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ABSTRACT 
 
 
 

Donor organ shortage is a major barrier to the progress of liver transplantation; 

options to widen the donor pool include use of marginal donor grafts and those 

from donors after circulatory death (DCD), despite risks of early graft failure. This 

thesis studies the key metabolic feature differences between DCD and from donors 

after brain death (DBD), using combination of microdialysis for tissue fluid 

sampling, and colourimetry, Coularray and Fourier transform ion cyclotron 

resistance - mass spectrometry(FTICR-MS) as analytical platforms. The initial study 

proved feasibility of above methods to identify metabolic changes through cold 

storage to reperfusion, and the involvement of energy and amino acid metabolism 

pathways. Comparison of DCD and DBD grafts by microdialysis combined with 

colourimetry proved energy depletion, and increased lactate/pyruvate ratio in DCD 

grafts. Metabolomic studies consolidated the findings of primary impact on energy 

metabolism pathways during cold storage. Both CEAD and FTICR-MS identified key 

biomarker differences and the effect on tryptophan and kynurenine pathway, and 

this finding was reproduced in all three metabolomic studies conducted. Over 

expression of these metabolites in DCD grafts and failed allografts may be related to 

energy metabolism, and tryptophan and kynurenine could potentially be developed 

as biomarkers predicting liver graft function.   
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CHAPTER 1 INTRODUCTION 

 

1.1 Liver Transplantation 

The history of liver transplantation in humans goes back over half a Century and no 

other surgical procedure has undergone transformation from its original description 

to what it is today (Starzl et al. 1963).  Other than the technical successes of this 

operation, the complexity of patients, the overall post operative care including 

immunosuppressant management (Iwatsuki et al. 1988;Todo et al. 1990) and 

prevention of both immune and infective complications that were primary barriers 

have dramatically changed in the past 50 years(Calne et al. 1979). When the first 

attempt of liver transplantation was made 1963 albeit unsuccessfully, the graft taken 

from a cadaveric donor confirmed after circulatory death and the transplant 

operation did not see the anticipated success (Starzl, Von Kaulla, Hermann, Brittain, 

& Waddell 1963). Two years on from the undesired outcome the first successful 

transplant operation was carried out however the initial success was limited to only 

28% patient survival in the first one year (Starzl et al. 1979). The progress made in 

the field of liver transplantation in the last five decades is probably incomparable to 

other branches in medicine. In the early era, liver transplantation was considered a 

huge undertaking with significant risks of mortality. Bleeding was the primary 

concern in those candidates undergoing transplantation, primarily related to the 

poor coagulation status resulting from the chronic liver damage and portal 

hypertension (Bontempo et al. 1985). In addition alternative techniques developed 

for explanation of the damaged liver, for example by-passing both portal and 

systemic circulation (Shaw Jr et al. 1984), in addition to the technological innovations 

that also have contributed to the success (Starzl et al. 1985).  

 

Liver transplantation was initially introduced as the treatment of choice for end 

stage liver disease (ESLD). With the successful results and acknowledgement of these 

by the medical community not only caused a surge in patients with ESLD referred for 

transplantation, but also widened the indications for liver transplantation 



 

2 

 

(Neuberger 2004). Chronic hepatitis virus infection (Hepatitis B and C) is a global 

health problem and majority of these patients ended up with ESLD or primary liver 

cancer (hepatocellular carcinoma) on the background of cirrhosis (Bismuth et al. 

1987). Currently, a significant proportion of patients undergoing liver 

transplantation are comprised of primary liver tumours (Iwatsuki et al. 

1985;Mazzaferro et al. 2008). Diagnostic accuracy in detection of early primary liver 

cancer, newer contrast agents have contributed to huge expansion of cancer patient 

group (Colli et al. 2006). Alcohol is a universal problem and up to one fifth of liver 

transplant recipients had alcohol related aetiology for treatment (Neuberger 1989). 

In addition to those with chronic ESLD, acute hepatic insufficiency or failure was also 

considered an excellent indication for transplantation. In a majority of patients with 

acute liver failure, the physiological and biochemical sequelae could be only reversed 

by liver replacement as the chances of hepatic regeneration is remote in most of 

these cases (O'Grady et al. 1991). More indications for liver transplantation included 

metabolic disorders, where the actions of some of the enzyme defects or metabolic 

pathways have actions on other end organs resulting in disability or disease status. 

In this group of patients, the structural and normal hepatic synthetic capacity is 

essentially normal apart from the presence of defective metabolic pathways due to 

genetic mutations. Urea cycle defects (Saudubray et al. 1999), familial amyloidosis 

(Holmgren et al. 1993)and primary hyper-oxaluria are classic examples for these 

metabolic disorders (Watts et al. 1991). All of these new additions to the liver 

transplant indications have caused the transplant wait listed patients to grow.   

 

Apart from the survival advantages resulting from liver transplantation, 

improvement in quality of life following a successful operation is remarkably 

different to other forms solid organs transplant. Physical status, sexual health and 

social functioning are remarkably better after liver transplantation (Bravata et al. 

1999). Some of these results are attributed to the metabolic and biological changes 

brought about by the graft, nevertheless the reduced allogenicity and immune-

protective capabilities of the liver is primarily responsible for reduced incidence of 

acute cell mediated or antibody mediated immune responses. As a result the majority 

of patients could be managed with lower levels of maintenance immunosuppression 



 

3 

 

without the need for more frequent or intense monitoring. Of course the advent of 

newer immunosuppressive medication, in particular calcineurin inhibitors and 

tacrolimus further improved the long term outcomes of liver transplantation and the 

short term survival figures improved from 60-70% at 85-90% following these 

developments (Wiesner 1998) .  

 

Currently liver transplantation accounts for the second most frequent organ 

transplanted in solid organ transplantation programs worldwide, and second only to 

renal transplantation. In the year 2012 alone, nearly 24 000 liver transplants were 

performed in 68 countries across the world according the data from the Global 

Observatory of Organ Transplantation (www.transplant-observatoryorg). In the 

United Kingdom there has been a steady increase the transplant activity in the recent 

past and nearly 800 liver transplants were performed in the year 2012/2013. And 

according to the National Health Service Blood and Transplant (NHSBT), the 

regulatory body in the United Kingdom for organ transplantation, the increase in the 

liver transplant activity is on the rise over the recent years and the projected number 

of transplants by 2020 is expected to be around 1000.  

 

Most of the transplant programs are reliant on cadaveric donors for the supply of 

organs. In these countries the concept of brain death or brain stem death is widely 

accepted and legalised to ensure the organ donation process is ethically and 

medically acceptable (Truog and Robinson 2003). Most of the countries in Europe 

and America have accepted cadaveric organ donation.  However, in some other 

countries there are barriers to cadaveric organ donation and these are primarily due 

religious, ethical and psychological issues concerning the confirmation of death 

(Horton and Horton 1990). In those countries therefore the only form of organ 

donation is live donation. Liver transplantation using a hemiliver or segmental graft 

from a live donor itself is a technical advancement that was mastered by surgeons in 

the past two decades, enabled by our current understanding of segmental anatomy, 

blood supply and drainage of liver (Azoulay et al. 2001;Tanaka et al. 1993). In 13 

countries in the world, the live donor liver transplant activity exceeds the cadaveric 

transplant activity (figure 1-1) and the results of live donor liver transplantation are 

http://www.transplant-observatoryorg/
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comparable, if not superior to transplants carried out with organs from cadaveric 

donors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Global liver transplant activity (source - Global observatory on Donation 
and Transplantation); in most of the countries where there is busy transplant activity 

the organ donor sources are cadaveric than live donation 
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1.2 Current issues 

Increased number of patients added to the liver transplant wait list is a global trend 

(Kim et al. 2006). This growing demand for organs is a problem not limited to the 

prospective liver transplant candidates alone, but affects all other solid organ 

transplant recipients on the wait lists. The increase in demand for the organs is due 

to many reasons, and foremost is the reliability of solid organ transplantation as the 

best modality of treatment over other conservative and less invasive procedures. 

Transplantation makes a patient less dependent on organ support measures which 

require repeated hospital admission, incurring significant loss in the quality of life 

and also associated with huge financial burden to the patients as well as healthcare 

institutions, whereas organ transplantation makes less dependency on the health 

care resources during the follow up and more independence with return to normal 

social life.  

The current organ supply however does not meet the demand, leaving a widening 

gap between the organ supply and the demand. It is estimated that current 

transplant activity caters only about 10% of those in need of a solid organ transplant 

according to world wide data. With regards to liver transplantation, this gap cannot 

be filled by cadaveric donor sources alone, therefore the transplant centers 

pioneered cadaveric transplant activity also have taken up liver donation as a 

supplemental organ source to meet the demand.  In the Europe and America there 

has been an increase in liver donor transplant activity in the past decade that 

accounts up to 5.2% and 13.4% of total liver transplants respectively. This is in 

contrast to the 83.5% of peak liver transplant activity reported in the Middle East 

and Asia. 

In addition to live liver donation as a solution to organ shortage, many other 

strategies have been introduced primarily through surgical innovation and 

understanding disease aetiologies. These include split liver transplantation, the 

cadaveric counterpart of liver donation. The advantage of split liver transplantation 

is such that it yields two unequal grafts which could especially benefit those 

recipients disadvantaged in organ allocation systems due to the smaller body size 



 

6 

 

(Azoulay, Castaing, Adam, Savier, Delvart, Karam, Ming, Dannaoui, Krissat, & Bismuth 

2001). Primarily paediatric liver transplant recipients benefit from split liver 

transplantation, and probably the only source of organs in those programs solely 

reliant on cadaveric organ donation. Moreover, split liver transplantation has moved 

one further, and full left-right split may even benefit two adult recipients (Gundlach 

et al. 2000). Domino liver transplantation is for of organ exchange between patients 

where a diseased liver explanted from a recipient is (ex. Familial amyloid 

polyneuropathy) transplanted to another recipient who is in dire need of a graft 

(Wilczek et al. 2008). There a risk of disease transmission from the domino donor to 

the domino recipient in this case, however overall benefits of liver transplantation in 

the domino recipient outweigh the risks of disease transmission.  

Although these pioneering surgical techniques have added extra organs to the 

cadaveric donor pool the gap between the net organ supply and demand has not 

been reduced. The impact caused by these innovative techniques is probably 

insignificant when applied to the global situation of organ donation. Therefore the 

major current issue faced by the global transplant community, donor organ shortage 

still remains a significant issue without a definitive solution.  

 

1.3 Donor organ shortage 

As discussed above the pioneering cases of experimental liver transplantation were 

performed with donors following cardiac death, but towards the end of the first 

decade after liver transplantation was introduced, the concept of “brain stem death” 

determination was universally accepted by many centers in the world (Veith et al. 

1977;Youngner et al. 1989). Catastrophic brain injury due to spontaneous or 

traumatic events caused  irreversible brain injury and despite this the organs of the 

rest of the body functioned for a period of time as long as the vital organs are kept 

alive by advanced intensive care based medical management through organ support 

(Frowein et al. 1989). Once the medical support is discontinued these patients 

progress to natural death, hence the neurological death confirmed by brain stem 

death criteria was considered a synonym of natural death (Kaste et al. 1979). It was 
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then accepted that these patients could potentially donate their organs and the 

organs from these prospective donors remain alive until the time of organ 

procurement. This was a major shift in organ donation practice that changed the 

transplantation practice and by the late 20th Century the majority of the organs 

donors were those following brain stem deaths (DBD).  

 

Perception of LDLT as a suitable organ source for liver graft shortage was accepted at 

difference paces by many, and there were clear geographical variations. Primarily the 

Far East and Eastern countries where there is legislative, infrastructural or religious 

barriers to cadaveric donation, LDLT was the only viable organ donor source. In the 

Western world LDLT was considered a supplementary donor organ source to 

existing cadaveric transplant programs and the contribution to the overall donor 

pool is low (Schemmer et al. 2005). Ethical considerations of donor morbidity and 

mortality were considered major obstacles in the western world for rapid 

dissemination and wide embrace of LDLT practice. Instead, the majority of these 

centers relying on cadaveric programs explored the use of more marginal donor 

organs that were earlier deemed unsuitable for transplantation. 

 

 

1.4 The marginal donor  

The majority of the donors confirming to the criteria of brain stem death 

determination were initially comprised from victims of catastrophic neurological 

events (Kompanje et al. 2011). The success in the surgical field of liver 

transplantation, research in to new drug developments and anti-rejection strategies, 

better understanding of immunological mechanisms in the transplantation field was 

perhaps parallel to the other developments of socio-economic aspects of the society, 

and these include improved road networks, industrialization and expansion of 

automobile industry that saw the increased road travel (Park 2004). Road accidents 

were common and young victims of such road accidents were confirmed brain dead 

and constituted the majority of donors in the late 20th Century (Bendorf et al. 2012). 
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Being young individuals devoid of other co morbidities, the quality of the liver graft 

and other solid organs donated by these patients were considered the best in quality 

and the numbers were sufficient to provide the organs required for transplant 

programs starting to practice liver transplant procedure. As the transplant wait lists 

grew and in parallel safety measures were introduced in the automobiles which 

reduced the number of accident victims. The resulting outcome was a widening 

disparity between the supply and the demand for organs.  

 

The epidemiology of organ donation has gone through a paradigm change over the 

last couple of decades (DeCarlis et al. 1996;Summers et al. 2010). The young, healthy 

and fit donor population has been replaced by more elderly, obese donor population 

with other co-morbidity (Attia et al. 2008). Increased life expectancy from the 

advanced medical management is one reason. Changing lifestyle, socio-economic 

status, cultural and behavioral patterns including substance use is different in the 

current era. This means the catastrophic neurological events that fulfill the criteria to 

be tested for brain stem death are either spontaneous brain bleeding or infarctions in 

group of patients who are also likely to have other co morbidity like hypertension, 

diabetes, obesity or other metabolic disorders. The organ donation situation has 

therefore changed from a donor pool consisting a younger donor pool in the late 20th 

Century to a more elderly donor population in the recent past (Borchert et al. 

2005;Cohen et al. 1997). The data from the United Kingdom is a fine example to this 

phenomenon where the younger donor population was gradually replaced by more 

elderly donors. Over the past decade the donors under 50 years have reduced from 

59% to 42%, an almost 50% drop in the young donors in the United Kingdom in 10 

years (figure 1-2).  
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Figure 1-2: Trends of organ donation in the United Kingdom; the average donor age is increased over 

past ten years and majority of the organ donor pool is over 50years of age 

 

 

In addition to the age, the body mass index of an average donor is rising (Koneru and 

Dikdan 2002). Compared with those figures a decade ago the donors with body mass 

index over 30 kg/m2 has nearly doubled in the United Kingdom (figure 1-3) and this 

has significant impact on the quality of liver grafts procured for transplantation. Both 

the age and body mass index collectively considered characteristics of a marginal 

donor, and included in most of the risk assessment models of liver transplantation 

(Feng et al. 2006). Although the organ donation activity is rising in the United 

Kingdom, probably a substantial number of donors accounted for this increase is 

comprised of these marginal donors and this evident by the discard of 15% of liver 

grafts procured from the DBD donors alone.   
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Figure 1-3: Changing demographics of organ donation in the United Kingdom; there is progressive 

increase of organ donors with BMI over 30 denoting significant proportion of donors are likely to be 

marginal 

 

1.5 Graft steatosis 

Graft steatosis predicted the survival of the allograft following transplant and closely 

linked to the amount of steatosis present in the graft (Angele et al. 2008;Marsman et 

al. 1996). Steatosis is widely prevalent in the population and could be present in two 

major forms. Macrovesicular steatosis, the presence of larger fat globules within a 

hepatocyte usually replaces the cytoplasm is considered a more chronic and 

longstanding process. The other form microvesicular steatosis signifies the presence 

of small fat droplets scattered within the cytoplasm and could be considered more 

acute changes reflected by acute changes in the health, infection or sepsis, 

malnutrition and considered transient changes (Cieslak et al. 2009). Both macro and 

microvesicular steatosis are graded according to the degree of severity of its 

presence within the hepatocytes. When fatty change is present in 10% cells in a high 

power field the graft is termed minimal change or non-steatotic grafts. Mild, 

moderate and severe steatosis denotes 10-30%, 30-60% and over 60% presence of 
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steatosis of the graft and this classification is generally used for both types of 

steatosis. 

 

Macrovesicular steatosis is a known risk factor for liver allograft failure, and the 

impact from microvesicular steatosis alone is considered not significant as an 

independent predictor (Salizzoni et al. 2003). Generally the moderate or severe 

steatosis is associated with over 30% risk of graft failure following liver 

transplantation (Marsman, Wiesner, Rodriguez, Batts, Porayko, Hay, Gores, & Krom 

1996). Macrovesicular steatosis also does impact independently on graft function 

immediately after transplantation; the degree of steatosis is directly proportionate to 

graft dysfunction (Perez-Daga et al. 2006). Moreover, macrovesicular steatosis may 

interact with other variables of the donor. For example, a mildly steatotic graft from 

an elderly donor may act in synergistic manner and the outcome following 

transplantation may be worse than that of a moderately steatotic liver from a 

younger donor (Busquets et al. 2001). The decreased plasma membrane fluidity in 

the sinusoidal lining cells after cold storage has been postulated as the mechanism of 

injury causing liver dysfunction attributable to graft failure (Fukumori et al. 1999). 

The organ discard rate after procuring with intention to transplantation is 

increasingly high due to the presence of steatosis. As discussed previously most of 

these donors consist of elderly or obese donor population which is a significant 

problem faced by transplant surgeons. Despite the results of steatotic liver grafts are 

known to be poorer than the healthy liver grafts, the transplant surgeons are 

compelled to the use these grafts in a more selective manner to relieve burden on 

transplant wait list (McCormack et al. 2007).  

 

The use of steatotic grafts in liver transplantation with success was partly related to 

the progressive attitude of transplant surgeons willing to push the boundaries 

(Imber et al. 2002;Mirza et al. 1994) and accept graft offers deemed unsuitable for 

transplantation by others. The data generated through this approach has other 

centers explore the maximum utility of donor organ pool (Verran et al. 2003). 

Furthermore, characterization of degree of graft dysfunction based on traditional 

biochemical criteria helped differentiate early poor outcomes and more intensive 
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management of patients receiving these grafts (Tekin et al. 2004). Various scoring 

systems have been developed to describe the marginality of a donor allografts and 

almost all of these incorporate graft steatosis (Axelrod et al. 2007;Dutkowski et al. 

2012); however apart from retrospective comparison of experience between 

difference transplant programs etc, the real time utility of these scoring systems in 

the actual day to day decision making is limited.  

 

1.6 Donation after circulatory death 

Organ donation after circulatory death (DCD), also previously known as non-heart 

beating donation is not a new concept in the field of organ transplantation (Kootstra 

1997)and at the beginning of this chapter introduced that historical attempts of  

experimental organ transplantation were carried out with organ procured from 

cadavers. Even prior to the era where concepts of organ preservation was 

introduced, experiments involved transplantation of organs from cadaveric donors, 

and not surprisingly the transplant operations carried out with these “post-mortem” 

organs did not succeed. The initial outcomes may have been hindered by the inferior 

quality of these grafts, because the cessation of circulatory function is associated 

with abrupt cessation of metabolic functions within of the cells within a tissue, with 

eventual energy exhaustion and widespread cell death or necrosis. 

  

The practice of organ donation from DCD donors faded during the 1960’s and 1970’s 

and the organ donor pool during this era primarily consisted of DBD donors. By this 

time transplant professionals had refined and gained a significant experience in liver 

transplant techniques. The improved quality of life gained by liver transplantation 

attracted the interest and the better outcomes were convincing enough to attract 

more and more patient referrals, and relaxation of indications for liver 

transplantation as discussed earlier in this chapter. The ultimate result was the 

expansion of transplant wait lists with patients listed, whilst the donor organ pool 

did not expand at the same rate despite wider practice of brain stem death or 

determination of neurological death. Consequently, DCD liver transplantation was 

revived in the late 1990’s in this backdrop of donor organ shortage (Abt et al. 
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2004;Muiesan et al. 2005). With improved organ preservation techniques in place, 

DCD grafts were procured from donors who were pre-identified and under tight 

conditions (D'Alessandro et al. 2000). Generally potential DCD donors also included 

those who suffered major neurological injury not severe enough to make a diagnosis 

of brain stem death or that these neurological events were so recent that the usual 

pathophysiology and brain oedema had not fully evolved. These patients do not meet 

the criteria for determination of neurological death, and on the other hand continued 

life support or neurosurgical interventions are unlikely to improve the condition 

either. Further treatment in these patients is therefore deemed futile, and a clinical 

decision is taken by the attending physicians to withdraw life supporting treatment. 

Once life support is withdrawn these patients progress to eventual circulatory arrest 

and cardiac function ceases (Ridley et al. 2005). Cessation of cerebral circulation is 

vital for the eventual neurological death, due to the lack of blood and oxygen supply 

to the brain. Cerebral circulation is absolutely vital for the life as the research 

suggests absence of cerebral circulation for more than 2-3 minutes is associated with 

irreversible neuronal injury and death. In these donors therefore a standard five 

minutes period, termed as “obligatory stand-off time” is allowed for the neurological 

death to ensue (Reich et al. 2009). Confirmation of death is by traditional criteria and 

thereafter it allows a legal and ethical framework of organ procurement for 

transplantation. 

 

There has been a steep rise in organ transplant activity with organs from DCD donors 

worldwide (Moers et al. 2007;Reich et al. 2000). In the United Kingdom alone, the 

DCD organ donation activity increased by many-folds in the recent years, this 

undoubtedly contributed to the increased transplant activity seen over the years. 

Despite this, there are certain issues that surround the DCD organ donation that 

limits the best utility of the DCD grafts.  The origin of most these problems is the 

basic difference between the two key types of organ donation processes. In DBD 

donation, the donor is confirmed brain dead by neurological criteria, therefore 

intervention to facilitate donation is allowed; therefore donor operation could begin 

with and warm phase dissection and mobilisation of organs could be carried out 

before finally the organ support is withdrawn. Even the administration of medication 
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with the view of preservations of organs in the best possible state is legally and 

ethically allowed in this case scenario. In DCD donors however, treatment is 

withdrawn prior to the death, and indeed this is the process that allows natural 

passage in to the death of a prospective DCD donor. In most circumstances the 

donors linger in a phase called “agonal phase” before the cardiac death ensues and no 

intervention is ethically or legally allowed during this period.   

 

 

1.6.1 Donor warm ischaemia 

The donor warm ischaemia refers to an ischaemic insult to the organs of a potential 

donor, once  life sustaining treatment is withdrawn (Hoshino et al. 1988). As 

discussed above, in many of prospective DCD donors, perfusion of the vital organs is 

maintained by intense management aimed at maintaining the adequate perfusion by 

means of vasopressors and oxygenation through mechanical ventilation. Without 

these, hypoxaemia and hypotension ensue and the tissues undergo ischaemic 

damage of varying degrees, and these become the usual preceding events following 

treatment withdrawal in a patient. The cells continue metabolism at body 

temperature, but the lack of oxygenated perfusion makes these cells prone to 

ischaemic damage. The degree of damage depends on the time exposed these cells or 

the tissues to  warm ischaemia (Takada et al. 1997).  

 

In DCD donors after treatment withdrawal, the time taken to circulatory death is 

variable, and unpredictable. Dependency on higher level of organ support probably 

makes the progression to circulatory death quicker once the life supportive 

treatment is withdrawn. In some other patients despite being on significant amount 

support prior to withdrawal, eventual progression to circulatory death may be 

prolonged. Transplant professionals do not have any access for donor management 

or intervention during this variable period and this is protected by the ethical and 

legal guidelines surrounding organ donation. Therefore it is important to select DCD 

donors that only progress to circulatory death within a pre-defined time frame, 

proven by the animal, clinical and laboratory data where procurement and 



 

15 

 

transplantation of organs from such donors are proven to be a success. Transplant 

surgeons therefore have set time limits to accept organs dependent on the ischaemic 

susceptibility of the various organs in the body. In liver transplantation the general 

rule is to accept 30minutes of donor warm ischaemia and the outcomes of grafts with 

donor warm ischaemia beyond 30 minutes are significantly inferior with increased 

risk of graft failure rates (Takada, Taniguchi, Fukunaga, Yuzawa, Otsuka, Todoroki, 

Iijima, & Fukao 1997).  

 

The implications of donor warm ischaemia could be disastrous in some cases, and 

also in a group of patients after liver transplantation the long term morbidity could 

be the result of damage caused by donor warm ischaemia to the grafts. Primary non-

function or immediate graft failure is significantly higher in the DCD liver 

transplantation and the clinical data from all the large centers report donor warm 

ischaemia is directly attributable to primary graft failure (Strasberg et al. 1994). The 

biliary tree receives its blood supply solely from the hepatic artery through a rich 

vascular complex called peri-biliary vascular arcade. Lack of oxygen delivery to the 

bile ducts during the donor warm ischaemia period makes these bile ducts 

susceptible to ischaemic injury and the damage is manifested as ischaemic type 

biliary lesions in the post operative period (Heidenhain et al. 2010).  

 

Ischaemic type biliary lesions (ITBL) represents a wider spectrum of pathology 

ranging from isolated short segment biliary strictures to more widespread and global 

damage to the bile ducts (Abt et al. 2003). Although the donor warm ischaemia is 

primarily responsible for the ITBL, other causes are hypothesized, such as bile salt 

toxicity (Buis et al. 2006;Buis et al. 2009), immunological damage etc (Rull et al. 

2001). In its milder form of the spectrum, these could managed conservatively with 

minimal intervention or surgery, however more serious form of involvement of the 

bile ducts necessitate a re-transplantation without which the quality of the life of 

recipients is poor. This is one major obstacle faced by transplant surgeons at present 

selecting the best liver grafts that would not lead to the development of ITBL, 

because this complication may put extra burden on the system where the demand for 

organs for first time transplant itself is very high, and the addition of more patients 
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requiring re-grafts or re-transplantation adds further burden to the system (Foley et 

al. 2011).   

 

1.7 Graft preservation 

The history of organ preservation dates back to mid 20th Century and progress that 

has been made constitutes the backbone of the success of solid organ transplantation 

(Belzer and Southard 1988). Explanted organs are no longer connected to the 

circulation and this result in impaired oxygen delivery, along with impaired nutrient 

delivery and removal of metabolic waste products. Research related to organ 

preservation has undergone phases over the decades and static cold storage has 

been currently the universally accepted technique of organ preservation. Cooling 

down the tissues are known to reduce the metabolic demand of the cells within, 

therefore the intracellular enzymes that function at optimal body temperatures 

would become less active, thus the energy dependent systems become less 

demanding (Southard 1999). This principle was introduced in 1960’s and it was 

proved that internal cooling is far more effective than topical cooling alone, and both 

internal and external cooling could achieve rapid cooling of the tissue rendering 

them less metabolically active during the time these organ come out of donors’ body 

cavity and until the circulation is restored. 

1.7.1 Cold ischaemia 

Static cold storage upon organ procurement and transfer until these are transplanted 

has been in practice as the gold standard of organ preservation over the latter part of 

the 20th Century. Although recent studies suggest normothermic preservation may 

be more superior to cold preservation and this emerging data may re-shape the 

practice of the organ transplantation practice in the future (Brockmann et al. 

2009;McLaren and Friend 2003). Tissue cooling is effective and a cheaper way of 

preservation and maintaining the viability of organs. Each 100 C drop in the tissue 

temperature is known to reduce the metabolic activity by 50% and therefore cooling 

achieved at 0-40 C may reduce the intracellular metabolic activity down to 10% of  

the baseline (Belzer & Southard 1988). This degree of metabolic activity is sufficient 
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to maintain the cells alive, however the duration of cold ischaemia tolerated by 

different organs and cell types vary. For example cardiac muscle tolerates the least 

duration of cold ischaemia that does not exceed 6 hours, and unless the grafts are 

transplanted within this time frame primary graft failure ensues. In liver 

transplantation the cold ischaemia time is a modest period, but this again varies with 

the quality of the graft. A non-steatotic liver graft from a healthy young donor may 

tolerate a cold ischaemia time up to 16-18 hours and in case of a marginal or 

steatotic graft this would be much shorter (Yoglu et al. 1988).  

