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Chapter

Multiscale Segmentation of
Microscopic Images

Dimiter Prodanov

Abstract

The chapter introduces multiscale methods for image analysis and their applica-
tions to segmentation of microscopic images. Specifically, it presents mathematical
morphology and linear scale-space theories as overarching signal processing frame-
works without excessive mathematical formalization. The chapter introduces sev-
eral differential invariants, which are computed from parametrized Gaussian
kernels and their derivatives. The main application of this approach is to build a
multidimensional multiscale feature space, which can be subsequently used to learn
characteristic fingerprints of the objects of interests. More specialized applications,
such as anisotropic diffusion and detection of blob-like and fiber-like structures, are
introduced for two-dimensional images, and extensions to three-dimensional
images are discussed. Presented approaches are generic and thus have broad appli-
cability to time-varying signals and to two- and three-dimensional signals, such as
microscopic images. The chapter is intended for biologists and computer scientists
with a keen interest in the theoretical background of the employed techniques and
is in part conceived as a tutorial.

Keywords: Laplacian of Gaussian, scale spaces, mathematical morphology, Fourier
domain

1. Introduction

Neurophysiological data are very much variable, and while certain patterns are
prominent and reproducible (e.g., action potentials, tissue textures, and cells) they
by no means can be easily defined precisely in a quantitative way. Data are enriched
with unwanted patterns having complicated temporal and spatial structure, which
are misleadingly called “noise.” Unlike the noise, natural objects have features on a
limited number of spatial or temporal scales. This observation is the starting point
of all available multiscale methods of analysis. The main focus of the chapter are
digital images; however the presented approaches can be applied in the more simple
setting of time-varying one-dimensional signals, such as voltage electrophysiologi-
cal recordings. In the subsequent presentation, the images will always be considered
as two-dimensional signals sampled on a rectangular spatial grid. The reason is that
all common microscopic approaches acquire images on a plane of illumination;
thus three-, four-, and five-dimensional images are essentially sets of correlated
planar signals. The third dimension can represent depth, time, or an acquisition
channel. Obviously, in the case of four and five dimensions, the number of combi-
nations increases. Therefore, one cannot assume isotropic resolution of the transfer
function for more than two dimensions. This situation introduces anisotropy in
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microscopic images, compared to other imaging modalities, such as magnetic
resonance imaging or computer tomography. In microscopy, in such way, the
default case is a planar image.

All physical signals are bounded and of finite duration. Such signals are acquired
as discrete samples from an underlying physical process which, as an idealization,
can be considered as continuous. The physical signals are naturally related to the
properties of the measurement apparatus. As another idealization, these properties
are described by a linear transfer function so that the measurement process
becomes a convolution (denoted further by * ). On the other hand, the measure-
ment is always contaminated by an unwanted signal, which is denoted broadly as
“noise.” The noise process can be identified with the nonlinearities of the measure-
ment process. In many occasions because of its apparent irregularity in time, it can
be treated as a purely random process. Since the physical measurement is a repeated
process, the Gaussian noise comes as a very common and useful model by virtue of
the central limit theorem of probability theory. The theorem roughly states that the
weighted sum of uncorrelated random variables having finite variance approaches a
normally distributed random variable. Hence, if the noise is not spatially and tem-
porally correlated, methods suitable for treating Gaussian or Poisson noise are
applicable. Evidently, very fast sampling or sampling from processes having long
memories, such as viscoelastic interactions, can violate these requirements. In such
settings, other noise models can become more suitable. The readers are directed to
[1] for a useful noise classification.

The chapter is organized as follows. Section 2 discusses the segmentation prob-
lem in general. Section 3 gives an overview of the mathematical morphology theory
and provides examples. Section 4 gives an overview of the geometrical image
features from the perspective of differential geometry. Section 5 introduces several
types of scale spaces and their application in segmentation. Section 6 discussed
implementation details. The chapter is intended for biologists and data scientists
with keen interest in theoretical background of the employed techniques and is in
part conceived as a tutorial. The references cited in the chapter are suitable for
introductions on the mentioned topics.

