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Abstract

This thesis presents a novel model for service selection and composition in Cloud-based

Service-Oriented Architectures (CB-SOA), which is called CloudMTD, using real options,

Dependency Structure Matrix (DSM) and propagation-cost metrics. CB-SOA architec-

tures are composed of web services, which are leased or bought off the cloud marketplace.

CB-SOA can improve its utility and add value to its composition by substituting its con-

stituent services. The substitution decisions may introduce technical debt, which needs

to be managed. The thesis defines the concept of technical debt for CB-SOA and re-

ports on the available technical debt definitions and approaches in the literature. The

formulation of service substitution problem and its technical debt valuation is based on

options, which exploits Binomial Options Analysis. This thesis looks at different option

types under uncertainty. This thesis is concerned with some scenarios that may lead to

technical debt, which are related to web service selection and composition that has been

driven by either a technical or a business objective. In each scenario, we are interested in

three decisions (1) keep, (2) substitute or (3) abandon the current service. Each scenario

takes into consideration either one or more QoS attribute dimension (e.g. Availability).

We address these scenarios from an option-based perspective. Each scenario is linked to

a suitable option type. A specific option type depends on the nature of the application,

problem to be investigated, and the decision to be taken. In addition, we use Dependency

Structure Matrix (DSM) in order to represent dependencies among web services in CB-

SOA. We introduce time and complexity sensitive propagation-cost metrics to DSM to

solve the problem. In addition, CloudMTD model informs the time-value of the decisions

under uncertainty based on behavioral and structural aspects of CB-SOA.
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CHAPTER 1. INTRODUCTION

1.1 Overview

Cloud-Based Service-Oriented Architectures (CB-SOA) are typically composed of services

which are offered by cloud service providers in cloud marketplace. In such architectures,

non-functional requirements (e.g. availability) are unpredictable as they tend to fluctuate

frequently. Therefore, such requirements are likely to evolve and change over time. As a

result, such change can affect not only user needs, but also other requirements in the same

architecture. For CB-SOA decision makers (e.g. architects and stakeholders), coping with

change in these requirements is an ultimate goal for the purpose of maximizing profits

and reducing cost in general. In this sense, we argue that CB-SOA decision makers

should respond to changes and act upon them as if they are new opportunities. In

CB-SOA, decision makers may need to replace (substitute) one of the constituent web

services, which is not satisfying requirements in some circumstances at specific time due

to changes (e.g. demand change). The need for service substitution could be driven by

business objectives or technical ones. For example, the need can be attributed to changes

in quality of service (QoS) requirements, the need to reduce operational cost, upgrade to

a new web service, etc.

On the other hand, in CB-SOA, services can be offered from various cloud service

providers with different cost, QoS, features and functionalities, and varying flexibility in

supporting business processes. This can make the problem of selecting and composing

CB-SOA benefiting from the cloud marketplace complex and challenging. This is because

the selection and composition decision need to consider multiple providers, their diverse

provisions and the likely long-term value-added of a candidate selection. In this thesis,

the value-added has many dimensions. For example, it can be attributed to the likely

increase in revenues generated by improving a specific QoS expressed as utility.

We argue that service selection decision may come with a technical debt - an op-

erational liability which may incur an interest if not managed, cleared and transformed

from liability to value. Technical debt can span several dimensions, which are related

to selection decision or service provision. For example, technical debt can be related to
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situations, where the service capacity is underutilized and the cost of maintenance out-

weighs the revenue streamed from using the service. Technical debt can be also attributed

to situations, where the service is at risk because of SLA non-compliance. In addition,

technical debt can present in situations where the selection and/or substituting decisions

are not fully justified for value-added. Also, it can be attributed to poor and unjustified

service selection decisions, which are not long-term geared. Following a similar argument

to Guo and Seaman: little level of debt “is not bad”, as it can help developers speed up

the development process [93]. This perspective can be valid for the case of service selec-

tion in CB-SOA, where less attractive services may come with a technical debt, which

can be transformed to future value if properly managed.

This thesis presents a model (CloudMTD), which has the following major phases

(Figure 1.1): (I) inform the selection and composition decisions in CB-SOA and asso-

ciate it with long-term value under uncertainty, (II) technical debt management, if any,

(III) inform the time-value of the decisions under uncertainty based on behavioral and

structural aspects of CB-SOA, and (IV) services dependencies management. CB-SOA

decision makers (e.g. application architect) can make use of our model to inform the

decisions of service selection and composition in CB-SOA, which has the promise to add

long-term value and reduced technical debt, if any. In addition, the model can be used

to assess the time-value of the substitution decisions relative to possible changes of the

structure over time. The aim is to reduce unnecessarily investment actions, which may

incur unmanageable technical debt and unlikely to be utilized for value creation.

1.2 Problem

The Cloud-Based Service-Oriented Architecture can improve its utility and add value to

its composition by substituting its constituent services dynamically. Moreover, one of the

constituent services may become inappropriate, in terms of satisfying requirements, and

should be substituted (replaced). The substitution decision should take into consideration
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Figure 1.1 CloudMTD in a General View

the goal of improving utility and adding value to CB-SOA structures. The substitution

decision is either driven by business or technical objectives. For example, change in

requirements, end of service contract, desire to improve one or more QoS attributes, need

to upgrade to a new web service that has been released in cloud marketplace recently,

etc. We argue that these drivers are affecting the utility of a given CB-SOA structure.

Furthermore, selecting a suitable alternative service (e.g. replacement of the inappropriate

service with another one with better QoS) in order to accommodate a change (e.g. new

demands or new requirements) at specific time is a challenging problem. We view the cloud

as a marketplace [55], which offers different web services with different QoS, cost and SLA

promises from different cloud providers. In this thesis, we are interested in dealing with

one type of cloud-based services, which is SaaS: software as a service. The complexity of

the decision making intensifies with the number of candidate services and their attributes.

On the other hand, we argue that selection decision may come with a technical debt. In

this thesis, we define the technical debt as the gap between “expected-level” of QoS,

expressed as utility, and the “current-level”. Technical debt can be manageable (creates
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value) or unmanageable. CloudMTD model is managing technical debt in the view of

realizing future value using Real Options. Obviously, managing technical debt could

entail a cost. However, some future value maybe lost when ignoring technical debt and

the future opportunities created by options.

1.3 Solution

We view selection and composition decisions in CB-SOA form two levels; service-level for

service selection and architecture-level for service composition. This is done in the view of

achieving the following goals: (1) creating long-term value-added, (2) maximizing utility,

and (3) managing technical debt (if any). In order to achieve the previous goals, some

consequences/aspects may appear and need to be addressed, such as: (1) Technical Debt,

(2) Future Changes (Uncertainty), and (3) Dependency.

The first part of the solution is concerned with the selection decision and the likely

incurred technical debt. As we are taking decision under uncertainty, the solution should

be flexible enough to manage such uncertainties. In fact, option analysis is valuable where

there are uncertainties associated with the decision to be taken. Option theory is typically

applied to such decision because managing uncertainty requires flexibility in dealing with

such decisions when there are multiple possibilities for future events [21].

An option, in general, is the right to have the freedom of choice. “A Real Option,

particularly, is the right - but not the obligation - to undertake some business capital in-

vestment decision; typically the option to make, abandon, expand, or contract a capital

investment” [30]. Real options analysis emphasizes the value of flexibility under uncer-

tainty, which can be viewed in the form of future options it creates [77]. In this sense,

flexibility creates future opportunities, which take many forms, such as business expansion

(growth), delay, abandon and so on. In web service selection context, future opportunities

are linked to the candidate web service being able to accommodate future changes under

uncertainty. Real options are contingent decisions [21], which gives the decision maker
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the opportunity to make a decision after events are unfold. In addition, real options is

a proactive thinking [21], which is useful in strategic decision making in environments

full of uncertainties, such as service selection in CB-SOA. In this sense, when we take an

option-based approach in such environments: “uncertainty creates opportunities”. This

is because; CB-SOA decision makers are interested in knowing the range of possible out-

comes before the decision date (proactively), as some late decisions can be costly. We

argue that the key to decision making in CB-SOA is to link uncertainty to time-value and

possible future opportunities that options create. In this sense, real options analysis gives

the power to decision makers by giving them the flexibility to act upon unfolding events

by using options under uncertainty [21]. However, this flexibility comes with a cost. Here,

we say that the CB-SOA decision maker has the flexibility to act upon changes when s/he

doesn’t know what is hidden in future. And accordingly, unlike traditional approaches,

an option-based perspective leads to higher value of the selection decision in CB-SOA.

In addition, in CB-SOA, services can be offered from various cloud service providers

with different cost, QoS, and features. The complexity of the decision making intensifies

with the number of candidate services and their attributes. This can make the problem

of selecting and composing CB-SOA benefiting from the cloud marketplace complex and

challenging. Therefore, we have applied the K-means clustering technique, which presents

data (web services) in a structured way. By the use of k-means clustering, services can

be classified into different groups based on their QoS attributes’ similarities (e.g. high

availability and low response time). In this sense, we argue that the K-means clustering

technique improves the service selection process in CB-SOA in terms of (1) scalability,

(2) relevancy, and (3) QoS correlation.

The second part of the solution is concerned with service composition. After selecting

a suitable service and managing any likely technical debt, the service should be integrated

with the rest of the services in a given CB-SOA composition. In this sense, the integration

process may introduce a change to the CB-SOA structure in case of any dependencies

among constituent services. We use Dependency Structure Matrix (DSM) in order to
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represent dependencies among web services in CB-SOA. In CB-SOA context, we use

the propagation cost metric for computing the percentage of web services that may be

affected on average, either directly or indirectly, when a change occurs to a given web

service. In this sense, propagation on the architecture can be related to changes to the

structure. For this thesis, the propagation cost quantifies the additional rearchitecting

cost to integrate the candidate web service into the architecture. Despite the fact that

two services may be dependent, the complexity of the dependency may vary. For example,

higher complexity may signal higher rework cost, lower complexity may indicate otherwise.

For this reason, we build on the work of [145, 144] and we introduce time and complexity

sensitive propagation cost metrics to DSM to solve the problem.

1.4 Scope

The CloudMTD model is a middleware between multiple cloud-based services (SaaS) and

a given CB-SOA. In this thesis, we distinguish a cloud-based service from any other type of

software, by considering some characteristics those are related to quality aspects of a given

service, which are defined using QoS. Since these services are offered by the cloud, they

come with varying QoS and price, and as a result, they have different implications on CB-

SOA structure. This thesis is concerned with some scenarios that may lead to technical

debt, which are related to web service selection and composition in CB-SOA that has been

driven by either technical or business objectives. In each scenario, we are interested in

three decisions (1) keep, (2) substitute or (3) abandon the current service. Each scenario

takes into consideration either one or more QoS attribute dimension. We address these

scenarios from an option-based perspective. Each scenario is linked to a suitable option

type. A specific option type depends on the nature of the application, problem to be

investigated, and the decision to be taken. For example, investment’s expansion decision

can be formulated as a growth option, on the other hand, when-to-invest decision can

be formulated as a defer option, and so on. We are interested in four option types in
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this thesis: (1) growth-options and we link it to expand and substitute decision, (2)

switch-option and we link it to substitute decisions, (3) defer-option and we link it to

wait and substitute decision (taking into consideration the flexibility of delaying decisions

in CB-SOA until some uncertainty is resolved), and (4) abandon-option and we link it

to service abandon decision. We will illustrate the use of these options in later chapters

using case study and illustrative examples, which are driven by scenarios of possible web

service selection challenges that may lead to technical debt in CB-SOA. These scenarios

have some sources of uncertainty. We are interested in reducing such uncertainties in CB-

SOA decision making. We are also interested in valuing flexibility under uncertainty in

CB-SOA decision making. This thesis is concerned with the following uncertainties: (1)

Behavioral Aspects, such as QoS fluctuation, (2) Structural Aspects, such as complexity

of services dependencies, and (3) Environmental Aspects, such as cloud uncertainties.

Figure 1.2 CloudMTD Cube
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1.5 Research Questions

This thesis is concerned with answering the following research questions:

1. How is the CloudMTD model capable of enhancing the selection and composition

decisions in CB-SOA under uncertainty? More specifically, how can CloudMTD

model improve the execution time of the selection and composition process?

2. How does the Binomial Option analysis (option thinking) add value to selection

decisions in CB-SOA taking into consideration technical debt? Is real option theory

capable of valuing web services investments?

3. Does technical debt have an impact on the selection decision? Does CloudMTD

model make technical debt explicit in CB-SOA?

4. How is the CloudMTD model capable of giving a good recommendation about time-

value of selection and composition decisions in CB-SOA taking into consideration

the behavioral and structural aspects of CB-SOA?

5. How can K-means clustering approach enhance the scalability of the model? Does

the clustering approach make QoS correlations, recall and relevancy explicit in CB-

SOA selection and composition?

1.6 Thesis Contributions

This thesis’s contributions are summarized as follows:

1. A novel model (CloudMTD) for services selection and composition in CB-SOA based

on options theory, DSM and propagation-cost metrics. The novelty of CloudMTD

model is based on different aspects, such as (1) a value-driven model for Manag-

ing Technical Debt in Cloud-Based Service-Oriented Architectures, (2) the use of

Binomial model for modeling selection decisions in CB-SOA, and (3) CloudMTD

model quantifies the time-value of selection and composition decisions in CB-SOA,
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technical debt and dependencies they can imply on the structure. The analysis is

done taking into consideration the structural and behavioral aspects of CB-SOA.

A distinctive feature of the CloudMTD model is that it links time-value of the

substitution decision to both the behavior and the structure of CB-SOA.

2. The use of k-means clustering in service selection in CB-SOA. K-means clustering

technique is capable of presenting data in a structured way, which enables the de-

cision maker to investigate the structure of each group (cluster) in the given web

services dataset. K-means clustering technique can improve service selection in

CB-SOA by improving the following:

(a) Scalability: K-means improve scalability by reducing the search-space in the

cloud marketplace and accordingly will reduce searching-time. And conse-

quently it will be easier to consider the context of services composition.

(b) Relevance and Recall: K-means improve the relevancy of the retrieved web ser-

vices from a given cluster. In addition, recall metric measures the percentage

of the relevant retrieved web services in a given cluster.

(c) QoS correlation: K-means is capable of making QoS correlation explicit by

finding structures in data in a given web services dataset.

3. A novel Service-level Technical Debt in Cloud-Based Service-Oriented Architectures:

We describe the concept of technical debt for cloud-based service selection and

composition and discuss its causes. We introduce a new novel dimension of technical

debt explicating service-level in CB-SOA.

4. Literature Review:

(a) Web service selection and composition: A representative sample of research

that has been carried out in the field of web service selection and composition.
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(b) Technical Debt and Managing Technical Debt: This review presents the avail-

able definitions of technical debt in different fields and on different levels in the

literature. The review also presents the available approaches, which have been

investigating technical debt. It provides a comparison of different approaches

dealing with technical debt on different levels, dimensions, causes, solutions,

and evaluation methods.

(c) Real Options: A review of the previous research that investigates option theory

in software engineering, economics, SOA and IT investments.

1.7 Thesis Structure

Figure 1.3 Thesis Chapters Organization

The thesis structure is as follows (Figure 1.3):

• Chapter 2: presents a representative sample of research works that have been done

in the field of web service selection and composition. The chapter gives a brief back-

ground on Service-Oriented Architecture (SOA) and cloud computing paradigms.

Then, we present the problems with the traditional selection and composition ap-

proaches. We also motivate the need of why a value-based perspective is needed for

solving the web service selection and composition problem in Cloud-Based Service-

Oriented Architectures (CB-SOA).

• Chapter 3: introduces and defines a new dimension of architectural debt explicating

service-level in CB-SOA. We present the term technical debt and its available defi-
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nitions in the literature in different fields and on different levels. In this chapter, we

motivate the need for technical debt-aware web service selection in CB-SOA. Then,

we present a review of the available research works in which technical debt was in-

vestigated and we provide a comparison of the available approaches in the literature

that have been used to solve technical debt-related problems. In this chapter, we

also discuss different origins of technical debt, which are related to service selection

decisions in CB-SOA. We also present the main drivers and situations that lead to

technical debt on service level in CB-SOA. And finally, we present technical debt

quantification on service-level in CB-SOA.

• Chapter 4: presents the requirements for evaluating a selection and composition

decisions and managing the likely technical debt in CB-SOA from an economics

value-driven perspective. The requirements cover two levels in CB-SOA: (1) service-

level and (2) architecture-level. We also present some concepts and consequences,

which arise once we take a decision in CB-SOA, such as flexibility, uncertainty, and

services dependencies.

• Chapter 5: presents the theory of real options, its related definitions and back-

ground. We present the different option types and we relate them to different ser-

vice selection scenarios in CB-SOA. In this chapter, we present and discuss different

options valuation model available in the literature. Then we discuss the reasons

why we have chosen binomial option valuation model in order to address the re-

quirements presented in chapter 4. We also present the service selection problem

from an option perspective and we present the analogy between real option and

service selection. After that, we present a review of the available research works

that investigate the option theory in software engineering. We finally present the

related work that combines real options, technical debt and service selection in cloud

environment.

• Chapter 6: presents our main model that is called CloudMTD. CloudMTD is an
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option-based model for selecting and composing service in CB-SOA, taking into

consideration the likely technical debt. In this chapter, we explain the steps of

CloudMTD model. We also present illustrative examples with different scenarios,

which are related to web service selection and composition. Each scenario is driven

by either a technical or a business objective and takes into consideration either one

or more QoS attribute dimension (e.g. improving scalability). In each scenario, we

are investigating three decisions (1) keep, (2) substitute or (3) abandon the current

service. We address these scenarios from an option-based perspective and link each

one to an appropriate option type.

• Chapter 7: presents the evaluation process of the CloudMTD model and the related

decisions in CB-SOA. It also reports on the implementations and different tech-

nologies that have been used. This chapter also evaluates the applicability of the

CloudMTD model based on a case study. In addition, it evaluates the scalability of

the CloudMTD model based on k-means clustering using a real web service dataset.

It evaluates the purity, precision and recall of the results. This chapter also presents

some results, which are related to performance, behavioral evaluation and structural

evaluation.

• Chapter 8: concludes, revisits contributions and present future work and directions.
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CHAPTER 2. CLOUD-BASED SERVICE-ORIENTED ARCHITECTURES
(CB-SOA): A VALUE PERSPECTIVE

2.1 Overview

In this chapter, we present a general background on SOA and Cloud Computing. We also

review the state of the art of the work done so far in SOA and present a representative

sample of research work that has been done in the field of web service selection and com-

position. We also present some drivers these are affecting and influencing selection and

composition decisions in CB-SOA. We mainly focus on drivers and factors affecting and

influencing the selection decision in cloud-based service-oriented architectures depending

on three main dimensions: time, cost and value (and value-added). We classify tradi-

tional approaches and discuss their limitations. This chapter provides some concepts and

approaches those are related to cloud and SOA, so we know where we stand. These con-

cepts include SaaS, Cloud, SOA, etc. We are mainly interested in dealing with one type

of the cloud, which is SaaS: software as a service. This chapter is linked to next chapter

as follows: this chapter presents the current approaches in dealing with service selection

and composition. We present the problems of current approaches. Then, we motivate the

need for a novel model in dealing with the problem of service selection and composition

in CB-SOA. It also provides factors and dimensions that affect and influence the selec-

tion and composition decisions in CB-SOA. Next, we motivate the need for non-technical

factors that affect and influence the selection decision in chapter 3.

2.2 SOA and Cloud Computing

In this section, the link between Service-Oriented Architectures (SOA) and Cloud Com-

puting is investigated. We begin by the definition of SOA by Sommerville, which is:

“Service-Oriented Architectures (SOAs) are a way of developing distributed systems where

the system components are stand-alone services, executing on geographically distributed

computers [203].” Service-oriented software engineering is one of the most dominant ap-

proaches in the business world [203]. Accordingly, we use SOA as an architectural style

for building applications. Moreover, web services are used as a technology for implement-
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ing SOA. The notion of service-oriented computing came out as a result of the previous

technological drawbacks. Later on, SOA was supported by the notion of “component-as-

a-service” [203]. The main difference between the traditional concept of a “component”

and the new “component-as-a-service” is that services are treated as stand-alone units.

Each service in the SOA architecture provides an interface for its functionality.

Furthermore, SOA and Cloud Computing complement each other [138]. In general,

cloud potentials are defined as services. There are many factors supported the adoption

of cloud by consumers, such as virtualization technology, subscription-oriented comput-

ing, and pay as you go model [53]. Cloud Computing is defined as: “Cloud computing

refers to both the applications delivered as services over the Internet and the hardware and

systems software in the data centers that provide those services [23].” Cloud Computing

is a relatively recent paradigm that was developed out of many technologies, such as grid

computing, virtualization and web tools [55]. Cloud Computing paradigm includes in-

frastructures, platforms, and applications. Cloud applications have many characteristics,

such as: on-demand, flexible, and scalable applications with pay per use policies [55].

The beauty of the cloud comes from the previous factors in addition to the fact that users

can access services, anywhere in the world, based on their requirements. Cloud comput-

ing allows the usage of web resources on demand over the internet, such as: databases,

applications, email, etc. Traditionally, both data and software used to reside on the client-

side. However, in cloud computing, the client-side has relatively no software or data, and

processes occur away from client-side, somewhere on the network [23]. To explain cloud

computing in simple words, the analogy of “Public Utilities” is used (e.g. electricity, gas,

and water). In such utilities, generating electricity and pumping water is done away from

the client. Similarly, in cloud computing, certain software and hardware installation and

maintenance are performed away from the end-user. Gmail is an example of a daily used

cloud service. There are three Cloud Computing service models, which are [91]:

1. Software as a Service (SaaS): SaaS are services that are accessed by end-users via

web browsers, such as: Facebook, Google Calendar, Google Docs, Google Mail, etc.
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It provides customers some capabilities to use web applications which are running

on cloud. Customers do not deal with the cloud infrastructure, such as: storage,

network, operating systems or servers. In this thesis, we are interested in SaaS.

2. Platform as a Service (PaaS): PaaS are services that allow developers to develop

custom applications and deploy them onto the cloud infrastructure, such as Google

App Engine and Microsoft Windows Azure. Developers do not deal with the cloud

infrastructure, such as: storage, network, operating systems or servers.

3. Infrastructure as a Service (IaaS): IaaS provides some resources, such as processing

and storage, in which customers are able to deploy and run their own software, which

includes applications, such as Amazon’s Elastic Compute Cloud (EC2). Customers

do not deal with the cloud infrastructure, such as: storage, network, operating

systems or servers. This category includes meeting requirements such as memory,

CPU, storage, etc. [53].

There are three Cloud Computing deployment models, which are [23]:

1. Private Cloud, where the infrastructure is running exclusively for a private business.

2. Public Cloud, where the infrastructure can be used publicly.

3. Hybrid Cloud, where the infrastructure is combined of the two previous models

(Private Cloud and in Hybrid Cloud).

2.2.1 Web Services

In general, a web service is a special form of a service. According to World Wide Web

Consortium (W3C), a web service is: “a software system designed to support interopera-

ble machine-to-machine interaction over a network”1. Each web service has a functional

description and an interface description. Normally, web services are either based on

SOAP or REST standards. For the nature of the selection and composition problem in

1www.w3.org
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CB-SOA, we implemented web services using SOAP instead of REST. SOAP was cho-

sen as it is language- and platform-independent protocol, while REST requires the use of

HTTP (note: transport protocol for information exchange includes [202]: HTTP, HTTPS,

SMTP, etc.). We have also used WSDL, which is an interface description based on XML,

for the purpose of describing the functionality of our workflow and web services, which

will be described in later chapters.

Quality of Services (QoS). In general, a web service is defined and described by

its functional and non-functional requirements. Functional requirements refer to what

the service should provide, and how it will behave and react. Moreover, QoS defines the

quality aspects of a given web service (i.e. non-functional requirements).

2.3 Web Service Selection and Composition: a Re-

view

Since our main research question is related to enhancing the selection and composition

process of web services, we present a review of the approaches available in the literature

those are dealing with the problem of selecting and composing web services. The objective

is to explore the landscape of proposed approaches dealing with the problem. We also

explore the state of the art in the field of service selection and composition, and then

identify the gaps.

First, we start by defining some related terms that are used in this thesis from our

perspective. We refer to web service selection as the act of selecting a qualified web

service among other suitable candidate ones, based on user preferences and some other

criteria. We consider the web service selection procedure as a decision making process,

which is influenced by different factors and attributes. We consider Quality of Services

(QoS) as one of the main determinant of web service selection process, in addition to cost

and technical debt factors (technical debt, QoS gap, will be explained in more details in
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chapter 3). We also refer to web services’ composition as the act of composing individual

web services in order to form a workflow. We view the composition as a collection of

related constituent web services of specific system architecture. In this sense, service

selection and service composition are two interdependent phases.

The major two categories for distinguishing services in the literature are functional

and non-functional requirements. In addition, as there has been a massive work in the

literature dealing with service selection and composition, we narrow down our review and

exclude some categories and criteria. We focus more on the available work dealing with

the service selection and composition problem in SOAs based on QoS. The following re-

view will be answering the following research questions:

RQ1: What are the current proposed techniques for solving web service selection and

composition problems? (e.g. Reducing the search space)

RQ2: What are the available approaches dealing with web service selection and compo-

sition problems? (e.g. Genetic Algorithm)

RQ3: What are the possible limitations of current approaches? (e.g. Scalability)

RQ4: What are the available gaps in the literature dealing with web service selection

and composition problems? (e.g. decisions are not long-term value-driven nor technical

debt-driven)

The research space of selecting and composing web services can be classified into dif-

ferent categories depending on different aspects dealing with the problem such as context-

aware web service compositions [6], planning-based approach [244], goal oriented compo-

sition [25], process-driven composition [237], ontology-based (e.g. [96, 124]), semantic-

based (e.g. [143, 142, 160]), and syntactic including qualitative aspects (e.g. QoS-based

approaches). Moreover, various research works has been done in the field of web services

description and discovery (e.g. [177, 10, 12]), trust-based service discovery (e.g. [5]), se-

lection based on user preferences over non-functional requirements (e.g. [187, 102, 107]),

web service substitution in term of context-aware substitution [174, 67], location-based
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service selection (e.g. [223]), truthful mechanism (e.g. [240]), QoS negotiation (e.g. [154])

and many other fields.

In this thesis and according to our main research questions, we are interested in QoS-

based selection and composition approaches. Moghaddam and Davis [159] have clas-

sified the research space, related to QoS, into three categories: (1) Technical domain-

independent attributes (e.g. availability), (2) Non-technical domain-independent attributes

(e.g. reputation), and (3) Domain-dependant attributes (e.g. refresh time [63]). Our goals

of mapping the available research works in the literature into different categories are to

recognize the general classes and identify the main theme of each approach, and the sec-

ond goal is to identify the available models in the literature dealing with web services’

selection and composition problems.

Inclusion and exclusion criteria. As we previously mentioned, the search space

of the following review was reduced based on specific criteria. We selected papers from

conferences, journals, and workshops. First, we have selected papers from a well respect

electronic databases, such as Google-Scholar, ACM, IEEE, Science-Direct, Springer. Sec-

ond, papers were selected according to well-known publishers, such as ACM, IEEE, etc.

Third, we have presented representative samples of some specific selection and compo-

sition categories. This is because; some of the available work may not be fully directly

related to our work. Fourth, we have excluded unavailable papers, such as papers with

abstract view only. However, some unavailable papers were given by main authors via

email.

2.3.1 Technical domain-independent attributes

In this category, approaches are classified according to non-functional service properties

and are considered to be technical domain-independent attributes. In general, web service

selection approaches related to this class of work can be further classified as follow; QoS

Modeling, Greedy web service selection (e.g.[181]), Discarding non-optimal subsets of web

services, and pattern-wise web service selection.
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The most well-known works in the literature that presented different QoS categories

for the purpose of distinguishing web service is the ones presented by Menasce [155]

and Zeng et al. [238]. Menasce proposed that QoS can be a combination of many other

attributes of a service [155]. Zeng et al. [238] have moved the QoS-based selection problem

into an optimization problem. They presented a QoS-aware middleware for supporting

web services composition based on either local optimization or global planning. Their

work is based on Integer Linear Programming (ILP), which can lead to scalability and

performance issues due to their linear exhaustive-search algorithm (high time complexity).

In addition, their approach is not fulfilling the global constraints in all cases, as some

cases are treated by selecting services randomly. Similarly, Alrifai et al. [13, 15] presented

a hybrid approach which combines global optimization with local selection techniques.

Their approach is based on mixed integer programming (MIP) for the global optimization.

The second part of their approach is concerned with service selection based on QoS values

with the focus on the performance of the selection technique. The idea is to decompose

QoS global constraints into a set of local constraints and accordingly finding services that

satisfy these local constraints. However, their method is based on linear programming

and in [13] they handle sequence execution. Accordingly it can entail poor scalability.

In addition, Al-Masri and Mahmoud [9] proposed an approach for discovering and

ranking web services. They introduced a Web Service Relevancy Function (WSRF), which

is a relevancy ranking function that rank web services depending on user’s preferences and

some QoS metrics[9]. In WSRF matrix, each QoS cell value is compared to the maximum

value of each QoS/column. Reddy et al. [181] presented a QoS model for rating web

services based on a Greedy approach. The model consists of three levels; Business level,

Service level view and System level view. They have formulated the local optimal choice

at each level, in order to find the global optimum one (optimization problems). However,

the main problem of such Greedy Algorithms is that they fetch for local optimum solu-

tions, without considering any future change. This will affect the optimization problem

accordingly. Later on, Dumas et al. proposed an approach which characterizes the be-
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havior of services based on contracts [73]. These contracts are set of allowed sequence of

operations. Their interest was in enhancing the survivability of the system by substitut-

ing the deficient service with another one with least functionalities. They also proposed

a method for degraded substitution. Recently, Fu el al. [84] proposed an approach for

discovering an admissible set of services using an empirical distribution function based

on historical transactions. They have formulated the problem of QoS-aware service selec-

tion as a decision problem under uncertainty. They have adopted the skyline dominance

notion and they applied a stochastic dominance rules for service comparisons.

2.3.1.1 QoS Modeling

We are more interested in QoS Modeling category of approaches and the QoS aggregation

function. We extend the classification of [159] by going deeper into the categorization

process and classify the QoS modeling approaches into three groups: (1) dynamic or static

approaches (2) approaches based on service semantic description or syntactic description

(3) fuzzy or precise approaches based on user preferences.

Jaeger et al. [106] presented a mechanism for aggregating QoS of individual services

in order to compute the overall QoS of a specific composition. They model the composi-

tion based on seven different structural elements, which they named as the composition

patterns; Sequence of service executions, Loop, AND split followed by AND join, AND

split followed by an m-out-of-n join, XOR split followed by a XOR join, OR split followed

by OR join, and OR split followed by an m-out-of-n join. Their composition patterns

were based on the workflow patterns work done by Van Der Aalst et al. [220].

In addition, Jaeger and Ladner [105] presented a pattern-wise QoS aggregation ap-

proach. They have used the seven structural element patters presented by Jaeger et al.

[106] for QoS aggregation. For example, the maximum of the execution time attribute

can be aggregated by considering the larger value of parallel tasks first, and after that

the sum of sequential tasks is calculated, and so forth. They have also proposed some

aggregation rules for each composition pattern as well as for every QoS category.
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Likewise, Hwang el al. [104] proposed a unified probabilistic model for QoS aggre-

gation based on the context of workflows. According to their approach, when selecting

a constituent web service for a specific workflow, the QoS of the workflow is calculated

based on the QoS values of the constituent web services. However, they assumed that

each QoS value of a given constituent service in a given workflow is independent of the

other QoS values.

On the other hand, some other selection approaches were based on QoS prediction

models. For example, Shao et al.[194] proposed a personalized QoS prediction model for

web service selection using the collaborative filtering algorithm. The prediction of QoS

missing values is based on previous consumers’ experiences and similarity mining. Like-

wise, Zheng et al. [242] proposed a hybrid recommendation approach depending on users

contributions using collaborative filtering algorithm. They used the user-contribution

mechanism in order to collect QoS information and predict the personalized QoS values

by running a set of large-scale experiments using real dataset.

2.3.2 Non-technical domain-independent attributes

Kokash et al. [120] proposed a culture approach system, which matches web services

with user requests. The idea behind this approach is grouping users with similar needs

and interests according to their requests. So those groups are culture-like community.

Kokash et al. system was implemented depending on the history of decisions, which

were made by other users with the same requirements and requests previously. They

mentioned that instead of evaluating the web service by a trusted third party, which

is expensive and inefficient, we can use the recommendation and reputation systems.

Their system was implemented based on the idea of grouping users of common interest.

This approach was similar to the work of Blanzieri et al. [43], where the system is

used for filtering web services based on their reputations. In addition, web services can

be rated by users optionally. However, their approach is not suitable for cases where

the user is requesting a new web service which has neither knowledge nor data history.
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In this case, we need to have a web service benchmarks or metrics that calculate the

new web service’s characteristic, such as performance. Consequently, in this scenario,

web service providers can prove the reliability of their new web services. We believe

that the rating technique is still not reliable in some cases, as many users may rate

web services inaccurately and imprecisely. This approach can be enhanced to be able

to store information about measurements of QoS parameters in the future and Service

Level Agreement (SLA). They evaluated their system by the use of Precision, Recall

and F-Measure measurements. They also used the Term Frequency Inverse Document

Frequency (TF-IDF) metric based on vector space model. Their results seem to be good

quality. The source of data they used was “XMethods.com”. Their system was tested with

four users and 100 requests. The experiment criteria factors were based on an estimated

standard rank. On the other hand, Kiran et al. mentioned web services evaluation filling

the gap between web services themselves and customer requirements. They claimed that

web service evaluation doesn’t provide a fair-enough evaluation. Moreover, they believed

that a trusted web service broker can evaluate the web services in a trustworthy way.

However, this way is inefficient and expensive as was mentioned previously by Kokash et

al. [120].

Xu et al. [230] proposed a web service composition and discovery approach based

on an index-based algorithm. Their approach was founded on two categories; finding a

web service that satisfies user needs, or combing two or more accessible web services. We

believe that combing available web services technique will add flexibility to any system.

We noticed that this approach was a pure Natural Langue Processing (NLP), as they

used the indexing and occurrences methods. The Composition Algorithm was based on

the bottom-up manner. The main disadvantage of the bottom-up approach is that it is

driven by the existing infrastructure rather than the current processes.

On the other hand, some other approaches were based on the user location. When

publishing a new service in a new country/location, the availability of the service may

vary depending on user network connectivity. For example, Wang et al. [223] proposed
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a fast match selection approach based on QoS prediction for selecting a global optimal

service. The selection process is performed in terms of locations and communication

links of multiple users. Specifically, they predict the missing multi-QoS values according

to the historical QoS experience taken from different users. Similarly, Chen et al. [60]

proposed a region model for web service’s recommendation based on a scalable and hybrid

collaborative filtering algorithm. They argued that user location is a great influence of

the selection. They grouped users hierarchically into similar groups based on different

regions and QoS history. Likewise, Tang et al. [211] presented a location-based hybrid

approach for service recommendation based on QoS prediction and services relationships.

