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Chapter

Algae Essential Oils: Chemistry, 
Ecology, and Biological Activities
Mohamed El Hattab

Abstract

This chapter focuses on the essential oils and volatile fractions of seaweed. 
It includes an introduction to the essentials and volatile fractions and the main 
chemical classes found. This part is completed by a presentation of the funda-
mental aspects of biodiversity and the chemodiversity of the marine environment 
followed by the taxonomy and systematics of marine macroalgae. The heart of this 
chapter concerns the chemistry of volatile products extracted from marine algae. 
It reports the specificities of the marine natural products chemistry in comparison 
to that of terrestrial organisms. The description of volatile compounds in seaweed 
is divided into two parts, the first reports the common compounds identified in 
main volatile fractions and the second cover the specific volatile components. 
These include C11 hydrocarbons, sulfur compounds, and halogenated hydro-
carbons. These latter are playing a very important role in communication and 
chemical defense. The last part includes aspects of chemical ecology and biological 
activities of volatile products.

Keywords: essential oils, marine algae, C11 hydrocarbons, sulfur compounds, 
halogenated sesquiterpenes, chemical ecology, biological activities

1. Introduction

The origin of the distillation methods is an invention attributed to the Arab 
alchemists and to the Persian scientist Avicenna (980–1037) with the establishment 
of the steam distillation process. Avicenna invented a setup to prepare essential 
oils and aromatic waters. Essential oils, sometimes called quintessence, are a very 
complex mixture of volatile compounds produced by the secondary metabolism in 
various plant organs (flowers, fruits, seeds, leaves, etc.) and algae. According to ISO 
and AFNOR standards, essential oils are defined as volatile composition obtained 
from raw materials by steam distillation and/or by cold expression from citrus peels 
(known as essences) [1]. The definition of an essential oil excludes other volatile 
fractions obtained by steam distillation and/or hydrodistillation from the crude 
extract resulted from solvent extraction, supercritical fluid extraction, solvent- 
and water-free microwave extraction, ultrasound-accelerated solvent extraction, 
solid-phase microextraction, and headspace extraction. The chemical composition 
of essential oils and volatile fraction could be quite similar. Moreover, it should 
be pointed out the clear difference between the physical and chemical properties 
of essential oils and fixed or fatty oils. The fixed oils contain mainly triglycerides, 
esters composed of three saturated fatty acids linked to glycerol, characterized by 
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high boiling and low volatility. The chemical composition of essential oils is prin-
cipally composed of terpenes derived from the mevalonate and methylerythritol 
pathways [2]. Monoterpenes and sesquiterpenes are commonly the main contribu-
tor group of compounds identified in several essential oils [3]. Moreover, some 
essential oils contain other chemical classes, such as phenols (derived from shikimic 
acid pathway); the saturated and unsaturated fatty acids, acting as biosynthetic 
precursors; alkanes; and, more rarely, nitrogen and sulfur derivatives [4]. The 
essential oils play an important role in the allelopathic interaction of plants. They 
are involved in defense and signaling processes [5] and attraction of pollinating 
insects [6]. They constitute an important raw material source for the pharmaceuti-
cal, food, cosmetics, and perfume industries [7]. The essential oils of different 
plants exhibit a broad spectrum of biological activities. They show antibacterial 
activities attributed, in some cases, to the presence of phenolic compounds [8]. The 
literature reports also the excellent antioxidant [9], anti-inflammatory [10], and 
cancer chemoprotective activities [11].

2. Marine biodiversity and chemodiversity

More than 70% of the Earth’s surface are oceans and seas. It is not surprising to 
affirm that the marine environment is characterized by an important biodiversity 
in comparison to terrestrial organisms. In 2010, 230,000 marine species were 
listed [12]. Consequently, with the increase of biological space (biodiversity), 
more novel metabolites (high chemodiversity), involved in ecological interac-
tions, are produced in order to ensure easy adaptation of the species [13, 14]. 
Furthermore, the chemodiversity of the marine ecosystem has no equivalent in 
terrestrial environment. The large groups of the sea organisms, such as red algae 
and soft corals, are known to produce a great variety of quite unique secondary 
metabolites, such as highly halogenated terpenes, definitely due to the high halo-
gen concentration of the sea water, and acetogenins from Laurencia (Rhodophyta) 
[15, 16], toxic polyketide from sponges [17], and prostaglandins from the gorgo-
nian corals [18, 19].

