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Abstract

The objective of this project was to design a low-mass, low-power interferometer to be
used for space applications. It had to be capable of remaining tilt-immune whilst working
at a distance of at least 1 m.

This thesis describes the design and subsequent building of a 1550 nm homodyne inter-
ferometer. Known as the new Easy to Use Compact Laser Interferometric Device (nEUCLID),
it has a working distance of 660 mm and a working range of±120 mm. These large distances
are made possible by the novel cat’s eye design within the interferometer, which also allows
tilt immunity of ±0.35◦ of the target mirror (at the sweet plane). The thesis explains in
detail the theory and design of the cat’s eye, known as a pseudo cat’s eye (PCE) in the
text.

The interferometer, nEUCLID, has a sensitivity of 420 pm/
√

Hz, at 1 Hz in air, tested at
the working distance of the current design. It has a mass of 2 kg and an overall power
of 1.8 W. Both of these values are due to using standard, off-the-shelf components in the
design, and could be reduced with further development.

Within this thesis ground-based and space-based applications for nEUCLID within the
space industry are discussed and compared with existing technologies.
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Chapter 1

INTRODUCTION

1.1 A Space Application

With the ever increasing competition between companies and countries in the space industry,
new technologies are being welcomed with open arms. Low power, light-weight devices are
being demanded, to improve mass and power budgets of modern spacecraft. Cost is also
important; on average it costs approximately $22 000 to put 1 kg into geosynchronous orbit
(GEO) [1]. Less massive technology will be more desirable, as less fuel is required to launch
the device. This is why investment in interferometers as space-borne metrology tools is
prudent; they can be made small and electronically and optically simple, and most of the
optical parts required are already space-qualified from previous missions [2].

There are several areas within the space industry that lack sufficient technology to progress
forward with future missions. Previous formation flying missions and large-scale observatories
have been delayed or cancelled, due to lack of technology capable of the required precision.
Large satellites are limited to the fairing size of the launch vehicle, with only the recent
James Webb Space Telescope (JWST) being accepted as a feasible deployable structure
worth proceeding with [3].

Meanwhile, with established satellites, telecommunications companies are demanding more
precise ground coverage at the lowest possible price. Monitoring spacecraft and antenna
distortion in/out of eclipse, and continuous monitoring of antenna centres are crucial to
achieving this. Currently, these are either measured using an on-board computer system
and ground loop (a time-consuming, and thus expensive process), or not at all.

Ground testing – a necessary procedure for all space missions – currently relies on accelerometers
and cameras to measure and align components. Accelerometers add extra mass to vibration
testing, whilst thermoelastic tests and antenna alignment procedures use simple cameras
to take images of post-test components.

Chapter 6 explains in greater detail how the interferometer described in this thesis – the
nEUCLID – would be useful for these applications, and compares the current technologies
(if there are any).

I was tasked by Airbus Defence and Space (DS) UK to create an interferometer that could
be used for a variety of space applications. Airbus DS is the largest space company in
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1.2. WHY AN INTERFEROMETER?

Europe, and the third largest in the world [4]. They develop and fund future technologies
that are advantageous to the space industry. The following specifications for the device
were laid out:

• low mass (under 5 kg)

• low power (under 10 W)

• dimensions less than 300 mm× 200 mm× 100 mm

• tilt immunity (scales inversely with working distance; ±0.5◦ for 1 m)

• working distance of at least 1 m.

Two of the most desired characteristics were tilt immunity of the measurement target,
and a long working distance. Whilst both the University of Birmingham interferometers
(EUCLID and ILIAD) described in Section 2.5 are tilt-immune, neither are capable of
a working distance of more than 60 mm. EUCLID is a compact displacement-measuring
homodyne interferometer with a working distance of 6 mm, whilst ILIAD is a compact
rotation-measuring homodyne interferometer with a working distance of 59 mm, capable
of working at both room temperature and in cryogenic experiments.

Airbus DS also specified that the interferometer should be coaxial, to allow use on curved
surfaces, such as antenna dishes. No interferometer at the University met all of these
criteria, thus the need to develop nEUCLID.

1.2 Why an Interferometer?

Since the first interferometer was invented in 1887 [5] interferometers have been used for
a wide range of applications, from measuring the anisotropy of the velocity of light [5] to
the search for gravitational waves [6], from imaging body tissue [7] to aligning the surfaces
of next-generation telescopes [8]. The common theme among these applications is the
measurement of change; in displacement, in velocity or in the type of surface. The change
investigated within this thesis is the change in phase of the interference pattern, caused by
the change in displacement of a target mirror.

The potential for extremely high sensitivity makes interferometers a favourable experimental
choice, whilst the basic design concept ensures the instrument can be used across many
research fields. They are capable of wavelength-resolution measurements, yet can be simple
to tailor for specific applications. Due to the simplicity of the basic design they can be
constructed from components available off-the-shelf – a light source and several optical
components (see Section 2.1) – meaning it is straightforward to implement this basic
design. These components are available for many different wavelengths and are often
space-qualified. Interferometers are also not limited by size; they can be as compact or as
large as an application requires; e.g., aLIGO [6] compared to EUCLID [9].

Interferometers can be applied to a wide range of space activities, both on the ground and
in orbit. Due to requiring few active components (i.e., a laser source and simple electronics)
the mass and power budget is low, and their flexibility of size means they can be scaled up

2 CHAPTER 1. INTRODUCTION



1.3. OUTLINE OF THESIS

or down to suit each mission. The nanometre sensitivity of interferometers is appealing to
the space industry due to the increasing demand in finer precision of measurements, both
from space and from testing on the ground. These reasons encouraged Airbus DS to look
at interferometers for future space applications.

Extensive research has already been undertaken at the University of Birmingham regarding
compact tilt-immune interferometers [9, 10], so these were the ideal candidates for further
development. Tilt immunity is not common in interferometers; a patent was investigated
for the design within this thesis and no competing technology was found, for either the
new cat’s eye (the PCE) or the interferometer design.

1.3 Outline of Thesis

This thesis describes the design and subsequent building of a new polarisation-based
homodyne interferometer that is immune to tilt at a distance of 660 mm. The design
contains a novel cat’s eye lens system that was also created during this project; the
thesis will discuss both the cat’s eye and the interferometer. Chapter 3 to Chapter 5,
and Chapter 7 are all my own work. Applications of the interferometer within the space
industry will also be examined.

Chapter 2 outlines the concept of an interferometer and discusses two of the most common
types of interferometers: heterodyne and homodyne. Previous polarisation-based homodyne
interferometers are discussed, as are the interferometers that have been built at the University
of Birmingham.

Chapter 3 describes the new cat’s eye design; what it evolved from and how it works within
the new interferometer. It also discusses how the new cat’s eye is not a perfect cat’s eye,
and how this was innovatively dealt with using a mensicus lens.

Chapter 4 details nEUCLID; the optical configuration, the method of alignment, discussion
on the laser selection, and the characteristics of the device.

Chapter 5 shows the results taken with nEUCLID: the sensitivity in air, the range of tilt
immunity in and beyond the sweet plane, and the imperfections within the system.

Chapter 6 discusses potential space applications of nEUCLID – the driving force behind
nEUCLID’s creation.

Chapter 7 evaluates the work discussed in this thesis. Suggestions for future work are also
expanded upon, such as improvements of the sensitivity and an absolute nEUCLID.

CHAPTER 1. INTRODUCTION 3





Chapter 2

INTERFEROMETRY

2.1 A Basic Interferometer

An interferometer is an optical device that causes two beams of light to interfere. Using the
principle of superposition, when the two beams are combined their amplitudes are added
together, creating an interference pattern. This pattern is made of consecutively dark and
light strips (“fringes”), as shown in Section 2.2.1, and can be used to determine optical path
length changes within the system, as discussed later in Section 2.2.4. Lasers are used to
ensure the original beam is coherent (in phase), and monochromatic (the same frequency),
so the interference pattern observed is solely from change within the system (e.g. a mirror
moving towards/away from the system).

The simplest design of interferometer is a Michelson interferometer. It was invented in 1887
[5], and consists of a white light source, a half-silvered mirror (HSM), two standard mirrors,
and a detector (D). The beam from the light source passes through the half-silvered mirror,
causing half the beam to be transmitted to mirror 1 (M1), and the other half of the beam to
be reflected to mirror 2 (M2). The passage from the half-silvered mirror to each standard
mirror is known as an arm of the interferometer. Each beam travels to the mirror in its
respective arm, where it is reflected back through the half-silvered mirror and recombined
into one beam to form an interference pattern, such as shown in Fig. 2.6. Moving either M1

or M2 alters the length of that arm, changing the optical path length, and causing a change
in phase between the two beams. This phase difference results in a varying fringe pattern
at the detector, from which the mirror displacement can be measured (see Section 2.2.4).

The Michelson design has several issues that caused the design of later interferometers to
develop beyond this. The design lacks the ability to determine the direction of the mirror
motion; a major problem for most applications where direction of movement is critical. The
Michelson is also susceptible to mirror tilt, causing additional (and erroneous) displacement
measurement.

The design of interferometers has continued to advance, to cope with these problems, and
these designs will be discussed in Section 2.3 and Section 2.4.
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2.2. UNDERSTANDING INTERFEROMETRY

Figure 2.1: Schematic diagram of a Michelson interferometer, showing the two mirrors,
M1 and M2 and the detector, D.

2.1.1 In-Quadrature Measurements

With one signal from the interferometer, the direction of the mirror movement within an
arm is not possible to define. As the mirror is moved the interference pattern fringes change
from dark to bright, and the signal at the detector moves between minimum and maximum.
This occurs whether the mirror moves forwards or backwards. To enable the direction of the
mirror motion to be calculated the sign of the phase difference between the beams must be
known (see Section 2.2.1 for mathematical detail). Because the two beams are superposed,
the phases are combined into one value. In order to determine the mirror direction a known
phase difference is added between the beams, and observed in two interference patterns.
When the visibility of one interference pattern is a maximum/minimum, the phase-shifted
interference pattern will either lead or lag behind the first by ±π/2 (the added phase
difference). This known phase difference allows the mirror direction to be calculated (see
Section 2.2.4 for details).

In both Easy to Use Compact Laser Interferometric Device (EUCLID) and nEUCLID this
added value is a phase difference of ±π/2, so the two interference patterns are 90◦ out of
phase with each other – in “phase quadrature”.

2.2 Understanding Interferometry

Sections 2.2.1 to 2.2.3 and 2.2.5 summarise the workings in Hecht [11, Sections 9.1 and
9.4.2].

2.2.1 Superposition and Interference

The principle of superposition is that two waves arriving at the same place will overlap,
adding together (or subtracting from each other). The result is the sum of the individual
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Figure 2.2: Modelled example of the superposition of two cosine waves, one with an offset
of +π/2.

wave components at that point. The sum of the waves gives rise to interference. If the
waves are in phase they will constructively interfere; if out of phase, the interference will be
destructive. The waves must have the same polarisation to create an interference pattern.

Light is a vector in that it consists of both an electric and a magnetic field. To thoroughly
model what happens during interference observe two linearly polarised plane waves from
a monochromatic source

E1(r, t) = E01 cos(k1 · r− ωt+ ε1), (2.1)

and
E2(r, t) = E02 cos(k2 · r− ωt+ ε2), (2.2)

where E01 and E02 are the vector amplitudes of each wave, ε1 and ε2 are the initial phases
of each wave, ω is the angular frequency, and k the wavenumber (2π/λ).

The irradiance (W m−2) at the photodiodes is defined as

I ≡ cnε0
2
〈E2〉T , (2.3)

where c is the speed of light, n is the refractive index, ε0 is the vacuum permittivity, and
〈·〉T denotes the average over time. As this derivation is only concerned with relative
irradiance in the same medium, the constants will be neglected.

For the two waves, E2 becomes

E2 = (E1 + E2) · (E1 + E2). (2.4)

Thus, at the photodiodes the superposition of the two waves as electric field vectors is

E2 = E2
1 + E2

2 + 2E1 ·E2. (2.5)
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Taking the time average of each term in Eq. (2.5) gives an irradiance of

I = I1 + I2 + 2I12. (2.6)

As shown in Eq. (2.6) there is a third term – the interference term, I12 – that contributes
to the interference of the two waves.

For simplicity, if we assume E01 and E02 are parallel (i.e. the angle between these vectors
is zero, thus they become scalars), the interference term in Eq. (2.6) reduces to

I12 = E01E02 cos ∆, (2.7)

where ∆ is the phase difference of the two waves,

∆ = k1 · r− k2 · r + ε1 − ε2
= (k1 − k2) r + (ε1 − ε2)

(2.8)

Equation (2.6) can be written more conveniently as

I1 = 〈E2
1〉T =

E2
01

2
, and I2 = 〈E2

2〉T =
E2

02

2
, (2.9)

The interference term can thus be written as

I12 = 2
√
I1I2 cos ∆, (2.10)

and the total irradiance as

I = I1 + I2 + 2
√
I1I2 cos ∆. (2.11)

When ∆ is 0,±2π,±4π, . . ., the two waves are in phase, the amplitude is a maximum and
constructive interference occurs (a bright “fringe”). When ∆ is π,±3π,±5π, . . ., the two
waves are 180◦ out of phase, the amplitude is a minimum and the interference is destructive
(a dark “fringe”).

An interesting result occurs if the amplitudes of both waves are equal, i.e. E01 = E02. As
the irradiance from each source is equal, I1 = I2 = I0, and Eq. (2.11) can be re-written as

I = 4I0 cos2 ∆

2
, (2.12)

where Imin = 0 and Imax = 4I0; an interference pattern of much greater visibility is
achieved (see Eq. (2.30)). In the case of spherical waves, ∆ can be rewritten as

∆ = k(r1 − r2) + (ε1 − ε2), (2.13)

where k is the wavenumber, and r1 and r2 are the distances from source 1 and source 2,
respectively.
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2.2. UNDERSTANDING INTERFEROMETRY

2.2.2 Formation of Interference Patterns

Using Eq. (2.13), Eq. (2.12) can be expressed as

I = 4I0 cos2 1

2
[k(r1 − r2) + (ε1 − ε2)]. (2.14)

Maxima occur when
∆ = 2πm, (2.15)

Minima occur when
∆ = π(2m+ 1), (2.16)

where m is any integer.

If the waves are in phase, (e.g., ε1 − ε2 = 0), the maxima and minima are

r1 − r2 =
π2m

k
= mλ, (2.17)

r1 − r2 =
π(2m+ 1)

k
= (m+

1

2
)λ, (2.18)

Using Eq. (2.14), the minimum and maximum irradiance of the waves are

Imax = 4I0 cos2mπ = 4I0, (2.19)

and
Imin = 4I0 cos2 (m+

1

2
)π = 0, (2.20)

2.2.3 Optical Path Length

It is important to note that a difference in phase can also come from a difference in
displacement (or path length) travelled by the beams. Equation (2.13) can be re-written
in terms of wavelength to give

∆ =
2π

λ
(r1 − r2) + (ε1 − ε2). (2.21)

If the phase of each beam does not change (i.e. ε1 = ε2), the phase difference relies on the
difference in path length of the two beams

∆ =
2π

λ
(r1 − r2). (2.22)

The optical path length of the device described in this thesis – nEUCLID – is examined
and calculated in Section 3.3.4.
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2.2.4 Calculating Displacement from Interference Patterns

A Michelson interferometer has two arms. The input laser beam has an amplitude Ain
which is split into the two arms. Each arm has a beam, labelled by n = 1 or 2, which has
an amplitude of Ain

2 , which travels a distance of 2ln (from the beamsplitter to the mirror
and back). Using complex notation, the two beams recombine at the photodetector with
intensity

Aout =
Ain
2

(
e−iφ1 + e−iφ2

)
, (2.23)

where φn is the phase of each beam,

φn =
2π

λ
2ln. (2.24)

Equation (2.23) can be re-written, separating out the phase difference of each beam in
terms of length

Aout =
Ain
2
ei

2π
λ

(l1+l2)
(
e−i

2π
λ

(l1−l2) + e−i
2π
λ

(l2−l1)
)
. (2.25)

The intensity of a beam is given by the square of its amplitude, thus is

Iout =

∣∣∣∣Ain2

∣∣∣∣2 ∣∣∣ei 2πλ (l1+l2)
∣∣∣2 ∣∣∣(e−i 2πλ ∆l + e+i 2π

λ
∆l
)∣∣∣2 , (2.26)

Eq. (2.26) can be reduced using trigonometric identities(
e−i

2π
λ

∆l + e+i 2π
λ

∆l
)

= cos (−θ) + i sin (−θ) + cos θ + i sin θ = 2 cos θ (2.27)

where θ is
θ =

2π

λ
∆l. (2.28)

So, the intensity of the output beam is now

Iout =
A2
in

4
4 cos2 θ =

A2
in

2

(
cos

2π

λ
2∆l + 1

)
. (2.29)

When 2∆l = λ the wave has travelled through an entire (bright) fringe, and Eq. (2.29) is
reduced to A2

in. Likewise, when the wave has travelled half this distance (∆l = λ/2), a
dark fringe is observed. The pathlength of nEUCLID and EUCLID is 4∆l.

Optimum interference is required for measuring mirror displacement. This is defined by
the fringe visibility, V , being at a maximum, with

V ≡ (Imax − Imin)

(Imax + Imin)
, (2.30)

where Imax and Imin are the intensity values of the interfering output beam.

In Section 2.1.1, two photodiodes were used to determine the direction of the mirror
displacement. Plotting these two signals against each other in X-Y mode on an oscilloscope

10 CHAPTER 2. INTERFEROMETRY
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Figure 2.3: A Lissajous figure created by two photodiode signals, showing the initial and
final positions of the signal, (x1, y1) and (x2, y2), having completed a full revolution of

the figure.

yields a Lissajous pattern, shown in Fig. 2.3. As one of the mirrors is displaced the arm
length changes, altering the phase proportionately. If a position on the circle is monitored
any mirror motion causes this point to move around the Lissajous pattern from an initial
to a final position: (x1, y1) to (x2, y2) in Fig. 2.3.

The angle between the two points on the circle is the phase difference between the two
signals, φ

φ = arctan

(
y2
x2

)
− arctan

(
y1
x1

)
. (2.31)

A complete revolution of the Lissajous pattern is equivalent to an arm length difference,
∆l (or a mirror displacement) of λ/2 in Fig. 2.1, or λ/4 for both EUCLID and nEUCLID.

The arm length difference can be calculated by rearranging the phase term, φ, in Eq. (2.24)
to give

∆l =
φ

2π

λ

2
, (2.32)

and thus the displacement moved by the mirror (the other mirror in the interferometer is
stationary).

This method is used to calculate displacement for both nEUCLID and EUCLID.