Furthermore, some other approaches are classified as context-aware selection and com-

position. Service context may span different dimensions. For example, a service could

be selected based on the location as a context, or a user budget as a context, etc. Some

other approaches are based on the context of specific information. For example, a specific

web service may be ranked as the optimal service among other candidates; however, this

service may be not available at a specific location. Here, we say that this service is not an

optimal selection in this context. Some other work select services based on the context of

the user’s device [173].

2.3.3 Classification and Clustering Techniques

In this section, we present a representative sample of research works that have been done

in the fields of service classifications and clustering. In early work of web services clas-

sification and clustering, Hess and Kushmerick [100] presented web services classification

algorithm based on classifying HTML forms into semantic categories using Bayesian net-

work. Their goal is to discover semantic categories in web services. After that, Dong et al.

[72] presented a web services searching algorithm based on services operations similarity.

Their matching algorithm is based on two similarity criteria: (1) textual description of

operations and (2) parameters’ names of operations. They have proposed a clustering al-

gorithm based on agglomerative clustering for the purpose of grouping parameters’ names
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of web service operations based on semantically meaningful concepts. The agglomerative

clustering normally merges any two clusters that have two closely associated terms. On

the other hand, Ma el al. [142] presented a clustering semantic algorithm for removing

irrelevant web services based on a specific query. The purpose of their approach is to

make a match between semantics hidden in a specific query and descriptions of services

on concept-level after eliminating irrelevant services. Furthermore, Elgazzar et al. [76]

proposed a technique for service clustering based on mining the documents of Web Service

Description Language (WSDL). They extract features from WSDL documents, which de-

scribe services’ semantics and behaviors, such as content, types, ports, messages and the

name of the service. More recent, Makhlughian et al. [147] presented a service selection

and ranking framework based on semantic matching. The first part of their framework

classifies candidate web services according to users’ requirements and preferences of QoS

using an association classification algorithm; Classification Based on Associations (CBA).

The second part of their framework is concerned with ranking candidate web services

based on semantic-link similarities. Here, they mentioned that they are building on the

notion of a semantic-link, which is the semantic connection between an output of a service

and an input parameter of another service [147]. In this work, services classification is

based on some QoS constraints that have been set by users. In this sense, services are

classified into classes based on the distance between a service and user demand of QoS.

Moreover, Gai and Du proposed a service discovery algorithm using ontology and Petri

nets [85]. On the other hand, Kumara et al. [126, 125] presented a web services clus-

tering approach using semantic similarity based on Associated Keyword Space (ASKS).

They calculate services similarity based on hybrid term similarity method using ontology

learning and information retrieval. The idea behind using semantics in previously men-

tioned research works is that the keywords search is insufficient anymore, as the number

of retrieved services can be huge.

Later on, Xia et al. [228] presented a service selection approach based on a density-

based clustering algorithm and BPEL tree structure. The idea is to cluster services based
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on specific tasks, where tasks are functionality achieved by services. Their algorithm is

based on OPTICS algorithm presented by Ankerst et al. [22], which has a density-based

clustering structure. Here, if a point is not positioned in a dense-enough environment,

it is considered to be a noise. Their selection is based on QoS values of composite ser-

vices depending on users QoS constraints. Their QoS aggregate function is based on the

composition structure (e.g. fork, loop, etc.). The algorithm reduces candidates at every

step of service composition in the BPEL tree model presented by [62]. Accordingly, they

improve the efficiency of their algorithm. Alternatively, Wang et al. [225] presented a

service recommendation approach based on clustering. They have applied k-means algo-

rithm for the purpose of clustering tenants of Software as a Service (SaaS) based on their

QoS requirements. Furthermore, clustering was also applied by Liu et al. [140], who de-

veloped a web service aggregation platform in the relational database (RDB). They have

used self-join operation for the purpose of clustering services. Their clustering approach

is based on concept semantic reasoning relationships. Their approach performs services

matching based on services interfaces (input and output).

Recently, the notion of skyline has been investigated in the field of selection and com-

position of web services. The concept was introduced by Borzsony et al. [47] in database

systems, as the process of filtering some interesting points out of a large set of data points.

For example, Skoutas et al. [200] presented an approach for ranking and clustering ser-

vices. The first part of their approach is concerned with ranking services according to

their dominance relationships. A score is assigned to each service in the repository for

the purpose of quantifying the suitability of each service for a given user request. The

second part is concerned with clustering services based on matched parameters (input

and output parameters). They claim that they do not use clustering for the purpose of

identifying relevant services; instead, clustering is used for the purpose of grouping search

results based on request parameters. They have adopted the notion of skyline. Their

matchmaking algorithm is based on two factors; (1) parameter degree of match (PDM)

and (2) service degree of match (SDM). SDM is computed based on aggregating indi-
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vidual PDMs. They claimed that assessing PDMs can be either by treating parameter

description as documents and accordingly applying string similarity measurements for

computing PDMs, or by following semantic web vision. On the other hand, Alrifai et al.

[16] focused on services composition based on cutting down some of candidate services

by dividing the global constraints to local ones. Their goal was to find an efficient solu-

tion that gets a close to optimal selection. Their approach was based on the concept of

skyline. In this sense, they formulate the selection problem as a skyline filtering for the

purpose of focusing on “interesting” services only. They have also addressed dominance

relationships among services based on QoS values. Moreover, they have assumed that

QoS parameters are anti-correlated. On the contrary, we test QoS correlation among

services. However, their method is based on mixed linear programming (MIP) and han-

dles sequence execution. Accordingly it can entail poor scalability. Nevertheless, they

removed all non-skyline services in order to cope with this limitation. In this sense, when

composing services they consider a subset of the skyline. They applied the hierarchical

clustering technique for the purpose of selecting a representative set of skyline services,

in case if the skyline is too large. Their main idea of using clustering is to cluster skyline

services into a specific number of clusters, and then one representative service is going

to be selected from each cluster. They have also used the hierarchical k-means cluster-

ing algorithm for building a representative tree. However, their approach deals with a

two-dimensional space. Similarly, Zhang et al. [239] presented an analytic algorithm for

exploring services in service registries based on pattern recognition. They have applied a

pattern recognition algorithm for the purpose of extracting embedded service attributes.

Then, they apply a hierarchical k-means clustering algorithm based on tree structure for

acquiring a multi-level services hierarchy. Next, in this thesis, we show how a different

category of k-means clustering techniques can be used in multi-dimensional space and for

different purposes, such as finding QoS correlations.
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Table 2.1: representative approaches comparison.

Ref. Selection Dimension Approach Selection Criteria
[64] Privacy-aware Ranking Algorithm w.r.t. privacy level. Purpose, sensitivity, visibility and retention period of informa-

tion.
[164] Value-based value model based on VSDL functional and non-functional properties, service reputation,

and provisioning channels.
[96] Ontology 1) Similarity reasoning, 2) Equivalent reasoning, and 3) Nu-

merical reasoning.
Similarities among services

[6] Context-aware Guiding dynamic evolution of service compositions Adaptation based on a predefined actions guide according to
known contexts

[244] planning-based Temporal planning and numerical optimization Optimal overall QoS value
[223] location-based predicting the missing multi-QoS values based on historical

QoS experience from users
Global optimal

[139] QoS-Aware Ant Colony Optimization and Genetic Algorithm Requirement satisfaction
[57] QoS-Aware Genetic Algorithm Weighted fitness function
[110] QoS-Aware Weighted Euclidean distance Global optimal
[194] Based on personalized

QoS Prediction
Collaborative filtering Predicting missing QoS values based on consumers’ experi-

ences
[108] QoS-Aware user similarity measurement similarity between users
[131] location-based hybrid Collaborative Filter algorithm Highest degree of similarity
[211] location-based Collaborative Filter Top QoS values w.r.t. users location and services’ relationship
[141] QoS-Aware Predicting missing QoS values user-based regularization term and a service-based regulariza-

tion term
[231] QoS-Aware Matchmaking fuzzy classification
[137] Consumer-Centric

QoS-aware
Similarity analysis fuzzy opinion similarity and QoS preference

[222] QoS-Aware Capturing vagueness using intuitionistic fuzzy sets (IFS) Linguistic weights of QoS criteria based on participants’ pref-
erences

[193] Context-Based Semantic matchmaking Ranking and prioritization
[75] Transactional and

QoS-Aware
Matching services properties with the user’s desires Transactional behavior of the application and user’s prefer-

ences satisfaction expressed as weighted QoS criteria
[16] QoS-Aware Services skyline Services skyline
[234] QoS-Aware Multi-attribute optimization skyline Most interesting service providers based on user desires
[63] QoS and Contract

specification
Matchmaking algorithm Services’ ability of fulfilling requestor requirements and budget

constraint
[64] Privacy-Aware Privacy-preserving Privacy-level and compliance
[107,
106]

QoS-Aware Pattern-based aggregation Abstract composition patterns

[14] QoS-Aware Heuristic algorithm Satisfying business requirements and acceptable costs
[129] QoS-Aware Voting algorithm Minimal response time and latency
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2.4 Current Approaches: Gap Analysis

Service-oriented systems provide flexibility by supporting business processes[203]. Service-

oriented systems allow web services to be integrated in order to create a web application

that offer more extensive functionalities. One critical challenge in service-oriented systems

is the dynamic web service selection. Another challenge is maintaining the QoS values

of a specific service. Service selection is a procedure, which involves screening available

options and investigating tradeoffs among them. It is much easier to evaluate available

choices when there are only few services. However, evaluation becomes overwhelming

when the selection decision requires critical thinking of considering uncertainties (e.g. fu-

ture changes). In addition, the complexity of the decision making intensifies with the

number of candidate services and their QoS attributes. In this context, this thesis will

be introducing a model which investigates service selection and composition in CB-SOA

under uncertainty. In this thesis, we view decision-making in CB-SOA from three main

perspectives: long-term value, embedded future options, and technical debt. These three

values are used for informing the decision of selecting the most qualified service at a

specific time in CB-SOA. In this context, we motivate the need for a new selection and

composition model in CB-SOA. We argue that decision-making in CB-SOA must take

into consideration the following: (1) long-term value, (2) flexibility of the decision un-

der uncertainty (will be discussed in details in subsequent chapters), and (3) the likely

technical debt (will be discussed in details in chapter 3).

This thesis investigates the following gap analysis in the literature:

• The majority of the available research works that deal with service selection and

composition problems in the literature tend to be “value-neutral”. They focus on

technical aspects in selecting web services by looking at QoS and cost. Observations

from the review showed that the majority of the available research works are value-

neutral and do not take long-term value-added into consideration. On the contrary,

we quantify decisions in CB-SOA by looking at long-term value.

31



CHAPTER 2. CLOUD-BASED SERVICE-ORIENTED ARCHITECTURES
(CB-SOA): A VALUE PERSPECTIVE

• None of the available approaches take into consideration the “technical debt” that

may be associated with decisions in CB-SOA. Other than that, the majority focus

on technical aspects such as, QoS and cost. We argue that we may lose future

opportunities by ignoring unattractive choices, or by solving problems for short-

term. When taking a decision of selecting a suitable service, some services may

appear less attractive and may come with a debt. However, we argue that this debt

can be transformed to future value if properly managed.

• Classical approaches deal with web service registries as repositories, such as Uni-

versal Description, Discovery and Integration (UDDI). On the contrary, we follow

a similar argument of Buyya et al. [55] and we view the cloud as a marketplace. In

this sense, the cloud offers different web services with different QoS, cost and SLA

promises from different cloud providers.

• The majority of the available research works ignores the value of flexibility of selec-

tion and composition decisions with respect to likely future changes under uncer-

tainty.

2.5 Selection and Composition Decisions: Cloud Mar-

ketplace Perspective

In previous sub-sections, we reviewed the work in the literature that investigated web

service selection and composition problem from a service perspective, i.e. criteria and

dimensions based on the web service itself. However, in this section, we review that

available research works in the literature, which look at the problem from the provider

perspective, i.e. cloud service provider.

The idea of a cloud marketplace was introduced by Buyya et al. [55, 53], which

came from the notion of a cloud as a virtual market, in the view of understanding the

cloud computing vision. In this sense, the cloud broker plays an important role among
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different providers and consumers, where the cloud broker is responsible for selecting

and composing services from the cloud marketplace. Examples of cloud marketplaces

include: (1) Oracle Marketplace, (2) AWS Marketplace, and (3) Microsoft Windows Azure

Marketplace.

Buyya et al. defined the cloud as follows: “A Cloud is a type of parallel and distributed

system consisting of a collection of interconnected and virtualized computers that are dy-

namically provisioned and presented as one or more unified computing resources based on

service-level agreements established through negotiation between the service provider and

consumers [54].” In [52], Rajkumar Buyya presented an approach for managing market-

oriented resource allocation in cloud. Their work focus was mainly on resource allocation;

however we are concerned with service selection and composition in CB-SOA. Recently,

some research works have been done on market-oriented cloud in different fields. For exam-

ple, Toosi et al. [217] proposed a financial option-based resource pricing model for pricing

cloud resources in federated cloud. Their model can help providers in managing reserved

cloud resources. On the other hand, Nallur and Bahsoon [165] presented a decentralized

mechanism for dynamic re-composition and self-adaptation using market-based heuristics

based on continuous double-auction. Mainly they have presented a market-mechanism for

service-based application to self-adapt to changes in QoS requirements. Also, Abolfazli

et al. [3] proposed a market-oriented architecture based on SOA to stimulate publishing,

discovering, and hosting mobile services.

Based on Buyya’s definition of cloud, we view the cloud as a marketplace. We are

adopting Buyya et al. [54] notion of cloud, by presenting the web service selection and

composition problem in the view of cloud marketplace for services trading. I.e. when

dealing with web services, we view the cloud as the marketplace for service trading.

Trading, in general, refers to exchanging commodities for money. In finance, it refers to

exchanging securities for money. Nevertheless, we will investigate and understand the

activities of buying and selling web services from an option perspective in chapter 5.
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2.6 Selection and Composition Decisions: an Eco-

nomic Value Perspective

In Software Engineering, a decision maker should analyze what are the outcomes and

ramifications of any decision, as every decision must be associated with a benefit or

positive impact on the system (architecture). In addition, we say that every decision

should be linked to not only current value bust also future one. In this thesis, we are

interested in the economic value of selection and composition decisions in CB-SOA. We

approach service selection and composition problem from an Economics-Driven Software

Engineering perspective. We adopt the value-based software engineering presented by

Barry Boehm [44] in order to introduce the economic aspects to service selection and

composition in CB-SOA. In CB-SOA selection and composition, we view each service

with a distinguishable economic-based business value. In addition, we argue that the

time-value of selection and composition decisions is a main contributor to service value.

We say that when dealing with strategic and long-term decisions, we should think of either

creating or maximize the economic value. Furthermore, once we are analyzing value, it

means that we select and compose services, for the purpose of improving the utility. In

this sense and as we are considering value, we cannot look at selection and composition

in isolation as separate phases.

On one hand, some research work look at value and value-added concepts from a

composition point of view. More precisely, they view composing more than one service

is adding more value to customers than interacting with one service (e.g. [150, 164,

147]). For example, Nakamura and Aoyama [164] investigated the problem of web service

composition from a Value-Based Composition (VBC) point of view. Their model consists

of three building blocks; (1) a value model, (2) a value-meta model, and (3) a service

broker. They used the proposed value-based model for a dynamic web service composition

that is based on some criteria extracted from functional and non-functional requirements’

values. They have also presented a value meta-model and its representation language;
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Value-based Service Description Language (VSDL), in order to define relationships among

values. They used values to define services QoS. And they defined a service as an activity

of exchanging a provided-value with a requested-value. They have also presented an

architecture, which consists of value added service broker, in order to dynamically compose

web services. Their idea is based on composing web services depending on customers’

interaction with the service broker. This is because the service broker has information

and knowledge about service providers, so it is easier to find a match to each customer

request. This service broker has two different repositories intended for storing templates;

one is designed for the value model and the other one is designed for the process model.

Their work seems to be still in progress, as it just provides an idea without a detailed

example. However, their approach is based on pure QoS values. And their usage of

the value-added concept is based on the idea of composing services instead of providing

a single service to customers. On the other hand, we deal with value and value-added

from different perspectives with respect to current and future benefits of candidate web

services.

In this thesis, we view web service selection and composition as an investment oppor-

tunity with specific value determinants factor: time, cost, flexibility (created by options),

and technical debt. The value of each candidate web service will be demonstrated us-

ing binomial tree in chapters 6. When considering service selection and composition in

CB-SOA, decision makers have different preferences regarding the value of a service, as

value is subjective and expands different dimensions. Each dimension has a weight which

is specified by decision makers. In our context, these dimensions inform the selection

and composition decisions in CB-SOA. Indeed, a web service is intangible “software”,

and accordingly its value cannot be observed in a straightforward manner. Value can be

captured from different perspective and can be created in different dimensions, such as

benefits of accumulated savings in switching costs or business value generated by improv-

ing the Quality of Service (QoS), enhancing opportunities for future strategic expansion,

service capacity utilization management. On the other hand, we attribute value-added in
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CB-SOA to (∆V = Vt1 − V0). Value-added may not be “immediate” and can be related

to the improved Quality of Service (QoS), new revenue streams by enabling new business

models, reduced operational cost, future savings in maintenance costs, etc.

All in all, this thesis views the selection decision as a value-creation and utility-

maximization procedure. We view value as one of the main factors that influence service

selection and composition decisions for the following reasons: (1) when selecting a service,

there should be a balancing between time and cost against value/value-added. (2) For

some scenarios, if a service is being down for a minute, this may have a specific lose in its

business value. (3) The value can be used as a metric for informing and influencing the

selection and composition decisions in CB-SOA. In later chapters, value will be associated

with the enhanced flexibility to cope with future uncertainty.

2.7 Conclusions

This chapter presented a background on SOA and Cloud Computing. It also presented

some factors that should be taken into consideration when selecting and composing ser-

vices in CB-SOA. We say that these factors are affecting and influencing selection and

composition decisions in CB-SOA. The contributions of this chapter are as follows: (1)

providing a representative sample of the available approaches in the literature dealing

with service selection and composition (2) we view the cloud as a marketplace, instead

of the traditional repository of services. (3) Long-term selection decision based on three

values; long-term value, embedded future options, and technical debt.
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CHAPTER 3. TECHNICAL DEBT IN CB-SOA

3.1 Overview

In the previous chapter, we presented the Cloud-Based Service-Oriented Architectures

(CB-SOA) and the web service selection and composition problem. In this chapter, we

explain the technical debt concept and give details on previous fields which have investi-

gated technical debt term. First, we begin by giving a general background on technical

debt. Then, we motivate the need for considering the technical debt concept on service-

level in CB-SOA while taking the decision of web service selection and substitution in

section 3.3. Then, we identify the technical debt concept generally and we present avail-

able definitions of technical debt in the literature. Then, in section 3.5 we present the

available fields in which technical debt was investigated and provide a comparison of the

available approaches in the literature, which was used to solve technical debt-related prob-

lems. After that we discuss technical debt origins from different researchers’ perspectives

in section 3.6. Then, we discuss different technical debt levels those were investigated in

the literature in section 3.7. After that, we define a novel technical debt level explicating

service-level in Cloud-Based Service-Oriented Architectures in section 3.8.

Moreover, we discuss the main drivers and situations that lead to technical debt on

the service-level; those are affecting the service selection decisions, in section 3.8.1. We

also show how to quantify technical debt on service-level in section 3.9. In this chapter,

we will be answering the following research questions: (1) How do we know that there

exists a technical debt on service-level in cloud-based service-oriented architecture? (2)

How to quantify this debt? (3) What are the drivers and contributors to technical debt

on service-level?

In next chapters, we will demonstrate how to manage technical debt on service-level

in CB-SOA. More specifically, we propose a novel model for managing technical debt

in the view of realizing future value using Real Options. We will answer the following

question: How technical debt can contribute to service selection decisions and how it can

be compared against other tradeoffs?
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3.2 Technical Debt: Background

Technical debt is a concept that generally stands for significant consequences that may

take place because of a quick and/or a bad choice. Cunningham’s article [68] is considered

as the starting point of technical debt metaphor. Cunningham introduced the technical

debt concept as: “Shipping first time code is like going into debt. A little debt speeds

development so long as it is paid back promptly with a rewrite. Objects make the cost

of this transaction tolerable. The danger occurs when the debt is not repaid. Every

minute spent on not-quite-right code counts as interest on that debt. Entire engineering

organizations can be brought to a stand-still under the debt load of an unconsolidated

implementation, object- oriented or otherwise [68].”

At the beginning, technical debt concept was simply describing “unclean” code. After

that, the term technical debt has been developed broadly and covered wider aspects

associated with the overall systems development lifecycle (SDLC). Based on recent studies

[216, 130], research works on technical debt has been dramatically increased in 2010 that

can be due to the initiation of Managing Technical Debt (MTD) workshops. Then, Brown

et al. proposed that “like financial debt, technical debt incurs interest payments in the

form of increased future costs owing to earlier quick and dirty design and implementation

choices [48].”

On the other hand, Nord et al. has defined that technical debt management as: “nav-

igating a path that considers both value and cost, to focus on overall return on investment

over the lifespan of the product [167].” Later on, some research works presented ontol-

ogy of technical debt terms for the purpose of presenting common vocabularies such as

[17]. Technical debt has been discussed in different fields, such as software architecture

[48, 132, 134], code-quality [42], software design [97], documentation [198], rework [167],

software testing [183], refactoring [83, 221, 166, 115], compliance debt [171], social debt

[210], agile development process [92], etc.
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3.3 Motivation: Why taking on Technical Debt?

As mentioned before, Cloud-Based Service-Oriented Architectures (CB-SOA) are nor-

mally composed of services; those are offered by the cloud marketplace for trading. CB-

SOA can improve its utility and add value to its composition by switching among its

constituent services. We say that service selection decision may come with a technical

debt - an operational liability which may incur an interest if not managed, cleared and

transformed from liability to value.

In this section, we motivate the need for considering technical debt in CB-SOA selec-

tion decisions. We look at the technical debt in different scenarios calling for web service

substitution in response to future uncertainties (e.g. QoS fluctuation). Following a similar

argument to Guo and Seaman: a little level of debt “is not bad”, as it can help developers

speed up the development process [93]. We view this perspective as a valid argument for

the case of web service selection and substitution in CB-SOA. Unlike previous work, we

posit that web service selection and substitution decisions should not only be QoS-aware,

but also long-term value- and technical debt-aware. If a little level of debt is acceptable,

then the selection decision shall aim at seeking ways for clearing technical debt. In this

sense, this thesis introduces a new model for identifying and quantifying technical debt

in CB-SOA service selection.

In this thesis, we may lose future opportunities by ignoring unattractive choices, or

by solving problems for short-term (these arguments are linked to options in chapter 5).

We are interested in two perspectives when taking on technical debt in CB-SOA:

1. Long-term strategic decision. The selection decision should solve the problem with

long-term perception instead of short-term one. In this sense, the decision should

take into consideration future value-added that may be associated with the flexibil-

ity of the selection decision under uncertainty in CB-SOA. The selection decision

shall leverage on the flexibility that a strategic decision can buy from the cloud

marketplace and the value-added on CB-SOA architecture as a result.
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2. Future opportunities that selection decisions create. When taking a decision of

selecting a suitable web service in CB-SOA, some services may appear less attractive

and may be ignored. However, we say that such services may come with a technical

debt in the view of bringing future opportunities, seeing that this debt can be

transformed to future value if properly managed.

Furthermore, we view investment in web services as a loan, which may incur interest

by time and signal a probable technical debt. This technical debt needs to be tracked

and managed for value creation and utility maximization. Given it is a loan; we view

it as a technical debt which needs to be tracked and managed for value creation. In

fact, it is a loan that is spent on two main bases when selecting a service in CB-SOA;

(1) improving a specific QoS dimension for the purpose of achieving a satisfied-level of

utility, i.e. improving utility expressed as QoS (QoS dimensions impart the utility of

architecture), or (2) cost of achieving the satisfactory-level of utility. The loan is the

compensation, which is paid when utility-level is less than the satisfactory level of utility.

Interest may be incurred on the loan if technical debt is not properly managed by unlocking

the architecture potential for value creation.

McConnell [153] reported that if the debt is paid back quickly enough, it will not

accumulate interest. He added that this might be true for the software case. Furthermore,

he added that deciding to take on a debt is not a simple binary “debt/no debt” problem.

However, we should take interest payments into consideration; how often do we have to pay

off or might we never pay off? According to [153], when a decision is made to take on the

debt, we should be able to understand, track, and define a strategy for resolving this debt

[153]. Following similar argument to McConnell [153], when taking the decision of taking

on technical debt for strategic reason in CB-SOA, we should discuss some properties such

as (1) what are the benefits and consequences of incurring technical debt? (2) What is/are

the impact(s) on business value of the decision? Assessing technical debt and its impact

on future development is difficult, especially when we are dealing with uncertainty (e.g.

QoS fluctuation). In this sense, we advocate a predictive approach for anticipating and
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managing technical debt. A predictive approach can be applied during the early stages of

the selection process to predict the debt, its impact on utility, when it will be incurred,

when it will pay off, and the interest, if any. Classical approaches to managing technical

debt in software development lifecycle tend to be retrospective. Unlike retrospective

approaches, predictive approaches are preventive. The effort to valuation is justified and

the evaluation is generally cost effective, as when compared to the retrospective ones. This

is specifically true for the case of web service selection and substitution, where unjustified

selection decisions can be costly to revert; retrospective analysis can be costly as a result.

3.4 Technical Debt Definitions

Given that the technical debt concept was widely spread in different fields, the concept

obtained different definitions from different perspectives depending on the research context

and domain. Table 3.1 presents some of the available technical debt definitions in the

literature.
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Table 3.1: Technical Debt Definitions from different perspectives depending on the re-
search context and domain.

Definition Ref
“The idea is that developers sometimes accept compromises in a system in one dimension
(e.g., modularity) to meet an urgent demand in some other dimension (e.g., a deadline),
and that such compromises incur a ‘debt’: on which ‘interest’ has to be paid and which
the ‘principal’ should be repaid at some point for the long-term health of the project.”

[48]

“Technical debt is a term that has been used to describe the increased cost of changing
or maintaining a system due to expedient shortcuts taken during its development.”

[119]

“This includes things like bugs, design issues, and other code-quality problems that are
potentially introduced with every addition or change to the code. These issues have a
detrimental impact on developer productivity.”

[42]

“Technical debt describes the effect of immature software artifacts on software main-
tenance - the potential of extra effort required in future as if paying interest for the
incurred debt.”

[93]

“The technical debt (TD) concept describes a tradeoff between short-term and long-term
goals in software development.”

[236]

“The technical debt metaphor conceptualizes this tradeoff between short-term and long-
term value: taking shortcuts to optimize the delivery of features in the short term incurs
debt, analogous to financial debt, that must be paid off later to optimize long-term
success.”

[167]

“Almost invariably in software projects, developers can be so focused on accomplishing
the needed functionality that the software itself grows less understandable, more complex,
and harder to modify. Since this system deterioration usually reflects a lack of activity
spent in refactoring, documentation, and other aspects of the project infrastructure, we
can view it as a kind of debt that developers owe the system.”

[198]

“The short iteration approach and the pressure to meet deadlines can create problems
for the development this pressure can encourage shortcuts concerning code maintenance
that lead to accumulation of technical debt, that is, a backlog of deferred technical
problems.”

[218]

“Technical debt within the enterprise should be viewed as a tool similar to financial lever-
age, allowing the organization to incur debt to pursue options that it couldn’t otherwise
afford.”

[119]

“Making a decision about whether to fix or defer fixing a defect is important to software
projects. Deferring defects accumulates a technical debt that burdens the software team
and customer with a less than optimal solution.”

[201]

“This may lead to increasing maintenance costs and the quality of the end product is un-
dermined. Furthermore, the cost increases the longer the technological shortcomings go
uncorrected, until the code becomes unmanageable and essentially has to be completely
rewritten. This escalating problem is often called design debt”

[97]

“Architectural technical debt is incurred by design decisions that consciously or un-
consciously compromise system-wide quality attributes, particularly maintainability and
evolvability.”

[133]

“Technical debt represents quality problems in software, and we use the quantification
of such problems to determine the value of software.”

[71]

“Technical debt is the sum of remediation costs for all non-compliances” [128]
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3.5 Technical Debt: A Review

Different approaches have been applied for managing technical debt such as technical

debt prioritization [191, 128, 127], dependency mapping based on Design Structure Ma-

trix (DSM) and Domain Mapping Matrix (DMM) [50], portfolio management [93], code

metrics [46, 81], threshold monitoring [74], refactoring [8], etc. In particular, Brown et al.

[48] has established the need for models and techniques which can identify and manage

technical debt, its causes, and its trade-offs based on the economic impacts. They argued

that compromises should be taken in a way where there should be a balance between

the short-term deadlines and the long-term sustainability. Managing technical debt is

crucial as technical debt may cause long-term problems if unmanaged, such as increas-

ing the maintenance cost. They have associated the relation between the technical debt

and the financial debt as they considered that it is the increase of future maintenance

cost, due to earlier quick and dirty design and implementation choices. They also added

that this can be viewed as a form of interests. They argued that refactoring may reduce

future interest payments. With the popularity of the term “technical debt”, such an ap-

proach is needed, as different system developers have different objectives which may cause

significant consequences of design decisions made previously.

Another approach that was proposed for managing technical debt on the architectural

level is the one suggested by Brown et al. [50]. The approach was built on the idea of

technical debt assessment in an iterative release planning process based on dependency

analysis. They introduced a dependency mapping method for analyzing three types of

dependencies in the iterative release planning: 1. Dependencies between requirements us-

ing DSM, 2. Dependencies between requirements and architectural elements using DMM,

and 3. Dependencies between architectural elements using DSM. They investigated two

paths in the view of value-maximization and cost minimization. Their method consisted

of different phases: 1. identifying the requirements using DSM and DMM, 2. identifying

another development and improvement paths, and 3. Cost and Value analysis of each

path. According to their objectives, the path with the highest value and least architec-
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tural elements dependencies is the first one to be developed. Their method can help in

decreasing the accumulating debt and can contribute to architectural decision-making.

Based on [50], Nord et al. [167] looked at a new metric for managing the structural tech-

nical debt based on the propagation cost, which is called Change Propagation Metric.

After that and based on Nord et al. approach [167], Schmid [188] proposed a method for

formalizing technical debt using a cost perspective with formal analysis.

Another approach was proposed by Nugroho et al. [170] for managing technical debt

based on an empirical assessment method of software quality. From an economic perspec-

tive, they quantified the IT investment cost in two extremes; debts and interest. They

viewed debt as the cost of repairing technical quality problems by improving the technical

quality level to an ideal one, which is the highest reachable level of quality in the software

model that is approved by the institute. In particular, they view the debt as the difference

between the current quality level and the ideal/highest one. In this sense, technical debt

is viewed as the repair cost, which is the cost paid to achieve the ideal level, if the repair

is carried out (Repair Effort). The other extreme is the interest, which they viewed as

the additional maintenance cost which is paid because of technical quality problems such

as low quality level. They added that ignoring technical debt contributes to some other

problems such as inefficiency in running software systems and may obstruct the process

of extending such systems in future. Furthermore, their software quality quantification

procedure was carried out using an empirical assessment method based on software qual-

ity developed. This method was used for computing and rating the system’s technical

quality, between 0.5 and 5.5, based on a layered model. They used different metrics for

analysis such as Lines of Code (LoC) and functional size. Then they mapped these met-

rics onto ratings values. The ratings are then converted to a number of stars between one

and five. Their approach was built on a static analysis. Similarly, Letouzey and Ilkiewicz

[128, 127] proposed a model for estimating technical debt on the source code level. The

method is called SQALE (software quality assessment based on lifecycle expectations)

and it is based on refactoring prioritization. Furthermore, Table 3.2 presents a compari-
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son of some available approaches in the literature dealing with technical debt in different

fields on different levels. Moreover, Skourletopoulos et al. [199] presented an approach

for technical debt prediction and quantification in software development process taking

into consideration budget and service capacity constraints.

On the other hand, the link between technical debt and options has been explored

in [48, 49, 192] (Real Options will be discussed in chapter 5). In addition, Seaman et

al. [192] discussed four decision approaches to deal with technical debt: Cost-Benefit

Analysis, Analytic Hierarchical Process (AHP), Portfolio Management Model and Op-

tions. They have looked at investment decisions at code and design levels. For example,

they viewed the value of investing in refactoring as a form of options, where purchasing

the option facilitates the change to the software in the future, but without immediate

profits. Likewise, Brown et al. [48] proposed that some technical debt appears to create

options to invest without obligations. In addition, [49] proposed that the architectural

investment decisions can be optimized by analyzing uncertainty and tradeoffs between

incurred cost and anticipated value based on Real options and technical debt. However,

the linkage between technical debt and Real Options for the case of web service selection

in CB-SOA has not been previously explored. Recently, Kazman et al.[115] presented an

industrial case study for identifying and quantifying technical debt, which is originally

caused by some design flaws that they refer to as architecture roots. Their focus was on

the structure among these design flaws. In addition they have examined the evolution

history of the project in question, instead of examining a single version. They suggested

that refactoring is the solution for removing these flaws.

However, none of the available approaches in the literature has mentioned technical

debt in cloud-based service selection domain nor their link to long-term value-added. Fur-

thermore, there is a general lack for models and techniques for identifying and quantifying

technical debt in CB-SOA. Our work [18, 19, 20] was an early attempt in characterizing

technical debt and understanding how the debt can be quantified in CB-SOA.
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Table 3.2: Comparison of different Technical Debt available approaches in the literature.

Ref TD Level Approach Dimensions Solution Evaluation
[48] Architectural Offered a foundation for managing the trade-

offs
Visibility, Value, debt accretion, environ-
ment, origin and impact of debt

Proposed open research questions -

[49] Architectural 1. DSM and DMM Dependency analysis,
2.Real Options analysis (to distinguish be-
tween decisions concerns; immediate or wait)
and 3. Technical debt management

Anticipated value and Dependencies Be-
tween: 1. Stories 2. Stories and archi-
tectural elements 3. Capabilities (require-
ments) and architectural elements

Reaching architectural agility through the
“just enough” informed anticipation in ar-
chitectural decisions

User stories in Agile software
Development

[42] Code-level formal methods Agile software development Reducing technical debt rapidly -
[94] Software project

lifecycle
Retrospective Technical Debt management
framework through tracking.

Maintenance Cost/Benefit association in release plan-
ning based on simulated decisions that are
retrospectively made depends on historical
data.

Case Study

[198] Documentation
and code

- Code smells, code duplication, and out-of-
date documentation

Set of recommendations regarding some
corrective actions to be taken against skep-
tical teammates or managers.

-

[167] Architectural
Rework

Architectural rework metric Changing dependencies Quantifying architecture quality Case Study

[83] Code-level Refactoring techniques Addressing the paying back technique of
technical debt through applying some local
changes to code

[50] Refactoring DSM and DMM Dependency mapping: 1. Re-
quirements, 2. Requirements and Architec-
tural elements, 3. Architectural elements

Cost and value of modifiability Acceptance Case of the Man-
agement Station Lite (MSLite)
Exploratory analysis based on
dependency and propagation
cost

[170] Code quality/soft-
ware development
level

Empirical assessment method of software qual-
ity

Maintainability Reaching the ideal level Case Study on a real software
system

[192] Decision making
on incurring, pay-
ing off, or deferring
the technical debt

Discussion of four approaches: 1. Cost-Benefit
Analysis, 2. Analytic Hierarchical Process
(AHP), 3. Portfolio Management Model and
4. Options

Maintainability Technical debt management should be
taken into consideration as an additional
factor in release planning decision making.

