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A B S T R A C T

This study presents a novel synthesis technique for Butler matrices that include fil-

ter transfer functions through a circuit based only on resonators. The Butler matrix

is the fundamental building block to split and recombine the signals in Multi-port

Power Amplifiers, where multiple inputs are delivered to a bank of amplifiers shar-

ing them, and later recombined through an output network. However, to suppress

spurious frequencies generated by the amplifiers or to provide near-band rejection

in order not to interfere with other transmission/receiving bands, separate filtering

is often required. Here, the traditional properties of the Butler matrix are included

together with filtering selectivity into one single device based only on coupled res-

onators. An analytical synthesis procedure of the coupling matrix is presented here

for the first time. The proposed solution has shown significant advantages in terms

of size reduction compared to the traditional baseline consisting of a Butler matrix

plus a bank of band-pass filters. Based on the technique proposed, three prototypes

are designed and manufactured: a 180° hybrid coupler based on resonators and two

versions of a 4× 4 Butler matrix with filtering, built with additive manufacturing and

with milling. Experimental measurements are in good agreement with simulations

and theoretical expectations.
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1 I N T R O D U C T I O N

Space technologies find extensive applications in areas such as global navigation

satellite systems, communications, earth observation, weather forecasting, radio,

TV, phone links, military and governmental services or surveillance. Among them,

the communication satellites are a consistent part of any complex telecommunication

system and the overall space industry. They perform radio links with users on ground

or directly communicate between satellites. Typically, the link of data from satellite to

earth is called down link while when the communication is performed from earth to in

orbit satellite is called up link. Usually they incorporate complex Radio Frequency (RF)

payload systems as the signal coming from earth arrives attenuated by the atmosphere

and needs to be reconstructed, amplified and then sent back.

Among the communication satellites are the Fixed Satellite Service (FSS), which

provide radio links with fixed points at specified areas on earth, as well as providing

inter-satellite communications. They are typically placed in geostationary orbit, mean-

ing that their angular speed and revolutionary period is the same as the earth, hence

making it possible to broadcast to specific geographical areas [1]. The most common

examples of services provided are television and radio broadcasting delivered to wide

area of users [2]. With a geostationary satellite, different services can be distributed to

areas on earth that are variable in size, using different directivity antennas to create

variable beams. A beam can cover a large area with low antenna gain, or a smaller

zone such as a continent. Recent satellite technologies are challenged by the higher de-

mand and increasing data rates, mobile access and use of relatively cheap terminals

by the users. This required the industry to move towards High Throughput Satel-

lite (HTS), which are characterised by higher number of radiating elements covering

1
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Figure 1.1: Example of Ka-band multi-beam satellite system. Courtesy of ESA

limited areas (about 26 000 km2); they are also called spot beams [3]. In this kind of

system there are only few reflectors which are used by plenty of radiating elements.

The throughput provided by the HTS architecture is greater by several orders with

respect the previous conventional FSS. Frequency reuse is possible through the differ-

ent beams in order to enhance the data rate to the users. Fig. 1.1 is an example of HTS

with reuse of frequencies. The frequencies are identified with the different colours

on the geographical area. Adjacent beams use different frequencies in order to avoid

interference. Moreover, orthogonal polarisations could be used in some systems in

order to further increase the capacity.

It is possible to consider every beam of Fig. 1.1 as an independent sub-system of the

satellite, each requiring a partially dedicated payload. This puts a major challenge on

the complexity, number of components and the consequent accommodation problems

of the on board equipment. Also, power distribution, cooling and temperature control,

disposal of the equipment are important. Conventional payload system architectures

tend to hundreds of beams operating in frequency reuse. In order to minimise the

number of amplifiers, a single High Power Amplifier (HPA) is often used in multi-

carrier mode to amplify the downlink signals on different spot beams. Fig. 1.2 is

a schematic of such architecture. Depending on the required Equivalent Isotropic
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HPA LPF

Diplexer

Figure 1.2: Conventional payload amplification architecture

Radiated Power (EIRP) and frequency plan, the HPA can be shared among 2 or 4

beams. The amplifier of Fig. 1.2 is sharing 2 signals on different frequencies, which

are separated and delivered to the radiating elements through a diplexer. The Low-

Pass Filter (LPF) is to clean spectrum by intermodulation products, while the isolator

prevents that reflected power goes back into the amplifier.

In a multi-beam environment the distribution of traffic is a variable and uniform

division of bandwidth and power is not an optimal solution. Some spot beams might

temporarily have to serve high volume of traffic (hot spot) while others covering an

area with reduced number of users (cold spot) in a specified time. If there is no

flexibility in place, capacity might get unused among the cold spots while reduced

for the users served by the hot spots. The conventional system of Fig. 1.2 does not

provide any kind of flexibility for power nor bandwidth allocation. This is because

the signals are statically shared by the HPA and the frequencies are delivered to the

diplexer. Additionally, an adequate redundancy strategy is to be applied in order

to ensure the service. The amplifiers need to be dimensioned in order to allow the

maximum level of input power possible, leading to larger equipment with more power

consumption than necessary when the traffic load is not at maximum level. This

concept is expressed in Fig. 1.3a, here are the cases of uniform and non uniform

distribution of users among the beams. To overcome this limitation, a Multi-port

Power Amplifier (MPA) is adopted in place of having a single HPA as it was for the

example of Fig. 1.2. All the amplifiers are working in the available bandwidth. The

description of uniform traffic allocation on the left part of Fig. 1.3a can also lead to
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(a) Flexible allocation of power

(b) MPA power sharing

Figure 1.3: Non uniform allocation of users and power. Courtesy of ESA

flexibility of power levels: with the MPA it is possible to allocate different power

levels to the two beams, however narrow-band filters are necessary in order to avoid

interference among the them (ie. red and blue), as shown in the schematic of Fig. 1.3a.

On the right part of Fig. 1.3a, there is the case where both power and frequency

are variable through the use of the MPA of Fig. 1.3b. The dynamic allocation of the

frequency is done by a processor before the stage of the MPA, and it is made possible

by the absence of the narrow-band filters. The main difference between the systems of

Fig. 1.3a, is that for the one on the left part a fixed frequency multiplexing is provided

by the output filters with flexibility on the power levels, whilst on the right part the

broadband behaviour of the MPA allows a flexibility of allocation of the frequency,

meaning that theoretically the entire bandwidth can be allocated to a single signal.

In order to design efficient MPAs, before and after the amplifiers of Fig. 1.3b there

are distribution networks, known as Butler matrices that are responsible for the deliv-
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ering of the input power to the Power Amplifier (PA) and to recombine the signals.

With reference of Fig. 1.3b, the Butler matrix on the left side of the amplifiers is also

called Input network (INET), while the one on the right-hand side is named Output

network (ONET). Such a structure, that will be described in detail in the following of

this work, is a solution to the problem of power flexibility because all the amplifiers

work on the same power level, regardless the traffic distribution. With this solution

it is possible to reduce the size of the PAs because they are operating always at the

same level of power and eventual peaks of traffic in some of the beams will balance

the ones with less power.

The constant growing demand for more bandwidth and capacity of communica-

tion satellites, requires to have multiple services operating on adjacent bands. These

services should not interfere with the other bands so requiring additional filtering.

Hence, at the output stage of the MPA of Fig. 1.3b it might be necessary to include

a Band-Pass Filter (BPF) for each RF path to protect from spurious signals in other

bands. The additional filtering is meant to be wider in bandwidth with respect the

case of the left part of Fig. 1.3a, thus allowing efficient frequency and power allocation.

Clearly, this is going to add more complexity, space, number of interfaces, etc., to the

existing RF payload system. The aim of this work is to create a Butler matrix (ie. the

circuit right-hand cascaded to the amplifiers of Fig. 1.3b) with all the filtering transfer

functions included in one single device.

This work is organised in the following chapters:

chapter 2 describes the basic knowledge and background that is necessary to the

complete understanding of the following chapters.

chapter 3 introduces the 90° hybrid couplers based on transmission lines and then

shows further development of equivalent circuits based only on resonators that

include filter transfer functions. This chapter also addresses the problems and

limitations of the quadrature hybrids with resonators and a method to predict

the electrical response of such networks.



introduction 6

chapter 4 is the chapter in which is presented a novel technique for the synthesis

of the coupling matrix of N×N Butler matrices with filter transfer functions

included.

chapter 5 describes the design, manufacturing and measurements of some proto-

types in order to provide experimental verification of the results presented in

chapter 4.

appendix A shows in detail the synthesis technique of the conventional quadrature

hybrid couplers based on transmission lines.

appendix B gives the theory of multi-port networks based on electromagnetically

coupled resonators, other than a general form of coupling matrix used in the

work to describe all the electrical properties of the circuits proposed.

appendix C is the list of publications.



2 B A C KG R O U N D

Some basic knowledge and background information that is useful for the rest of the

work is summarised in this chapter. It is essential to point out that some details are

not mentioned here for brevity and are referred to the appendix or to the bibliography,

where appropriate.

2.1 the butler matrix and its developments

The Butler matrix is a multi port microwave passive component with the purpose of

providing input to output signal power splitting with prescribed phase relationship.

This network is formed by the arrangement of several 4-port hybrid couplers and

phase shifters like the example of 4× 4 configuration of Fig. 2.1. The aim is to shape

the beam pattern in an antenna arrays [4, 5]. The Butler Matrix (BM) is to control beam

pattern by means of the phase shifters [6]. A key role is played by the adoption of the

hybrid coupler as it can guarantee equal output power distribution of the input signals

45◦

45◦

I1

I2

I3

I4

O1

O2

O3

O4

Figure 2.1: Schematic of 4× 4 Butler matrix

7



2.1 the butler matrix and its developments 8

Butler
matrix

x1

x2

x3

x4

x1

x2

x3

x4

Figure 2.2: Butler matrix used to shape signal beams

as well as having good isolation. In the general case this network accommodates N

input signals, each of them is delivered with equal amplitude to all the N outputs

with a constant phase shift. The BM represents a very widely used device in many

microwave telecommunications systems, both terrestrial and for space, where several

signals need to cover each an angular spatial area [7]. A simple high-level schematic

of Beam Forming Network (BFN) realised with a Butler matrix feeding an array of

antennas is shown in Fig. 2.2.

The BM of Fig. 2.1 is formed by 90° hybrids couplers (rectangular boxes) and fixed

phase shifters (circles with the indication of phase). The input signals are applied

to ports I1, . . . , I4 and the radiating antenna elements to ports O1, . . . ,O4. All other

lines here are transmission lines of matched characteristic impedance. The network

in Fig. 2.1 is the simplest example of BM for the purpose of BFN and it can be easily

scaled to more generalN×N configurations [8]. The equal power distribution and the

phase of the input signals is responsible for the different shape of beams in the open

space. The 3dB power splitter limits the design to accept only 2k inputs/outputs, if a

different number is required, a larger matrix is needed with the spare ports loaded on

matched terminations. The hybrids are fixed, previously designed elements, hence the

synthesis involves the calculation of the phases of each phase shifter of the network

through systematic techniques [9–11]. It is also found how the design is not limited

to the use of 90° hybrids but it can also be obtained through a different arrangement

of only 180° couplers and phase shifters [12].
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2.2 multi-port power amplifier

The Butler matrix is the fundamental building block of a MPA because of its prop-

erties of combination and recombination of the signals. The concept of using an INET

to split N input signals to a bank of PA and then cascading a second network, the

ONET, to recombine them was introduced in [13]. This configuration is also called hy-

brid transponder. In Fig. 2.3 are shown the schematics of a 2× 2 and of a more general

N×N MPA. With this configuration each amplifier shares all input signals xi at the

same time because of the equal power distribution property of the INET. In Fig. 2.3a

is shown the phase and amplitude relations of each path of the hybrids as well as the

gain G of the amplifiers (all identical). The BM is found as the ideal candidate at this

stage as it divides equally the input power with a prescribed phase relationship. This

property is exploited in the ONET as an identical Butler matrix recombines signals

avoiding interferences. Also, the phase shifters included in the INET and ONET of

the original version of the study by Sandrin are no longer necessary [14, 15]. The ba-

sic configuration of 2-input, 2-output, MPA of Fig. 2.3a can be extended to the more

general case of N×N (Fig. 2.3b) as shown in [14].

The circuit of Fig. 2.3a can be decomposed as a cascade of the transfer function

matrix of the INET, TI, the one of PA, TPA and for the ONET, TO. For this simple case

it follows that:

TI = TO =
1√
2

1 j

j 1

 (2.1)

while the amplification stage is:

TPA = GI2 (2.2)
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1√
2
e−j

π
2

1√
2
ej0

1√
2
e−j

π
2

1√
2
ej0

x1

x2
G

z2

G
z1

1√
2
e−j

π
2

1√
2
ej0

1√
2
e−j

π
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1√
2
ej0

y1

y2

INET ONETPA

(a) Schematic of 2× 2 MPA based on 90° hybrid couplers

INET...
...

x1

x2

xN

ONET

y1

y2

yN

...
...

(b) General configuration of MPA

Figure 2.3: Multi-port Power Amplifier
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where I2 is the 2× 2 unitary matrix. The resulting transfer function matrix of the MPA

of Fig. 2.3a is then found to be

TMPA = TI · TPA · TO =

 0 −G

−G 0

 (2.3)

These three equations can be directly extended to the general N×N MPA. The result

of eq. (2.3) outlines that outputs are in reverse order, with gain G and 180° phase shift

with respect to the inputs. For the scope of this study there is no need for the outputs

to have a particular phase relation as long as it is constant. Also, the anti-diagonal

characteristic of transfer function matrix of eq. (2.3) just shows how the output inter-

faces should be referenced. This means that the only condition over the splitting and

recombination network is that the resulting transfer matrix is, apart for a constant

complex scaling factor, an orthogonal matrix or any its transpositions. The constant

complex scaling factor refers to the gain and phase relation of the outputs while the

orthogonality condition is essential for the correct separation and reconstruction of

the signals. Finally, a transposition of the transfer function matrix just indicates the

relation between the sequence of the output interfaces to the input signals. In general

it is possible to say that the eq. (2.3) should be a permutation matrix, apart for a con-

stant value. The power delivered to the amplifiers is governed by transmission matrix

of eq. (2.1) through signals z1 and z2. If input signals are

x1 = A1 cos(2πf0t+φ) (2.4a)

x2 = A2 cos(2πf0t+φ) (2.4b)

with amplitudes A1 6= A2, it results that each PA will receive a power of

E{|z21|} =
1

2
(|A1|

2 + |A2|
2) (2.5a)

E{|z22|} =
1

2
(|A2|

2 + |A1|
2) (2.5b)
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Among the advantages are the recovery of a signal if one of the PA fails and of

greater flexibility in term of power allocation at input level [16]. This power ampli-

fier architecture is widely used in many telecommunication satellites where multiple

beams are covering a geographical area by means of spots. It is important to stress

that for this application the pair of Butler matrices is used not to shape a set of beams

but just to split signals to deliver to a bank of amplifiers and to recombine them. This

operation should be transparent to the system. With the classical approach of one

single HPA per beam, the input power is function of the number of terminals for the

specific area. Thus, the power levels at the input of each amplifier is generally not

equal. This generates two main problems [17]:

1. many HPA are under utilised,

2. despite of a lower traffic, each amplifier (typically Solid State Power Amplifiers

(SSPA) or Travelling Wave Tube Amplifier (TWTA)) should be configured to

operate with the maximum number of terminals.

These two points have a major impact over the dimensions of the equipment and

the available power to be supplied. On the contrary, an MPA architecture, through

eq. (2.5), shows how signals with unequal input power are combined equally to all

amplifiers. This is a major advantage with respect the classical configuration of one

single HPA per arm. A direct consequence of the adoption of the MPA is that di-

mensions of the single amplifiers can be reduced thus saving mass and size of the

overall payload or, alternatively, to support up to twice the traffic with controllable

inter-beam isolation [18].
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2.3 coupled resonators based networks

In this work a Butler matrix that includes filter transfer functions will be investig-

ated, hence a preliminary introduction of networks based on resonators is introduced

here.

2.3.1 Main-line band-pass filters

Filters are the most common example of two ports resonant circuits [19]. More

specifically, BPF are made by several resonators mutually coupled by electromagnetic

couplings in order to provide frequency selectivity in one or more bands. The classical

synthesis process of such devices starts from the calculation of the parameters g and

r of the prototype in Fig. 2.4 in order to provide the prescribed Return Loss (RL) and

selectivity in the Low-Pass Prototype (LPP) [20]. The filter prototype of Fig. 2.4 has a

variable source generator Vs with the correspondent impedance Rs and the normalised

load resistance r as termination. Normally the input impedance is normalized to 1 to

ease the calculation. The last element of the filter is either a series inductor if n is even,

or a shunt capacitor if odd. In the literature elements Rs and r are often indicated, re-

spectively with g0 and gn+1. The first step of the synthesis is to define a suitable

transfer function through a set of characteristic polynomials. Then the elements of

the LPP are calculated to synthesise the response [21]. Two examples of filtering char-

acteristics are the Butterworth maximally-flat or the Tchebycheff equal-ripple responses,

shown in Fig. 2.5. The attenuation A of the input-to-output amplitude as function

−
+Vs

Rs

g1

g2

g3

g4

gn−1

gn

r

Figure 2.4: Low-pass filter prototype
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Ωc

3 dB
Ω

A

(a) Butterworth

Ωc

Ar
Ω

A

(b) Tchebycheff

Figure 2.5: Fifth order prototype low-pass filter attenuation characteristics

of the normalized low-pass variable Ω is shown in these graphs. The band edge or

low-pass cut off frequency is indicated with Ωc, it is usually normalised to 1. For the

maximally flat response of Fig. 2.5a the band edge corresponds to 3dB attenuation

while the Tchebycheff characteristic introduces flat ripples of maximum amplitude Ar

in the whole band. The polynomials of the Butterworth transfer function have all the

poles coincident and located in Ω = 0, producing a maximally-flat response. The

normalised parameters for the maximally flat response are calculated as follows [20]:

g0 = 1 (2.6a)

gk = 2 sin
[
(2k− 1)π

2n

]
, k = 1, 2, . . . ,n (2.6b)

gn+1 = 1 (2.6c)

The response shown in Fig. 2.5a is also expressed by the following formula valid for

Ωc = 1:

A = 10 log10
(
1+Ω2n

)
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The Tchebycheff has a sharper rejection with the same number of resonators at the

price of introducing a ripple. Hence, amplitude of the ripples can be controlled by

variable Ar here expressed in dB through the following mathematical expressions [20]:

g0 = 1 (2.7a)

β = ln
[

coth
(
Ar

17.37

)]
(2.7b)

γ = sinh
(
β

2n

)
(2.7c)

ak = sin
[
(2k− 1)π

2n

]
, k = 1, 2, . . . ,n (2.7d)

bk = γ
2 + sin2

(
kπ

n

)
, k = 1, 2, . . . ,n (2.7e)

g1 =
2a1
γ

(2.7f)

gk =
4ak−1ak
bk−1gk−1

k = 2, 3, . . . ,n (2.7g)

gn+1 =


1 for n odd,

coth2
(
β

4

)
for n even.

(2.7h)

These are not the only two possible prototypes. The attenuation characteristic as

shown in Fig. 2.5b is only for the case of unitary low-pass cut off frequency:

A =


10 log10

[
1+

(
10Ar/10 − 1

)
cos2 (n arccosΩ)

]
for Ω 6 1

10 log10
[
1+

(
10Ar/10 − 1

)
cosh2 (n arccoshΩ)

]
for Ω > 1

It is important to remember that other types of LPP can be obtained with modification

of the configuration of the filter of Fig. 2.4. An example are elliptic filters (also known

as Cauer filters) where a capacitor is added in parallel to each inductor in Fig. 2.4

providing a minimum rejection in the out-band [22]. The values of the reactances

for the elliptic filter are usually tabulated although they can be obtained explicitly

[23, 24]. Another interesting family of transfer functions is given by the Zolotarev
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polynomials: they are similar to Tchebycheff LPF except for a first ripple of attenuation

close to the Direct Current (DC) [25]. The Zolotarev LPP is of the same type of the one

proposed in Fig. 2.4 and it is able to provide a lobe of attenuation in the frequency

range x1 < Ω < λ with λ < 1 with a prescribed maximum attenuation at xs [26].

These transfer functions are normally used to generate two narrower band-pass with

sharper out-band rejection with regard the conventional Tchebycheff filter [27, 28].

The following step is to map the frequency response from the LPP Ω to band-pass

in variable ω = 2πf, band edges ω1 = 2πf1 and ω2 = 2πf2 as:

Ω→ 1

w

(
ω

ω0
−
ω0
ω

)
(2.8)

where ω0 = 2πf0 is the central frequency and w is the Fractional Bandwidth (FBW)

[29]. The transformation is made in order to map the low-pass band edges Ω = ±1

into, ω1 and ω2:

−1 =
1

w

(
ω1
ω0

−
ω0
ω1

)
1 =

1

w

(
ω2
ω0

−
ω0
ω2

)

Solving the last two equations results that central frequency and FBW are:

ω0 =
√
ω1 ·ω2 (2.9)

w =
ω2 −ω1
ω0

(2.10)

The frequency transformation of eq. (2.8) is applied to the elements of the LPP of

Fig. 2.4. It is easy to show that any shunt capacitor is transformed into a resonator

formed with a parallel of a capacitor and inductor, while all the series inductor are
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−
+Vs

Rs

L1C1

L2 C2

L3C3

L4 C4

Ln−1Cn−1

Ln Cn

r

Figure 2.6: Lumped elements band-pass filter

transformed into a resonator with a series of inductor and capacitor. The series ele-

ments are transformed:

Z = jΩL⇒ jL
1

w

(
ω

ω0
−
ω0
ω

)
=

= j
(

L

wω0

)
ω−

j
ω w
Lω0

= jωL̄−
j
ωC̄

(2.11)

with the new transformed elements L̄ = L
wω0

and C̄ = w
Lω0

. The low-pass to band-pass

transformation of the impedance elements creates a resonator formed by a series of a

inductor L̄ and C̄. The same transformation is applied to the shunt capacitors:

Y = jΩC⇒ jC
1

w

(
ω

ω0
−
ω0
ω

)
=

= j
(

C

wω0

)
ω−

j
ω w
Cω0

= jωĈ−
j
ωL̂

(2.12)

The admittances instead are transformed into a parallel resonator of Ĉ = C
wω0

and

L̂ = w
Cω0

. The frequency mapping expressed with eq.s (2.11) and (2.12) is performed

to all the elements of the LPP of Fig. 2.4. The result is a band-pass filter where series

and parallel resonators are cascaded as shown in Fig. 2.6. In this figure the elements

are numbered progressively, with odd numbers for the shunt resonators and even for

the series ones. In Fig. 2.6 the last series resonator is only present if the order n is
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even, otherwise the last resonator is shunt. The lumped elements of the band-pass

filter are related to the g constants with the following:

Lk,odd =
w

ω0Ωcgk
(2.13a)

Ck,odd =
Ωcgk
wω0

(2.13b)

Lk,even =
Ωcgk
wω0

(2.13c)

Ck,even =
w

ω0Ωcgk
(2.13d)

where has been introduced the low-pass cut-off frequency Ωc for greater generality

of the final solution [20]. All the resonators are tuned at central frequency ω0 as it is

possible to demonstrate by multiplication of any odd or even pair of L-C elements in

eq. (2.13):

LkCk =
1

ω20
(2.14)

The BPF of Fig. 2.6 is formed by cascading several parallel and series resonators as

it is a direct derivation of the frequency transformation from low-pass to band-pass.

Such a solution is not practical because it is more convenient to manage a filter with

just either type of resonators. Thus, the impedance inverters are introduced in order to

overcome this limitation. Fig. 2.7 shows the theoretical model of both impedance and

admittance inverters. Their behaviour is dual and they are represented by a box with

expressed the inversion parameter. The ideal impedance inverter of Fig. 2.7a acts as a

quarter-wavelength transmission line of characteristic impedance K at all frequencies.

Hence the relation between the load impedance ZL and the input is given as:

Zin =
K2

ZL
(2.15)

As a consequence the phase shift introduced by the inverter is of ϕ = ±90°. This

is an ideal component, this means that the inversion parameter remains unchanged
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Zin −→
K

ϕ = ±π2
ZL

(a) Impedance inverter

Yin −→
J

ϕ = ±π2
YL

(b) Admittance inverter

Figure 2.7: Ideal immittance inverters.

regardless the frequency variation. Very useful in many calculations is the description

in term of ABCD matrix [30]:

A B

C D


imp

=

0 jK
j
K 0

 (2.16)

The admittance inverter is the dual case of the impedance one and is often used with

a parallel representation the circuit. It is shown in Fig. 2.7b with a load admittance YL.

The input admittance is defined as:

Yin =
J2

YL
(2.17)

while it can be demonstrated that the ABCD matrix is:A B

C D


adm

=

0 j
J

jJ 0

 (2.18)

In literature it is common to refer to either the impedance or admittance inverters

with the more general immittance inverters. The inverters can be realised by mean of

a quarter-wavelength transmission line of impedance K. Alternatively, in Fig. 2.8 are
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−L

L

−L

(a) K = ωL

−C

C

−C

(b) J = ωC

−C

C

−C

(c) K = 1/ωC

−L

L

−L

(d) J = 1/ωL

X

φ

Z0

(e) φ < 0, X > 0

B

φ

Y0

(f ) φ < 0, B > 0

Figure 2.8: Practical realisation of inverters

shown some useful broadband networks that are implementing the same response

[29]. On left column are typical impedance inverters while on the right side are

the admittance inverters. Usually it is convenient to adopt a T of impedances for K

inverters (Fig. 2.8a) while the π of admittances of Fig. 2.8b is often used for admittance

inverters. These circuits can be analysed with the even/odd mode technique due to

their symmetry. The impedance for the even mode Ze is obtained with a magnetic

wall at the plane of symmetry of the network. This breaks the two halves with an open

circuit. Consequently, the odd mode impedance Zo is calculated when the network

is divided by an electric wall, hence with a shorted circuit. In Fig. 2.8a and 2.8b the

shunt impedance jωL and series admittance jωC are divided in two parallel inductor

or series capacitor of double inductance/capacitance. The shunt admittance and series
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conductance of Fig. 2.8a and 2.8d are divided in two element, respectively parallel and

series, of half value. The value of inversion K and phase shift ϕ are given as [20]:

K =
√
ZeZo (2.19a)

ϕ = 2 arctan

(
±
√

−Zo
Ze

)
(2.19b)

The inversion parameters indicated in below the circuits of Fig. 2.8 are obtained with

the last two equations. It is possible to verify that either the T or π lumped circuits

are giving a phase shift of ϕ = ±90° that is constant with respect the frequency.

Finally, the distributed circuits of Fig. 2.8e and 2.8f the electrical length φ of the

transmission line and reactance X and B are functions of the inversion coefficients

with the constraint of ϕ = ±90° in order to keep the proper phase shift [29]. For the

impedance inverter of Fig. 2.8e is:

∣∣∣∣ XZ0
∣∣∣∣ =

K

Z0

1−

(
K

Z0

)2 (2.20a)

φ = − arctan
2X

Z0
(2.20b)

while for the admittance of Fig. 2.8f is:

∣∣∣∣ BY0
∣∣∣∣ =

J

Y0

1−

(
J

Y0

)2 (2.21a)

φ = − arctan
2B

Y0
(2.21b)

The inverter is able to transform an impedance into an admittance and vice versa,

as well as a series circuit into a parallel one. Hence, it is possible to insert the in-

verters between each resonators of the BPF of Fig. 2.6 in order to get the same type

of resonance for all the elements. If series resonators are to be designed, then the K
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Ra K01

Lr1 Cr1

K12

Lr2 Cr2

Kn,n+1 Rb

(a) Series resonators and K inverters

Ga J01 Lr1 Cr1 J12 Lr2 Cr2 Jn,n+1 Gb

(b) Parallel resonators and J inverters

Figure 2.9: Filter transformation with ideal immittance inverters

inverter is able to produce the desired result as shown in Fig. 2.9a. Otherwise, the J

inverter makes an all parallel filter as shown in Fig. 2.9b. In order to have the same

type of resonance, inverters are to be included at both sides of each resonators. It

derives that in a filter with n resonators there are n+ 1 inverters. In both diagrams

of Fig. 2.9 the circuits are terminated with input and output impedances or admit-

tances, respectively indicated with Ra and Rb for the series model, and Ga and Gb

for the parallel one. It should be noted that the elements of the BPF with inverters

are not exactly the same of the elements of Fig. 2.6. This is because the inclusion of

the inverters in the model that changes the response of the filter. In order to have

the same frequency response of the Band-Pass Prototype (BPP) filter, the elements of

the K/J inverters need to be calculated and corrected accordingly. For this reason the

inductors and capacitor in Fig. 2.9 have all a subscript r to differentiate them from the

ones of Fig. 2.6. The correction is made imposing the same impedance seen in a sec-

tion of the filter immediately after the second resonator, looking towards the source

as shown in Fig. 2.10. In this way it will be calculated the value of the first inverter (or

external inverter) and the second one (internal inverter between a pair of resonators).



2.3 coupled resonators based networks 23

Rs L1C1

L2 C2

←− Zt

(a)

Ra K01

Lr1 Cr1

K12

Lr2 Cr2

←− Zr

(b)

Figure 2.10: Equivalence with filters with inverters included

The circuits have been cut with a dashed line and the impedance calculated from this

point. For the first filter of Fig. 2.10a the impedance is obtained as:

Zt = jωL2 +
1

jωC2
+

1

jωC1 +
1

jωL1
+
1

Rs

=

√
L2
C2

j
(
ω

ω0
−
ω0
ω

)
+

√
C2L1
L2C1

j
(
ω

ω0
−
ω0
ω

)
+
1

Rs

√
L1
C1


(2.22)

Note that eq. (2.14) has been used here. The same calculation is performed for the

filter with inverters of Fig. 2.10b:

Zr = jωLr2 +
1

jωCr2
+

K212

jωLr1 +
1

jωCr1
+
K201
Ra

=

√
Lr2
Cr2

j
(
ω

ω0
−
ω0
ω

)
+

K212

√
Cr1Cr2
Lr1Lr2

j
(
ω

ω0
−
ω0
ω

)
+
K201
Ra

√
Cr1
Lr1


(2.23)
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The equality between the eq.s (2.22) and (2.23) is imposed:

Zr = Zt (2.24)

It is possible to note that there is still a difference of a term
√
L2/C2 and

√
Lr2/Cr2 of

the two relations and this is explained by the phase shift introduced by the inverters

in the circuit. Apart for this, the numerator and denominator of the fraction between

brackets of eq.s (2.22) and (2.23) are equated in order to get the formulation of the

inverters:

K212

√
Cr1Cr2
Lr1Lr2

=

√
C2L1
L2C1

(2.25)

K201
Ra

√
Cr1
Lr1

=
1

Rs

√
L1
C1

(2.26)

Last relations are further transformed operating algebraic calculations and also the

eq. (2.14), the following are obtained:

K01 =

√
Lr1Ra

C1Rs

K12 =

√
Lr1Lr2
L1C2

At this point are recalled the eq.s (2.13) and that Rs = g0 as it is the first element of

the band-pass filter. Hence the formulation of all the K inverters are generalised for

the arbitrary element k of the filter:

K0,1 =

√
ω0w

Ωc
· Lr1Ra
g0g1

(2.27a)

Kk,k+1 =
ω0w

Ωc

√
LrkLr,k+1
gkgk+1

(2.27b)

Kn,n+1 =

√
ω0w

Ωc
· LrnRb
gngn+1

(2.27c)
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where the load impedance in filter of Fig. 2.6 is r = gn+1. The values for the admit-

tance inverters are calculated in the same way. Note that the frequency transformation

of eq. (2.8) does not take into account of the dispersion of practical inverters. This is a

phenomenon that affects the central frequency ω0, the band edges ω1 and ω2 but also

the ripples characteristic of the band-pass. The degradation of the response becomes

worse with the increase of the bandwidth, hence it needs to be correct solving the

following non linear equation [31]:

ω0
ω1

sin
(
π
ω1
ω0

)
= −

ω0
ω2

sin
(
π
ω2
ω0

)
(2.28)

Lumped elements circuit are difficult and not practical to build at microwave fre-

quencies and distributed solutions are to be preferred. The impedance seen at the in-

put of a circuit (lumped or distributed) is frequency dependent and can be expressed

in terms of its resistance, the real part, and reactance, the imaginary one in this way:

X(ω) = R(ω) + jX(ω)

Equivalently, it can be expressed with the input admittance also depending by the

conductance and susceptance:

Y(ω) = G(ω) + jB(ω)

The resonance of an arbitrary resonator i can be conveniently expressed by its central

frequency ω0 and the slope defined as the variation of the reactance (or susceptance)

over the frequency:

χ =
ω0
2

∂Xi(ω)

∂ω

∣∣∣∣
ω=ω0

(2.29)

b =
ω0
2

∂Bi(ω)

∂ω

∣∣∣∣
ω=ω0

(2.30)
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Ra K01

X1

K12

X2 Xn

Kn,n+1 Rb

Figure 2.11: Band-pass filter with distributed resonators

The circuit of Fig. 2.9 is still interesting because the same type of resonances, however

it is possible to describe it with distributed resonators in place of the lumped elements.

Fig. 2.11 is the same filter with the resonators identified by their frequency responses

X1(ω),X2(ω), · · · ,Xn(ω). The slope of the generic lumped elements k are calculated

through the eq.s (2.29) and (2.30) and then applying the eq.s (2.13) relating them with

the g constants:

χk = ω0L =
1

ω0C
=
Ωcgk
w

(2.31a)

bk = ω0C =
1

ω0L
=
Ωcgk
w

(2.31b)

The eq.s (2.31) are substituted in eq.s (2.27) in order to obtain the final expressions of

the impedance inverters of a BPF:

K0,1 =

√
Raχ1w

g0g1Ωc
(2.32a)

Kk,k+1 =
w

Ωc

√
χkχk+1
gkgk+1

(2.32b)

Kn,n+1 =

√
Rbχnw

gngn+1Ωc
(2.32c)

2.3.2 Coupling matrix of 2-port circuits

The distributed circuit of Fig. 2.11 can be eventually described in terms of its coup-

ling matrix [32]. This is a convenient way to characterise a microwave device as many

useful operations can be performed directly onto the coupling matrix such as inver-
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sions or similarities. The synthesis can be carried out directly on the coupling matrix

with normal algebraic operations and then mapped directly in the final microwave

circuit. The procedure described above for in-line filters is rigorous and general for

different types of characteristic prototypes. However, the physical dimensions, like the

length of resonators coupling’s aperture are obtained from the K inverters of eq.s (2.32)

through approximated formulas that are specific for the particular technology used.

These can be rectangular waveguide cavities, microstrip resonators, comb-line etc...

They have a dedicated set of equations relating the inversion parameters to the phys-

ical dimensions of the cavities. Naturally, an overall optimisation of the final filter

is often required to meet the specifications (bandwidth, RL, Insertion Loss (IL) and

out-band rejection). There are two way to describe a 2-port circuit based on coupled

resonators: one is to use the n×n coupling matrix [33], or the n+2 coupling matrix as

shown in [34]. In this section are only summarised some aspects of coupling matrices

for 2-port resonant circuits because a more general solution is deeply described in

appendix B on page 241.

Fig. 2.12a shows a 2-port microwave circuit with n resonators, n+ 1 ideal inverters

and the couplings between pairs of resonators. This is a LPP and the shunt resonators

are represented with a unitary capacitor with a Frequency Invariant Reactance (FIR) in

order to include non symmetric responses [34]. The rectangular blocks are admittance

inverters between pairs of adjacent resonators, while the lines represent the eventual

couplings between pairs of non adjacent resonators. Note that there is a close relation

between an immittance inverter and its coupling coefficient. The coupling coefficient

can be also expressed for the internal impedance (or admittance) inverters of proto-

type of Fig. 2.11 as [20]:

kj,j+1 =
Kj,j+1√
χjχj+1

=
w

Ωc
√
gjgj+1

, j = 1, · · · ,n− 1 (2.33)

The values kj,j+1 refers also to the inner elements of matrix of Fig. 2.12b. In the

distributed model of Fig. 2.11 it is also convenient to express the couplings between
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Figure 2.12: Two ports inter-coupled resonant circuit
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the external ports (in the case of the figure just the first and the last resonator) in

terms of external quality factors (input a and output b):

Qe,a =
χ1

K201/Ra
=
Ωcg0g1
w

(2.34a)

Qe,b =
χn

K2n,n+1/Rb
=
Ωcgngn+1

w
(2.34b)

The relations (2.33) and (2.34) do not include any slope parameter χj which is the

information of the particular type of resonator used. This is an important point as it

is possible to separate the synthesis of the response of the filter from the particular

technology used to implement it. Moreover, with the introduction of the coupling

matrix it is possible to make the synthesis of a general microwave circuit where there

exist couplings between any pair of resonators. With reference of Fig. 2.12a, the rectan-

gular boxes represents the couplings between adjacent resonators, while the arrowed

lines the generic couplings Mp,q between the pairs of resonators p and q. For the

internal resonators is necessary to build an n× n coupling matrix where the generic

element on row p and column q represents the coupling Mp,q of Fig. 2.12a. How-

ever, in order to have a complete characterisation of a 2-port resonant circuit, the

coupling matrix should include also the information related to the couplings between

internal resonators and external ports. In the main-line circuit of Fig. 2.11 only the

first and last resonators are coupled with the external ports via the Qe,a and Qe,b.

In the general network of Fig. 2.12a are also included the couplings of source and

loads with the internal resonators and between input-output. Thus a new coupling

matrix having n + 2 columns and rows can accommodate also this information as

shown in Fig. 2.12b. Naturally, these additional couplings are always represented by

inverters, but it is possible to create a new synthesis methodology for more complex

transfer functions with respect to the one used for main-line filters. These techniques

are based on the definition of characteristic polynomials that define the frequency

response, and the calculation of the coupling coefficients in order to get the same
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Figure 2.13: Example of generalised Tchebycheff filter. Order of the filter is n = 5, RL is 23dB
and 2 transmission zeros at −j2.69 and −j1.74.

response with an equivalent microwave circuit. The advantage of operating on the

coupling coefficients is that the synthesis is operated mathematically on a matrix in-

stead of on circuital components, hence keeping it independent from the technology

used [35, 36]. This becomes more important in new communication systems where

demands are for more stringent requirements in terms of sharper selectivity and re-

duced size. A convenient way is to introduce one or more TZ in order to increase

the selectivity without altering the number of resonators. This is possible through the

procedure introduced in the previous section at the price of a more complex model to

manage because of the need of additional couplings (also known as cross-couplings)

to be introduced in the prototype filter [36–38]. An example of transfer function of or-

der 5 with a pair TZs [38] is shown in Fig. 2.13. This response is also called generalised

Tchebycheff response.
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The synthesis of coupling matrix for singly and double terminated networks based

on all identical (synchronously tuned) cavities was first introduced in [39]. An it-

erative synthesis procedure of the polynomials and coupling matrix of generalised

Tchebycheff filters has been presented in [40]. A more general synthesis technique

was developed to create an n+ 2 coupling matrix with significant advantages with

respect the previous matrices (typically n×n) as it is able to [36, 41]:

• include multiple couplings between any internal resonator and input/output

ports. Previously the input port was coupled directly to the first resonator while

the output with the last one;

• implement a fully canonical prototype where a filter has n-th order characteristic

and n TZs;

• provide more flexibility in complex matrix rotations where some couplings can

be moved temporarily to the external rows/columns to operate more conveni-

ently on the other internal elements of the matrix.

The coefficients on the main diagonal are indicating the resonators self-couplings, or

their detuning. They usually affect the symmetry of the filtering response and they

are modelled in the normalised LPP through the use of FIR added to the resonators

[34].

The synthesis of the n+2 coupling matrix starts from the definition of the scattering

parameters expressed as rational form of numerators and common denominator:

S11(s) =
F(s)

εRE(s)
(2.35)

S21(s) =
P(s)

εE(s)
(2.36)
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Table 2.1: Coefficients of polynomias of the generalised Tchebycheff filter of Fig. 2.13.

Degree of s E(s) F(s) P(s)

5 1 1

4 2.3300+ j0.5088 +j0.5088
3 3.8693+ j1.2957 +1.1548
2 3.7665+ j2.1388 +j0.5011 1

1 2.1924+ j1.9879 +0.2413 +j4.4300
0 0.4849+ j0.8819 +j0.0597 −4.6806

where ε is the Tchebycheff constant ripple factor providing the prescribed RL in dB is

defined as:

ε =
1√

10RL/10 − 1
· P(s)
F(s)

∣∣∣∣
s=±j

(2.37)

All the polynomials are expressed with respect to the complex low-pass variable:

s = σ+ jΩ (2.38)

that in a lossless condition is simplified as σ = 0. Polynomials E(s) and F(s) are of

degree n while P(s) contains the finite-position zeros of the transfer function. Natur-

ally the number of TZs nz must not exceed the order of degree of polynomial E(s) for

a convergent characteristic. In the case of fully canonical network nz = n, than the

denominator of S11 is to be scaled:

εR =


ε√
ε2 − 1

for nz = n

1 for nz < n
(2.39)

For example, the response of Fig. 2.13 is obtained through the procedure of [40] that

gives the set of polynomials listed in Tab. 2.1 with ripple coefficients ε = 4.6592 and

εr = 1. For any 2-port lossless circuit, the unitary condition on power balance must
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be verified:

|S11(s)|
2 + |S21(s)|

2 = 1 (2.40)

This simplifies the space of physical solutions for the polynomials as they are directly

related to each other. Depending on the specification, more advanced manipulations

of the polynomials may be required for example to minimise the Group Delay (GD)

leading to numerical optimisations of the characteristic polynomials both for their

phase and amplitude [42].

Once the polynomials have been calculated to meet the specifications, they are trans-

formed into their equivalent admittance matrix form. This transformation is found

to be convenient in terms of elements calculation. Direct formulas are used to relate

polynomials in admittance form to the equivalent transversal matrix of the circuit. A

transversal network is one formed only of couplings between ports and between res-

onators and ports. No coupling between resonant cavities are in place in this initial

configuration. This is a mathematical transformation used to easily relate the ad-

mittance polynomials to the elements of the matrix. Later, several matrix rotations

are applied to the transversal matrix in order to get the coefficients for the final net-

work configuration, or topology, of the circuit. Moreover, modern Computer Aided

Design (CAD) techniques can be used on the coupling matrix to improve the fre-

quency response of the device [33]. Any operation is performed mathematically on

the elements of the matrix, hence it is possible to define a goal transfer function that is

the target response to reach and the CAD design performs changes to the coupling

coefficients in order to minimise a cost function to get the prescribe response. However,

the large space of solution available and the complexity of global optimisation cannot

totally replace the more analytical approach presented here.

A more detailed explanation of this procedure, with step-by-step examples in-

cluded, is also presented in the appendix B.
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2.3.3 Multi-port circuits

The n+ 2 coupling matrix is a powerful tool to describe any 2-port circuit based

on resonators and it is particularly useful in the synthesis of advanced filters because

of its great flexibility. However, a more general approach should be adopted for

an arbitrary number of ports and resonators. Thus, the following coupling matrix

extends the n+ 2 one: it is defined by blocks and can describe any circuit based on n

resonators and p ports [43–48]:

M =

Mp Mpn

Mnp Mn

 (2.41)

with M being a square matrix of dimension p+ n. An example of matrix defined by

blocks of a circuit of p = 4 ports and n = 6 resonators is shown in Fig. 2.14. The
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P4
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1
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Figure 2.14: Coupling matrix defined by blocks

sub-matrices of the eq. (2.41) are:

Mp ∈ Rp×p matrix of the couplings between pairs of external ports. These are

shown with the green colour of Fig. 2.14. Ports are here indicated with labels

P1 , P2 , · · · , Pp;
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Mpn ∈ Rp×n are the coefficients between an external port and an internal cavity.

These are indicated with the red colour on top right of Fig. 2.14. The Mnp is

just the transpose matrix of Mpn and its coefficients are marked with the red

crosses on bottom left of the figure. The resonators are referred with numbers

in the rows and columns of the matrix.

Mn ∈ Rn×n is the matrix of the coupling coefficients between pairs of internal res-

onators and are indicated in blue in Fig. 2.14.

In the notation of coupling matrix of Fig. 2.14, a cross symbolises a coefficient other

than zero, hence the presence of a coupling. This picture is just an example to easily

identify the position of the sub-matrices into the M block matrix and all the couplings

are here marked. The only zero elements are the ones on the main diagonal of matrix

of external ports Mp as it is not physically possible to have self-couplings between

the external ports. The scattering parameters are directly calculated from the eq. (2.41)

with the procedure described in appendix B. An alternative is the n × n matrix which

is also capable to describe the electrical properties of a circuit with multiple ports [33].

It is possible to show that the n × n does not allow the matrix similarities as it does

not include the information of couplings between internal cavities and external ports.

2.4 limitations of general synthesis techniques

A general synthesis technique for any multi-port circuit can be performed inde-

pendently for the sub-matrices Mp,Mpn andMn with an extension of the procedure

shown in [40] and explained in detail in appendix B. Without discussing the method-

ology in all its aspects, here it is possible to summarise some important points:
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1. The scattering polynomials are defined in order to set the response of the circuit

as function of the complex low-pass variable s. They have the highest power’s

coefficient normalised to 1 and are all expressed in rational form of numerator

and common denominator.