2.2.5 Straight or Circular Fringes?

Both straight and circular fringes are possible with an interferometer. Using a simple
Michelson interferometer again as a starting point, as pictured in Fig. 2.1, the occurrence
of a type of fringe pattern gives an indication of the mirror alignment in each arm.
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Figure 2.4: A Michelson interferometer on a shared axis. S is the source plane, M1 and
M ′

2 the two mirrors, and Z1 and Z2 are the imaginary source planes for each mirror. The
purple line shows the path difference, 2d cos θop.

Imagine each component of a Michelson interferometer on the same axis, starting with the
source, then the two mirrors, M1 and M2, as shown in Fig. 2.1. M2 has been moved into
the same axis as the source and M1 by using the virtual image of M2, denoting it as M ′

2

to differentiate between them, as shown in Fig. 2.4.

Observing a ray leaving the source plane, S, and hitting M1 and reflecting. This same ray
also hits M ′

2, having been split by the beam splitter, but travels an extra distance before
reflection as the arms are not of equal length; the mirrors are separated by a distance d.
The two rays can be traced back to their virtual source planes, Z1 and Z2 respectively. The
separation between these two planes is 2d. Using simple trigonometry, the extra distance
travelled by the second ray to M ′

2 can be calculated as approximately 2d cos θop, where θop
is the angle the incoming ray makes with the optical axis.

Using Eq. (2.17), for the maximum intensity, the optical path difference between the rays
is

mλ = 2d cos θop (2.33)

Equation (2.33) holds for any ray on the source plane entering between the source, S, and
the optical axis; the phase difference depends only on the radius from the optical axis.
This means the pattern is axially symmetric, thus creating circular fringes, as pictured
in Fig. 2.6a. Both mirrors need to remain parallel for this pattern to occur (perpendicular
when unfolded). As M ′

2 is moved towards M1, d decreases until d = 0, where one large
central fringe is left. This is what is achieved in nEUCLID, as it gives maximum fringe
visibility.

To achieve straight fringes as pictured in Fig. 2.6b, M ′
2 is tilted by an angle α with

respect to M1, as shown in Fig. 2.5. As before the two mirrors are on the same axis, M ′
2

remaining as the virtual image of M2.

Due to this tilt the ray travelling to M ′
2 has an extra path length, as well as that caused

by the difference in arm lengths, d. This extra path length increases as the beam strikes
the mirror further from the tilt axis of M ′

2, causing the phase to increase. The phase
cycles from 0 to 2π, thus constructive and destructive fringes are alternately observed up
the mirror. Along the mirror, however, the phase remains constant as d remains constant,
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Figure 2.5: The two mirrors of a Michelson interferometer in one plane. S is the source
plane, and M1 and M ′

2 are the two mirrors, where M ′
2 is tilted by an angle α with respect

to M1.

(a) Photograph of circular fringes from
an infra-red Michelson interferometer

(b) Photograph of straight fringes
using a HeNe laser [12]

Figure 2.6: In comparison to radially symmetric circular fringes (Fig. 2.6a), straight line
fringes are symmetric along the axis of mirror tilt (Fig. 2.6b).

thus the fringe is straight in the direction perpendicular to the page in Fig. 2.5.

2.2.6 The Benefit of Three Signals

A third photodiode can be used with the initial two to remove an offset in the signals. The
three photodiode signals can be represented as

I1 = a cosφ+ b, (2.34)

I2 = a sinφ+ b, (2.35)

I3 = −a cosφ+ b, (2.36)

where a is the amplitude of each signal, and b is the offset for each signal.

The offset is removed by subtracting one signal from the other to give

S1 = I1 − I2, (2.37)
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S2 = I2 − I3, (2.38)

By subtracting the signals from each other the Lissajous pattern is centred on the origin.

The phase is calculated using the arctangent function given in Eq. (2.31), but using the
two signals above, Eq. (2.37) and Eq. (2.38):

φ = arctan

(
S1

S2

)
, (2.39)

All of the calculations using three photodiodes (from Eq. (2.34) to Eq. (2.38)) are computed
in the electronics box via the Field Programmable Gate Array (FPGA), as described in
Section D.2.

2.3 Homodyne vs. Heterodyne Detection

There are two principal types of interferometers: heterodyne and homodyne. A heterodyne
interferometer uses a dual-frequency beam, whereas a homodyne interferometer uses a
beam of single frequency.

An explanation of the fundamental features of homodyne and heterodyne interferometers
will be discussed in this section.

2.3.1 Homodyne Interferometry

The Michelson interferometer described in Section 2.1 is an example of a homodyne
interferometer. However, the use of a half-silvered mirror can allow light to travel back to
the light source (usually a laser), thus causing instabilities in the beam. As mentioned in
Section 2.1, there is also no way to monitor the direction of the mirror motion. Figure 2.7
shows a basic homodyne interferometer design, including the extra apparatus required for
phase quadrature measurements.

The laser beam of single frequency travels through a polarising beamsplitter (PBS), and is
separated into the two polarisation components. One component is transmitted to mirror
1 (M1), the other reflected to mirror 2 (M2); both pass through a quarter wave plate
(QWP) within their respective arms. The QWP changes the linearly polarised laser light
to circularly polarised, and then back to linearly polarised light on return from the mirror
at the end of each arm. This rotation of the plane of polarisation causes the initially
transmitted beam to be reflected, and vice versa for the initially reflected beam. The
two beams recombine to pass through the non-polarising beamsplitter (NPBS), where
they are split again (50% intensity in each new beam). The transmitted beam travels to
photodiode (PD)1, whilst the reflected beam passes through a second quarter wave plate
to PD2, causing this beam to be π/2 out of phase with PD1.
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Figure 2.7: Schematic diagram of a basic homodyne interferometer, with in-quadrature
apparatus for measurement of mirror motion direction.

2.3.2 Heterodyne Interferometry

A heterodyne interferometer has a source that emits a laser beam of two superposed
frequencies, f1 and f2, that have orthogonal polarisations and are described by

E1 = A1 cos (2πf1t+ φ1) , (2.40)

E2 = A2 cos (2πf2t+ φ2) , (2.41)

where A is the amplitude and φ is the initial phase of each beam.

The interferometer has two arms, like the homodyne interferometer, but a third is created
before the beam enters the PBS. This part of the beam is separated straight after the
laser to create a reference signal (see Fig. 2.8). A polariser (P) at 45◦ is placed in this
arm to create interference at the reference photodiode, PD1, by causing one frequency to
be out of phase with the other. The transmitted beam travels on into the PBS, where the
two frequencies are separated into each arm, as the polarisation components were in the
homodyne interferometer. The beams reflect off their respective mirrors and recombine to
travel to the measurement photodiode, PD2. A second polariser at 45◦ to the polarisation
axes of the beams is placed in front of PD2, to again create interference between the two
frequencies.

If the mirror in one of the arms moves, the signal gains an extra phase, φ (t). The signal
at the reference photodiode (PD1) is

E1 = A1 cos[2π (f1 − f2) t+ (φ1 − φ2)], (2.42)
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Figure 2.8: Schematic diagram of a basic heterodyne interferometer, with in quadrature
apparatus for measurement of mirror motion direction.

Figure 2.9: Diagram showing the synchronous demodulation and low-pass filtering (LP
FILTER) of the heterodyne signal from the measurement photodiode, PD2 [13].

and the signal at the measurement photodiode (PD2) is

E2 = A2 cos[2π (f1 − f2) t+ (φ1 − φ2) + φ (t)]. (2.43)

Using the principle of superposition and Eq. (2.11), the intensity, I, at PD2 is

I = I1 + I2 + 2
√

I1I2 cos[2π (f1 − f2) t+ (φ1 − φ2) + φ (t)], (2.44)

where I1 and I2 are the intensity of each beam.

The signal at PD2 (Eq. (2.44)) is “synchronously demodulated”, i.e. the signal is split into
two and multiplied by cos[2π (f1 − f2) t + (φ1 − φ2)] and sin[2π (f1 − f2) t + (φ1 − φ2)],
as shown in Fig. 2.9. The cosine and sine signals come from PD1, where the reference
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polariser has shifted one part of the signal by π/2 to give the sine signal. Thus,

I cos[2π (f1 − f2) t+ (φ1 − φ2)] = (I1 + I2) cos[2π (f1 − f2) t+ (φ1 − φ2)]

+ 2
√
I1I2 cos[2π (2 (f1 − f2) t+ 2 (φ1 − φ2) + φ (t))]

+ 2
√
I1I2 cos[2πφ (t)],

(2.45)

and

I sin[2π (f1 − f2) t+ (φ1 − φ2)] = (I1 + I2) sin[2π (f1 − f2) t+ (φ1 − φ2)]

+ 2
√
I1I2 sin[2π (2 (f1 − f2) t+ 2 (φ1 − φ2) + φ (t))]

+ 2
√
I1I2 sin[2πφ (t)].

(2.46)

Both Eq. (2.45) and Eq. (2.46) contain high frequency terms – (f1 − f2) t and 2 (f1 − f2) t.
By low-pass filtering the two signals the high frequency terms are removed, leaving only
the signals containing the phase shift from the mirror motion, φ (t):

C(t) = 2
√
I1I2 cos 2πφ (t) ,

S(t) = 2
√
I1I2 sin 2πφ (t) .

(2.47)

The phase is extracted from these signals in a similar way to the homodyne method
described in Section 2.2.4: using the arctangent of the two signals

φ (t) =
1

2π
arctan

[
S(t)

C(t)

]
(2.48)

As discussed in Section 2.2.4, the phase is proportional to the displacement of the mirror,
∆l. Thus rearranging Eq. (2.32) gives the displacement from the phase:

φ (t) =
2π

λ
2∆l (2.49)

where λ is the wavelength of the laser.

For more detail on homodyne and heterodyne interferometers, please refer to Hecht [11,
Chapters 7 and 9], Gåsvik [13, Section 3.6], and Bass [14, Chapter 21].

2.4 Previous Polarising Interferometers

One of the first polarisation-based homodyne interferometers to use electronic subtraction
for in-quadrature measurements was created by Downs and Raine in 1978 [15]. The
design is simple and contains few components, using two polarisation states to determine
displacement and is shown in Fig. 2.10. The interferometer achieves a precision of movement
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Figure 2.10: Schematic diagram of the Downs and Raine homodyne interferometer [15].
Note the use of CCRR in the arms, rather than mirrors.

of 0.1 µm (the measurement noise in the system is not quantified), and correctly tracks
fringes even with 99% intensity loss in one arm [15].

The design is a Michelson interferometer and is similar to the layout described in Section 2.1,
but uses a cube-corner retro-reflector (CCRR) in each arm rather than a mirror. This is
to offset the beam to stop it returning back into the frequency-stabilised HeNe laser and
destabilising it. It also means the interferometer is insensitive to any potential tilt of the
reflecting components, which is not the case for conventional mirrors in this type of set-up.
However, using CCRRs means the device is sensitive to transverse motion, as shown in
Fig. 2.11.

A λ/8 plate in one arm provides a π/2 phase difference between the two signals PD2
and PD3 (as the beam passes through this plate twice). Thus, when PD3 has maximum
intensity, PD2 is halfway between minimum and maximum.

A characteristic of the glass NPBS is that when a beam is reflected by the beamsplitter
it gains a phase shift of π/2. The beam from CCRR2 that travels to PD4 and PD1 is
reflected twice; the beam travelling to PD2 and PD3 is reflected once and transmitted
once. At PD4 and PD1 there is an accumulated π phase shift between the transmitted
and reflected beam, whilst the phase shift between the beams at PD2 and PD3 has been
cancelled out. This means PD4 has minimum intensity when PD3 is at a maximum.

The signals are submitted to the subtraction process (PD3 - PD4 and PD3 - PD2), leaving
two signals to create a Lissajous pattern from which to extract the phase, as explained
in Section 2.2.4. PD1 verifies the result of the subtraction process by replacing PD2, if
necessary.

The stability and simplicity of this interferometer inspired the design of the University of
Birmingham interferometers.
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Figure 2.11: A diagram of a CCRR showing how transverse motion of the CCRR affects
the position of the returning reflected beam. The scale has been exaggerated for ease of

understanding.

Another design that inspired the University of Birmingham interferometers is that of
Greco et al [16] (shown in Fig. 2.12), who used an algorithm to compute in-quadrature
measurements.

A 632.8 nm HeNe laser is used as the source, and the design is similar to the simple
homodyne interferometer described in Section 2.3.1: two arms, each containing a mirror
and a QWP; the beams recombine and are separated by a NPBS to three photodiodes,
one with a second QWP in front to provide the π/2 phase difference signal.

However, instead of orientating the source specifically to align the polarisation for the first
PBS, a half wave plate (HWP) is placed after the laser. This rotates the polarisation
by 45◦, thus splitting the beam into two equal beams through the PBS; one vertically
polarised, the other horizontally polarised.

The other difference is the use of the fourth photodiode. Upon exiting the NPBS, the
beam is split into two. The transmitted beam travels through a QWP and onto another
PBS to two photodiodes. The reflected beam travels to another PBS and is separated to
two more photodiodes. This means PD1 and PD3 are in quadrature, as are PD2 and PD4.
As with Downs et al, the two extra photodiodes produce a second means of verifying the
mirror motion, as well as monitoring any laser power instabilities. However, the two sets
of signals are combined via an algorithm to remove any signal drifts from the laser. These
signal drifts come from intensity noise in the laser, which at low laser power is limited by
the shot noise. The shot noise is discussed further in Section 2.6.1.

The use of a second pair of photodiodes in quadrature and a corresponding algorithm to
monitor laser instabilities is present in all three Birmingham interferometer designs.

It is worth mentioning that all the homodyne interferometers described above measure
incremental displacement; all motion is measured with respect to the interferometer.
This means that were something to cause the interferometer to stop measuring for a
period of time when it began again the measurement would be from zero, no matter
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Figure 2.12: Schematic diagram of the Greco et al homodyne interferometer [16].

the position of the target, and would invalidate any previous measurement. To avoid
this problem in real-world applications absolute displacement is sometimes necessary.
The University of Birmingham interferometers, EUCLID and ILIAD, are currently both
incremental-displacement interferometers, as this was what was required at the time.
Section 7.2 discusses how nEUCLID could be made absolute in future.

2.5 Interferometers at the University of Birmingham

Three different polarising homodyne interferometers have been designed and built at the
University of Birmingham: EUCLID, ILIAD and nEUCLID. All three are immune to tilt
of the target mirror, as each has a cat’s eye lens system built into their design.

2.5.1 EUCLID

The first interferometer to be built at the University of Birmingham was the Easy to
Use Compact Laser Interferometric Device (EUCLID) (Fig. 2.13). This was designed
and produced by Speake, Peña Arellano and Aston in 2011 [9, 10, 17]. It is a compact,
tilt-immune interferometer which uses a vertical-cavity surface-emitting laser (VCSEL)
to produce visible wavelength, 667 nm. EUCLID has a working distance of 6mm and a
working range of ±3mm (see Fig. 4.8 for definitions). It is 60mm× 22.5mm× 56mm,
and has a mass of only 131 g [18]. EUCLID was built as a relative displacement sensor for
the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) to monitor
movement of the test masses. This drove the design of EUCLID towards a compact size,
as well as a high sensitivity of 50 pm/

√
Hz at 1Hz (in a vacuum) [18].
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(a) EUCLID, external (b) EUCLID, internal (aluminium
cover removed)

Figure 2.13: EUCLID: External and internal photographs [19]

Figure 2.14: The room-temperature ILIAD in the laboratory [22, pp. 66].

A more detailed discussion of EUCLID and its relevance to nEUCLID will be discussed in
appendix D.

2.5.2 ILIAD

The design and subsequent building of EUCLID led to a second interferometer being
constructed – the Innovative Laser Interferometric Angular Device (ILIAD), shown in
Fig. 2.14. Two have been constructed: a room-temperature version, and a cryogenic
version. The cryogenic ILIAD was created to measure the angular rotation of the test
masses used in the Inverse Square Law experiment [20], whilst the room temperature
ILIAD measures angular displacement of the torsion balance in the G experiment [21] [22].
Both experiments are currently being undertaken in the School of Physics and Astronomy
at the University of Birmingham. ILIAD uses a 1550 nm distributed feedback (DFB) laser,
and is 58 mm× 54 mm× 48 mm in dimension [22, pp. 63], again relatively compact. It has
a tilt range of ±1◦, and a sensitivity of 50 prad/

√
Hz at 1 Hz (in a vacuum) [23].
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Figure 2.15: nEUCLID in the laboratory.

2.5.3 nEUCLID

The new Easy to Use Compact Laser Interferometric Device (nEUCLID) (Fig. 2.15) is very
similar in design to that of EUCLID. Like EUCLID, it measures relative displacement,
albeit over a larger range. However, like ILIAD, nEUCLID uses a 1550 nm DFB laser as
its source, as will be discussed in Section 4.4. nEUCLID is insensitive to ±0.35◦ of tilt of
the target mirror, and has a working distance of 660 mm and a working range of ±120 mm.
It has a sensitivity of 420 pm/

√
Hz at 1 Hz (in air).

Further details of nEUCLID will be described in Chapter 4.

2.6 Noise Sources in Interferometers

Like all metrology instruments, interferometers are subject to sources of noise that affect
measurements made with them. Below are the most relevant noise sources for nEUCLID,
the values of which are given in Section 5.7.

2.6.1 Shot Noise

The shot noise is caused by statistical fluctuations in the discrete arrival times of the
photons from the laser. The number of photons arriving at the photodiodes will vary
slightly over time; these fluctations are shot noise. Equation (2.50) [9] can be used to
calculate the shot noise in the system, σν ,

σν =
√

2eipdRfG, (2.50)

where e is the charge of an electron, ipd is the photocurrent of the photodiodes, Rf is the
transimpedance amplifier gain, and G is the voltage gain.
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This can be converted into a displacement sensitivity, Nν , via

Nν =
σν
V

1

2π

λ

4
, (2.51)

where V is the approximate radius of the Lissajous pattern produced by the interferometer.

2.6.2 Frequency Noise

Fluctuations in phase can result in displacement noise in interferometers of unequal armlengths,
such as nEUCLID. Phase fluctuations can appear as oscillations in the frequency of the
laser. These fluctuations are determined by the laser linewidth. The laser linewidth relates
to the power spectral density (PSD) of the laser frequency ν as

L2 ≈
∫ f2

f1

Sν(f)df (2.52)

where L is the laser linewidth, and Sν(f) is the one-sided PSD of the laser frequency. In
practice, the choice of frequency band [f1, f2] in estimating the linewidth from a measured
PSD depends on the band over which frequency noise dominates.