2. Brief overview of image segmentation approaches

Extraction of an object’s boundaries from a digital image is called segmentation.
Image segmentation is related also to object classification, which does not require
precise delineation of the object boundary. Therefore, segmentation can be also
viewed as classification on a pixel level.

The image segmentation is a nontrivial problem. For a successful image seg-
mentation, it is important to have prior knowledge of the image composition, that
is, the texture properties of the background and the objects of interest. Segmenta-
tion generates a mask consisting of a binary image delimiting the objects of interest
present in the raw image. The challenge is to define an accurate segmentation
methodology or at least an approach that enables segmentation of biologically
relevant features. There are several classes of methods, which can be applied in
different circumstances. These can be classified broadly into two classes: (i) inten-
sity based, where the hypothesis is that only differences in the image intensity
histogram can be sufficient for segmentation and (ii) geometry based, where the
image is transformed so that the geometrical features of interest become enhanced.

Historically, the first and simplest segmentation methods are based on global
thresholding of the histogram. Classical threshold-based methods consist of identi-
fying a given pixel intensity level that allows for separating the object of interest
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from the background. There are about 40 different global thresholding algorithms
[2]. Classically, an algorithm involving thresholding includes the following stages:

* Preprocessing steps, which decrease the spatial variation of the image
* Thresholding, which produces one or more binary masks
* Masking or region of interest (ROI) selection

* Post-processing steps, for example, including second thresholding or
watershed

The watershed is based on a topographical interpretation of the grayscale image
as terrain of mountains and valleys; the algorithm interpolates boundaries between
objects based on the continuity in intensity peaks.

Various image filtering techniques can be introduced as preprocessing steps.
These transformations are representations of mathematical operators. These opera-
tors have formal properties, which make them suitable for certain types of signals.
For example, the convolution-based linear operators assume continuity of the sam-
pled signal, while morphological operations do not. The notion of scale comes as the
support of the sampled kernel, so multiscale analysis provides rules how the sup-
ports of different operators change with scale. It is also important to consider the
sampling of the operators in the digital domain.

There are various geometry-based segmentation approaches, for example, using
edges, distances, or texture statistics. In addition, there is a vast array of pre- and
post-processing techniques, such as smoothing, mathematical morphology opera-
tions (i.e., watershed), partial differential equation methods, and shape methods.
This manuscript will focus on the geometry-based methods with a particular
emphasis on the edge detection techniques. Geometry-based approaches are invari-
ant to changes of illumination, which is an issue in natural images and some micro-
scopic techniques. In contrast, geometry-based approaches are susceptible to
structural or texture “noise” so extra care must be taken to address such issues.

3. Mathematical morphology

The mathematical morphology (MM) theory is a way of analyzing objects’
shapes by way of interaction with shape primitives called structuring elements (SE)
or kernels. A structuring element can be thought of as a small window that scans the
image and alters the central pixel within its frame. The mathematical morphology
theory was developed by Matheron and Serra [3].

MM operators are useful for the analysis of both binary and grayscale images.
Their common usages include edge detection, noise removal, image enhancement,
and image segmentation. MM approaches employ topological transformations and
hence do not depend, on the particular noise model. Therefore, they can be used
also in situations, where the noise is non-Gaussian.

The main building blocks of MM are the erosion © and dilation @ operators (see
Appendix A.1). Erosion and dilation are best understood by their action on black-
and-white images. If the white pixels represent the objects of interest, then after an
erosion with a SE, the white objects are contracted as the SE is inscribed inside every
white object. After a dilation with a SE, the white pixels are expanded as the SE is
circumscribed outside every white object. The action on grayscale images is similar
but must be understood in terms of ranking operations—that is, taking maxima and
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Figure 1.

