemical transfection, CHO cells were grown on φ13 mm coverslips for 24 hours in

complete DMEM. Transfection was carried out using 100 µMDNA, Opti-MEM R� medium

(Life Technologies) and LipofectamineTM RNAiMAX (Life Technologies). Transfection

was carried out over 4 hours at 37 ◦C. Cells were fixed with 4% formaldehyde and nuclei

stained with Bisbenzamide (Sigma-Aldrich) for imaging purposes. Cells were allowed to

recover between sequential transfections. Bafilomycin A1 (Sigma-Aldrich) was dissolved

in DMSO and added to the transfection medium (final concentration 100 nM) as above.

2.7.3 Microinjection

For microinjection, 1.5 x 105 CHO cells were seeded in DMEM on Mattek dishes. Prior to

microinjection, the medium was replaced with HEPES supplemented DMEM. Microin-

jection was performed using a micromanipulator (model 5171, Eppendorf) and tran-

sjector (model 5246 Plus/Basic, Eppendorf). A DNA concentration of 100 µg/µl was

microinjected into the cytoplasm of cells.

2.7.4 Electroporation

For electroporation, 8 x 105 CHO cells were added to serum free DMEM and 0.025 µg/µl

DNA in a 4 mm gap electroporation cuvette (Geneflow) for 10 minutes at room temper-

ature. Electroporation was carried out at 400 V and 25 µF (BioRad Gene Pulsar R� II).

The cells were left for 5 minutes at room temperature and then for 5 minutes on ice.

The cells were then seeded in DMEM on Mattek dishes and allowed to recover for 12

hours.
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2.8 Microscopy

Anthracene fluorescence images were acquired on a Nikon A1R inverted confocal mi-

croscope using a 40x oil immersed objective lens and 402 nm laser. Emission range for

anthracene probe emission was 425-475 nm. Acridine fluorescence images required a 457

nm laser with emission range 465-500 nm. A z-stack of images was acquired to ensure

the image at the correct focal plane was taken for further analysis. Images were collected

at 1 µm intervals.

All Cy3/Cy5 cell imaging, excluding transfected cells, was carried out on an in-

verted confocal microscope (Zeiss); Cy3 (543 nm laser, beam splitter (MBS) 488/543/633,

em 515-613 nm) and Cy5 (633 nm laser, MBS 488/543/633, em 698-754 nm). Trans-

fected cells were imaged on an axiovert UV confocal microscope (Zeiss); BB (364 nm,

351 nm laser, MBS UV/488/543/633, em BP 385-470 nm), Cy3 (543 nm laser, MBS

UV/488/543/633, em BP 560-615 nm) and Cy5 (633 nm laser, MBS UV/488/543/633,

em LP 650 nm).

Emission microscopy was carried out on a spectral imaging inverted confocal

microscope (Leica); Cy3 (543 nm laser, MBS UV/488/543/633, em 556-615 nm) and

Cy5 (633 nm laser, MBS UV/488/543/633, em 641-750 nm).

2.9 Computational analysis

All analysis was performed offline in Matlab 2009b and ImageJ. Section C.6 contains a

detailed explanation of the particle-swarm optimisation algorithm.

2.10 Statistical analyses

For the Cy3/Cy5 DNA statistical analysis (Chapter 4), data is plotted with error bars

representing the standard error of the mean (s.e.m.). Emission intensity values were
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taken from ROI in cell images, with at least ten cells analysed. In order to compare

Cy5 intensity values between using both the 543 nm and 633 nm lasers, and the 543

nm laser only, the Mann-Whitney test was performed. For the anthracene DNA probes

in fixed cell analysis (Chapter 5), s.e.m. on intensity values from GMM analysis were

combined between images to give error on the percentage change in emission values.

ImageJ analysis (s.e.m. error) was performed as for Cy3/Cy5 DNA. In order to compare

intensity values between images, the Mann-Whitney test was performed.

2.11 Manipulation of DNA material

Reagents, enzymes and their compatible buffers used in cloning were purchased from

New England Biolabs (NEB) (Herts, UK), unless otherwise stated.

2.11.1 DNA oligonucleotides and plasmids

Thank you to Professor Steve Lee for the plasmid (mp71 retroviral vector), and Dr.

Alan Zhuang for his advice. The plasmid is ampicillin resistant. There is more detail on

the plasmid, including a diagram, in Chapter 6. DNA oligonucleotides for insertion were

purchased from IDT. The complementary oligos were annealed upon combination of 1 µl

of each oligo (100 µM) and 98 µl elution buffer (10 mM Tris pH 8 buffer). The mixture

was heated at 100 ◦C for 5 minutes then cooled at room temperature. The plasmid and

inserts required no further amplification or purification.

2.11.2 Digestion of DNA with restriction enzymes

Plasmid was cut at two restriction sites, ClaI and NotI, using corresponding restriction

enzymes (NEB). 5 µg of plasmid was incubated in 50 µl of digestion solution containing:

5 µl of 10x CutSmart NEBuffer (NEB), 2.5 µl of each restriction enzyme (20,000 U/ml)

and water. Digestion was carried out for 2 hours at room temperature.
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2.11.3 DNA agarose-gel electrophoresis

DNA agarose-gel electrophoresis was performed using equipment for horizontal elec-

trophoresis (Jencons Scientific Ltd., VWR division, East Grinstead, UK). Gels were

prepared by dissolving 0.8-1.5% (w/v) agarose (VWR International, Lutterworth, UK

or Sigma-Aldrich) in TAE buffer and stained with SybrSafe (Invitrogen). A loading dye

(NEB) and ladder (GeneRuler, Thermo Scientific) were also used. Gels were visualised

and imaged using Gene Genius Bio Imaging System (Syngene, Cambridge, UK).

2.11.4 DNA gel purification

DNA bands were cut from the gel and DNA was extracted using GeneJETTM Gel Ex-

traction Kit (Fermentas) according to the manufacturers instructions. Plasmids were

stored at −20 ◦C.

2.11.5 DNA ligations

Inserts were ligated with the plasmid using T4 Ligase as follows. A 20 µl ligation

solution containing 2 µl of 400,000 U/ml T4 DNA Ligase enzyme (NEB) and 2 µl 10x

T4 Ligase buffer (NEB) is added to a 16 µl insert/vector mixture prepared in a ratio of

4:1. Ligations were performed at RT for 2 hours.

2.11.6 Heat shock transformation of bacteria

The chemically competent Escherichia coli (E.coli) strains (Bioline, α-select Gold ef-

ficiency competent cells) were used for transformations with the plasmid. Chemically

competent E.coli (20-50 µl) was mixed with 5 µl ligation mix and incubated on ice for

30 minutes. The bacteria were heat shocked at 42 ◦C for 45 seconds then incubated on

ice for a further 2 minutes. All bacteria were cultured in Luna Bertani (LB) broth or LB

agar (Sigma Aldrich) with appropriate antibiotic. The final concentration of antibiotic

was 0.1 mg/ml ampicillin (Amp). Transformed bacteria mix was diluted into 150 µl
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of pre-warmed antibiotic-free liquid LB medium bacteria and incubated in the orbital

shaking incubator at 37 ◦C for 1 hour. Subsequently bacteria were added to LB-agar

containing ampicillin plates for overnight incubation at 37 ◦C. Larger colonies were se-

lected from the agar plate and added to 2 ml LB broth/ampicillin. Bacteria was grown

overnight in the orbital shaking incubator at 37 ◦C.

2.11.7 Plasmid purification

Large scale preparation of plasmids was performed from bacterial cultures using the

Qiagen Plasmid Maxi Kit (Qiagen, Crawley, UK) or GeneJETTM plasmid Maxiprep

Kit (Thermo Scientific, UK) according to the manufacturer’s protocols. For small-scale

plasmid preparations DNA was isolated using the GeneJETTM plasmid Miniprep Kit

(Thermo Scientific, UK). Final DNA concentration was measured with the NanoDrop

ND-1000 Spectrophotometer (Labtech, Ringmer, UK).

2.11.8 Colony PCR screen

Colony PCR was used to screen for successful ligation of vector and insert. A 20 µl PCR

reaction was prepared for each colony screened by adding: 2x PCR mix (ReadyMixTM

REDTaq PCR Reaction Mix with MgCl2, Sigma-Aldrich); 100 µM of each primer (Ta-

ble 2.1); water and bacterial colony sample. Prior to mixing with the PCR mix, a

replica plate was set up containing samples of each colony screened. The PCR reaction

was performed as follows: initial denaturation (96 ◦C, 3 mins) then 34 cycles of denat-

uration (96 ◦C, 30 s); annealing (55 ◦C, 30 s); and elongation (72 ◦C, 30 s, 1 min/1 kb

of amplicon). A final DNA elongation step of 72 ◦C for 5 mins was carried out. (MJ

Research, PTC-225 Peltier Thermal Cycler). PCR products were visualised by DNA gel

electrophoresis. Colonies which gave positive results were used for small or large scale

plasmid preparations as described above.
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Table 2.1: Primer sequences used for PCR and sequencing (Eurogentec).

Oligonucleotide Sequence (5’ to 3’)

RBShortF Forward AACTTTGATCTGCTGAAGCTGGCC

RBLongF Forward ATTGCTCTTCTCATTGTCTAGG

RBShortR Reverse GGCCGCTGGACTCTCTCAATGCTAGAT

RBLongR Reverse ATTGCTCTTCTCATTGTCTAGG

2.11.9 Sequencing and storage of plasmids

All constructed plasmids were verified by sequencing by the Functional Genomics and

Proteomics Laboratory (School of Biosciences, University of Birmingham, UK). All con-

structs were stored as glycerol stocks at −80 ◦C. These were prepared by mixing the

saturated bacterial cultures with an equal volume of 30% (v/v) glycerol.

2.12 DNA plasmid transfection

Plasmids were added to cells via PEI transfection, which was performed for a 10 cm

plate of 80% confluent cells as follows:

• 18 µg of DNA added to 1 ml Opti-MEM R� medium (Life Technologies) in a 1.5

ml tube. Mixed by flicking tube.

• 27 µl PEI stock solution (1 mg/ml) added, mixed by gently vortexing (half speed)

and left for 10 minutes at room temperature to allow DNA/PEI complexes to form.

• The DNA/PEI is gently added to the cells and mixed by slow movements of the

plate.
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2.13 Flow cytometry

Cells were removed from plates using cell dissociation buffer (10 mM EDTA in PBS),

centrifuged at 2000 rpm for 4 mins and resuspended in FACS buffer (PBS, 0.5% BSA,

0.1% sodium azide). Antibodies were added (1 in 50) and cells kept on ice for 1 hour.

Isotype controls were also carried out (non-specific antibody with Cy5 tag). Flow cy-

tometry was carried out using a Becton Dickinson FACSCalibur machine with settings:

(P1, FSC, E-1, 7.00 lin); (P5, FL3, 535, 1.00, log). Settings for PRan plasmid: (P3,

FL1, 366). BDFACSFlow (azide free) buffer and CellQuest software were used with

the machine. Antibody was 0.2 mg/ml Cy5-tagged αhCD34 (PE-Cy5 conjugate) (R&D

Systems AF4968). Isotype was Cy5-tagged anti-mouse IgG1 (Dako #x0931). PRan

plasmid was a HA-Clec14A pc52 human plasmid. PRan plasmid required anti-clec14A

antibody with secondary anti-sheep.
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Chapter 3

DNA and RNA SNP sensing with

DNA anthracene probes

3.1 Introduction

SNP sensing has an important role now and in the future of disease screening. Oligonu-

cleotide probes can be used for single base discrimination through hybridisation and

fluorescence emission. Tucker et al. SNP sensing work has been focussed on detecting

single base differences in DNA systems. [81, 86, 88] This was briefly discussed in Chap-

ter 1 (Section 1.4.2) but shall be described fully, including its mechanism, within this

chapter. In order to expand the potential biological utility of the system, experiments

were carried out to determine whether DNA anthracene probes could detect single base

differences in RNA targets in a similar manner to DNA. To analyse SNPs in RNA,

RNA is extracted from cells and tissues and is subjected to reverse transcription to

become cDNA before being amplified by PCR. However, direct targeting of extracted

RNA would be quicker and more accurate. Targeting RNA can lead to in vitro and in

vivo studies since RNA is more abundant and accessible in a cellular environment. The

initial question was therefore, could the Tucker group SNP sensing be applied to sensing
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RNA directly? Using the same sequence used for DNA sensing, various RNA targets

were synthesised and purified, which were then hybridised with the DNA anthracene

probes (of varying linker length and stereochemistry). Their properties were then inves-

tigated using a combination of UV-vis, fluorescence and CD spectroscopy. It is described

below that DNA anthracene probes are able to discriminate SNPs in RNA targets by

modulation of the fluorescence emission. However, the results do not exactly replicate

those for DNA targets, indicating that although the general sensing mechanism is the

same there are subtle changes associated with conformation for some RNA targets. The

trends observed can be explained by results obtained from sensing 2�OMe RNA targets.

Finally, the biological relevance of the DNA anthracene probes is demonstrated through

sensing of a SNP sequence within an RNA or DNA strand associated with Alzheimer’s

disease. This provides inspiration for an assay to determine the percentage of allelic

contribution (Section 1.3) within a particular sample.

3.2 Results and discussion

3.3 DNA sensing

The SNP sensing mechanisms using DNA anthracene probes were described briefly in

Section 1.4.2, Chapter 1. They shall now be described in detail and a summary of the

main results discussed.

3.3.1 DNA probe design

The anthracene phosphoramidites were synthesised from the known anthracene car-

boxylic acid via a DMT protected diol (Section 2.1.1, Chapter 2). DNA anthracene

probes were prepared by automated solid phase synthesis using conventional phospho-

ramidite chemistry, as reported previously. [77] Unmodified oligonucleotide strands were

also synthesised by this route. Table 3.1 lists the DNA oligonucleotides used in the
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Table 3.1: DNA sequences synthesised. X denotes the anthracene monomer. n is the
carbon linker length and l/d denotes the stereochemistry.

Oligonucleotide Sequence (5’ to 3’)

DN TGGACTCTCTCAATG

P(n)(l/d) TGGACTCXCTCAATG

DT1 CATTGAGAGAGTCCA

DT2 CATTGAGGGAGTCCA

DT3 CATTGAGCGAGTCCA

DT4 CATTGAGTGAGTCCA

DT5 CATTGAGAAAGTCCA

studies described in this section. A full list of oligonucleotides is given in Table G.1,

Appendix G. DN is the unmodified DNA probe compared to P(n)(l/d), which represent

anthracene modified oligonucleotides, with (n) denoting the carbon linker length (n =

1 - 7, excluding n = 2) and l/d denoting the stereochemistry (Figure 3.1 includes the

anthracene monomer structure).

Figure 3.1: Left: A standard nucleotide with sugar phosphate backbone. Right: An-
thracene monomer. The anthracene molecule is seen in yellow; the red (n) is the carbon
linker length and the green threoninol molecule denotes the stereochemistry (l shown
here).

The probes P1L and P6D are focussed on here but the complete results for all

probes are shown in Appendix A. A list of the single-stranded probe quantum yield val-
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ues is also included for reference. DT(1 - 5) are DNA targets which are complementary

to DN, P1L and P6D, but for one base difference. Oligonucleotides were purified by RP-

HPLC and characterised by mass spectrometry (Appendix F). Although the chosen 15

base sequence does not contain a SNP from the human genome, it has been extensively

studied by Tucker et al.. All melting studies show the DNA anthracene probes to be

stable duplexes with the DNA targets at room temperature. See Appendix A for full re-

sults, including examples of DNA anthracene probe duplex melting curves (Figure A.1).

DNA anthracene probes give good sensing results in two different strategies, which shall

now be described.

3.3.2 DNA SNP sensing

The DNA anthracene probe is used to sense one base difference in target DNA based on

changes in emission. There are two sensing systems: base adjacent and base opposite

sensing.

3.3.3 DNA base adjacent sensing

Melting and fluorescence studies

In this strategy, the emission from the anthracene is found to increase or decrease depend-

ing on whether the duplex base-pair immediately adjacent on the 5� side with respect to

the probe is matching or mismatching. Here, the match adjacent target is DT1 and the

mismatch adjacent target is DT5 (Figure 3.2).

Figure 3.2: DNA base adjacent sensing system. X denotes the anthracene monomer.
n is the carbon linker length and l/d denotes the stereochemistry. Bases underlined
denote the single base difference.
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The base adjacent system is only sensitive to a change in base pair identity for

anthracene with a short carbon linker (n = 1) and l stereochemistry i.e. DNA anthracene

probe P1L (Figure 3.1). The 1d linker and longer linkers (l or d) are not effective sensors

since they cause the anthracene emission for both targets to change to the same degree

respectively.

The mismatch adjacent target (DT5) causes the P1L anthracene emission to in-

crease significantly at λem = 426 nm (+77%) compared to the probe alone. However, the

matching base adjacent target (DT1) causes the emission to decrease (-70%) (Figure 3.3).

Figure 3.3: Fluorescence spectra showing the change in emission upon hybridisation of
anthracene probe P1L with targets DT1 and DT5 respectively. 1 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

The anthracene tag was seen to stabilise the duplex despite the lack of hydrogen

bonding in the central base pair (Table 3.2). The 1l anthracene must intercalate reason-

ably well since the TM for duplex P1L:DT1 is only 2 ◦C less than the unmodified duplex

DN:DT1 TM . The duplex P1L:DT5 is more stable than DN:DT5 which, in agreement
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with model studies, indicates that the anthracene is able to partake in π-stacking with

proximate base pairs. [86, 132] This will be described in more detail later.

Table 3.2: Melting temperatures ( ◦C) of DNA targets and DNA anthracene probes. 5
µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Probe/Target DT1 DT5

DN 55 42

P1L 53 46

P1D 48 35

The hypothesis is that having the mismatch target adjacent allows space for

the anthracene to intercalate effectively into a more hydrophobic environment. On the

contrary, when there is a matching base pair adjacent to the anthracene, the hydrogen

bonding remains intact and there is less space for the anthracene. In both cases, the

anthracene does not remain in a single state but is dynamic. The anthracene in the match

case therefore spends more time located outside of the duplex since it cannot access a

hydrophobic environment so effectively. This is also shown by lifetime data which shall

be discussed in Chapter 7. As shown in Figure 3.3, when anthracene intercalates into

DNA, a bathochromic shift of 3 nm is observed in the fluorescence bands compared to

the probe alone. This bathochromic shift is also present in absorption spectra between

P1L and duplexes. The base pair mismatch has a larger effect on the 5� side of the

probe because the anthracene is closer to the base than on the 3� side. [87] The binding

is specific since there is no change in emission on the addition of a non-complementary

target. Titrations of target DNA showed no further change in emission was observed in

the presence of excess target. This indicates the formation of a 1:1 complex, which is

consistent with DNA duplex formation. This was applicable for both sensing systems

(Section 3.3.4). An example of a titration graph is shown in Figure 3.4 for base adjacent

sensing with P1L.
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Figure 3.4: Fluorescence titrations of up to 2 equivalents of DNA target into probe P1L.
The binding is shown to be 1:1 since the emission does not change beyond 1 equivalent
of target. Percentage change in emission is calculated at λem = 426 nm, compared to
the probe alone. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer,
λex = 350 nm.

3.3.4 DNA base opposite sensing

Melting and fluorescence studies

In the alternative base opposite sensing strategy, the anthracene emission is found to

change as a function of the base directly opposite it (Figure 3.5).

Figure 3.5: DNA base opposite sensing system. X denotes the anthracene monomer. n
is the carbon linker length and l/d denotes the stereochemistry. B = A, C, G, T.

DNA base opposite sensing is an effective strategy since each target forms a

duplex with similar affinity as evidenced by TM values (i.e. there are no duplexes formed

with mismatching base pairs). The anthracene tag was once again seen to stabilise the
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Table 3.3: Melting temperatures ( ◦C) of DNA targets and DNA anthracene probes. 5
µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Probe/Target DT1 DT4

DN 55 48

P6D 48.5 50.5

duplex despite the lack of hydrogen bonding in the central base pair (Table 3.3).

This system only works with longer linker lengths to the anthracene monomer (n

= 3 - 7, where stereochemistry is either l or d) (Figure 3.1). For example, in Figure 3.6

the emission changes are shown upon addition of base opposite targets to P6D probe.

P6D was found to be a particularly effective probe based on its base discriminating

ability and changes in absolute fluorescent emission.

Figure 3.6: Fluorescence spectra showing the change in emission upon hybridisation of
anthracene probe P6D with targets DT1 and DT4 respectively. 1 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Adenine opposite the anthracene causes the emission to increase by the high-
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est amount at λem = 426 nm for P6D (+244%), relative to the probe alone. Con-

versely, thymine opposite anthracene causes the emission to decrease (-41%). In general,

the emission trend for the DNA base opposite sensing is purines>pyrimidines. This is

thought to be caused by the size of the nucleobase opposite the anthracene, and how

much the anthracene is able to intercalate into the duplex. There is also emission varia-

tion caused by the probe linker length (n) and stereochemistry (l/d), but for simplicity

the P6D probe shall be discussed (full results can be seen in Appendix A).

3.3.5 DNA circular dichroism studies

Duplex DNA typically adopts a B-DNA conformation, which has characteristic features

in CD spectra. There is a positive peak at 280 nm from the helical twist and a negative

peak at 245 nm from base stacking. [133] This is seen for all unmodified DNA duplexes.

CD spectroscopy studies show the DNA anthracene probe and DNA target duplex to be

B-DNA (Figure 3.7). There is also a notable positive shoulder peak at approximately

255 nm from the induced anthracene signal. A CD signal is induced from the anthracene

chromophore upon its interaction with neighbouring base pairs. [74, 132, 134] At high

concentrations of DNA anthracene probe, the anthracene CD signal can be observed

between 320 and 420 nm. Mismatches in the duplex cause distortions to the structure,

which is observed in the CD spectra. [33]
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Figure 3.7: Circular dichroism spectra of unmodified DNA and P1L duplexes. 5 µM
DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

3.4 RNA sensing

3.4.1 RNA synthesis, deprotection and purification

One of the main objectives of the project was to synthesise and study RNA targets

for sensing with the DNA anthracene probes. RNA synthesis was carried out using

phosphoramidite chemistry as for DNA (Chapter 2). During synthesis there was a 10

minute coupling time on each base as opposed to 25 s for its DNA equivalent. A reduced

concentration of iodine (0.05 M) was used for a milder oxidation step. There were further

considerations during deprotection. RNA deprotection was carried out off-column since

milder conditions were required. The deprotection protocol required improvement to

provide optimal yields. Extending the TBAF incubation time to up to 36 hours enhanced

efficiency of protecting groups removal. Replacing ethanol with isoproponal increased

the level of precipitation, but crucially using a refrigerated centrifuge ensured the pellet

remained intact. Purification was carried out via RP-HPLC and characterisation by mass
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Table 3.4: RNA Sequences. X denotes the anthracene monomer. n is the carbon linker
length and l/d denotes the stereochemistry.

Oligonucleotide Sequence (5’ to 3’)

DN TGGACTCTCTCAATG

P(n)(l/d) TGGACTCXCTCAATG

RT1 CAUUGAGAGAGUCCA

RT2 CAUUGAGGGAGUCCA

RT3 CAUUGAGCGAGUCCA

RT4 CAUUGAGUGAGUCCA

RT5 CAUUGAGAAAGUCCA

RanR CAUAAGAAGACCCUU

spectrometry as before. Table 3.4 gives the RNA oligonucleotides used in this study;

the sequence is the same as DNA. A full list of oligonucleotides is given in Table G.1,

Appendix G. RT(1 - 5) are RNA targets that are complementary to DN, P1L and P6D,

but for one base difference. RanR is a random mismatching RNA sequence.

3.4.2 RNA SNP sensing

The RNA SNP sensing capabilities were tested in the same way as for the DNA. The

same DNA anthracene probes were used with the RNA targets. All probes and targets

were tested and the full results are shown in Appendix A. A summary of the base

adjacent sensing results for DNA and RNA targets are presented in Figures 3.8, 3.9 and

base opposite results in Figures 3.10, 3.11. The TM values of the duplex combinations

are shown in full within Appendix A. The P1L and P6D probes are reported here for

consistency to represent the base adjacent and base opposite sensing results respectively.
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Figure 3.8: Summary of percentage change in emission for DNA base adjacent sensing
targets for all DNA anthracene probes. Percentage change in emission is calculated at
λem = 426 nm, compared to the probe alone. 1 µM DNA, 100 mM NaCl, 10 mM pH
7.0 sodium phosphate buffer, λex = 350 nm.

Figure 3.9: Summary of percentage change in emission for RNA base adjacent sensing
targets for all DNA anthracene probes. Percentage change in emission is calculated at
λem = 426 nm, compared to the probe alone. 1 µM DNA/RNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer, λex = 350 nm.

66



Figure 3.10: Summary of percentage change in emission for DNA base opposite sensing
targets for all DNA anthracene probes. Percentage change in emission is calculated at
λem = 426 nm, compared to the probe alone. 1 µM DNA, 100 mM NaCl, 10 mM pH
7.0 sodium phosphate buffer, λex = 350 nm.

Figure 3.11: Summary of percentage change in emission for RNA base opposite sensing
targets for all DNA anthracene probes. Percentage change in emission is calculated at
λem = 426 nm, compared to the probe alone. 1 µM DNA/RNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer, λex = 350 nm.
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Table 3.5: Melting temperatures ( ◦C) of DNA anthracene probes and RNA targets, plus
controls. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Probe/Target RT1 RT2 RT3 RT4 RT5

DN 60 56 46 47.5 45

RN 71 66 60 60.5 54

P1L 51 48 51 52 41

P1D 49.5 45.5 45.5 46 38

3.4.3 RNA base adjacent sensing

Melting and fluorescence studies

Unmodified DNA (DN) and its complementary target (DT1) provide a standard (55 ◦C)

which can be used to compare melting temperatures to (Table 3.5). The equivalent RNA

duplex version (RN:RT1) gives a significantly higher melting temperature of 69 ◦C under

the same conditions. For DNA and RNA hybrids, DN:RT1 and RN:DT1, the melting

temperatures are 60 ◦C and 53 ◦C respectively. This trend in melting temperatures is

conformation dependent and agrees with literature. [3, 135]

The complexity now increases if there is a DNA anthracene probe with an RNA

target (P1L:RT1) which gives a melting temperature of 51 ◦C, whereas the DNA an-

thracene probe with a DNA target (P1L:DT1) gives 53 ◦C. Melting studies confirmed

that all the duplexes formed between the DNA anthracene probes and RNA targets were

duplexes at room temperature (Table 3.5).

It has been previously observed that 1l anthracene (Figure 3.1) is able to interca-

late into the DNA, which stabilises the duplex. [33] There is some evidence of this here,

with modified duplexes having higher TM values compared to their unmodified coun-

terparts. As discussed previously, the duplex case of P1L:DT5 has a higher TM (TM =

46 ◦C) compared to DN:DT5 (TM = 42 ◦C), indicating the anthracene intercalates and

stabilises the duplex. The trend is not replicated with P1L:RT5 (TM = 41 ◦C) versus
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DN:RT5 (TM = 45 ◦C) or RN:RT5 (TM = 54 ◦C). It is understandable in the RN:RT5

comparison since RNA/RNA duplexes are fundamentally more stable than DNA/RNA

duplexes. Overall this suggests that the 1l anthracene does not intercalate as much

into the RNA duplex compared to the DNA duplex. However, the differences in melting

temperatures between the P1L and unmodified duplexes show that the mismatch duplex

retains more intercalation compared to the match duplex.