Exploring the applicability of
the four approaches on deci-
sion making considering tech-
nical debt.

[135] “Ground level” Empirical Causes, symptoms, and effects. Characterize and find out how technical
debt “looks like”

Interviews with software prac-
titioners

[119] Enterprise level Preliminary ethnographic study Software technical architects experience
levels.

Understanding the factors that affect the
decision of taken on a technical debt.

Four preliminary interviews
with experienced software
technical architects.

[128] application’s
source code

SQALE (software quality assessment based on
lifecycle expectations)

Complexity and eight other qualities Technical debt is the sum of remediation
costs which is acquired through linking re-
quirements to a remediation method.

Example

[122] TD lack of defini-
tion.

A proposed technical debt landscape - A call for a theoretical foundation. -

[236] Code Development team questionnaire. Technical Debt Identification. Human and automated TD identification
comparison.

Case study

[93] Investment Portfolio Release planning Managing technical debt through prioriti-
zation by finding out its most important
items (incomplete tasks) which must be
held or incurred.

Classical scenario
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3.6 Technical Debt Origin

Technical Debt concept was classified into different categories and sub-categories according

to its origin. The most well know and main categories were classified by Steve McConnell

[152] and Martin Fowler [82]. McConnell and Fowler had similar views and agreed on

technical debt is not a simple binary decision “debt/no debt”. Rather than that, technical

debt should be investigated out of its source; whether if it originated from an impulsive

or a strategic act. They also argued that it should be planned in the view of interests

and its pay off time. On one hand, McConnell [153] classified Technical Debt into two

main types: (1) Unintentional: incurred unintentionally due to low quality work, and (2)

Intentional: incurred intentionally. McConnell categorized the intentional type into two

sub-categories: (2.1) Short-term debt: incurred reactively for tactical reasons, and (2.2)

Long-term debt: incurred proactively for strategic reasons. Furthermore, McConnell

navigated deeper and deeper by classifying the short-term debt into: (2.1.1) Focused:

individually identifiable shortcuts (e.g. car loan), and (2.1.2) Unfocused Short-Term debt:

numerous tiny shortcuts (e.g. credit card debt). On the other hand, Fowler introduced

the Technical Debt Quadrant and classified technical debt into four quadrants, Figure 3.1.

Fowler mentioned that technical debt should be planned from four main angles, in the view

of: (1) prudent (2) reckless (3) deliberate and (4) inadvertent. In fact, both classifications

of Fowler and McConnell can be mapped to each other, except for one type, which is

prudent and inadvertent debt by Martin Fowler. For example, unintentional debt can be

viewed as reckless and inadvertent, and intentional debt type is similar to prudent and

deliberate debt. In addition, some other bloggers categorized technical debt into almost

similar categories of McConnell’s and Fowler’s classifications. For example, Cartwright

mentioned the concept of transparent or opaque, and Marick referred to frivolous debt

and debt-as-investment, etc.

In addition, Philippe Kruchten introduced the four colors backlog in terms of accumu-

lation of incomplete work [121]. It organizes technical debt elements into four different

categories. Kruchten linked technical debt to YAGNI activities: You Ain’t Gonna Need
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Figure 3.1 Technical Debt Quadrant by Martin Fowler [82].

It. He added that technical debt is the accumulation of too many YAGNI decisions.

Figure 3.2 illustrates the backlog color areas which represent the intersections between

elements (visible or invisible) and value (positive or negative). The areas’ colors of ele-

ments identify four different possible future improvements with the purpose of increasing

value. (1) Green represents adding new features, (2) yellow represents investing in the

architecture, and (3) red represents the act of reducing negative effects on value of de-

fects, or (4) black area is the technical debt, which is the intersection between invisible

elements and negative value [121]. Kruchten et al. [122] differentiated between two kinds

of elements in technical debt landscape: visible elements and invisible ones (this will be

discussed subsequently).

In web service selection and substitution context, we distinguish between two main

categories of technical debt; those are related to unintentional and intentional acts on

service-level in Cloud-Based Service-Oriented Architectures. (1) The first category is

the Unintentional Technical Debt: this type occurs when a non-strategic and impulsive

web service selection decision is taken. Here the decision maker may not know that the

technical debt has occurred for long time. We say that decision maker can be either the

system architect or a stakeholder. (2) The second category is the Intentional Technical

Debt: in this type, the decision maker knows that there is a technical debt accompanies the
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Figure 3.2 Backlog by Philippe Kruchten [121].

selection decision of a web service, either on the service itself or on some other dimensions

that will be discussed shortly. However, the decision of taken on such technical debt can

be linked to a strategic long-term benefit (value-added). In later chapters, we link this

type of technical debt to time using the binomial tree, in order to obtain the time-value of

the selection decision. Besides, we will track both intentional and unintentional technical

debt against the value of services investments in CB-SOA.

3.7 Levels of Technical Debt

In this section, we present a representative sample of the available technical debt levels

that has been investigated by researchers in the literature. After discussing these levels,

we introduce a new level of technical debt explicating service-level in Cloud-Based Service-

Oriented Architectures, which is a special form of architectural-debt.

Rothman [183] mentioned that there are different levels of technical debt those are

related to system development life cycle (SDLC) phases, such as design debt, development

debt, testing debt, etc. In addition, Krucheten et al. presented the Technical Debt

Landscape, which includes visible and invisible elements [122]. For example, adding new

functionality is considered as a visible element while low internal quality and code-style

violation are forms of invisible elements. Figure 3.3 illustrate Technical Debt Landscape.
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Figure 3.3 Technical Debt Landscape [122].

In fact, the majority of work has been investigating technical debt at the code-level. In

this context, technical debt can be incurred either because of postponing some important

code activities such as documentation or because of a bad code writing. It can be also

related to updating, improving, rewriting an existing code, or poor code structure (e.g.

[74, 205]). Code-level technical debt span across different problems those are related to

code artifacts such as design, bugs, code-quality, etc. Technical debt on code-level can

be incurred, for example, because of poor code quality or lack of documentation, where

there is no supporting documentation provided with a specific code. Another example is

the absence of comments or even poor comments writing or poor programming practices

(e.g. [191]). In addition, lack of experience or knowledge of the code developer, when

writing codes, can be a reason of incurring technical debt on code-level. Lack of experience

can lead to further problems including increased code complexity, poor performance, low

maintainability, fragile code, etc. [196].

The second level of technical debt is the design-level (e.g. [123, 79]), where technical

debt is either related to code design or system design. Here technical debt is linked to

quick and dirty design choices and design shortcuts that compromise the design quality

[48]. The consequences of such choices and shortcuts will slow down the intended project.

In software engineering, system design refers to the process of identifying the system and

its components, interfaces, modules etc. in order to fulfill requirements [202]. Any rush or

impulsive decision at system design phase may lead to technical debt (design debt). Some
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other design well-known problems that may lead to technical debt are anti-pattern and

design flaws [148]. The concept anti-pattern defines a commonly used act as a solution for

a specific problem and as a result it generates negative consequences [51]. This could be a

result of an inexperienced manager or developer with little knowledge about the problem.

Here, the manager or the developer keeps on mapping a general form of solution to a

specific class of problems. For example, the act of applying the same design pattern to

different problems in an inappropriate context. The second design problem is the design

flaw. In object-oriented software engineering, design flaw refers to the act of developing

class entities in an improper way that lead to maintenance difficulties [149]. Some design

flaws that were published by Marinescu [148] such as intensive coupling (when a method

calls other methods too many times from the same or different classes), large class (it is

called the God class as well, which is the centralized class that calls other classes and uses

its data), data class (those are data containers with little or no functionality at all), brain

class (a very complex class), code duplication (the duplication of lines of code in different

methods), etc. Such flaws can lead to technical debt on design-level as well.

The third level that will be discussed is the Testing-level. In systems development

life cycle (SDLC), testing has many types such as unit testing, system testing, regression

testing, black-box testing and white-box testing [203]. In software engineering, system

testing refers to the process of evaluating the system in terms of fulfilling requirements.

Here, technical debt can be incurred as a result of incomplete test strategies (e.g. [61]).

Testing debt refers to the act of reducing or not developing testing phase of a specific

software [183]. Lack of test plans and test suits may lead to testing debt. Sometimes when

automated test is used with the purpose of reducing testing cost some problem can occur

which lead to testing debt [227]. Here the automated test may imply some advantages

such as cost reduction, as well as some disadvantages such as incurring technical debt that

should be managed. Testing debt was defined as: “feature testing to attain one aspect

while simultaneously ignoring-either knowingly or not-other aspects that may prompt up

later with increased rework and cost [7].”
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The fourth level of technical debt that will be discussed is the Architectural-level.

Software architecture, specifically, is the system’s high-level structure [87]. Kruchten et

al. mentioned that: “technical debt isn’t related to code and its intrinsic qualities but

to structural or architectural choices or to technological gaps [122].” Technical debt on

the architectural-level could be related to different dimensions such as design artifacts.

Some architecture activities may lead to technical debt if not completed properly, such

as architecture evolution, architecture maintenance, etc. What we mean by architecture

evolution is the process of developing and enhancing the exiting architecture, either for the

purpose of improvement, fixing defects, or as a result of adaptation to new environmental

changes in order to maintain requirements satisfaction. In addition, the architecture

evolution process includes adding new features, elements, functionalities, etc. or editing

existing ones. Any non-strategic or quick decisions of these activities can lead to technical

debt on the architectural-level. Such decisions need a continuous analysis, as any reckless

act may cause many problems and increase maintenance costs accordingly. In subsequent

sections, we discuss a special level of architectural debt explicating cloud-based service-

oriented architectures.

Furthermore, many other researchers have been discussing technical debt on many

other levels such as defect debt [201, 111]. For example, Snipes et al. proposed that when

decisions about fixing some defects are deferred, a technical debt will be accumulated.

However, such approaches can be mapped to the available levels and can be considered

as a sub-level of the available ones. For example, Snipes et al. can be mapped under

code-level debt. Nevertheless, we have presented the main four levels of technical debt.

As we have seen, descriptions of some of technical debt levels have overlaps among each

other and some others are interrelated somehow. Generally in software engineering, this

is normal as these levels can be seen as sub-levels of the main root, which is system debt

(software, hardware, etc.) in systems development life cycle (SDLC). All in all, lack of

standards on different levels can lead to technical debt.
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3.8 Service-level Technical Debt

Most of research works, which was discussed above, linked technical debt on various levels

to code writing and code development. Unlike previous work, we introduced a new form

of architectural debt explicating service-level in Cloud-Based Service-Oriented Architec-

tures (CB-SOA). Specifically, we view services as “black-box” of code, when dealing with

technical debt on service-level in CB-SOA (more details about web services and CB-SOA

can be found in chapter 2). We relate technical debt to service selection or substitu-

tion decisions in CB-SOA and investigate the consequences of such decisions. We define

technical debt on service-level in CB-SOA as:

the gap between “expected-level” of utility, expressed as QoS, and the “actual-level”.

As mentioned before, we view investment in web services as a loan, which may incur

interest by time and signal a probable technical debt. In this sense, we define the loan as:

The compensation, which is paid for achieving the highest satisfactory level of utility,

either for the purpose of achieving better business or technical objectives, when utility-level

is less than the satisfactory level.

And accordingly, interest may be incurred on the loan if technical debt is not properly

managed by unlocking the architecture potential for value creation. We achieve a satisfied-

level of utility by improving a specific QoS dimension, i.e. improving utility expressed

as QoS, as QoS dimensions impart the utility of the architecture in CB-SOA. When

improving QoS, we may pay some fees such as rework cost (in terms of time and money).

Utility gap is related to one or more QoS dimensions (e.g. availability, scalability, capacity,

etc.) depending on service selection scenario. For example, service capacity can incur

technical debt if it is less than what is needed, or more than what is needed. Here, we

should either switch to a service with more capacity or less capacity respectively, for the

purpose of achieving better utility-levels.

In Cloud-based Service-Oriented Architectures, technical debt on service-level can be

(1) unintentional that is because of bad engineering practices, and (2) intentional that is

when we decide to take on the technical debt for generating future value. We view the
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intentional technical debt as a strategic tactics for gaining future value. The debt can

be visible in different situations, which are related to service-selection in CB-SOA. For

example, in case of poor selection the debt can be accumulated as a liability and interest

on the web service. To manage and clear the debt, we may call for switching. More details

of situation leading to technical debt on service-level will be discussed shortly.

Figure 3.4 illustrates three different possible situations of Technical Debt on the Service-

Level in CB-SOA. It describes patterns, which are related to some selection challenges

(challenges will be discussed shortly). For example, the unintentional technical debt

may occur due to unsuitable web service selection and may incurred on the current web

service before switching (TDWScurr), illustrated in Figure 3.4-part(A). The second cate-

gory of technical debt, which is the intentional one, that may occur on the rework cost

(TDRW ) due to switching as we decide to take on the technical debt in order to gain

future value-added, illustrated in Figure 3.4-part(B). Furthermore, Figure 3.4-part(C) il-

lustrates our third case scenario when we decide to minimize the unintentional technical

debt by switching to another service, which can carry its own intentional technical debt

(TDRW ). Though the decision is deemed to curry a technical debt, it is likely to unlock

future value-added (V t
WSnew) on the structure and clear the debt (this will be linked to

options in chapter 5). We formulated technical debt and manage it with respect to Equa-

tions 3.1 and 3.2. In any of the previous cases, when we decide to take on an intentional

technical debt either through switching or on the new service (Figure 3.5); we expect the

intentional debt to be less than the current technical debt (equ. 3.1). On the other hand,

we expect the expected future value-added to cover for the intentional debt; otherwise we

do not take the decision of incurring a debt (equ. 3.2).

TDRW + TDWSnew << TDWScurr (3.1)

V t
WSnew >> TDWScurr + TDRW (3.2)
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Figure 3.4 Sample of Technical Debt positions on service-level in CB-SOA.

Figure 3.5 Managing Technical Debt on service-level in CB-SOA.

For a candidate web service to be selected, we may encounter two possible debt types

when making a selection decision: (I) Solvable technical debt (manageable): occurs when

the strategic decision of taking on a technical debt will pay off in future. For example, if

we consider a scalability scenario, if the candidate web service is providing more than the

currently required capacity. We may accept a technical debt in the view that the capacity

will be utilized to generate a value-added in support of probable future demands (scaling

up). (II) Unsolvable technical debt (unmanageable): when technical debt will not pay off

in future. Back to previous example, here the capacity will continue to be underutilized

and accordingly the value is unable to cover for the cost.
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3.8.1 Technical Debt Drivers in CB-SOA

Before quantifying technical debt, we need to discuss how it occurs on service-level in

CB-SOA. In this section, we discuss service selection challenges, which lead to technical

debt on service-level in CB-SOA. This can be related to different situations that will be

discussed shortly. We look at technical debt on service-level from two main angles: (1)

Act and (2) Actor. The first angle is the Act, where the act is the action being taking

on service-level. Here we differentiate between three different classifications of acts when

taking the decision of service selection or substitution in CB-SOA. (1.1) Strategic acts

that lead to intentional technical debt. (1.2) Impulsive acts that lead to unintentional

technical debt. (1.3) Accidental acts that incur technical debt accidentally, either because

of a cloud service provider or an environmental condition. The second angle is the Actor,

where the technical debt is linked to the performer of the act. (2.1) The first actor is

the CB-SOA decision maker (e.g an architect). (2.2) The second actor is the provider or

the publisher of the service, which is the cloud service provider in our case. (2.3) The

third actor that we consider in this thesis is “Environmental conditions”, where the act

is involuntary. We are mainly concerned about selection scenarios related to CB-SOA

decision maker (e.g. an architect), however we will discuss some other acts, which are

performed by other actors and affect the architect decision.

3.8.1.1 CB-SOA Decision Maker

The first type of actors is the CB-SOA decision maker (e.g. an architect). Here, technical

debt can be attributed to different web service selection challenges on service-level. This

can be related to different situations such as:

(1) Budget restriction: sometimes, when architects need to select a specific service,

budget limitation can restrict the selection process. For example some services may be

attractive but “unaffordable” due to some budget constraints. Budget can be restricted

due to different development plans such as preserving cost, reducing startup principal,

development expense postponement, etc. Budget restriction has different extremes that
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lead to technical debt in web service selection. First, budget restriction may influence the

architect’s selection decision by selecting unsuitable web service, i.e. select the affordable

service within the budget. Second, technical debt can be incurred when the selected

service is expensive and its expenses outweigh the revenue streamed from using such web

service. Here, over-expenditures can lead to technical debt on service-level.

(2) Selecting and improving the overall Quality of Service (QoS): QoS is a significant

factor that distinguishes web services. The key to web service selection decision is to

understand the future change in QoS. If we consider the service availability attribute, for

example, the service should support availability requirements by accommodating specific

amount of users at specific time. Any failure in meeting availability requirements can

contribute to lose in business value. As a result, the utility is affected. And in this sense,

the difference between the “expected utility level” and the actual one can be viewed as

technical debt. Some other key factors that should be taken into consideration: the cost

of achieving the “expected-level” of QoS, expressing the utility. Here, technical debt can

be cleared, for example, by fully utilizing the selected service’s QoS (e.g. capacity). As

mentioned previously, we view the investment in web services as a loan, which may incur

interest by time. In this scenario, as the number of users benefiting from the web service

increases, the loan is said to be paid through installments reducing the interest on the

loan. An installment is said to be paid by active users, which are charged for using the

web service. The web service selection decision will pay off, when revenues of the selected

service cover the technical debt.

(3) Underutilization: technical debt can be related to situations, where the service

capacity is underutilized and the operational cost outweighs the revenue streamed from

using the service. For example, web service underutilization occurs when the available

capacity is not being used to its fullest potential, i.e. the web service is underutilized

by having much less load than what its capacity can normally handle. In this case,

the selected web service is said to be over-flexible. Technical debt can also be related

to situations where the web service capacity does not match the demand requirements
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because of inappropriate management. In this case, the flexibility of the selection decision

in response to changes is unlikely to add.

(4) Swift selection: Poor and quick decisions may add value in the short-term, but can

introduce long-term debt in situation where service substitution is unavoidable. Some-

times the decision maker (e.g. an architect) may avoid exhaustive search, which could be

a time-consuming process, due to time restriction such as deadlines and timely critical

decisions. Candidate web services may be selected from different web service providers

and therefore a process of discovering the suitable provider for each candidate can be a

time-consuming task for architects. In this case, technical debt can be incurred because

of two different acts from architects. The first one is when the architect intends to save

searching-time. Here, the architect may select the first available web service that satisfies

requirements. Sometimes when there are many candidate web services satisfying require-

ments, a random selection is carried out. On the other hand, the second one is when the

architect intends to save money. In this case, web service selection decision may insure

the minimum price of the selected web service; however, it ignores the long-term value.

There must be a balance of both acts, as any irrational decision can lead to unsuitable

service selection and an unmanageable technical debt as a result. We argue that the

service selection decision requires a tradeoff analysis among cost, value and lifetime of the

candidate web service (SLA contract). Any ignorance of these three tradeoffs can lead to

unsuitable web service selection.

(5) Sometimes technical debt can be incurred intentionally as a result of solving an

earlier inappropriate decision. In this case, the architect may have already made a former

wrong decision (unsuitable web service selection), which has incurred an unintentional

technical debt. So s/he might think of minimizing such unintentional technical debt by

taking on an intentional debt. Here, we see the intentional technical debt as creating future

opportunities; however, it costs an “opportunity fees” (this will be linked to flexibility and

options in chapter 5).

(6) Technical debt on service-level can be also incurred due to lack of long-term vision
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and planning. This could be the case when dealing with inexperienced CB-SOA decision

makers (e.g. architects).

3.8.1.2 Cloud Service Provider

The second type of actors that we discuss in this thesis is the Cloud Service Provider. In

this part, we discuss acts performed by the service provider, however affectingCB-SOA

decision makers (e.g. architects).

(1) Deadlines and schedule constraints: commitments to customers with wrong estima-

tion could create the fear of the risk of not delivering the service on time. Technical debt

can be incurred accidentally (not by architect) when service providers rush the release of

their web services to the market under the pressures of meeting deadlines. This can be,

for example, through falsely accelerating the velocity by reducing testing and verification

of the features delivered with web services. In this context, when web services are selected

based on the sole trust of the service provider, the choice may accidentally introduce a

technical debt, which is often left to the application developer to visualize and manage.

(2) Trust issue and Service Level Agreement (SLA) violations: when we subscribe to

a web service, we actually borrow a “black-box” from the web service provider. Technical

debt can be attributed to situations, where the selected web service is at risk of SLA non-

compliance. Technical debt can be also attributed to situations, where future technical

support and maintenance is not clear and not fulfilled by the web service providers.

Furthermore, in the absence of publicly available benchmarks and historical performance

data to verify web service provision and its compliance, uninformed service selection

decisions may carry likely risks, which can lead to SLA violations.

(3) Cloud marketplace competitiveness: as mentioned before, we view the cloud as a

marketplace for trading web services. The rule is to release services as quick as possible, in

order to “reserve a place” in the cloud marketplace. Cloud marketplace is very competitive

for web service providers, as web service consumers have the choice to select providers

who satisfies their demands. Technical debt can be incurred when the competition is high
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and services must be released as soon as possible, e.g. cut down time to market.

3.8.1.3 Environmental Conditions

The third type of actors that may be the performer of incurring technical debt on service-

level is “Environmental conditions”. This can be attributed to:

1. Requirements mismatch: when the selected web service features do not fully match

the requirements of the application. In this case, fixes may be required to reengineer

the solution to better fit the changes in requirements.

2. QoS fluctuation and utility levels variations: here, technical debt can be incurred

due to the difference between the utility “expected-level” and “actual-level”.

3. Changing or new environment: (e.g. moving toward mobile cloud).

4. Technology debt on service-level, such as the rework cost needed to make this service

available to new operating systems.

5. Adjusting priorities list: this can happen because of receiving new information from

the marketplace or during unexpected situation such as changing requirements.

3.9 Technical Debt Quantification on Service-Level

We quantify technical debt in order to inform the service selection decision in CB-SOA.

Once the selection decision is made, the technical debt is said to be active and needs to be

managed. We look at technical debt on service-level in order to anticipate the future value

of a candidate web service by quantifying the cost of achieving the intended utility-level.

The aim is to quantify an estimate of technical debt on service-level during the selection

and substitution procedure.

Some available research work has examined technical debt on various levels and quan-

tified it in difference ways with respect to time and cost. The most well-known work is the

technical debt curve presented by Highsmith [101], which is quantifying technical debt as
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the difference between the actual and the optimal Cost of Change (COC) with respect

to time, illustrated in Figure 3.6. Likewise, Gat presented a rating approach that links

technical debt to development cost [88].

Figure 3.6 Technical Debt Curve: technical debt as the difference between the actual
and the optimal Cost of Change (COC) [101].

Other example is the work presented by CAST [69], in which they calculated technical

debt as the cost (in pounds) of addressing the percentage of violations of architectural and

coding good practice rules. They had three different levels of violations; high, medium,

and low severity. Nugroho et al. [170] estimated technical debt as the amount of rework

(in man-month), which is required in order to improve the software to a higher level of

quality.

However, we look at technical debt from satisfactory utility-level perspective. We

define and deal with three different values on service-level: (1) Technical Debt value, (2)

Utility value (where QoS values impart the utility of the architecture), and (3) Option

value (Real Options will be discussed in chapter 5). Moreover, quantifying technical debt

on service-level is much harder, as we are dealing with “black-box” of code. However,

other approaches estimate technical debt with respect to line of codes, for example, which

is easier in term of quantifying numerical values. In order to accept a specific amount of

technical debt, we define technical debt threshold and satisfaction level of web service’s
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value, which is expressed as QoS and impart the utility of the architecture. Here, the

difference between the utility “expected-level” and “actual-level” is triggering a technical

debt (in terms of rework cost and time) that is likely to increase if the value of the

selected web service keeps on degrading. We quantify technical debt as the loan, which

is paid for achieving the highest satisfactory level of utility, i.e. moving from the current

unsatisfactory level of utility to the “expected-satisfactory-level”. We view this cost as a

loan, which is anticipated to pay off in future. Taking on technical debt in order to reach

the highest satisfaction level will pay off in future in terms of flexibility and reducing

cost. After quantifying technical debt in terms of pounds (time and cost), we use this

quantified value of technical debt as a metric. Technical debt metric is a monetary unit

(in pounds), which includes time, effort and calendar months. Subsequently, this metric

can be used by CB-SOA decision maker (e.g. system architects) against other tradeoffs in

order to quantify the decision of selecting a specific service at a specific time in CB-SOA.

Figure 3.7 illustrates our two possible cases of incurring technical debt (intentional and

unintentional) on service-level in CB-SOA.

Figure 3.7 Technical Debt due to utility differences.
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We say that technical debt has a lifetime, which we link to the web service expiry date.

When a candidate web service is selected, the service level agreement (SLA) mandates

an expiry date of the service. The time until expiration is used for tracking the value

and clearing the technical debt. When selecting a service, we are specifically interested in

tracking how fast the loan will be paid back. We posit that technical debt on the service-

level has a three phases lifecycle; (1) when it starts, (2) when interests are incurred (if

any), and (3) payback process: when the selected web service is expected to clear out the

technical debt and generate future options. We argue that technical debt is sensitive to

some tradeoffs such as operational cost and value generated as a result of acquiring the

web service, which are associated with web service lifetime. We formulated technical debt

using the following equation:

TD = max[−1 ∗ (OP −RW ), 0] (3.3)

Where TD is the technical debt, OP is the option value (discussed in chapter 5), and

RW is the rework cost, which includes but not limited to the upfront cost of acquiring

the new web service plus the accumulated interest over time, if any (for some cases, e.g.

option-to-defer). We assume that when option value starts to exceed the rework cost,

technical debt will be cleared out. In this case, the technical debt is said to be zero. In

chapter 5, we use options valuation based on binomial tree analysis as a way to track

and manage the technical debt and to visualize its lifecycle. We also demonstrate how

CloudMTD model will be ranking web services according to technical debt value and its

clearing date.

3.10 Discussions and Conclusions

To sum up, cloud marketplace offers web services with varying QoS and cost. CB-SOA

is composed of these web services. In such architectures, technical debt may be incurred

while substituting the constituent services. Considering technical debt in service selection
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is motivated by the need for taking strategic tactics for gaining long-term value-added.

In this sense, we have introduced a new level of technical debt, which is the service-level

in CB-SOA. Technical debt in CB-SOA service selection can be attributed to different

situations such as poor and swift selection decisions, mismatches in applications’ require-

ments with that of the service provision, falsely accelerating the velocity of the integration,

testing and deployment process due to budget restrictions, and/or through accidentally

acquiring the debt via an untrusted provider. Technical debt concept is a metaphor that

has been examined in different fields taking into account different dimensions. However,

none of the available work has discussed technical debt in service selection in CB-SOA.

We argue that technical debt on service-level can create future value-added to CB-SOA

architectures if managed properly. In this sense, our work is different from the available

approaches in some point as follows:

• First, from concept point of view, when taking on technical debt on the current

service, we assume that the cost of today (e.g. development cost) may be cheaper

than tomorrow (using options thinking). On the contrary, McConnell mentioned

that cost of development today is more expensive than the cost in future [152].

• Second, in 2008, McConnell mentioned that the intentional technical debt is a deci-

sion for optimizing for the present rather than for the future. On the contrary, we

are optimizing for the future when taking the decision of selecting a web service,

taking into consideration future uncertainty and changes (e.g. QoS fluctuation).

• Third, from a technical debt level perspective, we are managing technical debt

by taking decisions on service-levels in CB-SOA. Moreover, we are dealing with

the selection decision as a long-term investment, which takes technical debt into

consideration strategically and proactively.

• Fourth, some research work such as the work of Software Engineering Institute

(SEI)1, takes on the technical debt decision mainly for shorting time to market

1www.sei.cmu.edu
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and preserving time and principal. However, we are not dealing with releasing

software; instead we are dealing with a service as a stand-alone component; black-

box. In addition, when dealing with starting up scenarios, we say that a new startup

company may scarify some short-term business value for the benefit of starting their

business and gaining long-term value (e.g. low availability and losing customers).

• Fifth, some other research works discussed technical debt for the reason of delaying

development expenses. However, we will show in next chapters that we may be

dealing with “defer-option” for the purpose of quantifying the time-value of the

selection decision. We are more dealing with “solvable” technical debt in order to

quantify the benefits, rather than “unsolvable” technical debt which may incur bad

consequences and impacts on the structure. When technical debt is unsolvable, we

either abandon the current service or select another one.

The contributions of this chapter are as follows: (1) We have provided a comparison

of different technical debt approaches those are available in the literature, in terms of TD

level, dimensions, solutions, and evaluation. (2) We have also reported on some of the

available technical debt definitions in the literature. (3) After that, we have introduced

and defined a new form of architecture technical debt explicating service-level for Cloud-

Based Service-Oriented Architectures. (4) We have also introduced the likely drivers of

technical debt on service-level in CB-SOA. (5) Finally, we reported on the formulation of

technical debt on service-level in CB-SOA.
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CHAPTER 4. REQUIREMENTS FOR EVALUATING SELECTION AND
COMPOSITION DECISIONS IN CB-SOA

4.1 Overview

In previous chapters, we have presented a review of research work on (1) web service selec-

tion and composition, and (2) technical debt and its available management approaches.

In this chapter, we state the requirements for evaluating a selection and composition

decisions in CB-SOA. This process consists of (1) managing the likely technical debt on

service-level and (2) managing services dependencies on architecture-level. Satisfying user

requirements, business requirements, and services’ QoS requirements are not the only con-

cerns in web service selection and composition approaches. Instead, in this chapter, we

would like to present other aspects and dimensions that should be considered as major

characteristics when taking the decision of selection and composition in CB-SOA.

We adopt Garlan’s notion of a Software Architecture by viewing it as a bridge between

requirements and implementation [86]. Besides, Software Engineering Institute (SEI) [40]

mentioned that an architecture is a suitable bridge to link business goals and software

systems. In this sense, we believe that the architecture is an appropriate level of abstrac-

tion for evaluating the strategic selection and composition decisions in CB-SOA. Since

this level is believed to be general enough to present the applicability of the evaluation

process in order to be used in solving other related problems in other domains (e.g. the

prediction of likely behaviors in future). In this sense, this thesis presents the CloudMTD

model (ch. 6), which is developed based on a set of requirements that we believe it meet

the needs of a major number of potential CB-SOA decision makers. In this sense, we

investigate the requirements of evaluating a selection and composition decisions in CB-

SOA with respect to two levels; service-level and architecture-level (illustrated in Figure

4.1). This is done in the view of achieving the following goals: (1) Creating value-added

(long-term), (2) Maximizing utility and (3) Reducing Technical Debt (if any). In order

to achieve the previous goals, some consequences may appear and need to be addressed,

such as: (1) Dependency, (2) Future Changes (Uncertainty) and (3) Technical Debt. This

thesis is concerned with the following uncertainties:
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1. Behavioral Aspects, such as QoS fluctuation.

2. Structural Aspects, such as complexity of services dependencies.

3. Environmental Aspects, such as cloud uncertainties.

Figure 4.1 CloudMTD in a General View

4.2 Service-Level Requirements: Selecting a Web Ser-

vice

In this section, we present requirements for the “behavioral” evaluation that is performed

on service-level of the architecture based on Real Options analysis (Real Options is pre-

sented in chapter 5). Following the argument of Kevin Sullivan [209], we view a web

service as an asset and its value includes not only the likely generated revenues, but also

the value of options it creates. In this sense, on service-level of CB-SOA, we justify the

selection decision based on the notion that part of the value of a web service is in the

form of embedded options.
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4.2.1 Flexibility

As we mentioned before that part of the value of a web service is in the options it embodies.

In this sense, we say an option has a value as it gives the decision maker the flexibility

to decide about a web service (an asset) whose future value is unknown today. However,

flexibility comes with a price. In this sense, in order to know whether or not to invest in

flexibility, we need to weight the cost against the value of the selection decision with the

purpose of maximizing utility. However, this is challenging as usually the cost is tangible

(quantifiable), but value is not (as value is subjective). In options terms, “Flexibility is

nothing more than the collection of options associated with an investment opportunity,

financial or real [219].” In next chapters, we will show how we treat flexibility in web

services’ “investments” as an option and value it as such. In this context, we will be

reasoning about the “value of flexibility” by quantifying the “value of an option”. On

service-level, we view flexibility from different perspectives: (1) accommodating future

changes, (2) uncertainty, and (3) time-value. Our model is capable to show how and

under what conditions investments in flexibility add value.

4.2.1.1 Flexibility of Accommodating Changes

On service-level, future changes are attributed to change in QoS attributes. Here, the

act of change is done by CB-SOA decision maker with the purpose of satisfying technical

or business objective, such as improving scalability. When taking a decision of selecting

a web service, we should consider flexibility, which is the ability of a web service to

accommodate these changes and take into consideration their possible impacts. In this

sense, what constrains the success of the selection decision is the ability of the candidate

service to accommodate likely future changes.

4.2.1.2 Value of Flexibility under Uncertainty

Here, we posit that options provide decision maker with a valuable flexibility to invest in

web services by substituting services under uncertain conditions. Here, flexibility can be
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related to the ability of CB-SOA decision maker to substitute web services under demand

uncertainty. This thesis presents a model that supports our claims and provides deeper

understanding of web service selection and composition principles by connecting the value

of a given web service to value of flexibility under uncertainty. In decision theory [169],

uncertainty is defined as the lack of certainty because of having limited knowledge about

the possible future outcomes. In web services context, uncertainty on service-level in

CB-SOA is related to the behavioral aspects of a service. This can be related to uncertain

willingness of a web service to be able to provide its provision with the intended QoS

attributes’ values, for example. In this sense, uncertainty on service-level in CB-SOA

is related to QoS fluctuation and future changes. Here, uncertainty of availability, for

example, can be related to how critical downtime with respect to business value is. In

CB-SOA context, we define three major types of uncertainty on service-level, which

need to be addressed when evaluating the selection decision: (1) Future Changes and (2)

Value/Value-added.

Future change is one of the major sources of uncertainty. In this context, uncertainty

arises from the presence of future changes in many dimensions those are related to selecting

a web service. For example, this can be related to unpredictable fluctuation in load and

likely fluctuation in QoS requirements. Furthermore, future changes, on service-level,

can be related to uncertain behaviors of multiple QoS attributes and their interactions

in future. Here, we view flexibility as the candidate/selected web service being able to

accommodate future changes. We assume that flexibility creates value in the form of

future embedded options. For example, selecting a web service with respect to future

business expansion carries flexibility in the form of growth options. In this sense, we view

the “flexibility” as one of the main contributors to value-added.