Fundamental morphological operations. On the first row, an image of cell nuclei stained with DAPI (left)
ervoded (center) or dilated (vight) with a disk of radius 10. On the second row, the same image is opened (left),
closed (center), or granulometrically filteved. The inscribed numbers denote SE radii.

minima (Figure 1). The operations erosion and dilation can be composed into two
more basic operations—opening and closing. The opening with a SE, denoted by E,
is expressed as

IoE=(IOE)®E (1)
The closing with a SE is expressed as
I*E= (I®E)SE (2)

The opening operation removes the objects, which are covered by E, while the
closing, by duality, removes object’s complement (i.e., holes in objects), which are
covered by E. The so-developed theory is topological in nature because it does not
depend explicitly on the concept of size but only on covering and inclusion. Classi-
cally, the MM theory was developed for uniform homothetic scaling of the SEs, but
it can be extended to nonhomogeneous groups of scaling transformations. The
scaling can be interpreted as generating a system of neighborhoods of every given
point, thus reinforcing the topological interpretation. This gives rise to partial
differential equation interpretation of the MM theory [4].

The multiscale aspects of the theory are due to the scaling of the structure
elements. For example, the seed SE can be rescaled homothetically and then applied
to the image. Such series of successive openings provides a measure of the preva-
lence of objects of a given size and is called granulometry (Figure 2). Granulometry
can be used also to segment compact bright objects by means of a top-hat trans-
form, where from the primitive image its opened version is subtracted:

Tg(I) =1 —Eol, Gy, (I)=Lol—Uol 3)

The second equation represents the granulometric filtering operation, which can
extract bright objects of a specific size range from an image [5, 6].

Homogeneous scaling, that is, homothety, can be varied with the metric, which
is induced on the SE. This can be box-like, circular, diamond, etc.
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Figure 2.

Granulometry of cell nuclei. An image of cell nuclei stained with DAPI is opened with an increasing sequence of
disk-shaped kernels. Note the eventual disappearance of the central bright object. The inscribed numbers denote
SE radii.

Another useful realization is the morphological gradient operation, which is the
difference between an opening and a closure §g(I) = IoE — I *E. It can be used to
extract connected shapes by subsequent thresholding.

4. Geometrical image features

Mathematically, images can be represented as surfaces in the three-dimensional
Euclidean space, where the elevation represents the signal intensity. In this sense,
the intensity at a certain point in the direction x + » can be interpolated from its local

neighborhood as
I(x—l—V):I(x)—|—1"-VI+%VT']HI-V—|—O(VTV) (4)

Components of the gradient are given by Vu = (uy, u,). The Hessian tensor is
given by the matrix

Hu — (“ “"y) 5)

Uy Uyy

where for smooth signals the partial derivatives commute #,, = u,,. This picture
is a part of the so-called jet space—a higher dimensional differential descriptor
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space, as a natural basis for encoding the geometry of an image local neighborhood
[7, 8]. The subscripted notation will be used to identify partial derivatives with
respect to the coordinates.

The fact that digital images are sampled on a discrete grid may represent some
difficulty as differentiation in the literal sense does not work for discrete signals.
Notably, naive computations are numerically unstable and amplify the high-
frequency noise. This difficulty can be overcome by applying the distribution the-
ory, starting from the Leibniz identity for smooth signals [7]:

VI*xG)= (V) xG+I%xVG (6)

where V represents the gradient given by its principal components
V = (d/ox, 9/dy). For the whole space if the kernel vanishes fast at infinity, we
have (VI) x G = —I x VG. Therefore, even for discrete images, by extension, one
can define differentiation in terms of convolution with a differential of a kernel as

Vol:=—I%x VG (7)

From this point on, differentiation of a digital image will be interpreted only in
the generalized sense as a convolution with some smooth kernel. In such way,
various local differential geometric invariants can be also incorporated into the
processing. There are several filter families, which possess desirable properties,
which can be exploited for systematic image noise suppression and computation of
differential invariants. These families are formalized by the framework of the scale-
space theory. Notable examples are the spatial derivatives of the Gaussian, which
are used in the linear scale-space theory 5.1.