Several organ preservation solutions have been introduced, and historically all of 

these solutions contain electrolytes composition similar to that of the intracellular 

environment. The basic composition of the organ preservation solutions consisted 

electrolytes, energy source usually of elemental that feeds directly in to the ATP 

generating mechanisms within the cell, buffer solution to counteract the acidaemia 

that builds up in an organ during ischaemia, basic and essential amino acids and 

antibiotics. The composition of these solutions has been designed with the 

understanding of the metabolic pathways and molecular mechanisms. Among the 

preservation solutions available in the market at present University of Wisconsin 

solution (UW solution) is considered the gold standard (Koning et al. 1997). Liver 

grafts preserved with UW solution are known to be associated with less ischaemia 

reperfusion injury and better organ preservation compared with other solutions 

(D'Alessandro et al. 1991;Mangus et al. 2006). Sometimes these solutions may be 

used in combination; especially in case of liver graft perfusion that allows dual 

perfusion through the hepatic artery and the portal vein. Five commonly used organ 

preservation solutions include UW, Euro-Collins, Celsior, Custodial and IGL-1 

solution. Hyperosmolar Citrate or HoS is a low viscosity solution, also known as 

Marshal’s citrate solution primarily used in renal graft preservation, however may be 

used in liver preservation when used in combination with a superior preservation 

solution as mentioned above.  
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1.7.2 Preservation-reperfusion injury  

Preservation-reperfusion injury (PRI) is a term applied to describe the pathological 

changes in an organ injury following the restoration blood supply in the new host 

(recipient) (Serracino-Inglott et al. 2001). These complex changes are the result of 

oxygen radical induced organ injury, characterized by the increased microvascular 

permeability and hemorrhage in to the tissue parenchyma, tissue oedema and 

variable degree of cellular injury (Jaeschke et al. 1990). Despite diminution of 

intracellular metabolism during the cold preservation, the cells continue to consume 

intracellular ATP for the maintenance of essential intracellular functions that 

including maintenance of integrity of the cell membrane and mitochondria. Depletion 

of intracellular ATP cause breakdown of adenosine and mitochondria causes 

accumulation of chemical substances which could act as free radicals when the 

tissues are re-oxygenated (Jaeschke 2003).  

 

Free radical induced tissue injury further aggravates the damage by the release of 

cytokines. The increased microvascular permeability and hemorrhage in the tissues 

brings in neutrophils and macrophages in to the tissue which act synergistically 

control the tissue damage (Fondevila et al. 2003). The pathophysiology involves the 

release of the cytokines in to the systemic circulation and distant tissue damage is 

also occurring during the reperfusion of a graft, and this phenomenon is termed 

“reperfusion syndrome” (Goode et al. 1994). Preservation-reperfusion injury and 

reperfusion injury is correlated with the degree of organ damage during cold 

preservation (Reddy et al. 2005). Severely ischaemic grafts would be associated with 

severe PRI and reperfusion injury and in well preserved grafts these effects are less 

severe. In severe forms the PRI could cause lethal injury to the graft causing 

immediate or primary graft failure, and the release of massive load of cytokines and 

free radicals in to the circulation via returning venous drainage could lead to 

immediate cardio-vascular and systemic instability to the patient. Furthermore, end 

organ damage, primarily the renal injury is ensued in case of liver transplant 

recipients. The data from liver transplantation suggests that acute kidney injury and 
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renal failure is common after the use of liver grafts from marginal donors including 

those from DCD donors.  

  

 

1.8 Primary non-function 

Primary non-function (PNF) is a clinical entity encountered in liver transplantation, 

as well with other solid organ transplants. This is also termed as initial poor function 

(IPF), and describes the failure of the transplanted liver graft to restore the function 

once the blood supply is re-connected surgically. In liver transplantation PNF is seen 

in up to 2-10% of cases and the incidence varies with the graft types and the quality 

of the organs transplanted (Strasberg, Howard, Molmenti, & Hertl 1994). Liver grafts 

from DBD donors has a lower incidence of PNF up 2-5% meanwhile that from DCD 

liver grafts may be doubled and reported in up 8-15% cases. In liver transplantation 

PNF is a more serious complication, because the recipient life is in danger in this 

situation and the only survivable option for these patients is an immediate re-

transplantation of the liver graft.  

The exact aetiology of PNF is unknown; however the pathological studies of the 

explanted failed allografts showed the widespread hepatocytes necrosis and 

sinusoidal haemorrhage (Gonzalez et al. 1994). Severe PRI is attributed to these 

changes and known risk factors for such severe injury are known to be prolonged 

cold preservation or cold ischaemia time, graft steatosis, usually moderate to severe 

macrovesicular steatosis, elderly donor grafts etc (Ploeg et al. 1993). Grafts from DCD 

donors, as discussed above have been exposed to added donor warm ischaemia prior 

to the start of cold storage thus tolerate only less period of cold ischaemia. Therefore 

attempts are made to transplant the liver grafts from DCD donors within a shorter 

time frame. Clinicians are aware of these risk factors causing PNF however despite 

the best efforts to choose the grafts from donors that are likely to function normally 

in the recipient, PNF occur as a surprising event and in most cases unpredictable. It is 

also important to discuss that the PNF is not entirely graft related and the recipient 

environment also play a significant part in the occurrence of this complication 
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(Markmann et al. 2001;Schaubel et al. 2008). Extremely sick patients with 

physiological disturbance may not tolerate a marginal liver graft that would function 

normally in a recipient with stable physiology, and this complicates the life of a liver 

transplant surgeon. Careful donor-recipient matching is a clinical skill that transplant 

surgeons master through the years of experience.  

Transplant surgeons usually make clinical decisions based on the predictability of 

graft function, influenced by variety of information passed on to them at the time of 

donor organ offering. Age, previous medical history, immediate pre-donation medical 

condition and laboratory findings, especially the liver function status and general 

physiology of the donor at the time of organ offering heavily influence the decision 

making and every effort is made to choose functioning grafts (Hoofnagle et al. 1996). 

The unpredictable nature of PNF is exemplified by the graft failures despite attention 

to the details (Marino et al. 1995). Younger and previously healthy donor liver grafts 

are no exceptions (Todo et al. 1989;Wall et al. 1990).  

Whilst PNF has serious consequences to the recipient, because without a life saving 

emergency transplant within a very short period of time the hope for survival is 

almost zero, there are other aspects which affect many other prospective transplant 

recipients in the wait list. In the PNF situation allocation of another liver graft on 

priority basis, as allowed by almost all transplant allocation systems means that the 

donor organ pool is minus one further liver graft that could have potentially saved 

the life of another patient given there was no PNF situation. Although incidence of 

PNF low, these situations consume number of good quality liver grafts from a 

national donor organ pool. Combined with the current situation of organ scarcity 

PNF is an added pressure on the system.  

 

1.9 Biomarkers predicting graft function 

It appears from the above discussion that currently there is a significant organ 

shortage of liver grafts despite attempts to bridge this gap with marginal grafts. 

Currently no investigation could accurately predict the organ function following 
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transplantation; therefore many of these marginal organs are rejected outright.  As 

reported  by the pioneers of liver transplantation through their early experience, a 

significant proportion of grafts that were considered “good” in quality had resulted in 

poor graft function after transplantation (Makowka et al. 1987).  Also no 

investigation that could predict primary non-function of the liver grafts has been 

developed and the quality assessment of a liver graft is determined by the routine 

liver biochemistry, donor past and current medical history and combination of 

macroscopic and microscopic examination of liver graft in some cases. The liver 

biochemistry may be normal whilst the graft is still in the donor environment, but 

these do not reflect the interim physiological changes whilst the organs are procured 

and preserved in the static cold storage. The macroscopic and microscopic 

examination may be acceptable however, the exact extent of PRI will not be known 

until the graft is perfused in the recipient, and by this time the surgical steps have 

gone too far to the extent of point of no return.  Those traditional methods of organ 

assessment or the clinical expertise combined with these alone do not prevent PNF of 

liver grafts. This creates a room and a need for novel biomarkers that would predict 

PNF of liver grafts at various stages of the journey of an organ in the process of liver 

transplantation. Perhaps these biomarkers may be present in the donor, and if tested 

positive a more cautious approach may be employed in selecting those liver grafts for 

transplantation. Or else the grafts could be tested at the end of the cold storage 

before implantation or even after implantation and the presence of these biomarkers 

predicting PNF may open up avenues for further research in mechanisms to modify 

the pathophysiological sequelae through intervention. 
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CHAPTER 2 RESEARCH HYPOTHESIS AND STUDY PLAN 

 

2.1 Research aim 

Conventionally, the immediate success of a transplanted liver allograft is assessed by 

a combination of clinical and biochemical criteria. In the presence of immediate poor 

graft function or PNF the recipient haemodynamics and physiology deteriorate 

significantly (Koffron and Stein 2008). Usually this is seen as prolongation of the 

reperfusion syndrome that is manifested only in a proportion of such patients. 

Lactate clearance and correction of acid base imbalance are other parameters that 

could be used with real time blood sampling. Other biochemical and haematological 

investigations also performed routinely in transplanted patients and these include 

serum alanine and aspartate transaminases, prothrombin time and serum bilirubin 

(Tekin, Imber, Atli, Gunson, Bramhall, Mayer, Buckels, Mcmaster, & Mirza 2004). 

High serum transaminases levels are generally considered to reflective of the 

severity of graft injury during the ischaemia and reperfusion. Inability of the liver 

graft to resume immediate function results in lack of coagulation factor production 

leading to prolongation of prothrombin time (Pokorny et al. 2000). Bilirubin is also a 

surrogate marker of allograft injury. Whilst PNF could be diagnosed when all these 

clinical features and biochemical findings considered together, an isolated rise of a 

single enzyme or presence of recipient instability do not help clinical decision 

making, as these could be the result of many other physio-chemical processes.  

The studies outlined in this thesis were aimed at identifying metabolic differences 

and changes between cadaveric liver grafts used in the clinical liver transplantation 

setting, from cold ischaemia to reperfusion, using several novel techniques. The 

specific objective was to identify the key differences between the DCD and DBD liver 

grafts, with the possibility of identifying biomarkers predictive of graft function. This 

was in the background of real shortfall of organs available for liver transplantation in 

the UK with approximately 20% of patients on the waiting list dying due to delay in 
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receiving a suitable graft as discussed in the previous chapter. In the United Kingdom 

and other Western countries, many transplant centres currently use liver grafts that 

are considered sub-optimal for transplantation in an attempt to increase the donor 

pool. These sub-optimal or marginal grafts however have a higher tendency to 

function poorly in the recipient post transplantation leading to initial poor function 

or primary non function that could lead to re-transplantation or death of the 

recipient. Therefore this project was designed with aims of understanding the 

metabolic changes that occur in a liver graft during the process of transplantation. 

Identifying these biomarkers would help further research on therapeutic 

intervention on the grafts with unfavourable biomarkers predicting poor function; 

furthermore this approach would also help in better graft recipient matching, and 

understanding interventional processes designed to optimize grafts has the potential 

to increase the donor pool while making the utilization of a scarce resource better.  

Birmingham Liver Unit has developed the technology needed to use the technique of 

microdialysis (Silva et al. 2005;Silva et al. 2006a) in the setting of liver 

transplantation through real time analysis of the metabolic changes that occur within 

the graft during the donor operation, while in cold storage and immediately post 

transplantation. Using targeted analytical platforms previous studies have shown 

that microdialysis can study the changes within the graft safely, is able to 

differentiate between grafts that function well post transplantation, and has the 

ability to study specific metabolic pathways. The current studies were focussed on 

the use of this tried and tested method with different and novel analytical platforms 

so as to study the whole metabolome in order to identify specific metabolic 

signatures that will then be identified in more easily accessible biologic material like 

liver biopsies and blood samples. At the outset we envisaged that this project 

therefore has real potential in producing results which will translate to data that will 

have clear clinical benefits.  

The specific aim of this research was to investigate metabolic differences of the liver 

grafts obtained from DCD and DBD donors.  We hypothesized that the changes in the 

intracellular metabolome in the process of preservation-reperfusion injury would be 

reflected in the extracellular fluid, through the transfer of these metabolites across 
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the cell membrane of the hepatocytes, hence the extracellular tissue fluid sampling 

would enable identify these biomarkers through various metabolomic analytical 

platforms.   

 

The Liver Unit at the University Hospital Birmingham is one of the largest liver 

transplant centres in Europe with approximately 190 – 200 adult liver transplants 

carried out each year. This high turnover made the setting ideal to carry out this 

study. The experience the liver unit has with the use of microdialysis in the liver 

transplant setting is also a plus factor since theatre, intensive care and ward staff are 

familiar with its use. The Liver Laboratories, Institute of Biomedical Research, 

University of Birmingham is also housed in close association with the Liver Unit 

making running of the project easy. 

 

2.2 Research proposal 

Figure 2.1 below depicts the routine sequence of events from the donor operation 

until the organs are transplanted in the recipient. Typically the time sequence of the 

events could take up to 24-48hours from the time of form the identification of a 

suitable organ donor through to organ procurement and cold storage until the organ 

transplantation is completed in the suitably matched recipient. The study was 

designed as such that the metabolite changes during the entire process could be 

studied. We proposed a combination of sample collection protocol to include the 

donor, cold storage and recipient phases so that the serial changes that occur in a 

particular metabolite could be studied longitudinally.  

Primarily the sample protocol involved the microdialysis sampling of the liver 

parenchyma to obtain pure tissue fluid samples, liver allograft biopsy and serum 

samples from both the donor and the recipient at corresponding time intervals 

simultaneous to the microdialysis samples. However, as the study was run through, 

concerns were raised by interested parties on the suitability and ethical aspects of 

collecting the samples from a donor therefore after limited number of sample 
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collection from the DBD donors, the donor phase sampling was abandoned. This was 

felt appropriate, as in case of DCD donors’ practical difficulties arose with 

microdialysis sample collection owing to the rapid nature of surgical steps leading to 

organ procurement, as outlined in the chapter 1 and below.   

 

 

 

 

 

Donor  Ischaemia Cold Injury Warm Injury Reperfusion 

Donor 

(4 hours) 

Cold Storage / 

Back table 

Preparation 

(4 hours) 

Liver 

Implantation 

(24-48 hours) 

Project Model 

Graft 

Ischaemia  

Reperfusion 

Poor Graft 

Function 

Good graft 

function 

Identification of 

metabolic 

differences exist 

between DCD and 

DBD liver grafts that 

predict poor graft 

function   

Figure 2-1: The processes involved in the liver transplantation from the donor to the recipient; graft 
ischaemia is inevitable outcome leading poor or good graft function providing space for the investigation 
of metabolic differences between these two outcomes 
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2.3 Study design 

2.3.1 The donor operation 

The principles of donor operation for organ procurement involves identification and 

preparation of the abdominal descending aorta for cannulation and institution of the 

cold preservation solution, and isolation of the abdominal aorta to confine the 

perfusate to circulate only through the visceral blood supply. This is achieved by 

cross clamping the abdominal aorta at the diaphragmatic hiatus at the beginning of 

the cold perfusion. Outflow venting is the third essential key component in 

abdominal organ harvest which done by opening the abdominal and thoracic inferior 

vena cava within the pericardial sac. Although these three principle steps are the 

essential steps in organ procurement from deceased donors, various other surgical 

steps are undertaken and this is determined by the nature of the organ donation.  

In donors after brain death (DBD), the organs are perfused with intact circulation 

hence ample time is available for the donor surgeon to mobilize the intra-abdominal 

viscera intended for transplantation (Brockmann et al. 2006). This is termed as 

warm phase dissection that is aimed at isolation of the individual blood supply to the 

respective organs. The advantage of this technique is the positive identification of 

vascular anatomy, allowing abnormal anatomy to be recognized, thereby minimizing 

unwanted injury to these vessels (Baranski 2009). Early practice of organ donation 

differed from this approach in that organs were procured en-bloc and separated in 

an ice bath; as organs are without blood supply at this stage, positive identification of 

structures is difficult the chances of causing injury to blood vessels was higher. Loss 

of orientation anatomy further increased the chances of inadvertent injury. In 

current DBD organ donation practice thus organs are mobilized prior to aortic 

cannulation and eventual cross clamp, spending a variable time period of warm 

dissection depending on the experience of the organ retrieval surgeon. The common 

bile duct is divided just above the duodenum and the bile is flushed through the 

opening made in the gall bladder prior to the institution of the cold preservation 

solution heralds the cold ischaemic preservation.  
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The situation is technically more demanding in donors after circulatory death (DCD) 

wherein “circulatory” death is confirmed prior to the beginning of the donor 

operation. Therefore no time is spent on mobilizing organs in a warm phase, as each 

minute passed further aggravates the warm ischaemic injury to the organs. The aim 

is therefore rapid laparotomy and cannulation of the aorta followed by the adherence 

to the key steps in basic organ donation surgery. This technique is often termed 

“super-rapid” technique of organ procurement and the objective is to minimize the 

warm ischaemic damage and initiation of cold preservation at the earliest possible 

time point (Fong and Blumgart 2000).  

As the liver receives a double blood supply through the hepatic artery and the portal 

vein, a dual perfusion system is used in the majority of the cases of liver graft 

retrieval with rare exceptions. Whilst the hepatic artery is perfused through the 

aortic cannula, the superior mesenteric vein is identified and cannulated to perfuse 

the graft with further organ preservation solution. This dual perfusion ensures 

maximum volume of organ preservation solution reaching the hepatocytes, and 

adequate microvascular flush thereby achieving better cellular preservation. In our 

practice we used Marshall’s hyper-osmolar citrate solution to perfuse the aorta and 

University of Wisconsin solution to perfuse the portal vein with 4 and one liters 

respectively. Marshall’s solution has been introduced as a kidney preservation 

solution and was choice of solution owing to low viscosity and the cost. Viscosity of a 

preservation solution is a key indicator for the effectiveness of organ preservation 

solution (Guarrera and Karim 2008); higher viscosity solutions cause diminished 

microvascular flush. This in turn leads to longer cold flush times and inadequate 

organ preservation.  Microvascular hypo-perfusion leads to increased incidence of 

biliary complications in liver transplantation (Maheshwari et al. 2007). Marshalls’ 

solution therefore is an ideal solution in the donation after circulatory death setting 

where micro-thrombus formation post mortem has been already initiated. Our 

practice of using Marshalls’ solution was different to many other liver transplant 

centers which used University of Wisconsin solution for aortic perfusion which 

deemed to yield better organ preservation and increased cold preservation times 

based on randomized controlled studies.     
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Once perfused with the cold preservation solution, liver grafts were retrieved with 

intact hepatic arterial supply, portal vein and the bile duct in the hepatic hilum, along 

with the retrohepatic inferior vena cava. These grafts were then perfused in the back 

bench – with University of Wisconsin solution 500 and 250cc through the portal vein 

and the hepatic artery respectively before being packed in double sterile bags. 

Residual bile is more likely to be inspissated in the cold temperature, and if not 

removed may solidify to form biliary casts in the recipient. Therefore bile duct is also 

usually flushed to remove any residual bile. The liver graft is then safely placed in an 

ice box for transport.  

 

2.3.2 Liver transplantation technique 

Macroscopic appearance of the liver graft is a crude assessment of the degree of 

steatosis; however this is practiced through generations. Generally this information 

is gathered from the organ retrieval surgeon but examination of the liver graft prior 

to commencement of the recipient transplant operation is a more reliable form of 

organ assessment as often experience of the surgeon assessing the organ is counted. 

Size of the liver graft, colour, margins and the consistency are key elements of 

assessment. Larger liver grafts with yellow appearance, often with rounded edges as 

opposed to sharp edges denote a fatty liver, whereas a firm graft texture may suggest 

steatosis or fibrosis as well as inadequate / suboptimal preservation. A careful and 

reasonably accurate assessment by the experienced recipient surgeon is possible 

through macroscopic appearance alone that could be performed once the liver graft 

is taken out of ice at the implanting centre. In doubtful cases, rapid processing of a 

liver biopsy specimen is requested to quantify the degree of steatosis before making 

a final decision on transplantability of the organ.  

The liver transplantation technique that is commonly described as the modified 

piggyback technique was followed in all cases that we studied. In brief, this included 

laparotomy and entry in to the abdominal cavity. Hilar dissection with division of the 

bile duct, hepatic artery and the portal vein followed and a temporary port-caval 

shunt was performed in the majority of cases. Complete posterior mobilisation of the 
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liver whilst preserving the native vena cava is required for the modified piggyback 

technique, hence ligation and division of individual hepatic veins was mandatory. 

Mobilisation and explantation of the native liver is completed by taking the right 

hepatic vein and the left/middle hepatic veins as a common trunk. The liver graft 

prepared in the ice bath is taken out for implantation and this time point signifies the 

end of the cold ischaemia. As the liver graft is exposed to the room temperature 

during the implantation procedure until blood supply is restored, this period of re-

warming is termed as warm ischaemia, and the time lag between the graft taken out 

of ice and reperfusion with the recipients own blood is termed the implantation time. 

The first anastomosis to be performed is a creation of venous outflow by way of a 

side to side cavo-cavoplaty. Here a large opening made between the graft and the 

recipient cava is sutured together to allow free venous return of the hepatic venous 

blood. In the next step the portal vein of the recipient is directly anastomosed to the 

graft portal vein, at the end procedure the graft is flushed with a physiological 

solution to get rid of excess potassium from the graft. This excess potassium is the 

result of organ preservation solution, as well cell lysis; if not flushed, a massive load 

of potassium is released to the circulation during reperfusion, causing immediate 

cardiac rhythm abnormalities and even cardiac arrest on table. Both vena caval and 

portal venous anastomoses are completed once the flush out with physiological 

saline is complete. 

Liver grafts are reperfused with portal venous blood first, before the commencement 

of hepatic arterial anastomosis. The objective behind this rationale is to minimize the 

warm ischaemic injury during the reperfusion phase. Caval and portal clamps are 

released to reperfuse liver graft with blood and significant haemodynamic changes 

are anticipated in this stage. Sudden release of cold blood passage through the liver 

graft entering circulation, combined with the release of cytokines and other chemo 

mediators of cell damage, excess potassium all contribute to these haemodynamic 

changes which are collectively termed as “reperfusion syndrome”. As the new liver 

allograft should start to function in the recipient’s body but this immediate function 

may be determined by the degree of organ damage during brain or circulatory death 

in the donor and subsequent cold storage. In addition, further injury to the graft 
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occurs during the reperfusion through activation of oxygen free radicals and Kupffer 

cell mediated reperfusion injury. 

The hepatic artery anastomosis between the recipient and graft is carried out next, 

and restitution of oxygenated blood to the graft could cause further reperfusion 

injury. This step permits the graft to be fully oxygenated and also achieves perfusion 

of the arterially supplied biliary tree. The final anastomosis is carried out to ensure 

biliary drainage, through the native bile duct or by creation of a Roux en-Y 

hepaticojejunostomy. A surgical drain inserted at the end of the operation helps 

monitor ongoing bleeding, and provides drainage for excessive ascites once the 

abdomen is closed  

 

2.4 Microdialysis 

Microdialysis is a technique of interstitial tissue fluid sampling using the principle of 

solute transfer across a semi-permeable membrane across a concentration gradient. 

This technique mimics the transfer of solutes across a thin capillary blood vessel and 

originally described in experimental animal and human models involving 

neurosurgery and subsequently used as a research tool involving various organs 

(Nilsson et al. 1999). The technique involves an insertion of a specially designed 

microdialysis catheter and embedded in the tissue, and a battery driven syringe 

pump which pumps a physiological solution. The pump is designed in a way that the 

microdialysis fluid pumped in to the tissue could be controlled via a variable flow 

rate, and the returning fluid after equilibrium in the tissue space is returned and 

collected at the outside body by a microvial. The benefits of using microdialysis in 

combination with metabolomics are two-fold; the major advantage of microdialysis is 

known to be due to the purity of the sample as blood is not is in contact with the fluid 

hence sample preparation is not necessary. It therefore does not require laborious 

methods of solid phase extraction for analysis. Additionally, the microdialysate is relatively 

organ specific and does not have metabolites from other organ systems which can confound 

data analysis. CMA Microdialysis Stockholm, Sweden is the only supplier of microdialysis 

consumables which are licensed to be used in humans.  
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2.4.1 Microdialysis in liver transplantation 

Microdialysis has been applied as a research tool in both experimental and liver 

transplantation setting of both animal and human studies. Whilst the majority of the 

studies were focused on graft monitoring, including those from our own research 

group, the technique has been used to monitor the distant organs during the process 

of liver transplantation. The earliest studies investigated the basic energy substrates 

and metabolic end products of pig liver transplantation model involving donor 

operation to cold ischaemia and reperfusion and documented the changes in lactate, 

pyruvate, glucose and glycerol levels in the perfusate (Nowak et al. 2002a). Going 

further the same group studied the metabolic changes in the human model and 

reported reducing lactate levels post reperfusion and stabilization of pyruvate levels 

during the first 24 hours of transplantation. Glycerol is an abundant glycolipid in the 

cellular membranes and increased glycerol levels in the extracellular tissue space is 

correlated with the degree of cellular injury (Nowak et al. 2003a). The same study 

reported that the liver grafts used in liver transplantation had higher levels of 

glycerol and these gradually reduced over the period up to 24 hours after the 

reperfusion. This finding denotes that  graft injury is immediate after the reperfusion 

and with time the tissue injury becomes less severe after transplantation (Nowak et 

al. 2002b). In a case report, microdialysis as an investigation tool to monitor the 

extra-hepatic organs was demonstrated when the investigators implanted a 

microdialysis catheter in the brain in a patient undergoing liver transplantation for 

acute hepatic failure. The authors in this case demonstrated changes to 

neurochemistry, more specifically a rise in intracerebral lactate levels without any 

evidence of changes in cerebral perfusion pressures, denoting lactate flux from 

systemic circulation to the cerebral circulation that correspond to the changes that 

occurred in the systemic circulation during the process of transplantation. These 

along with other neurotransmitter changes suggest that microdialysis is a valuable 

tool not only in the investigation of grafts of interest, but also distant organs where 

the direct effects of graft dysfunction may have implications for.  
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Previous studies involving the clinical transplant model from our own group 

demonstrated basic energy metabolite changes similar to those reported by other 

studies ( Silva, M.A., Murphy, N., Richards, D.A., Wigmore, S.J., Bramhall, S.R., Buckels, J.A., 

Adams, D.H., & Mirza, D.F. 2006b). In addition these studies examined the changes to 

the selected amino acids during the process of reperfusion and documented that 

reduced levels of arginine during the early post reperfusion period. This was 

suggested to be due to arginine influx in to the hepatocytes causing the decline in the 

extracellular space, and the influx was thought to be to contribute to the increased 

activity of the urea cycle to detoxify ammonia and also to produce vasoactive 

compound nitric oxide ( Silva, M.A., Richards, D.A., Bramhall, S.R., Adams, D.H., Mirza, D.F., 

& Murphy, N. 2005). The changes in the arginine and urea cycle changes were further 

documented using the same study protocol of microdialysis, and increased level of 

arginase-I corresponded with the low extracellular arginine supports the theory of 

immediate urea production upon reperfusion of the liver allografts ( Silva, M.A., 

Murphy, N., Richards, D.A., Wigmore, S.J., Bramhall, S.R., Buckels, J.A., Adams, D.H., & Mirza, 

D.F. 2006b).  

 

2.4.2 Microdialysis catheter 

The microdialysis catheter (figure 2-2) is designed with two lumina, at the end of 

which there is a semi-permeable membrane (figure 2-3). The semi-permeable 

membrane has a cut off value of 20K Dalton for the size of the solutes that allows 

permeate across. The microdialysis fluid is pumped in to the tissue through the inner 

channel of the catheter which then enters the semi-permeable membrane (figure 2-

4). Here the microdialysis fluid is in contact with the tissue fluid of an organ 

separated only by the membrane, thus allowing the solutes to pass through the 

pores. The semi-permeable membrane is a delicate portion of the catheter therefore 

insertion and embedment of this in the tissue space requires special introducer.  
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Figure 2-2: The microdialysis catheter with its components 

 

 

Figure 2-3: the components of a microdialysis catheter (reproduced from CMA microdialysis) 
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Figure 2-4: Schematic representation of the sampling end of the microdialysis catheter; the perfusate 

enter the sampling end through the inner core which equilibrates with the solutes within the 

interstitial space as it runs through the outer tube (Perera BJS 2014) 

 

2.4.3 Microdialysis Fluid 

Microdialysis fluid is (CMA Microdialysis, Stockholm, Sweden) specially prepared for 

the purpose, however this has an essential electrolyte composition similar to extra 

cellular fluid or 0.9% physiological saline (normal saline). The electrolyte 

composition consists of Sodium 147 mmol/l, Potassium 4.0 mmol/l, Calcium 2.3 

mmol/l and Chloride 156 mmol/l in sterile fluid and supplied with 10ml ampoules. 