The second type of uncertainty is related to value and value-added of a candidate web

service, which is uncertain and may take long time to be obtained. In web service selection

context, the value-added can be attributed to the likely increase in revenues generated

by improving the QoS expressed as utility (∆V = Vt1 − V0), or reduced operational cost,
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etc. Here, we say that the selection decision is taken by a decision maker to achieve

a desired level of QoS, which in turn imparts the utility of the architecture. For the

behavioral evaluation, service value is expressed based on one or more QoS attribute

according to the selection scenario (e.g. improved throughput, availability, scalability,

etc). We assume that CB-SOA acquire flexibility by having the ability of substituting its

constituent services for the purpose of improving its utility. In this type of uncertainty,

we value flexibility by looking at options it creates through substituting with the view of

improving utility, the value of the structure and reducing technical debt under uncertainty.

In this context, when investing in web services, the value-added is strategic in essence,

which may not be immediate and may take long time to be acquired.

Furthermore, As we are taking decision under uncertainty in CB-SOA, the solution

should be flexible enough to manage such uncertainties. Uncertainty makes Real Options

theory an ultimate choice to be used as a valuation technique, since other valuation

techniques has some shortages in dealing with the value of flexibility under uncertainty.

Option theory is typically applied to such decision because managing uncertainty requires

flexibility in dealing with such decisions when there are multiple possibilities for future

events [21].

4.2.1.3 Time-Value of a Selection Decision

The third perspective is concerned with the flexibility of the selection decision with respect

to its time-value, i.e. when to select or substitute a candidate web service. In general,

options theory is concerned with deciding on the optimal timing of a given investment

decision [208]. In chapter 6 we quantify the time-value of the selection decision, which has

the promise to add long-term value and reduced technical debt, if any. Deciding when to

invest in web service’s flexibility is transformed into a decision about when to exercise the

option in the view of maximizing utility. In option terms, this is providing the decision

maker by flexibility to exercise the option at any time. In web service selection context,

the flexibility is related to the decision maker being free to exercise the option and acquire

72



4.2. SERVICE-LEVEL REQUIREMENTS: SELECTING A WEB SERVICE

the web service at any point of time without obligation. This is useful especially when

the outcomes of the selection decision are uncertain. When decision makers have the

flexibility whether to invest now or wait, the question is how to quantify the time-value

of such decision with the purpose of maximizing value. In next chapters, we will be

answering such question.

One of the problems in web service selection is that we are often encountered by sce-

narios where we need more information about the candidate service (to be selected). Such

information may help us in making a better decision; however they are sensitive to time

and entail many dimensions, especially when uncertainty takes place. This information

can be related to QoS attributes, such as a service reputation. Time-value of the selection

decision can be also related to the nature of demand; peak or off-peak daily usage; peak

or off-peak seasons, etc. In the next chapter, we will link such time-sensitive decision to

option thinking. For example, “time-value” in the context of waiting for more information

can be linked to “option-to-wait” scenarios in option terminologies.

4.2.2 Managing Technical Debt

When evaluating the selection decision of a web service in CB-SOA, we should consider

the likely technical debt that may incurred. In previous chapter, we have defined technical

debt on service-level as the gap between “expected-level” of QoS, expressed as utility, and

the “current-level”. And we mentioned that the service selection decision may come with

a technical debt. CB-SOA decision makers are normally interested in selecting the most

“qualified” service. However, practically in many cases, once we select a web service we are

often encountered by situations which lead to major problems. We view these problems

from two angles. The first one takes place when the selected service deviates from and

lags behind the “ideal-level of utility”. Where the second one is related to service’s

provision, where we are interested in situation when the service is either providing more

than what we require (over-provisioning) or less (under-provisioning). In either case, we

refer to these scenarios as technical debt. More details on technical debt scenarios were
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discussed in chapter 3, section 3.8.1. We argue that our selection and composition model

(CloudMTD) shall predict technical debt in such situation before it takes place (before we

hold the debt). Here, we insist that using a retrospective approach may be too expensive.

Managing technical debt is one of the major requirements that we consider when we

evaluate a selection decisions. Managing technical debt is a strategy for clearing technical

debt and likely interests on a selection decision using CloudMTD model. This act may

add a strategic long-term value that may not be immediate. Here, we say that while

managing technical debt, we should take into consideration the cost of achieving the

highest satisfactory level of utility, either for the purpose of achieving better business

or technical objectives, or for the purpose of fixing some unintentional QoS problems

expressed in utility-levels. In this context, technical debt is an operational liability which

may incur an interest if not managed, cleared and transformed from liability to value.

Technical debt is one of the main contributors to value-added once it is cleared. Technical

debt was explained in details in chapter 3. This phase is performed on the service-level.

4.3 Architecture-Level Requirements: Composing Web

Services

In this section, we present requirements for the “structural” evaluation that is performed

on the architectural-level of CB-SOA. The structural aspect evaluation for a candidate

web service is carried out using Dependency Structure Matrix (DSM, also known as

Design Structure Matrix) and the Propagation-cost metric for the purpose of visualizing

the “ripple” impact of the change on the structure. We will be using DSM in order to

model the structure of CB-SOA and its constituent services’ relationships. Propagation

Cost metric will be used for computing the percentage of system elements that may

be affected, on average, when a change is made to a randomly selected element [144].

Detailed formulation of both DSM and propagation-cost metric are shown in chapter 6.

Composing services is performed on the architecture-level of CB-SOA. And the evaluation
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on this level differs mainly on how we treat dependency and its accompanied complexity.

4.3.1 Addressing Services Dependency

Dependencies among web services are quantified using DSM, where one means dependent

and zero otherwise. We take into consideration that the structure can change by time and

so dependencies among constituent services in a given architecture. On the architecture-

level, when quantifying dependency, we take into consideration rework cost (e.g. cost of

change), which increases in case if other services are affected by the change. In chapter

6, we report on the formulation of dependencies using DSM and visualize time using

Binomial Tree.

4.3.1.1 Services Dependency Complexity

Services dependency’s complexity levels is treated on the architecture-level. We assume

that CB-SOA decision makers (e.g. architects) can decide on the level of complexity per

dependency through voting mechanisms backed-up by their experience and knowledge

of the system. The complexity level of dependency between any arbitrary services may

vary based on the complexity of the change [20]. We assume that the complexity of the

change can be quantified based on the effort required. For example, code development,

configuration, etc. Furthermore, we assume that the service instantiation of the composing

service abstraction tends to imply different complexity on a given architecture [20]. This is

to reflect dynamic changes of the structure and its composition at varying time intervals.

As a result, the time value of the decision of composing candidate web services shall take

into consideration the different complexity of the structure and its propagation cost at

different times. Despite the fact that two services may be dependent, the complexity

of the dependency may vary. For example, higher complexity may signal higher rework

cost, lower complexity may indicate otherwise. This can be due to the effort required for

code development, rewriting, configuration, data migration, new/throwaway maintenance,

fixing mismatches, changes to legacy code, etc.
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4.3.2 Flexibility

In this section, we consider the structural aspect of flexibility. Again, we posit that an

option has a value by giving the decision maker the flexibility to substitute web services

under uncertain conditions and unknown future value. Furthermore, the selection and

composition decisions shall leverage on the flexibility that a web service substitution can

buy from the cloud marketplace and the value-added on the cloud-based architecture as a

result. On the architecture-level, we examine flexibility from three different perspectives

those are related to the structural aspect of a given architecture: (1) accommodating

future changes, (2) uncertainty, and (3) time-value.

On architecture-level, future changes can be attributed to change in requirements

those are stated by stakeholders. Here, we mean the structural change to a given archi-

tecture that may happen in future. We should take into consideration the likely impact

of such changes on other services. Furthermore, analyzing services’ dependencies and the

accompanied complexity at different time intervals have provided means of flexibility to

evaluate the time-value of the substitution decision relative to changes in the structure.

On the other hand, we examine the value of flexibility under uncertainty, which is re-

lated to structural aspect of a given architecture. On the architecture-level, we attribute

uncertainty to different factors those are related to the environment, in which the compo-

sition works, new market demands and conditions, new users’ preferences, some economic

constraints, etc. In addition to the dynamic nature of the cloud environment that exhibits

uncertainty.

4.4 Strategic Decision

What we mean by a strategic decision is that we are improving and sustaining a specific

value and QoS (e.g. performance) overtime (service lifetime) aligned with meeting tech-

nical and business goals while selecting and composing services. During the evaluation

phase of selection and composition decisions, we should take into consideration not only
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operational benefits but also strategic ones. Strategic benefits may be reflected on the

composition overtime with respect to future changes. On the operational side, selection

and composition decisions may come with long-term operational benefits, such as main-

tenance cost reduction over time. However, such strategic and operational benefits have

uncertain payoff and they are not immediate and may take time. Furthermore, evaluating

selection and composition decisions in CB-SOA should address certain strategic dimen-

sions: (1) timeline: in our case timeline is modeled as the service lifetime (contract).

Likely future changes must be analyzed during the whole service lifetime. (2) Long-term

value/value-added. (3) Impact of selection and composition decisions on other services in

a specific composition.

4.5 Retrospective vs. Predictive Approach

In this thesis, we advocate a predictive approach for service selection and composition in

CB-SOA. The predictive approach aids in anticipating service value and managing the

likely technical debt in CB-SOA with respect to possible behaviors of the composition.

Classical approaches tend to be retrospective. Unlike retrospective approaches, predictive

approaches are preventive. The effort to valuation is justified and the evaluation is gen-

erally cost effective, as when compared to the retrospective ones. This is specifically true

for the case of web service selection as we are dealing with impropriety solutions, where

inappropriate and unjustified selection decisions can be costly to revert; retrospective

analysis can be costly as a result. In this sense, the predictive approach saves time and

money. With the increase number of service and the wide spread of “e-world”, retrospec-

tive approach is no longer sufficient for solving the problem. This is because; the reaction

may be too late and serious risk has occurred, or addressing the problem may be too

costly if a reconfiguration of the composition is unavoidable, for example. On the other

hand, the problem of dealing with uncertainty, which was explained in previous sections,

motivates the need for a predictive approach. As if we are certain about the “output”
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of the selection and composition decisions, the process will be straightforward. And as

a result, there is no need for such predictive approach. However, as we are uncertain of

the “output” of the selected service, there is a need for an “intelligent” technique and

an economic-driven approach that takes into consideration the previous problems when

selecting and composing web services in CB-SOA.

4.6 Summary

We have highlighted the requirements for evaluating a selection and composition decisions,

and managing any likely technical debt, in CB-SOA from an economics-driven software

engineering perspective. We have also investigated some consequences and difficulties

which take place as a result of the decision making in CB-SOA. Requirements and the as-

sociated consequences motivate the need for a predictive approach of web service selection

and composition in CB-SOA.
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CHAPTER 5. AN OPTION-BASED MODEL FOR SERVICE SELECTION IN
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5.1 Overview

In the previous chapter, we presented the requirements for evaluating the selection and

composition decisions in CB-SOA. We also presented some consequences and difficulties

which are associated with selection and composition decisions in CB-SOA. In this chapter,

we are going to present an option-based approach for addressing these requirements. In

next chapter, we present a novel model that exploits options theory for evaluating selection

and composition decisions in CB-SOA and managing the likely technical debt that may

be incurred as a result of the selection decision. The model is referred to as CloudMTD

[18, 19, 20]. Its phases will be described in details in next chapter (Chapter 6). The

model builds on Real Options theory, Design Structure Matrix (DSM) and propagation

cost metric for valuation purposes. In this chapter, we mainly focus on Real Options.

We first present background on Real Options theory as it is necessary to understand

some concepts in our approach. We also provide its use in Software Engineering and

highlights ongoing research in the field of Real Options. We also present the related work.

By using options thinking, we aim to answer the following questions: (1) why is a

new service selection and composition technique needed? (2) Has anyone proposed an

option-based approach before to solve it? (3) How does it differ from classical approaches

available in the literature? (4) How worthwhile is it to invest in flexibility with the purpose

of accommodating future changes? When does investing in flexibility create value?

5.2 Real Options: A Brief Background

5.2.1 Definitions

In this subsection, we present some definitions which are related to option theory. The

option1 concept is the core of real options approach, which must be mentioned and rec-

ognized. An option, in general, is the right to have the freedom of choice. In finance,

1Financial option is an option on stock and bonds, while real options is an option on real assets[219].
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an option indicates that the owner has the right- with no obligation- to buy (or sell)

an underlying asset at a specific price (strike/exercise price) on (or before) a particular

date (Expiration date) depending on the type of the option; American or European [21].

Mainly, an option on a non-financial asset is called a Real Option, such as tangible invest-

ments, buildings, and software project. “A Real Option, particularly, is the right - but

not the obligation - to undertake some business capital investment decision; typically the

option to make, abandon, expand, or contract a capital investment” [30]. A call option is

a choice that gives the right - with no obligation- to buy an asset at a predefined price

before/at a given date. On the other hand, a put option is a choice that gives the right

- with no obligation- to sell an asset at a predefined price before/at a given date [219].

Moreover, when the option is exercised on the expiration date, it is called a European

Option, and alternatively, the American Option can be exercised at any time before the

expiration date [190].

5.2.2 Why Real Options?

As discussed in previous chapters, we are investigating the problem of web service selection

and composition in CB-SOA from an economics-driven value perspective. We have also

investigated uncertainties associated with the selection and composition decisions in CB-

SOA. From value-based software engineering point of view, real options theory is suitable

for addressing various software engineering problems with inherent uncertainty linked

to the technical decisions [208, 45]. We present some characteristics, which makes real

options a suitable approach for addressing service selection and composition in CB-SOA.

First, real options emphasize the value of flexibility under uncertainty. In addition, real

options techniques help in quantifying and characterizing the value in environments full of

uncertainties [208]. In previous chapter we explained in details the uncertainties associated

with the selection and composition decisions in CB-SOA. In addition, we argue that cloud

environments, such as CB-SOA, exhibit plenty of uncertainties, which are attributed to

the emerging behavior of concurrent and unexpected modes of interactions of service and
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the environment. These are attributed to the dynamic elasticity and continuous evolution

of the cloud topology (e.g. new services, mashups, unpredictable modes of service use,

fluctuation in QoS and users’ requirements). In addition to that, the accelerating pace

of change is very high in cloud environment. From an economic perspective, flexibility of

a selection and composition decision in CB-SOA has value under uncertainty. From this

point, we are investigating one of the economics techniques, i.e. real options, in cloud

environment, particularly CB-SOA. What links these aspects together is uncertainty.

From a real options perspective, uncertainty is costly, however it creates valuable future

opportunities [21].

Second, real option theory is a significant way of thinking that provides the power

of valuing investments that involve strategic decisions from an economics perspective

[162]. We argue that we need such a strategic vision when investing in web services,

in particular, selection and composition strategic decisions in CB-SOA. In this sense,

real options theory is compatible with web services’ strategic investments which entail

uncertainty and evolving conditions. We argue that such investments in CB-SOA must

be proactively managed by responding to the changes.

Third, real options valuation identifies the value of the investment, which lies not

only in the expected direct revenues, but also in the future opportunities that flexibility

creates [208]. Economics-Driven Software Engineering researches posit that engineering

activities need to be examined by their contribution to value-added and value-creation

[45]. In addition, real options helps in capturing value in new investments and adds

flexibility to decisions-making process which will take into consideration unexpected future

developments [209]. Here we say that decision makers in CB-SOA can create value by

exercising available options which are linked to web services investments.

Fourth, inputs to real options techniques are not subjective [21]. Rather than that,

real options valuation is based on data from market and it takes into consideration the

variance of the value of a given asset over time (web service in our case).

All in all, we appeal to real options thinking to provide us with better insights and
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understandings on the key principles of decision-making in the field of web service selection

and composition in CB-SOA. This is because real option theory captures the future value

of flexibility and interprets it in terms of “options”, i.e. treating flexibility as an option.

The values of these options are estimated using option pricing techniques. The idea is to

treat the flexibility of a selection decision as an option and then to value such flexibility

using option pricing techniques. Notably, we are interested in valuing flexibility under

uncertainty in CB-SOA selection and composition decision-making. However it is not the

only goal, where other goals are related to value-added and technical debt management,

if any. Accordingly, we say that flexibility and value-added are correlated; however both

entail cost (flexibility was discussed in details in previous chapters).

5.2.3 Option Pricing Plot in Brief

Option Pricing Theory has a long history that commenced in 1900 [156]. Afterward,

many contributions have been published in the area of option pricing. On the other hand,

the real option theory is originated from the financial option theory, which mainly deals

with options on financial assets. Black-Scholes is the most famous formula for pricing

European options [41]. Black-Scholes pricing model was not obvious at the beginning,

until Stewart C. Myers published his article [161]. The “Real Option” concept was coined

by Myers. The notion of valuing investments using real options was originated by Myers

[161] when he noted that corporate assets can be viewed as call options. The value of

options relies on the discretionary future investments of a specific corporation. He viewed

these investment opportunities as growth options. He mentioned that part of the value

of a given firm is justified by the present value of future growth opportunities [161].

In 1970, Robert C. Merton2 was the Professor of Finance at the MIT Sloan School

of Management 3. Merton[156] extended the Black-Scholes options pricing model [41]

and expanded the mathematical understanding of the model. Merton contributed to

Black-Scholes model by investigating the value of derivatives and examining the effect of

2Merton was a student of Myers
3http://mitsloan.mit.edu
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dividends on the warrant price [156]. He is well-known for his no-arbitrage argument and

continuous-time option pricing model. What Merton emphasized is that the output of

the model must be free of arbitrage opportunities, i.e. enforces the Law of One Price [21].

After that, the Black-Scholes-Merton model won the 1997 Alfred Nobel Memorial-Prize

in Economics Sciences. However, the prize was received by Merton and Scholes as Fischer

Black died in 1995. Robert C. Merton’s lecture, “Applications of Option-Pricing Theory

Twenty-Five Years Later”, was published in 1998 [157].

After that, many other researchers have contributed to the area of option pricing

significantly. One of the most important contributions was published by Lenos Trigeorgis

in 1996 [219]. Trigeorgis presented a way to practice real options by discussing different

evaluation methods in his book. Similarly, Amram and Kulatilaka contributed to this

field and presented useful examples in their book [21]. And many others such as Cox et

al. [66] and Robert S Pindyck [175]. In the context of web services, we are having a model

which is inspired by financial options but it serves the real options field.

5.3 Options Types and Service Selection Decision

Real Options has been applied to various domains, such as manufacturing, Information

Technology, etc. A specific option type depends on the nature of the application, problem

to be investigated, and the decision to be taken. For example, investment’s expansion

decision could be formulated as a growth option, when-to-invest decision could be for-

mulated as a defer option, and so forth. This thesis is concerned with some scenarios,

which are related to web service selection and composition that has been driven by either

a technical or a business objective. In each scenario, we are interested in three decisions

(1) keep, (2) substitute or (3) abandon the current service. Each scenario takes into con-

sideration either one or more QoS attribute dimension. We address these scenarios from

an option-based perspective. Each scenario is linked to a suitable option type.

We are interested in four option types in this thesis: (1) growth-options and we link it
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to expand and substitute decision, (2) switch-option and we link it to substitute decisions,

(3) defer-option and we link it to wait and substitute decision, and (4) abandon-option and

we link it to service abandon decision. We will illustrate the use of these options later on

using case study and illustrative examples, which are driven by scenarios of possible web

service selection challenges that may lead to technical debt in CB-SOA. These scenarios

have some sources of uncertainty, such as payoff, QoS values of the candidate web service

and the time-value of the selection decision (uncertainty was explained in details in the

previous chapter). We are interested in reducing such uncertainties. We are also interested

in valuing flexibility under uncertainty. Next, we explain the four types of options that

are used in this thesis.

5.3.1 Growth option

Growth option is a type of real options, which gives the right to expand with strategic

importance [161]. Growth options are significant in every infrastructure-based or strategic

industry, which has a multiple-product generation or application [219]. In web service

selection and composition, we assume that the selection decision may carry growth options

in support of a specific QoS (e.g. scalability). In this context, growth options is a real

option on an asset (web service) with the view to unlock the architecture value potentials

through supporting more users and constrained by the service inherent capacity. Here,

the value of the selection decision is derived not only from the expected direct revenues,

but also from the future growth opportunities it may unlock. In this context, a selection

decision is modeled as a call option to acquire a web service with additional capacity by

paying an exercise price (scalability scenario), opening up future growth opportunities.

Several research works have discussed the significance of growth options as a source of

value, such as [162, 116, 175, 213]. For example, Myers [162] suggested that options

pricing can value investments with strategic options, seeing that growth options open

future opportunities. Based on Myers’ idea, Kester [117] investigated strategic aspects of

growth opportunities. Likewise to Kester, Taudes [213] evaluated software growth options
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with the purpose of valuing software benefits. In particular, he proposed an option-based

model for evaluating software growth options, which are generated by Information Systems

functions in a given software system.

5.3.2 Option-to-Switch

Option-to-switch gives the right to react upon the change market conditions and change

input or output accordingly [219]. In web services context, you have the right to switch

between services if the current service does not work as expected (as agreed in the SLA).

Here, the service provider provides flexibility to the decision maker to switch among

services in case if they are not happy with the current web service and if they are willing

to pay an extra charge for flexibility. Accordingly, the decision maker has the right without

obligation to switch a service. For example, if the decision maker is looking for improving

the utility, this can be done through switching web services with the view of improving

QoS and reducing technical debt, if any.

5.3.3 Option-to-defer

Option-to-defer is defined as holding a lease on a valuable asset and wait x time units

(e.g. months, years, etc.) [219]. It is also called option-to-wait [21] and learning-option

[189]. Option-to-defer is valuable in sectors with high uncertainty and long investment

horizon, such as real estate developments. Option to defer can assess the time-value of

waiting and it has many applications such as waiting to expand, waiting to enter a new

market, etc. In web service selection context, option-to-defer gives the right to decision

makers (e.g. architects) to defer the selection decision and wait for sometime before

exercising the option (e.g. wait-and-watch the cloud marketplace). For example, if we

consider option-to-defer, we have the right to delay the investment decision till we get

more data from cloud marketplace. This data can be related to the likely future potentials

of the candidate web service, and accordingly we will be able to estimate the potential of

the selection decision. We can also defer the selection decision until specific uncertainty
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is resolved (e.g. demand uncertainty) seeing that deferral can reduce uncertainty. In

this context, we view differing a selection decision as buying time for investment in web

services, hoping that market information will change and new information will be added,

which aid in informing whether if the service in question is suitable or not. The question

is whether or not to invest at time t? Option-to-defer is appropriate when the value of

waiting exceeds the value of immediate exercise (e.g. immediate substitution of a web

service). Option-to-defer is important when there is a lack of information or when there

is no enough information either about the usage conditions or the candidate web service

itself (e.g. service reputation information). Here, it is better to wait. In this context,

the time-value is important in the context of “waiting” in order to have more available

information and accordingly make a decision. We may kill the option if we exercise it

immediately. In later chapters, we will link this type of options to time-value of the

selection decision (e.g. time-value of waiting). Furthermore, we predict the time-value of

waiting to defer the decision of investing in web services substitution. We will also answer

the question of when it is beneficial, in terms of value and technical debt, to exercise the

option. We will also track the time-value of waiting and make a comparison in different

extremes, such as peak time and off-peak time. We consider “timing” as a significant

driver in web service selection decision making process. We are optimizing the time-point

of the selection decision and making the selection decision flexible in terms of time.

5.3.4 Option-to-abandon

Option-to-abandon gives the right to the management to abandon the current operations

when market conditions are declined severely [219]. Myers and Majd investigated the

significance of abandonment value in a given project’s life [163]. In a web service context,

option-to-abandon gives the right to a decision maker to abandon the current web service

when the value is unable to cover for the cost and as a result signaling unmanageable

technical debt. This type of options is important in many strategic industries such as

airlines and railroads. For example, some destinations of Easyjet airlines were stopped
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due to high airport’s tax (e.g. Amman-Jordan destination was stopped in May 2014).

In option terms, we say that the value, which Easyjet used to acquire from Amman

destination, is no more covering the cost and as a result signaling unmanageable technical

debt, and should be abandon.

5.4 Option Valuation Models

There are many valuation models that are used for option pricing. In these models, options

are valued using different techniques. Each technique has different assumptions and tools

for the purpose of: (1) capturing and modeling uncertainty, (2) estimating flexibility, and

(3) tracking the value of the asset over time. These techniques differ in the way they

choose values and represent uncertainties. Each option valuation model is useful at a

particular area and has its advantages and disadvantages. The most well known ones are

the Black-Scholes-Merton [41] and [156] for valuing options in continuous time, and the

Binomial option pricing for valuing options in discrete time by Cox et al. [66]. These two

models will be discussed in details in subsequent subsections.

The third valuation approach is related to simulation analysis, such as Monte Carlo

simulation models, which are also used for option valuation [103]. However, this model is

based on pseudo-random numbers that are generated by computers to iteratively create

many possible future paths of a given stock price. In this approach, the simulation analysis

may generate thousands of possible paths. These paths are difficult to handle, as each

option valuation is performed on one path at a time. In addition, these random generated

numbers do not incorporate real market data. Recently, many other valuation models

emerged in different fields, such as Net Option Valuation (NOV) by Baldwin and Clark

[30], which was based on the notion that modularity adds value in terms of design options

it creates. These models are used for the purpose of valuing a specific option. More

recently, Sullivan and other researchers in the field of “Design Modularity” extended the

NOV model by introducing environment parameters (environmental variables) as main
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contributors that affect the value of a software design [207] and [56]. These valuation

approaches are out of the scope of this thesis.

5.4.1 Black-Scholes-Merton Model

From a financial market, Black-Scholes-Merton is a mathematical model that is used for

valuing an option in terms of stock prices. The model was based on the notion that almost

all corporate liabilities can be viewed as combinations of options [41]. The model deals

with options that have (1) a particular expiration date (European-style Option) and (2)

a single source of uncertainty. In this model, the option value is computed from a value

of a portfolio of traded securities that already exists in the market, which has the same

payoff as the option and has similar fluctuations in its value over time. This process is

called tracking portfolio [21] (it is also called replicating portfolio and twin security). By

forcing the Law of One Price and “no arbitrage” condition, they ensure that the value of

an option equals to the value of the portfolio as the stock price evolves, i.e. two assets with

exactly the same future payoff have the same current value [21]. The following inputs to

this model are needed when valuing an option: (1) current value of the underlying asset,

(2) time to expiration (time to the decision date), (3) exercise price (strike price), (4)

risk-free interest rate, and (5) volatility of the underlying asset, which is estimated out of

the fluctuation over a period of time.

Black-Scholes equation is well known by its speed as it takes short time for option

calculation. It is also well known by its simplicity when it characterizes the relationship

between risk and value [21]. However, it has some disadvantages. First, it used when

there is only a single source of uncertainty and a single expiration date. That means that

Black-Scholes is a closed formula that does not scale, especially when we encounter staged

decisions with multiple decision points, such as service selection in CB-SOA. Another

significant limitation of this model is that it is suitable only for European-type options

and is not suitable for American-type options. Some approaches made some adjustment

to Black-Scholes equation for the purpose of approximating the value of an American-type
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option, such as Pseudo-American method [219]. However, these approaches are used for

valuing call options and they work under certain limits and conditions. We argue that

Black-Scholes is an inflexible model since its output is a single number that summarize

all expected behavioral information about an option. Additionally, another drawback is

that Black-Scholes model cannot be used when options have no underlying assets in the

market to replicate. Finally, market volatility is assumed to be constant in Black-Scholes

model.

5.4.2 Binomial Tree Model

In 1976, Cox and Ross [65] developed a binomial approach that facilitates options valua-

tion in discrete time. After that in 1979, Mark Rubinstein contributed to Cox and Ross

approach as he realized that everyone has different risk preferences that are independent

of the option values [66]. Accordingly, the same valuation will be applied whether it is

risk-neutral or not. This approach is different than other valuation techniques in how to

choose relevant values and represents uncertainty. Binomial Tree options valuation was

introduced in different fields such as refactoring [151], prototyping [208], extreme pro-

gramming [77] and Software Reuse [80]. Section 5.6 provides a review on the available

research works in the field of real options valuation.

The binomial tree represents all possible paths that the value of an asset can take

during the option life (Figure 5.1). The tree is called a binomial tree as the value of the

asset will either move up or down at each decision point. The ups (favorable outcome of the

uncertain variable) and downs (unfavorable outcome of the uncertain variable) movements

of the value are generally determined by the probability. Each node of the tree shows the

probability that asset’s value may move up or down and accordingly influencing the value

of options on the asset. The different levels of the binomial tree correspond to discrete

time points in the future and the probabilities indicates how likely it is that certain jumps

in the tree will occur. Each branch in the tree can be viewed as a decision possibility or

flexibility.
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Binomial Tree construction begins with dividing the expiration date (T ) by the number

of time steps (n) of duration ∆t, where ∆t = T
n

. The model is then constructed to identify

the likely future values at the end of each time period, and the movements (ups and downs)

from one time period to another subsequently. One of the Binomial Tree properties is

that any up move followed by a down move has exactly the same effect on value as a down

move followed by an up move.

Figure 5.1 General Binomial Tree.

When valuing an option using the binomial model, two main phases are constructed;

asset value calculations and options value derivation. First, the values tree is constructed

starting from present to expiration date. Next, options are calculated at each point in the

binomial tree by going back from expiration date to the present, i.e. options are valued

inductively by stepping back (folding back) through the binomial tree from the expiration

date to the present. Option values in the binomial tree are derived depending on the

value tree development. Each option value at each step of the binomial tree is used as an

input for deriving the option value of the next step. Asset values and option values are

derived using the binomial tree coefficients (binomial tree input parameters) that will be

discussed shortly.
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Based on [66, 21, 103] general Binomial notation, which was adapted by [172], we can

generalize the web service selection problem by viewing the web service as an asset which

has a value V and an option on this asset which has a price f (Figure 5.1). We assume

that the option lasts for time T and during this time (option life) the asset value can

either go up to Vu, where u >1, or down to Vd, where d <1. When asset price moves

upward to Vu, we assume that the expected payoff is fu and when asset price moves down

to Vd, we assume that the expected payoff is fd , as seen in Figure 5.1. Expected payoffs

are calculated based on ups and downs movements. In our interpretations, u is said to

be the increase multiplicative percentage of the web service value and d is the decrease

multiplicative percentage of the web service value. Our calculations are based on the

Binomial Tree Valuation presented by [219] and [172]. Complete steps of the Binomial

Tree in the context of web service selection is explained in details in chapter 6, section

6.1.4.1.

5.4.2.1 Binomial Tree Coefficients

Binomial tree coefficients can be calculated based on different methods. They can be

(1) elicited from stakeholders, or (2) estimated from historical data or based on a given

underlying asset valuation. This thesis is concerned with the first method of acquiring

binomial tree coefficients, as we assume that the binomial tree coefficients are elicited from

decision makers (e.g. stakeholders) based on their experiences. In CB-SOA context, the

interpretations of these coefficients depend on the context and scenario of the selection

decision. Table 5.1 summarizes the binomial tree coefficients and their definitions. It also

presents the coefficients mapping in terms of real options and cloud-based web services.

On the other hand, if we are estimating these coefficients, some formulae are used.

Based on [21], the coefficients values of u and d are calculated using equations 5.1 and

5.2 respectively, where σ is the volatility, which is the standard deviation of expected

return [21]. Volatility is out of scope of this thesis. After that, the probability coefficient

is calculated using equation 5.3. As mentioned before, these equations are not used in
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Table 5.1: Binomial Tree Coefficients mapping

Real Options Web services

∆t Length of time periods in months,
years, etc.

Length of time periods in months, years,
etc (“staging-view”). This is used to cal-
culate the time period between each de-
cision point in the tree, where each deci-
sion point correspond to an identified hy-
pothetical time that is used to monitor the
service behavior during the life time of the
option (T).

p Favorable probability coefficient
(up movement probability)

Favorable probability coefficient (up
movement probability). It implies the
likelihood of the next up movement of the
candidate service value in the tree.

1- p Unfavorable probability coeffi-
cient (down movement probabil-
ity)

Unfavorable probability coefficient (down
movement probability). It implies the
likelihood of the next down movement of
the candidate service value in the tree.

Vt0 Initial asset value Initial web service’s value at t0 (explained
in details in chapter 6).

u Percentages increase in the asset
value.

Percentages increase in the likely web ser-
vice value in supporting improvement in
one or more QoS, which in turn imparts
the utility of the architecture.

d Percentages decrease in the asset
value.

Percentages decrease in the likely web ser-
vice value, which in turn imparts the util-
ity of the architecture.

CloudMTD model, as we assume that the binomial tree coefficients are elicited from

decision makers based on their experiences. However, the inputs to CloudMTD can be

change and these equations can be considered if needed.

u = eσ (5.1)

d = e−σ =
1

u
(5.2)

p =
(1 + r)− d
u− d

(5.3)
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In CB-SOA context, we say that u and d are the percentages increase and decrease,

respectively, in service’s value, which imparts the utility of the architecture. Here we say

that the interpretation of u and d depend on the context of the scenario in question. For

example, if we consider growth options in a business expansion decision that is associated

with scalability scenarios, the u will imply the percentage increase of service’s value in

supporting scalability. In this context, the selection decision is driven by requirements

to scale up and support more users. In this sense, the selection decision carries growth

options in support of more users. Here, we assume that the service value will be improved

by £1 in supporting an additional user. Accordingly, more fulfilled users’ requests will

improve the utility value of the architecture through supporting more users. On the other

hand, if we consider availability scenarios. Here we say that u coefficient is the percentage

increase of service’s value in supporting availability. For example, when (u = 1.4), 100%

availability is likely to increase the service value by an average of 40% per month. Here,

we assume that the service value will be improved by £1 in supporting more availability.

In this context, availability goals take into consideration the downtime of the service

(unavailability), which affects the business value in supporting availability scenarios. For

more details on each scenario refer to illustrative examples in section 6.2.

5.4.3 Discussion

We have adopted the binomial model for the reason that it has many advantages over the

other valuation models. Even though the other models are used for the same purpose,

option valuation, the binomial model has a wider range of applications and is easier

to use [99]. The binomial model has a primary advantage over Black-Scholes model,

for instance, which is the ability of pricing American options precisely [21]. This is

attributed to the ability of the Binomial model to exercise an option at any point (step)

in the binomial tree during option life. In addition, unlike Black-Scholes model, binomial

model provides discrete approximations[219]. Accordingly, the binomial model provides

the decision maker with discrete space, which helps in quantifying the decision at each
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point in the tree. In this sense, the Binomial model is open in terms of flexibility. In

addition, the binomial model handles large range of complex real options, generates good

visual images and involves risk-neutral valuation [21]. The main disadvantage of the

binomial model is that it is considered to be slow when calculating thousands of prices in

a few seconds. We argue that the binomial model is more accurate than other valuation

models, as it incorporates real data (e.g. market-based information). For example, as

mentioned in previous section, Monte Carlo simulation models are based on pseudo-

random number generator.