Fluorescence spectroscopy measurements were carried out for RNA target strands

RT1 and RT5 that were added to DNA anthracene probe P1L (Figure 3.12).

Figure 3.12: Fluorescence spectra showing the change in emission upon hybridisation of
anthracene probe P1L with targets RT1 and RT5. 1 µM DNA/RNA, 100 mM NaCl, 10
mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

It was observed that the emission intensity decreased as the matching RNA target

RT1 was added, yet the mismatching RNA target RT5 caused the emission to increase.

The addition of the matching target RT1 caused a 55% decrease in emission at λem = 426

nm, with respect to the probe alone. However, the mismatching target RT5 caused an
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increase in emission of 115%. For the equivalent DNA targets, the percentage emission

differences, compared to the probe alone, are a 70% decrease for the matching target and

a 77% increase for the mismatching target. Clearly the percentage values between RNA

and DNA targets vary, but interestingly the ON/OFF sensing trend remains the same

between matching and mismatching targets. As described for the DNA base adjacent

sensing, P1L was the only probe able to discriminate between DT1 and DT5. However

in the case of RNA, there is an exception to this rule. Interestingly the P1D also has the

same ON/OFF sensing trend for the base adjacent targets RT1 and RT5 (Table A.4),

which was not observed for the analogous DNA system. From previous studies, it is

suggested that there is a weaker interaction between the anthracene and DNA bases

in the 1d isomer system. [87] This is attributed to the d stereochemistry creating an

unfavourable alignment angle between the anthracene and the base pair stack which

results in less intercalation. Previous model studies have shown the 1l isomer to fit

into the duplex like a base, whereas the 1d isomer duplex is more deformed due to the

different orientation of the anthracene towards the minor groove. This causes the large

difference in melting temperatures between the 1l and 1d isomer systems (Table 3.6).

However in the case of RNA, the melting temperatures show that the 1d isomer now

stacks better with the RNA target compared to the analogous DNA target. Therefore

the 1d isomer has a better alignment for intercalation of the anthracene into the duplex,

which leads to the ON/OFF sensing observed in the fluorescence studies. In comparison

the 1l isomer does not stack as well with RNA, however the stacking seen with DNA is

very optimal.

In both cases the fluorescence emission intensity was shown not to change beyond

one equivalent of RNA target being added (Figure A.2). This shows that there is 1:1

DNA/RNA binding. As expected, there was no significant change in emission intensity

when random mismatching target RanR was titrated into the probe (Figure A.2).
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Table 3.6: Difference in melting temperatures ( ◦C) of DNA anthracene probes and
DNA/RNA targets, compared to the unmodified complementary DNA duplex (DN:DT1
= 55 ◦C). 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Probe/Target DT1 DT5 RT1 RT5

DN 55 -13 +5 -10

P1L -2 -9 -4 -14

P1D -7 -20 -5.5 -21

3.4.4 RNA base opposite sensing

Melting and fluorescence studies

The TM values of the duplex combinations are shown in full within Appendix A. The

longer linker probe P6D causes some stabilisation compared to the unmodified duplex

but not in all cases (Table 3.7).

Table 3.7: Melting temperatures ( ◦C) of DNA anthracene probes and RNA targets, plus
controls. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Probe/Target RT1 RT2 RT3 RT4 RT5

DN 60 56 46 47.5 45

RN 71 66 60 60.5 54

P6D 48 49 48.5 48.5 39.5

Similarly for the base opposite system, fluorescence spectroscopy measurements

were carried out on addition of RNA target strands to the probe P6D (Figure 3.13).

71



Figure 3.13: Fluorescence spectra showing the change in emission upon hybridisation of
anthracene probe P6D with targets RT1 - RT4 (RT5 in Appendix A) respectively. 1 µM
DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Since P6D has a longer carbon linker (Figure 3.1), it is possible it can discriminate

base opposite variations better than probes with shorter linker lengths. It was observed

that the emission intensity increased/decreased depending on the base opposite in the

RNA target added. The addition of RT2 (G base opposite) causes the greatest increase

in emission at λem = 426 nm (+207%) with respect to the probe alone and RT4 (U

base) is the only RNA target to cause a decrease in emission (-18%). In direct com-

parison to the base adjacent system the target RT1 (A base) now causes an increase in

emission (+136%), rather than a decrease. This sensing result mirrors previous DNA

linker studies [86], which show the purine bases cause a significant increase in emission.

The pyrimidines cause little change in emission (cytosine) or a decrease in emission

(thymine, analogous to uracil). This result again suggests that the nucleobase opposite

the anthracene has an effect on how efficiently the anthracene is able to intercalate into

the duplex.
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Despite there being some small trend differences between the RNA and DNA

target sensing systems, these results clearly show that the probe P6D can indeed dis-

criminate between the RNA bases located opposite to the anthracene. In all cases the

fluorescence emission intensity was shown not to change beyond one equivalent of RNA

target being added (Figure A.3). This again shows that there is 1:1 DNA/RNA bind-

ing. As expected there was no significant change in emission intensity when random

mismatching target RanR was titrated into the probe (Figure A.3).

3.4.5 RNA circular dichroism studies

Circular dichroism (CD) spectroscopy was additionally used to observe the interaction of

the anthracene within the duplex. DNA duplexes have a B-DNA conformation, whereas

RNA duplexes are A-DNA. The difference between the conformations lies in the RNA

duplex being a thicker right-handed duplex with a shorter distance between base pairs.

Characteristic features for B-DNA in CD spectra are a roughly equal positive peak

centred at 280 nm and negative peak at 245 nm, whereas for A-DNA it has a dominant

positive peak at 260 nm and negative peak at 210 nm. [133] The unmodified DNA/RNA

and RNA/DNA duplexes closely resemble the A-DNA conformation with a negative

peak at 210 nm and positive peak at 265 nm. However, there is also a small negative

peak at 245 nm, which is a B-DNA feature (Figure 3.14). It has been described in the

literature as a homologous conformation. [3, 136, 137]

73



Figure 3.14: Circular dichroism spectra of unmodified (DN) and modified (P1L) du-
plexes. 5 µM DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Previous studies of P1L with DNA targets have shown features in CD spectra

which indicate interactions between anthracene and nearby bases. [87] In this study no

shoulder peak at approx. 250 nm was observed which indicated less interaction between

anthracene and the adjacent RNA bases. This suggests the anthracene does not stack

well in the P1L and RNA target duplexes, and would also explain the lower melting

temperatures compared to the controls. CD spectra for the other RNA targets with

P1L can be seen in Appendix A. The P6D:RNA duplex CD spectra are also included

(Figure A.7) and display DNA/RNA hybrid CD characteristics.

3.5 2�OMe RNA SNP sensing

2�OMe RNA is an analogue oligonucleotide often used in cell studies due to its duplex

stability and its greater resistance to nucleases. [11, 138] It was therefore decided to carry

out preliminary sensing experiments using 2�OMe RNA. The structure of 2�OMe RNA

can be seen in Figure 3.15.
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Table 3.8: 2�OMe RNA Oligonucleotide Sequences

Oligonucleotide Sequence (5’ to 3’)

2OMeRN UGGACUCUCUCAAUG

2OMeT1 CAUUGAGAGAGUCCA

2OMeT4 CAUUGAGUGAGUCCA

2OMeT5 CAUUGAGAAAGUCCA

Figure 3.15: 2�OMe RNA structure

Compared to RNA, 2�OMe RNA has an extra methyl group on the 2� position.

In general, 2� modifications enhance the biostability and affinity of the oligonucleotide

towards their target in vitro and in vivo. [139] The 2�OMe RNA sequences synthesised

can be seen in Table 3.8. The 2�OMe RNA oligonucleotides were prepared similarly to

DNA (Chapter 2). The deprotection was performed using milder conditions by reducing

the temperature to 69 ◦C for 1 - 2 hours, or alternatively, leaving at room temperature

for 5 hours. The 2�OMe RNA sensing results can be used to reinforce the RNA sensing

trends that have been discussed so far.

Melting and fluorescence studies

Melting studies show that all duplexes are stable at room temperature (Table 3.9). The

unmodified duplex TM values agree with literature trends. [140–142] The unmodified

2�OMe RNA duplex with methylation on both strands causes a very high melting tem-
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Table 3.9: Melting temperatures ( ◦C) of 2�OMe RNA targets and DNA anthracene
probes. 5 µM each oligonucleotide, 100 mM NaCl, 10 mM sodium phosphate pH 7.0.

Probe/Target 2OMeT1 RT1 DT1

2OMeRN 79 72 52.5

DN 62 60 55

RN 74.5 69 53

perature of 79 ◦C, clearly indicating that the 2� modification causes a significant increase

in binding affinity. Table 3.9 shows that 2�OMe RNA oligonucleotides have a higher

affinity for RNA complementary targets than analogous DNA, which agrees with litera-

ture. [141] The 2�OMe RNA:RNA duplex is more stable than DNA:RNA, which in turn is

more stable than DNA:DNA. Therefore using 2�OMe RNA in future sensing experiments

is important in terms of thermodynamic stability. Some preliminary fluorescence mea-

surements between DNA anthracene probes and 2�OMe RNA target strands were carried

out (Table 3.10). The emission spectra are given in Figures A.8 and A.9, Appendix A.

The trends were similar to those for DNA and RNA target sensing i.e. the ON/OFF

sensing for base adjacent system and variable for the base opposite system. In terms of

values, the P1L results are very similar to the RNA values (Table A.4). The melting

temperature trends for the 1l modified duplexes are very similar to those observed for

RNA (Table 3.11). The 1l anthracene stabilises less for both RNA and 2�OMe RNA tar-

gets, compared to the unmodified probes. This is to be expected since the fluorescence

Table 3.10: Percentage differences in emission on addition of 2�OMe RNA targets to
DNA anthracene probes, relative to the probe alone. Percentage change in emission is
calculated at λem = 426 nm, compared to the probe alone. 1 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Probe/Target 2OMeT1 2OMeT4 2OMeT5

P1L -57% -52% +122%

P6D +178% +6% +48%
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Table 3.11: Melting temperatures ( ◦C) of 2�OMe RNA targets and DNA anthracene
probes. 5 µM each oligonucleotide, 100 mM NaCl, 10 mM sodium phosphate pH 7.0.

Probe/Target 2OMeT1 2OMeT5 RT1 RT5 DT1 DT5

2OMeRN 79 64 72 63.5 52.5 41

DN 62 47.5 60 45 55 42

RN 74.5 60.5 69 54 53 35

P1L 53 43.5 51 41 53 46

results between RNA and 2�OMe RNA show similarities.

The P6D values are similar to both the DNA and RNA results (Table A.4),

however one noticeable difference was a small positive value for 2�OMe GUG rather

than the previously observed negative value in all cases. A possible explanation would

be that the anthracene is able to intercalate more effectively since the uracil, with its

2�OMe modification, is larger and less able to stack efficiently (Table 3.12). This explains

why the RT4 targets (U base opposite) caused less of a decrease compared with analogous

DNA. As extra modifications occur the base opposite allows the anthracene to intercalate

more, which has already been observed for the purines in DNA sensing (Section 3.3.4).

This ties in well with the 2�OMe RNA and RNA targets (2OMeT4 and RT4 respectively)

causing a bathochromic shift. This suggests the anthracene is able to intercalate more

compared to the equivalent DNA target DT4, which shows no peak shift. [143, 144]

Table 3.12: Melting temperatures ( ◦C) of 2�OMe RNA targets and DNA anthracene
probes. 5 µM each oligonucleotide, 100 mM NaCl, 10 mM sodium phosphate pH 7.0.

Probe/Target 2OMeT1 2OMeT4 RT1 DT1

2OMeRN 79 69 72 52.5

DN 62 52 60 55

RN 74.5 58.5 69 53

P6D 50.5 52 48 49
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Circular dichroism studies

2�OMe RNA duplexes give an A-form conformation like RNA rather than the B-form

DNA (Appendix A, Figure A.10). In fact, it only takes a couple of 2�OMe RNA modifi-

cations to DNA to cause a transition from B-form to A-form. [145] It would be expected

that hybrid duplexes between 2�OMe RNA and RNA would be A-form also. They are

shown to be very similar (Appendix A, Figure A.11). It was also assumed that 2�OMe

RNA and DNA would also be A-form given that 2�OMe RNA has such a domineering

impact on the structure. However, Figure A.11 shows the hybrids to be homologous be-

tween the A-form and B-form. This was seen before with RNA and DNA hybrids, and

on closer inspection, the CD spectra are very similar. The 2OMeRN:DT1 and RN:DT1,

and vice versa DN:2OMeRN and DN:RT1, have the same features as described for hy-

brids previously (Figure A.4). The DNA anthracene probe with 2�OMe RNA targets

causes similar CD spectra as previously seen with analogous RNA targets (Figure 3.16),

which is pleasing since the unmodified cases are so similar.

Figure 3.16: Circular dichroism spectra of unmodified (DN) and modified (P1L) 2�OMe
RNA duplexes. 5 µM DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate
buffer.
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Table 3.13: CDKN1A oligonucleotide sequences. X denotes the anthracene monomer. n
is the carbon linker length and l/d denotes the stereochemistry.

Oligonucleotide Sequence (5’ to 3’)

ZDN AGTCGCGTCTCAGCT

ZP(n)(l/d) AGTCGCGXCTCAGCT

ZDT1 AGCTGAGCCGCGACT

ZDT2 AGCTGAGACGCGACT

ZRT1 AGCUGAGCCGCGACU

ZRT2 AGCUGAGACGCGACU

In the P1L:RNA CD spectra seen before (Figure 3.14), it was observed that

the anthracene did not stack well since there was a lack of dominant shoulder peak at

approx. 250 nm. An exception is observed for the P1L:2OMeT1 duplex. This is at the

expense of the helical twist though, with the positive peak at 270 nm much reduced

compared to the P1L:2OMeT5 case. The differences in CD spectra are expected since

earlier DNA studies showed that even single base mismatches caused distortions to the

duplex. [33]

3.6 CDKN1A gene SNP sensing

An advancement was to test the DNA anthracene probe against a naturally occurring

SNP sequence. The CDKN1A gene sequence chosen is associated with Alzheimer’s dis-

ease. [45] Although it is a different sequence from studies discussed so far, there is a one

base difference, C to A, for wildtype and variant respectively. Initial work with sequence-

specific DNA anthracene probes (with varying linker length and stereochemistry as be-

fore) were used to sense the wildtype/variant DNA targets. The wildtype/variant RNA

target equivalents were synthesised (Table 3.13) and tested in the same way. The C and

A SNP’s (underlined) correspond to the wildtype and variant targets respectively.

One of the more exciting and promising results of the CDKN1A study was testing
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mixtures of targets. This involved adding the DNA anthracene probe to known percent-

age mixtures of the two targets. Collectively the emission results were used to generate

a calibration line, which could then allow quantitative measurements from unknown

samples. Initial studies using DNA show this to be possible.

3.6.1 CDKN1A gene DNA SNP sensing

All of the sequence-specific DNA anthracene probes were tested with the wildtype/variant

DNA targets. In general the variant ZDT2 (A SNP) caused the emission to increase at

λem = 426 nm (+124%) and the wildtype ZDT1 (C SNP) caused the emission to decrease

(-39%), relative to the ZP5L probe only. It is pleasing to note the ON/OFF sensing ob-

served for the non-biological sequence studies is reproduced here. It was found that

ZP5L gave the biggest percentage difference between the two SNP targets and was used

for further studies. The choice of a base opposite sensing system over base adjacent was

due to the smaller difference in melting temperatures between the two targets.

3.6.2 CDKN1A gene RNA SNP sensing

Melting studies showed that all DNA/DNA and DNA/RNA duplexes were stable at

room temperature (Table 3.14). For full results see Table A.7, Appendix A. Circular

dichroism studies showed all unmodified and modified duplexes have B-DNA conforma-

tion (for example, Figure A.13). All DNA anthracene probes were tested with the RNA

targets and full results can be seen in Table A.6, Appendix A. Overall, the ON/OFF

Table 3.14: Melting temperatures ( ◦C) of CDKN1A DNA and RNA targets with DNA
anthracene probes, plus controls. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium
phosphate buffer.

Probe/Target ZDT1 ZDT2 ZRT1 ZRT2

ZDN 73 67 70 67

ZP5L 63 60 57 55.5
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sensing trend for the wildtype/variant is replicated for RNA as it was for DNA i.e. the

ZRT2 (A SNP) causes emission to increase and ZRT1 (C SNP) to decrease, relative to

the probe only. The increase in emission for ZRT2 was seen to be not as great com-

pared to ZDT2, and in some cases little or no change was seen. The greatest percentage

difference between RNA targets was for ZP4D (∆ = 75%). For consistency the ZP5L

was focussed on to allow comparison to previous CDKN1A DNA work within the group.

The ZRT2 target caused a 12% increase in emission and the ZRT1 target a 47% decrease

in emission at λem = 426 nm, relative to the probe alone (Figure 3.17). In both cases

the fluorescence emission intensity was shown not to change beyond one equivalent of

RNA target being added (Figure A.12). This again shows that there is 1:1 DNA/RNA

binding.

Figure 3.17: Fluorescence spectra showing the change in emission upon hybridisation of
anthracene probe ZP5L with targets ZRT1 (C SNP) and ZRT2 (A SNP) respectively. 1
µM DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Overall there is a 59% change in emission between the RNA targets (approx. av-
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erage for all the probes tested), which although significantly less than the 163% change

between analogous DNA targets, is still worth pursuing for future sensing experiments.

Comparisons between the CDKN1A sensing system and the non-biological sequence

sensing previously discussed does not yield anything of relevance beyond purines oppo-

site anthracene causing the emission to increase and pyrimidines causing emission to

decrease. Previous work has shown that neighbouring bases to the central base have a

significant impact on emission, despite the respective probes both having a 5l linker. [33]

3.6.3 CDKN1A gene RNA quantitative SNP sensing

In most biological cases, SNPs occur heterozygously rather than homozygously (Sec-

tion 1.3, Chapter 1). Previously only the homozygous case was considered (although a

50:50 mixture of targets was tested in a previous study [88]). If there were mixtures of

the two SNP targets would the fluorescence response be linear? Could this lead to quan-

titative measurements of unknown mixtures being determined from a calibration graph?

This was shown to be possible with mixtures of CDKN1A DNA targets and ZP5L an-

thracene probe carried out at a probe concentration of 1 µM (Figure 3.18). The results

were shown to be reproducible with ZP5L and RNA target mixtures (Figure 3.19).
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Figure 3.18: Percentage difference in emission of ZP5L at λem = 426 nm, with respect
to probe alone, upon addition of mixtures of DNA targets. The percentage of ZDT1
(C SNP) is quoted: the remaining percentage is made up of ZDT2 (A SNP). 1 µM
DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm. A linear
regression fit of the data is added (y = -0.6383x + 122.63, R2 = 0.9989).
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Figure 3.19: Percentage difference in fluorescence of ZP5L at λem = 426 nm, with
respect to probe alone, upon addition of mixtures of RNA targets. The percentage of
ZRT1 (C SNP) is quoted: the remaining percentage consists of ZRT2 (A SNP). 1 µM
DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm. A
linear regression fit of the data is added (y = -0.499x + 6.1796, R2 = 0.9902)

.

If there is a significant difference in melting temperatures for the two targets

with a probe then kinetics will affect the emission of target mixtures. The melting tem-

peratures of ZP5L with RNA targets (Table 3.14) showed a difference of approximately

1.5 ◦C which is small enough not to cause significant preferential binding.

3.7 Conclusion

DNA SNP sensing has been shown to be successful in discrimination of single base differ-

ences based on emission and not relying solely on hybridisation. RNA SNP sensing can

be carried out in the same way using DNA anthracene probes. Both base adjacent and

base opposite sensing strategies are replicated. Differences in emission trends are caused

by the change in conformation of the hybrid duplex and the efficiency of anthracene
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intercalation into the duplex. This will be further investigated through modelling and

NMR studies within the group. The 2�OMe RNA sensing results extrapolate from those

results observed for RNA targets. The results also show promise for a full or partial

2�OMe RNA anthracene probe which could show resistance to cell degradation. 2�OMe

RNA probes have already shown promise in targeting miRNA due to their increased

stability of duplexes; faster kinetics of hybridisation and ability to bind in conditions

that DNA cannot. [10, 146] Although interesting, an RNA anthracene probe would be

difficult to synthesise and more susceptible to nucleases. The DNA and RNA SNP sens-

ing strategies discussed in this chapter shall be further investigated within a cellular

environment in Chapter 5. The ON/OFF RNA SNP sensing result for a sequence as-

sociated with Alzheimer’s disease also opens the door for future assay developments.

Finally, mixtures of targets give a linear response with RNA targets, allowing unknown

alleic contributions to be determined.
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Chapter 4

Optimising Cy3 and Cy5 tagged

DNA delivery to cells

4.1 Introduction

An important goal of this project was to replicate the SNP sensing strategies described

in Chapter 3 in a cellular environment. This is further discussed in Chapter 5. However

there were several issues that needed to be considered before using this approach, centred

around first the most effective method for delivery and second the fate of the DNA once

it is introduced into the cell. As far as the latter is concerned, several strategies [78, 121,

147] have been employed to mitigate factors such as susceptibility to degradation by

nucleases [148], non-specific binding to proteins and unwanted migration to the nucleus

if the interaction with non-nuclear targets is required. [149]

The most popular technique for effecting non-viral delivery of DNA into cells (i.e.

transfection as opposed to transduction) is to use chemical reagents that facilitate the

passage of polyanionic DNA through the membrane bilayer. [150] DNA modification has

also been shown to enhance cell delivery, with attached peptides facilitating chemical

transfection [151, 152] and Locked Nucleic Acids (LNA) shown to have been taken up
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without the use of transfection reagents. [153] Another uptake methodology is microin-

jection, which has been used in a study comparing the cell stability of phosphodiester

and phosphorothioate oligonucleotides. [154, 155] A common alternative to microinjec-

tion is electroporation, which uses a rapid and high-voltage electric pulse that causes

pore formation in the membrane. [156] Nevertheless there is a sparsity of literature that

compares different transfection methodologies and their possible effect on intracellular

DNA stability. This chapter describes a controlled fundamental study that was under-

taken to compare the various techniques for transfection of DNA into cells, to include

invasive methods such as microinjection and electroporation, and non-invasive methods

such as chemical transfection.

Fluorescence microscopy was chosen as the method for monitoring cell transfec-

tion through the use of fluorophore-tagged DNA strands [106], which is by far the most

common way of tracking cellular processes in vitro. Doubly tagged single strands or

duplexes were chosen to allow transfection to be monitored by Förster resonance energy

transfer (FRET). FRET is the physical process that occurs when the excited-state en-

ergy of a donor fluorophore is transferred nonradiatively to an acceptor in the excited

state [22], which results in quenching of the donor fluorophore and excitation of the

acceptor (Figure 4.1).

Figure 4.1: Schematic diagram of FRET. The donor fluorophore is able to donate energy
to the acceptor fluorophore if they in close proximity. The donor emission must also
overlap with the acceptor excitation spectra.

The efficiency of energy transfer depends on the spectral overlap of the emis-

sion and absorption spectra of the donor and acceptor respectively, as well as their
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respective distance and orientation. The distance dependence of FRET can monitor

differences over the range of 10-100 Å, which is ideal for macromolecules such as nu-

cleic acids. [13, 157] FRET can be used to detect and quantify sequences extracted from

biological samples [158–160] including real-time PCR assays. [161–163] It has also been

widely used to detect hybridisation of donor- and acceptor-labelled complementary nu-

cleic acid strands. [59, 164–166] This in turn can allow the integrity of a duplex to be

monitored on entry to the cell, which is relevant to this study. As for the choice of FRET

pair, fluorophores Cy3 (donor) and Cy5 (acceptor) are commonly used in nucleic acid

experiments due to their easy attachment to DNA, high FRET efficiency, relatively low

photobleaching and long emission wavelengths away from the autofluorescence region of

cells. [57]

As described below, having confirmed that Cy3-Cy5-tagged DNA displays FRET

in a cuvette in its single stranded and duplex form, a comparison of the effectiveness

of delivery of intact DNA to cells using FRET is then described, via various techniques

that include chemical transfection, microinjection and electroporation. The fundamental

work demonstrates how the choice of technique is crucial for optimising the stability of

DNA strands and duplexes in a cellular environment.

4.2 Results

4.2.1 Synthesis and characterisation of DNA probes

Table 4.1 shows the main oligonucleotides synthesised for this study. There are two

further control sequences in Table B.1, Appendix B.

Tagged DNA strands were prepared by automated solid phase synthesis using

conventional phosphoramidite chemistry, as described previously in Chapter 2. Cy3 and

Cy5 phosphoramidites (Glen Research) were tagged to the 5� and 3� termini. Comple-

mentary strands S1 and S2 containing respectively a Cy3 and a Cy5 fluorophore at the
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Table 4.1: Cy3 and Cy5 tagged DNA sequences synthesised.

Oligonucleotide Sequence (5’ to 3’)
Cy3 strand (S1) Cy3-TGGACTCTCTCAATG

Cy5 strand (S2) Cy5-CATTGAGAGAGTCCA

Cy3 and Cy5 strand (S3) Cy5-TGGACTCTCTCAATG-Cy3

5� terminus were prepared for duplex studies, in addition to a strand containing the

fluorophores at each end (S3). Each strand was purified by reversed phase HPLC and

characterised by mass spectrometry, with UV melting studies confirming that the S1:S2

duplex was stable at both room temperature and at 37 ◦C in salt conditions (110 mM -

10 mM sodium, respectively) appropriate for cell studies (Table B.2, Appendix B).

4.2.2 Cuvette fluorescence spectroscopy

For the strand S3 as well as the S1:S2 duplex, the Cy3-Cy5 fluorophore pair was expected

to be in close enough proximity to display FRET (Figure 4.2). Figure B.1, Appendix B

gives the normalised excitation and emission spectra of Cy3 and Cy5-tagged DNA, with

the area of overlap labelled. This demonstrates the suitability of Cy3 and Cy5 as a

FRET pair when tagged on DNA.

FRET was indeed evidenced by fluorescence spectroscopy studies in a cuvette (10 mM

sodium phosphate buffer, 100 mM NaCl, pH 7.0, 1 µM strand concentration) in which

the emission intensity from the Cy3 and Cy5 tags was monitored over the range 500-800

nm, when exciting only the Cy3 chromophore directly. In particular a titration study

involving the addition of S2 to S1 indicated that the Cy3 signal at 570 nm decreased,

while the signal for Cy5 at 670 nm increased, with no further increases observed after

the addition of one molar equivalent of the target, consistent with 1:1 duplex formation

(Figure 4.3).

89



Figure 4.2: Schematic of Cy3 and Cy5 tagged DNA. a) Complementary DNA strands
are individually tagged with Cy3 and Cy5 fluorophores. When in close enough proximity
the Cy3 can donate energy to Cy5 through FRET. In this case, FRET can only occur
when the two complementary strands form a duplex. b) Single strand DNA can be
tagged at either end with Cy3 and Cy5. FRET can occur as long as the single strand
remains intact.