The electrolyte composition is thus similar to the extra cellular milieu hence there is 

no major shift of these when the microdialysis fluid is at the end of the catheter 

whilst in contact with tissue fluid, hence other solutes that are more abundant in the 

tissue space are like to enter microdialysis catheter.  
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2.4.4 Microdialysis pump 

Microdialysis pump is a small device with approximate dimensions of 7x4x1cm and 

powered by two 1.2Mv lithium batteries. Both the pump and specially designed 

syringe are supplied by the manufacturer (CMA Microdialysis, Stockholm, Sweden) 

and there are various deigns that are made for purpose. For research purposes of the 

liver there are two types of pumps; CMA 60 and CMA 61 hepatic microdialysis 

pumps. The differences between these two pumps are subtle and primarily related to 

the flow rate. The flow rate of each these pump could be adjusted by from 0.1µl to 

0.6µl per minute. At slower rates, the microdialysis fluid transit across the semi-

permeable membrane is slower, and the solute transit is supposed to be maximum. 

The syringe compartment of the pump accommodates a specially designed syringe 

with a capacity of up to 3.5cc of fluid. The luer lock of the syringe end is designed to 

connect to one end of the microdialysis pump.  

 

2.5 Technique of Microdialysis 

Microdialysis technique is a delicate procedure however simple to carry out once 

familiarised with the equipment and the insertion technique. The instrumentation is 

usually designed for the different tissues that could be studied and generally 

supplied as pre-assembled kits in most occasions.  

2.5.1 Microdialysis kit 

The microdialysis kit is an assortment of essential components provided as pre-

packed sterile kit for single use only. It consists of a single microdialysis catheter, a 

splittable introducer and microvials and syringe fro the pump. Microdialysis fluid is 

supplied as a separate item, and apart from the catheter all other accessories are also 

available as separate items.  

2.5.2 Procedure 

Insertion of microdialysis catheter in to the tissue space is an invasive procedure and 

carries a risk of inoculation or introduction of organisms, hence carries an infection 

risk. Therefore the procedure is carried out under sterile conditions with the 
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researcher fully scrubbed as for any other operative procedure. Placement of the 

catheter in a particular organ is determined by the anatomy of the organ concerned 

aiming to avoid unwanted injury to the organ. In case of the liver previous studies 

have suggested insertion of the catheter in to the segment IV of the liver is safer 

technique. The catheter introducer is inserted through the anterior surface of the 

liver, at a chosen site along the falciform ligament of the liver and the needle is 

directed towards the segment IV of the liver. The introducer is passed in to the liver 

parenchyma until the hilt, and the inner needle is then withdrawn leaving the plastic 

splittable sheath in situ. The semi-permeable end of the microdialysis catheter is 

then passed through the plastic sheath of the introducer in to the liver parenchyma. 

The two arms of the splittable sheath are then gently pulled apart to split the sheath 

and withdrawn whilst applying upward and outward force (figure 2-5). The chances 

of microdialysis catheter dislodgement are common unless care is taken, and 

generally an assistant holds the catheter in place prevents such misplacement. There 

are buttresses supplied to secure the catheter in place and the adjacent falciform 

ligament is used to achieve this (figure 2-6).  

 

 

 

Figure 2-5: Insertion of microdialysis catheter in to the liver graft during bench phase sampling; the 

catheter is held in place with a pair of forceps while the splittable introducer (light blue handles) is 

gently withdrawn 
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Figure 2-6: Microdialysis catheter in-situ in a transplant recipient; the catheter has been introduced at 

the level of falciform ligament directed towards the segment IV of the liver graft; a superficial suture 

used to secure the microdialysis catheter to the falciform ligament 

 

2.6 Sampling protocols 

2.6.1.1 Liver biopsies 

Liver biopsies were obtained from the allografts used in liver transplantation at two 

stages during the process of liver transplantation. A specially designed biopsy needle 

used for liver biopsy [Menghini liver biopsy needle; Dixons Surgical Instruments, 

Wickford, United Kingdom] was a single use sterile needle with core diameter of 

1.0mm with the maximum core length of 70mm (figure 2-7). Fixed to a 5cc 

disposable syringe partially filled with 0.9% NaCl solution, the needle is inserted to 

the liver graft whilst applying the suction force on the plunger of the syringe as the 

needle is advanced to the liver parenchyma.  

 



 

38 

 

 

 

Figure 2-7: The Menghini biopsy needle used for allograft biopsy sampling during the cold storage and 

post reperfusion; needle supplied with blocking pin that prevent suction of biopsy material to the 

syringe, trocar and obturator (from Dixon surgical Instruments, UK) 

 

 

  

2.6.1.2 Microdialysate 

A microdialysis catheter was inserted to the liver grafts at in the cold phase, when 

the liver grafts arrived at the transplanting centers and taken out of the transport 

box for preparation to implantation. This preparation phase is often termed “bench 

procedure” or operation, and the aim of this which is performed under sterile 

condition is to clean the liver from surrounding soft tissue including the part of the 

diaphragm which is taken along with the graft at the time of organ procurement. Also 

the hepatic artery and the portal vein are dissected free of any soft tissue so that the 

graft would be ready for implantation by connecting the blood supply. Generally the 

bench operation takes up about one hour in most cases but the duration of this part 

of the operation is operator dependent. The entire operation is performed whist the 

graft is immersed in an ice bath to maintain the cold ischaemia and to prevent the 
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rewarming of the graft. In transplant practice, the beginning of the bench operation 

often simultaneous with the admission of the transplant recipient to the anaesthetic 

induction, and this allows the operating surgeon to visually inspect the liver and 

make a decision on the usability of the graft. 

A microdialysis catheter was inserted at the beginning of the bench operation and 

connected to the microdialysis pump for sample collection. Depending on the time of 

organ procurement and the planned theatre time for implantation of the graft, a 

variable period of cold ischaemia had been elapsed before the insertion of 

microdialysis catheter and this was recorded. The sample collection was continued 

as long as the graft remained in the ice bath at the end of the bench operation and up 

until the graft was taken out of ice for implantation. Therefore the sample collected 

represented the latter part of the cold phase of the liver graft preserved in ice, and 

depending on the circumstances this ranged from nearly an hour to few hours the 

most. Once the graft was ready to be taken out of ice bath for implantation, the 

microdialysis catheter was removed along with the sample vial. The sample was 

labeled using a labeling system to represent the patient identifier and cold phase.  

The implantation phase of the liver graft is usually characterized by two distinctive 

phases and the surgical technique is described earlier in this chapter. The 

“reperfusion phase” is when the portal vein clamp is released to reperfuse the graft; 

the time of reperfusion is usually the portal clamp release time. This was noted in 

each case. The arterialisation of the graft begins after this phase followed by the 

biliary anastomosis or reconstruction. The surgeon ensures haemostasis is achieved 

surgically and coagulation correction is supported by the anaesthetist. Once the 

patients achieved stable haemodynamic parameters and when the abdomen is ready 

to be closed, a fresh microdialysis catheter was inserted into the implanted liver 

graft. This catheter was passed out of the abdomen at the upper end of the abdominal 

wound and carefully secured during the abdominal wall closure. The microdialysis 

pump and the vials were connected to this circuit and samples were collected at 

every six hours from the time of reperfusion.  Because the microdialysis catheter was 

not introduced at the time of reperfusion of the graft which was impractical in a 

highly demanding clinical situation, and this was done only before the abdominal 
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closure, a variable time was lost in each case in the first six hour block after the 

reperfusion but this never went beyond six hours. Samples were then collected at 

each six hour block until 48 hours after the reperfusion and labeled using the same 

method. All microdialysate samples were then stored at -800C.  

 

2.7 Metabolomics 

Metabolomics refers to the “study of the metabolome” and is a relatively new area of 

research in the biological systems. Small (<1,000 Da) catabolic and anabolic products 

(metabolites) can regulate, amongst other processes, cell signalling, cell-to-cell 

communication and energy transfer, and can be the first bio chemicals to respond to 

internal or external stimuli. This responsiveness makes the metabolome an 

informative measure of the cell’s dynamic state, a property that has led to a 

considerable and growing interest in the application of metabolomics in the health 

sciences. Recently metabolomics has begun to be used in clinical solid organ 

transplantation (Bohra et al. 2013;Wishart 2005a) where it holds considerable 

promise for the discovery of biomarkers to predict poor graft function or patient 

survival, as well as to elucidate the molecular mechanisms underlying 

pathophysiological processes such as during graft dysfunction, injury or rejection. 

Metabolomic studies have become a reality due to the advancement in the 

technological methods in detecting and analysis of smaller molecules way of high 

throughput studies. Overall, studies of the systems biology could be of various types 

depending on the target molecules of study and form a hierarchy from the nucleic 

acids to the metabolic products; for example genomics refer to the study of the genes,  

and the study transcription factors of the genes is referred as transcriptonomics. 

Proteomics and metabolomics refer to the study of protein proteins and metabolic 

end products of such proteins respectively. Metabolomics is the study of the smallest 

molecules present in the biological systems (figure 2-8). Meanwhile, genomic studies 

represent the capabilities within a biological system to perform various functions 

which may or not all occur at any given time. For example certain biological 

mechanisms may remain dormant until a particular stimulus causes the gene 
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transcription and production of enzymes etc. Whereas further downstream the 

metabolomics studies may represent what is exactly happening within the biological 

system, and these metabolites may be active metabolic products or by products or 

even metabolic waste products generated in activated pathways. Therefore 

metabolomics could be representation of phenotype of a biological system and 

provides biological knowledge. Whilst genetics represent the origin of the 

metabolites, various other effectors may play role in changing the composition of 

metabolome and these include the disease status (for example, infections), 

environment and even the lifestyle.  

 

 

Figure 2-8: study of metabolomics and different approaches; the diagram illustrates that that the 

entire metabolome cannot be studied by one analytical platform alone and combination of techniques 

may be used to detect metabolites according to the particle size present [adapted from Van der Greef 

et al. "The role of metabolomics in systems Biology", In: Metabolic Profiling, Kluwer (2003)] 

 

Metabolomic studies thus investigate very small molecules, present either in bio-

tissues or fluids. There are many aspects to metabolomic studies, and these include 

“profiling” studies where the objective is to understand specific metabolic patterns 
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rather than investigation of specific pathways, which is usually done by “shotgun” 

approaches. Shotgun approach allows the though investigation of specific pathways 

identified through the profiling studies. A further subset study could be performed in 

metabolomics, for example the investigation of the lipids (lipidomics). Metabolomic 

studies use the long history of biochemistry in to the use, and looks at “higher order” 

information to look at genes and proteins, therefore the closest link to the genes and 

metabolic pathways. However, these studies are time consuming, and need specific 

instrumentation. Usually metabolomic studies generate millions of data and analysis 

of these data requires sophisticated statistical methods and often interpretation of 

these data requires the support of bioinformatics. 

Several types of metabolomics studies are possible and these are facilitated by 

various bio-analytical tools. These include mass spectrometry (MS), Nuclear 

magnetic resonance (NMR), Infrared spectroscopy, and electrochemical array 

detection. In addition the techniques are usually combined as complementary 

techniques, for example liquid chromatography (LC) or gas chromatography (GC) 

combined with mass spectrometry (LC-MS and GC-MS respectively). Whilst the 

employment of a single technique is helpful in profiling techniques, combination of 

different techniques to investigate a particular biological system could be more 

advantageous in identifying specific pathways.  

 

 

 

 

 



 

43 

 

 

CHAPTER 3 PROOF OF PRINCIPLE: METABOLOMICS IN 

HUMAN LIVER TRANSPLANTATION 

 

The work outlined in this chapter was originated from the collaborative work with the 

School of Biosciences, University of Birmingham. Post graduate researcher Olga 

Hrydziuszko under the tutelage of Professor Mark Viant provided the technical support 

for FTICR analysis and bio-statistical input, and Dr. Doug Richards from the School of 

Clinical and Experimental Medicine at the University of Birmingham performed 

microdialysis sample analysis through CEAD. The contribution form the researcher 

presenting in this thesis was the microdialysis technique, sample collection, clinical 

data collection and correlation and interpretation of biostatistics results with clinical 

outcomes, and final intellectual contribution to the manuscript provided in appendix 1; 

OMICS. 2010;14(2):143-50. doi: 10.1089/omi.2009.0139 

 

At the early phase of the proposed research plan, a smaller group of liver grafts used 

in liver transplantation was used to investigate the applicability of the metabolomic 

analytical platform described in the previous chapter. This was termed a proof of 

principle study, and was specifically aimed at detecting the capability of FTICR mass 

spectrometry and Coulometric electrochemical array detection (CEAD) as analytical 

platforms using the samples described previously (Hrydziuszko et al. 2010a). In this 

study, eight (n=8) consented adult patients undergoing orthotopic liver 

transplantation were recruited. The median age of recipients was 56 (46 - 62) years. 

The median MELD score was 20 (range 15-22).  

At the end of each recipient operation, a microdialysis catheter was inserted to the 

liver as described earlier in chapter 2 (Silva, Richards, Bramhall, Adams, Mirza, & 

Murphy 2005). Bench phase microdialysis sampling was not carried out in this 

smaller study as longitudinal investigation of biomarker changes through cold 
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ischaemia to reperfusion was not aimed. Serial hourly samples were collected during 

the next 48 hours post reperfusion and 10l of each sample were injected into the 

HPLC/CEAD system and chromatographic data analysis was carried out as discussed 

previously. Spontaneous intra-cranial bleed was the cause of brain death in all 

donors and the median donor age was 66 (range 40-72). In this proof of principle 

study, 7 out of 8 liver grafts were obtained from donors after brain death 

determination (DBD) whilst the remaining liver graft was from a DCD donor. The 

clinical outcomes following the transplantation included one case initial poor 

function (IPF) in the graft with AST levels of >1000 IU/L and INR >1.4 in the second 

day following liver transplant. Two patients died within 2 months following 

operation (one due to due to disseminated intravascular coagulation secondary to 

sepsis and multi organ failure, and the other due to unexplained cardiac arrest on 

day 5). 

 

3.1 Liver biopsy and FT-ICR MS metabolomics 

Liver tissue samples were obtained by Menghini biopsy were available for seven 

liver allografts at two stages during transplant process: T1 was obtained during the 

cold phase bench preparation of the liver graft whilst the organ is maintained at 4C, 

and T2 at the end of transplantation surgery before abdominal closure (warm 

ischemia and reperfusion injury), resulting in a total of 14 samples. Liver biopsies 

were extracted using a methanol:chloroform:water method (Taylor et al. 2009) and 

the polar metabolites analysed by direct infusion nanoelectrospray FT-ICR mass 

spectrometry (selected ion monitoring (SIM) spectral stitching); m/z 70 to 500; 

positive and negative ion modes, with each sample analyzed in duplicate) (Southam 

et al. 2007). Spectra were processed as described previously including a 3-step 

filtering algorithm (Payne et al. 2009) that excluded from the peak list all of the 

known drugs administered to the donors and/or recipients. 
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3.2 Extracellular fluid and CEAD metabolomics 

At the end of the recipient operation, a microdialysis catheter was inserted into the 

liver as described earlier in chapter 2 (Silva, Richards, Bramhall, Adams, Mirza, & 

Murphy 2005). The Bench phase microdialysis sampling was carried out in this 

smaller study as longitudinal investigation of metabolic changes through cold 

ischaemia to reperfusion was not aimed. Serial hourly dialysate samples were 

collected during the next 48 hours and 10l of each sample were injected into the 

HPLC/CEAD system and chromatographic data analysis was carried out as discussed 

previously. Table 3-1 demonstrates some selected demographics along with the time 

sequence including the cold and warm ischaemia times and graft outcomes.  
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Table 3-1: Demographics, timings of liver allograft biopsy, total cold ischaemia times and period of reperfusion established prior to the T2 biopsy, combined 

with intra-operative parameters and outcomes of the graft recipients in the study 

Patient Age 
Se

x 

Indications 

for OLT 

1st biopsy 

[min] after 

placing 

graft on ice 

(T1) 

2nd biopsy 

[min] after 

placing 

graft on ice 

(T2) 

Cold ischemia 

time [min] 

Implantatio

n time [min] 

Time of 

blood 

circulatio

n prior to 

T2 [min] 

Patient 

status after 

2 months 

following 

OLT 

H1 58 M A1AT 110 580 450 40 168 alive 

H2 59 M PSC 100 724 600 34 76 alive 

H3 54 M Hep C+HCC 110 387 250 47 86 deceased 

H4 62 M NASH+HCC 120 685 560 35 83 alive 

H5 61 F PBC 115 541 410 41 83 alive 

H6 51 F Hep C+HCC 100 542 410 42 85 alive 

H7 46 M NASH  80 522 400 32 81 deceased 

H8 53 M ALD+HCC 125 607 490 27 83 alive 

Abbreviations: A1AT, cryptogenic cirrhosis; PSC, primary sclerosing cholangitis; Hep C, hepatitis C cirrhosis; HCC, hepatocellular cancer; NASH, non-alcoholic steatohepatitis; PBC 

primary biliary cirrhosis; ALD, alcoholic liver disease
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3.3 Histology 

Half of each liver biopsy taken at each phase was preserved in 10% formaldehyde 

and was subjected to histological examination. Samples had a wide range of micro 

and macro steatosis (from mild to severe) both in T1 and T2 (Table 3-2). Apart from 

two liver grafts all other grafts had minimal macrovesicular and microvesicular 

steatosis.  

 

Table 3-2: Histological grading of graft steatosis (microvesicular and macrovesicular) of the grafts 

used in the proof-of-principle study. Macro and micro-vesicular steatosis is expressed as a 

percentage during cold phase and post reperfusion biopsy samples and an increase in microvesicular 

steatosis is noted in post reperfusion samples whereas macro-vesicular steatosis remains somewhat 

unchanged 

 Cold phase Post reperfusion 

Patient micro [%] macro 

[%] 

micro [%] macro [%] 

H1 <5 <5 25 <5 

H2 10-15 <5 50-60 <5 

H3 20 25-30 50 25 

H4 50 5 70 10 

H5 10-15 5 20-25 5 

H6 30 0 60 <5 

H7 35 <5 40 <5 

H8 35 70 50-60 25 
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3.4 Results 

3.4.1 Liver metabolism of cold phase vs. post reperfusion 

The FTICR mass spectra of liver biopsies contained 1772 and 2437 reproducibly 

detected peaks for positive and negative ion modes, respectively. Of this total of 

4209 peaks detected, 1349 were putatively identified based upon accurate mass 

measurements and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) 

database (Kanehisa and Goto 2000;Taylor, Weber, Southam, Payne, Hrydziuszko, 

Arvanitis, & Viant 2009). Principle component analysis revealed clear separation of 

the biopsies from the cold phase (T1) and post reperfusion (T2), along PC1 for all but 

one patient (H7) (figure 3-1); this pattern was equally evident in both the positive 

and negative ion mode datasets, hence verifying the observation. This finding 

suggests reduced metabolic activity in the liver grafts in the non-perfused, or cold 

storage, whilst the higher number of peaks in the post reperfusion phase suggests 

return to metabolic activity in the perfused state where the organs were restored 

with blood supply.  

 

 

Figure 3-1: Principle analysis scores plot for liver biopsy spectra in the positive and negative ion 

mode; cold phase (green) and post reperfusion (red) showing an expected separation between 

spectra from liver biopsies in each phase is shown but within each phase close clustering could be 

seen 
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The only outlier in the above principle component analysis is the liver graft labeled 

H7 in the figure 3-1. Both in the negative and positive ion mode, this allograft biopsy 

from the post reperfusion phase (T2) appear to align with the cold phase biopsies. 

This finding may suggest that this particular liver graft did not behave like the other 

reperfused grafts even after restoration of blood supply within the recipient; hence 

the functional capacity of the graft is questionable. This recipient suffered an 

unexplained cardiac event 5 days post transplant and the contribution of this 

metabolic state of the liver graft to the eventual clinical outcome could be explained 

in this smaller study cohort, meanwhile it is equally difficult to refute any 

association between these two findings.  

 

The univariate analysis identified 4.6% and 19.8% of all the positive and negative 

ion mode peaks significantly changing between T1 and T2. Based on the putative 

metabolite assignments, the biggest metabolic changes upon reperfusion (in top 1% 

of PC1 loadings, with smallest p values and/or largest fold changes) comprised of an 

increase of urea production and urea cycle intermediates levels (e.g. N4-

acetylaminobutanal, 5’-Methylthioadenosine), increased bile acid levels (e.g. 

chenodeoxyglycocholate, glycodeoxycholate, glycochenodeoxycholate and 

glycholate) (table 3-3).  

 

Furthermore, the PCA scores plot revealed that liver biopsies collected during the 

cold phase (T1) were metabolically more similar to each other (tightly clustered) 

than post reperfusion (except H7, which was identified as an outlier in the cold 

phase, T1). In the post reperfusion phase T2, liver biopsies showed greater metabolic 

variability, and tended to separate into two groups (along PC2; Figure 3-1). The 

major contributors to this partial separation within the post reperfusion biopsies 

were, amongst others, putatively identified as L-valine, L-glutamate, L-glutamine, 

adenosine monophospate (AMP), guanosine monophosphate (GMP), urea, and L-
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histidine, all detected with multiple adducts or with a unique putative metabolite 

assignment.  

 

Table 3-3: Putatively identified metabolites for peaks within 1% top PC1 loadings in FTICR analysis, 

smallest p values largest (up and down) fold changes 

Reason for 

inclusion 
Rank m/z 

Fold 

change 

Empirical 

Formula 
Metabolite Adduct 

Large increase 2 472.30359 24.10 C26H43NO5 

Chenodeoxyglycocholate, 

Glycodeoxycholate, 

Glycochenodeoxycholate 

Na 

Large increase 4 461.04088 17.49 C14H20N6O5S S-Adenosyl-L-homocysteine 2*K(39)-

H Large increase 6 488.29844 14.47 C26H43NO6 Glycocholate Na 

Large increase 7 472.00083 14.02 C10H15N5O10P2 ADP (3) 2*Na-H 

Large increase 13 338.05072 10.81 C11H15N5O3S 5'-Methylthioadenosine (2) K(41) 

Large increase 14 197.02222 12.07 C7H12O4 6-Carboxyhexanoate (3) K(39)-

2*H Large increase 15 488.27758 9.81 C26H43NO5 Chenodeoxyglycocholate, 

Glycodeoxycholate, 

Glycochenodeoxycholate 

K(39) 

Large increase 16 80.94784 9.80 HCl HCl 2*Na-H 

Large increase 18 424.22 9.15 C18H38NO5P Sphingosine 1-phosphate 2*Na-H 

Large increase 20 192.02433 8.26 C5H9NO4 L-Glutamate (5) 2*Na-H 

Large increase 14 197.02222 12.07 C7H12O4 6-Carboxyhexanoate (3) K(39)-

2*H Large decrease 25 223.04031 0.06 C6H14O6 Mannitol (3) K(41) 

Large decrease 30 221.04218 0.06 C9H10O5 Mannitol (5) Na 

t test 4 130.08627 2.76 C6H11NO2 N4-Acetylaminobutanal (3) H 

t test 9 83.02158 2.87 CH4N2O Urea Na 

t test 10 164.00832 3.12 C2H8NO4P Ethanolamine phosphate; Na 

t test 12 175.04782 2.77 C7H8N2O2 N1-Methyl-2-pyridone-5-

carboxamide (2) 

Na 

t test 18 178.05874 3.72 C6H9N3O2 L-Histidine Na 

t test 8 182.02257 4.43 C5H9NO4 L-Glutamate (8) Cl(35) 

t test 9 184.01963 2.55 C5H9NO4 L-Glutamate (5) Cl(37) 

PC 1 8 221.04218 0.06 C6H14O6 Mannitol (5) K(39) 

PC 1 10 223.04031 0.06 C6H14O6 Mannitol (3) K(41) 

PC 1 17 472.30359 24.10 C26H43NO5 
Chenodeoxyglycocholate, 

Glycodeoxycholate, 

Glycochenodeoxycholate 

Na 

PC 1 5 315.0932 0.04 C14H18N2O4 alpha-Ribazole Cl(37) 

PC 1 17 191.01974 0.05 C4H4O5 Oxaloacetate (5) HAc-H 

Note: numbers in parentheses show the number of all possible putative metabolite identities, large increase and 

decrease is when observed in post reperfusion samples relative to the cold phase samples.  
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3.4.1.1 Relating molecular phenotype to clinical outcome – preliminary 

findings 

Peaks detected in the early post reperfusion phase (T2) that could predict successful 

vs. unsuccessful patient outcome were identified using KNN algorithm. The two 

unsuccessful grafts were characterized by elevated levels of L-glutamate, 

homoarginine, glycerophosphocholine (GPC), 1-ribosylimidazole-4-acetate 

(histidine metabolism) and O-succinyl-L-homoserine (methionine and sulfur 

metabolism), 7,8-Dihydro-7,8-dihydroxykynurenate, 4-(2-Amino-3-

hydroxyphenyl)-2,4-dioxobutanoate and 4-(2-Amino-5-hydroxyphenyl)-2,4-

dioxobutanoate (tryptophan metabolism) all detected with multiple adducts or with 

only one putative metabolite assignment (Table 3-4). Tryptophan metabolism 

appeared to be altered – peak was assigned multiple putative metabolites and latter 

three identified metabolites were participating in tryptophan metabolism. 

