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Abstract

The emerging concerns in sub-Saharan Africa are non-sustainability of agricul-
tural and soil management practices threatening food security and environmental 
safety. Biochar, solid material obtained from thermochemical conversion of plants 
and/or animal biomass in an oxygen limited environment, is of great importance 
both agriculturally and environmentally. This chapter reviews the contributions 
of “biochar technology” to environmental sustainability and food security. This 
strategy addresses the declining food security issues, depleting soil and plant health 
challenges. When properly exploited, biochar will enhance soil fertility recovery, 
guarantee resilience to climate change challenges, and satisfy food production needs 
of growing global population. The positive impacts of biochar utilization on soil 
beneficial organisms in harnessing and controlling pests and diseases as well as 
revitalization of ecological niche make it a preferred option. Unfortunately, there is 
dearth of information on biochar mechanism to enhance bioremediation technol-
ogy, which is still facing some challenges that need attention for adequate soil reme-
diation. Many researchers have demonstrated bioremediation in laboratory scale 
under controlled environmental conditions; it may however be very problematic to 
establish the growth/survival of these biological entities in situ on heavily polluted 
soil where the environmental conditions cannot be controlled.

Keywords: biochar, plant productivity, environmental safety, bioremediation,  
food security

1. Introduction

Food security and environmental safety are the emerging concern in sub-
Saharan Africa due to non-sustainable agricultural and soil management practices 
[1]. Thus, giving rise to the limiting influence of biotic and abiotic stress factors 
on the plant and soil health [2]. Asides the resulting declined in agricultural 
production, the contributory effect of soil contamination by industrial pollution 
and excessive use of chemical in agriculture presently constitute a threat to food 
security and environmental safety. Therefore, this review examined the prospects 
of biochar in the sustainable agricultural production, plant protection and soil 
restoration. Biochar is a solid waste material obtained from thermochemical con-
version of plant or animal biomass or both in an oxygen limited environment [3]. 
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The thermal process is carried out on sources of biomass including agricultural 
wastes, green-waste, and animal manures (biomass feedstock) at temperatures 
ranging from 200 to 900°C [4, 5]. Biochar addition to soils was engineered by 
Amazonian terra preta soils, which were characterized by high levels of fertility 
as compared to adjacent soils where no organic carbon addition occurred [6]. 
The overall benefit of biochar to environment and production systems is based 
on three sustainability factors; use of sustainable biomass, sustainable produc-
tion processes, and sustainable end-use [7]. While the main applications which 
prompted its recent scientific research include: its mitigation of climatic change, 
efficient and cost effective waste management, and the use of biochar as amend-
ment to improve soil quality and sustain crop yield [8, 9]. Therefore, biochar 
amended soil causes alterations in soil health and this encompasses physical, 
chemical and biological features while it as well maintains the functions of both 
natural and managed ecosystems essential for sustainable agricultural fertility 
and productivity [10, 11].

2. Interaction of biochar with soil, plant, and microorganisms

2.1 Interactions between biochar and soil

Biochar exhibits natural oxidation through the formation of functional groups, 
thereby providing sites that can retain nutrients and other organic compounds 
[12]. Through the association of biochar particles with clay and silt-sized miner-
als, oxidized biochar particles may be bound to soil minerals, thereby decreasing 
the potential of its decomposition [13]. Hence, enhancing the ability of soil 
biochar complex to adsorb organic compounds present in the soil while biochar 
also interact directly with organic matter of soil by sorption [14]. Generally, soil 
health are restored with amendments by balancing its pH, increasing organic mat-
ter content and water holding capacity, re-establishing microbial communities, 
alleviating compaction and structure thereby allowing establishment of vegeta-
tion, recreate ecological function of soils, decrease bioavailability of toxic pollut-
ants, leachability and mobility of contaminants, erosion, improve soil drainage 
and reduce costs compared to traditional remediation techniques [15]. The cations 
in biochar after pyrolysis are transformed into oxides, hydroxides, and carbon-
ates (ash) which act as liming agents when applied to soil. Biochar is composed 
of low density material that reduces soil bulk density, thereby increasing water 
infiltration, root penetration, soil aeration and aggregate stability [16]. Biochar 
amendments on soil have positive effects on nutrient retention, particularly in 
highly weathered soils with low ion-retention capacities [17]. Biochar application 
to medium and coarse textured soils increased soil water holding capacity when 
analyzed [18]. Thus, biochar serves as soil amendment and carbon sequestration 
medium [19].

