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Abstract 

Ub has an essential role within the DNA double strand break (DSB) response which is 

well documented. However the role of ubiquitin (Ub) in the regulation of replication is 

an emerging area of research. This thesis investigates how two deubiquitinating 

enzymes (DUBs), POH1 and USP50, regulate DSB repair and replication respectively. 

A screen of 103 siRNAs against putative DUBs in the human genome, measuring the 

amount of conjugated Ub after release from HU-induced damage, identified the 

proteasome associated DUB, POH1 as being important in regulating Ub-conjuagtes 

after damage. Further work found that POH1 restricts the K63-linked Ub at DSBs and 

consequently 53BP1 foci formation. This appears to regulate repair of breaks by Non-

homologous end-joining (NHEJ). 

The DUB screen also identified USP50 as having significantly reduced levels of 

conjugated Ub after damage. USP50 is an inactive DUB with Ub-binding activities, 

which has a role in preventing formation of Mus81-dependent DSBs during replication, 

with depletion sensitising cells to replication-stress. Therefore this works demonstrates 

a role for USP50 in genomic stability during replication. 

In this thesis I demonstrate the role of these two DUBs in DSB repair and replication 

respectively, providing potential therapeutic targets.  
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1. Introduction 

Maintaining the integrity of the genome is vital in preventing diseases such as cancer 

(Jackson and Bartek 2009). DNA can be damaged by both endogenous mechanisms, 

such as reactive oxygen species (ROS), or through exogenous agents, including UV 

irradiation and drugs, for example, Hydroxyurea (HU) (Ravanat, Douki et al. 2001, 

Hakem 2008, Halazonetis, Gorgoulis et al. 2008, Jena 2012). The pathways required to 

repair damage and allow faithful replication of DNA are tightly regulated throughout 

cell divisions. Unfortunately, this process can be faulty with mutations arising which 

cause diseases to develop (Jackson and Bartek 2009). One method of regulating these 

pathways, such as DNA damage repair pathways including double strand break (DSB) 

repair, is by post-translation modifications (PTM) like ubiquitination, phosphorylation 

and methylation (Jackson and Durocher 2013). 

PTMs change an aspect of the substrate, including its structure, interactions and activity. 

This can then be used to regulate a process in the cell, including DNA damage repair, 

cell cycle checkpoint regulation, replication fork maintenance and transcription (Berger 

2002, Lavin and Gueven 2006, Branzei and Foiani 2010, Oberle and Blattner 2010, 

Lehmann 2011, Duan and Walther 2015). Many proteins contain domains that bind 

specifically to PTMs, for instance, the phosphorylation binding domain, BRCA1 C-

terminus (BRCT) domain (Yu, Chini et al. 2003), methylation binding domains such as 

Tudor domains (Lu and Wang 2013) and ubiquitin-binding domains (UBDs) (Hurley, 

Lee et al. 2006). Therefore, certain protein-protein interactions only happen once a PTM 

occurs. Other proteins, including the DNA damage regulatory kinase, Ataxia 

telangiectasia mutated (ATM), requires phosphorylation in order to have enzymatic 

activity (Bakkenist and Kastan 2003). Within this project the regulation of the PTM 

Ubiquitin (Ub) has been studied due to its role in the DNA damage response (DDR) and 
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more recently in replication (Messick and Greenberg 2009, Lehmann 2011, Maric, 

Maculins et al. 2014, Moreno, Bailey et al. 2014). 

1.1 Ubiquitin and Ubiquitin-like proteins 

Ub is an integral part of the regulation of almost all pathways within eukaryotic cells 

(Hochstrasser 2000). Although not present in prokaryotes, the Ub cycle evolved from 

bacterial proteins (Lake, Wuebbens et al. 2001, Wang, Xi et al. 2001). Prokaryotic cells 

have a modification called Prokaryotic Ubiquitin-like Protein (PUP) which targets the 

substrate for degradation by the proteasome, likely giving rise to the eukaryotic Ub 

system (Pearce, Mintseris et al. 2008, Burns, Liu et al. 2009, Chen, Solomon et al. 

2009). 