Figure 4.3: Emission spectra of Cy3 and Cy5 DNA. Titration of Cy5 tagged DNA (S2)
into Cy3 tagged DNA (S1), showing resulting Cy5-Cy3 FRET upon duplex formation
(λex = 554 nm). The emission intensities centred at 570 nm and 670 nm correspond to
emission from Cy3 and Cy5 respectively (conditions: 1 µM DNA, 100 mM NaCl, and
pH 7.0 sodium phosphate buffer). The spectra are background subtracted, including the
spectrum of S2 at 554 nm, which gave a small signal caused by direct excitation of the
Cy5 chromophore.
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Control studies indicated little or no emission at 670 nm when S2 was irradiated

alone in the absence of S1 at 554 nm under the same conditions. Similar results and

trends were obtained for the doubly-tagged strand S3. The FRET signal from the S1:S2

duplex and S3 were then studied in Chinese hamster ovary (CHO) cell lysate at 37 ◦C

in the absence and presence of DNase (Figures B.2 and B.3 respectively, Appendix B).

In cell lysate alone, over a period of 2 hours, only small changes in the emission spectra

were observed. However as expected, the addition of nuclease brought about a rapid

decrease in the FRET signal for both systems, indicating backbone cleavage of the DNA

in either its single-stranded or duplex form. [59]

4.2.3 Fluorescence microscopy on fixed cells

Having observed the desired FRET effect under cuvette conditions, the same strands

were then exposed to Chinese hamster ovary (CHO) cells that had previously been

fixed using methanol, to allow the strands to readily permeate into the cell, which

was otherwise not possible with live cells. Other fixatives were tested (Section 2.7.1,

Chapter 2) but were not as effective as methanol. The successful transfection of S1:S2

as an intact duplex was evidenced by FRET (Figure 4.4) at room temperature using

scanning laser confocal microscopy.
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Figure 4.4: Fixed cell confocal microscopy images. Left: Cy3 and Cy5 tagged DNA
duplex (S1:S2) added to fixed/permeabilised cells and imaged using confocal microscopy.
Images A/E represents the Cy3 channel; B/F the Cy5 channel; C/G the bright field
channel and D/H an overlay of all the channels. Images A-D are excited with the
543 nm laser. Images E-H are excited with both the 543 and 633 nm lasers. Right:
Intracellular fluorescence intensity from images A/B and E/F. Data are expressed as
mean ± s.e.m from at least ten cells (p<0.001).

The key result was the observation of a signal in image B (Cy5 channel) upon

excitation at the Cy3 absorption wavelength, with a control study indicating no emis-

sion observed under these conditions when fixed cells were transfected with S2 alone

(Figure B.4). Quantitative data extracted from the intensities of the cell images in Fig-

ure 4.4 also showed significant FRET based on the ratio between the Cy5 intensity and

Cy3 intensity upon excitation at the Cy3 absorption wavelength only (Figure 4.4, first

two bars on chart). The in vitro formation of a duplex was also indicated by FRET

when the strands were added sequentially (S1 followed by S2) in order to replicate the

cuvette experiment and show that the sequences were able to find each other in a cell

environment (Figure B.5, Appendix B). A similar FRET signal was also seen on the

addition of S3 to fixed cells but as expected, non-complementary Cy3 and Cy5 tagged

DNA strands, added either together or sequentially, were shown not to display FRET

(Figures B.6 and B.7 respectively, Appendix B). To enable a closer comparison with the

cuvette studies, emission spectra were also recorded in fixed cell samples using spectral

imaging inverted confocal microscopy (Figure B.8, Appendix B), and these gave broadly

similar profiles, confirming the presence of FRET in fixed cells within both the S1:S2
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duplex and the S3 strand.

4.2.4 Live cell fluorescence microscopy

Whereas fixed cells could be readily transfected by simple exposure to a PBS solution

of the modified DNA strands in their single stranded or duplex forms, as expected,

established transfection methodologies were required to transfect live cells, as described

below.

Chemical transfection

The preformed S1:S2 duplex in PBS was treated with the chemical transfection agent

Lipofectamine. FRET was still observed for the complex between DNA and Lipofec-

tamine (Figure B.9, Appendix B) prior to incubation with CHO cells and visualisation

by confocal microscopy as before. Once again, excitation of the Cy3 and Cy5 fluo-

rophores at their excitation wavelengths indicated that they were both present within

cells and co-localised. However this time when only the Cy3 laser was turned on i.e.

only Cy3 excitation, no Cy5 signal was observed, and hence no FRET was occurring

(Image C, Figure 4.5).
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Figure 4.5: Chemical transfection confocal microscopy images. Left: Cy3 and Cy5
tagged DNA duplex (S1:S2) added to cells via chemical transfection using Lipofectamine
and imaged using confocal microscopy. Images A/E represents the Cy3 channel; B/F
the nuclear stain channel; C/G the Cy5 channel and D/H an overlay of all the channels.
Images A-D are excited with a 543 nm laser only. Images E-H are excited with both the
543 and 633 nm lasers. Right: Intracellular fluorescence intensity from images A/C and
E/G. Data are expressed as mean ± s.e.m from at least ten cells (p<0.001).

Quantitative data in Figure 4.5 clearly shows negligible Cy5 signal compared to

Cy3 signal upon excitation at the Cy3 absorption wavelength only (Figure 4.5, first

two bars on chart). Similar results were observed for the chemical transfection of S3,

which meant that the absence of FRET being ascribed to dissociation of the duplex

in the cellular environment could be essentially ruled out. Emission spectra were also

measured for chemically transfected cell samples using spectral imaging inverted confocal

microscopy (Figure B.11, Appendix B), which confirmed the absence of a FRET signal

under these conditions. It was observed that the Cy3 and Cy5 fluorescence was to

some extent co-localised in a punctate pattern rather than being evenly distributed.

These results were consistent with the tagged DNA being unable to be released from

endosomes once within the cell and subsequently digested by nucleases. [152, 167, 168] It

is hypothesised that the tagged oligonucleotides, whether in their single strand or duplex

forms are being degraded within vesicles on entry to the cell via endocytosis. When

strands S1 and S2 were transfected into cells individually under these conditions, there

was shown to be no crosstalk between the Cy3 and Cy5 channels, since upon excitation,

only signals from their respective channels were observed (Figure B.12, Appendix B).
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As expected, non-complementary Cy3 and Cy5 oligonucleotides added either together or

sequentially via chemical transfection were also shown not to display FRET (Figure B.13,

Appendix B).

Microinjection

Cy3 and Cy5 oligonucleotides S1 and S2 were then added to cells via microinjection as a

preformed duplex. Under these conditions and in contrast to the chemical transfection

study, this time when only the Cy3 chromophore was excited using a 543 nm laser, a

signal was observed in the Cy5 channel, confirming the occurrence of FRET (Image B,

Figure 4.6).

Figure 4.6: Microinjection confocal microscopy images. Left: Cy3 and Cy5 tagged DNA
duplex (S1:S2) added to cells via microinjection and imaged using confocal microscopy.
Images A/E represents the Cy3 channel; B/F the Cy5 channel; C/G the bright field
channel and D/H an overlay of all the channels. Images A-D are excited with the
543 nm laser. Images E-H are excited with both the 543 and 633 nm lasers. Right:
Intracellular fluorescence intensity from images A/B and E/F. Data are expressed as
mean ± s.e.m from at least ten cells (p<0.001).

Quantitative data in Figure 4.6 clearly shows significant Cy5 signal compared

to Cy3 signal upon excitation at the Cy3 absorption wavelength only (Figure 4.6, first

two bars on chart). Once again the control study involving the microinjection of the

Cy5 strand S2 only and excitation at 543 nm gave a negligible signal, which confirmed

that the FRET signal was genuine (Figure B.14, Appendix B). Other control studies,
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which included the microinjection of the doubly-tagged S3 strand and that of a non-

complementary strand pair, gave the expected results, with FRET only occurring for

the S3 system (Figures B.15 and B.17 respectively, Appendix B).

Electroporation

Cy3 and Cy5 oligonucleotides (S1 and S2) were next added to cells via electroporation.

The results were similar to the microinjection studies in that when the Cy3 chromophore

in the S1:S2 duplex was excited using a 543 nm laser, a signal present in the Cy5 channel

was observed (Image B, Figure 4.7) to indicate FRET, which was again supported by

control studies on S2 alone.

Figure 4.7: Electroporation confocal microscopy images. Left: Cy3 and Cy5 tagged DNA
(S1:S2) duplex added to cells via electroporation and imaged using confocal microscopy.
Images A/E represents the Cy3 channel; B/F the Cy5 channel the nuclear stain channel;
C/G the bright field channel and D/H an overlay of all the channels. Images A-D are
excited with a 543 nm laser only. Images E-H are excited with both the 543 and 633 nm
lasers. Right: Intracellular fluorescence intensity from images A/B and E/F. Data are
expressed as mean ± s.e.m from at least ten cells (p=0.001 to 0.01).

Quantitative analysis of the cell images in Figure 4.7 confirmed the FRET signal,

although the ratio of the Cy5 signal to Cy3 signal was smaller than for microinjection.

Sequential studies involving the addition of S1 and S2 were less conclusive, possibly due

at least in part to the damaging effect of physically perturbing the live cell environment

more than once. Once again the addition of non-complementary strands gave no FRET

signal, which was consistent with the S1:S2 duplex being intact inside cells (Figure B.21,
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Appendix B). Compared to microinjection, the fluorescence was seen to be not as

evenly distributed throughout each cell. This would suggest that the DNA strands show

a tendency to accumulate in distinct areas.

4.3 Discussion

The results from the cuvette studies clearly indicate that energy transfer via FRET can

occur both intramolecularly in the case of S3 and intermolecularly upon formation of

the S1:S2 duplex. Melting studies confirmed the stability of the duplexes under cellular

conditions. Furthermore cell lysate studies demonstrate that these systems can in prin-

ciple remain intact over a period of a few hours if they are not exposed to degrading

nucleases. However results on these systems in cells clearly indicate that the type of

technique employed and the status of the cell (fixed or live) have a strong bearing on

the degree to which FRET imaging can be successfully observed. Cells are commonly

fixed and permeabilised with alcohols or formaldehyde. However this is incompatible

with live cell imaging and the effect of fixation on DNA in cells is uncertain. Neverthe-

less, these studies clearly indicate that DNA can easily enter fixed/permeabilised cells,

as evidenced by the observation of a strong FRET signal when tagged DNA is added

either as a duplex or sequentially. That DNA duplexes of this length can remain in-

tact from either simultaneous or sequential addition to fixed cells is clearly shown from

these studies, with no FRET observed when using non-complementary strands under

the same conditions. The transfection of live cells with DNA was certainly found to

be more challenging, with generally less material entering compared to fixed cells. De-

spite these strands being relatively small in size, the hydrophilicity and negative charge

of the DNA backbone prevents it from crossing biological membranes of live cells un-

aided. Although chemical transfection has been reported as being relatively inefficient

(<80%) [167, 169] and slow (delivery times ∼4 hours), it is well established that lipid-
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based chemical transfection reagents help to mask the negative charge, which allows

binding to the cell membrane, uptake by receptor-mediated endocytosis and deposition

into endosomes. [170] The studies indicate that this technique does indeed facilitate cell

transfection of single or double stranded DNA. However in each case, no FRET signal was

observed, even though the respective fluorophores were shown to be co-localised. Fur-

thermore the bright spots of fluorescence from both fluorophores suggest that the DNA

is not released from the endocytotic vesicles that are formed, which is consistent with nu-

clease degradation and supports similar findings in previous studies. [152, 167, 171] This

interpretation was supported by repeating the transfection experiments on the S1:S2

duplex and S3 in the presence of bafilomycin, which is known to block degradation by

preventing the acidification of the endosomal vesicles. [172, 173] It was interesting to

note that under these conditions, DNA was found to be still internalised into vesicles

but no longer degraded, with a FRET signal now observed (Figure B.22, Appendix B).

Alternative live cell transfection techniques tested, which were also unsuccessful, were

chloroquine transfection [174], calcium phosphate transfection [175, 176] and the physi-

cal method of scrape loading. [177] In contrast to chemical transfection, degradation of

DNA in cells does not appear to be a major issue when microinjection or electropora-

tion is used as the transfection technique. In each case, when the DNA was added, the

S1:S2 duplex and the S3 single strand stayed intact, as evidenced by the observation of a

FRET signal. In the case of microinjection, the fluorescence signal was generally evenly

distributed throughout the cell. Microinjection can precisely add a controlled dose of

material to a single cell, either to the nucleus or cytoplasm. [178, 179] However as found

here, despite the high transduction efficiency, microinjection typically only treats a small

proportion of cultured cells and also can lead to physical stress. [180] By comparing the

quantitative data in Figures 4.6 and 4.7, it can be seen that the FRET efficiency, de-

fined here as the ratio between the Cy5 and Cy3 intensity upon excitation at the Cy3

absorption wavelength only, is approximately halved for electroporation compared to
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microinjection. Despite this, electroporation is a less cumbersome technique, although

under the conditions used here, the cell distribution was less uniform than found using

microinjection, which indicates a possible accumulation of the DNA in vesicles. However

although FRET was not widely observed across a large number of cells, it appears that

any vesicles that may form are less primed to degrade the DNA than those formed via

the endocytotic pathway.

In conclusion, this work represents a relatively rare example of a controlled study

that compares a range of different DNA transfection techniques using both fixed and

live cells. The work underlines the issues that surround the stability and viability of

DNA delivered into live cells by lipid-based transfection, whether the DNA is single or

double stranded. In the field of nucleic acid chemistry, it appears that this technique is a

more viable option when using other types of nucleic acid (e.g. siRNA) that are capable

of entering the cell intact via endocytotic pathways. [181] Otherwise suitable inhibitors

have to be used (e.g. bafilomycin) or chemical modifications to the nucleic acid structure

have to be made to mitigate nuclease degradation. [182–184] On the other hand, the

studies here indicate that the techniques of microinjection and electroporation are both

viable as alternative methods for transfecting cells with single-stranded or duplex DNA.

The work provides a further example of the power of FRET in probing the fate of

DNA duplexes in cells and as such is relevant to related hybridisation studies in living

cells. [104, 185, 186] Continued work in this area using different nucleic acids, targets,

fluorophores, delivery techniques and conditions will only increase our understanding

of how DNA and its derivatives may be delivered into cells efficiently and effectively.

Finally this work provides a basis of understanding in the techniques to be used for

advancing the DNA anthracene probes and SNP sensing systems (Chapter 3) for use in

a cellular environment.
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Chapter 5

Quantification of SNP sensing in

a cellular environment with DNA

anthracene probes

5.1 Introduction

Oligonucleotide probes are a popular choice for targeting DNA and RNA. These probes

are commonly designed for cellular imaging purposes, and in particular for the direct

targeting of mRNA in vitro. [18, 90] This is because the extraction of RNA, reverse

transcription to cDNA and amplification are time-consuming and prone to error. [65]

However, targeting DNA and RNA in a live cell also brings complications such as probe

stability and temperature restrictions (Section 1.6). A common compromise is the fix-

ation of cells and tissue. This provides a cellular environment but has none of the

degradation issues since enzymes are deactivated. One of the key aims of this project

was to test the SNP sensing protocol using the DNA anthracene probes in a cellular

environment.

As discussed in Section 1.4.2, Chapter 1, the DNA anthracene probes developed
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by Tucker et al. give a robust and reliable SNP sensing method at room temperature.

The method has been shown to be biologically compatible and can test probe sequences

with SNPs associated with prostate cancer. [88] Although the cell delivery of DNA probes

had been optimised as described in the previous chapter, it was unclear whether the

signal from a DNA anthracene probe would be detectable in a cellular environment

since its emission overlaps with short wavelength (visible spectrum) autofluorescence.

Other considerations were whether changes in emission caused by a single base variation

could be detected in a cellular environment and whether changes in emission for the

DNA anthracene probe upon hybridisation could be quantified and match those found

in a cuvette.

Given the concerns over the excitation/emission of anthracene in a cellular en-

vironment, an alternative probe was designed to emit at a longer wavelength. Acridine

is a known DNA intercalator and cell-permeant used in cell-cycle studies and as a lyso-

somal dye. [187, 188] It has a longer excitation wavelength (maximum λex = 446 nm

in ethanol) [189] than anthracene (350 nm in water (5% MeCN)) but a similar struc-

ture makes base-dependent emission possible. [190] Commercially available acridine yel-

low phosphoramidite was therefore chosen for incorporation into oligonucleotides (Fig-

ure 5.1). [190]

In this chapter, the quenching mechanisms for the two fluorescent probes are com-

pared both in and out of a cellular environment. Oligonucleotide delivery to methanol

fixed/permeabilised cells was performed and analysed by scanning laser confocal mi-

croscopy. SNP sensing trends were analysed and quantified computationally in a cellular

environment. An innovative application of an evolutionary algorithm to quantify SNP

sensing in a cellular environment was also developed. This involves an adapted method

for quantifying intensity in fluorescence images based on Gaussian Mixture Modelling.

Applying this model results in the identification of single base changes from fluorescent

cell images.
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Figure 5.1: X: Synthesised anthracene phosphoramidite (Tucker et al.) Y: Commercially
available acridine yellow phosphoramidite (Glen Research).

5.2 Synthesis

The DNA anthracene probes and DNA targets described in Chapter 3 were used again

here. DNA acridine probes (PAcr) were synthesised using acridine yellow phospho-

ramidite (Glen Research) (Figure 5.1) which was inserted centrally in DNA. The DNA

acridine probe was deprotected with 0.4 M methanolic sodium hydroxide for 17 hours

at room temperature and then removed from the solid support and neutralised with 2

M TEAA. DNA acridine probes were a racemic mixture. General DNA synthesis and

purification details are described in Chapter 2. Table 5.1 lists all the modified and un-

modified DNA oligonucleotides used. A full list of oligonucleotides used in the thesis can

be seen in Table G.1.

Table 5.1: DNA sequences synthesised. X denotes the anthracene monomer. Y denotes
the acridine monomer. n is the carbon linker length and l/d denotes the stereochemistry.

Oligonucleotide Sequence (5’ to 3’)

DN TGGACTCTCTCAATG

P(n)(L/D) TGGACTCXCTCAATG

PAcr TGGACTCYCTCAATG

DT1 CATTGAGAGAGTCCA

DT5 CATTGAGAAAGTCCA

RanD GTATTCCTCTGGGAA
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5.3 Melting studies

Thermal melting studies were undertaken to confirm DNA duplex formation and duplex

stability at room temperature (Table 5.2). The explanation for differences in TM be-

tween the DNA anthracene probes versus unmodified probes was discussed in Chapter 3.

Acridine also gives some stability to the fully matched duplex PAcr:DT1 despite the loss

of hydrogen bonding in the central sequence position. This indicates a similar interac-

tion to the base opposite sensing anthracene system with the acridine intercalating into

the duplex (Section 3.3.4). In fact, acridine is known from the literature to bind nucleic

acids via an intercalative mode and to stabilise DNA duplexes. [191] For the PAcr:DT5

duplex there is less evidence of intercalation since the TM is lower than the equivalent

unmodified duplex DN:DT5.

Table 5.2: Melting temperatures ( ◦C) of DNA anthracene and acridine probes with DNA
targets, plus controls. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate
buffer.

Probe/Target DT1 DT5

DN 55 42

P1L 53 46

PAcr 53 41.5

5.4 Fluorescence studies

Excitation and emission spectra for PAcr and P1L were recorded under the usual con-

ditions (1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer) and are

displayed in Figure 5.2. P1L and PAcr have similar Stokes shift; 76 nm and 73 nm

respectively.
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Figure 5.2: (A) Probe PAcr: Excitation spectrum (blue) with λem = 494 nm. Emission
spectrum (red) with λex = 421 nm. (B) Probe P1L: Excitation spectrum (blue) with
λem = 426 nm. Emission spectrum (red) with λex = 350 nm. Black line indicates the
microscope laser excitation wavelength (PAcr = 457 nm, P1L = 402 nm). Green dashed
line indicates the emission range collected on the microscope (PAcr = 465-500 nm, P1L
= 425-475 nm). Data is normalised to λmax values. 1 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer.

Upon their successful incorporation into oligonucleotides the characteristic fluo-

rescence properties of anthracene and acridine were retained, allowing titration studies

to be undertaken. As already described and rationalised earlier in Chapter 3, P1L emis-

sion decreased upon addition of matching target (DT1) and increased with mismatching

target (DT5) (Figure 5.3).
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Figure 5.3: Emission spectra showing the change in emission upon hybridisation of
anthracene probe P1L with targets DT1 and DT5 respectively. 1 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm. Emission range = 370-570
nm.

In the case of the acridine system, the titrations of PAcr with the complementary

target strand DT1 resulted in almost complete quenching of the acridine emission signal.

The addition of mismatching target (DT5) to PAcr also caused quenching, but to a lesser

degree (Figure 5.4). This initially seems similar to the base opposite sensing anthracene

system (Section 3.3.4). A summary table of percentage changes in emission for both

probes is shown in Table 5.3. For both probes, no further changes in emission were

observed in the presence of excess target (Figure C.1). This indicates the formation of a

1:1 complex, which is consistent with DNA duplex formation (Figure 3.4). The binding

is specific since as expected there was no change in emission upon the addition of the

non-complementary target RanD.

105



Figure 5.4: Emission spectra showing the change in emission upon hybridisation of DNA
acridine probe PAcr with targets DT1 and DT5 respectively. 1 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer, λex = 421 nm. Emission range = 440-700 nm.

To enable a quantitative comparison with the fluorescence images (vide infra),

the excitation and emission wavelength ranges in the titration studies were replicated

to the microscope settings (Figure 5.2). The percentage changes in emission were now

calculated from the areas under the curves, to correspond to the integrated emission

ranges captured by the microscope, with PAcr now excited at 457 nm and P1L at 402

nm (Figure 5.5). Percentage changes in emission intensity are displayed in Table 5.4. A

comparison of the data in Tables 5.3 and 5.4 shows that the system change in excitation

Table 5.3: Percentage change in emission on addition of target to probe, relative to probe
only. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer. PAcr λex =
421 nm, P1L λex = 350 nm. Percentage changes calculated from emission intensity at
P1L = 426 nm and PAcr = 494 nm.

Probe/Target DT1 DT5

P1L -70% +77%

PAcr -91% -68%
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Figure 5.5: Emission spectra showing the change in emission upon hybridisation of (A)
DNA acridine probe PAcr and (B) DNA anthracene probe P1L with targets DT1 and
DT5 respectively. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer,
PAcr λex = 457 nm, P1L λex = 402 nm. Emission ranges correspond to microscope
settings (PAcr = 465-500 nm, P1L = 425-475 nm.)

Table 5.4: Percentage change in integrated emission on addition of target to probe,
relative to probe only. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate
buffer. PAcr λex = 457 nm, P1L λex = 402 nm. Emission ranges: PAcr = 465-500
nm, P1L = 425-475 nm.

Probe/Target DT1 DT5

P1L -43% +168%

PAcr -96% -78%

wavelength has less impact on the PAcr result due to the high degree of quenching

observed in each case. There are previous examples in the literature of this approach,

i.e. where spectral study wavelengths (excitation and emission ranges) have been chosen

to match laser sources on confocal microscopes. [57, 111, 192]

Due to the change in excitation wavelength the percentage change values in emis-

sion do not match those from Chapter 3, although the ON/OFF sensing is retained. The

difference in values result from varying degrees of absorption (Figure 5.6).
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Figure 5.6: Absorption spectra of P1L in the region of anthracene. It can be seen
that the single stranded P1L absorbs more than P1L duplexes upon 350 nm excitation.
However the inverse is true upon 402 nm excitation (inset).

The melting temperature data indicates that acridine intercalates, which would

bring the acridine unit into closer proximity with adjacent and opposing nucleobases,

which is likely to be responsible for the observed quenching in DT1 case. Acridine in-

tercalates less into the duplex than anthracene does, especially in the DT5 case. This is

likely due to acridine distorting the duplex upon intercation since it is more bulky. There-

fore, one reason quenching is caused is by reduced acridine intercalation. The second

reason is that the adjacent SNP target DT5 has one less adjacent guanine residue than

the base opposite target DT1 (Table 5.1). The phenomenon of fluorescence quenching

via photo-induced electron transfer (PET) (Figure 5.7) from guanine bases to acridine

is well documented in the literature and would appear to be the explanation. [83, 193]

Anthracene is also reduced but not as easily as acridine- it is certainly not the driving

force in the anthracene SNP sensing system. [88]
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Figure 5.7: Photo-induced electron transfer (PET). When the electrons of the fluo-
rophore are photoexcited, electron transfer occurs from a higher donor orbital, which
results in quenching of the fluorescence.

Since E2 > E1 (Equations 5.1 and 5.2 respectively), then Equation 5.3 is true.

In thermodynamic terms, PET between guanine and acridine is favourable due to the

large difference in reduction potentials leading to ∆G = -0.46 eV.

Acr∗ + e− → Acr (E2) (5.1)

G∗ + e− → G (E1) (5.2)

Acr∗ +G → Acr− +G+ (5.3)

Using the Rehm-Weller equation [194], the Gibbs free energy of electron transfer was

calculated in our system yielding ∆G0
ET = -0.47 eV (Equation 5.4).

∆G0
ET = E0

�
D+·

D

�

− E0
�

A

A−·

�
− E0,0(D) +∆G0(�) (5.4)

E0,0(D) is the excited state energy of the donor obtained from the crossing point wave-

length of the absorption and emission spectra, in this case 465 nm (Figure 5.2). ∆G0(�) is

a coulombic interaction term between the oxidised donor and the reduced acceptor. The

kinetics of electron transfer are also favourable: the lifetime of guanine-acridine PET has

been previously found to be in the femtosecond regime, which is significantly faster than
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fluorescence and therefore likely to dominate in these studies. [195] Overall, the DNA

acridine probe was successful in DNA sensing applications and can detect variations of

a single base in the sequence. However, unlike the anthracene system, the success of

this sensing process appears to be based on the number of proximal guanine bases due

to quenching via PET. This would therefore only make it useful in detecting SNPs in

which a nearby guanine is the varying base. In addition, the ideal sensing mechanism

is ON/OFF emission. This is the case with the DNA anthracene probe P1L with the

emission going either up or down (Figure 5.5).

As mentioned earlier, optimal excitation of anthracene in cells is a drawback of

these probes since UV lasers are not common in confocal microscopes (due to phototox-

icity effects and high absorption by bioorganic matter). The absorption at 402 nm is

significantly reduced compared to the previously used excitation wavelength of 350 nm.

It also encroaches on the emission spectrum although emission is only collected beyond

that point.

5.5 Quantitative in vitro SNP sensing

The benefits of in vitro sensing assays were discussed in Chapter 1. The development of

an in vitro assay requires the sensing achieved in a cuvette to be replicated in a cellular

environment. Adding oligonucleotide probes to live cells is no easy task, as was discussed

in Chapter 4. The oligonucleotides were therefore added to fixed cells to prevent degra-

dation upon delivery (demonstrated by fluorescent-tagged DNA in Chapter 4). The aim

was to visualise the fluorescent probes in fixed cells and differentiate between SNP tar-

gets based on emission intensity comparisons. To simplify matters initially, the probes

were added either as single strands or in a pre-formed duplex with the targets. The

probe-target combinations listed in Table 5.1 were introduced into the fixed cells, with

a view to replicating the emission trends found in fluorescence emission studies.
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5.5.1 Cell fixation and imaging

Methanol is used as a cell fixative but also has a further effect on cells in that membranes

are permeabilised, thus providing a simple method for the uptake of intact oligonu-

cleotides into cells. This protocol (Chapter 2) successfully introduces intact P1L and

PAcr, with and without targets, into the cells. After a short incubation time, the cells are

washed with PBS. The cells could then be visualised using confocal microscopy. Images

were acquired in the z-direction to ensure that 1) the fluorescent DNA was within the

cell, and 2) that an optimal in-focus image of the fluorescent DNA in cells could be taken

for further analysis. An example collection of z-stack images is shown in Appendix C.