Successful grafts were characterized by altered (increased metabolite levels) 

pentose phosphate pathway and pentose-glucuronate interconversion (e.g. D-

ribose) and pyrimidine metabolism (e.g. uridine), and the conversely the lack of 

above conversions was a remarkable finding in those grafts with an unsuccessful 

outcome.  
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Table 3-4: Peaks identified in the KNN algorithm (successful vs. unsuccessful grafts) with putative metabolite assignments and corresponding KEGG pathways; 

fold change calculated as mean of successful peak divided by mean of unsuccessful field level 

No Peak m/z 
Fold 

change 

Empirical 

Formula 
Metabolite Adduct KEGG pathways 

3 81 148.0605 0.48 C5H9NO4 L-Glutamate; H 

ko00220 Urea cycle and metabolism of amino groups, 

ko00251 Glutamate metabolism, ko00330 Arginine 

and proline metabolism, ko00340 Histidine 

metabolism, ko00471 D-Glutamine and D-glutamate 

metabolism, ko00480 Glutathione metabolism, 

ko00650 Butanoate metabolism, ko00860 Porphyrin 

and chlorophyll metabolism, ko00910 Nitrogen 

metabolism, ko00970 Aminoacyl-tRNA biosynthesis, 

ko02010 ABC transporters, ko04080 Neuroactive 

ligand-receptor interaction, ko04540 Gap junction, 

ko04720 Long-term potentiation, ko04730 Long-term 

depression, ko04742 Taste transduction, ko05014 

Amyotrophic lateral sclerosis (ALS) 

3 81 148.0605 0.48 C5H9NO4 D-Glutamate; H 

ko00251 Glutamate metabolism, ko00471 D-

Glutamine and D-glutamate metabolism, ko00750 

Vitamin B6 metabolism 

3 81 148.0605 0.48 C5H9NO4 Glutamate; H ko00460 Cyanoamino acid metabolism 

3 81 148.0605 0.48 C5H6O4 2,5-Dioxopentanoate; NH4+ 
ko00053 Ascorbate and aldarate metabolism, ko00330 

Arginine and proline metabolism 

3 81 148.0605 0.48 C5H9NO4 O-Acetyl-L-serine; H 
ko00272 Cysteine metabolism, ko00450 Selenoamino 

acid metabolism, ko00920 Sulfur metabolism 

3 81 148.0605 0.48 C5H6O4 (E)-Glutaconate; NH4+ 
 

3 81 148.0605 0.48 C5H6O4 2-Methylmaleate; NH4+ ko00290 Valine, leucine and isoleucine biosynthesis 

3 81 148.0605 0.48 C5H6O4 4,5-Dioxopentanoate; NH4+ ko00860 Porphyrin and chlorophyll metabolism 

3 81 148.0605 0.48 C5H9NO4 L-4-Hydroxyglutamate semialdehyde H ko00330 Arginine and proline metabolism 

3 81 148.0605 0.48 C5H9NO4 2-Oxo-4-hydroxy-5-aminovalerate H ko00330 Arginine and proline metabolism 

3 81 148.0605 0.48 C5H9NO4 N-Methyl-D-aspartic acid; H 
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5 182 173.042 2.36 C5H10O5 D-Ribose Na 
ko00030 Pentose phosphate pathway, ko02010 ABC 

transporters, NA 

5 182 173.042 2.36 C5H10O5 D-Xylose; Na 

ko00040 Pentose and glucuronate interconversions, 

ko00500 Starch and sucrose metabolism, ko00520 

Nucleotide sugars metabolism, ko02010 ABC 

transporters 

5 182 173.042 2.36 C5H10O5 L-Arabinose; Na ko00040 Pentose and glucuronate interconversions, 

ko00053 Ascorbate and aldarate metabolism, ko00520 

Nucleotide sugars metabolism, ko02010 ABC 

transporters 

5 182 173.042 2.36 C5H10O5 D-Ribulose; Na ko00040 Pentose and glucuronate interconversions 

5 182 173.042 2.36 C5H10O5 D-Xylulose; Na ko00040 Pentose and glucuronate interconversions 

5 182 173.042 2.36 C5H10O5 L-Xylulose; Na ko00040 Pentose and glucuronate interconversions 

5 182 173.042 2.36 C5H10O5 D-Lyxose Na ko00040 Pentose and glucuronate interconversions 

5 182 173.042 2.36 C5H10O5 L-Ribulose; Na ko00040 Pentose and glucuronate interconversions 

5 182 173.042 2.36 C5H10O5 L-Lyxose Na ko00040 Pentose and glucuronate interconversions 

5 182 173.042 2.36 C5H10O5 beta-D-Ribopyranose; Na 
 

8 278 189.1346 0.31 C7H16N4O2 Homoarginine H 
 

9 295 191.1026 0.81 C7H14N2O4 LL-2,6-Diaminoheptanedioate; H ko00300 Lysine biosynthesis 

9 295 191.1026 0.81 C7H14N2O4 meso-2,6-Diaminoheptanedioate; H ko00300 Lysine biosynthesis 

9 295 191.1026 0.81 C7H11NO4 N-Acetyl-L-glutamate 5-semialdehyde; NH4+ ko00220 Urea cycle and metabolism of amino groups 

11 376 216.0632 0.32 C10H11NO3 Phenylacetylglycine Na ko00360 Phenylalanine metabolism 

11 376 216.0632 0.32 C10H11NO3 3-Carbamoyl-2-phenylpropionaldehyde Na ko00982 Drug metabolism - cytochrome P450 

11 376 216.0632 0.32 C10H11NO3 4-Hydroxy-5-phenyltetrahydro-1,3-oxazin-2-one Na ko00982 Drug metabolism - cytochrome P450 

11 376 216.0632 0.32 C5H14NO6P sn-glycero-3-Phosphoethanolamine; H 
ko00564 Glycerophospholipid metabolism, ko00565 

Ether lipid metabolism 

13 575 258.1101 0.3 C8H21NO6P sn-glycero-3-Phosphocholine; '-e' 
ko00564 Glycerophospholipid metabolism, ko00565 

Ether lipid metabolism 

16 622 267.0587 1.95 C9H12N2O6 Uridine Na ko00240 Pyrimidine metabolism 

16 622 267.0587 1.95 C9H12N2O6 Pseudouridine Na ko00240 Pyrimidine metabolism 

17 625 268.0192 0.52 C10H9NO5 7,8-Dihydro-7,8-dihydroxykynurenate 2*Na-H ko00380 Tryptophan metabolism 

17 625 268.0192 0.52 C10H9NO5 4-(2-Amino-3-hydroxyphenyl)-2,4-

dioxobutanoate 

2*Na-H ko00380 Tryptophan metabolism 

17 625 268.0192 0.52 C10H9NO5 4-(2-Amino-5-hydroxyphenyl)-2,4-

dioxobutanoate 

2*Na-H ko00380 Tryptophan metabolism 

18 651 276.1191 0.36 C10H14N2O6 (1-Ribosylimidazole)-4-acetate NH4+ ko00340 Histidine metabolism 

30 1048 363.1163 0.22 C12H24N2O8 Procollagen 5-(D-galactosyloxy)-L-lysine K(39) 
 

2 38 140.01183 0.72 C2H8NO4P Ethanolamine phosphate; '-H' 

ko00260 Glycine, serine and threonine metabolism, 

ko00564 Glycerophospholipid metabolism, ko00600 

Sphingolipid metabolism 

2 38 140.01183 0.72 C2H8NO4P 1-Hydroxy-2-aminoethylphosphonate '-H' ko00440 Aminophosphonate metabolism 
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4 97 168.02787 0.63 C5H9NO4 L-Glutamate; Na-2*H 

ko00220 Urea cycle and metabolism of amino groups, 

ko00251 Glutamate metabolism, ko00330 Arginine 

and proline metabolism, ko00340 Histidine 

metabolism, ko00471 D-Glutamine and D-glutamate 

metabolism, ko00480 Glutathione metabolism, 

ko00650 Butanoate metabolism, ko00860 Porphyrin 

and chlorophyll metabolism, ko00910 Nitrogen 

metabolism, ko00970 Aminoacyl-tRNA biosynthesis, 

ko02010 ABC transporters, ko04080 Neuroactive 

ligand-receptor interaction, ko04540 Gap junction, 

ko04720 Long-term potentiation, ko04730 Long-term 

depression, ko04742 Taste transduction, ko05014 

Amyotrophic lateral sclerosis (ALS) 

4 97 168.02787 0.63 C5H9NO4 D-Glutamate; Na-2*H 

ko00251 Glutamate metabolism, ko00471 D-

Glutamine and D-glutamate metabolism, ko00750 

Vitamin B6 metabolism 

4 97 168.02787 0.63 C5H9NO4 Glutamate; Na-2*H ko00460 Cyanoamino acid metabolism 

4 97 168.02787 0.63 C5H9NO4 O-Acetyl-L-serine; Na-2*H 
ko00272 Cysteine metabolism, ko00450 Selenoamino 

acid metabolism, ko00920 Sulfur metabolism 

4 97 168.02787 0.63 C5H9NO4 L-4-Hydroxyglutamate semialdehyde Na-2*H ko00330 Arginine and proline metabolism 

4 97 168.02787 0.63 C5H9NO4 2-Oxo-4-hydroxy-5-aminovalerate Na-2*H ko00330 Arginine and proline metabolism 

4 97 168.02787 0.63 C5H9NO4 N-Methyl-D-aspartic acid; Na-2*H 
 

5 107 173.0092 1.49 C6H6O6 cis-Aconitate; '-H' 

ko00020 Citrate cycle (TCA cycle), ko00630 

Glyoxylate and dicarboxylate metabolism, ko00720 

Reductive carboxylate cycle (CO2 fixation) 

5 107 173.0092 1.49 C6H6O6 trans-Aconitate; '-H' 
 

5 107 173.0092 1.49 C4H2O4 Acetylenedicarboxylate; HAc-H ko00620 Pyruvate metabolism 

5 107 173.0092 1.49 C6H6O6 Dehydroascorbate; '-H' 
ko00053 Ascorbate and aldarate metabolism, ko00480 

Glutathione metabolism 

6 344 218.06704 0.51 C8H13NO6 O-Succinyl-L-homoserine '-H' 
ko00271 Methionine metabolism, ko00920 Sulfur 

metabolism 

7 372 222.04418 0.37 C5H9NO3S Acetylcysteine HAc-H 
 

29 1245 325.0653 1.52 C11H16N2O8 N-Acetyl-aspartyl-glutamate; Na-2*H ko04080 Neuroactive ligand-receptor interaction 
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3.4.2 Redox metabolism in microdialysates post reperfusion 

A total of 19 reproducible peaks were detected by CEAD in the microdialysates and 

subjected to PCA. Time trajectories on the scores plot were quite consistent for all 

patients (Figure 3-2). The first samples from the patients (5-6h post reperfusion) 

group together with large positive PC1 scores. Samples from subsequent time points 

were similarly grouped, but towards increasingly more negative PC1 scores, as 

highlighted by the average metabolic trajectory for all patients (Figure 3-3).  This 

shift along the PC1 axis was greatest for samples obtained up to 21h post 

reperfusion, after which a period of metabolic stability ensued.  

 

 

Figure 3-2: Principle score analysis plot for CEAD time course data. First time point for each patient is 

on the right as also indicated by the patient labels and time trajectory for the samples from each 

patient follows a similar trend 
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Figure 3-3: Principle scores plot for CEAD time course data (first time point for each patient is on the 

right, as also indicated by the patient label) showing that the metabolism following reperfusion 

changed rapidly to stabilize nearly 21hrs post reperfusion 

 

 

3.5 Discussion 

FT-ICR mass spectrometry of liver biopsy extracts allowed the rapid and 

reproducible detection of 4209 unique peaks, representing a wealth of metabolic 

information on the functional biochemical changes associated with liver 

transplantation. This pilot study revealed that from a holistic viewpoint, liver grafts 

share a remarkably alike metabolic profile in the cold phase, suggesting that 

metabolism is down-regulated in a similar manner. This is in itself quite remarkable 

given the relative heterogeneity (human-to-human natural variations and inevitable 

variations in liver transplant procedure) and small number of donors involved in this 

pilot project. Furthermore, several anticipated metabolic differences between cold 

phase and post reperfusion biopsies were identified, which serve to verify the FTICR 

mass spectrometry approach and its applicability for measuring multiple metabolic 

pathways simultaneously. Specifically, we documented evidence that reperfused 
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grafts restart their metabolic activity and physiological functions, including synthesis 

(e.g. bile acid production, urea synthesis) and excretion (clearance of UW solution), 

with the latter one also being in agreement with the previous NMR studies (Duarte et 

al. 2005). Again from a holistic viewpoint, liver biopsies exhibited considerably 

greater metabolic variability following reperfusion. This is again what would be 

expected considering the variation in the OLT procedure itself as well as the impact 

of the recipient’s metabolism on the graft. Another expected biochemical response to 

OLT was a disturbance of energy metabolism (increase of metabolites levels involved 

in energy metabolism). The top 1% changes comprised only a couple of putative 

metabolites involved in this process (formate, L-aspartate ADP, AMP). However, 

additional analysis showed that there was a remarkably consistent increase of 

abundance of ‘energy’ involved metabolites (similar analysis on carbohydrate and 

amino acids metabolism did not show similar consistency, which emphasizes the 

results), especially the ones involved in oxidative phosporylation (fumarate, 

orthopohosphate, pyrophosphate, ADP), showing that it is possible to extract a 

meaningful information not only from an analysis of peaks contributing to the major 

changes.  

 

Considering the second analytical approach, the combination of microdialysis 

sampling and CEAD time trajectory data allowed the longitudinal analysis of liver 

metabolism post-reperfusion. It detected a series of changes in the redox metabolism 

of extracellular fluid, revealing a rapidly changing liver metabolism immediately post 

reperfusion followed by stabilization after ca. 21 h. 

 

The FTICR mass spectra revealed two intriguing findings, which, due to the small 

number of patients, must be interpreted with caution. First, the only liver graft 

obtained by donation after cardiac death corresponded to the only outlier on the PCA 

scores plot, having a metabolite profile in the cold phase more similar to the other 

livers’ metabolic profiles in the post reperfusion (T2) stage. This may have resulted 

from a less effective perfusion of the graft with preservation solution, since it was 

performed after a period of circulatory arrest (e.g. possibility of micro clot 

formation), which would have several consequences for graft metabolism. For 
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example, less effective preservation could result in potentially ongoing and injurious 

metabolic activity within the cold phase graft (T1) that more closely resembles post 

reperfusion (T2) metabolism. The second intriguing finding, revealed in both the 

positive and negative ion PCA scores plots, is the apparent separation of the post 

reperfused biopsies into two groups. The two patients with unsuccessful outcome, 

i.e. who died within 2 months of OLT, were clustered in one of these groups. Further 

investigation of these findings with a KNN analysis suggests that during the period 

that the second biopsy was collected in the post reperfusion phase (Table 3-1) the 

liver metabolism varies quite considerably between patients, perhaps due to 

differing rates of metabolic recovery of liver function. This is consistent with the 

CEAD data which highlights the considerable change in metabolism in the first 21h of 

reperfusion. At post reperfusion time T2, some metabolites (e.g. histidine) varying 

not having the effect on the OLT outcome, while others (e.g. urea, GPC) are 

potentially predictive of OLT outcome. Encouragingly, the unvarying levels of GPC 

throughout OLT were suggested as a potential marker of IPF in the NMR liver biopsy 

studies (Duarte, Stanley, Holmes, Lindon, Gil, Tang, Ferdinand, McKee, Nicholson, & 

Vilca-Melendez 2005). In our results, GPC was not significantly changed between T1 

and T2 (p value 0.38).  The patient who developed IPF (H8) was clustered in the 

other group, suggesting that perhaps there are yet different metabolic processes, 

involving creatinine and IMP, altered. Finally, it may be worth noticing that 

histological data were not consistent with the clinical data or the metabolomics 

studies. 

 

Collectively, this pilot study shows that FT-ICR mass spectrometry and CEAD are 

useful tools for characterizing multiple metabolic pathways in the liver throughout 

and following liver transplantation. We have focused our interpretation and 

discussion on the measurements of known and expected biochemical changes during 

transplantation, since this serves to validate the application of these metabolomics 

methods. However, it is crucial to emphasize that more than 4000 signals were 

detected in the mass spectra and CEAD chromatograms, which could contain a 

wealth of novel metabolic information associated with liver transplantation 

including predictive markers of clinical outcome or poor graft function. However, 
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extracting such knowledge would require the application of more powerful 

supervised multivariate statistical methods, which in turn is dependent upon a 

considerably larger patient cohort, which were basis for the larger studies comparing 

DCD and DBD grafts that followed. In addition, the definitive identification of the 

metabolites within these metabolomics datasets would further strengthen our 

interpretation. This awaits the on-going development of automated metabolite 

identification strategies. The initial success of this pilot study, in terms of the ability 

of two metabolomics approaches to identify key metabolic changes within a 

relatively heterogeneous group of only eight donor liver grafts encouraged us 

proceed with the much larger study cohort comparing different graft types. 
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CHAPTER 4 CHANGES IN BASIC ENERGY METABOLISM AND 

KEY DIFFERENCES IN LIVER GRFATS FROM DCD 

AND DBD DONORS 

 

The data presented in this chapter represents researcher’s own work published as an 

original manuscript and presented in Appendix 2; Br J Surg. Jun;101(7):775-83. doi: 

10.1002/bjs.9478.  

 

4.1 Introduction 

Cold ischaemia results in the switching on of anaerobic metabolism in the absence of 

oxidative metabolism. Anaerobic metabolism is one of the primary fallback energy 

generating mechanism in all cell systems, and there is continuous utilization of 

intracellular energy resources during the process of anaerobic metabolism. In the 

aerobic respiratory state, primary energy substrate glucose is metabolized through 

the process of glycolysis yielding two molecules of pyruvate, which in turn enters the 

Krebs’ cycle. Complete oxidization refers to the combination of glycolysis and Krebs’ 

cycle that yield maximum number of adenosine tri-phosphate (ATP) molecules for 

energy depending biological processes within cells. However, in the absence of 

oxidative metabolism pyruvate is metabolized through the anaerobic pathway; 

though this pathway is energy driven, there is a net gain of two ATP molecules and 

this is used for basic intra-cellular mechanisms in the reduced metabolic state. 

Primarily this energy is used to maintain ATP driven Na+/K+ pumps which are 

paramount in maintaining cellular integrity.  

 

Complete intracellular energy exhaustion is associated will cell death; however 

maintenance of cellular integrity is an energy dependent process. Plasma membrane 

bound Na+/K+ pumps are primarily responsible in maintaining the efflux of Na+ from 
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the intracellular compartment to the extracellular compartment, in exchange for K+ 

ions, and these Na+/K+ pumps are driven by ATP. In the absence of these intracellular 

accumulation of the Na+ is associated with water retention, oedema and finally 

rupture of the plasma membrane culminating in cell death. In tissues or organs, the 

degree of ischaemic tolerability is determined by many factors. Once the oxygen 

supply is halted, anaerobic metabolism takes over for a period of time, and 

generation of ATP is continued using the intracellular energy reserves, primarily 

glycogen stores. Glycogen stores provide the energy substrate for metabolism when 

there is no external supply of primary energy substrate glucose delivered in to the 

tissues. Therefore, ischaemic tolerability is relied on the amount of intracellular 

energy reserves and the anaerobic threshold of the tissue. Some organs or the tissues 

with body do not have intracellular energy reserves at all, for example neuronal cells 

in the brain, hence entirely depend on the constant supply of glucose and oxygen 

received from the circulation. Therefore the brain becomes extremely sensitive and 

even shortest periods of hypoxia leads to irreversible and permanent brain injury.  

 

The liver on the other hand is the primary metabolic organ of the body. Hepatocytes 

store large amounts of energy in the form of glycogen, and even in the fasted state 

releases glucose in to the circulation through conversion of glycogen stores to 

glucose and also through gluconeogenesis (Silva, Murphy, Richards, Wigmore, 

Bramhall, Buckels, Adams, & Mirza 2006b). The primary difference existing between 

the DCD and DBD donors was discussed in Chapter 1; donor warm ischaemia 

originating from lower oxygen saturation of peripheral blood and hypotension are 

common after treatment withdrawal in a DCD donor. The cellular systems within 

such a donor would continue to use intracellular energy stores, through anaerobic 

metabolic pathways. Therefore it could be hypothesized that the DCD grafts have 

depleted energy reserves at the beginning of the cold ischaemia, when compared 

with DBD liver grafts. Meanwhile energy utilization and intracellular metabolism is 

continued, albeit at a slower rate through cold storage which further compound the 

depletion of energy stores. Therefore it could be regarded that the added warm 
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ischaemia prior to the beginning of cols ischaemia in the DCD donor aggravate the 

ischaemic insult. 

 

Previously, our research group in Birmingham studied the changes in basic energy 

metabolism within DBD grafts using microdialysis. These studies focused on lactate, 

pyruvate, glucose and glycerol levels in selected DBD graft cohort, and shown that 

initial high lactate recorded within liver allografts rapidly cleared following 

reperfusion of the grafts. Also lower levels of pyruvate at the end of the cold storage 

were rapidly replenished after the reperfusion. When these two findings were 

combined together, a calculated Lactate/pyruvate ratio was higher in the cold 

storage with the reversal of this ratio following the reperfused state (Figure 4-1). 

Previous studies have shown that increased lactate/pyruvate ratio is a hallmark of 

ischaemia and the evidence is origination from virtually every human tissue. 

Although proven in the DBD liver transplantation setting, comparative energy 

reserves assessment has not been carried out with DCD liver grafts. At the outset we 

hypothesized that DCD liver grafts should have more combined ischaemic damage 

due to donor warm ischaemia and cumulative cold ischaemia. We therefore 

anticipated that significant difference between the basic energy metabolic markers 

between the DCD and DBD grafts.  
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Figure 4-1: Mean (standard error of mean) of lactate, pyruvate and calculated lactate: pyruvate ratio; 
showing initial high levels. Lactate/pyruvate ratio was initially high in the immediate post reperfusion 

period and then dropped to baseline levels 
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4.2 Methods 

4.2.1 Microdialysis analyser and colourimetry 

The ISCUS Microdialysis Analyzer (CMA Microdialysis®, Stockholm, Sweden) is a 

third generation, clinical chemistry analyzer specifically designed to handle the 

extremely small microdialysis sample volumes (figure 4-2; reproduced from product 

note ISCUSfelx.pdf http://www.mdialysis.com/analyzers/iscusflex-for-point-of-

care). The analyzer uses enzymatic reagents and colorimetric measurements to make 

chemical analyses of lactate, pyruvate and glycerol. The reagent enzymatically 

oxidizes the substrate, and hydrogen peroxide is formed, which is detected through 

its peroxidase-catalysed reaction with a chromogen. The final product of this series 

of reaction is the formation of red-violet end product quinoneimine or 

quinonediimine according to the analyte under experiment and measured 

photometrically at 546nm wavelength (Nowak, Ungerstedt, Wernerman, Ungerstedt, 

& Ericzon 2002a). The kinetics of the reaction is based on the rate of the enzymatic 

reaction as an increase in the absorption over 30seconds. The reaction rate depends 

on the concentration of the analyte. In simple terms, higher the concentration of 

measured analyte present in the microdialysate yields a higher absorbance curve 

which is returned in comparison of absorbance versus time curve obtained from a 

standard solution with calibrator.   

 

Figure 4-2: The ISCUS microdialysis analyser (reproduced from product note ISCUSfelx.pdf 
http://www.mdialysis.com/analyzers/iscusflex-for-point-of-care)   
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Microdialysis analyser was originally designed for easy bedside monitoring of 

metabolic compounds and easy to operate. This kinetic enzyme analyser could be 

used to analyse various basic metabolites when used in conjunction with the 

appropriate reagent. Each sample measurement takes up to 30minutes when used in 

the analysis of multiple samples and assessment of different analytes within the 

same sample; the throughput time is 90 seconds per sample. The detector used in the 

analyser is a single beam filter meter and the light source is a Class 1 LED light. The 

detector cell holds 2µl of sample and maintained at 370C. The analyser could test up 

to 16 samples could be loaded in to the analyser at any given time. All reagents are 

supplied by the manufacture in 6ml ampoules that should be used within 5 days after 

opening.  

 

4.2.1.1 Lactate  

The lactate in the microdialysis fluid is first oxidised by lactate oxidase with the 

formation of pyruvate and hydrogen peroxide, which in turn reacts with 4-

chlorophenol and 4-amino-antipyrine. This reaction is catalyzed by peroxidase 

(POD) and yields the red-violet coloured quinoneimine (figure 4-3). The minimal 

sample volume required is 0.2 μL per measurement and the linear range that could 

be detected by the analyser ranges between 0.1-12 mmol/L.  
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Figure 4-3: chemical reactions leading to the colorimetric detection of lactate present within sample 
by the microdialysate analyser 

 

4.2.1.2 Pyruvate 

The enzymatic reactions leading to the colorimetric detection of pyruvate is different 

to that of lactate, and pyruvate in the tested sample is enzymatically oxidized and the 

end product is quinonediimine instead of quinoneimine (figure 4-4). The initial 

reaction is oxidation of pyruvate catalysed by pyruvate oxidase with the formation of 

hydrogen peroxide, which then reacts with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-

toluidine and 4-amino-antipyrine. This reaction yields the red-violet coloured 

quinonediimine. Much higher sample volumes are required for pyruvate 

measurements (0.5µL).  
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Figure 4-4: Chemical reactions leading to the detection of pyruvate concentration of a sample by the 
microdialysate analyser 

 

 

4.2.1.3 Lactate/pyruvate ratio 

Lactic acid is H+ ion donor and dissociated in to lactate and hydrogen ion, and this 

causes intracellular acidosis which is a protective mechanism. As some degree of 

cellular damage is inevitable during the preservation these molecules are readily 

pass through the damaged cell membranes thus these molecules could present in the 

extracellular compartment. The degree of lactic acidosis corresponds with the degree 

of tissue ischaemia and probably directly proportionate. There is increasing evidence 

to suggest that lactate/pyruvate ratio is better marker of energy depletion of a tissue 

(Jansson et al. 2009). With more and more pyruvate being metabolized through 

anaerobic metabolism, catalysed by lactate dehydrogenase enzyme the intracellular 

pyruvate stores are depleted with prolongation of cold ischaemia time. In the 

absence of external glucose source, generally delivered to the cells by the blood flow 

in the living state, the only other source of pyruvate generation is the breakdown of 

intracellular energy stores, in the form of glycogen breakdown.  
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4.2.1.4 Glycerol 

Glycerol present in the microdialysate is initially phosphorylated by adenosine 

triphosphate and glycerol kinase to form glycerol-3-phosphate, which is 

subsequently oxidized in the presence of glycerol-3-phosphate oxidase forming 

hydrogen peroxide. This in turn reacts with 3,5-dichloro-2-hydroxy-benzene 

sulphonic acid (DCHBS) and 4-amino-antipyrine which is catalyzed by peroxidase 

(POD). The end product of this series of chemical reactions is the formation of violet 

coloured quinoneimine (figure 4-5). Similar to the pyruvate measurements above, 

0.5µL of sample fluid is required for each run of the analysis.  

 

 

Figure 4-5: Chemical reactions leading to the detection of glycerol concentration of sample by the 
microdialysate analyser 

 

Overall, the measurement of lactate, pyruvate and glycerol concentrations in each 

microdialysis sample consumes up to 12µL of microdialysis fluid. Whilst these are 

direct measurements, the lactate/pyruvate ratio was calculated using the above 
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readings, as it was the lactate/pyruvate ratio which is regarded as the better marker 

of metabolic strain of a given tissue rather than any one or both of these metabolites 

in isolation.  

 

4.2.2 Statistical analysis 

Statistical program for Social Statistics (SPSS) version 21.0 (IBM) was used for 

statistical analysis. Comparison of median distribution of Lactate, Pyruvate and L/P 

ratio between groups at each sampling time point was carried out with 2-

independent samples Mann-Whitney U test. The Friedman test for k-dependent 

samples was applied to compare the trend of Lactate, Pyruvate and L/P ratio within 

each group. Significance was assigned at p<0.05 at 95% confidence interval. 

 

4.3 Patient and graft characteristics 

In this study, a total of 30 liver grafts were studied (DCD; n=10 and DBD; n=20). The 

DCD grafts were procured according to the United Kingdom guidelines, and following 

the treatment withdrawal donor warm ischaemia time (dWIT) was calculated from 

the onset of systolic blood pressure<50mmHg or oxygen desaturation measured by 

pulse oximetry <80% (whichever came first) to the time of institution of the cold 

perfusion in the donor. Grafts were procured and cold stored as described in the 

Chapter 2. The median dWIT time was 22 (13 – 28) minutes in the DCD grafts. 

Among the recipients receiving these grafts, the disease aetiology and the indication 

for LT were varied however there was a roughly equal distribution of cases present 

between the DCD and DBD groups. The recipient demographics and the indications 

for the LT are summarized in table 4-1.  
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Table 4-1: Demographics of liver transplant recipients, donors and liver allografts 
between DCD and DBD groups in the study group; both groups are comparable for 

donor, graft and operative characteristics apart from the dWIT  

 DCD group (n=10) DBD group 
(n=20) 

Significance 

Recipient age (y) 55 (41 – 66) 55 (26 – 66)  

Indication for transplant1 

- ALD 
- HCV 
- HBV 
- PBC 
- PSC 
- OTHER2 

 
03 
03 
02 
01 
- 
01 

 
06 
05 
01 
03 
03 
02 

- 

MELD at transplant 12 (7 – 22) 16 (6 – 26)  

Donor warm ischaemia 
time (dWIT) 

22 (13 – 28)min N/A - 

CIT elapsed prior to 
sampling (median/range) 

250 (44-357)min 238 (53-534)min 0.62* 

Total CIT (median/range) 407 (257-651)min 464 (284-
817)min 

0.32* 

Total microdialysis 
sampling duration 
(median/range) 

208 (150-380)min 227 (101-
307)min 

0.26* 

Implantation time 36 (30-65)min 41 (31-59)min 0.70* 

Macrosteatosis of the 
grafts     (t-1) 
     - none 
     - mild 
     - moderate 
     - severe 

 

02 
08 
- 
- 

 
 
03 
16 
01 
- 

N/A 

Microsteatosis of the 
allograft biopsy (t-1) 
     - none             
     - mild 
     - moderate 
     - severe 

 
 
01 
08 
- 
01 

 
 
02 
15 
02 
01 

N/A 

Degree of glycogen 
depletion  (t-1) 
     - no depletion             
     - mild 
     - moderate 
     - severe 

 
 
- 
02 
05 
03 

 
 
04 
05 
07 
04 

N/A 

1 Hepatocellular carcinoma was the primary indication in n=5 and n=4 in DCD and DBD groups 
respectively; 2 other indications included Wilsons Disease, Polycystic disease and Non-alcoholic 
steatohepatits, *Mann-Whitney U test; significance p=0.05 at 95% confidence interval 
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Liver grafts in both groups had been stored in the cold phase for an equal amount of 

time prior to the insertion of the microdialysis catheter (250min and 238minutes 

respectively for DCD and DBD grafts; p=0.619). The median sampling duration 

between the two groups, and the final overall CIT was not different between the two 

groups (p=0.260 and p=0.328 respectively). The implantation technique of liver 

grafts was standard in both groups and there was no significant difference in 

implantation time between the groups (table 4-1) 

 

Histological examination of the graft biopsies obtained during the cold phase 

revealed presence of low degree of steatosis. This may reflect the selective and 

cautious use of liver grafts in the transplant setting owing to the adverse effects that 

are associated higher of steatosis. None of the grafts had severe macrosteatosis, 

whilst only one graft from each group had severe microsteatosis. Whereas more 

strikingly in the histological assessment, the degree of glycogen depletion appeared 

to be more abundant in the DCD grafts; 8/10 (80%) grafts in this group had 

moderate or severe glycogen depletion compared with 11/20 (55%) in the DBD 

group at cold storage.  

 

4.4 Results 

4.4.1 Interstitial lactate and pyruvate level 

The DCD liver grafts had significantly higher lactate levels compared with DBD grafts 

during cold storage sampling [11.6 (0.4 – 27.0) mmol/l vs. 1.2 (0.2 – 6.0) mmol/l; 

p=0.015; Mann Whitney U test]. This difference was seen only in the cold storage 

microdialysis sampling and the first sample immediately post reperfusion did not see 

any significant difference between the interstitial lactate levels due to rapid 

clearance. This rapid clearance continued in these grafts at each 6 hour interval up to 

48 hours in both groups (figure 4-6). Lactate levels were significantly reduced 
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following the reperfusion compared with the cold phase sampling in both DCD and 

DBD grafts (p=0.020 and p=0.001 respectively; Friedman test). 