2.2 Impact of biochar on nitrogen fixation

Biochar as soil amendment enhances the biological nitrogen fixation, the nitro-
gen available in soil is usually lower than that of the biochar due to the high carbon/
nitrogen (C/N) ratio of the biochar, and the resulting N immobilization [17, 19], 
as well, contains higher availability of nutrients, N, and almost neutral pH value 
[20]. Combination of factors related to soil nutrient availability and simulation of 
plant microbe interaction, along with nitrogen/nutrient levels also increases when 
biochar was applied to soil resulting in increased colonization of the host plant roots 
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by Arbuscular mycorrhiza fungi (AMF). Biochar amended soils enhanced biological 
N-fixation in leguminous crops as reported by Rondon et al. [21]. The increase in 
the availability of major plant nutrients due to application of biochar occurs as the 
biochar also releases some small amounts of nutrients that would be available to soil 
biota [22].

2.3 Effect of biochar application on plant productivity

The prevailing scientific understanding of biochar degradation in soils is that 
some portions of it are quite readily decomposable, while the core structure of 
the material is highly resistant to degradation. However, biochar promotes plant 
productivity and yield through several mechanisms, it changes the physical con-
ditions of plants; its dark color alters thermal dynamics and facilitates rapid ger-
mination, allowing more time for growth compared with biochar un-amended 
soil [23]. Although, there are no specific recommended application rates for 
any soil but amendment of soils must be done based on extensive field testing. 
Chan et al. [24] reported that application of 5–50 tons of biochar per hectare, 
with appropriate nutrient management had positive effects on crop yields. 
Single application of biochar can provide beneficial effects over several growing 
seasons in a field due to its recalcitrance to decomposition in soil [25]. Therefore, 
biochar does not need to be applied in all cropping season, as is usually the case 
for manures, compost, and synthetic fertilizers. It effects on yield also occur as a 
result of changes in soil nutrition, water holding capacity and microbial activity 
and these effects vary due to soil type [26].

Many researcher has affirm the importance of biochar in plant growth 
enhancement, hardwood biochars and poultry manure biochars possesses 
nutrients, such as, high N content, which often enhance positive yield increases 
[26]. Petter et al. [27] reported that Eucalyptus biochar positively affected upland 
rice yields since the first year of its application. Biochar produced from wood, 
paper pulp, wood chips and poultry litter have also been found to positively 
affect crop and biomass yield [18]. In the studies of Glaser et al. [17] and Chan 
et al. [24], corn, cowpea and radishes grown on poultry litter biochar, each of 
their yield was improved by 140, 100 and 96% respectively. Field application of 
biochar below 30 tons/ha was reported to increase crop productivity and varied 
with crop type with greater increases for legume crops (30%), vegetables (29%) 
and grasses (14%) compared to cereals, such as, corn (8%), wheat (11%) and rice 
(7%) [28, 29]. Furthermore, wastewater sludge biochar was applied to cherry 
tomatoes at the rate of 10 tons/ha and resulted in 64% increased production 
above the control soil conditions [30].

Combined application of pine woodchip biochar at the rates of 5 and 10 mg/ha  
with N fertilizer to a fertile silt loam soil in northwest Arkansas significantly 
increased corn yield compared to sole application of N fertilizer [30]. Combined 
application of biochar with cow urine to the root zone of pumpkin also significantly 
increased pumpkin yield compared to all other soil amendment treatments. Ndor 
et al. [31] reported that rice husk and sawdust biochar significantly increased N, 
P and K uptake by maize plant, and also significantly increased maize number of 
leaves, plant height, fresh and dry weight of cobs. In another study, amendment of 
an alkaline soil with biochar derived from vegetable waste and Eucalyptus-leaves 
had significant effects on seedlings dry matter, shoot and root lengths of maize [32]. 
According to Fru et al. [33], Talinum triangulare responded positively in growth, 
nutrient uptake and yield when cultivated in poor and acidic soil amended with 
biochar. Instances of decreasing yield due to a high biochar application rate were 
reported when equivalents of 165 tons of biochar/ha was added to a poor soil in a 
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pot experiment [21]. Yield increase was reported in maize and wheat when biochar 
was combined with either organic residue/compost or mineral fertilizer, this indi-
cates that wood biochar may raise nutrient use efficiency when added to organic/
inorganic fertilizer/crop residues [34] (Figure 1).

