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Chapter

Introductory Chapter: Research 
Methods for the Next 60 Years of 
Space Exploration
Robert J. Reynolds and Mark Shelhamer

1. Introduction

There are many potential health hazards inherent to space travel, and, as the 
chapters in this book make clear, even after 60 years of human space exploration, 
much is left to be learned about how to live and work in space. As a result of the 
diversity of problems that remain to be solved, the scientific methods required to 
research these issues need to be flexible and varied. This is perhaps most true in our 
approach to analyzing data and drawing conclusions from them in the context of 
space medicine.

In a commentary published in the Journal of Applied Physiology, Ploutz-Snyder 
et al. [1] point out that in the study of exotic topics (such as the physiology and health 
of space travelers) the available data are often insufficient to satisfy the sample-size 
requirements for traditional null-hypothesis statistical testing (NHST). They rightly 
point out that if we hold this as the standard of good research, (i.e., if NHST is our 
only, or even our preferred, tool for learning from data) we will be forced to abandon 
whole lines of research. While the authors offer several “approaches for justifying 
small-n research,” even these are attempts to shoehorn small datasets into traditional 
statistical analysis. This misses the broader (epistemological) point: what is needed 
in small-n studies is not just a better way to use statistics, but rather other tools which 
afford the freedom to learn without using statistics at all.

2. The problems of small-n settings

Research on small sample sizes poses a number of challenges. First and foremost 
is the violation of assumptions that frequentist statistical methods often require in 
order to be valid. Secondary to this, but inherent in the nature of small samples, 
is the typical lack of statistical power for detecting differences other than those in 
low-variance settings or those with dramatic effects. Each of these two challenges 
can lead to difficulty in interpreting results.

2.1 Violations of frequentist assumptions

Most frequentist statistical analyses follow a familiar pattern: assume the outcome 
follows a known statistical distribution, then test whether or not the observed data are 
unusual (unexpected) under the null hypothesis. However, beyond basic goodness-
of-fit considerations, such analyses require other assumptions as well, many of which 
are clearly violated much of the time. Perhaps the most important of these assump-
tions is that the observations in a given sample are “iid”—independent and identically 



Beyond LEO - Human Health Issues for Deep Space Exploration

2

distributed. When samples are strictly observational (i.e., not from a randomized 
trial) this assumption is often unwarranted. The implication of violating this assump-
tion can be profound: differential probability of exposure and inequitable distribu-
tions of potential confounders can lead to what is known as confounding by indication, 
a subtle form of bias that can lead to misleading or even wholly wrong conclusions.

2.2 Statistical power

In any statistical analysis our strength of conviction for our conclusions is largely 
dependent on how much data we can observe (sample size), and how consistent 
our outcomes are within those observed data (variance). In the frequentist statisti-
cal context this is reflected in the concept of statistical power. Statistical power is 
defined as the (hypothetical) probability of correctly rejecting the null hypothesis 
when the null hypothesis is indeed false (and false by a pre-set threshold considered 
to be of clinical or practical importance). A commonly desired and accepted level 
of statistical power is 80%. However, it should be noted that even with this level of 
power, there is a 20% chance of making a Type II error (i.e., incorrectly failing to 
reject the null hypothesis). Unless the ratio of the standard deviation to the mean 
(coefficient of variation) is small, the statistical power in small studies is consider-
ably lower than 80%, effectively crippling the ability to confidently draw inferences 
from the data under this framework.

2.3 Interpretation

Both violation of assumptions and low statistical power can frustrate the draw-
ing of inferences under traditional statistical approaches. If we manage to obtain 
a statistically significant effect, how should we interpret it given the potential for 
confounding by indication? If we fail to see any significant effects where we believe 
we ought to a priori, how do we interpret that? Does our assessment of the meaning 
of such results change with larger or smaller variance in our sample? Under tradi-
tional approaches we surrender to the probabilities of committing Type I or Type II 
errors, and resign ourselves to having learned nothing.

2.4 Preference for errors

The ultimate motive for use of the NHST framework is to reach reasonable 
conclusions about a population or process from a (large) subsample of it. However, 
a real yet unintended consequence of the framework is the focus on avoidance of 
error. The framework itself is centered on the concept of errors in inference: when 
we can, we design our studies to avoid Type I error while simultaneously trying to 
limit Type II errors. In so doing we may make these errors—rather than what we 
might learn from our data—the primary consideration of our scientific activity. It 
should come as no surprise that when we make avoidance of error our top priority, 
we fail to learn all we can from our data.