Ub is an 8.5kDa protein that forms transient modifications on many different substrates 

(Goldstein, Scheid et al. 1975, Trempe 2011). These modifications can either be a single 

Ub, monoubiquitin (mono-Ub), several single Ub moietys (multi-mono-Ub), or as 

chains, called polyubiquitin (poly-Ub) (Fig. 1.1 A-D) (Hicke 2001). Polyubiquitin 

chains form through the seven conserved lysines within Ub, K6, K11, K27, K29 K33, 

K48 and K63 or via the N-terminal methionine (Peng, Schwartz et al. 2003, Pickart and 

Fushman 2004, Kirisako, Kamei et al. 2006). Depending on which linkage is formed, 

other linkages can be restricted due to certain lysines within the Ub no longer being 

accessible due to the orientation of the Ub molecule is bound (Trempe 2011). Different 

linkages have distinct chain structures to signal diverse processes, with K48 and K63-

linked Ub being particularly important in the DDR (Fig. 1.2) (Komander 2009, 

Komander and Rape 2012). 

The interaction of Ub with other proteins usually requires a hydrophobic patch on the 

surface of Ub known as the Ile44 patch. This hydrophobic domain is comprised of the 
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Leu8, Ile44 and Val70 residues on the Ub β-sheet (Sloper-Mould, Jemc et al. 2001). 

Most UBDs target this Ile44 hydrophobic patch in order to bind Ub, with many DUBs 

interacting with this patch (Hurley, Lee et al. 2006).  

 

 

  

Figure 1.1. Representation of the different types of Ub modifications. Once 

modified with Ub a substrate can either have A) one Ub attached (mono-Ub). B) 

multiple single Ubs (multi-mono-Ub) C and D) or a poly-Ub chain. Chains take on 

different confirmations depending on how they are linked. 
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Figure 1.2. Protein structure of the isopeptide linkages formed through the 

different Ub lysines. The polyubiquitin chains have a different structure depending on 

which lysine the poly-Ub chain forms through.  The green Ub is always in the same 

orientation, the Ile44 hydrophobic patch is highlighted in blue. K48-linked chains have 

a closed structure, where the Ub molecules bind closely together. The K6 and K11 

chains have similar closed structures to K48 chains. K63-linked chains have an open 

conformation where the isopeptide bond is accessible between Ub moieties, mimicked 

by the linear linked Ub (Clague, Barsukov et al. 2013)  

 

Ubiquitin-like proteins (Ubls) are structurally similar to Ub, with the same β-grasp fold 

structure although the similarity does not extend to the sequence (Cajee, Hull et al. 

2012). There are 14 predicted Ubls encoded for in the human genome, of these the small 

ubiquitin-like modifier (SUMO) is the best studied (Hochstrasser 2009). Although not 

explicitly studied in this thesis the role of Ubls and their interaction with Ub is 

important in many cellular processes, with SUMO being shown to regulate factors 

involved in both DSB repair and replication (Branzei and Foiani 2010, Ulrich and 

Walden 2010, Bekker-Jensen and Mailand 2011). 
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The other Ubls include neuronal precursor cell expressed developmentally down-

regulated protein 8 (NEDD8), which regulates a subset of Ub-ligases, the Cullin E3 

ligases, which are implicated in regulating certain processes during replication (Pan, 

Kentsis et al. 2004). Other Ubls include Ub-Related Modifier-1 (URM1), Ub Cross-

Reactive Protein (UCRP), Autophagy-8 (ATG8) and Autophagy-12 (ATG12), Fau Ub-

like protein (FUB1), Membrane-anchored Ub-fold protein (MUB), Ub-fold Modifier 1 

(UFM1) and ubiquitin-like protein-5 (UBL5) (Hochstrasser 2009). Although there is 

little similarity in sequence between Ub and Ubls, the enzyme cascade to conjugate 

Ubls is similar to that of Ub (Kerscher, Felberbaum et al. 2006). 

