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Chapter

Thermal Energy Storage for Solar
Energy Utilization: Fundamentals
and Applications

Kai Wang, Zhen Qin, Wei Tong and Chenzhen Ji

Abstract

Solar energy increases its popularity in many fields, from buildings, food pro-
ductions to power plants and other industries, due to the clean and renewable
properties. To eliminate its intermittence feature, thermal energy storage is vital for
efficient and stable operation of solar energy utilization systems. It is an effective
way of decoupling the energy demand and generation, while plays an important
role on smoothing their fluctuations. In this chapter, various types of thermal
energy storage technologies are summarized and compared, including the latest
studies on the thermal energy storage materials and heat transfer enhancements.
Then, the most up-to-date developments and applications of various thermal
energy storage options in solar energy systems are summarized, with an emphasis
on the material selections, system integrations, operational characteristics, perfor-
mance assessments and technological comparisons. The emerging and future trends
are finally outlined. This chapter will be a useful resource for relevant researchers,
engineers, policy-makers, technology users, and engineering students in the field.

Keywords: thermal energy storage, solar energy utilization, sensible heat storage,
latent heat storage, thermochemical heat storage, heat transfer

1. Introduction

Currently, energy, environment and sustainable development are the major
concerns to the countries all over the world. The long term usage of fossil fuels (e.g.,
coal, oil and natural gas) has caused environment pollutions and greenhouse effects.
The resulting global climate change and resource exhaustion can seriously threaten
human survival and development. Renewable energy sources, including solar,
wind, hydro, geothermal, etc. [1], have been increasingly attractive to many coun-
tries for their natural advantages on sustainability and cleanliness. Solar energy is
considered as one of the most promising renewable energy sources, because of its
abundance and easy-access to the most parts of the world. However, due to the
intermittency in availability and constant variation of solar radiation, the output of
a solar energy system is highly fluctuating if no or small inertia (thermal or electri-
cal) is included. This poses strong needs for energy storage in solar energy systems
to store energy at high solar irradiances for later uses whenever there is a demand
while solar irradiance is not enough. With the energy storage systems associated to
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reduce the discrepancy between the demand and supply, solar energy systems can
be more reliable and efficient in operation.

In order to develop efficient and economical energy storage systems, various
energy storage technologies have been proposed [2], such as compressed air energy
storage, pumped storage hydro-power, flywheel energy storage, thermal energy stor-
age, electrochemical energy storage, hydrogen storage and so on. They are employed
in different application fields depending on their specific characteristics on energy
storage. Among all the storage methods, thermal energy storage (TES) is one of the
most economical systems in practical applications, and it allows the storage of thermal
energy by heating or cooling a storage medium to be used at a later time [3]. TES has
been applied in a broad range of fields: district heating, domestic hot water, thermal
comfort, concentrated solar plants (CSP), chemical industry, food industry, etc. [4-7].
It has also been proven that the usage of TES can improve the performance of
whole system operation, save the fuel consumption, lower the investment and
operation costs, increase the energy supply security and mitigate the pollution to the
environment if it is appropriately designed. To obtain the above benefits for an
energy system, it is critical to choose a suitable thermal energy storage approach.
The selection of thermal energy storage depends on the type of energy source,
required storage duration, operating condition, economic viability, etc. The most
mature and widely used approach is sensible heat storage. Latent heat storage and
thermochemical energy storage have also attracted extensive research and develop-
ment efforts in the last two decades, as they can offer higher heat storage capacities
and lower heat losses during the energy storage processes.

The aim of this chapter is to provide a state-of-the-art review of TES technolo-
gies and their applications in solar utilization systems. The principles of several
energy storage methods and evaluation approaches of storage capacities are firstly
described. Sensible heat storage technologies, including the solid and liquid storage
methods, are briefly reviewed. Latent heat storage systems associated with phase
change materials (PCMs) as well as thermochemical storage are also introduced and
summarized. Further discussions on important criteria of energy storage technolo-
gies suitable for solar energy applications are also presented. Later, TES technolo-
gies applied in solar energy systems like solar power systems, solar heating/cooling
systems are reviewed with the detailed analyses about the material selections and
system integrations of TES and solar energy systems.

2. Thermal energy storage technologies

TES is one of the most practiced technologies to store energy in the form of heat
to eliminate the gap between the energy supply and demand. As shown in Figure 1,
there are three main thermal energy storage technologies [9]: sensible heat storage
through a temperature change (sensible heat) of a material, latent heat storage
through phase change (latent heat) of a material and thermochemical heat (chem-
ical energy) by thermally inducing changes in materials’ chemical states. As com-
pared in Table 1, the choice of TES method depends on a variety of factors such as
the storage capacity, cost, temperature range, duration requirement as well as the
specific application.

2.1 Sensible heat storage
Solid sensible heat storage is an attractive option for thermal energy storage

regarding the investment and maintenance costs. Sensible heat storage stores the
thermal energy by varying the temperature of storage materials, without
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Main approaches of thermal energy stovage: (a) sensible heat, (b) latent heat, (c) thermo-chemical veactions [8].

TES technology Capacity (kWh/t) Cost (/kWh) Storage period

Sensible 10-50 0.1-10 Days/months

Phase change materials 50-150 10-50 Hours/months

Chemical reactions 120-150 8-100 Months/seasons
Table 1.

Comparison of typical parameters of three TES technologies [10].

undergoing any form of phase change within the working temperature range. The
amount of thermal energy stored or released is proportional to the density p,
volume V, specific heat ¢,, and temperature variation of the storage materials:

Ty
Q,,, = J mepdT = pVe, (Ty — Ti), (1)

1

where Q,,, is the amount of sensible heat stored, dT is the temperature interval,
T; is the initial temperature and T the final temperature of storage medium during

Material Type Density Thermal conductivity Heat capacity Cost

(kg/m?) (W/mK) (k) /kgK) (€/m>)
Rock Solid  1500-2800 0.85-3.5 1 64-742
Concrete Solid 2000 1.35 1 76
Sand and gravel Solid  1700-2200 2 0.910-1.180 6-8
Ceramic tile Solid 2000 1 0.8 1600-3500
Gypsum (coating)  Solid 1000 0.4 1 78
Ceramic brick Solid 1800 0.73 0.92 36-64
Wood Solid 450 0.12 1.6 404
Water Liquid 990 0.63 4.19 1.6
Oil Liquid 888 0.14 1.88 6560
Nitrite salts Liquid 1825 0.57 15 2200
Carbonate salts Liquid 2100 2 1.8 6050
Liquid sodium Liquid 850 71 13 2000

Table 2.

Available sensible heat storage materials used in the thermal energy storage systems [11].
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the storage process. Basically, specific heat c,, density p and thermal conductivity
are the key thermal properties of sensible heat storage materials. According to the
materials’ phase state, sensible heat storage materials can be divided into two main
categories: solid and liquid heat storage. Table 2 lists the most common solid and
liquid heat storage materials with their thermal properties.

2.1.1 Solid heat storage

Solid storage materials have been applied in many TES systems for their reli-
ability, low cost, easy implementation and applicability in extensive practical cases
[12, 13]. Different from liquid heat storage, there are no vapor pressure or leakage
issues in solid heat storage. However, a fluid, usually air or oil, is needed to work as
the heat transfer fluid (HTF) to transport the thermal energy that is to be stored
into or released from the solid heat storage system. As listed in Table 2, the most
frequently used solid heat storage materials include rock, concrete, brick, sand and
so on [14-16].