2. The scattering parameters are transformed into the equivalent admittance mat-

rix. In order to easily identify the poles of the function also the admittance

polynomials are expressed as rational form of numerators nij(s) with a common

denominator yd(s). In some cases there exist closed formulas to get the coeffi-

cients of the polynomials of the admittance matrix starting from the scattering

polynomials [49]. Otherwise the curves of the Y with respect the frequency s

can be calculated with the well known formula

Y = (I−S)(I+S)−1 (2.42)

where S is the scattering matrix and I the identity. Later the numerators and

common denominators are obtained from eq. (2.42) with numerical techniques

[50–53].

3. Rational parameters are expressed in terms of partial fractional expansion:

[Y ]ij(s) = [Y(∞)]ij +

n∑
k=1

rij,k

s− jλk
(2.43)

where [Y(∞)]ij is a constant term and rij,k is the residue of element [Y ]ij(s) asso-

ciated to pole λk.

4. From the eq. (2.43) the elements of the equivalent transversal network are cal-

culated with direct formulas [44]. An example of transversal matrix is shown

in Fig. 2.15 for a circuit with p = 3 ports and n = 4 resonators. The layout

of the coupling matrix with all possible couplings is shown in Fig. 2.15a while

the correspondent circuit in Fig. 2.15b. All possible couplings are included in
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Figure 2.15: Example of transversal network of a 3-port circuit with 4 resonators

this transversal form between pairs of ports (white circles) and to resonators

(black circles). Here the matrix of the internal couplings Mn is diagonal, mean-

ing resonators are only coupled with themselves or, eventually, with external

ports. This representation includes the magnitude information of the response

of eq. (2.43) through the following set of equations (see appendix B or [44]):

Mn = −diag(λk), k = 1, · · · ,n (2.44)

Mpn =
rij,k√
rij,k

, i, j = 1, · · · ,p (2.45)

Mp = −jY(∞) (2.46)

5. A set of matrix rotations are applied to the transversal matrix in order to get the

coupling values of the final topology of the circuit [54]. With this procedure the

unwanted matrix elements are annihilated in favour to the ones of the desired

network. At each rotation the eigenvalues of the matrix are kept unchanged,

hence not altering the response of the circuit.

The concept of a multi-port network made by p ports and by n resonators arbitrarily

coupled puts a major challenge by the point of view of the synthesis technique. This is

a different approach compared with the use of several 2-port filters connected together

by means of junctions or manifolds, as for example many diplexers and multiplexers
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Figure 2.16: General multi-port all resonators network

[55–57]. For this case the synthesis was based on the already known techniques for

filters without considering the structure in a whole. In recent years growing interest

is observed in all-resonator networks with complex filtering response, new topologies

have been investigated and the synthesis of the coupling matrix obtained through

optimisation techniques [58–60]. The direct optimisation of the coupling matrix might

hide some important details of the response to the designer as well as the general

understanding of the network. Moreover, the cost function needs to be adapted to

each application in order to adapt to the type of the circuit as well as a mix of different

algorithms (ie. global genetic, gradient, etc...) should be applied in order to reach the

final solution.

Despite the well known advantages of analytical techniques, for multi-port net-

works, there are some limitations of the general procedure explained above. The

preliminary step is the definition of the polynomials of the scattering low-pass re-

sponse. These characteristics, for lossless networks, must comply with the law of

power balance generally expressed as:

S ·S∗ = I (2.47)

where S∗ is the complex conjugate of S. This for the simple case of two port filters

reduces to eq. (2.40). The response of the very general schematic of Fig. 2.16 of a

multi-port network circuit formed by p ports and resonators arbitrarily coupled, can

be described by the block matrix of eq. (2.41) with scattering polynomials satisfying
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the eq. (2.47). The synthesis of such networks is well known when p = 2 (ie. filters), it

is very complex for some circuits with p = 3 and does not exist for p > 3 as described

in [61]. When increasing the number of ports, the condition of eq. (2.47) is satisfied

through the following system of equations:



p∑
k=1

|S1k|
2 = 1

p∑
k=1

|S2k|
2 = 1

...
p∑
k=1

∣∣Spk∣∣2 = 1
(2.48)

While the condition on the two ports was directly relating the S21 to the S11, with sev-

eral ports additional variable terms are added, hence increasing the space of possible

solutions. In such scenario having too many degrees of freedom on the polynomials

might lead to an undefined synthesis a priori of the scattering responses. In [61] a

solution is proposed by using several 2-port circuits, each providing a set of match-

ing and rejecting frequencies. All these sub-circuit are matched through an electrical

junction with the problem reducing to a match of several arbitrary loads also known

as extended Nevanlinna-Pick interpolation problem [62].

The work presented in [61] is not totally concluded and mainly covers the problems

associated to the synthesis of triplexers or multiplexers. However, the difficulties

and limitations of the scattering polynomials synthesis are outlined clearly. Also, the

maximum number of couplings each resonator can accommodate is limited by the

practical realisation. If the final topology is not known a priori, the step of matrix

rotations could bring to a non physically realisable structure. This is generally true

with the increase of number of ports [61].

Another limitation is that the transfer function must have single poles [49]. This

happens when the roots of the polynomial yd(s) are all distinct. If this is not the

case, it means that some of the roots of yd(s) are coincident and thus that there are
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repeated values on the matrix Mn of the transversal prototype. One reason to have

multiple poles is when the same transfer function (in module) is associated with more

outputs simultaneously. Also, in this case also some rows/columns of matrix Mpn

are the same, so that the whole matrix M is singular. If singular, the repeated rows

and columns are removed with the result of producing the same frequency response

in magnitude with a reduced number of ports and resonators. If this occurs, an

alternative synthesis technique needs to be investigated.

2.5 resonator based butler matrix

The behaviour of the MPA is broadband with normally no particular interest paid

for the out-band response. This is not a selective sub-system and spurious frequen-

cies are usually generated by the amplifiers. The Butler matrices proposed in the

literature for MPAs are mainly implemented with several hybrid couplers based on

transmission lines, producing a broadband response [63–70]. However, an additional

stage of BPFs could be necessary and cascaded to the MPA if the near-band is to be

cleared from interferences. A possible example is when the satellite is operating the

Receiver (RX) and Transmitter (TX) in contiguous bands and the spurious frequencies

could enter at the receiving stage of the system. Also, there could be a reserved band

contiguous to the operational bandwidth to be protected and requiring additional fil-

tering before the transmitting antenna. Fig. 2.17a is a schematic of the MPA with a

bank of BPFs cascaded after the ONET. A practical example of a satellite where this

architecture with filtering has been adopted is shown in [71], where 8 BPFs have been

cascaded after an 8× 8 Butler matrix. Clearly, the requirement of additional selectivity

of the near-band spectrum at the output of the payload is met through the cascade

of additional interfaces, increasing the size and mass of the equipment as well as the



2.5 resonator based butler matrix 41

INET...
...

x1

x2

xN−1

xN

ONET...
...

y1

y2

yN−1

yN

(a) MPA with bank of band-pass filters
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(b) MPA with filtering functions incorporated in the ONET

Figure 2.17: Proposed solution of MPA with filter functions included in the ONET.
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risk of Passive Inter-Modulation (PIM) due to the additional connectors and flanges

(see section 2.7 on page 57 for more details on high power handling).

The solution proposed in this work is to incorporate the filtering functions of

the bank of identical BPFs and the ONET Butler matrix into a single device based

on coupled resonators. A qualitative representation of the proposed architecture is

shown in Fig. 2.17b: the INET and the amplifiers are not altered, while the pair of

ONET and bank of BPFs is replaced by a new circuit made only by mutually coupled

resonators. With the inclusion of the filters is also introduced an operational band-

width inside which the system of Fig. 2.17b should work with the same properties

of the traditional MPA. The advantages of a solution proposed reside in the lower

number of components required to obtained the same response and in reduced size

and mass. The last characteristics are particularly critical in a satellite where the on-

board equipment can be limited by the available space. The main properties of the

new Butler matrix that includes filter functions are:

• multi-port, multi-resonator circuit;

• provide equal output power splitting of the input signals;

• all the signals have same central frequency and bandwidth;

• same filtering response for all transmissions parameters;

• perfect isolations between pairs of input (or output) ports;

• output phase distribution to guarantee signals combination.

The new Butler matrix including filtering can be conveniently represented by the

coupling matrix defined by blocks of Fig. 2.14. However, the previous points show

how the traditional synthesis methods are affected by the limitations presented in

section 2.4 as the high number of ports (theoretically 2N) put a major challenge on

the definition of the scattering polynomials, as well as the same filtering characteristic

for each transmission parameters leads to polynomials with non single poles.
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2.6 physical realisation of coupled resonator net-

works

The coupling matrix is an efficient an convenient tool as all the main synthesis

can be carried out mathematically, with eventually one or more optimisations of the

coefficients, before to obtain the physical dimensions of the components by use of

Electromagnetic (EM) software. The computational power required to optimise a

physical structure is much higher both for time consumption and for resources such

as the memory. Also, for complex circuits a general optimisation might not even

possible. When possible it is highly recommended to avoid any optimisation that

involves any operation on the physical (or 3D) model. Thus, in the following of this

work the synthesis will be carried out with the definition of the set of polynomials

to produce the transfer function and later with the definition of the elements of the

coupling matrix. The final stage will obtain the dimensions of the resonators and

couplings in order to produce the same electrical properties of the ones of represented

by the coupling matrix. The complexity of the EM model is reduced by iteratively

performing optimisations of every coupling/resonator of the device, and only at the

end a final optimisation on the entire circuit to refine the response. It can be seen that

the information included in the coupling matrix can be translated in initial physical

dimensions that produce a frequency response of the final circuit quite close to the

specifications, reducing the time of the general optimisation.

2.6.1 Lumped element synthesis

In order to establish a direct relation between the physical elements of the circuit

and the coupling matrix, first the synthesis is carried out on lumped elements and,

later, the equation will be applied to the 3D structure. The lumped elements rep-
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Figure 2.18: Electric and magnetic couplings

resentation of a generic coupling between 2 lossless resonators is shown in Fig. 2.18a.

Note that in the figure there are no assumption regardless the central frequency of the

2 resonators except for the fact the elements must satisfy the resonance condition of

eq. (2.18). With M is represented the coupling coefficient between the generic lumped

elements resonators i and j. Instead of studying the coupling between the two resonat-

ors, symmetries are introduced in order to reduce the problem to one single resonator

through the even/odd mode method [34]. Basically, with the even mode a magnetic

wall is placed in the middle of the circuit while with the odd mode is used an electric

wall [72]. The effect of putting a magnetic wall is to create an infinite impedance,

hence an open circuit should be included between the two halves of the circuit. On

the contrary, with the odd mode, the electric wall is responsible for closing the two

halves with shorted circuit.
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There are three type of couplings possible: the magnetic, electric and mixed coup-

ling [33]. Starting with the magnetic one a series configuration is considered in

Fig. 2.18b. The two resonators i and j are here considered equal, thus Li = Lj and

Ci = Cj. The magnetic coupling can be represented in terms of an impedance inverter

due to the series representation, and consequently with the T network of inductances

of Fig. 2.8a. The shunt inductance is the element at the centre of symmetry and it will

be divided in two parts. As it is a shunt impedance, the two halves of the original

mutual inductance Lm have double value of shown in Fig. 2.18b. At this moment a

magnetic wall is introduced and the circuit reduced to the series of a capacitor and

three inductances L, −Lm and 2Lm. With an electric wall, for the odd mode, a short

circuit is introduced thus eliminating the inductor of inductance 2Lm. The resonance

frequencies are calculated separated for the even and odd mode:

fe =
1

2π
√

(L+ Lm)C
(2.49a)

fo =
1

2π
√

(L− Lm)C
(2.49b)

The magnetic coupling coefficient between 2 synchronous resonators is defined as:

KM =
Lm

L
(2.50)

The coupling coefficient is obtained solving the eq.s 2.49 with respect variables L and

Lm and then substituted into eq. (2.50). Note that the even and odd resonant frequen-

cies are determined from elements of the band-pass domain, hence a de-normalisation

is required in order to get the value of coupling coefficient in the low-pass domain:

M =
1

w

f2o − f
2
e

f2o + f
2
e

(2.51)

The electric coupling is calculated in a similar fashion. In this case it is more con-

venient to express the circuit with a parallel notation with the two resonators coupled
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with an admittance inverter as the π of capacitors of Fig. 2.8b. At the centre of the

circuit is a series capacitor, hence divided into two elements of capacitance 2Cm as

shown in Fig. 2.18c. Again, the resonance frequency of the even and odd modes are

calculated. When a magnetic wall is placed at the symmetry plane an open circuit

is seen at each half. In this case the capacitor of value 2Cm is useless as no current

is flowing on it and the equivalent admittance is given as the parallel of capacitor C,

inductor L and capacitor −Cm. With the electric wall the element of capacitance of

2Cm is also parallel to the rest of the circuit. The two resonance frequencies are:

fe =
1

2π
√

(C−Cm)L
(2.52a)

fo =
1

2π
√

(C+Cm)L
(2.52b)

The coupling coefficient of the electric type is defined as:

Ke =
Cm

C
(2.53)

Thus the normalised coupling elementM is obtained solving the eq. (2.52) into eq. (2.53)

and divided for the FBW:

M =
1

w

f2e − f
2
o

f2e + f
2
o

(2.54)

It is immediate to observe that eq.s (2.51) and (2.54) are identical except for a minus

at the numerator. In general it is possible to conclude that when fo > fe the coup-

ling is magnetic while it is electric otherwise. The general expression independent

from the type of coupling (magnetic, electric of mixed) and valid for synchronous or

asynchronous couplings is the following [73]:

M =
1

2w

(
f2
f1

+
f1
f2

)√√√√(f2b − f2a
f2b + f

2
a

)2
−

(
f22 − f

2
1

f22 + f
2
1

)2
(2.55)
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where f1 and f2 are the frequencies of the two resonators while fa and fb are the

resonances of the even/odd modes with fb > fa. The eq. (2.55) reduces to eq. (2.51)

or (2.54) in case of synchronous resonators (f1 = f2).

2.6.2 Extraction of the coupling coefficient

The lumped elements model of a pair of mutually coupled resonators is useful to

relate the coupling coefficient to its even and odd mode resonances. The design pro-

cess consists of dimensioning the elements of the resonators in order to obtain the

prescribed coupling coefficients. This can be done either analytically or by optimisa-

tion with the LC circuit perfectly matching the electrical response of the associated

coupling matrix. However, the lumped elements model is not practical to manage

for most cases of microwave applications. Hence an alternative solution is to use a

full-wave simulator where the resonance frequencies are numerically calculated and

the physical dimensions are optimised in order to produce the desired coupling. With

the simulator a pair of coupled resonators are drawn in 3D and the resonances calcu-

lated through an eigenmode solver. Unfortunately, not all the EM simulators provide

this feature so a method based on optimisation of the scattering parameters is to be

preferred. For example, a commercial tool which provides the eigenmode solver is

Computer Simulation Technology (CST) [74]. If this tool or solver license are not

available, the fe and fo are calculated numerically through the S21. In the following,

the simulation are performed with Fest3D [75] or Mician [76] because of their faster

solver, then with CST for results confirmation.

The process of extracting the coupling coefficient evaluating the scattering response

is independent by the type of coupling (magnetic, electric or mixed) and by the type

of resonator used. Basically, the structure of 2 symmetric resonators is constructed in-

side the modeller of the simulator, having a variable element of coupling between them

and weak couplings with the external ports. A general schematic of the resonators



2.6 physical realisation of coupled resonator networks 48

C1 L1 L2 C2

weak weak

(a) Lumped elements model

a

lr lr

wr

weak weak

(b) Implementation in rectangular waveguide (top view)

fr1 fr2

Frequency

M
ag

ni
tu

te
of

S
2
1

(c) Even and odd resonance frequencies

Figure 2.19: Extraction of internal coupling from physical structure
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is shown in Fig. 2.19a: in this figure the couplings are represented with transformers

and the resonators with the typical LC network. For the case of synchronously tuned

resonators it derives that L1 = L2 and C1 = C2. The couplings with the external ports

need to be weaker with respect the coupling between the 2 resonators in order to

reduce the impact of the other interfaces on the resonances. An example of physical

implementation of the circuit of Fig. 2.19a in rectangular waveguide with inductive

irises and squared corners is shown in Fig. 2.19b. This is a top view of 2 coupled

resonators having cross-section dimensions of a and b (not visible in the figure). The

longitudinal length of resonators is indicated with lr while the amplitude of the coup-

ling iris dimension is wr. The resonators in this case are synchronous so they have

same length. The weak couplings are chosen to be less than 10% of the waveguide

aperture a. For given dimensions of lr and wr the full-wave simulator is capable to

calculate the scattering parameters of the structure of Fig. 2.19b. The result is shown

for the S21 in Fig. 2.19c with the two resonance frequencies fr1 and fr2 (it must be

fr1 < fr2). The coupling coefficient and central frequency f0 are [33, 34]:

M =
1

w

f2r2 − f
2
r1

f2r2 + f
2
r1

(2.56)

f0 =
√
fr1 · fr2 (2.57)

It should be noted that, theoretically, a series half-wavelength resonator should be

loaded with shorted circuits at both ends (the same as for a parallel one which re-

quires open circuits as loads). Note that in transmission lines where the fundamental

propagating modes are TE or TM, the expression of guided wavelength is:

λg =
λ√

1−

(
λ

λc

)2 (2.58)

where λc is the cut-off wavelength of the fundamental mode. Naturally both the aper-

tures left and right of each resonator in Fig. 2.19b clearly show that it is physically very
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difficult to create the theoretical required load. Also, the apertures are responsible of

discontinuities that alter the resonance frequency. Thus, the length of the resonators

lr is to be adjusted in order to take into account this. The main contribution to this

distortion is caused by the variable iris, becoming more relevant for higher values of

wr. Hence the calculation of the coupling coefficient is made by the following steps:

1. initially lr = λg/2 using the eq. (2.58) and the wr is arbitrarily,

2. calculation of fr1 and fr2 for a given dimension of wr,

3. length lr is adjusted in order to tune the resonator to central frequency f0 with

eq. (2.57) and

4. the coupling coefficient is obtained with eq. (2.56).

where the λg is the wavelength in the guide. This procedure is repeated for several

values of wr in order to create a set of curves relating the coupling coefficient to the

dimension of coupling element (the inductive iris in this example).

From the computational point of view it is more efficient to get the dimensions of

the single couplings separately rather than performing long optimisations of the entire

structure. However, the method shown here is not exact because does not correct

the dimensions of the resonators based on the loads that will substitute the weak

couplings in the final circuit. Thus, at the end of this process a stage of optimisation

is still required, but with the difference that in this case the response is expected to be

closer to the final one, hence reducing the number of iterations to perform.

2.6.3 Extraction of the external quality factor

The external quality factor can be extracted from a physical structure (typically from

a 3D full-wave simulator) in many different ways. Depending on the type of resonator

and configuration one method might be easier than the others, so here will be shown
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how to calculate the Qe with a singly loaded resonator, with the group delay method

and, finally, through a doubly loaded resonator.

Singly loaded resonator

The diagram of a resonator loaded on an external port is shown in Fig. 2.20. In

Is LCGs

S11

Figure 2.20: Singly loaded external resonator

a resonant circuit it is convenient to express the coupling between an external port

and an internal resonator through the external quality factor Qe. By definition, the

external quality factor is the ratio between the energy stored in the resonator and the

energy dissipated in the external loads as follows:

Qe = ω0
C

Gs
(2.59)

This definition is consistent with the one of a resonator directly connected to the

external port providing a source current Is and a conductance of the generator of Gs

as stated by the Norton theorem [30]. The reflection coefficient (S11) seen after the

generator towards the resonator is defined as:

S11 =
Gs − Yr
Gs + Yr

=
1− Yr

Gs

1+ Yr
Gs

(2.60)

where the admittance of a parallel resonator is given as:

Yr = jωC+
1

jωL
= jω0C

(
ω

ω0
−
ω0
ω

)
(2.61)
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where in eq. (2.61) has been substituted the eq. (2.14). For a narrow variation of the

frequency ∆ω with respect the resonance ω0 it is possible to introduce the following

simplification [34]:

2∆ω ≈ ω
2 −ω20
ω

(2.62)

so as to reformulate the eq. (2.61) in a narrow interval around the central frequency:

Yr = jω0C
2∆ω

ω0
(2.63)

Now the eq. (2.63) is substituted into the definition of S11 of eq. (2.60) with the inclu-

sion of the external quality factor notation of eq. (2.59). Thus the formula of the S11

is re-written as function of the Qe valid for a narrow frequency interval around the

resonance:

S11 =
1− jQe(2∆ω/ω0)
1+ jQe(2∆ω/ω0)

(2.64)

It should be noted that at ω0 the parallel resonator acts as an open circuit and con-

sequently the S11 = ±1. Also, at the centre frequency the parallel resonator is exactly

an open circuit and the phase is 0. Considering an interval ∆ω∓ around ω0 where

the phase is ±90°, it follows that S11 = ±j, hence the eq. (2.64) can be rewritten as

2Qe
∆ω∓
ω0

= ∓1 (2.65)

The eq. (2.65) should be rewritten in function of term ∆ω∓ remembering that it defines

the bandwidth in between S11 assumes a phase value of ±90°. Thus it is that:

∆ω±90° = ∆ω+ −∆ω− =
ω0
2Qe

+
ω0
2Qe

(2.66)



2.6 physical realisation of coupled resonator networks 53

Finally the value of the Qe is given combining eq.s (2.66) and (2.65):

Qe =
ω0

∆ω±90°
(2.67)

where the term ∆ω±90° is the one calculated through the full wave simulation or

measurements.

Method of the group delay

An alternative method for one resonator that is singly loaded to extract the Qe is

to exploit the group delay at the resonance. The equations describing the circuit of

Fig. 2.20 are obviously the same, hence the relation of the S11 of eq. (2.64) can be

rewritten in the form of magnitude and phase ϕ:

S11 =

∣∣∣∣1− jQe(2∆ω/ω0)
1+ jQe(2∆ω/ω0)

∣∣∣∣∠ϕ (2.68)

where the phase is defined as [34]:

ϕ = −2 arctan
(
4Qe

ω−ω0
ω0

)
(2.69)

The group delay is defined as the derivative of the phase with respect to the frequency:

τ(ω) = −
∂ϕ

∂ω
(2.70)

The group delay of the S11 = e−j2ϕ evaluated at central frequency is calculating deriv-

ing the eq. (2.69):

τ11(ω0) =
4Qe

ω0
· 1

[1+ 2Qe(ω−ω0)/ω0]2

∣∣∣∣
ω=ω0

=
4Qe

ω0
(2.71)
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where in eq. (2.71) has been used the derivative of arctan defined as:

∂

∂ω
arctan(ω) =

1

1+ω2

The relation of the external quality factor is finally obtained from eq. (2.71) as:

Qe = ω0
τ11(ω0)

4
(2.72)

The parameter to be measured from the simulator is the group delay calculated at

central frequency τ11(ω0) of the first resonator .

Doubly loaded resonator

A derivation of the previous two methods to extract the external quality factor, can

be found with a resonator that is loaded on an input and output port. The following

method is particularly useful with technologies like waveguides as it is easy to model

and very fast to simulate. The equivalent circuit is shown in Fig. 2.21a. The source

conductance Gs and the load conductance G are supposed to be identical in order to

confer symmetry to the circuit with respect to plane T. The LC circuit of the resonator

is hence split in two halves with the values indicated in the figure. At this point the

S11 observed after the source toward the resonator is calculated through the even/odd

mode. For the even mode a magnetic wall is obtain inserting an open circuit at the

symmetry plane. In this case the second part of the circuit of Fig. 2.21a is removed

hence degenerating to the one of Fig. 2.20. The even admittance of the resonator Yre

and the S11e result to be:

Yre = jω0C
∆ω

ω0
(2.73a)

S11e =
1− jQe(∆ω/ω0)
1+ jQe(∆ω/ω0)

(2.73b)
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Figure 2.21: Equivalent circuit for external loaded resonator
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The odd mode is obtained through an electric wall that implies a shorted circuit at

the plane of symmetry. In this case the half of the resonator is excluded by the short

circuit and the admittance and reflection are obtained straightforward:

Yro =∞ (2.74a)

S11o = −1 (2.74b)

The S21 can be also calculated as combination of the even/odd part of the S11 as [33]:

S21 =
1

2
(S11e − S11o) =

1

1+ jQe(∆ω/ω0)
(2.75)

that in magnitude results to be:

|S21| =
1√

1+ (Qe(∆ω/ω0))2
(2.76)

An example of such resonator is shown in Fig. 2.21b implemented in rectangular

waveguide of cross-section dimensions a and b (not shown in the figure). The length

of the resonator is indicated with lr while the aperture of the external iris with we

terms. The response is shown in Fig. 2.21c. When the deviation from the central

frequency is ∆ω = 0 there is maximum transmission because the eq. (2.76) leads to

|S21| = 1. Now consider the band edges ω1 and ω2 where the eq. (2.76) becomes

|S21| = 1/
√
2, the denominator of the eq. (2.76) is of the form:

Qe
∆ω±
ω0

= ±1 (2.77)

By the introduction of the 3dB bandwidth having edges ω1 and ω2 as shown in

Fig. 2.21c, it can be also expressed as function of the definition of eq. (2.77) as:

∆ω3dB = ∆ω+ −∆ω− = 2
ω0
Qe

(2.78)
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The derivation carried out for the doubly loaded resonator has been conducted fol-

lowing a procedure that is very similar to the one for a singly loaded resonator. Thus

it is necessary to correct eq. (2.78) in order to take into account also the port on the

other end of the resonator. The expression of the external quality factor is given as:

Q ′e =
Qe

2
=

ω0
∆ω3dB

(2.79)

As it was for the extraction of the coupling between a pair of internal resonator,

eq. (2.79) can be used to create curves of the Qe for several values of external coupling

dimensions. Again, it is important to stress that a variation of the dimensions of the

external coupling causes a deviation of the central frequency of the resonator. Hence

also the parameter lr is also to be adjusted in order to tune the cavity on the correct

centre frequency.

2.7 power handling capability

In this study the main application for the Butler matrix with filtering is after the

bank of PAs to replace the baseline of ONET plus bank of BPFs for satellite RF pay-

loads. Although this is not the only application possible for this kind of network, the

attention here will be devoted to the study of the structure of Fig. 2.17b. From this it

is clear that the network that will be developed in the next chapters will operate in

high power condition because it will be cascaded to the amplifiers. Also, an application

for space means that the device may work very close to a perfect vacuum condition.

There are 3 main phenomena to consider for these kind of applications [77]:

• Multipactor1,

• Corona discharge and

1 In some publications, many written in American-English, it is also referred as multipaction
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Figure 2.22: Parallel plate multipactor model

• PIM.

Although in this work only the multipactor effect will be considered for some of the

structures proposed, here are also briefly mentioned corona and PIM

Multipactor has been seen for the first time in the 1934 by Farnsworth during the

early investigations on television to produce an image on the screen [78, 79]. In

satellite communication it is a disruptive phenomena as it can cause a distortion of the

signal, damage to the components or even to a fatal breakdown [80, 81]. It happens

when a population of electrons is accelerated between two (conductive) walls of a

resonant cavity in vacuum condition. The multipactor hence refers to the condition

in which the avalanche of electrons is self sustained [82]. Fig. 2.22a is a schematic

of the initial population of electrons (in the figure is shown one single electron for
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instance) in a cavity with two parallel conductive plates at resonance. The accelerated

electrons impact the other material with a certain speed V , energy e and angle θ.

Depending on the combination of these parameters, the properties of the material, the

resonance frequency f0 and the gap distance d, a Secondary Electron Emission (SEE)

can result in more free electrons introduced in the structure. The incident electrons are

also called primary electrons, while the one caused by the SEE are secondary electrons.

Fig. 2.22b shows an electron at the impact with the surface of the wall that is causing

a secondary emission of 2 new electrons. The SEE can be responsible of an avalanche

effect of electrons with the result of multiplication causing a discharge between the

two walls. The effects of the SEE are shown in Fig. 2.22c where the population is

higher with respect to the initial moment. It is a stochastic phenomena that can

be predicted using numerical techniques. For each incident angle θ it is possible

to measure the average ratio of secondary over primary electrons as function of the

energy and the material: this is called Secondary Emission Yield (SEY) and it is a

fundamental parameter when choosing the material for a specific application. An

example of SEY for Aluminium is shown in Fig. 2.23. Note that to have a complete

view of the SEY property of a material it is necessary to vary the incident angle θ,

hence creating a set of functions. In Fig. 2.23 is the representation when θ = 0°

only. Recently, have been presented techniques to deposit particular coatings over

the internal material with the aim to introduce a microscopic surface roughness to

reduce the avalanche of electrons, leading to an SEY < 1 for all incident angles [84,

85]. However these methods are still experimental, but the preliminary results are

promising.

There are several ways to predict multipactor on an RF components. One is to cal-

culate the voltage in the critical parts and then using the multipactor tool provided

by ESA [86]. This tool works on comparison between measured data/background/

and numerical techniques with electrons accelerated between two parallel plates and

a Common Wave (CW) input signal. It can be shown that this is a worst case as
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Figure 2.23: SEY of Aluminium for θ = 0° [83]

the population of electrons is not supposed to move to other non-resonating areas

or with wider gaps. Due to the stringent and demanding requirements of modern

telecommunication satellite, the need for more available signal power might clash

with a too conservative multipactor prediction, leading to time consuming and ex-

pensive re-design of the devices which do not meet the power level requirements.

Thus it is essential to double check the multipactor breakdown levels with more ad-

vanced software like Spark3D [83] and CST Particle Studio [74]. It is also essential

to report that the properties of the material change over time and margins are to be

applied over the multipactor threshold calculated with the simulators [86]. Hence

governmental institutions such as ESA have defined the European Cooperation for

Space Standardisation (ECSS) standard that introduces a margin of 9dB over the mul-

tipactor discharge required by components operating at high power. This might put

an additional challenge over the design of the devices. To reproduce and test mul-
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tipactor in the laboratory it is necessary to include a radioactive or ionised source of

electrons into a vacuum chamber as normally there are not free electrons on earth.

The Corona discharge occurs at higher pressure with respect multipactor and it

is responsible for ionisation of the gas around a charged surface. The phenomena

of Corona is when there exists an avalanche of electrons that transforms the isolating

gas into conducting plasma, thus generating a discharge [77, 87]. The breakdown may

happen to terrestrial RF devices as well as for space components those that are active

during the launch, hence operating at higher pressures with respect the nominal,

nearly vacuum, condition in space. Also for corona, there exists commercial software

capable to simulate the discharge occurrence through numerical methods [83].

PIM is a phenomena that cannot be predicted in advance and mainly depends

on the mechanical structure of the components and material. The name stands to

remind that the result in the frequency domain is similar to those of intermodulation

products typically generated by amplifiers. However, it can be observed that also

passive components might produce lower level of intermodulation, thus it is referred

to passive intermodulation, or PIM. The causes for this may be several, for example

thin layers of oxide on the conducting surfaces, micro-cracks of the metal structure or

by the presence of external dirty and particles [80]. These are responsible for micro-

voltages that concur to localised currents, that all summed produce visible levels of

PIM. It is useful to mention that for some specific cases there are techniques that can

be adopted in order to reduce or minimise the level of PIM, as shown in [88].
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Q U A D R AT U R E H Y B R I D S B A S E D O N

R E S O N ATO R S

Conventional Butler matrices, used as combining and splitting stages in MPAs, are

mainly based on several 90° hybrid couplers. These conventional components are

all based on transmission lines, hence, in this chapter the synthesis and properties

of quadrature hybrids based on coupled resonators is investigated. Initially an in-

troduction to hybrid couplers based on transmission lines is presented. The hybrids

couplers are discussed initially for the basic 2-branch case and later extended to mul-

tiple branches. Then a technique to obtain an equivalent circuit based on resonators

called equivalence technique is introduced. The study is focused then on the defini-

tion on polynomials for a generic quadrature hybrid based on resonators in order to

demonstrate the possibilities and limitations of this configuration. At the end, the

2-branch quadrature hybrid coupler is implemented in a 3D structure to create a 4× 4

Butler matrix with filtering included.

3.1 basic concepts of the 90° hybrids

The basics concepts of a 2× 2 quadrature coupler based on transmission lines is

introduced in this section.

The schematic of the basic 2 × 2 quadrature hybrid coupler is shown in Fig. 3.1.

It is formed by two pairs of parallel transmission lines of same length and given

impedance. The impedances for the straight through lines are indicated in Fig. 3.1

with letter b1 while a1 and a2 are the ones for shunt lines. The impedance of the

62
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Figure 3.1: Schematic of 90° hybrid coupler

input line is indicated with Z0 while the load is ZL. In the figure the input ports are 1

and 4 while the outputs are 2 and 3. Also, when dealing with directional couplers it

is common to identify ports with some special name: port 1 can also be called input,

port 2 the through, port 3 the coupled and port 4 the isolated [30]. The following 3

quantities are usually used to characterise the coupler performance

Coupling = −20 log10 |S31| (3.1)

Directivity = 20 log10
|S31|

|S41|
(3.2)

Isolation = −20 log10 |S41| (3.3)

In addition to the above, the Voltage Standing Wave Ratio (VSWR) is an important

figure used in many technical documents:

VSWR =
1+ |S11|

1− |S11|
(3.4)

In its usual form this circuit equally splits the input power among the outputs while

provides a phase shift of the output signals of 90°. For this basic example the synthesis
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will be carried out for a symmetric device, hence a1 = a2 and Z0 = ZL = 1. The

scattering matrix takes this form

S =
−1√
2



0 j 1 0

j 0 0 1

1 0 0 j

0 1 j 0


(3.5)

This result is obtained at centre frequency when the normalised impedances of the

hybrid of Fig. 3.1 are b1 = 1/
√
2 and a1 = a2 = 1 [30]. The electrical length of

the transmission lines is 90° for all of them, hence the physical length is l = λg/4

as shown in Fig. 3.1. Due to the symmetries of the hybrid it is possible to analyse

it with the even/odd mode method [30, 72, 89–91]. With this approach a magnetic

and electric walls split the shunt transmission lines in two, thus resulting in stubs

of length of λg/8 with an open or short circuit at the end depending if evaluating,

respectively, the even or odd mode. The stubs can be seen as a shunt admittance Y

while the straight through lines as normal quarter-wavelength transmission lines. The

ABCD matrix of a shunt admittance Y is defined as:A B

C D


shuntY

=

1 0

Y 1

 (3.6)

In this case is Y = jY0 tan(βl) where β is the propagation constant defined as:

β =
2π

λg
(3.7)
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and Y0 is the characteristic admittance of the line. On the other hand, the ABCD

matrix of just a piece of transmission line is

A B

C D


line

=

 cos(βl) jZ0 sin(βl)

jY0 sin(βl) cos(βl)

 (3.8)

The ABCD matrices have been introduced here because it is very convenient to model

the single elements of the hybrid in this way and it is also possible to build one half

of the circuit of Fig. 3.1 by cascading the matrices of eq. (3.6) and (3.8). Two separate

ABCD matrices are obtained for the even and odd mode respectively. For the even

mode the ABCD isAe Be

Ce De

 =

 1 0

ja1 tan θs 1


 cos 2θs jb1 sin 2θs

j
b1

sin 2θs cos 2θs


 1 0

ja2 tan θs 1

 (3.9)

while for the odd mode the stubs are loaded with a short circuit:

Ao Bo

Co Do

 =

 1 0

a1
j

cot θs 1


 cos 2θs jb1 sin 2θs

j
b1

sin 2θs cos 2θs


 1 0

a2
j

cot θs 1

 (3.10)

Note that in eq.s (3.9) and (3.10) the argument of the trigonometric function has been

substituted with the electrical length θs of the shunt stubs [92]. In this way it is

possible to calculate all the parameters with respect to an independent frequency

variable. Clearly it must be that

0 6 2θs 6
π

2
(3.11)
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Figure 3.2: Frequency response of the conventional 2× 2 quadrature hybrid

in order to avoid repetition of the response. S11 and S21 of the even/odd modes are

obtained from the ABCD matrix with the following relations [30]

Se ,o
11 =

Ae ,o + Be ,o − Ce ,o − De ,o

Ae ,o + Be ,o + Ce ,o + De ,o
(3.12)

Se ,o
21 =

2

Ae ,o + Be ,o + Ce ,o + De ,o
(3.13)

Finally the scattering parameters are given as:

S11 =
Se11 + S

o
11

2
(3.14a)

S21 =
Se21 + S

o
21

2
(3.14b)

S31 =
Se21 − S

o
21

2
(3.14c)

S41 =
Se11 − S

o
11

2
(3.14d)

The result of this analysis is the magnitude of the transfer function shown in Fig. 3.2a.

At f0 there exists perfect isolation and input match while the output power is equally

divided between ports 2 and 3. The x-axis of both graphs of Fig. 3.2 is the frequency,

although the equivalent notation in terms of θs can be used as in appendix A. In

this practical case it is possible to note how the quarter-wavelength transmission line
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A

B

θ1θ2

Figure 3.3: The phase difference between two signals A and B is the angular aperture of the
minimum arc between them on the circumference.

guarantees a usable bandwidth of around 10% and usually limited to a maximum of

20% as shown in Fig. 3.2a [30]. All the characteristics also converge to −6dB at 0 and

2f0. fig. 3.2b shows the difference in phase between output ports 2 and 3. Note that

here and in the following of this work the phase difference is defined as the angle of

the minimum arc between two points on a circumference shown in Fig. 3.3. If θ1 is

the phase of the first signal (ie. A in Fig. 3.3) and θ2 is of the second one (ie. B in

Fig. 3.3), assuming that θ1, θ2 ∈ [0, 2π], then the phase difference is defined as

∆θ =


|θ2 − θ1 | if |θ2 − θ1 | 6 π,

2π− |θ2 − θ1| if |θ2 − θ1| > π
(3.15)

As consequence of this definition the phase difference may vary between 0° and 180°.

In Fig. 3.2b it is possible to see that in the range of a 20% FBW the drift of the phase

with respect the nominal 90° is about ±1.5°.

In order to overcome the limitation of bandwidth more branches are included in

the design of the quadrature hybrid coupler [92]. A schematic with n branches and

n− 1 straight lines is shown in Fig. 3.4. This structure is also called Branch-Guide

Coupler (BGC). Again, all the transmission lines here are quarter-wavelength, al-

though the several shunt and straight through elements permit a more complex syn-

thesis of the response capable to produce a given transfer function. The synthesis
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Figure 3.4: Schematic of a multi-branch 90° hybrid coupler

of BGC providing Butterworth or Tchebycheff response was introduced in [92] for

symmetric networks and in [93] for an arbitrary load. In appendix A on page 197

the detailed synthesis technique as well as some examples are presented. Also, the

synthesis of a BGC giving a Zolotarev transfer function was presented in [94]. Note

that regardless the number of branches, the synthesis is based on calculating the char-

acteristic impedance of each transmission line, both shunt and straight. There are 4

key parameters involved in the synthesis of any BGC:

n is the number of branches. It must be n > 2 for Butterworth response and n > 3

for Tchebycheff/Zolotarev transfer functions;

K is a parameter that controls the output coupling value;

θc is the cut-off of the Tchebycheff coupler;

R is the output impedance normalized with respect the input one. For symmetric

couplers it is R = 1.

All these parameters are related to each other and influence the electrical response. If

only one of these parameters is changed, then it is necessary to modify the others in

order to meet the specifications. The analysis of the response once the impedances

ai and bi are calculated, is performed in a similar way to the hybrid of Fig. 3.1. To

generalise the procedure of extraction of the electrical parameters, it is convenient to

define the transmission matrices for the shunt stub and straight line. The stubs are



3.1 basic concepts of the 90° hybrids 69

influenced either by the magnetic or electric wall are placed at the symmetry plane of

the circuit, hence there are two sets of equations:

Ae Be

Ce De


stub

=

 1 0

jai tan θs 1

 = T es (ai) (3.16a)

Ao Bo

Co Do


stub

=

 1 0

− jai cot θs 1

 = T os (ai) (3.16b)

The straight through line is not affected and can conveniently be defined as the fol-

lowing:

A B

C D


line

=

 cos 2θs jbi sin 2θs
j
bi

sin 2θs cos 2θs

 = Tl(bi) (3.17)

The even/odd transfer matrices are calculated recursively following the structure of

multi-branch coupler shown in Fig. 3.4 by combination of the eq.s (3.16) and (3.17) as:

Ae ,o Be ,o

Ce ,o De ,o


BGC

=

[
n−1∏
i=1

(Te,o
s (ai)× Tl(bi))

]
× Te,o

s (an) (3.18)

The scattering parameters are calculated combining eq. (3.18) into eq.s (3.12) and

(3.13), and finally into set of eq.s (3.14). Clearly the eq. (3.18) may also be applied to

the simple 2-branch coupler. Following the synthesis procedure shown in appendix A,

an example of a symmetric 7-branch Tchebycheff coupler with K = 50, cut-off θc = 35°

is shown. The values of impedances ai and bi are shown in Tab. 3.1. For consistency

with previous technical documents, where usually the values of the transmission lines

are expressed as normalised admittances, the table shows both representations. The

scattering parameters are then calculated with eq. 3.18 and final results are shown in

Fig. 3.5. The schematic of the circuit with indication of the immittances is shown in
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Figure 3.5: Branch-guide coupler equal-ripple Tchebycheff transfer function with n = 7, K =
50, θc = 35° and R = 1
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Table 3.1: Normalised characteristic immittances for 7-branch Tchebycheff hybrid coupler n =
7, K = 50, R = 1 and θc = 35°.

Element Shunt line ai Straight line bi
(i) (Ω) (S) (Ω) (S)

1 28.8474 0.0347 0.9361 1.0683
2 5.6115 0.1782 0.7241 1.3811
3 1.6896 0.5918 0.5209 1.9199
4 0.9973 1.0027 0.5209 1.9199
5 1.6896 0.5918 0.7241 1.3811
6 5.6115 0.1782 0.9361 1.0683
7 28.8474 0.0347

Fig. 3.5a. Fig. 3.5b is the magnitude response of the 3dB hybrid coupler with n− 1

poles of the Tchebycheff transfer function. Note that in this figure the characteristics

are shown with the equivalent representation in term of electrical length θs instead of

the frequency. This is for better clarity, although the two notations are related by

f = f0
θs

45°
(3.19)

It is possible to show that the degree of the polynomial for an n-branch hybrid is

always n − 1 [92]. The FBW for this example is more than 45% due to the greater

number of branches and because of the value of cut-off θc. The difference of output

phase of Fig. 3.5c also confirms the greater bandwidth. Finally the value of the dir-

ectivity in Fig. 3.5d and of the VSWR in Fig. 3.5e are shown. Note that in the interval

θs = 45°± 10° the VSWR is almost flat and constant close to 1. It is important to stress

that the cut-off variable θc defines the interval of frequencies in which the return loss

is equal-ripple: the inferior and superior band edges are, respectively, θc and 90°− θc,

hence the bandwidth is:

BBGC = 90° − 2θc (3.20)

The impedances shown in Tab. 3.1, are made in practice by the connection of two

main lines of several transversal coupling elements. The dimensions of all the lines,
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that theoretically are all quarter-wavelength, should be optimised with a full-wave

simulator in order to take into account the discontinuity of the straight and shunt

lines [95–97]. Alternatively, the 3D physical implementation of the BGC is possible

through a rigorous characterisation of the EM fields as shown in [98].

3.2 the equivalence method

The equivalence method is used to relate the hybrid based on transmission lines to

an equivalent circuit based on resonators in order to include a filtering transfer func-

tion. The theory of the BGC, both for the synthesis and design is well established and

it provides broad-band or at least very wide-band responses (as seen, always more

than 10%). Also, the behaviour out of band is not selective because of the intrinsic

repetition of the magnitude of the electrical characteristic and the convergence of all

parameters (RL, coupling and isolation) to the value of −6dB [30]. If any sort of fre-

quency selectivity is required, it has to be added by including separate filters, hence

leading to large bulky equipment. Here a solution to include the filter transfer func-

tion into an hybrid is explained. It should be noted that the method presented here

is to synthesise a 2× 2 network based on coupled resonators capable of providing

filtering as well as the traditional power splitting and phase distribution of the hybrid.

However in literature there are available different techniques that use transmission

line hybrid couplers to incorporate filtering [99, 100]. These methods are not applic-

able to the problem of interest as they address 2 ports devices or 1-input to multiple

output power network distributions. In the following, all the methods proposed will

address the synthesis of the coupling matrix of multi-port, multi-resonator networks.