3. Systematics and taxonomy of macroalgae

It was the French botanist Joseph Pitton de Tournefort (1656–1708) who 
grouped the species into genera and then the Swedish naturalist Carl von Linné 
(1707–1778), founder of systematics (or taxonomy), who classified the organisms 
into increasingly large groups: species, genera, families, orders, classes, phylum (or 
phyla), and kingdoms. Algae, according to Feldmann and Chadefaud [20, 21], are 
classified into six branches differentiated by the nature of the pigments, the nature 
and situation of carbohydrate reserves, and the presence or absence, number, and 
arrangement of flagella:

• Pyrrophycophyta: unicellular marine or freshwater algae

• Euglenophycophyta: unicellular freshwater algae rich in organic matter

• Chrysophycophyta: most are single-celled; freshwater and sea water

• Chlorophycophyta: green algae; single or multi-cell; marine, freshwater, and 
terrestrial environments
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• Phaeophycophyta: brown algae; always multicellular and almost exclusively 
marine

• Rhodophycophyta: red algae; mainly multicellular and mostly marine

3.1 Phaeophyceae (or Fucophyceae)

There are about 2000 species (in 265 genera) of brown algae [22], and less 
than 1% are known from freshwaters (3–7 genera) [23]. The brown color is due to 
Fucoxanthin (carotenoid pigment) and in some species to the presence of tannins 
(phenolic compounds).

3.2 Chlorophyta

There are estimated to be at least 600 genera with 10,000 species within the 
green algae [24] recognized inhabiting mostly in the water’s surface of the calmer 
seas. They are characterized by the presence of chloroplasts with two envelope 
membranes, stacked thylakoids, and chlorophyll a and b. In their fundamental 
biochemistry (photosynthetic pigments, storage polysaccharides, etc.), the 
Chlorophyta resemble the higher plants [24].

3.3 Rhodophyta

They are primarily marine in distribution sometimes inhabiting the deep water, 
with less than 3% (150 species from 20 genera) of the over 6500–10,000 species 
occurring in truly freshwater habitats [25]. The red algae are characterized by 
eukaryotic cells, with the complete absence of flagellar structures, food reserves of 
starch, presence of phycobilins, chloroplasts without stacked thylakoids, and no 
external endoplasmic reticulum.

4. Chemistry of marine algae volatile compounds

The fragrances of terrestrial plants have aroused human interest since antiquity; 
they were related to spiritual and civilizational aspects. It is not surprising that the 
first research work on odorous volatile products was carried out on aromatic plants. 
Phytochemists have quickly associated the odors emanating from trees and shrubs 
to terpenes (notably monoterpenes), spices to phenols and derivatives, and fruits 
and flowers to aldehydes, esters, and ketones. The smell connected with marine 
flora are much less familiar. Unlike the wide number of terrestrial odoriferous 
plants, relatively few marine seaweeds possess an attractive odor. Although the nat-
ural products chemistry of terrestrial organisms was known before the nineteenth 
century, the one of the marine derived is more recent, and it has only emerged over 
the past 75 years. This is due to the complexity to access the marine environment. 
The marine natural products had become an important subdiscipline of natural 
products chemistry, which has experienced a particular craze which has led to the 
isolation and characterization of thousands of secondary metabolites belonging to 
original chemical skeletons without equivalent in the terrestrial environment.