* Rock is always loosely piled in a packed bed through which the HTF like air or
oil can flow. Thermal energy is stored in the packed bed by forcing heated HTF
flowing through the rocks and utilized again by recirculating the HTF through
the heated rocks. Typically, the characteristic size of rock pieces varies from 1 to
5 cm. There is a large contact surface area available for heat transfer between
HTF and rocks which is beneficial for the heat transfer. The amount and
temperature level of energy stored in a packed bed storage system with rocks
depend on the rock size and shape, packing density, HTF, etc. As a sensible
energy storage option, rock has advantages like being non-toxic, non-flammable,
cheap and easily available. This type of storage is operated very often for
temperatures up to 100°C in conjunction with solar air heaters and thus
convenient to be implemented in buildings. The heat storage with rocks can also
be used for higher temperature applications, up to 1000°C. When rock is
employed as thermal storage material, there are several drawbacks, including the
poor thermal conductivity, high pressure drop under large flow rates of HTF.

* Concrete is a promising candidate as it has a low cost and is easy to obtain and
process directly on site. Concrete is a construction material comprised of
cementitious materials and/or calcium aluminate cement, coarse and fine
aggregates, water and possibly chemical admixtures. Besides, it has relatively
high specific heat and good mechanical properties. The heat exchanger
between concrete and HTF is usually designed as the pipes embedded into the
concrete block where HTF flows internally. As cracks may form after repeated
cycles due to thermal expansion and contraction at high temperatures, research
efforts have been devoted to developing appropriate concrete compositions,
optimizing chemical-physical and durability performances at high
temperatures. Long-term stability of concrete has been proven in oven
experiments and through strength measurements up to 500°C. The main
challenges to use the concrete as TES materials include: potential cracks,
relatively low thermal conductivity, durability after long-term thermal cycling
and high costs for heat exchangers to charge/discharge thermal energy.

* Sand grains are shown to be a promising low-cost candidate material
that is suitable for concentrated solar power (CSP) applications with
high-temperature thermal storage. The average size of sand grains is around
0.2-0.5 mm and they are commonly used in the form of packed beds for heat
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storage with air as HTF. It is possible to use desert sands directly as collected
from the field of CSP, removing the need for third-party suppliers. Moreover,
they can be used directly in solar receivers to collect solar thermal energy. After
absorbing the heat of concentrated solar rays, due to the gravity forces, the
sands can fall from the top of solar receiver tower and then they can be
collected in an insulated storage tank below. Temperature of hot sands can go
up to 700-1000°C which is appropriate for producing steam to drive a Rankine
cycle [17].

2.1.2 Liquid heat storage

* Water is the most common liquid material for TES due to its high specific heat,
none-toxicity, low-cost and easy-availability [18]. However, due to its high
vapor pressure, water requires costly insulation and pressure withstanding
containment for high temperature applications from 100 to 700°C (in the form
of steam). Water in liquid phase is widely used for low temperature heat
storage below 100°C in solar based applications, such as space heating and hot
water supply [19]. Water in liquid state can also form thermal stratification or
thermocline. Due to density difference caused by heating of liquid, the
buoyancy force causes stratification of the water, forming a thermal gradient
across the storage. Under such a condition, the hot fluid can be supplied to the
upper part of a storage tank during charging, and the cold fluid can be
extracted from the bottom part during discharging [20]. Thus, the efficiency of
thermal energy store and release process can be improved. In some high
temperature applications like CSP plants, water is stored in steam phase in high
pressure tanks (steam accumulator) to work as TES systems. In additional,
water can be also used in chilled water form or in ice form for cold energy
storage, which is useful in refrigeration systems. The main drawbacks for using
water as the TES material are its high vapor pressure and corrosiveness to the
container above its boiling point.

* Molten salt is currently one of the most popular TES materials used in CSP
plants. Compared to other liquid heat storage materials, molten salts have
relative low costs, high energy storage densities, excellent thermal stabilities,
low viscosities and non-flammabilities. Molten salts in liquid state can be
operated at high temperatures of several hundred degree centigrade while its
vapor pressure is much lower than that of water, so it is very suitable for high
temperature CSP plants. The pure molten salt usually has a melting point above
200°C which hampers its further application at low temperatures. It is
desirable to have a molten salt with a lower melting point so that it can remain
the liquid state when storing the thermal energy. A new series of ternary salt
mixtures have been proposed with ultra-low melting temperatures at 76°C,
78°C or 80°C, and they can prevent the solidification at low temperatures to
enable the TES systems suitable for a wider applications. Molten salt also has
several drawbacks that limit its application: low thermal conductivity, volume
change during the melting and corrosivity to the container.

* Thermal oil is usually a kind of organic fluid and works as a HTF in many
power and energy systems. When using as a thermal storage medium, thermal
oil can remain in liquid phase at temperatures of 350-400°C with stable
thermal properties, which is much higher than the liquid water. It means that
thermal oil can store more thermal energy based on the wider temperature
operation range. Compared to water, thermal oil also has a lower vapor
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pressure, which is beneficial for mechanical designs of relevant pipes and
containers. Unlike molten salts, thermal oil does not freeze during the night in
pipes so that it doesn’t need any antifreeze system. However, the cost of
thermal oil is usually higher than water and molten salts.

2.1.3 Pros and cons of sensible heat storage

Sensible heat storage materials are typically based on relatively low cost mate-
rials and thus extensively used, except the liquid metals. Due to the relatively good
thermal stability, heat transfer performance and transport properties, sensible heat
storage materials are the most used TES materials for high temperature applica-
tions. Compared to the latent heat storage, specific heat of sensible heat storage
materials is 50-100 times smaller, leading to the requirement of large volumes or
quantities in order to deliver the amount of energy storage necessary for high
temperature thermal energy storage applications. The other main issue of sensible
heat storage is that the temperature of the storage medium decreases during
discharging process, so the HTF temperature also decreases with time.

2.2 Latent heat storage

Latent heat storage utilizing PCMs is an alternative TES technique compared to
the sensible heat storage [11]. PCMs are substances which can absorb or release
large amount of energy, i.e., so-called latent heat, when they experience phase
transitions among solid, liquid and gas states. Although the highest latent heat of
phase change is the liquid-gas phase change, it is hard to utilize this due to the
enormous volume change associated with material evaporation. While another
kind, ‘solid-solid’ latent heat storage material has its latent heat of transition one
order of magnitude smaller than the solid-liquid PCMs [21], which is commonly
applied for latent heat thermal energy storage. Solid-liquid PCMs should have a
melting point near the required operation temperature range of the TES system,
melt congruently with minimum subcooling [22], and also is desired to be chemi-
cally stable, cost competitive, non-toxic and non-corrosive. The amount of energy
storage of the latent heat system with PCMs is calculated as:

Quar = m(cps(Tin — Ti) + aLy + ¢ (T — Th)), (2)

where Q,,, is the amount of heat stored, ¢, and ¢, ; are the specific heat of PCMs
in solid and liquid state, L is the latent heat of fusion, « is the melting fraction, T;
and Ty are the initial and final temperatures of the storage materials, and T}, is the
melting temperature. This section briefly introduces the classification of PCMs and
the related heat transfer enhancement techniques.