2.6.3 Thermal Noise

Johnson noise – also known as thermal noise – arises from thermal agitation of the electrons
inside a resistor when a voltage is applied. This causes the output voltage to vary randomly,
creating extra noise in the electronics for nEUCLID. As it is temperature dependent, the
temperature of the surroundings, T , also affect the variations.

NJ =

√
4kBT

Rf
RfG

λ

8π
(2.53)

where kB is the Boltzmann constant, and T is the average temperature of the laboratory.

2.6.4 ADC Noise

analogue to digital converter (ADC) noise is present in all ADC circuits due to resistor noise
and thermal noise. The ADC noise for nEUCLID (ADCV ) is the same as for EUCLID:
3.24× 10−7 V/

√
Hz (16-bit resolution) [24]. Using this value the displacement noise can

be calculated:
NADC =

ADCV
ADCU

λ

8πVin
(2.54)

where ADCU is the ADC utilisation and Vin is the ADC voltage input range [9].
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2.7 Competing Technologies

There are several methods for using lasers to measure distance:

• Time-of-flight method : Also known as the “pulse method”, this is used for measuring
extremely large distances, usually tens of metres to several kilometres. The time of
flight of a pulse of laser light is measured from the measurement device to a target and
back. Typical accuracies are a few centimetres [25, 26], however, recent developments
have lead to an increase in measurement accuracy of 0.01 mm [27].

• Triangulation method : Capable of measuring distances of up to 1 m, this method uses
a collimated laser beam to illuminate the measurement object, and triangulation
to calculate the object distance. Whilst this technique is low cost and capable of
fast measurement, the sensor-head scales with the distance, thus large distances are
infeasible [25].

• Phase shift method : This method uses an intensity-modulated beam, and is better for
more diffuse objects. The range is still large; several to tens of metres for millimetre
accuracy [26].

• Interferometers: Distance measurements are limited by the interferometer design.
However, the accuracy of the result is much higher than the above techniques; it is of
the order of the wavelength used in the device [28], thus the motivation to use them
for space applications.

Different displacement-measuring interferometers will now be briefly investigated, to give
a wider comparison of applications for displacement-measuring interferometers. Each
example describes how the method is not suitable for the applications described in this
thesis.

Measuring surface roughness: A stabilised, linearly polarised 633.0 nm homodyne
interferometer measures the surface roughness of polymer materials, with a sample size
10.0 mm in height and diameter. The resolution achieved by the device is 0.6 nm, with
a total measured displacement of 10.0 µm [29]. However, the reference and measurement
arms are both 25 mm, and the device is not tilt-insensitive as the sample is mounted and
vibrationally isolated.

Measuring ultrasonic waves: A stabilised, linearly polarised 632.8 nm homodyne inter-
ferometer measures the displacement of an aluminium plate caused by high-amplitude
ultrasonic waves. From this measurement the ultrasonic wave can be characterised. The
device makes use of the quadrature method described in Section 2.1.1 to determine the
direction of displacement, and achieves nanometre resolution [30], yet is not tilt-immune.

Measuring translational & angular displacement: The Istituto Nazionale di Ricerca
Metrologica (INRiM) has produced a heterodyne device for the European Space Agency
(ESA) that measures the relative attitude of satellite components. The Compact Optical
Attitude Transfer System (COATS) uses three independent metrology systems inside an
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Figure 2.16: The optical schematic of COATS, with the optical head on the right, and
the passive target on the left. The laser paths are shown in red, green, and blue

respectively for the 1542 nm, 850 nm, and 780 nm wavelengths [31].

optical head to monitor a passive target. Each system contains a laser source of a different
wavelength (1542 nm, 850 nm, and 780 nm). These measure three translational and two
angular degrees of freedom. The maximum working distance between the optical head
and target is 7.5 m (as defined by the Wavemill mission described in Section 6.1.2). The
resolution of the translational coordinates is 5× 10−6 m, and 1◦ for the two angular
coordinates [31].

It is worth mentioning here the argument between tilt immunity and long working distance.
Clearly, for very long armlengths the tilt of the target is irrelevant, as the optics would
have to scale up in size making the design infeasible. Thus, a working distance of 100 m,
as described by COATS, does not give tilt immunity of the target. The removal of tilt
immunity for very long target lengths is discussed for nEUCLID in Section 6.1.2

COATS is a competing technology with the device described in this thesis, nEUCLID. The
properties of COATS will be compared in detail with those of EUCLID and nEUCLID in
Chapter 7.

2.8 Summary

An interferometer causes two beams of light to interfere from two arms that each contain a
mirror. Moving one of these mirrors produces a change in phase in the interference pattern,
measured by photodetectors, from which the mirror displacement can be calculated.

There are two main types of interferometer: heterodyne and homodyne. A heterodyne
interferometer uses two frequencies to measure mirror displacement, whilst a homodyne
interferometer uses only one.

At the University of Birmingham, two tilt-immune homodyne interferometers have been
built; EUCLID and ILIAD. Working from these, the third device, nEUCLID – the subject
of this thesis – has been developed, which is tailored towards space applications. Space
applications are sensible for this interferometer as it is small, light-weight, has a very low
power consumption and is capable of working over distances of several metres.
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Chapter 3

THE NEW CAT’S EYE

The calculations derived in this chapter also appear in Appendix F. Some have been separated
into smaller steps for further explanation or refer to other sections within this thesis. The
other equations are trivial, e.g. Eq. (3.2), unless specifically referenced.

3.1 What is a Cat’s Eye?

A cat’s eye is a retroreflector – a device that reflects rays of light back to their source with
minimum scattering. The simplest design consists of a lens and a mirror, arranged so that
the focal surface of the lens coincides with the mirror surface [32].

The basic function of a cat’s eye is to reflect an incoming beam such that it is returned
parallel to its incoming path, irrespective of the angle between the incoming beam and the
optic axis of the cat’s eye. Snyder showed that the cat’s eye has a plane (which we will
refer to as the sweet plane) in front of the convex lens where the radial position of the
outgoing beam remains fixed, irrespective of the angle that the beam makes with the optic
axis [32]. It is upon this premise that the tilt-immune interferometers at Birmingham were
built.

3.2 The Conventional Cat’s Eye

The cat’s eye design used in EUCLID [10] is a standard design [32] of two lenses and a
mirror, and as such is referred to as a conventional cat’s eye (CCE) [33].

The role of the CCE within EUCLID is to ensure that the reference and target beams
exiting the optical components remain parallel when the target mirror is tilted. This
is achieved by designing the cat’s eye such that the input plane and output plane are
self-conjugate; if an object is placed at the input plane of the CCE an inverted image is
produced at the object location. An input plane satisfying this condition is known as a
sweet plane.
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Figure 3.1: Schematic showing how rays are processed by a cat’s eye, travelling from the
sweet plane and reflecting back to it.

Thus, if a light ray incident on the input plane at angle θ and position x, should pass
through the CCE it would arrive back at the input plane at position –x with the angle of
incidence -θ, as shown in Fig. 3.1.

This result can be shown using simple ABCDmatrices (also known as ray tracing matrices).
These matrices represent individual optical components, and when multiplied by a vector
representing a light ray trace the ray through the optical component. E.g., for a simple
lens of focal length, f , the system is described with a matrix representing the lens, Mf

Mf =

(
1 0
− 1

f 1

)
=

(
A B
C D

)
(3.1)

A CCE has a matrix Eq. (3.2):

MCCE =

(
−1 0
0 −1

)
(3.2)

Tracing an input vector of radial height, rin, and angle, θin, through the CCE gives an
output vector of equal but negative radial height and incidence angle (Eq. (3.3)).

(
rout
θout

)
=

(
−1 0
0 −1

)
.

(
rin
θin

)
=

(
−rin
−θin

)
(3.3)

The cat’s eye system also ensures that the phase accumulated by all the rays passing
through the system is identical irrespective of input angle, ensuring no extra path difference
is gained to give an erroneous displacement measurement.

In the CCE the primary lens, L1, is a convex lens of focal length, f1. The secondary
lens, L2, is either a positive or negative lens, with focal length, f2. The distance, d,
between the primary and secondary lenses is equal to f1. In both nEUCLID and EUCLID
a plane mirror is placed behind the secondary lens, to reflect the beam back out of the
cat’s eye. It is worth reiterating here that a CCE can also be constructed from a lens and
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Figure 3.2: Schematic diagram of the CCE system used in EUCLID. The primary lens,
L1, is a convex lens of focal length, f1. The secondary lens, L2, is either a positive or

negative lens, with focal length, f2. The distance, d, is equal to f1 [33]

a concave/convex mirror; there is no need for the secondary lens and a plane mirror [32].

The figure of merit, R, is used to compare the performance of the two cat’s eyes described
in this thesis. R is the ratio of s/d; the working distance, s, divided by the separation of
the primary and secondary lenses, d.

3.3 The Pseudo Cat’s Eye

3.3.1 The Optics

The CCE has limitations; it cannot be used in interferometers with highly unequal arm
lengths due to a limit on s [33]. nEUCLID requires a long working distance, with tilt
immunity. This required a new design of cat’s eye to be developed - the pseudo cat’s eye
(PCE).

The PCE uses two lenses and a mirror, like the CCE (see Fig. 3.3). However, it does not
behave as a perfect retroreflector; there is an extra off-diagonal term, δ. A PCE can be
described by the matrix, MPCE , [33]:

MPCE =

(
−1 ε
δ −1

)
(3.4)

where ε represents an error in the output plane position with respect to the sweet plane.

If the target mirror in the interferometer is moved away from the sweet plane by a distance,
+z, the resulting ABCD matrix, Mz becomes:

Mz =

(
−1 + zδ ε+ z2δ − 2z

δ −1 + zδ

)
(3.5)
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ε can be removed by moving the target mirror by a distance of z = ε/2, setting ε to zero,
thus it will not be considered any further in these calculations.

To find the output position where all the rays passing through the PCE are focused (thus
finding the self-conjugate plane), the top right term in Eq. (3.5) (z2δ − 2z) is set to zero,
as in a CCE. This yields two solutions, thus locations: one at z = 0 and one at z = 2/δ.
Having self-conjugate planes proves that the PCE works as a cat’s eye. As described in
[33], δ has units of mm−1 and is negative, thus the second conjugate plane position cannot
be realised; one cannot place a mirror at this position and retain a useful interferometer
design.

Using the solutions from setting the top right term in Eq. (3.5) to zero, the focal length of
the PCE can be defined as:

fPCE =
2

δ
(3.6)

This is shown in Fig. 3.4b.

If the object and image positions are not the same (i.e. have different z values), it can be
shown that an object at infinity focuses at z = 1/δ. If the PCE is modelled as a CCE with
a diverging lens (focal length −f) on either side (to represent the unfolded system), the
resulting system can be represented as a lens with effective focal length, Feff , as shown in
Eq. (3.7). (

1 0
1
f 1

)
·
(
−1 0
0 −1

)
·
(

1 0
1
f 1

)
=

(
−1 0

1
Feff

−1.

)
(3.7)

The effective focal length of the system is equivalent to the original full matrix of the PCE,
as shown in Eq. (3.8). (

−1 0
1

Feff
−1

)
≡
(
−1 0
δ −1.

)
(3.8)

This means that
Feff =

1

δ
=
f

2
, (3.9)

and so an object at infinity focuses at 1/δ. This effect is shown in Fig. 3.5b.

Whilst this focusing effect is negatable within nEUCLID, the methods for its removal are
discussed in Section 5.5.

3.3.2 The Design

The PCE is very similar to the CCE in design, except the two lenses have been reversed
in order: the primary lens, L1 is now a concave lens, and the secondary lens, L2 is now a
convex lens, as shown in Fig. 3.3.

To design a functional PCE, the working distance of the system, s, and the focal lengths of
the lenses, f1 and f2, must be chosen. Figure 3.4 shows how each of these values determines
the others; this is described in greater detail in Appendix F.

The distance between the two lenses, d, and δ can be calculated from these three parameters
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Figure 3.3: Schematic diagram of the PCE system, as used in nEUCLID. The primary
lens, L1, is a concave lens of focal length, f1. The secondary lens, L2, is a convex lens

with focal length, f2 [33].

by modelling the full PCE as individual ABCD matrix components: a space s, the diverging
lens of focal length f1, the space between the lenses d, and the converging lens of focal
length f2:

Mout =

(
1 0
1
f2

1.

)
·
(
1 d
0 1

)
·
(
1 0
1
f1

1

)
·
(
1 s
0 1

)

=

(
f1+d
f1

sd+sf1+df1
f1

−f1+d−f2
f2f1

− sd+sf1−sf2+df1−f1f2
f2f1

) (3.10)

The beam travels through these components, reflects off the PCE mirror and returns back
through the system, to give the final matrix, Mback:

Mback =

(
1 s
0 1

)
·
(
1 0
1
f1

1

)
·
(
1 d
0 1

)
·
(
1 0
1
f2

1.

)
·Mout

=

(
− sd+sf1−sf2+df1−f1f2

f2f1
sd+sf1+df1

f1

−f1+d−f2
f2f1

f1+d
f1

) (3.11)

Mout does not look like the CCE matrix described by Eq. (3.2); both the top right Mout(1,2)

and bottom left matrix Mout(2,1) components of Mout are non-zero. Starting with the top
right component, if it is solved for d this yields two solutions:

Mout(1,2) = − sf1
s+ f1

,−sf1 − sf2 − f1f2
s+ f1

. (3.12)

The second solution is used, as it contains all three unknown parameters. Conversely, if
Mout(2,1) is solved for d the solutions are −f1 and −f1 + f2, thus are not of use.
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(a) Surface plot of the PCE as a function of the focal lengths f1 and
f2, normalized by the distance between the diverging lens and the
sweet plane, s. R = s/d, where d is the distance between the two

PCE lenses. [33]

(b) Contour plot of the effective focal length, Feff , of the PCE as a
function of the focal lengths f1 and f2, normalized by the distance

between the diverging lens and the sweet plane, s. [33]

Figure 3.4: Plot showing how choosing the working distance of the system, s, and the
focal lengths of the lenses, f1 and f2, determines the focusing parameter, fPCE .
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The distance d can now be defined as

d =
f1f2 − s(f1 − f2)

s+ f1
. (3.13)

Using eq:d, Mout reduces to: (
−1 0

−2(sf2+f21 +f1f2)
f2(s+f1)2

−1.

)
(3.14)

whereMout(2,1) is the δ parameter of the PCE, described in Eq. (3.4). δ can thus be defined
by:

δ = −2(sf2 + f2
1 + f1f2)

f2(s+ f1)2
. (3.15)

For further details of these calculations, see Section 3 in Appendix F. One very useful
property of the PCE, from Eq. (3.13), is that the larger the working distance s, the
smaller the distance between the lenses, d, becomes. This is extremely desirable for space
applications, as it means the size of the device containing the PCE can be reduced for
working distances larger than the current nEUCLID design.

Ray tracing diagrams were produced using MATLAB to investigate the properties of the
PCE in both the focal (Fig. 3.5a) and afocal (Fig. 3.5b) configurations, i.e., an object
at the sweet plane and an object at infinity. The parameters used were: f1 = −30 mm,
f2 = 50 mm and s = 200 mm, giving d = 23.9 mm and 1/δ = −107 mm.

In the focal configuration – Fig. 3.5a – the PCE acts as a CCE; inverted images of the
object are formed at the sweet plane. However, the returning rays do not have angles that
are equal and opposite of the input rays, as discussed in Section 3.3.3.

In Fig. 3.5b two parallel rays enter the PCE symmetrically about the optical axis. The
returning rays converge to a virtual focus, 1/δ, behind the sweet plane, caused by the
mismatch between input and output ray angles.

3.3.3 Visibility of the Interference Pattern

Using the PCE for tilt-immune interferometry requires further investigation into how δ
affects the output displacement and angle. Consider a ray reflecting off the target mirror
with angle, θm, at a distance, rm from the optical axis. The ray enters the PCE system at
angle, 2θm and, using Eq. (3.5), the output angle (before being reflected out of the system
by the target mirror) is

θout = rmδ + 2θm(zδ − 1) (3.16)

The ray deviation, having reflected off the target mirror on returning from the PCE, is

∆θ = rmδ + 2θmzδ (3.17)

Using the same method, but for the output ray displacement, the transverse displacement
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(a) Diagram showing passage of rays through the PCE to and from the sweet plane [33].

(b) Diagram showing passage of parallel rays through the PCE. The red dashed line represents
the sweet plane; the black dashed line is the focus of the rays, at z = 1/δ [33].

Figure 3.5: For both ray diagrams the PCE parameters are f1 = −30mm, f2 = 50mm,
s = 200mm, d = 23.9mm, and 1/δ = −107mm [33].
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of the returning ray is

∆dt = rm(zδ − 1)− 4θmz(1−
zδ

2
) (3.18)

In the PCE, from Eq. (3.17), as the target mirror moves away from the sweet plane,
the output beam becomes misaligned with the incoming beam. Eq. (3.18) shows that
the displacement also changes, due to the terms being proportional to δ. The tilt and
displacement of the returning target beam reduce the visibility of the interference pattern
(as it no longer aligns perfectly with the reference beam), and this decreases further as z
and θm increase.

The drop in visibility with z is also observed in the CCE, having set δ in Eq. (3.17) and
Eq. (3.18) to zero. As a working example, compare nEUCLID with EUCLID. For both,
rm = 0, θm = 0.1◦, and z = 10 mm, with nEUCLID having δ = −0.004 mm−1. Using
Eq. (3.17) and Eq. (3.18), it is shown that ∆θ = 0◦ and ∆dt = 0.070 mm for EUCLID,
and ∆θ = 0.0080◦ and ∆dt = 0.071 mm for nEUCLID.

Thus, the tilt immunity of both the CCE and the PCE has a finite range of z values.
This is explored for the PCE in Section 5.1.2; see [9] for further details of the visibility of
EUCLID.

3.3.4 Optical Path Length

Using Eq. (3.5), the optical path length of rays passing through the PCE system can be
calculated. Using the standard ABCD matrices for a space of distance, z, on either side
of the PCE to mimic the target arm, the optical path length OPL through each system
component from point x1 to point x2 was calculated using the Eikonal equation ([34, pp.
781]):

OPL(x1, x2) = L0 +
1

2B
(Ax2

1 − 2x1x2 +Dx2
2) (3.19)

where L0 is the on-axis distance, and A, B, C, and D refer to the specific matrix term for
each component.

The optical path for the PCE is calculated both with and without the z mirror displacement
either side, to give the optical path difference measured by the interferometer when the
target mirror is displaced by a distance, z. Using the same method as before, where a
beam of angle 2θm enters the system at a distance rm from the optical axis, the optical
path difference is

OPD1(z, θm, rm) =2z
(
1− 2θ2

m

)
− r2

m

δ
2 + 2z

(
r2
mδ

2

4
− 2rmθmδ

)
+ 4z2

(
θmrmδ

2

2
− 3

2
θ2
mδ

)
+O(z3)

(3.20)

The first term in Eq. (3.20) is the optical path difference expected from a CCE (all other
terms for a CCE are zero, as δ is zero).