1.2 The Ubiquitin cycle 

Ub modifications are transient and are attached through a cascade of three enzymes then 

removed to replenish the free-Ub pool (Fig. 1.3). The three enzymes are an E1-

activating enzyme (Fig 1.4 A), an E2 conjugating enzyme (Fig 1.3 B) and an E3 ligating 

enzyme (Fig 1.3 C) (Hershko, Heller et al. 1983). The E1 enzyme activates the Ub in an 

ATP-dependent process that produces adenylated-Ub (Fig 1.3 A). The Ub-AMP is is 

then passed onto an active cysteine (Cys) in the E2 conjugating enzyme by a thioester 

bond. Once the Ub is bound to the E2 enzyme, termed a charged-E2, an E3 enzyme is 

recruited and the Ub is covalently bound to a lysine in the substrate through an 

isopeptide bond (Pickart and Eddins 2004). Ub is then removed by a family of enzymes 

called Deubiquitinating enzymes (DUBs) (Fig 1.3 D) (Amerik and Hochstrasser 2004).  
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Figure 1.3. Diagram of the Ub ligation cycle. A) Free-Ub is picked up by an E1-

activating enzyme and activated in an ATP-dependent reaction. B) Activated Ub is then 

passed onto an E2-conjugating enzyme onto a catalytic Cys residue. C) The Ub-E2 

enzyme complex interacts with an E3-ligase enzyme. D) Depending on the type of E3 

ligase, the E3-enzyme binds to the substrate in order to pass the Ub onto a lysine within 

the substrate. E) Ubiquitinated substrates are then targeted by a deubiquitinating 

enzyme or the proteasome, which recycles the Ub back into the free-Ub pool. 
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1.2.1 E1 activating enzymes 

Eukaryotic E1 enzymes have arisen from molybdopterin biosynthetic enzyme B 

(MoeB) and thiamine biosynthesis protein (ThiF) prokaryotic enzymes, which are 

involved in sulphur transfer (Lake, Wuebbens et al. 2001). However, in eukaryotes the 

cycle has evolved to transfer Ub. There are two E1s encoded in the human genome, 

UBA1 and UBA6 (Handley-Gearhart, Stephen et al. 1994). Both enzymes contain two 

active sites and two domains that are required for the transfer of Ub molecules onto E2 

enzymes (Haas, Warms et al. 1982). 

E1-enzymes contain two active sites that activate then pass on the adenylated-Ub 

respectively. The E1 binds Ub and adenosine triphosphate with a magnesium ion (ATP- 

Mg
2+

) causing an adenylated Ub (Ub-AMP) that is bound to the first active site of the 

E1 enzyme. The  Ub-AMP undergoes nucleophilic attack by the Cys residue from the 

second active site of the E1 enzyme which forms a thioester bond between the activate 

Cys residue within the second active site of the E1-enzyme and the C-terminus of Gly-

Gly motif of the Ub. The transfer of the Ub moiety from the first active site to second 

active site causes the release AMP from Ub. The E1 enzyme has to undergo a 

conformational change to bring the catalytic Cys within the second active site close 

enough to the Gly-Gly motif of the C-terminus of the Ub which is bound in the first 

active site. The E2 enzyme interacts with the C-terminal thioester bond of Ub bound in 

the first active site of the E1-enzyme resulting in the transfer of the Ub onto the Cys 

residue in the active site of the E2 enzyme via a thioester transfer reaction 

(Ciechanover, Elias et al. 1980, Schulman and Harper 2009). 
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1.2.2 E2 Conjugating enzymes 

There are around 37 active E2 enzymes known in the human genome that can bind to 

the E1 enzymes and transfer the Ub (Michelle, Vourc'h et al. 2009). The transfer of Ub 

requires a core domain that is conserved in the E2 enzymes variants. The active core is 

formed of four α-helices, with an active Cys residue in the linker region between helix 2 

and helix 3, and a β-sheet (Burroughs, Jaffee et al. 2008, van Wijk and Timmers 2010). 

The E2 can only bind an E1 once the E1 has bound Ub and adopted the closed 

confirmation, as the E1 in this confirmation has exposed sites that bind to the E2 

enzyme via the first α-helix (Lois and Lima 2005, Huang, Hunt et al. 2007, Lee and 

Schindelin 2008).. The specificity of E2 binding to E1s is likely to be partially 

determined by sequences flanking the core region (Huang, Miller et al. 2004, Huang, 

Zhuang et al. 2008). 