2.4 Effects of combined application of biochar and fertilizer

Application of biochar in combination with fertilizer to soil has been found to 
have positive effects on crop growth, this was probably due to the positive interaction 
between biochar and applied fertilizer that improved the availability of nutrients asso-
ciated with enhanced plant uptake and reduced losses of these nutrients [25, 35, 36].  
Most biochar materials are not substitutes for fertilizer, so adding biochar without 
necessary amounts of nitrogen (N) and other nutrients cannot be expected to provide 
improvements to crop yield [21]. Application of Eupatorium (Syn. Chromolaena) 
weed-derived biochar to soil increased the yield of pumpkin crop to 85% above the 
unamend soil. A normal application rate in the range of 5–20 t/ha of biochar similar 
to other amendments, such as, compost under normal conditions can positively affect 
crop yield while excessive application rates (>50 t/ha) may negatively affect crop 
response. However it will be difficult to establish an exact threshold above which 
negative effects appear [37]. Negative effects on crop growth are mostly reported with 
biochar obtained from municipal waste, food waste, and sewage sludge because their 
excessive sodium contents increase soil salinity [28]. Other negative effects from plant- 
and wood-based biochars are due to one of the following causes: high application rates, 
high volatile matter contents detrimental to crop growth, reduced plant available nitro-
gen, or negative liming effect in alkaline and calcareous soils [35].

Figure 1. 
Effect of biochar on the soil mineral component. Source: Bamboo biochar—Bio-organic fertilizer [35].
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3. Role of biochar in sustainable plant disease management

3.1 Plant disease management: the good and the bad

Due to the increasing global population, there is an ever increasing desire to 
increase agricultural efficiency in terms of producing maximum crop yields and 
produce. This is only achievable if pest and disease agents limiting crop produc-
tions are adequately checked. Cultural, biological, chemical and regulatory 
measures are the key methods of plant disease management. Since its introduction 
over a century ago, chemical method had assumed a position of importance and 
preferred over the existing cultural method due to its effectiveness in the control 
of diseases, pests or weeds. The relatively low cost of the chemicals, the ease with 
which they can be applied, availability, stability and fast-acting limits the damage 
done to crops. However, with the realization of the havoc caused by continuous 
and persistent use of chemicals either by misuse or abuse, with the consequent 
degradation of ecological community of most of the farm sites based on their 
effects on both the target and non-target organisms, has led to the destruction 
of beneficial organisms and the natural predator in the eco-system. They also 
obstruct the normal functioning of the ecosystem if the pests and organisms’ 
develop resistance to the chemicals used, thus resulting in pests evolution. 
However, agricultural workers often suffer occupational exposure to pesticides 
while exposure of the entire population is exposed to pesticides pollution pri-
marily through the food chain and drinking water contaminated with pesticide 
residues which are carcinogenic [38, 39].

3.2 Biological control: novel strategy to safe agricultural practices

Humanity does not only dependent on the direct contributions of microbes 
within our bodies but also on the way they shape and maintain essential func-
tions of our environment, including agricultural production systems where 
they provide “ecosystem services”. Therefore, the use of biological control in the 
management of pest and diseases pre-dates the modern pesticide era [40]. The 
host specificity, longer residual effect and non-toxicity to human and the envi-
ronment makes biological control a novel strategy to safe agricultural practices 
and sustenance of the ecosystem structure [40]. Some of the control measures 
that have been widely explored in the management of plant pathogens include 
the use of beneficial organisms [41]. These are mostly members of the bacte-
rial genera Bacillus, Pseudomonas, Serratia, Stenotrophomonas, and Streptomyces 
and the fungal genera Ampelomyces, Coniothyrium, and Trichoderma being used 
as the model organisms to demonstrate their influence on plant health [42]. 
The growth and health enhancement of Arbuscular mycorrhizal fungi (AMF) 
has been well investigated [43–45] while the use of plants which involves its 
extracts, metabolites and bioactive products had been widely explored and 
yielded positive responses in the management of phytopathogens of varying 
kind of agricultural plants [46–48].

3.3 Influence of biochar on soil biota

Soil biota is important to the functioning of soils and provides many essential 
ecosystem services. According to Wuddivira et al. [49], biochar amended soil 
provides suitable pH for the growth of microbes, especially fungal hyphae due to 
its porosity. Application of biochar into soils leads to initial degradation of biochar 
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by chemical oxidation and microbial processes [50]. These processes that influence 
the energy flow and organic matter within the soil will impinge on bacterial and 
fungal-based energy channels, which will have impact at higher trophic levels [51]. 
Biochar and earthworms increased the availability of mineral nutrients in growing 
seedlings suggesting that this mechanism played important role [52]. Microbial 
population could be higher in black carbon rich soil, thus the interaction between 
biochar as a soil amendment approach plays a vital role in soil biota [53]. More so, 
biochar amendment resulted in increased soil microbial biomass and changes in the 
composition of soil microbial community [54].