Historically, volatile oils of terrestrial plants were used in Chinese [26] and 
Egyptian civilizations [27–29] few centuries ago, whereas the first works on the 
isolation of volatile products of marine algae were carried out, on the brown alga 
Fucus [30] and the red algae P. fastigiata and P. nigrescens [31] when the seaweeds 
are exposed to air, at the beginning of the 1930s, followed later by the Katayama 
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researches in 1951–1961 [32] and Moore prior to 1966 [33]. The volatile organic 
compounds in marine algae, as in plants and fungi, released into the seawater, 
are involved in the chemical communications process; these compounds play an 
important role as either pheromones or allelochemicals for communication and 
interaction with the surrounding environment [34, 35]. The species produce the 
volatile organic compounds in closed relation to their physiology; the algae must 
adapt to abiotic stresses of their ecosystem [36]. The volatile components of marine 
algae contain a mixture of chemical classes such as terpenes, hydrocarbons, fatty 
acids, esters, alcohols, aldehydes, ketones [37–41], C11-hydrocarbons [33, 42], 
polyphenols and derivatives [43, 44], and halogenated [45] and sulfur compounds 
[46, 47]. The distinctive ocean smell is due to the presence of terpenes, but particu-
larly, to a fraction of acyclic and cyclic non-isoprenoid C11-hydrocarbons acting as 
pheromones and playing an important role in the chemical communication [48], 
it seems to be most abundant in brown algae of the genus Dictyopteris [33]. As 
for terrestrial plants, the monoterpenes identified in algae such as linalool, citral, 
geraniol, and terpinolene, 1,8-cineole, α-pinene and β-pinene, and eugenol and 
isoeugenol could be valued in perfumery. While the disagreeable odor is related 
to amines and halogenated, sulfurous, and other specific compounds [49], the 
dimethyl sulfide, mainly distributed in Chlorophyta and in some Rhodophyta 
[50], has a very unpleasant odor molecule. It results from the enzymatic cleavage 
of dimethyl-2-carboxyethylsulfonium hydroxide, from the green algae species 
(E. intestinalis and A. centralis) [51].

4.1 Common volatile organic compounds of macroalgae

4.1.1 Hydrocarbons and oxygenated hydrocarbons

The alkanes and alkenes are common compounds in the majority of volatile fraction 
and essential oils of marine macroalgae. The chemical composition reveals the pres-
ence of the linear and branched saturated hydrocarbons from C7 to C36 [37, 52–54], the 
unsaturated hydrocarbons from C8 to C19 with the presence of 1 [37, 52–54] to 4 degrees 
of unsaturation [55] in the volatile fraction obtained by several extraction techniques. 
We also noted the presence of mono- and di-alcohol of C4–C18 [37, 52–54, 56, 57]. Some  
short-chain (C6, C9) and middle-chain (C10) aliphatic aldehydes are formed in marine 
algae from fatty acids (C20), whereas they are formed from C18 in higher plants 
[58–60]. Also, it has been reported that long-chain aldehydes (C14, C17) of the green alga 
U. pertusa [61, 62] are formed by decomposition of fatty acids through the correspond-
ing 2-hydroperoxy acid; this later are encountered in a variety of marine algae [63, 64].

In addition to aldehydes, the ketone compounds were commonly reported in 
the aroma composition of algae [65]; the presence of β-ionone and 6-methyl-5-
hepten-2-one which are formed via the oxidative cleavage of carotenoids such as 
lycopene and phyotene was mentioned [66]. β-ionone, present in several essential 
earth oils, is a powerful odorant for the perfume industry. 6-methyl-5-hepten-2-one, 
in addition to its pleasant fragrant note, is often used as an intermediary in the 
synthesis of several monoterpenes highly valorized in perfumery. In addition, 
other simple ketone (C6▬C19) compounds such as maltol [53], octan-3-one [57], 
nonacosan-2-one [67], and undeca-1,4-dien-3-one [42] are identified in the volatile 
fractions of algae. Saturated fatty acids from C3 to C18 and their ester derivatives 
have also been identified in the chemical composition of volatile algae fractions 
[37]. Unsaturated fatty acids and their corresponding esters, in particular Eicosa-
5,8,11,14-methyltetraenoate and Eicosa-5,8,11,14,17-methyl-pentaenoate [42], are 
usually found; this is probably related to their implications in biosynthetic processes 
of other metabolites.
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4.1.2 Amine compounds

The amine compounds have been described several times in marine algae 
[68–70]; the small amine molecules such as methyl amine, dimethylamine, ethyl-
amine, and propylamine were found in algae [71]. The volatile amines in algae result 
from decarboxylation of amino acids [71]. Although present in brown and green 
algae, the amine compounds were especially found in red algae.