 

 

Figure 4-6: Median lactate levels in microdialysate samples obtained from cold phase sampling 
through to 48hours post reperfusion; comparison between graft types (p<0.05) 

 

The median pyruvate level or distribution was not different between the DCD and 

DBD grafts in the cold phase sampling, although there was a tendency for low 

pyruvate levels in DCD grafts [10.5 (2.0 – 47.0)µmol/l vs. 20.1 (1.0 – 30.0) µmol/l 

respectively, p=0.198; Mann-Whitney U test] (Figure 4-7). Pyruvate levels of the 

grafts in both groups progressively increased at 6 hour interval samples from the 

time of reperfusion (p=0.001; Friedman test) 
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Figure 4-7: Median pyruvate levels in microdialysate samples from cold storage sampling through to 
48hours post reperfusion; comparison between graft types showing that both DCD and DBD grafts 

had lower levels pyruvate (p=n.s) at the end of the cold storage and these were progressively 
replenished upon reperfusion. 

 

 

Calculated lactate/pyruvate (L/P) ratio (median) in the DCD grafts was 792 (120-

2100) and was significantly higher than that of DBD grafts [38 (6-863); p=0.001, 

Mann Whitney U test] in the cold phase (Figure 4-8). The lactate/pyruvate ratio in 

the DCD group of grafts rapidly declined upon reperfusion and normalized after 12 

hours of reperfusion (Figure 4-9).  
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Figure 4-8: Comparison between calculated lactate/pyruvate ratio between DCD and DBD grafts 
during the cold phase sampling; DCD grafts had greater energy depletion represented by higher 

lactate/pyruvate ratio in the cold phase (p<0.05) 

 

 

 

 

Figure 4-9: comparison of lactate/pyruvate (median) trends between the DCD and DBD grafts from 
cold storage through to 48hours post reperfusion; the higher lactate pyruvate ration present in the 

DCD grafts in the cold phase rapidly reversed and comparable ratios are seen upon reperfusion 
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4.4.2 Glycerol levels 

The DCD grafts yielded slightly higher levels of glycerol during cold phase sampling 

compared with DBD grafts [225.1 (12 – 585)µmol/l vs. 127.5 (11 – 1303)µmol/l 

respectively], but this did not reach statistical significance (p=0.700; Mann Whitney 

U test). Rapid clearance of interstitial glycerol was noted in both types of grafts and 

beyond 12 hours of reperfusion and this is the likely result of washout of free 

glycerol from the reperfused graft and clearance from the circulation. Glycerol levels 

were normalised in both types of grafts beyond 12 hours (figure 4-10). 

 

 

Figure 4-10: Comparison of median glycerol levels between DCD and DBD grafts from cold storage 
through to 48hours post reperfusion; DCD grafts had non-significantly elevated interstitial glycerol 

levels  

 

 

4.4.3 Graft outcomes 

In this selected cohort of patients, 4 cases of graft failure were observed. Three cases 

(DCD, n=2 and DBD, n=1) of graft failure were attributed to PNF, whereas in the 

remaining case the graft function and patient recovery were unventful until the 8th 

post operative day when the patient suddenly developed massive non-thrombotic 
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infarction (NTI). The L/P ratios of these patients were plotted against the median 

L/P ratio of the entire cohort (figure 4-11). The median L/P ratio in the cold storage 

sampling in those with good early graft function (54.2) was lower than actual values 

in all 4 cases of graft failure (ranged between 143.5 – 1543). This was not statistically 

tested due to small sample size. The t-1 allograft biopsies of PNF cases showed 

moderate (grade II) in n=2 and in the remaining case severe (grade III) glycogen 

depletion. All three post reperfusion biopsies (t0) showed severe glycogen depletion.  

 

 

Figure 4-11: Comparison of median lactate/pyruvate levels of failed allografts due to poor function 
against those with successful outcomes; the bottom straight line represents the median values for 
lactate/pyruvate in all successful grafts, and the failed allografts showed greater lactate/pyruvate 

ratios compared with successful grafts 

 

 

4.5 Discussion 

Previous studies from our research group documented changes in the glucose 

metabolism pathway from the donor operation to cold storage of liver grafts 

obtained from DBD donors  and increased L/P ratio during the cold storage has been 



 

77 

 

attributed to severity of IR injury (Nowak et al. 2002c;Silva, Murphy, Richards, 

Wigmore, Bramhall, Buckels, Adams, & Mirza 2006b;Silva et al. 2008). Whilst 

complimenting some of the findings of those studies, the presented data in this study 

reports the key differences that exist in basic metabolism with reference to DCD and 

DBD grafts. Apart from the inherent differences surrounding organ donation in DCD 

grafts with relevance to dWIT, all grafts in this study were comparable in terms of 

macroscopic quality of the graft, microscopic appearance (macro-steatosis) and both 

CIT and implanatation times. In this regard, the metabolic changes discovered in the 

cold storage in this study may be attributed to the added dWIT in DCD grafts, which 

is the key difference between the two types of grafts.  

 

The higher lactate/pyruvate ratio in this study was primarily due to intial higher 

lactate levels in the interstital space of the DCD grafts. Though the pyruvate levels 

were relatively lower in the DCD grafts, these grafts were not totally depleted of 

primary energy substrate which was reassuring finding that may have led to the 

successful outcomes in the majority of DCD grafts. Higher lacate levels could be 

explained by the lack of tissue perfusion following treatment withdrawal of DCD 

donors. Hypotension and reduced oxygen saturation both contribute to lack of 

oxygen delivery at tissue level. This in turn leads to slowing down of oxidative 

metabolism and switching on the anaerobic metabolic pathways to generate ATP that 

maintains cellular integrity(Brinkkoetter et al. 2008;Vajdova et al. 2002). Whilst the 

donor core temperature mainatained at room temperature near the “agonal phase”, 

cellular metabolism proceeds at the usual rate until the organs are cooled, hence the 

increased demand for intracellular energy. Higher lactate is thus generated in DCD 

grafts by more and more pyruvate being metabolised throgh anaerobic metabolism.  

 

Tissue acidosis is detrimental to cellular viability and persistent acidosis augments 

cellular injury by widespread apoptosis. The mechanisms involve so called of 

mitochhondrial permeality transition (MPT) pathway and pH paradox (Lemasters et 

al. 1998). Interstitial acidosis is inevitable in cold preservation of organs. The basic 
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metabolism within cellular systems is significantly reduced, but not completely 

halted by hypothermia. Each 100C degree drop in the environment is likely to reduce 

the metabolism by 1.5-2.0 fold, thus liver grafts stored in 0-40C prior to the 

implanatation are likely to retain up to 10% of basic metabolism, energy for which is 

primarily driven by anaerobic metabolism (Belzer & Southard 1988). Upon 

reperfusion of liver grafts in the new recipient, reversal of energy balance occurs 

with rapid restoration restitution of pyruvate through glycolysis that enter the Kreb’s 

cycle for oxidative metabolism (Takada, Taniguchi, Fukunaga, Yuzawa, Otsuka, 

Todoroki, Iijima, & Fukao 1997). Until this phase occurs, anaerobic metabolism 

continues with continous production of metabolic waste lactate, which is primarily 

responsible for tissue acidosis (Dutkowski et al. 1998). Data in this study is 

insufficient to attribute the graft failures to increased lactate and L/P ratio; however 

it should be noted that all three PNF grafts had initial high L/P ratio during the cold 

storage and includes one DBD graft. The association between higher L/P ratio and 

PNF should therefore be further studied. 

 

Relative increase in interstitial glycerol probably reflects higher degree of cellular 

injury in DCD grafts in the presence of acidosis (Boutilier 2001;Monbaliu et al. 

2008;Vollmar et al. 1994). This increased glycerol levels may indicate increased cell 

lysis by apoptosis however this does not appear to be overwhelming in DCD grafts, 

again a reassuring finding in the liver grafts used in the transplantation setting 

(Hillered et al. 1998;Hogberg et al. 2012a;Hogberg et al. 2012b;Nowak, Ungerstedt, 

Wernerman, Ungerstedt, & Ericzon 2002c). The finding of higher interstitial lactate, 

L/P, pyruvate and the trend towards increased glycerol in DCD grafts probaly 

provided more insights in to the metabolic changes in the DCD grafts during cold 

preservation. These observations are consistent with previous animal models 

examining ischaemia reperfusion injury through microdialysis (Nowak et al. 2003b). 

Traditional organ preservation fluids have been designed to minimise the tissue 

acidosis being built up during cold storage (Straatsburg et al. 2002). Increased 

acidosis in DCD grafts prior to the commencement of organ preservation is probably 

the hallmark difference between the two types of grafts, and the buffering capacity of 
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the traditional perfusion is probably insufficient to cope with the existing extent of 

interstitial acidosis. This data probably calls for further studies in minimising graft 

acidosis in DCD grafts by intervention prior to the organ procurement or during cold 

preservation. These methods may include machine perfusion or in-situ regional 

normothermic perfusion where the behaviour of the potential graft may be further 

assessed and if required modulated (Brockmann, Reddy, Coussios, Pigott, Guirriero, 

Hughes, Morovat, Roy, Winter, & Friend 2009;McLaren & Friend 2003).  

 

In summary, the data herein examines the key differences in the basic cellular 

metabolism in liver allografts, where DCD grafts have a higher interstitial lactic 

acidosis and L/P ratio during cold storage. Rapid clearance of lactate is noted 

following reperfusion of the grafts, and after 48 hoours of reperfusion, no significant 

difference existed between the functioning DBD and DCD grafts. There is a tendency 

towards increased glycerol levels in DCD grafts denoting higher degree of cellular 

injury, and the non-functioning liver grafts had above average interstitial acidodis. 

These findings suggests further studies on modulation of basic energy levels in the 

grafts along with improved preservation techniques to avoid unwarranted severe 

acidosis.  
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CHAPTER 5 KEY METABOLITE FEATURE DIFFERENCES 

BETWEEN DCD AND DBD LIVER GRFATS 

IDENTIFIED THROUGH CEAD BASED 

METABOLOMICS 

 

The work outlined in this chapter was largely researcher’s own work performed in 

collaboration with Dr. Doug Richards from the School of Clinical and Experimental 

Medicine at the University of Birmingham performing microdialysis sample analysis 

through CEAD.  The contribution from the researcher included performing 

microdialysis sampling, clinical data collection. The researcher also initiated and 

developed links with the Bioinformatics and High-throughput Analysis Lab, Center for 

Developmental Therapeutics, Seattle Children’s Research Institute, Seattle, Washington 

for bio statistical input, with data analysis and interpretation performed through 

clinical transplantation perspective. The researcher wrote the manuscript, with 

contribution by co-authors and the manuscript is provided in appendix 3; OMICS. 

2014;18(12):767-77. doi: 10.1089/omi.2014.0094 

 

 

5.1 Introduction 

Moving on to the study of basic metabolomics aspects of the transplanted liver grafts 

we used the microdialysate samples from grafts to using coulometric electrochemical 

array detection. The laboratory analytical input for this part of the study was given 

by the School of Clinical & Experimental Medicine, College of Medical & Dental 

Sciences at the University of Birmingham. Chapter 2 described in detail the 

coulometric electrochemical array detection (CEAD) and statistical analysis 

techniques which were supported by external collaborators. The feasibility of CEAD 
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as an analytical platform was described in previous proof of principle study as 

outlined in chapter 3. To date this was the only clinical study involving CEAD in the 

liver transplant setting. Although CEAD analysis in the previous study failed to 

underpin any biomarkers, which was beyond the scope of pilot study, the present 

study involved a much larger group of liver grafts used in the clinical transplantation 

setting and we aimed to identify key metabolite feature differences through this 

approach.  

 

5.2 Coulometric electrochemical array detection (CEAD) 

All microdialysis samples were analyzed on the Coularray 5600A 16-channel 

metabolomics system, under the control of Chromeleon software (Thermo Fisher 

Scientific, UK). The column used was a Luna 5µ C18(2) (100 x 4.6mm) (Phenomenex, 

UK), maintained at a temperature of 35oC. Mobile phase A consisted of 20mM sodium 

dihydrogen phosphate, and 1.5x10-4M sodium heptane sulphonic acid, adjusted to pH 

3.2. Mobile phase B consisted of 95% (v/v) methanol, 5% deionised water, and 

1.5x10-4M sodium heptane sulphonic acid. Mobile phase flow-rate was maintained at 

800µl/min throughout and the gradient profile over the 45 min run time is shown in 

figure 5-1.  
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Figure 5-1: The curve displays the percentage of mobile phase B in the eluent over the 45 minute time 
period for each sample injection, the remainder being mobile phase A (Perera et al. 2014a) 

 

In the coulometric array, cell 1 was set at a potential of -150 mV, cell 2 at 0 mV, with 

cells 3-16 ranging from 60 to 840 mV, in 60 mV intervals. Aliquots of the untreated 

microdialysis samples (5 µl) were injected, and data acquisition stopped at 38 

minutes. In addition, after every 10 sample injections, a reference standard 

containing 27 known electroactive compounds (each at a concentration of 5 µM) was 

also injected to monitor for retention time drift and changes in electrode sensitivity. 

Each of these reference compounds was also characterised individually to determine 

its retention time under the above conditions, and the cell in which maximum 

oxidation occurred. Raw chromatographic data from individual microdialysis 

samples were stored as electrode-time maps, showing the signal from all 16 cells at 

the time that any peak was detected. In order to compensate for the inevitable small 

differences in retention times, both between and within batches, proprietary 

Coularray software was used to align the peaks from each microdialysis sample to a 

reference chromatogram, prior to pattern recognition analysis. This was achieved by 

the alignment of 3 amino acid peaks (methionine, tyrosine and tryptophan) that were 

present in every sample. Following peak alignment, the data were compressed to 

produce 866 time windows across the chromatogram (from 1.5 to 37.5 min). The 
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average signal output across all 16 cells of the array was displayed for each of these 

time windows. 

 

5.2.1 CEAD sample and data analysis:  

The CEAD data were formed into 3 analysis datasets consisting of the bench sample, 

the first post-reperfusion sample (mainly at 6 hours, but at 12 hours for 7 patients), 

and a time trend analysis set consisting of all post-reperfusion samples from 6 to 48 

hours. Some patients did not have data in all datasets, 4 patients out of the 40 did not 

have a bench sample, 2 patients did not have a post reperfusion sample at 6 or 12 

hours, and finally not all patients had samples analyzed at all post reperfusion time 

points; overall there were 280 post-reperfusion samples analyzed from 39 out of 40 

patients. The 3 datasets were processed separately prior to data analysis. 

 

First, each sample was normalized by dividing by the median signal intensity of each 

sample. This was done separately for a window above and a window below 7 

minutes since signal intensity was much higher prior to 7 minutes. After 

normalization only windows where the maximum signal across samples was above a 

noise threshold were retained. Then windows were grouped into peaks using a 

heuristic peak finding algorithm (Rolinski et al. 2007). The algorithm identifies peaks 

by thresholding for the minimum height of peak and the drop between peaks 

required separating peaks. Fairly liberal parameters of 0.5% of the maximum peak to 

retain a peak and 5% drop between peaks to separate peaks were used to avoid 

merging separate metabolite peaks. Peak areas were calculated by summing all 

windows within a peak for each sample. A retention time was assigned using the 

window at the maximum of the peak. For putative identification of metabolite peaks, 

retention times were matched to the mean values above (+/- 5%), and in addition 

the potential at which maximum oxidation occurred was matched (+/- 60 mV) (table 

1). Metabolites containing more than one oxidisable group may have more than one 

maximum potential, and this is again characteristic for identification purposes.  
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The statistical analysis for the metabolite data was conducted using methods similar 

to those used previously for proteomics and microarrays (Higdon et al. 2013;Kolker 

et al. 2012;Smyth 2004). First, peak areas were log transformed. Bench and 1st 

reperfusion datasets showed similar spreads across patients after transformation 

but were re-centered using a mean correction. However, the time-trend dataset 

showed an increase in variation as post-reperfusion time increased therefore these 

data was also scaled by the standard deviation prior to analysis. T-tests and linear 

regression models were fit to individual peaks from the bench and first reperfusion 

datasets to find associations between metabolite peak intensity and donor type, cold-

ischemia time, and the interaction between donor type and ischemia time. 

Expression ratios and P-values were reported for each comparison and metabolite 

peak. Repeated measures ANOVA was applied to each peak in the time trend dataset 

to determine if there were any overall trends versus post-reperfusion time and 

whether those trends varied with donor type and cold ischemia times. In addition, 

datasets were created for the mean of all post-reperfusion samples and the slope 

over time (calculated by a linear regression versus post-reperfusion time) for each 

metabolite peak in order to describe broad shifts in metabolite peak intensity and 

general upward or downward trends in intensity. 

 

5.3 Patients and methods 

A total of 40 adult patients undergoing elective liver transplants excluding those 

undergoing emergency liver transplantation, re-grafts or split liver transplants were 

included. A hepatic microdialysis catheter was introduced to the liver graft in the 

cold phase as described previously and cold storage samples were collected. This 

was done towards the end of the cold storage when the liver grafts arrived in the 

transplant centre for implantation, and during the bench procedure of liver graft 

preparation. As a result a variable time period of cold ischaemia time has been 

elapsed prior to the insertion of microdialysis catheter and this was recorded. A fresh 

catheter for post reperfusion sample collection was inserted to each studied graft 
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towards the end of the transplant operation and serial sample collection was carried 

out until 48 hours of reperfusion.  

 

The study group consisted of 13 DCD liver grafts and 27 DBD whole liver grafts. The 

donor characteristics, the cold ischaemia time elapsed before insertion first 

microdialysis catheter, total cold ischaemia time, implantation time of each graft and 

overall ischaemia reperfusion injury assessed at the end of reperfusion obtained 

through a liver biopsy histological examination according to a previously described 

methods have been summarized in table 5-1. As with our previous study the disease 

distribution between the DCD and DBD group was heterogeneous, meanwhile the 

recipients’ age distribution was similar. The DCD group had less advanced liver 

disease and this was due to the fact DCD grafts being marginal, physiologically more 

stable patients were selected for transplantation according to the unit’s practice 

policy. Important finding was that the liver grafts were obtained from donors with 

otherwise similar characteristics in terms of age, BMI and graft steatosis. The only 

difference between these two groups was therefore the donor warm ischaemia 

incurred by the DCD donors which is related to the nature of organ donation. The 

median donor warm ischaemia time was 13 minutes whilst the maximum warm 

ischaemia time of the grafts in this cohort did not exceed the current accepted time 

limit of 30 minutes.  

 

Similar time duration in the cold storage had been elapsed before insertion of the 

cold phase microdialysis catheter in each group and the cold phase sampling time 

was not different. Furthermore overall cold ischaemia time elapsed prior to the 

implantation was similar between the group and these findings reduced the bias of 

attributing any metabolite differences detected in CEAD analysis to increased cold 

ischaemic injury.   
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Four (n=4) liver grafts did not yield adequate samples material for CEAD analysis. 

This was due to the fact that bench phase was so quick that the liver graft was taken 

out of ice for implantation sooner. Total of 36 bench samples and 280 post-

reperfusion microdialysate samples were analyzed.  

 

5.4 Results 

5.4.1 Overall metabolic activity detected by CEAD 

Overall, the donor types do group together based upon the bench sample and first 

reperfusion metabolite expression patterns as can be seen in the clustering on top of 

figure 5-2. However, the metabolite patterns are not sufficient to completely separate 

the donor types (DCD vs. DBD).  

 

5.4.2 Bench Samples – Donor Type and Cold Ischemia 

In the analysis of the bench samples (table 5-2) below indicates there are metabolites 

that are over-expressed in DCD donors occurring at peaks around 3.8 minutes, 5 and 

10 minutes having expression ratios near 3 fold. In addition, metabolites are over-

expressed in the DBD donors at peaks occurring at 6.5, 12 and 14.5 minutes with 

expression ratios near 2 fold. When examining the trend with cold ischaemia there 

were peak at 12 and 27 minutes where metabolite levels increase with increasing 

cold ischemia time for the bench samples (roughly a 25 % increase with each 100 

minute increase in time).  These relationships are shown in figure 5-3 where the 

trend is evident but with large amount of variation about the trend. 
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Table 5-1: The recipient demographics, donor demographics and graft characteristics including 
steatosis, ischaemia times and degree of ischaemia reperfusion of assessed by histological grading 

following reperfusion 

 Characteristic DCD 
group 
(n=13) 

DBD 
group 
(n=27) 

Significance* 

Recipient Background liver disease 
- ALD 
- PBC 
- PSC 
- Viral hepatitis (HBV/ HCV) 
- NASH 
- Polycystic disease 
- Cryptogenic/Autoimmune 
- Wilson’s disease 

 
03 
02 
01 
05 
01 
01 
- 
- 

 
11 
03 
03 
05 
- 
02 
02 
01 

- 

Recipient age (median/range) 53 (41 – 
66) 

55 (26 – 
67) 

0.691 

Male; female ratio 07;06 17;10 - 
MELD at transplant (median/range) 12 (7 – 22) 16 (06-26) 0.045 

Donor Age (median/range) 51 (18 – 
67) 

52 (21 – 
72) 

0.512 

BMI 24 (20 – 
31  

25 (17 – 
36) 

0.588 

Donor male: female ratio 04:09 11:16 - 
Donor warm ischaemia time 21 (13-28) N/A - 

Graft Macro-steatosis 
- No steatosis 
- Mild 
- Moderate 
- Severe 

 
02 
11 
- 
- 
 

 
04 
22 
01 
- 

- 

CIT elapsed before bench 
microdialysis (min) 

237              
(44 – 357) 

238              
(53 – 534) 

0.441 

Duration of bench microdialysis 
(min) 

219           
(150 – 
380) 

224            
(101 – 
333) 

0.754 

Overall CIT before reperfusion (min) 428           
(256 – 
651) 

471            
(284 – 
817) 

0.345 

Graft implantation time 40 (31 – 
59) 

37 (30 – 
65) 

0.197 

Degree of PRI by histology 
- Mild 
- Mild-moderate 
- Moderate 
- Moderate-severe 
- Severe 

 
03 
06 
01 
02 
01 

 
11 
09 
05 
01 
01 

- 

 
Abbreviations: DCD – donation after circulatory death, DBD – donation after brain death, ALD – 
alcoholic liver disease, PBC – Primary biliary cirrhosis, PSC – primary sclerosing cholangitis, HBV – 
hepatitis B virus, HCV – hepatitis C virus, MELD – model for end stage liver disease, BMI – body mass 
index, CIT – cold ischaemia time, PRI – preservation reperfusion injury; N/A not applicable for DBD 
donors; * Significance p<0.05 at 95% confidence interval, Mann- Whitney U test for 2 independent 
samples  
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Figure 5-2: Heat map of normalised metabolite expression values; columns represent patient samples 
(Red - DBD, Blue - DCD) and rows represent the metabolite peaks labeled by their retention time. 

Samples and peaks are clustered by expression patterns (Perera et al. 2014a) 
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Table 5-2: Significant metabolite differences (metabolite denoted by corresponding retention time) 
between DCD and DBD grafts during cold storage sampling  

Peak voltage range ER Range PV Range 
3.85 3.04 .0003 
5.10 2.81 .018 
6.52 0.45 .003 
10.02-10.23 2.21-3.10 .03-.01 
11.98-12.10 0.57-0.39 .04-.009 
14.48 0.48 .02 
Overall Change with Cold Time (ER based on 100 min time difference) 
Peak Range ER Range PV Range 
12.10 1.28 .03 
27.02 1.34 .02 

ER- expression ratio, given as DCD grafts against the DBD grafts – figure >1.0 represents over-
expression whilst the converse denotes over-expression in DBD grafts, PV – partial variance 

 
 
 
 

 
Figure 5-3: Overall trend of selected metabolites with cold ischaemia time elapsed against metabolite 

intensity for the cold storage samples 
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5.4.3 First Reperfusion Sample – Donor Type, Cold and implantation time 

For the first reperfusion samples there were few overall differences between donor 

types. However, there were some trends with cold ischemia time and some of those 

trends differed by donor type. These are summarized in table 5-3. There were peaks 

at 2.3 and 22 minutes where metabolite levels decreased with increasing cold 

ischemia time (roughly a 20 % decrease with each 100 minute increase in time). In 

addition, there were peaks at 2.6 and 32.2 minutes where metabolite levels 

decreased for the DCD donors and increased for DBD donors (~20% for 100 minute 

increase) and there was another peak at 12.2 minutes where there was an increase 

only for DCD donors. The trends with cold ischemia time are illustrated in figure 5-4. 

There were also a few trends in the first reperfusion sample related to implantation 

time of the grafts. These include metabolite peaks at 16 and 29 minutes where 

metabolite levels increased with increasing warm ischemia time for DBD donors 

(roughly a 2 fold increase with each 10 minute increase in time). The relationships 

with warm ischemia time are shown in figure 5-5. 

Table 5-3: Main differences observed in 1st reperfusion microdialysis sample; metabolites identified 

by retention time peak 

Overall Change with Cold Time (ER based on 100 min time difference) 
Peak Range ER Range PV Range  
2.35 0.80 .03  
22.27 0.85 .03  
    
Change with Cold Time Differing by Donor Type(ER based on 100 min 
time difference) 
Peak Range ER Range PV Range Donor Type 
2.6 0.73 .001 DCD 
2.6 1.20 .001 DBD 
32.15 .82 .03 DCD 
32.15 1.16 .03 DBD 
    
Change with Warm Time Differing by Donor (ER based on 10 min time 
difference) 
Peak Range ER Range PV Range  
16.313 2.4 .04 DBD 
29.104 1.64 .01 DBD 
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Figure 5-4: Trend of cold ischaemia time with metabolic intensity (selected metabolites) for the first 
reperfusion samples (Blue corresponds DBD donors, Orange DCD donors) through CEAD analysis of 

microdialysate samples.  
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Figure 5-5: Trends of implantation time with metabolic intensity observed in the first reperfusion 
samples (Blue corresponds to DBD donors, Orange DCD donors) 

 

 

5.4.4 Mean of Post Reperfusion Samples – Donor Type, Cold and implantation 

time 

For the mean reperfusion as was the case for the first reperfusion samples there 

were few overall differences between donor types. However, there were several 

trends with cold ischemia time and some of those trends differed by donor type. 

These are summarized in table 5-4. There were peaks at 1.9 and 22 minutes where 

metabolite levels decreased with increasing cold ischemia time (roughly a 15 % 

decrease with each 100 minute increase in time). There were peaks at 10, 15.5 and 

16.3 minutes where metabolite levels increased with cold ischemia time (20 to 50% 

for 100 minute increase).  In addition, there was a peak at 2.6 minutes where 

metabolite levels decreased for the DCD donors. The trends with cold ischemia time 

are shown in figure 5-6. There were also trends in the mean post-reperfusion sample 

related to warm ischemia time. This includes peaks at 14.6 minutes where 

metabolite levels decreased with increasing warm ischemia time (roughly a 40% 

decrease with each 10 minute increase in time). There were peaks at 10, 15.4, 16.3, 
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36 and 27 minutes where metabolite levels decreased for DCD donors and increased 

for DBD donors. The trends with warm ischemia time are shown in figure 5-7. 

  

Table 5-4: Key metabolite differences for Mean of post reperfusion samples (6-48hours) through 
CEAD analsys; metablites identified by retention time 

Overall Change with Cold Time (ER based on 100 min time difference) 
Peak Range ER Range PV Range  
1.9 0.85 .03  
10.02 1.21 .01  
15.44 1.22 .02  
16.23 1.46 .02  
22.27 0.85 .04  
 
Change with Cold Time Differing by Donor Type(ER based on 100 min time 
difference) 
Peak Range ER Range PV Range Donor Type 
2.6 0.83 .001 DCD 
2.6 1.16 .001 DBD 
6.44 1.25 .03-.04 DCD 
 
Overall Change with Warm Time (ER based on 10 min time difference) 
Peak Range ER Range PV Range  
14.65 0.62 .03  
 
Change with Warm Time Differing by Donor (ER based on 10 min time 
difference) 
Peak Range ER Range PV Range Donor Type 
10.02 0.78 .005 DCD 
10.02 1.61 .005 DBD 
15.44 0.76 .001 DCD 
15.44 1.84 .001 DBD 
16.23 0.47 .001 DCD 
16.23 2.67 .001 DBD 
25.44 0.77 .02 DCD 
25.44 1.2 .02 DBD 
27.69 0.83 .02 DCD 
27.69 1.34 .02 DBD 
32.1-32.35 1.7-1.46 .001-.004 DCD 
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Figure 5-6: Trend of cold ischemia time with metabolite intensity for the mean of reperfusion samples. 
Blue corresponds to DBD donors and orange DCD donors. 
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Figure 5-7: Trend of warm ischemia time with metabolite intensity for the mean of post reperfusion 
samples. Blue corresponds to DBD donors and orange DCD donors. 
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5.4.5 Differences in Patients with Poor Graft Function patients for Bench, 

First Reperfusion and Mean Reperfusion Samples 

Overall metabolite difference of failed allografts versus successful allografts was 

compared across the different samples. However, there were only 4 patients with 

poor graft function in the dataset so the results should be viewed with caution. Also, 

the effect of patient type on ischemia time differences was not analyzed due to this 

small number. Overall, there were a few differences. These are detailed in table 5-5. 