Further optical path difference is introduced as the beam travels back to the point of
interference with the reference beam. The beam travels a distance, D, giving an extra
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Figure 3.6: Initial design to confirm PCE properties using a HeNe laser source.

path difference of

OPD2 =
D

2
(∆θ)2 (3.21)

where ∆θ is given by Eq. (3.17). With correct alignment rm can be zero and remain so
as the target mirror moves away from the sweet plane. Thus we can reduce Eq. (3.21) to
consider only the terms relating to θm:

OPD2 ≈
D

2
(θ2mz2δ2) (3.22)

As discussed in [33], D is of the order of 1/δ, and only becomes significant when z is of
the order of 1/δ. Due to fringe visibility limits restricting z, OPD2 is mostly insignificant.
To give a working example, nEUCLID has a δ value of −0.004mm−1. For D to become
significant, z would have to be approximately 250mm. However, for z greater than 120mm
(the working range of nEUCLID) the visibility becomes too low for a good Lissajous
pattern, thus OPD2 is not important.

3.3.5 Initial Design Testing

Before beginning to build the new interferometer with the PCE, the cat’s eye design was
tested to confirm it had the properties described in Eq. (3.3), and a working distance of
more than 60mm.

The testing began using a 633 nmHeNe laser and two standard plano-concave and plano-convex
lenses (L1 and L2) from the optical laboratory, as shown in Fig. 3.6. Two plane aluminium
mirrors were used, one behind the lenses to reflect light out of the PCE (M2), and one
to reflect the laser beam into the PCE (M1). A small, tight fringe pattern approximately
2mm in diameter was observed at the output, which did not move when the target mirror
was tilted by approximately ±0.5◦.

The next step was to test the PCE over a distance of several hundred millimetres. This
was achieved by bouncing the HeNe beam off several mirrors laid out across the optical
bench as shown in Fig. 3.7 before entering the PCE (L1 and L2), to mimic a long target
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Figure 3.7: Initial interferometer design to confirm PCE properties using a HeNe laser
source. Total working distance is 930mm.

arm. Once again, tilting the target mirror (M1) by approximately ±0.5◦ did not cause the
fringe pattern to move, confirming tilt immunity of the PCE. The laser was mounted on
a micrometer drive and translated across the optics, with a focusing lens (LF) in front of
the detector to ensure the PCE was also immune to translational beam displacement. The
final working distance tested using this method was 930mm.

The design was also confirmed using a VCSEL, the same source used in EUCLID, with
the same methods described above but laid out as shown in Fig. 3.8. The HeNe laser
was replaced with the VCSEL and an aspheric lens, to collimate the VCSEL output. The
working distance of this design was 1.40m.

Whilst the VCSEL was able to produce a tilt immune fringe pattern in the PCE, it was
decided that a different source should be used for the new interferometer design, as the
target arm length would be limited by the coherence length of the VCSEL (see Section 4.4
for more detail). The position of the PCE was moved from the target arm into the shorter
arm, to allow a long clear path for the position of future targets.

3.4 The Meniscus Lens

As discussed in Section 3.3.1 the PCE has a focus, after which the target beam diverges.
This divergence causes the output target beam width and the radii of curvature to differ
from that of the reference beam. When the beams recombine and interfere the best visibility
is no longer achievable. To ensure a closer match of beam width and radii of curvature,
the beam passage inside nEUCLID was modelled to produce the maximum and minimum
visibility of interference pattern (φ = 0 or π). A lens was placed in the reference arm to
match the radius of curvature of the two beams (see Appendix E for details). A meniscus
lens was chosen because it was readily available for the required focal length.

The radius of curvature at the photodiodes should be 1/δ (−238mm) plus the additional
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Figure 3.8: Secondary interferometer design to confirm PCE properties using a VCSEL
laser source. Total working distance is 1.40 m.

distance the beam travels to the PDs, to good approximation. The radius of curvature of
the modelled target beam, RcT , is 1118.9 mm. Adding on the approximate distance from
the the target beam focal point to the PDs gives a value of 1014 mm. The similarity of
these results shows that the meniscus lens method is in line with the geometrical optics
method, and that the model used to predict the interference patterns gives sensible results,
i.e. the beam is diverging after the focal point in the PCE.

The predicted output interference pattern with and without the meniscus lens, produced
using the code in Appendix E, can be seen in Fig. 3.9a and Fig. 3.9b. A focusing lens was
used on the output of nEUCLID to produce these patterns as the pattern was too large for
the imaging area of the charge-coupled device (CCD) camera without it; 16.0 mm beam
diameter compared to an active area of the CCD of 4.9 mm2.

These fringe patterns are compared with those taken with nEUCLID in the laboratory in
Section 5.1.1, and match the data well.

3.5 Comparison of Cat’s Eyes

To optimise the PCE, the cat’s eye system was modelled in sequential Zemax, an optical
design program. Figure 3.10 shows the PCE in Zemax, whilst Fig. 3.11 shows the CCE for
comparison. Two configurations were used: afocal, where the rays enter the system from
infinity, and focal, where the rays enter at the sweet plane. The PCE was created from
standard lenses from the in-built lens catalogue, and was modelled as an unfolded system.
A “perfect” lens was added to the system to eliminate the curvature of the beam. Initial
approximate values for the four PCE parameters (s, d, f1, and f2) were calculated, using
the results described in Section 3.3.2.
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(a) Predicted interference pattern from nEUCLID with the meniscus lens.

(b) Predicted interference pattern from nEUCLID without the meniscus lens. Note the smaller x
axis, to allow closer inspection of beam width values due to a tight pattern.

Figure 3.9: The predicted output interference pattern of nEUCLID, with (a) and without
(b) the meniscus lens. φ indicates the maximum and minimum value for the visibility in

each case [33].
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Figure 3.10: The PCE as modelled in the focal mode in sequential Zemax, with the lower
image showing a zoomed-in version of the lens configuration (rin = 4.5 mm, s = 450 mm,
d = 9.0 mm). The blue rays represent an on-axis beam; the green rays represent a beam

off-axis by 1 mm, showing the system working as a cat’s eye.

The optimisation routine begins with the afocal mode: rays enter the PCE at ±0.5◦, to
mimic the range of tilt of a target. The rays reflect off a plane mirror and out of the PCE
to an image plane; the nominal sweet plane. The distances f1 and d were adjusted around
the nominal values to minimise the outgoing spherical wavefront aberrations at the sweet
plane.

Once this was achieved, the PCE was optimised in the focal configuration. Rays enter the
PCE at ±8 mm, to mimic the diameter of the target beam. They reflect off a plane mirror
and out of the PCE, this time focusing at the sweet plane. The position of the sweet plane
was found by adjusting s to optimise the optical path difference between the extreme rays.

Whilst the CCE contains no δ term and thus is a “perfect” cat’s eye, the PCE has
substantially lower wavefront distortion at large s distances. Three different CCE and
PCE set-ups were modelled in Zemax using simple lenses, to monitor the wavefront error
of the output beam as the target mirror was tilted. The working distance, s, for each pair
of systems was 200 mm, 1000 mm and 10 000 mm, and the resulting R for each system was
calculated, displayed in Fig. 3.12.

As is clear in Fig. 3.12, the CCE wavefront error increases sharply at larger s values (i.e.
larger R systems; R = s/d) with increased input angle. In contrast to this, the wavefront
error for the PCE systems decreases at larger s values/for large R systems.

This analysis using simple lenses shows the advantage of the PCE because large focal ratios
can be used for both lenses. Such lenses cannot be used to realise a CCE with a large value
of R. A simple example given in [33] demonstrates this point: if the convex lens in a CCE
is assumed to have a unit focal ratio, in order to achieve R = 11 the focal ratio of the
negative lens has to be 0.1. Suitable optical elements with this property do not exist to
the knowledge of this author.

The PCE in nEUCLID has an s value of 660 mm and a d value of 73.95 mm, with a
wavefront distortion on axis at the sweet plane of 0.0031 waves. For further details of the
lens systems please see appendix F.

40 CHAPTER 3. THE NEW CAT’S EYE



3.5. COMPARISON OF CAT’S EYES

Figure 3.11: The CCE as modelled in the focal mode in sequential Zemax, with the lower
image showing a zoomed-in version of the lens configuration (rin = 1.0 mm, s = 200 mm,
d = 98.5 mm). The blue rays represent an on-axis beam; the green rays represent a beam

off-axis by 1 mm, showing the system working as a cat’s eye.

Figure 3.12: Plot of the increasing wavefront error for the PCE and CCE over a range of
input angles. Blue, s = 200 mm; red, s = 1000 mm; green, s = 10 000 mm [33].
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3.6 Summary

A new cat’s eye has been developed – the PCE – which allows the interferometer to have
highly unequal arm lengths. A cat’s eye is a retroreflector – a device that reflects rays of
light back to their source with minimum scattering. The basic function of a cat’s eye is to
reflect an incoming beam such that it is returned parallel to its incoming path, irrespective
of the angle between the incoming beam and the optic axis of the cat’s eye. Whilst not
being a “perfect” cat’s eye, the PCE is highly effective. The PCE contains a δ parameter
in its matrix, which acts as a negative focusing element. If treated accordingly this does
not hinder the usage of the PCE; it is either too small a value to cause an impact on
measurements, or it can be negated by adding a meniscus lens to the reference arm of the
interferometer. The interference pattern produced when using a reference arm meniscus
lens are modelled using MATLAB and shown in Fig. 3.9.

Initial designs undertaken to prove the properties of the PCE are described, as is the
mathematical structure of the PCE and the δ parameter. Choosing the working distance,
s, of the PCE defines the working distance of the interferometer, and the separation of the
cat’s eye lenses, d. An additional optical path length occurs the further from the sweet
plane of the PCE the target is moved, as shown in Eq. (3.20). The PCE has another
interesting property: the larger the working distance, the lower the wavefront error of
the system, compared to a CCE. This is extremely advantageous for use in long-distance
applications.
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Chapter 4

nEUCLID

Figure 4.1 shows the complete nEUCLID in the laboratory showing the full target arm,
the optics (covered by a black perspex case), the electronics unit, and a laptop to run the
data acquisition software.

4.1 Optical Configuration

Figure 4.2 shows a sketch of the nEUCLID optical set-up. The beam passage through the
set-up will now be described.

(Note: In the following explanation ρ polarisation and ς polarisation are the electric field
components of the beam that are parallel (ρ) and perpendicular (ς) to the plane of incidence
of the incoming and outgoing beams. The polarisation state is defined by the surface the
polarisation encounters; the states do not remain constant through the optical system.)

A 1550 nm DFB pig-tailed laser is taken from the electronics box to a polarisation-maintaining
fibre via a wide-key FC/APC to FC/APC connector. The beam passes through the
fibre and into a collimator through the FC/APC connector. The beam passes out of
the collimator and through a sheet polariser (P1) and PBS 0. The beam passes through
PBS 1 and a NPBS. A HWP, orientated at 22.5◦ to ensure neither polarisation is aligned
with either waveplate axis, rotates the plane of polarisation by 45◦, causing the beam to
separate into each polarisation upon passing through PBS 2. The ς polarisation travels
down the target arm, and ρ polarisation down the reference arm.

Within the target arm, the ς beam passes through QWP 1, travels to the target mirror
(MT), and back again, back through QWP 1. The double pass through the quarter wave
plate causes the target beam to pass through PBS 2, and into the cat’s eye arm. This
consists of the two cat’s eye lenses – a plano-concave lens (L2) and a plano-convex lens
(L3) – and a mirror. The beam passes through the two lenses, reflects off the cat’s eye
mirror (MC), and passes back through the lenses, and back down the target arm. Reflecting
off the target mirror a second time, the beam travels through QWP 1 again (the fourth
time), causing the beam to now reflect through PBS 2.

Meanwhile, in the 21 mm reference arm, the ρ beam has passed through a second sheet
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Figure 4.1: Photograph of nEUCLID showing the full target arm and covered optics (the
black box), and the electronics box, with a laptop to run the software and for scale.

Figure 4.2: Schematic diagram of nEUCLID (target arm not to scale).
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polariser (P2). After this the reference beam passes through the meniscus lens (L1) and
reflects off the reference arm mirror (MR). It passes back through the meniscus lens, back
through the polariser, and travels back through PBS 2, recombining with the target beam.

Both beams, now recombined, pass back through the HWP and NPBS. This splits the
beam into two beams of equal intensity. One half of the beam travels through QWP 2
to PBS 3. Here the beam is separated again into the two polarisation components – PD1
(cosine) and PD2 (minus cosine). The other half of the NPBS-split beam travels onwards,
to be separated into polarisation components by PBS 1. The ς polarisation beam travels
to PD3 (sine), whilst the ρ polarisation continues on towards the laser. All the optics
are coated with a 1550 nm anti-reflection (AR) coating, and are mounted on a 1 m-long
aluminium rail.

4.2 Additions to the Design

During implementation small problems developed during the design process that needed
solving. This section explains the need for certain components in the nEUCLID design
described in Section 4.1, and how they improve the performance of nEUCLID.

The plane of polarisation of the laser is accurately aligned with the laser fibre in the
electronics box as it is set by the manufacturer. The bulkhead connector (the FC/APC)
connects the laser fibre with the patchcord fibre that connects the optics to the electronics.
However, the phase of the polarisation is not stable unless the two fibres are aligned by <1◦.
Ambient heating/cooling of the fibre changes the refractive index of the fibre, allowing the
different polarisation states through the fibre. This causes phase fluctuations which add
to the overall noise of the interferometer. PBS 0 aids PBS 1 in excluding any polarisation
deviation because of the low optical quality of PBS 1. This effect was tested by holding
the laser fibre in my hand, to heat a section of the fibre by a few degrees. This was done
away from the collimator, to ensure no stress was placed on the fibre connection, which
would also induce apparent phase change in the system.

Before the beam travels through the polariser, it travels directly into a collimator. This
is to collimate the beam upon entry to the interferometer optics, to limit the divergence
of the beam as it travels through the system and down the long target arm. However,
the target beam does still diverge over this distance due to the PCE, thus a second sheet
polariser (P2) is placed in the reference arm to match the reference beam intensity to that
of the target beam for a better visibility of interference pattern.

A circulator inside the fibre prevents the beam from re-entering the laser. A circulator is a
device that guides the passage of a beam using “ports” that allow light to pass in/out [35].
A beam passes from one port (say Port 1) and out of a second port (Port 2), out of the
fibre. However, on return from the optical system, the beam passes in through Port 2 and
now out of Port 3, as shown in Fig. 4.3. Port 3 is directed away from the laser, restricting
potential optical feedback by 30 dB [36, p.703].

A sheet polariser (P1) was placed at the input of the laser to the optics to further reduce
the optical feedback into the laser. This extra reduction was also found to be necessary
with EUCLID [9, p.99].
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Figure 4.3: Diagram showing how a circulator affects the beam passage in an optical
system; the blue arrow is entering the optical system, the orange arrow is leaving the

optical system [35].

Figure 4.4: Diagram showing the two fluorescent alignment pinhole cards (AC) in
position along the target arm during the alignment process.

4.3 Aligning nEUCLID

The DFB laser in nEUCLID is invisible to the naked eye. This makes it less convenient to
align when setting up the interferometer. The following method describes the alignment
process of nEUCLID.

A HeNe laser was passed through the fibre, into the collimator, to align the major optics
(beam splitters, lenses, etc), as this beam is visible. Once the optical components have
been aligned so that the HeNe beam passes through the centre of each, two fluorescent
alignment cards with pinholes are positioned along the target arm, as shown in Fig. 4.4.
This ensures the beam is parallel with the aluminium rail, and thus the set-up. Once the
beam passes through these pinholes and back the HeNe laser is swapped to the DFB. The
alignment cards will show any misalignment of the DFB beam.

Once the optics and beam are correctly aligned, an infra-red (IR) CCD camera is positioned
at one of the outputs where PD1 would be placed. A plano-convex lens of focal length
80mm is used to focus the output beam onto the CCD. The camera observes the interference
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pattern to confirm the target and reference mirrors are aligned for best visibility (a circular
interference pattern similar to Fig. 2.6a).

The CCD camera is removed and the three photodiodes are replaced. An oscilloscope is
used to check the signals on each photodiode, to ensure each is positioned in the centre of
the interference pattern and thus see the maximum visibility. The oscilloscope is also used
to check the size and shape of the Lissajous pattern once the photodiodes are positioned.
Any final minor adjustments to the interference pattern can be made with the reference
mirror mount. The Lissajous pattern is fairly stable; the air current in the lab caused it to
slowly trace out a circle as the air crossed the target arm beam path unless the arm was
covered.

4.4 Laser Selection

The initial prototypes of nEUCLID, designed to test the basic theory of operation, used
a stabilised HeNe as the source. Having determined the PCE was viable in such an
interferometer, small-package laser sources were investigated as the HeNe laser is large (≈
30 cm) and not easily space-qualified. EUCLID contains a VCSEL which, whilst relatively
inexpensive, has a coherence length of 2 m. Because of the desired working distance of 1 m
for nEUCLID a coherence length of at least 5 m was necessary. For this reason a DFB laser
was chosen; it is a commercially well-used source, due to its very low failure rate (0.1 nm
wavelength shift in 20 years [37]) and options for long coherence lengths. The laser we used
is not space-qualified, but could easily be replaced with a laser that is for future versions
of nEUCLID.

The DFB laser used in nEUCLID has a spectral bandwidth of 1 MHz [38], thus a coherence
length, Lc, of 200 m is given using

Lc = cτν , (4.1)

where τν is the coherence time, defined in Eq. (4.2) [13, p.61],

τν =

√
2 ln 2

π

1

∆ν
, (4.2)

where ∆ν is the spectral bandwidth, determined by the wavelength of the laser, λ: ∆ν =
ν∆λ/λ.

Using an IR laser made it difficult to align nEUCLID, and thus more complicated to build
than if a visible laser had been used. However, IR optical components are readily available
and, as previously mentioned, certain IR lasers have coherence lengths of up to tens of
kilometres.

4.5 Description of Apparatus

Besides the main optical set-up, nEUCLID has several other design components. The
collimator is mounted on a micrometer drive, to allow it to be moved transversely to
the optical set-up to align the laser beam through the optics. The entire interferometer,
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Figure 4.5: Photograph of the nEUCLID target mirror on a DC motor stage, mounted on
a micrometer drive and the aluminium rail.

Figure 4.6: Diagram of the photodiode mounts used in nEUCLID.

including the target mirror, is mounted on aluminium rail sliders on the 1 m aluminium
rail. This is to allow accurate alignment of the target mirror and easy transportation of
the device.