The synthesis of the coupling matrix of a 2-branch, 90° hybrid coupler with filtering

was first presented in [101] and later in [102–104]. This method is called equivalence

technique here because of the direct relation between the values of the coupling matrix
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Figure 3.6: Equivalent circuits for a transmission line

and the characteristic impedances of the BGC at the central frequency. An equivalent

way to describe the through transmission line of Fig. 3.6a is through its ABCD matrix:

A B

C D


line

=

 cosβl jZ01 sinβl

(j/Z01) sinβl cosβl

 (3.21)

where l is the length of the line and Z01 is the characteristic impedance. The wave

signal is supposed in propagation hence that Z01 is real. It is well known [30], that

any line can be modelled by the π network of lumped elements as in Fig. 3.6b. In this
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case the ABCD matrix of Fig. 3.6b is derived as the multiplication of the matrices of

the single capacitors and inductors:

A B

C D


line,lumped

=

 1 0

jωC01 1

×
1 jωL01

0 1

×
 1 0

jωC01 1



=

 1−ω2L01C01 jωL01

2jωC01 − jω3L01C201 1−ω2L01C01

 (3.22)

where ω = 2πf. The values of the lumped elements L01 and C01 are calculated com-

paring the matrices of eq.s (3.21) and (3.22). The following important relations are

obtained:

L01 =
Z01 sinβl

ω
(3.23a)

C01 =
1

ωZ01

√
1− cosβl
1+ cosβl

(3.23b)

The present study is focused on BGC and it is known that they are composed by

quarter-wavelength transmission lines. It derives that βl = 90° and, consequently, the

above relations reduce to

L01 =
Z01
ω

(3.24a)

C01 =
1

ωZ01
(3.24b)

Considering now a circuit based on synchronously tuned, mutually coupled resonat-

ors, each coupling can be conveniently expressed with a K or J inverter. Fig. 3.6c is the

π network of capacitors that implements the inverter J = jωCm as shown in Fig. 2.7b

and Fig. 2.8b. Here the equivalence has to be made between the transmission line and

the model of coupling loaded by parallel resonators of Fig. 3.6d. At centre frequency

the behaviour of the two parallel resonators is of an open circuits, thus the comparison

is made directly between the π network of capacitors of Fig. 3.6c and the transmission
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line of Fig. 3.6b. The comparison is made in terms of transfer matrices. The ABCD

matrix of a transmission line of eq. (3.22) at ω = ω0 reduces to the following

A B

C D


line,lumped;ω=ω0

=

 0 jω0L01

jω0C01 0

 (3.25)

This is then equate with the transmission matrix of the J inverter

A B

C D


J;ω=ω0

=

 0 ± j
ω0Cm

±jω0Cm 0

 (3.26)

Finally it is possible to establish a direct relation between the element of the inverter

Cm and the characteristic parameter C01. Equating the eq. (3.26) with the eq. (3.25)

and then with the definition of eq. (3.23), the following relation is derived

Cm = C01 =
1

ω0Z01
(3.27)

Right now it as been found the relation between the value of the capacitor of the

π lumped elements of the inverters with a quarter-wavelength transmission line of

characteristic impedance Z01. This circuit is exactly representative of the one loaded

with resonators only at ω0. From this point it is convenient to recall the definition of

electric coupling of eq. (2.53) as it describe well the coupling structure of Fig. 3.6c

ke =
Cm

C
=

1

ω0CZ01
(3.28)

the relation of the Cm found in eq. (3.27).

The equivalence between a generic quarter-wavelength transmission line of arbit-

rary characteristic impedance and the coupling coefficient between two resonators has

been obtained through eq. (3.28). The same procedure is applied to all the transmis-

sion lines of Fig. 3.1. Finally the 90° hybrid coupler can be equivalently represented



3.2 the equivalence method 76

Qe M12 Qe

M34 QeQe

M23M41

1 2

34

1 2

34

Figure 3.7: Hybrid based on coupled resonators

with the circuit based on resonators of Fig. 3.7: in this figure the black filled circles are

the resonators while the solid lines are the coupling between them. The output ports

are indicated with numbers inside circles. Each resonator is numbered, and above

each coupling line is the corresponding element in the coupling matrix. In this figure

the external couplings are also indicated by means of their external quality factor Qe.

This is a convenient way to express the elements of the circuits because the definition

of external quality factor of eq. (2.59)

Qe = ω0CZ0 (3.29)

The characteristic impedance of the straight though lines is Z01 = b1Z0 hence the

coupling between resonators 1 and 2 and the one between resonators 1 and 4 are

M01 =M34 =
1

Qeb1
=

√
2

Qe
(3.30a)

M41 =M32 =
1

Qea1
=
1

Qe
(3.30b)
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Figure 3.8: Frequency response of the conventional 2× 2 quadrature hybrid based on coupled
resonators

In the band-pass domain Qe can be approximated to the inverse of the FBW [20].

Thus in the low-pass domain the value of Qe is unitary. The coupling matrix for the

structure is

M =

P1 P2 P3 P4 1 2 3 4

P1 0 0 0 0 1 0 0 0

P2 0 0 0 0 0 1 0 0

P3 0 0 0 0 0 0 1 0

P4 0 0 0 0 0 0 0 1

1 1 0 0 0 0
√
2 0 1

2 0 1 0 0
√
2 0 1 0

3 0 0 1 0 0 1 0
√
2

4 0 0 0 1 1 0
√
2 0

(3.31)

The coupling matrix of the circuit of Fig. 3.7 can be defined by blocks, hence the mat-

rix of the couplings between external ports is 0 as there is no coupling between them.

The matrix between external ports and internal resonators is the identity I4 as shown

in Fig. 3.7, while the one for internal resonators is set by eq.s (3.30). The response
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of the coupling matrix of eq. (3.31) is shown in Fig. 3.8a while the output phase dif-

ference is shown in Fig. 3.8b as function of the low-pass frequency variable Ω. From

both figures it is possible to notice that at the centre frequency (Ω = 0) there exists

a perfect direct relation between the model based on resonators and the one based

on transmission lines: the output power split is equally distributed among ports 2

and 3, the RL and isolation are 0 and the output phase shift is exactly 90°. This is a

consequence of the synthesis procedure that produces an equivalence between the ele-

ments of the coupling matrix and the impedances of the model based on transmission

lines. Note that the configuration with resonators introduces a filtering characteristic

as |S11| tends towards the level of 0dB in the out band while the other parameters

shows a sort of skirt rejection characteristic at the same frequencies. Naturally the

assumption made during the synthesis was made only at the centre frequency and

polynomials of the transfer function not defined for a broader bandwidth. However it

is important to remember that in the band-pass domain theQe controls the bandwidth

of the component, hence the frequencies where there exists an almost constant equal

power splitting can be varied in accordance to the physical limitations of the coupling

structure. Also, the selectivity of the 2 transmission parameters S21 and S31 is not the

same as it appears to be higher for the latter. Finally it is observed a transition around

the frequency points Ω = ±2 where the characteristic is not monotonic.

This example shows that inclusion of filtering characteristic into an hybrid coupler

made by means of resonator is possible. However additional study is necessary to

improve the electrical response and eventually to provide a prescribed IL level over a

bandwidth.
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3.3 extension to multiple branches

The synthesis of the coupling matrix of the hybrid based on resonators through

the equivalence technique can be extended to the case of multiple branches [105].

The idea is to exploit the wider bandwidth provided by the BGC together with the

filtering selectivity given by the resonators. The equivalence method can be used

Qe
1

M2n,1

M21
2

M2n−1,2

n
Qe

Mn+1,n

n+ 1
Qe2n− 1

M2n,2n−1

2n
Qe

1 2

34

Figure 3.9: General schematic of BGC based on resonators

again to calculate the coupling matrix of the BGC based on resonators of Fig. 3.9. In

the figure n is the number of branches, thus there are a total of 2n resonators. The

rest the structure of Fig. 3.9 is very similar to the one for 2 branches. The labels of the

couplings between internal resonators and Qe are indicated in Fig. 3.9. The procedure

begins first with the calculation of shunt and straight through line impedances ai

and bi with the synthesis described in [92] and in appendix A. The formulas for the

coupling matrix are:

M
(i)
shunt =

1

Qeai
i = 1, . . . ,n (3.32a)

M
(j)
straight =

1

Qebj
j = 1, . . . ,n− 1 (3.32b)

Qe ≈
1

w
(3.32c)

Note that here n indicates the number of branches while ai and bj are normalised

characteristic impedances. Thus the total number of resonators in this circuit is ṅ =

2n.
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Table 3.2: Elements of the 5-branch Tchebycheff hybrid coupler based on resonators. Synthesis
parameters are n = 5, K = 22, R = 1, θc = 35° and Qe = 1.

Element i ai bi M
(i)
shunt M

(i)
straight

1 8.4162 0.8401 0.1188 1.1903
2 1.8102 0.5930 0.5524 1.6863
3 0.9288 0.5930 1.0767 1.6863
4 1.8102 0.8401 0.5524 1.1903
5 8.4162 0.1188

As an example, following this method, a new BGC based on resonators is calculated

with the following specifications: n = 5, K = 22, symmetric with R = 1 and exhibiting

a Tchebycheff response with cut-off θc = 35°. First the impedances of the model based

transmission lines are obtained, later the coupling elements, shunt and straight lines,

are calculated with eq.s (3.32). The results are summarised in Tab. 3.2. Based on these

results the response is shown in Fig. 3.10. The scattering parameters of the 5-branch

BGC based on transmission lines are shown in Fig. 3.10a, while the output phase

difference in Fig. 3.10b. From the impedances the coupling coefficients are calculated

directly as shown in the Tab. 3.2 with the magnitude of scattering parameters shown

in Fig. 3.10c and the output phase difference in Fig. 3.10d. Many differences can

be noticed between the magnitude of scattering parameters of the transmission line

version and the one based on coupled resonators. The theory of the equivalence

technique is valid only at centre frequency, hence only at Ω = 0 it is possible to

observe an equal power distribution and quadrature output phase shift. The rest of

the response shows peaks and ripples that degrade the filtering response. Also, the

output power division and phase shift are not constant over a bandwidth.

To overcome this problems an optimisation of the elements of the coupling matrix

has been done in order to improve the electrical response of the model based on

resonators. Note that from now the coupling matrix is not shown explicitly as its

relevant elements are shown in the form included in Tab. 3.2. An optimisation is

performed through an optimising routine which operates an algorithmic procedure

over a set of variables in order to reduce a cost function. The optimisation algorithm
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Figure 3.10: Frequency response of 5-branch BGC based on transmission lines and on reson-
ators.
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used here is the gradient-based to find the local minima while the starting variables

are the coupling coefficients of straight and shunt elements shown in Tab. 3.2. The

cost function developed calculates the difference of magnitude parameters between

the model based on transmission lines and the one based on resonators. It can be

defined as follows:

Err =
∑
f∈P

{∣∣∣|S(t)11 (f)|− |S11(f)|
∣∣∣2+ ∣∣∣|S(t)21 (f)|− |S21(f)|

∣∣∣2+
+
∣∣∣|S(t)31 (f)|− |S31(f)|

∣∣∣2 + ∣∣∣|S(t)41 (f)|− |S41(f)|
∣∣∣2} (3.33)

where P is a set of equally distributed frequencies in the operational bandwidth and

S(t) are the theoretical scattering parameters calculated with the standard technique

for transmission lines. Naturally, as there is a different type of normalised frequency

between the model based on resonators and the one with transmission line, the fre-

quency should be mapped using the eq. (3.19). The shunt and straight couplings of

the example shown for 5 branches are optimised with the cost function of eq. (3.33)

obtaining the following values:

M
(i)
shunt,opt = {0.0142; 0.3403; 0.8134; 0.3403; 0.0142} (3.34a)

M
(i)
straight,opt = {0.9811; 1.0208; 1.0208; 0.9811} (3.34b)

The optimised response is shown in Fig. 3.11. The optimisation is able to define an op-

erational bandwidth where the coupler based on resonators exhibits almost constant

properties. In the band |Ω| 6 1 the magnitude of S31 is in the range between −2.6dB

and −3.25dB. The return loss and isolation shows a ripple behaviour below −20dB

while the output phase difference is 90° with ripples that are inside ±0.6°. However,

it is also important to notice that in the magnitude there are still two peaks outside

the band. The degree of freedom for the optimiser can be increased by increasing the

number of branches of the coupler.
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Figure 3.11: Optimised frequency response of 5-branch BGC based on resonators.

Table 3.3: Elements of the 7-branch Tchebycheff hybrid coupler based on resonators. Synthesis
parameters are n = 7, K = 50, R = 1, θc = 35° and Qe = 1.

Element i ai bi M
(i)
shunt M

(i)
straight M

(i)
shunt,opt M

(i)
straight,opt

1 28.8474 0.9361 0.0347 1.0683 −0.0696 0.8756
2 5.6115 0.7241 0.1782 1.3811 −0.0292 0.7128
3 1.6896 0.5209 0.5918 1.9199 0.3509 1.0783
4 0.9973 0.5209 1.0027 1.9199 1.1956 1.0783
5 1.6896 0.7241 0.5918 1.3811 0.3509 0.7128
6 5.6115 0.9361 0.1782 1.0683 −0.0292 0.8756
7 28.8474 0.0347 −0.0696

The same 2-step technique can be applied to the example of 7-branch coupler of

Fig. 3.5. As before, the initial values of the shunt and straight couplings are calculated

with formulas of eq.s (3.32) and then optimised with the cost function of eq. (3.33).

The table of impedances and coupling coefficients is updated in order to accommod-

ate two additional columns for the optimised values as shown in Tab. 3.3. The

starting point, calculated through eq.s (3.32), of the resonant hybrid is shown for the

magnitude in Fig. 3.12b and for the output phase shift in Fig. 3.12c. The schematic

is shown in Fig. 3.12a with indicated the coupling of the straight lines as Mi
st and

the ones of shunt couplings as Mi
sh, where i is the number of the element. This

example demonstrates a more complicated is the response of with an higher num-

ber of branches. Again, the perfect match of the equivalence technique is granted
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Figure 3.12: Starting point and optimised frequency response of 7-branch BGC based on res-
onators. Initial synthesis parameters are n = 7, K = 50, R = 1, θc = 35° and
Qe = 1.
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only at centre frequency. The optimisation shown in Fig. 3.12d for the magnitude,

and in Fig. 3.12e for the output phase represent a significant improvement with re-

gard the starting point. Inside the operation bandwidth of the optimised version it

is possible to recognise an almost equal power splitting as the |S31| is in the range

between −2.75dB and −3.17dB. The return loss shows 5 poles in the in-band with a

RL and isolation better than 22dB. Also the output phase characteristic shows good

performances as the drift from the nominal level of 90° is of ±0.5°. Also for this case,

two peaks are visible in the out-band of the magnitude response. The negative val-

ues shown in the column of the shunt coefficients of Tab. 3.3 are responsible for the

appearance of TZs.

The procedure shown so far for the synthesis of BGC based on resonators is not able

to provide a filtering response able to give a fully Tchebycheff (or Butterworth) transfer

function. The optimisation of the coupling matrix improves the electrical responses,

however the relation governing the RL, the number of visible poles and the out-band

peaks is not known. It is important to underline that with the method proposed,

there are no assumptions made on the characteristic required and no polynomials

have been used for the derivation of the transfer function. It is also clear that there is

not a direct relation between the number of visible poles of the magnitude response

and the degree (number of resonators) of the network, as it is with conventional filters.

Thus, a more complex synthesis technique needs to be investigated. This is stated in

the next section.

3.4 polynomials based synthesis

This section is focused on the definition of a new set of characteristic polynomials

in order to force the transfer function of the filter to comply with the requirements

of bandwidth, selectivity and RL. It will be shown that it is not possible to define a-
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priori a set of polynomials because of the limitations of general synthesis techniques

for multi-port circuits. In the following section a more detailed explanation on why

the problems encountered here will be addressed.

Once the polynomials are defined, the procedure described in appendix B is ap-

plied in order to get the coefficients of the coupling matrix. The following iterative

procedure [40, 58] is used to find the characteristic polynomials taking into account

the particular symmetries of the circuit. The scattering parameters can be expressed

as a ratio between a numerator and a common denominator:

S11 =
F(s)

E(s)
(3.35a)

S21 =
P(s)

ε1E(s)
(3.35b)

S31 =
Q(s)

ε2E(s)
(3.35c)

S41 =
X(s)

E(s)
(3.35d)

Among the main characteristics of the 90° hybrid coupler are:

1. perfect isolation at port 4,

2. output phase shift of 90°.

Thus, the following simplifications can be applied to the polynomials of eq. (3.35):

X(s) = 0 (3.36a)

Q(s) = j
√
αP(s) (3.36b)

where the term α controls the output power splitting ratio. Combining the simplifica-

tions of eq.s (3.36) into the scattering polynomials of eq. (3.35), the loss-less condition

is defined as

F(s)F∗(−s) +
P(s)P∗(−s)

ε21
+α

P(s)P∗(−s)
ε22

= E(s)E∗(−s) (3.37)
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Table 3.4: Coefficients of the new set of rational scattering polynomials

Degree of s E(s) F(s) P(s) Q(s)

2 1 1

1 4.0967 0

0 8.8914 0.5 j 1

The value of the ripple constants are directly derived from eq. (3.37) and they have

the form [58]:

ε1 =

√
1+α

10−Lr/10 − 1
·
∣∣∣∣P(s)F(s)

∣∣∣∣
s=±j

(3.38)

ε2 =

√
1+α

α(10−Lr/10 − 1)
·
∣∣∣∣P(s)F(s)

∣∣∣∣
s=±j

(3.39)

Eq. (3.37) is similar to the Feldtkeller equation for filters. In fact the polynomial

P(s) is determined directly from the position (if any) of the transmission zeros of the

response and in eq. (3.37) only 2 unknown polynomials, F(s) and E(s), are present and

to be determined. Thus, it is possible to use the same iteration technique for filters

in order to determine the element F(s) [40]. As usual, once all the polynomials have

been calculated, the common denominator E(s) is found by selecting its roots that lie

on the left-hand side of the complex plane (Hurwitz polynomial).

Here the example is given of the synthesis of the polynomials for a 2×2 hybrid with

a Tchebycheff response, 25dB RL, 2 reflection zeros and equal output power splitting.

As the result of the synthesis, the coefficients of the polynomials are listed in Tab. 3.4.

The other coefficients are obtained from eq.s (3.37), (3.38) and (3.39) resulting:

α = 1 (3.40a)

ε1 = 0.1593 (3.40b)

ε2 = 0.1593 (3.40c)

The scattering polynomials of Tab. 3.4 are shown in Fig. 3.13. The magnitude is

represented in Fig. 3.13a and it shows a perfect equal ripple at −25dB as well as
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Figure 3.13: Scattering parameters from polynomial synthesis

a perfect equal power splitting among ports 2 and 3. The output phase of ports 2

and 3 is shown in Fig. 3.13b where a 90° shift is maintained constant across all the

frequencies. So far only the scattering parameters for a signal entering from port 1

have been calculated. Due to the symmetries of the circuit it is easy to define the 4× 4

scattering matrix entirely. Let define the reflected, the through and the coupled waves

respectively with the symbols ρ, τ and γ. The final device is symmetric and exhibits

the same responses independently with respect the input port:

S =



ρ τ γ 0

τ ρ 0 γ

γ 0 ρ τ

0 γ τ ρ


(3.41)

Matrix (3.41) is built in order to keep the symmetries and the fundamental unitary

condition

SS∗ = Ip (3.42)
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where Ip is the p × p unitary matrix. It is quite obvious the relation between the

elements of matrix (3.41) and the constituting parameters of eq.s (3.35) and (3.36)

ρ = S11(s) =
F(s)

E(s)
(3.43a)

τ = S21(s) =
P(s)/ε1
E(s)

(3.43b)

γ = S31(s) = j
√
α
P(s)/ε2
E(s)

(3.43c)

The coupling matrix is directly calculated from the expression of eq. (3.41) through

the synthesis technique for multi-port circuits described in [43]. Hence, the first step

is to calculate the rational polynomials (numerators and common denominator) of

the admittance matrix. Unfortunately, there do not exist closed formulas to derive the

coefficients of admittance polynomials from the ones of Tab. 3.4 for this circuit. Thus,

the admittance matrix is found, in first instance, as a set of continues curves with the

well known relation

Y = (Ip −S)(Ip +S)
−1

Then, the Cauchy method is used in order to get the coefficients of the polynomials

[50]. Due to the symmetries of the circuit, it is possible to demonstrate the validity of

the following relations

[Y ]22 = [Y ]33 = [Y ]44 = [Y ]11 (3.44a)

[Y ]23 = [Y ]14 (3.44b)

[Y ]24 = [Y ]13 (3.44c)

[Y ]34 = [Y ]12 (3.44d)

The computed polynomials are expressed in Tab. 3.5 with common denominator

yd(s) and the numerators of the most relevant elements of the admittance matrix (the
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Table 3.5: Coefficients of the polynomials for the admittance matrix

Degree of s yd(s) Y11n(s) Y21n(s) Y31n(s) Y41n(s)

6 1

5 4.0248 2.1311
4 18.2356 7.6811 −j3.2449 −3.1536
3 34.8829 30.2821 −j12.7094 −12.7299
2 76.8292 43.8445 −j42.4119 −41.5554 j20.2034
1 44.8283 86.8289 −j59.1722 −57.5828 j38.2476
0 97.9201 4.1459 −j128.4211 −8.5620 j91.0106

others are obtained directly due to the symmetries of the network). In this table all the

coefficients are normalized to the highest degree of the common denominator since it

is preferred to have them as monotonic polynomials. It is interesting to note that the

degree of the common denominator yd(s) is 3 times the degree of the polynomials

of the scattering parameters. Moreover, the degree of yd corresponds to the number

of resonators in the resonant circuit, meaning that there will be 6 resonators in order

to implement a network with the given specifications. Another consideration is that

the coefficients of Tab. 3.5 are, for each parameters, either pure real or pure imaginary.

The direct synthesis described in [43] states that it is better to calculate the coupling

coefficients of an equivalent transversal network and then to get the final topology

through a set of matrix similarities. The main reason is that closed simple formula-

tion, relates the elements of the coupling matrix with the coefficients of the admittance

matrix are provided [44]. Among them, the elements of the diagonal matrix of the

internal couplings of the network (Mn), are the roots of yd(s). It is possible to show

that the roots of yd(s) have both a real and an imaginary part. This fact is critical

because, in order to use this theoretical technique, the frequency of the poles of the

function are supposed to be all imaginary. In Fig. 3.14 the poles/zeros diagrams of

the polynomials listed in Tab. 3.5 are shown. All the elements come in complex con-

jugate pairs and all have a real part. This fact is a major problem because it shows that

the elements of the transversal network are complex, and consequently not feasible in

practice. A correct behaviour would be with the zeros of the admittance matrix lying
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Figure 3.14: Poles (x) and zeros (o) diagram of the elements of the admittance matrix
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in complex conjugate pairs on the axis of σ = 0. Obviously, this also compromises the

coupling between internal and external nodes since they are related each other with

the residues associated to the poles of the function, hence this would also produce

complex coefficients in the coupling matrix Mpn. One approximated solution could

be to suppress the real part of the poles and the imaginary part of the residues, with a

general optimization of the coupling matrix at the end. However, the problem of the

real component of the poles has already seen in the synthesis of diplexers when the

two pass-band are very close [44]. In that case the strong interaction between the two

channels introduces the unwanted real part in the poles, leading to a further optimiza-

tion of the final coupling matrix. For the case of the diplexers, the approximation was

possible since the real part was significantly lower with respect the imaginary part,

and not all the poles had it. This fact can be understood since the interaction between

the two channels of the diplexer was relatively low. Only for very narrow guard band

the problem does begin to affect the validity of the theory [43]. For the hybrid coupler

it is possible to conclude that the interaction of the two output signals, that share the

same bandwidth, is so strong that a not negligible real part is present in each pole.

Hence, the approximation of eliminating the real part from the poles would not work

in this case because the computed result, and consequently the starting point of an

optimisation, would be very far for a gradient-based algorithm.

The problem seen here is a demonstration of one of the limitations of the general

synthesis procedure described in section 2.4. The hybrid coupler is different from

the diplexer because the transfer function for the transmission ports (ie. port 2 and

3) is the same. For this reason an a-priori definition of the polynomials without

considering the topology and characteristics of the 2× 2 hybrid based on resonators

is not possible.
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Figure 3.15: Analysis of quadruplet of resonators and ports

3.5 analysis of 4-resonator hybrid

The definition of the polynomials of the transfer function in the previous section

shows that it is not possible to make the assumption of perfect isolation and equal

transfer function made in eq.s (3.36). Moreover, the topology of the network and

the numbers of resonators were not defined at the beginning, demonstrating that a

deeper understanding of the intrinsic behaviour of the network is needed. Thus, in

this section the characteristics of the response that a quadruplet of resonators with 4

ports can produce will be studied in detail. Here, an analytical analysis will show the

constraints on the characteristic polynomials, while a novel topological method will

provide a fast way to predict the frequency response of these multi-port circuit [106].

3.5.1 Analytical analysis

The fundamental quadruplet of resonators of the hybrid coupler with filtering is

shown in Fig. 3.15a with port numbers indicated. In this figure the symmetry plane

of the structure through a dashed line is also shown. Hence, it is very convenient to
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study the response of this network with the even/odd mode superposition approach

[72]. The electromagnetic couplings can be modelled through an admittance inverter

J with the subscripts indicating the pair of resonators at the two ends of the inverter.

The model is narrow band and the inverters are considered ideal. In this way the

scattering response of the 4-port device is obtained from two simple 2-port networks

(even and odd network) through the eq.s (3.14). The network to study is shown in

Fig. 3.15b: the first inverter J1 is represented with the typical admittance inverter of

inversion parameter J1, while the resonator in the low-pass domain is represented by

a parallel of a unitary capacitor and a FIR B to take into account the asymmetries

of the response [34]. The symmetry plane of Fig. 3.15a cuts the shunt inverters in

the middle with, alternatively a magnetic or an electric wall: the inverter can be

represented by means of a π network with three capacitors shown in Fig. 2.8b with

inversion coefficient J = ωC. The symmetry plane is placed in the middle of the

π network of capacitors so the series admittance element is split in 2. For the even

mode place an open circuit at the symmetry plane as shown in Fig. 3.16a. The input

admittance is given by the contribution of the shunt element only because the other

has an open circuit at the end, so no current is flowing, giving

Yin,e = jω(−C) = −jJ (3.45)
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where the inversion parameter J = ωC has been substituted. When the odd mode is

considered a shorted circuit is placed as shown in Fig. 3.16b, the input admittance is

the parallel of the two capacitors:

Yin,o = jω(−C+ 2C) = jJ (3.46)

The shunt inverter is represented in Fig. 3.15b with a parallel admittance of value

∓jJ14 or ∓jJ23 with the sign depending on the mode considered in accordance with

eq.s (3.45) and (3.46). The study is carried out by calculation of the ABCD matrices

for both even and odd networks. For the even mode the inputs (ports 1 and 4) are

excited with the same signal, thus a magnetic wall is placed on the symmetry plane

and the circuit is split with an open circuit [107]:

Ae Be

Ce De

 =

 0 j
J1

jJ1 0

×
 1 0

s+ jB1 − jJ14 0

×
×

 0 j
J12

jJ12 0

×
 1 0

s+ jB2 − jJ23 0

×
 0 j

J2

jJ2 0

 (3.47)

The odd network is obtained when the input signals are antisymmetric and an electric

wall is placed between the two halves of the circuit. This can be done by closing the

two parts with a short circuit, thus becoming:

Ao Bo

Co Do

 =

 0 j
J1

jJ1 0

×
 1 0

s+ jB1 + jJ14 0

×
×

 0 j
J12

jJ12 0

×
 1 0

s+ jB2 + jJ23 0

×
 0 j

J2

jJ2 0

 (3.48)

The final scattering parameters will be obtained solving the eq.s (3.12) and (3.13) for

the even and odd mode, and finally to use these relation in eq.s (3.14). All the scatter-
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ing parameters are rational polynomials in the complex low-pass variable s = σ+ jΩ.

The elements of matrix of eq. (3.47) are calculated and expressed as a function of s as:

Ae = −j
J2
J1J12

(s+ jB1 − jJ14) (3.49a)

Be = −j
s2 + js(B1 +B2 − J14 − J23) + (B1 − J14)(B2 − J23) + J

2
12

J1J2J12
(3.49b)

Ce = −j
J1J2
J12

(3.49c)

De = −j
J1
J2J12

(s+ jB2 − jJ23) (3.49d)

The same process is performed for the odd mode of eq. (3.48):

Ao = −j
J2
J1J12

(s+ jB1 + jJ14) (3.50a)

Bo = −j
s2 + js(B1 +B2 + J14 + J23) + (B1 + J14)(B2 + J23) + J

2
12

J1J2J12
(3.50b)

Co = −j
J1J2
J12

(3.50c)

Do = −j
J1
J2J12

(s+ jB2 + jJ23) (3.50d)

For both the modes, terms Be,o are polynomials of second degree, Ae,o and De,o are

of first degree and Ce,o are constants. As the highest degree of the ABCD parameters

is 2, then the denominators of Se,o11 and Se,o21 are also of same degree:

Ae +Be +Ce +De = aes
2 + bes+ ce

ae = −j
1

J1J2J12

be = −j
[

j(B1 +B2 − J14 − J23)
J1J2J12

+
J1
J2J12

+
J2
J1J12

]
ce = −j

J212 + j(B1 − J14)(B2 − J23)
J1J2J12

− j
J1J2
J12

+

+
J2(B1 − J14)

J1J12
+
J1(B2 − J23)

J2J12

(3.51)



3.5 analysis of 4-resonator hybrid 97

and, for the odd mode:

Ao +Bo +Co +Do = aos
2 + bos+ co

ao = −j
1

J1J2J12

bo = −j
[

j(B1 +B2 + J14 + J23)
J1J2J12

+
J1
J2J12

+
J2
J1J12

]
co = −j

J212 + j(B1 + J14)(B2 + J23)
J1J2J12

− j
J1J2
J12

+

+
J2(B1 + J14)

J1J12
+
J1(B2 + J23)

J2J12

(3.52)

These equations are general and show that, without assumptions on the relations of

parameters (additional symmetries) in Fig. 3.15a, the degree of the denominators of

the final scattering is 4. This is because of the sum of two fractional expressions with

different denominators for the calculation of the scattering polynomial of eq.s (3.14).

For instance, eq.s (3.51) and (3.51) constitute the denominators of the even and odd

part to be calculated in (3.14). They are both of degree 2 and are different. Thus, it

derives that to compute the scattering parameters as defined in eq. (3.14), the sum

of all the even and odd parameters are made through elements that do not share a

common denominator.

In order to obtain a 90° hybrid coupler the following conditions are to be satisfied

[106]:

B1 = B2 (3.53a)

J1 = J2 (3.53b)

J14 = J23 (3.53c)

This is because the structure of the a quadrature 2-branch hybrid preserves the sym-

metries with regards any input and output, as it was for the coupler of Fig. 3.1. The

set of conditions of eq.s (3.53) simplifies all the ABCD parameters and consequently

the relations of the common denominator of scattering polynomials. Again, eq. (3.53)
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is substituted in eq.s (3.49) and (3.50). The highest degree of the polynomials of the

ABCD terms is 2, hence the degree of the denominators in eq.s (3.12) and (3.13) is of

the second order with the following even coefficients:

Ae +Be +Ce +De = aes
2 + bes+ ce

ae = −j
1

J21J12

be = −j

[
2

J12
+
2j(B1 − J14)
J21J12

]

ce = −j
J212 − (B1 − J14)

2

J21J12
− j
J21 + 2j(B1 − J14)

J12

(3.54)

and odd ones:

Ao +Bo +Co +Do = aos
2 + bos+ co

ao = −j
1

J21J12

bo = −j

[
2

J12
+
2j(B1 + J14)
J21J12

]

co = −j
J212 − (B1 + J14)

2

J21J12
− j
J21 + 2j(B1 + J14)

J12

(3.55)

Here the coefficients are all different and the overall highest degree of the scatter-

ing parameter denominators is still 4 as discussed above. The relations obtained in

eq.s (3.54) and (3.55) are substituted in eq.s (3.12) and (3.13) and finally into eq. (3.14).

The scattering polynomials are expressed in the following rational notation:

S11 =
N

(4)
11

D(4)
(3.56a)

S21 =
N

(2)
21

D(4)
(3.56b)

S31 =
N

(1)
31

D(4)
(3.56c)

S41 =
N

(2)
41

D(4)
(3.56d)
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whereD is the common denominator andNij are the polynomials numerators. Between

parenthesis is the degree of each polynomial. All the numerators are different and the

degrees of the transmission parameters S21 and S31 differs. The isolation is not per-

fectly zero but it is governed by a rational expression of a denominator of degree 4

and a numerator of second order. In this scenario it is clear that it is not possible to

apply any Tchebycheff transfer function as there are 5 independent polynomials (4 nu-

merators and 1 common denominator) that must comply with the unitary condition

and of course eq. (3.56). The complexity resides in finding a feasible transfer function

with the polynomials expressed in equation eq.s (3.56), and in solving a system of

equations to get the unique solutions in terms of circuital parameters. This makes

the analytical approach not practical for the 90° hybrid. All the considerations have

been made for the relatively simple 2× 2 hybrid with two branches, but it is clear that

increasing the number of branches an analytical synthesis could lead to even more

complex constraints on the polynomials.

3.5.2 Topological approach

As the synthesis of the coupling matrix of the 90° hybrid was originally based on

equivalence with the correspondent circuit of transmission lines, the analysis was

initially carried out with the traditional even/odd modes method [72]. Indeed, the

isolated port is 4, while the two outputs are ports 2 and 3. This is a known fact for the

version based on transmission lines, but it has a relevant impact in the transformation

to the coupled resonators circuit. Consider Fig. 3.17a: a signal is incident on port 1,

with the consequence of leaving port 4 isolated [72]. Port 2 is excited via resonators

1-2 with coupling M12 while port 3 is excited via resonators 1-2-3 and couplings

M12 and M23. All coupling coefficients are positive. Thus, at the central frequency,

there is always a phase shift of 90° due to the additional coupling between the two

output ports. An immediate consequence is that S21 and S31 are two transfer functions
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Figure 3.17: Estimated interference at port 4 of the 90°, 4-resonator hybrid coupler.



3.5 analysis of 4-resonator hybrid 101

having different number of resonators. Hence, it is not possible to have same filtering

responses. Fig. 3.17a depicts a cross at the isolated port as well as two interfering

signals A and B with a continuous and dashed line. The two contributions create

the interference at resonator 4, indeed at the central frequency this resonator can

be virtually removed from the circuit. Under this condition, path A is formed by

resonator 1 while path B by resonators 1-2-3 with both sharing the first resonator,

as shown in Fig. 3.17b. Here, paths A and B (not considering ports 2 and 3) are

represented as two filters loaded with a normalized impedance with the absence of

signal in resonator 4 caused by the destruction of the two out of phase signals. If

output ports 2 and 3 are neglected, their responses are shown in Fig. 3.17c. It is evident

that there is a presence of a common pole on both characteristics in the operational

bandwidth (|Ω| < 1) while two extra poles are present atΩ = ±1.4 (out of band). Since

path A is formed only by resonator 1, and it exhibits a pole at the central frequency,

the same pole is also present in the path B (dashed line of Fig. 3.17c). In total, path B is

formed by 3 resonators that generate 3 poles in Fig. 3.17. As one of them is shared with

path A it is concluded that the pole at central frequency is determined by resonator

1 while the others from resonators 2 and 3. The consequence is that while resonators

2 and 3 generate the peaks in the out-band of Fig. 3.8a, resonator 1 is responsible for

the bandwidth of the circuit. The two interferences A and B in resonator 4 assure an

acceptable level of isolation only in a relatively narrow bandwidth around the central

frequency. The sum of the interferences generate peaks that are unavoidable and

intrinsic for this kind of topology. The response found with this topological technique

is consistence with the high-order polynomials of eq. (3.56).

This topological discussion has been used mainly to make to understand the prop-

erties of the response of the 90° hybrid based on resonators after that an analytical

approach shown the complexities of the polynomials. It is important to mention that

also the optimiser failed to produce a filtering response comparable to the one of a

standard Tchebycheff filter because of the presence of 2 peaks in the out band. With
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Figure 3.18: Eight resonators, 3dB quadrature hybrid

the topological approach it is not only possible to understand the behaviour of this

network, but it can also be used at design level in order to control bandwidth and

position of the peaks by means of number of commons resonators in the interference

paths.

3.6 implementation of 8-resonator hybrid

The topological approach introduced in the previous section is used here to pre-

dict the frequency response of an hybrid coupler based on 8 resonators providing the

usual 90° output phase shift. Basically the quadruplet is extended with 1 additional

resonator before each port. A schematic can be found in Fig. 3.18a. This configuration

increases the degree of the transfer function while the absence of a shunt coupling

between resonator 1, 8 and symmetrically between 4 and 5 makes the study easier to
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carry out. With this example a practical demonstration of the topological approach in-

troduced earlier will be given. Naturally, it can be proved that if the network is loaded

with more resonators, keeping symmetries and the structure of the fundamental quad-

ruplet in the centre, the same analysis is still valid. Fig. 3.18a shows also in red the

interference paths generated when the input is applied to port 1. In the previous

section it has been stated that the common resonators of paths A and B are the ones

controlling the operational bandwidths, while the others are producing peaks in the

out-band. With the same criteria it is possible to note here that in resonator 7 paths

A and B interfere with a relative difference in phase of 180°. This is because path A

reaches resonator 7 through resonators 1-2 while path B has 1-2-3-6 hence the differ-

ence of 2 resonant cavities is responsible for the out of phase. To simplify the study

as the contribution of resonators 4 and 5 are also neglected here as it was previously.

Following this analysis it is reasonable to expect 2 poles in the in-band characteristic

while two other poles are outside. Thus a coupling matrix is optimised with the cost

function of eq. (3.33) and taking into account the topology of Fig. 3.18a. The result

matrix of internal coupling coefficients is

Mn =



0 1.1967 0 0 0 0 0 0

1.1967 0 1.6594 0 0 0 1.2018 0

0 1.6594 0 1.1967 0 1.2018 0 0

0 0 1.1967 0 0 0 0 0

0 0 0 0 0 1.1967 0 0

0 0 1.2018 0 1.1967 0 1.6594 0

0 1.2018 0 0 0 1.6594 0 1.1967

0 0 0 0 0 0 1.1967 0



(3.57)
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while the matrix of the coefficients with internal resonators and external ports is

Mpn =



1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1


(3.58)

The matrix of couplings between ports is all zero. Fig. 3.18b shows the magnitude

response while Fig. 3.18c is the output phase shift. Basically Fig. 3.18b confirms what

said before as 2 poles are clearly visible inside the band |Ω| < 1 while 2 peaks are

outside. Also the phase shift is exactly 90° at centre frequency and almost constant

over the bandwidth.

An experimental verification is also presented in standard WR90 waveguide with

inductive irises. Specifications are f0 = 10GHz, bandwidth of 200MHz and RL better

than 20dB. The top view schematic of the coupler is shown in Fig. 3.19a. The initial

dimensions of the iris apertures are calculated one by one in order to extract the coup-

ling coefficient as introduced in section 2.6 on page 43. Fig. 3.19b, 3.19c and 3.19d are

the extraction of coupling coefficients for several dimension of the physical apertures.

The FBW is 2% and consequently [20] the external quality factor is approximately

Qe ≈ 50. The structure also includes 4 bends in order to allow space for the flanges.

The dimension of the mean bend radius has been optimised using Fest3D in order to

provide minimum reflection at f0. In order to prepare the design for the physical im-

plementation radii of 1.5mm are included to all internal corners while the thickness

of walls and irises is 2mm. Thus the entire structure has been optimised including

a target RL of 25dB in order to have more tolerance margins. The initial and final

optimised dimensions are listed in Tab 3.6. From the table it is possible to note that

the some of the optimised values differ from the initial ones. This is because some of

the resonators require bigger apertures to take into account additional loading effects



3.6 implementation of 8-resonator hybrid 105

ws

l2l1

w2w1we

rm

(a) Schematic top view

4 6 8 10 12

0

5 · 10−2

0.1

0.15

w1, w2 (mm)

C
ou

pl
in

g

(b) Direct iris

4 6 8 10 12

0

2

4

6

8

·10−2

ws (mm)

C
ou

pl
in

g

(c) Shunt iris

8 9 10 11 12
0

100

200

we (mm)

Q
e

(d) External iris
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Table 3.6: Dimensions of 8-resonator quadrature hybrid

Initial Optimised
(mm) (mm)

l1 19.9 15.8367
l2 19.9 16.2353
w1 7 8.2570
w2 8 8.8278
ws 8 9.6025
we 10.5 11.6652
rm 16.255 16.255
Thickness 2 2

Radii 1.5 1.5

of the final structure. Also, the final model includes radii and an improved RL that

required a further optimisation with respect the initial design.

The device has been cut in 2 parts, a main body and a lid to cover it. Fig. 3.20a shows

the main part of the final 3D model that has been manufactured with a milling Com-

puterized Numerical Control (CNC) machine. The advantage of making the body in

one single piece instead of 2 identical halves is because it avoids the problems related

to misalignment of the parts and it is practical for this design where cut in the E-plane

could be difficult. Clearly this model is meant to be a proof of the concept introduced

before and specific requirements to reduce losses are not considered. The prototype

has been built with aluminium without silver-plating. In order to improve the contact

between the lid and body there are several screws with groove to increase the contact

pressure. Fig. 3.20b shows the final device assembled. Note that in this figure there

are additional holes that were designed to allow tuning. All cavities, couplings and

bends have been provided with tuning threads and screws. It will be shown that the

measurements are in accordance with the simulation to an extent that no tuning is

required and tuning screws used only to cover holes. The magnitude response and

output phase shift are shown, respectively, in Fig. 3.20c and 3.20d. Solid lines are

the measured data while dashed lines of the same colour are the ones obtained with

CST full wave simulator. The measurements confirm very well the simulations for

bandwidth, centre frequency, RL, power splitting, in-band Reflection Zero (RZ)s and
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Figure 3.20: Measurements of 8-resonator quadrature hybrid. Experimental data are with
solid line while simulations are shown with dashed lines.
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out-band peaks. The phase difference between the 2 outputs is also in accordance

with expectations and the deviation with respect the nominal 90° is less than 1.5°. As

anticipated, the experimental data is very close if compared to the simulations that no

tuning is required.

3.7 butler matrix based on quadrature resonant

hybrids

The 90° hybrid coupler is the fundamental unit of the Butler matrix as shown in

Fig. 2.1. Here the hybrid based on the quadruplet of resonators of Fig. 3.7 is used to

form a multi-port Butler matrix. The schematic of a 4× 4 Butler matrix based on 4

quadrature hybrids and 16 resonators is shown in Fig. 3.21a. Input ports are 1 to 4

while outputs are 5 to 8. As this circuit is based entirely on resonators, the coupling

coefficients are written close to each line. Each quadruplet of resonators is exactly

the same hybrid as Fig. 3.7 and the coupling coefficients of the straight through and

shunt lines are indicated respectively with ϑ and ϕ. The external quality factors Qe

and connections between the hybrids are indicated with ε and $. These couplings are

calculated with the equivalence technique for the conventional hybrid and later they

are connected together in order to form the Butler matrix. With reference of Fig. 3.21a

the parameters are the following:

ε = 1 (3.59a)

ϑ =
√
2 (3.59b)

ϕ = 1 (3.59c)

$ = 1 (3.59d)
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Figure 3.21: Butler matrix based on quadrature resonators hybrids
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Figure 3.22: Top view schematic of the resonant hybrid coupler implemented in standard
WR90 waveguide and inductive irises with dimensions

With an input signal reference applied to port 1, the magnitude of the isolated para-

meters is shown in Fig. 3.21b while the transmission parameters are shown in Fig. 3.21b.

As expected, there is a perfect input to output power splitting at centre frequency that

corresponds to −6dB while a perfect 90° output phase shift as shown in Fig. 3.21d.

However this configuration is affected by the peaks in the out-band to a greater extent

with respect to the case of the 2× 2 hybrid. This can be explained because with the

combination of multiple hybrids is built of a sort of chain of couplers that work well

at centre frequency, but in the out-band all include peaks that deteriorate the transfer

function. Naturally it could be possible to include hybrids with more branches in or-

der to improve the response, however higher complexity in terms of elements cannot

remove totally the peaks. This is because the intrinsic behaviour of the quadrature

coupler based on resonators.

To prove the concept, a 3D implementation of the circuit of Fig. 3.21a is provided

here in standard WR90 waveguide. The specifications of the 90° hybrid that consti-

tutes the fundamental unit of the Butler matrix are: f0 = 10GHz and FBW of 5%

[104]. With reference of Fig. 3.22 the final optimised dimensions are l = 14.46mm,

we = 11.77mm, w1 = 9.2mm and ws = 10.84mm [104]. All the hybrids are the same,

hence the only missing element now is to provide their connection and cross-coupling

like in Fig. 3.21a. Clearly the cross-coupling might be an issue for the design in rect-

angular waveguide, thus the structure is unfolded in order to obtain a easier to make

solution as shown in Fig. 3.23a. This structure has a configuration of a cross with the

2 pairs of inputs and outputs on the opposite side. For example, in Fig. 3.23a input 1

and 2 are visible while the others are exactly on the opposite side of the device. The
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(a) 3D model of 4× 4 Butler matrix based on quadrature hybrids
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Figure 3.23: Implementation of Butler matrix based on quadrature resonators hybrids
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same applies to the other pairs of output ports. In this implementation the connec-

tion between couplers are made with mitered bends with length of the orthogonal

walls of 8.0547mm in order to provide reflection at centre frequency optimised at

−100dB. The isolation parameters are shown in Fig. 3.23b while the transmission

ones are shown in Fig. 3.23c. If these results are compared to those obtained with

the coupling matrix it is possible to confirm the relatively narrow bandwidth where

the input to output power splitting is 6dB and the perfect equivalence with transmis-

sion line models at f0. However, the peaks in the out-band with different selectivity

characteristic among the scattering parameters are also present. The phase response

of the transmission parameters is finally shown in Fig. 3.23d. Over all the frequency

span simulated the ∠S61 is the same of ∠S71 while at f0 the difference with the others

parameters ∠S51 and ∠S81 is of ±90°, in accordance with the expectations.