All settings on the confocal microscope were consistent for various image acquisitions

for a particular probe, thereby ensuring that any observed changes in intensity were due

to the probe rather than the imaging system.

Qualitatively, the level of brightness of cells treated with DNA anthracene probe

P1L, with and without targets DT1 and DT5, suggested that the trend found in emission

studies had been reproduced (Figure 5.8) i.e. the mismatching duplex P1L:DT5 had a

greater emission in cells compared with the matching duplex P1L:DT1. Fixed cell results

for PAcr and its duplexes also replicated trends in the cuvette (full results for PAcr are

shown in Appendix C). These qualitative observations suggested that in vitro sensing

with base-discriminating fluorophores had been achieved. Control experiments were

carried out; adding no oligonucleotides or non-complementary duplex (Figure 5.9).
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Figure 5.8: P1L:DT5; P1L; P1L:DT1 (top to bottom) added to fixed/permeabilised
CHO cells and imaged using confocal microscopy. 402 nm laser excitation. Emission
range: 425-475 nm.

Figure 5.9: Top: Brightfield image of CHO cells; Centre: No oligonucleotide added;
Bottom image: P1L:RanD, added to fixed/permeabilised CHO cells and imaged using
confocal microscopy. 402 nm laser excitation. Emission range: 425-475 nm.

The majority of fluorescence appears in the cytoplasm of the cell, although, bright

spots of fluorescence also accumulate in the nucleus. The bright spots do not appear in

the blank control (Figure 5.9) and vary in intensity depending on the oligonucleotides
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added which indicates that they are caused by the probes and not the cell. Nuclear

accumulation is common for oligonucleotides added to cells and appear as punctate

concentrations on nuclear bodies. [149] Access to the nucleus is mainly by diffusion and

is not a function of cell fixation. [196]

Although trends may have been reproduced qualitatively, quantitative informa-

tion from images is an important aim for assay development purposes. Quantification

would allow percentage differences in emission from images to be compared to cuvette

values. This was approached in two ways: standard image analysis software and an

adapted method for quantifying fluorescence intensity from images based on Gaussian

Mixture Modelling. Typically, the mean intensity of an image or regions of interest is

measured using image analysis software such as ImageJ. Although easy to calculate,

the mean intensity of an image also contains contributions from the cells and back-

ground (which are both variable). The intensity contribution from the DNA anthracene

probe (and targets) within the cell is only of interest here. Calculating intensities from

regions of interest (ROI) removes the background contribution only, but is a hugely

time-consuming and user-dependent task. As a means of comparison, ImageJ analysis

was carried out and the results are displayed in Table 5.5. Complex software involving

thresholding and segmentation can also be used; however this works better for fluo-

rophores emitting at longer wavelengths that are distinct from cell autofluorescence and

background. Further quantitative techniques involving FRET (Chapter 4) and ratio-

metric sensing (Chapter 7) are also popular, which commonly involve a second (longer)

emission wavelength.

5.5.2 Histogram analysis

The histogram of an image can be plotted, where the x-axis is the pixel intensity and the

y-axis is the number of pixels (Figure 5.10). The histograms of the images in Figure 5.8

are plotted and overlaid (Figure 5.10). Shifts in the peaks in the x-axis can be seen,
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which translates to differences in intensity between images. There are examples of this in

the literature where emission or lifetime histograms are plotted for comparison. [111, 192]

Figure 5.10: Cropped overlayed histograms for images displayed in Figure 5.8. A shift
in intensity (x-axis) can be seen for images corresponding to different oligonucleotide
treatment. The full scale histograms can be seen in Figure C.4, Appendix C.

Distinctive shifts are apparent between the various probe-target combinations

that indicate differences in intensity, which replicate the trends seen in cuvette studies.

However, these shifts alone cannot solely be used for quantitative conclusions. This is be-

cause the background and cell contribution varies between images. It was then observed

that the outline of a typical image histogram can be the mixture of two Gaussian curves

(Figure 5.11). This allows the different regions i.e. the background and fluorescence

emission to be separable.
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Figure 5.11: The outline of the histogram which can be the mixture of two Gaussian
curves. Applying non-linear fitting to this curve results in separable background and
fluorescence emission peaks for quantification purposes.

5.5.3 Gaussian Mixture Modelling (GMM)

The design and method of working of the following algorithm is first described before

the analysis of the images obtained are discussed.

Image intensity was quantified using Gaussian Mixture Modelling (GMM) of

histograms. [197, 198] This models the image histogram as a mixture of two Gaussian

distributions, which enables the relative peak positions to be extracted. The background

peak can be accounted for, resulting in measurement of the fluorescence emission signal.

GMMs have been extensively used in image segmentation with histograms, where the

image is automatically thresholded based on the Gaussian distributions. [199, 200] Here,

the GMM application differs since the intensity correlating to the Gaussians is extracted,

rather than being utilised in segmentation. As far as the author is aware GMM extraction

has not been applied to cell images before now. The most similar application is found
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in astronomy software such as SExtractor, which extracts quantitative information from

astronomical images. [201] The Gaussian mixture model used is shown in Equation 5.5

(a full description of the model and parameters can be found in Appendix C).

f(x) = A exp−(x− x0)2

2σ2
+A� exp−(x− x�0)

2

2σ�2 (5.5)

Equation 5.5 needs to be solved for parameters A, A�, x0, x�0, σ and σ� (Figure 5.12).

Figure 5.12: The outline of the histogram (blue) has two Gaussian curves fitted (pink and
yellow) corresponding to the background and fluorescence emission contributions respec-
tively. The unknown parameters are labelled: the peak heights A and A�, coordinates
of the peak centres x0 and x�0, and the peak widths σ and σ�. Using Gaussian Mixture
Modelling (GMM) these parameters can be solved using a Particle Swarm Optimisation
(PSO) algorithm. Diagram by R. Bamford.

However, Equation 5.5 is an example of a non-linear problem which cannot be

solved analytically but must be optimised in a deterministic manner. The evolutionary

algorithm, Particle Swarm Optimisation (PSO), was utilised for this purpose. The algo-
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rithm is analogous to natural selection since the parameters are optimised by selecting

the fittest members of the population. Initially this population consists of a series of

random numbers for each of the six parameters given in Equation 5.5. Once the param-

eters of the model are known, the distributions of the background and foreground can be

found for each experimental image. The difference between the centre of the background

and foreground peak (x�0-x0) gives the true intensity due to fluorescence emission for the

image. Therefore, (x�0-x0) values can be utilised to compare the intensity between images

(Figure 5.13).

Figure 5.13: Histograms with GMM, corresponding to P1L:DT5; P1L; P1L:DT1 (left to
right) cell images. GMM fits two Gaussian distributions corresponding to the background
(pink) and fluorescence emission (yellow). The sum of the two Gaussian distributions
(green) is shown to fit the outline of the histogram (blue).

It should be noted that the peak heights (A and A�) have no strong bearing on

the results, provided that the peaks are distinguishable enough for GMM. This therefore

means that the (x�0-x0) values are not affected by the number of cells in the image, which

is an advantage to the overall analysis. The (x�0-x0) values for Figure 5.13 are included in

the Table 5.5. As expected from the qualitative observations, the data extracted followed

the fluorescence emission trends observed in cuvette studies, although the percentage

values were not the same. The values don’t agree with those extracted from the ImageJ

analysis either. However this is most likely due to the user dependence; judging the cell
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Table 5.5: Comparison of the base-discriminating fluorescence exhibited in CHO cells
relative to fluorescence titrations and ImageJ analysis. Image refers to the confocal
microscope image treated with probe-only or duplex systems. (x�0-x0) are the peak
centre differences from GMM. The (x�0-x0) values between images can yield percentage
change and s.e.m. values. These can be compared to the percentage change in integrated
emission values from previous cuvette titration studies and from ImageJ image analysis,
respectively. Percentage change values from ImageJ analysis are calculated from the
intensity mean± s.e.m. from at least 24 cells (p<0.001). PAcr λex = 457 nm, P1L
λex = 402 nm. Emission ranges: PAcr = 465-500 nm, P1L = 425-475 nm.

Image (x�0-x0)/A.U. % change (GMM) % change (ImageJ) % change (titrations)

P1L 1334 0 0 0

P1L:DT1 661 -50±1 -36±2 -43

P1L:DT5 1058 +26±2 +61±6 +168

PAcr 565 0 0 0

PAcr:DT1 274 -52±1 -30±2 -96

PAcr:DT5 323 -43±1 -20±4 -78

boundary was a difficult task.

It was noted that the background across the images increased in intensity as the

image generally increased in brightness. This is due to scattering originating in the cells

(turbid media), leading to higher background intensity. This effect has been previously

demonstrated and has a greater contribution when the fluorescence emission intensity

is higher. [202] The result is that the more emissive duplex (P1L:DT5) encounters more

scattering and therefore the light collected by the PMT in the confocal microscope is

comparatively less intense from inside the cell. This has a dual effect of the background

being brighter in P1L:DT5 and the fluorescence emission being less intense than if no

scattering were present. This can explain why the percentage changes from GMM were

not as great as those found in the cuvette titrations (Table 5.5). In addition, there is

likely to be a difference between the cuvette and cell percentage values when differences

in environment between the cuvette and cell are considered. The cuvette titrations

have a well controlled environment in terms of salt concentrations and molecular species
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present, but the cellular environment has more unknowns.

Notwithstanding these issues, the scatter effect does not, however, appear to

significantly hinder the ability to distinguish between bases and therefore detect SNPs

present in preformed duplexes inside a cellular environment. Base discrimination in vitro

was clearly achieved with P1L, owing to the ON/OFF sensing. Furthermore, the DNA

acridine probe PAcr also exhibited quenching when in a duplex (Appendix C) and GMM

was able to determine base discrimination from confocal microscopy images.

5.6 Sequential studies

The next stage was to add the target and probe sequentially to observe if they were able

to find and hybridise with one another within the cell. Proof of concept was carried out

for Cy3 and Cy5 tagged DNA in Chapter 4. Sequential addition is also a good test for

future work which would involve adding the probe only in order to target endogenous

DNA/RNA. The fixed cell protocol is the same as previously (Section 5.5.1) but here

the DNA target and DNA anthracene probe are added to fixed cells sequentially with

incubation and PBS washing in between. The cell image results are shown in Figure 5.14.

By eye the trend in fluorescence emission is intact. However, the emission does appear

lower overall than the duplex studies. This would be expected though since the PBS

washing steps were doubled in number. Additionally, the incubation time may need to

be extended to allow for hybridisation time. It should be emphasised that all fixed cell

work is carried out at room temperature, which from previous melting studies the duplex

is known to be intact.
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Figure 5.14: DT5 then P1L; P1L; DT1 then P1L (top to bottom) sequentially added
to fixed/permeabilised CHO cells and imaged using confocal microscopy. 402 nm laser
excitation. Emission range: 425-475 nm.

Figure 5.15: Histograms with GMM, corresponding to DT5 then P1L; P1L; DT1 then
P1L (left to right) sequential images. GMM fits two Gaussian distributions correspond-
ing to the background (pink) and fluorescence emission (yellow). The sum of the two
Gaussian distributions (green) is shown to fit the outline of the histogram (blue).

GMM analysis on the sequential cell image histograms gives quantitative informa-

tion (Figure 5.15). The percentage values extracted were -16% and +60% for P1L:DT1

and P1L:DT5 respectively (Table 5.6). Pleasingly, the ON/OFF sensing trend is re-

tained. The percentage change values are not as great as those observed in cuvette
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Table 5.6: Comparison of the base-discriminating fluorescence exhibited in CHO cells
relative to fluorescence titrations. Image refers to the confocal microscope image treated
with target DNA then DNA anthracene probe sequentially. (x�0-x0) are the peak centre
differences from GMM. The (x�0-x0) values between images can yield percentage change
and s.e.m. values. These can be compared to the percentage change values from previous
cuvette titration studies. 402 nm laser excitation. Emission range: 425-475 nm.

Image (x�0-x0)/A.U. % change (GMM) % change (titrations)

P1L 415 0 0

DT1 then P1L 347 -16±2 -43

DT5 then P1L 662 +60±4 +168

titration studies. The reasoning would be similar to that in the previous duplex cell

study. However, the values are also shifted higher compared to the GMM percentage

change values from the duplex cell study. This would suggest unbound or degraded

probe causing the emission to be higher overall. The probe should not be degraded since

the cells are fixed and excess probe should not be an issue since the target is in excess.

However, excess DNA anthracene probe could be accounted for in the future by fitting

a third Gaussian to the histogram outline. It is worth considering at this point the

efficiency of delivery. For sequential studies the probe and targets are delivered as single

strands and perhaps more likely to bind non-specifically. Subsequently, anthracene may

intercalate into a more hydrophobic environment causing the emission to increase. This

would also apply to the probe alone in the duplex studies. The preference to bind to a

complementary target should overcome these non-specific interactions.

5.7 RNA studies

The duplex and sequential fixed cell studies were repeated with equivalent P1L DNA/RNA

hybrids. Duplex (Figure 5.16) and sequential cell studies (Figure 5.17) also retain the

ON/OFF sensing discussed in Chapter 3. The quantitative results extracted from the

images using GMM analysis are shown in Table 5.7. The percentage differences from
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GMM analysis show some similarity to those values from titration studies although

there are discrepancies as discussed before. It is interesting that the percentage differ-

ences from GMM are higher than those from titration studies, since this is the opposite

to values for DNA/DNA duplexes in fixed cells. No difference between the uptake of

DNA:DNA and DNA:RNA duplexes would be expected. The initial thought when values

are higher is that there is unbound DNA anthracene probe. However, probes are added

as a duplex and DNA/RNA duplexes are more stable than their DNA/DNA equivalents

(all experiments were carried out at room temperature). Plus, the target is in excess

to the probe. RNA is more susceptible to degradation than DNA, and this could lead

to unbound DNA anthracene probe. However, the likelihood of degradation is small in

fixed cells.

Figure 5.16: P1L:RT5; P1L; P1L:RT1 (top to bottom) added to fixed/permeabilised
CHO cells and imaged using confocal microscopy. 402 nm laser excitation. Emission
range: 425-475 nm.
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Figure 5.17: RT5 then P1L; P1L; RT1 then P1L (top to bottom) added to
fixed/permeabilised CHO cells and imaged using confocal microscopy. 402 nm laser
excitation. Emission range: 425-475 nm.

Table 5.7: Comparison of the base-discriminating fluorescence exhibited in CHO cells
relative to fluorescence titrations. Image refers to the confocal microscope image treated
with probe-only, probe-RNA duplexes or RNA-probe sequentially. (x�0-x0) are the peak
centre differences from GMM. The (x�0-x0) values between images can yield percentage
change and s.e.m. values. These can be compared to the percentage change values from
previous cuvette titration studies. 402 nm laser excitation. Emission range: 425-475
nm.

Image (x�0-x0)/A.U. % change (GMM) % change (titrations)

P1L 735 0 0

P1L:RT1 321 -56±1 -77

P1L:RT5 2161 +194±5 +133

P1L seq 870 0 0

RT1 then P1L 307 -65±1 -77

RT5 then P1L 1921 +121±9 +133
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5.8 Base opposite and CDKN1A gene SNP sensing

Fixed cell studies were also carried out for the base opposite and CDKN1A SNP sensing

(described in Chapter 3). The DNA sequences are given in Table 5.8. The GMM analysis

results are given in Table 5.9. Trends observed in the cuvette are replicated in a fixed

cell environment. Confocal cell images and corresponding histograms are included in

Appendix C.

Table 5.8: Base opposite and CDKN1A gene sensing DNA sequences. X denotes the
anthracene monomer. n is the carbon linker length and l/d denotes the stereochemistry.

Oligonucleotide Sequence (5’ to 3’)

DN TGGACTCTCTCAATG

P(n)(L/D) TGGACTCXCTCAATG

DT1 CATTGAGAGAGTCCA

DT4 CATTGAGTGAGTCCA

ZP(n)(l/d) AGTCGCGXCTCAGCT

ZDT1 AGCTGAGCCGCGACT

ZDT2 AGCTGAGACGCGACT

ZRT1 AGCUGAGCCGCGACU

ZRT2 AGCUGAGACGCGACU
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Table 5.9: Comparison of the base-discriminating fluorescence exhibited in CHO cells
relative to fluorescence titrations. Image refers to the confocal microscope image treated
with DNA anthracene probe (and target). (x�0-x0) are the peak centre differences from
GMM. The (x�0-x0) values between images can yield percentage change and s.e.m. values.
These can be compared to the percentage change in integrated emission values from
previous cuvette titration studies. 402 nm laser excitation. Emission range: 425-475
nm.

Image (x�0-x0)/A.U. % change (GMM) % change (titrations)

P6D 859 0 0

P6D:DT1 1249 +45±3 +220

P6D:DT4 493 -43±1 -35

P6D seq 853 0 0

DT1 then P6D 1274 +33±5 +220

DT4 then P6D 449 -47±2 -35

ZP5L 649 0 0

ZP5L:ZDT1 178 -73±1 -35

ZP5L:ZDT2 930 +43±3 +62

ZP5L 210 0 0

ZP5L:ZRT1 207 -1.4±2 -41

ZP5L:ZRT2 227 +8±2 +18
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5.9 Conclusion

Oligonucleotides were successfully synthesised with fluorophores, anthracene and acri-

dine, incorporated into the centre of the sequences respectively. The DNA acridine and

anthracene probes show distinct base-discriminating capabilities, as shown by fluores-

cence emission studies which are due to different quenching and sensitising mechanisms

exhibited by anthracene and acridine. DNA anthracene probe P1L possesses an effective

ON/OFF sensing system whereas the DNA acridine probe PAcr discriminates between

bases through distinct levels of quenching via PET to guanine bases. It has been suc-

cessfully shown that the probe and target duplexes can be loaded into methanol fixed

cells and base-discrimination by fluorescence emission within a cellular environment is

realised, with novel application of Gaussian Mixture Modelling (GMM). GMM of the

images allowed in vitro SNP sensing to be achieved with a simple application of the

curve fitting algorithm, Particle Swarm Optimisation. Fluorescence emission intensities

from the images correlated with trends seen in the cuvette environment. SNP sensing

in fixed cells was shown to work for a number of systems including RNA and CDKN1A

gene sequences.
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Chapter 6

SNP sensing with plasmids in a

cellular environment

6.1 Introduction

RNA SNP sensing using DNA anthracene probes in a cuvette was described in Chapter 3.

It was proven to be as successful as the ON/OFF sensing of its DNA predecessor. This

naturally progressed to adding duplexes to fixed cells in order to test if the cuvette results

could be replicated in a cell environment (Chapter 5). Sequential studies carried out in

Chapters 4 and 5 demonstrated probes were able to find targets which were added to

the cell prior to the DNA anthracene probe. The next aim was to add DNA anthracene

probe in order to target endogenous mRNA SNPs in cells.

The main benefits of targeting RNA were described previously (Chapter 3) as

it meant redundancy for reverse transcription and amplification of extracted RNA into

cDNA via PCR (a time consuming and often inaccurate technique). Moreover, there

is a clinical need for a rapid, cheap and reliable read-out of the allelic (i.e. SNP) ratio

within heterozygous mRNA transcripts directly (RNA detection in cells).

Current RNA detection in cell techniques are time-consuming, expensive and
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have low sensitivity. Popular methods are TaqMan R� probes and FISH (Section 1.3.1).

However, they cannot resolve highly similar sequences such as allelic inactivation and

splice variation since they rely on a high degree of complementarity. [97, 103] They also

rely on strictly controlled conditions such as elevated temperature windows to ensure that

only the fully complementary strand binds to the probe and not the SNP variant strand,

which means many current techniques are non-transferable to a cellular environment

anyway.

Despite the issues described above, the quest for targeting mRNA directly in a

cell has its rewards. RNA is more accessible and abundant in a cell than DNA, which

can lead to higher emission signals. Localisation and time-lapse information of cellular

processes such as RNA interference can be gained from in vitro studies. As described

in the Chapter 1 (Section 1.6.2), there are probes available which target RNA in cells,

however there are few that can detect SNPs. Cellular RNA SNP detection could lead to

quantification of specific mRNA strands and allelic ratios on a cell-by-cell basis, which

could subsequently lead to screening for diseases.

Targeting endogenous mRNA in a cell brings up new challenges: (1) mRNA has

a short half-life due to degradation, (2) mRNA folds into an often complex secondary

structure and (3) the target may not always be accessible. Finally, the number of

copies of mRNA is highly variable between sequences. Probes added to cells often

exhibit nuclear migration and therefore do not have enough time to target RNA in the

cytoplasm. It was observed in Chapter 5 that although there was some nuclear migration

of the DNA anthracene probe, the majority remained in the cytoplasm. Therefore DNA

anthracene probes should be able to target mRNA in the cytoplasm.

Overexpressing (endogenous) mRNA in a cell using plasmids is commonplace and

is used here as proof of concept. [70] Also, in order to build upon previous studies (Chap-

ters 3 and 5) which involved a non-biologically occurring sequence, it was important to

use the cell’s own machinery to over-express desired mRNA transcripts. This chapter
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shall describe the route using plasmids to targeting endogenous mRNA SNPs in cells

with DNA anthracene probes.

An initial test was to check whether the DNA anthracene probe was able to find

targets that were added whilst the cell was live, rather than the sequential fixed cell

case discussed in Chapter 5. The aim was then to produce multiple cell lines which will

each express different versions of the non-biological SNP targets described in Chapter 3.

The targets were then to be over-expressed in live cells so that a DNA anthracene probe

could be added once cells were fixed and fluorescent results compared with previous in

vitro studies.

6.2 Combined live and fixed cell studies

This section provides a link from the previous chapter where all sensing experiments were

carried out in a fixed cell environment, and later in this chapter (Section 6.5) where live

cells produce mRNA target, cells are fixed and DNA anthracene probe added. Here, the

synthesised DNA target is added to live cells via electroporation (technique described

in Chapter 4), cells are fixed and DNA anthracene probe is added (as in Chapter 5). It

was found that DNA anthracene probe was degraded if chemical transfection was used

for delivery to live cells (Figure D.1).

DNA targets, DT1 and DT5, were added to live CHO cells via electroporation.

After a short recovery time, cells were methanol fixed and P1L DNA anthracene probe

added. Controls as follows: cells electroporated but with no target, methanol fixed and

half the cells DNA anthracene probe added. All images are given in Figure 6.1.
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Figure 6.1: DNA targets DT1 and DT5 added via electroporation to CHO cells (top
row); methanol fixation of cells and P1L DNA anthracene probe added. The bottom
row also undergoes the electroporation and methanol fixation steps but no target added
(bottom left) and no target or probe added (bottom right).

The trends previously observed for P1L and match/mismatch DNA targets (Chap-

ter 3) are reproduced in confocal microscope cell images. The GMM analysis (Sec-

tion 5.5.3) results are given in Table 6.1, quantifying the percentage changes between

cell images. Figure 6.1 images confirm that the DNA anthracene probe is able to find a

target in a fixed cell that was also present in the prior live cell environment. The next

step is similar but the live cell produces the target itself before fixation.

Table 6.1: Comparison of the base-discriminating fluorescence exhibited in CHO cells
relative to fluorescence titrations. Image refers to the confocal microscope image treated
with probe-only or probe-DNA sequentially. (x�0-x0) are the peak centre differences from
GMM. The (x�0-x0) values between images can yield percentage change and s.e.m. values.
These can be compared to the percentage change values from previous cuvette titration
studies.

Image (x�0-x0)/A.U. % change (GMM) % change (titrations)

P1L 1016 0 0

P1L:DT1 432 -57±1 -43

P1L:DT5 1601 +58±3 +168
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6.3 Plasmid method

Chapter 2 contains the full experimental detail for this section. The plasmid design and

synthesis shall be described here.

The plasmid (mp71 retroviral vector) contains CRT5-svFc linked to a truncated

human CD34 protein (surface expression) by a 2A linker (Figure 6.2). The 2A linker

ensures the equal molar expression of both proteins. [203]

Figure 6.2: Schematic of plasmid (mp71 retroviral vector) region of interest. The CRT5-
svFc is linked to a truncated human CD34 by a 2A linker.

The CRT5-svFc can be replaced with an insert using ClaI and NotI enzyme

digestion. A schematic diagram shows how the double stranded plasmid is cut and an

insert added (Figure 6.3).

Figure 6.3: Schematic of double stranded plasmid cut to become linear. A region of
plasmid is discarded and double stranded DNA replaces it. There are two insert choices:
a 15 base sequence and a ten times repeat of that sequence i.e. 150 base sequence. The
DNA insert is ligated into the plasmid.
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A total of four plasmids were designed and synthesised, each with a different

insert. Table 6.2 lists the final plasmid names and their corresponding inserts. PSDT1

and PSDT5 are the match and mismatch 15 base sequences described in Chapter 3. Ten

times repeat of these targets, i.e. 150 base sequences, were also synthesised (PLDT1 and

PLDT5) since target availability in cells can be problematic. [204] For control purposes,

a non-specific plasmid is also included in the studies. This plasmid was provided by the

Bicknell group. All plasmids then undergo bacterial transformation in order to amplify

the plasmid (Figure 6.4).

Table 6.2: List of plasmids with their corresponding insert sequences (n is the number
of repeats; n = 10 throughout). The inserts are double stranded and annealed to their
complementary strand. Underlined are the overhangs for insertion into the plasmid.

Plasmid Insert Sequence (5’ to 3’)

PSDT1 CGATCTAG(CATTGAGAGAGTCCA)GC

PLDT1 CGATCTAG(CATTGAGAGAGTCCA)nGC

PSDT5 CGATCTAG(CATTGAGAAAGTCCA)GC

PLDT5 CGATCTAG(CATTGAGAAAGTCCA)nGC
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Figure 6.4: Schematic of bacterial transformation. a) E. coli. bacterium; b) extreme
cold causes pores to appear in bacterial membrane; c) pores allow plasmid DNA to
pass through into the bacteria; d) upon heating some bacteria have plasmid DNA inside
them (these are the transformed bacteria); e) the untransformed bacteria (no plasmid
inside) can be filtered out by growing all the bacteria in an antibiotic-containing medium.
Untransformed bacteria are killed by the antibiotic in the medium. The transformed
bacteria grow though since the plasmids are antibiotic-resistant. Schematic adapted
from http://2012.igem.org.

The plasmids are ampicillin (Amp) resistant. The next stage is to determine

which colony contains the plasmid construct with the correct insert. Commonly the

plasmid enzyme digestion can be repeated to check which contains the correct insert

(based on gel band size). However, since the insert is so small compared to the over-

all plasmid, this route was unsuitable. PCR by colony can be used as an alternative

verification method (Figure 6.5).
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Figure 6.5: Schematic of PCR by colony. a) Pick a colony into a microcentrifuge tube;
b) Perform PCR with primers designed specifically to target the insert DNA; c) Analyse
by gel electrophoresis. Schematic adapted from http://www.epibio.com/images.