As shown in Fig. 4.5, the target mirror is mounted on a micrometer drive (on an aluminium
slider), which allows the target mirror to be moved transversely across the beam path, again
to aid in aligning the beam. The mirror is mounted on a direct current (DC) motorised
stage, which controls the tilt angle of the mirror using one motor per axis. The minimum
slew rate of the target mirror is 50 µm s−1 [39]; the angular speed used to take data from
nEUCLID is 0.1 ◦ s−1. The full angular range of the motor is ±4◦, however, this was limited
to ±0.6◦ due to the size of the optics and target arm length.

An optical lever was used to confirm the angle the target mirror moved by; a HeNe laser
beam was reflected off the target mirror and onto the laboratory wall, where a calibrated
scale was placed. Each movement of the target mirror was confirmed using this scale, to
ensure to correct tilt angle.

The photodiodes were fitted into mounts of my own design, shown in Fig. 4.6. They were
changed from aluminium to black acetal to stop reflections into the sensor area, and to
insulate the photodiodes from the aluminium mounting post and breadboard. A pinhole
of diameter 1 mm in the front of the mount ensured the interference pattern was centred
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on the active area of the PD.

Figure 4.7 is a photograph of the nEUCLID optics in the lab. (Note: the target arm is too
long to fit into this photo).

The optics of nEUCLID, shown in Fig. 4.7, are enclosed in a black perspex box which screws
into perspex posts mounted on the breadboard. This protects the interferometer from dust
and air currents, and ensures secure travel of the equipment. The current dimensions of
the interferometer (not including the target arm) are 280 mm× 160 mm× 110 mm.

The mass of the optics (including the aluminium breadboard) is approximately 2.0 kg. This
would be reduced if nEUCLID was commercialised; the mass is large as all the components
are standard, off-the-shelf components.

The electronics box containing the laser and the software controlling the data acquisition
are extremely similar to that used for EUCLID, described in Section D.2 and Section D.3.
However, instead of a laser diode (with associated electronics) there is a DFB laser butterfly
package, with a thermoelectric cooler to regulate the laser temperature. The software
package is the same, except it is calibrated for a 1550 nm signal. The data acquisition for
this project was 400 Hz (a sampling rate of 1 MHz and a decimation rate of 2500).

The power of the laser is 7 mW [40]. The electronics box power is 2 W, from a 9 V source,
and has dimensions of 190 mm× 60 mm× 170 mm [18].

See Appendix C for details on the materials and components used in nEUCLID.

4.6 Nomenclature

The working distance, s, is the distance from the sweet plane (the optimum working
distance, defined in Section 3.2) to the interferometer body. The working range, wr, is
the distance the target mirror can move away from the sweet plane to reduce the observed
fringe visibility by 50%. These distances are shown in Fig. 4.8.

4.7 Summary

This chapter described the optical configuration of nEUCLID, with a schematic diagram
and a photograph to aid in the understanding of the beam passage. Several design additions
were made once the interferometer was built, such as a polariser in the reference arm
to match the target beam intensity, and an extra polarising beam splitter to cut out
polarisation deviations from the fibre. The alignment method for nEUCLID was explained;
the complexity is due to aligning an (invisible) IR beam. An optical lever was used to
confirm the tilt of the target mirror, due to the low repeatability of the mirror motors. A
DFBlaser was selected due to its long coherence length, and because its compatibility with
the space industry. A description of the apparatus was included, explaining the method of
mounting the photodiodes, why the system is mounted on an aluminium rail nEUCLID,
and the electronics box used to process the data from nEUCLID. Further details of the
materials and components used can be found in Appendix C.
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Figure 4.7: Photograph of nEUCLID optics in the laboratory; target arm not shown.
Labels match those in Fig. 4.2.
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Figure 4.8: Schematic diagram of the working distance and working range of EUCLID.
The working distance, s, is the distance from the interferometer body to the sweet plane;
the working range, wr, is the maximum distance away from the sweet plane where 50%

fringe visibility is possible.
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Chapter 5

RESULTS

This chapter discusses the data taken with nEUCLID. The fringe patterns observed with
the meniscus lens are shown, as is an example of the tilt immunity of nEUCLID at the
sweet plane. This result is compared with the expected displacement for tilting the target
mirror were the PCE not there. The visibility of the pattern at and beyond the sweet plane
is given, showing how the visibility and amount of tilt immunity drops when the target
mirror is moved away from the sweet plane.

Whilst taking data with the CCD camera a single-pass interference pattern was observed
(i.e., a beam from the target mirror that did not pass through the cat’s eye). It is presumed
this is due to low-quality polarising optics, and its origin is investigated in this chapter.

The focusing effect of the PCEmeans there is an extra phase difference across the photodiodes
as the target mirror is tilted, and the target beam moves. Matching the Lissajous patterns
with a computational model investigated the displacement of the target beam across the
photodiodes, and calculations are given to remove the focusing effect of the PCE, thus the
extra phase difference.

Finally, the sensitivity of nEUCLID is shown in an amplitude spectral density (ASD) for
10−2 Hz to 102 Hz. The full time series plot of the noise over a 15 h period is also given.
The values for the major noise sources in the system are calculated.

5.1 Fringe Pattern Predictions

The predicted fringe patterns discussed in Section 3.4 and shown in Fig. 3.9, created by
adding a meniscus lens to the reference arm, are shown here with the laboratory data
overlaid. The data were taken using a lens at one of the photodiode positions, which
focused the output beam onto an IR CCD camera.

5.1.1 Fringe Patterns with the Meniscus Lens

Using the output interference pattern as a guide, a commercially-available concave meniscus
lens was chosen. It has a focal length of −2013 mm, and is made of B270 glass. The
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meniscus lens was placed in the reference arm, against the reference mirror, and the
interference pattern observed. Figure 5.1a and Fig. 5.1b show the laboratory results with
and without the meniscus lens in the reference arm. The photodiodes are masked and thus
only see 1 mm diameter of the interference pattern.

Fig. 5.1 shows the observed data overlain on the model described in Section 3.4. The
centre of the observed interference pattern and its vertical scale were fitted to the modelled
pattern. A DC offset corresponding to background intensity was also removed from the
observed data. The right-hand side of the pattern fits the model well, whilst the left-hand
side is subject to optical distortions.

This proves the meniscus lens matches the target beam to the reference beam well enough
that the interference patterns of nEUCLID are capable of being used to take displacement
measurements.

5.1.2 Tilt Immunity in a Fringe Pattern

Once the interference patterns had been confirmed to match the model (Section 5.1.1), the
tilt immunity of nEUCLID at the sweet plane was proven. The CCD camera remained at
the interferometer output, and the reference arm was blocked; only the target beam was
necessary for this test. The target mirror was tilted at the sweet plane from 0◦ to 0.1◦. As
can be seen in Fig. 5.2 the two target beam profiles remain in the same position, indicating
that the system is tilt-immune. The modelled target beam for the set-up is also displayed,
to ensure the system is still understood.

For contrast, if the PCE was removed from the interferometer (so the system was no longer
tilt immune) and the target mirror was tilted at the sweet plane by 0.1◦ as in Fig. 5.2, the
beam on the photodiodes would move by 3.46 mm.

5.2 Visibility of nEUCLID

Figure 5.3 shows the amount of target mirror tilt possible at each z distance from the sweet
plane. Following the convention defined by EUCLID, the working range is the maximum
distance the measurement target can move away from the sweet plane and still achieve a
Lissajous pattern of 50% of the visibility at the sweet plane. The visibility, as discussed in
Section 2.2.4, is defined by Eq. (2.30). The value of 50% ensures that the Lissajous pattern
is still large enough to be able to be used to calculate a correct phase value. However, it
is an arbitrary definition; in practice both EUCLID and nEUCLID can work at larger tilt
ranges, as shown in Fig. 5.3 for nEUCLID and [9] for EUCLID. The minimum visibility
is defined by whether the Lissajous pattern is distinct enough for the phase angle to be
resolved. Fig. 5.3, therefore, demonstrates that nEUCLID could in principle work up to
tilt angles of ±0.5◦.

As the target mirror moves away from the sweet plane the visibility decreases until 120 mm,
where the Lissajous pattern is 50% of its original visibility at 0◦ tilt. This defines the
working range of nEUCLID to be ±120 mm. Between 0 mm to 120 mm the tilt range of
the target mirror for 50% visibility is ±0.35◦. At 120 mm for 50% visibility the tilt range
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(a) The measured interference pattern from nEUCLID with the meniscus lens.

(b) The measured interference pattern data from nEUCLID without meniscus lens. The pattern
has been magnified slightly to allow closer inspection of how well the model matches the data (i.e.,
the beam width is now −0.12 mm to 0.12 mm, compared with −1.0 mm to 1.0 mm in Fig. 3.9).

Figure 5.1: The measured interference pattern of nEUCLID, with (a) and without (b) the
meniscus lens. In both figures the modelled data has been overlaid for comparison. φ = 0

or π indicates the maximum/minimum visibility.
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Figure 5.2: The output target beam of nEUCLID for 0◦ and 0.1◦ target mirror tilt at the
sweet plane, with the modelled target beam overlaid for comparison [33].

Figure 5.3: Plot of the visibility of nEUCLID for set z distances away from the sweet
plane, z = 0.
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decreases to ±0.15◦. However, as Fig. 5.3 demonstrates, nEUCLID continues to work
beyond the tilt range of ±0.15◦, thus a tilt range of ±0.35◦ for the full working range is
reasonable.

This can be compared with a non-tilt-immune interferometer. For non-negligible tilt angles
the visibility is zero as there is no interference pattern. The visibility drops off from its
maximum at 0◦ as the two beams clear each other. For example, using the beam sizes in
this system (16 mm for the target beam and 8 mm for the reference beam), at the sweet
plane a tilt angle of at most ±0.34◦ would be achievable, estimating 12 mm of clearance
between the two beams.

5.3 Single-Pass Interference Pattern

When taking CCD images with nEUCLID a bright secondary interference pattern is visible
in the data, shown in Fig. 5.5. With perfect optics the target arm QWP will ensure the
entire target beam travels straight through the PCE, having reflected off the target mirror.
However, there is an interference pattern caused by a stray beam from the target mirror
that has not passed through the PCE. Fig. 5.4 shows the passage of this “single-pass beam”
through nEUCLID.

The single-pass beam corrupts some of the data taken of the tilt-immune double-pass
interference pattern, as the single-pass pattern is not tilt-immune (not having passed
through the PCE). Rotating the QWP in the target arm (QWP 1) reduced the intensity of
the single-pass beam, but did not remove it entirely. With precise alignment the single-pass
pattern can be made to sit above/below the double-pass pattern (see Fig. 5.5) and thus
not disrupt displacement measurements, as was accomplished for Fig. 5.3, but this is not
practical for real-world applications.

Using company-supplied data for the extinction ratio and AR coating of each of the
components used in nEUCLID, the power of each part of the target beam was calculated.
Assuming an input of 3.5 mW the total output power of the single-pass beam is 0.0020 mW,
whilst the double-pass beam is 0.448 mW. This means only 0.45% of the target beam is
travelling back to the photodiodes without passing through the PCE, which does not
explain why the single-pass pattern appears to be so bright.

Integrating each of the two beams in Fig. 5.5 over the PD diameter (1.0 mm) gives an
intensity of 44.7 µW for the double-pass beam, and 22.1 µW for the single-pass beam. This
does not match the supplier data; approximately 30% of the total beam intensity is in the
single-pass beam, not 0.45%.

These results are not consistent with the manufacturer’s data, and thus this is an area
that needs further investigation. The lenses, and waveplates were tested individually by
monitoring the intensity output using just a laser, a photodiode, and the component in
question. This experiment did not raise any immediate issues regarding the component
quality, other than highlighting the importance of choosing an AR coating appropriate to
wavelength. However, when the PBSs were tested the measured transmission value (when
reflecting the beam) and reflectance value (when transmitting the beam) were both much
higher than that specified by the manufacturer’s data – 33% compared to 1%. Removing
the single-pass beam is more involved than one may first assume, due to the target beam
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Figure 5.4: The beam passage of the single-pass target beam in nEUCLID, shown in
green. The red lines remain to show the double-pass beam passage.
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Figure 5.5: CCD photograph of the two interference patterns with the meniscus lens in
the reference arm; the larger top pattern is from the double-pass, the smaller bottom
pattern is from the single-pass. The faint large rings are caused by reflections from the

incorrect AR coating on the PCE lenses - this was later rectified.

displacing when the target mirror is not at the sweet plane. E.g., An iris could not be
used to pick out the target beam when away from the sweet plane, as this would partly
blocked the target beam as it displaced across the reference beam. Section 7.2.1 discusses
the options for removing or at least reducing the single-pass beam effect.

5.4 Matching Lissajous Patterns

As discussed in Section 3.3.3, the target beam will displace transversely across each photodiode
if the target mirror is tilted when it is not at the sweet plane. The rays across the target
beam have different phases as some have travelled further than others due to the divergence
of the target beam (e.g. the centre rays compared to the edge rays). This is also the same
for the single-pass beam.

Two changes to the Lissajous pattern are observed due to these effects. The first effect
is due to the phase difference across the target beam because the beam divergence. This
causes the Lissajous pattern to be traced out on the oscilloscope screen. The second effect is
from the change in visibility incurred as the target beam moves across the reference beam,
varying the interference pattern. This causes the Lissajous pattern to change shape.

Three photodiodes can see the same visibility if they are all aligned on the same part of the
interference pattern to begin with. However, as the single-pass beam cannot be removed,
when the target beam is tilted the phase changes, thus the Lissajous pattern traces out
the phase and a "displacement" is measured.

The effect due to the phase difference across the target beam can be seen in Fig. 5.6a
and Fig. 5.7a. A program was written to investigate this, taking photodiode intensity
measurements incrementally across the modelled fringe pattern, and matching the results
to those taken in the lab. The results are shown in Fig. 5.6b and Fig. 5.7b.
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(a) In-phase Lissajous pattern
from nEUCLID (green)

(b) Corresponding modelled in-phase
Lissajous pattern

Figure 5.6: In-phase elliptical Lissajous pattern from nEUCLID in the lab (a) and via
the computational model (b)

(a) π/2 out of phase Lissajous pattern
from nEUCLID (green)

(b) Corresponding modelled π/2 out of
phase Lissajous pattern

Figure 5.7: π/2 out of phase circular Lissajous pattern from nEUCLID in the lab (a) and
via the computational model (b)
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b/a

In phase: theory 0.4665
In phase: data 0.4689 ± 0.04
Out of phase: theory 0.9947
Out of phase: data 0.9949 ± 0.06

Table 5.1: The ratio of semi-minor to semi-major axes, b/a, of the data and the models;
Figure 5.6a to Fig. 5.7b.

The laboratory data were taken at 72 mm from the sweet plane, tilting the target mirror by
0.1◦ for each data set, but keeping the PDs fixed. The results show the Lissajous pattern
in phase (an ellipse) and π/2 out of phase (a circle). The modelled data was achieved via
the same process, albeit computationally. All data values are displayed in Table 5.1.

This method calculates the displacement of the target beam on the PDs. The phase shift
depends critically on the overlap of the two beams. This experiment has reinforced the
idea that diverging beams should not be used in an interferometer; the phase of the target
beam with respect to the reference beam depends on the angle of the target beam. It is
possible to suppress this effect by making the two beams overlap at the sweet plane, which
has been achieved in the lab.

However, the predicted displacement from the computational model which matches what
is observed in lab (i.e., Fig. 5.6 and Fig. 5.7), does not match the theoretical displacement
calculated from Eq. (3.18) in Section 3.3.3. Using the z and θm used in the lab for the
above experiment (i.e., z = 72 mm and θm = ±0.1◦) with Eq. (3.18), the displacement of
the target beam with respect to the reference beam should be 0.20 mm. However, using
the computational model, the amount of displacement required to produce the Lissajous
patterns that match those observed in the lab is 0.015 mm. This experiment is difficult to
model; it is a complicated system. The fringe visibility, the angle of the photodiodes, and
the position of the photodiodes all have to be taken into account, thus it is not possible
to accurately determine what is causing the discrepancy in results. This would mostly
likely account for the slight angle of the modelled Lissajous patterns that is not seen in
the observed data.

This experiment has shown it is possible to predict the shape of the Lissajous pattern for
a set distance from the sweet plane, as the target beam is transversely displaced across
the photodiodes. This shape can be optimised for better visibility by correct positioning
of the photodiodes.

5.5 Removing the Focusing Effect of the PCE

Two unforeseen aspects limit the sensitivity of nEUCLID: the single-pass beam (described
in Section 5.3), and the phase effect seen in the Lissajous pattern shape (described in
Section 5.4). These two parameters are linked together by the focusing effect of the δ
parameter described in Section 3.3.1. A better solution is needed than the one already
described in this thesis – the addition of a meniscus lens, discussed in Section 3.4. This
new solution is focusing the beam before it enters the interferometer.
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The δ in the PCE creates a focusing effect at 1/δ behind the sweet plane, as discussed in
Section 3.3.1. The beam diverges past this point, and on to the photodiodes, expanding
the fringe pattern. This expansion reduces the visibility of the pattern unless the reference
beam radius of curvature and beam width are matched to the target beam.

However, as the following calculations show, simply adding an extra lens to the set-up
can remove this focusing effect. A focused beam will also remove the need to reposition
the photodiodes described in Section 5.4, as the beam will remain collimated through the
interferometer.

The input laser beam in nEUCLID passing through the working distance, s, through the
PCE and back towards the photodiodes can be represented by the matrix, MS ,

MS =

(
δs− 1 δs2 − 2s
δ δs− 1

)
. (5.1)

If a lens, Ln, of focal length, f , is placed in front of this system, for example between the
HWP and PBS 2 in Fig. 4.2, the overall result becomes

MSL =

(
1 0
− 1
f 1

)(
δs− 1 δs2 − 2s
δ δs− 1

)(
1 0
− 1
f 1

)
, (5.2)

which becomes

MSL =

(
δfs−δs2−f+2s

f δs2 − 2s
δf2−2δfs+δs2+2f−2s

f2
δfs−δs2−f+2s

f

)
, (5.3)

If the focal length of the new lens, f , is equal to the working distance, s, Eq. (5.3) reduces
to (

1 δs2 − 2s
0 1

)
, (5.4)

Using Gaussian optics, if the ABCD matrix components of Eq. (5.4) are tested with the
PCE values of nEUCLID the change in the divergence of the beam, D, with the new lens
is negligible [34, pp. 664 & 783]

q0 = − iλ

πw2
0

,
1

q
≡ 1

Rc
− i λ

πw2
, (5.5)

where w0 is the beam waist, and w is the output beam width.