We view the binomial tree as a suitable model to be used in CB-SOA selection deci-

sions as CB-SOA environments exhibit a lot of uncertainties (e.g. demand changes). In

addition, CB-SOA selection decisions are not made at a single predetermined deadline and

need continuous evaluation. Accordingly, the binomial approach is a good fit as it models

an option by splitting its time to expiration into number of intervals with different flexible

decision points. Accordingly, by using the binomial tree we provide the decision maker

by a “staging-view” along the life of the option. What is meant by the “staging-view” is

that we can analyze and interpret the results during different time periods (intervals of

time), for example month by month or year by year that depends on needs and contracts

length, which is explained in SLA. Moreover, because of the dynamic nature of the selec-

tion problem there is a need for such a flexible approach with flexible decision points. The

dynamic nature of the selection problem is driven by different factors which are related to

uncertainty and its dimensions. For example, the continuous fluctuation in QoS, change

in needs and requirements, etc. (detailed explanation of uncertainty and its dimensions

were discussed in chapter 4). In this sense, the binomial tree fits the dynamic decision

making in CB-SOA by allowing a continuous step-by-step assessment and judgment.
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5.5 The Approach

We assume that the goal of a decision maker (e.g. architect) is to guide the selection and

composition decisions in CB-SOA, and manage any likely technical debt. We view the web

service selection and composition as value-seeking and value-maximizing activities. We

“stage” the valuation of the candidate web service in the view of managing the technical

debt using binomial options model.

5.5.1 Real Options Analogy

In this section, we sketch our interpretation of the related web service selection and

composition principles in real options terms. We will be spot-lighting on some significant

aspects and dimensions, for example, the case of optimal-time selection decision.

Table 5.2: Analogy of Financial Options, Real Options and Web services CloudMTD

Financial Options Real Options Web services CloudMTD

Stock price Value of the expected
cash flows of a given
project

Web service’s value in sup-
porting a specific QoS

Exercise
price/Strike price

Investment cost Cost of the option, which
depends on the scenario.
For example, cost of switch-
ing, cost of waiting to
switch, etc.

Expiration Time Time until opportu-
nity disappears

Expiry date of the service
contract, which is viewed as
the expiry date of the option

5.5.2 Web Service Selection: Options Perspective

In order to understand web service selection and composition using an economic approach,

we need a valuation technique that is capable of: (1) strategic and long-term valuation,

(2) accounting for flexibility, and (3) quantifying the value of options, which is created

by flexibility, for the purpose of making the value of the selection decision tangible. Ac-

cordingly, we posit that real options theory satisfies these requirements. We present an
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option-based approach with the aim of understanding the economic potential of CB-SOA

selection decisions. In this thesis, real options are used with the purpose of modeling

situations related to selection decisions in CB-SOA, where options exist when investing

in an “architectural asset”, i.e. a web service. In the context of web service selection, a

real option is the right but not the obligation to make a selection decision in future (t =

T ) by taking into account further opportunities related to web services, such as option

to expand, option to defer, option to abandon, and so on.

The economist, Myers, noted that “Part of the value of a firm is accounted for by the

present value of options to make further investments on possibly favorable terms [161].”

Similarly, investment opportunities of web service selection can be viewed as a set of

options. We would like to highlight the importance of determining the potential value

of new investments in web services. The expected value V of an inflexible web service

selection decision is: V = B - C, where B is the expected benefits and C is the expected

cost. While the expected value V of a flexible web service selection decision is its benefits B

in addition to the value of the future option O to accommodate uncertainties (e.g. future

change), minus its cost: V = B + O - C. The best case scenario of a flexible web service

selection decision is when the option is worth more than its cost. Note that the difficulty

is in evaluating the value of the option as the cost is generally tangible and known, while

the value is not and it needs time and effort to be grasped. For example, reconfiguring

the architecture by substituting one of its constituent web services incurs upfront cost;

however the value is elusive and may take long-time to be grasped. Web service selection

decision should be able to weigh the cost against the uncertain value. Traditional software

engineering economics approaches were limited in terms of flexibility, i.e. do not account

for the value of flexibility. Conversely, real options theory builds an analogy to financial

options theory for valuing flexibility and hence making it tangible. Indeed, if benefits

of web service selection decision were certain, the decision would be much easier by a

simple comparison process. Taking a decision is more complex when the value and payoff

depend on uncertain future conditions with different possible outcomes. Furthermore,
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the ability to reconfigure a given CB-SOA may create future options by decreasing costs

and improving efficiency, for example. However, the reconfiguration process shall take

place only if the expected benefits, through cost saving, for example, exceed the required

expenditures (e.g. upfront cost). In this sense, the decision maker (e.g. an architect) must

be able to reason about when and under what conditions investments in web services add

value.

All in all, evaluating web service selection decision under uncertainty makes real op-

tions an ultimate choice as a valuation technique, since other valuation techniques has

limitations in managing value of flexibility under uncertainty. Accordingly, integrating

service selection with options thinking can provide a powerful tool for: (1) better reflec-

tion on the value of the candidate web service and hence the utility of the architecture,

(2) situations leading to web service substitution, (3) time-value of the selection decision.

5.5.3 Technical Debt Management: Binomial Tree Visualization

Kruchten et al. [122] presented the technical debt landscape and its elements. They said

that the most challenging part of the process is deciding about future changes. They

argued that the decision is about making a balance between cost and value. In this sense,

they suggested that technical debt landscape can be unified using an economic or financial

model. Some of these models were explored previously in the literature section in chapter

3. In CB-SOA, we manage technical debt on service-level by substituting constituent

services. We relate the selection/substitution decision to technical debt drivers, those

were explained previously in chapter 3. For managing technical debt, the substitution

decision can be one of the following: (1) selecting another web service, (2) keeping the

current web service, or (3) abandon the current web service. Technical debt clearing out

stages is tracked using the binomial model. We also use the binomial tree to visualize

the technical debt lifecycle that was discussed in chapter 3: (1) when it starts. (2) when

interest are incurred, if any. (3) Payback; when the technical debt is expected to be cleared

out and/or when it is likely to generate future options if cleared. All in all, integrating the
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technical debt analysis with options thinking can provide a powerful tool for: (1) better

reflection on the value of the debt under uncertainty, (2) situations leading to clearing

out the debt, (3) lifetime cycle of the likely debt.

5.6 Real Options in Software Engineering Practices:

A review

Valuing software engineering related investments using economics theory is not new.

Barry Boehm pioneered the use of economics in software engineering in early 80s (e.g.

Boehm1981 [45]). Subsequently, Real Options theory has been investigated in many fields,

such as software design [208], software architecture [172], systems design and engineering

[30], software refactoring [29, 151], architectural stability [26], COTS-centric development

[78], Extreme Programming [77], security of IT systems [2], Agile requirements engineer-

ing [179], and many others. In this section, we provide a representative sample of the

available research works in the field of software and system engineering, which are related

to software engineering practices.

Baldwin and Clark [30] established the use of real options in systems design and

engineering. They pointed out that modularity creates flexibility in system design as it

influences the evolution of the system designs. In particular, Baldwin and Clark’s theory

was derived from the notion that system modularity creates value in terms of real options.

They calculated the option value of design modularity using the Design Structure Matrix

(DSM) [30]. Likewise, Sullivan et al. [207] established the use of real options theory

in software engineering. They said that real options techniques offers insights about

modularity, projects structures, and delaying of decisions in software design [209, 208].

They presented an option-based analysis of the spiral-model for software development.

They reported that the spiral-model provides flexibility in system structure. The aim of

each phase is to reduce uncertainty and to take a decision about whether to invest in

the next phases derived from information from previous phases. Moreover, within each
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phase it points out alternatives and creates an option to choose the most appropriate

one. In real options perspective, this is called options to defer a decision of investment

until a specific optimal time. In addition, Erdogmus et al. [78] presented the valuation of

strategic flexibility, using real options, in software development (including COTS). They

apply two quantitative valuation techniques: (1) Net Present Value (NPV) and (2) real

options, for assessing software development projects, which are based on COTS. The

objective is to investigate the economic incentive of choosing COTS-based strategies in a

project. The result shows that real options theory is better than NPV, as NPV neglects

the value of the flexibility in COTS-centric projects making it appear less attractive.

After that, Cost Benefit Analysis Method (CBAM) was improved by including the use of

real options theory in reasoning about the value of delaying a decision of an investment

related to architectural strategy [114].

Real options theory was also used in the field of software refactoring. For example,

Bahsoon and Emmerich [27] used the Black-Scholes model for software refactoring valua-

tion, based on the assumption that a decision has a fixed expiration date to be made for a

given application. In [28], they have used mining technique based on a financial analogy of

real options for analyzing architecture scalability under uncertainty. Moreover, Mavridis

et al. [151] examined the selection of an optimum refactoring strategy based on real op-

tions analysis. Their objective was to select a strategy that maximizes the endurance of

a given architecture with respect to future imposed changes. They mentioned that refac-

toring carries economic value in terms of real options, which can be viewed as the right,

but not the obligation, to select a refactoring strategy in a given period of time, where

the refactoring strategy (to be selected) is viewed as a real asset [151]. They answered the

question of when and under which conditions a given refactoring should take place. They

addressed the following uncertainties: (1) value associated with candidate refactoring, (2)

the expected added value gained from a given refactoring, and (3) some conditions that

affect the value of the extended system (e.g. developers’ ability and number of features

to be added).
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Furthermore, Real Option analysis was applied extensively as a decision making tool

for IT investments and SOA projects, and then the application of Real Option analysis

started to revolve around the notion of valuing uncertainties in software engineering prac-

tices in general. For instance, the used of real option theory in Information Technology

(IT) investments decisions was driven by different factors that are related to IT invest-

ments characteristics, such as the long payback periods of IT investments, the associated

uncertainties, and the continuous change of business conditions. Therefore, many research

works have applied real option models to support IT investments decisions for assessing

the value of IT assets (e.g. IT applications).

An early work of applying real options theory to IT investments decisions was done by

Alfred Taudes [213]. This approach was a foundation of software platforms valuation using

option theory. In particular, he examined some techniques to evaluate sequential exchange

options for approximating software’s growth option’s value. However, in this work Alfred

Taudes did not mention the difference between Information Systems functions and value

generating applications. In addition, his early work was limited to general conclusions

and guidelines without any real world cases. Later on, Taudes et al. [214] investigated

the value of implementation opportunities based on options theory. They presented the

practical advantages of using options analysis in software platform decisions valuation.

They demonstrated these advantages by presenting a real world case based on Black-

Scholes-Model. In particular, they viewed a software platform as a bundle of functions,

which forms the building blocks of a given application whose value changes over time.

Accordingly, the value of a given software platform is determined by the options it creates

by implementing these applications.

Michel Benaroch, Robert J. Kauffman and their colleagues have used different types

of real option theory in different problems related to IT investments. They have been

employing real option theory for evaluating IT investments and managing the associated

risk in different IT projects contexts (IT portfolio). In 1999, Benaroch and Kauffman [37]

started by providing a formal theoretical background on the validity of using the Black-
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Scholes model, as a range of capital budgeting techniques, for assessing IT investments.

They presented that both Black-Scholes and the binomial models can be used for evalu-

ating different IT investment situations that can be analogous to capital budgeting ones.

Specifically, they used Black-Scholes Model and Blacks approximation for calculating the

optimal exercise time in IT projects. They have posited that deferring an investment

can reduce risk. This is due to the flexibility that is created by deferring an investment

commitment, which is useful when it enables learning about the nature of uncertain pay-

offs. In [33], they have also presented the flexibility to stage an investment. This is

valuable when there are different types of risk, such as complexity risk, user involvement,

architectural compliance, etc. Then, Kauffman and Li [112] developed a continuous-time

stochastic model in a real options theory framework. Their model aids in determining the

optimal time strategy for a specific managerial adoption. Similarly, Bardhan et al. [32]

presented a methodology for valuing a portfolio of IT investments based on real options.

Particularly, they looked at applications of nested real options for the purpose of valuing

and prioritizing a portfolio of IT investments, taking into consideration interdependencies

among them.

After that, Benaroch et al. [39, 36] presented IT investment decisions in terms of

risk management characteristics that are associated with such decisions. Particularly,

Benaroch et al. [39] proposed an option-based risk management framework (OBRiM).

In [38], they have empirically tested the OBRiM framework. The framework is based on

real options theory for the purpose of: (1) quantifying the monetary consequences of risk,

(2) measuring flexibility in terms of real option value, and (3) linking risk and options to

investment value. In [36], they have investigated another dimension of IT investments’

problems that is related to complex sequential investments, which involves different types

of risks for a given firm. The OBRiM framework can be used by decision maker in order

to find a suitable real option that can be used in an IT investment. Their objective is

to manage and control risk, and to maximize the investment value. The framework was

evaluated based on interviewing senior managers from multiple firms. Similarly, Kauffman
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and Sougstad [113] investigated contracts of a portfolio of IT services for the purpose of

evaluating the tradeoffs between contract profitability and service-level risk.

More recently, Benaroch and his colleagues looked at other dimensions that are related

to IT investments: (1) risk management practices optimization [35], and (2) service-level

agreement contract flexibility [34]. Their objective was again to control risk and maximize

project (investment) value. Benaroch and Goldstein [35] modeled risk management deci-

sions using real options theory. They presented an economic-based optimization approach

for the purpose of optimizing risk management practices. In particular, they addressed

the problem of managing the risk of system development following an economical opti-

mization point of view. Benaroch et al. [34] examined the flexibility that is associated

with IT services contracts using real option theory. They looked at situations where IT

service providers offer customers by the option to abandon a specific contract. In addi-

tion to determining the optimal exercise time, they used real options for evaluating the

service-level agreement contract flexibility. In their work, they concluded that the use

of binomial model for valuing multi-stage IT investments is more accurate, seeing that a

simple Black-Scholes model provides incorrect results.

Furthermore, Tansey and Stroulia [212] proposed a methodological approach for esti-

mating the value of an SOA project. In particular, they proposed a procedure in order to

estimate business value’s potential in evolving service-oriented applications. They used

COCOMO II for estimating the development cost of services in terms of programmer’s

effort (e.g. creating or modifying a service in SOA). They proposed used of option the-

ory for valuing flexibility and reusability of a service composition. The object was to

maximize return-on-investment (ROI) in a given SOA project. Moreover, Su et al. [206]

introduced an option-based methodology for evaluating the decision of choosing among

different service’s transformation alternatives for the purpose of implementing shared ser-

vices. The methodology aids the decision maker in a given firm to estimate the value of

each transformation alternative. They have viewed the decision of service’s transforma-

tion as a European call option. The value of managerial flexibility was calculated using
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Black-Scholes model. Similarly, Lin and Kang [136] proposed an option-based mathemat-

ical decision-making model to evaluate the decision of whether to invest or not to invest

in a free internet service. They proposed that a given firm has the option to invest (or not

to invest) in the free software market. Similarly, Sanchez and Milanesi [186] presented an

option-based framework for estimating the volatility of IT investments taking into con-

sideration the impact on the project value. Their suggested method can be used by IT

managers for making decisions related to software development investments. It can be

also used for understanding the interactions among software processes, market environ-

ment, financial issues and options value. On the other hand, Lukas Auer [24] analyzed

the applicability of real options theory in IT investment planning. Particularly, he exam-

ined a management approach for supporting decision making in SOA investments. Auer

posited that SOA investments should be associated with suitable evaluation methods for

capturing flexibility and uncertainty. He also identified the limitations associated with

commonly used SOA investment decision-making techniques. However, the presented

work was a simple option-based decision framework that presents guidance for decision

making in SOA investment.

Furthermore, Gaynor et al. [90] proposed an option-based model for examining the

problem of designing standards for implementing network-based services. The model was

based on the assumption that market demand of network-based services has a degree of

uncertainty. They quantified the economic value of standards that is attributed to the

flexibility of choice of a management structure. They conducted experiments for deter-

mining the best match of services based on market conditions in the context of popularity

of features. The objective was to maximize the overall gain when designing standards

for implementing network-based services in markets with high uncertainty. Likewise,

Gayno and Bradner [89] proposed an option-based framework for evaluating architectural

choices of network infrastructures and linking value of flexibility to market uncertainty.

In particular, they compared the value of distributed architectures against the benefits

of centralized control based on cost and value differentials. They illustrated the poten-
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tial of real options in quantifying the economic value of networks, protocols, and service

architectures (network services/applications). They defined experiments as attempts of

finding customers’ needs and accordingly creating options by permitting users to make a

choice. In this context, they have investigated uncertainty that they attributed to users

preferences and call it market uncertainty. They have linked the economic value of a given

experiment to market uncertainty as follows: “uncertainty is the inability of the experi-

menter to predict the value of the experiment, i.e. predict what the customer wants [89].”

They examined five factors: (1) capability of experimenting, (2) experiment’s level of dif-

ficulty, (3) market uncertainty, (4) advantages related to business and technical aspects,

and (5) architecture’s evolution over time. In addition, they linked network infrastruc-

tures to market uncertainties. The evaluation was conducted based on voice and email

services case studies. Distributed architectures were preferred by users in case of high

market uncertainty. On contrary, centralized architectures were preferred by users when

market uncertainty is low. They concluded that distributed end-to-end applications and

services are required for maximizing value, which is attributed to satisfying users’ needs

in markets full of uncertainties. More recent, Yoo et al. [233] proposed an approach for

evaluating a given firm’s decision of choosing between two different types of Business to

Business (B2B) marketplaces; public or private. Their approach was based on a game-

theoretic analysis and a real options theory, taking into consideration future managerial

flexibility, uncertainty and network externalities. They analyzed the impact of options

thinking on decision making in IT investments.

In addition, some research works used real options theory for the purpose of justifying

and formalizing agile software development practices. For example, Racheva and Daneva

[178] investigated the use of real options theory in agile software developments, seeing

that such investment decisions can be discussed in terms of options. Particularly, they

investigated the problem of making decision in inter-iteration time for a given client.

Likewise, Racheva et al. [180] proposed a formal decision making approach based on real

options analysis and some other measurement techniques. Specifically, their approach is
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used under uncertainty in order to assist clients in choosing among alternative sets of

requirements. When decisions are formulated as options, decision makers look at many

alternatives. Accordingly, they can compare them and then make a decision by taking

into consideration business goals and current software functionalities. They applied real

options in decision-making from two perspectives related to agile aspects. First, from

client’s perspective, real option is used for requirements prioritization at the beginning

of each iteration and accordingly optimizing business value. Second, from developers’

perspective, real option is used in order to support the implementation of the prioritization

process. In this context, they view agile developments as a sequence of decisions and

treat them as a set of options before or after each iteration. In [179], Racheva and

Daneva evaluated the work by conducting a case study based on eight agile development

organizations. They have also performed interviews about the decision-making process

with different practitioners. They have described different types of options in terms of

agile development, such as option to abandon and option to defer a client’s decision. In the

same way, Klein et al. [118] suggested an option-based method for analyzing decisions

related to requirements of common platforms for systems of systems. They suggested

that existing economic and probabilistic models can be used for modeling uncertainty in

evolution requirements. Moreover, Erdogmus and Favaro [77] employed real options for

valuing the flexibility in Extreme Programming (XP). In their context, XP is a lightweight

process and is suitable to respond to future changes and future opportunities. They

use real options to reason about the You Aren’t Going to Need It principle (YAGNI).

The YAGNI principle emphasizes the value of postponing an investment decision under

uncertainty (option to delay). In this sense, uncertain features implementation is delayed

till uncertainty is resolved.

Subsequently, Real Options theory was also applied to other fields such as, product

line, mobile networks and many others. For example, Chaiworawitgul and Sutivong [59]

illustrated how to apply real options analysis to hardware design decision for valuing the

expected payoff of the technology shift from Object-Oriented to Aspect-Oriented concepts.
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After that, Gustavsson and Axelsson [95] examined the use of real options in quantifying

the value of a flexible design decision of a given automotive systems - vehicle product

lines. They presented an option-based evaluation method for the purpose of analyzing

the cost of designing for flexibility for handling a product line growth in future, depending

on the future value of functionality. They applied real options analysis using a case study

from an automotive industry for evaluation purposes. Their objective was to improve the

usability and to help practitioners (e.g. developers).

5.7 Related Work

Our work is related to different correlated fields, which are (1) web service selection and

composition, (2) managing technical debt, and (3) real options. In chapter 2, we presented

a representative sample of works that have been done in the field of service selection and

composition. In chapter 3, we presented a representative sample of works that have been

done in the field of technical debt and technical debt management. In the previous section,

we presented a representative sample of works that have been done in the field of real

options. In this section, we present the related work, which includes the approaches that

have linked service selection and composition, technical debt, and options.

On the cloud side of option theory, real options have been used in businesses migrat-

ing to cloud [232] and in pricing cloud compute commodities [195]. Mainly, Sharma et

al. [195] proposed an approach for pricing cloud resources (cloud compute commodities

C3) using financial option theory by assuming the cloud resources are underlying assets.

Their model was used for capturing the value of cloud compute commodities and provid-

ing users with QoS guarantees. In addition, Yam et al. [232] have addressed the decisions

of businesses migrating to the cloud using options. In particular, they have looked at the

decisions, which driven by security requirements. Specifically, they have answered: “The

question that the company is faced with is should they switch from their internal IT to

Cloud?”, whereas our approach looks at the options in improving the utility of cloud-based
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architectures through switching web services with the view of improving QoS, the value

of the structure and reducing technical debt, with respect to flexibility and time-value of

the switching decision under uncertainty. Up to our knowledge, we are the first to explore

the link between Real Options and technical debt for the case of web service selection in

the cloud marketplace.

On the other hand, the link between technical debt and options has been explored

in [48, 49, 192]. Seaman et al. [192] discussed four decision approaches to deal with

technical debt: Cost-Benefit Analysis, Analytic Hierarchical Process (AHP), Portfolio

Management Model and Options. They have looked at investment decisions at code and

design levels. For example, they viewed the value of investing in refactoring as a form of

options, where purchasing the option facilitates the change to the software in the future,

but without immediate profits. Likewise, Brown et al. [48] proposed that some technical

debt appears to create options to invest without obligations. In addition, [49] proposed

that the architectural investment decisions can be optimized by analyzing uncertainty and

tradeoffs between incurred cost and anticipated value based on Real options and technical

debt. However, the linkage between technical debt and Real Options for cloud-based web

service selection has not been previously explored.

The link between Real options and web service selection has been explored in a pub-

lished bachelor thesis from the University of Zurich [182]. The published bachelor thesis

investigated the applicability of Real Option Analysis on some projects in the area of

Service Oriented Computing (SOC). Their approach examined the SOC projects on the

infrastructure level. They have investigated growth options using an illustrative example

for evaluation.

Heinrich et al. [98] investigated the question of whether to develop a web service inter-

nally or buy it from different provider externally (outsourcing and make-or buy decision).

They have improved the traditional make-or-buy web services approaches by introducing

a make-and-sell or buy approach using call options. They added that a specific company
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has further opportunities by considering sell options as follows: “If a company decides to

internally develop a web service (make decision), it has additionally the right (but not the

obligation) to sell it on the electronic web service market [98].” They claimed that they

have chosen Black-Scholes-Merton over Binomial Model due to its ease of calculation.

They have illustrated their approach by providing an evaluation for a real case example.

Skourletopoulos et al. [199] presented an approach for technical debt prediction and

quantification in software development process taking into consideration budget and ser-

vice capacity constraints.
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CHAPTER 6. CLOUDMTD: A MODEL FOR EVALUATING SELECTION AND
COMPOSITION DECISIONS IN CB-SOA

6.1 CloudMTD Model

In the previous chapter, we presented an approach based on options for addressing web

service selection and composition requirements. In this chapter, we present and describe

the CloudMTD model and its phases. In the next chapter, we will present the implemen-

tation and evaluation of CloudMTD model. CloudMTD model provides insights into the

evaluation phase of the selection and composition decisions in CB-SOA based on different

concepts such as, uncertainty, flexibility and technical debt (these concepts were discussed

in previous chapters). In each phase of the CloudMTD model, the input is either from

previous phase or taken from decision makers based on their experiences, such as Binomial

Tree coefficients (as described in previous chapters). Figure 6.1 represents the CloudMTD

Cube, which describes CloudMTD scope in general. In this thesis, we take into consider-

ation the following dimensions: (1) time, (2) Value, (3) Complexity, and (4) Flexibility.

The figure shows that CloudMTD phases are conducted on two levels: Service-Level for

service selection, and (2) Architecture-Level for service composition. As mentioned in

chapter 4, web services selection and composition should take into consideration the fol-

lowing factors and consequences: (1) Technical Debt (intentional and unintentional), (2)

Uncertainty (Future Changes), and (3) Dependency.

Figure 6.1 CloudMTD Cube
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Figure 6.2 illustrates the CloudMTD model and its phases, which are:

1. Phase (1): System Monitoring and Anomaly Detection. This is a prelimi-

nary phase, where CloudMTD model will be called in case of any event detection,

such as end of service contract.

2. Phase (2): Candidate Web Services Nomination. In this phase, the cloud

marketplace will be visited for fetching candidate services.

• Data Preprocessing. In this sub-phase, services’ data, which was extracted

from cloud marketplace, is preprocessed.

• Data Clustering using K-Means Algorithm. Services are clustered into groups.

Each group contains services with similar features.

3. Phase (3): QoS Aggregation. Services’ QoS attributes are aggregated.

4. Phase (4): Real Options Analysis. An option-based analysis takes place using

Binomial Tree.

• Binomial Tree Valuation. Here, a binomial tree will be constructed for each

candidate service.

5. Phase (5): Technical Debt Quantification. Technical debt is quantified based

on option values at each month.

6. Phase (6): Architectural-level Evaluation. The structural evaluation is per-

formed based on:

• Dependency Structure Matrix (DSM)

• Visibility Matrix

• Propagation-Cost Metrics

• Time-Sensitivity
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Figure 6.2 CloudMTD Model
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6.1.1 Phase (1): System Monitoring and Anomaly Detection

This is a preliminary phase where the system is monitored for the purpose of detecting and

analyzing the occurrence of anomalies in a given composition, i.e. stimuli that triggers the

need of using CloudMTD model. We assume that the monitoring process takes place on

two levels; architecture-level and web service-level. In web service substitution context,

we encounter “anomalies” when an event occurs that lead to the deviation of the utility of

a given service or composition from what is standard, normal, or expected. These events

may affect a specific web service, QoS or the architecture as a whole. Such events are either

directly related to web services (e.g. end of contract) or to an observation that is related

to web services (e.g. change in QoS, decreasing performance, continuous unavailability,

etc.) in a given architecture. In this phase, the identification of events and any other

observations, which do not conform to the expected utility, takes place. These events

may call for new requirements implementation or a specific web service substitution and

accordingly an architecture reconfiguration. These events must be defined and described

previously by system experts, in order to be easily recognized and managed. An event

in CloudMTD concepts is a description of some anticipated changes in the architecture

that call for web service substitution. Such events can increase the understanding of

CloudMTD model and its use. Before calling CloudMTD model, this information must

be available (e.g. list of events with priorities). Such events trigger the need for calling

the CloudMTD model based on critical priorities.

Here, we assume that the decision maker (e.g. an architect) has been encountered

by an event, which calls for web service substitution. Events could be driven by either

business objectives or technical ones, such as end of web service contract, desire to im-

prove utility of the architecture, change in users’ requirements, need to upgrade to a new

released web service in cloud marketplace, listen to demand changes, new resources are

released, etc. We assume that the event is critical and establishes the need for evaluation.

The system monitoring process for events detection can be either off-line or online. In ei-

ther case, the decision maker needs to evaluate the events and their consequences against
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the requirements. In addition, the decision maker needs to evaluate the implications of

such events on the architecture’s utility. The monitoring process is beyond the scope of

this thesis. We assume that this phase is done by third party. Some research works have

been investigating the monitoring problem. For example, execution monitoring in web

services compositions [176, 31], QoS monitoring for checking the compliance of the offered

service [215], QoS monitoring mechanism based on clients ratings [109], monitoring SOA

applications at runtime [185], and many others.

Input: list of critical events, objectives and requirements.

Process: monitoring the system and detecting critical events which will lead

to web service substitution (e.g. service is not satisfying the requirements any-

more).

Action: calling CloudMTD model for improving a specific service by substitu-

tion. Here, we say that the selection decision is taken by a decision maker to

achieve a desired level of QoS, which in turn imparts the utility of the architec-

ture.

Output: ID of the service in question that should be substituted.

6.1.2 Phase (2): Candidate Web Services Nomination

In this phase, the cloud marketplace will be visited for searching for candidate web ser-

vices. We report on two techniques for nominating candidate web services. The first tech-

nique depends on the decision maker (e.g. architect), where we assume that the architect

will shortlist candidate web services of comparable functionalities, which may come with

different non-functional requirements (QoS), cost and SLA categories. The second tech-

nique is based on a clustering algorithm (clustering will be discussed in details shortly).

The clustering phase is introduced to improve the scalability of CloudMTD model. In

addition, the use of clustering will reduce the search-space in the cloud marketplace and

accordingly will reduce searching-time. We use the data clustering technique with the aim
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of analyzing the structure of a given dataset and finding the common attributes in data

and then assign them to suitable clusters. For instance, if a web service of high availability

is needed, we can search the cluster which meets the search criteria instead of visiting the

whole cloud marketplace. The clustering technique consists of different challenging steps:

(1) identifying the number of clusters in a dataset, (2) determining to which cluster each

member belongs, and (3) finding the suitable distance function. The reason why we have

chosen clustering technique is because it reduces the complexity of the selection and com-

position model. Furthermore, each service, if selected, may have different implications on

the utility of the composition. As we are dealing with a marketplace, it is imperative for

the selection decisions to be time-sensitive: a service offered through a market may look

attractive now but otherwise in the near/far future. Furthermore, the CB-SOA tends

to be more dynamic as they tend to be composed of market-leased services, which can

change by time and consequently affect the composition. Therefore, a selection decision

shall take into consideration possible changes to the structure overtime (if any) due to

changes to constituent services.

6.1.2.1 Data Preprocessing

Before we process and analyze QoS datasets, we have to ensure data integrity in many

dimensions, as QoS attributes vary in units, ranges, and magnitude. For that reason,

equation 6.1 can be used based on [238], in order to make the data uniform and stan-

dardized. Equation 6.1 has two parts, the first one deals with descending values and

the second one deals with ascending values. Some of the QoS attributes have decreasing

values, which means the lower the value, the higher the quality (e.g. response time). And

some other QoS attributes have increasing values, which means the higher the value, the

higher the quality (e.g. availability). And accordingly, treating these two values as one
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will produce incorrect results.

QoSi,j =


max(Qj)−x

max(Qj)−min(Qj)
if QoSj is decreasing

x−min(Qj)

max(Qj)−min(Qj)
if QoSj is increasing

(6.1)

6.1.2.2 Data Clustering using K-Means Algorithm

K-means clustering algorithm is a famous partitioning algorithm. K-means is a popular

algorithm and known for its speed and simplicity [146]. Clustering is the assignment of

objects with similar features into groups (clusters). K-means classifies objects, based on

some features, into K clusters (K should be positive integer). In web services context,

cloud-based web services can be classified into different groups depending on their QoS

attributes’ similarities, e.g. high availability and low response time. K-means clustering

algorithm organizes data points (web services) into similar groups (clusters). And accord-

ingly, data points in one cluster have similar characteristics and data points in different

clusters have different characteristics [146].

Figure 6.3 illustrates the k-means clustering algorithm. The algorithm takes two

inputs; (1) a set of data points and (2) the number of clusters (K). Then, it clusters data

points into k clusters using a specific distance function. In the first round, the algorithm

chooses some data points as centroids for each cluster randomly. Then, the distance

between centroids and each data point, in a given dataset, is calculated. Accordingly,

data points are allocated in clusters taking into consideration the closest centroid distance.

After assigning all data points in the dataset, centroids are recomputed again for each

cluster based on its data points. The assignment procedure is repeated till one of the

stopping conditions takes place [146]. These are: (a) data points are not re-assigned to

other clusters anymore (or minimum re-assignments), or (b) centroids are not recomputed

anymore (or minimum change). The output of this algorithm is a matrix of clusters’

indices for each data point in a given dataset. MatLab1 k-means function is shown in

1http://www.mathworks.co.uk/products/matlab
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formula (6.2).

IDX = kmeans(X, k), (6.2)

where X is a matrix of web services and their QoS attributes and K is the number of

clusters. IDX is the output matrix of the kmeans function, which includes the clusters’

indices for each data point in a given dataset. MatLab kmeans function uses the standard

Euclidean distance as a default function.

Figure 6.3 K-means Clustering Algorithm Flowchart

6.1.2.3 Number of Clusters (K) Selection

To recognize the most suitable number of clusters for a given data points, Silhouette

Coefficients is employed. Silhouette is used to plot clustered data points. Silhouette is a

graphical representation of data points in each cluster [184]. It shows whether data points

are well-positioned in each cluster or not. It is also used for comparing the quality of each
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cluster. Equation (6.3) [184] represent Silhouette Coefficients (s(i)) calculation for data

point i in cluster A.

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (6.3)

based on [184], a(i) represents the average dissimilarity between a given data point i and

the other data points in one cluster. b(i) represents the average dissimilarity between a

given data point i and the other data points in other clusters. s(i) lies somewhere between

-1 and 1, i.e. -1 ≤ s(i) ≤ 1. The value of s(i) has three cases [184]:

1. If the result of s(i) is close to 1: in this case the data points are “well-clustered”

and they were allocated to suitable clusters.

2. If the result of s(i) is around zero: in this case, data points can be allocated to other

clusters those are close to their current cluster. In this case, the distance between

the data point i and both clusters are equally the same.

3. If the result of s(i) is close to -1: in this case, data points are “misclassified”.

Accordingly, we consider them as outliers.

Figure 6.4 represents two examples of silhouette coefficients plots: (A) well-clustered

data points and (B) includes some outliers and some misclassified data points.

Figure 6.4 Examples of Silhouette Coefficients Plots

After finding the appropriate number of clusters, these clusters have to be assessed

and analyzed. That means metrics must be used to measure how good the clustering tech-
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niques are and to evaluate the quality of clusters. For clusters evaluation and comparison,

some of the commonly used evaluation methods are: Purity, Precision and Recall. These

metrics will be discussed in details in chapter 7.

6.1.3 Phase (3): QoS Aggregation

As mentioned before, when we subscribe to a web service, we actually borrow a “black-

box” from the web service provider, with some related information about this service.

When we compare web services, we need to value them using such information. Some

information is taking from service providers (e.g. QoS and price), and some other informa-

tion is taking from stakeholders (e.g. QoS weights, which convey the relative importance

of a specific QoS). QoS aggregation is used for two purposes: (1) the first one is for valu-

ing a specific service on service-level using equation 6.4, and (2) the second one is for

computing architecture utility on the architecture-level using equation 6.5.

VWSi(t) = (Vqos1(t)× w1) + (Vqos2(t)× w2) + ...+ (Vqosn(t)× wn) (6.4)

Varch(t) =
n∑
i=1

VWSi(t), ∀ WSi ∃ d(WSi,WSj), i and j ∈ n (6.5)

where VWSi(t) is the total value of web service at time t. This value will be used in

next phase for the purpose of calculating web service value before substitution. Vqosn(t)

is the QoS attribute, such as scalability, availability, etc. at time t. wn represents the

weight (relative importance), which is acquired from stakeholders. Varch(t) represents the

architecture utility at time t. d(WSi,WSj) represents the dependency among web services

in the architecture (dependency will be described subsequently). There are many web

services QoS aggregation functions available in the literature some of them are based

on QoS metrics that are provided by the service providers themselves and the other are

calculated from a broker’s viewpoint (e.g. [106, 107, 104]). We say that QoS metrics

should be calculated from an unbiased point of view, such as a trusted service agent
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(third party broker). For that reason, we have taken our data from [9].