3.4 Biochar: the refuge for microorganisms

Biochar provides “sanctuary” for microorganisms experiencing harsh environ-
mental conditions and also provide a more habitable space for their proliferation. 
The types of biochar and soil environment are factors that are vital to how the 
char will affect the soil microbiota [41, 55]. The ability of biochar to act as refuge 
for soil microorganisms from their predators; protozoa, beneficial nematodes, 
and microarthropods was affirmed in the report of Verheijen et al. [56] which 
showed the electron microscopic images of bacteria and fungi on the surface or 
inside biochar pores. The larger biochar pores which are mostly the structural 
remnants of wood xylem, phloem vessels and other larger features have diameters 
>10 μm [57]. According to IUPAC conventions, biochar porosity has been classi-
fied by distinguishing between; micropores (<2 nm), mesopores (2–50 nm), and 
macropores (>50 nm) [58, 59]. Whereas, the organisms that predate soil bacteria, 
including protozoa and nematodes, have diameters <10 μm therefore making access 
to the larger pores relatively easy [57]. Further protection from predation offered 
to the microbes by biochar has been associated with the hydrophobic adsorption of 
biochar although the hydrophobicity can decrease over time. Some microorganisms 
can be strongly attached to hydrophobic surfaces which create biofilms of several 
bacterial layers thick [57, 59].

3.5 Role of biochar in environmental safety and sustainable agriculture

The benefits of biochar on crop productivity and plant health have been related 
to four main mechanisms which include; increase in soil pH which is beneficial to 
acidic soils [18]. Biochar’s high water retention capacity results to improvement of 
water regime of the soil, this is of special advantage to sandy soil area where biochar 
will reduce the leaching away of moisture, thereby reducing water loss, while it 
reduces the risk of water-logging in clay soil by promoting water drainage [60, 61]. 
The third mechanism is associated with the capability of biochar to adsorb and 
neutralize phytotoxic organic molecules including anthropogenic, xenobiotics and 
natural allelopathic compounds. This detoxifying capability is directly related to 
the dramatic increases of specific surface area that occur during pyrolysis [62–65]. 
The fourth mechanism is related to its capability to stimulate beneficial microbes, 
in bulk soil as well as in the rhizosphere [66]. By serving as a source of reduced 
carbon compounds and by increasing the availability of micronutrients, biochar 
may be beneficial to microbial populations, such as, Arbuscular mycorrhizal fungi 
(AMF) [19, 67], plant-growth-promoting microbes [68, 69]. Therefore, biochar 
applications increase the microbial biomass of the beneficial organisms with related 
changes in microbial community functionality [66, 69]. However, the increase in 
microbial biomass resulting from microbial growth following biochar application 
has been reported to be as a result of the; effect of water and nutrient retention, 
formation of active surfaces that provided optimal habitat for microorganisms, 
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weak alkalinity and partial inhibition of destructive and simultaneous support for 
beneficial microorganisms [70, 71].

3.6 Biochar-microbe interaction: mode of action in plant disease control

Treatments with resistance inducers or beneficial microorganisms have been 
reported to provide long-lasting resistance for plants to a wide range of pathogens 
[72]. More so, induced resistance can be also conferred by plant-associated micro-
organisms, including beneficial bacteria and/or fungi [41]. Biochar does not have an 
indigenous population of microorganisms that can potentiate disease suppression, 
due to the high thermal treatment in its production [7]. However, its addition influ-
ences microbial populations and communities, thus causing changes which may 
include increase in beneficial microorganisms that directly protect plants against 
soil pathogens by; producing antibiotics, out-competing the pathogens, or graz-
ing on the pathogens [7, 9, 73]. Investigations conducted on biochar and microbe 
interaction collated by Bonanomi et al. [9] proposed five different mechanisms by 
which biochar mitigate against plant diseases and these include: (i) induction of 
systemic resistance in the host plants; (ii) enhanced abundance and/or activities of 
beneficial microbes; (iii) modification of soil quality in terms of nutrient availabil-
ity and abiotic conditions; (iv) direct fungitoxic effects of biochar; (v) sorption of 
allelopathic and phytotoxic compounds. This attributes have been further verified 
in some of the recent investigations [19, 72, 74, 75], thus biochar is an evolving 
strategy and a potent tool in plant pathology research, Figure 2. Therefore, biochar 
is gaining importance day by day as its application touches all facet of agriculture 
and has attracted tremendous attention in the practice of sustainable agriculture.