4.1 Differential invariants

There are several types of geometric features, which are useful for segmentation
applications. Typical interesting image features are blobs, filaments, and corners.
Notably, object boundaries can be represented in terms of edges, which can be
approximated by steps in image intensity. All these features can be computed from
the local differential structure of the image. The theory will be exemplified with the
Gaussian derivatives, which, in view of the duality property of Eq. (7), can be used
to compute the image derivatives.

The first four differential invariants are given in Table 1. The gradient vector
field of the test image is represented in Figure 3.

The eigenvalues of the Hessian tensor are solutions of the characteristic equation
det(H — All) = 0, where II is the identity matrix. This is a square equation with two
real roots 13,2, such that 4; + 4, = Ag and 414, = det H. If both eigenvalues are

Gradient amplitude A= /ngc N Gj

Gradient orientation sing = Gy / Gi 4 Gj

cosp = G/ G,ZC +Gj

Laplacian A =TrH =Gy + Gy,
Determinant of the Hessian det H = GGy, — chy
Table 1.

Second-ovder differential invariants.
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Figure 3.
The gradient image field. The gradient vector filed is overlaid onto a smoothed and downsampled version of the
original image. The gradient amplitude is encoded by the arrow intensity.

Figure 4.
Connected components of the Laplacian operator’s zero space. The boundary (left) is overlaid on the cell nuclei
image (right). The connected components (center) are calculated from Laplacian of Gaussian, s = 12.

negative, this is an indication for a bright blob-like feature around the point of
reference. In a similar way, if both eigenvalues are positive, there is a dark blob-like
feature around the point of reference.

If the eigenvalues have opposite signs, this is an indication for a saddle point at
the point of reference. Therefore, the zero-crossing of the Laplacian operator can be
used to delimit regions, encompassing blobs. The zero-crossings form the so-called
zero space, which can be used to identify objects. The regions where the Laplacian
changes sign can be extracted by connected component analysis, which are defined
as regions of adjacent pixels that have the same input label. In this regard, different
neighborhoods can be considered for the blobs (4-connected, N4) and for the
contours (8-connected, N8). To compute the connected components of an image,
we first (conceptually) split the image into horizontal runs of adjacent pixels and
then color the runs with unique labels, reusing the labels of vertically adjacent runs
whenever possible. In a second phase, adjacent runs of different colors are then
merged [9].
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The zero space is demonstrated in Figure 4, where the connected components
where the Laplacian changes sign are labeled. From the figure, it is apparent that the
cell nuclei can be enclosed well by the blobs.

The number of differential invariants increases with the increase of the image
dimensions. However, the theory can be extended along similar lines. A very useful
development in this direction is geometric algebra and calculus, which provide a
dimension invariant representation of the geometrical structures.

The so-introduced geometric image features can be used as building blocks for
advanced machine learning strategies for interactive segmentation and classifica-
tion. This strategy was implemented in two segmentation platforms based on
Image]/Fiji. The Trainable Weka Segmentation (TWS) [10] and the Active Seg-
mentation [11] have recently presented new opportunities for analyzing complex
datasets. Specifically, the active segmentation uses the scale-space-based filters
presented here.

5. Scale-space theory

In the digital domain, smoothing leads to loss of resolution and, therefore, of
some information. However, the information loss can be limited if one uses multiple
smoothing scales (see Figure 5).

Scale-space theory is a framework for multiscale image representation, which
has been developed by the computer vision scientists with intuitive motivations

Figure 5.
Gaussian scale space of cell nuclei. An image of cell nuclei stained with DAPI is convolved with an increasing
sequence of Gaussian kernels. Inscribed labels denote kernel half widths.
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from physics and biological vision, as introduced by [12]. The underlying idea is to
account for the multiscale nature of real-world objects, which implies that objects
may be perceived in different ways depending on the scale of observation. Taken to
the limit, a scale-space representation furthermore considers representations at all
scales simultaneously. Scale spaces have been introduced independently in Japan
and Europe by [12, 13]. The axiomatic linear scale-space theory was formalized in
series of works by Witkin [14] and Koenderink [15].