6.1.4 Phase (4): Real Options Analysis

In the previous chapter, we have discussed the Real Options theory, its background, its

use, etc. We have also discussed different option valuation techniques and investigated the

reason why we have chosen Binomial Model for option valuation. In this thesis, we look

at different types of options: growth option, option-to-switch, option-to-abandon, and

option-to-defer. We model the selection decision using the binomial model with respect

to different scenarios those are related to the previous mentioned option types. Here,

scenarios are used in order to aid decision makers in understanding what the architecture

will be like.

As mentioned in chapter 4, the “behavioral” evaluation is performed on the service-

level using real options. We use options (1) to quantify the value of the selection decision,

and (2) to quantify the time-value of the decision and its implication on service value

and architecture utility accordingly. Option thinking is fit for such evaluation as the

non-functionalities tend to fluctuate. In fact, when valuing options, time is a significant

factor that must be taken into consideration, as it helps in mapping out the structure

and sequence of options, which in turns facilitate the valuation process. Here, we say

that framing the selection decision by real options involves three steps: (1) describing the

problem to be solved (scenario), (2) identifying option type that suits the problem, and

(3) describing the “contingent” decision to be evaluated.

6.1.4.1 Binomial Tree Valuation

Our option analysis is based on the binomial tree. One binomial tree will be constructed

for each candidate web service. One of the important characteristics of the binomial

model that is produces graphical images, which helps in modeling and understanding

options. In this context, we use the binomial tree for modeling different aspects which are

related to web services selection, such as (1) the value of the candidate web service (when
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improving one or more QoS), (2) option value associated with each candidate web service

across the option lifetime, (3) time-value of the selection decision, and (4) technical debt

lifetime. As mentioned before, the binomial tree provides the “staging-view”, which we

use in modeling these factors across a discrete-time of the option lifetime. Furthermore,

the Binomial model identifies the likely future value at the end of the life of an option.

In this subsection, we provide the basics of option valuation using the binomial tree.

Before plotting binomial trees, some information must be identified, such as tree coeffi-

cients, to be used as inputs to the process of building the tree (binomial tree coefficients

were explained in pervious chapter). We built on the work of Ozkaya et al. [172] who

has adapted the binomial model to value design decisions of architectural patterns, which

was documented in [66, 21, 103]. We have adapted their model and introduced the weight

dimension to their utility model. We have also introduced the dynamic dimension for

computing the service value using u and d coefficients.

The subsequent steps will be used to produce a binomial tree for each candidate web

service using CloudMTD model:

Inputs: m, which represents number of months and u, d and p coefficients.

1. Calculating the service value at t=0.

2. Calculating service value at each node of the tree (up and down movements).

3. Calculating options at terminal nodes.

4. Calculating options at each node of the tree (backward induction/folding back pro-

cess).

5. Calculating final option value.

Now, we provide the details of the previous steps of building a binomial tree for each

candidate service. First, we start by calculating the service value at t=0 by using the
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following equation 6.6.

Vt0 = VWSi + ∆Vqosn (6.6)

where Vt0 is the candidate service value at t = 0 (following substitution). VWSi is the

current service value prior to any improvement (before substitution, where it is acquired

from equation 6.4). ∆Vqosn is the improvement in service value when improving a specific

QoS (e.g. Scalability). This value represents the difference in the Vqosn between previous

service (to be substituted) and the new one following substitution (∆).

Second, the asset value, which is the candidate service’s value in our context, is calcu-

lated at each node of the binomial tree, starting with t1 at the left end and moving toward

the right end tm of the tree. Asset values are calculated using u, d and p coefficients.

The asset value is calculated using formula 6.7. The first part of the formula is used for

calculating an asset value for up movement in the tree and the second part is used for

down movement in the tree.

Vtm =


Vtm−1 × u for up movement in the tree, where m > 1

Vtm−1 × d for down movement in the tree, where m > 1

(6.7)

where Vtm is the total value of the candidate web service at time tm. Vtm−1 is the service

value at t = m-1, which represents the service value in a previous step in the tree. u and

d are respectively the percentages increase and decrease in service’s value, which imparts

the architecture utility, where each service is a contributor to the architecture utility. As

mentioned before, u, d and p could be elicited using stakeholders input, historical data,

or based on a given underlying asset valuation.

Third, options at the end nodes (terminal nodes) is calculated using equation 6.8, as
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we are modelling a call option.

fm = max(0, Vtm − C) (6.8)

where fm is the option at terminal node m, Vtm is the service value at terminal node m,

and C is the cost of the option (exercise price), which depends on the option type.

Fourth, the backward induction/folding back process is completed through calculating

options at each node by folding back from right-side toward the left-side of the binomial

tree. The option price is calculated using equation 6.9:

f =
p ∗ fu + (1− p) ∗ fd

(1 + r)
(6.9)

where f is the option, and p is the probability coefficient. fu is the expected payoff when

service value goes up and fd is the expected payoff when service value goes down. r is

the interest rate.

Finally, after calculating options at each node of the tree, the final value is computed.

We extract the rework cost out of the option to get the final value, i.e. final value = option

- rework cost. Where this value is used to compare services and choose accordingly, in

addition to technical debt dimension that will be described in next step.

6.1.5 Phase (5): Technical Debt Quantification

In chapter 3, we have discussed technical debt, its definition, dimensions, etc. in detail.

We have also introduced a new dimension of technical debt explicating service-level in

CB-SOA. In this subsection, we show how CloudMTD model uses option thinking for

the purpose of modeling the technical debt lifetime using binomial tree. Technical debt

on service-level is quantified based on three values: (1) option values at each month, (2)

rework cost, and (3) time.
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CB-SOA decision maker (e.g. an architect) will decide on accepted level of technical

debt, when evaluating candidate web services for substitution. This technical debt needs

to be monitored, tracked and managed for value creation. We posit that coining options

thinking with technical debt analysis on service-level provides better assessment on (1)

how web service substitution can clear technical debt and create value and future options

(2) how web service substitution is likely to introduce an intentional debt in some cases,

(3) when it is optimal to substitute a candidate web service, while tracking the debt

against service value (more details in Section 3.8).

Algorithm 1 Technical Debt quantification and management for a given candidate ser-
vice.

Require: WSi : Candidate service ID

Require: OPmonth : List of option values for each month of the candidate service WSi

Require: EDWSi : Expiration Date of the candidate service WSi

Require: RWWSi : Rework Cost of the candidate service WSi

for month = 1→ EDWSi do

Calculate TD per month: TDmonth

TDmonth = max[−1 ∗ (OPmonth −RWWSi), 0]

if TDmonth = 0 then

TD is managed at month: month

Value-added is created at month: month+ 1

Exit Loop

end if

end for

6.1.6 Phase (6): Architectural-level Evaluation

The previous phases were conducted for evaluating the behavioral aspects of CB-SOA on

service-level and selecting a web service. We have also examined candidate web services

nomination and the likely technical debt that may be incurred as a result of selecting
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a specific web service at a specific time. In this phase, we investigate the structural

aspect evaluation of CB-SOA on the architectural-level and composing the selected web

service. The structural aspect evaluation is carried out using three types of related metrics;

those are (1) Dependency Structure Matrix (DSM), (2) Visibility Matrix, and (3) the

Propagation-cost, for the purpose of visualizing the “ripple” impact of the change on the

structure (CB-SOA). We use these metrics in order to determine the consequences of a

change in any web service on the rest of web services in a given CB-SOA.

6.1.6.1 Dependency Structure Matrix (DSM)

Dependency structure matrix (DSM) is a way of representing dependencies between ele-

ments in a matrix format. It was introduced by Don Steward in 1981 [204] for the purpose

of determining and managing interdependent variables in complex systems. After that,

many research works have been using DSM in evaluating software design choices (e.g.

[207]). Some available research works use DSM in order to understand how elements

should be organized in a given system. In contrast, we use DSM in order to analyze ex-

isting CB-SOA structures. DSM is a simple square matrix that represents dependencies

among elements of the same type, where 1 means dependent and zero otherwise (Figure

6.5). Some approaches blackout the diagonal elements in a given DSM for the purpose of

mentioning that these elements are of no significance, such as [197]. Figure 6.6 present

an example of building DSM.

Figure 6.5 DSM Example

1DSM is also referred to as Design Structure Matrix
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Figure 6.6 Example of building DSM

In our context, we use DSM in order to represent dependencies among web services

in CB-SOA architectures using the architectural view of the composition/system. In this

context, when there is dependency between two web services in CB-SOA, any change to

one of them may affect the other. Equation 6.10 represents the dependency mapping

between an arbitrary web services, Ci and Cj, in a given CB-SOA structure. The first

part of the equation represents a dependency between web service Ci and web service

Cj, where Ci depends on Cj, or Ci calls Cj. The second part indicates that there is no

relation between Ci and Cj. In this context, we use DSM in order to visualize web services

dependencies and track the consequences of any change that take place in CB-SOA on the

architectural-level. In this sense, DSM demonstrates how web services influence each other

in a given CB-SOA structure. In addition, we compute some other metrics from DSM in

order to characterize CB-SOA structure and figure out the consequences of a change on

the architectural-level. These metrics are visibility and propagation-cost, which will be
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explained in details shortly.

Dependency(Ci, Cj) =


CiRCj, Ci −→ Cj

CiRCj, No relation

(6.10)

Furthermore, we treat DSM in CB-SOA as source of information for the purpose

of interpreting architectural-level dependency analysis. Such information, which can be

extracted from DSM, can be related to (1) web services dependencies and (2) the likeli-

hood of change propagation (the consequences of change and dependencies related to the

change), and (3) cost of change. After managing such information, benefits/value-added

can be inferred when considering web service substitution in CB-SOA. We argue that

benefits/value-added cannot be measured directly, however they are related to many di-

mensions that were discussed in previous chapters, such as cost saving. Here, we say that

benefits/value-added can be measured from DSM by quantifying the cost of dependencies

among web services in CB-SOA. In this sense, the cost of substituting or modifying a web

service in a given CB-SOA increases if there are any other web services that are affected

by the substitution or modification decisions, i.e. if there are any direct or indirect de-

pendencies among web services. In this sense, the ability of analyzing change propagation

can be interpreted in two aspects; cost and benefits/value-added.

6.1.6.2 Propagation-Cost Metrics

The architectural view that is presented by the DSM exposes a map of web services

dependencies, which we use for analyzing CB-SOA structure. However, we must use

metrics in order to characterize these maps among web services for comparison reasons

(time-driven comparison will be discussed later on). For achieving these objectives, the

propagation-cost metric is employed. Propagation Cost metric computes the percentage

of the affected elements, on average, in a given system, when a change takes place to

a given element in the same system [144]. Propagation cost metric has been used in
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many fields such as software error propagation cost [4], architecture modifiability [58, 168],

characterizing the differences in design structure between software products [145], Iterative

Release Planning [50], etc. In CB-SOA context, we use the propagation cost metric for

computing the percentage of web services that may be affected on average, either directly

or indirectly, when a change occurs to a given web service. In this sense, propagation on

the architecture can be related to changes to the structure. For this thesis, the propagation

cost quantifies the additional rearchitecting cost to integrate the candidate web service

into the architecture.

We build on the work of [145, 144] and we introduce time and complexity sensitive

propagation cost metrics to solve the problem. Their work was built on the concept of

visibility introduced by Sharman and Yassine [197], which is based on the concept of

reachability matrix that was introduced by John Warfield [226]. The reachability matrix

demonstrates the needed number of steps to reach a given element from another one in a

given network [226]. Based on the concept of reachability matrix, Sharman and Yassine

presented the twin notions of visibility and dependency in a given architecture, where

they posited that all architectures possess a visibility-dependency signature [197]. The

concept of a visibility matrix is based on matrix multiplication techniques2, in order to

identify the “visibility” of a given element (web service in our context) for any given

path length [145]. In this sense, a given DSM is raised to successive powers of n, i.e. a

matrix is multiplied by itself for n times. The results of this procedure expose direct and

indirect dependencies among web services for successive path lengths in a given CB-SOA

structure. After that, by summing the resulting matrices, from M0 to Mn, we get the

visibility matrix V. Note that n = 0 indicates that any change to a given web service will

always affect itself. Thereafter, we compute the architecture’s propagation cost from the

density of the visibility matrix V. Finally, we build on the this work by introducing the

time and complexity sensitive propagation cost metrics for the purpose of computing the

final weighted density matrix by reflecting the dependency complexity levels.

2For more information about matrix multiplication check: http://www.purplemath.com/modules/mtrxmult.htm
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Figure 6.7 An example of an architecture and its DSM.

6.1.6.3 Deriving Propagation-Cost from DSMs in CB-SOA

In web service substitution context, from the DSM of a given CB-SOA structure, we can

conclude which web services are affected by substituting a specific web service and then

we can compute the propagation cost in the entire architecture. In order to understand

the use of DSM, visibility matrix and propagation cost metrics in CB-SOA, consider the

following example. Figure 6.7 represents web services relationships in a given architecture

and its corresponding DSM. It is clear that the web service WS1 depends on both WS2

and WS3. And accordingly, any change to web service WS2 or WS3 will affect web service

WS1. Similarly, web service WS2 and WS3 depends on WS4 and WS5, respectively. Here,

any change to web service WS4 may have a direct impact on WS2 and indirect impact

on WS1 with a path length of 2. Similarly, any change to web service WS6 may have a

direct impact on WS5, an indirect impact to WS3 with a path length of 2, and an indirect

impact on WS1 with a path length of 3.

First, we plot the initial matrix, which is M0 that contains ones along the diagonal

of the matrix. Based on [144], including the matrix of the power n = 0 indicating that

each web service depends and has an impact on itself with path length of zero. Second,

we need to find the DSM of the intended architecture, which will be used as M or M1,

for n = 1. Then, we derive the rest of the matrices from M0 to Mn. For example, M2

= M X M, and so forth. The multiplication process is stopped when matrix Mn is filled
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with zeros, or when Mn equals Mn+1. After that, we get the sum of all matrices from

M0 to Mn, using equation 6.11. Then, the architecture’s propagation cost is computed

from the density matrix, which is extracted by converting all non-zero cells in V matrix

to ones. Figure 6.8 shows the derivation of the visibility matrix V based on the approach

described above. The propagation cost of a given CB-SOA is given by equation 6.12 in

(%), where nzc is the number of non-zero cells and nc is the total number of cells in the

density matrix. This means that x% of the web services is likely to be affected, on average,

by the change. However, this percentage does not provide a meaningful indication of the

complexity of a change that could affect the cost in a given CB-SOA. For this reason,

in next step, we introduce the time and complexity sensitive propagation cost metrics to

compute the final weighted density matrix by reflecting the dependency complexity levels.

V =
n∑
i=0

M i (6.11)

PropCostarch =
nzc

nc
(6.12)
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Figure 6.8 The Derivation of the Visibility Matrix V.
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The structural evaluation of a given CB-SOA architecture is given by the previous steps

for the purpose of evaluating the entire architecture and its propagation cost. However,

these steps do not give an indication of time and complexity sensitivities of a given

dependency. Despite the fact that two services may be dependent, the complexity of

the dependency may vary. For example, higher complexity may signal higher rework

cost, lower complexity may indicate otherwise. This can be due to the effort required for

code development, rewriting, configuration, data migration, new/throwaway maintenance,

fixing mismatches, changes to legacy code, etc. For this reason, we introduce the time

and complexity sensitive propagation cost metric to compute the final weighted density

matrix by reflecting the dependency complexity levels. In this sense, decision makers (e.g.

architects or stakeholder) can decide on the level of complexity per dependency through

voting mechanisms backed-up by their experience and knowledge of the system (Table

6.1). The complexity level of dependency between any arbitrary web services WSm and

WSn may vary depending on the complexity of change. This can be quantified based on

the effort required (e.g. for code development, configuration, data migration, etc). The

results of the process will be multiplying weights for adjusting dependencies, which we

refer to as the “Complexity Density Matrix” (Figure 6.9).

Table 6.1: Density Matrix Level of Complexity

Scheme Complexity level Multiplication factor

A Very high 1
B High 0.7-0.9
C Moderate 0.5-0.69
D Low 0.3-0.49
F Very low 0.1-0.29
0 No dependency 0

6.1.6.4 Time-Sensitivity

We posit that the “Complexity Density Matrix” can vary between time instances. This

is to reflect the dynamic changes of the structure and its composition at varying time

intervals. We assume that web service instantiation of the composing service abstraction
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Table 6.2: Complexity Density Matrix values at t=1 and t=2

Level t = 1 t = 2

A 11/15 = 73% 9/15 = 60%
B 1/15 = 7% 1/15 = 7%
C 0/15 = 0% 2/15 = 13%
D 2/15 = 13% 2/15 = 13%
F 1/15 = 7% 1/15 = 7%
0 No dependency No dependency

tends to imply different complexity on the structure. Table 6.2 shows the complexity

levels values in the Complexity Density Matrix at t=1 and t=2. The dependency analysis

for t1 and t2 corresponds to taking the decision at either t=1 and t=2. This is helpful

when considering option-to-defer a decision (an example of a detailed scenario will be

discussed). After mapping levels of complexity of each web service from Table 6.1 we get

the level of complexity of each dependency among web services. Table 6.2 shows that

by substituting a given web service at t1 that 15
36

= 0.416% of the affected web services

by the change are of level complexity A(73%), B(7%), C(0%), D(13%) and F(7%). If we

take the substitution decision at t2, the percentage of elements classified under complexity

level A has decreased. This can be attributed, for example, to upgrades to one of the

legacy services in the composition, which has eliminated the need for designing wrappers

for integration. As a result, the time value of the decision shall take into consideration

the new complexity of the structure and its propagation cost at t2, if we decide to take

the decision at t2.

Figure 6.9 Complexity Density Matrix at t=1 and t=2
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6.2 Illustrative Examples

MySocialBook is a CB-SOA social network which is running in a highly uncertain en-

vironment, as the load tends to fluctuate and the demand for its services is uncertain.

Its architecture is composed of different web services that are leased or bought off the

cloud marketplace. MySocialBook offers different online web services, such as post, com-

ment and ads. MySocialBook stakeholders are always looking for ways of maximizing the

revenues. In CloudMTD context, this means maximizing utility and in options terms, it

means maximizing the economic-value. Such structures, which are based on CB-SOA, can

improve their utility and add value to their composition by substituting their constituent

services. We argue that these systems can seek value by substituting their constituent

services with web services offered for trading in the cloud marketplace. In the follow-

ing scenarios, we assume that MySocialBook needs to substitute one of its constituent

web services for a given critical stimulus that established the need for evaluation. This

stimulus is driven by either business or technical objectives, such as end of web service

contract, desire to improve utility of the architecture, change in users’ requirements, need

to upgrade to a new released web service in cloud marketplace, demand changes, etc.

We view the investment of MySocialBook in substituting one or more of its constituent

web services as buying options and consequently long-term flexibility on an asset (Web

service). The substitution can introduce a technical debt, which needs to be tracked,

cleared and transformed from liability to value-added. Technical debt can cover several

dimensions, which are related to selection, composition, and operation of the service that

was explained in detail in chapter 3. As discussed previously, we consider two extremes

while valuing flexibility and managing technical debt; option in-the-money and option

out-of-the-money. When a candidate web service is selected, the service level agreement

(SLA) mandates an expiry date of the service. We view this date as a lifetime that is

associated with the acquisition of a web service, which we view as the life of the option.

We view the expiry date of the service (i.e. end of contract) as the expiry date of the

option. The system is monitored and the technical debt is tracked during the life of the
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option. The time until expiration is used for tracking the value and clearing the technical

debt.

The general hypothesis is that substituting a web service at a specific time may em-

bed flexibility under uncertainty to accommodate future changes (e.g. load fluctuation

scenario) and generate value. The substitution decision may incur a technical debt, which

can be translated into future options, if properly managed. CloudMTD analysis can pro-

vide the decision maker (e.g. application architect) with insights into economic viability

of the technical solution, expressed in value-added and technical debt. Based on different

scenarios, decision maker needs to assess the following while selecting a web service: (i)

how web service substitution can clear an existing technical debt and create future options

(ii) how web service substitution is likely to introduce an intentional technical debt, and

(iii) when it is optimal to substitute a given web service, while tracking the technical debt

against value. The decision shall leverage on the flexibility that a web service substitution

can buy from the cloud marketplace and the value-added on CB-SOA architecture as a

result. In each of the following scenarios, we take an option-based approach to inform the

selection of candidate web services with varying costs and value. For every selection, we

quantify the technical debt and the extents to which it can be cleared out and provide

future options.

For the web service in question, MySocialBook has been offered different web services

from different cloud service providers. Candidate web services are of comparable func-

tionalities and may come with different non-functional requirements (QoS), cost and SLA

provisions, Golden and Silver, as shown in Figure 6.10. In each scenario, Golden and Sil-

ver SLAs may vary in price and QoS. CloudMTD model informs the decision of selecting a

candidate web service which will add value and can clear the technical debt more rapidly.

We base the analysis on binomial tree as described previously. The CloudMTD will aid

MySocialBook to quantify the possible future options and the associated technical debt

with respect to time. We are interested in situations, where the options will start to pay

off the loan (and the interest on the loan, if any) as a way for managing the technical
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Figure 6.10 Web service substitution for CB-SOA

debt. In each scenario, CloudMTD option-based analysis aims at answering the following:

• Which of the offered web services will be adding value to MySocialBook system?

• When and how fast the technical debt will be cleared out during the lifetime of the

acquired option?

• When is the optimal time for taking the decision?

In each scenario, we consider the case where MySocialBook needs to substitute only

one of its constituent web services to meet changes. Our model, CloudMTD, tests the

implication of substituting one web service. MySocialBook system will be evaluated with

respect to the following assumptions:

• MySocialBook business goal is to improve a specific QoS in each scenario and ac-

cordingly maximizing the utility of the structure. Form CloudMTD point of view,

MySocialBook business goal must take into consideration long-term value and should

be debt-aware.

• In each scenario, the investment is viewed as a loan, that may incur interest and
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signal a probable technical debt, which needs to be tracked and managed for value

creation.

• Once a web service is acquired, there is an expiry date associated with the acquisition

(end of contract), which we view as the expiration date of the option. The system

will be monitored and the debt will be tracked during the life of option (e.g. 6

months).

• Flexibility is attributed to a web service being able to accommodate the likely future

changes based on a specific scenario (e.g. load fluctuation).

• Value-added at time tn is attributed to the likely increase in revenues generated by

improving the QoS, which in turn imparts the utility of the architecture (∆V =

Vt1 − V0).

• CB-SOA can have a base utility describing its current value.

• Substitution decision shall demonstrate a value-added on the utility; otherwise, the

substitution may carry a technical debt on the attribute sought (e.g. scalability)

and hence needs to be managed.

• The web service selection/substitution decision can be viewed as buying option

(flexibility) on an asset (web service) and can be modelled as a call option. As

mentioned in previous chapter, Call Option gives the right -without the symmetric

obligation- to buy an asset (web service) of uncertain future value for an exercise

price, where there is a potential benefit associated with exercising this option.

Based on the previous assumptions, a binomial tree will be built for each candidate

web service, using the steps in the previous section. The scenarios below illustrate show

the CloudMTD analysis for one selection. In each binomial tree, upper cells represent

the total value of the candidate web service, generated from formula 6.7. The lower cells

represent the option value, based on formula 6.9. In each scenario, we track the option

and check when it will start to clear out the technical debt, if any. The scenarios show
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how the analysis can link technical decisions in selecting web services to their value-added

and likely technical debt. Poor and quick selection decisions may add a value in the short-

term. In this context, we argue that the substitution operation should generate not only

present value but also future one. As mentioned before, value could be created in various

dimensions including savings in operational cost, improved Quality of Service (QoS), etc.

We have reported on the following scenarios and results in [18, 19, 20].

6.2.1 Scenario (1): Growth-Option

In this scenario, we assume that MySocialBook becomes popular, and it may scale up in

order to accommodate more active users benefiting from its services. Here, changes in

scalability requirements trigger the need of substituting one of MySocialBook constituent

services. In response to a scaling-up scenario, we select a substitutable web service with

comparable functionality but with higher capacity. In our case, we view investment in

scalability as a loan, which may incur interest by time. As the number of users benefiting

from the scalability increases, the loan is said to gradually pay off through subsequent

installments reducing the interest on the loan. An installment is said to be paid by

active users, which are charged for using the service. Given it is a loan; we view it as a

technical debt which needs to be monitored and managed for value creation. The selection

decision of improving scalability will start to pay off when the technical debt is cleared

out. In this scenario, uncertainty is attributed to probable fluctuation in load and the

value generated as a result of accommodating scalability scenarios. In this scenario, we

assume that scalability is the only QoS of concern when taking the decision of selecting a

web service. Here, we specifically look at the technical debt that is incurred due to web

service substitution decisions based on scaling up scenarios. We look at the technical debt

in scenarios calling for substitution in response to changes in scalability requirements.

Scaling up decision may need to be utilized for the expected load on the web service;

otherwise, underutilization and the inappropriate management of the capacity of the

service can lead to another technical debt.
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In CloudMTD context, we view MySocialBook investment in substitution as buying

strategic long-term growth options. We model scaling-up scenario of MySocialBook as a

call option to acquire a web service with additional capacity by paying an exercise price.

In this case, we are interested in the expected outcome which utilizes the capacity and

generates value. Here, we say that MySocialBook needs to scale up to accommodate a

load, and accordingly it will improve its utility through substituting one of its constituent

web services to support higher load. In this context, we assume that the selection decision

carries growth options in support of the load. Growth options is a real option on an asset

with the view of unlocking the architecture value potentials through supporting more

load and constrained by the service inherent capacity (growth options was discussed in

details in chapter 5). But since the load fluctuates, the benefits tend to be uncertain. In

addition, technical debt can be created if the payoff of acquiring the option continues to

lag behind its cost for situations where the acquired web service capacity continues to be

underutilized. In this scenario, we look at technical debt, which is related to situations

where the service capacity is underutilized and the operational cost outweighs the revenue

streamed from using the service.

We “stage” the valuation of the candidate web service in the view of managing the

technical debt using the binomial tree. We assume that the selection is driven by require-

ments of scaling up and supporting more users. Each stage can reveal a value-added,

which can be expressed as an option and can be used to manage and clear the techni-

cal debt. In this sense, the candidate web service may unlock future opportunities and

accordingly enabling new business opportunities, which in turn can assist in managing

the technical debt. In this scenario, MySocialBook current system is currently accommo-

dating 100 users. The current value of the system is (£100). Table 6.3 represents the

candidate web services that have been offered from the cloud marketplace.

Based on previous assumptions, two Binomial Trees were built; one for each offered

web service, as seen in Figure 6.11 and Figure 6.12. The Binomial Trees were built using

the coefficients attributes in Table 6.4.
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Table 6.3: Shortlist of the offered Web services to be analyzed

Attributes Web Service1 Web Service2

Expiry Date 6 months 6 months

Rework Cost £130.00 £120.00

Exercise
Price

£100.00 £80.00

Capacity 1140 1140

Availability 99.9 % 90 % - 99.9 %

Table 6.4: Binomial Tree Coefficients attributes for the candidate Web services

Attributes Web Service1 Web Service2

Vt0 £100.00 £100.00

r 5 % 5 %

u 50 % 50 %

d -10 % -40 %

p 0.5 0.5

6.2.1.1 Growth Option Results and Discussion

If selection decision is made, the technical debt is said to be active and needs to be

managed. The candidate web service may appear to be less attractive in the first five

stages of the investment as it carries a technical debt (see Figure 6.11), the technical

debt which can be manageable and be cleared out when the embedded flexibility of the

structure starts to pay off through supporting extra active users on the configuration. For

example, we can see that in the sixth stage the growth options value starts to exceed the

rework cost clearing out the technical debt. The technical debt is said to be zero (see

Figure 6.13). However, if the number of users taking advantage of the structure won’t

materialize, then the technical debt may require more time to clear out. The technical

debt can even increase for scenarios, where debt will accumulate interest if the expected

load continues to be underutilized.

Binomial valuation showed that the first web service will start to clear out the technical

debt and add value during the sixth month (Table 6.5). Here, the value of the call option
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Figure 6.11 Six months evaluation of the first candidate web service

is an indicative measure of the selection decision in unlocking future growth opportunities

and generating extra value. Here we say that the option is in-the-money. This is because,

the value of the call option exceeds the rework cost, and the flexibility of the selection

decision relative to the change in load is likely to pay off if the option is exercised. Here,

real options analysis can further indicate that the technical debt can be manageable as

the investment is likely to unlock future opportunities and creates growth options, which

can cover for the debt.

In the second Binomial Tree (Figure 6.12), we see how acquiring second candidate web

service will provide extra flexibility to scale up. However, that flexibility was underutilized

by having much less load than what the web service capacity can normally handle. In this

case, the value of the option is out-of-the-money. This is because the cost of acquiring

the option continues to be higher than its expected payoff (as shown in Table 6.6). Here,

the value of the call option is an indicative measure of the selection decision in incurring
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Figure 6.12 Six months evaluation of the second candidate web service

debt. This is because the value of the call option drops to zero, and the flexibility of the

selection decision in response to the change in load is unlikely to add value. Scaling-down

by switching to a lower capacity web service can be an alternative solution for managing

the technical debt.
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Figure 6.13 Technical Debt vs. Option Value over Six months evaluation of the candidate
web services

Table 6.5: Option Values of the first candidate web service

Month Option Price Technical Debt Option Value

2 £44.22 (£85.78) £0.00

3 £65.81 (£64.19) £0.00

4 £90.09 (£39.91) £0.00

5 £117.81 (£12.19) £0.00

6 £149.54 £0.00 £19.54

Table 6.6: Option Values for the second candidate seb service.

Month Option Price Technical Debt Option Value

2 £37.4150 (£82.59) £0.0000

3 £45.6214 (£74.38) £0.0000

4 £47.4211 (£72.58) £0.0000

5 £54.1888 (£65.81) £0.0000

6 £56.5091 (£63.49) £0.0000
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6.2.2 Scenario (2): Switch-Option

In this scenario, we consider the case of a switch-option. Here, MySocialBook has sub-

scribed to a web service and has accidently taken a quick decision focusing on the short-

term cost and value. This is due to deadline restrictions. In CloudMTD context, this

is called an unintentional technical debt. Since the selected service features do not fully

match the requirements of MySocialBook application; service switching may be necessary

in order to better fit MySocialBook requirements. MySocialBook has considered a new

web service provider and needs to model switching decision in relation to technical debt

(whether to switch or not).

6.2.2.1 Switch Option Results and Discussion

CloudMTD analysis will be carried out to know whether if the value of the new web service

will cover the rework cost (which is incurred due to switching) and will deliver a value-

added relative to the current web service. We use CloudMTD to model the current web

service’s value against the candidate web service’s value. Let us assume a scenario, where

we need to model the technical debt and the value-added on the structure, expressed

in utility. Let us look at the case of availability, where 100% availability is likely to

increase the service value by an average of 40% per month. Similarly, we assume that

the architecture is likely to experience 10% unavailability on average during the valuation

period leading to an average of 40% decrease in its utility. If the service capacity will

be fully utilized, the situation is assumed to be optimistic benefiting from 40% increase

in utility. The option value is likely to exceed that of the operational cost clearing any

debt. Alternatively, when the operational cost exceeds that of the option value, the

debt will be visible. In this scenario, CloudMTD model is used to inform the decision

of substituting to another web service with higher availability, which has the potential

to improve the option value and reduce the technical debt. The analysis shows that

the current system value (utility) is decreasing on average due to the unavailability of

the service and lost opportunity in supporting expected load (Figure 6.15). Figure 6.14
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shows that technical debt started to be visible as of the third month while showing a

decreasing trend in the option value reaching zero on the fourth months. We argue that

the utility may be improved by switching from the current web service to another one

with higher availability (Table 6.7). Though short-term cost-benefit analysis shows that

switching looks to be unattractive decision for the first four months, option calculation

reveals likely value-added following the fourth month. The case justifies that taking on an

intentional technical debt due to rework is likely to create an option, which will outweigh

the cost of rework.

Figure 6.14 Clearing TD vs. Option Value over 6-month evaluation

Figure 6.15 Current web service (a) first and (b) second months option value.
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Table 6.7: TD vs. Values of the new candidate web service

Month TD Value
1 53.42857 0
2 41.17007 0
3 27.05086 0
4 10.88139 0
5 0 77.54535
6 0 108.4555

6.2.3 Scenario (3): Abandon-Option

In this scenario, we demonstrate the case of unmanageable technical debt, which will

lead to service abandon due to the unacceptable gap between the expected utility-level

and the actual one. In this scenario, MySocialBook has added a new advertising service

to its system. After adding the new service, MySocialBook is supposed to preserve its

business sustainability and prevents any likely negative impact on their system. Therefore,

MySocialBook needs to know whether if it is beneficial to keep, substitute or abandon the

new service. In addition, MySocialBook needs their system to accommodate the variation

in load (number of end-users fluctuation) with respect to time. The system should be able

to scale under uncertainty, where uncertainty is attributed to the unpredictable fluctuation

in load. In that sense, the analysis is carried out based on options thinking. Whether to

keep the new service or not is viewed as an option. As discussed before, Real Options

valuation identifies the value of the investment, which is not only in the expected direct

revenues, but also in the future opportunities that flexibility creates [208, 78].

MySocialBook has different needs and requirements which may change depending on

a specific time of the year, i.e. MySocialBook requirements may change depending on the

number of end-users at a specific time during the year (time-sensitive). MySocialBook

needs a systematic methodology that helps them in quantifying the decision of whether

to keep, substitute or abandon their new service, and predicts the value-added. Moreover,

MySocialBook requires a model to provide them with an analytical view of the system.

The system should be flexible in which it can scale up or down to accommodate the

fluctuation in QoS generally and load specifically (number of active users). Moreover, the

148



6.2. ILLUSTRATIVE EXAMPLES

system should be able to handle the sudden increases in load. MySocialBook new service

should be scalable, which means accommodating more user requests during peak times

(scaling up) and scaling down as demand falls down.

6.2.3.1 Abandon-Option Results and Discussion

After 3 months of adding the new advertising service, MySocialBook observed that their

utility “expected-level” is degrading and approaching the lowest point of their “accepted-

level” (threshold). Accordingly, their business value is degrading as a result of losing

customers. From CloudMTD perspective, the difference between the utility “expected-

level” and “actual-level” is triggering a technical debt that is likely to increase if the value

keeps on degrading. In the view of options thinking, on the fourth month the option value

starts to degrade gradually till it reaches zero where the value is unable to cover for the

cost and as a result signaling technical debt. At this point, there are three scenarios: (1)

Best, if the option value goes up again by gaining and accommodating more users, (2)

likely, the plateau mode: if the value stays as is, and (3) worst, if the option value keeps

on degrading. At the moment, the question is whether to keep, substitute or abandon the

contract of the new advertising service. Here, we view the best case scenario in Figure

6.16 as a “virtual-value”, as the option is extra flexible and unlikely to pay off in future.

Seeing that the capacity of the new released service is not fully utilized as expected during

the first few months. The analysis showed that the service was newly released, and as a

result MySocialBook gained a “short-term” benefit during the first three months. During

the first three months, the option value was increasing and covering the operational cost,

interests and technical debt, if any. After a few months, MySocialBook could not retain

the users of the new service.
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Figure 6.16 Six-month evaluation of the new released service.