Re-defining q in terms of ABCD matrix components using [p. 784][34], the radius of
curvature, Rc, is

Rc =

[
Re

(
C +Dq0

A+Bq0

)]−1

= −7.06× 106 mm. (5.6)

The new output beam width, wout, can also be compared,

1

w2
out

=
π

λ
Im

(
C +Dq0

A+Bq0

)
, (5.7)

wout = 8.0014 mm, (5.8)
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Figure 5.8: The full 15 hours of noise data collected for nEUCLID in air. The data have
been de-trended to remove the thermal expansion effect of the aluminium rail nEUCLID

is mounted on.

in comparison to the beam width at the input of nEUCLID, win = 8.00 mm.

A lens is still required in the reference arm, to negate the focusing effect in the reference
arm.

5.6 Sensitivity of nEUCLID

A noise performance plot of nEUCLID in air was taken for 15 hours to measure the
sensitivity of the device. The optical bench was suspended to remove vibration effects,
all laboratory lights were switched off to remove potential intensity interference on the
photodiodes, the air conditioning system was off and the interferometer was covered with
a cardboard box to protect it from air currents. The full data set is shown in Fig. 5.8.
The data have been de-trended to remove the long-term effect of thermal expansion of the
aluminium rail that nEUCLID is mounted on. The 15 hours of data were cut into samples
of 100 seconds to produce Fig. 5.9.

From the data presented in Fig. 5.9 nEUCLID has a sensitivity of 4.20× 10−10 m/
√

Hz (at
1 Hz, in air). The plotted points representing the ASD of EUCLID are joined by a dashed
line to guide the eye only.

From the ASD shown in Fig. 5.9, between 0.1 Hz and 10 Hz the system appears to be
dominated by 1/f noise. A likely culprit for this noise is the DFB laser. Lasers can be
susceptible to phase noise – random, short-term fluctuations in the phase of the wave
(e.g. random fluctuations around a perfect sine wave) [41]. It affects the coherence length
of the laser by limiting the linewidth of the beam, thus limiting the frequency stability
(monochromaticity) of the laser. EUCLID also experiences this noise between 0.1 Hz and
10 Hz [9]. Issues of frequency noise in the laser are further described by S. Aston in [9], and
in Section 2.6.2. Below 0.1 Hz the sensitivity is most likely dominated by air turbulence.

Comparing nEUCLID with EUCLID in Fig. 5.9, it can be seen that there is a factor of
approximately 10 between the ASD value for each system. This is most likely due to
the armlength difference. Unequal armlengths in interferometers cause extra noise in the
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Figure 5.9: The sensitivity plot of nEUCLID in air, with the relevant noise sources
included. A comparison of the ASD of EUCLID is also shown on the figure.

system; phase noise scales with armlength difference. Therefore, noise that is insignificant
in EUCLID could be significant in nEUCLID. In the ideal case the sensitivity of an equal
armlength nEUCLID would have been tested, but unfortunately there has not been time to
do this. It is not expected that the sensitivity of nEUCLID would match that of EUCLID
due to the unequal armlengths.

The laser linewidth, L, can be estimated as the rms noise variation of the laser frequency.
This can be calculated by integrating the PSD – the square of the ASD – as described by
Eq. (2.52) in Section 2.6.2. The measured ASD Az(f) can be converted to a frequency
ASD Aν(f) using the frequency of the laser f0 and the armlength difference L of the
interferometer:

Aν(f) = Az(f)
f0

l
(5.9)

Using Eq. (2.52), a value of L is calculated as approximately 1 MHz (where f1 = 10−2 Hz,
f2 = 2× 101 Hz, and l = 2.62 m). This value is consistent with the laser specifications.

Whilst the ASD for nEUCLID doesn’t extend beyond ∼ 10 Hz (due to the small amount of
noise data taken), at high frequencies the system will likely be dominated by shot noise, as
observed in EUCLID [9, pp. 126–128]. The predicted shot noise for nEUCLID is described
below in Section 2.6.1. It would be prudent to take longer and more numerous noise data
sets for nEUCLID, to confirm this prediction.
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5.7 Noise in nEUCLID

The following noise sources were identified and calculated for nEUCLID. For further details
on their derivations, please refer to Section 2.6.

5.7.1 Shot noise

Using Eq. (2.50), the shot noise for nEUCLID is 8.47× 10−7 V/
√

Hz, where the photocurrent
of the photodiodes is1 µA, the transimpedance amplifier gain is 187 kΩ, and the voltage
gain is 8.

nEUCLID has displacement sensitivity from shot noise of ≈ 5.2× 10−13 m/
√

Hz, where
the approximate radius of the Lissajous pattern produced by the interferometer is 0.1 V.

5.7.2 Johnson noise

Using Eq. (2.53) the Johnson noise for nEUCLID is 2.73× 10−14 m per
√

Hz.

5.7.3 ADC noise

Using Eq. (2.54), where the ADC utilisation is 0.5, and the ADC voltage input range is 4
[9], the displacement noise is 9.86× 10−14 m/

√
Hz.

5.8 Summary

The model of the interference pattern with the meniscus lens been proven correct with
laboratory data, confirming the understanding of nEUCLID and the PCE within an
interferometer. The tilt immunity at the sweet plane has been compared with the tilt
of a mirror at the sweet plane without the PCE, proving the PCE is necessary for tilt
immunity at ranges over 660 mm. This working distance is very impressive, compared to
the maximum working distance of 59 mm of previous University of Birmingham tilt-immune
interferometers. This distance also fulfils the brief of Airbus DS as, despite not being a
full metre, this working distance still proves the concept.

Fig. 5.3 shows the working range of nEUCLID is ±120 mm. A tilt immunity of ±0.35◦ is
achievable from the sweet plane (0 mm) until ±120 mm. This level of tilt immunity is to
be expected for such a large working range, thus is within specification for the brief from
Airbus DS.

The sensitivity of the device is 420 pm/
√

Hz (at 1 Hz, in air). The relevant noise sources
are shown on Fig. 5.9, and are all at least a factor of 100 below nEUCLID sensitivity range
(in air) thus currently do not impact hugely on nEUCLID. The ASD for EUCLID is also
shown, but for a vacuum, so the results are not comparable. The sensitivity value shows
that vacuum testing is necessary to improve the resolution of nEUCLID, and to be able to
compare it accurately with EUCLID.
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Chapter 6

POTENTIAL SPACE
APPLICATIONS FOR nEUCLID

6.1 Applications

As the space industry continues to grow new technology has become necessary to advance
future missions. ESA’s Technology Research Programme (TRP) requests calls for new
technologies throughout the year across all disciplines, from propulsion systems to laser
metrology devices, Earth observation science to human spaceflight.

This is where new technology such as nEUCLID is called for; a small, low mass, adaptable
sensor would be key to future successes for composite structures in space, as well as
formation flying missions. Whilst on the ground, it has become crucial for next-generation
antennas to have surface and pointing accuracy of micrometres, to collect and measure
data with extreme precision.

This chapter will discuss in detail the variety of applications for nEUCLID, and how it
meets the necessary requirements.

6.1.1 Ground-based Applications

Ground-based applications within the space industry are an area of interest for nEUCLID;
the multitude of tests carried out on satellites before they are launched are fundamental
to the success of a mission, thus testing on the ground is as important as functioning in
space.

Vibration Monitoring

Vibration testing shocks and shakes satellite components to model spaceflight conditions,
to ensure the craft can withstand launch and deployment. This includes electrical parts
as well as structural and mechanical. Sensors are used to monitor movement during
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Figure 6.1: ESA’s LPF satellite being vibration tested [43]

launch-simulation testing, thus a small and accurate sensor with the necessary tolerance is
highly desirable.

Testing is done at certain resonant frequencies which elements of the craft are known to
self-vibrate at once launched. This testing ensures the equipment will not degrade upon
launch, and will function successfully. Figure 6.1 shows an example of vibration testing on
ESA’s LISA Pathfinder (LPF).

There are three main types of vibration testing: sine, random and shock [42]. Sine testing
subjects the spacecraft to an increasing range of frequencies and amplitudes; random
testing uses a broad band of frequencies, to simulate more realistic real-life scenarios;
shock testing uses a rapid high-energy pulse of short duration. Typical sinusoidal testing
of LISA Pathfinder is 20 Hz to 100 Hz up to 60 g [43]. nEUCLID can currently measure 6 g
at 100 Hz, due to limitations of the sampling speed of the electronics; the phase wrapping
of nEUCLID is λ/16 in 1 µs, giving a maximum tracking speed of 96.8 mm s−1, and thus
an acceleration of approximately 60 m s−2, or 6 g.

Piezoelectric accelerometers are the most commonly used devices for measuring vibration-
induced displacement in the space industry [44]. They use the piezoelectric effect of
quartz to generate an electrical output proportional to the applied acceleration from the
component being tested. Using piezoelectric accelerometers, a displacement of ±12.7 mm
can be expected for a typical spacecraft vibration test [45].

However, accelerometers are heavy; the average mass of an accelerometer is 1.2 g, which
seems small but if there are 100 or so over the spacecraft the overall mass can be great. For
light structures this is a particular problem, as the extra mass of accelerometers can change
the vibration testing results. Remote displacement sensing using devices such as nEUCLID
would eliminate this problem. Remote sensing is also very useful from a cleanliness point
of view. During testing the spacecraft needs to be kept as clean as possible, to prevent
potential damage to electronics and equipment. Removing accelerometers from the test
procedures would ensure the spacecraft would remain as clean as it entered the testing
facility (barring vibrational damage).

Several nEUCLIDs would be required to monitor different positions on larger crafts;
however, this is also how accelerometers are used in testing. Only an accuracy of tens
of micrometres is required, for millimetres of displacement. However, with future needs
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Figure 6.2: An example of the panel sections on a larger antenna dish, with the full
design in the bottom left-hand corner. (The HUSIR antenna, taken from [47]).

of more accurate test results, nEUCLID would easily fulfil requirements of nanometres of
accuracy over micrometres of displacement, making it an ideal candidate for this application.

Antenna Monitoring

Once an antenna dish has been manufactured the surface needs to be calibrated, to ensure
the antenna will produce the correct gain and radiation pattern. If there is an error in
either of these values the radiation may be scattered, and the antenna footprint could
either be incorrectly positioned or the wrong size [46].

Most large antenna dishes (e.g. for microwave or radio observatories) are made in sections
– “panels” – and fitted together at the end of the manufacturing process, as shown in
Fig. 6.2. It is crucial to ensure all panels are correctly positioned and aligned with each
other, otherwise the accuracy of the antenna is compromised. The current method uses a
coherent laser radar (CLR) to measure reflections from the surface – a non-contact method
to protect the surface. The device uses heterodyne detection (described in Section 2.3.2)
to make several different measurements of the surface, e.g. one at each panel corner. The
surface measurement is compared to a theoretical paraboloid of the same size and shape.
If necessary, the panels are readjusted and the process repeated until the alignment has an
acceptable tolerance (usually tens of micrometres) [47].

Similar to coherent laser radar is the laser absolute interferometer, mass marketed as
a “laser tracker”. The leading company in designing these is Leica, and they also use
heterodyne detection to measure surfaces [48]. An example of the accuracy using such a
device for antenna panel surface measurement is ±0.5 µm m−1 [49]. These devices are able
to rotate horizontally by 360◦ and vertically by ±45◦ [50], so are more flexible in range
than nEUCLID. However, they are extremely large (2.5 m× 5 m× 10 m [50]), and thus
can only be used in larger laboratories and clean rooms.

Microwave holography is also used to align and measure the surfaces of antennas. Many of
the world’s large radio astronomy antennas have been aligned using holographic techniques,
for example National Aeronautics and Space Administration (NASA)’s Jet Propulsion
Laboratory (JPL) deep-space network of antennas [51]. Microwave holography provides a
detailed map of the antenna surface, which is compared to the ideal surface and the antenna
panels are adjusted to minimize the difference, as with the CLR method. An example of
system accuracy is the HUSIR system at the Lincoln Laboratory, which generates a map
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of the surface errors in less than half an hour with a spatial resolution of 0.6 m and an
accuracy of 20 µm [47].

As discussed above, either several different positions on the antenna would need to be
monitored, or a large movement range of the measurement device is required. To use the
current nEUCLID would be time-consuming, due to measuring displacement relatively –
it would have to be moved to each position or the antenna dish would have to be rotated,
requiring extra space in the test room. However, if nEUCLID was made absolute (as
discussed in Section 7.2.2) this would alleviate that problem, and nEUCLID could be used
in the same way as the CLR. The accuracy of nEUCLID would be very acceptable for
this application; the more precise the knowledge of displacement errors, the better the
knowledge of the accuracy of the antenna signal. The size of nEUCLID is also very
beneficial in this application; many surface-measuring devices are floor-standing, thus
require a larger amount of space to perform measurements than nEUCLID needs.

Thermoelastic Testing

Thermoelastic testing is another test required for spacecraft characterisation. The craft is
placed in a large thermal vacuum chamber and heated and cooled to see how the materials
deform. This test currently uses cameras to take images of the entire antenna, with small
discs positioned on the antenna for reference. The accuracy of the camera is only 10 µm
[52] [53], thus again nEUCLID is slightly too accurate for this application.

However, future thermoelastic testing may require improved accuracy as a resolution of
nanometres is not achievable with current camera technology. If nEUCLID was used it
would have to scan the antenna in order to cover the full area, or use many nEUCLIDs,
each monitoring a different position.

6.1.2 Space-based Applications

Space-based applications for nEUCLID are wide-ranging, due to the versatility of the
design. A sensor for large-scale structures and optics, such as next generation telescopes
that will unfold upon launch; continuous monitoring of position, such as in formation flying
missions; on-board a spacecraft, monitoring body distortion or antenna positioning, are all
possibilities for a sensor such as nEUCLID.

Adaptive Optics

The next generation of space observatories will be substantially larger and use wider
mirrors; this has already begun with the design and subsequent building of the JWST.
The use of larger mirrors means that to launch these will be folded into separate segments
or panels, and will be deployed and aligned once in orbit.

The JWST is the next large space observatory. It will launch folded inside the rocket and
will unfold once deployed in space. The 6.5 m diameter mirror has two side segments that
will unfold to form the full mirror [3]. These will be controlled and positioned by actuators
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Figure 6.3: Artist’s impression of the JWST [54]

[3], and the image quality calibrated using a complex algorithm performed by the on-board
computer. This method will be used to monitor the image quality every few days, using
the actuators to perform micro-adjustments as necessary.

Capacitive sensors can also be used, either separately to or alongside actuators. Capacitive
sensors use the movement of a suspended electrode with respect to a fixed electrode
(e.g. on a mirror compared to on the mirror strut) to establish a varying capacitance
between the two electrodes. This effect can be measured and the result converted into
a displacement of the suspended electrode [55]. However, capacitive sensors can be quite
susceptible to environmental noise, e.g. from on-board electronics or temperature gradients
(the smaller the sensor, the noisier it is) and thus are limited in their displacement
sensitivity. Interferometers are becoming smaller yet more sensitive to displacement, but
not necessarily to such noise; this is limited by the electronics [9, pp. 126 - 128]. They are
widely available for such applications [56], thus why nEUCLID would be applicable in these
situations. Currently, nEUCLID has only been tested with highly reflective surfaces (i.e.
mirrors). However, it can make displacement measurements with a low intensity return
beam (less than 50% of the original intensity, as discussed in Section 5.2). Further testing
of different machined surfaces would be required to ensure how reflective the measurement
surface needs to be.

Baseline Metrology

A more specific applications within satellite metrology is monitoring particular parts of
the attitude system with respect to a payload. One example is the Wind Velocity Radar
Nephoscope (WIVERN), a proposed earth-observation satellite to monitor wind speeds,
rainfall and cloud ice water [57] (Fig. 6.4a). It has a spinning payload, separate to the
stationary body of the craft, that requires continuous position monitoring of an accuracy
of 200 µrad [58]. Three nEUCLIDs would be positioned around the stationary payload
and monitor the displacement between the star tracker axis and the spinning payload axis,
recording any errors in spin/pointing. For example, if the length of the payload was 0.5 m
and it tilted by 200 µrad, nEUCLID would measure a displacement of 100 µm.

Once again there is no current on-board system to monitor this displacement. The most
common method is to use a star tracker to ensure the satellite (and payload) is pointing
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(a) Artist’s impression of WIVERN in orbit [57]

(b) Sketch of WIVERN body, showing distance
to be measured by nEUCLID

Figure 6.4: WIVERN: WInd VElocity Radar Nephoscope

in the correct direction. Star trackers measure the position of the visible stars using a
camera, and compare the collected image with an on-board catalogue to match the stars in
the image to a known position in the sky. They are highly sensitive to light (+ 9 magnitude,
with ±1.5′′ [59]), thus can miscalculate in sunlight reflected from the satellite. nEUCLID
could be used in tandem with a star sensor, to monitor the displacement between the
attitude system and the payload (as shown in Fig. 6.4a).

Another application is the monitoring of antenna phase centres for future missions. Antenna
phase centres are the position of the apparent source of radiation, thus must be monitored
to ensure the beam is orientated correctly onto the Earth. Future Earth Observation (EO)
missions plan to use long antennas (and thus place antenna phase centres further from the
craft) to cover a wider area on Earth [60]. This application would require an accuracy of
µm over distances of tens of metres. There is currently no technology with a technology
readiness level (TRL) higher than 5 that is capable of achieving this [31]. nEUCLID is
capable of measuring nanometre displacements at distances of tens of metres, so would be
extremely suitable for such an application.
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Figure 6.5: Artist’s impression of Wavemill showing the antenna beam tracks on Earth
[61].

Figure 6.6: Artist’s impression of nEUCLID monitoring the phase centres of Wavemill;
nEUCLID is shown as a grey box, with yellow lines representing the beam line to/from

the antenna centres.

An example of such an application is the ESA mission, Wavemill, to be launched in 2020.
Wavemill is a mission to study the spatial and temporal variations in currents in open
ocean and coastal waters, with a resolution of less than 5 km. The craft is shaped in a
“javelin” configuration with two antenna arms. These arms separate the antenna beams
into across-track and along-track directions, creating an elliptical footprint on Earth, as
shown in Fig. 6.5. It is vital to know the position of the phase centre of each antenna,
to confirm it is pointing in correct direction and hasn’t shifted, and thus moved the beam
track.

The distance between the two phase centres is 12.4m; the required accuracy is 10 µm
(including errors) [62]. Figure 6.6 shows how nEUCLID would be positioned on the
Wavemill satellite. As previously mentioned in Section 2.7, INRiM have created a device
with 5 degrees of freedom to enable the phase centres on Wavemill to be monitored. This
device is known as COATS, and is capable of measuring ±10mm at a distance of over
100m, and ±350′′ at 7.5m for angular measurements. The distance resolution is 1 µm at
1Hz.
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Figure 6.7: Darwin spacecraft formation showing the six collector spacecraft with beams,
the central combiner spacecraft, and the communications satellite [64].