The E2s themselves can specify which Ub-linkages form (Chen and Pickart 1990, 

Vannocker and Vierstra 1991, Hofmann and Pickart 1999). This is demonstrated by an 

E3-ligase that is important in DSB repair, RNF8, which produces both K48-linked Ub 

or K63-linked Ub chains depending on which E2 is bound. When bound to UbcH8, 

RNF8 produces K48 linked chains, but when bound to Ubc13 RNF8 is known to 

specify the K63-linkage (Lok, Sy et al. 2011). Although it is generally accepted that the 

E3 ligase provides the specificity for the linkage formed. 

1.2.3 E3 ligase enzymes 

Although E2 enzymes can form chains without E3 enzymes, there are hundreds of Ub-

ligases in the human genome that are divided into subfamilies (Semple, Grp et al. 2003). 

The three families are: Homologous E6-AP C-terminus (HECT) ligases, Really 

Interesting New Gene (RING) ligases, which also contain the  multisubunit Cullin E3 
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ligases, and the RING-between-RING (RBR) E3 ligases (Fig. 1.4) (Weissman 2001). 

HECT ligases utilise an active Cys as part of a large C-terminal 350 amino acid domain, 

which form a thioester intermediate with Ub and pass it on to the substrate (Huibregtse, 

Scheffner et al. 1995). The HECT E3 ligases, therefore, have enzymatic activity that 

removes the Ub from the E2 enzyme and then ligates it to the substrate (Bernassola, 

Karin et al. 2008). The N-lobe of the HECT domain binds to the substrate whereas the 

C-lobe binds to the Ub. Beyond the HECT domain, the N-terminal portion of HECT 

ligases proteins acts to provide specificity for the substrate (Huang, Kinnucan et al. 

1999). There are approximately 30 HECT ligases in the human genome, but the vast 

majority of E3 ligases are RING type ligases, with over 600 genes specifying RING-

type E3 ligases (Metzger, Hristova et al. 2012).  

RING ligases  have two zinc ions and act as a docking system to allow transfer of Ub 

between the E2 enzyme and the substrate (Lorick, Jensen et al. 1999, Ozkan, Yu et al. 

2005). RING E3s can be monomeric or dimeric with the dimeric E3s forming either 

homodimers or heterodimers (Metzger, Hristova et al. 2012). This dimerization occurs 

either through the RING-domain, which provides the E3-ligase activity, such as with 

the RNF4 homodimer, or through helical domains, comprised of α-helices around the 

RING domain, as seen in the BRCA1/BARD1 heterodimer, which is involved in 

homologous recombination repair (Brzovic, Rajagopal et al. 2001, Linke, Mace et al. 

2008, Liew, Sun et al. 2010). The binding of the E2-Ub complex to the RING E3 

enzyme causes an allosteric activation of the E3 enzyme, by holding the donor Ub in a 

stable conformation to allow the selection of the type of linkage as well as placing the 

thioester bond between the Ub and the E2 into the optimal orientation for nucleophilic 

attack to transfer the Ub onto the substrate. Substrate recognition is likely to be 
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mediated by other domains within the RING E3 ligase, including the BRCT domain in 

BRCA1 (Plechanovova, Jaffray et al. 2012, Berndsen and Wolberger 2014). 

There is a subset of the RING ligases that are known as the Cullin ligase family. Cullins 

are multiple protein complexes which contain a RING-box protein that has the E3 ligase 

activity, a substrate adaptor component (such as an F-box protein) which binds to the 

substrate and a Cullin scaffold protein. In humans there are six Cullin proteins, Cul1, 

Cul2, Cul3, Cul4A/Cul4B and Cul7. There are a few conserved mechanisms of 

substrate recognition throughout the Cullins, including the recognition of 

phosphodegrons, which are short peptide sequences that signal degradation in a 

phosphorylation dependent manner (Lydeard, Schulman et al. 2013). 