Figure 6.17 Evaluation of the new released service, after the third month.
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Figure 6.18 TD vs. Option value.

Table 6.8: Add caption

Vt0 £100.00
r 5%
u 1.50
d 0.70
p 0.6

Exercise Price £30.00
Expiry Date 6 months
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CHAPTER 7. EVALUATION

7.1 Overview

In the previous chapters, CloudMTD model was described and explained for the case

of web service selection and composition in Cloud-Based Service-Oriented Architectures

(CB-SOA). In this chapter, we report on the implementation of CloudMTD model and

we report on some results related to the behavioral and structural aspects of evaluation.

We also demonstrate the applicability of CloudMTD model on a real word case study,

which is built on CB-SOA architecture.

In this thesis, the evaluation method is based on a combination of case study and

experimentation. The evaluation procedure consists of two major stages; the first one

is related to CB-SOA selection evaluation (behavioral) and the second one is related to

CB-SOA composition evaluation (structural). The experiments were designed in order

to verify how the CloudMTD model performs when varying the following: (1) number

of web services, (2) number of binomial steps, (3) options stages and (4) technical debt

stages. We are interested in tracking the performance and examine the extent to which

the CloudMTD model can scale taking into consideration these sensitive variables. Here,

we are testing the impact of changing these variables on the performance.

7.2 The Evaluation Process Context

For the evaluation process, we can distinguish between two different types: Qualitative

Evaluation and Quantitative Evaluation.

7.2.1 Qualitative Evaluation

In this type of evaluation process, we rely on the decision makers’ preferences. It may

include discussing different aspects qualitatively that are related to the problem and solu-

tion. It is also used to qualitatively compare a set of scenarios. This is useful when some

aspect is hard to quantify (e.g. security, value-added, etc.). We evaluate the “goodness”

of selection and composition decisions by the use of the utility function, as this is the
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common practice in most research works in the literature. In previous chapters, we have

differentiated between two levels of utility: the “expected-level” and the “actual-level”.

We have also posited that in CB-SOA selection and composition, the utility is subjective

in nature and depends on the level of relative satisfaction of decision makers. The decision

maker is interested in achieving the desired levels of QoS attributes, which in turn imparts

the utility. Accordingly, different utility levels are calculated based on QoS attributes in

a given web services dataset (QoS aggregation and utility calculation was discussed in

detail in the previous chapter). In this sense, we use the decision maker’s expected-level

as the benchmark, which we use to compare against the actual-level. Here, we define the

utility gap as the difference between expected-level of utility and the actual one. In this

context, each decision maker defines their own utility threshold, from which we define the

decision maker’s satisfactory levels of utility. In this sense, if the utility gap is within

the decision maker’s satisfactory levels, the decision is said to be satisfied. On the other

hand, this utility gap is used for defining the technical debt and its acceptable levels, as

discussed in chapter 3.

7.2.2 Quantitative Evaluation

In this type of evaluation process, we are interested in different aspects: scalability, rele-

vancy, and performance. These aspects are correlated when evaluating CloudMTD model.

In this context, we say that performance is evaluated taking into consideration relevancy

and scalability goals. Scalability goals are acquired from the decision maker in order to

evaluate CloudMTD model based on the desired number of web services to be tested in a

specific time. We evaluate scalability of the model where we are interested in testing the

extent to which the CloudMTD can scale with respect to the number of web services. In

this sense, the number of web services is the variable that affects CloudMTD performance.
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7.3 OptiViTA Case Study

OptiViTA is an adaptation of a Travel Agency case study which was published by the

department of Informatics at University of Fribourg, Switzerland [1]. OptiViTA case study

was implemented using Web-Services Business Process Execution Language (WS-BPEL)

and Java (Figure 7.1 and 7.2). We assume that the CB-SOA architecture has WS-BPEL

business process representation, where each process in the WS-BPEL workflow represents

task(s) in the corresponding architecture. OptiViTA is a Cloud-Based Service-Oriented

Architecture, which consists of a group of web services that all together form a cloud

computing platform. Web services include: flight booking (wsF), hotel booking (wsH),

car hire (wsC). In a typical scenario of OptiViTA business process when receiving a

request, it invokes the involved web services and then sends the responds. OptiViTA is a

large-scale distributed system based on internet business. This means that it requires high

performance, scalability and availability accordingly. In this sense, the system should be

able to handle thousands of requests generated by online users. In addition, the system

should response to these requests in a specific time fraction, as any lost request can

affect OptiViTA’s business value. OptiViTA CB-SOA architecture is illustrated in the

application tier in Figure7.3.

OptiViTA case study was used as an implementation environment for applying option-

based analysis in the view of addressing web service selection and composition problem.

We have applied our CloudMTD model to this case study in order to review the OptiViTA

core architecture and its constituent web services.
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Figure 7.1 OptiViTA BPEL

Figure 7.2 OptiViTA CASA
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7.4 Environmental Setup and Implementation

Implementation was done as a proof of concept and the main purpose of the implementa-

tion is to fulfill interaction requirements of each phase of CloudMTD model. Implemen-

tation Architecture Tiers is shown in Figure 7.3.

Software: different softwares were used based on the needed techniques, such as Ope-

nESB1 for CB-SOA architecture implementation, SOAPUI2 for simulation, performance

testing and stress testing of the architecture, and NetBeans Profiling for the CloudMTD

performance and stress testing. Each part will be explained subsequently.

Hardware: implementation, testing, and experiments were done using an Intel(R) Pen-

tium(R) CPU P6100 2.00GHz machine, with 4GB of RAM, and 64-bit Operating System.

Figure 7.3 Implementation Architecture Tiers

1http://www.open-esb.net
2http://www.soapui.org
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7.4.1 QWS Dataset

We have chosen a large dataset for the purpose of representing the cloud marketplace. The

dataset was also used with the aim of stress testing the CloudMTD model with respect

to performance and scalability metrics. Until now, there have been few publicly available

QoS datasets that represent real web services, so we are limited to three possible real

datasets. The first dataset is the QWS3 [11], which is the dataset we have used. The

second one is the WS-DREAM4 [241], which consists of three attributes: Response Time,

Response Data Size and Failure Probability (the website was not available for sometime).

The third dataset is the tpds20125 [243], which consists of 500 web service and two

attributes: response-time and throughput. Other research work has published their own

randomly generated web services such as [224], which consists of 10,000 web services and

3 QoS attributes (Response Time, Response Data Size and Failure Probability).

As mentioned before, even though there are many ways of collecting data about web

services and QoS aggregation available in the literature some of them are based on QoS

metrics that are provided by the service providers themselves and the other are calculated

from a broker’s viewpoint. We say that QoS metrics should be calculated from an unbiased

point of view, such as a trusted service agent (third party broker). For that reason, we

have taken our data from [9, 11]. Furthermore, QWS dataset holds information about

various web services which happen to satisfy our case in terms of the selection problem

scope.

The QWS [11] consists of two Datasets; Dataset1 = 365 web services and Dataset2

= 2507 web services. Every row in the QWS dataset represents an accessible web service

that was tested over the period of three days. Each web service in this dataset may satisfy

the requirements of a candidate web services in our model. The dataset consists of 9 QoS,

which were calculated based on some commercial benchmark tools (described in Table

7.1). Al-Masri et al. data were collected from some sources, which are publically available

3http://www.uoguelph.ca/ qmahmoud/qws/index.html
4http://www.wsdream.net
5http://www.zibinzheng.com/tpds2012
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on web using Web Service Crawler Engine (WSCE). These datasets were extracted from

[11, 9] and saved into MySQL database to be called by our Java program (CloudMTD

model). Finally, we note that we have reported on four attributes of the QWS dataset:

Availability, Successability, Reliability, and Compliance. However, our CloudMTD model

is generic enough and flexible to deal with the rest of the attributes of the given dataset.

Table 7.1: Dataset QoS attributes [11].

QoS Attribute Description Units
Response Time Time taken to send a request and re-

ceive a response
ms

Availability Number of successful invocations/total
invocations

%

Throughput Total Number of invocations for a given
period of time

invokes/second

Successability Number of response / number of re-
quest messages

%

Reliability Ratio of the number of error messages
to total messages

%

Compliance The extent to which a WSDL document
follows WSDL specification

%

Best Practices The extent to which a Web service fol-
lows WS-I Basic Profile

%

Latency Time taken for the server to process a
given request

ms

Documentation Measure of documentation (i.e. de-
scription tags) in WSDL

%

WsRF Web Service Relevancy Function: a
rank for Web Service Quality

%

Service Classification Levels representing service offering
qualities (1 through 4)

Classifier

Service Name Name of the Web service None
WSDL Address Location of the Web Service Definition

Language (WSDL) file on the Web
None

7.4.2 WS-BPEL

WS-BPEL language was chosen as it facilitates the analysis for web service substitutability

while keeping the orchestration, requirements and constraints explicit. The version that

was used is WS-BPEL 2.0 as it is supported by OpenESB tool. Business Process Execution
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Language (BPEL) and Web Services Business Process Execution Language (BPEL4WS

1.1 and WS-BPEL 2.0) is an orchestration language that is used for assembling a group

of web services into an end-to-end process workflow. BPEL is normally used to model

the behavior of executable business processes based on OASIS standards (Organization

for the Advancement of Structured Information Standards)6. We have implemented our

CB-SOA architecture (OptiViTA case study) using WS-BPEL.

7.4.3 OpenESB

OpenESB7 was chosen as an environment for implementing WS-BPEL web service busi-

ness processes. OpenESB is a cross-platform open source Enterprise Service Bus (ESB)

based on Java. OpenESB relies on standard Java Business Integration (JBI), XML, XML

Schema, WSDL, BPEL and Composite application that are used for building SOA appli-

cations. We have used OpenESB as it is an open source that is reliable, powerful, scalable,

simple and efficient. In addition to, that OpenESB had less computational overhead than

other SOA integration tools, which we have examined during the implementation pro-

cess such as Oracle SOA and Business Process Management (BPM) Suite8, Eclipse SOA

Platform Project9, and NetBeans SOA Project10. The version that was used is OpenESB

2.3.1, which relies on NetBeans 7.3.1 and Glassfish 2.1.1 (Glassfish is an open-source

application server).

7.4.4 SoapUI

SoapUI is a cross-platform open source simulation and mocking software that is used for

functional and load testing of both SOAP and REST web services. Normally, web services

are either based on SOAP or REST standards. For the nature of our problem, we have

chosen to implement web services using SOAP instead of REST. SOAP was chosen as it

6https://www.oasis-open.org
7www.open-esb.net
8http://www.oracle.com
9http://www.eclipse.org/soa

10http://soa.netbeans.org
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is language- and platform-independent protocol, while REST requires the use of HTTP

(note: transport protocol for information exchange includes [202]: HTTP, HTTPS, SMTP,

etc.). We have also used WSDL, which is an interface description based on XML, for the

purpose of describing the functionality of our workflow and web services. In addition,

WS-BPEL is “wrapped” as WSDL and accordingly can be tested using SOAPUI. In our

case, WSDL files were used as inputs to be tested using SoapUI. SoapUI version 5.0.0 was

used in order to carry out the functional testing of CB-SOA implementation, i.e. testing

how WS-BPEL workflow is working.

7.4.5 NetBeans Profiling

NetBeans Profiling11 was used for the purpose of performance and stress testing of our

CloudMTD model as well as for measuring the overhead associated with it. NetBeans

Profiling is an open source tool that provides information about runtime behavior of an

application. It allows monitoring of thread states, CPU performance, and memory usage.

The original meaning of profiling is concluding information about something based on

set of criteria. And in Software Engineering particularly, profiling is the act of analyzing

dynamic programs in order to measure performance, memory usage, complexity, etc.

based on some criteria at runtime.

7.5 Experiments Design

The CloudMTD model is developed to screen the cloud marketplace, which is represented

as a dataset in the database, and select a service. The assumption is that the CloudMTD

model is value- and debt-aware. We are interested in reporting on the performance of the

CloudMTD model in selecting these web services, once we query the cloud marketplace.

11https://netbeans.org/kb/docs/java/profiler-intro.html
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Inputs: Inputs to CloudMTD model are divided into two categories based on offline

and online calculations. Some data must be calculated offline or acquired from the CB-

SOA decision makers (e.g. stakeholders), such as the binomial tree coefficients. These

data are stored in the database after been acquired from decision makers. Some other

data are calculated online.

The choice of QoS attributes: The evaluation was performed bases on the fol-

lowing QoS attributes from the QWS dataset: (1) Availability, (2) Successability, (3)

Reliability, and (4) Compliance. First, the choice of the QoS attributes was based on:

(1) QoS attributes importance, for a given case, and (2) behavioral requirements. We

assume that some attributes are more important than other ones. For example, if the

service is unavailable or has a low availability, it is unlikely to be used and the business

value will be affected accordingly. In addition, we are interested in the behavioral re-

quirements, as these requirements are likely to change and fluctuate. These attributes are

more dynamic and more likely to carry different types of information at different stages

of the evaluation process. Accordingly, these attributes imply different values and give

further insights, which inform the selection of services. This will be explained in detail

in the QoS correlation section. Some other attributes in the QWS dataset tend to be

static. These attributes may not carry extra information and the change is unlikely to

be observed. These attributes were excluded accordingly (e.g. documentation). Second,

these attributes are aggregated in order to be used as an input for the binomial model.

In this sense, the QoS aggregation and ∆VQoS calculation phases may be affected by the

number of attributes. However, the other phases of the CloudMTD model will not be

affected by the number of QoS attributes, such as options and technical debt calculation

phases. Third, following similar argument of [165], where they claimed in their SLR that

the majority of QoS-aware selection approaches used 1-3 QoS attributes. We went beyond

this number and we tested CloudMTD model by using 4 QoS attributes. Accordingly, we

have fixed the number of attributes to 4 QoS attributes.
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The choice of number of stages: Stages are periods of time that are selected per

scenario of interest (e.g. 6 months). Number of stages is used for calculating options

and calculating the technical debt. Based on the literature, business planning cycles are

normally based on quarterly intervals [172]. Ozkaya et al. used three stages evaluation

using the binomial tree, we went beyond this number and we tested CloudMTD model

by using different number of stages up to 6 stages.

The number of test cases: The evaluation process was performed on 200 test cases.

The first category was tested using the extreme case of 2507 web services. The second

category was tested based on varying number of web services. In each category, we have

varied the following: (1) number of web services, (2) number of binomial steps, (3) options

stages and (4) technical debt stages.

7.6 Results: Performance and Memory Usage

Profiling techniques were used in order to report on performance accepted-levels and to

identify bottlenecks those are related to performance. We have used two profiling tech-

niques: Performance and Memory Usage. Performance metric is used in order to know

how much each method is contributing to the overall execution time. Table 7.2 describes

the analogy and definitions of each method in CloudMTD model and its implementation.

Profiling results were extracted based on the QWS dataset [11] as inputs. The following

figures are samples of the results of execution time for each method in CloudMTD model.

Figure 7.7 presents performance test results for CloudMTD methods those are related to

connecting and disconnecting to the database to import web services data, QoS aggrega-

tion and QoS attributes improvements. Figure 7.6 illustrates the CloudMTD performance

test results for CloudMTD methods those are related to the selection phase, such as tech-

nical debt and options calculations. Figure 7.8 illustrates CloudMTD performance test

164



7.6. RESULTS: PERFORMANCE AND MEMORY USAGE

results for CloudMTD methods those are related to the composition phase.

Next, we present the results of 200 test cases based on different variables. The purpose

is to understand how CloudMTD model can be sensitive to these variations. Table 7.3

presents three different categories of results, taking into consideration 2507 web services

and varying number of stages from 1 to 6. By increasing the number of stages up to 6, we

get finer results. However, the average execution time of 30 runs is 48229 (ms), and the

standard deviation is 14095, when number of stages equals to 6. Table 7.4 presents three

different categories of results for 616 web services and varying number of stages from 1

to 6. For example, the average execution time of 10 runs is 6025 (ms) and the standard

deviation is 405, when number of stages equals to 3. The following tables (7.5, 7.6, 7.7,

and 7.8) present three different categories of results, taking into consideration 940, 129,

349, and 473 web services respectively.

Generally, when Java code is started, Java Virtual Memory (JVM) reserves a part of

the machines memory. And part of this memory is reserved for Java heap memory, in

which objects are created. Figure 7.4 and 7.5 illustrate CloudMTD memory usage results

for selection and composition respectively. Performance test was carried out according

to the following setting criteria: (1) Settings Name: Analyze Performance, (2) Profiling

Type: CPU Profiling (Sampling Application), (3) CPU Profiling Type: Sampled, (4)

Instrumentation Filter: Profile only project classes. Memory usage test was carried out

based on the following setting criteria: (1) Settings Name: Analyze Memory, (2) Profiling

Type: Memory (Sampling), and (3) Run Garbage Collection When Getting Results: Yes.
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Table 7.2: CloudMTD methods description.

Method Implementation CloudMTD
getServicesQoS Imports services’ QoS Data

from the database.
Query the cloud mar-
ketplace and aggre-
gate the QoS of each
candidate service.

connect Establishes MySQL
database connection.

Establishes a connec-
tion to market data
which is published.

disconnect Terminates MySQL
database connection.

Terminates the con-
nection.

getDeltaFunction Calculates the difference
among specific QoS at-
tributes

Calculates the im-
provement in specific
QoS value (∆Vqosn)

tdCalculation Calculates the technical
debt.

Technical Debt quan-
tification.

myOptionPrice Calculates options values
based on Binomial Option
Pricing.

Option calculation.

getTravelInfo Connects to the WS-BPEL
workflow and returns the
needed information regard-
ing travel: flight dates, ho-
tel info, etc.

Services Composition.

Figure 7.4 CloudMTD memory usage results for selection phase based on 2507 web
services and 6 stages.
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Figure 7.5 CloudMTD memory usage results for composition phase.

Figure 7.6 CloudMTD performance test results for methods related to the selection
phase.
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Figure 7.7 CloudMTD performance test results for main methods.

Figure 7.8 CloudMTD performance test results for methods related to the composition
phase.
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Table 7.3: CloudMTD performance test results based on different stages for calculating
options and technical debt

Test Case Run QoS Stages Services Execution Time (ms)

TC1 1 4 6 2507 38545
TC2 2 4 6 2507 35175
TC3 3 4 6 2507 32963
TC4 4 4 6 2507 56776
TC5 5 4 6 2507 42539
TC6 6 4 6 2507 64655
TC7 7 4 6 2507 62502
TC8 8 4 6 2507 51541
TC9 9 4 6 2507 79234

TC10 10 4 6 2507 77475
TC11 11 4 6 2507 46827
TC12 12 4 6 2507 37787
TC13 13 4 6 2507 40244
TC14 14 4 6 2507 37285
TC15 15 4 6 2507 57479
TC16 16 4 6 2507 65330
TC17 17 4 6 2507 63339
TC18 18 4 6 2507 39260
TC19 19 4 6 2507 49050
TC20 20 4 6 2507 49713
TC21 21 4 6 2507 38436
TC22 22 4 6 2507 25720
TC23 23 4 6 2507 55447
TC24 24 4 6 2507 40292
TC25 25 4 6 2507 64044
TC26 26 4 6 2507 68231
TC27 27 4 6 2507 44398
TC28 28 4 6 2507 29548
TC29 29 4 6 2507 53049
TC30 30 4 6 2507 41123

Average 48229
Std Dev 14095

TC31 1 4 3 2507 16538
TC32 2 4 3 2507 14260
TC33 3 4 3 2507 13885
TC34 4 4 3 2507 16407
TC35 5 4 3 2507 15692
TC36 6 4 3 2507 14397
TC37 7 4 3 2507 14877
TC38 8 4 3 2507 13476
TC39 9 4 3 2507 14531
TC40 10 4 3 2507 14622

Average 14847
Std Dev 1114

TC41 1 4 1 2507 11242
TC42 2 4 1 2507 6870
TC43 3 4 1 2507 7105
TC44 4 4 1 2507 7516
TC45 5 4 1 2507 7806
TC46 6 4 1 2507 6775
TC47 7 4 1 2507 7050
TC48 8 4 1 2507 7616
TC49 9 4 1 2507 9875
TC50 10 4 1 2507 7098

Average 7895
Std Dev 1477
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Table 7.4: CloudMTD performance test results based on different stages for calculating
options and technical debt

Test
Case

Run Stages Services Execution
Time
(ms)

Test
Case

Run Stages Services Execution
Time
(ms)

Test
Case

Run Stages Services Execution
Time
(ms)

TC51 1 6 616 13358 TC61 1 3 616 5292 TC71 1 1 616 3216
TC52 2 6 616 9791 TC62 2 3 616 6161 TC72 2 1 616 3567
TC53 3 6 616 13304 TC63 3 3 616 5974 TC73 3 1 616 3476
TC54 4 6 616 10948 TC64 4 3 616 5860 TC74 4 1 616 3961
TC55 5 6 616 9030 TC65 5 3 616 5730 TC75 5 1 616 3734
TC56 6 6 616 10946 TC66 6 3 616 6477 TC76 6 1 616 3312
TC57 7 6 616 10327 TC67 7 3 616 6509 TC77 7 1 616 3547
TC58 8 6 616 13314 TC68 8 3 616 5952 TC78 8 1 616 3342
TC59 9 6 616 11618 TC69 9 3 616 6556 TC79 9 1 616 3596
TC60 10 6 616 8655 TC70 10 3 616 5743 TC80 10 1 616 3336

Average 11129 Average 6025.4 Average 3509
Std
Dev

1756 Std
Dev

405.245 Std
Dev

224

Table 7.5: CloudMTD performance test results based on different stages for calculating
options and technical debt

Test
Case

Run Stages Services Execution
Time
(ms)

Test
Case

Run Stages Services Execution
Time
(ms)

Test
Case

Run Stages Services Execution
Time
(ms)

TC81 1 6 940 22573 TC91 1 3 940 8055 TC101 1 1 940 4781
TC82 2 6 940 19610 TC92 2 3 940 6788 TC102 2 1 940 4504
TC83 3 6 940 14516 TC93 3 3 940 7220 TC103 3 1 940 4143
TC84 4 6 940 14408 TC94 4 3 940 7146 TC104 4 1 940 4118
TC85 5 6 940 18512 TC95 5 3 940 7709 TC105 5 1 940 4316
TC86 6 6 940 18346 TC96 6 3 940 8276 TC106 6 1 940 3921
TC87 7 6 940 15597 TC97 7 3 940 6749 TC107 7 1 940 4496
TC88 8 6 940 12087 TC98 8 3 940 7348 TC108 8 1 940 4720
TC89 9 6 940 13992 TC99 9 3 940 8871 TC109 9 1 940 4825
TC90 10 6 940 18284 TC100 10 3 940 7574 TC110 10 1 940 4410

Average 16793 Average 7573.6 Average 4423.4
Std
Dev

3184 Std
Dev

673.514 Std
Dev

302.749

Table 7.6: CloudMTD performance test results based on different stages for calculating
options and technical debt

Test
Case

Run Stages Services Execution
Time
(ms)

Test
Case

Run Stages Services Execution
Time
(ms)

Test
Case

Run Stages Services Execution
Time
(ms)

TC111 1 6 129 4724 TC121 1 3 129 2780 TC131 1 1 129 1424
TC112 2 6 129 4313 TC122 2 3 129 3193 TC132 2 1 129 1445
TC113 3 6 129 4451 TC123 3 3 129 3180 TC133 3 1 129 1388
TC114 4 6 129 4415 TC124 4 3 129 2813 TC134 4 1 129 1350
TC115 5 6 129 5609 TC125 5 3 129 2482 TC135 5 1 129 1501
TC116 6 6 129 6041 TC126 6 3 129 2936 TC136 6 1 129 1509
TC117 7 6 129 5109 TC127 7 3 129 2962 TC137 7 1 129 1358
TC118 8 6 129 5063 TC128 8 3 129 2834 TC138 8 1 129 1602
TC119 9 6 129 4613 TC129 9 3 129 2773 TC139 9 1 129 1531
TC120 10 6 129 5315 TC130 10 3 129 2748 TC140 10 1 129 1282

Average 4965 Average 2870.1 Average 1439
Std
Dev

568 Std
Dev

211.011 Std
Dev

97.6217
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Table 7.7: CloudMTD performance test results based on different stages for calculating
options and technical debt

Test
Case

Run Stages Services Execution
Time
(ms)

Test
Case

Run Stages Services Execution
Time
(ms)

Test
Case

Run Stages Services Execution
Time
(ms)

TC141 1 6 349 7787 TC151 1 3 349 4344 TC161 1 1 349 3003
TC142 2 6 349 8866 TC152 2 3 349 3735 TC162 2 1 349 2972
TC143 3 6 349 7658 TC153 3 3 349 4372 TC163 3 1 349 2844
TC144 4 6 349 7625 TC154 4 3 349 4359 TC164 4 1 349 2723
TC145 5 6 349 7624 TC155 5 3 349 4216 TC165 5 1 349 2897
TC146 6 6 349 8692 TC156 6 3 349 4065 TC166 6 1 349 2991
TC147 7 6 349 6361 TC157 7 3 349 4136 TC167 7 1 349 2830
TC148 8 6 349 8413 TC158 8 3 349 3872 TC168 8 1 349 3073
TC149 9 6 349 7894 TC159 9 3 349 4033 TC169 9 1 349 2938
TC150 10 6 349 6665 TC160 10 3 349 3660 TC170 10 1 349 2969

Average 7759 Average 4079.2 Average 2924
Std
Dev

799 Std
Dev

257.24 Std
Dev

102

Table 7.8: CloudMTD performance test results based on different stages for calculating
options and technical debt

Test
Case

Run Stages Services Execution
Time
(ms)

Test
Case

Run Stages Services Execution
Time
(ms)

Test
Case

Run Stages Services Execution
Time
(ms)

TC171 1 6 473 11121 TC181 1 3 473 4712 TC191 1 1 473 3249
TC172 2 6 473 9384 TC182 2 3 473 4611 TC192 2 1 473 3137
TC173 3 6 473 12029 TC183 3 3 473 4799 TC193 3 1 473 3176
TC174 4 6 473 10057 TC184 4 3 473 4524 TC194 4 1 473 3234
TC175 5 6 473 9033 TC185 5 3 473 4756 TC195 5 1 473 3215
TC176 6 6 473 7880 TC186 6 3 473 4473 TC196 6 1 473 3161
TC177 7 6 473 10842 TC187 7 3 473 4429 TC197 7 1 473 3128
TC178 8 6 473 7569 TC188 8 3 473 4257 TC198 8 1 473 3139
TC179 9 6 473 10946 TC189 9 3 473 4544 TC199 9 1 473 3319
TC180 10 6 473 10533 TC190 10 3 473 4578 TC200 10 1 473 3164

Average 9939 Average 4568.3 Average 3192.2
Std
Dev

1451 Std
Dev

162.948 Std
Dev

61.1025
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7.7 Evaluation from CloudMTD Perspective

7.7.1 K-means Clustering

By the use of k-means, we are evaluating the extent to which a clustering technique can

improve service selection process. K-means is known to be an NP-hard problem [70]. In

addition, based on the literature services selection and composition is known to be an

NP-hard problem [235]. In fact, it is possible to nominate all available services for value

creation; however we decided to introduce web services clustering in order to reduce the

search space. Accordingly, by filtering services we get a smaller space, and consequently

it will be easier to consider the context of services composition. We are interested in three

aspects when using the k-means clustering:

1. Improving Scalability. The used of k-means clustering improves the scalability by

reducing the search space of candidate web services. Otherwise, the selection process

and the related modeling can get complex in case if we model every single web service

in the marketplace.

2. Improving Relevancy. The used of k-means clustering improves the relevancy by

fetching the relevant cluster only instead of searching the whole dataset (the whole

marketplace).

3. QoS correlation. The use of clustering makes QoS correlation explicit by analyzing

data and finding structures in the given dataset.

7.7.2 Binomial Model

As mentioned in previous chapters, because of uncertainty, we have chosen Real Options

theory as it is an ultimate choice to be used as a valuation technique, since other valuation

techniques has some shortages in dealing with the value of flexibility under uncertainty,

i.e. do not account for the value of flexibility. The Binomial model is one of the approaches

that is used in option pricing to model uncertainty [77]. There are some goals that should
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be fulfilled during the evaluation procedure when using the Binomial Option model in

order to address the web service selection problem. These goals must be fulfilled based

on a specific scenario that is linked to a suitable option type. The following summarizes

the main goals:

7.7.2.1 Staging-View

One of the reasons of why we have chosen the binomial option pricing is that because it

allows the “staging-view”. What is meant by the “staging-view” is that we can analyze and

interpret the results during different time periods (intervals) of time, for example month

by month or year by year depends on needs and contracts length, which is described in

SLA.

7.7.2.2 Multiple-Decision Points

Because of the dynamic nature of the selection problem that is due to different dimensions

of uncertainty that were discussed previously (e.g. continuous fluctuation of QoS, needs

and requirements), there is a continuous need for a step-by-step assessment and judgment

that allows taking dynamic decisions (continuous assessment). Binomial analysis fits the

need of a dynamic and continuous assessment by presenting many decision points during

a specific time-period. In addition, there is a need for a technique that predicts and keeps

track of possible values during this time-period. Each point in the tree expresses either an

improvement or a degradation of the value. Here, we are evaluating the extent to which

CloudMTD model is capable of facilitating the what-if analysis at different points in the

decision space.

7.7.2.3 Transparency: Value and Debt Visualization

Binomial Tree allows the decision maker to observe the change in value and debt at each

time-period in the tree. In this sense, CB-SOA decision makers will be able to visualize

the value and debt over different time periods. On the other hand, Binomial Tree is used
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for technical debt lifecycle visualization: (1) when it starts, (2) when interest are incurred,

if any, (3) Payback; when the technical debt is expected to be cleared out and/or when

it is likely to generate future options if cleared.

7.7.3 Dependency Tracking

CloudMTD model tracks the dependencies among constituent services in CB-SOA based

on: (1) Dependency Structure Matrix (DSM), (2) Visibility Matrix, and (3) Propagation-

cost. Here, we evaluate the extent to which substituting a particular service has an impact

on other services in a given architecture.

7.8 Evaluation from OptiViTA Perspective

We have used a case study in order to evaluate the applicability of the CloudMTD model

on a real architecture. As well as to answer some research questions those are related to

CloudMTD model such as, how CloudMTD model can be used? What sort of decisions

can be taken using CloudMTD model? Furthermore, the case study is used to empirically

evaluate and assess the CloudMTD model in dealing with the behavioral and structural

aspects of a given architecture. In that sense, we state that case study is the most

appropriate and suitable research method to be used for answering the research questions

that are related to CloudMTD model. Next we list the objectives and aims of using

OptiViTA case study in the evaluation:

7.8.1 The Applicability of CloudMTD Model

OptiViTA case study is used for demonstrating the CloudMTD model’s applicability. In

particular, the case study is used to proof that CloudMTD model is practically suit-

able and applicable to the problem of web service selection and composition in cloud-

based service-oriented architectures. In addition, OptiViTA case study is used in order to

demonstrate how CloudMTD model can inform the selection/substitution decision of a
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web service in CB-SOA for a given scenario, with respect to value-added, technical debt,

and cost.

7.8.2 The Worthiness of the Decision

OptiViTA case study is used for evaluating the worthiness of the substitution/selection

decision. In particular, the case study is used in order to assess the worthiness of the

reconfiguration i.e. whether if it is valuable to reconfigure the architecture or not. Here we

are concerned about three situations: 1. keeping the current web service, 2. substituting

the current web service by another one, which is said to be more suitable in terms of

value-added, technical debt and cost, and 3. abandon the current web service.

7.8.3 Decision Time-Value

OptiViTA case study is used for expressing the time-value of the substitution/selection

decision with respect to future change. CloudMTD is used to quantify the time-value

of the substitution/selection decision. For example, if the case is to switch, CloudMTD

informs when it is beneficial to switch.

7.9 Behavioral Evaluation: Selecting a Web Service

In this part of the evaluation process, we evaluate the extent to which CloudMTD model

can assist in selecting “good enough” (qualified) services which tend to meet the behavioral

requirements of the system. In addition, we test the scalability of the technique on a large

dataset that consists of real web services, representing the marketplace. We consider both

the number of services and the QoS attributes as measure of scalability.
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7.9.1 K-means clustering

The clustering hypothesis is that web services in the same cluster behave similarly with

respect to QoS attributes. In this section, we present the clustering evaluation process

and discuss how clustering will improve the scalability and the relevancy of the data. In

addition, we present and analyze QoS correlation.

7.9.2 K-means Results and Discussion

A given web service dataset consist of more than one dimension, as each web service

has many attributes. In this context, visualizing multidimensional datasets is complex.

However, K-means clustering technique is capable of presenting clustered data in a struc-

tured way that enables the decision maker to investigate “groups’ structure” in the given

dataset.

As mentioned in the previous chapter, the Silhouette plot is used for the purpose of

testing the strength of a given cluster in the dataset, i.e. Silhouette plot reveals how

well is each element clustered in a given dataset. Silhouette Coefficients lies somewhere

between -1 and 1, where 1 represents well-clustered data and -1 represents misclassified

data (chapter 6, section 6.1.2). Figure 7.9 represents Silhouette plots for the QWS dataset

from K=2 till K=8. Figure 7.10 represents a Silhouette plot for K = 5, i.e. clustering the

web services into five clusters.

For more quantitative method of comparing different Silhouette plots, let us consider

the Average Silhouette Values (ASV) presented in Table 7.9. ASV is calculated by com-

puting the means for each Silhouette plot. The interpretation of the results of K-means

and Silhouette values depends on the decision maker intention. For example, if we con-

sider K = 2, the ASV is the highest, however, clustering web services into two different

categories is not enough and impractical. In addition, K = 5 was the only Silhouette plot

with no negative Silhouette values and accordingly with least outliers of services.
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Figure 7.9 Silhouettes results from K=2 till K=8

Table 7.9: Average Silhouette Values (ASV).

K ASV

2 0.7626
3 0.4565
4 0.4758
5 0.5455
6 0.5864
7 0.5825
8 0.5713

Figure 7.10 Silhouettes results for K=5
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Before analyzing the clustering results, we would like to present the original candidate

dataset distribution before clustering technique is applied. This is for the purpose of

presenting all available values for each attribute of a given web service in the dataset.

Figure 7.11 represents the histograms of the candidate dataset. Figure 7.12 represents

the pie charts of the candidate dataset.

Figure 7.11 The candidate dataset histograms of 2507 web services and 4 QoS attributes.

Figure 7.12 The candidate dataset pie charts of 2507 web services and 4 QoS attributes.
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Table 7.10 represents the number of data records in each cluster when applying K-

means for K = 5, five clusters. This information is needed in different aspect. For example,

it will be used for calculating each cluster quality. Figure 7.13 present the pie charts of

the clusters when k = 5.

Table 7.10: Number of data records in each cluster.

cluster records
1 616
2 940
3 129
4 349
5 473

total 2507

Figure 7.13 Clusters Pie Charts (web services distribution of K = 5)
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The following figures present histograms and pie charts of each QoS attributes in each

cluster when k=5 (from Figure 7.14 to Figure 7.23). These figures were used for analyzing

web services clusters distribution and QoS correlations in each cluster. For example, figure

7.17 and figure 7.16 represent second cluster pie charts and histograms. If we consider

the availability attribute, for example, we can conclude out of these figures that 27% of

web services in cluster number 2 has availability values of the range 96-100. This 27%

represents 254
435

= 58% of the total number of web services with availability range 96-100 in

the dataset. We found that cluster number 2 contains high values of each QoS attribute.