Modern science’s focus on Type I error has proven to be particularly trouble-
some. In our quest to never actively assert a false truth we have no doubt passively 
allowed many truths to go unspoken. It is obvious that Type I errors can cause harm 
in medicine if new treatments are adopted that are actually harmful to patients. 
Less obvious is the harm that may result if research into a truly efficacious treat-
ment is abandoned simply because a p-value was too high. Such harm is every bit 
as real (and every bit as irreversible) as that done by introducing an ineffective 
treatment. It is especially troubling in initial exploratory studies and those where 
data are acquired only with great difficulty or expense.
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3. Methodological solutions for research in space medicine

Having seen the problems that small-n settings create in general, how do we 
solve them? Through a combination of realigning our epistemology, using our 
current tools differently, and utilizing modern analytic tools developed outside the 
field of statistics, we can do better research and advance the field of space medicine 
to meet the challenges of the next 60 years.

3.1 Realigning our epistemology

Cognitive dissonance is the feeling of discomfort one feels when actions fail 
to conform to beliefs. [2] To most scientists, making claims about truth without a 
statistically significant result to point to elicits substantial cognitive dissonance. 
This perhaps more than anything demonstrates our over-reliance on NHST as 
a substitute for a more robust epistemology. There are several things we can do 
to learn from data without suffering from cognitive dissonance—even without 
significance tests. Altogether they amount to a different epistemological approach 
to epidemiology for space exploration.

3.1.1 Guidelines for causation

In 1965 Sir Austin Bradford Hill described nine guidelines for determining 
causation from scientific evidence. [3] It is worth noting that while one of the 
guidelines deals with strength of association, or what we might recognize as effect size, 
none of the criteria deal with significance testing or p-values. Explicitly, Hill called 
for examining the quality of the relationship between exposure and outcome: the 
logical features of how the evidence suggests they interact, and how that fits with 
prior knowledge of the same or similar subject matter. This sort of prescription is 
well-suited to the small-n environment of space medicine.

3.1.2 Modern causal inference theory: assumptions

Similar to Hill’s work, modern causal inference methods may also be of great use 
in space-health research. These methods have sought to mathematically formalize 
causation in order to make valid use of observational data for causal estimation 
and to avoid introducing biases in analyzing such data [4]. Perhaps more important 
than the methods of analysis that this framework has promoted is the understand-
ing of the assumptions necessary to make causal statements from non-randomized 
data. Merely understanding the assumptions of positivity, consistency, and con-
ditional exchangeability—and what happens when one violates them—can be of 
tremendous help when trying to draw inferences based on limited data.

3.1.3 Directed acyclic graphs

A common tool used in modern causal inference is a special type of network 
graph known as the directed acyclic graph (DAG). These are network maps that 
reflect causal relationships. DAGs are drawn according to some simple rules, but 
making and using these diagrams can be quite useful for clarifying thinking and 
formulating testable hypotheses. If we factorize a joint probability distribution over a 
DAG, we create a Bayesian Network, a powerful tool of probabilistic inference. If we 
decompose a correlation or covariance matrix over a DAG, we can do path analysis 
or structural equation modeling, forms of latent-variable analysis. Even without 
any data collected at all, the structure of a DAG implies variable dependencies and 
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independencies, which in turn have implications for what is and is not possible in the 
system from which the data were acquired, and thus can help guide critical thinking 
about problems.

3.1.4 Alternative hypotheses

A final epistemological realignment is to define specific, sensible hypotheses 
given the question at hand, which may or may not conform to the typical NHST 
two-tailed tests of significance. Examples of such alternatives include equivalence 
testing, inferiority testing, and a still more exotic choice, the modus tollens. All of 
these ask different questions than whether the central tendency of a sample shows 
enough difference to evince a significant p-value for the given sample size and 
variance. By changing the testable hypothesis to be more specific to what we really 
would like to know, we can often obtain an answer that is not only more sensible, 
but often more statistically powerful too, which might then bring NHST back into 
the realm of possibility to further refine the analysis.

3.2 Alternative analytic approaches

Yet another strategy for learning from data is the use of more-sophisticated 
analytic methods which do not necessarily rely on NHST. This includes exploiting 
properties of known statistical tests for alternative hypotheses, Bayesian methods, 
and machine learning.

3.2.1 Alternative uses of common statistical models

With a good understanding of common statistical models, it is possible to exploit 
their properties to conduct atypical investigations. Here we use an example from the 
literature on astronaut mortality to demonstrate this idea.