Formation Flying

One of the more exciting types of future missions is formation flying. This type of mission
consists of two or more satellites flying in formation – a “constellation” – to replace the
need for a larger single satellite.

Formation flying has several benefits:

• increased flexibility; can change roles of satellites

• minimum degradation; failure of one satellite does not necessarily cause failure of
entire mission

• lower mission cost, due to reduced total mass put into orbit

• reduced redundancy; scientific instruments spread across satellites

Currently there is no position sensor sensitive enough for such a mission, to monitor the
position of each individual satellite with a high enough precision of tens of micrometres/hundreds
of nanometres. There have been several planned missions in the last decade (e.g. Darwin,
Terrestrial Planet Finder (TPF)), but these were abandoned in part due to lack of technology.
NASA’s Gravity Recovery and Climate Experiment (GRACE) mission is the best current
demonstration of precision formation flying; microwave ranging monitors the position
of two satellites in constellation. However, laser ranging from ground stations is still
performed.

The Darwin mission was proposed by ESA as a constellation of four to five free-flying
spacecraft to search for Earth-like planets around nearby stars. Three (or four) of the
satellites would have carried small telescopes, to be focused to the central satellite in the
constellation. These would have to stay in formation with millimetre precision; a deviation
of more than 100 µm would have ruined observations [63]. The mission was retired in 2007
due to lack of sufficient technology to maintain this position accuracy.
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Figure 6.8: NASA’s TPF interferometer; a telescope of several satellites flying in
formation [65].

Figure 6.9: NASA’s GRACE Follow-On mission; two spacecraft flying in formation to
monitor variations in the Earth’s gravitational field [70].

The TPF was a formation flying mission proposed by NASA to study planets outside of
the Solar System. One design was for a large telescope to be constructed from several
small telescopes, each on a separate spacecraft, flying in close formation. The mission was
cancelled in 2011.

However, in the last few years investment has been made in formation flying technology
(e.g. Proba-3 [66], and GRACE Follow-On [67]), as the importance of these missions has
been realised.

The GRACE Follow On is a joint mission between NASA and German Research Centre
for Geosciences (GFZ), due to be launched in 2017. It will continue the mission of
GRACE, monitoring the variations in the Earth’s gravitational field, but will also test
a new technology for precise formation flying – a Laser Ranging Interferometer (LRI). As
well as the microwave ranging system used in GRACE, the two satellites will use the LRI
to monitor the distance between two craft [68], improving the accuracy by two orders of
magnitude, down to 80 nm/

√
Hz in the measurement band between 2 mHz and 0.1 Hz [69].

Another formation flying mission in development is Proba-3, an ESA mission due to launch
in late 2018. Proba-3 consists of two satellites which will fly with close precision to study
the Sun’s corona. The craft will fly several kilometres apart for most of the mission, but will
be only 150 m away during formation manoeuvres. Neptec UK, with Micos of Switzerland,
are developing the metrology system for the mission [66].
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Figure 6.10: ESA’s Proba-3 mission; one satellite shielding the other from the Sun [71].

Because there is no satisfactory technology simple enough to allow mass formation flying
missions to go ahead with the desired precision, current telescope designs are restricted
in length to the size of the launch fairing. This limits the size of future large-scale
observatories.

nEUCLID would be extremely suitable for formation flying; it is small enough to fit on
satellites of this size, yet can theoretically work over ranges of kilometres with micrometre
accuracy (with the target mirror scaling accordingly with the beam divergence). With
the current nEUCLID PCE system a distance s of 1.0 km is achievable (neglecting tilt
immunity, as discussed in Section 2.7). nEUCLID is not yet an absolute interferometer
(see Section 7.2.2), but has both the accuracy and low mass required for such missions.

Pointing Knowledge

A satellite antenna should point in the direction of its target on Earth at all times; the
antenna boresight (the axis of maximum radiated power) should remain central within
the coverage area (e.g. to 100 km for earth observation missions [58]). The attitude and
orbital control system, comprising sensors, trackers and gyroscopes, keeps the satellite fixed
within its reference frame. However, depointing can occur, causing the boresight to leave
its optimum position. Away from the boresight the antenna gain decreases, weakening the
signal to the intended position on Earth. The depointed signal can also interfere with other
up/downlink signals, creating excess noise.

Whilst more often a product of satellite motion about its centre of mass or orbital motion,
depointing can be caused by a mechanical or thermal deformation in part of the attitude
system, or in the antenna itself [74]. nEUCLID would be mounted on the main spacecraft
body to monitor the deformation and relay data to the central on-board control system,
enabling repositioning of the satellite to correct for any incurred depointing.

There are three main systems of antenna pointing mechanism (APM); tracking from a
ground station (±0.015◦ accuracy [75]), re-pointing (±0.01◦ accuracy [75]) and steady-state
pointing (±0.01◦ accuracy [75]). Tracking is expensive: a radio frequency (RF) sensor
signal from the antenna is relayed to a ground system where its position is analysed, then
corrections are relayed back to the on-board computer to reposition the antenna. Time
taken to relay the signal to ground and back is time the satellite is not in commercial
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(a) Artist’s impression of the orbit of MetOp Second
Generation (MetOp-SG), an ESA earth observation

satellite. [72]

(b) The orbital path of MetOp-A, an earlier ESA
earth observation satellite. [73]

Figure 6.11: Two of ESA’s earth observation satellites; MetOp-SG (a) and MetOp-A (b).
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Figure 6.12: Eutelsat 3B, a standard telecommunications satellite built by Airbus DS [78].

operation. This causes the telecommunications company to lose money, especially if the
satellite has to make several alignments via ground stations.

Steady-state pointing ensures an antenna remains at a pre-defined angle, whilst re-pointing
is applied whenever an antenna has become slightly mispositioned. Re-positioning is
generally achieved using a gimbal-drive; a pivoting device that allows rotation about two
axes.

An IR sensor is used with the RF sensor to monitor antenna depointing. The sensor is
aligned with the mechanical axis of the antenna to record any thermal expansion. The
sensor does not measure the displacement directly, but relays the information with the RF
sensor to the on-board computer to re-position the antenna as necessary [76]. Errors can
occur in the tracking mechanism, caused by RF signal to noise ratio or beam polarisation
(circular is used, as linear causes an extra tracking error as the satellite rotates) [77]. The
gimbal system used to re-position antennas can also fail, meaning that whilst this system
is currently good enough it is not completely reliable.

Currently there is no complete on-board APM; signals are sent from the satellite to the
ground station and back to the on-board computer, which can become expensive over time.
The use of nEUCLID as the displacement sensor would reduce the cost of monitoring the
antenna positioning (removing the use of the IR sensor), as well as reducing the processing
time and power required to make such a measurement, as a ground link would no longer
be crucial.

In future, telecommunication companies may want to be able to cover smaller, more precise
regions, such as cities. This will need an improvement in the current pointing accuracy.
Again, due to the nanometre sensitivity of nEUCLID this would be achievable using
nEUCLID as a displacement sensor to inform the on-board computer of any depointing of
the antenna dish.

Commercial telecommunication satellites use high gain antennas with very narrow beams to
produce well-defined coverage on the ground. High antenna gains are achieved using large
reflector dishes, of the order of 5 m. Figure 6.12 shows a typical ESA telecommunications
satellite. Due to telecommunications satellites regularly going into and coming out of
eclipse large temperature changes (−80◦ to 180◦ [79]) induce thermoelastic distortions of
the dishes. These generate periods where the beam alignment, thus the gain on the ground,
is not optimal, affecting the signal. Both telecommunications and science mission satellites
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require optimal antenna alignment, so this is a problem for all satellite missions. The
current nEUCLID is not capable of withstanding such a temperature difference. However,
due to the simplicity of the design, it would not be difficult to replace the optics with more
robust components, and to shield the electronics inside the spacecraft body as done with
the on-board computer.

Concerted effort has been made to control this deformation; strips of lead zirconate titanate
(PZT) are applied to the antenna structure, to be used as actuators. An electric field is
applied, causing the strips to expand or contract as required, bending the antenna and
correcting the beam shape [79]. However, there is no mechanism on-board to monitor the
deformation. As with antenna pointing a feedback loop using ground stations checks the
antenna gain and adjusts the dish using APMs and the PZT actuators. As mentioned
earlier, ground station feedback is time-consuming and expensive.

nEUCLID would monitor several positions on the antenna on-board the satellite, informing
the on-board computer of changes in deformation, removing the need for the ground station
loop and saving time and processing power. nEUCLID could also be used in a very similar
fashion to monitor thermal deformations of the satellite body.

6.2 Summary

nEUCLID can be applied to several ground-based and space-based applications. Whilst
some areas, such as ground-based antenna metrology, have technologies with the accuracy
required, other areas, such as formation flying and antenna metrology, are sorely lacking.
Table 6.1 shows how nEUCLID compares to past/future mission specifications for space
applications, and what is already available for certain ground applications. The most
promising current applications are a formation flying sensor (comparing an accuracy of
420 pm at 0.66 m with and accuracy of 1 mm at 150 m), a position sensor for adaptive
optics (0.42 nm compared to the required 10 nm), and a position sensor for large-scale
deployable structures (working at a current distance of 20 m). The other applications
defined in the table are not completely beyond the capabilities of nEUCLID; slightly more
time would need to be given to the design to achieve the specified goals, e.g. as a sensor
for vibration monitoring of satellites the electronics need to be able to sample at higher
speeds (Section 6.1.1).

On the ground nEUCLID can be used as a remote sensor for vibration monitoring and
thermoelastic testing, ensuring the craft remains clean and the results are not disrupted
by extra loads, as is currently the case with accelerometers. It is also capable of antenna
metrology, measuring dish distortion during formation and testing of the antenna reflector
dishes.

In space, nEUCLID could be used as a position sensor for adaptive optics, to ensure
large-scale observatories were deployed properly and the position maintained. nEUCLID
would be extremely helpful for pointing knowledge, removing the need for ground stations
relays to confirm antenna alignment, and also again for antenna baseline metrology, to
monitor any antenna deformation during the mission.

Finally, looking to the future, nEUCLID could be one of the contenders for formation flying
- a small, low-mass, low-power device capable of measuring nanometre displacement over
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Application Mission Requirement Ref. nEUCLID Spec.

Vibration Monitoring - 12.7 mm at 100 Hz [45] 120 pm at 100 Hz
Antenna Metrology - 20 µm at s = 0.6 m [47] 420 pm at s = 0.66 m
Thermoelastic Testing - 10 µm at s ≈ 1 m [53] 420 pm at s = 0.66 m

Adaptive Optics JWST 10 nm [80] 0.42 nm
Baseline Metrology Wavemill 10 µm at s = 12.4 m [62] 420 pm at s = 0.66 m
Formation Flying Proba-3 1 mm at s = 150 m [81] 420 pm at s = 0.66 m

Pointing Knowledge NG telecomms. 10s of nm/
√

Hz [43] 420 pm/
√

Hz

Table 6.1: Table of characteristics showing how nEUCLID meets the requirements for one
example in each application area. Where no mission is defined the technology is

applicable to the whole field. Note: 420 pm is for 1 s of measurement; long-term vacuum
testing of nEUCLID would be required to confirm its long-term sensitivity, as discussed

in Section 7.2.1.

distances of several metres. This would require proof of the concept over tens of metres,
but currently there is no sign of nEUCLID not being able to perform such operations.
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CONCLUSION

7.1 Discussion of nEUCLID Characteristics

The performance values for nEUCLID are compared with EUCLID and COATS in Table 7.1,
and will now be discussed in detail.

nEUCLID is slightly larger than both COATS and EUCLID. This is due to nEUCLID
being built with standard off-shelf components; EUCLID was built with vacuum-safe
components for aLIGO, and COATS was built with space-qualified components. This
also increases the mass of nEUCLID compared to EUCLID and COATS. However, using
standard components means that nEUCLID is cheaper to build.

nEUCLID has a much lower power than COATS, due to having only one laser. Looking
at the longitudinal axis of COATS for a fairer comparison, the laser is 4.0 W which is still
much higher than the DFB laser used in nEUCLID. Because nEUCLID and EUCLID
contain only one laser the total power of the system is lower, and if the devices were
space-qualified fewer redundancy components are necessary.

The tilt immunity of nEUCLID arising from the PCE has been proven, shown in Section 5.1.2,
and the work has been published (see Appendix F). The range of tilt of the target mirror,
±0.35◦, is less than that of EUCLID (±1◦). However, the working distance of nEUCLID
(660 mm) is 11 times larger than that of EUCLID. The working distance of COATS is
much larger than both of these values (100 m), but there is no reason future versions of
nEUCLID could not achieve this distance. A working distance for the current nEUCLID of
1.0 km is achievable (neglecting tilt immunity of the target, as this would cause the optics
to scale up in size).

A working range of±120 mm allows a wide range of displacement of the target in nEUCLID,
which is extremely useful for future applications. This is 40 times larger than the working
range of EUCLID (±3 mm). COATS has a longitudinal working range of 100 m.

The single-pass interference pattern in nEUCLID is a problem, as it gives the impression
the device is not tilt-immune; the single-pass beam is not tilt-immune as it does not
pass through the PCE. EUCLID copes with the single-pass beam by not being a coaxial
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EUCLID nEUCLID COATS

Dimensions (mm) 60× 22.5× 56 280× 160× 110 177.6× 110× 70

Wavelength (nm) 667 1550 1542 (long.)

850 (lat.)

780 (ang.)

Total Laser Power (mW) 0.05 7.0 4.2× 103

Mass (kg) 0.131 ≈ 2.0 < 1.0

Working Distance (mm) 6 660 100× 103

Working Range (± mm) 3 120 100× 103

Max. Tilt Immunity (±◦) 1.0 0.35 -

Angular Range (±”) - - 350 (at 7.5 m)

Sensitivity (at 1 Hz) 50 pm (vac.) 420 pm (air) 1 µm (air)

Table 7.1: Table laying out the characteristics of the three similar devices. All properties
are of the optical head only. [18] [31]

system, and by slightly misaligning the optical components. Unfortunately, the brief
from Airbus DS meant that nEUCLID had to be coaxial, and despite misaligning the
optical components the single-pass beam is still a problem. It is still not clear why the
intensity of the single-pass beam is higher than predicted, given the supplier data for
the optical components. Further analysis would need to be undertaken to confirm the
intensity propagation each optical component in nEUCLID, as well as comparison with
higher quality optical components.

Matching the Lissajous patterns seen from nEUCLID due to the position of the photodiode
has been successful, confirming that the shape of the Lissajous pattern is dependent on the
section of the interference pattern the photodiode is seeing. However, the displacement of
the target beam required to produce Lissajous patterns that match the data is approximately
an order of magnitude less than that calculated using the theory described in Eq. (3.18).
With the removal of the focusing effect of the PCE, and thus the beam divergence, described
in Section 5.5, the source of this discrepancy should hopefully be revealed.

The sensitivity of nEUCLID is acceptable, given that the data were taken in air. A result of
420 pm/

√
Hz (at 1 Hz) is comparable to that of EUCLID; EUCLID achieves 50 pm/

√
Hz

at 1 Hz in vacuum, but has a target arm length that is 11 times smaller than that of
nEUCLID. COATS achieves a much lower sensitivity of 1 µm/

√
Hz at 1 Hz in air, most

likely due to the increased armlength difference.

The noise of the electronics for nEUCLID, 4.78× 10−14 m/
√

Hz, does not appear to impinge
on the sensitivity of the device in air. The Johnson noise is 2.73× 10−14 m per

√
Hz, the

shot noise is ≈ 5.2× 10−13 m/
√

Hz, and the effective displacement noise for frequency
noise is 2.28× 10−12 m/

√
Hz. It would worth investigating how these noise values affect

the sensitivity of nEUCLID when it is tested in a vacuum.
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7.2 Future Work

The nEUCLID developed in this thesis is the first of its kind, thus a few small developments
could be made to improve its basic functionality. The most relevant changes for future
applications are discussed below.

7.2.1 Improving the Sensitivity

As discussed in Section 5.5, the focusing effect of the PCE limits the sensitivity of nEUCLID
by causing the target beam to diverge and creating the phase effect in the Lissajous pattern
described in Section 5.4. The sensitivity is also reduced by the single-pass beam, described
in Section 5.3. This section discusses removal of the single-pass beam, and how nEUCLID
could be tested in a vacuum chamber, to remove air turbulence noise.

Removing the Single-Pass Beam

Removing, or at least reducing the intensity of, the single-pass interference pattern would
improve the sensitivity of nEUCLID. This can hopefully be achieved by buying higher-grade
polarisation optical components, and by ensuring the target beam is not attenuated through
the PCE via higher quality AR coatings on the lenses. Reducing the divergence of the target
beam in nEUCLID will also help with this problem, as it will increase the intensity of the
target beam on the photodiodes.

As discussed in Section 5.3, the power for each beam was determined using the CCD
image of the interference patterns, and compared with the output power of each beam
calculated from supplier data for the optical components. The difference between the
measured single-pass and double-pass beam values is much higher those predicted by the
supplier data: 30% compared to 0.45%. This was confirmed by the power reading taken
at different points through the optical system.

The optical properties of the PBSs were also measured and compared with the manufacturer’s
data. The measured transmission value (when reflecting the beam) and reflectance value
(when transmitting the beam) were both much higher than that specified by the manufacturer’s
data – 33% compared to 1%.

It is not yet understood why the manufacturers’ data predicts such a low value in comparison
to what is measured in nEUCLID.

Vacuum Testing

The current nEUCLID has not been tested in a vacuum; the sensitivity results were
achieved in air in the optical laboratory. To be able to accurately compare the results
with those of EUCLID, and also to see how much the unequal armlength affects the
sensitivity, vacuum testing is necessary. This would require the optics to be re-mounted
with vacuum-safe adhesive, as well as ensuring all the optical posts, mounts and cabling
were vacuum-safe. It would also be worth measuring the sensitivity of an equal armlength
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nEUCLID, both in air and in vacuum, to see how this changes in response to a much
shorter arm.

7.2.2 An Absolute nEUCLID

nEUCLID measures the incremental displacement of the target, D, from an initial position
to a final position: D = lf − li. If the measurement beam is suddenly blocked, or the
target tilted out of range, the displacement reading would be lost and any subsequent
measurements would be from zero. To avoid this problem, the wavelength of the interferometer
can be modulated using temperature or current, providing an absolute measurement of the
distance, L.