This involved designing primers that specifically target the insert DNA. PCR am-

plicon presence or absence will determine if the insertion was successful. Likely plasmid

candidates are selected from gel electrophoresis of PCR samples and a size marker (for

example, Figure 6.6).
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Figure 6.6: PCR by colony gel example (PSDT1). Lanes 17 and 18 were chosen for
sequencing (lanes 2 and 3 show impurities). Lane 21 is the negative control. 1kB ladder
(GeneRuler, Thermo Scientific) on both rows.

Plasmid samples are sequenced where the insert sequence can be checked. Once

the plasmid is confirmed as correct, the plasmid can be grown in large-scale suspension

and purified. The plasmid is now ready for future experiments.

6.4 Flow cytometry

PEI transfection was carried out in order to add the plasmids into cells. The cells were

analysed by flow cytometry to determine if the transfection had been successful. Flow

cytometry is a biophysical technology used to analyse a high number of cells in flow

for purposes such as cell counting, cell sorting, or in this case, biomarker detection.

Figure 6.7 gives a schematic of flow cytometry.

135



Figure 6.7: Schematic of flow cytometry. Cells flow into to a single stream and are then
excited by a laser. Scattered light and fluorescence (often wavelength filtered) is then
collected. Schematic adapted from http://www.andor.com.

If cells have been successfully transfected then not only will mRNA be expressed,

but also the surface expressed human CD34 (Figure 6.2). Fluorescent-tagged antibodies

are added to the transfected cells which are able to bind to the cell surface expressed

human CD34 (which correlates with mRNA/protein expression). Therefore, if a shift in

fluorescence intensity is detected for transfected cells, compared to controls, it can be

confirmed that the desired mRNA target is being produced. A confocal image of the

antibodies and cells is given in Figure D.2.

The flow cytometry results for each plasmid transfection into HeLa cells, including

controls, is given in Figure 6.8.
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Figure 6.8: Summary of Hela cell plasmid flow cytometry results. Black represents
the transfected cells; green line represents control cells and pink line represents mock
transfected cells. The isotype control involved a non-specific fluorescent antibody. The
non-specific plasmid (PRan) is targeted with appropriate antibodies to ensure its suc-
cessful transfection.

HeLa cells were found to be the best in terms of transfection efficiency and vi-

ability. Other cell types were also tested (Figure D.3): CHO cells were not successful,

whereas HEK cells transfected the most efficiently (viability issues later arose during

methanol fixation and imaging). The flow cytometry results in Figure 6.8 show suc-

cessful transfection and therefore mRNA production for the complete set of plasmids

(Table 6.2). In all cases a shift in fluorescence intensity (x-axis) is observed for the

transfected cells (black) compared to the control and mock transfected cells (green and

pink outlines respectively). Overall transfection efficiency could be improved in the fu-
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ture by using a retroviral route. The isotype control was a non-specific antibody with the

same fluorescent tag (Cy5). It proves that the shifts observed in the plasmid transfected

cells are genuine. The non-specific plasmid is targeted with specific antibodies to prove

its successful transfection.

6.5 Confocal imaging

Transfected cells, shown to be producing RNA by flow cytometry, were methanol fixed

and DNA anthracene probe added as described in Chapter 5. The plasmids were de-

signed to produce match and mismatch targets RT1 and RT5, which give ON/OFF

sensing with DNA anthracene probe P1L (Chapter 3). P1L was added to methanol

fixed cells expressing RT1, RT5, 10x RT1 and 10x RT5. Confocal microscopy images

corresponding to PSDT1/PSDT5 and PLDT1/PLDT5 are given in Figures 6.9 and 6.10

respectively. Control cells and mock transfected cells are given in Figure 6.11. To

demonstrate specificity, a random plasmid (PRan) was tested (Figure 6.12) and a ran-

dom sequence 1l DNA anthracene probe (P1LRan, sequence in Appendix G) added

(Figure 6.13), respectively.
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Figure 6.9: PSDT1 and PSDT5 (15mer) plasmids transfected into HeLa cells. The top
images are methanol-fixed and P1L added.

Figure 6.10: PLDT1 and PLDT5 (150mer) plasmids transfected into HeLa cells. The
top images are methanol-fixed and P1L added.
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Figure 6.11: Untreated and mock transfected HeLa cells. The bottom images are
methanol-fixed and P1L added.

Figure 6.12: PRan transfected into HeLa cells. Left image shows transfected cells only;
right image shows transfected cells methanol-fixed and P1L added.
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Figure 6.13: Plasmids transfected into HeLa cells and methanol-fixed. A non-specific 1l
DNA anthracene probe (P1LRan) is then added.

In the cases where P1L is added to cells expressing RT1 and RT5, it is observed

that the RT5 cells are brighter overall than the RT1 cells. This is what would be expected

from the trend observed in fixed cells (Chapter 5) and cuvette studies (Chapter 3). Due

to the increased number of transcripts, it would be expected that the PLDT1/PLDT5

would give better correlation to the cuvette trends than PSDT1/PSDT5. The mean

intensities of the images above were extracted using image analysis, as in Chapter 5,

and full results are given in Table D.1, Appendix D. The emission intensities for PSDT1

and PSDT5 were shown to agree within error. However, PLDT5 had a mean emission

intensity greater than PLDT1. It is expected for all the plasmids in Table 6.2, that the

RNA targets produced will be in excess to the DNA anthracene probe added, reducing

high levels of background noise due to unbound probe. Despite this, the initial results

suggests that an increased transcript number is beneficial for sensing.

The fluorescence distribution in the cells is non-uniform and appears as bright

spots. A fluorescence pattern of punctate speckles has previously been used to describe

fluorescent probes targeting endogenous RNA in fixed cells. [10, 115] The localisation,
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number and size of fluorescent spots varies depending on the target. [71] The punctate

fluorescence indicates specific binding since there is only homogeneous fluorescence due

to unhybridised probe in the controls given in Figure 6.11.

The bright spots also appear in the case when P1L is not added. It is therefore

clear that the plasmid PEI transfection has an effect on the cells. The control cells

display a uniform fluorescence upon addition of P1L whereas the mock transfected cells

have more localised fluorescence incidences (Figure 6.11). A stable transfection using

retrovirus could provide 100% transfection efficiency and deem PEI transfection each

time unnecessary.

When non-specific 1l DNA anthracene probe is added to methanol-fixed cells

(Figure 6.13), the level of fluorescence is consistent for all expressing cells. The DNA

anthracene probe would not be expected to bind to any target within the cell, and there-

fore only the level of probe-only emission would be observed. The level of fluorescence

is therefore similar to the mock-transfected cells with P1L added (Figure 6.11).

A further test of specificity was to PEI transfect a random plasmid (PRan) into

cells and, once methanol fixed, add P1L DNA anthracene probe (Figure 6.12). The

level of fluorescence is similar to both the non-specific DNA anthracene probe and the

mock-transfected cells with DNA anthracene probe.

6.6 Conclusion

Plasmids were designed to induce the production of mRNA targets in cells differing by

a single base. The chosen targets give ON/OFF sensing on the addition of P1L DNA

anthracene probe (Chapter 3). The plasmids were successfully synthesised and shown

to have correct inserts by sequencing. Plasmids were PEI transfected into HeLa cells

and transfection efficiency monitored via flow cytometry. Successfully transfected cells

were methanol fixed and P1L DNA anthracene probe added. Confocal microscopy was
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carried out to gather images for each plasmid type including appropriate controls. Initial

P1L plasmid microscope images demonstrate specificity and emission trends replicated

from cuvette/fixed cell studies.

Fluorescence emission from cells may be variable since the amount of hybridisable

mRNA changes with time (a ‘snapshot’ is taken when cells are fixed). In general, the

fixation process makes the mRNA more accessible, so the hybridisation should be better

than live cell studies. It would be interesting to add the DNA anthracene probe to

live transfected cells. If the distribution of fluorescence is shown to be the same as for

methanol fixed cells, it would be further proof of specific hybridisation. [10]

Repeating these studies with the CDKN1A gene SNP sensing (Chapter 3) would

be an exciting future possibility. The results could be compared to extracted human

CDKN1A gene expressing cells and/or tissue. An alternative target could be a common

endogenous target such as poly(A)+ or transcription site, which could be compared to

literature results. [114]

Finally, there are future possibilities such as combining SNP sensing with sub-

cellular localisation studies. [71] Increasing the number of repeats from 10 in the future

could help with resolution (although ultimately limited by microscope quality).
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Chapter 7

Dual fluorophore

(Cy3/anthracene) probe for SNP

sensing

7.1 Introduction

Motivation for a new probe was caused by issues concerning the anthracene in the DNA

anthracene probe. Despite its unique SNP sensing capabilities, anthracene emits at a

short wavelength, which conflicts with regions of autofluorescence in in vitro studies. The

addition of a second fluorophore to the DNA anthracene probe allows longer wavelength

and ratiometric sensing.

The concept of FRET was described in Chapter 1 and fluorophore-tagged DNA in

Chapter 4. FRET probes are commonly used in nucleic acid hybridisation studies [114,

164] as well as in the detection of SNPs. [96, 163] This chapter describes a newly designed

FRET probe which can detect SNPs using changes in fluorescence emission.

Ratiometric studies monitor emission at two separate wavelengths, and provide

a more accurate measure of change compared to measuring intensity changes at one
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wavelength. This is because the ratio is less sensitive to experimental fluctuations and

less dependent on concentration (Section 1.7). [111, 130]

The aim of the work described in this chapter is to design a probe with anthracene

as the donor fluorophore, and retain its SNP sensing capabilities. The anthracene can

therefore transfer energy to a longer wavelength emitting fluorophore, Cy3. The probes

are studied using UV-vis, fluorescence, circular dichroism and lifetime measurements.

The probes are optimised in terms of FRET efficiency between the two fluorophores,

which involves varying the relative positions of the two fluorophores. Hybridisation stud-

ies with the probe and targets varying by a single base shall be carried out. The probe

was also optimised in terms of its discriminatory ability between targets. Emission was

monitored at both the donor and acceptor wavelengths, but ratiometric measurements

were also made.

7.2 Design, synthesis and purification

The dual fluorophore probe is modified with anthracene (donor) and Cy3 (acceptor).

Cy3 was chosen as the acceptor fluorophore since its excitation spectra overlaps with

the anthracene emission spectra. This suggests the pair of fluorophores will be capable of

FRET. Cy3 is a commonly used fluorophore, especially for FRET purposes. Chapter 4

describes its use in DNA FRET hybridisation studies. Cy3 can be tagged to DNA

easily and when added to the terminus has freedom to move and stack with the probe,

minimising the effect on target binding. [205]

DNA anthracene probes and unmodified oligonucleotide strands were prepared

by automated solid phase synthesis using conventional phosphoramidite chemistry (full

details in Chapters 2 and 3). The anthracene monomer with carbon linker n = 1 and

stereochemistry l was focussed on in these studies. Cy3 phosphoramidites (Glen Re-

search) were tagged to the 5� termini (Figure 7.1). A 5l probe was also synthesised for
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comparison and will be discussed briefly.

Figure 7.1: X: Synthesised anthracene phosphoramidite [86] Y: Commercially available
Cy3 phosphoramidite (Glen Research). In this study Cy3 is added to the 5� termini of
the oligonucleotide.

Table 7.1 lists the oligonucleotides used in the studies described in this section.

A full list of oligonucleotides is given in Table G.1. The sequence used is a 15 base

non-biological sequence used throughout this thesis. Single fluorophore probes were de-

signed with either an anthracene or Cy3 modification. Dual fluorophore probes were

designed to have both anthracene and Cy3 modifications. Oligonucleotides were pu-

rified by RP-HPLC and characterised by mass spectrometry (Appendix F). Standard

ultramild treatment with potassium carbonate in methanol failed to fully deprotect the

cyanoethyl groups on the dual fluorophore probes nucleotides. It was found that an

additional DEA wash for 10 minutes prior to removal from the column successfully re-

moved the cyanoethyl groups. The MMT protecting group was then removed from the

Cy3 (Glen Research).

Cy3 was only added to the 5� of the P1L probe because it would intercalate if in-

corporated within the structure, and reduce its availability to participate in FRET. [206]

The sequence was altered in cases by moving the original central trimer (CXC) closer,

denoted by (c), and further (f) from the 5� termini with and without Cy3 (Figure 7.2).
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Table 7.1: Oligonucleotide sequences synthesised. X denotes the anthracene monomer
(1l or 5l). Cy3 denotes the cyanine 3 tag.

Oligonucleotide Sequence (5’ to 3’)

DN TGGACTCTCTCAATG

P1L TGGACTCXCTCAATG

cP1L TGGCXCACTTCAATG

fP1L TGGACTTCACXCATG

P5L TGGACTCXCTCAATG

Cy3 Cy3-TGGACTCTCTCAATG

cCy3 Cy3-TGGCTCACTTCAATG

fCy3 Cy3-TGGACTTCACTCATG

Cy3/P1L Cy3-TGGACTCXCTCAATG

cCy3/P1L Cy3-TGGCXCACTTCAATG

fCy3/P1L Cy3-TGGACTTCACXCATG

Cy3/P5L Cy3-TGGACTCXCTCAATG

DT1 CATTGAGAGAGTCCA

DT5 CATTGAGAAAGTCCA

DT6 CATTGAAAGAGTCCA

DT7 CATTGAGATAGTCCA

DT8 CATTGAGACAGTCCA

cDT1 CATTGAAGTGAGCCA

cDT5 CATTGAAGTGAACCA

cDT6 CATTGAAGTAAGCCA

fDT1 CATGAGTGAAGTCCA

fDT5 CATGAATGAAGTCCA

fDT6 CATAAGTGAAGTCCA
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Figure 7.2: Design schematic of the new DNA anthracene probes and dual fluorophore
probes.

This was carried out in order to eliminate the effect of changing the adjacent

bases on the fluorescent properties of anthracene. Moving the anthracene and Cy3

modifications closer and further apart on the DNA can impact the FRET efficiency

since FRET is distance dependent. Inspiration for the design of the FRET probe was

taken from Kato et al. [207] The positions of FRET pair pyrene and perylene were

varied systematically along a 21 base pair DNA duplex. Kato et al. [207] compares the

FRET efficiency between a theoretical model and experimental values. The theoretical

model suggests FRET should drop off dramatically at certain base pair separations

between fluorophores, which is due to the fluorophores becoming distanced through a

turn (rotation) in the helical duplex. In practice, experimental results show that the

FRET efficiency remains high at these base pair separations. The final probe designs

chosen for this study included 4, 7 and 10 base pair separations between the fluorophores

(Table 7.2)- which all show high theoretical and experimental FRET efficiency from Kato

et al. [207]
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Table 7.2: Distances and orientation between the fluorophores on the duplex. Values
calculated using CalcTool (http://www.calctool.org/CALC/prof/bio/dna).

Probe Distance (bases) Distance (Angstrom) Rotation (turns of the helix)

Cy3/P1L 7 23.1 0.67

cCy3/P1L 4 13.2 0.39

fCy3/P1L 10 33 0.96

7.3 Melting studies

All melting studies show the modified probes give stable duplexes with the DNA targets

at room temperature (see Appendix E for full results). By moving the anthracene

modification closer to the DNA termini the disruption to the structure causes ‘fraying’

effects which reduced the melting temperatures slightly compared to P1L in the match

case (Table 7.3). Table 7.4 shows all the P1L probes have lower melting temperatures

in the mismatch case, compared to their respective match case.

The addition of the Cy3 tag on the 5� end of the unmodified DN probe causes

increased melting temperatures (Tables 7.5 and 7.6). This is caused by the Cy3 π-

stacking on top of the duplex since Cy3 has a flexible carbon linker between the dye

and the DNA backbone. [208] In the case of the cCy3- and fCy3-only probes, the un-

interrupted sequence of complementary base pairs and the added stabilisation of the

π-stacking Cy3 on the 5� end causes high melting temperatures. The difference in TM ’s

between the DT1 and DT5 duplexes are similar regardless of the probe.

Table 7.3: Melting temperatures ( ◦C) of DNA anthracene probes (P1L) and matching
target DT1. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Duplex TM ( ◦C)

P1L:DT1 53

cP1L:cDT1 52

fP1L:fDT1 51.5
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Table 7.4: Melting temperatures ( ◦C) of DNA anthracene probes (P1L) and mismatch-
ing target DT5. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Duplex TM ( ◦C)

P1L:DT5 46

cP1L:cDT5 41

fP1L:fDT5 47.5

Table 7.5: Melting temperatures ( ◦C) of Cy3-only probes and matching target DT1. 5
µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Duplex TM ( ◦C)

Cy3:DT1 57

cCy3:cDT1 61

fCy3:fDT1 61

Table 7.6: Melting temperatures ( ◦C) of Cy3-only probes and mismatching target DT5.
5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Duplex TM ( ◦C)

Cy3:DT5 43.5

cCy3:cDT5 48

fCy3:fDT5 47
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Table 7.7: Melting temperatures ( ◦C) of Cy3/P1L probes and matching target DT1. 5
µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Duplex TM ( ◦C)

Cy3/P1L:DT1 49.5

cCy3/P1L:cDT1 53

fCy3/P1L:fDT1 54.5

Table 7.8: Melting temperatures ( ◦C) of Cy3/P1L probes and mismatching target DT5.
5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Duplex TM ( ◦C)

Cy3/P1L:DT5 42

cCy3/P1L:cDT5 42.5

fCy3/P1L:fDT5 42.5

The cCy3- and fCy3-only TM ’s help to explain the higher melting temperatures

of the cCy3/P1L and fCy3/P1L compared to their respective P1L probes (Tables 7.7

and 7.8). Clearly the stabilising Cy3 overcomes the destabilising anthracene in these

dual fluorophore probes.

In the case of the dual fluorophore probe Cy3/P1L, the melting temperatures

show less stability compared to the single fluorophore probe duplexes (Table 7.9). There

is no obvious trend to the low Cy3/P1L duplex TM ’s but it may be due to a confor-

mational change not allowing the anthracene to intercalate as much into the duplex.

Intercalation must still be present and causing some stabilisation though since the TM

difference between DT1 and DT5 is similar to that of P1L. This was in agreement with

CD studies which are discussed in Section 7.6. Dye-dye and dye-nucleotide interactions

could also be a contributing factor to lower melting temperatures (Section E.1.1). [209]

Previous studies into SNP sensing with P1L probes showed that the anthracene

was able to stabilise a mismatch being on the 5� side of the modification. [33] The TM be-

tween P1L and mismatching target DT5 is 1.5 ◦C greater than P1L with DT6 (mismatch
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Table 7.9: Melting temperatures ( ◦C) of central DNA anthracene (P1L), Cy3-only and
dual fluorophore probes and targets, plus controls. 5 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer.

Probe/Target DT1 DT5 �(DT1-DT5)

DN 55 42 13

P1L 53 46 7

Cy3 57 43.5 13.5

Cy3/P1L 49.5 42 7.5

Table 7.10: Melting temperatures ( ◦C) of DNA anthracene probes (P1L) and mismatch-
ing target DT6. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Duplex TM ( ◦C)

P1L:DT6 44.5

cP1L:cDT6 42

fP1L:fDT6 47.5

on 3� side of the modification). This small change causes there to be only ON/OFF fluo-

rescence sensing in the case of DT5. The target DT6 was tested here to compare FRET

efficiencies with DT5 in the dual fluorophore probe study. Finally, other mismatches

were considered such as targets DT7 (G to T mismatch) and DT8 (G to C mismatch).

All cases showed duplexes were stable at room temperature (Appendix E). Previous

studies show that all the mismatch target TM ’s were similar with unmodified DNA

probe (DN) but there were differences with P1L, which is reproduced here. [33]

Despite the DT6 causing destabilisation to the P1L duplex, the opposite is true

for the corresponding cP1L and fP1L cases (Table 7.10). This trend extends to all the

dual fluorophore probes since DT6 yields higher melting temperatures than DT5. It

is even the case for the Cy3-only probe duplexes. The hypothesis is that the DT5,

compared to DT6, causes an unfavourable conformational change combined with the

Cy3. This shall be further discussed with fluorescence results.
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7.4 Fluorescence studies

7.4.1 Single fluorophore probes (single stranded)

P1L probes were described in Chapter 3 and their fluorescence properties discussed.

Emission spectra of the cP1L and fP1L probes are given in Figure 7.3 alongside P1L.

Figure 7.3: Fluorescence spectra showing the emission spectra of DNA anthracene probes
P1L, cP1L and fP1L respectively. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium
phosphate buffer, λex = 350 nm.

All the probes give characteristic anthracene emission with a λmax of 426 nm,

however the cP1L and fP1L are more emissive than P1L (60% and 15% respectively at

λem = 426 nm). This is borne out by different quantum yields (Table 7.11), which is due

to the anthracene being in different environments. The base opposite system was also

considered with the P5L probe (Section 3.3.4, Chapter 3). The central anthracene modi-

fication was not moved and the P5L fluorescence emission spectra is given in Figure E.4,

Appendix E.

Cy3-only tagged probes were shown to have minimal emission when excited at

153



Table 7.11: Quantum yields of single stranded DNA anthracene probes. 1 µM DNA,
100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm. Quantum yields
were determined relative to quinine sulphate (Φf = 0.546)

.

Probe Quantum Yield

P1L 0.075

cP1L 0.127

fP1L 0.081

350 nm (excitation at 550 nm is given in Figure 7.5). Emission spectra is given in

Figure 7.4 and peak emission is monitored at 570 nm. The quantum yields, upon 350

nm excitation, are given in Table 7.12. The fluorescence QY of Cy3 linked covalently to

DNA depends on the type of linkage used for attachment, DNA sequence and secondary

structure. [206] Cy3 only probes do not vary significantly in emission upon the movement

of the central trimer (CTC) since the Cy3 tag remains on the 5� terminus.

Figure 7.4: Fluorescence spectra showing the emission spectra of Cy3-only probes Cy3,
cCy3 and fCy3 respectively. 1 µMDNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate
buffer, λex = 350 nm.
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Table 7.12: Quantum yields of single stranded Cy3-only probes. 1 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm. Quantum yields were
determined relative to quinine sulphate (Φf = 0.546)

.

Probe Quantum Yield

Cy3 0.026

cCy3 0.023

fCy3 0.019

7.4.2 Dual fluorophore probes (single stranded)

In order to achieve optimum FRET for the dual fluorophore probe, there were two con-

siderations. First, the emission of the donor fluorophore (anthracene) must overlap with

the excitation of the acceptor fluorophore (Cy3). However, the overlap is a compromise

between enhancing FRET and reducing cross-excitation (also known as cross-talk). Fig-

ure 7.5 gives the normalised excitation and emission spectra of the anthracene-only and

Cy3-only probes, with the area of overlap labelled. The second consideration was the

distance and orientation of the fluorophores. Table 7.2 gives the distance and rotation

of the helix between the fluorophores.
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Figure 7.5: Excitation spectra (dashed) and emission spectra (solid) of P1L probes (blue)
and Cy3-only probes (red). 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate
buffer. P1L λex = 350 nm and λem = 426 nm. Cy3 λex = 550 nm and λem = 570 nm.
Data is normalised to λmax values.

It can be concluded from the fluorescence emission studies that FRET is able to

occur between the anthracene and Cy3 since there is increased Cy3 emission when the

anthracene is included in the probe, compared to the Cy3-only probe (Figure 7.6). The

emission at 426 nm decreases as emission at 570 nm increases, indicating a transfer of

energy. This is the case for the close (Figure 7.7) and far (Figure 7.8) dual fluorophore

probes.

156



Figure 7.6: Fluorescence spectra showing the emission spectra of P1L, Cy3-only and
Cy3/P1L probes respectively. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phos-
phate buffer, λex = 350 nm.

Figure 7.7: Fluorescence spectra showing the emission spectra of cP1L, cCy3-only and
cCy3/P1L probes respectively. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium
phosphate buffer, λex = 350 nm.
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Figure 7.8: Fluorescence spectra showing the emission spectra of fP1L, fCy3-only and
fCy3/P1L probes respectively. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium
phosphate buffer, λex = 350 nm.

Figure 7.9 gives the emission spectra of the three dual fluorophore probes upon

excitation at 350 nm. The varying distance between the anthracene and Cy3 has little

effect on the Cy3 emission at 570 nm. However, there are varying degrees of quench-

ing at 426 nm. Cy3/P5L probe also exhibits FRET between 5l anthracene and Cy3

(Figure E.10).
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Figure 7.9: Fluorescence spectra showing the emission spectra of Cy3/P1L probes
Cy3/P1L, cCy3/P1L and fCy3/P1L respectively. 1 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer, λex = 350 nm.

The cCy3/P1L probe has the greatest degree of energy transfer since it has the

lowest emission at 426 nm. However, it is not necessarily an efficient energy transfer

since the Cy3 emission is no greater than for the fCy3/P1L case. fCy3/P1L would be

expected to have lower FRET efficiency than Cy3/P1L due to the distance dependence

of FRET. However, the orientation of the fluorophores is important and influenced by

the rotation of the DNA helix. In the fCy3/P1L case there is nearly a full helical rotation

between the dyes (Table 7.2). The Cy3/P1L probe donates the least energy since it has

high and low emission at 426 nm and 570 nm respectively. The quantum yields of the

dual fluorophore probes (Table 7.13) are similar to their corresponding DNA anthracene

probes, which would be expected if the energy transfer is without significant loss. There

is a small difference between the cCy3/P1L and cP1L probes. One factor to consider

in the cCy3/P1L probe case is that the two fluorophores are ‘too close’. It should

be acknowledged that some acceptor emission could be quenched due to the exciton
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Table 7.13: Quantum yields of single stranded DNA anthracene and dual fluorophore
probes. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350
nm. Quantum yields were determined relative to quinine sulphate (Φf = 0.546).

Probe Quantum Yield

P1L 0.075

cP1L 0.127

fP1L 0.081

Cy3/P1L 0.096

cCy3/P1L 0.091

fCy3/P1L 0.096

coupling between the dyes at close proximity, which has been reported.[84, 210] Kato et

al. experienced only small levels of FRET efficiency loss in their FRET probe when the

fluorophores were separated by one base pair. [207]

7.4.3 Single fluorophore probe in duplex

Cy3-only probes (Cy3, cCy3, fCy3) show a degree of quenching at 570 nm upon hy-

bridisation (Table E.6), however the emission change was the same for all targets (the

percentage change values are large since the intensity values are small). Therefore the

Cy3-only probes do not partake in base-discrimination sensing. Emission spectra for all

the Cy3-only duplexes are given in Appendix E.

P1L probe ON/OFF sensing of targets was described in Chapter 3. Figure 7.10

shows the emission increase on addition of the mismatch target DT5 to P1L, whereas

addition of the matching target DT1 causes a decrease in emission.
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Figure 7.10: Emission spectra showing the change in emission upon hybridisation of
anthracene probe P1L with targets DT1 and DT5 respectively. 1 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Figure 7.11: Emission spectra showing the change in emission upon hybridisation of
anthracene probe cP1L with targets cDT1 and cDT5 respectively. 1 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.
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Figure 7.12: Emission spectra showing the change in emission upon hybridisation of
anthracene probe fP1L with targets fDT1 and fDT5 respectively. 1 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Emission spectra are given for cP1L and fP1L in Figures 7.11 and 7.12 respec-

tively. It is interesting to note that there is no longer ON/OFF sensing, which links to

the higher quantum yields (Table 7.13). However, it also alludes to the neighbouring

bases and differing structure having an effect on the sensing effect. [33] Despite this the

mismatch target DT5 is distinguishable from the matching target DT1, and is consis-

tently higher in emission (Table 7.14). As previously described for the base opposite

system (Section 3.3.4) P5L varies in emission depending on the base opposite upon

Table 7.14: Percentage differences in emission at λem = 426 nm on addition of DNA
targets to DNA anthracene probes, relative to the probe alone. 1 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Probe/Target DT1 DT5

P1L -70 +77

cP1L -86 -56

fP1L -77 -24
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hybridisation with DNA targets (Figure E.4).