2.2.1 Phase change materials

Solid-liquid PCMs are competitive alternatives to the sensible TES materials.
Compared to sensible heat storage materials, PCMs can operate at the phase change
temperature with small temperature variations between heat storage (charging)
and heat releasing (discharging) as illustrated in Figure 1(b), and Figure 2 shows
the classification of PCMs family for TES [23]. Different kinds of PCMs are intro-
duced in the following subsections. Table 3 presents the characteristics of several
common PCMs.
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Figure 2.

Classification of latent heat materials with solid—liquid phase change behavior.

* Organic PCMs and their eutectic mixtures have been successfully
implemented in many commercial applications, such as space heating in
buildings, electronic devices, refrigeration and air-conditioning, solar air/water
heating, textiles, automobiles, food and space industries [23]. Organic PCMs
featured of congruent melting without phase separation usually have relative

Name Melting Latent heat  Density Thermal Heat capacity

point (°C) (KkJ/kg) (kg/m3 ) conductivity (kJ/kg-K)
(W/m-K)

(Organic)

n-Octadecane 27.7 243.5 865/785 0.19/0.148 2.14/2.66

Paraffin wax 32 251 830 0.514/0.244 1.96/3.26

RT 55 55 172 880/770 0.2 2

RT 70 HC 69-71 260 880/770 0.2 2

(Inorganic)

CaCl,-6H,0 29.6 190.8 1562 N/A N/A

Ba(OH),-8H,0 78 265-280 2070/1937 1.225/0.653 N/A

E117 117 169 1450 0.7 2.61

LiNO3-NaNO; 195 252 N/A N/A N/A

NaNO; 306 172 2261 388.9 N/A

KNO; 333 266 2110 N/A 0.5

KOH 380 150 2044 N/A 0.5

Table 3.

The thermal properties of organic and inorganic phase change thermal stovage materials [24, 25].
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low melting points. Commonly used organic PCMs are paraffin, fatty acids,
esters, alcohols and glycols. Among them, paraffin wax is an excellent heat
storage material and has been widely applied for low temperature heat storage
applications [26]. It consists of straight n-alkanes chain (CH;-(CH,)-CHj3),
teaturing a high specific heat capacity (2.14-2.9 J/g-K), a low price (~1 USD/
kg) with a moderate heat storage density (200 kJ/kg) and a narrow range of
melting temperatures from —10 to 67°C [27], a small degree of subcooling,
chemically stable and non-toxic properties. Due to the purity and specific
composition, the organic PCMs show up a remarkable latent heat capacity in
narrow temperature ranges. In addition, they are chemically inert and have an
unlimited lifetime. However, their low thermal conductivities (0.1-0.35 W/m-K)
limit their practical applications.

* Inorganic PCMs can be classified into two groups: salt/salt hydrates, and
metals and their alloys. In general, inorganic PCMs not only have nearly
doubled heat storage densities but also higher thermal conductivities, higher
operating temperatures compared to the organic ones [28]. However, inorganic
PCMs are corrosive to metals leading to a short service life of the system and a
higher maintenance cost. The inorganic PCMs (salt/salt hydrates) can also
suffer from phase segregation and supercooling, which would reversibly affect
the energy storage capacity. For high temperature applications, however, metal
and metallic alloys are potential PCM candidates as they don’t suffer from
these disadvantages. The inorganic salt means salt or its hydrates, which can be
expressed as A,B and A,By-n(H,0) respectively, where A,B represents metal
carbonate, sulfite, phosphate, nitrite, acetate or chloride and 7 represents
number of water molecules. Although the inorganic PCMs show very
promising and advantageous characteristics, these materials still face many
problems to be commercial products for practical applications: (1) volume
change at phase transition, (2) low thermal conductivity (nearly 1 W/m-K), (3)
supercooling of salt hydrates, (4) corrosion with metal containers, (5) different
melting temperatures of salt hydrates and (6) high cost of some specific salts.

* Eutectic PCMs are composites of two or more components, which usually do
not interact with each other to form a new chemical compound but at certain
ratios, inhabit the crystallization process of one another resulting in a system
having a lower melting point than either of the components. The eutectic
mixtures can be further classified into organic-organic, organic-inorganic and
inorganic-inorganic PCMs. Eutectic PCMs generally melt and freeze
congruently and leave no chances of separation of components. Molten salt is
one of the best candidates for middle to high temperature applications in the
range of 120-1000°C [28]. For solar energy utilization, normally middle-high
temperature PCMs are applied and the “middle-high” temperature means the
range of 100-300°C. The molten salts offer a favorable density around
1880 kg/m?>, a high specific heat around 1.5 kJ/kg-K, a very low chemical
reactivity, a low vapor pressure and a low cost about 0.4-0.9 USD/kg [29]. A
popular commercial molten salt used in the solar power generation as PCM is
called “solar salt”, which is a mixture of NaNO3 and KNO; mixing at a weight
ratio of 6:4 with a freezing point of 221°C. Despite its relatively high melting
point, the low cost makes it widely utilized in CSP applications. Another
similar molten salt product is named “HTEC”, which is a ternary salt mixture
system of NaNOj3, KNO; and NaNO,, and has a freezing point of 141°C.
Different salt combination brings the melting point down but the lack of
combination of optimum thermal properties limits its further applications.
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* Composite PCMs are the mixtures prepared by dispersing the high thermal
conductive particles like carbon, graphite or metals into PCMs. One should note
that the embedded thermal conductive materials should be compatible with the
base PCMs. Although the nano-composite has less ability to store heat, it has
higher ability to conduct heat. For example, the graphite based nano-composite
has 12 times higher thermal conductivity than that of pure stearic acid [30].
Graphite can be applied as thermal promoters in various forms like graphite
flakes (natural graphite), expanded natural graphite or the expanded graphite
powder (50-500 nm). Expanded graphene is one of the most suitable PCM
support materials due to its extraordinary thermal conductivity. The dispersion
of expanded graphene to binary nitrate salts consisting of NaNO3z and KNO; (6:4)
by aqueous solution method adopting ultrasonic and the 2% integration enhanced
the thermal conductivity to 4.9 W/m-K but reduced the latent heat by 11% [27]. It
is also reported that the use of expanded graphene in molten salts can prevent the
liquid leakage after the melting [31]. Different from expanded graphene, a highly
conductive additive expanded natural graphite treated with sulfuric acid was
introduced into the binary salt, KNO3/NaNOj nitrate mixture and the additive
establishes effective heat transfer matrix for more efficient heat transfer. The
results showed that the thermal conductivity has been improved and the highest
effective thermal conductivity is about 50.8 W/m-K, almost 110 times larger than
the thermal conductivity of the salt powder. A slight decrease of latent heat was
observed from the measurements with no obvious variation in the phase change
temperature [32]. Another way to enhance the thermal conductivity is to add
chloride as addictive into the nitrate salt composite by statical mixing method. It
was found that an addition of 5% chlorides into KNO3-NaNO;-NaNO, composite
increased the thermal conductivity, thermal stability with an higher operating
temperature from 500 to 550°C. Lower freezing point was obtained and the loss
of nitrite content was observed [33]. Those enhanced composite PCMs with
enhanced thermal performance and stability can be used to create compact
thermal energy storage systems when the space is limited. Not only different
nanostructures but also different types of nanoparticles can be applied as the
thermal conductivity promoters, such as, the carbon-based nanostructures,
metals, metal oxides and silver nanowires. A review of the current experimental
studies on variations in thermo-physical properties of PCMs due to the dispersion
of nanoparticles is performed in the reference [30].