3.8 final considerations

The 90° hybrid coupler has been introduced because it is the fundamental building

block in a Butler matrix. The hybrid coupler, but with an all-resonator circuit, in

order to include also a filter transfer function to create a multi functionality device

was described. Even in the simplest case, the synthesis problem is not straightforward

as there does not exist an easy set of polynomials which defines the transfer function.

Thus, a direct method based on the equivalence technique has been developed for

the case of 2 branches, later extended to multiple branches with an additional step

of optimisation of the coupling matrix. This method is exact at centre frequency

while not having a totally predictable behaviour out of the band. Hence, to better

understand the circuit a topological analysis has been also presented to provide a

fast tool in determining the number of poles in the bandwidth and peaks. Naturally

this method can be used at synthesis level in order to control the electrical response



3.8 final considerations 113

Port 1 Port 2

Port 3Port 4

(a) BGC with separate filter interfaces

2 4 6 8 10 12 14 16

25

30

35

40

45

Number of branches (n)

Si
ze

re
du

ct
io

n
(%

)

(b) Percentage of size reduction of the resonators array
compared to the BGC with filtering

Figure 3.24: Size reduction of quadrature resonant coupler

of these devices. Finally it is possible to conclude that a quadrature hybrid coupler

based on resonators can be used to provide also filtering if it is acceptable to have the

additional peaks shown above.

Among the advantages of the hybrid coupler with filtering is the size reduction,

thus a comparison has been made between the two BGC with filter functions. The

first device is the traditional BGC based on transmission lines of Fig. 3.4. In order to

add filtering, two band-pass filters are cascaded to the output ports. In Fig. 3.24a is

an example of 3 branches BGC with filtering cascaded at both outputs. The Fig. 3.24a

is an example of a third order BGC with filtering: the generic circuit is composed of a

BGC of n branches with a BPF of n resonators cascaded to each output. It should be

noted that no assumption is made on the type of waveguide, resonators and couplings,

as in this study only the theoretical dimensions of the BGC and resonant cavity are

considered. The BPF is modelled as a sequence of half-wavelength coupled resonators.
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The comparison is with the branch guide coupler based on coupled resonators of

Fig. 3.9. The length of the standard BGC is, in theory, (n− 1) · λg/4. In fact, there

are n− 1 direct lines each one measuring quarter-wavelength. At each output port a

bandpass filter with n resonators is cascaded. The nominal length of each resonator

is half-wavelength so that the length of the filter is nλg/2. Thus, the total length of

the BGC with filtering is:

lBGC = (n− 1)
λg

4
+n

λg

2
= λg

3n− 1

4
(3.60)

The total length of the resonators array is n times the length of each cavity. By the

moment that the longitudinal dimension of the couplings and the external interfaces

are not considered, it is possible to think at the total length of the resonators array as:

larray = n
λg

2
(3.61)

From the last two equations the estimated size reduction of the resonators array can

be derived. Fig. 3.24b shows the percentage of size saving of the resonators array

compared to a BGC of n branches and n resonators bandpass filters in cascade. The

graph shows that the multi-resonator configuration is 30% shorter compared to the

BGC of 3 branches and more than 40% when the branches are more than 5. Even

though the graph of Fig. 3.24b comes from a pure theoretical estimation of the total

length of the device, it is very important because gives a clear view of the advantage

in terms of size reduction of the multi-function hybrid coupler with filtering included.

The problem is solved using 180° hybrid coupler in place of the 90° to form an

N ×N Butler matrix with filtering included. An analytical synthesis technique is

presented in the following chapter.



4
B U T L E R M AT R I X W I T H I N H E R E N T

F I LT E R F U N C T I O N S

In the previous chapter it has been shown that it is possible to include a filter

transfer function into a quadrature hybrid coupler based on resonators, although

the electrical performance is poor if compared to a conventional filter and hybrid

separately. In this chapter it will introduced the 180° hybrid coupler and its equival-

ent version based on resonators. This solution provides better results for the power

splitting, phase distribution and filter transfer function with regard the quadrature

quadruplet of resonators. Moreover, the perfect isolation provided by the 180° hybrid

is the fundamental prerequisite to make the synthesis of Tchebycheff or Butterworth

filter functions. Thus, this hybrid based on resonators will be used in order to allow

the synthesis of 2k × 2k Butler matrices.

4.1 electrical behaviour of the rat-race coupler

The typical ring configuration of a 180° hybrid coupler [30] is shown in Fig. 4.1a.

From now on, the ports numbering of the 180° coupler will follow the definition

shown in Fig. 4.1a. This circuit is also called rat race hybrid coupler. It is based by

3 quarter-wave transmission lines and 1 that is three-quarter wave. The normalised

115
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characteristic impedance for all the lines is
√
2 [30]. The scattering matrix at centre

frequency is

S =
−j√
2



0 0 1 1

0 0 1 −1

1 1 0 0

1 −1 0 0


(4.1)

The transmission line of length 3/4λ is the one that provides the out of phase con-

tribution to the scattering response and for the perfect isolation on opposite ports.

The scattering parameters are shown in Fig. 4.1c. With a source applied to port 1 the

power is equally split between ports 3 and 4 while port 2 is isolated. This perfect

behaviour is valid for a FBW of 10% to 20% [30]. At frequencies 0 and 2f0 the re-

sponse converges to −6dB. The output phase difference depends on which port the

excitation is applied:

in phase output response is obtained when input is applied to ports 1 or 3 because

the outputs are the adjacent elements at same distance of λ/4;

out of phase output response when inputs are ports 2 or 4. This is because the two

adjacent ports are separated one with a transmission line of length λ/4 while the

other with length 3/4λ.

The scattering parameters are obtained in a similar fashion as it was for the 90°

hybrid coupler. In this case a symmetry plane can be included to cut the ring of

Fig. 4.1a in 2 halves between ports 1-3 and 2-4. In this way there are a straight

through line between two stubs of electrical length θs and 3θs, recalling that θs = λ/8.

A model of the even/odd mode network is shown in Fig. 4.1b where the terminations

are either open or short circuits. Fig. 4.1b also shows the normalised characteristic

impedances and electrical length of each line. Apart for this the calculation of the

scattering parameters is the same as the ABCD matrix of eq. (3.18). It is worth to
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mention that the relations for inputs applied to ports 1 and 3 are identical using the

even/odd mode method, while for ports 2 and 4 it is necessary to consider first the

stub of length 3θs and later the one of length θs because the 2 different symmetries of

the circuit [30].

4.2 180° hybrid with filtering

The network of the 180° hybrid of Fig. 4.1a can be implemented by a quadruplet of

resonators as the one of Fig. 3.15a in order to include filtering transfer functions [108,

109]. The characteristic polynomials for the 180° hybrid can be obtained in a similar

fashion for the 90° coupler as shown in section 3.5. For the case of the 180° hybrid the

following conditions are made [107]

B1 = B2 (4.2a)

J1 = J2 (4.2b)

J14 = −J23 (4.2c)

These conditions are substituted into the eq.s (3.49) and (3.50) in order express the

polynomial of the common denominator. It is interesting to note that conditions of

eq.s (4.2) produce the following denominator for the even mode:

Ae +Be +Ce +De = aes
2 + bes+ ce

ae = −j
1

J21J12

be = −j

[
2

J12
+
2jB1
J21J12

]

ce = −j
J12

J21
+
2B1
J12

+ j
(B21 − J

2
14)

J21J12
− j
J21
J12

(4.3)
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The odd mode is again found in a similar fashion:

Ao +Bo +Co +Do = aos
2 + bos+ co

ao = −j
1

J21J12

bo = −j

[
2

J12
+
2jB1
J21J12

]

co = −j
J12

J21
+
2B1
J12

+ j
(B21 − J

2
14)

J21J12
− j
J21
J12

(4.4)

The independent variable is s = σ + jΩ. The denominator for the even and odd

modes in this case of 180° hybrid are the same because the same the coefficients are

obtained in eq.s (4.3) and (4.4). This fact has a major impact on the expression of the

overall scattering parameters, because same denominator means that the degree of

numerators of eq.s (3.14) are

S11 =
N

(2)
11

D(2)
(4.5a)

S31 =
N

(0)
21

D(2)
(4.5b)

S21 = 0 (4.5c)

S41 =
N

(0)
41

D(2)
= S31 (4.5d)

where

N11 = s
2 + 2jsB1 −B21 + J

2
14 + J

2
12 − J

4
1 (4.6a)

N31 = N41 = 2jJ21J12 (4.6b)

D = s2 + 2s(jB1 + J21) + 2jJ
2
12B1 −B

2
1 + J

2
14 + J

2
12 + J

4
1 (4.6c)

Note that in the previous relation the further symmetry J14 = J12 can be introduced

[109]. For the case of 90° hybrid it was shown that all the scattering polynomials where

different and of different order. Moreover no perfect isolation was mathematically
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Figure 4.2: Schematic of a 180° hybrid coupler based on coupled resonators

possible. Here the elements of eq.s (4.6) are of the second order for the S11 and a

constant for the numerator of the S31. There are 3 polynomial to determine so they

can be matched to the form of Tchebycheff transfer function defined with polynomials

E(s), F(s) and P(s). The synthesis consists in calculating the parameters of eq.s (4.6)

by imposing a system of equations with the second order Tchebycheff polynomials

[107, 110].

4.3 virtual open circuit

An alternative synthesis method of the 180° hybrid coupler exploiting the perfect

isolation or virtual open circuit is presented here. Fig. 4.2 shows the schematic of the

circuit. According to symmetries of eq.s (4.2) and the one of [109], the coupling matrix

defined by blocks is

Mp = 0 (4.7a)

Mpn = KeI4 (4.7b)

Mn =



0 0 Ku Ku

0 0 Ku −Ku

Ku Ku 0 0

Ku −Ku 0 0


(4.7c)
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Figure 4.3: The traditional 2-pole filter on the left is transformed into a 3-port network with
resonators for the principle of the virtual open circuit

Fig. 4.2 shows a minus on coupling between resonators 2 and 4 to say that it is the one

that has same magnitude but opposite sign. From the definition of the coupling matrix

it is possible to see that the same coefficient Ke is applied to all couplings between

internal and external resonators and that also Ku is for all the internal coupling. The

position of the minus sign is relevant only for the phase characteristic and it does not

alter the magnitude.

If a signal source is applied to port 1 of Fig. 4.2, the signal is split to ports 3 and 4

through resonators 3 and 4, however part of the signal goes to resonator 2. From port

1 there are two paths for the signal to reach resonator 2, are shown with a solid (A)

and dashed (B) line in Fig. 4.2. The signal on path A reaches resonator 2 with a phase

due to the contribution of couplings between resonators 1-4 and 4-2. As each coupling

is assumed as a perfect immittance inverter providing a phase shift of ∓90°, the phase

of path A in resonator 2 is zero. Considering the other path, the phase of a signal

from resonator 1 to 2 via B is −180°. All the internal couplings have same magnitude

as do the external ones. Thus the two signals from paths A and B in resonator 2

have same magnitude but are out of phase. This creates a perfect interference at all

frequencies. The S21 is the isolation, and is perfect at all frequencies because of the

symmetries of this network. The perfect interference of signals from paths A and B in

resonator 2 makes it possible not to consider it for the calculation of the transmission

scattering parameters S41 and S31. Thus resonator 2 can be virtually removed from

the circuit. With the simplification of the virtual open circuit, it is possible to consider

a simpler network with just 3 ports and resonators. In this way S31 and S41 are like 2

independent 2-pole filters. Fig. 4.3 shows the transformation from a simple 2-pole in-

line filter to the couplings of the 180° hybrid where one resonator has been removed
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as effect of the virtual open circuit. The filter on left of Fig. 4.3 has the couplings

between resonators and external ports indicated as K ′e while the internal coupling is

K ′u. The couplings of the transformation on the right part of Fig. 4.3 are the ones

indicated in eq. (4.7b) and (4.7c). The circuit on the right side of the figure has the

characteristics S31 and S41 that are totally independent and uncorrelated, hence the

conservation of energy is still valid:

|S11|
2 + |S31|

2 + |S41|
2 = 1 (4.8)

The hybrid splits equally the input power among the outputs and also the transfer

function of the two transmission parameters is the same, hence S31 = S41. It is pos-

sible to introduce a parameter that identifies the transmission, say β and one for the

reflection, say α. The eq. (4.8) can conveniently written as

|α|2 + 2|β|2 = 1 (4.9)

The α and β refer to the reflection and transmission polynomials of the circuit on the

right part of Fig. 4.3. In the same way it is possible to define the reflection αBPF and

transmission βBPF parameters of the 2-pole filter of the left side of Fig. 4.3. Naturally

the law of energy balance is still valid:

|αBPF|
2 + |βBPF|

2 = 1 (4.10)

The transfer function for the hybrid coupler is the one of a 2-pole filter, hence it the

eq. (4.9) and (4.10) are imposed in order to find the relation between the parameters

of the two networks:

|α|2 = |αBPF|
2 (4.11)

|β|2 =
1

2
|βBPF|

2 (4.12)
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This is a consequence of the conservation of energy and it states that the virtual open

circuit can produce a response that has same reflection and transmission with power

splitting with respect to a conventional BPF. The coupling coefficients of the 2-pole

filter are the K ′e and K ′u that are directly obtained from the low-pass g parameters

K ′e =
1√
g0g1

(4.13a)

K ′u =
1√
g1g2

(4.13b)

Because of the law of conservation of energy and the perfect isolation provided by the

virtual open circuit, the direct relation between the coupling coefficients of the hybrid

and the ones of the BPF are related as [109]:

Ke = K
′
e (4.14a)

Ku =
1√
2
K ′u (4.14b)

The coefficient 1/
√
2 provides the 3dB output power splitting of the hybrid. The

magnitude of the two transmission functions are the same. It is important to stress

that the network with 3 resonators in the right part of Fig. 4.3 is useful to demonstrate

the simplification of the synthesis provided by the concept of the virtual open circuit.

Naturally, the coupling coefficients Ke and Ku calculated from the corresponding BPF

are constituting the hybrid of Fig. 4.2 and are the components of the coupling matrix

of eq. (4.7b) and (4.7c).
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Figure 4.4: Response of the 180° Hybrid coupler based on resonators

As an example, a 180° hybrid coupler based on resonators implementing a Tchebycheff

transfer function with a RL of 25dB is given as example. Initially the g parameters

constant are calculated through the eq.s (2.7), giving

g0 = 1 (4.15a)

g1 = 0.4882 (4.15b)

g2 = 0.436216 (4.15c)

r = 1.11917 (4.15d)

The coupling coefficients of the corresponding in-line filter are calculated with eq. (4.13)

K ′e = 1.4312 (4.16a)

K ′u = 2.1669 (4.16b)
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Finally, the coefficients of the coupling matrix of the 180° hybrid of eq. (4.1) are ob-

tained with eq.s (4.14) as

Ke = 1.4312 (4.17a)

Ku = 1.5323 (4.17b)

The magnitude response is shown in Fig. 4.4a with |S31| = |S41|. Two phase character-

istics that are in opposition are shown in Fig. 4.4b. The isolation is not included in the

figure because it is 0 for all frequencies. The magnitude exhibits a 2-pole Tchebycheff

filter function with the two transmissions that equally split the input power among

the outputs. The results obtained here derive from the calculation of the low-pass g

parameters, used in the example to produce a Tchebycheff response. However it is

possible to use the same g parameters to obtain a Butterworth transfer function in the

same way. The main advantage of the method based on the virtual open circuit with

respect the calculation of the coefficients based on the characteristic polynomials of

eq.s (4.5) resides in the use of closed formulas to calculate the couplings. Moreover,

the even/odd method used to analytically calculate the polynomials simplifies the

complexity only for devices with 2-input and 2-output. The virtual open circuit

method instead, separates the transmission parameters over independent paths (ie.

from port 1 to 3 and from 1 to 4), thus considering them as single filters except for a

coefficient used to keep the power balance.

This technique of independent paths will be used in the following in order to make

the synthesis of N×N with N = 2k Butler matrices based on resonators.
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4.4 analytical synthesis of butler matrix formed

by 180° hybrids

The aim of this study is to do the synthesis of N×N Butler matrices with filtering

included. The basic idea is to exploit the property of virtual open circuit provided by

180° hybrid couplers of Fig. 4.2. As it was shown in the previous section, the virtual

open circuit is an effective method to design the coupling coefficients of the hybrid in

a similar way as if it was for an in-line filter. Doing so all the complexities and limit-

ations of the general synthesis technique for multi-port devices are avoided. This is

an ad-hoc solution for Butler matrices based on resonators with equal power splitting

and the same transfer function for each transmission parameter. In the following it

will be shown how to combine several 180° hybrids together in order to produce a But-

ler matrix with filtering based only on resonators and electromagnetic couplings. It

will be also provided a systematic and analytical synthesis technique for the coupling

matrix.

Attempts to introduce filtering functions into the 2× 2 hybrid was already presen-

ted in [101, 102, 108, 109, 111–114] and a circuital diagram of a 4× 4 matrix with the

coupling coefficients calculated via optimisation techniques has been introduced [112].

The 4-resonator hybrid is also extensively exploited to create more complex subsys-

tems in [107], however optimisation of the inverters are mandatory in order to obtain

desired symmetries and frequency response. Also, no general understanding of the

polynomials for these multi-port circuits is provided. Other structures implementing

input/output power division and filtering through coupled resonators structures are

discussed in [58, 59, 115, 116], however they do not provide an analytical synthesis of

the coupling matrix. A different type of solution for networks with 1-input to mul-

tiple outputs has been presented for microstrip [100]. The advantage of the proposed

technology over the existing baseline of ONET and a cascade of N BPFs will be a
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considerable size reduction. In the next sections it will be shown that the size saving

of the new Butler matrix based on resonators is around 30% in volume.

4.4.1 Transfer function requirements

The electrical properties of the 4-resonator 180° coupler of Fig. 4.2 are exploited

in order to make the synthesis of a general N×N Butler matrix with N = 2k. The

transfer function matrix, defined over the operational bandwidth, of the hybrid is the

typical one of a rat-race coupler:

T180° = T1 =
1√
2

1 1

1 −1

 (4.18)

Here input signals are applied to ports 1 and 2 of Fig. 4.2, and outputs are at ports

3 and 4. By recursive combination of eq. (4.18), a Butler matrix can be obtained in

a similar fashion to that described in [14] using only 180° hybrid couplers, with the

total transfer matrix defined by the Kronecker product as:

Tk = T1 ⊗ Tk−1 =
1√
2

Tk−1 Tk−1

Tk−1 −Tk−1

 (4.19)

This is also known as the Hadamard matrix. Naturally, the Hadamard matrix is

orthogonal, indeed becoming very attractive for the architecture of Fig. 2.17. It could

be possible to assign to the INET a Butler matrix with transfer function like the one

of (4.19) and to the ONET the same network but mirrored. The mirroring of the

input/output of the ONET corresponds to the transposition of the transfer function

matrix, hence due to the orthogonality of the Hadamard matrix it is shown how this

kind of network is suitable for the use in MPAs, in the operational bandwidth. The
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cascade of networks are governed in general by eq. (4.19), hence the transfer function

of the MPA defined over the bandwidth is



y1

y2
...

yN


= [Tk] ·G[IN] · [Tk]T



x1

x2
...

xN


= G



x1

x2
...

xN


(4.20)

The (4.20) states that using a combination of 180° hybrid coupler, the transfer function

of the entire MPA results in a multiplication of the amplitude of the input signals of

a factor G.

4.4.2 Set of polynomials

The network has 2N ports (ie. inputs 1, . . . ,N and outputs N + 1, . . . , 2N), it is

reciprocal, lossless, is described by its S scattering matrix and has the generic transfer

function matrix Tk defined in eq. (4.19). The reflection (α), transmission (β) and

isolation (γ) parameters are directly related with the S elements with the following

simplified notation:

αr = Sr,r for r 6 N (4.21a)

βi = Sr,i+N for i 6 N (4.21b)

γj = Srj for 1 < j 6 N, ∧ r 6= j (4.21c)

where αr is the reflection characteristic seen at port r, βi is the transfer function

between ports r and N+ i and γj is the isolation between ports r and j (with j < N).

In eq. (4.21) the input signals are assumed to be applied at one port in the range 1 to

N, though the same concept is valid if the source is applied at ports N+ 1 to 2N due
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to the reciprocity of the network. For a generic lossless network the unitary condition

is expressed by the well known formula:

S ·S∗ = I (4.22)

where S∗ is the complex conjugate of matrix S and I is the identity matrix. The set of

definitions eq. (4.21) can be substituted in eq. (4.22) producing the following relation

in terms of parameters αr, βi and γj valid for r 6 N:

|αr |
2 +

N∑
i=1

|βi |
2 +

N∑
j=1
j 6=r

|γj |
2 = 1 (4.23)

The traditional cascading of a Butler matrix and a bank of bandpass filters as it was

shown in Fig. 2.17a is taken as the reference model with scattering matrix Sref. It can

also be studied as a reciprocal lossless network with a scattering matrix derived by

the combination of the ONET and filters:

Sref = SONET · diag{SBPF} (4.24)

that must comply with the condition eq. (4.22). In this study the non-linearities of

the ONET are not taken into account and the network is just considered as an equal

power divider except for the output phase contribution with perfect isolation between

pair of input ports. With this in mind, the unitary condition eq. (4.24) is applied to

eq. (4.22) resulting in:

N∑
h=1

1

N

(
|αBPF,h |

2 + |βBPF,h |
2
)
= 1 (4.25)

where the return loss and transmission of the generic bandpass filter on the output

port h are indicated with parameters αBPF,h and βBPF,h respectively. As the Butler

matrix performs an equal power splitting, there is a term 1/N in the eq. (4.25). The
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assumptions made in the previous sections stated that all the inputs/outputs of the

distribution network were mutually isolated and same bandpass filter transfer func-

tion were applied to all the ports. They are expressed in the notation introduced here

with the following set of equations:

N∑
i=1

|βi |
2 = N |β |2 (4.26a)

N∑
j=1
j 6=r

|γj |
2 = 0 (4.26b)

N∑
h=1

1

N
|αBPF,h |

2 = |αBPF |
2 (4.26c)

N∑
h=1

1

N
|βBPF,h |

2 = |βBPF |
2 (4.26d)

A direct consequence of eq. (4.26) is that all the insertion loss characteristics are the

same, indeed αr = α. The unitary condition is exploited in order to equate relations

eq. (4.23) and eq. (4.25) with the set of conditions expressed in eq. (4.26):

|α |2 + N |β |2 = |αBPF |
2 + |βBPF |

2 = 1 (4.27)

The two parts of eq. (4.27) demonstrate the direct relation between the characteristics

of the transfer functions of the circuit under investigation and the ones of a generic

band-pass filter:

|α |2 = |αBPF |
2 (4.28)

|β |2 =
|βBPF |

2

N
(4.29)

This highly simplifies the complexity of the synthesis of polynomials of the multi-port

network with regard the difficulties mentioned at the beginning of the section. The

concept of virtual open circuit used to make two independent paths in the 180° of
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Fig. 4.2 is generalized here to the case of N ports. This is a fundamental assumption

to specify independent paths, each of them producing a filter transfer function. Hence,

the synthesis of the generic set of functions α and β starts from the one of a 2-port

bandpass filter with known αBPF and βBPF.

4.4.3 Topology

The 180° hybrid of Fig. 4.2 is identified to be the suitable candidate as fundamental

building block of the Butler matrix with filtering because of the properties of perfect

isolation, equal power division and transfer function matrix compliant with the applic-

ation requirements. Each independent path, needed to perform the transfer functions

α and β, is obtained through a sequence of hybrid couplers of the type of Fig. 4.2. As

each hybrid equally splits the power at the 2 output-transmission ports, for a single

path the following number of hybrids are necessary:

k = log2N (4.30)

The contribution of each of them to one single path is of exactly 2 resonators, indeed,

the total transfer function achievable with the current technique produces a minimum

number of poles ρ given as:

ρ = 2k (4.31)

Moreover, each unit (ie. 180° hybrid coupler) accepts 2 input signals, hence a number

of N/2 units, in order to receive all the input signals are necessary. Indeed, the entire
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Figure 4.5: Configurations of the hybrid couplers as introduced in [14] but with the lines
representing electromagnetic couplings

network can be thought as a matrix of units of N/2 rows and k columns with a total

number u of hybrids and n resonators given by the following relations:

u =
N

2
k =

N

2
log2N (4.32)

n = 4u = 2N log2N (4.33)

Every hybrid coupler constituting the network should be connected to others hybrid

or to the external ports in order to comply with the prescribed output power and

phase distribution. The structures shown in Fig. 4.5 solves this problem for different

numbers of inputs [14]. In this figure the input ports are indicated with p1, . . . ,pN and

the output with q1, . . . ,qN. The basic building block of the circuit is the 180° hybrid
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of Fig. 4.2. Each unit is represented with the two input ports on the left of the block,

while on the right are the outputs: these are shown in Fig. 4.2, with ports 1, 2 for the

inputs and 3, 4 for the outputs. The entire circuit described here is based on resonant

cavities coupled by electromagnetic couplings, thus each line of Fig. 4.5 represents

a coupling between pairs of resonators which are embedded in the units shown as

rectangular blocks. The figure includes the configurations of a 2× 2 (Fig. 4.5a), 4× 4

(Fig. 4.5b) and an 8 × 8 (Fig. 4.5c) Butler matrices that implement the Hadamard

transfer function matrix eq. (4.19). It should be noted that the numbering of the

output ports qi has been derived in the figure in order to have the phase distribution

identical to the transfer function matrix of eq. (4.19). However, it can be proved that if

a sequential numbering, for instance from top to bottom, is applied to the networks of

Fig. 4.5, the resulting matrix is still orthogonal. Starting from the schematics depicted

in Fig. 4.5, it is also possible to generalize to N×N networks recursively.

In some practical cases it might be more appropriate to change, for example, the

relation between the input/output ports of some units of Fig. 4.5 with the ones of the

180° hybrid of Fig. 4.2. The reason for this change depends on particular constraints

that can arise at the design stage of the hybrids, leading to impractical or even im-

possible implementations of the electromagnetic couplings between the resonators of

different unit-hybrids. The output power division of the whole Butler matrix is not

affected, with the change applying only to the distribution of the output phases. This,

in general, is not a limit as long as the transfer function matrix is capable of recom-

bining the signals. This statement confers a greater degree of freedom to the topology

configuration of the network because it does not bound the response to the only pure

Hadamard transfer matrix, but gives the designer the ability to change the physical

connections of the hybrids without losing the properties of the circuit.
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4.4.4 Formulation of the coupling matrix

The synthesis technique for the formulation of the coupling matrix is summarised

here with the following step-by-step procedure:

1. Review of the RF specifications. The number of input/output ports N depends

on the number of signals that are supposed to be applied to the network while

the bandwidth B and the return loss RL are functions of the rejection required

after the bank of power amplifiers;

2. Calculate of total number of poles ρ through eq. (4.30) and eq. (4.31), number of

unit-hybrids u with eq. (4.32) and total resonators n with eq. (4.33);

3. The polynomials of the transfer function of this network are directly related to

the ones of bandpass filters with the relations eq. (4.28) and eq. (4.29). This cal-

culation is performed initially with the normalized low-pass parameters on a

filter of 2k resonators and 2k + 1 ideal inverters. For maximally flat or equal

ripple transfer functions the low-pass g parameters are calculated with the well

known formulas [20]. The coupling coefficients of the band-pass filter are dir-

ectly obtained from g parameters with the formula:

Mh+1 ,BPF =
1√

ghgh+1
(4.34)

with h ∈ {0 , . . . , 2k}. In order to simplify the following computations, entity

Mh ,BPF is not considered here as a matrix but just as a vector where each ele-

ment represents the coupling coefficient between a pair of adjacent resonators.

Alternately to the formulations of the g parameters, more advance techniques

to generate the Mh ,BPF can be eventually used as described in [34].

4. The first resonators of every 180° hybrid coupler on the first column of unit-

hybrids of the circuit are all coupled with the external inputs. The same is for
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the second resonators of all the hybrids on the last columns that are coupled

with the external outputs. The value for these coefficients correspond to the first

and the last element of vector Mh,BPF.

5. Each independent path has the coupling coefficients equal to the ones calculated

with the eq. (4.34). The power splitting factor and the phase distribution are

governed by the configuration of the hybrids. The hybrid’s coupling coefficient

Kui are all the same except one that is opposite phase (ie. Fig. 4.2). Their

magnitudes are defined as:

Kui =
1√
2
M2i ,BPF (4.35)

where the subscript ui is used to indicate all the identical hybrids on columns

i . The coupling coefficients between pair of hybrids, indicated as Kui ,ui+1 are

directly obtained (cf. eq.s (4.7b) and (4.7c)) as:

Kui ,ui+1 = M2i+1 ,BPF (4.36)

6. The coupling matrices Mpn and Mn are populated with the values of vectors

eq. (4.35) and eq. (4.36) in order to reflect the chosen topology connections. Typ-

ically, the Mpn has the values of first and last elements of eq. (4.34) for the

coupling coefficients between the terminal resonators and external interfaces.

The final coupling matrix of the overall network is defined by blocks with the

form eq. (2.41).

7. The obtained coupling matrix should be de-normalized to the centre frequency

f0 and bandwidth B and expressed in term of the external quality factors Qem
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between the external port e and the internal resonator m and the coupling coef-

ficient kij between two internal resonators i and j as follows [34]:

Qem =
f0
B

1

[Mpn]2em
(4.37a)

kij =
B

f0
[Mn]ij (4.37b)

Note that the achievable operational bandwidth B depends on the technology of

the resonator/coupling used in the physical implementation.

4.5 example of 4 × 4 butler matrix with filtering

The procedure to synthesis the coupling matrix of a 4× 4 Butler matrix with filter-

ing is illustrated in this section. In this example all the calculation will be made in the

low-pass domain in order to produce the scattering response in terms of transmission

β and reflection α. The specifications are of a Butler matrix implementing input to

output equal power and phase distribution and a Tchebycheff transfer function with

25dB of RL. Fig. 4.6 is a representation of the structure of the Butler matrix and, on

top, the fundamental in-line 4-pole filter. In this figure all the lines are electromag-

netic couplings, black circles are resonators and the rectangles are the 180° hybrids

of Fig. 4.2 and 4.5a. The hybrids are also included with the indication of the column

through label ui where the subscript is the column number. For the Butler matrix in-

put ports are p1, . . . ,p4 while the outputs are q1, . . . ,q4. Input and output ports of the

corresponding in-line filter are 1 and 2 and on top of each coupling is the coefficient

Mh. The Mh in Fig. 4.6 is an abbreviation of term Mh,BPF used in the previous section.

The network has N = 4 inputs/outputs, it requires k = 2 hybrids for every inde-

pendent path as for eq. (4.30), and it will produce ρ = 4 poles (cf. eq. (4.31)) through

a total number of n = 16 resonators as given by eq. (4.33). The definition of char-
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Figure 4.6: Example of 4× 4 Butler matrix with filtering. On top is the equivalent in-line filter
with coupling coefficient. On bottom topology of the 4 × 4 Butler matrix with
hybrids based on resonators and electromagnetic couplings

Table 4.1: Coefficients of the equivalent 4-pole Tchebycheff filter with 25dB return loss

h gh Mh,BPF

0 1

1 0.753308 1.15216
2 1.2252 1.0409
3 1.37121 0.771517
4 0.673096 1.0409
5 1.11917 1.15216

acteristic polynomials of eq.s (4.28) and (4.29) states that, apart for a scaling factor,

they are the same to the ones of a conventional 2-port filter. The equivalent filter is

represented in the top part of Fig. 4.6. The first step of the synthesis is to calculate

the couplings Mi through the techniques introduced in section 2.3.1. Tab 4.1 shows

the g parameters and the coupling coefficients of the equivalent filter included in the

top of Fig. 4.6. This is a fundamental step because the coupling coefficients of the

Butler matrix are directly derived with eq.s (4.35) and (4.36). Firstly the matrix Mpn

is created. The couplings between external input ports and internal resonators are

all set to M1 as shown in Fig. 4.6. With respect to each hybrid on the first column

u1, the first input is coupled to resonator 1 of the hybrid with the second input is

to resonator 2 as shown in Fig. 4.2. The outputs couplings are between resonators 3

and 4 of hybrids on the last columns (column u2 of Fig. 4.6) and they are all equal
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to M5 of the equivalent in-line filter. Secondly, the coupling matrix Mn is created.

The internal couplings are the ones between the resonators of each hybrid and the

couplings connecting pair of hybrids. Each hybrid has the same topology of Fig. 4.2

and the couplings are related to the equivalent in-line filter through eq. (4.35). Again,

all the hybrids on the same column are all identical. For the first column of hybrids

the internal coupling coefficients are:

Ku1 =
1√
2
M2 = 0 .7360 (4.38)

The in-line filter is symmetric and then Ku1 = Ku2 because M2 = M4. Naturally, all

the couplings of the quadruplet of resonators constituting the hybrid have the same

magnitude, with one of them that has negative sign as shown in Fig. 4.2 and 4.5a.

The coupling between pairs of internal resonators are related by coefficient M3 as of

eq. (4.36). Each of these couplings are connecting one output resonator of hybrid on

column u1 to an input resonator to the hybrids of column u2 as shown in Fig. 4.6.

They are all the same and equal to

Ku1 ,u2 = M3 = 0 .771517 (4.39)

Whatever numbering of resonators has been chosen, the elements of matrix Mn

should follow the rules of topology shown in Fig. 4.5 and the eq.s (4.35) and (4.36).

The magnitude response of the 4× 4 Butler matrix is shown in Fig. 4.7. The graphic

is expressed in terms of reflection parameter α and transmission β with no indication

of isolation γ as it is 0 at all frequencies. The return loss is 25dB and the transfer

function exhibits 4 poles as expected. The transmission characteristic β shows an

equal power splitting of 6dB of one input signal among the outputs. The transfer
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Figure 4.7: Response of 4× 4 Butler matrix with filtering

function at central frequency is also governed by the Hadamard matrix Tk with k = 2

as

T2 =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


(4.40)

In the following chapter the 3D realisation, manufacturing and measurement of this

Butler matrix with filtering will be shown.

4.6 extension of the filtering characteristic

The procedure and equations introduced in section 4.4 define the minimum per-

formance and transfer function for the Butler matrix with filtering for prescribed spe-

cifications. However, in many telecommunication systems it might be necessary to



4.6 extension of the filtering characteristic 140

1 Σ1 Σ2 Σk+1 2

Figure 4.8: Base filter formed by sub-networks to enhance the transfer function

improve the frequency selectivity by either increasing the number of resonators of a

filter or by introducing TZs. The number of poles ρ defined in eq. (4.31) is dependent

by the number N of input/output and not by the designer. Hence in this section

the procedure to add more complex filtering characteristic in the Butler matrix is de-

scribed. The general definition of transfer function of eq.s (4.28) and (4.29) do not put

necessarily restrictions on which response is achievable, although the system relies on

the virtual open circuit provided by the 180° hybrids. The solution proposed here is

to incorporate complex transfer functions interleaving the hybrids by sub-networks to

enhance the filtering selectivity. Two examples will be provided, the first for a Butler

matrix with symmetric filtering response and the second one implementing a TZ at

finite frequency.

4.6.1 Sub-networks

The synthesis procedure for the minimal Butler matrix with filtering has been in-

troduced in section 4.4 and it is based on the synthesis of a reference filter through

standard techniques and later combining the coupling matrix. The reference filter is

formed by a number of poles equal to those of each independent signal path goes

through the circuit. For each path k hybrids are required in order to provide the

power splitting and phase distribution, hence the number of poles are 2k in total. As

the hybrid are the fundamental building block of the network, they are required to be

indivisible units. The idea here is to add resonators and/or cross couplings between

pairs of hybrids or between input/output hybrids and external ports through a series

of sub-networks Σi(ρi; ζi). Each sub-network Σi is introducing an additional number

of poles ρi and complex/imaginary TZs ζi. Fig. 4.8 is a schematic of the reference
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filter, where a number of sub-networks Σi are shown between pairs of resonators and

at the input and output stage of the circuit. The two resonators between each block

represent the 2 poles introduced by each hybrid of the Butler matrix. It is known that

each path has k hybrids and consequently there are up to k+ 1 sub-networks. Each

sub-network can be a resonant circuit or just a simple coupling when there is no need

for elements in a particular position. It is possible to see the circuits of Fig. 4.5 is

a particular case of Fig. 4.8, where each sub-network is an ordinary coupling. The

characteristic of symmetry of the hybrids must be preserved in order to add arbitrary

sections as in Fig. 4.5 without altering the properties stated in eq.s (4.26). Thus the

topology of the base filter requires the pairs of resonators to be unaltered while the

other sections can be included with resonators and cross-couplings.

The synthesis of the Butler matrix with extended filtering follows an analogous

procedure of the one of section 4.4:

1. the coupling matrix of the base filter is firstly calculated with traditional tech-

niques with a topology of the type of Fig. 4.8. Note that the restriction is on

the symmetry of the unit hybrids, hence the self-couplings (or detuning of the

single resonators) are allowed.

2. Every signal path should see the same sequence of resonators and coupling as

that of the reference filter.

3. The elements of sub-networks Σ1 and Σk+1 apply, respectively between all the

input/output ports and input/output of the first/last column of hybrids.

4. The element of the generic sub-network Σi apply to all the connections between

outputs of hybrids on column ui−1 and inputs of hybrids on column ui.

5. The couplings of the hybrids on the same column follow the same rule of

eq. (4.35), with reference the coupling between pairs of resonator on same column

of Fig. 4.8.
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Figure 4.9: Example of in-line symmetric reference filter with 2 sub-networks formed by a
single resonator

Globally, the total number of poles ρtot, total number of zeros ζtot and total number

of resonators ntot are given as:

ρtot =

k+1∑
i=1

ρi + 2 log2N (4.41)

ζtot =

k+1∑
i=1

ζi (4.42)

ntot =

k+1∑
i=1

ni + 2N log2N (4.43)

where ni are the number of resonators of sub-network Σi.

4.6.2 Example with symmetric response

In this example an 8× 8 Butler matrix with Tchebycheff transfer function of 20dB

RL will be discussed. Here the conventional response exhibiting 6 poles as stated

by eq. (4.31) is enhanced by symmetrically adding 1 resonator at the beginning and

on the end of each filter path. Fig. 4.9 is a schematic of the reference filter with 1

resonator added at the beginning and at the end. In the figure the sub-networks Σ1

and Σ4 are shown. These are simply formed by a single resonator each. The other sub-

networks are not present in the circuit and the internal hybrids are directly connected

through a simple coupling. The final network configuration will be the one of Fig. 4.5c

with one additional resonator included after each input port and before each output.

The synthesis of the reference filter of Fig. 4.9 reduces to the calculation of a simple

in-line prototype with the g constants and the coupling coefficients shown in Tab. 4.2.
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Table 4.2: Coefficients of the reference 8-pole Tchebycheff filter with 20dB return loss

h gh Mh,BPF

0 1

1 1.0189 0.990683
2 1.45177 0.822214
3 1.96825 0.591576
4 1.65697 0.553736
5 2.02518 0.545897
6 1.61038 0.553736
7 1.77439 0.591576
8 0.833644 0.822214
9 1.22222 0.990683

The first column of hybrids is identified by resonators 2-3, the second by 4-5 and

the third by 6-7. Thus the coupling between the first and second column of hybrids,

and between the second and the third are 3-4 and 5-6 respectively. Thus the coupling

coefficient in the normalised low-pass domain are again directly derived by Tab. 4.2 as:

M1,BPF = 0.9907 (external coupling), M2,BPF = 0.8222 (extra resonator), Ku1 = 0.4183,

Ku2 = 0.3860, Ku3 = 0.4183, Ku1,u2 = 0.5537 and Ku2,u3 = 0.5537. The magnitude

response is shown in Fig. 4.10. Again only the reflection α and transmission β are

shown in the figure as they are all the same for all inputs/outputs and transmission

parameters. The power splitting is equal to −9dB as it is an 8× 8 Butler matrix. There

are 8 poles in the transfer function, 6 of them produced by the standard network and

2 by the external additional resonators introduced. Note that here 2 sub-networks

have been introduced in order to symmetrically add 1 resonator at input and output.

However it was also possible to include them either at the beginning or at the end

without altering the response or the synthesis procedure, but having an impact only

on the physical implementation of the Butler Matrix.
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Figure 4.10: Magnitude response of reflection (α) and transmission (β) of an 8 × 8 Butler
matrix with v = 1 extra resonator at each port

4.6.3 Example with transmission zeros

The example of extension of the filtering characteristic 4× 4 Butler matrix with the

inclusion of a TZ is given in this section. The reference filter used here introduces

a zero at s = j1.4 with 25dB of RL on a Tchebycheff 6-pole filter. The topology of

the reference filter with transmission zero is shown in Fig. 4.11a together with its

frequency response in Fig. 4.11b. The topology is an extension of the traditional 4-

pole filter because of the addition of the sub-network Σ2 between the internal hybrids,

which includes ρ2 = 2 additional poles and ζ2 = 1 zero. The configuration of the

hybrids will not be modified because both resonators of Σ2 are coupled with resonator

2 thus the virtual open circuit of the first column of hybrids u1 is unaltered. In this

example there no external sections Σ1 nor Σ3.

Initially the coupling matrix of the reference filter is calculated with conventional

techniques, like [34] or the procedure in appendix B for p = 2 ports and n = 6

resonators. Tab. 4.3 shows the coefficients of the scattering polynomials of the filter of
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Figure 4.11: Reference filter with transmission zero

Table 4.3: Coefficients of the polynomials of the Thebycheff 25dB filter with one zero at
s = j1.4. Scattering parameters E(s), F(s), P(s) and admittance matrix common
denominator yd(s) and numerators y11(s) and y21(s)

Degree of s E(s) F(s) P(s) yd(s) y11(s) y21(s)

6 1 1 1

5 2.4248+ j0.4202 j0.4202 j0.4202 1.2124
4 4.3957+ j1.0796 1.4559 2.9258 −j0.5398
3 4.9439+ j1.9077 j0.5253 j1.2165 2.4719
2 3.9031+ j2.0619 0.5184 2.2107 −j1.0309
1 1.8937+ j1.4249 j0.1313 1 j0.7781 0.9469 0.2331
0 0.4357+ j0.4868 0.0257 j1.4 0.2307 −j0.2434 −j0.3264
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Fig. 4.11 with the constant ripple of ε = 2.1446. The residues are calculated from the

admittance parameters and later the transversal coupling matrix is found to be

Mp,r = 0 (4.44a)

Mpn,r =

0.3801 −0.5264 0.5110 −0.4681 0.4479 −0.3316

0.3801 0.5264 0.5110 0.4681 0.4479 0.3316

 (4.44b)

Mn,r =



1.3343 0 0 0 0 0

0 1.0176 0 0 0 0

0 0 0.2006 0 0 0

0 0 0 −0.6049 0 0

0 0 0 0 −1.1462 0

0 0 0 0 0 −1.2216


(4.44c)

Then, a set of matrix similarities are applied in order to find the final coupling matrix

[117]:

Mp,r = 0 (4.45a)

Mpn,r =

1.1011 0 0 0 0 0

0 0 0 0 0 1.1011

 (4.45b)

Mn,r =



0.025 0.9358 0 0 0 0

0.9358 0.0311 0.5475 0.3405 0 0

0 0.5475 −0.5825 0.5084 0 0

0 0.3405 0.5084 0.0499 0.6448 0

0 0 0 0.6448 0.0311 0.9358

0 0 0 0 0.9358 0.025


(4.45c)

In the last equations the subscripts of the matrices are have been included with the

letter r to indicate that they refer to the reference filter and not to the Butler matrix.
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ation of Fig. 4.11a on page 145
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Figure 4.12: Butler matrix 4× 4 implementing a TZ
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The topology of the 4× 4 Butler matrix ntot = 24 resonators is shown in Fig. 4.12a. It

follows the traditional configuration of Fig. 4.5b with the addition of sub-network Σ2

between pairs of hybrids internally. The coupling coefficients are directly calculated

from eq. (4.45c). The hybrids have the same configuration of eq. (4.7c) for the internal

quadruplet of resonators and of eq. (4.7b) for the external couplings. Here the external

couplings are the same as [Mpn,r]1,1 = 1.1011 while the internal are

Ku1 =
1√
2
[Mn,r]1,2 = 0.6617 (4.46)

Fig. 4.12a includes the negative couplings of the hybrids through dashed lines. Due

to the symmetry of the reference filter, the second column of hybrids has the same

couplings. In between the internal hybrids is included the sub-network Σ2 with the

couplings indicated in Fig. 4.12a as:

M1 = [Mn,r]2,3 = 0.5475 (4.47)

M2 = [Mn,r]3,4 = 0.5084 (4.48)

M3 = [Mn,r]2,4 = 0.3405 (4.49)

M4 = [Mn,r]4,5 = 0.6448 (4.50)

In this example it is also interesting to note that all coefficients on the diagonal of

eq. (4.45c) are non-zero, hence all the resonators of the 4 × 4 Butler matrix have a

frequency shift. This fact does not compromise the property of virtual open circuit

of the single quadruplet-hybrid because the self-coupling [Mn,r]1,1 and [Mn,r]2,2 are

systematically applied, respectively, to resonators 1, 3 and 2, 4 so as they do not alter

the perfect balance of interference signal paths inside the hybrid. Naturally, also the

2 resonators of Σ2 have their self-coupling unaltered and equal to elements [Mn,r]3,3

and [Mn,r]4,4. Fig. 4.12b shows the magnitude of the reflection α and transmission β

characteristics. As expected, the magnitude of the transfer function is identical to the

one of the reference filter of Fig. 4.11b with in addition the equal power split of −6dB
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Figure 4.13: Schematic of 180° hybrid with simultaneous excitations at ports 1 and 2. Solid
lines are signal in phase while dashed line is the signal with out of phase

due to the transmission to the 4 output ports. All the transmission parameters exhibit

a TZ at s = j1.4, a RL of 25dB and 6 poles.