The final subtype of E3-ligases is the RBR family. These proteins consist of an N-

terminal RING domain with two zinc ions, as seen in the classical RING E3-ligase 

structures. A C-terminal RING domain which only contains one zinc ion. While the N-

terminal RING domain is essential for Ub-ligase activity, the C-terminal ligase appears 

to be dispensable in some cases and less well conserved than its N-terminal counterpart 

(Eisenhaber, Chumak et al. 2007). The mechanism of Ub-transfer between E2 and 

substrate of the RBR ligases combines that seen in the RING and HECT E3-ligases. The 

believed mechanism of action is that the N-terminal RING facilitates the movement of 

Ub from the E2 and passes this onto another domain of the RBR, including the C-

terminal RING. The Ub can then be transferred from the E3 onto the substrate (Wenzel 

and Klevit 2012). 

Once the Ub has been ligated onto the substrate, the type of modification is important in 

determining what pathway is signalled.  
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Figure 1.4. Representation of the different families of E3 ligases. There are three 

main groups of E3-ligases active in the cell. A) The HECT type of E3 ligase interacts 

with the E2-conjugating enzyme and the Ub molecule is passed onto the E3-enzyme 

before being passed onto the substrate. B) The RING type E3 ligases act as a scaffold to 

bring the E2 and substrate into proximity with each other in order for the E2 to directly 

pass the Ub onto the substrate. C) The Cullin E3-ligases are multi-subunit complexes. 

The E3-ligase activity comes from a RING-box protein. Cullins also contain a Cullin 

scaffold protein, a substrate adaptor protein and the substrate. D) Ring-inbetween-Ring 

ligase composed of two RING domains and an the “in-between-ring” (IBR) domain. 

 

1.3 Mono-Ub 

The addition of a single Ub molecule to a substrate is an important regulatory mark in 

cells. Histones are known to be mono-ubiquitinated in many cellular processes, with 

UV damage causing the mono-ubiquitination of H2A around the lesion. This 

modification occurs as part of the removal of damaged bases during nucleotide excision 

repair (NER) (Bergink, Salomons et al. 2006). Further to this the H2AX variant has 

been shown to be modified by mono-Ub after damage in order to regulate the chromatin 

architecture around the break (Ikura, Tashiro et al. 2007). Within the DNA damage 

response, the mono-Ub of FANCD2 and FANCI are important modification in the 

removal of intrastrand crosslinks (ICLs) (Garcia-Higuera, Taniguchi et al. 2001, 

Smogorzewska, Matsuoka et al. 2007, Kitao and Takata 2011). The Fanconi Anemia 

Core complex contains the FANCL protein that is the active component of an E3-ligase 

which mono-ubiquitinates the FANCD2-FANCI heterodimer (Meetei, de Winter et al. 

2003, Yuan, El Hokayem et al. 2009). This allows recruitment of the heterodimer to the 
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ICL in order for repair to continue with the interaction with DNA enhancing the mono-

Ub signal (Kitao and Takata 2011, Longerich, Kwon et al. 2014). 

The proliferating cell nuclear antigen (PCNA) is known to be mono-ubiquitinated and 

there is debate as to whether this ubiquitination is required for translesion synthesis 

(TLS), to allow replication fork bypass of damaged template DNA during replication 

(Kannouche, Wing et al. 2004, Watanabe, Tateishi et al. 2004, Hendel, Krijger et al. 

2011). 

Substrates can also be mono-ubiquitinated at several sites leading to multi-mono-Ub. 

Similarly to mono-Ub, the multi-mono-ubiquitination of receptor tyrosine kinases 

(RTKs) signals endocytosis of this receptor and subsequent degradation within a 

lysosome (Haglund, Sigismund et al. 2003). Importantly for cell cycle control and DNA 

damage, mouse double minute 2 homolog (Mdm2) multi-mono-ubiquitinates the cell 

cycle and tumour suppressor protein, Protein 53 (p53), which is hypothesised to expose 

the nuclear export sequence. Once in the cytoplasm, p53 can be poly-ubiquitinated and 

then degraded (Lai, Ferry et al. 2001). However, the signal for proteasomal degradation 

requires a poly-Ub chain of at least four Ub molecules (Piotrowski, Beal et al. 1997).  