7.4.4 Dual fluorophore probe in duplex

The dual fluorophore system is capable of FRET as described above, however, hybridi-

sation studies reveal it is capable of SNP discrimination at two different wavelengths.

Emission spectra for the dual fluorophore probe duplexes are shown in Figures 7.13, 7.14

and 7.15.

Figure 7.13: Emission spectra showing the change in emission upon hybridisation of
Cy3/P1L with targets DT1 and DT5 respectively. 1 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer, λex = 350 nm.
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Figure 7.14: Emission spectra showing the change in emission upon hybridisation of
cCy3/P1L with targets cDT1 and cDT5 respectively. 1 µM DNA, 100 mM NaCl, 10
mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Figure 7.15: Emission spectra showing the change in emission upon hybridisation of
fCy3/P1L with targets fDT1 and fDT5 respectively. 1 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer, λex = 350 nm.

Titrations of target DNA showed no further change in emission was observed in
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the presence of excess target. This indicates the formation of a 1:1 complex, which is

consistent with DNA duplex formation. This was applicable for all dual fluorophore

probe duplexes. An example of a titration graph is shown in Figure E.9, Appendix E for

the Cy3/P1L:DT1 duplex. Figure E.8 shows that the addition of a completely mismatch-

ing DNA target (DRan) causes little change in emission for the probes indicating that

the sensing is caused by a hybridisation event. Table E.7 gives the percentage change

in emission values at 570 nm upon hybridisation of targets. The percentage change in

emission values at 426 nm are given in Table E.8, Appendix E (they are very large since

the intensity values are small). Hybridised probe quantum yields are given in Table E.9.

For all the dual fluorophore probes there is no ON/OFF sensing at 570 nm but

there is discrimination between the targets. In all cases the mismatching target causes

the emission at 570 nm to decrease less than the matching target. Therefore, SNP read-

out is possible at 570 nm, whereas it was not possible with the Cy3-only probe. At 426

nm the anthracene emission generally increases although there is a negligible increase in

the case of the cCy3/P1L probe. Despite both targets causing an increase at 426 nm,

they are distinguishable since the mismatch target causes a greater increase. Therefore,

targets with one base difference are able to undergo sensing at two wavelengths using

the dual fluorophore probe.

There are two factors influencing the fluorescence emission: anthracene interca-

lation and orientation. The increasing anthracene emission at 426 nm for both targets

suggests intercalation of the anthracene into the duplex. As found previously with P1L,

the anthracene would be expected to intercalate more with the mismatch target (DT5)

than the match target (DT1), hence a greater increase in anthracene emission. With

DT1, the anthracene is quenched more by its environment and hence less Cy3 emission

is observed compared to with DT5. The anthracene intercalates more into the duplex

with DT5 and is more emissive, and therefore causes higher Cy3 emission. The FRET

efficiency is optimal for the single stranded probes since the anthracene and Cy3 can
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align, hence why the Cy3 emission is similar for all dual fluorophore probes. The im-

posed rigidity of the duplex formation causes a reduction in FRET efficiency. Therefore,

the differences in emission caused by the anthracene intercalation is counteracted by the

orientation of the two fluorophores upon duplex formation.

DT5 causes higher emission at λem = 426 nm than DT6 for the Cy3/P1L, which is

consistent with the findings for P1L probe which gives a greater emission for a mismatch

on the 5� side with respect to the tag. The Cy3 emission at λem = 570 nm is slightly

higher for DT5 than DT6 (Figure 7.16). The hypothesis is that the anthracene is able

to intercalate into the duplex more for DT5 (hence the higher anthracene emission) but

is at an orientation which allows it to donate energy to Cy3. When the mismatch is

on the other side of the anthracene (DT6), the anthracene can still intercalate into the

duplex since TM values show duplex stabilisation (Table E.1). However, the anthracene

is not in an optimum position for FRET and unable to donate as much energy to the

Cy3. The same trend is observed for cCy3/P1L:cDT6 and fCy3/P1L:fDT6. The other

mismatch targets, DT7 and DT8, give similar results to DT6 for the Cy3/P1L probe.
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Figure 7.16: Emission spectra showing the change in emission upon hybridisation of
Cy3/P1L with targets DT5 and DT6 respectively. 1 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer, λex = 350 nm.

The dual fluorophore probe with longer linker anthracene Cy3/P5L also exhibits

quenching at 570 nm (Figure E.10). An initial hypothesis for the lack of increased

emission at 570 nm upon hybridisation was the restrictive anthracene n = 1 carbon

linker, however the same result was observed for the n = 5 carbon linker. It is difficult

to discriminate between DNA targets using the Cy3/P5L probe because of less dramatic

structural changes, and studies were therefore not continued with this probe.

7.4.5 Ratiometric studies

Table 7.15 gives the ratio of absolute emission intensities at wavelengths 570 nm/426

nm for the dual fluorophore probes and duplexes. Ratiometric studies are beneficial

since they contain an internal reference point, meaning that sensing can be obtained

despite variable probe concentrations. As long as the probe is completely bound to

target DNA, this negates the need for a probe alone measurement prior to target bind-
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Table 7.15: Ratio of emission intensity at wavelengths 570 nm/426 nm for dual fluo-
rophore DNA probes and targets. 100 mM NaCl, 10 mM pH 7.0 sodium phosphate
buffer, λex = 350 nm. Ratios are expressed as mean ± s.e.m. from three repeats.

Probe Cy3/P1L cCy3/P1L fCy3/P1L

Probe only 15.23±3.10 35.74±0.7 20.48±0.35

DT1 1.52±0.12 6.23±0.27 0.65±0.01

DT5 1.17±0.14 7.79±0.23 0.40±0.01

ing. Although the system still involves a measurement at 426 nm (so autofluorescence

wavelength regions can not be avoided) it has potential application to areas such as

PCR. Figure 7.17 shows that ratio values can also be used for SNP detection purposes

since match/mismatch targets can be discriminated. Table E.12 gives the ratios of dual

fluorophore probes with other mismatch targets (DT6-DT8). It is found for Cy3/P1L

that the DT5 is distinguishable from other adjacent mismatch targets in terms of ratios.

Figure 7.17: Ratio of emission intensity at 570 nm/426 nm for dual fluorophore DNA
probes and targets. 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350
nm. Ratios are expressed as mean ± s.e.m. from three repeats.
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A range of concentrations, within the limitations of the equipment, for the Cy3/P1L

probe duplex was tested (0.5 - 2 µM). The ratio between emission at 570 nm /426 nm

was shown to be consistent within error (Table E.13, Appendix E). This proves that

the probe is not aggregating and the sensing results from an intramolecular interaction

rather than an intermolecular. Also it demonstrates the principle of ratiometric sensing

in that the emission intensity of the probe (and hence its concentration) does not need

to be measured or known beforehand, so long as the target is in excess.

7.5 Lifetime studies

Lifetime studies were briefly discussed in Chapter 1 (Section 1.2). Lifetime measurements

are particularly relevant and interesting in the base adjacent SNP sensing system. The

hypothesis was that the difference in anthracene lifetimes would impact the Cy3 lifetimes

in the dual fluorophore probes, causing differences in fluorescence emission.

The P1L probe and most P1L duplexes lifetimes are found to be tri-exponential,

consisting of a short (τ1), medium (τ2) and long (τ3) component, suggesting more than

one anthracene environment. [211] Conversely, P1L:DT5 can be classed as bi-exponential,

although technically due to a very minor sub-ns lifetime, it is tri-exponential. This is

only applicable for the mismatch on the 5� of the modification since P1L:DT6 is tri-

exponential. [33] The P1L SNP sensing mechanism was discussed in Chapter 3. The

changes in emission are dependent on the match/mismatching bases surrounding the

anthracene and how they impact the anthracene environment. It has been previously

emphasised that the anthracene is not tightly held in a single configuration, but parti-

tions between different environments. The contribution from the 1l intercalating into

the duplex is thought to be greater in the mismatch target (DT5) case. This leads to

higher fluorescence emission due to the anthracene being in a hydrophobic environment.

τ3 is attributed to the fluorescent emission of anthracene from an environment where it
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Table 7.16: Fluorescence lifetimes (ns) of P1L and duplexes. 5 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 426 nm.

τ1 (Wt %) τ2 (Wt %) τ3 (Wt %) χ2

P1L 0.61 (12) 2.02 (31) 8.77 (57) 1.252

P1L:DT1 0.62 (38) 1.60 (45) 6.97 (17) 1.175

P1L:DT5 0.43 (2) 2.15 (23) 9.77 (75) 1.354

Table 7.17: Fluorescence lifetimes (ns) of fP1L and duplexes. 5 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 426 nm.

τ1 (Wt %) τ2 (Wt %) τ3 (Wt %) χ2

fP1L 0.49 (8) 2.07 (36) 8.37 (56) 1.356

fP1L:fDT1 0.60 (39) 1.48 (56) 6.23 (5) 1.186

fP1L:fDT5 0.41 (6) 2.85 (63) 8.11 (31) 1.245

is closely shielded by nucleobases within the duplex. Previous studies have shown that

the P1L with the mismatch target DT5 has a longer lifetime (τ3) than the matching

DT1 target. [33]

Table 7.16 gives the lifetime measurements for P1L single-stranded and duplexes,

which were re-measured for this thesis (set-up described in Chapter 2) and are similar

to those previously measured. [33] Fluorescent decay profiles of P1L single-stranded and

duplexes are given in Section E.3, Appendix E.

The lifetimes for fP1L and cP1L are given in Tables 7.17 and 7.18 respectively.

They follow a similar trend to that of P1L described above. However, τ3 is reduced, or

disappears for cP1L, for the DT1 and DT5 duplexes. This agrees with the hypothesis

that the anthracene is not able to intercalate as well in the fP1L and cP1L cases.

The Cy3-only probes lifetimes were measured at 570 nm (Appendix E). For the

probes and duplexes, the lifetimes are bi-exponential indicating two different environ-

ments. As expected there is little difference between the lifetimes of Cy3-only probes

with DT1 and DT5 targets.
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Table 7.18: Fluorescence lifetimes (ns) of cP1L and duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 426 nm.

τ1 (Wt %) τ2 (Wt %) χ2

cP1L 1.82 (27) 7.86 (73) 1.512

cP1L:cDT1 0.87 (77) 5.16 (23) 1.981

cP1L:cDT5 2.88 (46) 8.61 (54) 1.188

Table 7.19: Fluorescence lifetimes (ns) of dual fluorophore probes and anthracene-only
probes. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 376
nm, λem = 426 nm.

τ1 (Wt %) τ2 (Wt %) τ3 (Wt %) χ2

P1L 0.61 (12) 2.02 (31) 8.77 (57) 1.252

Cy3/P1L 0.35 (53) 1.42 (29) 8.73 (18) 1.229

fP1L 0.49 (8) 2.07 (36) 8.37 (56) 1.356

fP1L/Cy3 0.29 (50) 1.66 (36) 5.43 (14) 1.226

cP1L 1.82 (27) 7.86 (73) - (-) 1.512

cCy3/P1L 0.25 (94) 5.83 (6) - (-) 1.662

The lifetimes of the dual fluorophores were first monitored at 426 nm. τ3 is

dependent on anthracene, regardless of any energy transfer, whereas τ2 is influenced

mainly by FRET. It is the τ values rather than the weightings which are more impor-

tant. [207] Due to energy donation, τ2 is expected to be less for the dual fluorophore

probe compared to the respective anthracene-only probe when excited at 426 nm. This

is true for all the dual fluorophore probes (Table 7.19). τ2 is expected to increase the

closer the fluorophores are, which is a trend also observed. As the fluorophores move

further apart they tend towards the anthracene-only probe values. cCy3/P1L lifetimes

are too short to observe accurately due to the fluorophores high energy transfer and

proximity.

Upon duplex formation, it was shown that DT5 causes bi-exponential decay of

the Cy3/P1L whereas DT1 remains tri-exponential. This trend was shown to be true for
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Table 7.20: Fluorescence lifetimes (ns) of Cy3/P1L duplexes. 5 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 426 nm.

τ1 (Wt %) τ2 (Wt %) τ3 (Wt %) χ2

Cy3/P1L:DT1 0.56 (51) 1.45 (43) 7.92 (6) 1.190

Cy3/P1L:DT5 0.79 (16) 2.40 (84) - (-) 1.208

fCy3/P1L:fDT1 1.50 (85) 2.41 (15) -(-) 1.596

fCy3/P1L:fDT5 1.37 (32) 3.23 (68) -(-) 1.505

cCy3/P1L:cDT1 0.33 (-) 5.05 (-) -(-) 1.576

cCy3/P1L:cDT5 0.19 (70) 5.56 (30) -(-) 2.041

only the Cy3/P1L probe (Table 7.20). It was also shown that τ2 increases significantly

for the DT5 target compared to the DT1 target, except for the cCy3/P1L probe. The

increased τ2 indicates more FRET is occurring in the DT5 duplex.

If Cy3 retains the anthracene lifetime trend then DT5 would be expected to have

a longer lifetime than DT1 for the Cy3/P1L probe when monitored at 570 nm. There is

now a single exponential decay for both targets, however the DT5 causes a significantly

longer lifetime due to slower energy transfer than DT1 (excluding the cCy3/P1L case)

(Tables 7.21, 7.22 and 7.23). Longer lifetimes are also evident for the fCy3/P1L probe

compared to the other dual fluorophore probes due to a slower energy transfer caused

by increased distance between the two fluorophores. These results suggest that lifetime

differences caused by the anthracene intercalation can be detected by energy transfer

to Cy3 at 570 nm. These results are preliminary since some χ2 values are higher than

desirable (>1.4). Future experiments would involve repeating these measurements on

tailored equipment.

Changes in fluorescence lifetimes could be measured and visualised using oligonu-

cleotides and appropriate imaging facilities. For example, Tsuji et al. was one of the first

to use the concept of FRET to target mRNA in the cell. [121] Later FRET was mea-

sured using acceptor fluorescence decays. [212] Distinguishing base differences using a
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single FRET probe and lifetimes would be a novel method for SNP sensing. This could

be further exploited for applications such as fluorescence-lifetime imaging microscopy

(FLIM).

Table 7.21: Fluorescence lifetimes (ns) of Cy3/P1L and duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 570 nm.

τ1 (Wt %) τ2 (Wt %) χ2

Cy3/P1L 0.71 (26) 1.90 (74) 1.480

Cy3/P1L:DT1 - (-) 1.49 (100) 1.850

Cy3/P1L:DT5 - (-) 2.02 (100) 1.579

Table 7.22: Fluorescence lifetimes (ns) of fCy3/P1L and duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 570 nm.

τ1 (Wt %) τ2 (Wt %) χ2

fCy3/P1L 0.61 (21) 2.04 (79) 1.589

fCy3/P1L:fDT1 1.50 (85) 2.41 (15) 1.596

fCy3/P1L:fDT5 1.37 (32) 3.23 (68) 1.505

Table 7.23: Fluorescence lifetimes (ns) of cCy3/P1L and duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 570 nm.

τ1 (Wt %) τ2 (Wt %) τ3 (Wt %) χ2

cCy3/P1L 0.61 (21) 1.81 (79) - 1.690

cCy3/P1L:cDT1 0.80 (-) 2.66 (-) 3.95 (-) 1.585

cCy3/P1L:cDT5 0.53 (38) 1.32 (62) - 2.214

7.6 Circular dichroism studies

Circular dichroism (CD) studies give more information on the DNA helical structure and

how the anthracene interacts with the duplex. Using CD studies, P1L DNA duplexes

173



were found to have B-DNA conformation with an induced anthracene signal at approx-

imately 255 nm (Section 3.3.5). Single stranded probes cP1L and fP1L CD spectra are

given alongside P1L in Figure 7.18 for comparison, although single stranded DNA tends

to give a weak CD signal.

Figure 7.18: Circular dichroism spectra of single stranded P1L DNA probes. 5 µM DNA,
100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

All three anthracene DNA probe duplexes give B-DNA conformations (positive

peak at 280 nm and negative peak at 245 nm respectively). The interaction of the

anthracene within the different P1L probes becomes more apparent in the duplex CD

given in Figures 7.19 and 7.20. The anthracene intercalates most into the P1L duplexes

due to strong shoulder peaks at 255 nm. In both the cP1L and fP1L duplexes there is a

much reduced shoulder peak at 255 nm, indicating that the anthracene does not interact

as strongly due to different orientation upon intercalation. This is understandable for

two reasons: the neighbouring bases have altered and the modifications are nearer to

the DNA termini which infers less stacking would occur due to ‘fraying’ effects. This

observed lack of anthracene intercalation, which agrees with reduced TM values, helps
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to explain the lack of ON/OFF fluorescence sensing for the cP1L and fP1L probes.

Figure 7.19: Circular dichroism spectra of P1L and DT1 duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Figure 7.20: Circular dichroism spectra of P1L and DT5 duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Cy3-only probes and duplexes, have a typical B-DNA conformation plus an ad-
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ditional small signal at around 570 nm due to the Cy3 interacting with the duplex. Full

CD spectra are given in Appendix E. It is clear that the Cy3 modification does not

disrupt the B-DNA conformation of the DNA duplex, and its 5� stacking is likely to

contribute to it. [208, 213]

The full duplex CD spectra for dual fluorophore probes are given in Appendix E.

Again, there is a small signal observable for Cy3 at 570 nm showing Cy3 interacts with

the DNA duplex. The Cy3 signal does not vary and the shorter wavelength region has

more interesting differences. Cy3/P1L CD spectra have similarities with the P1L CD

spectra (Figure 7.21). The structure of surrounding base pairs is not disturbed by the

introduction of anthracene or Cy3. Cy3/P1L matching/mismatching duplex CD spectra

are given in Figures 7.22 and 7.23 respectively.

Figure 7.21: Circular dichroism spectra of single stranded P1L, Cy3-only and Cy3/P1L
DNA probes. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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Figure 7.22: Circular dichroism spectra of Cy3/P1L and DT1 duplexes. 5 µM DNA,
100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Figure 7.23: Circular dichroism spectra of Cy3/P1L and DT5 duplexes. 5 µM DNA,
100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

The similarities become clear when the DT1 CD spectra are overlaid (Figure 7.24).

This is despite a TM decrease of 3.5 ◦C between P1L:DT1 and Cy3/P1L:DT1 duplexes.
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There are differences between the DT5 CD spectra though (Figure 7.25). The peaks

are reduced for the Cy3/P1L:DT5 case, indicating the duplex has diminished helical

twist and base stacking. This suggests the duplex is, not surprisingly, disrupted by the

two modifications and the mismatch. This links well with the 4 ◦C decrease in TM for

Cy3/P1L:DT5 compared to P1L:DT5. Despite this, the anthracene is still intercalating

significantly more compared to the DT1 target. This agrees with the retention of higher

fluorescence emission and longer lifetimes for DT5 versus DT1.

Figure 7.24: Circular dichroism spectra of DT1 duplexes. 5 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer.
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Figure 7.25: Circular dichroism spectra of DT5 duplexes. 5 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer.

cCy3/P1L and fCy3/P1L have similar CD spectra to Cy3/P1L (Figures E.23

and E.24). They both have strong B-DNA conformation due to stretches of unmodified

complementary DNA. The fCy3/P1L has a definite lack of anthracene intercalation for

both targets, whereas the cCy3/P1L has slightly more anthracene intercalation in the

mismatch (DT5) versus the match (DT1) case.

7.7 Conclusion

A next generation DNA anthracene probe was designed to create a ratiometric probe

based upon FRET. This was achieved by tagging the fluorophore Cy3 to the 5� termini of

the DNA anthracene probe. Cy3 was chosen since it forms a FRET pair with anthracene

and the dual fluorophore probe was shown to successfully display FRET between an-

thracene as a donor and Cy3 as an acceptor. The probe also exhibited FRET upon

hybridisation with targets and differences in emission meant single base discrimination

was possible. Discrimination was based solely on the Cy3 emission or using a popular
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ratiometric approach, which involves the ratio between the anthracene and Cy3 peak

emission intensities. A study to optimise the dual fluorophore probe was undertaken.

Since FRET is distance and orientation dependent, the anthracene modification within

the DNA sequence was moved closer and further away from the Cy3 modification. All

dual fluorophore probes were capable of FRET and again, base discrimination was pos-

sible upon target hybridisation. Judging which is the ‘best’ probe is a difficult task.

For SNP sensing purposes, based upon the Cy3 emission only, the Cy3/P1L probe gives

the greatest difference in emission between targets. In terms of the ratiometric results,

all of the dual fluorophore probes give reliable discrimination between match/mismatch

targets. Clearly, P1L remains the best ON/OFF sensing probe.

Overall base discrimination can now be achieved by monitoring emission at a

longer wavelength, which is beneficial when considering monitoring at wavelengths re-

moved from regions of cell autofluorescence. [214] Future studies could concentrate on

amplifying the differences in emission between targets rather than focussing on achiev-

ing ON/OFF sensing. It could be interesting to test the bio-compatibility of the dual

fluorophore probes efficiency in cell lysate, fixed cells (Chapters 4 and 5) and DNA/RNA

targets extracted from cells.

Further investigation into the effect of the neighbouring bases to the trimer (CXC)

is required, or alternatively, FRET probes designed which do not alter the original

sequence. Future modelling studies are needed to gain understanding of the Cy3 and

anthracene interaction, with each other and surrounding bases. Finally, combining the

unique SNP sensing FRET properties of the probe with lifetime measurements could

lead to exciting opportunities with time-resolved spectroscopy and FLIM.
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Chapter 8

Conclusions and future work

DNA anthracene probes developed by the Tucker group have been shown to have a unique

discrimination of single bases based upon emission differences and not relying solely on

hybridisation. The two sensing strategies were described in Chapter 3. Both SNP

sensing strategies were extended to RNA and 2�OMe RNA targets. ON/OFF sensing

was observed for SNP sensing in an RNA sequence associated with Alzheimer’s disease.

Quantitative measurements could also be made from mixtures of two targets, which is

important for future SNP screening applications. These fundamental oligonucleotide

studies were carried out with a view to extending the DNA anthracene probe to target

RNA in cells.

Additionally, a fundamental study took place to optimise the stability of DNA

strands and duplexes in a cellular environment. This was carried out by testing vari-

ous cell delivery techniques such as chemical transfection, using Cy3-Cy5-tagged DNA

and FRET measurements (Chapter 4). It was found that fixed cells and cell delivery

techniques which avoided the endocytosis pathway ensured intact DNA and duplexes.

DNA anthracene probes were initially tested in fixed/permeabilised cells since it

would not be degraded upon delivery or by nucleases. It was found that the ON/OFF

sensing trends of the DNA anthracene probe with DNA and RNA targets were repli-
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cated in a cellular environment. Fluorescence emission intensities were extracted from

images using a novel application of Gaussian Mixture Modelling (GMM), which allowed

quantitative comparisons of changes in emission intensities.

Having established that 1) RNA SNP sensing was possible with the DNA an-

thracene probe, and 2) DNA anthracene probe SNP sensing trends were replicated in

a cellular environment, the DNA anthracene probe could be used in cells to target en-

dogenous RNA. This involved synthesis of plasmids which, upon transfection into cells,

over-express mRNA sequences differing by a single base. DNA anthracene probe was

added to successfully transfected and fixed cells. Initial microscope images of the DNA

anthracene probe targeting mRNA in cells, show differences in emission intensity which

correspond to previously observed SNP sensing trends (Chapter 3).

Finally, alongside all the knowledge and experience gained from developing DNA

anthracene probes for SNP sensing in cells, a new DNA probe has emerged. Chapter 7

describes the Cy3/anthracene-tagged DNA probe which is able to detect SNPs using

FRET and ratiometric measurements. This enables more reliable measurements at a

longer wavelength.

This project was always just the beginning of DNA anthracene probes being in-

troduced into a biological setting; there are many exciting prospects. The addition of a

fluorophore (which does not spectrally interact with anthracene) to the DNA anthracene

probe could provide quantitative information in terms of uptake of probe to cells. Re-

placing anthracene with a more emissive, longer wavelength emitting fluorophore would

be interesting, but it must be able to still fulfil its ON/OFF sensing. Therefore, a flu-

orophore which is not too bulky and capable of intercalation e.g. BODIPY, could be a

good choice. Time-course imaging could be undertaken to monitor localisation of the

DNA anthracene probe upon addition to cells. Plus the addition of the DNA anthracene

probe to live cells (over-expressing RNA target) using techniques such as microinjection

or electroporation to avoid degradation would also help in localisation studies. Targeting
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an accessible high copy number endogenous RNA target would further demonstrate the

biological compatibility of the DNA anthracene probes.
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Appendix A

DNA and RNA SNP sensing with

DNA anthracene probes

A.1 DNA sensing

Table A.1 shows the single-stranded DNA anthracene probe quantum yield values.

Table A.2 shows percentage differences in emission for DNA anthracene probes and

DNA target duplexes. Table A.3 shows the melting temperatures for the same duplex

combinations.

A.2 RNA sensing

Figure A.2 and Figure A.3 show titration graphs from emission studies for P1L and

P6D respectively with RNA targets. Table A.4 shows percentage differences in emission

for DNA anthracene probes and RNA target duplexes. Table A.5 shows the melting

temperatures for the same duplex combinations.
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Table A.1: Quantum yield of single stranded DNA anthracene probes P(n)(l/d). 1 µM
DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm. Quantum
yields were determined relative to quinine sulphate (Φf = 0.546)

.

Probe Quantum Yield

P1L 0.075

P1D 0.21

P3L 0.027

P3D 0.040

P4L 0.036

P4D 0.029

P5L 0.009

P5D 0.039

P6L 0.043

P6D 0.041

P7L 0.041

P7D 0.052

Figure A.1: Absorption spectra of P1L duplexes at varying temperatures. 5 µM DNA,
100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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Table A.2: Percentage differences in emission on addition of DNA targets to DNA an-
thracene probes, relative to the probe alone. Percentage change in emission is calculated
at λem = 426 nm, compared to the probe alone. 1 µM DNA, 100 mM NaCl, 10 mM pH
7.0 sodium phosphate buffer, λex = 350 nm.