Scale-space approaches are ubiquitous in feature detection/description, as well
as dense correspondence mapping (e.g., large-offset optical flow is typically done in
coarse-to-fine fashion) [9].

5.1 The Gaussian scale space

The liner scale-space theory provides a systematic way of dealing with spatially
uncorrelated Gaussian noise. A fundamental result of scale-space theory states that
if some general conditions are imposed on the types of computations that are to be
performed in the earliest stages of visual processing, then convolution by the
Gaussian kernel and its derivatives provides a canonical class of image operators
with unique properties. The Gaussian kernel in 1D is given by

1 2
G(x) = me (8)
and
Glxy) = GX)GY) = e 7 (9

27s

in two dimensions. A very useful property of the kernel is its separability, which
allows for efficient computation of convolutions for multiple spatial dimensions.
That is, for example, in two dimensions

G(x,y) %I = G(x) % (G(y) *I) = G(y) *x (G(x) xI) (10)

Therefore, the computational cost scales linearly with the support of the kernel
rather than quadratically.

The Gaussian scale space depends on a free scalar parameter s representing the
scale of possible structures in the image [12-15]. In the typical implementation of the
theory, the scale parameter enumerates a space of smooth Gaussian test kernels of
rapid decay, which are convolved with the digital image. In one dimension, Gaussian
smoothing implies that new local extrema or new zero-crossings cannot be created
with increasing scales. Gaussian kernels provide several advantages: (i) they are
rotationally invariant, (ii) they do not produce artificial extrema in the resulting
image, and (iii) successive convolutions with different kernels can be combined.
Mathematically, this imposes a very useful semigroup structure, equivalent to the
heat/diffusion equation. In this sense, the image structures diffuse or “melt down,” so
that the rate of this diffusion indicates the “robustness” of the structure.

In its typical presentation, the scale-space theory applies only smoothing steps.
Later, the theory was extended to include also differentiation and thus account for
the differential structure of the images [16]. In the spatial domain, the Gaussian
derivatives for the one-dimensional case can be computed in closed form as

G, (x) = a(j:_n Glx) = % He, (x/ ) e 5 (11)
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where He, (x) is the statistician’s Hermite polynomial of order #. The sequence of
statistician’s Hermite polynomials satisfies the recursion

He, .1(x) = xHe, (x) — nHe,_1(x) (12)

starting from Heg(x) = 1 and He;(x) = x. This allows for efficient simultaneous
computation of all derivatives up to an order # in order to populate the n-jet space.
The n-jet components can be used to build the differential invariants up to order #.
An example is presented in Figure 6, where the five unique components of the
Gaussian jet-2 space are computed. The original dataset is present in the Image]J
public image database.

In spite of several properties that make linear diffusion filtering useful, it also
reveals some drawbacks [17]:

1. An obvious disadvantage of Gaussian smoothing is the fact that it does not
only smooth noise but also blurs important features such as edges. Moreover, it
is uncommitted to any prior information about the image structure.

2.Linear diffusion filtering propagates edges when moving from finer to coarser
scales, which can lead to difficulties in edge identification and instabilities.

5.2 a-Scale spaces

The a-scale spaces introduce nonlinearity on the level of differentiation. Nota-
bly, the Gaussian differentiation is replaced by another convolution operation,
involving a power law. Pauwels et al. [18] and later Duits et al. [19] investigated the
use of fractional powers of the Laplacian in connection with scale invariant
smoothing and scale-space theory, respectively. This approach tries to overcome
some of the limitations of the Gaussian scale spaces identified above. The evolution

Components of the
Gradient vector

Components of the
Hessian tensor

Figure 6.