The DFB laser in nEUCLID has a temperature-tuning coefficient of 0.1 nm K−1 and a
current-tuning coefficient of 0.1 nm mA−1, with 1.0 nm tunability either side of the peak
wavelength [38]. The laser has modulation current of 13 mA to 33 mA, allowing a change
in wavelength of 17 nm mA−1 (33 mA - 13 mA * 0.1 nm mA−1).

The beam on the photodiodes has an optical phase from the difference in the interferometer
arm lengths, l, as discussed in Section 2.2.4. When the temperature/current is modulated
the wavelength changes from λ1 to λ2. This change in wavelength can be defined by one
synthetic wavelength, Λ

Λ =
λ1λ2

(λ2 − λ1)
, (7.1)

The phase of the modulated system, shifting from the original position, φ1, to the final
position, φ2, can be developed from Eq. (2.32) to become Φ

Φ =
8πL

Λ
, (7.2)

The synthetic wavelength for the maximum modulation range of 17 nm mA−1 of nEUCLID
is approximately 1.4 mm.

There are problems with this modulation technique. If the wavelength is altered, the
current changes, thus the intensity changes. This means the amplitude of the beam varies,
causing the Lissajous pattern to vary in size. This would need to be accounted for in the
processing (i.e. power stabilisation; see [22, pp. 78-79] for more details).

7.2.3 Equipment Alterations

The photodiode cables need stabilising; they can cause displacement of the mounts during
transportation of the device. The optics are only of reasonable quality, thus are susceptible
to poor-quality beam reflectance/transmittance, e.g. the PBSs. The AR coatings for each
optical component are specific to the manufacturer, thus detailed information regarding
their properties is unfortunately not readily available to the customer. However, an average
value of reflectance is given for certain components (see Appendix C). From the experiments
described in Section 7.2.1, the optical components supplied for nEUCLID were not as good
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as those tested for the manufacturers’ data. With the help of further investment it is hoped
that this quality can be improved upon by using a different supplier.

The element mounting is not stable; the mini-series posts and post holders are liable to
bend with large loads or medium force. If vacuum testing was performed the optics should
be mounted directly to the breadboard, as in EUCLID, using the appropriate adhesive.

7.3 Summary of Thesis

This thesis has described the design and subsequent building of a new polarisation-based
homodyne interferometer that works at large distances and is immune to tilt – the new
Easy to Use Compact Laser Interferometric Device (nEUCLID). nEUCLID has evolved
from a previous interferometer also produced at the University of Birmingham, EUCLID,
and was carried out with funding from Airbus Defence and Space (DS) to look for potential
space applications.

During the development of nEUCLID a new cat’s eye system – the pseudo cat’s eye (PCE)
– was designed to enable the interferometer to work at large distances (i.e. at least several
hundred mm). The PCE has a lower wavefront error than the conventional cat’s eye (CCE)
at large distances (beyond 60 mm), as well as being capable of working at these distances.
In fact, the larger the working distance, the lower the wavefront error. The size of the PCE
(the distance between the constituent lenses) is reduced as the working distance increases,
making the system extremely useful for space applications. This work has been published
in Applied Optics [33], and is given in Appendix F.

nEUCLID has a working distance of 660 mm, with a working range of ±120 mm. This
is a vast improvement on the current working distances and ranges of polarisation-based
homodyne interferometers, for example the EUCLID, which has a working distance of only
6 mm and a working range of ±3 mm.

The closest competitor of nEUCLID is the COATS device produced by INRiM. Whilst
this has a working distance of 100 m and is capable of measuring lateral, longitudinal and
angular displacement, COATS has a much higher power requirement (4.2 W compared with
7 mW). COATS measures angular displacement with one of its three lasers, and it has a
lower sensitivity in air than nEUCLID, 1 µm/

√
Hz. nEUCLID has a tilt range of ±0.35◦,

and a sensitivity of 420 pm/
√

Hz (at 1 Hz, in air). Further details are shown in Table 7.1.

Within this thesis potential space-industry applications for nEUCLID have been explored.
Vibration monitoring, thermoelastic testing, and antenna metrology are promising areas
where ground-based nEUCLIDs would be useful; remote sensing for light-weight structures
is an active area of research in the space industry. Whilst in space, future formation flying
missions, adaptive optics, and position sensors for antennas are areas that would benefit
from the long working distance and sensitivity of nEUCLID.

Before any further development of nEUCLID for these applications a few enhancements
can be made. Firstly, it would be advantageous to remove the focusing effect from the
PCE, to improve the interference pattern visibility and remove the need to model the
Lissajous patterns and control the photodiode positions. This can be achieved using two
standard off-the-shelf lenses (Section 5.5), so would be a natural next step for this project.
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Secondly, the single-pass interference pattern needs to be eliminated as this will disrupt
the tilt immunity of the device. Finally, the sensitivity of nEUCLID in a vacuum needs to
be measured, to confirm the noise of the electronics in a simulated space environment.

Although improvements must be made before nEUCLID can be used in real-world applications,
it has successfully demonstrated the ability to remain tilt-immune at large distances whilst
being of low mass and low power, fulfilling the brief laid out by Airbus DS.
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List of Acronyms

ADC analogue to digital converter

aLIGO Advanced Laser Interferometer Gravitational-wave Observatory

APM antenna pointing mechanism

AR anti-reflection

ASD amplitude spectral density

CCD charge-coupled device

CCE conventional cat’s eye

CCRR cube-corner retro-reflector

CLR coherent laser radar

COATS Compact Optical Attitude Transfer System

CORDIC Coordinate Rotation Digital Computer

DC direct current

DFB distributed feedback

DS Defence and Space

EO Earth Observation

ESA European Space Agency

EUCLID Easy to Use Compact Laser Interferometric Device

FC/APC fibre channel/angled physical contact

FPGA Field Programmable Gate Array

GFZ German Research Centre for Geosciences

GRACE Gravity Recovery and Climate Experiment

HWP half wave plate

ILIAD Innovative Laser Interferometric Angular Device

INRiM Istituto Nazionale di Ricerca Metrologica

IR infra-red

JPL Jet Propulsion Laboratory
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JWST James Webb Space Telescope

LPF LISA Pathfinder

LRI Laser Ranging Interferometer

NASA National Aeronautics and Space Administration

nEUCLID new Easy to Use Compact Laser Interferometric Device

NG next generation

NPBS non-polarising beamsplitter

PBS polarising beamsplitter

PC personal computer

PCE pseudo cat’s eye

PD photodiode

PSD power spectral density

PZT lead zirconate titanate

QWP quarter wave plate

RF radio frequency

TPF Terrestrial Planet Finder

TRL technology readiness level

USB Universal Serial Bus

VCSEL vertical-cavity surface-emitting laser

WIVERN Wind Velocity Radar Nephoscope
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Appendix B

Data Acquisition Software
Screenshots

(a) A displacement plot from EUCLID.

(b) A Lissajous pattern from EUCLID.

Figure B.1: Data output from the EUCLID software program [18]
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Appendix C

List of nEUCLID Materials

This table presents the components used in nEUCLID, in the order in which they are used
in the interferometer.

Component Part Name/ Supplier Material Average

Number Reflectance

DFB Laser (1550 nm) - Laser 2000 - -

Fibre LAS-13-165 Laser 2000 - -

Collimator F810 APC 1550 Thorlabs - -

Polariser 06 WL 25 Comar Optics - -

Polarising Beamsplitter PBS254 Thorlabs N-SF1 <0.5%

Non-polarising Beamsplitter BS015 Thorlabs N-BK7 <0.5%

Half-Wave Plate 755 CM 25 Comar Optics Mica Unavailable

Quarter-Wave Plate 378 CM 25 Comar Optic Mica Unavailable

Mirror PF10-03-G01 Thorlabs Aluminium -

Cat’s Eye Concave Lens LC1611-C Thorlabs N-BK7 <0.5%

Cat’s Eye Convex Lens LA1708-C Thorlabs N-BK7 <0.5%

Meniscus Lens 2000 JO 25 Comar Optics B270 <1.3%

Photodiode FGA21 Thorlabs InGaAs -

Table C.1: List of components in nEUCLID, and their part names and materials [82] [83].
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Appendix D

EUCLID

This appendix reports on the work described by S. Aston [9].

D.1 Optical Configuration

A 667 nm VCSEL diode is used as the laser source for EUCLID. The horizontally-polarised
beam leaves the VCSEL and passes through a collimating aspheric lens, L1. The beam
is transmitted through PBS 1 and through a NPBS, where approximately half the beam
intensity is lost. The beam travels through a HWP, orientated at 22.5◦, which rotates the
plane of polarisation by 45◦. This allows the beam to be split by PBS 2, transmitting half
to the measurement arm and reflecting the other half into the reference arm.

The transmitted beam passes through QWP 1, orientated at 45◦, and out of EUCLID
towards the measurement target, MT. The beam reflects off the target, passing back
through QWP 1 which reorientates the beam polarisation to cause the beam to be reflected
at PBS 2. The deflected beam travels into the cat’s eye set-up, which consists of a doublet
lens, a plano-concave lens and a mirror, MC. Reflecting off the cat’s eye mirror, the beam
passes back through the lenses, and is again reflected by PBS 2 to the target and back.
Upon reaching PBS 2 again, the beam is transmitted, due to rotation of polarisation from
QWP 1, recombining with the returning reference beam.

In the reference arm the beam passes through QWP 2, reflects off a mirror (MR), and passes
back through the QWP. This orientates the polarisation to cause PBS 2 to transmit the
beam through the cat’s eye lens system. The beam reflects off MC and returns back through
QWP 2, reflecting off MR again. A final pass through QWP 2 rotates the polarisation to
reflect at PBS 2, recombining with the measurement beam.

Once recombined, the (now united) beam passes back through the HWP and is split by
the NPBS. The transmitted half, which comprises two polarisation components, travels on
through QWP 3 which shifts one of the polarisations by π/2. This beam is separated into
the two polarisation components by PBS 3, each to a photodiode (PD1 and PD3). The
reflected beam half is reflected again, by PBS1, to PD2.

93



D.2. ELECTRONICS

Figure D.1: Schematic of the EUCLID configuration.

D.2 Electronics

The electronics module for EUCLID (Fig. D.2) was built by electronics engineer, David
Hoyland. It is a “plug-and-play” device containing a high-speed data acquisition system,
the laser diode and accompanying laser diode electronics. The module contains an FPGA;
a small chip of an array of logic gates capable of performing complex calculations.

Using a Coordinate Rotation Digital Computer (CORDIC) algorithm, a method that uses
simple mathematical operations to find the sine/cosine of an angle, the FPGA calculates
the arctangent from the three photodiode signals using Eq. (2.39). The use of an FPGA
allows the phase calculation to be completed inside the electronics unit, reducing overall
data transmission time. A transimpedence amplifier converts current detected by the
photodiodes into voltage the FPGA can use, via an ADC. Each of the three ADC channels
are 18-bit and can acquire data at a maximum sample rate of 1 MHz [9]. The maximum
target tracking speed is 41.4mms−1. These three channels can be used for monitoring the
signal from the interferometer via an oscilloscope.

D.3 Software

Upon start-up the electronics box sends data to the personal computer (PC) via a Universal
Serial Bus (USB) connection. A LabVIEW program was written to control and calibrate
EUCLID by software engineer, John Bryant. This program configures the electronics
module by sending commands to the FPGA to allow the interferometer to be calibrated
before use. Once the displacement measurement has begun, the arctangent calculation
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D.4. OPERATIONAL CHARACTERISTICS

Figure D.2: Photograph of the EUCLID electronics module

results are sent to the PC via USB connection where the measured displacement is plotted
as a function of time. The program can also log the displacement data in a data file, and
display the resulting Lissajous patterns, as shown in Appendix B.

This program also allows control of the sample rate and decimation rate; the speed at
which EUCLID converts the raw PD signals into displacement, and the size the data is cut
into to send to the PC. The sample rate for EUCLID can range from 250 kHz to 1 MHz.
The decimation rate can be either by 50 or 2500 times [18]. The data acquisition rate is
the sample rate divided by the decimation rate.

For more details on the software see the EUCLID User Guide [18].

D.4 Operational Characteristics

As described in the EUCLID User Guide, the working distance s is 6 mm and the working
range wr is ±3 mm [18]; please refer to this manual for further details.

The sensitivity of EUCLID is 50 pm/
√

Hz at 1 Hz in a vacuum, as shown in Fig. D.3. The
sampling rates of both 250 kHz and 1 MHz are shown, as are the relevant noise budgets.
At low frequencies 1/f noise from the VCSEL is present, as well as from the operational
amplifier; at high frequencies (above 1 kHz) EUCLID becomes limited by shot noise. For
further detail on the noise sources in EUCLID please refer to [9].
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D.4. OPERATIONAL CHARACTERISTICS

Figure D.3: The sensitivity plot for EUCLID in a vacuum [9] including relevant noise
sources.
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Appendix E

Code to Correct for Target Beam
Divergence

The MatLab code presented here uses Gaussian optics to model the solution to the substantial
difference between target and reference beam widths and radii of curvature, as discussed in
Section 3.4. To allow the best visibility possible a meniscus lens of focal length -2013mm
was chosen for the reference arm to match the target beam parameters. The data this code
produces is shown in Section 3.4 and Section 5.1.1.
% Delta correcting code for thesis (updated 10/11/15)

clear

% Define variable values
lambda = 1550e-6;
w0 = 2.487; % Calculated beam waist input from the collimator
R0 = Inf; % Radius of curvature of input collimated beam
del = 0:pi/2:pi; % Vary ’tap’ amount to mimic phase change
delta = -0.004187; % Cat’s eye delta value
a = 710; % Length of target arm (target mirror to CE lens 1)
efl = -2013; % Focal length of ref. arm correcting lens (Comar)

% Relationships
k = 2*pi/lambda;

% Reference arm distances in lab set-up
r1 = 171; % Coll. to RM
r2 = 152.8; % Distance from RM to focusing lens

% Target arm distances in lab set-up
t1 = 184.9; % Coll. to targ. arm start
t2 = 170.2; % Targ. arm end to focusing lens

%%% FOCUSING OUTPUT LENS %%%
df = 84 + 7; % (Sensor depth + lens depth)
Lf = 79.8;
DF = [1,df;0,1];
LF = [1,0;-1/Lf,1];

%%% TARGET ARM %%%
T1 = [1,t1;0,1];
T2 = [1,t2;0,1];
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arm = [1,a;0,1];
ce = [-1,0;delta,-1];
d1 = T2*arm*ce*arm*T1;
Lt = t2+a+a+t1;

% Define target arm matrix parameters
At = A_ABCD(d1);
Bt = B_ABCD(d1);
Ct = C_ABCD(d1);
Dt = D_ABCD(d1);

%%% REFERENCE ARM %%%
R1 = [1,r1;0,1];
R2 = [1,r2;0,1];

% Lens to match output beam waist and rad. curv. to that of target arm
L = [1,0;-1/efl,1];
d2 = R2*L*L*R1; % Double lens pass
Lr = r2+r1;

% Define ref arm matrix parameters
Ar = A_ABCD(d2);
Br = B_ABCD(d2);
Cr = C_ABCD(d2);
Dr = D_ABCD(d2);

%%% CALC. INTENSITY %%%

% New expressions, one for each arm
% Function: alpha = (2/(k*w0^2)) + (1i/R0);
alpha = alpha(w0,R0,lambda);
% Function: p_amp = A + 1i*alpha*B;
pr = p_amp(alpha,Ar,Br);
pt = p_amp(alpha,At,Bt);
% Function: beta = (alpha*D - 1i*C) / (A + 1i*alpha*B);
beta_r = beta(alpha,Ar,Br,Cr,Dr);
beta_t = beta(alpha,At,Bt,Ct,Dt);

% Check radius of curvature for each beam - should be the same
R_t = 1/imag(beta_t);
R_r = 1/imag(beta_r);
% Check beam width for each beam - should be the same
w_r = sqrt(2/real(k*beta_r));
w_t = sqrt(2/real(k*beta_t));

% Calculate and plot intensity over range of r
r = -1:0.01:1;

% Want fringe pattern for the peak visibility
ref = 0.25; t = 1;
int_del0 = comb_intensity_calib(w0,pr,pt,Lr,Lt,beta_r,beta_t,r,lambda,del(1),ref,t);
int_delpi2 = comb_intensity_calib(w0,pr,pt,Lr,Lt,beta_r,beta_t,r,lambda,del(2),ref,t);
int_delpi = comb_intensity_calib(w0,pr,pt,Lr,Lt,beta_r,beta_t,r,lambda,del(3),ref,t);
% where Function: comb_intensity_calib = abs(ut+ur).^2;
% Target arm amplitude, ut = tc * exp(1i*del).’ * (1/sqrt(0.5*pi*(w0^2))) * (1/pt)
% ... * exp(1i*k*Lt) * exp(-0.5*beta_t*k*(r.^2));
% Reference arm amplitude, ur = rc * ones(size(del)).’ * (1/sqrt(0.5*pi*(w0^2))) * (1/pr)
% ... * exp(1i*k*Lr) * exp(-0.5*beta_r*k*(r.^2));

% Plot interference pattern
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figure(2)
plot(r,int_del0,r,int_delpi)
legend(’k*delta␣z␣=␣0’,’k*delta␣z␣=␣pi’); grid on
title(’Theoretical␣output␣beam␣interference␣pattern’,’FontWeight’,’bold’,’FontSize’,12)
xlabel(’Beam␣width␣(mm)’,’FontWeight’,’bold’,’FontSize’,11)
ylabel(’Intensity’,’FontWeight’,’bold’,’FontSize’,11)

% CALCULATE FRINGE VISIBILITY (%)
% Integrate area which PD would see (1 mm diameter, as in lab)
t_max = 2*pi*trapz(int_del0(50:151));
t_min = 2*pi*trapz(int_delpi(50:151));

% Calculate visibility from these values (percent)
vis_new = (t_max - t_min)/(t_max + t_min) * 100;
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Appendix F

"Pseudo-cat’s eye for improved
tilt-immune interferometry" - Speake
and Bradshaw
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We present a new simple optical design for a cat’s eye retroreflector. We describe the design of the new optical
configuration and its use in tilt-immune interferometry where it enables the tracking of the displacement of a
plane target mirror with minimum sensitivity to its tilt about axes orthogonal to the interferometer’s optical axis.
In this application the new cat’s eye does not behave as a perfect retroreflector and we refer to it as a “pseudo”-
cat’s eye (PCE). The device allows, for the first time, tilt-immune interferometric displacement measurements in
cases where the nominal distance to the target mirror is significantly larger than the length of the cat’s eye. We
describe the general optical characteristics of the PCE and compare its performance in our application with that of
a conventional cat’s eye optical configuration using ABCD matrices and Zemax analyses. We further suggest a
simple modification to the design that would enable the PCE to behave as a perfect cat’s eye, and this design may
provide an advantageous solution for other applications. © 2015 Optical Society of America
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