Probe/Target DT1 DT2 DT3 DT4 DT5

P1L -70 -63 -58 -53 +77

P1D -72 -79 -81 -86 -61

P3L +52 +10 -43 -52 +32

P3D +166 +43 -27 -53 +42

P4L +70 +29 -26 -57 +86

P4D +161 +98 +22 -43 +25

P5L +230 +130 -10 -25 +42

P5D +205 +107 +20 -35 +78

P6L +139 +88 +35 -34 +48

P6D +244 +207 +20 -41 +51

P7L +159 +66 -35 -49 -

P7D +88 +25 -4 -40 -
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Table A.3: Melting temperatures ( ◦C) of DNA targets and DNA anthracene probes. 5
µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Probe/Target DT1 DT2 DT3 DT4 DT5

DN 55 50 46 48 42

RN 53 47.5 41.5 43 36

P1L 53 55 55 55 46

P1D 48 48 46 48 35

P3L 49.5 52 50 50 41

P3D 50.5 48 46.5 47 42

P4L 49 49.5 50 48 39

P4D 50 51.5 51 51 41

P5L 49 48 49.5 49 40

P5D 48 51 50.5 51 41

P6L 49 50.5 50.5 50 39.5

P6D 48.5 50 53 50.5 41

P7L 49 48.5 52 50 -

P7D 49 49.5 51 50 -
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Figure A.2: Fluorescence titrations of up to 2 equivalents of RNA target into probe P1L.
The binding is shown to be 1:1 since the emission does not change beyond 1 equivalent
of target. The binding is also shown to be specific since there is no change in emission on
the addition of a non-complementary target. Percentage change in emission is calculated
at λem = 426 nm, compared to the probe alone. 1 µM DNA/RNA, 100 mM NaCl, 10
mM pH 7.0 sodium phosphate buffer, λex = 350 nm.
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Figure A.3: Fluorescence titrations of up to 2 equivalents of RNA target into probe P6D.
The binding is shown to be 1:1 since the emission does not change beyond 1 equivalent
of target. The binding is also shown to be specific since there is no change emission on
the addition of a non-complementary target. Percentage change in emission is calculated
at λem = 426 nm, compared to the probe alone. 1 µM DNA/RNA, 100 mM NaCl, 10
mM pH 7.0 sodium phosphate buffer, λex = 350 nm.
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Table A.4: Percentage differences in emission at λem = 426 nm on addition of RNA
targets to DNA anthracene probes, with respect to the probe alone. 1 µM DNA, 100
mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Probe/Target RT1 RT2 RT3 RT4 RT5

P1L -55 -63 -58 -53 +115

P1D -55 -61 -67 -49 +129

P3L +34 -20 -26 -43 +143

P3D +77 +5 +32 +46 +140

P4L +4 +69 +36 -26 +37

P4D +15 +19 +10 +2 +45

P5L +85 +112 +65 -22 +42

P5D +88 +97 +94 -11 +210

P6L +23 +187 +13 -14 +50

P6D +136 +207 +20 -18 +51

P7L -8 +17 -36 -35 +31

P7D -17 +17 -40 -26 +37
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Table A.5: Melting temperatures ( ◦C) of DNA anthracene probes and RNA targets. 5
µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Probe/Target RT1 RT2 RT3 RT4 RT5

DN 60 56 46 47.5 45

RN 71 66 60 60.5 54

P1L 51 48 51 52 41

P1D 49.5 45.5 45.5 46 38

P3L 47.5 50 49.5 49 -

P3D 45 - - - -

P4L 45 49 48 49 -

P4D 47 42 44 41.5 -

P5L 49 49.5 47 48 -

P5D 47.5 49 49 49 -

P6L 45.5 49 49 48.5 -

P6D 48 49 48.5 48.5 39.5

P7L 46.5 48 47 47 -

P7D 45.5 52 49 48 -
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Figure A.4: Circular dichroism spectra of unmodified DNA and RNA duplexes. 5 µM
DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Figure A.5: Circular dichroism spectra of modified (P1L) duplexes with both DNA and
RNA targets. 5 µM DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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Figure A.6: Circular dichroism spectra of unmodified (DN/RN) and modified (P1L)
duplexes. 5 µM DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Figure A.7: Circular dichroism spectra of modified (P6D) duplexes with RNA targets.
5 µM DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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A.3 2�OMe RNA sensing

Figure A.8: Fluorescence spectra show the change in emission upon hybridisation of
anthracene probe P1L with 2�OMe RNA targets. 1 µM DNA/2�OMe RNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.
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Figure A.9: Fluorescence spectra show the change in emission upon hybridisation of
anthracene probe P6D with 2�OMe RNA targets. 1 µM DNA/2�OMe RNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Figure A.10: Circular dichroism spectra of unmodified DNA, RNA and 2�OMe RNA
duplexes. 5 µM DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

195



Figure A.11: Circular dichroism spectra of hybrid DNA, RNA and 2�OMe RNA duplexes.
5 µM DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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A.4 CDKN1A gene SNP sensing

Figure A.12: Fluorescence titrations of up to 2 equivalents of CDKN1A gene RNA
targets into probe ZP5L. The binding is shown to be 1:1 since the emission does not
change beyond 1 equivalent of target. Percentage change in emission is calculated at
λem = 426 nm, compared to the probe alone. 1 µM DNA/RNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer, λex = 350 nm.
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Table A.6: Percentage differences in emission at λem = 426 nm on addition of CDKN1A
gene RNA targets to DNA anthracene probes, relative to the probe alone. 1 µM DNA,
100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Probe/Target ZRT1 ZRT2

P1L -17% +5

P1D -28% -27

P3L -47% -2

P3D -39% +18

P4L -45% 0

P4D -59% +16

P5L -47% +12

P5D -52% +4

P6L -56% +2

P6D -53% +12

P7L -39% +14

P7D -47% +5

Figure A.13: Circular dichroism spectra of CDKN1A gene DNA anthracene probes
and RNA target duplexes. 5 µM DNA/RNA, 100 mM NaCl, 10 mM pH 7.0 sodium
phosphate buffer.
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Table A.7: Melting temperatures ( ◦C) of CDKN1A gene DNA anthracene probes and
RNA targets, plus controls. 5 µMDNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate
buffer.

Probe/Target ZRT1 ZRT2

ZDN 70 67

P1L 56 54

P1D 51 52.5

P3L 57.5 54.5

P3D 55.5 56

P4L 57.5 56

P4D 56 56

P5L 57 55.5

P5D 56 55

P6L 56 52.5

P6D 56 56

P7L 56 55

P7D 55 58
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Appendix B

Optimising Cy3 and Cy5 tagged

DNA delivery to cells

B.1 Random Oligonucleotides

Two further oligonucleotides were synthesised which are not complementary and were

used as controls (to show specificity) (Table B.1). All HPLC analytical and mass spec-

trometry results can be found in Section F.

B.2 Melting Temperatures

Table B.2 shows duplex melting temperatures.
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Table B.1: Non-complementary Cy3 and Cy5 tagged DNA sequences synthesised.

Oligonucleotide Sequence (5’ to 3’)
Control Cy3 strand (S4) Cy3-TTTTTTTTTTTTTTTT

Control Cy5 strand (S5) Cy5-CATTGAGTGAGTCCA

Table B.2: Duplex melting temperatures (10 mM sodium phosphate, 100 mM NaCl, pH
7.0, 5 µM each DNA strand)

Duplex Melting Temperature ( ◦C)
S1:S2 62

S1:S2 (unmodified) 56.5

Figure B.1: Excitation spectra (dashed) and emission spectra (solid) of Cy3-tagged DNA
(green) and Cy5-tagged DNA (red). 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium
phosphate buffer. S1 (Cy3) λex = 554 nm and λem = 570 nm. S2 (Cy5) λex = 650 nm
and λem = 670 nm. Data is normalised to λmax values.
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B.3 Cell lysate cuvette studies

The FRET signal from the S1:S2 duplex and S3 were studied in Chinese hamster ovary

(CHO) cell lysate at 37 ◦C in the absence and presence of DNase (Figures B.2 and B.3,

respectively).

Figure B.2: No change in fluorescence is observed after S1:S2 is incubated in cell lysate
at 37 ◦C for two hours. The FRET peak at approximately 660 nm is reduced signifi-
cantly after the duplex S1:S2 has been incubated with DNase for two hours. Excitation
wavelength 554 nm.
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Figure B.3: No change in fluorescence is observed after S3 is incubated in cell lysate at
37 ◦C for two hours. The FRET peak at approximately 660 nm disappears after S3 has
been incubated with DNase for two hours. Excitation wavelength 554 nm.

B.4 Control cell studies
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Figure B.4: Images A-H show single stranded Cy5 tagged DNA (S2) added to
fixed/permeabilised cells and imaged using confocal microscopy. Images A/E repre-
sents the Cy3 channel; B/F the Cy5 channel; C/G the bright field channel and D/H an
overlay of all the channels. Images A-D are excited with a 543 nm laser only. Images
E-H are excited with both the 543 and 633 nm lasers. Images I-P show single stranded
Cy3 tagged DNA (S1) added to fixed/permeabilised cells and imaged using confocal
microscopy. Images I/M represents the Cy3 channel; J/N the Cy5 channel; K/O the
bright field channel and L/P an overlay of all the channels. Images I-L are excited with
a 543 nm laser only. Images M-P are excited with both the 543 and 633 nm lasers.
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Figure B.5: Images A-H show complementary Cy3 and Cy5 tagged DNA (S1 and S2)
added sequentially to fixed/permeabilised cells imaged using confocal microscopy. Im-
ages A/E represents the Cy3 channel; B/F the Cy5 channel; C/G the bright field channel
and D/H an overlay of all the channels. Images A-D are excited with a 543 nm laser
only. Images E-H are excited with both the 543 and 633 nm lasers.

Figure B.6: Images A-H show Cy3 and Cy5 tagged probe DNA (S3) added to
fixed/permeabilised cells imaged using confocal microscopy. Images A/E represents the
Cy3 channel; B/F the Cy5 channel; C/G the bright field channel and D/H an overlay
of all the channels. Images A-D are excited with a 543 nm laser only. Images E-H are
excited with both the 543 and 633 nm lasers.
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Figure B.7: Images A-H show non-complementary Cy3 and Cy5 tagged DNA (S4:S5)
added together to fixed/permeabilised cells and imaged using confocal microscopy. Im-
ages A/E represents the Cy3 channel; B/F the Cy5 channel; C/G the bright field chan-
nel and D/H an overlay of all the channels. Images A-D are excited with a 543 nm
laser only. Images E-H are excited with both the 543 and 633 nm lasers. Images I-P
show non-complementary Cy3 and Cy5 tagged DNA (S4 and S5) added sequentially to
fixed/permeabilised cells imaged using confocal microscopy. Images I/M represents the
Cy3 channel; J/N the Cy5 channel; K/O the bright field channel and L/P an overlay
of all the channels. Images I-L are excited with a 543 nm laser only. Images M-P are
excited with both the 543 and 633 nm lasers.
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Figure B.8: Mean emission spectra of regions of interest in methanol fixed cells treated
with S1:S2 duplex and S3. Cells were excited with 543 nm laser only. Therefore, the
peak at ca. 670 nm indicates FRET between the Cy3 and Cy5 fluorophores, hence S1:S2
and S3 are intact. Imaging was carried out using spectral imaging inverted confocal
microscopy. Background regions had negligible signal. Minimum of ten cells analysed.
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Figure B.9: Emission spectra of tagged DNA after complex formation with lipid based
transfection reagent. Both S1:S2 and S3 are shown to FRET in the presence of Lipofec-
tamine. Conditions as for transfection: 100 µM DNA, Opti-MEM medium (Life Tech-
nologies) and Lipofectamine RNAiMAX (Life Technologies). Excitation wavelength 554
nm.

Figure B.10: Images A-H show Cy3 and Cy5 tagged probe DNA (S3) added to cells via
lipid based transfection and imaged using confocal microscopy. Images A/E represents
the Cy3 channel; B/F the nuclear stain channel; C/G the Cy5 channel and D/H an
overlay of all the channels. Images A-D are excited with a 543 nm laser only. Images
E-H are excited with both the 543 and 633 nm lasers.
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Figure B.11: Mean emission spectra of regions of interest in lipid based transfected
cells treated with S1:S2 duplex and S3. Cells were excited with 543 nm laser only.
There is no peak at ca. 670 nm which indicates a lack of FRET between the Cy3
and Cy5 fluorophores, hence S1:S2 and S3 are degraded. Imaging was carried out using
spectral imaging inverted confocal microscopy. Background regions had negligible signal.
Minimum of ten cells analysed.
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Figure B.12: Images A-H show single stranded Cy5 tagged DNA (S2) added to cells via
lipid based transfection and imaged using confocal microscopy. Images A/E represents
the Cy3 channel; B/F the nuclear stain channel; C/G the Cy5 channel and D/H an
overlay of all the channels. Images A-D are excited with a 543 nm laser only. Images E-
H are excited with both the 543 and 633 nm lasers. Images I-P show single stranded Cy3
tagged DNA (S1) added to cells via lipid based transfection and imaged using confocal
microscopy. Images I/M represents the Cy3 channel; J/N the nuclear stain channel;
K/O the Cy5 channel and L/P an overlay of all the channels. Images I-L are excited
with a 543 nm laser only. Images M-P are excited with both the 543 and 633 nm lasers.
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Figure B.13: Images A-H show non-complementary Cy3 and Cy5 tagged DNA (S4:S5)
added together to cells via lipid based transfection and imaged using confocal microscopy.
Images A/E represents the Cy3 channel; B/F the nuclear stain channel; C/G the Cy5
channel and D/H an overlay of all the channels. Images A-D are excited with a 543 nm
laser only. Images E-H are excited with both the 543 and 633 nm lasers.

Figure B.14: Images A-H show single stranded Cy5 tagged DNA (S2) added to cells via
microinjection and imaged using confocal microscopy. Images A/E represents the Cy3
channel; B/F the Cy5 channel; C/G the bright field channel and D/H an overlay of all
the channels. Images A-D are excited with a 543 nm laser only. Images E-H are excited
with both the 543 and 633 nm lasers.

211



Figure B.15: Images A-H show single stranded Cy3 tagged DNA (S1) added to cells via
microinjection and imaged using confocal microscopy. Images A/E represents the Cy3
channel; B/F the Cy5 channel; C/G the bright field channel and D/H an overlay of all
the channels. Images A-D are excited with a 543 nm laser only. Images E-H are excited
with both the 543 and 633 nm lasers.

Figure B.16: Images A-H show Cy3 and Cy5 tagged probe DNA (S3) added to cells via
microinjection and imaged using confocal microscopy. Images A/E represents the Cy3
channel; B/F the Cy5 channel; C/G the bright field channel and D/H an overlay of all
the channels. Images A-D are excited with a 543 nm laser only. Images E-H are excited
with both the 543 and 633 nm lasers.
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Figure B.17: Images A-H show non-complementary Cy3 and Cy5 tagged DNA (S4:S5)
added together to cells via microinjection and imaged using confocal microscopy. Images
A/E represents the Cy3 channel; B/F the Cy5 channel; C/G the bright field channel
and D/H an overlay of all the channels. Images A-D are excited with a 543 nm laser
only. Images E-H are excited with both the 543 and 633 nm lasers.
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Figure B.18: Images A-H show single stranded Cy3 DNA (S1) added to cells via elec-
troporation and imaged using confocal microscopy. Images A/E represents the Cy3
channel; B/F the Cy5 channel; C/G the bright field channel and D/H an overlay of all
the channels. Images A-D are excited with a 543 nm laser only. Images E-H are excited
with a 633 nm laser only.

Figure B.19: Images A-H show single stranded Cy5 DNA (S2) added to cells via elec-
troporation and imaged using confocal microscopy. Images A/E represents the Cy3
channel; B/F the Cy5 channel; C/G the bright field channel and D/H an overlay of all
the channels. Images A-D are excited with a 543 nm laser only. Images E-H are excited
with a 633 nm laser only.
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Figure B.20: Images A-H show Cy3 and Cy5 tagged probe DNA (S3) added to cells via
electroporation and imaged using confocal microscopy. Images A/E represents the Cy3
channel; B/F the Cy5 channel; C/G the bright field channel and D/H an overlay of all
the channels. Images A-D are excited with a 543 nm laser only. Images E-H are excited
with both the 543 and 633 nm lasers.

Figure B.21: Images A-H show non-complementary Cy3 and Cy5 tagged DNA (S4:S5)
added together to cells via electroporation and imaged using confocal microscopy. Images
A/E represents the Cy3 channel; B/F the Cy5 channel; C/G the bright field channel
and D/H an overlay of all the channels. Images A-D are excited with a 543 nm laser
only. Images E-H are excited with both the 543 and 633 nm lasers.
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Figure B.22: Cells treated with bafilomycin upon lipid based transfection of S1:S2 duplex
and S3, and imaged using confocal microscopy. Images A-D are excited with the 543
nm laser only. Images E-H are excited with both the 543 and 633 nm lasers. The top
row cells have been treated with the S1:S2 duplex and the bottom row cells have been
treated with S3. Images of the Cy5 channel in B and D clearly show a FRET signal.
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Appendix C

Quantification of SNP sensing in

a cellular environment with DNA

anthracene probes

C.1 DNA acridine probe (PAcr) studies

Figure C.1 shows the titration graph from PAcr emission studies with DNA targets.
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Figure C.1: Titrations of up to 2 equivalents of DNA targets, DT1 and DT5, into probe
PAcr. The binding is shown to be 1:1 since the fluorescence does not change beyond 1
equivalent of target. Percentage changes calculated from emission intensity at PAcr =
494 nm. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 421
nm. Emission range = 440-700 nm.

CD spectra in Figure C.2 shows that PAcr hybridised with complementary target

DT1 retains a B-DNA conformation.

Figure C.2: Circular dichroism spectra of PAcr:DT1 duplex. 5 µM DNA/RNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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C.2 Z-stack images

Figure C.3 shows an example collection of z-stack images of DNA anthracene probe P1L

within cells.

Figure C.3: Confocal microscopy z-stack images show the DNA anthracene probe P1L is
within cells. Images were collected at 1 µm intervals. 402 nm laser excitation. Emission
range: 425-475 nm.
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Figure C.4: Overlayed histograms for images displayed in Figure 5.8. A shift in intensity
(x-axis) can be seen for images corresponding to different oligonucleotide treatment.

C.3 DNA acridine probe (PAcr) cell images and histograms

Manual inspection of cells treated with DNA acridine probe PAcr with and without

targets DT1 and DT5 respectively, suggested the trend found in emission studies had

been reproduced (Figure C.5).
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Figure C.5: PAcr; PAcr:DT1; PAcr:DT5 (top to bottom) added to fixed/permeabilised
CHO cells and imaged using confocal microscopy. Scale bar 10 µm. 457 nm laser
excitation. Emission range: 465-500 nm.

The difference (x�0-x0) between the centre of the background and foreground peaks

was utilised to compare the intensity between images (Figure C.6).
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Figure C.6: Histograms with GMM, corresponding to PAcr; PAcr:DT1; PAcr:DT5 (left
to right) images. GMM fits two Gaussian distributions corresponding to the background
(pink) and fluorescence emission (yellow). The sum of the two Gaussian distributions
(green) is shown to fit the outline of the histogram (blue).

C.4 Fixed cell RNA studies

Figure C.7 shows histograms for images of P1L:RNA duplexes added to fixed cell.

Figure C.7: Histograms with GMM, corresponding to P1L:RT5; P1L; P1L:RT1 (left to
right) images. GMM fits two Gaussian distributions corresponding to the background
(pink) and fluorescence emission (yellow). The sum of the two Gaussian distributions
(green) is shown to fit the outline of the histogram (blue).

Figure C.8 shows histograms for corresponding sequential addition of RNA and

P1L fixed cell images.
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Figure C.8: Histograms with GMM, corresponding to RT5 then P1L; P1L; RT1 then
P1L (left to right) images. GMM fits two Gaussian distributions corresponding to the
background (pink) and fluorescence emission (yellow). The sum of the two Gaussian
distributions (green) is shown to fit the outline of the histogram (blue).

Figure C.9 shows control cell images from RNA studies.

Figure C.9: Top image: No oligonucleotide added; Bottom image: P1L:RanR, added
to fixed/permeabilised CHO cells and imaged using confocal microscopy. 402 nm laser
excitation. Emission range: 425-475 nm.

C.5 Fixed cell base opposite sensing studies

Figure C.10 shows the confocal microscopy images of fixed cells with P6D duplexes

added.
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Figure C.10: P6D:DT1; P6D; P6D:DT4 (top to bottom) added to fixed/permeabilised
CHO cells and imaged using confocal microscopy. 402 nm laser excitation. Emission
range: 425-475 nm.

Figure C.11 shows histograms for corresponding P6D:DNA duplexes in fixed cell

images.
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Figure C.11: Histograms with GMM, corresponding to P6D:DT1; P6D; P6D:DT4 (left
to right) images. GMM fits two Gaussian distributions corresponding to the background
(pink) and fluorescence emission (yellow). The sum of the two Gaussian distributions
(green) is shown to fit the outline of the histogram (blue).
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Figure C.12: DT1 then P6D; P6D; DT4 then P6D (top to bottom) added to
fixed/permeabilised CHO cells and imaged using confocal microscopy. 402 nm laser
excitation. Emission range: 425-475 nm.

226



Figure C.13: Histograms with GMM, corresponding to DT1 then P6D; P6D; DT4 then
P6D (left to right) images. GMM fits two Gaussian distributions corresponding to the
background (pink) and fluorescence emission (yellow). The sum of the two Gaussian
distributions (green) is shown to fit the outline of the histogram (blue).

Figure C.14 shows the confocal microscopy images of fixed cells with ZP5L DNA

duplexes added.
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Figure C.14: ZP5L:ZDT2; ZP5L; ZP5L:ZDT1 (top to bottom) added to
fixed/permeabilised CHO cells and imaged using confocal microscopy. 402 nm laser
excitation. Emission range: 425-475 nm.

Figure C.15 shows histograms for corresponding ZP5L:DNA duplexes in fixed cell

images.
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Figure C.15: Histograms with GMM, corresponding to ZP5L:ZDT2; ZP5L; ZP5L:ZDT1
(left to right) images. GMM fits two Gaussian distributions corresponding to the back-
ground (pink) and fluorescence emission (yellow). The sum of the two Gaussian distri-
butions (green) is shown to fit the outline of the histogram (blue).

Figure C.16 shows the confocal microscopy images of fixed cells with ZP5L RNA

duplexes added.

Figure C.16: ZP5L:ZRT2; ZP5L; ZP5L:ZRT1 (top to bottom) added to
fixed/permeabilised CHO cells and imaged using confocal microscopy. 402 nm laser
excitation. Emission range: 425-475 nm.

Figure C.17 shows histograms for corresponding ZP5L:RNA duplexes in fixed cell

images.
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Figure C.17: Histograms with GMM, corresponding to ZP5L:ZRT2; ZP5L; ZP5L:ZRT1
(left to right) images. GMM fits two Gaussian distributions corresponding to the back-
ground (pink) and fluorescence emission (yellow). The sum of the two Gaussian distri-
butions (green) is shown to fit the outline of the histogram (blue).
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C.6 Computational analysis

C.6.1 Particle Swarm Optimisation (PSO) algorithm

Non-linear fitting can be achieved computationally with evolutionary algorithms, which

find the minimum error between the fit and the data, by adjusting the parameters in

Equation 5.5. There are six unknown parameters to fit: the peak heights A and A�,

coordinates of the peak centres x0 and x�0, and the peak widths σ and σ� (Figure C.18).

Figure C.18: The outline of the histogram (blue) has two Gaussian curves fitted (yellow
and pink) corresponding to the background and fluorescence emission contributions re-
spectively. The unknown parameters are labelled: the peak heights A and A�, coordinates
of the peak centres x0 and x�0, and the peak widths σ and σ�. Using Gaussian Mixture
Modelling (GMM) these parameters can be solved using a Particle Swarm Optimisation
(PSO) algorithm.

Particle Swarm Optimisation (PSO) was the evolutionary algorithm used to find

the parameters. The central paradigm of an evolutionary algorithm is to find the lowest

error between the fit and the raw data, in a Darwinistic manner. The PSO algorithm
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is analogous to birds flocking; each member, or particle, of the population knows its

own best position, and the best position the population has found. Here, the position is

defined as the least-squares error between the parameters and the data, thus, the best

position is the one of lowest error which is the ultimate target for the PSO algorithm.
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Appendix D

SNP sensing with plasmids in a

cellular environment

D.1 Anthracene DNA probe chemical transfection

Figure D.1: Chemical transfection confocal microscopy images. Anthracene DNA probe
(P1L) added to cells via chemical transfection using Lipofectamine and imaged using
confocal microscopy. The left column gives the phase images and right column the
fluorescence images. The top row cells were chemically transfected with P1L, and the
bottom row cells were untreated. Images were acquired with an inverted fluorescent
microscope (Olympus) using a UV filter cube. Scale bar = 25.2 µm.
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D.2 Antibody confocal images

Figure D.2: Antibody with Cy5 fluorophore tag is imaged with cells that have been
transfected with plasmid (top) versus untreated cells (bottom). The antibody binds to
a surface receptor which ensures equal molar expression of both proteins. Scale bar
represents 10 µm.

D.3 Flow cytometry

Figure D.3: Example of HEK (left) and CHO (right) cell plasmid flow cytometry results.
Black represents the transfected cells; green line represents control cells and pink line
represents mock transfected cells.
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D.4 Plasmid image analysis

Table D.1: Mean intensity values from ImageJ analysis are calculated from the intensity
mean± s.e.m. from at least 24 cells (p=0.01 to 0.05). Image refers to the confocal
microscope image of HeLa cells treated with P1L duplexes. P1L λex = 402 nm.
Emission ranges: P1L = 425-475 nm.

Image Mean intensity (ImageJ)

PSDT1 471±28

PSDT5 460±17

PLDT1 310±31

PLDT5 422±29
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Appendix E

Dual fluorophore

(Cy3/anthracene) probe for SNP

sensing

E.1 Melting studies

Table E.1: Melting temperatures ( ◦C) of central DNA anthracene (P1L), Cy3-only and
dual fluorophore probes and targets, plus controls. 5 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer.

Probe/Target DT1 DT5 DT6 DT7 DT8

DN 55 42 42.5 42.5 41.5

P1L 53 46 44.5 39.5 40.5

Cy3 57 43.5 45.5 45.5 43

Cy3/P1L 49.5 42 43.5 39.5 40
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Table E.2: Melting temperatures ( ◦C) of close DNA anthracene (cP1L), cCy3-only and
dual fluorophore probes and targets, plus controls. 5 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer.

Probe/Target cDT1 cDT5 cDT6

cP1L 51.5 41 42

cCy3 61 48 46

cCy3/P1L 53 42.5 44

Table E.3: Melting temperatures ( ◦C) of far DNA anthracene (fP1L), fCy3-only and
dual fluorophore probes and targets, plus controls. 5 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer.

Probe/Target fDT1 fDT5 fDT6

fP1L 52 40.5 47.5

fCy3 61 47 47

fCy3/P1L 54.5 42.5 51

Table E.4: Melting temperatures ( ◦C) of central DNA anthracene (P5L), Cy3-only and
dual fluorophore probes and targets, plus controls. 5 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer.

Probe/Target DT1 DT2 DT3 DT4 DT5 DT6

DN 55 50 46 48 42 42.5

P5L 49 48 49.5 49 40 38.5

Cy3 57 55 55.5 54 43.5 45.5

Cy3/P5L 51.5 53 53.5 51.5 42.5 42
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E.1.1 Dye-dye and dye-nucleotide interactions

Low TM ’s for multiply labelled probes can be associated with dye-dye and dye-nucleotide

interactions. UV-vis melting studies allowed dye-dye interactions to be monitored as

Randolph et al. carried out. [209] The isobestic point of the single stranded Cy3/P1L

was found to be 543 nm in a temperature dependence study (absorption spectra shown

in Figure E.1). By choosing to monitor at this wavelength during melting studies of

Cy3/P1L duplexes, the change in absorbance of the dyes should be due to conformational

changes in the DNA rather than due to the effect of changes in temperature upon the

dye itself. The melting temperatures of all the dual fluorophore probes demonstrate that

the fluorophores do interact but distance/orientation has little influence (Table E.5).

Figure E.2 demonstrates the transition from duplex to single-stranded DNA is reflected

in the absorbance curve of the dye as well as the oligonucleotide absorbance at 260 nm.