Differential Gaussian 2-jet space. A microscopic image of Drosophila brain (first column) is convolved with
Gaussian derivative kernels. Different kernels are shown above the arrows. The second column shows the
components of the gradient. The third column shows the components of the Hessian. The local jet space of ovder k
has k(k + 1) /2 different components.

10



Multiscale Segmentation of Microscopic Images
DOI: http://dx.doi.org/10.5772/intechopen.89003

is governed by two parameters—the scale s and the order of differentiation a. The
approach leads to formulation and solving of a fractional heat problem:

u(0,x) = I(x)

us(s, x) = —(=A)"%u(s,x), 1<a<2 (13)

The Riesz fractional Laplacian operator is defined in the Fourier domain by
(=A)*U(k):=|k|“U(k) (14)

where the k| = vk - k is the modulus of the wave vector k. In this way, the
solution can be expressed in terms of a convolution with a very general special
function—the Wright function [20]. Numerical routines for computation of the
Wright function are still not readily available; therefore the computations is easier
achieved using fast Fourier transform (FFT) and its inverse, IFFT.

5.3 Nonlinear scale spaces

Linear diffusion scale spaces are well-posed and have a solid axiomatic founda-
tion. On the other hand, for some applications, they have the undesirable property
that they do not permit contrast enhancement and that they may blur and delocalize
structures. Nonlinear scale spaces try to overcome some of these limitations. Such
scale spaces arise in nonlinear partial differential equation framework, which will be
sketched below. The formal properties of some types of scale spaces have been
established by Alvarez et al. [4]. In particular, they established a strong link with
the related field of mathematical morphology (see Section 3). The following second-
order partial differential equation was demonstrated in particular

u; = F(Hu,Vu), u(0,x)=f(x) (15)

where Hu are the components of the Hessian tensor, Vu represents the compo-
nents of the gradient, and f(x) is the original image. It is interesting that MM
operations can also be represented in this framework as #, = +||Vu|| for dilation and
erosion, respectively.

In this line of development, the Laplacian of Gaussian (LoG) operator can be
decomposed into orthogonal and tangential components ([17], Ch. 1). The repre-
sentation is provided below:

Ag =Gy + Gy =Aig+ALc
2 2 — (32 2
(Gx + Gy)AJ_G = (Gx)Gxx + (ZGXGJ’)G’CJ’ + <Gy>ny (16)

(G2+G2)Ajg = (G2)Gux — (26:G,)) Gy + (G2) Gy

The parentheses denote scalar multiplication with the component of the gradi-
ent. The orthogonal decomposition is equivalent to an effective vectorization of the
filter. The normal component is antiparallel to the gradient (i.e., in normal direction
to the isophote curve), while the tangential component is parallel to the isophote
curve passing through the point. These components can be used to segment blob-
like or tubular structures. Segmentation based on the orthogonal decomposition is
illustrated in Figure 7.

The orthogonal decomposition leads naturally to anisotropic diffusion
(Figure 8). For example, if the tangential component is selected, this will lead to

11
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Lap 0

Figure 7.

Blob segmentation. Zero-crossing of the LoG decomposition, s = 6 (A) and s = 12 (B). Two blobs are highlighted
for better appreciation. The normal component is in Lap T, tangential component of the Laplacian; Lap O,
normal component of the Laplacian.

SR T DL - v, -
VL slitfeb A aTiesy . e normal e

Figure 8.

Anisotropic diffusion along principal flow divections. Astrocytes were stained immunohistochemically for glial
fibrillary acidic protein (GFAP) and imaged on a confocal microscope (left). Anisotropic diffusion evolved
according to the orthogonal decomposition of the Laplacian, s = 3, 3 steps—Tangential divection (center) and
along the gradient divection (vight). Note the granularity of the vight image and its blurred appearance
compared to the central image.

preservation of globular structures, while if the normal component is selected, this
will lead to enhancement of the tubular structures. The equation u, = A, gu is called
mean curvatuve motion equation [17]. An example is presented in Figure 8.