4.7 multi-port excitation of N ×N butler matrix

The scattering parameters are obtained by measuring the ratio of the incident/reflecting

waves at two ports while the others are terminated on matched loads. The output

phase distribution is not considered when multiple inputs are applied simultaneously

at more ports. The Butler matrix with filtering is made here with several 180° hybrids,

each of them producing out of phase contributions that might destroy part of the in-

put signals. Hence, it is mandatory to keep all the fields orthogonal inside the cavities

of every hybrid [118].

The arrows of Fig. 4.13 show the phase relation between the two output signals. If

the signal, for example, is applied to port 1 only, it is equally split between ports 3

and 4 and the signals that have the same phase at the two outputs. This is because

every coupling can be modelled as an immittance inverter, which gives a phase shift

of ∓90° depending on its sign. Indeed, the phase of S31 is the same of the phase

of S41 as stated also in Fig. 4.13. However, between resonator 2 and 4 a negative

coupling creates the out-of-phase distribution of parameters S32 and S42. The generic

scattering parameter Sij is a representation of the power flowing from port j to i when
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all the other ports are matched. In the current application the interest is to have at the

same time two input sources at ports 1 and 2. The assumption made here is that the

input signals are coming either from a common source (ie. an HPA) or from different

equipment generating two identical signals. With this in mind it is clear from Fig. 4.13

that at port 3 there is the sum of two in-phase signals whilst at port 4 the two are of

opposite phase at all frequencies, producing no output at that port and destroying the

splitting characteristic of the device.

The problem resides in the intrinsic phase distribution of the 180° hybrid power di-

vider and is independent on this particular implementation based on resonant cavities

[30]. A possible way to overcome the problem is to introduce a phase shifter of 90° in

order to have orthogonal signals in cavities 3 and 4 at all times. With Butler matrices

with N > 2 the orthogonality should be guaranteed for each input hybrid, hence the

90° phase shift is to be included at the second port of each hybrids on column u1. The

phenomena is intrinsic to the nature of the 180° hybrid and, once corrected, does not

affect the overall response of the MPA. This is a prerequisite for input signals that can

also be operated at system level as it does not affect the configuration of the network

proposed.



5
P R OTOT Y P E S A N D E X P E R I M E N TA L

R E S U LT S

In this chapter the design, manufacturing and testing of a 2 × 2 and a 4 × 4 But-

ler matrix with filtering in standard rectangular waveguide will be presented. The

synthesis of the coupling matrices will be obtained through the procedure given in

chapter 4. The RF measurements to experimentally confirm the theoretical synthesis

technique for the novel 4 × 4 Butler matrix that incorporates filter transfer functions.

Moreover, the synthesis and design of the conventional 2 × 2 hybrid of 180° is in-

cluded in order to have a confirmation of the proposed synthesis technique with

respect a well-known reference device. The implementation has been carried out at

X-band for the 2× 2 hybrid and at Ku-band for the 4× 4 Butler matrix.

5.1 electromagnetic model

5.1.1 Selection of the type of resonator

The implementation of the hybrid and Butler matrix in standard rectangular wave-

guide is proposed. This technology has been chosen mainly for simplicity of manu-

facturing, reduced loss and high power handling. Also, the waveguide technology is

well suited for X and Ku-band. The resonators are standard half-wavelength cavities

coupled with inductive apertures.
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Figure 5.1: TE102 cavity to create positive/negative couplings. Top view shown with direction
of magnetic fields in the resonant cavities indicated with arrows

5.1.2 Negative coupling introduced by planar H-plane cavity

The fundamental unit for the Butler matrix is the quadruplet of resonator of Fig. 4.2

in which all couplings are the same except one that has opposite sign. In waveguide

technology the implementation of such a negative element might require the inclusion

in the structure of probes or loops in order to create the desired effect, affecting the

power capabilities [34, 119]. Alternatively, a method exploiting the different phase

of the EM fields with TE102 cavities may be used [120]. Fig. 5.1 shows an example

of this cavity that implement either a negative or positive cross coupling between

resonators 1 and 4. The input and output ports are indicated with I and O while the

resonators number with Ri. In this example the cavities are all half wavelength, or

one wavelength, with inductive couplings. This is a top view of a 4-pole filter with

the direction of the magnetic field indicated. The figure also shows that cavities 1, 2

and 4 are using the TE101 mode while cavity 3 the TE102. Single mode means that the

fundamental resonant mode, for a rectangular waveguide for example, is the TE101

while in the high order mode is the TE102. For the latter 2 local maxima of the electric

fields are obtained. This is the case of cavity 3 of Fig. 5.1. It is well known that the

phase of the fields in two adjacent resonant cavities mutually coupled is opposite [29].

This is because the half-wavelength resonator can be modelled as a pair of an inductor

and a capacitor followed by a transformer of ratio 1 : −1 in order to characterise



5.1 electromagnetic model 153

the 180° electrical length of the resonator. In Fig. 5.1 the reference direction of the

magnetic field is anti-clockwise for both cases in cavity R1. The field in cavity R2 is

clockwise. When it comes to resonator R3 the EM field has 2 local maxima because

of the, theoretical, double length of the cavity. Fig. 5.1a shows the implementation of

negative coupling between resonators R1 and R4 because the directions of the fields

in the two cavities is the same. The dual case is shown in Fig. 5.1b because a different

position of the coupling element between R2 and R3 is responsible for the positive

coupling between R1 and R4.

The method described here shows that it is possible to use a combination of TE101

and TE102 cavities in order to create negative couplings without the need of capacitive

probes or loops that might reduce the power handling levels. Also, from a manufactur-

ing point of view it is more convenient to have all the couplings the same technology.

The price to pay is to use a cavity that is theoretically twice longer than the others.

This solution for the design of the fundamental hybrid will be adopted.

5.1.3 Design

In any of the N×N Butler matrices to implement, the quadruplet of Fig. 4.2 is the

fundamental building block for any implementation. In this chapter a 2× 2 hybrid

and a 4× 4 Butler matrix are manufactured in standard rectangular waveguide. The

design of the hybrid exploits the concept of negative coupling produced by having 3

single mode resonant cavities and one TE102 resonator as explained in the previous

section. A similar solution was adopted also in [107, 113]. Fig. 5.2 is the top view of

the implementation of the hybrid with the direction of the magnetic fields indicated in

all the cavities. It implements the topology of Fig. 4.2 where ports P1-P2 and P3-P4 are

mutually isolated. With reference of a anticlockwise direction of the magnetic field in

resonator 1 (R1), the field is clockwise for both cavities R3 and R4. The same phase

between output ports P3 and P4 is in accordance with the theory presented in the
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Figure 5.2: Hybrid fields configuration

previous chapter. Cavities R3 and R4 are coupled to the two local maxima of resonator

R2. This cavity is a TE102 as it’s length is in principle twice of the others. Resonator

R2 has the external port coupled with the maximum on the left part of Fig. 5.2. The

R1 is the first cavity when excited is port 1 while R2 is the first one when input is at

port 2, hence the direction of the field on the left part of the latter cavity should be the

same of the one in resonator R1, hence anticlockwise. The direction of the magnetic

field in the right part of R2 is clockwise, the same as it is in R4. Thus, the coupling

between R2 and R4 is negative while all the others are positive. All the couplings here

are obtained through inductive apertures. The configuration of the field in such a

design implements the quadruplet topology of Fig. 4.2.

The adoption of the TE102 cavity for resonator R2 introduces an asymmetry with

regard the isolation seen for parameters S21 and S43. From the model of Fig. 4.2 these

values should be 0 at all frequencies under the assumption that a perfect symmetry

is in place. With the design of Fig. 5.2 this is no longer true and the characteristics

of the isolations in the 3D implementations will not be 0. Thus it will be necessary

to optimise the dimensions of cavities and aperture of the couplings in order to keep

the isolation below the maximum level defined by the specifications, whilst keeping

unaltered the properties of filter transfer function, power splitting and phase distribu-

tion.
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Figure 5.3: Top view schematic of 180° hybrid

5.2 hybrid 180° with filtering

The synthesis procedure for N×N Butler matrices with filtering is firstly used to

implement the basic 2× 2 hybrid 180° power splitter. This is an example to show the

validity of the theory with respect the well-known hybrid used here as a reference.

The specifications are centre frequency f0 = 10GHz, bandwidth B = 140MHz and

return loss better than 25dB and a Tchebycheff transfer function. The isolation should

result below −25dB also. The coupler is implemented in standard WR90 rectangular

waveguide.

5.2.1 Physical implementation

The design model of the device which has the structure of Fig. 5.2 is repeated here

with all the dimensions and labels in Fig. 5.3. The ports and resonators numbering

has not been changed. The height dimension of the waveguide is b = 10.16mm and

it is constant for all elements in Fig. 5.3. To keep symmetries, the width of resonators

3 and 4 is the same and labelled with a3, as it is the aperture we3 with the external
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port and lengths l3. The iris aperture between resonators 1, 3 and 4 is indicated with

w1 while the one between 2, 3 and 4 with w2.

The initial coupling coefficients are extracted from the EM model through the tech-

nique given in section 2.6.2. In order to calculate the coupling by varying the w1

dimension, only cavities 1 and 4 are considered. The other cavities are removed from

the model with external couplings we1 and we3 set as weak couplings in order not

to interfere with the contribution of w1. The rest of the procedure is analogous to the

one shown in section 2.6.2. The plot of the coupling values is shown in Fig. 5.4a. Sim-

ilarly, the coupling coefficient derived by w2 is calculated considering only cavities 2

and 4 with weak couplings we2 and we3. The results for w2 are shown in Fig. 5.4b.

The diagram for the external quality factor of Fig. 5.4c has been calculated with the

same technique described in section 2.6.2.

The coupling matrix takes the basic form of eq.s (4.7b) and (4.7c) and they were

calculated in section 4.3 resulting in eq.s (4.17). The denormalised values are ku =

0 .02145 and Qe = 34 .871. The ku is the absolute value of the internal couplings

of the hybrid, as one of them is negative according with the topology of Fig. 4.2.

From the previous values the initial dimensions of the hybrid are found and later an

overall optimisation of the structure is performed. The table with initial and optimised

dimensions is shown in Tab. 5.1. The initial dimensions directly come from the set

of curves of Fig. 5.4, while the optimised ones also take into account the radii in

the internal corners of the structure. This model has been designed in order to have

a main body of the form of Fig. 5.3 with a flat lid on top to close the structure. The

thickness of the irises has been set to 1mm in order to allow a realisable aperture of the

irises for the required coupling coefficient. Also, port 2 and 3 are too close to include

the external flanges, so mitered bends are included in order to accommodate the

flanges. In order to keep symmetry and phase to each port, the same type of bend are

also added to the other ports. The length of the side of the bend has been optimised

with Fest3D in order to get a RL of −80dB at 10GHz, resulting in 8.0535mm length.
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Figure 5.4: Hybrid 180° denormalised coupling coefficients calculated for f0 = 10GHz and
B = 140MHz
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Table 5.1: Dimensions of the 180° hybrid with filtering

Initial Optimised
(mm) (mm)

a1 22.86 23.3214
a2 22.86 22.86
a3 22.86 22.86
l1 19.9 16.2032
l2 39.8 35.2386
l3 19.9 16.4116
w1 9.5 9.6519
w2 7.5 8.3276
we1 10 10.2655
we2 10 11.7542
we3 10 10.3462
Thickness 1 1

Radii 1.5 1.5

The asymmetry introduced by cavity 2 affects the value of non-perfect isolation of

S21 and S43. Moreover it introduces a phase shift of transmission parameters ∠S32
and ∠S42 with respect the ones produced entering from port 1 such as ∠S31 and ∠S41.

While ∠S31 and ∠S32 should have the same phase, ∠S41 and ∠S42 should produce a

shift of 180°. These values are affected by the asymmetry of cavity 2 with respect

the others, hence the phase mismatch is corrected by increasing the length of external

port P1 by δ = 0.8mm to have the perfect phase at centre frequency. Fig. 5.5 shows

the main body of the 180° hybrid coupler with filtering, manufactured in Aluminium

through a CNC milling. Port labels and cavity numbers are also included in the figure.

In order to improve the contact between the main part shown in Fig. 5.5 and the lid,

a number of screws has been put with grooving to increase the pressure between the

two surfaces.

5.2.2 Measurements

A series of RF measurements have been conducted using a Vector Network Analyser

(VNA) for the magnitude and phase response. The calibration has been performed
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Figure 5.5: Prototype of 180° hybrid with filtering

with a standard WR90 kit to cover a frequency span from 9.5GHz to 10.5GHz with

over 801 points. The measurements have been taken through a 2-port VNA with the

other ports closed with precise (calibration) waveguide loads. The experiment can

only measure 2 ports at time, hence it has been repeated in order to measure all the

scattering parameters.

Fig. 5.6 shows the magnitude response of the hybrid. In all characteristics it is

possible to distinguish a 2-pole Tchebycheff transfer function. Measurements, shown

with solid lines, have been compared with simulation data shown with dashed lines.

The RL is better than 22dB in the worst case and the isolation is better than 25.8dB.

The tolerances of the manufacturing process are about ±20µm and as result it is

possible to see a shift down in frequency of the characteristics. The power splitting

ratio is 3dB in accordance to specifications. No tuning has been performed on this

device.
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Figure 5.6: Magnitude measurements of 180° hybrid
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Figure 5.7: Phase measurements of 180° hybrid
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The phase frequency response is shown in Fig. 5.7a. In the figure, only the phase

of the transmission parameters has been shown. The distribution is in accordance

with the transfer function matrix of eq. (4.18) because all the characteristics are in

phase, except ∠S42 that is out of phase. This demonstrates that the hybrid provides

the power splitting, inherent filter transfer function and correct input to output phase

distribution. However, it is also important to evaluate the phase error associated to

this device. Fig. 5.7b shows the phase error of pairs of transmission transfer functions

with respect the nominal value. Here, the error is not necessarily related to the abso-

lute value of the phase transfer function. The phase error for these kind of hybrids

is measured as the deviation of the difference of 2 transmission phase characteristics

with respect the nominal value. The phase difference of 2 characteristics that are in

phase should be 0° while it has to be 180° for the out-phase ones. Clearly the phase er-

ror is also a function of frequency. Fig. 5.7b shows the errors with the notation ∆ab−cd

in order to express the deviation between the ∠Sab and ∠Scd. The phase difference is

calculated in the same as was shown in Fig. 3.3. The phase distribution error has to be

evaluated inside the operational bandwidth of the device, as outside the filter transfer

function tends to reflect the incoming frequencies and phase becomes less relevant.

The maximum deviation shown in Fig. 5.7b in the device bandwidth is 3.2° for the

difference between ∠S13 and ∠S32.

5.2.3 Multipactor analysis

A multipactor analysis on the hybrid of Fig. 5.5 has been performed [118]. The

object is to evaluate the multipactor discharge thresholds when multiple signals are

applied simultaneously to the input ports. Also, multiple input signals means that

they interact in the cavity in a different way with respect a traditional 2-port network.

In this section the EM field distribution inside the device will be firstly described
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(a) Phase 0° (b) Phase 60°

(c) Phase 90° (d) Phase 120°

Figure 5.8: Hybrid electric fields with multi-port quadrature input excitations

when multiple inputs are applied, later the multipactor simulation will be evaluated

at centre frequency and at the band edges.

Multiple inputs fields distribution

The input ports are 1 and 2 while the outputs are 3 and 4 as stated before. The

hybrid operates when input signals are in quadrature, hence with a relative 90° phase

shift as it was shown in section 4.7. Fig. 5.8 shows the configuration of the electric

fields in the 180° hybrid coupler when 2, quadrature, input signals are applied sim-

ultaneously to ports 1 and 2. The figures are the representations of the fields for

different times, or phase, obtained with HFSS. A signal entering from port 1 does not
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Figure 5.9: Group delay of the 180° hybrid coupler

affect the field in cavity 2, and the same happens when signal from port 2 does not

have any impact on cavity 1. Thus, cavities 1 and 2 are affected by the resonance of

only 1 signal contribution. However, this does not happen in cavities 3 and 4 because

there is the interaction of the input signals that are in quadrature. From Fig. 5.8b

and 5.8d it is possible to note the intensity of the magnitude of the electric field, con-

centrated in the centre of the resonator. The level of red on these cavities is higher

than in cavity 1. Resonator 2 is a TE102 cavity and the resonance field distributes over

2 local minima. This has an impact on the maximum level of the magnitude of the

electric field and is lower than in any other cavity. For this reason this study has been

restricted to cavities 1, 3 and 4.

Multipactor is an effect that takes place when there is an exponential avalanche of

electrons between two surfaces. The phenomena is also dependent on the frequency,

angle and energy of the electric field. Thus, it is possible to predict the multipactor to

happen in the areas where the field is stronger. The multipactor analysis of the device

of Fig. 5.5 has been carried out using CST Particle Studio with tracking option in order

to register the position of the discharges. Multipactor is also critical in resonators at

the frequencies where the GD is higher, as there is a direct relation with the stored

energy in the resonators [77, 121]. The GD for the S31 transmission parameter is

shown in Fig. 5.9. The simulations will be performed at centre frequency f0 = 10GHz
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Table 5.2: Maximum voltages in the centre of cavities 1, 3 and 4

Frequency Cavity 1 Cavity 3 Cavity 4

(GHz) (V) (V) (V)

10 80.8 86.8 86.05
9.9 111.9 78.69 82.01
10.1 99.5 81.9 80.34

and at f1 = 9.9GHz and f2 = 10.1GHz because in the latter 2 frequencies the GD are

higher, hence the stored energy and the chance to have multipactor is also higher. For

all the following simulations the material used is silver together with a Maxwellian

source with an initial population of 5000 electrons over the whole structure. In order

to predict the multipactor behaviour in both cavities 3 and 4, the following pair of

signals is applied at ports 1 and 2:

si1(t) =
√
Pin cos (2πft) (5.1)

si2(t) =
√
Pin cos

(
2πft +

π

2

)
(5.2)

where Pin is the input power at each input. Before starting the multipactor analysis at

the three critical frequencies it is interesting to evaluate the maximum voltages inside

the cavities. This is because the cavities that have absolute higher voltages are likely

to be more affected by the multipactor [79]. With reference to the configuration of the

fields in the multi-port excitation shown in Fig. 5.8, the centre of cavities 1, 3 and 4

are be expected to be affected more. However, the configuration of the electric field

in cavity 2 shows a maximum level of amplitude that is lower with respect to the

others by a factor 2. The maximum level of voltage inside cavities 1, 3 and 4 when

signals (5.1) and (5.2) were applied with a Pin = 0.5W, has been evaluated in HFSS

with the values tabulated in table 5.2. The calculation of the voltages was done by
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Figure 5.10: Multipactor analysis at 10GHz

integrating the electric field over the line between the centres of top and bottom parts

of the resonators

V =

∫b
0

~E · d~s (5.3)

Central Frequency Analysis

The multipactor analysis has been carried out initially for the central frequency

f0. The evolution of the particles (electrons) inside the network for different level of

Pin is shown in Fig. 5.10a. For power level less than about 50 kW there is a general

absorption of the electron population and no discharges are reported. On the other

hand, for power starting from 54 kW there is an exponential increase of electrons
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caused by the secondary emission. Here the phenomena of multipactor occurs as the

avalanche of electrons is self sustained. Fig. 5.10b is a plot of the electrons during the

discharge at 54 kW. The multipactor occurs in cavity 4, one of the two with multi-

carrier condition. Here the majority of the electrons are excited in the central part of

the cavity, where the electric field is higher. In a similar way the multipactor occurs,

with stronger effects, at higher power levels as shown in Fig. 5.10c for Pin = 60 kW.

The symmetries of the circuit create a combination of fields in cavities 3 and 4 that is

very similar, so it is not possible to predict which one is more critical for multipactor.

According to the table 5.2, at the central frequency the maximum voltage in the

centre of the three critical cavities shows that resonators 3 and 4 are more likely to

be affected by multipactor. The voltage in cavities 3 and 4 are not exactly the same

because of the non perfect symmetry of the design. However, the values are very close

compared with the voltage in cavity 1. The values of maximum voltages in cavities 3

and 4 are, respectively, 7 .43% and 6 .5% higher than in cavity 1. This property is of

great interest, as the height of all the resonators is constant and equal to b = 10.16mm,

standard height WR90 waveguide.

Taking as a reference an input power Pin, ref = 250W the margin in decibel with

respect the multipactor critical power is:

10 log10

(
Pin, mul

Pin, ref

)
= 10 log10

(
50 000W
250W

)
= 23.01dB (5.4)

where the multipactor critical power has a value in between the last curve of electron

absorption and electron avalanche of Fig. 5.10a. The margin is significantly higher

than the typical 9dB expressed in the standard ECSS document [86].

Analysis at Maximum of Group Delay

The analysis has also been performed where the group delay is maximum, at fre-

quencies f1 = 9.9GHz and f2 = 10.1GHz. The curves of the electron population for

several input powers are shown for the two frequencies in Fig.s 5.11a and 5.11b while
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the plots of multipactor are in Fig.s 5.11c and 5.11d. In this case the critical power is

between 36 kW and 42 kW for frequency f1 and between 40 kW and 45 kW for f2. In

contrast to the simulations conducted at the central frequency, here the critical cavity

is number 1. This could be explained as at these operating frequencies the network

is rejecting the input signals, so it is likely that the power is mostly stopped in the

first cavity. Also, the values of voltages measured in table 5.2 are higher in cavity 1

at both f1 and f2. The plots of the magnitude of the electric fields at f1 and f2 are

shown in Fig.s 5.11e and 5.11f. The red colour represents the level of the maximum

value of the magnitude of the electric field and it has been normalized in both plots

in order to make a comparison. The two plots are substantially in agreement with the

expectations of multipactor coming from the simulations and the maximum voltage

in the cavities. For both f1 and f2 cavity 1 has higher maximum voltage with respect

the other cavities. Moreover, at f1 at the centre of cavity 1, there was a level of 111.9V

compared with the 99.5V for the f2. The values of table 5.2 have been simulated with

the input power of 0.5W, but they are, once rescaled, indicative also for the level of

powers conducted in other simulations. The margins respect to the nominal input

power Pin, ref are, for the two frequencies, 21.584dB and 22.041dB respectively.

The power levels necessary to create a multipactor condition in the 180° hybrid

with filtering have been shown. However, it is important to state that these levels

are more than 20dB higher with respect the traditional power delivered, for example,

by a TWTA of nominally 250W. This is because of the inductive nature of the coup-

lings and the absence of narrow gaps. Nevertheless, this study has shown which are

the critical cavities of the device for different frequencies when multiple inputs are

applied simultaneously.
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5.3 butler matrix 4 × 4 based on resonators

In this section, the novel implementation of a 4× 4 Butler matrix with filtering in

standard WR75 waveguide is shown. The device will be manufactured in 2 prototypes,

one built with conventional CNC milling technique and the second one with Additive

Manufacturing (AM). The aim is to provide experimental verification of the synthesis

technique proposed in chapter 4, and to investigate alternative fabrication techniques.

The specifications are: bandwidth of 500MHz, centre frequency f0 = 12.5GHz

and RL better than 25dB. The transfer function is of Tchebycheff type with no extra

resonators. According to eq. (4.31) and (4.33) there will be ρ = 4 poles per transfer

function through n = 16 resonators. Also, the number of 180° hybrids is u = 4 as

stated by eq. (4.32). The calculation of the coupling matrix in the low-pass domain

follows the example shown in section 4.5 on page 136. The coefficients are Ku1 =

0.7360, Ku2 = 0.7360 and the ones for the connections between pair of hybrids are

Ku1,u2 = 0.77152. The denormalized coefficients are Qe = 18.833, ku1 = 0.029441,

ku2 = 0.029441 and ku1,u2 = 0.030861.

The fundamental unit-hybrid is very similar to the used for the 180° hybrid of

Fig. 5.3, with the second input, port 2, included on the top of cavity 2 instead of having

it on the lateral side. The external coupling is placed in the centre of the cavity in order

to confer better symmetry to the hybrid and to not interfere with the TE102 resonance

mode [107]. The top view schematic of the hybrid is shown in Fig. 5.12a. In order to

accommodate all the 4 hybrids, they are connected through squared mitered bends

that are also acting as inductive couplings. The bends are shown in Fig. 5.12a with

oblique lines external to cavities 3 and 4 of the hybrid. In order to allow connections

and inclusions of the external flanges in the final design, a proper arrangement of the

hybrids has to be done. In particular, the size of the TE102 cavity is to be considered

when 2 hybrids are parallel horizontally and the other 2 are vertical. Fig. 5.12b shows

the topology that implements the 3D design of the Butler matrix, shown in Fig. 5.12c.
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Figure 5.12: Design of the 4× 4 Butler matrix with filtering
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In Fig. 5.12b the negative couplings are shown with dashed lines. It is important to

note that in this case the vertical hybrids they are oriented in a way that the position of

the negative coupling is changed with respect the conventional topology introduced

in Fig. 4.5. The transfer function matrix for this configuration is

T4×4 =
1√
4



1 −1 1 1

−1 1 1 1

1 1 1 −1

1 1 −1 1


(5.5)

and is still orthogonal. This is also a proof of the property stated in section 4.4.3 that

it is not necessary to have a perfect Hadamard transfer function to comply with rule

of splitting/recombination of the INET and ONET for the MPA.

The 4 constituting hybrids are all the same and have the dimensions shown in

Fig. 5.12a. The method used to calculate the dimensions is the same as shown previ-

ously, with curves for the initial approximated values shown in Fig. 5.13. These curves

are calculated with Fest3D in the same way as it was for the 180° hybrid of the pre-

vious section, but this time for a standard WR75 waveguide. The model of Fig. 5.12c

is simulated including radii of 1.5mm in the internal corners. All the dimensions

are later optimised in order to get the final values. Tab. 5.3 shows the dimensions

of the 4× 4 Butler matrix before and after the optimisation. The height dimension

of the capacitive coupling on cavity 2, be2, is found by optimisation only. As it was

for the 180° hybrid, the asymmetry introduced by cavity 2 introduces a mismatch in

the phase response of the device. Hence a correction of δ = 10.45mm of difference

between lengths of the external ports 1 and 2 of the unit-hybrid has been applied.
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Figure 5.13: Waveguide 4× 4 Butler matrix denormalised coupling coefficients and physical
dimensions
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Table 5.3: Dimensions of 4× 4 Butler matrix with filtering

Initial Optimised
(mm) (mm)

a1 19.05 19.242
a2 19.05 18.117
a3 19.05 19.05
l1 15 11.906
l2 30.1 32.046
l3 15 12.2286
w1 8.3 8.4468
w2 6.5 7.9597
we1 9 9.314
we2 19.05 17.3198
we3 9.3 9.341
be2 4.0025
Thickness 1 1

Radii 1.5 1.5

5.3.1 Milling model

The first implementation of the 4× 4 Butler matrix based on resonators of Fig. 5.12c

has been manufactured with a CNC milling machine in Aluminium. Tolerances are

about 20µm of deviation with respect the nominal value. The device has been man-

ufactured with a main body block of material where the Aluminium is removed to

make the hybrids and couplings of the structure. Then, 4 lids are made to close the

structure on the 4 sides of the block. Fig. 5.14 shows the model of the breadboard

from different angles, and a picture of the main block of the final device. The external

flanges are put on the sides and top of each hybrid. In order to improve the contact

between surfaces, the maximum number of screws are used with grooving in order to

increase pressure. Venting holes are also included to allow air escape in low-pressure

environments. This device is symmetric and port numbering can be chosen arbitrarily

with the following conditions:

• one hybrid has to be chosen to be the first one. At the beginning any hybrid is

suitable for this.
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(a) (b)

(c)

Figure 5.14: Butler matrix made with milling
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Figure 5.15: Butler matrix prototypes with port numbers

• From the first hybrid (ie. example, the top on Fig. 5.14) port number 1 is on the

same plane of the waveguide while port 2 is on top of the T E102 cavity.

• The second input hybrid is placed symmetrically on the other side of the block,

with the same port numbering.

• Output hybrids are placed, respectively, on right and left side of the first one.

First output port is on the same plane of the first output hybrid while the second

output port is on the top of the T E102 cavity.

Fig. 5.15 shows the 2 breadboards of the 4 × 4 Butler matrix with indicated the num-

bers of some of the ports. The direction of the input electric field has a direct con-

sequence on the measured phase relation. In order to be consistent with the simula-

tions, the flange of each port on the same plane of the hybrid is to be placed vertically,

with orientation towards the external of the block, while connectors at port 2 should

have an orientation right to left with respect the top-view of each hybrid.

The RF measurements have been performed with a VNA with a frequency span

between 11.5GHz and 13.5GHz with 1601 points. The analyser used has 2 ports, thus

only 2 parameters are measured at each time with the rest of the ports closed with

matched terminations. A total of 28 measurements are needed to get the response of

all the scattering parameters. No tuning has been performed on this device. The mag-

nitude response of some of the parameters is shown in Fig. 5.16 and 5.17. Measured
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Figure 5.16: Magnitude measurements of 4× 4 Butler matrix manufactured with milling

data is shown with solid line and compared with simulations, made with Fest3D and

HFSS, in dashed lines. From the figures it is possible to note that there is an overall

agreement of the measured data versus the simulations in terms of central frequency,

bandwidth, power splitting level and filtering selectivity. The RL is different for the

input ports chosen and this is a consequence of misalignments occurring during the

assembly of the device. In particular, it has been registered an error of the reference

coordinate position of the CNC milling machine, causing a misalignment between

the lids and the main part. This aspect, together with the tolerances intrinsic of the

machine, are the cause of some deviations of the scattering parameters with respect
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Figure 5.17: Magnitude measurements of 4× 4 Butler matrix manufactured with milling

to the simulations. In particular there are differences in the maximum values of the

isolations, that reach the level of −18dB for the worst case. The RL generally exhibits

4 poles with a maximum level of −16dB. The phase characteristics of the transmission

parameters are shown in Fig. 5.18. It is seen that all the characteristics are in-phase

except the ∠S61, ∠S52, ∠S83 and ∠S74 that are out of phase. This is consistent with

the transfer function matrix of eq. (5.5) where the 4 negative elements correspond

to the phase parameters that are out of phase in Fig. 5.18. Once the output phase

distribution has been verified, the error of the phase relations are studied with re-

spect the nominal phase difference calculated. Fig. 5.19 shows the errors with respect
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Figure 5.18: Magnitude and phase measurements of 4× 4 Butler matrix manufactured with
milling
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Figure 5.19: Phase error with respect the nominal value for the 4× 4 Butler matrix made with
milling
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the theoretical value between pairs of phase characteristics. The calculation has been

performed over the entire frequency span, although only the interval inside the oper-

ational bandwidth is relevant. The maximum phase error in the bandwidth is 21.2°

for the difference between ∠S35 and ∠S36.

5.3.2 Additive manufacturing model

The 4 × 4 Butler matrix with filtering with the design shown in Fig. 5.12c has been

manufactured in a monolithic block with an AM technique with Aluminium [122].

AM is defined as the direct process of joining materials to make objects from 3D

model data, usually layer upon layer, as opposed to subtractive manufacturing meth-

ods (milling, spark-erosion, turning, wire-erosion, etc...). It is used to build physical

models, prototypes, patterns, tooling components and production parts in plastic,

metal, ceramic, glass and composite materials. In general, AM can be considered

as a manufacturing method capable of reducing lead time, improve product quality

and reduce costs. From the RF point of view, there are parameters like surface rough-

ness, mechanical tolerances, dimensional limitations in the fabrication etc..., which are

deemed as drawbacks for the introduction of this technology for RF passive hardware.

On the other hand, this technology can enable designs of complex structures which,

until now, have been only manufactured joining multiple parts fabricated separately.

The process starts with the deposition of a layer of powder over which a laser, with

a technique called sintering, makes the prescribed shapes of the object. Then another

layer of powder is put on this and the whole process continues up to the completion

of the structure.

Most of the passive RF hardware embarked on satellites are made of metals. This

is due to the needs of good electrical and thermal conductivity together with the

mass/envelope minimization while maintaining good mechanical performance (e.g.

stiffness). At the same time the metallic parts create a shielding which avoid un-
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desired RF leakage. Additionally, due to the increasing complexity of communication

payloads, miniaturization for all the units is required in order to reduce total mass

and allow the accommodation of a high number of units.

Some post-processing may be needed once the parts have been manufactured by

AM. Typically, post-processing is needed to overcome limitations of AM and/or to

achieve certain properties that the AM process cannot achieve that are required for

Ka-band passive RF hardware. Depending on the AM technique used, the required

post-processing will vary. Some of the processes are mandatory, while others can be

applied to achieve specific requirements such as surface finishing. This has a high

associated cost, therefore the number of steps should be minimized so that AM keeps

being an attractive manufacturing solution. A correct selection of the AM technique

will reduce the cost of the post-processing tasks. Some of these methods may include

machining, abrasive blasting or polishing. In order to develop precision components

made by aluminium, the following process is carried out:

1. analysis and optimization of parts,

2. design to adapt them to additive manufacturing,

3. manufacturing of the parts with metal technology,

4. post-processing of the parts (improving of surfaces).

The above steps will be performed to implement the AM Butler matrix shown in

Fig. 5.20.

Due to the complexity of the model, the process of additive manufacturing has to

consider the symmetries and the internal parallel surfaces. The prototype is built in

aluminium AlSi10Mg. The entire structure is to be positioned on an inclined plane

in order to efficiently deposit the material and to apply the laser sintering. This is

due to the two lateral vertical walls and the two horizontal planes, which are all

parallel. The model is then positioned over supports of the same material and the 3D

software design adjusted accordingly. Fig. 5.20c shows the view of the model put
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(a) Design of the 4× 4 Butler matrix with filtering (b) Final device

(c) Geometry placed on material supports in red (d) Detail of the external surface interface

Figure 5.20: Butler matrix built with additive manufacturing
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Figure 5.21: Comparison of the 4 × 4 Butler matrix between the simulation and measured
data. Note that here the measured data are shift of 180MHz for clarity

over same material supports, here indicated in red. The supports are all placed in

correspondence to the external interfaces as shown in the figure, so as a faster laser

sintering can create the structure. The piece has been made in an EOS M280 machine

equipped with a 400W laser with a layer thickness of 30µm. The build chamber of

this system is 250× 250× 300mm and the tolerances are in the range ±0.05mm. The

prototype also received a thermal treatment stress relieve, corresponding to 2 hours

at 300 ◦C. At the end of the process the supports are removed in two steps: firstly

by hand to remove the majority of the material and then through automated machine

tools (machining centres etc...). Fig. 5.20d shows the result of the final removal and

refinement of the surface of one of the external flanges. It is crucial to have this surface

as flat as possible in order to improve the contact with waveguide flanges. Fig. 5.20b

shows the final device.
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Figure 5.22: Magnitude measurements of 4× 4 Butler matrix built with additive manufactur-
ing
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Figure 5.23: Magnitude and phase measurements of 4× 4 Butler matrix built with additive
manufacturing
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Figure 5.24: Phase error with respect the nominal value for the 4× 4 Butler matrix made with
additive manufacturing
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The same type of measurements made for the milled model, has been conducted

for this device. In general, a shift of 180MHz down in frequency is observed on all

the parameters. Hence, Fig. 5.21 is a representation of the measured data (solid lines)

with respect the simulations (dashed lines), when a shift of 180MHz up in frequency

is applied to make the comparison easier. It is possible to note an agreement of the

characteristics, both in terms of selectivity and power splitting. Also, the isolation

parameter |S31| is very close to the simulated one. The IL does not exhibit clearly

all the 4 poles, however it is possible to conclude that the selectivity of the transfer

function is of a 4-pole Tchebycheff filter because of the close relation of the simulated

and measured magnitude of the S51 parameter. Moreover, the maximum level of

IL is of −11dB for the worst case. The bandwidth is in line with the specifications.

The measurements show that the manufacturing process has increased the internal

dimensions, with the additional tolerances introduced by the AM building method.

Fig. 5.22 shows the magnitude of all the scattering parameters. In this figure only the

measured data is proposed without applying any frequency shift. All the transmission

and return loss parameters are in line with the Fig. 5.21. The isolation is in general

below −22dB except for the S56 and S87 which are −10.7dB for the worst case. With

respect the model made by milling, here it is not always possible to observe the peaks

in some isolation parameters: it is the case of S67 of Fig. 5.22c with respect the one

for milled shown in Fig. 5.17b, but also of the S85 of Fig. 5.22d and Fig. 5.17d. This

means that the manufacturing errors have an impact on the level and characteristic of

the isolation as well. The phase relations are shown in Fig. 5.23 and it also confirms

the phase distribution property of eq. (5.5) with all characteristics in phase, except for

∠S61, ∠S52, ∠S83 and ∠S74. Finally, the phase relative errors are shown in Fig. 5.24.

Also for the model of Butler matrix, no tuning has been performed.

The Butler matrix made with AM has the advantage of been more lightweight with

respect the milled model because it is a monolithic object with no need of screws to

connect the lids with the main body. Moreover, the internal part of the main body
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is hollow with the AM technique. The bandwidth has been confirmed in line with

the specifications with both models and most of the isolation and transmissions para-

meters are also coherent with the simulations. The main issue regarding the AM is

the lower accuracy with respect the milled CNC one. The centre frequency and RL

of the version made with AM are not as good as the milled one. At the moment,

CNC milling is the technique to be preferred to achieve more accurate designs, how-

ever, future improvements of the AM could result in an higher interest toward this

technology.

5.4 size reduction

The major advantages of including filter transfer functions into the Butler matrix

are the size and mass reduction. The comparison is made between a conventional

solution where a baseline formed by an N × N Butler matrix with cascaded N BPFs

of order κ (cf. Fig. 2.17a) and the proposed solution of multi-port and multi-function

device based only on coupled resonators, as described in section 4.4. In the minimum

condition, the whole Butler matrix with filtering can produce ρ = 2k poles with a

number of cavities n = 2N log2 N, according to eq. (4.31) and (4.33). Thus, the total

number of cavities required by the conventional baseline to operate the filtering is κN.

If the order of each filter is greater than the minimum selectivity introduced by the

Butler matrix with filtering, κ > 2K, then the same transfer function can be obtained

through the multi-port network based on resonators. The total number of cavities

required is obtained combining eq. (4.33) into (4.30), then it is possible to verify that

it is

n = 2kN (5.6)
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This is the minimum number of cavities required by the Butler matrix with filter-

ing, that is the same to the number of cavities required by the conventional baseline

of transmission-line Butler matrix and N band-pass filters. This is generally true if

κ = 2k. However, it has been demonstrated in section 4.6 that an higher number of

cavities as well as more complex transfer functions are possible. Thus, it is possible

to conclude that exactly the same number of cavities are required by the Butler matrix

with filtering in order to reproduce the same electrical characteristics of the cascad-

ing of an N × N transmission-line Butler matrix and N BPFs, of the generic form of

Fig. 4.8. For this reason it is possible to conclude that the proposed technique is able

to achieve the same response with the same number of cavities, hence making the

transmission-line Butler matrix redundant.

As a quantitative comparison example, a conventional Butler matrix based on wave-

guide transmission lines has been designed with conventional inductive iris filters

cascaded on the output. The goal is to quantify the volume reduction of this conven-

tional approach with respect the resonator based Butler matrix shown in Fig. 5.12c.

The internal volume of the latter device has been measured to be 66.2 cm3. A 4× 4

Butler matrix and 4 BPFs have been designed and optimised to meet the same specific-

ation of of the Butler matrix with filtering of section 5.3 in standard WR75 waveguide.

Firstly the basic waveguide hybrid has been optimised, and later it has been replic-

ated 4 times with interconnections made by mitered bends. Other bends have been

included at the output ports in order to allow placement of the external flanges. Then,

a 4-cavity inductive iris band-pass filter of f0 = 12.5GHz, B = 500MHz and RL bet-

ter than 25dB has been designed, and 4 replica placed at the outputs of the Butler

matrix. This conventional ONET that includes the filter transfer functions is shown

in Fig. 5.25a. In this example a Butler matrix made with a conventional 90° coupler

has been designed for simplicity. Fig. 5.25a also shows the Butler matrix and the 4

BPFs. The response of the Butler matrix alone is shown in Fig. 5.25b with the mag-

nitude and in Fig. 5.25c the phase. The BPF response is shown in Fig. 5.25d. All the
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(a) Schematic of ONET with filters
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(b) Conventional Bulter matrix magnitude response
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(c) Conventional Bulter matrix phase response

11.5 12 12.5 13 13.5
−80

−60

−40

−20

0

Frequency (GHz)

M
ag

ni
tu

de
(d

B)

|S11|

|S21|

(d) Reference Band-pass filter
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(e) Response of ONET including bank of filters

Figure 5.25: The conventional baseline is formed by a transmission-line Butler matrix cas-
caded by a bank of band-pass filters that are the same. Simulation made with
Fest3D
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filters are the same. Finally, the response of the whole ONET of Fig. 5.25a is shown in

Fig. 5.25e. As there are many parameters to include in the figure, the transmissions

are shown with solid lines while the reflections and isolations with dotted lines. The

volume of the ONET of Fig. 5.25a is extracted and compared with the one of Butler

matrix including filtering of Fig. 5.12c. It is found to be 96.7 cm3, meaning that for this

example the proposed solution is 31.5% less in volume with respect the conventional

model. Clearly, this number is subject to the particular technology used to implement

the device, however it gives a numerical idea of the advantages of the Butler matrix

with filtering based on resonators.



6 C O N C L U S I O N S

This work has presented the synthesis of the coupling matrix of a novel Butler mat-

rix that includes the filtering transfer functions through a network based on electro-

magnetically coupled resonators. This class of circuit is a multi-port, multi-resonators

network that provides the typical power splitting ratio and input to output phase dis-

tribution of the Butler matrix, as well as the filtering transfer functions in one single

device.

Traditional synthesis techniques have been found extensively in the literature and

they have been developed mainly for filters (2-port devices) and for a limited class of

3-port networks. These techniques are based on the definition of the polynomials of

the transfer function, and later the elements of the coupling matrix are found mathem-

atically. However, 2 main problems have been arisen and shown to be critical: the lack

of a clear and detailed theory for the definition of the characteristic polynomials for

multi-port networks, and the requirement of same filter transfer functions for all the

transmission parameters. It is worth recalling that the most typical passive multi-port

passive components with filtering are diplexers and multiplexers, and several tech-

niques have been developed through the years to develop resonator based methods

for these. Here, a different methodology had to be investigated in order to overcome

the limitations of the general techniques. The outcome is an ad-hoc solution for the

Butler matrix that includes filtering. This method is based on the combination of sev-

eral hybrid couplers based on resonators that are able to simplify the problem and to

reduce it to well known techniques valid for 2-port circuits.

In the first instance the 90° hybrid has been investigated because it is widely used

in conventional Butler matrices. The first step was to derive an equivalence technique
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between the model based on transmission lines and the one based on resonators. This

was already available in the literature for a simple 2-branch coupler and was exten-

ded here to multiple branches. However, the validity of the equivalence was limited

to the centre frequency only, leaving great uncertainty for the rest of the response

with very little margin left to the designer to define the specifications. Thus, here an

additional analysis of 2× 2 hybrid coupler based on resonators has been developed

through a novel topological approach that is capable to quickly predict the frequency

response by studying the topology of the network. This method has been proved

experimentally with the implementation of a 2× 2 quadrature hybrid coupler based

on 8 resonators, and also mathematically with an analytical study of the limitations

of these kind of networks. The 90° hybrid coupler based on resonators shows out

of band peaks that have been demonstrated to be unavoidable and intrinsic to the

topology of these circuits. Even with optimisation of the coupling matrix, it has been

shown how these peaks are the result of the interference of the multiple paths gen-

erated in the circuit and, eventually, how to control them. It has been stated that if

a 90° phase shift is necessary for the hybrid with filtering, the out-band peaks need

to be taken into account. This behaviour compromises the overall responses when

the hybrids are combined in order to build a more complex circuit such as the Butler

matrix. The presence of the peaks in each hybrid has a disruptive consequence of the

final response of the Butler matrix, hence reducing the usefulness of such solution.