* Microencapsulated PCMs (MEPCMs) can be described as particles that
contain core PCMs surrounded by a coating or a shell and have diameters in the
scale of micrometers. The microencapsulated PCMs usually have required
morphologies, uniform diameters, shell mechanical strengths, penetration
abilities and thermal stabilities. Pouches, tubes, spheres, panels or other
receptacles containing MEPCM can directly act as heat exchangers. They can
be incorporated into the building materials for thermal energy storage. The
shell can hold the liquid PCM inside and prevent changes in its composition.
The encapsulation not only increases the contact surface area for heat transfer
but also adds the mechanical stability with the rigid shell. Common
encapsulation shell materials include urea-formaldehyde (UF) resin,
melamine-formaldehyde (MF) resin and polyurethanes (PU). Specialized
techniques to prepare the encapsulation with a polymer cover and a PCM core
include coacervation, suspension polymerization, emulsion polymerization,
polycondensation and polyaddition. The MEPCMs are widely applied into the
building materials and are able to retain or improve the building structural
performance, as well as the energy performance (Figure 3).



Renewable Energy - Resources, Challenges and Applications

B (b)

v

X EHT = 10.00 KV Signel A= inlens  Contrast = 274 %
2-25 nm H Mag= 5000 KX WO = 50mm Date 22 Dct 2012 5’31‘.9’—?

Figure 3.
Common applied thermal enhancement promoters: (a) carbon nanotubes/nanofibers [30], (b) graphite/
graphene flakes [34], (c) metal nanoparticles (silver nanowires) [35], (d) metal oxide nanoparticles

(}"Alz Og) [3 6].

2.2.2 Heat transfer enhancement of PCMs

Although the usage of PCMs is attracting because of its high energy storage
density, most PCMs have a low thermal conductivity (~0.5 W/m-K), which
restrains the heat transfer rate during charging and discharging processes. Except
the enhancement approaches by dispersing thermal enhancement promoters to
form composite PCMs as introduced above, there are also other methods developed
for heat transfer enhancement, such as adding metal fins to increase the heat
transfer area or embedding metal fins (foam), using multiple PCMs, heat pipes, or
manipulating the designs of the latent heat storage system to increase the natural
convection heat transfer intensity, as shown in Figure 4.

* Metal fins and extended surfaces can effectively increase the contact area
and enhance the heat conduction between the heat source and the PCMs.
Commonly applied fin materials are steel (50.2 W/m-K), aluminum
(205 W/m-K), copper (385 W/m-K) or graphite foil (140 W/m-K in x-y
direction) [24]. Graphite foil is suitable for high temperature applications and
has many advantages like high thermal conductivity, low density, good
corrosion resistance against nitrate salts and nitrite at high temperatures. It
occupies less volume for the same performance compared with steel fins.
Aluminum is suitable for low temperature applications below 400°C and does
not show corrosion effect when contacted with galvanized steel pipes. The
introduction of fins into the PCM changes the PCM interior structure and
hence affects the natural convection in the liquid phase of PCM during melting
[37, 38].

10
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Heat transfer enhancement techniques used in LHS systems [25].

* Embedded porous matrices made of copper, aluminum or a naturally porous
material like graphite, metal foam can be embedded into interior PCM to enhance
the heat transfer. The integration of metal foam helps the distribution of heat
evenly into the PCM and is able to greatly enhance the PCM melting rate [24], even
achieving as high as 41.2% enhancement on the melting process in a comparison
with a pure PCM system [39]. One should note that the performance improvement
with metal foam depends on the structure porosity and thermal conductivity.

* Heat pipe has a high thermal conductivity and it can be added to PCMs to
increase the performance of the latent heat storage system. It serves as a
thermal channel between the HTF and the PCMs. Within a heat pipe, there
exist two regions, i.e., evaporation and condensation, and the working fluid
like mercury evaporates and condensates for heat exchange. Metal fins can also
be integrated with a heat pipe to further reduce the thermal resistance and a
corresponding simulation showed that the addition of fins on a heat pipe leads
to a threefold increase in the heat storage during the first 3 h of charging and a
79% increase in energy discharged within the first 3 h of releasing [40].

2.2.3 Pros and cons of latent heat storage

Latent heat storage with PCMs has a large latent heat of fusion so that it can store
more amount of heat than sensible heat storage. This large difference gives PCMs

11
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the advantage of a high energy storage density, which reduces the volume of TES
vessel and the outer wall surface area, and minimizes the heat loss. Compared to the
sensible heat storage, the discharging process of the latent heat storage can maintain
the temperature constant and make the contacting medium like HTF or the adjacent
space temperature stable. However, the main drawback of the latent heat storage is
the low thermal conductivity of PCMs. Moreover, the heat transfer design and
media selection are more difficult, and the experience with low temperature PCMs
like inorganic salts has shown that the performance of the materials can degrade
after moderate number of freezing-melting cycles.

2.3 Thermochemical heat storage

Different from sensible heat storage systems and latent heat storage systems, a
thermochemical heat storage system uses reversible endothermic/exothermic reac-
tions to absorb, store and release energy between solar heat and chemical reactants.
As depicted in Figure 5, during the charging process, heat is absorbed to dissociate
material A, resulting in the products B and C. This reaction is endothermic and the
amount of thermochemical heat stored is determined by the reaction enthalpy. It
can be calculated by:

Qchem =naAH, (3)

where 74 is the mol number of A and H, is the enthalpy of the endothermic
reaction. During the discharging process, the products from the endothermic reac-
tion, i.e., B and C, are mixed together at certain temperature and pressure condi-
tions to reform the initial material A. This reaction is exothermic and the
regenerated heat can be converted into electricity or used for other thermal
powered systems.

To develop a thermochemical heat storage system, the first consideration is the
selection of the reversible reaction and to characterize its operating temperature
and pressure, the reaction rate, the reversibility and the kinetic properties, etc. For a
high temperature energy storage, for instance, the endothermic reaction for the
heat charging process should occur at temperatures below 1000°C to reduce the
material restriction. The exothermic reaction, on the other hand, should be able to
release heat at temperatures higher than 500°C [41]. Two parameters are usually
used to assess the reactions from the thermodynamic perspective [42]. The first
parameter is the turning temperature T'. For a reversible reaction at a given

charging process: endothermic

\,\—»A(s) + Heat —Ti> B + Clo—

storage storage
of A of B/C

—Bs) + C(g) —Ti> A + Heat J

discharging process: exothermic

Figure 5.
Schematic of a thermochemical heat storage system.
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pressure p, T* is the temperature at which forward and reverse reactions are
thermodynamically equilibrium. It can be approximated as

_ AH,(T"p)

T =S P
AS,(T*,p)

(4)

where AH, and AS, are the reaction enthalpy and entropy at pressure p and
temperature T *. The other parameter is the ratio of the maximum recovery work to
the actual recovery work, namely the maximum work recovery efficiency #,,,,.. The
value of #,,,,, equals to 1 when the process is completely reversible. In the presence of
irreversibility of a process, 1,,,, is less than 1 due to the entropy generation and
cannot be used for work. In order to achieve the maximum work, it is hence required
that both endothermic and exothermic reactions should be completely reversible.