6. Implementation

The filters described in the present manuscript are implemented in Image] as a
set of plug-ins (Table 2). Two implementation strategies have been used: the
integer order filters are implemented in the spatial domain, while the fractional
order filters are implemented in the Fourier domain [21]." The plug-ins are distrib-
uted under the GNU Lesser General Public License v3.0 and are available as code
repository from the GitHub website [22].” The choice of implementation platform
was due to the widespread use of Image] in the biomedical and life science
communities.

Image] is a public domain image processing program written in Java. Since its
inception in 1997, ImageJ has evolved to become a standard analytical tool in a

! The installation procedure of the spatial-domain filters is straightforward, and this is the reason why
only spatial-domain filters are included in the public repository.
2 https://github.com/dprodanov/scalespace.
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Plug-in

Function

LoG filter

Laplacian of Gaussian (LoG)

ALoG filter

Anisotropic decomposition of LoG

ADiff filter

Anisotropic diffusion

LoG?2 filter

Bi-Laplacian of Gaussian

LoGN2D filter

N-order power of the Laplacian of Gaussian

Gaussian jet

Gaussian jet of order n

Zero-crosser

Connected components

Table 2.
Image] plug-ins demonstrated in the chapter.

number of scientific communities. In particular, for life science communities, it is
available as the Fiji plug-in platform, which allows for easy plug-in deployment and
dependency management. ImageJ has an open architecture providing extensibility
via third-party Java modules (called plug-ins) and scripting macros. It is developed
by Wayne Rasband since 1997 and expanded via contributed software code by an
international group of contributors. Plug-ins are distributed together with their
source code under various licenses determined by the plug-in authors. The user
guide of the platform [23] is maintained at http://imagej.nih.gov/ij/docs/guide.
Public resources are available on the Image] website and the ImageJ Information
and Documentation Portal https://imagejdocu.list.lu/. In addition, textbook
introductions to image processing with Image] can be found in [24].

7. Discussion

The morphological complexity of the nervous tissue is a challenge for conven-
tional segmentation techniques developed for computer vision applications or cul-
tured cells. The challenges lie in the morphological complexity of neurons and glial
cells overlaid on the heterogeneity of the extracellular matrix. This complexity
translates into variations of the tracer signal and touching of relevant structures.

Segmentation of fluorescent images poses particular issues due to low signal-to-
noise ratio, unequal staining, as well as the complexity of structures that need to be
identified. This irreducible variation must inform choices about segmentation
methods. In particular, methods employing multiple spatial scales are favorable.
Structure identification is inherently a multiscale problem because object structure
is recursive, that is, objects may contain substructures, which themselves contain
substructures, etc.

A large number of algorithms for image segmentation have been proposed in
literature (overview in [9]). However, many of them completely ignore the issue of
scale. As a result, they are capable of identifying only limited types of structures. In
contrast, multiscale approaches eventually rely on the topological properties of the
segmented objects, either by means of scale spaces or by nonlinear vector field
transforms [25, 26]. As a result, such methods are able to combine detected features
into robust segmentation tools. The present chapter introduced two classes of
multiscale methods for image segmentation: the mathematical morphology opera-
tions and scale spaces. The main applications of the theory are classification and
segmentation of signals. Presented methods are generic and thus have broad appli-
cability to both one-dimensional signals, such as electrophysiological recordings,
and to two and three-dimensional signals, such as microscopic images.