Unmodified duplex (DN:DT1) and anthracene only duplexes (P1L:DT1) do not have a

TM value which is to be expected since there is no Cy3 to interact with.
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Figure E.1: Absorption spectra of single stranded Cy3/P1L probe at varying tempera-
tures. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Table E.5: Melting temperatures ( ◦C) of dual fluorophore probe duplexes. 5 µM DNA,
100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer. Absorption measured at 543
nm wavelength.

Probe/Target DT1

Cy3/P1L 38

cCy3/P1L 41.5

fCy3/P1L 41.5

Cy3 34
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Figure E.2: Melting curve of Cy3/P1L:DT1 duplex monitored at 543 nm. 5 µM DNA,
100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Dye-nucleotide interactions cause a shoulder peak at 310 nm in the Cy3/anthracene

absorption spectra. Since there is no shoulder peak (Figure E.3) it is assumed that Cy3

does not perturb the bases but stacks on the end of the duplex (which is evident from

increased Tm’s). Therefore the dual fluorophore probe destabilisation compared to its

equivalent single fluorophore probes is contributed to by dye-dye interactions. If the

anthracene and Cy3 are interacting physically to the detriment of the probe function,

the tether link of the Cy3 could be reduced (ethyl).
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Figure E.3: Absorption spectra of single stranded Cy3/P1L probe and Cy3/P1L:DT1
duplex. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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E.2 Fluorescence Studies

Figure E.4: Fluorescence spectra showing the emission spectra of anthracene probe P5L
and DNA targets. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer,
λex = 350 nm.

Table E.6: Percentage differences in emission at λem = 570 nm on addition of DNA
targets to Cy3-only probes, relative to the probe alone. 1 µM DNA, 100 mM NaCl, 10
mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Probe/Target DT1 DT5

Cy3 -62 -57

cCy3 -69 -68

fCy3 -60 -59
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Figure E.5: Emission spectra showing the change in emission upon hybridisation of Cy3-
only probe with targets DT1 and DT5 respectively. 1 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer, λex = 350 nm.

Figure E.6: Emission spectra showing the change in emission upon hybridisation of
cCy3-only probe with targets cDT1 and cDT5 respectively. 1 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.
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Figure E.7: Emission spectra showing the change in emission upon hybridisation of
fCy3-only probe with targets fDT1 and fDT5 respectively. 1 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Figure E.8: Emission spectra showing the change in emission upon hybridisation of P1L,
Cy3 and Cy3/P1L with random DNA target, DRan. 1 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer, λex = 350 nm.
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Figure E.9: Fluorescence titrations of up to 2 equivalents of DNA target DT1 into probe
Cy3/P1L. The binding is shown to be 1:1 since the emission does not change beyond
1 equivalent of target. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate
buffer, λex = 350 nm.

Table E.7: Percentage differences in emission at λem = 570 nm on addition of DNA
targets to Cy3/P1L probes, relative to the probe alone. 1 µM DNA, 100 mM NaCl, 10
mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Probe/Target DT1 DT5 DT6

Cy3/P1L -76 -58 -73

cCy3/P1L -75 -66 -86

fCy3/P1L -90 -83 -86
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Table E.8: Percentage differences in emission at λem = 426 nm on addition of DNA
targets to Cy3/P1L probes, relative to the probe alone. 1 µM DNA, 100 mM NaCl, 10
mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Probe/Target DT1 DT5 DT6

Cy3/P1L +89 +298 +250

cCy3/P1L +48 +59 -76

fCy3/P1L +198 +739 -86

Table E.9: Quantum yields of hybridised DNA anthracene probes, Cy3-only probes and
dual fluorophore probes. 1 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate
buffer, λex = 350 nm. Quantum yields were determined relative to quinine sulphate (Φf

= 0.546).

Probe Quantum Yield

P1L:DT1 0.030

P1L:DT5 0.17

Cy3:DT1 0.018

Cy3:DT5 0.019

Cy3/P1L:DT1 0.046

Cy3/P1L:DT5 0.087

Cy3/P5L:DT1 0.08

Cy3/P5L:DT5 0.047
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Figure E.10: Emission spectra showing the change in emission upon hybridisation of
dual fluorophore probe Cy3/P5L with DNA targets. 1 µM DNA, 100 mM NaCl, 10 mM
pH 7.0 sodium phosphate buffer, λex = 350 nm.
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Table E.10: Percentage differences in emission at λem = 426 nm on addition of DNA
targets to the Cy3/P5L probe, relative to the probe alone. 1 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Probe/Target DT1 DT2 DT3 DT4 DT5 DT6

Cy3/P5L +1990 +1562 +480 +351 +708 +555

Table E.11: Percentage differences in emission at λem = 570 nm on addition of DNA
targets to the Cy3/P5L probe, relative to the probe alone. 1 µM DNA, 100 mM NaCl,
10 mM pH 7.0 sodium phosphate buffer, λex = 350 nm.

Probe/Target DT1 DT2 DT3 DT4 DT5 DT6

Cy3/P5L -58 -63 -67 -72 -57 -62

Table E.12: Ratio of emission intensity at 570 nm/426 nm for dual fluorophore DNA
probes and targets. 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 350
nm. Ratios are expressed as mean ± s.e.m from three repeats.

Probe Cy3/P1L cCy3/P1L fCy3/P1L

Probe only 15.23±3.10 35.74±0.7 20.48±0.35

DT1 6.23±0.27 1.52±0.12 0.65±0.01

DT5 7.79±0.23 1.17±0.14 0.40±0.01

DT6 1.72±0.20 4.07±0.13 0.57±0.03

DT7 1.41±0.19 - -

DT8 1.49±0.26 - -

Table E.13: Ratio of emission intensity at 570 nm/426 nm for dual fluorophore DNA
probes and targets, at varying concentrations. 100 mM NaCl, 10 mM pH 7.0 sodium
phosphate buffer, λex = 350 nm. Ratios are expressed as mean ± s.e.m from three
repeats.

Concentration/Duplex Cy3/P1L:DT1 Cy3/P1L:DT5

2 1.14±0.006 0.82±0.013

1.5 1.12±0.020 0.82±0.001

1 1.11±0.016 0.84±0.010

0.5 1.11±0.010 0.88±0.004
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E.3 Lifetime studies

Figure E.11: Fluorescent decay profile of P1L:DT5 duplex (blue). The exponential data
fit (black) and IRF (red) are also given. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0
sodium phosphate buffer, λex = 376 nm, λem = 426 nm.
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Figure E.12: Fluorescent decay profile of P1L (blue). The exponential data fit (black)
and IRF (red) are also given. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0 sodium
phosphate buffer, λex = 376 nm, λem = 426 nm.
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Figure E.13: Fluorescent decay profile of P1L:DT1 duplex (blue). The exponential data
fit (black) and IRF (red) are also given. 5 µM DNA, 100 mM NaCl, 10 mM pH 7.0
sodium phosphate buffer, λex = 376 nm, λem = 426 nm.

Table E.14: Fluorescence lifetimes (ns) of Cy3-only and duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 570 nm.

τ1 (Wt %) τ2 (Wt %) χ2

Cy3 0.59 (26) 1.91 (74) 1.576

Cy3:DT1 0.52 (52) 1.60 (48) 1.617

Cy3:DT5 0.6 (44) 1.89 (56) 1.582
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Table E.15: Fluorescence lifetimes (ns) of fCy3-only and duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 570 nm.

τ1 (Wt %) τ2 (Wt %) χ2

fCy3 0.49 (19) 1.91 (81) 1.619

fCy3:fDT1 0.40 (43) 1.23 (57) 2.382

fCy3:fDT5 0.40 (44) 1.31 (56) 2.251

Table E.16: Fluorescence lifetimes (ns) of cCy3-only and duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 570 nm.

τ1 (Wt %) τ2 (Wt %) χ2

cCy3 0.59 (19) 2.33 (81) 1.529

cCy3:cDT1 0.41 (44) 1.25 (56) 2.504

cCy3:cDT5 0.43 (49) 1.41 (51) 1.918

Table E.17: Fluorescence lifetimes (ns) of fCy3/P1L and duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 426 nm.

τ1 (Wt %) τ2 (Wt %) τ3 (Wt %) χ2

fP1L/Cy3 0.29 (50) 1.66 (36) 5.43 (14) 1.226

fCy3/P1L:fDT1 0.75 (61) 1.96 (39) - (-) 1.287

fCy3/P1L:fDT5 0.37 (7) 2.50 (69) 5.58 (24) 1.132
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Table E.18: Fluorescence lifetimes (ns) of cCy3/P1L and duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer, λex = 376 nm, λem = 426 nm.

τ1 (Wt %) τ2 (Wt %) χ2

cCy3/P1L 0.25 (94) 5.83 (6) 1.662

cCy3/P1L:cDT1 0.33 (-) 5.05 (-) 1.576

cCy3/P1L:cDT5 0.19 (70) 5.56 (30) 2.041

E.4 Circular dichroism studies

Figure E.14: Circular dichroism spectra of P1L DNA duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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Figure E.15: Circular dichroism spectra of cP1L DNA duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Figure E.16: Circular dichroism spectra of fP1L DNA duplexes. 5 µM DNA, 100 mM
NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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Figure E.17: Circular dichroism spectra of single stranded Cy3-only DNA probes. 5 µM
DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Figure E.18: Circular dichroism spectra of Cy3-only DNA duplexes. 5 µM DNA, 100
mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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Figure E.19: Circular dichroism spectra of cCy3-only DNA duplexes. 5 µM DNA, 100
mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Figure E.20: Circular dichroism spectra of fCy3-only DNA duplexes. 5 µM DNA, 100
mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.
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Figure E.21: Circular dichroism spectra of single stranded Cy3/P1L DNA probes. 5 µM
DNA, 100 mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

Figure E.22: Circular dichroism spectra of Cy3/P1L DNA duplexes. 5 µM DNA, 100
mM NaCl, 10 mM pH 7.0 sodium phosphate buffer.

257



Figure E.23: Circular dichroism spectra of cCy3/P1L DNA duplexes. 5 µM DNA, 100
mM NaCl, 10 mM pH 7.0 sodium phosphate buffer

Figure E.24: Circular dichroism spectra of fCy3/P1L DNA duplexes. 5 µM DNA, 100
mM NaCl, 10 mM pH 7.0 sodium phosphate buffer
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Appendix F

HPLC and mass spectrometry

HPLC preparative purification was carried out using a Dionex UVD1705 with Phe-

nomenex Clarity 5u Oligo-RP column 150 x 10 mm. HPLC analytical purification was

carried out using a Shimadzu UFLC with Phenomenex Clarity 5u Oligo-RP column 150

x 4.6 mm.

30 µl oligo samples, ca. 70 µM were auto injected. Flow rate, 1.0 ml/min,

monitored at 260 nm.

TEAA: glacial acetic acid, triethyl amine, HPLC-grade water

Conditions (Thiol method): Solvent system C: MeCN; Solvent system D: 0.1 M

TEAA pH 7.0. Gradient (linear increase): 0-25 mins, 5%-25% C; 25-35 mins, 25% C

hold; 35-40 mins, 100% C; 40-50 mins, 5% C.

Conditions (Oligo 60 method): Solvent system A: 5% MeCN, 0.1 M TEAA pH

7.0; Solvent system B: 15% MeCN, 0.1 M TEAA pH 7.0; Solvent system C: MeCN.

Gradient (linear increase): 0 - 25 mins, 30% B - 50% B; 35 - 45 mins, 0% - 100% C; 45

- 55 mins, 100% C hold; 55-60 mins, 30% B.

Conditions (DMT method): Solvent system B: 15% MeCN, 0.1 M TEAA pH 7.0;

Solvent system C: MeCN. Gradient (linear increase): 0 - 10 mins, 100% B; 20 - 25 mins,

70% B; 25 - 35 mins, 100% C hold; 35 -36 mins, 100% B; 36 - 41 mins, 100% B hold.
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Figure F.1: P1L HPLC analytical

Figure F.2: P6D HPLC analytical
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Figure F.3: S1 HPLC analytical

Figure F.4: S2 HPLC analytical
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Figure F.5: S3 HPLC analytical

Figure F.6: S4 HPLC analytical
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Figure F.7: S5 HPLC analytical

Figure F.8: PAcr HPLC analytical
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Figure F.9: Cy3/P1L HPLC analytical

Figure F.10: cCy3/P1L HPLC analytical
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Figure F.11: fCy3/P1L HPLC analytical
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Table F.1: HPLC retention times

Oligonucleotide Sequence (5’ to 3’) Retention time (mins) HPLC Method
DN TGGACTCTCTCAATG 24.480 Oligo40
RN UGGACUCUCUCAAUG 16.45 Oligo60
P1L TGGACTCXCTCAATG 39.072 Oligo60
P5L TGGACTCXCTCAATG 16.32 DMT
P6D TGGACTCXCTCAATG 17.23 DMT

P1LRan GTATTCCXCTGGGAA 38.89 Oligo60
DT1 CATTGAGAGAGTCCA 20.246 Oligo40
DT2 CATTGAGGGAGTCCA 20.48 Oligo40
DT3 CATTGAGCGAGTCCA 21.61 Oligo40
DT4 CATTGAGTGAGTCCA 21.88 Oligo40
DT5 CATTGAGAAAGTCCA 21.083 Oligo40
DT6 CATTGAAAGAGTCCA 21.34 Oligo40
DT7 CATTGAGATAGTCCA 25.61 Oligo60
DT8 CATTGAGACAGTCCA 24.89 Oligo60
RT1 CAUUGAGAGAGUCCA 10.29 Thiol
RT2 CAUUGAGGGAGUCCA 10.11 Thiol
RT3 CAUUGAGCGAGUCCA 10.41 Thiol
RT4 CAUUGAGUGAGUCCA 10.72 Thiol
RT5 CAUUGAGAAAGUCCA 10.45 Thiol
RanR CAUAAGAAGACCCUU 10.27 Thiol
RanD GTATTCCTCTGGGAA 32.597 Oligo60
ZDN AGTCGCGTCTCAGCT 26.24 Oligo60
ZP5L AGTCGCGXCTCAGCT 16.47 DMT
ZDT1 AGCTGAGCCGCGACT 20.90 Oligo60
ZDT2 AGCTGAGACGCGACT 18.94 Oligo60
ZRT1 AGCUGAGCCGCGACU 10.97 Thiol
ZRT2 AGCUGAGACGCGACU 10.24 Thiol

2OMeRN UGGACUCUCUCAAUG 15.00 Thiol
2OMeT1 CAUUGAGAGAGUCCA 15.53 Thiol
2OMeT4 CAUUGAGUGAGUCCA 15.08 Thiol
2OMeT5 CAUUGAGAAAGUCCA 15.61 Thiol

S1 Cy3-TGGACTCTCTCAATG 18.795 DMT
S2 Cy5-CATTGAGAGAGTCCA 30.614 Thiol
S3 Cy5-TGGACTCTCTCAATG-Cy3 21.323 DMT
S4 Cy3-TTTTTTTTTTTTTTTT 40.384 Oligo60
S5 Cy5-CATTGAGTGAGTCCA 30.303 Thiol

PAcr TGGACTCYCTCAATG 14.617 Thiol
cP1L TGGCXCACTTCAATG 37.69 Oligo60
fP1L TGGACTTCACXCATG 38.13 Oligo60
Cy3 Cy3-TGGACTCTCTCAATG 18.795 DMT
cCy3 Cy3-TGGCTCACTTCAATG 18.71 DMT
fCy3 Cy3-TGGACTTCACTCATG 18.76 DMT

Cy3/P5L Cy3-TGGACTCXCTCAATG 19.926 DMT
Cy3/P1L Cy3-TGGACTCXCTCAATG 18.84 DMT
cCy3/P1L Cy3-TGGCXCACTTCAATG 18.90 DMT
fCy3/P1L Cy3-TGGACTTCACXCATG 18.83 DMT
cDT1 CATTGAAGTGAGCCA 29.61 Oligo60
cDT5 CATTGAAGTGAACCA 27.33 Oligo60
cDT6 CATTGAAGTAAGCCA 23.18 Oligo60
fDT1 CATGAGTGAAGTCCA 29.35 Oligo60
fDT5 CATGAATGAAGTCCA 27.35 Oligo60
fDT6 CATAAGTGAAGTCCA 23.26 Oligo60
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Table F.2: Mass spectrometry predicted and actual values

Oligonucleotide Sequence (5’ to 3’) Predicted mass Actual mass
DN TGGACTCTCTCAATG 4543 4543
RN UGGACUCUCUCAAUG 4713 4715
P1L TGGACTCXCTCAATG 4640 4640
P5L TGGACTCXCTCAATG 4708 4708
P6D TGGACTCXCTCAATG 4710 4710

P1LRan GTATTCCXCTGGGAA 4679 4680
DT1 CATTGAGAGAGTCCA 4601 4601
DT2 CATTGAGGGAGTCCA 4617 4618
DT3 CATTGAGCGAGTCCA 4577 4578
DT4 CATTGAGUGAGTCCA 4592 4593
DT5 CATTGAGAAAGTCCA 4585 4585
DT6 CATTGAAAGAGTCCA 4585 4585
DT7 CATTGAGATAGTCCA 4576 4576
DT8 CATTGAGACAGTCCA 4561 4561
RT1 CAUUGAGAGAGUCCA 4799 4799
RT2 CAUUGAGGGAGUCCA 4814 4814
RT3 CAUUGAGCGAGUCCA 4774 4775
RT4 CAUUGAGUGAGUCCA 4775 4776
RT5 CAUUGAGAAAGUCCA 4783 4783
RanR CAUAAGAAGACCCUU 4742 4743
RanD GTATTCCTCTGGGAA 4583 4583
ZDN AGTCGCGTCTCAGCT 4544 4544
ZP5L AGTCGCGXCTCAGCT 4696 4697
ZDT1 AGCTGAGCCGCGACT 4578 4577
ZDT2 AGCTGAGACGCGACT 4601 4602
ZRT1 AGCUGAGCCGCGACU 4790 4790
ZRT2 AGCUGAGACGCGACU 4814 4814

2OMeRN UGGACUCUCUCAAUG 4963 4963
2OMeT1 CAUUGAGAGAGUCCA 5021 5021
2OMeT4 CAUUGAGUGAGUCCA 5012 5012
2OMeT5 CAUUGAGAAAGUCCA 5005 5005

S1 Cy3-TGGACTCTCTCAATG 5050 5050
S2 Cy5-CATTGAGAGAGTCCA 5134 5133
S3 Cy5-TGGACTCTCTCAATG-Cy3 5583 5182
S4 Cy3-TTTTTTTTTTTTTTTT 5312 5312
S5 Cy5-CATTGAGTGAGTCCA 5125 5124

PAcr TGGACTCYCTCAATG 4689 4690
cP1L TGGCXCACTTCAATG 4640 4641
fP1L TGGACTTCACXCATG 4640 4641
Cy3 Cy3-TGGACTCTCTCAATG 5050 5050
cCy3 Cy3-TGGCTCACTTCAATG 5050 5051
fCy3 Cy3-TGGACTTCACTCATG 5050 5051

Cy3/P5L Cy3-TGGACTCXCTCAATG 5203 5203
Cy3/P1L Cy3-TGGACTCXCTCAATG 5147 5148
cCy3/P1L Cy3-TGGCXCACTTCAATG 5147 5148
fCy3/P1L Cy3-TGGACTTCACXCATG 5147 5148
cDT1 CATTGAAGTGAGCCA 4601 4601
cDT5 CATTGAAGTGAACCA 4585 4585
cDT6 CATTGAAGTAAGCCA 4585 4585
fDT1 CATGAGTGAAGTCCA 4601 4601
fDT5 CATGAATGAAGTCCA 4585 4586
fDT6 CATAAGTGAAGTCCA 4585 4585
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Appendix G

List of oligonucleotides

Table G.1 summarises all oligonucleotides and their sequences used throughout. P

(n)(l/d) refers to the modified probe where n is the carbon linker length and l/d is the

stereochemistry. Within the sequence, X identifies the position of the modification.
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Table G.1: Oligonucleotide Sequences. X denotes the anthracene monomer. Y denotes
the acridine monomer. n is the carbon linker length and l/d denotes the stereochemistry.

Oligonucleotide Sequence (5’ to 3’)
DN TGGACTCTCTCAATG

RN UGGACUCUCUCAAUG

P(n)(l/d) TGGACTCXCTCAATG

P1LRan GTATTCCXCTGGGAA

DT1 CATTGAGAGAGTCCA

DT2 CATTGAGGGAGTCCA

DT3 CATTGAGCGAGTCCA

DT4 CATTGAGTGAGTCCA

DT5 CATTGAGAAAGTCCA

DT6 CATTGAAAGAGTCCA

DT7 CATTGAGATAGTCCA

DT8 CATTGAGACAGTCCA

RT1 CAUUGAGAGAGUCCA

RT2 CAUUGAGGGAGUCCA

RT3 CAUUGAGCGAGUCCA

RT4 CAUUGAGUGAGUCCA

RT5 CAUUGAGAAAGUCCA

RanR CAUAAGAAGACCCUU

RanD GTATTCCTCTGGGAA

ZDN AGTCGCGTCTCAGCT

ZP(n)(l/d) AGTCGCGXCTCAGCT

ZDT1 AGCTGAGCCGCGACT

ZDT2 AGCTGAGACGCGACT

ZRT1 AGCUGAGCCGCGACU

ZRT2 AGCUGAGACGCGACU

2OMeRN UGGACUCUCUCAAUG

2OMeT1 CAUUGAGAGAGUCCA

2OMeT4 CAUUGAGUGAGUCCA

2OMeT5 CAUUGAGAAAGUCCA

S1 Cy3-TGGACTCTCTCAATG

S2 Cy5-CATTGAGAGAGTCCA

S3 Cy5-TGGACTCTCTCAATG-Cy3

S4 Cy3-TTTTTTTTTTTTTTTT

S5 Cy5-CATTGAGTGAGTCCA

PAcr TGGACTCYCTCAATG

PSDT1 CATTGAGAGAGTCCA

PLDT1 CATTGAGAGAGTCCA x10 repeats
PSDT5 CATTGAGAAAGTCCA

PLDT5 CATTGAGAAAGTCCA x10 repeats
cP1L TGGCXCACTTCAATG

fP1L TGGACTTCACXCATG

Cy3 Cy3-TGGACTCTCTCAATG

cCy3 Cy3-TGGCTCACTTCAATG

fCy3 Cy3-TGGACTTCACTCATG

Cy3/P5L Cy3-TGGACTCXCTCAATG

Cy3/P1L Cy3-TGGACTCXCTCAATG

cCy3/P1L Cy3-TGGCXCACTTCAATG

fCy3/P1L Cy3-TGGACTTCACXCATG

cDT1 CATTGAAGTGAGCCA

cDT5 CATTGAAGTGAACCA

cDT6 CATTGAAGTAAGCCA

fDT1 CATGAGTGAAGTCCA

fDT5 CATGAATGAAGTCCA

fDT6 CATAAGTGAAGTCCA
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ization of both signaling cascade activity and end-point gene expression in single

cells. PLoS One, 6, 2011.

[114] A. Okamoto, K. Sugizaki, M. Yuki, H. Yanagisawa, S. Ikeda, T. Sueoka,

G. Hayashi, and D. O. Wang. A nucleic acid probe labeled with desmethyl thi-

azole orange: a new type of hybridization-sensitive fluorescent oligonucleotide for

live-cell RNA imaging. Org. Biomol. Chem., 11:362–71, 2013.

[115] T. Kubota, S. Ikeda, H. Yanagisawa, M. Yuki, and A. Okamoto. Sets of RNA

repeated tags and hybridization-sensitive fluorescent probes for distinct images of

RNA in a living cell. PLoS One, 5:e13003, 2010.

[116] R. W. Dirks, C. Molenaar, and H. J. Tanke. Methods for visualizing RNA pro-

cessing and transport pathways in living cells. Histochem. Cell Biol., 115:3–11,

2001.

[117] R. W. Dirks, C. Molenaar, and H. J. Tanke. Visualizing RNA molecules inside the

nucleus of living cells. Methods, 29:51–57, 2003.

[118] V. J. LaMorte, J. A. Dyck, R. L. Ochs, and R. M. Evans. Localization of nascent

RNA and CREB binding protein with the PML-containing nuclear body. Proc.

Natl. Acad. Sci. U. S. A., 95:4991–4996, 1998.

[119] R. M. Martin, H. Leonhardt, and M. C. Cardoso. DNA labeling in living cells.

Cytom. Part A, 67:45–52, 2005.

[120] F.-S. Du, Y. Wang, R. Zhang, and Z.-C. Li. Intelligent nucleic acid delivery systems

based on stimuli-responsive polymers. Soft Matter, 6:835–848, 2010.

283



[121] A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano, Y. Sei-iida, and S. Kondo. Di-

rect Observation of Specific Messenger RNA in a Single Living Cell. Biophys. J.,

78:3260–3274, 2000.

[122] B. D. Brown and L. Naldini. Exploiting and antagonizing microRNA regulation for

therapeutic and experimental applications. Nat. Rev. Genet., 10:578–585, 2009.

[123] K. Wang, J. Huang, X. Yang, X. He, and J. Liu. Recent Advances of Fluorescent

Nucleic Acid Probes for Living Cell Studies. Analyst, 138:62–71, 2012.

[124] Z. Wang, K. Zhang, Y. Shen, J. Smith, S. Bloch, S. Achilefu, K. L. Wooley, and J.-

S. Taylor. Imaging mRNA expression levels in living cells with PNA:DNA binary

FRET probes delivered by cationic shell-crosslinked nanoparticles. Org. Biomol.

Chem., 11:3159–67, 2013.

[125] A. M. Femino. Visualization of Single RNA Transcripts In Situ. Science, 280:585–

590, 1998.

[126] C. H. Hansen and A. van Oudenaarden. Allele-specific detection of single mRNA

molecules in situ. Nat. Methods, 10:869–71, 2013.

[127] Y. Cheng, Z. Li, X. Zhang, B. Du, and Y. Fan. Homogeneous and label-free fluores-

cence detection of single-nucleotide polymorphism using target-primed branched

rolling circle amplification. Anal. Biochem., 378:123–126, 2008.

[128] X. Zhang, Y. Xiao, and X. Qian. A ratiometric fluorescent probe based on FRET

for imaging Hg2+ ions in living cells. Angew. Chemie - Int. Ed., 47:8025–8029,

2008.

[129] M. Tian and H. Ihmels. Selective ratiometric detection of mercury(II) ions in water

with an acridizinium-based fluorescent probe. Chem. Commun., pages 3175–3177,

2009.

284



[130] L. Yuan, W. Lin, Y. Xie, B. Chen, and J. Song. Development of a ratiometric

fluorescent sensor for ratiometric imaging of endogenously produced nitric oxide

in macrophage cells. Chem. Commun., 47:9372–4, 2011.

[131] K. K. Ogilvie, N. Usman, K. Nicoghosian, and R. J. Cedergren. Total chemi-

cal synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance

activity. Proc. Natl. Acad. Sci. U. S. A., 85:5764–5768, 1988.

[132] C. V. Kumar, E. H. A. Punzalan, and W. B. Tan. Adenine-Thymine Base Pair

Recognition by an Anthryl Probe from the DNA Minor Groove. Tetrahedron,

56:7027–7040, 2000.

[133] J. Kypr, I. Kejnovská, D. Renciuk, and M. Vorĺıcková. Circular dichroism and
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