A more interesting case is given by the properties of the 180° hybrid based on

resonators. This network is in some way similar to the 4 resonators of the quadrat-

ure hybrid, with the difference that the values of the coupling coefficients are all the

same, except 1 that has same absolute value but opposite sign. This structure is able

to provide a perfect isolation of the input ports, thus creating a virtual open circuit

that is the base of the synthesis technique. This virtual open circuit allows the net-

work to be considered from one input to the outputs formed of different transmission

paths, hence able to make the synthesis independently on each path. This is a major
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advancement with respect the quadrature hybrid because the virtual open circuit can

be preserved by cascading more hybrids. Based on this concept, a multi-port N×N

Butler matrix can be made. The use of the hybrid is modular and reflects the total

number of N = 2k inputs. The synthesis of the coupling matrix relies on the fact

that the virtual open circuit makes independent paths from each input to each output

port. It has been demonstrated that over each path it is possible to define transfer

function polynomials that are proportional to the ones of a conventional 2-port filter.

This characteristic is the base of a general solution that overcomes the limitations of

conventional general techniques. Moreover, it has been shown that the number of

poles and the introduction of transmission zeros is also possible, as an extension of

the procedure proposed. The flexibility on the type of transfer function (Buttherworth,

Tchebycheff or generalised Tchebycheff) adds a further degree of freedom to meet the

specifications.

The synthesis technique has been used to design a 2× 2 hybrid coupler 180° based

on 4 resonators and a 4× 4 Butler matrix with filtering in 2 versions. These are built

with milling and additive manufacturing. The breadboard has been implemented in

standard rectangular waveguide with inductive irises, also providing good perform-

ances in terms of multipactor power handling. The 4 × 4 Butler matrix has been

designed following a similar design of the basic hybrid in a more complex 3D struc-

ture. The measurements conducted on the milled version shown good agreement

with bandwidth, transfer function and power splitting. The advantage of the model

made with additive manufacturing is that it is built from a single piece. For this

model, a systematic error has been introduced so as all the characteristics are shifted

down in frequency of a constant factor. Other than this a substantial agreement with

respect the theoretical expectations is obtained, also considering that no tuning has

been performed on any model.

The complexity of these multi-port, multi-resonator circuits is given by the high

number of resonators and couplings that are to be accommodated and interconnected.
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The 4× 4 Butler matrix configuration shows that it is necessary to move both in the

horizontal and vertical plane to properly connect the hybrids. A further extension to

more inputs/outputs should be assessed for its practical implementation first. Nev-

ertheless, the theory developed here is based on the calculation of a coupling matrix,

hence generalised and independent from the technology used. Further studies may

be conducted in order to find the optimum type of resonators that meet the specific-

ations (centre frequency, bandwidth, insertion loss, power handling capabilities etc...)

and their ability to be geometrically connected when the Butler matrix has an high

number of ports.



A
S Y N T H E S I S O F B R A N C H - G U I D E

C O U P L E R S

The aim of this appendix is to provide a comprehensive guide for the synthesis of

symmetric and asymmetric branch-guide couplers. This is a re-arrangement of know-

ledge and notes found in various papers and theses. It puts together information from

different sources and gets the final values of the admittances (impedances) starting

from the specification in a detailed step-by-step procedure.

The main reference source is the paper of Ralph Levy [92] and the one of his student

Lind [93]. The first covers in detail the general characterization of the coupler and the

synthesis of symmetric structures, while the second is an extension to asymmetric

devices.

1 2

34

λg/4

λg/4

Figure A.1: Cross section of a branch-guide directional coupler.

The asymmetric nature of the problem confers the coupler a double valence: it oper-

ates as a coupler but also it acts as a impedance transformer between two transmission

lines of different impedance levels. This is an important characteristic of this device

and it may find several application due to this double function.

In these papers a rigorous technique for the synthesis of quarter-wavelength dir-

ectional couplers is presented. It will be explained how to get the value of the ad-
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mittances (impedances) of a structure composed by several branches. An example of

circuit is depicted in Fig. A.1.

These two papers cover extensively the topic and present tabulated data for differ-

ent specifications, however it is not completely clear how to get the final admittances

(impedances) with the given specifications. Of particular interest is the Lind’s PhD

Thesis [123] as some important steps are not mentioned in the published papers. In-

formation gathered from the papers and some basic knowledge on the theory of poly-

nomials and circuit synthesis are included in this appendix to develop the explanation

of the synthesis technique.

After a general description of this type of couplers, will be presented the synthesis

procedure for both maximally-flat (Butterworth) and almost equal ripple (Tchebycheff)

specifications. Three numerical examples have been chosen to describe in practice

how to carry out the synthesis process. The first example has been taken from the

Lind’s thesis while the others have all the numerical results coming from a program

designed by the author.

By following the theory and the examples presented here it is quite easy to produce

an automated computer program. In fact, the algorithm may be directly derived from

the solutions of the proposed examples.

a.1 general analysis

In general, a branch-guide coupler is a structure consisting of a number of branch

lines, each of λg0/4 in length at mid-band frequency connecting two pieces of trans-

mission line. Each branch-line is spaced at intervals of λg0/4. The device has four

ports circuit as shown in Fig. A.1. The coupler is symmetrical with respect the dashed

line depicted in the figure. Because of this symmetry it is suitable to study these cir-

cuits with the even/odd method described in [72]. The advantage of this method is that
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it is possible to study the overall four-port circuit as a pair of two singles two-ports

circuits independently. The circles in the figure identify the port numbers.

If an incident amplitude at the generic port i is identified with the letter Ai and the

consequent reflection associated to the same port with the letter Bi, the even mode can

be defined as

A1 =
1

2
(A.1a)

A4 =
1

2
(A.1b)

and the odd mode:

A1 =
1

2
(A.2a)

A4 = −
1

2
(A.2b)

When the condition (A.1) is applied a magnetic wall is present at the plane of sym-

metry of the circuit. In this case the voltage in the centre is maximum and the current

is zero. An open circuit is associated to the condition (A.1). The dual case is represen-

ted by equations (A.2). Hence, at the symmetry plane of the structure the voltage is

zero and the current maximum and a shorted circuit may be introduced.

A schematic of the consequence of the input waves (A.1) and (A.2) is shown in

Fig. A.2. The even-mode circuit consists of a number of shunt open-circuited stubs of

electrical length θ each separated by double-unit elements of electrical length 2θ.

Depending of the type of the fundamental mode that is propagating in the circuit,

any stub is shunt for TEM modes or in series for TE/TM modes. The associated

characteristic impedance or admittance of the stub depends on the type of the fun-

damental mode. In the following they will be addressed as immittances to indicate

that they are impedances or admittances depending on the nature of the propagating

mode.
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a1 a2 an

b1 b2 bn−1Z0 ZL

2θ

θ

H-wall

(a) Even mode.

a1 a2 an

b1 b2 bn−1Z0 ZL

2θ

θ

E-wall

(b) Odd mode.

Figure A.2: Schematic of the networks for the even and odd modes.

The immittance of the ith stub is referenced to with the letter ai, while the one of

the double-unit elements ith with the letter bi. In a branch-guide coupler there are n

branches and n− 1 main lines (or double-unit elements). So referring to Fig. A.2 there

are n stubs and n− 1 double-unit elements.

For both circuits of Fig A.2 it is possible to define a reflection coefficient Γ as wall as

a transmission coefficient T . To differentiate the two modes a subscript e or o will be

added to indicate that the relative coefficient is, respectively, for the even or odd mode.

In order to obtain the vector amplitudes of the signals emerging from the four-port

the following superposition is made:

B1 =
1

2
(Γe + Γo) (A.3a)

B2 =
1

2
(Te + To) (A.3b)

B3 =
1

2
(Te − To) (A.3c)

B4 =
1

2
(Γe − Γo) (A.3d)
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From Fig. A.1 the scattering parameters are derived when it is assumed that the incid-

ents amplitudes Ai are normalized to 1. Thus, the relations between the S parameters

and Γ and T are the following:

S11 =
B1
A1

= B1 =
1

2
(Γe + Γo) (A.4a)

S21 =
B2
A1

= B2 =
1

2
(Te + To) (A.4b)

S31 =
B3
A1

= B3 =
1

2
(Te − To) (A.4c)

S41 =
B4
A1

= B4 =
1

2
(Γe − Γo) (A.4d)

There are some parameters that are useful to describe the properties of the four-port

directional couplers. These are the coupling coefficient, the directivity, the isolation and

the voltage standing wave ratio (VSWR). These entities are usually expressed between

the generic ports i and j of Fig. A.1, however it is common to have the excitation signal

applied to port 1:

Coupling = −20 log10 |S31| (A.5)

Directivity = 20 log10
|S31|

|S41|
(A.6)

Isolation = −20 log10 |S41| (A.7)

VSWR =
1+ |S11|

1− |S11|
(A.8)

All the immittances are normalized to the input impedance/admittance. In some

papers it is common to indicate with the letter R, the ratio of the input and output

impedances:

z0 =
Z0
Z0

= 1

zL =
ZL
Z0

= R

(A.9)
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The values of the reflection coefficient Γ and transmission coefficient T for a generic

symmetric network are given in terms of ABCD transfer matrix parameters by the

formulas [30]:

Γ =
(A−D) + (B−C)

(A+D) + (B+C)
(A.10)

T =
2

(A+D) + (B+C)
(A.11)

while for the general asymmetric structure the reflection coefficient and the transmis-

sion are given by:

Γ =
(A−D/R) + (B/R−C)

(A+D/R) + (B/R+C)
(A.12)

T =
2/
√
R

(A+D/R) + (B/R+C)
(A.13)

For a lossless network it is

|Γ |2 + |T |2 = 1 (A.14)

At this point it is useful to consider the two circuits of Fig. A.2 as two networks

formed by a sequence of stubs connected by transmission lines. An useful way to

characterize a stub is to operate the Richard transformation:

t = Σ+ jΩ (A.15)

where

Ω = tan θ (A.16)

The variable θ is the electrical length of the stubs of Fig. A.2. It should be noted that

the definition of (A.15) is general and it may take into account the losses of the circuit.
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For this study it is of interest the lossless network and others evaluation about the lossy

material may be integrated later by the reader simply by setting the proper value of

Σ in (A.15). For the rest of this discussion Σ = 0.

It can be easily shown by fundamental network theory that the input impedances

of a stub of electrical length θ and characteristic impedance Zci load with a short and

open circuit are:

Zi = jZci tan θ s.c. (A.17a)

Zi = −j
1

Zci
cot θ o.c. (A.17b)

Thus, by using the Richard transformation of (A.15) in the (A.17) and by normalizing

them to port impedances to Z0, the input impedances could be expressed as:

zi = zcit s.c. (A.18a)

zi = −
1

tzci
o.c. (A.18b)

The variable θ is more generally given by θ = 2π
λg
l, where l is the length of the line,

and at central frequency gives:

θ0 =
2π

λg0
· λg0
8

=
π

4
(A.19)

The reason for using the Richard transformation is to define, in the last instance,

polynomials in the t variable. Once the polynomials are obtained, the Butterworth

and Tchebycheff characteristic as well as bandwidths and coupling coefficient control

may be applied. A further discussion of bandwidths and coupling controls will be

given in the following.

The first step in the characterisation of networks of the Fig. A.2 is to derive the

ABCD matrix for the both even and odd modes separately. Note that these networks

may be viewed as a concatenation of several stubs and transmission lines as stated
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before. By deriving ABCD matrices of each stub and transmission line separately, the

overall matrix of the circuit is given by multiplication of the terms.

If an open circuit stub of Fig. A.2 is considered as a shunt admittance ai, its ABCD

matrix is given by

 1 0

ait 1

 (A.20)

while for the short-circuited shunt stub of same admittance the matrix is: 1 0

ai
t

1

 (A.21)

The main line is a piece of transmission line of length 2θ and immitance bi for the

generic ith element. A constraint to the synthesis process is that the immitance bi

must be uniform in the main line. The ABCD matrix of the main line it is defined as

[30]:

 cos 2θ
j
bi

sin 2θ

jbi sin 2θ cos 2θ

 (A.22)

Each trigonometric function in eq. (A.22) contains the argument 2θ which means that

the impedance (or admittance) bi is constant along the direct transmission line. It is

obvious that it is possible to rewrite the (A.22) as a cascade of two pieces of lines each

one having immittance bi and length θ.

Now let consider the following substitutions:

sin(2θ) =
2t

1− t2
(A.23)

cos(2θ) =
1+ t2

1− t2
(A.24)
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they are derived from the basic variable change:

t = j tan θ

The t variable had been already introduced in eq. (A.15) to characterize the input

impedance of a generic stub. These substitutions play an important role in the fol-

lowing steps of the synthesis because they express the trigonometric functions of θ

as rational functions in t variable. Furthermore it will be shown that it is possible

to describe the entire device as a polynomial of variable t by operating this kind of

transformation. It is also possible to demonstrate from equations (A.23) and (A.24)

the following relations:

cos θ =
1√
1− t2

(A.25)

sin θ =
t√
1− t2

(A.26)

The proof of the definition (A.24) is given by the following:

1+ t2

1− t2
=

cos2 θ− sin2 θ
cos2 θ

cos2 θ+ sin2 θ
cos2 θ

= cos2 θ− sin2 θ

= cos 2θ
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where it is well known that cos2 θ+ sin2 θ = 1. Similarly, the proof of eq. (A.23) is

given by:

2t

1− t2
=

2j tan θ
cos2 θ+ sin2 θ

cos2 θ

= j2 tan θ cos2 θ

= j2 sin θ cos θ

= |sin 2θ|

The absolute value that comes from the last calculation may be avoided because in the

present application the variable θ is bounded by physical constraints on the length of

branches. In fact it cannot exceed the bounds:

0 < θ <
π

2
(A.27)

The other trigonometric relations (A.25) and (A.26) are obtained with the same criteria.

Recalling the definition of the transfer matrix of double length direct line, eq. (A.22)

may be rewritten as a cascade of two transmission lines of same characteristic im-

pedance and length θ. The ABCD matrix resulting from the combination of this two

pieces can be represented in term of variable t by applying the substitutions (A.25)

and (A.26), giving

 1√
1− t2

 1 t

bi

bit 1



2

which, after performing algebra, results in:

1

1− t2

1+ t2 2

bi
t

2bit 1+ t2

 (A.28)
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At this point it should be noted that the only difference between the even and

odd circuits of Fig. A.2 is the termination of the shunt stubs. No change happens

to the direct double-length lines. By comparing the matrices associated to the open-

circuited (see eq. (A.20)) and short-circuited stubs (see eq. (A.21)), it is easy to see

that they differ, respectively, by a term t and 1/t. In addition it is possible to prove

easily that if the change of variable from t to 1/t is substituted in the ABCD matrix

of the direct double-length line (A.28), the same matrix except for a change of sign is

obtained. This is an important concept because it is mathematically proved that both

the matrices of the stubs and direct lines are invariant with respect the transformation

t→ 1

t
(A.29)

except for a change of sign of the matrix (A.28).

The even-mode two port circuit of Fig. A.2a has its transfer matrix that is given by

the product, in the right order, of the matrices associated to the single stubs and direct

double-length lines. Once the ABCD matrix of the even circuit has been found, it is

possible to directly obtain the matrix of the odd-mode circuit of Fig. A.2b by simply

operating the variable transformation (A.29). It is convenient to express the resulting

matrix of even-mode circuit asAe(t) Be(t)

Ce(t) De(t)

 (A.30)

where Ae(t), Be(t), Ce(t), De(t) are polynomials in the t variable. The subscript e

indicates that the polynomial is derived by the even-mode circuit of Fig. A.2a. When
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the matrix (A.30) has been calculated, to derive the one of the odd-mode circuit it is

necessary to operate only the variable transformation:

Ao(t) Bo(t)

Co(t) Do(t)

 = (−1)n−1

Ae
(
1

t

)
Be

(
1

t

)
Ce

(
1

t

)
De

(
1

t

)
 (A.31)

The coefficient multiplying the right term of the equation derives from the change of

sign of the direct double-length line when the variable transformation is performed.

In a directional coupler of n branches there are n− 1 direct lines, so when the trans-

formation (A.29) is operated the sign "changes" n− 1 times. As before, the o subscript

means that the polynomials refer to the odd-mode network of Fig. A.2b.

The cascade of n transmission lines of same electrical length φ and characteristic

impedance Zi = 1/Yi are cascaded. The ABCD matrix of such a network can be

obtained as the product of the matrices of each piece of line:

A B

C D

 =

(
1√
1− t2

)n
·
n∏
i=1

 1 Zit

Yit 1


that gives the following result:

1

(1− t2)n/2

Ǎ(t) B̌(t)

Č(t) Ď(t)

 (A.32)

The analysis of a few cases demonstrates the following statements:

• Ǎ(t) and Ď(t) are even polynomials in t variable

• Ǎ(t) and Ď(t) polynomials have the same degree

• the constant term in Ǎ(t) and Ď(t) is the unity

• B̌(t) and Č(t) are odd polynomials in t

• B̌(t) and Č(t) polynomials have the same degree
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• the difference of degrees between Ǎ(t) and Č(t) is 1

• the highest polynomial degree is n

• all coefficients are positive.

The description of the network as a product of terms given in eq. (A.32) is important

because we will derive a similar analysis for the branch-guide network of Fig. A.2. The

objective is to find a completely general form for the network of interest in order to

easily adapt the characteristic parameters required by the specifications during the

synthesis procedure.

Firstly, the ABCD matrix for the even mode network is derived by the multiplica-

tion in the right order of the matrices of stubs and double-length unit lines. In these

devices there are n branches and n− 1 direct lines. The formulation can be represen-

ted as follows:Ae Be

Ce De

 =

n−1∏
i=1

 1

1− t2

 1 0

ait 1


1+ t2 (2/bi)t

2bit 1+ t2


 ·
 1 0

ant 1


It is possible to demonstrate that it can be represented, for example, in the following

general form:

Ae Be

Ce De

 =
1

(1− t2)n−1

An−1(t2) tBn−2(t
2)

tCn−1(t
2) Dn−1(t

2)

 (A.33)

where the subscripts indicate the degree of the polynomials A(t2), B(t2), C(t2), and

D(t2).

It is useful to make some points that come out from the eq. (A.33):

• A(t2), B(t2), C(t2), D(t2) are polynomials in the variable t2

• polynomials An−1(t2) and Dn−1(t
2) are even polynomials and their constant

term is the unity
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• Cn−1(t2) and Bn−2(t2) are odd polynomials.

By operating the variable transformation of eq. (A.29) it is possible to obtain the

ABCD matrix of the odd mode directly from eq. (A.33):

Ao Bo

Co Do

 = (−1)n−1
t2(n−1)

(1− t2)n−1

 An−1
(
1

t2

)
1

t
Bn−2

(
1

t2

)
1

t
Cn−1

(
1

t2

)
Dn−1

(
1

t2

)
 (A.34)

It might be desirable to express the matrices obtained also in term of the trigono-

metric functions of variable θ instead of t. This double representation is useful in

the next stage of the synthesis because in some cases we may prefer one of these two

descriptions. By recalling the relations (A.23) and (A.24) we have:

Ae Be

Ce De

 =

 Ān−1(− cos 2θ) j tan θB̄n−2(cos 2θ)

j tan θC̄n−1(cos 2θ) D̄n−1(− cos 2θ)

 (A.35)

for even mode andAo Bo

Co Do

 =

 Ān−1(cos 2θ) j cot θB̄n−2(− cos 2θ)

j cot θC̄n−1(− cos 2θ) D̄n−1(cos 2θ)

 (A.36)

for the odd mode.

All the formulation given until now are extremely important for our discussion

because they are a completely general characterisation of the coupler. In the following

sections the exact values of A, B, C and D will be derived for the given specifications

of response type, number of branches, coupling and bandwidth.
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a.2 the approximation problem

Once the even and odd ABCD matrices are obtained, it is possible to use the for-

mulas (A.12) and (A.13) in order to get Γe, Γo, Te and To. These quantities are then

forming the output wave at each port by determining parameters of eq. (A.3). It is

intuitive to understand that the B parameters consist as a ratios of rational numerator

and denominator polynomials. By this way the coefficients of both numerator and

denominator are related all together in a complex way. Indeed, it is quite difficult to

relate these expressions to the maximally flat or equal ripple characteristics. Thus, a

new function is introduced to reduce the complexity of the problem:

Γ

T
=

(A−D/R) + (B/R−C)

2/
√
R

(A.37)

For the case of symmetric couplers A = D so eq. (A.37) reduces to

Γ

T
=
B−C

2

The new driving functions can be formulated in this way:

F± =
1

2

(
Γe

Te
± Γo
To

)
(A.38)

Having operated this simplification it will be easier specify the functions F± as Butter-

worth or Tchebycheff polynomials.

From eq. (A.33) we know that A and D are even polynomial of degree n − 1 as

well as that C and B are odd polynomial of degree n− 1 and n− 2 respectively. The

sum of two polynomials results in another polynomial whose degree is less or equal

to the highest degree of the two starting polynomials. That means that the difference

between A andD gives a new polynomial of degree at least n− 1. The same applies to

the second part of the numerator of eq. (A.37) because the degree of C is n− 1. Now
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the term indicating a generic polynomial of degree ξ is introduced with the following

notation:

Pξ(t)

The equation (A.37) may be rewritten as the follows:

Γ

T
=

(A−D/R) + (B/R−C)

2/
√
R

=
1

2
√
R

[
Pn−1(t

2)(R− 1) − tPn−1(t
2)
]

=
Pn−1(t

2)

2
√
R

[(R− 1) − t]

Thus the general form of the function Γe/Te is given equivalently in one of the

following two formulas, the first in t and the second equivalent in θ:

Γe

Te
=
Pn−1(t

2)

2
√
R

[(R− 1) −Kt] (A.39)

Γe

Te
=

1

2
√
R

Pn−1(x/xc)

Pn−1(1/xc)
[(R− 1) − jK tan θ] (A.40)

where

K is a positive real number that has been introduced in order to control the coupling

factor. This will be discussed later.

x is a variable change for the trigonometric form and is x = cos 2θ

xc is the cut-off frequency and generally this parameter is used to control the band-

width of the coupler. It is defined as xc = cos 2θc

Pn−1 is a generic polynomial of degree n − 1.
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From eq. (A.40) the corresponding value for the odd mode is obtained with the

transformation (A.29):

Γo

To
=

1

2
√
R

Pn−1(x/xc)

Pn−1(1/xc)
[(R − 1) + jK cot θ] (A.41)

The driving function may be explicated as

F− = −
1

2
√
R

Pn−1(x/xc)

Pn−1(1/xc)

(
jK

2

sin 2θ

)
= −

1

2
√
R

Pn−1(x/xc)

Pn−1(1/xc)

(
jK

2√
1 − x2

) (A.42)

where in the last equation the relation sin 2θ =
√
1 − (cos 2θ)2 has been applied.

The centre frequency of the branch-guide coupler occurs when the branches are

quarter wavelength. This condition implies that at mid-band θ0 = π/4 and con-

sequently t0 = j1 and x0 = cos 2θ0 = 0. Once the polynomial Pn−1 has been

defined, the value of Γe/Te is calculated by using the equations (A.39) or (A.40). At

the stage it is necessary to specify the Pn−1 in order to meet the desired frequency

response. The following describes the maximally flat Butterworth and equal-ripple

Tchebycheff characteristics.

a.2.1 Butterworth specification

With the maximally flat (Butterworth) response all the zeros of equations (A.39) and

(A.40) are located at centre frequency 2θ0 = π/2 as stated by eq. (A.19). Thus, the

polynomial Pn−1(t2) that meets this requirement is the following:

Pn−1(t
2) = xn−1 = (cos 2θ)n−1 =

(
1 + t2

1 − t2

)n−1
(A.43)
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where the substitution for t in eq. (A.24) has been applied. It is easy to show that at

f0 the variable t = j and its square value gives t2 = −1. The associated exponent

defines that the number of zeros at centre frequency is exactly n − 1.

Thus, the formula for the Butterworth characteristic is given by:

Γe

Te
=

1

2
√
R

(
1 + t2

)n−1
(1 − t2)

n−1
[(R − 1) − Kt] (A.44)

which for the symmetric case (R = 1) reduces to

Γe

Te
= −K

t
(
1 + t2

)n−1
(1 − t2)

n−1
(A.45)

For the Butterworth response the K value controls the coupling at mid-band of the

coupler.

Usually, no cut-off parameter is specified with the maximally flat response. So we

may set the θc = 0 that leads to xc = 1. Thus, the value of the polynomial Pn−1(x)

evaluated at 1/xc returns

Pn−1(1/xc) = 1n−1 = 1

Consequently the term Pn−1(1/xc) is omitted in the equations (A.44) and (A.45). The

driving function F is found directly from eq. (A.42)

F− = −
xn−1

2
√
R

(
jK

2√
1 − x2

)
(A.46)

a.2.2 Tchebycheff specification

In Fig. A.3 is the schematic of a generic network with the source and the load con-

nected at each end. The generator here is represented with the equivalent of Thevenin

of maximum amplitude v0 and internal resistance R0. Between the generator and the
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v0

R0

[S] ZLiL

Figure A.3: General schematic for a 2 ports reactive network between source and load

load there is a reactive network which can be fully described by its S parameters. The

reactive network represents the circuit that is under investigation. The ratio between

the available power (P0) and the effective power delivered on the load (PL) is a com-

mon quantity for describing microwave components.

In the present study it is possible to define it as the following:

P0
PL

= 1 + |F |2

= 1 +
1

4R

P2n−1(x/xc)

P2n−1(1/xc)

(
4K2

1 − x2

) (A.47)

The ratio is expressed in the form 1 + |F |2. It means that when F = 0 the maximum

power is delivered to the load and it decreases as |F |2 increases. Is should be noted

that in this case the parameter K controls both the mid-band coupling and the ripple

level.

The eq. (A.47) has the generic form of the insertion loss of a cascade of n − 1 unit

element and one shorted circuit stub of electrical length 2θ. A similar circuit had been

studied in the papers [124, 125]. In order to get a Tchebycheff equal ripple response in

band −xc 6 x 6 xc (and xc 6 1), the polynomial Pn−1(x/xc) must be in the form

Pn−1

(
x

xc

)
=
1

2

(
1 +

√
1 − x2c

)
Tn−1

(
x

xc

)
−
1

2

(
1 −

√
1 − x2c

)
Tn−3

(
x

xc

)
(A.48)

where Tξ(z) is the Tchebycheff polynomial of the first kind of degree ξ.
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Once the polynomial Pn−1(x/xc) has been found with the eq. (A.48) it must be in-

serted in the general equation (A.40). To move from the trigonometric to the notation

in t variable has been necessary to mvoe to the argument of eq. (A.48) to

x

xc
=

(
1 + t2

1 − t2

)
·
(
1 − t2c
1 + t2c

)
(A.49)

If the network has the same impedance at both ends, the function Γe/Te for the equal

ripple response reduces to

Γe

Te
= − jK tan θPn−1

(
x

xc

)
(A.50)

In the last expression the term Pn−1(1/xc) has been incorporated into the K para-

meter. This works for the particular case of symmetric network because the term

R − 1 is zero. The proposed implementation will use the general form where the

constant Pn−1(1/xc) is normally expressed.

It is important to note that by imposing the form (A.48) to the polynomial Pn−1

results that the driving function F of eq. (A.38) is equal ripple. However, neither

the VSWR nor the isolation of the coupler remains equal ripple. This is because the

parameters of eq. (A.3) are expressed in term of Γ and T rather than Γ/T . If it is

true that |Γe | � 1 and |Γo | � 1, for the unity condition eq. (A.14) we can affirm that

|Te | ≈ 1 and |To | ≈ 1. If this condition is valid we can approximate

B1 ≈
1

2

(
Γe

Te
+
Γo

To

)

Thus, the functions that have been derived for the Tchebycheff specification give a

nearly equal ripple response because the factors eq. (A.3) do contain the Te and To

variables. This approximation is not necessary for the Butterworth response because

at θ0 the values of Γe and Γo are exactly 0 and therefore the Te and To are equal to 1.
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a.3 synthesis procedure

The synthesis procedure is based on the calculation of the Γe/Te for the given spe-

cifications and allows to evaluate the final immittances ai and bi. It is convenient

to have the ratio Γe/Te expressed in the variable t instead of the trigonometric func-

tions cos θ and cos θc. This expression comes mainly from the eq. (A.39) where

the polynomial Pn−1 is chosen from the equations (A.43) or (A.48) depending on the

Butterworth or the Tchebycheff response.

The value |Γe |
2 is found by the expansion of the power balance relation of eq. (A.14)

and is given in term of |Γe/Te |:

|Γe |
2 =

|Γe/Te |
2

1 + |Γe/Te |2
(A.51)

The stability of the system leads to a conceptual constraint on the type of polyno-

mial |Γe | found from the eq. (A.51). In fact, the poles of Γe must lie in the left-half

of the complex plane. Each pole (or zero) can be expressed in the form tr = σ + jω.

Thus, all the poles must have the real part less or at least equal to zero:

σ 6 0

If this were not true, it means that an hypothetical sinusoidal waveform entering the

system would be subjected to exponential increasing of its magnitude clearly breaking

the power balance condition of eq. (A.14).

There are two main factors in eq. (A.39), the first is the term Pn−1(t
2) and the

second is the [(R − 1) − Kt]. The roots of the polynomial |Γe/Te |2 are all placed on

the imaginary axis except for two. The two roots that do not lie on the imaginary axis

come from the term (R − 1)2 − K2t2 while the others from the polynomial P2n−1(t
2).

In order to get the Γe the right roots from the numerator and denominator of eq. (A.51)

must be selected. Two roots of the numerator are the ones of the polynomial Pn−1(t2)
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plus one from the second factor (R − 1)2 − K2t2. The root of the last factor is chosen

according to the equations (A.12) and (A.13). It can be demonstrated that if R > 1

then the right-half plane root should be chosen, else if R < 1 the left-half plane root

is selected to get the zero of the numerator. The case of a symmetric coupler is even

easier because the factor degenerates into a zero located in the origin of the complex

axis. The denominator of eq. (A.51) is factorized using numerical techniques and only

the roots having a negative real part must be chosen. The factorization can be carried

out by numerical computation since it has no closed form solution.

In a practical realization of the coupler (and of any other type of network) the value

of |Γe | must not exceed the unity. It can be stated that for the limit case of infinite

frequency it must be

lim
t→ j∞ |Γe | = 1 (A.52)

If the condition (A.52) is not met a new coefficient, say κ, must be multiplied to Γe.

From the theory of limits, it is well known that when t → j∞ the limit of a fraction

of polynomials having same degree is the ratio of the coefficient whose variable has

the higher power:

lim
z→∞ g(z)q(z)

= lim
z→∞ cpz

p + cp−1z
p−1 + · · · + c1z + c0

dpzp + dp−1zp−1 + · · · + d1z + d0
=
cp

dp

The value of κ is that coefficient in the limit (A.52) resulting, in modulus, 1:

κ =

∣∣∣∣dpcp
∣∣∣∣ (A.53)

At this stage, the function Γe is obtained and from it is possible to derive the factors

of the ABCD matrix for the even network. To do this it is necessary to recall the

form of Γ of eq. (A.12). It is important also to stress that the terms A and D are even

polynomial of degree n − 1 and that the B and C factors are odd polynomials. It must
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be noted that the degree of C is n − 1 while the one for B is n − 2. Having this

in mind the ABCD matrix is derived directly by the function Γe. The mathematical

description of the even network is therefore given by eq. (A.33). The decomposition

of the matrix that has been just found permits us to find the values of the immittances

of the coupler network.

The first step in the synthesis is the extraction of a shunt stub of characteristic ad-

mittance a1 of such a value that a double-length unit element of uniform impedance

b1 may then extracted. It is necessary to extract first a shunt open circuited stub of

admittance:

a1 =
∂

∂t

Ce

Ae

∣∣∣∣
t=1

=
∂

∂t

De

Be

∣∣∣∣
t=1

(A.54)

After the stub is removed, a double-length uniform unit element of admittance is

found as

b1 =
Ce(1)

Ae(1)
=
De(1)

Ae(1)
(A.55)

The process continues by removing the last double unit element and by repeating

these two steps until all the admittances of the coupler are obtained. It should be

noted that the form of equations (A.54) and (A.55) are given in term of admittances.

This is suitable for TEM networks. Of course, it is possible to derive the impedances

associated to the stubs and double-unit elements by making the inversion of eqs.

(A.54) and (A.55) directly.

Finally it is important to note that the relation of the K parameter expressed in sec-

tion A.2.1 and A.2.2 and the mid-band coupling are related in a complex way to the

number of branches n, the impedance ratio R and the cut-off θc. K also differs if the

specifications require a maximally-flat or an equal ripple frequency response. There-

fore it is very difficult to derive a mathematical closed expression for the mid-band
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coupling once all parameters are specified. In practice, it is more frequent to find

a proper value for K that meets the requirement for a prescribed mid-band coupling.

Thus, an iterative approach is used to find the right K based on the specifications. Prac-

tical experience suggests that, when the synthesis procedure is automatized, between

2 to 4 attempts are enough to find the correct K that results in the required coupling

at central frequency.

a.4 examples

a.4.1 Three branches Butterworth asymmetric coupler

In this example a 3 branch-guide coupler with Butterworth response and asymmet-

ric impedance load will be presented. The input specifications for this couplers are

n = 3, R = 2, K = 1 and a Butterworth maximally flat frequency response [123].

Initially, we are looking for a driving function were all the poles are located at centre

frequency, we need to use the eq. (A.44):

Γe

Te
=

1

2
√
R

(
1 + t2

1 − t2

)2
· [(R − 1) − Kt] (A.56)

where the expression for the Pn−1(t2) of eq. (A.43) has been inserted for the given

specifications:

Pn−1(t
2) =

(
1 + t2

1 − t2

)2

It is convenient to express the eq. (A.56) in the form magnitude squared in order to

prepare it for the following steps of calculation:

∣∣∣∣ ΓeTe
∣∣∣∣2 = 1

4R

(
1 + t2

1 − t2

)4
·
[
(R − 1)2 − K2t2

]
(A.57)
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Now we are ready to calculate the |Γe |
2 from the eq. (A.51):

|Γe |
2 =

|Γe/Te |
2

1 + |Γe/Te |2
=

(1 + t2)4 [(R − 1)2 − K2t2 ]

4R(1 − t2)4 + (1 + t2)4 [(R − 1)2 − K2t2 ]

=
(1 + t2)4(1 − t2)

8(1 − t2)4 + (1 + t2)4(1 − t2)
(A.58)

where in the last expression the values of K and R given in the specifications have

been substituted into the equation.

The expression of |Γe |2 gives in the eq. (A.58) can be seen as a ratio of two polyno-

mials, one at the numerator and the other one at the denominator. Prior to proceed

with the extraction of the characteristic impedances ai and bi it is necessary to find

the factor Γe. This can be done by factorizing both the numerator and denominator of

eq. (A.58).

As discussed before, when the R > 1 the right-half t plane zero of factor [(R −

1)2 − K2t2 ] must be chosen. Of course, the other factor appearing in the numerator,

(1 + t2)4, in eq. (A.58) has its zeros that all lie on the imaginary axis symmetrically

with respect the centre. Thus, the numerator has the following factors:

(1 + t2)2(1 − t) = 1 − t + 2t2 − 2t3 + t4 − t5 (A.59)

The denominator of eq. (A.58) is factored using a numerical procedure approach. It

is found that its roots are the following:

tr = [±1.8558± j1.3376; ±0.6777± j0.3376; ±1] (A.60)

A plot of the roots of both numerator and denominator of eq. (A.58) is presented in

Fig. A.4. The polynomial is built from the roots of eq. (A.60) that lie in the left-half of
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Figure A.4: Roots and poles of |Γe|2 of eq. (A.58) on the complex t plane.

the t plane. This means that only the roots with <(tr) < 0 are selected and multiplied

together. This result in the following polynomial:

t5 + 6.0670t4 + 15.9041t3 + 20.0579t2 + 12.2208t+ 3 (A.61)

One of the consequences of having chosen the poles with negative real part is that the

polynomial (A.61) has its coefficients all positive. A polynomial built only from roots

lying in the left-half complex plane is know as Hurwitz polynomial.

By recalling the limit condition that Γe is multiplied by a coefficient κ to comply

with eq. (A.52), we get

Γe = κ
−t5 + t4 − 2t3 + 2t2 − t+ 1

t5 + 6.0670t4 + 15.9041t3 + 20.0579t2 + 12.2208t+ 3
(A.62)
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In this case, the coefficient is found as the modulus of the inverse of the coefficient of

degree 5 as of eq. (A.53):

κ =

∣∣∣∣ 1−1
∣∣∣∣ = 1 (A.63)

The following step is to derive the polynomials for the ABCD matrix that describes

the even network. The transmission parameters are found by comparing equations

(A.62) and (A.12). As described before, the polynomials Ae and De are even and they

contain unity as a constant term. To make this comparison easier it is convenient to

rewrite the (A.62) in order to put in evidence the even part and the odd part of both

numerator and denominator:

Γe =
(t4 + 2t2 + 1) + (−t5 − 2t3 − t)

(6.0670t4 + 20.0579t2 + 3) + (t5 + 15.9041t3 + 12.2208t)

This is identical in form to eq. (A.12), so the ABCD parameters are found to be:

A(t) = 1.7667t4 + 5.5145t2 + 1 (A.64a)

B(t) = 6.9520t3 + 5.6104t (A.64b)

C(t) = 0.5t5 + 4.4760t3 + 3.3052t (A.64c)

D(t) = 2.5335t4 + 9.0289t2 + 1 (A.64d)

The transfer matrix for the even mode of the coupler in the form as was introduced in

(A.33) is given as:

Ae Be

Ce De

 =
1

(1− t2)2

A B

C D

 (A.65)

The degree of the ABCD polynomials are in accordance with the rules stated in

eq. (A.33). In particular, the (A.64a) is an even polynomial of variable t2 of degree

n− 1 = 2 and consequently the highest power in this polynomial is 4. Regarding the
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polynomial (A.64b) it does not have the term t5 in accordance with the rules described

before.

Now that the ABCD parameters are obtained from the equation of Γe, the even

network is completely defined. The last step is to derive the values of the ai and bi

immittances. The procedure used to get these values is to remove, at each iteration,

one shunt stub and one double-unit transmission line. From eq (A.54) this is found to

be:

a1 =
∂

∂t

C

A

∣∣∣∣
t=1

=
C ′A−CA ′

A2

∣∣∣∣
t=1

=
19.233 · 8.281− 8.281 · 18.096

8.2812

= 0.1373 S

(A.66)

The value of a1 is the admittance of the first stub of network of Fig. A.2a and, con-

sequently, the admittance of the first branch-line of the final coupler. In order to get

the value of the first double-unit length is necessary to remove the stub that has been

just found. To do this, the transfer matrix of a shunt stub having negative admittance

−a1 is multiplied to the ABCD matrix of the network. The result of this operation is

the elimination of the first stub:

1

(1− t2)2

 1 0

−a1t 1


A B

C D

 =
1

(1− t2)2

A B

C̄ D̄

 (A.67)

where

C̄(t) = 0.2574t5 + 3.7187t3 + 3.1679t (A.68a)

D̄(t) = 1.5787t4 + 8.2584t2 + 1 (A.68b)
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Table A.1: Admittances of the branch and main lines for Butterworth coupler n = 3, K = 1

and R = 2.

Branch line Main line
(S) (S)

0.1373 0.8627
0.1758 0.6075
0.0517

The first double-unit length transmission line is calculated from (A.67) using the

eq. (A.55):

b1 =
C̄(1)

A(1)
=
7.147
8.281

= 0.8627 S (A.69)

Now the main line is removed in a similar way as was for the shunt stub. As before,

the transfer matrix of a negative length is added:

1

1− t2

 1+ t2 −2.317t

−1.725t 1+ t2

 ·
 1

(1− t2)2

A B

C̄ D̄


 =

1

(1− t2)3

A1 B1

C1 D1

 (A.70)

It should be noted that the terms A1, · · · ,D1 include a factor (1− t2)2 that explains

the increasing power at the denominator in eq. (A.70). In order to find the transfer

matrix of the circuit without the first branch and main line, the terms of the matrix

(A.70) must be divided for (1− t2)2. This results in:

1

1− t2

 1+ 1.1701t2 3.292t

1.442t+ 0.257t3 1+ 1.5787t2

 (A.71)

The procedure presented is repeated to find all the values of the branches and

the main lines. At the end of the process the admittances found are summarized in

Tab. A.1. The values calculated in Tab. A.1 are expressed as admittances as for a TEM

mode. If the structure is a TE or a TM an impedance model should be used. In fact,

in a medium where the a TEM mode is propagating the branches are seen in shunt
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with respect the main double-unit lines. It is the contrary for the TE or TM modes

where the branches are in series with the correspondent main line.

It is also interesting how this network acts as impedance transformer between the

input and output impedances. The normalized admittances are 1 S for the input and

1/R = 0.5 S for the output ports. The values of Tab. A.1 for the main line tends to

match the input and output admittances in a similar way of a transformer matching

network.

a.4.2 Four branches 3dB Butterworth symmetric coupler

In this example a 4 branch symmetric directional coupler with Butterworth response

will be described. The desired mid-band coupling is 3 dB. Thus, the parameters for

these specifications are set as: n = 4, K = 6 and R = 1.

In this example the eq. (A.45) is to be used. To decrease the complexity of the

polynomial calculation is convenient to express each rational function as the ratio of

two distinct polynomialN(t) andD(t). Thus, the numerator and the denominator will

be evaluated separately bringing a simplification, especially at the implementation

stage. As before, applying the formula (A.51) it is found

|Γe|
2 =

|Γe/Te|
2

1+ |Γe/Te|2
=

(1+ t2)6[(R− 1)2 −K2t2]

4R(1− t2)6 + (1+ t2)6[(R− 1)2 −K2t2]
=
N2Γ (t)

D2Γ (t)
(A.72)

The coupler of interest is symmetric and this characteristic is responsible for a sub-

stantial simplification of the synthesis procedure. The roots of the numerator of |Γe|2

are all located on the imaginary axis in complex conjugate pairs except for a double

zero in the origin. Thus, the numerator of |Γe| can be easily obtained from the N2Γ (t)

of eq. (A.72):

NΓ (t) = −Kt(1+ t2)3 = −6t7 − 18t5 − 18t3 − 6t (A.73)
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Figure A.5: Position of zeros and poles of |Γe|2 for coupler A.4.2

The denominator of |Γe| is found by selecting the roots of the denominator of

eq. (A.72) that lie on the left-half plane of the complex t plane.

The roots of the denominator of eq. (A.72) are obtained with a numerical technique

and are found to be:

tr = [±0.5217± j1.6319; ±0.6083± j0.9112; ±0.3721± j0.5098; ±0.2375] (A.74)

Fig. A.5 shows the diagram of the zeros and poles of the |Γe|
2 for the present coupler.

The zeros are defined with the roots of the numerator of eq. (A.72) while the poles

are the roots of the denominator of the fraction. By selecting the left-half roots and

multiplying them back, the denominator of the |Γe| if found to be:

DΓ (t) = t
7 + 3.2417t6 + 8.1989t5 + 11.5241t4+

+ 11.5808t3 + 6.7440t2 + 2.4825t+ 0.3333 (A.75)

Once the |Γe| has been found, it must be checked that its limit at infinity does not

exceed unity. Recalling the basic theory of the limits, at the point that both NΓ (t) and
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DΓ (t) have the same degree the limit is found to be the ratio of the coefficients of

maximum power:

lim
t→j∞ |Γe| = lim

t→j∞
∣∣∣∣NΓ (t)DΓ (t)

∣∣∣∣ = ∣∣∣∣−61
∣∣∣∣ = 6 (A.76)

Thus, from equations (A.53) and (A.76) it is obtained:

κ =
1

6
(A.77)

Consequently numerator may absorb the term κ thus becoming:

Ñ(t) = κNΓ (t) = −t7 − 3t5 − 3t3 − t (A.78)

For the special case of symmetric coupler it can be deducted that from eq. (A.73) the

value of κ is equal to the inverse value of the coupling coefficient K. However, this

happens only if the coupler is symmetric and because the term (R − 1) disappears.

This is not true in the general case and it is recommended to use the general equations

(A.52) and (A.53) in order to get the right value of κ.