2.3.1 Reactions for thermochemical heat storage

A large number of reactions have been tested under the laboratory scale to
determine their feasibility as thermochemical storage materials. These reactions can
be classified according to their reaction family, namely carbonate system, hydrox-
ide system, redox system, metallic hydride system, ammonia system and perovskite
oxide system [43, 44].

* Carbonate system is operated by the decarbonation reaction of carbonate. The
reaction can be expressed as

MCO3(S) + AH, =MO(S) + COZ@. (5)

In carbonate systems, chemical reactions are usually from inorganic oxide/car-
bon dioxide because of their high chemical reaction heat. These reactions generally
occur at a temperature higher than 450°C. Many inorganic oxides can be used as
thermal energy storage materials in carbonate systems [45]. Most attention is drawn
on the calcium oxide (CaQ)/carbon dioxide (CO,) reaction for chemical reaction
heat storage, especially for solar thermal energy storage [46]. Kyaw et al. [47, 48]
carried out a series of investigations on the process of CaO/CO, reaction for chem-
ical reaction heat storage. They listed the characteristics of this system such as high
energy storage density, high working temperature, high reversibility, nontoxic
process and low cost. More recently, Ortiz et al. [49] reported a study based on the
CaO/CO; reaction for concentrated solar power plants. It is found that high overall
efficiencies can be achieved by integrating the CaO/CO, reaction into concentrating
solar power plants.

* Hydroxide system relies on the heat consumption and release when the
reactant contacts with water. The universal reaction can be described as

M(OH>2(5) + AH, T—‘MO(S) + HzO(g). (6)

This reaction usually occurs at moderate temperatures ranging from 250 to 450°C
[43]. Using this reaction for thermal energy storage was first proposed by Ervin [50].
He successfully completed 290 reaction cycles with an average conversion rate of
95%. Criado et al. [51] analyzed the CaO/Ca(OH), system on its reversibility and
cyclicity. The author claimed that it is one of the best candidates for thermal energy
storage. Brown et al. [52] discussed the feasibility of a thermochemical heat storage
system using CaO/Ca(OH), reaction from a technic-economic perspective.
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Schaube et al. [53] experimentally explored this system on a fixed bed reactor and
completed 25 cycles without reversibility loss.

* Redox system makes use of oxidation and decomposition reactions of oxide/
peroxide for heat converting. The general reaction is

MxOy(s) + AH, ‘——‘xM(s) —|—)//202. (7)

These reactions occur at temperatures within 400-1000°C [43]. A couple of
oxide/peroxide pairs include Co304/CoO, MnO,;/Mn;03, CuO/Cu,0, Fe,03/FeO,
Mn3;04/MnO and V,05/VO; have been studies by Wong et al. [54]. Among the
reactions suitable for thermochemical heat storage system, the Co304/CoO pair is
considered as the most promising candidate due to its high reaction enthalpy, high
reaction temperature and reversibility [43].

* Metallic hydride system is based on the reversible reaction between metals
and hydrogen under certain conditions. For thermal energy storage process,
the metallic hydride is thermally dehydrogenated and expressed as

MH, + AH, =M + n/2H,. (8)

The reversible metallic hydride reactions can be used in many industrial applica-
tions such as hydrogen storage [55], heat pumps [56], thermal energy storage [55],
etc. The two metallic hydrides which have been intensively investigated for the solar
thermal energy storage are magnesium hydride (MgH,) and calcium hydride (CaH,).
Magnesium hydride reaction occurs at temperatures from 250 to 500°C and has a
high energy storage density [47]. Attempts have also been extended by doping a third
metal powder into Mg powder to form a Mg-based ternary hydride for thermal
energy storage. It has been proved that the chemical reaction rate and cyclicity can be
improved by mixing the metals such as Ni, Fe, Co, Na, etc. [57, 58].

* Ammonia system here refers to the dissociation and synthesis cycle of ammonia
(NH3) and the process has been known for hundred years. The reaction is

ZNHg(g) + AH, x_—‘Nz(g) + 3H2(g). 9)

The reaction occurs at temperatures of 400-700°C. It was first considered for
thermochemical heat storage by Carden [59] and Williams [42]. It is worth to note
that catalysts should be applied for both forward and reverse reactions which
increase the complexity of the system.

* Perovskite oxide system is a class of materials with similar crystal structure
which can be generically expressed as ABOs. The structure of perovskite is
reviewed by Borowski [60]. Owing to the nature of its structure, perovskite
oxides allow reversible accumulation and release of oxygen at high
temperature with limited phase transition between different crystal structures
[44, 61]. A general form of the reaction is given as

ABO; + AH, = ABO3_5 + 6/20,. (10)

The crystal structure facilitates the flexibility in replacement of the cations, i.e.,
A and B in the oxide. A variety of compounds have been synthesized and analyzed for
thermochemical heat storage. Babiniec et al. [62] synthesized La,Sr;_,Co,M;_,03_;s
(M = Mn, Fe) materials for high temperature thermochemical energy storage owing
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to its good reaction reversibility. Albrecht et al. [63] evaluated the thermochemical
energy storage system with the perovskite strontium-doped calcium manganite
(Cag.9Srp1MnOs3_s) in terms of specific storage and overall solar-to-electric effi-
ciency. More recently, Gokon et al. [61] examined La,Sr;_,(Mn, Fe, Co)O;_; and
Ba,Sr;_,Co03_; redox powers in terms of reactivity and repeatability. They found
that Bag 3Srp 7C003_5 and Bag 7Srg 3C003_s5 powders were suitable thermochemical
storage materials operating at above 600°C.

2.3.2 Pros and cons of thermochemical heat storage

Thermochemical heat storage system is unique and suitable for solar energy
storage owing to its advantages: high volumetric storage density, low volume
requirement, long energy preservation duration periods with limited heat loss, low
storage temperature (ambient temperature) and unlimited transport distance.
However, it also has some issues to be tackled, such as poor reactivity and revers-
ibility of reactions, harsh reaction conditions, toxic and corrosive products from
reactions, etc. Currently, most studies are conducted at laboratory scales. Large-
scale tests are needed to verify the feasibility and the durability for long-term
thermal energy storage. Furthermore, the criteria of material selections for thermo-
chemical heat storage should be established.

3. Thermal energy storage for solar energy systems

Solar energy systems are found in many applications with a wide range of scales
for different sectors, such as CSP, space heating for buildings, and hot water supply
for houses. One major drawback of solar energy is its intermittence. To overcome
this issue, one solution is to use backup energy sources or hybridisation of different
energy sources, such as using gas as the backup solution for heating and electric grid
for electricity. Another solution is to use a thermal energy storage system to store
heat during sunshine periods and release it whenever demand is needed while solar
irradiance is insufficient to cover the demand.

Thermal energy storage in solar energy systems usually has the following
functions [5]:

* Mitigating short fluctuation of solar energy. Variations in solar irradiance can
cause rapid fluctuations in energy generation (i.e., heat or power). These strong
fluctuations influence not only the availability of energy, but also the stability of
the power grid, heating network or gas-supplying systems. Integrating thermal
energy storage units into the solar energy system can increase the thermal
inertia, smooth the fluctuations and help the system continue supplying energy
during short cloudy periods, thus increasing the system stability.

* Matching the energy generation and demand. Peak energy demand may not
coincide with the peak solar insolation. Thermal energy storage can improve
dispatchability of a solar energy system by storing heat during off-peak hours
and discharging it during peak hours of demand. This helps match the energy
generation and demand, and also increases the profitability as peak-hour
electricity tariffs are higher. The duration of this energy-shifting mechanism
can be within a day, a week, or seasons.