4.1.3 Halogen compounds

The volatile halogen compounds are rare in terrestrial plants, but quite habitual 
in marine algae because of the presence of chlorine and bromine ions at a high con-
centration in seawater. The red algae possess the highest abundance of halogenated 
organic compounds, which are found as terpenoid, phenols, carbonyl compounds, 
and fatty acid-derived metabolites [45]. They were produced in marine algae and 
emitted into the atmosphere; the highest amounts of brominated compounds 
released were done by L. saccharina [72]. Chemical investigations of marine algae 
have shown the presence of 2-bromophenol, 2,4-dibromophenol, and 2,4,6- 
 tribromophenol in numerous red, green, and brown algae. It has been reported the 
biosynthesis of bromophenols in U. lactuca via the bromoperoxidases in the pres-
ence of precursors such as phenol, 4-hydroxybenzoic acid, and 4-hydroxybenzyl 
alcohol [73]. The bromoperoxidases are involved in the biosynthesis of brominated 
alkanes, such as CHBr3, CH2Br2, CHClBr2, and others in several marine organisms, 
among them, the red alga Asparagopsis sp. [74]. The biosynthesis of organohalogens 
has known enormous interest as reported in several literature review [75–77]. As 
indicated for bromocompounds, the iodoperoxidases are responsible of the produc-
tion of iodinated compounds in marine algae [78–80]. The chemical investigation of 
29 macroalgae species reveals their release of volatile iodocompounds iodoethane, 
1-iodopropane, 2-iodopropane, 1-iodo-2-methylpropane, 1-iodobutane, 2-iodo-
butane, diiodomethane, and chloroiodomethane [81]; it has reported that diiodo-
methane was the main iodinated compound released by brown macroalgae [82].

4.1.4 Terpenoid compounds

Terpenes, or terpenoids, are a large and diverse class of plant secondary metabo-
lites, produced by numerous varieties of plants and algae from isoprene building 
blocks; they play a major ecological role, most notably in defense against plant-feeding 
insects and herbivores [82]. However, some terpenoids are involved in primary 
metabolism, such as stability of cell membranes and photosynthesis. The terpenes 
display enormous structural diversity, are the main constituents of essential oils of 
terrestrial plants and seaweeds [83], and are characterized by their pleasant strong 
odor. The terpenoids are biosynthesized mainly via two pathways, the mevalonate 
pathway and the MEP pathway. The chemical screening of volatile fraction and/or 
essential oils of algae reveals the presence of high content of monoterpenes and ses-
quiterpenes and rarely diterpenes [42]. The most significant acyclic monoterpenes 
found in algae are myrcene (1), ocimene (2), geranial (3), neral (4), citronellol (5), 
and geraniol (6) (Figure 1). Moreover, the most odoriferous compounds identified 
in algae are included in the acyclic group of monoterpenes [84].

Likewise, the most common monocyclic algae volatile oil is 1,8-cineole (8) 
[84], while α-pinene (9) and β-pinene (10) are the most commonly reported of 
bicyclic monoterpenes (Figure 2) [84, 85]. Sesquiterpenes from marine macroalgae 
constitute a large group, compared to monoterpenes, of secondary metabolites 
[86]; some of them are halogenated [87]. Some of the algae sesquiterpenes act as 
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semiochemicals, chemical defense agents, and/or pheromones. They may be acyclic, 
cyclic, or bicyclic, including several original structures. Among all marine macroal-
gae, the genus Laurencia (red algae) is the most potent source of sesquiterpenes.

The most common sesquiterpenes reported in marine algae (10–53) are grouped 
in Table 1 and illustrated in Figure 3. The only diterpene and triterpene described 
as volatile compounds are, respectively, phytol and squalene. Phytol is a degrada-
tion product of chlorophyll and the precursor of vitamin E. The squalene is via the 
epoxy squalene, the biosynthetic precursors of triterpenes and steroids.

4.2 Specific volatile compounds of macroalgae

4.2.1 Odoriferous C11 hydrocarbons from brown algae (Phaeophyta)

The brown algae produce a variety of volatile derivatives whose chemical nature 
and biological function are different from those of red algae. They are hydrocarbons 
with 11 carbon atoms without halogens which can be classified according to their 
chemical structure into four groups [94]: (a) derivatives of cyclopropane, (b) 
derivatives of cyclopentene, (c) derivatives of cycloheptadiene, and (d) acyclic 
olefins. The only volatile hydrocarbon with eight carbon atoms identified in brown 
algae is fucoserratene. These metabolites, which are known in all the species of 
Phaeophyceae, are not specific to an order or a family. They have been isolated from 
diverse groups of brown algae (e.g., the Zonaria, Desmarestia, Dictyota, Ectocarpus, 
Laminaria, and Fucus); it appears to be most abundant in brown algae of the genus 
Dictyopteris [95].