Now that |Γe| has been found and that it is in accordance with all the conditions,

it is possible to derive the ABCD parameters as for the eq. (A.12). As before, it is

convenient to gather both numerator and denominator of |Γe| into an even and odd

part:

Ñ(t) = EÑ(t) +OÑ(t) (A.79a)

DΓ (t) = ED(t) +OD(t) (A.79b)



a.4 examples 229

In our example these polynomial are the following:

EÑ(t) = 0 (A.80a)

ED(t) = 3.2417t6 + 11.5241t4 + 6.7440t2 + 0.3333 (A.80b)

OÑ(t) = −t7 − 3t5 − 3t3 − t (A.80c)

OD(t) = t
7 + 8.1989t5 + 11.5808t3 + 2.4825t (A.80d)

The ABCD parameters are found by solving the following system for the even part:


A−D/R = EÑ

A+D/R = ED

(A.81)

and this second system for the odd part:


B/R−C = OÑ

B/R+C = OD

(A.82)

The solutions of systems (A.81) and (A.82) are the polynomial of the ABCD matrix

that describe the circuit:

A(t) = 9.7252t6 + 34.5724t4 + 20.2321t2 + 1 (A.83a)

B(t) = 40.1932t5 + 60.4847t3 + 11.8949t (A.83b)

C(t) = 6t7 + 33.5966t5 + 43.7423t3 + 10.4474t (A.83c)

D(t) = 9.7252t6 + 34.5724t4 + 20.2321t2 + 1 (A.83d)

Naturally, when solving systems (A.81) and (A.82) the rules over the degrees of poly-

nomial stated in (A.33) apply. As expected, the term (A.83a) and (A.83d) are the same.

This is a consequence of the symmetry of the circuit.

It is interesting to point out that the values of equations (A.83) are not obtained

directly by solving the systems (A.81) and (A.82). In fact all the polynomials obtained
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Table A.2: Admittances of the branch and main lines for Butterworth coupler n = 4, K = 6

and R = 1.

Branch line Main line
(S) (S)

0.1879 1.2433
0.9235 1.6257
0.9235 1.2433
0.1879

are multiplied for constant the term of A, that is 0.1667, and that is convenient that

this is removed. Thus, by dividing all the ABCD polynomials by the constant term of

A we obtain the final formulas stated in eqs. (A.83).

Starting from (A.83) the ai and bi immittances of the branches and the main lines

are found with the same procedure described in the example A.4.1. The results are

summarized in Tab. A.2. It can be noted that there is a symmetry among the values

listed in table A.2. This is consistent with the symmetry of the circuit with respect the

input and output impedances.

In order to draw the scattering parameters of the circuit that has been just syn-

thesized, a program had been written to take as input the values of admittances of

Tab. A.2 and to produce the relative responses. This program works to produce a

confirmation for the values obtained with the present synthesis procedure. Its main

object is to derive the ABCD matrix of the coupler circuit composed by transmission

lines of the given impedances. The calculation is the same described in [30] for the

two-branches hybrid coupler, here extended for the general case of n branches. The

results in terms of scattering parameters are presented in Fig. A.6a.

Fig. A.6a presents the magnitude values of the S parameters in dB as a function of

the frequency variable θ. Recalling the general characterization of the circuit, θ can

vary between 0 and π/2 and its value at centre frequency is exactly 45 degrees. The

frequency response is Butterworth and this can be immediately seen by noticing that

all the reflection zeros are located at centre frequency. The mid-band coupling is 3dB

and as a consequence there is equal splitter of power among the output ports 2 and 3.
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Figure A.6: Responses for the four branches Butteworth 3dB symmetric coupler.
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Table A.3: Characteristic parameters for coupler A.4.3

Parameter Value

n 5

K 10

R 1

θc 40°

The frequency response is periodic with period θ = π/2 and therefore only the first

period is shown in Fig. A.6.

Another interesting parameter is the phase shift between the output ports 2 and

3. The phase shift between port 2 and 3 is shown in Fig. A.6b. Due to the fact that

each transmission line of the coupler is a quarter-wavelength long, the phase shift is

90 degrees at mid-band. This is particularly important when the system requires two

signals in quadrature at the outputs of the device.

The phase shift of Fig. A.6b is constant around the central frequency (θ = 45°). It is

possible to show that by increasing the number of branches, the interval in which the

phase shift is flat and equal to 90° is wider.

The phase shift depicted in Fig. A.6b has been obtained making difference in mod-

ulus 180° of the phase of S21 and S31.

a.4.3 Five branches 3dB Tchebycheff symmetric coupler

In this section a 5 branch symmetric coupler with 3dB mid-band coupling and

equal ripple Tchebycheff response is going to be presented. In order to meet the

specification stated earlier, the characteristic parameters are chosen in accordance to

Tab. A.3.

As with the previous examples, the first step is to find the correct polynomial

Pn−1(t
2) that meets the specification. It must be in the form of eq. (A.48). In gen-
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eral, a Tchebycheff polynomial of the first kind and degree k is one in variable cos ϑ

that solves the following:

Tk(cos ϑ) = cos(kϑ) (A.84)

By changing the variable z = cos ϑ and re-arranging the formula we obtain the general

definition of the Tchebycheff function:

Tk(z) = cos(k arccos(z)) (A.85)

The dependent variable is in the range z ∈ [−1, 1] and also the maximum value of

Tk(z) is in the range

max
−16z61

|Tk(z)| = 1

Starting from the well known trigonometric identity

cos(α+β) = cosα cosβ− sinα sinβ

we can derive the following two equalities:

cos[(k+ 1)ϑ] = cos(kϑ+ ϑ)

= cos(kϑ) cos(ϑ) − sin(kϑ) sin(ϑ) (A.86a)

cos[(k− 1)ϑ] = cos(kϑ− ϑ)

= cos(kϑ) cos(ϑ) + sin(kϑ) sin(ϑ) (A.86b)

by substituting the term sin(kϑ) sin(ϑ) in the last two equations it is possible to derive

the following trigonometric relation:

cos[(k+ 1)ϑ] = 2 cos(kϑ) cos(ϑ) − cos[(k− 1)ϑ] (A.87)
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This is useful identity because if we substitute z = cos ϑ and the definition of Tchebycheff

function (A.84) we obtain the recursive polynomial

Tk(z) = 2zTk−1(z) − Tk−2(z) (A.88)

where the initial values are easily found to be

T0(z) = 1

T1(z) = z

In our problem it is necessary to find a polynomial in form N(t)/D(t) of the

eq. (A.48). An extension of the recursive function (A.88) is derived in order to find

the general equal ripple solution of the rational function f(z)/g(z):

Tk

[
f(z)

g(z)

]
= 2

f(z)

g(z)
Tk−1

[
f(z)

g(z)

]
− Tk−2

[
f(z)

g(z)

]
(A.89)

The last formula is particularly convenient if applied to our synthesis procedure be-

cause we are now able to relate the Tchebycheff general polynomial recursive defini-

tion to the equal ripple condition eq. (A.48) expressed in the variable eq. (A.49).

By solving the algebra, eq. (A.89) can be explicitly defined as the following:

Tk

[
f(z)

g(z)

]
= ζk

[
f(z)

g(z)

]k
+ ζk−2

[
f(z)

g(z)

]k−2
+ · · ·+ ζ0

=
ζkf

k(z) + ζk−2f
k−2(z)g2(z) + · · ·+ ζ0gk(z)
g(z)k

(A.90)

where the terms ζ0, ζ1, · · · , ζk are the coefficients of the eq. (A.88) and each subscript

indicates the power of the variable to which it is associated. From eq. (A.49) we have

f(t) = (1+ t2)(1− t2c)

g(t) = (1− t2)(1+ t2c)
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In this examples we can derive the values of the following parameters from the

specifications of Tab.. A.3:

xc = 0.1736 (A.91a)

tc = j0.8391 (A.91b)

The characteristic polynomial resulting from equations (A.48) and (A.90) is the fol-

lowing:

Pn−1(t
2) =

NP(t
2)

DP(t2)
=
64.9344
0.0077

· t
8 + 4.1237t6 + 6.2492t4 + 4.1237t2 + 1

t8 − 4t6 + 6t4 − 4t2 + 1
(A.92)

Again, once the characteristic polynomial has been found, it is necessary to de-

rive the Γe/Te expression from the usual eq. (A.40). The normalization constant that

appears in eq. (A.40) is calculated directly from eq. (A.92) with the argument

1

xc
=
1− t2c
1+ t2c

= 5.7588 (A.93)

and so resulting:

Pn−1

(
1

xc

)
= Pc = 10 818 (A.94)

Now, from eq. (A.40)

∣∣∣∣ ΓeTe
∣∣∣∣2 = 1

4R

P2n−1(t
2)

P2c
[(R− 1)2 −K2t2]

=
1

4R

N2P(t
2)

P2c ·D2P(t2)
[(R− 1)2 −K2t2]

Thus, for the Darlington relation eq. (A.51) we have the following:

|Γe|
2 =

N2P(t
2) · [(R− 1)2 −K2t2]

4RP2cD
2
P(t

2) +N2P(t
2)[(R− 1)2 −K2t2]

=
N2Γ (t)

D2Γ (t)
(A.95)
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Figure A.7: Position of zeros and poles of |Γe|2 for coupler A.4.3

The roots of numerator of eq. (A.95) are the following:

trN = [0; ±j1.1758; ±j1.0690; ±j0.9354; ±j0.8505] (A.96)

while the roots of the denominator are:

trD = [±0.5018± j1.7997; ±0.6774± j1.1041;

± 0.5151± j0.7253; ±0.3070± j0.4419; ±0.1904] (A.97)

The diagram of the zeros and poles of eq. (A.95) is finally depicted in Fig. A.7.

Due to the symmetry of the device, only the left-half poles of Fig. A.7 must be

chosen. Thus, the polynomial of the numerator and denominator of |Γe| are

Ñ(t) = κNΓ (t) = −t9 − 4.1237t7 − 6.2492t5 − 4.1237t3 − t (A.98)

DΓ (t) = t
9 + 4.1930t8 + 12.8815t7 + 24.2795t6 + 33.8494t5+

+ 31.9267t4 + 21.5638t3 + 9.2152t2 + 2.4961t+ 0.2555 (A.99)
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Table A.4: Admittances of the branch and main lines for Tchebycheff coupler n = 5, K = 10,
R = 1 and θc = 40°.

Branch line Main line
(S) (S)

0.0997 1.1639
0.5410 1.6532
1.1348 1.6532
0.5410 1.1639
0.0997

And finally the value of the constant that keep the limit condition eq. (A.52) is:

κ = 0.0015 (A.100)

At this point it is possible to solve the systems (A.81) and (A.82) and to get the

parameters of the ABCD matrix:

A(t) = 16.4123t8 + 95.0363t6 + 124.9693t4 + 36.0705t2 + 1 (A.101a)

B(t) = 84.7017t7 + 240.5299t5 + 152.6717t3 + 15.6267t (A.101b)

C(t) = 7.8285t9 + 66.5624t7 + 156.9564t5 + 100.5474t3 + 13.6848t (A.101c)

D(t) = 16.4123t8 + 95.0363t6 + 124.9693t4 + 36.0705t2 + 1 (A.101d)

The last step is to extract the ai and bi immittances from the eqs. (A.101) with

the same procedure explained in section A.4.1. The numerical results are listed in

Tab. A.4.

The scattering parameters of this hybrid coupler are shown in Fig. A.8a. The graph

shows the frequency response of the equal ripple 5 branches coupler. The first detail

to be noted is that there are only 4 reflection zeros at mid-band. This is a consequence

of the fact that the order of the characteristic polynomial is n− 1 and, consequently,

the hybrid presents only 4 reflections zeros.
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Figure A.8: Responses for the five branches Tchebycheff 3dB symmetric coupler.
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The ripples are constant and at the level of −70dB. The coupling at central fre-

quency is 3dB equally distributed among the two output ports. As expected the

response is strictly symmetric around θ0.

In order to get this frequency response, proper combinations of parameters n, K, θc

and R should be found. The final response is influenced by all these parameters. The

designer should find a trade-off between the specifications, feasibility of the device

and frequency response desired. For example, the number of branches n and the

input-output impedance ratio R may be parameters that are fixed by the system. In-

deed, the K and θc must be chosen to meet the requirements. The process requires

optimizations where the parameters are varied until the desired specifications are met.

Practical experience shows that with a few attempts it is possible to obtain results that

are in accordance with the specifications. The optimization process can be carried out

manually and it does not require the help of additional software or complex optimiz-

ation routines. The main characteristics of the response that can be obtained are:

• the interval in which the S11 is below a certain value (ie. the return loss)

• mid-band coupling

• desired directivity

• isolation or VSWR

• interval of frequencies where the phase shift at the output ports is flat and equal

to 90°

With respect the maximally flat characteristic, here by increasing the number of

branches a sharper response is obtained. This is the major change that the n operates

on the S parameters. Then, if prescribed mid-band coupling, bandwidth or return

loss are required, it is possible to vary the values of K and θc to achieve the desired

response.
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The phase shift modulus 180° between the output ports 2 and 3 is depicted in

Fig. A.8b as a function of the driving variable θ. It shows that with this combinations

of parameters, a wide interval around θ0 results flat and equal to 90°.



B
S Y N T H E S I S O F M U LT I - P O R T

R E S O N A N T N E T W O R K S

In this appendix is described a technique for the synthesis of multi-port circuits

formed by resonant cavities mutually coupled. The idea of the author is to collect

various information from different sources into a single document. The main source

used for this study is the PhD thesis of García Lamperez. Two step-by-step examples

of synthesis using this technique will also be provided.

The synthesis of resonant microwave circuits is a topic extensively covered in liter-

ature. One of the most interesting example are filters: they are 2-port devices which

provide frequency selectivity. Here, the focus is on the circuits with an higher number

of ports. Among the networks with more than 2 ports are diplexers and multiplex-

ers. The recent synthesis techniques for 2-port passive circuits based on resonators,

use a coupling matrix that describe the electrical behaviour of the network. Here, a

step-by-step synthesis is presented for the case of resonant circuits with more than 2

ports.

The fundamental basis of this theory is represented in the works [40, 41], where the

standard technique for the synthesis of 2-port filters based on resonators is explained

in detail. In [40], the polynomials for Tchebycheff filters with an arbitrary number of

poles and transmission zeros is presented. The synthesis of the coupling matrix is

introduced in the appendix of the same paper, and then, it is explained with greater

detail in the following work [41]. For the case of filters composed by n resonators,

the n×n or the extended (n+ 2)× (n+ 2) coupling matrices are the standard for the

characterization of these resonant circuits [126]. However, when the number of ports

is greater than 2, an alternative solution should be found. The technique explained

241
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Figure B.1: Schematic of a 3 ports network with 4 resonators

in [43, Ch. 2] is an extension of Cameron’s methodology for the case of multi-port

networks based on coupled resonators.

In the following sections, the synthesis procedure is explained underlining the most

relevant points and proposing references to some basic knowledge needed for the

comprehension of the theory. Afterwords, the synthesis of a fully canonical filter and

an 8-resonators diplexer are described in order to apply the concepts presented and

to demonstrate their validity.

b.1 synthesis procedure

b.1.1 Characterisation of the circuit

Before starting the explanation of the synthesis procedure for multi-port circuits, it

is important to formalize the generic structure that is going to be generated at the end

of the process. The focus of this study is on networks exclusively formed by coupled

resonators and external ports. The diagram of Fig. B.1 is a schematic representation

of a generic network with n = 4 resonators and p = 3 ports. In the following, the
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number of resonators will be indicated with the letter n while the number of ports

with p. In the last figure, the resonators are the black points and are distinguished

by the external ports that are represented with empty circles. In order to reference

each circuital element of Fig. B.1, the resonators are numbered 1 to 4 and the ports

are named P1, P2 and P3. The last essential information that is included in Fig. B.1 are

the couplings between the elements of the circuit. Here, all the possible couplings are

drown as this circuit is merely a generalization of a given topology. Among them, it

is possible to distinguish three types of couplings:

resonator to resonator the couplings between resonators of the circuits are iden-

tified with a continuous line. They represents the electromagnetic interaction

between a couple if resonators and may be both direct as well as cross-couplings;

resonator to port this type of couplings are identified with a dotted line and

represent the interactions between a resonator and an external port;

port to port the couplings between ports complete the generalization of the reson-

ant network and include the information related to the interaction between the

external ports of the circuit only. They are represented by the dashed line of

Fig. B.1.

The characterisation of a resonant network in term of these three types of couplings is

completely general and permits to fully describe the electrical properties of the circuit.

Another important aspect to underline is the fact that it is possible to include the

elements of the network of Fig. B.1 into two different categories: resonant and non

resonant nodes. This is a very important aspect that plays a key-role in the next steps

of the synthesis. At the beginning of this section, it has been introduced the fact that

this network is formed only by coupled resonators and the external ports. The funda-

mental unit which constitute the network is the node and it can be either resonant or

a non-resonant one. A schematic of the nodes is proposed in Fig. B.2. These models

are a parallel representation of the external ports (Fig. B.2a) and of the resonators
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G jB

(a) Non reson-
ant node

C jB G

(b) Resonant node

[i0]k 1

[i]k

[v]k

(c) Circuit at port k

Figure B.2: Circuital model of the nodes of the network

(Fig. B.2b). The reason why a parallel notation has been preferred on a series one,

will be clearer in the next sections. At this stage this circuit is considered as the low-

pass prototype of the network. The Fig. B.2b is the typical representation of a parallel

resonator, while the shunt conductance represents the lossy properties of the circuit.

The non resonant node is modelled in a very similar way. It is the representation of

a generic external port and the absence of the capacitor underlines the non-ability to

resonate of the node. The presence of the inductor represents the mutual inductance

between this element and the other nodes of the network. It is very important to put

the attention on the fact that the coils in Figs.B.2 are represented by quantity jB: this

implies that the elements are frequency invariant admittances. Through this inductance,

the coupling is possible with the others ports and/or resonators. The conductance G

reflects the lossy property of the node. Naturally, it is not compulsory for a node to

have the conductance element: for the case of lossless network or a non-lossy element,

the value of G of the corresponding node is set to 0.

Particular attention should be given to the generalization of Fig. B.2a. This model

is merely an abstraction and extends the concept of a terminal port. The port is

connected either on a load or a source circuit like the one shown in Fig. B.2c. We may

use the model of a non-resonant node in order to understand the electromagnetic

implications of the port and the other objects of the network. Here, the non-resonant
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node is represented in this general configuration of a parallel of an inductor and a

conductance. For example, the conductance may be used to identify the loss associated

with an external load. In the following will be shown how to assign the proper value

to the conductance of an external port, depending on what the measure is for. In

Fig. B.2c the current generator connected to the generic port k, is identified with the

kth element of the vector of reference currents i0 ∈ Cp with a normalized parallel

conductance. Thus, the currents and voltages associated to the generic port k are,

respectively, [i]k and [v]k.

Finally, the network of Fig. B.1 has 3 ports and 4 resonators but this is only to ex-

plain the model of the circuit. In the following, the generic case of p ports and n reson-

ators will be investigated. In this scenario the ports will be labelled as P1, P2, . . . ,Pp

and resonators with numbers 1, 2, . . . , n.

b.1.2 Coupling matrix formulation

One of the most convenient way to completely represent the electrical properties of

a resonant circuit is through the use of a coupling matrix. This is a powerful tool that

is employed both for studying the frequency response of a given circuit, or for the

synthesis process. The models of resonant and non-resonant nodes described in the

previous paragraph are the perfect candidates for a coupling matrix representation.

With reference to the diagram of Fig. B.1, three different coupling matrices may be

used to describe the three different types of couplings: Mn, Mp and Mpn. The

description of each matrix is given in the following:

• Mn is the matrix of the internal couplings of the circuit. Each element [Mn]ij

of the matrix, with i, j ∈ {1, . . . ,n}, represents the coupling coefficient between 2

resonators, that may be adjacent or not. This matrix is formed by n rows and n

columns of real numbers and may be indicated with the notation Mn ∈ Rn×n.

Referring to the Fig. B.1, this matrix includes the couplings coefficients repres-
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ented by the continuous lines of the diagram. If the network is reciprocal, then

Mn is symmetric. The elements on the main diagonal are the auto couplings of

each resonator.

• Mp is the matrix of couplings between the external ports. It is of the type

Mp ∈ Rp×p. As before, if the network is reciprocal then this matrix is also

symmetric and each element corresponds to the dashed line in the diagram of

Fig. B.1.

• Mpn is the matrix of the coupling coefficients between the resonators and the

external ports. If p 6= n this is not a squared matrix and its dimensions are

Mpn ∈ Rp×n. It may be named as the matrix of the external quality factors since

there is a close relation to the coupling coefficients of the external ports and

resonators and the Qe. Recalling the schematic of Fig. B.1, this matrix represents

the couplings depicted with dotted lines.

It is clear that not all the elements of the matrices Mn, Mp and Mpn have to be filled.

Depending on the topology of the network, only the necessary nodes are mutually

coupled, leaving the other elements of the matrices equal to 0.

Now that all the couplings of a resonant network, like the one shown in Fig. B.1,

have been formalized into these 3 matrices, it is possible to define a new coupling

matrix that fully characterizes the circuit. The new general coupling matrix is defined

by blocks and built from the previous matrices Mn, Mp and Mpn:

M ,

Mp Mpn

Mnp Mn

 (B.1)

where

Mnp =MT
pn
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is the transposed of the matrixMpn. The new matrix is of the formM ∈ R(p+n)×(p+n)

and it gathers all the information related to a multi-port resonant circuit. It extends

the conventional representations of 2-port circuits such as the n×n and the (n+ 2)×

(n+ 2) coupling matrices.

If a variable voltage signal is applied to one of the circuits of Fig. B.2, the current

flowing in the dipole is expressed as

i(s) = v(s) · (sC+ jB+G) (B.2)

where s is the complex low-pass variable defined as s = σ + jΩ. Usually, the spe-

cifications of a resonant network are expressed in term of band-pass characteristics.

In order to pass from band-pass to the low-pass domain, the following relation is

applied:

s = j
f0
∆f

(
f

f0
−
f0
f

)
(B.3)

where f0 is the central frequency and ∆f the operational bandwidth. The concept of

eq. (B.2) can be extended to the generic network of Fig. B.1 of p ports. In this case the

voltages and currents applied to the external ports may be expressed with the vectorial

quantities v, i ∈ Cp, where the generic element [v]k and [i]k are, respectively, the

voltage and current applied to port k. Thus, the circuital analysis of the whole network

is carried out through the definition of the nodal admittance matrix A ∈ C(p+n)×(p+n):

A = [sC+ jM+G] (B.4)

In eq. (B.4) is possible to recognize the extended coupling matrixM defined in eq. (B.1)

as well as two new entitiesC andG. The last two matrices are the ones of capacitances
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and conductances. As described before, it is likely that ports do not have a resonant

behaviour, indeed matrix C ∈ R(p+n)×(p+n) is defined by blocks:

C ,

0p
Un

 (B.5)

where the matrix Un is the n×n unity matrix and 0p is an all-zero p× p matrix. The

capacitance of a resonator shows its resonant characteristic, and its value is 1 in the

normalized low-pass frequency [40]. All other elements are set to zero. In a very

similar fashion is defined the matrix of the conductances G ∈ R(p+n)×(p+n):

G ,

Gp
Gn

 (B.6)

The element Gn is a matrix that describes the lossy characteristic associated to each

resonator. It is a function of the unloaded quality factor Qu by the formula:

Gn =
f0
∆f

1

Qu
Un (B.7)

where f0 is the central frequency and ∆f the operational bandwidth of the device. In

the case of a lossless circuit, Qu → ∞ and, consequently, Gn = 0n. The element Gp

is a diagonal matrix and it is related to the losses of the external ports. Here some

additional attention should be spent on which quantity is calculated. In fact, ports are

external elements and they might be connected either to a load or to a generator like

the one of Fig. B.2c. In both cases the losses are associated to the external elements

connected in parallel and are not part of the network. For this reason, depending

on the context, these contributions should or should not be taken into account. In a

different way respect of the internal nodes (resonators), the elements of Gp are the

reference conductances of the circuit. When calculating the S parameters, for example,

they must be considered and Gp = Up with Up being the p× p unitary matrix. On
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the contrary, when calculating the Z parameters of the network with open circuits

these elements are not considered (Gp = 0p). Thus, the correct matrix is chosen as

the following:

Gp =


Up for S parameters

0p for Z, Y parameters
(B.8)

Right now only the case of internal nodes that are not resonating has been neglected.

In some microwave circuits may be useful to introduce non-resonant nodes that are

internal elements of the network. If this is the case, the model of Fig. B.2a will be

employed for such elements. This is because of the absence of the capacitance that

permits the resonance. Consequently, the matrix C is affected as more elements on

the diagonal of eq. (B.5) are also 0. The others remains unchanged.

b.1.3 Scattering parameters

The nodal admittance matrix A of eq. (B.4) contains all the information needed

for the circuital analysis of the network. This matrix is formed by p+ n rows and

columns and describes the behaviour of each node when excited with a given current.

In order to study the response of a network described with its general coupling matrix

M, a number of sources at the external ports are applied to generate the excitation.

Mathematically, this is done by the vectors v and i introduced in Fig. B.2c. It is obvious

that only the external nodes can receive an excitation by v and i, since in the internal

ones the currents are inducted through the couplings and mutual inductances. This

fact may cause a misunderstanding because the vectors v and i are of dimensions

Cp and the nodal matrix is of the form A ∈ C(p+n)×(p+n). This problem is overcome

by extending the vector of the driving currents to the form i0 ∈ Cp+n where the last
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n elements are 0. All the internal impedances are assumed to be normalized to the

external ones. Thus, from Fig. B.2c this vectorial relation is valid:

i = i0 − v (B.9)

The scattering parameters matrix is the fundamental tool used in microwave circuits

where it is very difficult, or even impossible, to measure the voltages or currents

flowing at each port of the network. More convenient, instead, is to measure the ratio

incident and reflected amplitude waves through the scattering matrix of the form:

S ,



S11 S12 · · · S1p
S21 S22 · · · S2p

...
... . . . ...

Sp1 Sp2 · · · Spp


∈ Cp×p (B.10)

The incident and reflected amplitudes are represented, respectively, with vectors v+, v− ∈

Cp and they are related each other with the relation

v− = Sv+ (B.11)

With reference of Fig. B.2c, assuming that the external impedance is normalized to 1,

it can be shown that the relation between the incident and reflected amplitudes with

the voltages and currents applied to each port is defined as [30]:

v+ =
1

2
(v+ i) (B.12a)

v− =
1

2
(v− i) (B.12b)
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Thus, combining the eq.s (B.9) and (B.12) it derives that

v+ =
1

2
i0 (B.13a)

v− = v−
1

2
i0 (B.13b)

In our model the generator currents are represented by vectors of zeros with only

the reference component set to unity. Thus, the quantity i0 = δl is the usual delta of

Kronecker. Consequently, the definition of each element of eq. (B.10) can be rewritten

together with the combination of eq.s (B.11) and (B.13) as:

[S]kl =
−1
2δl + [v]k
1
2δl

= −δl + 2[v]k k, l ∈ {1, . . . ,p} (B.14)

The last expression is then rewritten as a function of the nodal admittance matrix,

whose definition was given in eq. (B.2)

v = A−1i0

knowing that the term i0 = δl affects the expression simply by selecting the row l

from the inverse of the admittance matrix:

[v]k = A
−1|row ki0 = [A−1]kl (B.15)

Finally, combining eq.s (B.14) and (B.15) it derives that:

[S]kl =


−1+ 2[A−1]kk for l = k

2[A−1]kl for l 6= k
(B.16)

with k, l ∈ {1, . . . ,p}. In a more compact way this notation is also valid:

S = −Up + 2A
−1
p (B.17)
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where the notation A−1
p represents the sub-matrix of A−1 formed by the first p rows

and columns. It is clear that in order to evaluate the scattering parameters the A

matrix must be calculated. In the following section is described in detail this process.

b.1.4 Analytical synthesis of multi-port circuits

Right now, an introduction of the generalization of multi-port circuit based on

coupled resonators has been presented, and in the following an analytical procedure

to coupling matrix synthesis will be explained. The demonstration of the algorithm

consists in two parts:

1. generation of the admittance parameters in shorted circuit,

2. partial fraction expansion of the admittance matrix.

In the previous sections a parallel model has been chosen for the nodes constituting

the circuit. The explanation of this choice resides in the fact that the algorithm of

synthesis is based on an admittance matrix representation. In a multi-port network

the relation between the currents and voltages applied to external ports is expressed

by the well known formula

ip = Yvp (B.18)

As was introduced before, the current and voltage are vectors of p+n rows. Besides,

the admittance matrix has dimensions p× p and only the first p elements of the vec-

tors v and i are considered when dealing with this operator. Thus, it is possible to

express these vectors as a part applied to external ports, and another one applied to

internal resonators

i =

ip
in

 v =

vp
vn


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The last two vectors are the quantities involved in the synthesis and the object of the

following procedure is to use them in order to derive the Y matrix of eq. (B.18).

For a lossless network, the conductance matrix is G = 0p and the nodal admittance

matrix reduced to the form A = sC+ jM as from eq. (B.4). Because ofM was defined

by blocks, even the matrix A may be defined in a similar fashion:

A ,

 Ap Apn

Anp An

 (B.19)

The complete relation between the currents and voltages applied to both internal and

external nodes is given by the system


ip = Apvp +Apnvn

in = Anpvp +Anvn

(B.20)

No generators are directly connected to the internal nodes, thus in = 0. The second

equation of eq. (B.20) is substituted in the first one in order to determine the expres-

sion of the Y matrix of the form of eq. (B.18):

Y = Ap −ApnA
−1
n Anp (B.21)

The object of the next steps is to calculate every term of eq. (B.21) in order to find the

solution of the shorted circuit admittance matrix.

Now, let consider the coupling matrix between internal nodes Mn. This is a

symmetric real matrix: its eigenvalues are {−λk}k∈{1,...,n} and eigenvectors are {ξk ∈

Rn}k∈{1,...,n}. For the purpose of simplification of the next calculation, here the eigen-

values are expressed with the opposite sign. In linear algebra, the spectrum is defined

as the set of distinct eigenvalues of a matrix [127]. The spectral decomposition is an
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operation that recasts the matrix in terms of its eigenvalues and eigenvectors. Thus,

the matrix of the internal coupling may be expressed as:

Mn = −

n∑
k=1

λkξkξ
T
k (B.22)

The eigenvectors ξk are orthogonal, this means that

ξTkξl = δkl (B.23)
n∑
k=1

ξkξ
T
k = Un (B.24)

where δ is the delta of Kronecker. At this point it is possible to combine the eqs. (B.24)

and (B.22) in order to relate the nodal admittance matrix An with the eigenvalues and

eigenvectors of the matrix Mn:

An = sUn + jMn

= s

n∑
k=1

ξkξ
T
k − j

n∑
k=1

λkξkξ
T
k

=

n∑
k=1

(s− jλk)ξkξTk

(B.25)

From the eq. (B.25) can be derived the inverse of the matrix An:

A−1
n =

n∑
k=1

ξkξ
T
k

s− jλk
(B.26)

where the property of eq. (B.23) has been applied to the numerator. The denominator

of this equation contains the poles of the function. It is also important to note that the

eigenvalues of matrix Mn had been chosen with the negative sign in order to build
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the term s− jλk. At this point there are all the information required to relate the Y

matrix to the blocks of M with the following relations valid for a lossless network:

Ap = jMp (B.27a)

Apn = jMpn (B.27b)

Anp = jMnp = jMT
pn (B.27c)

Thus, the eq. (B.21) may be rewritten by combinations of eqs. (B.26) and (B.27) as:

Y(s) = jMp +Mpn

(
n∑
k=1

ξkξ
T
k

s− jλk

)
MT
pn (B.28)

The last equation may be simplified with the introduction of the vector:

γk ,Mpnξk (B.29)

with k ∈ {1, . . . ,n} and this new vectorial quantity has dimensions γk ∈ Rp. Indeed,

the expression of the admittance matrix can be formalized with the more compact

relation:

Y(s) = jMp +

n∑
k=1

γkγ
T
k

s− jλk
(B.30)

With the last formula, the derivation of the admittance parameters in term of the

general coupling matrix of the circuit is complete. It is very important to underline

that matrix Y(s) has its elements expressed as a ratio between two polynomial in s

variable: a numerator and a common denominator. This property is shown by the

denominator of the sum of eq. (B.30) where the poles are the real eigenvalues of the
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internal coupling matrix. The generic element of the admittance matrix is of the form

[Y ]ij(s) = nij(s)/yd(s). This leads to the following notation:

Y(s) =
1

yd(s)



n11(s) n12(s) · · · n1p(s)

n21(s) n22(s) · · · n2p(s)
...

... . . . ...

np1(s) np2(s) · · · npp(s)


(B.31)

From eq. (B.30) is also easy to show that the common denominator is given by the

product of the eigenvalues λk, thus it may be expressed as:

yd(s) =

n∏
k=1

(s− jλk) (B.32)

The advantage of using the admittance matrix in shorted circuit, is that it is possible

to exploit its partial fraction expansion to relate the elements ofM to the analytical char-

acteristics of polynomials of Y . Let consider the ratio between polynomial f(x)/g(x).

Its partial fraction expansion is given by the well known formula

f(x)

g(x)
=

r1
x− x1

+
r2

x− x2
+ · · ·+ rm

x− xm
+ k0

where k0 is a direct term, x1, x2, . . . , xm are them poles of the function, and r1, r2, . . . , rm

are the residues. This concept is directly applied to the Y matrix of eq. (B.31) with the

following formulation:

Y(s) = Y (∞) +

n∑
k=1

Γk
s− jλk

(B.33)

In the definition of eq. (B.33) there are three key-elements:

• Y (∞) is a constant element representing the response of the admittance matrix at

infinity frequency. This matrix has p rows and columns.

• λk is the kth pole of the common denominator yd(s)
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• Γk ∈ Rp×p is the matrix of the residues associated to pole λk.

The formulation of the elements at infinite frequency is given by the limit:

Y (∞) = lim
s→j∞Y(s) (B.34)

Since the the admittance matrix is formed by ratio of polynomials with a common

denominator, the poles λk are the same for all the elements of the matrix. Thus, there

is a residue of every element of matrix Y associated to each poles of the function. The

general notation of the matrix of residues associated to kth pole is:

Γk =



r11,k r12,k · · · r1p,k

r21,k r22,k · · · r2p,k

...
... . . . ...

rp1,k rp2,k · · · rpp,k


(B.35)

It is clear that, upon the definition of eq. (B.35), the particular single element of the

admittance matrix is:

[Y ]ij(s) = [Y (∞)]ij +

n∑
k=1

rij,k

s− jλk
(B.36)

that is the partial fraction expansion of the ratio of polynomials nij(s)/yd(s).

Given a function f : C \ {x0, x1, . . . , xd}→ C (defined on an open domain D except a

set of isolated points x0, x1, . . . , xd) and a close curve γ contained in D and containing

one isolated discontinuity xs ∈ {x0, x1, . . . , xd}, the residue of function f(x) in the point

x = xs is defined as:

Res(f, xs) ≡
1

2πj

∮
γ
f(x)dx (B.37)
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The value of the residue of order n is calculated with the help of the Cauchy formula,

derived from the theorem of residues:

Res(f, xs) =
1

(n− 1)!
lim
x→xs

{
∂n−1

∂xn−1
[(x− xs)

n · f(x)]
}

(B.38)

In our case, the rational functions constituting the matrix Y have all simple poles. The

formula eq. (B.38) for n = 1 (case of a simple pole) reduces to:

Res(f, xs) = lim
x→xs

(x− xs) · f(x) (B.39)

In the following, the eq. (B.39) will be used to calculate the elements of matrix Γk of

eq. (B.35).

At this point there is all the information and tools to extrapolate the values of the

coupling matrix of the circuit starting from the admittance matrix Y(s). The first thing

to consider are the similarities between the expressions of eq. (B.30) and the one of

partial fraction expansion of eq. (B.33). It is immediate to observe that the following

relations:

Y (∞) = jMp (B.40)

Γk = γkγ
T
k (B.41)

Before proceeding, it is valuable to make some consideration over the matrix of

residues and its relation to the vector γk:

• it is important to remind that the vectors γk ∈ Rp are all formed of real numbers,

indeed also the elements rij,k are real.

• The product of vectors γk and γTk causes the residues to have the form

rij,k = [γk]i · [γk]j (B.42)
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• The elements on the main diagonal of Γk are non-negative. This can be easily

shown since the element

rii,k = [γk]
2
i > 0 (B.43)

• The square of the residues off the main diagonal of Γ follows this rule:

r2ij,k =
(
[γk]i · [γk]j

)2
= rii,k · rjj,k (B.44)

The study of the partial fraction expansion of Y has permitted to analytically relate its

poles to the eigenvalues of Mn, its residues to the couplings between resonators and

ports (matrix Mpn and its response at infinite frequency with the couplings between

external ports of the matrixMp. This achievement is at the base for the analytical syn-

thesis of complex networks starting from the admittance polynomials of the desired

frequency response.

b.1.5 Transversal networks

In the last section were derived the analytical formulas that relate the polynomials

constituting the admittance matrix to the various blocks of the general coupling matrix

of the resonant circuit. Even if the simple mathematical expressions seem to solve

the great complexity of multi-port synthesis, there are some additional aspects to

consider. First of all the coupling matrix strictly depends on the topology of the

network and it might be difficult to find the relation between γk, Γk, Y (∞) and the

coupling coefficients of a circuits with a given structure. The main aspect to consider

is that the response of a circuit mainly depends on the eigenvalues and eigenvectors of

its coupling matrix. Thus, there are several different configurations, and consequently

different coupling coefficients, that give identical frequency responses. In this section
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Figure B.3: Examples of transversal networks. The empty circles represent the external ports
while the black points are the internal resonators. All the possible couplings are
shown.
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Figure B.4: Block matrix M of the transversal network p = 3, n = 4

a possible solution to this problem will be presented through the use of a transversal

network.

A transversal network is a circuit with these fundamental characteristics:

1. there are no couplings between resonators,

2. each resonator may be coupled with the external ports and itself,

3. the external ports can be coupled each other .

Three examples of transversal networks are shown in Fig. B.3, all having 4 resonators.

In these pictures are shown all the possible couplings for this type of circuits. In

the figure, a dashed line has been used to indicate the mutual coupling between pair

of external ports, while a dotted line is for the couplings between resonators and
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ports. As stated in the definition of transversal network, there are no couplings (and

consequently no lines) between internal resonators. The general coupling matrix of a

transversal network reflects its topology and is populated accordingly. In Fig. B.4 is

a representation of M defined by blocks reflecting the structure of Fig. B.3c. In this

representation it is possible to recognize the three different portions that correspond

to sub-matrices Mp, Mn and Mpn through the continuous line that bounds them.

On the top and on the left sides of the matrix are the labels referring to the elements

of the network. The labels P1,P2, . . . ,Pp are the numbered external ports, while the

simple numbers 1, 2, . . . ,n are the internal resonators. In Fig. B.4 a cross is depicted in

the box corresponding to the couplings of Fig. B.3c. Naturally, in this representation

are shown all possible couplings between elements of the circuit and, consequently,

there are all the possible elements in the coupling matrix.

At this point some interesting properties of the transversal networks are invest-

igated and it will be clear how they can help the synthesis procedure. The main

consequence of the absence of mutual couplings between pairs of internal resonators,

is that Mn is a diagonal matrix. This leads to these two fundamental properties:

1. the eigenvalues of such a matrix are the elements of the main diagonal,

2. there are n eigenvectors corresponding to the delta of Kronecker.

Put these concepts in mathematical notation:

Mn =



−λ1

−λ2
. . .

−λn


(B.45)

ξk = δk k ∈ {1, . . . ,n} (B.46)

The conditions of eq.s (B.45) (B.46) simplify the the calculations when a suitable coup-

ling matrix that gives the frequency response of matrix Y is searched. It is immediate
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to see from eq. (B.45) that the roots of common denominator yd(s) are the poles of

the transfer function and, consequently, the elements of the main diagonal of Mn. In

eq. (B.45) the signs of the eigenvalues has been put the opposite to be in compliance

with the notation of eq. (B.30).

An additional important property of the transversal networks is given by the con-

dition of eq. (B.46) because, recalling eq. (B.29), it forces the vector to be equal to the

kth column of matrix Mpn:

γk = [Mpn]col.k (B.47)

The direct consequence of eq. (B.47) is on the matrix of residues that takes the form

Γk = γkγ
T
k = [Mpn]col.k · [Mpn]

T
col.k

=



[Mpn]
2
1k [Mpn]1k[Mpn]2k · · · [Mpn]1k[Mpn]pk

[Mpn]2k[Mpn]1k [Mpn]
2
2k · · · [Mpn]2k[Mpn]pk

...
... . . . ...

[Mpn]pk[Mpn]1k [Mpn]pk[Mpn]2k · · · [Mpn]
2
pk


(B.48)

The last equation is of great importance because is a direct relation between the ele-

ments of the external couplings of the matrix Mpn and the residues of the poles. The

last step is to find a relation between these two entities expressed in a closed formula.

It is immediate to note that the elements of the main diagonal of eq. (B.48) are linked

to the same residues:

|[Mpn]ik| =
√
rii,k (B.49)

However, this formulation is not sufficient to solve the problem since it produces a

system with more equations than unknown variables. In fact, there exists a solution
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if the condition of eq. (B.44) is satisfied. Let consider the sign function defined ∀x ∈ R

as

sgn(x) ≡


−1 x < 0

0 x = 0

+1 x > 0

or in the alternative version not valid in the origin (x 6= 0)

sgn(x) =
x

|x|
(B.50)

From eq. (B.48) is derived the obvious relation

sgn(rij,k) = sgn([Mpn]ik) · sgn([Mpn]jk) (B.51)

If it is assumed that the sign of [Mpn]ik is positive, the last relation degenerates into

sgn([Mpn]jk) = sgn(rij,k) (B.52)

and, consequently, it is valid the following:

[Mpn]jk = sgn([Mpn]jk) ·
∣∣[Mpn]jk

∣∣ (B.53)

By substituting the eq. (B.49) into the (B.53) is obtained:

[Mpn]jk = sgn([Mpn]jk)
√
rjj,k (B.54)
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and, recalling the alternative definition of sign function of eq. (B.50) and the assump-

tion made with eq. (B.52)

[Mpn]jk =
rij,k

|rij,k|

√
rjj,k (B.55)

Finally, the condition of eq. (B.44) is applied to the relation of eq. (B.55) giving the

closed formula that relates the generic element on the matrix of external couplings

with the residues associated to pole k:

[Mpn]jk =
rij,k√
rii,k

(B.56)

with i, j ∈ {1, . . . ,p} and k ∈ {1, . . . ,n}.

b.1.6 Matrix transformations

The transversal network discussed in the previous section is a powerful abstraction

used to easily derive the relations between the coupling matrix and the admittance

parameters of the circuit. With the formulas presented, an analytical procedure to get

the coupling coefficients can be followed starting from the admittance matrix. It is

well known that the frequency response expressed in terms of S parameters, can be

directly transformed into the matrix Y and, then, a corresponding transversal network

may be obtained. However, a circuit where there are no couplings between resonators

and, potentially, each resonator is coupled with all the ports, may not be feasible or

very difficult to construct. In addition, the designer would calculate the numerical

values of coupling coefficients of a network with a given topology and frequency

response. It is clear that the combinations allowed by the transversal configuration

impose unacceptable restrictions to the design. Thus, an alternative solution shall be

found to overcome the problem while keeping the procedure as simple as possible.
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The important property that is exploited in the following, is that two different coup-

ling matrices with same eigenvalues, rank and determinant have same frequency re-

sponse. This principle is also known as similarity between matrices [40]. The main

idea is to operate a sequence of transformations to the coupling matrix obtained in

order to modify its structure into the one of the topology of the target circuit. The

coupling matrix M calculated with the previous methodology for the transversal net-

works, is transformed in a new one, say M′, that has same frequency response but

that is compliant with the final topology of the circuit. The method discussed here to

transform M, is the Jacobi transformation for symmetric matrices:

M′ = R(i, j,φ)MRT (i, j,φ) (B.57)

The rotation operator R ∈ R(p+n)×(p+n) is an orthogonal matrix defined as follows:

R(i, j,φ) =



1

. . .

cosφ · · · − sinφ
... 1

...

sinφ · · · cosφ
. . .

1



(B.58)

The rotation term R is formed from an unitary matrix except for the four trigonometric

quantities [R]ii = [R]jj = cosφ and [R]ji = −[R]ij = sinφ, where i and j are the pivot

parameters i, j ∈ {1, . . . ,p + n} and φ is the angle of rotation. This matrix has the

characteristic to be orthogonal so as R−1 = RT . Such a transformation can also be

called as pivot [i, j] of angle φ.
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The application of eq. (B.57) implies that the transformed matrix has the elements

on row and columns i, j changed, while all the other elements remain the same. The

following equations show how the new terms are affected:

[M′]ik = cosφ[M]ik − sinφ[M]jk (B.59a)

[M′]jk = cosφ[M]jk + sinφ[M]ik (B.59b)

[M′]ki = cosφ[M]ki − sinφ[M]kj (B.59c)

[M′]kj = cosφ[M]kj + sinφ[M]ki (B.59d)

for k ∈ {1, . . . ,p+n} \ {i, j}. It is interesting to note that depending where is positioned

the element to be annihilated, one of the eqs. (B.59) may be more suitable than others.

In particular, if the element is in row i the eq. (B.59a) is likely to be used, if it is on row

j is used eq. (B.59b). By symmetry is easy to show that for the element of column i the

eq. (B.59c) is used, as well as eq. (B.59d) is for the element of column j. By choosing a

proper value of φ is also possible to annihilate the desired element [M′]ij of the rotated

matrix. Indeed, the formula eq. (B.57) can be used for a series of transformation in

which at each step is annihilated a particular element of the coupling matrix. This

procedure will be used to transform the not practical transversal matrix to the final

topology of the circuit. Depending on the position of the element to be annihilated,

the proper equation from the eqs. (B.59) is chosen and the rotation angle φ calculated

accordingly.