* Extending the energy delivery period. Solar energy is only available during
some hours of the day and thermal energy storage can extend the energy
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delivery period to hours when no sun is available. If the thermal energy storage
unit is large enough, the whole solar energy system, for either power
generation or heating/cooling, can operate for 24 h.

In practical applications, solar energy is mainly used for delivering either elec-
tricity or heating/cooling [64]. Depending on applications, there are a wide range of
technologies used for thermal energy storage. In CSP plants, thermal energy storage
systems operate at relatively high temperatures as the thermal efficiency of power
plants is proportional to the temperature. In solar heating/cooling systems, such as
space heating in buildings, solar hot water supply, and solar absorption refrigeration
systems, low-temperature thermal energy storage is often involved.

3.1 Thermal energy storage for solar power systems

One of the most important applications of solar energy is to generate electricity,
which can be realized by either solar photovoltaic (PV) panels or solar-thermal
driven power cycles [65]. To mitigate the intermittence of solar energy, PV systems
usually use batteries to store energy in terms of electricity, while solar-thermal
driven power cycles often store energy in terms of heat via thermal energy storage
technologies. Comparisons between different energy storage technologies have
shown that the thermal storage option is more cost-competitive than the battery
option for large-scale energy storage [24, 66].

The most commonly known solar-thermal driven power technologies are CSP
systems, in which high-temperature thermal energy storage is often involved
[67, 68]. Another type is small-scale solar power systems driven by low-temperature
solar heat [69], which is typically categorized as distributed solar power systems and
where low-temperature thermal energy storage technologies are needed. Whatever
the solar-thermal driven power cycle technologies are, the main processes in such
systems include three steps: collection, storage and conversion, as shown in Figure 6.
Solar energy is first collected via concentrated or non-concentrated solar collectors in
terms of thermal energy, then transferred to and stored in thermal energy storage
units through a heat transfer loop connecting the collectors and the storage units, and
the thermal energy, either stored in the thermal energy storage units or collected
directly from the solar collectors, is finally converted into electricity through heat-to-
power conversion technologies, e.g., Rankine cycles.

3.1.1 Material selections

About half of the CSP plants in operation are integrated with a thermal energy
storage system. There is an increase in the use of thermal energy storage for CSP

Collection Storage Conversion
Working
Sol Thermal fluid
"° at" energy
collectors storage
eat transfer Working
fluid fluid

Figure 6.
The main processes of solar-thermal driven power technologies.
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plants under construction and planned (>70%) [70]. The trends indicate the matu-
rity and economic competitiveness of installing a thermal energy storage system in
CSP plants. The most commonly used thermal energy storage materials in CSP
applications include molten salt, water/steam, liquid sodium, thermal oil, concrete
and rocks. Molten salt is the most widespread storage material in CSP commercial
applications, due to its features of excellent thermal stability at high temperatures,
low vapor pressure, low viscosity, non-flammability and non-toxicity [70]. Table 4
lists the summaries of the world’s operational CSP plants integrated with thermal
energy storage. The molten salt fluids commonly used are nitrate mixtures with a
weight composition of 60 wt% NaNO; and 40 wt% KNOs, also called Solar Salt. The
storage temperature of the molten salts in these commercial CSP plants are typically
around 400°C and can go up to around 550°C. Steam is also used as the storage
material for several CSP plants, such as Khi Solar One, Puerto Errado 2 and eLLO.
The steam storage temperatures in these plants are normally around 270°C - 285°C.
In Jemalong Solar Thermal Station in Australia, liquid sodium at 560°C is used as the
storage material. Thermal oils have also been used in Dahan Power Plant in China
and in many researches [67]. Apart from these fluid-type thermal energy storage
materials, solid materials (concrete and rocks) are another option for thermal
energy storage [71, 72]. Solid materials generally have a wide range of working
temperatures (200-1200°C), with high thermal conductivities (from 1 W/m-K to
40 W/m-K) and relatively low costs (0.05-5 $/kg) [70]. Examples of such CSP
plants using solid storage materials include Airlight Energy Ait-Baha Pilot Plant in
Morocco (packed-bed rocks for parabolic trough CSP) and Jiiich Solar Tower in
Germany (ceramics for power tower CSP). In small-scale distributed solar power
systems, such as solar-driven ORC systems [69, 73], low-temperature thermal
energy storage materials can be used. For example, water, organic aliphatic com-
pounds, inorganic hydrated-salt PCMs and thermal oils have been investigated for
solar combined heat and power applications [74].

3.1.2 System integrations

Thermal energy storage materials are usually stored in tanks to form plant-scale
storage subsystems for the CSP systems. Based on the motion state of storage
materials during charging and discharging, thermal energy storage system can be
categorized into active and passive systems. In active storage systems, the storage
medium itself flows through a heat exchanger to absorb (charge) or release (dis-
charge) heat by forced convection, while in passive storage systems, the storage
medium stays stationary and is heated (charged) or cooled (discharged) by a HTF.

Active storage systems can be classified into direct and indirect systems. In active
direct storage system, storage medium also has the function of transferring heat as a
HTF. The use of molten salts or steam as a HTF or storage materials at the same time
eliminates the need for an expensive heat exchanger. The cost of thermal energy
storage system can be reduced and the system performance can be improved. One of
the active direct systems is the two-tank direct storage system, which consists of a hot
and a cold storage tank, as shown in Figure 7(a). In such systems, molten salt or
thermal oil collects heat from the solar field and the high-temperature fluid is directly
stored in the hot storage tank for later uses, i.e., steam generation, in cloudy periods
or nights. The cooled HTF (also the storage medium) after the steam generator is
pumped into the cold storage tank. The two-tank direct storage concept is often used
in tower CSP plants where molten salt is used as the storage medium and HTF [75], as
solar tower can achieve higher temperatures, as shown in Table 4.

Another type of active direct storage system uses water/steam as the HTF and
storage medium, as shown in Figure 7(b). This system is also named as direct steam
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CSP plant Technology Turbine Heat transfer fluid Storage material Storage Storage type Inlet-outlet
capacity capacity temperature

Xina Solar One (South Africa) Parabolic Trough 100 MW Thermal oil Molten salt 5h Two-tank indirect N/A-395°C

Termosol 2 (Spain) Parabolic Trough 50 MW Thermal oil Molten salt 9h Two-tank indirect 293-393°C

Solana Generating Station Parabolic Trough 250 MW Therminol VP-1 Molten salt 6h Two-tank indirect 293-393°C

NOOR II (Morocco) Parabolic Trough 200 MW Thermal oil Molten salt 7h Two-tank indirect 293-393°C

Manchasol-2 (Spain) Parabolic Trough 50 MW Diphenyl/diphenyl Molten salt 75h Two-tank indirect 293-393°C

oxide

Aste 1B (Spain) Parabolic Trough 50 MW Dowtherm A Molten salt 8h Two-tank indirect 293-393°C

Bokpoort (South Africa) Parabolic Trough 55 MW Dowtherm A Molten salt 93h Two-tank indirect 293-393°C

Kathu Solar Park (South Africa) Parabolic Trough 100 MW Thermal oil Molten salt 45h Two-tank indirect 293-393°C

Ashalim (Israel) Parabolic Trough 110 MW N/A Molten salt 4.5h Two-tank indirect N/A