Figure 2. 
Spatial association and colonization of biochar by microorganisms (a) fresh biochar showing fungal hyphae; 
(b) fresh corn biochar showing microorganisms in pores (arrows); (c) 100-year-old char from a forest fire 
isolated from a frigid entic Haplorthod; (d) 350-year-old char from a forest fire in a boreal forest soil. Source: 
Lehmann et al. [19].
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3.7 Biochar interaction with mycorrhizae

Biochar and Arbuscular mycorrhizal fungi (AMF) interaction in soil will alter 
levels of nutrient availability that affects both plants and mycorrhizal fungi com-
munities and modifies plant-mycorrhizal fungi complex which serves as a refuge 
from hyphal grazers and soil predators [76]. Biochar soil amelioration in degraded 
landscapes has the potential to increase grassland plant production, enrich soil 
microbial populations, and stimulate Arbuscular mycorrhizal persistence while 
addition of biochar to soil increases root colonization by AMF [22]. In addition to 
the mineral supplement of AMF by biochar, it also acts against biotic and abiotic 
stresses in nature thus increasing the ability of AMF to assist their host in resisting 
infection by plant pathogens [73].

4. Effects of biochar application on greenhouse gases

Global surface temperature has increased by 0.8°C in the last century primar-
ily because of increased anthropogenic emissions of long-lived greenhouse gases 
(GHGs), such as, carbon (iv) oxide (CO2), nitrous oxide (N2O) and methane (CH4). 
Greenhouse gases are those that adsorb and emit radiation within the thermal infra-
red range [77]. Application of biochar to soils can impact soil GHG fluxes by chang-
ing the composition and activity of soil microbes, soil pH and soil biogeochemical 
processes [24]. Effects of biochar amendment on soil GHG fluxes depend on the 
study conditions, duration of the experiment, biochar application rate, biochar 
feedstock and pyrolysis methods [78].

4.1 Effects of biochar application on soil CO2 emissions

Soil CO2 emissions can be derived from native soil organic matter, the mineral-
ization of added carbon compounds (such as, dead plant material), root exudates 
or dead roots and the direct respiration from plant roots [79]. Lehmann et al. [19] 
suggested that a co-benefit of biochar amendment is a reduction of soil CO2 emis-
sions and associated long-term increases in soil organic carbon (SOC) in the soil. 
Although the mechanisms governing the effects of biochar amendment on soil CO2 
emission are uncertain, some authors suggested that increased CO2 emissions from 
soil might be as a result of the following mechanisms: biochar reduces the albedo of 
the soil increasing soil temperature; addition of liable carbon, increased substrate 
for soil carbon mineralizing enzymes [80]; agglomeration of soil carbon, microbes, 
nutrients on biochar surface and increased carbon use efficiency; reduction of 
carbon mineralizing enzymes activity and soil-derived CO2 precipitation onto the 
biochar surface as carbonates [81]. Wang et al. [82] reported that addition of wheat 
derived-biochar to acidic soil increased soil organic C and CO2 efflux on average by 
61 and 19%, respectively.