13
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8. Conclusions and outlook

The main utility of the presented approaches is to build a multidimensional
multiscale feature space, which is subsequently used to learn characteristic “finger-
prints” of the objects of interests. The large variation of structures present in
microscopic images precludes the design of an “ideal” tool. Instead, multiple
approaches should be combined and features computed that would inform machine
learning approaches, which are able to adapt to the morphology of the cells and
tissues at hand. Development in this direction has been undertaken with the advent
of deep learning techniques. Image]J-based implementations, such as the Trainable
Weka Segmentation [10] and the Active Segmentation platforms [11], have been
made available to end-users.
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List of acronyms

MM mathematical morphology

SE structuring element

FFT fast Fourier transform

IFFT inverse fast Fourier transform
GFAP  glial fibrillary acidic protein
LoG Laplacian of Gaussian

ROI region of interest

A. Appendix

A.1 Ranking operations

This section starts with a brief introduction to the set notation. In many sources
it is called also the “set builder notation.” The empty set is denoted as @. A set
containing only one member (singleton, for example the number 7) is denoted as
{7}. A set consisting of members fulfilling certain condition (in the sense of a
predicate function) is denoted as X = {x : predicate(x)}. For example, all positive
reals smaller than 7 are denoted as X = {x : x>0, x <7}.

From a formal perspective, the mathematical morphology is the application of
lattice theory to spatial structures [3]. Formally, the erosion is expressed as

IGE={x:x+bel,beE} (17)
for binary images, while for grayscale discrete images, it is

10 = min (I(x+7) - B)) (18)

Formally, the dilation for binary images is

IGE={x:x—bel,beE} (19)
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while for grayscale discrete images

I®E = ryneaéc (I(x+y)+B(y)) (20)

In the continuous approximation case, the minimum and maximum should be
replaced by infimum and supremum, respectively. Consider the set X. The infimum
inf, or the greatest lower bound, is the greatest number, which is not necessarily in X
but is smaller (or equal) than all members of X. For a finite set, the infimum
coincides with the minimum. The supremum sup, or the least upper bound, is the
smallest number, which is not necessarily in X but is greater (or equal) than all
members of X. For a finite set, the supremum coincides with the maximum.

A.2 Some useful Fourier transforms

The concept of frequency and the decomposition of waveforms into elementary
“harmonic” wave motions first arose in the context of music and sound. The Fourier
transform and its inverse in the continuous domain are defined as

U(k) = Fu(x) = ” 205y, (Vi e (x) = F1U (k) = H 25 (R)dk? (21)

—00 — o0

The reader is directed to the book of [27] for an introduction on the topic.
The Fourier transform of the Gaussian is given by

G(f) =27 (22)
and of its derivatives by
Gu(f) = (i2af s)'e > (23)
In the Fourier domain, the fractional heat kernel is expressed as
G(s, w, ) = e~ @) k" (24)

Integer-order powers. Integer powers of the Laplacian operators are successive
compositions of the Laplacian operator [28]:

2"La(w, n) = (~1)" (2s) e >k (25)

By substitution with the radial wavenumber k = \/@? + #?, it can be demon-
strated that the kernel is radially symmetric about the vector k& and gets sharper
with increasing the order #:

Ly(k) = (~1)"2" 2" k*" ¢ 27K (26)

Fractional-order powers. In the fractional domain the operator can be
expressed as a direct generalization:

Ly, olk) = (—1)" 2 22" k227 s (27)

ed

Therefore, the kernel bandwidth can be controlled by the fractional power a.
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A.3 Convolutions and Fourier domain processing

So far the described theory can work both in the spatial and the Fourier domain.
A schematic treatment of the Fourier transform is given in Section A.2. Interested
readers are referred to Burgers for a more complete introduction. The Fourier
domain processing implemented via Fast Fourier Transform has a certain advan-
tage. On the first place, for large convolution kernels, it can lead to speedup. This is
so because convolution in spatial (respectively temporal) domain corresponds to
multiplication in the Fourier domain. This incurs fixed computation costs; there-
fore, the convolution operation scales as N log(INV), where N is the size of memory
occupied by the digital image. Therefore, the following processing scheme becomes
useful:

FFT : I—Ip — Kp - Fy
——

Jr (28)
IFFT : Jp—] «— I%K

In the diagram above, the arrows indicate transformation, while FFT and IFFT
denote forward and Inverse Fast Fourier Transforms, respectively. In the example

of differentiation in the previous section, the kernel is the wave vector

Kp =k = (ky, ky, kz).
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