The eq.s (B.59) apply to all the elements of the coupling matrix except the cross

points of the pivoting rows and columns. These elements are governed by the follow-

ing relations:

[M′]ii = cos2 θ[M]ii + sin2 θ[M]jj − 2 sin θ cos θ[M]ij (B.60a)

[M′]jj = sin2 θ[M]ii + cos2 θ[M]jj + 2 sin θ cos θ[M]ij (B.60b)

[M′]ij = (cos2 θ− sin2 θ)[M]ij + sin θ cos θ([M]ii − [M]jj) (B.60c)
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In last instance, it is important to consider the following properties when choosing

the pivots parameters i, j and the rotation angle φ:

• the elements that are not on rows and columns i, j are not affected by the trans-

formation. The elements on rows and columns i, j change with the equations in

(B.59);

• if there are two elements on rows and columns i, j that are zero before the trans-

formation, than they remain zero after;

• when a particular non-zero element [M′]ij is annihilated with eq. (B.57), also the

element [M′]ji is set to zero;

• if two series of transformations are applied in different order, the resulting

matrices are not equal;

• once the element [M]ji to be annihilated has been chosen, the right equation

between the (B.59) is to be selected as well as the the pivot i, j. The rotation

angle φ is calculated from the reverse equation of (B.59) considering the proper

k value.

The final coupling matrix will produce the same frequency response of the initial one

of the transversal network. Indeed, the new matrix can be in line with the specifica-

tions of the topology of the network solving the feasibility problems of the transversal

configuration.

b.1.7 Low-pass to band-pass transformation

Following the synthesis procedure till this point it should be clear that the computed

coupling matrixM refers to the normalized low-pass prototype of the circuit. In order

to obtain the corresponding band-pass model the coupling matrix is re-scaled. The

frequency variable is also to be transformed from the low-pass band to the band-pass
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edges. The key variables are the band extremes f1 and f2 and the central frequency f0

that, by inversion of the eq. (B.3), permit to define the bandwidth (∆f) and the fractional

bandwidth (w):

∆f = f2 − f1

w =
f2 − f1
f0

=
∆f

f0

The coupling matrix M calculated in the previous sections is to be de-normalized

in order to have it in suitable form for the 3D implementation and manufacturing

of the device. It is often useful to have the de-normalized parameters such as the

external quality factors Qem between the external port e and the internal resonator m,

the coupling coefficient kij between two internal resonators i and j and, finally, the

resonant frequency fris,q of each resonator q. These parameters are directly calculated

from the matrix M with the following relations [34, 49]:

Qem =
f0
∆f

1

[Mpn]2em
=

1

w[Mpn]2em
(B.61a)

kij =
∆f

f0
[Mn]ij = w[Mn]ij (B.61b)

fris,q = f0

√1+(w [Mn]qq
2

)2
−

(
w
[Mn]qq
2

) (B.61c)

with e ∈ {1, . . . ,p} and m, i, j,q ∈ {1, . . . ,n}.

b.1.8 Steps of the synthesis

All the theoretical details have been already included in the various sections right

now, however it might be useful to summarize the entire process and to focus only

on the relevant formulas needed for the synthesis. The starting point that is assumed

here is that the designer has clear what kind of topology is going to be synthesised
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and the desired frequency response in terms of S parameters. Thus, the synthesis

procedure may follow these points:

1. formulation of the S parameters in term of rational polynomials between numer-

ators and a common denominator. The independent variable of these polyno-

mials is the normalized complex low-pass frequency s = σ+ jΩ. If band-pass

specifications are given, the normalized frequency is obtained through the for-

mula of eq. (B.3).

2. Evaluation of the topology of the network, number of resonators, ports and

couplings between resonators in order to achieve a certain frequency response.

In this step the physical constraints of the network should be considered in light

of the type of input/output system, resonators and couplings.

3. Starting from the S parameters, the admittance matrix in shorted circuit Y shall

be derived. Each element is expressed as a ratio of polynomials in s between a

numerator and a common denominator. Closed formulas are defined for 2-port

devices, while for multi-port circuits the coefficients may be obtained with the

Cauchy method as explained in section B.2.

4. The resonant circuit is described through the coupling matrix defined by blocks

of eq. (B.1). At this stage it is possible to identify on this matrix which element

are zero depending on the topology of the circuit. This configuration will be the

final target of the synthesis procedure. Each of these elements must be a real

number.

5. Expansion in partial fractions of the Y matrix. In this step the constant value

Y (∞), the poles λk and the matrix of residues Γk shall be calculated. The Y (∞)

is obtained through the formula of eq. (B.34) while the poles λk are the roots of

common denominator yd(s). Once the imaginary poles are obtained, the matrix

of residues Γk is calculated with eq. (B.56) for each pole.
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6. Generation of transversal matrix. It has been shown that this type of network

simplify the calculations due to the convenient relations between the partial frac-

tion expansion of Y and the coupling matrix M. The matrix of the couplings

between portsMp is directly obtained from eq. (B.40). The matrix of the internal

couplings is the diagonal of the poles of the admittance matrix (eq. (B.45)). Fi-

nally, the matrix of the external couplings Mpn is derived from the matrix of

residues Γk with the eq. (B.56). At this point all the couplings of the transversal

network are found and the general coupling matrix M is fully populated.

7. If the transversal network is difficult or impossible to realize, it is necessary

to transform it with a series of Jacobi similarities of eq. (B.57). The designer

should consider the topology of the final circuit to operate the correct sequence

of transformation. This is an iterative approach where at each step the correct

equation among the (B.59) and a proper rotation algorithm are to be chosen. It

is fundamental to decide in advance the sequence of element to annihilate in

order to define the coordinates of each pivot rotation.

8. The coupling matrix found at this stage of the procedure is defined in the nor-

malized low-pass domain. Finally, the coupling matrix of the final circuit is

directly calculated with the low-pass to band-pass transformation of eq.s (B.61).

At this point the coupling matrix has the desired frequency response as well as the

right topology of the circuit. The synthesis is now completed.

b.2 cauchy method

Although in section B.1 has been described the general synthesis for for a multi-port

resonant circuit, no many information were provided to define the starting point of the

synthesis. The procedure allows to directly calculate the coupling matrix of the low-
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pass prototype starting from the admittance representation of the frequency response.

However, it is not always straightforward to directly derive the coefficients of the Y

matrix in rational form directly from the scattering polynomials. For the simple case

of 2-port networks (filters) there exists an analytical formulation (see section B.3.1),

but for more complex circuits it can be very difficult to define an approach without

losing generality. The solution proposed in this section is to apply the Cauchy method

to approximate a curve with a rational polynomial expression [50]. The procedure is

based on solving a set of linear equations where the known variables are the points

of the sampled curve. Then a least square algorithm is applied to the system in order

to compute the coefficients of the polynomials that approximate the function.

The curves of the scattering parameters are directly obtained from their character-

istic polynomials. Then, the admittance matrix is calculated for each frequency point

with the well known relation

Yp = (Up −Sp)(Up +Sp)
−1 (B.62)

being U the unitary matrix. Each element of the eq. (B.62) can be approximated to

rational polynomials of finite degree and common denominator. The response of the

Y matrix is evaluated in a finite number of frequency pointsN that may be not equally-

spaced. The generic element of the matrix is expressed with the following notation:

[Ȳ ]ij(s) =

∑na
k=0 aks

k∑nb
k=0 bks

k
≈ [Y ]ij(s) (B.63)

where na and nb are the degree of the numerator and denominator respectively. The

principle of analytical continuation states that the expression (B.63) can be substituted

with a system of N linear equations like the following:

na∑
k=0

skm − Yij(sm)

nb∑
k=0

bks
k
m = 0 (B.64)
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with m ∈ {1, . . . ,N}. The curve must be sampled in a suitable way and the minimum

number of samples N depends on the degree of numerator and denominator:

N > na +nb + 1 (B.65)

In the case of the equality there are an exact number of equations and unknowns,

otherwise the system is overdetermined. The system of linear equations (B.64) can be

equivalently expressed with a matrix notation as in the following:

[
Vna − YijVnb

] a
b

 = X

a
b

 = 0 (B.66)

where the vectors a ∈ Cna+1 and b ∈ Cnb+1 are the unknowns variables, Yij =

diag{[Y ]ij(sm)} a diagonal matrix of the sampled values of the curve and Vr is the

Vandermonde matrix defined as

Vr ,



1 s1 s21 · · · sr1

1 s2 s22 · · · sr2
...

...
... . . . ...

1 sN s2N · · · srN


∈ CN×(r+1) (B.67)

The system of linear equations defined in eq. (B.66) is valid to obtain the coefficients

of the rational polynomials approximating one single curve. However, in our applic-

ation we are interested in rational functions that share a common denominator. It is

clear that is not possible to apply several systems of the kind of eq. (B.66) since they
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will result in having different denominators. The solution is to create a more complex

system of equations in which is forced the dependency of the denominator:

X =



Vn1 0 · · · 0 −Y1Vnb

0 Vn2 · · · 0 −Y2Vnb
...

... . . . ...
...

0 0 · · · Vnq −YqVnb


∈ C(qN)×(n1+···+nq+nb+q) (B.68)

In matrix (B.68) there are all the q curves of the admittance matrix in the diagonal

form as explained before. It has been assumed that the degree of each numerator are,

respectively, n1,n2, . . . ,nq and the degree of the denominator is nb. For clarity, in sys-

tem (B.68) has been omitted the dimensions of the zero sub-matrices that are present

at any line: it is obvious that these zeros are included just to fill the empty elements

of the matrix and to ensure the alignment with the other systems of equations of the

other curves. Each null sub-matrix has N rows and a number of columns equal to the

degree incremented by 1 of the Vandermonde matrix associated to that column. Thus

the condition on the number of sampling points required for the system is

N > n1 +n2 + · · ·+nq + q ·nb + q (B.69)

The vector of unknowns include all the coefficients associated to denominators of

each curve a(1),a(2), . . . ,a(q) and the denominator b:

X



a(1)

...

a(q)

b


= 0 (B.70)

The system (B.70) is solved with the total least square (TLS) method. It does not matter

whether it is exactly determined or overdetermined, the TLS technique permits to
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find the vector of coefficients that solve the system. In order to do the calculation a

singular value decomposition of X is performed in order to solve the system [45]:

X



a(1)

...

a(q)

b


= UΣVH



a(1)

...

a(q)

b


= 0 (B.71)

The terms U and VH are unitary matrices while Σ is the matrix of the singular values

of X. The operator (.)H denotes the complex conjugate transpose of a matrix. The TLS

method states that the solution of the system (B.71) is proportional to the last column

of matrix VH:



a(1)

...

a(q)

b


= [VH]n1+···+nq+nb+q (B.72)

The method for the solution of the system presented here has some disadvantages

that impact on the accuracy of the coefficients of the polynomials. As it has been

shown in [53], the Vandermonde matrix is ill-conditioned and other approaches might

improve the approximation for certain curves. Among the many methods that might

be used to solve the system of linear equations, the QR algorithm seems to be a good

compromise between complexity, computational power required and accuracy of the

results [53]. Moreover, in the definition of eq. (B.68) there are several zero elements

that are avoided with this last methodology.

The Cauchy method is also a powerful tool when it is necessary to compute the

characteristic polynomials of a circuit and, consequently, the associated coupling mat-

rix. In this way it might be of interest the comparison between the coupling matrix

of the theoretical circuit and the measured one, leading to a deeper understanding
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of the impact of the tolerances of the fabrication process. It is worth to remind that

any measurement of a real device is affected by the losses of the material. Thus, some

changes to the traditional Cauchy method are likely to be applied as it is explained in

[52].

b.3 examples

b.3.1 Fully canonical filter

In this example will be presented the synthesis of a fully canonical filter starting

from the specifications up to the building of the coupling matrix. The synthesis of

a two ports circuit is the most common problem of microwave engineering and it

will be solved with the general approach described in the sections before. Here, a

4 resonators with asymmetric filtering, 22dB in-band return loss and 4 transmission

zeros will be considered exactly the same of [41]. The first two transmission zeros are

located, respectively, at −j3.7431 and −j1.8051 in order to produce 2 attenuation lobes

in the lower side of the passband better than −30dB. The others 2 transmission zeros

are located at +j1.5699 and +j6.1910 to produce an attenuation lobe of 20dB in the

upper side of the band-pass.

The synthesis of the polynomials is carried out with the iterative algorithm ex-

plained in [40]. As usual, the S parameters are expressed as rational polynomials

between numerators and a common denominator to all the elements. In the literature

it is practice to express the S parameters of a filter in term of:

S11(s) =
F(s)/εR
E(s)

(B.73a)

S21(s) =
P(s)/ε

E(s)
(B.73b)
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Table B.1: Coefficients of E(s), F(s), P(s) polynomials of fully canonical filter

Degree of s E(s) F(s) P(s)

4 1.0 1.0 j1.0
3 +2.2467− j0.0047 −j0.0026 2.2128
2 +3.6063− j0.0031 1.0615 j26.5826
1 +3.2898− j0.0489 −j0.0009 1.4870
0 +1.9877− j0.0025 0.1580 j65.6671

For the filters, like the one under consideration, that have all the TZs at finite fre-

quencies, the constant term εR is added to the previous set of equations and acts as a

normalization factor between F(s), P(s) and E(s). It is defined as:

εR =
ε√
ε2 − 1

(B.74)

The factor ε controls the in-band ripples of the return loss. The coefficients of the

polynomials are summarized in Tab. B.1 with

ε = 33.140652 (B.75a)

εR = 1.000456 (B.75b)

Before proceeding with the synthesis, it is necessary to derive the admittance para-

meters from the scattering polynomials of Tab. B.1. To do this we think the filter as a

2-port network connected to a source to one side and to an output impedance, say RL,

to the other one. The driving-point impedance is the ratio between voltages and currents

when the terminals of the network are connected to a driving force or to an energy

source. It is common to define these quantities with capital letters:

Z(s) =
V(s)

I(s)
(B.76)
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When referring to the driving impedances, or admittances, of the network loaded

either to an open or shorted circuit, the non-capital letter are used. In the following,

the driving point impedance will be derived as a function of its parameters in open

and shorted circuit (z and y). Consider the circuit of Fig. B.5, it represents a network

−
+V1

[
y11 y12
y21 y22

]
−

V2

+

I1 I2

ZL

Figure B.5: Generic 2 ports circuit described by y parameters

described with its y matrix of the driving admittance parameters in shorted circuits,

connected with a source and a load. On the figure is included the voltages and

currents at ports with their directions. In this first stage, it is necessary to derive

the expression of the input driving impedance of eq. (B.76) in terms of z or y of the

network as described in [128]. These parameters are defined in this way:

y11 =
I1
V1

∣∣∣∣
V2=0

(B.77a)

y12 =
I2
V1

∣∣∣∣
V2=0

(B.77b)

y21 =
I1
V2

∣∣∣∣
V1=0

(B.77c)

y22 =
I2
V2

∣∣∣∣
V1=0

(B.77d)

In order to derive the formulation of the input driving impedance of circuit of Fig. B.5,

the theorems of Norton and Thevenin are applied to this circuit when it is, respectively,

connected to an open circuit and to a load. Let consider the generic network with the

equivalent Norton representation. Fig. B.5 can be taken as reference by disconnecting

the load at port 2 and closing it on a shorted circuit without loss of generality. By

definition of y12 given in eq. (B.77b), the current I2 in shorted circuit is:

I2sc = −y12V1 (B.78)
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Figure B.6: Equivalent models of network left in open circuit and connected to an impedance

where the minus sign reflects the orientation of the current that is opposite with the

respect the direction given in Fig. B.5. The Norton’s equivalent admittance is found

when the generator at port 1 is substituted with a shorted circuit. Naturally, the

equivalent admittance seen from port 2 when port 1 is shorted circuited is y22 because

we are still considering the network of Fig. B.5 without the load impedance. Thus, the

equivalent Norton circuit of Fig. B.5 left in open circuit is given by the network shown

in Fig. B.6a. In this representation the equivalent Norton of the current generator is

expressed as function of the input voltage V1 and by the transmission admittance in

accordance with eq. (B.78). From network of Fig. B.6a, the voltages V2 is the potential

difference at the ends of equivalent admittance y22 and it’s value is

V2 =
−y12V1
y22

and consequently the voltage gain is

V2
V1

= −
y12
y22

(B.79)

Formula (B.79) is totally general and refers to any two port network described with

its driving admittance parameters in shorted circuit. Now, let consider the equivalent
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Thevenin representation of Fig. B.5 but using the formulations derived so far. As

known, the Thevenin theorem is applied to a network in open circuit, let say, the

circuit of Fig. B.5 considered in open circuit with no impedance loaded in first instance.

In this case the voltage at port 2 has already been calculated and it is

V2oc =
−y12V1
y22

(B.80)

The equivalent impedance is calculated when the input voltage generator is discon-

nected and substituted with a shorted circuit. By definition of eq. (B.77d) the Thevenin

impedance is 1/y22. At this point it is possible to connect the load impedance to the

equivalent circuit obtained in order to evaluate the necessary parameters. Fig. B.6b is

representing the equivalent Thevenin of a generic network in terms of its y paramet-

ers. By connecting the load impedance to this circuit it is possible to derive all the

parameters as function of the driving admittances in shorted circuit, as required by

the problem.

Let solve the equation of loop current of circuit in Fig. B.6b. It is easy to find that

I1 =

∑
V∑
Z

=

−
y12
y22
V1

1/y22 +ZL

so that

V1
I1

=
1/y22 +ZL

−
y12
y22

(B.81)
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At this point it is useful to remind the relations between the y and z:

y11 =
z22
∆z

(B.82a)

y12 =
−z12
∆z

(B.82b)

y21 =
−z21
∆z

(B.82c)

y22 =
z11
∆z

(B.82d)

∆z = z11z22 − z12z21 (B.82e)

The driving impedance that is under investigation is function of both the element of

z of the network as well as the load impedance ZL. It follows that the transfer driving

impedance is

z12 =
V1
I2

∣∣∣∣
I1=0

= z22 +ZL (B.83)

Combining eqs. (B.83), (B.82b) and (B.82d) into (B.81) is obtained the expression of

the driving impedance of the double terminated network on a load:

Z11(s) =
z11(1/y22 +ZL)

z22 +ZL
=
z11(1/y22 + 1)

z22 + 1
(B.84)

where the load ZL has been normalized to unity in the second part of the last equa-

tion. The definition of driving point impedance is then extended to incorporate the S

parameters as

Z11(s) =
1− S11(s)

1+ S11(s)
=
E(s)± F(s)
E(s)∓ F(s) =

m1 +n1
m2 +n2

(B.85)

where the numerator and denominator have been separated in their even m and odd

n parts. In eq. (B.85) appears the relation between the even/odd terms and the polyno-

mials E(s) and F(s) constituting the response of the filter. For this reason, the elements
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m1 and n1 are defined from the coefficients of both E(s) and F(s) with the following

relations:

m1(s) = <(e0 + f0) + j=(e1 + f1)s+<(e2 + f2)s
2 + . . . (B.86)

n1(s) = j=(e0 + f0) +<(e1 + f1)s+ j=(e2 + f2)s2 + . . . (B.87)

The terms ei, fi∧ i ∈ {1, . . . ,n} (where n is the order of the filter) are the coefficients of

polynomials E(s) and F(s) respectively associated to variable with power i. It is clear

that both m1 and n1 have purely real or purely imaginary coefficients. If the element

n1 is brought outside the bracket, the eq. (B.85) takes the form

Z11(s) =
n1(m1/n1 + 1)

n2 +m2
(B.88)

that if it is compared with eq. (B.84) it is possible to derive the expression of y22 as

y22(s) =
n22(s)

yd(s)
=
n1(s)

m1(s)
(B.89)

The eq. (B.89) is the first one of the admittance parameters on short circuit that are

needed for the derivation of the coupling matrix. The formulation of eq. (B.89) also

puts in evidence the relation between the polynomials found here and the elements

of the admittance matrix Y of eq. (B.31). It is immediate to see that

yd(s) = m1(s) (B.90)

The common denominator has been identified to be m1(s) indeed, the transmission

parameter y21(s) that contains the information of the TZs as was it for the S21(s), it

derives that

y21(s) =
P(s)

εm1(s)
(B.91)



b.3 examples 282

Table B.2: Coefficients of [Y ]11(s), [Y ]21(s), polynomials of the fully canonical filter expressed
as a ratio between a numerator and a common denominator yd(s).

Degree of s yd(s) n11(s) n21(s)

4 1.0 j0.0151
3 −j0.0036 1.1236 0.0334
2 2.3342 −j0.0016 j0.4012
1 −j0.0249 1.6453 0.0224
0 1.0730 −j0.0012 j0.9910

The formulas (B.89), (B.90) and (B.91) are true only when the degree n of the filter is

even. Otherwise it simply needs to reverse the fraction of eq. (B.89) and correcting the

followings to have the relations for the case of n odd:

yd(s) = n1(s) (B.92a)

y11(s) = y22(s) =
m1(s)

n1(s)
(B.92b)

y12(s) = y21(s) =
P(s)

εn1(s)
(B.92c)

In the case under investigation there are an even number of resonant nodes n and

the eq.s (B.90), (B.91) and (B.89) are to be used. The matrix of the rational polynomials

of the admittance matrix is directly found by solving the eq.s (B.86) and (B.87) with

the coefficients of Tab. B.1. Here are the numerical results for the even and odd

polynomials:

m1(s) = 1.9995s4 − j0.0073s3 + 4.6674s2 − j0.0498s+ 2.1456 (B.93a)

n1(s) = 2.2467s3 − j0.0032s2 + 3.2898s− j0.0025 (B.93b)

Now that the equations that relate the coefficients of the scattering parameters of

the filter with its admittance characteristic in shorted circuit, it is possible to begin

with the synthesis technique explained in section B.1. The coefficients of the Y ele-

ments are summarized in Tab. B.2 for the case of fully canonical filter. It is worth

to remember that the elements of Tab. B.2 are the coefficients of the polynomials of



b.3 examples 283

the common denominator yd(s) and the numerators of y11 and y21. To be consistent

with the notation given in eq. (B.31), the numerators of y11(s) and y21(s) are indicated

with n11(s) and n21(s) respectively. All the values in Tab. B.2 are normalized to the

coefficient of highest degree of yd(s).

The first step is to build up the coupling matrix defined by blocks of the transversal

transfer network. Obviously, for a filter of the fourth order it is p = 2 and n = 4. The

matrix of the internal couplings Mn is obtained directly from the imaginary part of

the roots of polynomial yd(s), since they represent the poles of the function common

to all Y parameters:

Mn =



1.3142 0 0 0

0 0.7830 0 0

0 0 −0.8041 0

0 0 0 −1.2968


(B.94)

The (B.94) reflects the minus change of sign as introduced in (B.45). The list of the

eigenvalues of the transversal network is enclosed in Tab. B.3. The matrix of the

external couplings is calculated firstly by evaluating the constant terms Y (∞) with

eq. (B.34) and then the Mp is promptly obtained with eq. (B.40). The result of the last

two operations is

Mp =

 0 0.0151

0.0151 0

 (B.95)

The last result shows one peculiarity of the fully canonical filter: the number of TZs is

equal to the number of resonators (order of the filter) since a coupling between ports

is necessary to create an additional path that is responsible for the ”fourth” zero.

Before building the last matrix, of the external couplingsMpn, the matrix of residues

Γk associated to each pole is required. In order to perform this operation the formula

of eq. (B.39) is applied to all the element of Y . Matrix Γk is symmetric. The matrix of
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Table B.3: Eigenvalues and residues of the fully canonical filter

k λk r11,k r21,k

1 −1.3142 0.1326 0.1326
2 −0.7830 0.4272 −0.4273
3 0.8041 0.4460 0.4459
4 1.2968 0.1178 −0.1178

the coupling coefficients between the internal elements (resonators) and the external

ones (ports) is carried out with the use of formula of eq. (B.56) for the transversal

network. It is interesting to observe that from Tab. B.3 there are not any residues that

are coincident with the poles of the Y function. This characteristic brings to a matrix

of external couplings with no zeros elements. This is the more general case of trans-

versal network when all the resonators are coupled with the output ports. Therefore

it follows that:

Mpn =

0.3640 −0.6537 0.6677 −0.3434

0.3642 0.6536 0.6678 0.3432

 (B.96)

The procedure is now completed since the complete coupling matrix is build by blocks

Mn, Mp and Mpn as defined by eq. (B.1).

Once the general coupling matrix for the transversal network has been completed,

it is possible to draw the scattering parameters through the relation of eq. (B.17).

The plot of the S parameters is shown in Fig. B.7. The filter response has all the

characteristics in accordance with the specifications both in the in-band as well as in

the out-of-band. The 4 poles of the function are visible with an equal ripple response

at −22dB. Out of the band it is possible to distinguish the 4 transmission zeros and

the relative lobes. In the left side of the response, the transmission parameters does

not exceed the rejection of −30dB as stated in the specifications, while in the upper

side the position of the TZs produce a lobe with a maximum of −20dB.

The response of Fig. B.7 is determined by the transversal network, whose matrix

must be transformed into a practical design. In order to produce the the same filtering
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Figure B.7: Scattering parameters in magnitude of the fully canonical filter

function in a feasible structure, a topology for the network shall be found. Due to the

characteristics cited before, the structure of Fig. B.8a seems to be suitable for the

application. In this case is interesting to note that all these three types of couplings

are present in the filter. The TZs are made possible because in this filter there are some

additional path called cross-couplings. A conventional 2 ports filter has a path of the

type: P1-1-2-3-4-P2 while with this topology the others path (say secondary paths)

that are responsible of the transmission zeros. In particular, an additional coupling is

between resonators 1-4 and 2-4. Resonator 1 is coupled contemporary with ports P1

and P2. All these aspects are required when transforming the coupling matrix of the

transversal network into the topology studied.

In light of these considerations, the final topology of the filter is represented with

the schematic shown in Fig. B.8a. At the moment the synthesis procedure produces a

network giving an equivalent frequency response but that is far from the final topology

of the filter. The schematic of this intermediate circuit has been introduced with the

Fig. B.3b and its coupling matrix is represented in Fig. B.8b. The figure represents
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Figure B.8: Topology of the fully canonical filter

the general coupling matrix of the transversal network. The final filter topology is

depicted in Fig. B.8a and its general coupling matrix is shown in Fig. B.8c. Thus, a

series of similarity transformations are applied to matrix Fig. B.8b in order to reduce

the transversal matrix to the final disposition of Fig. B.8c. The sequence of similarities

shall be applied so as at any following rotation the previous annihilated elements are

not altered. This is the reason why is very important to choose

1. Sequence of annihilation to follow,

2. position of the pivot i and j parameters,

3. right formula among the eqs. (B.59).

Here, an iterative procedure is applied firstly to terms of the first row starting from

right to left: [M]P14, [M]P13 and [M]P12. Then, from left to right for the elements of

the row 2: [M]P22 and [M]P23. Ultimately, the element [M]13 is annihilated taking

care not to change the values of the others annulled coefficients. It is very important

to underline that all the subscripts are referring to the grid of the generalized matrix.

In this context for example, the coupling coefficient between resonator 2 and 4 is
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represented with the element[M]24 and, consequently, the subscripts are i = 2 and

j = 4. In the same manner, the element [M]P24 for example, is the coupling coefficient

between port 2 and resonator 4 that is the last element of second row in Fig. B.8c. For

the first three elements the eq. (B.59d) is used with pivot centres in [3, 4], [2, 3] and

[1, 2]. The rotation angle to be applied to formula of eq. (B.57) is directly derived from

eq. (B.59d) and is:

φ = arctan
(
−
[M]kj
[M]ki

)
(B.97)

with k = P1. For the first three elements the formula (B.59d) has been used because

we are moving on the same row from left to right and the element annihilated is on

the column j. Thus, we are sure to move the pivot centre of 1 step towards left without

affecting the previous element. For the second row, formula (B.59c) has been chosen

with pivotal centres in [2, 3] and [3, 4]. The rotation angle is derived to be

φ = arctan
(
[M]ki
[M]kj

)
(B.98)

with k = P2. For the the second row the eq. (B.59c) annihilates the elements that

stand on the column i so as the pivotal centre can be chosen in order to include a

couple of zeros at the first row. The principle that if two zero elements facing the

rotation remain unaltered after the transformation is exploited in order to keep safe

the previous annihilations. The last element to be processed is [M]13. To ensure

that the previous 5 elements are not modified, it should be noted that four of them

are on columns 2 and 3 and that last one is in position (i, j) = (P1, 4). Therefore, the

pivot centre is chosen to be [2, 3] because the existing zeros on the columns 2 and 3 are

unaffected for the properties of similarities and the external elements are not involved

at all. In this scenario it is only possible to move on column j and thus the eq. (B.59d)

is used with rotation angle of eq. (B.97). The details of the Jacobi transformation for

the fully canonical filter are listed in Tab. B.4.
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Table B.4: Details of the rotations to coupling matrix of the fully canonical filter

Transformation Element Pivot φr = arctan(c · [M]kl/[M]mn)

r annihilated [i, j] k l m n c

1 [M]P14 [3, 4] P1 4 P1 3 −1
2 [M]P13 [2, 3] P1 3 P1 2 −1
3 [M]P12 [1, 2] P1 2 P1 1 −1
4 [M]P22 [2, 3] P2 2 P2 3 1

5 [M]P23 [3, 4] P2 3 P2 4 1

6 [M]13 [2, 3] 1 3 1 2 −1

At the end of the reduction process, the rotated coupling matrix is the following:

M′ =



0 0.0151 1.0600 0 0 0

0.0151 0 0.0315 0 0 1.0595

1.0600 0.0315 −0.0024 0.8739 0 −0.3259

0 0 0.8739 0.0483 0.8360 0.0342

0 0 0 0.8360 −0.0667 0.8722

0 1.0595 −0.3259 0.0342 0.8722 0.0172


(B.99)

b.3.2 Diplexer formed by two box-sections

The synthesis of a Diplexer formed by two box-sections is carried out here using

the synthesis procedure of section B.1. This example follows the specifications of [43]

and the synthesis procedure for this particular case has also been described in [46].

The topology of this type of diplexer is shown in Fig. B.9a. This is a 3 port network

with 8 resonators: p = 3, n = 8. The object of this section is to demonstrate that the

methodology proposed in section B.1 can be applied to a circuit with more than 2

ports. The network of Fig. B.9a has the main characteristic of having the 8 resonators

divided in two quadruplets also known as box sections. Each box section presents a

direct path and a secondary path that produces a transmission zero in each band of

the diplexer. The port P3 is chosen here as the common port, while P1 and P2 are
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(b) Schematic of the general coupling matrix M

Figure B.9: Topology of the two box sections diplexer with its associated the block matrix
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Table B.5: Specifications of the two box-sections diplexer

Parameter Channel 1 Channel 2

Order 4 4

Low-pass central frequency (rad/s) −1.3 1.3
low-pass bandwidth (rad/s) 2 2

Return loss −20dB −20dB
frequency of transmission zero (rad/s) j0.42 −j0.42

the ports of the two channels. The numbering of the resonators has been chosen in

order to be consecutive for each quadruplet, with number 1 associated to resonator

connected to port P1 and number 8 for the resonator with port P2. The common

port P3 is directly coupled with the two quadruplets that are acting as a filter for

the two different channels. Thus, port P3 is coupled with resonator 4 for the first

channel and to resonator 5 for the second. From the definition of topology given

above it is possible to derive a schematic of the general coupling matrix as shown in

Fig. B.9b. In this scheme the matrix M is represented with crosses that identify the

non-zero coupling coefficients of the network. At the end of the synthesis procedure

the coupling matrix M will be filled with the values of the coupling coefficients of

the network of Fig. B.9a that give the desired response. Note from the topology of

Fig. B.9a that there is a filtering response of the fourth order for each channel and that

both present a transmission zero due to the secondary path of the quadruplet.

The specifications of the diplexer are summarized in Tab. B.5 and the corresponding

scattering parameters will be calculated. The explanation of the derivation of the

scattering parameters is a rather complex topic and it is beyond the scope of this

work. If the reader is interested to investigate more in depth on this topic could refers

to [129]. In this example both matrices are given as a known information.

The scattering parameters listed in Tab. B.6 with their coefficients. Each S parameter

is expressed as a ratio between a numerator and the denominator E(s) that is common



b.3 examples 291

Table B.6: Scattering parameters of the two box-sections diplexer. Here E(s) is the common
denominator and Sij are the numerators of S parameters.

Degree of s E(s) S11(s) S22(s) S33(s)

8 1 1 1 1

7 4.2569 2.1285 2.1285 0

6 17.0239 10.2284+ j2.8742 10.2284− j2.8742 7.9633
5 37.1058 13.7325+ j6.1176 13.7325− j6.1176 −0.0017
4 61.6604 21.3992+ j20.2589 21.3992− j20.2589 16.9042
3 59.1576 9.7312+ j20.0167 9.7312− j20.0167 −0.0159
2 33.5219 −0.1621+ j16.7543 −0.1621− j16.7543 8.8735
1 8.1140 −2.2180+ j3.2371 −2.2180− j3.2371 −0.0066
0 0.9289 −0.6282+ j0.6218 −0.6282− j0.6218 0.8388

(a)

Degree of s E(s) S32(s) S31(s) S21(s)

8 1

7 4.2569
6 17.0239
5 37.1058 0.7157 0.7157
4 61.6604 0.7617− j4.1187 0.7617+ j4.1187
3 59.1576 −7.7226− j3.3547 −7.7226+ j3.3547
2 33.5219 −4.3141+ j5.4862 −4.3141− j5.4862 0.2561
1 8.1140 1.4802+ j1.8977 1.4802− j1.8977 0

0 0.9289 0.2610− j0.1073 0.2610+ j0.1073 0.0450

(b)
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Table B.7: Diplexer Y parameters

Degree of s yd(s) n33(s) n31(s) n32(s)

8 1

7 0 2.1285
6 11.3610 0

5 0 16.1431 −0.3579 −0.3579
4 30.3407 0 j2.0594 −j2.0594
3 0 19.6590 3.8613 3.8613
2 10.5178 0 −j2.7431 j2.7431
1 0 0.9211 −0.7401 −0.7401
0 0.1279 0 j0.0537 −j0.0537

(a)

Degree of s yd(s) n11(s) n22(s) n21(s)

8 1

7 0 1.0642 1.0642
6 11.3610 −j1.4371 j1.4371
5 0 9.2760 9.2760
4 30.3407 −j10.1294 j10.1294
3 0 14.7854 14.7854
2 10.5178 −j8.3772 j8.3772
1 0 2.0268 2.0268
0 0.1279 −j0.3109 j0.3109 0

(b)
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to all terms. From Tab. B.6 is possible to notice that, due to the symmetric response

of the diplexer, there exist the following relations:

S11 = S
∗
22 (B.100a)

S31 = S
∗
32 (B.100b)

The polynomials in Tab. B.6 are used to calculate the Y matrix. The parameters needed

for the synthesis are the admittance matrix expressed as ratio of polynomials and they

are obtained with the Cauchy method explained in sec. B.2. The coefficients of the

common denominator yd(s) as well as the coefficients of the numerator of the other

polynomials are shown in Tab. B.7. As for the scattering parameters, the admittance

matrix presents the same symmetry between channels, and it follows that

n11 = n
∗
22 (B.101a)

n31 = n
∗
32 (B.101b)

With the coefficients listed in Tab. B.7 all the necessary elements to begin the syn-

thesis procedure are given. First of all, the synthesis of the transversal network of

the circuit of Fig. B.9a is performed. In the first stage of the procedure, the funda-

mental elements of the partial fraction expansion of Y are investigated. The poles of

the Y functions are the roots of the common denominator yd(s) and they constitute

the eigenvalues of the coupling matrix Mn. In the transversal network, the matrix of
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internal couplings is diagonal, therefore its non-zero elements are also its eigenvalues:

Mn =



2.7394 0 0 0 0 0 0 0

0 1.8582 0 0 0 0 0 0

0 0 0.6255 0 0 0 0 0

0 0 0 0.1123 0 0 0 0

0 0 0 0 −0.1123 0 0 0

0 0 0 0 0 −0.6255 0 0

0 0 0 0 0 0 −1.8582 0

0 0 0 0 0 0 0 −2.7394


(B.102)

The matrix of the couplings between resonators have the values in eq. (B.102). It

should be noted that the poles of the function are purely imaginary and, consequently,

the coefficients of yd(s) are purely real.This is an important property because it states

that the elements on eq. (B.102) are all real as it should be for a coupling matrix.

The matrix of the external ports is derived from from Y (∞) where the formula of

eq. (B.34) is applied. It is easy to note that, in this case, the degree of common

denominator yd(s) is higher than any other polynomial among the numerators of Y .

Therefore, the limit is 0 for all the elements of Y (∞) and, as a consequence, even the

matrix Mp = 0p.

The last step of the synthesis of the transversal network is the calculation of matrix

of residues Γk for all the poles. The routine is accomplished by the eq. (B.39) and the
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Table B.8: Eigenvalues and residues of the diplexer

k λk r13,k r23,k r33,k r11,k r22,k r21,k

1 −2.7394 0.2310 0 0.3173 0.1681 0 0

2 −1.8582 −0.4297 0 0.4439 0.4161 0 0

3 −0.6255 0.2796 0 0.2684 0.2913 0 0

4 −0.1123 −0.0808 0 0.0346 0.1888 0 0

5 0.1123 0 −0.0808 0.0346 0 0.1888 0

6 0.6255 0 0.2796 0.2684 0 0.2913 0

7 1.8582 0 −0.4297 0.4439 0 0.4161 0

8 2.7394 0 0.2310 0.3173 0 0.1681 0

results are listed in Tab. B.8. From these values the matrix of the external couplings is

calculated with eq. (B.56) and the its values are:

Mpn =


0.4100 −0.6451 0.5397 −0.4345 0 0 0 0

0 0 0 0 −0.4345 0.5397 −0.6451 0.4100

0.5633 0.6662 0.5181 0.1861 0.1861 0.5181 0.6662 0.5633


(B.103)

With the general coupling matrix completed there is all the information needed to

characterise the frequency response of the circuit. The scattering parameters of the

two channels and the reflection at the common port are shown in Fig. B.10. The

response is in agreement with the specifications as all the poles of both channels are

visible as well as the 2 transmission zeros. In Fig. B.10 are also present a couple of

additional transmission zeros that had not been expected and they are the result of

the interaction between the channels.

An interesting point is the distribution of the residues in Tab. B.8. It is possible to

note that there are some zero elements for residues r13,k and r23,k regardless of the r33,k

that has all the elements positive. As mentioned before, may happen the situation in

which an element of matrix Y has one or more zeros that are coincident with the poles

of the function. It is obvious from eq. (B.39) that in such a situation the result of the

limit is 0. But in the case under investigation, this result brings us to an interesting
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Figure B.10: Scattering parameters in magnitude of the diplexer

consequence. There is an important symmetry between the matrix of residues that

is responsible for the symmetry in the matrix of eq. (B.103) where it is clear that the

disposition of the couplings between port 1 and the resonators of the first quadruplet

is the same to those between port 2 and the second quadruplet. This behaviour is even

clearer if considering the network of the transversal coupling matrix of the diplexer

shown in Fig. B.11a. This figure clearly shows this principle as well as the fact that the

common port P3 is coupled with all the resonators. Thus, it is possible to affirm that

there exists a relation between the channels and the external ports that binds them.

The common port is related to both quadruplet and, consequently, it is coupled with

all the resonators in the transversal network. In a similar way, ports P1 and P2 are

coupled with one of the boxes and it appears also in the transversal network. The

schematic of the coupling matrix associated to the transversal network is shown in

Fig. B.11b. In this figure a cross has been put in correspondence of the presence of a

coupling coefficient in the transversal topology of Fig. B.11a.
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Figure B.11: Topology of the transversal network two box sections diplexer
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Table B.9: Details of the rotations to coupling matrix for the diplexer

Transformation Element Pivot φr = arctan(c · [M]kl/[M]mn)

r annihilated [i, j] k l m n c

1 [M]P14 [3, 4] P1 4 P1 3 −1
2 [M]P13 [2, 3] P1 3 P1 2 −1
3 [M]P12 [1, 2] P1 2 P1 1 −1
4 [M]P32 [2, 3] P3 2 P3 3 1

5 [M]P33 [3, 4] P3 3 P3 4 1

6 [M]P25 [5, 6] P2 5 P2 6 1

7 [M]P26 [6, 7] P2 6 P2 7 1

8 [M]P27 [7, 8] P2 7 P2 8 1

9 [M]P37 [6, 7] P3 7 P3 6 −1
10 [M]P36 [5, 6] P3 6 P3 5 −1

The transversal network is a abstract topology that has been used to easily relate

the elements of matrix of residues to the coupling coefficients between ports and

resonators, other than to find directly the values of the auto-couplings of the internal

nodes. This network is to be transformed into the final topology of Fig. B.9b through

a series of similarities, as it has been explained in section B.1.6.

Since there are no couplings between external ports, the procedure of matrix trans-

formation can be applied separately for the two channels. The first step is to anni-

hilate the elements that are relative to the first quadruplet (resonators 1-2-3-4), then

the same concept is applied to the second box (resonators 5-6-7-8). Operating this

approach, the coupling matrix having the structure of Fig. B.11b is transformed to

the final topology of diagram Fig. B.9b. For the reduction of the generalised coup-

ling matrix is convenient to start from right to left and from up to down for each

channel. Thus are annihilated the first three elements of the first row exploiting the

formula (B.59d), then the two elements on row P3 from left to right with eq. (B.59c).

In a complementary manner, the elements on row P2 and P3 are annihilated for the

second channel. In Tab. B.9 is listed the complete sequence of similarities applied to

the coupling matrix of the transversal network in order to produce the topology of

Fig. B.9b.
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Table B.10: Untwisting rotations for the diplexer

Transformation Element Pivot k φr
r annihilated [i, j]

11 [M]23 [2, 3] 1 1.2042
12 [M]67 [6, 7] 1 1.9374

However, after the rotations listed in Tab. B.9 there are 4 unwanted couplings

between the internal resonators of the circuit. The reason is that with the last trans-

formations a 2-channel diplexer is obtained instead of the box section configuration.

The advantage of the box section is that each channel has no cross couplings inside

each channel. In order to obtain this topology the elements [M]23 and [M]67 need

to be annihilated too. Nevertheless, it is not possible to use the eqs. (B.59) since the

absence of the cross diagonal coupling in each box section. This problem was solved

in [130] where an appropriate formula has been derived to annihilate the diagonal

coupling:

φr =
1

2
arctan

(
2[M]ij

[M]jj − [M]ii

)
+
kπ

2
(B.104)

where i, j are the pivotal coordinates of the element to be annihilated and k is an

arbitrary number. Finally, the eq. (B.104) is applied twice to untwist the topology of

each channel with the last 2 rotations listed in Tab. B.10.
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At the end of the process of reduction of the matrix M of the transversal network

through the sequence of similarities listed in Tabs. B.9 and B.10, the matrices of the

8-resonator diplexer with 2 box-sections are the following:

M′p = 0p (B.105a)

M′pn =


1.0316 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1.0316

0 0 0 1.0316 1.0316 0 0 0

 (B.105b)

M′n =



1.3503 0.4942 0.7596 0 0 0 0 0

0.4942 0.4359 0 −0.4279 0 0 0 0

0.7596 0 1.7959 0.7210 0 0 0 0

0 −0.4279 0.7210 1.7532 0 0 0 0

0 0 0 0 −1.7532 0.7210 −0.4279 0

0 0 0 0 0.7210 −1.7959 0 0.7596

0 0 0 0 −0.4279 0 −0.4359 0.4942

0 0 0 0 0 0.7596 0.4942 −1.3503


(B.105c)

b.4 conclusive notes

A summary of the technique presented in the PhD Thesis of García Lamperez has

been reported in this appendix and the analytic synthesis for multi-port circuits based

on coupled resonators has been described. The abstraction used here allows the pro-

cedure to be applied to any network with an arbitrary number of ports and resonators.

In order to describe the electrical properties of these type of networks, a new definition

of coupling matrix has been introduced [43]. This new coupling matrix is defined by
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blocks of sub-matrices, each one representing the different types of couplings among

the elements of the network.

The algorithm is based on the knowledge of the admittance parameters in rational

form, where the coefficients of the polynomials are related to the S parameters. For

2-port devices there exist closed formulas to derive the polynomials of the Y , however

this is no longer true for networks with more ports. Thus, the Cauchy method has

been introduced and applied to solve this problem.

The poles and residues of the Y(s) must be real number. If this is not the case, no

practical circuits can be analytically derived from the specified S parameters.

To prove the validity of this theory, the synthesis procedure has been applied to two

different types of resonant circuits: a fully canonical filter and a diplexer configured

with two box sections. With the first example has been shown that the algorithm

extends the traditional techniques valid only for 2 ports networks since it is also fully

compatible for these circuits. In the design of the diplexer it has been shown that the

same principle apply to a network with 3 ports without loss of generality. Thus, it

is possible to conclude that, with this synthesis procedure, any network of arbitrary

number of ports and resonators can be synthesised.
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