By looking at the figures and table 7.11, we find that cluster number 2 consists of the

following: (1) Availability: Excellent and Very Good values, (2) Successability: Excellent

Values. (3) Reliability: Excellent and Very Good values, and (4) Compliance: Excellent

values. In this sense, if the decision maker is interested in web service with high values,

s/he can choose cluster number 2 instead of searching the whole marketplace. However,

cluster number 3 contains either very bad values or unstructured one, and accordingly

this cluster can be neglected. If the decision maker is interested in moderate data, s/he

can have a look at cluster number 1, where QoS data are almost of Good values. Table

7.11 presents a full description of QoS correlations in each cluster when k=5. Tables 7.12,

7.13, and 7.14 present ranges descriptions of each QoS attributes.

Table 7.11: Clusters Themes based on QoS Correlations

Cluster Availability Successability Reliability Compliance
1 Good Excellent Good Good
2 Excellent and

Very Good
Excellent Excellent and Very

Good
Excellent

3 Very Bad Very Bad No Theme No Theme
4 Very Low and

Bad
Acceptable
and Low

Good and Bad Very Good

5 Acceptable and
Low

Very Good
and Good

Bad Very Good
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Table 7.12: Availability Theme

Availability Theme
96 - 100 Excellent
91 - 95 Very Good
86 - 90 Good
81 - 85 Acceptable
71 - 80 Low
61 - 70 Very Low
51 - 60 Bad
≤ 50 Very Bad

Table 7.13: Reliability Theme

Reliability Theme
≤ 60 Excellent
61 - 70 Very Good
71 - 80 Good
81 - 90 Bad

Table 7.14: Other QoSs Theme

Other QoS Theme
91 - 100 Excellent
81 - 90 Very Good
71 - 80 Good
61 - 70 Acceptable
51- 60 Low
≤ 50 Very Bad
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Figure 7.14 First cluster histograms of 4 QoS attributes.

Figure 7.15 First cluster pie charts of 4 QoS attributes.
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Figure 7.16 Second cluster histograms of 4 QoS attributes.

Figure 7.17 Second cluster pie charts of 4 QoS attributes.
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Figure 7.18 Third cluster histograms of 4 QoS attributes.

Figure 7.19 Third cluster pie charts of 4 QoS attributes.
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Figure 7.20 Fourth cluster histograms of 4 QoS attributes.

Figure 7.21 Fourth cluster pie charts of 4 QoS attributes.
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Figure 7.22 Fifth cluster histograms of 4 QoS attributes.

Figure 7.23 Fifth cluster pie charts of 4 QoS attributes.
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7.9.3 Evaluation of the Clusters of Web Services

The next step after finding the appropriate number of clusters is to asses these clusters.

Some metrics must be used in order to measure the quality of clusters (quality of services

grouping and classification), i.e. how good is the technique of clustering web services.

Here, we are evaluating to what extent the clustering technique is improving the service

selection process. We have employed some of the commonly used clustering evaluation

methods, such as Purity, Precision and Recall. These metrics are useful as they produce

fixed numbers, which makes clusters comparison easier and comprehensive. We have used

these metrics in order to measure the extent to which a specific cluster contains objects

(web services) of only one class and the majority of these objects (web services) of the

particular class. For example, analyzing if cluster number x contains only web services

with high availability and at the same time it contains the majority of web services with

high availability.

7.9.3.1 Purity

We use the purity evaluation method in order to measure how pure is a specific cluster

with respect to one QoS attribute. Purity computes the extent to which a cluster includes

one class of objects (web services) [229]. Next, we present the tables of the purity values

of each QoS attribute. For example, in Table 7.15, the purity percent for the first cluster

is 182
616

= 36%, where (182) is the highest frequency of a given data in the first cluster and

(616) represents the sum of records in cluster1.

Table 7.15: Availability Purity Table

Cluster 96 - 100 91 - 95 86 - 90 81 - 85 71 - 80 61 - 70 51 - 60 ≤ 50 Purity

1 181 182 220 33 0 0 0 0 0.357 = 36%
2 254 274 291 121 0 0 0 0 0.310 = 31%
3 0 0 0 0 0 0 0 129 1.000 = 100%
4 0 0 0 0 0 148 144 57 0.424 = 42%
5 0 0 33 200 216 24 0 0 0.457 = 46%

Total 435 456 544 354 216 172 144 186
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Table 7.16: Successability Purity Table

Cluster 91 - 100 81 - 90 71 - 80 61 - 70 51- 60 ≤ 50 Purity

1 554 62 0 0 0 0 0.899 = 90%
2 812 128 0 0 0 0 0.864 = 86%
3 0 0 0 0 0 129 1.000 = 100%
4 0 0 0 155 142 52 0.444 = 44%
5 0 239 213 21 0 0 0.505 = 51%

Total 1366 429 213 176 142 181

Table 7.17: Reliability Purity Table

Cluster 81 - 90 71 - 80 61 - 70 51- 60 ≤ 50 Purity

1 35 448 90 39 4 0.727 = 73%
2 3 477 155 277 28 0.507 = 51%
3 1 26 34 50 18 0.388 = 39%
4 39 173 86 42 9 0.496 = 50%
5 90 282 64 36 1 0.596 = 60%

Total 168 1406 429 444 60

7.9.3.2 Precision

Precision metric is used in order to measure the relevancy of the retrieved web services

from a given cluster [158]. Here, we are testing to what extent the number of web services

in a specific cluster are relevant, i.e. how many web services, in a specific cluster, are

relevant candidates to be selected? The following tables present the precision tables of

each QoS attribute. For example, in Table 7.19, the precision value of web services which

have the availability range 96 - 100 in the first cluster is 181
616

= 29%, where (181) is the

number of web services which have the availability range 96 - 100 in the first cluster and

(616) represents the sum of records in the cluster1.
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Table 7.18: Compliance Purity Table

Cluster 91 - 100 81 - 90 71 - 80 61 - 70 51- 60 ≤ 50 Purity

1 0 107 482 22 1 4 0.782 = 78%
2 758 177 5 0 0 0 0.806 = 81%
3 12 42 68 5 0 2 0.527 = 53%
4 25 196 97 30 0 1 0.562 = 56%
5 40 297 111 22 0 3 0.628 = 63%

Total 835 819 763 79 1 10

Table 7.19: Availability Precision Table

Cluster 96 - 100 91 - 95 86 - 90 81 - 85 71 - 80 61 - 70 51 - 60 ≤ 50

1 0.294 0.295 0.357 0.054 0.000 0.000 0.000 0.000
2 0.270 0.291 0.310 0.129 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
4 0.000 0.000 0.000 0.000 0.000 0.424 0.413 0.163
5 0.000 0.000 0.070 0.423 0.457 0.051 0.000 0.000

Table 7.20: Successability Precision Table

Cluster 91 - 100 81 - 90 71 - 80 61 - 70 51- 60 ≤ 50

1 0.899 0.101 0.000 0.000 0.000 0.000
2 0.864 0.136 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 1.000
4 0.000 0.000 0.000 0.444 0.407 0.149
5 0.000 0.505 0.450 0.044 0.000 0.000

Table 7.21: Reliability Precision Table

Cluster 81 - 90 71 - 80 61 - 70 51- 60 ≤ 50

1 0.057 0.727 0.146 0.063 0.006
2 0.003 0.507 0.165 0.295 0.030
3 0.008 0.202 0.264 0.388 0.140
4 0.112 0.496 0.246 0.120 0.026
5 0.190 0.596 0.135 0.076 0.002

Table 7.22: Compliance Precision Table

Cluster 91 - 100 81 - 90 71 - 80 61 - 70 51- 60 ≤ 50

1 0.000 0.174 0.782 0.036 0.002 0.006
2 0.806 0.188 0.005 0.000 0.000 0.000
3 0.093 0.326 0.527 0.039 0.000 0.016
4 0.072 0.562 0.278 0.086 0.000 0.003
5 0.085 0.628 0.235 0.047 0.000 0.006

189



CHAPTER 7. EVALUATION

7.9.3.3 Recall

Recall metric is used in order to measure the percentage of the relevant retrieved web

services in a given cluster [158]. Here we are testing to what extent the relevant web

services in the dataset are grouped in a specific cluster, i.e. how many relevant web

services are grouped in a specific cluster? The following tables present the recall tables

of each QoS attribute. For example, in table 7.23, the recall value of web services which

have the availability range 96 - 100 in the first cluster is 181
435

= 42%, where (181) is the

number of web services which have the availability range 96 - 100 in the first cluster and

(435) is the total number of records of web services which have the availability range 96

- 100 in the dataset.

Table 7.23: Availability Recall Table

Cluster 96 - 100 91 - 95 86 - 90 81 - 85 71 - 80 61 - 70 51 - 60 ≤ 50

1 0.416 0.399 0.404 0.093 0.000 0.000 0.000 0.000
2 0.584 0.601 0.535 0.342 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.694
4 0.000 0.000 0.000 0.000 0.000 0.860 1.000 0.306
5 0.000 0.000 0.061 0.565 1.000 0.140 0.000 0.000

Table 7.24: Successability Recall Table

Cluster 91 - 100 81 - 90 71 - 80 61 - 70 51- 60 ≤ 50

1 0.406 0.145 0.000 0.000 0.000 0.000
2 0.594 0.298 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.713
4 0.000 0.000 0.000 0.881 1.000 0.287
5 0.000 0.557 1.000 0.119 0.000 0.000

Table 7.25: ReliabilityRecallTable

Cluster 81 - 90 71 - 80 61 - 70 51- 60 ≤ 50

1 0.208 0.319 0.210 0.088 0.067
2 0.018 0.339 0.361 0.624 0.467
3 0.006 0.018 0.079 0.113 0.300
4 0.232 0.123 0.200 0.095 0.150
5 0.536 0.201 0.149 0.081 1.000
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Table 7.26: Compliance Recall Table

Cluster 91 - 100 81 - 90 71 - 80 61 - 70 51- 60 ≤ 50

1 0.000 0.131 0.632 0.278 1.000 0.400
2 0.908 0.216 0.007 0.000 0.000 0.000
3 0.014 0.051 0.089 0.063 0.000 0.200
4 0.030 0.239 0.127 0.380 0.000 0.100
5 0.048 0.363 0.145 0.278 0.000 0.300

7.9.4 Selection Improvement: Clustering-Aware vs. Clustering-

Neutral

7.9.4.1 From CloudMTD Perspective

As mentioned before, Clustering phase was chosen for the purpose of improving the scala-

bility and reducing the search space, and accordingly improving the performance of service

selection process. In this context, we have tested the impact of the clustering phase on

improving the performance and scalability of the selection process. Figure 7.24 illustrates

CloudMTD model execution time with and without clustering phase for the whole QWS

dataset and the five clusters. As seen in the figure, execution time is reduced by using the

clustering technique, instead of searching the whole dataset, which represent the cloud

marketplace. In this sense, decision makers can search for candidate web services in the

relevant cluster instead of the whole dataset. In this context, we have evaluated to what

extent the CloudMTD model is saving time and reducing computational overhead by

using the clustering technique.

7.9.4.2 From Selection Decision Perspective

The clustering phase improved the selection process by informing a better selection deci-

sion in CB-SOA. This is achieved by considering the purity, precision and recall metrics

for each cluster. These metrics help in getting better insights on the effectiveness of the

selection process. In this sense, decision makers are directed toward the precise cluster

and accordingly they reach better candidate services for the selection process. Hence,

when heading toward the precise cluster, the likelihood of getting a better service is high.
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Figure 7.24 CloudMTD model execution time with varying number of stages (Clustering-
Aware vs. Clustering-Neutral).

7.10 Structural Evaluation: Composing Web Services

In the second part of the evaluation, we evaluate the phase of composing services in CB-

SOA using CloudMTD model based on OptiViTA case study. We are interested in finding

the consequences of a change, which occur due to dependencies among services. Here,

we look at the extent to which substituting a service has an impact on other services

in a given architecture. We also evaluate the extent of the ripple impact of a change in

CB-SOA. Ripple impact takes place when a change originated from one service affects

one or more services in CB-SOA.

The structural evaluation is performed on the architectural-level based on the DSM,

Visibility Matrix and the Propagation-cost. These metrics provide a view of the extent

and patterns of dependencies among services in CB-SOA. In this sense, CloudMTD model

aids decision makers by making the architectural dependency visible. When analyzing the

architecture based on the DSM analytical view, some metrics can be extracted such as

the propagation-cost metric. Such metric provides some information on the likely rework

cost, by investigating the associated dependencies. Here, we look at the rework cost
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that is associated with selection and composition decisions in CB-SOA. In this sense, the

propagation-cost metric provides insights on cost and value of selection and composition

decisions in CB-SOA. We particularly look at the propagation cost in order to model

the impact of the selection and composition decisions in relation to both dependency and

complexity. DSM and propagation-cost metrics are used for: (1) identifying dependencies,

(2) tracking the impact of change, and (3) identifying rework cost.

7.11 Option to Defer Scenario: Results and Discus-

sion

In previous chapter, we presented three types of options, which are related to different

service selection scenarios. In this section, we look at another type of option, which is

option to defer a decision. The current OptiViTA Architecture consists of different web

services and OptiViTA decided to improve its utility by upgrading one of its constituent

web services to a new one that has been released in the cloud marketplace. As the

prediction showed that there will be an increase in load after some time, which will call

for upgrading the current web service by switching to another one with higher capacity.

OptiViTA needs to know when to invest with respect to load fluctuation, i.e. when it

is suitable to substitute the web service by comparing the relative value of switching

to the new web service against the value of the current one (∆V ). The suitable time

for switching could be related to the nature of demand; peak or off-peak daily usage;

peak or off-peak seasons, etc. This decision can be formulated using option-to-defer. As

mentioned in chapter 5, option to defer can assess the time-value of waiting and it has

many applications such as waiting to expand, waiting to enter a new market, etc. In

this scenario, we predict the time value of waiting to defer the decision of investing in

web services substitution. The question is when it is beneficial, in terms of value and

technical debt, to exercise the option. Next, we will track the time value of waiting and

make a comparison in two extremes; peak time - deferring the decision for one month,
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and off-peak time - deferring the decision for two months respectively. In either case, we

assume that OptiViTA cloud-based service-oriented architecture is already in operation

and delivering value. This value is used to be compared against the new web service’s

value. In this scenario, the hypothesis is that substituting a web service at specific time

may embed flexibility to accommodate future load and generate a value. The substitution

decision may incur a technical debt, which can be translated into future options, if properly

managed. The decision maker needs to assess i) how switching can clear an existing debt

and create future options (ii) how switching is likely to introduce an intentional debt,

(iii) when it is optimal to switch, while tracking the debt against utility. Here, OptiViTA

business goal is to maximize the system’s availability, as more fulfilled requests may imply

revenue and will improve the utility value of the structure through supporting more users.

From CloudMTD perspective, OptiViTA business goal should be also debt-aware.

Let us consider the case where OptiViTA needs to substitute only one of its constituent

web services to meet changes in requirements. After selecting the suitable cluster, a

binomial tree will be built for each nominated web service based on inputs in table 7.27

(steps were explained in Section 6.1.4). In this scenario, we present the selection and

composition phases after conducting the behavioral analysis that was presented in section

7.9. The below illustration shows the analysis for one selection.

Table 7.27: Coefficients Values for the candidate web service

Attributes Values

V0 Depends on the starting date (defer)

r 5%

u 40%

d -10%

p 0.5

Expiry Date 6 months

Rework Cost £200.00

Exercise Price £40.00
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7.11.1 Behavioral Evaluation Results

7.11.1.1 Defer for one month results

Deferring the switching decision by one month will increase the interest on the switching

cost (rework). Here, the cost of acquiring the option and the interest on the loan continue

to be higher than the option value as when compared to the value delivered from retaining

the old service. Accordingly, the debt is not cleared during the six-month evaluation of the

investment, Table 7.28 (Figure 7.25 and 7.26). Here, the scenario reveals that the new ar-

chitecture capacity in supporting users is underutilized due to off-peak time. Henceforth,

it is not fully unlocking the architecture potential in delivering value, which overweighs

the cost and interest. As a result, it would be wise to keep the current web service as

the value-added of the new investment is likely to be wasted as the current architecture

potential is just fit for purpose. Moreover, the value of utilizing the new architecture

potential still lags behind the switching and interest costs signaling a technical debt.

Option1 summary: Deferring the decision for one month is the cheapest option in

term of interest, however at this point the option value continues to be zero during the

evaluation period and as a result the technical debt is not cleared. Therefore, it is not

suitable to exercise the option at this stage. Here, we say that the option is out-of-the-

money.

Table 7.28: Deferring for one month Options, TD and Value.

Month Options TD Value
1 115.24 94.7619 0
2 131.66 88.34467 0
3 149.38 80.62304 0
4 168.54 71.46045 0
5 189.29 60.70791 0
6 211.80 48.2028 0
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Figure 7.25 6-month evaluation after one month of waiting to invest

Figure 7.26 TD vs. Option Value over 6-month evaluation
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7.11.1.2 Defer for two months results

The CloudMTD analysis showed that the value of waiting to switch is higher than the

value of immediate switching. Here, the switching decision will be deferred by two months.

Accordingly, more interests will be incurred. We assume that the interest will be incurred

each month as long as the technical debt is not cleared yet. The analysis revealed that

the option-to-wait will start to pay off after the fourth month as it is a high season period.

As the load fluctuates on the architecture, waiting for peak seasons could be ideal, as we

expect to have more active users benefiting from the structure. This is attributed to the

system being able to fully utilize the web service capacity at this time. As a result, the

technical debt will be managed and cleared on the fifth month, Table 7.29 (Fig. 7.27 and

7.28). Here, the value of the option exceeds the switching cost and the flexibility of the

decision relative to the change in load is likely to pay off, if the option is exercised.

Option2 summary: The option of deferring the decision for two months is more ex-

pensive than the first option, however this option will pay off in later stages and clear the

technical debt. As a result, it is suitable to exercise the option at this period. At this

point, the option is said to be in-the-money.

Table 7.29: Deferring for two months Options, TD and Value.

Month Options TD Value
1 176.57 43.42857 0
2 198.83 31.17007 0
3 222.95 17.05086 0
4 249.12 0.881392 0
5 277.55 0 77.54535
6 308.46 0 108.4555
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Figure 7.27 6-month evaluation after 2 months of waiting to invest

Figure 7.28 TD vs. Option Value over 6-month evaluation
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7.11.2 Structural Evaluation Results

We now evaluate the entire architecture’s propagation cost as explained in chapter 6-

Step(6). The first matrix in figure 7.30 shows the DSM of OptiViTA architecture (Op-

tiViTA architecture was explained in section 7.3). From the given DSM we can conclude

which web services are affected by switching a specific web service and then we can com-

pute the propagation cost in the entire architecture. Figure 7.30 shows the derivation of

the propagation cost metric for OptiViTA Architecture based on the approach described

in previous chapter. Then, we compute the final density matrix by converting all non-zero

cells in V matrix to ones and applying Equation 7.1. Accordingly, the propagation cost

is computed as follows: 15
25

= 60% (Equation 7.2). This means that on average 60% of

the services are likely to be affected by the change. As mentioned before, this percentage

does not provide a meaningful indication of the likely complexity that could affect the

cost. Finally, we compute the “Complexity Density Matrix” by reflecting the dependency

complexity levels (Figure 7.29). Despite the fact that two services may be dependent,

the complexity of the dependency may vary. For example, higher complexity may signal

higher rework cost, lower complexity may indicate otherwise. This can be due to the effort

required for code development, rewriting, configuration, data migration, new/throwaway

maintenance, fixing mismatches, changes to legacy code, etc. We adjust the dependency

by a multiplying weight to reflect complexity.

V =
n∑
i=0

M i =
5∑
i=0

M i (7.1)

PropCostOptiV iTAarch =
nzc

nc
=

15

25
= 0.6 = 60% (7.2)

Table 7.31 shows the complexity levels values in the Complexity Density Matrix at

t=1 and t=2 (Described previously). The dependency analysis for t1 and t2 corresponds

to deferring the switching by one and two months respectively. Table 7.31 shows that by

substituting the web service at t1 that 60% of the affected web services by the change
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Table 7.30: Density Matrix Level of Complexity

Scheme Complexity level Multiplication factor

A Very high 1
B High 0.7-0.9
C Moderate 0.5-0.69
D Low 0.3-0.49
F Very low 0.1-0.29
0 No dependency 0

Figure 7.29 OptiViTA Weighted Density Matrix at t=1 and t=2

are of level complexity A(53%), B(7%), C(13%), D(20%) and F(7%). If we defer the

substitution decision to t2, the percentage of elements classified under complexity level

A has decreased. This can be attributed, for example, to upgrades to one of the legacy

services in the composition, which has eliminated the need for designing wrappers for

integration.

Table 7.31: Complexity Density Matrix values at t=1 and t=2

Level t = 1 t = 2

A 8/15 = 53% 5/15 = 33%
B 1/15 = 7% 3/15 = 20%
C 2/15 = 13% 3/15 = 20%
D 3/15 = 20% 3/15 = 20%
F 1/15 = 7% 1/15 = 7%
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Figure 7.30 The Derivation of propagation cost out of the Visibility Matrix (V) of
OptiViTA structure.

201



CHAPTER 7. EVALUATION

7.11.3 Decision-Making Improvement

In the previous scenario, the analysis has provided assessment of some situations leading to

underutilization and incurring technical debt. Substitution decision was primarily driven

by improving availability business objective.

7.11.3.1 Options-Based vs. Options-Neutral

The option value has provided insights into the suitable switching time based on the

improved utility from behavioral and structural points of view. Unlike other selection

and composition approaches, those are based on short-term analysis; CloudMTD takes

into consideration long-term value and opportunities that option creates.

7.11.3.2 Technical Debt-Aware vs. Technical Debt-Neutral

Technical debt and complexity analysis, when coined with option thinking can provide

a powerful what-if analysis tool to inform (1) when to substitute; (2) the implication of

time-value of the decision on utility and technical debt reduction; (3) opportunities for

creating value through waiting for possible changes in the structure, which can better

withstand the change and reduce the cost of substitution etc. On the other hand, if the

selection decision is “technical debt-neutral”, less attractive web services may be neglected

and future value will be lost accordingly.

7.11.3.3 Decision’s Staging Analysis

The use of the binomial tree has improved the decision-making in CB-SOA by providing

the following criteria while analyzing the decision: (1) staging-view, (2) multiple-decision

points, and (3) transparency of value and debt. In this context, we have evaluated the

impact of increasing the window of staging the decision-making in CB-SOA. By the use

of staging, we are able to have finer analysis. Seeing that the more stages we have, the

more information we get. In addition, the binomial tree provided multiple-decision points

within each stage. Accordingly, CB-SOA decision makers acquire more flexibility to make
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a better decision at different nodes in the tree. Furthermore, the use of the binomial

tree has improved the transparency of the decision making in CB-SOA. This is achieved

by visualizing the value and technical debt at each stage. Accordingly, the analysis is

improved by presenting the possible ups and downs in the tree at each stage.

7.11.3.4 Dependency Tracking

The dependency and complexity analysis of two time intervals have provided means to

evaluate the time-value of the decision to substitute relative to changes in the structure.

Overall, the structural and behavioral analysis for utility, technical debt and complexity

informed the time-value of the substitution decision.

7.12 Limitations and Threats to Validity

CloudMTD model was developed based on some scenarios and under some assumptions.

• The binomial tree coefficients were used under controlled experiments, where we

assumed their values for each scenario. However, in reality, these coefficients can

be captured using human-centered elicitation. In this thesis, we assume that the

binomial tree coefficients are taking from the CB-SOA decision makers (e.g. stake-

holders). In this sense, coefficients may vary depending on the number of stake-

holders and their expertise. For example, stakeholders can decide on staging based

on the type of option. In some cases, the change to any of these coefficients can

affect the results of the CloudMTD model. Accordingly, options and technical debt

calculations can be affected.

• The choice of the dataset and the QoS attributes. In this thesis, we have fixed the

number of QoS attributes and we have chosen 4 attributes. This was done for the

purpose of evaluating the CloudMTD model under an extreme case. In addition, the

4 attributes were chosen for the purpose of evaluating the QoS correlation among

web services.
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• The clustering overhead was equal to 31.491 (ms) for 2507 web services when k=5.

However, this execution time does not include the offline processing, such as clus-

tering analysis, which is a human-centered activity.

• Technical Debt is subjective. In this sense, technical debt can be affected by the

following: (1) CB-SOA decision makers and their expertise (e.g. stakeholders),

(2) binomial tree coefficients, (3) options, and (4) rework cost. The threshold of

technical debt and its clearance month depend on the acceptance of stakeholders.

For example, clearing technical debt on the fourth month can be accepted for some

stakeholders and cannot be accepted for others.

• Value is subjective. Value depends on the acceptance-level of the CB-SOA deci-

sion makers. For example, a £100 increase on revenues can be accepted for some

stakeholders and cannot be accepted for others.

• Dependencies among web services and their complexities can vary based on CB-

SOA decision makers. In this sense, the time of taking the composition decision

can be influenced by dependencies and complexities. We have chosen a simplistic

assumption to guide the dependency calculation. Nevertheless, other techniques can

be used from the literature of Software Engineering for quantifying dependencies

based on structural analysis.

• The choice of the software. As mentioned before, CloudMTD model was imple-

mented and test using the OpenESB software. This software is lighter, in terms of

overhead, than other software such as NetBeans. Accordingly, performance results

may vary based on the choice of the software.
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7.13 Summary

The evaluation was carried out based on a combination of a case study and experimen-

tation. The experiments were designed in order to verify how the CloudMTD model

performs when varying the following: (1) number of web services, (2) number of binomial

steps, (3) options stages and (4) technical debt stages.

We have accomplished the evaluation process based on two major stages; behavioral

(service-level) and structural (architecture-level). The behavioral evaluation was per-

formed based on option theory and K-means clustering. Accordingly, we have informed

the following: (1) when to substitute; (2) the implication of time-value of the decision on

utility and technical debt reduction; (3) opportunities for creating value. We have eval-

uated to what extent the CloudMTD model is saving time and reducing computational

overhead by using the clustering technique. We have also evaluated the extent to which

CloudMTD model is capable of facilitating the what-if analysis at different points in the

decision space.

The structural evaluation was carried out using three metrics: (1) Dependency Struc-

ture Matrix (DSM), (2) Visibility Matrix (based on reachability matrix), and (3) the

Propagation-cost. Information extracted from these metrics were used for: (1) identify-

ing dependencies among services, (2) tracking the impact of change, (3) identifying the

likelihood of change propagation, and (4) identifying rework cost.
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7.14 Discussions and Conclusions

A distinctive feature of the CloudMTD model is that it links value of substitution deci-

sions to both the behavior and the structure of CB-SOA. The former is through coining

options analysis with improved utilities upon realizing changes, which are driven by busi-

ness objectives and of non-functional nature. The latter is through tracking the “ripple”

impact of the decision on the structure. This is because the composition may change over

time as any of the constituent services are upgraded, modified, etc. As a result, the selec-

tion and composition decisions tend to be influenced by changes in the structure, likely

technical debt, and changes in complexity. The model acknowledges the fact that CB-

SOA are utility-driven and tend to be dynamic and market sensitive. The model caters

for dynamism and utility-driven evaluation by introducing complexity- and time-aware

propagation metrics.

By using CloudMTD model, we are not aiming to get precise results, as the aim is not

for precision but to get a “good enough” and qualified selection and composition decisions

based on the context of each scenario. This is also related to the domain of the problem

to be solved. Here, we say that when investing in web services, we can tolerate some

changes and accept good enough results. This is unlike other inflexible domains such as

domains dealing with medical data, where changes are not tolerant. In this sense, utility

is quantified based on scenarios of interests of CB-SOA decision makers.
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8.1 Summary

This thesis has investigated the problem of service selection and composition in Cloud-

Based Service-Oriented Architectures (CB-SOA). It has also defined the concept of techni-

cal debt for Cloud-Based Service-Oriented Architectures, which covers several dimensions

that are related to service substitution decisions. Technical debt in cloud-based web

service selection can be attributed to different factors such as poor and swift selection

decisions, mismatches in applications’ requirements with that of the service provision,

falsely accelerating the velocity of the integration, testing and deployment process due

to budget restrictions, and/or through accidentally acquiring the debt via an untrusted

provider. The problem of web service substitution and its technical debt valuation was

formulated as an option problem using Binomial Options valuation.

In addition, this thesis used Dependency Structure Matrix (DSM) for representing

dependencies among services in CB-SOA. It introduced time and complexity sensitive

propagation cost metrics to DSM for dependencies quantification. In addition, this the-

sis presented the CloudMTD model that is capable of informing the time-value of the

decisions under uncertainty based on behavioral and structural aspects of CB-SOA. The

CloudMTD model can provide CB-SOA decision makers (e.g. architects) with insights

of the value of the structure, its utilities in supporting changes and the technical debt

as a result of service substitution. The model is appealing to the recent hype in look-

ing at cloud as a marketplace for trading services. It is in line with the motivation of

linking technical decisions in software to value under uncertainty. This thesis has also

reported on the implementation of the CloudMTD model for selection and composition

in CB-SOA. It demonstrated and evaluated the applicability of CloudMTD model using

a case study that was implemented using WS-BPEL. Results showed that the analysis

can link substitution decisions in CB-SOA to long term value creation and technical debt

reduction.
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This thesis answered the following research questions:

• How is the CloudMTD model capable of enhancing the selection and composition

decisions in CB-SOA under uncertainty? How can CloudMTD model improve the

execution time of the selection and composition process? The results proved that

the CloudMTD model improved the selection and composition process in CB-SOA,

in terms of execution time, time-value of the decision, and technical debt.

• How does the Binomial Option Analysis (option thinking) add value to selection

decisions in CB-SOA taking into consideration technical debt? Is option theory

capable of valuing web services investments? This thesis proved that the use of

option theory is valuable when there are uncertainties associated with the decision

making process. This was approached by the use of the CloudMTD model that

was capable of managing such uncertainties, based on Binomial Option Analysis.

CloudMTD model provides the decision maker with flexibility when dealing with

such decisions.

• Does technical debt have an impact on the selection decision? Does CloudMTD

model make technical debt explicit in CB-SOA? This thesis proved that techni-

cal debt, which is associated with service selection decisions, can be managed and

transformed to future value.

• How is the CloudMTD model capable of giving a good recommendation about time-

value of selection and composition decisions in CB-SOA taking into consideration

the behavioral and structural aspects of CB-SOA? In this thesis, the CloudMTD

model informed the time-value of the selection and composition decisions under

uncertainty based on behavioral and structural aspects of CB-SOA.

• How can K-means clustering approach enhance the scalability of the model? Does

the clustering approach make QoS correlations, recall and relevancy explicit in CB-

SOA selection and composition? This thesis proved that by the use of k-means
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clustering technique, services are classified into different groups based on their QoS

attributes’ similarities. K-means clustering technique has improved the service se-

lection process in CB-SOA in terms of scalability, relevancy, and QoS correlation.

8.2 Summary of Contributions

This thesis’s contributions are summarized as follows:

• A novel model (CloudMTD) for services selection and composition in CB-SOA based

on options theory, DSM and propagation-cost metrics. The novelty of CloudMTD

model is based on different aspects, such as (1) a value-driven model for Manag-

ing Technical Debt in Cloud-Based Service-Oriented Architectures, (2) the use of

Binomial model for modeling selection decisions in CB-SOA, and (3) CloudMTD

model quantifies the time-value of selection and composition decisions in CB-SOA,

technical debt and dependencies they can imply on the structure. The analysis is

done taking into consideration the structural and behavioral aspects of CB-SOA.

A distinctive feature of the CloudMTD model is that it links time-value of the

substitution decision to both the behavior and the structure of CB-SOA.

• The use of k-means clustering in service selection in CB-SOA. K-means clustering

technique is capable of presenting data in a structured way, which enables the de-

cision maker to investigate the structure of each group (cluster) in the given web

services dataset. K-means clustering technique can improve service selection in

CB-SOA by improving the following:

1. Scalability: K-means improve scalability by reducing the search-space in the

cloud marketplace and accordingly will reduce searching-time. And conse-

quently it will be easier to consider the context of services composition.

2. Relevance and Recall: K-means improve the relevancy of the retrieved web ser-

vices from a given cluster. In addition, recall metric measures the percentage
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of the relevant retrieved web services in a given cluster.

3. QoS correlation: K-means is capable of making QoS correlation explicit by

finding structures in data in a given web services dataset.

• A novel Service-level Technical Debt in Cloud-Based Service-Oriented Architectures:

We describe the concept of technical debt for cloud-based service selection and

composition and discuss its causes. We introduce a new novel dimension of technical

debt explicating service-level in CB-SOA.

• Literature Review:

1. Web service selection and composition: A representative sample of research

works that have been done in the field of web service selection and composition.

2. Technical Debt and Managing Technical Debt: This review presents the avail-

able definitions of technical debt in different fields and on different levels in the

literature. The review also presents the available approaches, which have been

investigating technical debt. It provides a comparison of different approaches

dealing with technical debt on different levels, dimensions, causes, solutions,

and evaluation methods.

3. Real Options: A review of the available research works that investigate the

option theory in software engineering, economics, SOA and IT investments.

8.3 Future Work

• This thesis presented many paths those are related to service selection and com-

position in Cloud-Based Service-Oriented Architectures and managing the likely

technical debt and dependencies among constituent services.
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• Binomial coefficients estimation: in chapter 5, we presented the binomial model and

its coefficients estimation methods. We aim to extend these estimation methods by

presenting other possible ways that help in:

– Performing finer what-if analysis.

– Getting more cases out of the simulation.

– Deduce possible values of these coefficients.

Other possible usage of SoapUI is to compare two different WS-BPEL workflows

(SoapUI and WS-BPEL were explained in the previous chapter). For example, let

workflow1 to be the initial WS-BPEL workflow at t2 and workflow2 is the recom-

posed workflow following substitution at t2, as seen in Figure 8.1. Here, we are

interested in comparing and testing both workflows in terms of load and perfor-

mance at different timestamps. Given a likely load, stress testing using SoapUI can

reveal best and worst performance of the given compositions, which can be used to

calculate u, d and p binomial coefficients. Here, binomial coefficients are extracted

from SoapUI simulation as an alternative of other eliciting methods that were de-

scribed previously. Such information can help in modeling the likely added-value or

“sacrifices” which is expressed as utility. In this sense, we are interested in investi-

gating the behavioral characteristics of the given CB-SOA architecture, before and

after substitution.

Figure 8.1 Workflows at t1 and t2.
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• Outliers analysis: k-means clustering has been covered in chapter 6, section 6.1.2.

By using k-means clustering, some services appear to be as outliers. Outliers are

services, which are not well-clustered. This can be attributed to the fact that these

services have varying QoS correlations, which is different than other services in a

given cluster. Accordingly, these outliers (services) have varying utility levels. In

this sense, outliers can be viewed as a new dimension of technical debt in Cloud-

Based Service-Oriented Architectures.
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