4.2 Effects of biochar application on soil N2O emissions

Nitrous oxide is produced in soils primarily by microbial activity through 
nitrification, nitrifier denitrification, NO3 ammonification and denitrification 
[83]. Biochar amendment to soil can have significant effects on soil N2O emis-
sions; however, the magnitude of effect varies widely. According to Yanai et al. 
[84] and Stewart et al. [85] short-term laboratory incubations have shown that 
biochar amendment can suppress soil N2O emissions, while Spokas [86] and Jones 
et al. [87] concluded that soil N2O emissions were not suppressed with biochar 
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amendment in the longer term (up to 3 years after biochar addition). Biochar 
amendment causes changes to a range of soil physical and chemical properties that 
regulate N-cycling processes [86]. Some authors have explained the mechanisms 
of the effects of biochar amendment on soil N2O emission and these include: 
increased water holding capacity and decreased bulk density of the soil, increased 
soil aeration thereby reducing the activity of denitrifying microorganisms [84, 88],  
reduced N substrate for nitrifying and denitrifying enzymes thereby reducing 
enzymatic activities of soil microbes as a result of immobilization of soil inorganic 
N through absorption to biochar surface or increasing microbial immobilization 
[86], the N2O:N2 emission ratio produced during denitrification decreases as a 
result of increased soil pH [89]; N2O:N2 product ratio of denitrification is reduced 
by increased effects to the soil [90], reduced activity of soil nitrifying/denitrifying 
organisms through substances emitted by the biochar, such as, ethylene, α-pinene, 
PAHs, VOCs [91]. Rondon et al. [92] reported that biochar amendment reduced 
N2O emissions from pasture land and soybean soil by 80 and 50% respectively, 
because microbial conversion and denitrification were restricted. Application of 
biochar at a rate of 40 t/ha decreased N2O emission from paddy rice and maize 
fields by 21–28 and 10.7–41.8%, respectively but increased CH4 emission from 
a paddy rice field by 41% and CO2 emission from a maize field by 12% [93, 94]. 
Cayuela et al. [95] reported that biochar reduced soil N2O emissions by 28% in a 
similar field. Wang et al. [82] reported that addition of wheat derived biochar to 
acidic soil did not affect the annual N2O emissions (26–28 kg N/ha), but reduced 
seasonal N2O emissions during the cold period. Fan et al. [96] reported that bio-
char amendments generally stimulated the NH3 emissions with greater enhance-
ment from wheat straw biochar than swine manure biochar.

4.3 Effects of biochar application on soil methane (CH4) emissions

Methane are produced by methanogens as a metabolic by-product of organic 
matter mineralization in anaerobic conditions; the two primary pathways being 
through CO2 reduction by H2 or through acetotrophy [97]. Soil methanotrophs are 
the only known biological sink for atmospheric methane, which oxidize methane 
and produce CO2 as a by-product [98]. Soil methanotrophs require oxygen as a 
terminal electron acceptor and their activity is highest around 60% water-filled 
pore space (WFPS) and decreases above this moisture content [88, 99]. Zhang et al. 
[93] and Wang et al. [100] reported that there are limited evidence to suggest that 
biochar amendment affects soil CH4 emissions, and evidence that supports it are 
mostly from studies in rice paddies. In saturated soils, such as, rice paddies but not 
in other aerobic crop soils, CH4 emissions are generally significant [97]. Increased 
availability of liable C substrates for methanogenic bacteria may explain increased 
methane emissions following the addition of biochar to soil [100]. Soil CH4 emis-
sions were increased by 37% with biochar amendment in a paddy rice field [100]. 
Similar observation of an increase in soil CH4 emission from the same land use 
were also reported by Zhang et al. [93] and Knoblauch et al. [101]. Increased in soil 
methane uptake within arable soils following biochar amendment was observed 
by Karhu et al. [88]. In similar studies, with other crop types, no significant effect 
of biochar amendment on CH4 emissions in arable and pasture soils were reported 
[100, 102, 103] while in Finnish agricultural soil, a 96% increase in methane uptake 
was reported in biochar amended soils [88]. Application of biochar to waterlogged 
paddy rice soil in the laboratory, decreased CH4 and CO2 emissions in the soil and 
this was attributed to the restriction in methanogen activity and limitation of car-
bon on microbial biomass, as well as rise of pH value [104]. However, increase in CH4 
and CO2 emissions were reported by Ameloot et al [105] and Van Zwieten et al. [106]  
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studying the short-term CO2 and N2O emissions and microbial properties of 
biochar amended sandy loam soils, and effects of biochar from slow pyrolysis of 
papermill waste on agronomic performance and soil fertility, respectively.