They are involved in the reproduction process of the alga; they are sex phero-
mones. To date, it has been revealed that these algal pheromones are involved at 
least in three well-defined ecological interactions [96]: (i) synchronization of the 
mating of male and female cells by the controlled release of male spermatozoids, 
(ii) enhancement of the mating efficiency by attraction, and (iii) chemical defense 
of the plant due to the presence of high amounts of pheromones within and release 
from the thalli into the environment. Furthermore, the relationship between 

Figure 1. 
Common acyclic monoterpenes of algae.

Figure 2. 
Most representative monocyclic and bicyclic monoterpenes of algae.
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structures of pheromones and the taxonomic classifications of algae are still not 
established. Until now, a series of 12 (54–65) hydrocarbons and epoxides (Figure 4) 
have been characterized, and more than 50 stereoisomers are known within the 
pheromone bouquets of more than 100 different species of brown algae [48, 96–99].

Abbreviation: D. m., Dictyopteris membranacea; D. d., Dictyota dichotoma; B. f., Bangia fuscopurpurea; C. m., 
Cystoseira mediterranea; C. g., Callithamnion granulatum; C. e., Cystoseira elegans; P. d., Polysiphonia denudata; 
L. p., Laurencia papillosa; L. c., Laurencia coronopus; C. v., Cladophora vagabunda; D. div., Dictyota divaricata; 
Z. m., Zostera marina; P. t., Pyropia tenera; U. p., Ulva pertusa; D. p., Dictyota prolifera; H. p., Halopteris filicina.

Table 1. 
Most common sesquiterpenes of macroalgae [88–93].
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Moreover, the presence of C11 hydrocarbons is not only limited to marine brown 
algae. The same compounds have been reported in cultures of diatoms [100], the 
volatile fraction released during blooms of microalgae in freshwater lakes [101] and, 

Figure 3. 
Common sesquiterpenes described in volatile oil of marine algae.
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inquisitively, in higher plants [102, 103]. Table 2 reports the pheromones described 
in Figure 4, the algae from which they are derived, as well as their attraction or 
release activities. In comparison to the number of brown algae species, the chemo-
diversity of pheromones is relatively limited, so, the semiochemical activity of the 
same molecule is noted in more than one species. Female gametes secrete a mixture 
of products, not just one pheromone and depending on species; released phero-
mones are either optically pure or enantiomeric mixtures.

Figure 4. 
Pheromones of brown algae.

Table 2. 
C11 and C8 pheromone activities from marine brown algae.
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However, it has been verified that the biological activity is associated with a 
single constituent which may not be the major product. These by-products some-
times play a role of modulator of response of the gametes, and in general, they do 
not have a determined biological function [94].

4.2.2 Sulfur compounds in the genus Dictyopteris

The organic sulfur compounds are widespread in terrestrial and marine plants 
[104]. Due to the relatively high sulfate concentration in seawater, and the particu-
larly high sulfide concentration in anoxic environments, it was expected that many 
sulfides would occur in the marine environment [104]. They are reported in few 
taxa and act as chemical defenses against herbivores [105]. As part of this single 
group, some Dictyopteris species (Phaeophyceae, Dictyotales) are acknowledged 
to produce considerable amounts of sulfur-containing compounds (Figure 5); 
many of them were found in D. polypodioides [106]. Among the first seaweeds 
discovered to produce organic sulfur compounds were the Hawaiian brown algae 

Figure 5. 
Sulfur compounds of the genus Dictyopteris.
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D. plagiogramma and D. australis [107]. Eight compounds containing a C11 unit 
attached to a sulfur atom with oxygen substituent at C-3 have been isolated and 
characterized [47]; most of these compounds appear to be biosynthetically related 
to C11 hydrocarbon pheromones and may originate from oxidative degradation of 
highly unsaturated eicosanoids (arachidonic acid) via oxygenated intermediates. 
The 1-undecen-3-ol, present in essential oils from Dictyopteris spp., may represent 
the common precursor to both classes of C11 compounds [95, 107]. The C11 sulfur 
metabolites seem to be restricted to the Dictyopteris genus.