Using data on US astronauts and Soviet and Russian cosmonauts, Reynolds et al. 
[5] demonstrated that mortality from cancer and cardiovascular disease have no 
common causes in this population. This in turn was taken as evidence that doses of 
ionizing radiation received in space cannot have been sufficient to affect mortality 
from both of these causes. This was achieved by showing that a naïve analysis of 
survival curves (where competing causes of death were treated as censoring events) 
were not markedly different from survival curves that account for competing risks. 
That is, the causes of death displayed statistical independence which, in DAG terms, 
means they share no common ancestor.

In this example, the authors exploited the implications of different statistical 
methods for computing survival in presence of competing risks to make infer-
ences regarding the structure of causal relationships. This is but one example, and 
undoubtedly others exist for those who can think broadly and conceptually about 
specific questions to be asked of existing datasets.

3.2.2 Simulation

The advancements in computing power over the last several decades have made 
possible more sophisticated forms of analysis, not least among them being simula-
tion. We refer here to several different well-established approaches, all of which 
have found use in various domains such as statistics, business, and engineering.

Markov-chain Monte Carlo simulation (MCMC) has been used for decades in 
engineering for probabilistic risk assessment. Agent-based simulation has found 
increasing popularity in epidemiology for modeling community-level effects of policy 
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change or change in social environment. Techniques such as the bootstrap and the 
jackknife may be loosely grouped here as well, as they rely upon repeated recalculation 
of sample statistics using algorithms that resample the data in specific ways. Finally, 
simple “what-if” analyses can help find the extremes of what is possible in a process 
or phenomenon, and can be used to eliminate possibilities or competing hypotheses.

3.2.3 Bayesian methods

Though certainly not new, Bayesian methods are still underutilized in research 
in general and in space medicine in particular. This is primarily owing to the unfa-
miliarity of most researchers with these methods, which in turn is due to the lack 
of graduate-level training on them in most scientific programs other than statistics. 
Historically, this was sensible: their mathematical complexity and need for comput-
ing power made them difficult to implement for all but the simplest of applications. 
Fortunately, computer science and computer hardware have both evolved to where 
these methods are easy to implement, creating a large opportunity for researchers 
to work with smaller datasets in meaningful and rigorous ways without reliance on 
NHST and p-values.

3.2.4 Data science

In recent years, Data Science has been turning business analytics upside down. 
In general, data science is understood as the science of learning from data, a seem-
ingly perfect fit to our objectives here. Yet Data Science has seen much slower 
adoption in Academia, perhaps owing to the fact that the only part of Data Science 
that fits with the traditional epistemological approach to research is that part of 
Data Science which uses traditional NHST statistics.

A hallmark of Data Science is the use of machine learning. However, many of the 
methods of machine learning are methods that typically benefit from large datasets: 
those with hundreds of columns and millions of rows. Nevertheless, machine learn-
ing does have techniques that can be of use in the small-n world. Techniques for data 
reduction, data visualization, data mining, and simulation all are powerful tools that 
can often be applied in the domain of small-n research. Perhaps of particular interest 
to space medicine, researchers are able to use these methods for exploratory data anal-
ysis and hypothesis generation, tasks at which unsupervised machine learning excels.

4. Summary and conclusions

In this chapter we have discussed the limits of NHST as a surrogate for a broader, 
more flexible epistemological framework. Over-reliance on NHST can cripple the 
research enterprise when sample sizes and sampling schemes fail to conform to the 
assumptions necessary for valid models, much less valid inference.

A motivating factor for the use of NHST is the desire to draw correct conclu-
sions. This is a valid aim, but may lead to an emphasis on error avoidance at the 
expense of learning from (possibly limited) data. Instead, scientists need to 
consider evidence using Hill’s guidelines for causation, should examine whether or 
not the data in hand conform to or defy the assumptions needed for causal infer-
ence, and should include the use of DAGs to better understand what we already 
know about a given topic, and to clarify what we conjecture to be true a priori. 
Formulating so-called “alternative” hypotheses appropriate to the topic under study 
may even allow us to improve our inferences when using traditional NHST. There is 
no need to restrict ourselves to one approach or the other.
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Alternative methods of analysis can be used to aid our understanding in 
small-data situations. Bayesian methods, more sophisticated uses of well-known 
statistical methods, and methods from data science all provide useful techniques 
that work well with small datasets, provided the scientist is willing to think dif-
ferently about the outcomes of these analyses.

It is our hope that researchers involved in space medicine will adopt these perspec-
tives and methods. To the extent that these ideas and techniques are adopted by the 
broader research community, we expect to see great advancements in our knowledge 
of health and safety in spaceflight. It is this expansion of our collective knowledge 
that will help make possible the space exploration missions of the next 60 years.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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