5.  Characterization of biochar as an effective mediator of 
bioremediation mechanisms

5.1 Biochar as a soil additive to enhance soil restoration/remediation

Soil remediation efforts should be based on feasible, environment friendly and 
cost effective technologies, and many scientists today are advocating bioremedia-
tion mechanisms for meeting these criteria. It has also been widely reported that 
bioremediation can be enhanced through the use of traditional resources, such 
as, the application of soil additives. The basis for the use of soil additives during 
bioremediation is for enhanced bio-stimulation and bio-augmentation; these two 
mechanisms form the bed-rock for the immense roles of soil additives in bioreme-
diation as reported by many researchers [45, 107–112]. Biochar applications as a 
soil additive in contaminated soil is a potential management strategy for feasible 
and cost effective agricultural sustainability using degraded soils hence improving 
the food security. Many reports have identified biochar with high sorption capacity 
for many contaminants including persistent organic pollutants (POPs) and many 
inorganic pollutants, such as, heavy metals [113, 114]. It was reported, however, 
that the physicochemical properties of the original crop residue used for biochar 
preparation may determine its sorption efficiency [115, 116]. However, good knowl-
edge of the pollutant type and its concentration may help in predicting the type of 
biochar that would be of best fit. Thus it is a crucial factor to clarify the correlation 
between the sorption efficiency and properties of a particulate. The use of biochar 
in nutrient sequestration according to Barrow [117] was from the discovery of “terra 
preta” which is a charcoal-rich fertile soil located at the central Amazon basin that 
is known for diverse agricultural roles. The importance of such biochar to soil has 
been reported [28, 105, 117–122].

In a study by Gomez-Eyles et al., biochar was shown to reduce PAH accumulation 
in earthworm (Eisenia fetida) tissue; this organism was incubated in soil treated 
with biochar for 28 and 56 days. Their study suggested that biochar can be used in 
PAH polluted soil to avoid their entrance into the food chain and this was corrobo-
rated in another study reported by Wang et al. [110] in which the bioavailability 
of pesticide called chlorantraniliprole was reduced by biochar amendment and 
prevented its absorption in earthworm tissues. The use of biochar as amendment for 
enhanced bioremediation is gaining attention at an exponential rate as it enhances 
soil nutrients and water availability [115–117]. It was also reported that it functions 
by immobilizing/degrading many soil and water contaminants [123, 124]. Unlike 
other amendments, biochar is thought to be perfect in Carbon sequestration in soil 
making it stable for several years [122].

5.2 Biochar as a potential catalyst for phytoremediation

The use of plants for bioremediation is called “phytoremediation”; its success 
depends on establishment and good development of vegetation on the polluted site 
brought about by healthy root and shoot biomass [125, 126]. However, the major 
problem of phytoremediation is the establishment of degree/level of pollution of 
the polluted site. Many soil pollutants are very persistent, many form complexes 
with humus and soil nutrients and thus make them unavailable for plant use. In 
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addition early research have reported that many soil pollutants, such as, aromatic 
and polycyclic hydrocarbons can create anaerobic condition and make seed ger-
mination and plant establishment difficult on the polluted soil. However, the use 
of amendments, such as, organic materials can enhance plant biomass yield and 
improved plant health growing on polluted sites [1, 111, 127]. The use of biochar for 
the amendment of polluted soils has been reported to enhance re-establishment of 
plants and supports massive plant biomass [125, 128]; this is a potential approach 
for effective phytoremediation mechanism [128]. Prendergast-Miller et al. [129] 
and Prendergast-Miller et al. [130]. The above reports present biochar as good 
candidate for positive soil enhancement although this is not yet fully exploited in 
contaminated sites. Biochar as soil amendment enhances nutrient availability and 
improves the activities of soil microorganisms around the root rhizosphere for 
effective nutrient mobilization for root uptake [116, 131–133]. This promotes root 
expansion and hence has potential to support phytoremediation. It was reported 
that plant growing on polluted soil may develop some disease malformations due to 
their response to the toxic pollutants [111] and reduced resistance to pests.

Biochar has however been reported to increase plant resistance to several soil 
and air-borne pathogen, it was reported that biochar stimulates several plant’s 
defense pathways and related gene expression [7, 134, 135]. Biochar has also been 
well reported for its pH enhancement capacity as it enhances the soil CEC [136–139]  
and minimizes salt toxicity in polluted soils (142). According to Cheng and 
Lehmann [140] and Singh et al. [115], biochar is able to oxidize in soil to raise its 
carbon exchange capacity (CEC) as it disintegrates during tilling and weather-
ing and there are some commercially available biochar purposefully used as soil 
nutrient enhancement. This can be very helpful in the enhancement of plants health 
during phytoremediation. Many researches have suggested the combination of phy-
toremediation with biochar for effective soil remediation. Hartley et al. [141] and 
Fellet et al. [142] reported that biochar’s combined use with Miscanthus increased 
phytostabilization, while in another experiment, Hartley et al. [141] reported an 
increase in As extracted by Miscanthus plant in three soils treated with biochar made 
from hardwood. Combined biochar and phytoremediation have also been reported 
in Cd-polluted soils using Brassica napus L. by Houben et al. [143]. Many more 
results have proved that biochar is suitable for enhancement of phytoremediation 
mechanism and this seems plausible for their exploitation in remediation of multi-
contaminated soils. Biochar can be used prior to plant colonization of acidic soils 
however; these two approaches still need more confirmatory researches to depict 
their synergistic mechanisms for effective and sustainable set-up.