In the bench samples at peaks occurring at 2.2, 6.5, 7.3 and 12 minutes metabolites 

were under expressed in PNF patients while they were over expressed at peaks 

occurring 3 and 10 minutes. There were not strong differences in the first 

reperfusion sample whilst there were some additional differences in the mean post-

reperfusion samples as outlined in the table 5-4.   

 

Table 5-5: Overall metabolite peak differences of failed allografts and expression ratio of such peaks. 

The peak at 10.23minutes has the highest expression ratio and identified as kynurenine 

Bench Samples 
Peak Range ER Range PV Range 
2.19 0.15 .02 
3.02 3.5 .03 
6.52 0.2 .00005 
7.31 0.26 .009 
10.23 4.1 .04 
11.98-12.1 0.41-0.29 .03-.02 
 
Mean of Post-Reperfusion 
Peak Range ER Range PV Range 
5.1-5.23 1.99-1.97 .002-.06 
32.104 2.18 .0002 
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5.5 Summary of main metabolite differences 

The reference metabolite table used in the CEAD analysis described in Chapter 2 and 

the above mentioned metabolic peaks were identified and against the reference 

table. Table 5-6 summarises the key metabolic differences between DCD and DBD 

grafts. In summary, 3 patterns of metabolite expression could be seen – over 

expression, concordant or discordant increase or decrease in metabolites in 

relevance to the cold ischaemia time. Of the metabolites over expressed, Xanthine, 

Uric acid and Kynurenine are over expressed nearly 3-fold in DCD grafts towards the 

end of cold ischaemia; however the only putatively identifiable metabolites over 

expressed in DBD grafts were 3-Nitrotyrosine (3-NT) and 4-Hydroxy-3-

methoxymandelic acid (HMMA). Differential expression of Methionine was noted in 

the first reperfusion sample between the graft types, and two other unknown 

metabolites (occurring at retention times 2.35 and 22.7minutes) gradually declined 

with increasing cold ischaemia time. Both Xanthine and 3-NT gradually declined in 

both graft types meanwhile Kynurenine showed a slow rise following reperfusion.  
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Table 5-6: Summary of key metabolites and differences observed in during each phase post 

reperfusion with relevance to the different graft types. 

Metabolic 
peak 
retention 
time (mV) 

Putative 
metabolite 

Main difference 
observed phase 

DCD grafts DBD grafts 

2.35 Unknown 1st Reperfusion 
sample 

20% decline with 
each 100min increase 
in CIT 

20% decline with each 
100min increase in CIT 

2.6 Methionine  1st Reperfusion 
sample 

reduced by 20% with 
each 100min increase 
in CIT 

Increased by 20% with 
each 100min increase in 
CIT 

3.8 – 3.85 Uric acid Bench phase over expressed by 
nearly 3 times 

- 

Post reperfusion 
time trend 

Significantly differ in 
the post reperfusion 
phase (p=0.001)  

- 

5.0 – 5.2 Xanthine Bench phase over expressed by 
nearly 3 times 

- 

Post reperfusion 
time trend 

gradually reduced 
over the time 

Gradually reduced over 
the time 

6.5 HMMA (weak) Bench phase - Over expressed nearly 2 
times 

10.1 Kynurenine Bench phase over expressed by 
nearly 3 times 

- 

Post reperfusion 
time trend 

Slow rise post 
reperfusion 

slow rise post 
reperfusion 

12.0 Unknown Bench phase 30% increase with 
each 100min increase 
in CIT 

Over expressed nearly 2 
times 
 
30% increase with each 
100min increase in CIT 

14.4-14.6 3-NT (weak) Bench phase - Over expressed nearly 2 
times 

Post reperfusion 
time trend 

Slow decline post 
reperfusion 

slow decline post 
reperfusion 

22.7 Unknown 1st Reperfusion 
sample 

20% decline with 
each 100min increase 
in CIT 

20% decline with each 
100min increase in CIT 

27.0 Homovanillic 
acid 

Bench phases 30% increase with 
each 100min increase 
in CIT 

30% increase with each 
100min increase in CIT 
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5.6 Discussion 

 

The technological advances made in the past decade on separation and identification 

of small molecules, coupled with development of data analysis software paved the 

way for the metabolomic studies(Wishart 2005b). These are increasingly applied in 

both experimental and clinical medicine including identification of molecular targets 

in cancer treatment, biomarker discovery in the diagnosis of disease, and therapeutic 

drug monitoring (Bogdanov et al. 2008;Kaddurah-Daouk and Krishnan 2008;Rozen 

et al. 2005). Similarly metabolomics has been applied to solid organ transplantation 

although this is still in infancy (Clarke et al. 2003;Coca et al. 2007;Gok et al. 2003). 

The Coularray is a High Performance Liquid Chromatography 

(HPLC)/electrochemical detection system used for the analysis of redox-active 

metabolites and thus is highly relevant in situations where oxidative stress may 

occur including organ transplantation (Silva, Mirza, Buckels, Bramhall, Mayer, 

Wigmore, Murphy, & Richards 2006a). CEAD offers two major advantages as an 

analytical approach for metabolomics studies. The first is its very high sensitivity, 

which is far greater than that of nuclear magnetic resonance (NMR) studies, and 

superior to mass spectrometric (MS) studies. This allows it to detect metabolites 

present at a very low concentration, but which may still be clinically significant. The 

other advantage is its selectivity for redox-active metabolites, which may be of great 

value in the study of situations where oxidative stress may be a contributory factor. 

By avoiding the detection, and subsequent interference, of non-relevant metabolites 

that may be present at far higher concentrations, a more selective group of clinically-

relevant metabolites may emerge. However, this may also be considered to be a 

disadvantage as, by definition, the metabolome encompasses the full range of 

metabolites present. However, there is no single analytical technique capable of 

achieving this, at all levels of sensitivity, and metabolomics studies often encompass 

more than one analytical approach (Koal and Deigner 2010). 
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Previously, through a proof of principle study we documented the applicability of 

metabolomic studies in liver transplantation (Hrydziuszko et al. 2010b). Moving 

further, this study examines the metabolomic changes in the process of human 

orthotopic liver transplantation – covering the journey through the cold storage to 

post reperfusion in a large study cohort. From a clinical and pathophysiological 

perspective, the primary difference between the DCD and DBD grafts is the known 

donor warm ischaemia time (dWIT) incurred by DCD donors prior to organ harvest 

(Ikeda et al. 1992). The deleterious effects dWIT has on the performance of a graft 

are such that DCD grafts are categorised as marginal grafts (Strasberg, Howard, 

Molmenti, & Hertl 1994). It is well known that this difference exists due to energy 

exhaustion prior to the organ preservation initiation, however in depth knowledge of 

metabolic changes that occur in DCD grafts are required to explore the avenues of 

maximizing the utility of this graft source (Minor et al. 1998). The data in this 

manuscript attempts to bridge this information gap and to our knowledge this is the 

first human study of metabolomics in liver transplantation comparing the key 

differences between DBD and DCD grafts.  

 

The donor characteristics between the two groups in this study are similar. Graft 

steatosis has been previously reported to be a key parameter impacting the degree of 

PRI and subsequent clinical outcomes; in this study there was a very low degree of 

significant macro-steatosis, with one graft showing moderate macrosteatosis. In 

addition, the CIT elapsed prior to the insertion of microdialysis catheter, duration of 

bench sampling; the overall CIT and implantation times are comparable between the 

groups. Hence it is reasonable to assume the metabolic changes discovered in DCD 

and not DBD grafts are the result of or attributable to the dWIT superimposed on the 

DCD grafts.  

 

This study identified several key metabolites that differ between grafts. Xanthine, 

Uric acid, and Kynurenine are the three significant metabolites that were over-

expressed by DCD grafts in the cold phase. Although the former two metabolites have 
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been extensively studied in the past in ischaemia-reperfusion model, the finding of 

kynurenine is unique to our study. As the liver grafts have been perfused with 

identical preservation techniques and cold stored for a comparable time period, it is 

important to determine if these changes are indeed the result of warm ischaemic 

damage to the liver grafts. The DBD grafts over-expressed HMMA and 3-NT although 

it is not certain that the identification of these metabolites is correct. Other 

significant metabolites in relevance to the field of ischaemia reperfusion injury are 

those that increased with progressive increase in CIT. It could be speculated by 

increasing the CIT by nearly 5 hours the expression of Homovanillic acid along with 

another unidentified metabolite concentration may double, given the 30% rise for 

each 100minute increment of cold storage time. HMMA and homovanillic acid 

intermediary are end metabolic products of catecholamine metabolism, hence the 

significance of these findings may not be relevant.  

 

Kynurenine, an intermediate metabolite of essential amino acid tryptophan is 

generated by two enzyme systems; this rate limiting step of tryptophan metabolism 

is catalysed by indoleamine 2-3 dioxygenase (IDO) and tryptophan 2-3 dioxygenase 

(TDO) (Knox 1951;Mehler and Knox 1950). IDO is virtually in almost all cellular 

systems, however TDO is liver specific (Knox and Mehler 1950). The increased 

expression of kynurenine in DCD grafts is therefore more likely to be due to 

increased TDO activity, as all other enzymes downstream in the metabolic pathway 

are present in abundance and TDO is the only inducible and rate limiting enzyme in 

this pathway (Taylor and Feng 1991). TDO is inducible by an increased amount of 

substrate itself, and also by hydrocortisone and glucocorticoids (Altman and 

Greengard 1966). The grafts studied were procured from identical situations with 

preservation solution devoid of tryptophan supplementation; in addition DCD 

donors did not receive high doses of steroids such as are usually given to the DBD 

donors. The slow rise in kynurenine in both types is probably explained by routine 

prescription of hydrocortisone in the immunosuppression medication (Young 

1981;Young and Sourkes 1975), but none of these explain the over-expression of this 

metabolite in the cold stored DCD grafts. It is uncertain therefore if the TDO was 
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induced by hypoxia--to date no studies have confirmed this finding. A catecholamine 

surge in the donor and induction of TDO during the agonal phase of organ donation 

following the treatment withdrawal is a possibility. The immune- and cyto-protective 

effects of both IDO and TDO by degradation of tryptophan have been documented 

and further studies focusing this metabolite may be helpful (Mellor and Munn 

2004;Terness et al. 2002).   

 

Xanthine and Uric acid are formed by the enzyme xanthine oxidase through its action 

on the substrate hypoxanthine and a major pathway of purine nucleoside catabolism. 

Both these metabolites have been previously identified as biomarkers of ischaemic 

injury (Vajdova et al. 2000). During oxidative stress the enzymatic action of xanthine 

oxidase is increased with formation of reactive oxygen species (ROS) and uric acid. 

Although uric acid may be regarded as a scavenger against tissue injury, it is not 

known if uric acid is indeed the cause or effect. It is likely that the actual tissue 

damage is caused by ROS itself rather than uric acid and the latter is the metabolic 

by-product of an over-activated pathway. Several studies suggest uric acid as a 

marker of ischaemic damage of the liver grafts (Clavien et al. 1992), including 

occasional case studies reporting its increase in the presence of poor organ function 

following LT (Serkova et al. 2007). It is likely that tissue hypo-perfusion and 

hypoxaemia during the treatment withdrawal phase in DCD donors triggered the 

conversion of more inert enzyme xanthine dehydrogenase to xanthine oxidase (Brass 

et al. 1991). In this regard further investigation of enzyme xanthine oxidase during 

organ preservation, with emphasis on modulation of its enzyme activity in DCD 

donors could open avenues for further studies (Amador et al. 2007;Ishii et al. 

1990;Wishart 2008).  

 

A limitation of the present study is the failure to recognize three metabolite peaks 

occurring at the retention times of 2.35, 12.0 and 22.7 minutes. However, these 

metabolite peaks followed the similar trends in both types of liver grafts; therefore 

the clinical significance of these may be less relevant. The lack of information it 
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provides regarding unknown peak identification is a disadvantage of CEAD for 

metabolomics studies. Unlike NMR which may indicate functional groups present 

and MS which may provide a mass number, the identification of CEAD peaks is reliant 

on comparison of its chromatographic and electrochemical properties to known 

electroactive compounds from reference databases. Peaks of interest not identified 

by this process may be investigated further by fraction collection or replicating 

chromatographic conditions with MS detection, for example. The future of 

metabolomic studies in LT should probably focus on different approaches with 

recognition of biomarkers in different biofluids and hepatic tissue. A shot-gun 

approach to identify metabolites recognized in this study may be useful in further 

investigations; certain limitations apply to different analytical techniques. A 

combination of CEAD, NMR or FTICR mass spectrometry could be complementary to 

each other (Wishart 2008).  

 

To summarize our findings, this study investigates the use of CEAD as an analytical 

platform to investigate metabolomic changes that occur through cold storage to post 

reperfusion injury in cadaveric liver transplantation. These results provide, to date, 

data for the largest human study group examined. The majority of the metabolomic 

studies reported in the literature involved experimental models however the data 

presented herein are accumulated through real transplantation settings. Moreover, 

the metabolite differences that exist between the DCD and DBD liver grafts are the 

key findings of this study, and in this regard the finding of kynurenine as a potential 

marker of aggravated ischaemic injury over-expressed by DCD grafts is novel. These 

findings have the potential to stimulate the scientific community to further explore 

these differences, with the eventual objective of graft modulation for improved 

outcomes. The authors aim to further analyze the significance of metabolites 

identified in this study through correlation with clinical factors and their ability to 

predict graft outcomes using statistical models. We have not presented the clinical 

outcome data in the presented manuscript for a number of reasons; as this is the only 

largest study on metabolomics in human liver transplantation, the primary objective 

was set as identifying metabolic differences in each stage from cold storage to 
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reperfusion of liver allografts and those exist between DCD and DBD grafts. With this 

view point, the focus was on presenting all the relevant data and results related to 

the basic experiment and analysis.   
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CHAPTER 6 FTICR BASED MASS SPECTROMETRY ANALYSIS 

OF DCD AND DBD LIVER GRAFTS USED IN CLINICAL 

LIVER TRANSPLNATATION   

 

The work outlined in this chapter amounts to collaborative work. The researcher 

presenting the thesis was responsible for liver graft biopsy sampling during the 

operative procedures, clinical data collection and participated in sample extraction and 

analysis through FTICR, which was primarily carried out with collaboration with the 

School of Biosciences by Olga Hrydziuszko under the tutelage of Jennifer Kirwan and 

Professor Mark Viant. Biostatistics support was provided by the same research group at 

the School of Biosciences in the clinical directions provided by the researcher 

presenting this thesis under the supervision by Professor Darius Mirza and other 

collaborators. This work is currently being prepared for publication. 

 

 

6.1 Introduction 

Identifying the metabolic differences between DCD and DBD liver grafts could 

significantly improve current clinical practise by identifying biomarkers of poor graft 

function prior to transplantation. Selection of grafts from donors that exhibit such 

metabolic biomarkers could assist in clinical decision making and the exclusion of 

those organs from transplantation, thereby preventing the adverse clinical sequelae 

after transplantation. This would also help those transplant programs that are reliant 

on cadaveric donor organs for transplantation by reducing the need to perform re-

transplant operations on those who had failed liver grafts, minimizing the burden 

and demand for organs. Furthermore, identifying the metabolic differences between 

DCD and DBD liver grafts could help to identify the metabolic modifications of livers 

before and after the organ procurement from the donor that would improve the 

organ quality, an approach called metabolic therapy. This approach is justified by the 



 

106 

 

nature of current organ donation practice. In the United Kingdom alone there has 

been a steep rise in DCD donations in recent years. However, only 27% of liver grafts 

from these donors are used in clinical transplantation, with approximately 8% of 

these being excluded due to the high risk of primary non-function.  In addition, the 

majority of grafts are not even procured due to the increased time elapsed between 

the treatment withdrawal phase and circulatory death, which is beyond the currently 

accepted criteria of donor warm ischaemia time (30 minutes). Relating the metabolic 

profiles of DCD and DBD liver grafts to the outcome of the transplantation could 

supplement and expand the traditional methods to predict organ function, in 

particular early on during the transplantation procedure.  

 

Previous pilot study demonstrated the potential of Fourier transform ion cyclotron 

resonance (FTICR) mass spectrometry to detect a few thousand metabolic features 

(or peaks) in biopsies obtained from liver grafts in the cold and post-reperfusion 

phases of orthotopic liver transplantation (Hrydziuszko, Silva, PR Perera, Richards, 

Murphy, Mirza, & Viant 2010b). We observed and characterized changes in multiple 

metabolic pathways showing a rapid resumption of biochemical function within the 

grafts following reperfusion (Reich, Mulligan, Abt, Pruett, Abecassis, D' alessandro, 

Pomfret, Freeman, Markmann, & Hanto 2009). The extended study described herein 

represents a larger study group in comparison to the proof of principle study 

described in the chapter 3. Here, we expand considerably upon this initial 

investigation, specifically with the aim to investigate and characterize the metabolic 

differences between DCD and DBD liver grafts during two key phases of the liver 

transplantation, the cold storage phase (T1, CP) and post-reperfusion phase (T2, PR). 

We seek to reveal the underlying metabolic pathways associated with the clinical 

observation of reduced success of the DCD grafts.  
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6.2 Fourier Transform Ion Cyclotron Resistance – Direct Infusion 

(FTICR-DI) mass spectrometry 

6.2.1 Basis of FTICR 

Mass spectrometry is a novel analytical platform applied in the investigation of the 

metabolome and several techniques exist, and these include Fourier transform ion 

cyclotron resonance mass spectrometry (FTICR-MS), Gas chromatography mass 

spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS) and 

direct injection mass spectrometry (DIMS) (Dunn 2008;Dunn and Ellis 2005). FTICR 

has the highest high resolution power compared with other analytical methods. 

Resolution power could be simply described as the ability to separate two signal 

peaks and for FTICR this is generally over 200 000(Guan et al. 1996;Ohta et al. 2010). 

This enables the mass analyser to detect greater number of metabolites present 

within a sample. The other advantage of the FTICR technique is the highest mass 

accuracy (m calc – m exp /m calc x106), defined as the ability of a particular mass 

spectrometry analyser to accurately assign its mass closest to the theoretical mass 

value, and in the case of FTICR this could be in the range of less than 1 parts per 

million (ppm)(Schmid et al. 2000). Owing to these two properties of the FTICR 

technique, this increasingly being used to investigate complex biological systems and 

is an ideal tool for biomarker and metabolomics/proteomic studies (Zhang et al. 

2014). Rather than molecular mass itself, FTICR-MS measures compounds based on 

their mass-to-charge ratio (m/z). The m/z ratio is calculated by measuring the 

frequency at which the ion processes in a fixed magnetic field, that can simply be 

described as the ion motion or the cyclotron frequency once excited in a magnetic 

field (Dunn 2008). These frequencies, which typically are in the 100 KHz to MHz 

range, can be very accurately measured as the ions pass near the detection plates 

(electrodes). This is a fundamental difference between FTICR and other analytical 

techniques is that, in most systems ions are detected as they hit the detection plates 

whereas in FTICR the frequency of ion motion is detected as they pass near the  

detection plates or electrodes.  It is the modern electronics that makes it possible to 

accurately determine the mass within 1ppm difference increasing its resolution 



 

108 

 

power, therefore FTICR technology is increasingly used analytical studies where the 

investigation of smaller molecules. A further advantage of the higher resolving power 

over time-of-flight instruments is that it enables the study of ions of up to several 

hundred kilodaltons, allowing the study of large macromolecules such as proteins. A 

particular disadvantage however that associated with high resolution power of 

FTICR technique is the increased time taken for the analysis of samples.   

A typical mass analyser has three key stages in its analytical pathway and the 

samples can be introduced in various forms either as gas, liquid or solid forms. The 

ionization technique then converts the metabolites present in the sample in to ion 

forms. This process occurs in either in the atmospheric or sub-atmospheric (vacuum) 

pressure, using any of the modes like chemical ionization, electron impact or 

electrospray ionization. Once the ions enter the mass analyser either physical 

detection (ions hitting the detection plates) or motion detection (detection of image 

current as ions pass near electrodes) occur and the resultant electronic signal is 

transformed in to a spectral pattern. In FTICR, ions are generated from the sample by 

injection, utilising an electrospray ion source (figure 6-1). The ions are then passed 

into the FTICR cell which located in the middle of a superconducting magnetic field 

combined with electronic field which are placed perpendicular to each other. This 

electro-magnetic arrangement is termed a penning trap and is where the mass 

analysis takes place (Heeren et al. 2004).  Once the electromagnetic field is activated 

the ions are excited and exhibit a cyclotron motion that is dependent on the m/z of 

the ions and the strength of the magnetic field.  

Within the ICR cell, ions with a particular m/z ratio form an ion cloud that travel in 

an orbital trajectory in magnetic fields. The path of this orbital trajectory or the 

circular motion occurs due to the Lorentz Force (Marshall et al. 1998). The ion 

cyclotron frequency is determined by several factors and these include the strength 

of the magnetic field, the charge of the ion and the actual mass. This cyclotron 

frequency is mathematically represented as nc = zB0/πm. B0, z and m are 

respectively denoted by the strength of the magnetic field, charge and mass of the 

ion.  The efficiency of ion detection and mass resolution is further increased through 

excitation by a radiofrequency pulse making the ions move in a larger ion cyclotron 
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radius (Marshall, Hendrickson, & Jackson 1998). The final phase of ion detection is 

related to the cyclotron frequency of ions which is in turn measured by detecting an 

induced charge or an image current, as the ions pass near the detection plates. The 

induced charge can be caused by attraction or repulsion of the ions towards the 

detection plates and this alternative or oscillating current fades away with time (time 

domain)(Comisarow and Marshall 1974;Junot et al. 2010).  Fourier transformation of 

the resulting signal converts to the time domain which is then converted to 

frequency domain generating a mass spectrum (figure 6-2). A typical FTICR mass 

spectrometry spectrum returns the m/z ratio on the x-axis and the relative intensity 

of the ion on the y-axis. 

 

 

 

6-1: The schematic representation of basis of FTICT mass spectrometry (source: Department of 

Biosciences, University of Birmingham) 
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6-2: Typical example of a FTICR mass spectrometry pattern showing different metabolite peaks 

according to the respective m/z ratio 

6.2.2 Mass spectrometer 

The School of Biosciences at the University of Birmingham offers FTICR-MS facility 

through a latest LTQ Ultra design (Thermo Scientific) which has direct infusion 

capabilities and allows high throughput for large numbers of samples. This facility 

was provided for the FTICR-MS analysis by the collaborators disclosed earlier in this 

chapter (figure 6-3; courtesy Jennfer Kirwan, Department of Biosciences University 

of Birmingham).  This equipment provides highly sensitive detection of ions with 

attomole range for peptides and selected ion modes (positive and negative) could be 

operated. Its mass detection ranges from 50 to 4000kDa with resolution Up to 

1,000,000 molecules and 100,000 routinely used molecules. Its’ ion detection system 

is comprised of a dual conversion dynode detector allowing digital electronic noise 

discrimination.  
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Thermo LTQ FT ultra

Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass 

spectrometry facility in Birmingham

Ion trap

NanoMate
chip-based 
electrospray

ICR 
detector

 

6-3: The Thermo LTQ FT Ultra mass spectrometer with key elements labeled (Image courtesy – 

Jennifer Kirwan, Department of Biosciences, University of Birmingham) 

 

6.2.2.1 Tissue extraction for FTICR Mass Spectrometry Analysis 

Tissue extraction form the liver allograft biopsies was done according to the sample 

extraction protocol designed for small samples (<10mg). This technique involves 

Methanol:Chloroform:water to separate polar metabolites of the extracted tissue 

following homogenisation of the tissue sample.  

Equipment: Precellys 24 homogeniser 

  1.8ml glass vials with aluminium lined caps (Fisher TUL 520 006 J) 

  2ml Eppendorfs 

  Glass Pasteur Pipettes 

  Hamilton Syringes (Fisher 500µl) 

 

Solvents: 100% MeOH (HPLC Grade) 

  100% CHCl3 (Pesticide Grade) 

  100% HPLC grade H20 
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6.2.2.2 Tissue Extraction Protocol: 

The frozen tissue is stored in Precellys tubes with beads in -80 freezer and the 

solvents used in the tissue extraction protocol were maintained at 4ºC and kept on 

ice during the extraction phase. First MeOH is added at 32µl/mg of tissue and 

12.8µl/mg of H20 keeping precellys tubes on ice, and then the tubes were placed in 

the Precellys 24 homogeniser for 2 x 10s bursts at 6400 rpm. The homogenised 

mixture is then removed into a clean 1.8ml glass vial using a Pasteur pipette whilst 

maintaining the temperature of the glass vials on ice, 32µl/mg CHCl3 and 16µl/mg 

H20 added to each vial. Subsequently Vortex vials on full power for 30s before 

leaving on for further 10minutes. Finally the samples are centrifuged at 4000 rpm at 

4ºC for 10 minutes. At the end of the centrifugal phase samples are set on bench at 

room temperature for further 5 minutes that allow clear separation of the samples in 

to a biphasic sample with protein debris separating the upper (polar) and lower 

(non-polar) layers. Using a Hamilton Syringe, the polar phase is removed into 2 clean 

eppendorfs (1 positive, 1 negative) and if required for analysis the non-polar phase is 

also removed. Particular care is should be given here not remove any of the interface 

region, (1-2mm either side of the protein layer). The extracted samples are then 

dried using a Speed Vac Concentrator (~1h with no heat) and that can be stored at -

800C until needed.  

 

6.2.3 FTICR data analysis 

FTICR data was generated by the liver allograft biopsies that were prepared for 

metabolomics analysis as described previously (Reich, Mulligan, Abt, Pruett, 

Abecassis, D'alessandro, Pomfret, Freeman, Markmann, & Hanto 2009). In brief,  

biopsies were extracted using a methanol:chloroform:water method, separating the 

extracts into polar and non-polar fractions (Wu et al. 2008).  In total, 80 samples liver 

biopsy samples were extracted and from these one quality control (QC) sample was 

prepared by pooling a fraction of each of the 80 extracts (which was then aliquoted 

into 11 identical fractions). The polar metabolite fraction of each sample was 
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analysed by ultrahigh resolution direct infusion nanoelectrospray FT-ICR mass 

spectrometry (Thermo Fisher Scientific, Pittsburgh, PA, USA; LTQ FT) from m/z 70 to 

500, in positive ion mode, using the SIM-stitching approach (Southam, Payne, Cooper, 

Arvanitis, & Viant 2007) (figure 6-4). Each sample was analysed in triplicate. To 

minimise false positive metabolites in the data matrix (due to noise), only peaks 

present in at least 2 of the 3 replicate measurements of each sample were retained, 

and then only peaks present in at least 75% of all the samples were retained for 

further analysis (Payne, Southam, Arvanitis, & Viant 2009). This data processing also 

served to exclude any peaks in the mass spectra that arose from the drugs that were 

known to be administrated to the donors and recipients. The final data matrix 

consisted of 1260 reproducibly detected peaks (rows) and 91 variables (80 biopsies 

and 11 quality control samples; columns). The matrix contained 9.29% of missing 

data which was imputed using a weighted k-nearest neighbours algorithm (k = 5) 

(Hrydziuszko and Viant 2012). Data were then normalized using the probabilistic 

quotient method (Dieterle et al. 2006) and subject to a generalised log 

transformation (prior multivariate analysis) to stabilise the technical variance across 

the peaks and hence to avoid the highest abundance peaks from dominating the 

multivariate analysis (Parsons et al. 2007). Putative metabolite names were assigned 

to the peaks based on their mass-to-charge ratio and taking into account commonly 

detected ions forms, including [M-e]+, [M+H]+, [M+Na]+, [M+39K]+, [M+41K]+, [M+2Na-

H]+, [M+239K-H]+ and [M+NH4]+.  
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Figure 6-4: Example chromatogram from FTICR-MS assay of a sample used in the study; the relative 
abundance is of a metabolite identified by m/z ratio is represented in the Y-axis 

 

6.2.4 FTICR data: Statistical analysis 

Potential clinical differences between DBD and DCD grafts were evaluated by testing 

each OLT variable, including cold ischaemia time, warm ischaemia time, hours in ITU, 

number of days-in hospital following OLT, peak aspartate transaminase (AST), and 

incidence of primary non-function. Non-parametric 2-sample Wilcoxon rank-sum 

tests were applied for continuous numerical variables (e.g., CIT) and Fisher’s exact 

tests were applied for binary variables (e.g., the occurrence of primary non-function). 