Archimede (Italy) Parabolic Trough 5 MW Molten salt Molten salt 8h Two-tank direct 290-550°C

SUPCON Delingha 50 MW Power Tower 50 MW Molten salt Molten salt 7h Two-tank direct N/A

Tower (China)

Shouhang Dunhuang 100 MW Power Tower 100 MW Molten salt Molten salt 11h Two-tank direct N/A

Phase II (China)

Qinghai Gonghe 50 MW Power Tower 50 MW Molten salt Molten salt 6h Two-tank direct N/A

CSP Plant (China)

Gemasolar Thermosolar Plant Power Tower 19.9 MW Molten salt Molten salt 15h Two-tank direct 290-565°C

(Spain)

Greenway CSP Mersin Tower Power Tower 1.4 MW Water Molten salt 4 MWh Single 3-pase tank N/A

Plant (Turkey)

Airlight Energy Ait-Baha Parabolic Trough 3 MW Air at ambient Rocks 5h Packed-bed 270-570°C

pressure
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CSP plant Technology Turbine Heat transfer fluid  Storage material Storage Storage type Inlet-outlet
capacity capacity temperature

Pilot Plant (Morocco)

Dahan Power Plant (China) Power Tower 1MW Water Saturated steam and 1h N/A 104-400°C

oil
Khi Solar One (South Africa) Power Tower 50 MW Water/steam Steam 2h Steam accumulators N/A
Puerto Errado 2 Thermosolar Linear Fresnel 30 MW Water Steam 05h Single-tank 140-270°C
thermocline

Power Plant (Spain) Reflector

eLLO Solar Thermal Linear Fresnel 9 MW Water Steam 4h Steam drum 190-285°C

Project (France) Reflector

Jiilich Solar Tower (Germany) Power Tower 1.5 MW Air Ceramic 1.5h N/A N/A

Jemalong Solar Thermal Power Tower 1.1 MW Liquid sodium Liquid sodium 3h Two-tank direct 293-560°C

Station (Australia)

Table 4.

In-operation CSP plants with thermal energy storage [https://solarpaces.nrel.gov/by-status/operational].
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generation (DSG) plant. The only commercial thermal energy storage technology
for DSG plants is using steam accumulators, where steam is stored at a high pres-
sure in accumulator tanks [75, 76].

The dominant thermal energy storage technologies in parabolic trough CSP
plants are the active two-tank indirect storage systems, as shown in Figure 7(c).
The list of commercial parabolic trough CSP plants and their thermal storage types
are given in Table 4. The two-tank indirect system uses different mediums for heat
transfer and storage [77]. During charging phase, the storage medium in the cold
storage tank is pumped through a heat exchanger, heated by the hot HTF flowing
from the solar field, and then stored in the hot storage tank. During discharging
phase, the flow direction of the storage material is reversed to release heat to the
HTF to generate steam for power generation. In two-tank indirect systems, the
storage medium is typically molten salt, and the HTF is often thermal oil.

Thermal ener .
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storage L
tank Turbine
ondenser, Steam Condense
Steam accumulators Ci
| generator|
»
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Solar field storage oy Power generation Solar field eE;Toaradergy Power generation
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Figure 7.

Schematics of CSP systems integrated with different thermal energy storage technologies: (a) active two-tank
direct storage system, (b) active divect steam storage system, (c) active two-tank indirect stovage system, (d)
active single-tank indirect storage system, (e) passive pack-bed rocks (or concrete, or castable ceramics) storage
system. Note that although solar tower and parabolic trough collectors ave illustrated here, other types of
concentrated solar collectors (Linear Fresnel, dish) may also be used.
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An alternative to two-tank indirect storage system is using a single tank (see
Figure 7(d)) where hot fluid is stored at the top and the cold fluid is stored at the
bottom by stratification. The zone between the hot and cold fluids is called the
thermocline. A single tank system is about 35% cheaper than a two-tank system [11].

In passive storage system, solid materials are typically used as the thermal
storage medium while a HTF passes through the storage medium to charge or
discharge heat. Possible storage materials include concrete, castable ceramics, rocks,
etc., while the HTF can be thermal oil or air. In the case of concrete, tubular heat
exchangers are integrated with the concrete to enhance heat transfer rate. Rocks can
be used in a packed bed after crushing to rough sizes of around 5 cm [70]. The hot
fluid flows through the gaps of the packed rocks and heats the rocks during charging
process, and the cold fluid flows through the gaps and absorbs heat from the hot rocks
during discharging process. The typical system schematic is shown in Figure 7(e).

3.2 Thermal energy storage for solar heating/cooling systems

Heating and cooling take a significant share of the total energy consumption in the
world. For example, half of EU’s primary energy is consumed for heating and cooling
purposes. Currently, most of the heating and cooling demands are still met by fossil
fuels, mainly natural gas. However, solar energy is starting to play an important role.
In solar heating/cooling systems, solar energy is typically collected as low-
temperature heat, for provisions of space heating, hot water, grain drying, etc. In hot
seasons or hot regions, solar heat can be used to create cooling via thermally driven
refrigerators, e.g., absorption chillers. Thermal energy storage is frequently involved
in these solar heating/cooling systems, as it provides much more stable energy deliv-
ery capability and closes the gap between energy generation and demand.

3.2.1 Material selections

Water is regarded as a favorable storage medium for solar heating/cooling appli-
cations, due to its advantages of high specific heat, non-toxicity, low cost and easy
availability. Therefore, water is the dominant material for space heating and hot
water provisions. The capacity of the storage depends on the size of the water storage
tanks, which could range from a few hundred liters to a few thousand cubic meters.
In water tanks, thermal stratification can be formed due to the buoyancy effect, i.e.,
hotter water is lighter and gathered at the top while colder water drops at the bottom.
Thermocline is then formed between the hot and cold water layers, which in-turn
minimizes water mixing and heat losses. Apart from using water tanks, water is also
used for large-scale seasonal thermal energy storage in underground aquifers where
sand mixed with water is the storage medium [78]. This is a low-cost thermal storage
option as it only uses natural materials and no tanks are involved. The problem of this
aquifer thermal energy storage is the high heat losses, as the system cannot be
insulated. It is also possible to use water tanks for seasonal thermal energy storage,
although the tank size has to be large and it is often fully or partially buried in the
ground. Borehole thermal energy storage is another competitive option for seasonal
storage of heat or cold. It uses ground (soil) as the storage medium [78]. Multiple
boreholes are drilled in the ground to a certain depth and U-shape pipes are inserted
in those boreholes to charge or discharge thermal energy. PCMs have attractive
extensive attentions in recent years as an effective thermal energy storage medium
and have been integrated in various devices and applications. In some work, PCMs
are directly integrated with the solar collectors for space heating or drying purposes
[79, 80]. In other work, they can be embedded in concretes of walls for buildings
[81], to store heat from daytime for night use. Rock is a low-cost thermal energy
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storage material which usually uses air as the HTF. Packed-bed rock thermal energy
storage has been widely used for greenhouse heating [79].