4.2.3 Halogenated terpenes from red algae (Rhodophyta)

As noted previously, the halogenated compounds are common in the marine 
environment. They are formed among diverse species such as bacteria, sponges, 
molluscs, algae, and several marine worms. Among all marine algae, the 
Rhodophyta class possesses a privileged biosynthetic pathway for organohalogen 
compounds. A huge number of organohalogens have been isolated from most 
genera of Rhodophyta [108, 109]. The genus Laurencia is the most prolific source 
of sesquiterpenes among all marine macroalgae, most notably, the halogenated 
sesquiterpenes belonging to a variety of chemical skeletons including chami-
grane, bisabolane, laurane, snyderane, and brasilane along with some rearranged 
derivatives [110, 111]. Inquisitively, bromine is the most occurring halogen in 
marine natural products, despite that its concentration in seawater is lower 
than that of chlorine. To the best of our knowledge, the isolation of halogenated 
monoterpenes is limited to three families of marine red algae, the Plocamiaceae 
and Rhizophyllidaceae [112, 113], and Ceramiaceae [114]. The chemical structure 
of Rhodophyta monoterpenes is characterized by multiple halogen substitutions 
(chlorine and bromine) and by uncommon carbon cycle structures in the case of 
cyclic compounds. All halogenated acyclic seaweed monoterpenes appear to be 
derived from the halogenation of myrcene or ocimene [114]. As indicated in the 
rich bibliography dedicated to this purpose [45, 113, 115–117], the almost major-
ity of halogenated terpenoids (monoterpenes, sesquiterpenes, and diterpenes) 
described in red algae are isolated from crude solvent extracts. Monoterpenes, even 
halogenated, are characterized by high volatility; they are the main constituents of 
essential oils and volatile fractions. The selective supercritical fluid extraction, by 
adjusting time and pressure, of Santa Cruz P. cartilagineum [118] has allowed the 
isolation of eight halogenated monoterpenes (81–87) (Figure 6).

The same species collected along the central coast of Chile [119] conduct 
to the isolation of eight monoterpenes (88–95), four of which are based on the 
1-(2-chlororovinyl)-2,4,5-trichloro-1,5-dimethylcyclohexane skeleton (Figure 7). 
As in the genus Plocamium, the chemical study of the genera Portieria [120], 
Ochtodes [121], and Microcladia [114, 122] has led to the isolation of over 100 of 
acyclic, cyclic, and tetrahydrofuran halogenated monoterpenes. A large number of 
halogenated sesquiterpenes, more than monoterpenes, were described in red algae 
especially in the genus Laurencia (Ceramiales). Although the sesquiterpenes are 
also volatile compounds, we describe in this paragraph only the ones reported in the 
chemical composition of essential oils and volatile fraction of red algae.

The first brominated sesquiterpene (Figure 8) ketone spirolaurenone (96), 
chamigrane skeleton, was described in the essential oil of L. glandulifera (Japan) in 
1970 [123], followed by the 10-Bromo-7-chamigren-2-one (97) in the same species 
[124]. The preintricatol (98), found in L. gracilis [125], seem to be the precursor of 
halogenated sesquiterpenes of chamigrene type. The Puertitols A (99) and B (100) 
were isolated from L. obtusa [126] as well as the metabolites (101) and (102) from 
L. caespitosa [127]. An important halosesquiterpene characteristic of the family 
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Rhodomelaceae is elatol (103); it is isolated from L. elata [128] and from several 
other species of Laurencia [129]. An exhaustive literature review has described the 
chemical structure data and biological activities of the halogenated sesquiterpenes 
of red algae [130, 131].

4.2.4 Ecology

The volatile compounds play an important role in the inter- and intraspecies 
chemical communication in marine algae. They act as pheromones [97] or allelo-
chemicals, chemical defenses against herbivores [132, 133], and inhibition of bacte-
rial and fungal biofilms [134]. The genus Dictyopteris produce a high amount of C11 
hydrocarbons, some of which act as pheromones that stimulate gamete release or 
attract sperm during sexual reproduction [96]. The first male-attracting metabo-
lite was elucidated as ectocarpene (54) [135] which shows a moderate activity at 
10 mM. A subsequent study revealed that the real pheromone used by the female 
gamete was pre-ectocarpene (62) which is active at 5 pM. In fact, the alga produces 
pre-ectocarpene which undergoes a thermal rearrangement (Cope rearrangement) 

Figure 6. 
Monoterpenes isolated Santa Cruz Plocamium cartilagineum.