5.3  Biochar as a potential catalyst for enhancement of microbial response 
and bioremediation

The nutrient and soil amendment capability of biochar cannot be overempha-
sized. The fact that biochar improves soil nutrients means that it has some benefi-
cial effects on the soil microbiota, this has been well studied [115], Ippolito et al. 
[144, 145] and Kuppusamy et al. [146] and they reported that biochar amendment 
was found to enhance increment in microbial biomass, diversity and enzyme activi-
ties [14, 147, 148]. Biochar was thought to increase bacterial and fungal population 
as they easily form pore habitats in biochar, although the mechanism could be 
varied but the overall effect might be as a result of nutrient recycling and soil water 
retention as enhanced by the biochar and this of course increases the resources 
available for the microbes to use.

Furthermore, microbial community shifts brought about by biochar amend-
ments may vary due to particular characteristics, microbial response to soil 
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conditions set by the biochar treatments, especially based on the biochar surface 
characteristics and its bioavailable compounds, as well as well as pH changes 
induced by the treatment [149]. Zimmerman et al. [80], for example, reported an 
increase in C mineralization in soil treated with biochar that was made from grasses 
under low temperatures of 250–400° C compared to biochar that was made from 
hard woods under higher temperatures of 525–600°C. In another study, Steinbeiss 
et al. [150] explained that fungi adapted more with biochar that was created from 
yeast but Gram-negative bacteria responds well to those created from glucose. 
Anderson et al. [151] reported varying results in microbial population dynamics 
due to different biochar treatments. The exploitation of biochar to increase micro-
bial population for faster bioremediation requires complete understanding of the 
relationship of a particular biochar to be used and the type of native or introduced 
bacteria or fungi involved. Theoretically, biochar is not a degrading substrate and 
therefore cannot be degraded by microbes [149, 152]; however, it has a potent labile 
C source in itself [153]. When used in soil, biochar adsorbs active enzymes and 
nutrients and make them available for usage by microorganisms [154].

5.4  Prospects of biochar as a potential mediator for synergistic bioremediation 
mechanisms

Interest in combining different biodegradation mechanisms, such as, the use 
of plant and microbial communities for effective synergistic bioremediation has 
been vogue in some years past. It is believed that bioremediation which provides an 
environmentally friendly mechanism has gained acceptance by scholars and envi-
ronmental managers. Biochar is a synergistic bioremediation mechanism known 
to yield speedy soil remediation if correctly implemented [155]. The synergistic 
combination of two or more biological entities for effective soil bioremediation 
requires that the two or more organisms to be combined must integrate well and 
can coexist together leading to exchange of mutual benefits between one another. 
This requirement is paramount in such settings as bioremediation such that many 
researchers have suggested the use of soil supplements/additives to enhance this 
technology [112, 155]. Having established the importance of biochar for plant and 
microbes, the smart way therefore is to think about using it for combine plant-
microbial bioremediation technology. Nutrient enhancement by biochar fosters root 
elongation and hence increases the microbial populations in the rhizospheres [18, 
156]. It is anticipated that effective combinations of different bioremediation tech-
nologies may eventually yield a feasible, speedy and effective means of restoration 
of many polluted soils, and basic roles of biochar in this area cannot be overlook. 
However, this requires a good understanding and interest in biochar properties, 
mode of production and their actions in different polluted environments need to be 
well studied. Large and small scale laboratory and field trials are needed for proper 
exploitation of this technology.

6. Conclusion

Considering the arrays of biochar benefits, it is a potentially untapped asset for 
sustainable soil health. However, the dearth of adequate research and knowledge 
of biochar use as soil amendment today is a still big gap. This therefore necessitates 
mechanistic understanding and research to unveil the mechanisms of biochar 
action on soil health. It would as well enhance knowledge on the optimal rate for 
a particular biochar application, its quality parameters/suitability to different soil 
and climatic conditions, in relation to economic factors, feedstock properties and 
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optimize designed pyrolysis conditions needed for its production toward specific 
end use. In addition, most of the studies on biochar so far are generally based on 
short term; long-term experiments are needed to understand the effect of biochar 
aging. Having fulfilled these recommendations, biochar may well be one of the 
prominent scientific breakthroughs for benefit of mankind.
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