3.2.2 System integrations

Water tanks are widely installed in solar heating system, including those for
distributed and centralized heating for residential, industrial and commercial appli-
cations. Figure 8 shows a typical solar heating system for the provisions of domestic
space heating and hot water. Solar radiation is absorbed in terms of heat by the solar
collectors, e.g. evacuated tube collectors, flat-plate collectors, or hybrid
photovoltaic-thermal collectors [65]. A circulating HTF loop is used to collect heat
from the solar collectors and store it in the water tank when the fluid temperature
from the collectors is higher than the water temperature in the tank. The demands
of the space heating and hot water are met by circulating or drawing hot water from
the tank. Unlike the two-tank thermal energy storage systems, only one tank is
typically involved in these applications and the water temperature thus fluctuates
depending on the balance between energy storage and usage. Sizing of the water
tank as well as the solar collectors is important and depends on various factors,
including local weather conditions (solar irradiance, wind speed, air temperature,
etc.) and demands (types, quantities and shapes). Annual simulations are often
needed to fully assess the potential of a solar heating system [82]. Although water is
the most popular storage material in such systems, PCM-based thermal energy
storage has also been explored more recently [83]. The system integration is similar
to water-based systems, but the storage temperature can be more stable, and its
energy capacity can be larger for the same volume.

Solar energy has not only a daily period but also a seasonal period. For some
period of a year, solar thermal production exceeds the demand for heating or cooling,
while in other periods the production is less than the demand. Seasonal thermal
energy storage would be a solution to store heat at the time that is not needed and use
is for the time that is required. The concept of seasonal thermal energy storage is
illustrated in Figure 9(a). The implementation of seasonal thermal energy storage is
shown in Figure 9(b), with borehole thermal energy storage as an example. In
summer period, excess heat from the solar thermal collectors, process heat, or other
heat sources are transferred to the ground via borehole heat exchangers, while in
winter the stored heat is released from the ground by a heat transfer loop for heating
purposes. There are other types of seasonal storage systems, mainly including aquifer
storages, cavern storages, pit storages, seasonal water storages, water-gravel storages,
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Figure 8.
Typical layout of a solar heating system for domestic space heating and hot water.
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Figure 9.
Seasonal thermal energy storage based on bovehole heat exchangers: (a) concept of seasonal thermal energy
stovage and (b) borehole thermal energy storage.

thermochemical storages, etc. [84]. The development of seasonal thermal energy
storage is mainly motivated by the growing popularity of district heating [20]. Low
energy and net-zero energy buildings are attracting increasing attention, through the
incorporation of solar energy systems and thermal energy storage among others.
Incorporating thermal energy storage into the building design, structure and facades
have been explored to reach the above goals. These systems can be categorized into
active and passive systems. In active systems, external mechanical driving systems
are involved to transfer and distribute solar heat [85], such as an evacuated tube
collector based space heating system, or a space cooling system based on solar-
absorption refrigerators. In passive solar building systems, windows, walls and floors
are designed to collect, store, reflect and distribute solar energy in the form of heat in
the winter and reject heat in the summer. Thermal energy storage can be incorpo-
rated with these structures to enhance the energy efficiency. An example structure is
given in Figure 10(a), which is named as solar wall or Trombe wall [86]. The wall
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Figure 10.
Schematic of (a) a solar wall (Trombe wall), and (b) different thermal energy storage materials for solar wall.

23



Renewable Energy - Resources, Challenges and Applications

with a high heat capacity is built on the winter sun side with a glass external layer and
an air layer for thermal insulation. Sunlight passing through the glass is absorbed by
the wall and stored for later uses at night. The stored heat then re-radiates in the far-
infrared spectrum and trapped by the glass, and thus heats the inner side of the room.
The materials used for storage could be bricks, stones, or bricks integrated with
PCMs, as shown in Figure 10(b).

4, Conclusions

This work reviewed some recent developments on the thermal energy storage
technologies, where sensible, latent and thermochemical heat each offers a contribu-
tion to eliminate the mismatch between the energy supply and demand by different
working principles. The thermal energy storage material categorization, long-term
stability and compatibility with container materials, thermal performance analysis
and thermal performance enhancement techniques were reviewed in detail. The
sensible heat storage in solid or liquid is widely applied for thermal storage. Rock,
sand and water are the typical storage mediums used in the solar energy systems from
low to high temperatures due to their high specific heat, none-toxicity, low cost and
easy availability. Molten salt in liquid is the most popular thermal energy storage
material used in the medium and high temperature concentrated power plants for its
excellent thermal stability, low cost and low viscosity. The main drawback of sensible
heat storage is the temperature decrease during the discharging process. Latent heat
storage with phase change materials is a popular energy storage technology today, as
it brings higher storage density and nearly constant temperature. Several materials in
organic, inorganic, eutectic and composite have been analyzed and identified. To
overcome their low thermal conductivities, metal fins, embedded porous matrices,
heat pipes and other heat transfer enhancement technologies have also been devel-
oped. The chemical storage technology is also a potential technology in terms of its
high storage density and long energy preservation duration periods. Several reaction
systems have been reviewed and discussed. However, it is much less developed than
the sensible and latent heat ones for solar energy storage. Thermal energy storage
provides a reliable technology for energy storage and security, but it also faces some
barriers and needs to be further developed, such as material costs, thermal properties
and stabilities, system integration and process parameters, especially for the latent
and thermochemical storage systems.

Thermal energy storage for solar energy systems is then reviewed, focusing on
the most common storage materials, components and their integrations with wider
systems. In solar power systems, high-temperature thermal energy storage mate-
rials are widely used for concentrated solar power (CSP), including molten salt,
water/steam, liquid sodium, thermal oil, concrete and rocks, etc. Molten salt
remains as the dominant commercial storage option for CSP, while steam and
concrete are also being demonstrated. Two-tank storage system is the main solution
in CSP applications. In low-temperature solar power systems, water and low-
temperature phase change materials (PCMs) are normally used and stored in tanks,
which are integrated with low-temperature power cycles, such as organic Rankine
cycles. These could be of interest to waste heat recovery and domestic applications.
Compared to CSP systems, thermal energy storage in solar heating/cooling systems
is mainly based on low-temperature materials, with water as the dominant storage
material. Water tanks are widely used as a short-term storage option and typically
coupled with solar thermal collectors for solar heating/cooling purposes. Long-term
storage, i.e., seasonal storage, can be achieved by large water tanks or borehole
thermal energy storage. The demand for seasonal thermal storage is mainly driven
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by district heating. Thermal energy storage can also be directly integrated into the
building structures, e.g., walls, windows, and floors. In these systems, the storage
medium is either the construction material itself or appropriately embedded/inte-
grated with the construction materials. Although the development of thermal
energy storage materials is very critical, further development of applications of
more stable and efficient solar energy systems, system designs and integrations are
equally important. Innovative technologies for thermal energy storage materials
and solar energy systems are highly desirable.

Nomenclature

cp heat capacity of thermal storage material

H, enthalpy of the endothermic reaction

ke thermal conductivity of thermal storage material
Ly latent heat of thermal storage material

m mass of thermal storage material

Q. hem amount of thermochemical heat stored

Qat amount of latent heat stored

Qen amount of sensible heat stored

S, entropy of the endothermic reaction

Ty final temperature of thermal storage process
T; initial temperature of thermal storage process
T* temperature at thermodynamically equilibrium
% volume of thermal storage material

a melting fraction of PCM

P density of thermal storage material
Abbreviations

CSp concentrated solar plant

HTF heat transfer fluid

MEPCM microencapsulated PCM

PCM phase change material

PU polyurethanes

PV photovoltaic

TES thermal energy storage

UF urea-formaldehyde
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