The obtained p values were adjusted for multiple hypothesis testing using the 

Benjamini and Hochberg method to control the false discovery rate (Benjamini and 

Hochberg 1995). 

 

Principal component analysis (PCA) was used to represent the multivariate FT-ICR 

mass spectral metabolomics data in 2-dimensional space in terms of principal 

components PC1 and PC2. Univariate statistical analysis, on a per peak basis, was 

used to discover if any metabolites differed significantly a) between donor cold 

phase (T1) and recipient post-reperfusion (T2) across all patients, and b) between 

DCD and DBD grafts in the cold phase and, separately, post-reperfusion. Here, the 
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Anderson-Darling test was used to evaluate normality assumptions, and since ca. 

40% of the peaks did not follow a normal distribution, non-parametric statistical 

methods were used, specifically a two-sample Wilcoxon rank-sum test and for its 

extension to more groups, Kruskal-Wallis one-way analysis of variance, both with a 

Benjamini and Hochberg false discovery correction. In addition, gain scores analysis 

(Kruskal-Wallis on gain scores) was used to discover those metabolites that changed 

in a significantly different manner from cold-phase to post-reperfusion between the 

DCD and DBD grafts. All statistical analyses were carried out using R version 3.0.2, a 

free programming language and software for statistical computing and graphics.  

 

6.2.5 Putative assignment of metabolites 

KEEG database contain very large number of genes and protein sequences, and is an 

online resource which allows pathway mapping and identification of individual 

metabolites that not only associated with humans, but also those from various other 

biological cellular systems, as well as environmental pathways  and pharmaceutical 

compounds (http://www.genome.jp/kegg/pathway.html). The aim of this database 

is to make functional and evolutionary hypothesis about genes or molecules that 

researchers are interested.  This database has been pioneered as a key resource for 

scientists investigating complex large-scale bioinformatics molecular datasets such 

as those generated by genomics, transcriptomics, proteomics, and metabolomics 

(Kanehisa 2002).  The database assists with pathway mapping of a large number of 

biological systems, allows biological interpretation of higher-level systemic 

functions. Initiated in 1995 under the human genome program of Ministry of 

education in Japan, foreseeing the need for a computerised database this allowed the 

interpretation of metabolic pathways (Kanehisa & Goto 2000).  KEGG database is 

comprised of large collection of manually drawn pathway maps representing 

experimental knowledge on metabolism and various other functions of the cell and 

the organism. The database originally consisted of pathways drawn in three broad 

categories; genomes, pathways and ligand; however these were later expanded in 

many other pathways(Kanehisa et al. 2006;Kanehisa & Goto 2000). Most of the 

metabolomics studies are referenced to the pathways and ligand maps through a 

http://www.genome.jp/kegg/pathway.html
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“top-down” approach(Kanehisa 2002). With the advent of new experiments 

involving the cellular systems these pathways are continuously amended and 

extended. Each pathway map contains a large network of molecular interactions and 

reactions and these pathways are designed to link genes in the genome to gene 

products (mostly proteins) in the pathway (Kanehisa et al. 2008).  

In our studies of FTICR based metabolomic study outlined in this chapter, the 

putative assignment of metabolites was carried out with reference to the KEGG 

database against the mass/charge ratio of each identified molecule, similar to the 

methods described in our initial proof-of principle study (Hrydziuszko, Silva, PR 

Perera, Richards, Murphy, Mirza, & Viant 2010b). One of the limitations of 

identification of molecules detected by FTICR technique however, is difficulty of 

computer based automated identification of molecules. This limitation is originating 

from the high resolution power of the mass spectrometer, as a particular molecule 

with a particular mass may be assigned to different empirical formulae resulting in 

high false positive rates. School of Biosciences at the University of Birmingham uses 

an approach called transformation mapping (TM) which increases the accuracy of 

identification of metabolites (Weber and Viant 2010). 

 

6.3 Patients and graft characteristics 

The liver transplantation procedures were carried out in a similar manner for DBD 

and DCD grafts and we did not notice any significant differences either at the 

procedure level or the short-term outcomes. The mean CIT was 484.52 ± 143.59 

(DBD) and 461.00 ± 116.97 (DCD), whereas the mean implantation time, when grafts 

were exposed to further warm ischaemia until the circulation was restored, was 

41.85 ± 6.94 (DBD) and 41.80 ± 9.77 (DCD). The recipients spent on average 95.04 ± 

120.80 (DBD) and 123.22 ± 174.48 (DCD) hours in the intensive care unit. Table 6-1 

depicts the basic demographics of the study population. The majority of transplants 

were successful; three patients in the entire study group had peri-operative 

mortality (n=2 in the DBD group). The causes of death were related to initial poor 
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function/primary non-function in two patients (one patient each in DCD and DBD 

groups) and related to hepatic artery thrombosis in the third patient. 

 

 

Table 6-1: The characteristics and basic demographics of the recipients undergoing liver 
transplantation. 

 

Abbreviations : ALD – alcoholic liver disease, HCV – hepatitis C disease, HBV – hepatitis B disease, 
NASH – non-alcoholic steatohepatitis, PCLD – polycystic liver disease, PBC – primary biliary cirrhosis, 
PSC- primary sclerosing cholangitis; * patients diagnosed with hepatocellular carcinoma (n=3 and 4 in 
DCD and DBD groups respectively); N/A – donor warm ischaemia time not applicable to DBD donor

 DCD (n=10) DBD (n=27) 
Age 53 (41-64) years 56 (26-66) years 

MELD at the transplant  12 (8-22) 16 (6-22) 

Indication for transplant* ALD (3), HCV (2), HBV (1), 
NASH (1), PCLD (1), PBC (2) 

ALD (11), HCV (5*), PCLD (2), 
PBC (3), PSC (3), Wilson’s 
disease (1), Autoimmune 
hepatitis (1), Cryptogenic 
cirrhosis (1) 

Donor warm ischaemia 
time (dWIT)  

14 (12-28)minutes N/A 

CIT before the T1 biopsy 263 (93-403) min 236 (53-534) minutes 

Total CIT 493 (256-651) min 467 (287-817) minutes 

Implantation time of the 
graft 

40 (32-65) min 40 (31-59) minutes 

Graft macrosteatosis on T1 None (1), Mild (6), Severe 
(3) 

None (2), Mild (19), Moderate 
(3), Severe (3) 

Graft microsteatosis on T1 None (2), Mild (8) None (4), Mild (22), Moderate 
(1) 
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The few cases of initial poor function and ischaemic injury in this study precluded us 

from searching for metabolic changes that are predictive of the problematic (graft 

injury) or unsuccessful (primary non-function) outcomes. However, previous studies 

on larger cohorts (n > 300) of DBD and DCD liver transplantations provide evidence 

for the inferiority of the DCD donations, including increased incidence of primary 

non-function, biliary complications as well as lower graft- and patient survival (Foley 

et al. 2005;Monbaliu et al. 2012). Therefore, here, we focused on investigating the 

metabolic alterations in the DCD grafts as compared to the more traditional method 

of transplantation using DBD donors. Due to the lack of significant differences 

between the DCD and DBD procedures and outcomes in our study, all grafts within 

the DCD group were treated equally, as were the DBD-graft group. Any metabolic 

dissimilarity between these groups should therefore be reflective of the inherent 

molecular differences between DCD and DBD grafts.  

 

6.4 Changes in hepatic metabolism during transplantation 

FTICR mass spectra of the extracted biopsies contained 1260 reproducibly detected 

peaks of which 448 (35.56%) were putatively annotated based upon accurate mass 

measurements and the Kyoto Encyclopaedia of Genes and Genomes database. 

Principal component analysis verified the high technical reproducibility of the mass 

spectra, evidenced by the clustering of the measurements of the QC sample on the 

PCA scores plot (Mateo et al. 2006). Furthermore, the PCA scores showed a clear 

separation between the biopsies from the cold phase (CP, T1) and post reperfusion 

(PR, T2) (figure 6-5). The clustering of the donor biopsies (D, T0; obtained from six 

DBD grafts while the organs were still perfused with warm circulation) close to the 

post-reperfusion biopsies (PR, T2), with both groups having very distinctive 

metabolic profiles compared to the biopsies originating from the cold phase 

sampling is a striking result.  This signifies the distinctively different metabolism of 

hepatocytes in the perfused state compared to those in cold storage. This metabolic 

separation was confirmed by univariate testing that detected 688 (54.60%) 

significantly different peaks between CP (T1) and PR (T2), 293 peaks (23.25%) 
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between donor (T0) and CP (T1) and only 124 peaks (9.84%) between CP (T1) and PR 

(T2) (Kruskal-Wallis test, p < 0.05). In our previous proof-of-principle study, we 

identified a plethora of metabolic responses in the post-reperfused grafts compared 

to their cold-phase state and concluded that these changes reflected the rapid 

resumption of the biochemical functions of hepatocytes following reperfusion, 

including increased urea production, bile acid synthesis and clearance of the 

preservation solution. Here, in addition to verifying these expected metabolic 

responses, we observed additional key metabolic changes including, amongst others, 

putatively annotated essential (threonine and valine) and non-essential (tyrosine, 

serine and proline) amino acids, taurine (a major constituent of bile), and kynurenine 

(a central compound in the tryptophan metabolism pathway) (table 6-2). 

 

The close grouping of the donor and post-reperfusion biopsies along with their clear 

separation from the cold-phase biopsies (along PC1) is further supportive of the 

rapid resumption of the biochemical functions in the reperfused grafts and shows the 

direction of metabolic changes through the patient journey and the OLT procedure - 

from ‘healthy’ donor grafts through cold-phase to almost fully functional grafts 

shortly following reperfusion.  



 

120 

 

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

−0.2

−0.1

0.0

0.1

−0.1 0.0 0.1
PC 1

P
C

 2

● CP

PR

D

QC

 

Figure 6-5: Principle component analysis scores plot showing the similarities and differences between the 

metabolic profiles of the grafts in donor (T0), cold (CP, T1) and post-reperfusion phases (PR, T2). Donor and 

post-reperfused biopsies cluster together and have distinctive metabolic profiles compared to the cold-phase 

biopsies, indicative of the rapid resumption of the biochemical functions in the post-reperfused grafts in the 

direction of the ‘healthy’ donor grafts. 
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Table 6-2: Top putatively annotated metabolic fold-changes (FC) in the liver grafts between donor phase (D, T0), cold phase (CP, T1) and post-reperfusion phase (PR, 

T2), considering the DBD and DCD biopsies as one group. 

Putative metabolite m/z 
Empirical 
formula 

Ion 
FC: 

PR/CP 
FC: 

PR/D 
FC: 

CP/D 
Significance** 

Univariate 
rank 

PC1 rank 

Histidine* 178.0587

6 

C6H9N3O2 Na, H, 39K 3.88 1.43 0.37 CP vs. D; CP vs. PR 1, 117, 181 1, 130, 198 
Malate 157.0107

9 

C4H6O5 Na, 2K-H 4.61 1.64 0.36 CP vs. D; CP vs. PR 3, 259 58, 116 

Glutamate* 170.0424

4 

C5H9NO4 Na, 2Na-H 5.14 1.69 0.33 CP vs. D; CP vs. PR 13, 37 15, 20 

Serine 128.0318

1 

C3H7NO3 Na, 2Na-H, K(39), 

H 

2.95 1.77 0.60 CP vs. D; CP vs. PR 15, 19, 143, 

203 

101, 105, 111, 205 

Glutamine 169.0584

2 

C5H10N2O3 Na, 39K, 2K-H 4.51 1.41 0.31 CP vs. D; CP vs. PR 16, 161, 233 12, 128, 172 

N-Acetyl-L-glutamate 212.0530

5 

C7H11NO5 Na 3.60 2.81 0.78 CP vs. PR; D vs. PR 18 30 

O-Phospho-L-serine 207.9983

5 

C3H8NO6P Na, H, 39K 6.14 1.37 0.22 CP vs. D; CP vs. PR 20, 84, 146 23, 56, 152 

Tyrosine 204.0632

1 

C9H11NO3 Na, H 3.46 1.32 0.38 CP vs. D; CP vs. PR 23, 175 25, 90 

ADP* 472.0008

3 

C10H15N5O10P2 2Na-H, Na 5.46 1.11 0.20 CP vs. D; CP vs. PR 26, 51 45, 84 

CDP-choline 489.1149

1 

C14H26N4O11P2 H 0.42 1.16 2.73 CP vs. D; CP vs. PR 49 41 

Mannitol* 223.0404

2 

C6H14O6 41K 0.03 1.34 46.97 CP vs. D; CP vs. PR 61 4 

Taurine 148.0039

0 

C2H7NO3S Na 2.11 1.15 0.55 CP vs. D; CP vs. PR 88 109 

Citrate 193.0343

5 

C6H8O7 H 0.20 2.44 12.14 CP vs. D; CP vs. PR 97 92 

Threonine 142.0474

8 

C4H9NO3 Na 2.76 1.37 0.50 CP vs. PR 110 66 

Proline 138.0525

6 

C5H9NO2 Na, H 2.40 2.75 1.14 CP vs. PR; D vs. PR 115, 221 235, 331 

GMP 386.0473

0 

C10H14N5O8P Na 3.03 0.98 0.32 CP vs. D; CP vs. PR 140 147 

Glucose 221.0247

8 

C6H12O6 41K 0.38 0.85 2.25 CP vs. D; CP vs. PR 153 114 

Glycocholate* 488.2984

4 

C26H43NO6 Na 4.49 3.27 0.73 CP vs. PR 154 170 

Succinate 141.0158

4 

C4H6O4 Na 0.49 1.06 2.17 CP vs. D; CP vs. PR 185 106 

Valine 140.0682

0 

C5H11NO2 Na, 39K, H 2.63 1.44 0.55 CP vs. PR 186, 218, 253 260, 272, 281 

Choline 145.0688

9 

C5H14NO 41K 2.01 2.73 1.36 CP vs. PR; D vs. PR 199 377 

Formate 90.97661 CH2O2 2Na-H 5.37 3.47 0.65 CP vs. PR 205 582 

O-Phospho-L-

homoserine  

200.0320

5 

C4H10NO6P H 2.87 1.35 0.47 CP vs. PR 209 83 

Kynurenine 209.0922

1 

C10H12N2O3 H 1.78 2.76 1.55 CP vs. PR; D vs. PR 232 338 

Aspartate 134.0447

9 

C4H7NO4 H 2.56 1.17 0.46 CP vs. D; CP vs. PR 243 139 

Urea* 98.99550 CH4N2O 39K 2.48 1.31 0.53 CP vs. PR 268 308 
*
 metabolic changes observed, verifying those reported in our proof-of-principle study (Reich, Mulligan, Abt, Pruett, Abecassis, D'alessandro, 

Pomfret, Freeman, Markmann, & Hanto 2009) **corrected p-values < 0.05
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6.5 Hepatic metabolism in DBD compared to DCD grafts 

Despite not seeing any significant differences in the procedures or short-term 

outcomes for the DCD and DBD transplantations, we were able to identify a small 

subset of peaks that distinguished the DCD and DBD grafts at the metabolic level. In 

particular, we detected 50 peaks including 11 putatively annotated compounds that 

differed between DCD and DBD in the cold phase (CP), 64 peaks (10 putatively 

annotated) that differed between DCD and DBD following reperfusion (PR), and 72 

peaks (10 putatively annotated) that changed from CP to PR in a significantly 

different manner between DCD and DBD grafts (table 6-3). The PCA scores plots, 

based only on these sub-selections of peaks provide a visualisation of the clear 

separation along PC1 for the cold-phase biopsies and almost as clear separation for 

the post-reperfusion biopsies (figure 6-6).  

Table 6-3: Top putatively annotated metabolic fold-changes between the DCD and DBD grafts: combined 

results for the comparison, (i) in the cold phase (CP, T1), (ii) following reperfusion (PR, T2), and (iii) in 

response from going from CP (T1) to PR (T2) 

1  Fold-change calculated for the corresponding phase, cold phase (CP) or post reperfusion (PR) 

Putative metabolite M/Z 
Empirical 
formula 

Ion 
Fold-change 
DCD/DBD1 

Univariate Rank2 

Tryptophan 205.0972

5 

C11H12N2O2 H 1.88CP, 1.10PR 3CP, 28G 
Adenylosuccinate 464.0815

5 
 

C14H18N5O11P H 0.40CP 6CP 

GMP 402.0212

4 

C10H14N5O8P 39K 0.47CP 15CP 

Malate 210.9406

6 

C4H6O5 2K-H 0.44CP 18CP 

ADP 465.9928

4 

C10H15N5O10P2 39K 0.41CP 20CP 

D-Glucose 203.0526

1 

C6H12O6 Na 1.72CP, 1.22PR 22CP, 9G 

ADP 450.0189

5 

C10H15N5O10P2 Na 0.53CP 25CP 

O-Acetyl-L-carnitine 204.1230

5 

C9H18NO4 -e 0.45CP 28CP 

Kynurenine 209.0922

1 

C10H12N2O3 H 1.80CP 43CP 

Leucine 132.1019

0 

C6H13NO2 H 1.49CP 47CP 

Pantothenate 220.1180

6 

C9H17NO5 H 0.60CP 49CP 

Glutathione 352.0549

7 

C10H17N3O6S 2Na-

H 

1.13CP, 1.88PR 3PR, 38G 

Threonine 142.0474

8 

C4H9NO3 Na 1.37CP, 2.07PR 4PR, 70G 

Leucine 154.0838

8 

C6H13NO2 Na 1.37PR 16PR 

Glutamate 170.0424

4 

C5H9NO4 Na 0.99CP, 1.61PR 25PR, 72G 

Creatine 154.0587

2 

C4H9N3O2 Na 1.45PR 32PR 

Glutamate 192.0244

0 

C5H9NO4 2Na-

H 

1.01CP, 2.78PR 38PR, 45G 

Threonine 120.0655

1 

C4H9NO3 H 1.37PR 41PR 

Proline 138.0525

6 

C5H9NO2 Na 1.59PR 53PR 

Pantothenate 220.1180
6 
 

C9H17NO5 H 0.79PR 62PR 

Leucine 132.1019

0 

C6H13NO2 H 1.32PR 64PR 

Ornithine 133.0971
6 
 

C5H12N2O2 H 1.98CP, 1.05PR 42G 

Serine 150.0137
8 
 

C3H7NO3 2Na-

H 

0.78CP, 3.01PR 54G 

SAM 399.1446
0 
 

C15H22N6O5S H 1.23CP, 0.68PR 51G 

Glucose 221.0247

8 

C6H12O6 41K 1.40CP, 1.05PR 59G 
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2 Ranking carried out separately for the three comparisons: in the cold phase (CP), post-reperfusion (PR) or based 
on the Gain Scores Analysis (G): capturing the metabolic responses between DCD and DBD grafts from the CP to 
PR 
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Figure 6-6: Principle component analysis scores plots highlighting the metabolic separation of the DBD and 

DCD grafts in the cold phase (CP) and separately the post-reperfusion phase (PR), based on analyses of just 

the 50 and 64 peaks identified as being significantly different (between DBD and DCD) for the CP and PR 

groups, respectively. 

 

 

The metabolic differences between DBD and DCD grafts in the cold phase (CP, T1) 

included increased levels (in DCD) of the putatively annotated metabolites 

tryptophan, kynurenine, glucose and leucine and decreased levels of 

adenylosuccinate, GMP, ADP, malate, O-acetyl carnitine and pantothenate (table 6-4). 

The observed putative metabolites are involved mainly in tryptophan metabolism, 

purine metabolism, oxidative phosphorylation and a set of carbohydrate metabolic 

pathways, including the TCA cycle, pyruvate metabolism, glycolysis/gluconeogenesis 

and the pentose phosphate pathway (Perera et al. 2014b). Among these findings, 

tryptophan and its metabolism have received earlier attention in the liver 

transplantation field. Tryptophan is an essential amino acid that, amongst other 

roles, serves as a precursor of neurotransmitter serotonin and B3 vitamin. Histidine-

tryptophan-ketoglutarate (HTK) solution, which contains tryptophan to prevent 
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membrane injury, was proposed as an alternative liver preservation solution to the 

gold standard, University of Wisconsin solution. The systematic review to compare 

the efficacy and safety of these two solutions did not show overall significant 

differences, yet in some cases HTK was believed to perform better, especially in 

terms of biliary tract flush and prevention of biliary complications (Feng et al. 2007). 

Furthermore, tryptophan can be catabolised either via the kynurenine or serotonin 

pathways, and hence kynurenine was studied previously to investigate tryptophan 

metabolism in potential cirrhotic liver transplant recipients. The pre-transplant 

serum levels of kynurenine as well as the kynurenine/tryptophan ratios were 

positively correlated with the disease severity, while serum levels of tryptophan and 

serotonin showed no correlation (Rossouw et al. 1977). The significantly higher 

levels of tryptophan and kynurenine in DCD grafts during the cold phase in our study 

appears to support the previous studies that identified tryptophan metabolism via 

kynurenine pathways as a key metabolic changes in liver transplantation(Knox 

1951).  
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Table 6-4: Metabolic pathways discovered to differ significantly between DCD and DBD grafts, including 

the associated putatively annotated metabolites in those pathways. 

Metabolic pathway Putative metabolite Description1 
Tryptophan metabolism Tryptophan, Kynurenine Amino acid metabolism; CPH 
Purine metabolism Adenylosuccinate, GMP, ADP Nucleotide metabolism; CPL 
Oxidative phosphorylation ADP Energy metabolism; CPL 
TCA cycle Malate Carbohydrate metabolism; CPL 
Pyruvate metabolism Malate Carbohydrate metabolism; CPL 
Glycolysis / Gluconeogenesis Glucose Carbohydrate metabolism; CPH 
Pentose phosphate pathway Glucose Carbohydrate metabolism; CPH 
Alanine, aspartate and 
glutamate metabolism 

Adenylosuccinate, Glutamate 
Amino acid metabolism; CPL, 
PRH 

Glycine, serine and 
threonine metabolism 

Tryptophan, Threonine, Creatine, Serine 
Amino acid metabolism; CPH, 
PRH 

Cysteine and methionine 
metabolism 

Glutathione, Serine, SAM 
Amino acid metabolism; PRH 
with exception of lower levels 
of SAM 

Arginine and proline 
metabolism 

Glutamate, Creatine, Proline, Ornithine, SAM 
Amino acid metabolism; PRH 

with exception of lower levels 
of SAM 

Valine, leucine and 
isoleucine degradation & 
biosynthesis 

Leucine, Threonine 
Amino acid metabolism; CPH, 
PRH 

Glutathione metabolism Glutathione, Glutamate, Ornithine 
Metabolism of other amino 
acids; PRH 

Taurine and hypotaurine 
metabolism 

Glutamate 
Metabolism of other amino 
acids; PRH 

D-Glutamine and D-
glutamate metabolism 

Glutamate 
Metabolism of other amino 
acids; PRH 

Aminoacyl-tRNA 
biosynthesis  

Tryptophan, Leucine, Threonine, Glutamate, 
Proline, Serine 

Translation; CPH, PRH 

ABC transporters 
Glucose, Leucine, Glutathione, Glutamate, 
Proline, Ornithine, Serine 

Membrane transport; CPH, PRH 

Pantothenate and CoA 
biosynthesis  

Pantothenate 
Metabolism of cofactors and 
vitamins; CPL, PRL 

Vitamin digestion and 
absorption 

Pantothenate Digestive system; CPL, PRL 

Bile secretion Glucose, Glutathione Digestive system; CPH, PRH 
1, H, higher levels and L, lower levels of putative metabolites in DCD in the corresponding OLT stage (CP. T1 or PR, 
T2) 

 

 

Although it was not our key objective to analyse biomarkers related to primary non-

function in the present study given smaller sample size, the two failed allografts due 

to primary non-function had abundantly higher levels of tryptophan and kynurenine 

(figure 6-7).  
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Figure 6-7: The differences between tryptophan and kynurenine in failed allografts due to primary 
non-function (n=2) vs. other allografts (n=36) in the cold phase (grey) and post reperfusion (blue). 
The data show the relative abundances of the metabolites with 95% confidence intervals (statistics 

not applied due to limited sample size 

 

 

The putatively annotated metabolites that significantly differed between DCD and 

DBD grafts following reperfusion (PR) included increased levels (in DCD) of 

glutathione, threonine, leucine, glutamate, creatine, glutamate, proline and decreased 

levels of pantothenate. In addition, four of these metabolites including glutathione, 

threonine, glutamate and glutamate were changed in a significantly different manner 

in DCD and DBD grafts while they were removed from cold storage (CP, T1) and 

following reperfusion (PR, T2). The remaining six metabolites identified as different 

in the Gain Scores Analyses included tryptophan and glucose (previously observed as 

significantly different in the cold-phase) as well as ornithine, serine, S-adenosyl 

methionine (SAM) and glucose. All of these putatively annotated metabolites are 

primarily involved in amino acid metabolism and translation (aminoacyl-tRNA 

biosynthesis) and to a lesser extent in metabolism of cofactors and vitamins and bile 

secretion. The significant increase in SAM during post-reperfusion, in DCD grafts 
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relative to DBD grafts, could have implications for DNA methylation given the 

importance of this metabolite as a methyl donor(Mato and Lu 2007). 

 

The increased level of glutathione in DCD grafts, following reperfusion, is also an 

intriguing finding. Glutathione, owing its thiol group, is known as one of the most 

effective antioxidants preventing cellular damage caused by reactive oxygen species, 

as occur in ischaemia/reperfusion injury. Its precursors, acetylcysteine, has been 

studied as a protective molecule in the peri-operative treatment of patients 

undergoing liver transplantation (Clavien et al. 2007). Our findings show that not 

only were glutathione levels increased but so were other intermediates of 

glutathione metabolism such as glutamate and ornithine, indicative of disruption to 

the glutathione pathway. While glutathione and glutamate shared similar responses 

at the post-reperfusion time point, i.e. a rapid increase of levels in DCD compared to 

DBD, ornithine levels were higher in the cold-phase and similar following 

reperfusion. This could be due to ornithine being used up for the biosynthesis of 

glutathione via the intermediate by-product of glutamate.  

 

 

6.6 Discussion 

Our dataset has for the first time identified key metabolic differences between DCD 

and DBD liver grafts, which we attribute to the hallmark differences of organ 

donation in these two donor types. Some of the identified biomarkers correlate with 

our current understanding of the physiological changes surrounding DCD organ 

donation, including an impact on glucose metabolism by donor warm ischaemia in 

DCD grafts. However, our observed changes to the tryptophan/kynurenine axis in the 

DCD grafts are novel findings (Smyth 2004). Both of these metabolites were 

observed at ca. 2-fold higher concentration in the DCD grafts in the cold phase, 

suggesting the possibility that these metabolites are responsible for, or at least could 

be indicators of, the reported higher incidences of increased graft failures in DCD 
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grafts in the literature. Given the role of metabolomics as a hypothesis generating 

tool, and not to determine whether this metabolic pathway is indeed the cause of 

graft failure, we conclude that subsequent clinical investigations of DCD versus DBD 

transplantations should employ a targeted analytical approach to robustly quantify 

the metabolites in the tryptophan/kynurenine pathway in the pursuit of more 

reliable biomarkers of graft function.  
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CHAPTER 7 CONCLUDING REMARKS AND FUTURE WORK 

 

Interpretation of the work outlined in previous chapters led the researcher presenting 

this thesis to conceptualise novel theories on energy metabolism and graft function, 

which was studied in the clinical research setting leading to the publication annexed as 

Appendix 4;  Liver Int. 2014. doi: 10.1111/liv.12706. 

 

This thesis outlines four studies performed in the setting of adult cadaveric liver 

transplantation, aimed at identifying biomarkers and the evaluated different 

biomaterial sampling protocols combined with more sophisticated analytical 

platforms. Whilst the proof of principle concept outlined in chapter 3 provided us 

with the necessary confidence to carry out more exhaustive and time consuming 

wider study comparing the DCD and DBD liver grafts. Through the three main studies 

outlined in chapters 4-6 we have demonstrated the primary differences between 

these two types of donor liver allografts, and possible identification of biomarkers 

that fulfil the objectives set out at the beginning of this thesis. Findings of these 

studies give an in depth idea of how the metabolome of hepatocytes work during the 

process of transplantation, and I have identified few key pathways that require 

further study and proposed outline of future work.  