1.4 Poly-Ub 

The process that is signalled by poly-Ub depends, in part, on the structure of the Ub 

chains (Komander 2009). Poly-Ub can form as a single linkage through one of the 

conserved lysines, a single chain of multiple linkages or branched structures (Peng, 

Schwartz et al. 2003, Kim, Kim et al. 2007). The most well studied chains are K48-

chains which are known to signal the degradation of substrates by the proteasome and 

are the most abundant chain type within the cell (Chau, Tobias et al. 1989, Peng, 

Schwartz et al. 2003, Xu, Duong et al. 2009). The K48-chains form a closed, tight 
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structure where the Ub molecules not only interact via the isopeptide bond but also via 

other interfaces. This closed confirmation means the Ile44 hydrophobic patch of Ub, 

which interacts with many Ub binding domains (UBDs) is no longer accessible, 

therefore, there is flexibility in the structure that opens the confirmation to allow for 

binding (Varadan, Walker et al. 2002, Fushman and Walker 2010). Other closed 

conformation chains include K6 and K11 (Fig. 1.2) (Fushman and Walker 2010).  

The open confirmation of K63-linked chain structure is mimicked by the linear Ub 

chains (Fig. 1.2). In K63-chains, the only contact between the Ub moietys is via the 

isopeptide bond between the Ub molecules (Weeks, Grasty et al. 2009). The lysine bond 

in K63-linked chains is inherently more flexible than the methinonine bond of linear 

chains meaning K63-chains can be recognised by a wider range of Ub-binding proteins 

than linear chains (reviewed in Chen and Sun 2009, Komander, Reyes-Turcu et al. 

2009, reviewed in Trempe 2011). K63-linkages are biologically relevant in reaction to 

DSBs (reviewed in Chen 2005, Kolas, Chapman et al. 2007, Zhao, Sonoda et al. 2007, 

reviewed in Chen and Sun 2009).  

The remaining linkages are less well studied. It is known that K6 chains can be made by  

the E3-ligase Breast cancer 1, early onset (BRCA1) after DNA damage, as well as 

another E3 enzyme Ring1b-Bmi1 (Nishikawa, Ooka et al. 2003, Wu-Baer, Lagrazon et 

al. 2003, Ben-Saadon, Zaaroor et al. 2006). The E3-ligase Parkin also has been shown 

to auto-ubiquitinate itself with K6-chains, which need to be removed in order for parkin 

to relocate to the mitochondria (Durcan, Tang et al. 2014). 

K27-chains are present on Inhibitor of Kappa Light polypeptide gene enhancer in B-

cells, kinase gamma (IKKγ) and recruit Rhomboid domain containing 3 (Rhbdd3), 

which itself is ubiquitinated with K27-chains. These chains recruit the deubiquitinating 



14 
 

enzyme A20, which inhibits the activation of NF-κB by cleaving the K63-linked chains 

that stimulate interleukin 6 (IL-6) (Liu, Han et al. 2014). Therefore K27-chains may 

have a role in suppressing auto-immune responses. Ring1B is also known to auto-

ubiquitinate itself with K27-chains (de Bie, Zaaroor-Regev et al. 2010).  

The other closed confirmation linkage are K11-chains, they are the second most 

abundant chain in yeast although this is not observed within higher eukaryotes (Xu, 

Duong et al. 2009, Dammer, Na et al. 2011). They act as another signal for degradation 

by the proteasome that is distinct from the K48-chain signal and may affect the 

processing of the substrates. One ligase known to produce K11-chains is the APC 

complex along with UbcH10 or UBE2S E2-activating enzymes. By targeting cell-cycle 

regulators, such as cyclinB1, Aurora A and Plk1, for degradation by the proteasome, 

K11-chains regulate the cell cycle (Williamson, Wickliffe et al. 2009, Song and Rape 

2010, Wu, Merbl et al. 2010, reviewed in Bremm and Komander 2011). 