Figure 7. 
Monoterpenes isolated from Plocamium cartilagineum (Chile).
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to lead to ectocarpene [136]. The Cope rearrangement occurs between the time 
of the releasing and attraction of the pheromone; the sigmatropic transformation 
serves as a natural control mechanism for deactivation of the pheromone [136]. The 
genus Dictyopteris produces significant amounts of C11-sulfur compounds which 
are involved in chemical defense [137].

In green algae, the volatile compounds, such as (Z)-8- heptadecane, act also as allo-
chemicals [61]. In the genus Caulerpa, the caulerpenyne is the most abundant cyto-
toxic sesquiterpene produced by C. taxifolia and C. racemosa [138, 139]. It is involved 
either in the chemical defense of the plant against herbivore or within the framework 
of interspecific competition as antifeedant and/or antifouling activities [140]. In red 
algae, the halogenated organic compounds are produced, probably, to be involved 
in the defense system against microorganism infection [141], herbivore attack [141], 
space competitors [142], and harmful fouling by different types of epiphytes [142].

4.2.5 Biological activities

There are several reports of secondary metabolites, among them are numer-
ous volatile compounds, derived from macroalgae which exhibit a broad range of 
biological activities such as antibiotics [40, 143].

The essential oil of D. membranacea has shown a strong antibacterial activity 
against Staphylococcus aureus and Agrobacterium tumefaciens, which is translated by 
an MIC of 1519 μg/mL [106]. The volatile oil of P. pavonica possesses a moderate 
antimicrobial activity against Staphylococcus aureus and Candida albicans [144]; 
antifungal against Macrophomina phaseolina, Rhizoctonia solani, and Fusarium solani 
[145]; cytotoxicity against KB cells [146]; and antitumor activity against lung and 
human carcinoma cell lines [147]. On the other hand, the volatile of H. clathratus 
showed a pronounced antimicrobial activity against S. cerevisiae compared with 
Canesten as reference material [148].

Figure 8. 
Halogenated sesquiterpenes from red the genus Laurencia.
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The cytotoxicity is the most common activity observed for halogenated organic 
compounds isolated from the family Rhodomelaceae. A large number of these 
compounds were shown to be cytotoxic to a wide range of cancer cell lines [115].

Among many of the halogenated sesquiterpenes evaluated for their in vitro cyto-
toxic effects against HeLa and HEP-2 cancer cell lines, and against nontumoral VERO 
cells, during both lag- and log-phase cell growth [149], elatol (103) turned out the 
most active compound with IC50 values of 4.1 and 1.3 μM to HeLa, 2.4 and 2.0 μM to 
HEP-2, and 2.3 and 25.0 μM to VERO cells, in lag- and log-phase, respectively [150]. 
Further studies were carried on the evaluation of the cytotoxicity against several 
tumor cell lines of chamigrane [150] and Laurane- and Cuparane-type sesquiterpenes 
and were found to display a wide range of potency levels [151, 152]. Other activities of 
halosesquiterpenes such as antibacterial activity [153], antifungal activity [154], and 
antiviral activity [155] were investigated and conducted to promising results.

5. Conclusion

Essential oils from terrestrial plants have been known for a very long time. They 
have been applied in different domain, particularly in aromatherapy. Essential oils 
from seaweed are much more recent. The fragrant note of marine origin is becoming 
more and more interesting among perfumers, the species of the genus Dictyopteris 
and Dictyota could be considered as the best example. This importance is related to the 
great biodiversity and chemodiversity of the marine environment compared to the ter-
restrial environment. The chemical composition of essential oils and volatile fractions 
of macroalgae contains compounds usually found in terrestrial essential oils. These 
include hydrocarbons, oxygenated hydrocarbons, terpenes, and fatty acids. However, 
they contain specific products such as halogenated products, C11 hydrocarbons, sulfur 
compounds, and halogenated terpenes. The specific compounds play a very important 
role on the chemical ecology; they are involved in defense mechanisms and chemical 
communication. The volatile fractions of algae show a broad spectrum of biological 
activity, such as antibacterial, antifungal, anticancer, and antibiotic activities.
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