 

7.1 Graft function and energy metabolism 

All cellular systems are reliant on energy sources that drive metabolic processes for 

survival. In humans, and in almost all other animals, the primary source of energy is 

glucose or other forms of carbohydrate. Oxidative phosphorylation and ATP 

generation are the keys to sustain vital functions of the human body. Constant 

oxygen delivery to the tissues and supply of glucose is maintained in the living state, 

but this process is temporarily halted on the transplantable solid organ once it is 

retrieved from the donor. Although organ preservation is aimed at minimising 
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intracellular metabolism this occurs at a slow pace compared with the perfused state, 

and the energy for the continued metabolism is originating form conversion of 

intracellular energy stores. Stored intracellular energy is present in most cellular 

types in the form of glycogen, although some of the tissue cells, for example neurons 

in brain do not store intracellular glycogen making these more susceptible for 

permanent and irreversible damage in the absence of constant energy supply (Brown 

and Ransom 2007).  Glycogen in the liver plays a key role in maintaining not only the 

intra-hepatocytic energy demand but also the glucose homeostasis of the entire 

body. In the fed state abundant glucose is converted to glycogen in the liver for the 

use in future, fasted states that result in hypoglycaemia (Newsholme and Leech 

1983). The role of intracellular glycogen in the setting of liver transplantation has 

been studied in the somewhat early era of liver transplantation, but not in the 

context of marginal donor or DCD graft setting (Cywes et al. 1992;Kukan and Haddad 

2001).  Meanwhile some other studies compared glycogen depletion in the liver 

allografts preserved using different organ preservation solutions to claim superior 

preservation in the presence of less glycogen depletion of the allografts (Fratte et al. 

1991).  It is well known that reperfusion causes a hypermetabolic state in the liver 

due to activated Kupffer cells, thus increasing the demand for energy (Schemmer et 

al. 2001). Therefore the role of glycogen as a primary energy source is pivotal in 

maintaining intracellular energy and cell integrity, and should not be 

underestimated.  

 

Our study on energy metabolism suggested that those grafts from the DCD donors, 

and the failed allografts were more likely to have moderate to severe glycogen 

depletion, and evidence of continued anaerobic metabolism leading to high 

intracellular lactate. As discussed under the relevant chapter these changes are the 

likely result of continued anaerobic metabolism in the agonal state of organ donation. 

This finding opens up more avenues for research involving marginal donors, not only 

those from DCD donors, but also grafts with fatty change as outlined below.  
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7.1.1 Re-charging the energy status of liver grafts as an option for successful 

liver transplantation 

The last decade has seen dramatic changes in the field of solid organ transplantation, 

and the concept of machine perfusion has been extensively researched using 

different solid organs as the investigative front. Significant advances have been made 

in the normothermic organ preservation techniques involving liver grafts. 

Normothermic liver preservation has been studied both in the animal and human 

liver in the laboratory setting, and currently some of these techniques are 

incorporated in the clinical trials. From a theoretical point of view, normothermia 

alleviates or mitigates cold ischaemia related damage, and continued oxygenated 

perfusion provides an opportunity to feed the liver grafts with nutritional necessary 

to replenish depleted intracellular energy stores. The Birmingham liver unit has 

contributed significantly to some of the national trials involving continuous 

normothermic preservation currently underway, and also piloted some of the 

innovative techniques involving normothermic organ preservation. In the sequence 

of organ donation to transplantation, normothermia could be applied in different 

phases aiming at better organ preservation.  

 

In DCD donors, in-situ organ resuscitation after cessation of circulatory function has 

been described. The original application of this technique was in category II DCD 

donors, who had sustained much longer periods of circulatory death and the early 

results, though not hugely promising, showed acceptable degree of organ recovery 

and successful transplantation carefully selected cases. Now termed “normothermic 

regional perfusion”, this technique was pioneered in the Birmingham Liver unit 

alongside two other centres. The rationale to use this technique in the United 

Kingdom where category III DCD donation is the existing practice, is that the organs 

could be revived and immediately after the circulatory death whilst organs are still 

within the body cavity of the donor, allowing maximum energy re-charge of the liver 

grafts for a pre-defined period prior to the commencement of cold preservation. 

Continuous normothermic preservation has by far has made the biggest advance. In 
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this technique the organs are retrieved from the donor and transported in the 

mechanically perfused state until the organ is transplanted in the recipient. Apart 

from two brief periods of cold flush on either side of machine perfusion, this 

technique maintains normothermic state throughout the organ is out of a human 

body, this could be considered the best form of organ preservation from a biological 

stand point.   Final application of normothermia comes from a form of resuscitation 

at the end of cold storage, compared to the two earlier described methods of pre-cold 

storage and continues normothermic preservation techniques. Although research 

has proved this is a viable option no clinical studies has been carried out so far. The 

Birmingham liver unit however successfully transplanted the first liver graft 

adopting such technique.  

 

Our current understanding provides a platform to study the liver grafts for changes 

of energy metabolism during normothermic and cold storage. The cornerstone of 

ischaemia reperfusion injury has been attributed to the cold storage and ATP 

depletion (St Peter et al. 2002), reversal of energy imbalance by normothermic 

preservation by application of any of the above three techniques, either in isolation 

or in combination would provided added insights into the superiority of 

normothermia over hypothermia.   

 

7.1.2 Insulin, insulin like growth factor-I (IGF-I) and liver 

The influx of glucose in to the hepatocytes is dependent of the actions of insulin. The 

role of insulin in liver transplantation is well established from the pioneering days of 

this life saving operative procedure. It has been identified that the portal blood flow, 

which carries insulin secreted by the pancreas is pivotal for the survival of the 

transplanted liver graft. This is well documented by the experimental transplantation 

in the bygone era where heterotrophic transplanted liver grafts failed to survive, 

whilst establishment of portal inflow to the graft enabled survival. This was termed 

the “hepatotropic” effects of the hormone insulin (Starzl et al. 1976). An important 
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notion which may be less established in our general thinking about both liver 

disease, diabetes and insulin resistance as well as in the field of liver transplantation 

is the central role of liver in the control over the actions of insulin and in regulation 

of glucose metabolism. While pancreatic islet dysfunction and peripheral insulin 

resistance are commonly recognized causes for diabetes and impaired glucose 

tolerance, ‘hepatogenous’ diabetes has drawn less attention (Picardi et al. 2006). 

Evidence suggests 7-15% of cirrhotic patients have overt diabetes, and another 60-

80% have impaired glucose tolerance.  

 

The liver ensures glycogen storage in anabolic states and glycogenolysis and 

gluconeogenesis in catabolic states. But several other ways in which the liver 

controls body-wide glucose homeostasis are described, such as insulin clearance 

from the portal circulation by the liver, hepatic insulin resistance and sensitivity, and 

feedback mechanisms in growth hormone (GH) and insulin-like growth factor-1 (IGF-

1) signaling. These mechanisms have likewise been related to the occurrence of 

diabetes and impaired glucose tolerance in liver disease. In portal hypertension or 

portosystemic shunts the first-pass effect of the liver to clear insulin from the 

circulation is reduced. The subsequent hyperinsulinaemia evokes an adaptive 

response of compensatory insulin resistance, presumably by down regulation of 

insulin receptor expression (Picardi, D'Avola, Gentilucci, Galati, Fiori, Spataro, & 

Afeltra 2006). An acquired GH-resistance has been described in chronic liver 

diseases, with reduced levels of IGF-1 (Sumida et al. 2014). Liver-specific deletion of 

the GH receptor in mouse models leads to insulin resistance, glucose intolerance, 

increased free fatty acids and steatosis. In chronic liver disease, these modulations of 

the GH, IGF-1 and insulin occur next to direct effects of liver disease on pancreatic 

islet cell dysfunction and increased peripheral insulin resistance (figure 7-1). 

 

Insulin-like growth factor-1 (IGF-1) and its receptor IGF-1R are signal transducing 

elements in one of the most crucial cellular pathways in life. In conjunction with 

insulin and growth hormone (GH), they regulate protein synthesis, glucose 

metabolism, cellular proliferation and differentiation which are fundamental to both 
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metabolism and cell survival. GH, insulin and IGF-1, jointly referred to as the 

‘somatotropic axis’, may play a pivotal role in mechanisms of cell survival in liver 

transplantation, as well as in metabolic changes that occur following liver 

transplantation.  

 

IGF-1 and IGF-1R are different from most other growth factors with tyrosine kinase 

receptors regarding some structural features, receptor-ligand interaction and 

downstream signaling. While most growth factors with tyrosine kinase receptors, 

such as epidermal growth factor, are mainly involved in autocrine and paracrine cell-

to-cell signaling, IGF-1/IGF-1R signaling is also under significant endocrine control. 

Stimulation/positive feedback

Inhibition/negative feedback

Chronic liver disease; combinations of:
-Decreased insulin clearance in portal hypertension or portosystemic shunt → hyperinsulinaemia → compensatory
peripheral insulin resistance → preserved glucose homeostasis
-Acquired GH resistance → low levels of IGF-1, high levels of IGFBP-1 and GH. “Anti-insulin” effects of GH: insulin
resistance, glucose intolerance, increased lipolysis and FFA, increased steatosis.  
- Direct effects: decreased pancreatic islet function, increased peripheral insulin resistance

Pituitary
glandGrowth
Hormone

Liver
IGF-1 ↑

IGFBP-1 ↓

Glygocen synthesis ↑

Gluconeogenesis ↓

Pancreas

Insulin

Striated muscle

D/t portal 
hypertension: 

decreased insulin
clearance, 

hyperinsulinaemia

Adipocytes

Compensatory
peripheral insulin

resistance

Protein synthesis ↑

Lipolysis ↓

Glucose ↓

IGF-1 ↔ IGFBP-3

 

7-1: the mechanisms of actions of hormones insulin, insulin like growth factor-I (IGF-I) and IGF 
binding protein (IGFBP) 

 

IGF-1R activation by IGF-1 effectuates the growth stimulating effects of growth 

hormone (GH) in the target organs. Ninety percent of circulating IGF-1 is produced 

by the liver under endocrine GH control. Moreover, IGF-1R signaling is intimately 
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connected to the metabolic functions of insulin. Originating from a putative same 

ancestor gene, the IGF-1R has specialized more in cell growth, survival and anabolic 

functions, whereas the insulin receptor (IR) merely regulates metabolism, but these 

receptors share a very similar molecular architecture and physiologically they still 

have functional overlap. 

 

Specialized functions of IGF-1R and IR are regulated by structural homogeneity, 

diverging affinities and regulatory IGF binding proteins (IGFBP-1,2,3,4,5,6) within in 

a ligand-activated receptor-signaling system. IGF-1 may exert its effects via insulin 

receptors or hybrid insulin/IGF-1 receptors as well, although by with lower affinity. 

IGF-1 is recognized as an insulin sensitizer at the liver, while IGFBP-3 is suggested to 

oppose or inhibit IGF actions. Contrary to the high production of IGF-1, hepatocytes 

express low levels of the IGF-1R. Over-expression of IGF-1R however has been 

described in chronic hepatitis and liver cirrhosis. The autocrine and paracrine 

functions of IGF-1 have extensively been studied in cancer models and show that IGF-

1 signaling through IGF-1R gives strong proliferation and survival signals. In models 

of biliary damage (through biliary obstruction or ischaemia), up regulation with anti-

apoptotic and attenuating effects of IGF-1R and IGF-1 have been described (Munshi 

et al. 2011;Onori et al. 2007). In GH-deficient models, liver regeneration is impaired 

and both GH and IGF-1 are believed to protect against liver steatosis and fatty liver 

disease. Improved preservation has been shown by adding IGF-1 to UW perfusion 

solution during liver harvesting and preservation for transplantation (Zaouali et al. 

2010). One study however, describes the complete opposite: a contrary involvement 

of the IGF-1R in conferring oxidative stress leading to hepatic cell death and 

promoting fibrosis in an in vivo liver-specific IGF-1R knock-out model with 

cholestatic liver injury (Villeneuve et al. 2010). Several cohort studies have shown 

early normalization of IGF-1, IGFBPs and GH levels after liver transplantation for 

chronic liver disease (Bassanello et al. 2004;Weber et al. 2002). No associations of 

these parameters with glucose intolerance or diabetes in liver transplantation have 

been reported up till now.   
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7.1.3 Insulin resistance and liver transplantation 

In clinical practice of our busy transplant unit we have detected the higher incidence 

of new onset diabetes after transplantation (NODAT) in DCD liver graft recipients 

(Hartog et al. 2014). NODAT occurs in 25-40% of liver transplant recipients and the 

key risk factors for NODAT in liver transplant recipients are similar to standard risk 

factors for type 2 diabetes and insulin resistance, such as older age, African-American 

race, obesity and HCV infection (Kuo et al. 2010)(Zhao et al, Kuo et al). Use of 

steroids and calicineurin inhibitors further increase the risk (Heisel et al. 2004;Yates 

et al. 2012). Furthermore donor factors such as donor age (elderly donors), donor 

diabetes status and use of deceased vs. living donors have likewise been linked to 

higher incidence of NODAT (Kuo, Sampaio, Ye, Reddy, Martin, & Bunnapradist 

2010;Yang et al. 2011). Whilst recent developments in liver transplantation include a 

steep increase in the use of organs donated after circulatory death as practiced by 

our centre, well-documented adverse outcomes of DCD grafts include primary non-

function or delayed graft function, ischaemic type biliary lesions and increased 

incidence of renal injury as outlined in the introductory chapters (Callaghan et al. 

2013;de Vera et al. 2009;Leithead et al. 2012).  

 

The incidence of NODAT in liver transplant recipients of DCD grafts however, has not 

been studied before. The findings in our clinical research, combined with the basic 

science study outlined in the chapter 4 of this thesis led us hypothesize that the 

insulin resistance is related to the liver graft function following liver transplantation. 

We propose the NODAT is a subtle form of graft dysfunction increasingly seen in DCD 

liver graft recipients, leading to transient changes in the glucose metabolism that 

result in hyperglycaemia in the post transplant period. This may be driven by 

aggravated insulin resistance during the warm ischaemic damage during the organ 

donation process. One or several signaling mechanisms may be involved. Meanwhile 

in the case of primary non-function leading to graft failures, the insulin resistance is 

more likely to be more serious and irreversible. If the hepatocytes have consumed 

intracellular glycogen during the cold storage the cells would be in a state where 

complete energy discharge occurred and the hepatocytes unable to uptake glucose in 
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to the intracellular environment from the recipient circulation due to the presence of 

severe insulin resistance. Based on this hypothesis we have already commence on 

preliminary studies of identifying the receptor status of various types of liver grafts, 

and this theory is open for investigation in the machine perfusion models.  

 

7.1.4 Energy metabolism and Insulin resistance could be the cause of graft 

failure in steatotic grafts 

A further concept conceived from the findings from our results related to the energy 

metabolism is the cause for unsuccessful outcomes in fatty liver grafts. In the studies 

outlined here, the presence of macrovesicular steatosis was minimal, and may have 

perhaps occurred by chance, as the recipients consented for the study did not receive 

a steatotic graft. Therefore definitive links to energy metabolism cannot be made, 

however based on the current scientific evidence it could be extrapolated that 

increased graft failures from fatty liver grafts may be related to the changes in energy 

metabolism and insulin resistance.  

 

We have discussed in the introduction chapter that macrovesicular steatosis is more 

abundant in the obese donor population, and has more relevance in the liver 

transplantation setting compared with microvesicular steatosis that is more acute 

phenomenon with less significance. Obesity is associated with both hepatic and 

peripheral insulin resistance (Greenfield and Campbell 2004;Marchesini et al. 1999) 

and extensive studies have been carried out in this front. This leads to myriad of 

clinical problems collectively termed as metabolic syndrome (Kanda et al. 2006). 

Therefore it is more likely that the steatotic liver grafts are originating from donors 

with metabolic syndrome, thus there is presence of insulin resistance in these liver 

grafts (Clark 2006;Urena et al. 1998;Williams et al. 2011). Some of these donors may 

have progressed to the full spectrum of fatty liver disease, commonly referred to as 

non-alcoholic steatohepatitis (NASH), and the pathophysiological changes are 

described as a “two hit theory” (Burke and Lucey 2004), originating with insulin 

resistance. Macroscopically therefore these grafts do not appear irreversibly 
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damaged apart from the presence of steatosis thus may be used in the 

transplantation setting (Cheng et al. 2001).   

 

It is widely known that the steatotic livers do not tolerate longer cold ischaemia 

(Strasberg, Howard, Molmenti, & Hertl 1994) and successful outcomes may be 

achieved through transplantation by minimizing the cold storage time (Yoo et al. 

2003). It is therefore likely that the increased ischaemia causes the intracellular 

glycogen stores depletion in steatosis liver grafts, and the insulin resistance present 

in the donor steatotic liver graft further prevent the influx of glucose in to the 

hepatocytes. These two aspects could be further studied in both experimental and 

clinical model. Our hypothesis is supported by the evidence that steatotic liver grafts 

are better preserved by normothermic machine preservation (Imber, St Peter, 

Handa, & Friend 2002;Jamieson et al. 2011;Vogel et al. 2010). Based on the concepts 

outlined in sections 7.1.3 and 7.1.4 in this chapter we have already initiated 

preliminary studies to investigate insulin receptor axis in the liver transplantation 

model.  

 

7.2 Biomarkers of poor graft function 

The metabolomics studies described in this thesis under chapters 5 and 6 outlined 

the use of CEAD and FTICR based analysis of two different biomaterials from liver 

allografts. Amongst the thousands of metabolites identified through these two 

studies two metabolites, namely tryptophan and kynurenine have the potential to be 

developed as biomarkers associated with severe graft injury. This conclusion is 

arrived on the basis that tryptophan metabolism pathway was identified as an 

affected pathway in our proof of principle study and also the both CEAD and FTICR 

data confirming the increased presence of these metabolites in the DCD grafts which 

were exposed to more ischaemic injury, along with even higher expression in the 

failed liver allografts. The problem we are faced now is – if tryptophan and/or 
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kynurenine could be studied as novel and alternative biomarkers to conventionally 

practiced liver enzymes to predict graft function.  

 

Tryptophan is an essential amino acid that has unique biological and metabolic 

properties in the central nervous system and the liver. Apart from an essential 

building block in proteins, tryptophan has other important effects that regulate vital 

biological mechanisms (Sidransky 1985). Although present in many proteins, 

tryptophan is the least abundant amino acid in the hepatic proteins, and usually 

degraded by two enzyme systems; indoleamine 2-3 dioxygenase (IDO) and 

tryptophan 2-3 dioxygenase (TDO). The latter enzyme is present only in the liver, 

therefore the kynurenine production which is in the downstream of the tryptophan 

metabolism pathway should only be due to increased TDO activity. The increased 

catalytic activity of TDO is determined by the substrate as a forward rate limiting 

step meanwhile other factors may also influence its activity.  Amongst the actions on 

liver, tryptophan is known to cause induction hepatic alanine aminotransferase and 

aspartate aminotransferase by unknown mechanisms (Sidransky 1985). Tryptophan 

also has effect on the glucose metabolism in the liver and in isolated perfused liver in 

the experimental models, hepatic glucose synthesis is reduced by tryptophan, 

kynurenine and its metabolic products. Increased quinolinate and serotonin 

production has been implicated although the exact mechanisms of this action are 

unclear.  

 

The above observations suggest that the increased hepatic transaminases seen 

following liver transplantation in the setting of severe graft dysfunction or primary 

non function may be related to increased activity of tryptophan-kynurenine pathway. 

Coupled with observations related to the glucose metabolism it opens up avenues for 

us to investigate this as a potential biomarker. The future work related to this aspect 

of research includes analysis of serum samples from organ recipients for tryptophan 

and kynurenine, and correlate these with the graft outcomes and conventionally 

measured alanine and aspartate aminotraferases. Through this pilot study we aim to 
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propose the significance of this novel biomarker in the prediction of liver allograft 

function in the post transplant period. Further option to study include monitoring of 

these biomarkers in the prospective liver graft recipients from pre-transplant time 

point to the post reperfusion period, which would eventually enable us decide on the 

reliability of this as a novel biomarker that could be used in the clinical 

transplantation setting.  

 

7.3 Summary of future directions 

To summarize the findings originating from our current studies, the DCD liver grafts 

which are considered “marginal” by nature showed significant differences in 

metabolic changes related to the primary energy metabolism, along with the grafts 

that failed following transplantation. It is likely that this is the end result of energy 

exhaustion, and further research on this aspect should be focused on replenishing 

intrahepatocytic energy stores during organ preservation, and that the mechanisms 

of study will involve insulin resistance and pathway analysis. Alongside, we propose 

to develop tryptophan and kynurenine as a novel biomarker to predict graft function, 

which may be directly or indirectly related to energy metabolism.  
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8.1.1 Appendix 1 



Application of Metabolomics to Investigate the Process
of Human Orthotopic Liver Transplantation:

A Proof-of-Principle Study

Olga Hrydziuszko,1,* Michael A. Silva,2,* M. Thamara P. R. Perera,2 Douglas A. Richards,3

Nick Murphy,2 Darius Mirza,2 and Mark R. Viant4

Abstract

To improve the outcome of orthotopic liver transplantation (OLT), knowledge of early molecular events oc-
curring upon ischemia=reperfusion is essential. Powerful approaches for profiling metabolic changes in tissues
and biofluids are now available. Our objective was to investigate the applicability of two technologies to a small
but well-defined cohort of patients undergoing OLT: consecutive liver biopsies by Fourier transform ion cy-
clotron resonance mass spectrometry (FT-ICR MS) and microdialysates of extracellular fluid by coulometric
electrochemical array detection (CEAD). FT-ICR MS detected reproducibly more than 4,000 peaks, revealing
hundreds of significant metabolic differences between pre- and postreperfusion grafts. These included increased
urea production, bile acid synthesis and clearance of preservation solution upon reperfusion, indicating a rapid
resumption of biochemical function within the graft. FT-ICR MS also identified successfully the only graft
obtained by donation-after-cardiac-death as a ‘‘metabolic outlier.’’ CEAD time–profile analysis showed that there
was considerable change in redox-active metabolites (up to 18 h postreperfusion), followed by their stabilization.
Collectively these results verify the applicability of FT-ICR MS and CEAD for characterizing multiple metabolic
pathways during OLT. The success of this proof-of-principle application of these technologies to a clinical
setting, considering the potential metabolic heterogeneity across only eight donor livers, is encouraging.

OMICS A Journal of Integrative Biology
Volume 14, Number 2, 2010
ª Mary Ann Liebert, Inc.
DOI: 10.1089=omi.2009.0139
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8.1.2 Appendix 2 



Original article

Comparison of energy metabolism in liver grafts from donors
after circulatory death and donors after brain death during cold
storage and reperfusion

M. T. P. R. Perera1, D. A. Richards4, M. A. Silva1, N. Ahmed1, D. A. Neil2, N. Murphy3 and
D. F. Mirza1

1Liver Unit, and Departments of 2Pathology and 3Critical Care, Queen Elizabeth Hospital Birmingham, 4Pharmacy, Pharmacology and Therapeutics,
School of Clinical and Experimental Medicine, Medical School, University of Birmingham, Edgbaston, Birmingham, UK
Correspondence to: Mr M. T. P. R. Perera, Liver Unit, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK
(e-mail: thamara.perera@uhb.nhs.uk)

Background: Donation after circulatory death (DCD) liver grafts have supplemented the donor organ
pool, but certain adverse outcomes have prevented exploration of the full potential of such organs.
The aim of this study was to determine key differences in basic energy metabolism between DCD and
donation after brainstem death (DBD) grafts.
Methods: Microdialysis samples from DCD and DBD allograft parenchyma from cold storage to
48 h after reperfusion were analysed by colorimetric methods. Interstitial lactate, pyruvate and glycerol
levels were measured and the lactate/pyruvate ratio was calculated to estimate energy depletion of the
grafts. Histological features of ischaemia and reperfusion injury were assessed.
Results: Donor age, extent of steatosis and cold ischaemia time were comparable between ten DCD
and 20 DBD organs. DCD grafts had higher levels of interstitial lactate (median 11·6 versus 1·2 mmol/l;
P = 0·015) and increased lactate/pyruvate ratio (792 versus 38; P = 0·001) during cold storage. There
was no significant difference in glycerol levels between DCD and DBD grafts (225·1 versus 127·5 µmol/l
respectively; P = 0·700). Rapid restoration of energy levels with lactate clearance, increased pyruvate
levels and reduced lactate/pyruvate ratio was seen following reperfusion of functioning DCD grafts,
parallel with levels in DBD grafts. Histology revealed more pronounced glycogen depletion in DCD
grafts. Three allografts that failed owing to primary non-function showed energy exhaustion with severe
glycogen depletion.
Conclusion: Liver grafts from DCD donors exhibited depletion of intracellular energy reserves during
cold storage. Failed allografts showed severe energy depletion. Modified organ preservation techniques
to minimize organ injury related to altered energy metabolism may enable better utilization of donor
organs after circulatory death.

Paper accepted 28 January 2014
Published online in Wiley Online Library (www.bjs.co.uk). DOI: 10.1002/bjs.9478
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8.1.3 Appendix 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Biomarker Differences between Cadaveric Grafts
Used in Human Orthotopic Liver Transplantation

as Identified by Coulometric Electrochemical
Array Detection (CEAD) Metabolomics

M. Thamara P.R. Perera,1* Roger Higdon,2,3* Douglas A. Richards,4 Michael A. Silva,1 Nick Murphy,5

Eugene Kolker,2,3,6,7 and Darius F. Mirza1

Abstract

Metabolomics in systems biology research unravels intracellular metabolic changes by high throughput methods,
but such studies focusing on liver transplantation (LT) are limited. Microdialysate samples of liver grafts from
donors after circulatory death (DCD; n = 13) and brain death (DBD; n = 27) during cold storage and post-
reperfusion phase were analyzed through coulometric electrochemical array detection (CEAD) for identification
of key metabolomics changes. Metabolite peak differences between the graft types at cold phase, post-reperfusion
trends, and in failed allografts, were identified against reference chromatograms. In the cold phase, xanthine, uric
acid, and kynurenine were overexpressed in DCD by 3-fold, and 3-nitrotyrosine (3-NT) and 4-hydroxy-3-
methoxymandelic acid (HMMA) in DBD by 2-fold ( p < 0.05). In both grafts, homovanillic acid and methionine
increased by 20%–30% with each 100 min increase in cold ischemia time ( p < 0.05). Uric acid expression was
significantly different in DCD post-reperfusion. Failed allografts had overexpression of reduced glutathione and
kynurenine (cold phase) and xanthine (post-reperfusion) ( p < 0.05). This differential expression of metabolites
between graft types is a novel finding, meanwhile identification of overexpression of kynurenine in DCD grafts
and in failed allografts is unique. Further studies should examine kynurenine as a potential biomarker predicting
graft function, its causation, and actions on subsequent clinical outcomes.

OMICS A Journal of Integrative Biology
Volume 18, Number 12, 2014
ª Mary Ann Liebert, Inc.
DOI: 10.1089/omi.2014.0094
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8.1.4 Appendix 4 
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Abstract
Background & Aims: We studied new-onset diabetes after transplantation
(NODAT) in liver transplantation with grafts donated after brain death
(DBD) or circulatory death (DCD), focusing on the early post-transplant
period. Methods: A total of 430 non-diabetic primary liver transplant recipi-
ents [DCD, n = 90 (21%)] were followed up for 30 months (range 5–69).
NODAT was defined as the composite endpoint of one of following: (i) Two
non-fasting plasma glucose levels > 11.1 mmol/L ≥ 30 days apart, (ii) oral
hypoglycaemic drugs ≥ 30 days consecutively (iii) insulin therapy ≥ 30 days
and (iv) HbA1c ≥ 48 mmol/L. Resolution of NODAT was defined as cessa-
tion of treatment or hyperglycaemia. Results: Total of 81/430 (19%) patients
developed NODAT. Incidence and resolution of NODAT over time showed
significantly different patterns between DCD and DBD liver graft recipients;
early occurrence, high peak incidence and early resolution were seen in
DCD. In multivariate logistic regression including age, ethnicity, HCV,
tacrolimus level and pulsed steroids, only DCD was independently associated
with NODAT at day 15 post-transplant (OR 6.5, 95% CI 2.3–18.4,
P < 0.001), whereas age and pulsed steroids were significant factors between
30–90 days. Combined in multivariate Cox regression model for NODAT-
free survival, graft type, age and pulsed steroids were each independent pre-
dictor for decreased NODAT-free survival in the first 90-postoperative
days. Conclusion: Early peak of NODAT in DCD graft recipients is a novel
finding, occurring independently from known risk factors. Donor warm
ischaemia and impact on insulin sensitivity should be further studied and
could perhaps be associated with graft function.
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