The K29 and K33 lysine residues are close together within the ubiquitin structure (Xu, 

Duong et al. 2009). The role of chains formed through these lysines in vivo is not 

understood, although recent work has demonstrated a role for K33-linked chains for 

protein trafficking within the trans-Golgi network (TGN) (Yuan, Lee et al. 2014). Two 

members of the HECT family of E3-ligases can form K29 and K33 chains, these are 

UBE3C and AREL1, with both these poly-Ub chains form open structures (Michel, 

Elliott et al. 2015). 

Poly-Ub does not just form as a single linkage type, chains of multiple linkages can 

form, as well as branched structures that allow for a multitude of signalling pathways to 

be signalled (Kim, Kim et al. 2007). This is demonstrated by the formation of mixed 

K63 and linear chains in the activation of IκB kinase (IKK) complex (Emmerich, 
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Ordureau et al 2013). Further to this the branched structure of some poly-Ub chains is 

believed to inhibit degradation of substrates by the proteasome and, therefore a 

proteasome subunit s5a inhibits the formation of branched chains (Kim, Kim et al. 

2009). Conversely, recent work has demonstrated that mixed chains formed by the 

anaphase-promoting complex (APC) Ub-ligase are a more potent signal for degradation 

than the homogenous K11-chains (Meyer and Rape 2014). Therefore the role of 

branched chains in the cell is under debate.  

The complexity and variety of the Ub-chains allow for many different signals to form 

through this one modification. Poly-Ub chains are known to be a major signalling 

mechanism for DSB repair (Bekker-Jensen and Mailand 2011). 

1.5 Deubiquitinating enzymes (DUBs) 

There are believed to be 79 active DUBs in the human genome (reviewed in Nijman, 

Luna-Vargas et al. 2005). DUBs are required to hydrolyse the bonds between either the 

Ub moieties or Ub and the substrate, in order to remove the Ub modification and 

recycle it back into free Ub that can be utilised by the cell. This is carried out by a 

nucleophilic attack on the isopeptide bond formed between the C-terminal end of Ub 

and the acceptor lysine. There are five subsets of DUBs, Ub specific peptidases (USPs), 

Ub C-terminal hydrolases (UCHs), Ovarian tumour proteases (OTUs), Jab1/MPN 

domain-associated metalloproteases (JAMM) and Machado-Joseph disease protein 

domain proteases (MJDs) (Fig. 1.5) (reviewed in Nijman, Luna-Vargas et al. 2005, 

reviewed in Komander, Clague et al. 2009). The USPs, UCHs, MJDs and OTUs all use 

an active Cys to break the isopeptide bond (Cys-DUBs), whereas the JAMM-type 

DUBs use a zinc ion (Zn
2+

) in order to break the isopeptide bond. The catalytic triad of 

the USP, UCH, MJD and OTU type DUBs, works by the Cys residue attacking the C-
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terminal end of the Ub molecule with the help of the His residue that is part of the 

catalytic triad. The third residue of the catalytic triad, Asn/Asp, polarises the His residue 

and stabilises it in the correct position allowing effective breakage of the bond (Fig. 1.5) 

(Komander and Barford 2008, reviewed in Komander, Clague et al. 2009). The binding 

of Ub to the DUB causes the extension of the isopeptide bond within the active site 

(Drag, Mikolajczyk et al. 2008, reviewed in Komander, Clague et al. 2009). 

 

Figure 1.5. Protein structure of the five families of DUB enzymes. The yellow 

ribbons represent the protein structure of the DUB domain, the blue ribbons represent a 

Ub molecule. There are five families of DUBs: USP, UCH, OTU, MJD and JAMM-

type. The first four types of DUBs utilise a catalytic triad consisting of a Cys, His and 

Asn/Asp residue, which carry out nucleophilic attack on the isopeptide bond between 

Ubs or Ub and substrate. The final form of DUB is a JAMM-type DUB which uses a 

zinc ion to break the Ub bond. Reprinted from (Nijman, Luna-Vargas et al. 2005) with 

permission from Elsevier.  

 

Of the Cys-DUBs, the USPs are the major group, with the majority of DUBs in the 

human genome falling into this family (Semple, Grp et al. 2003, reviewed in Nijman, 

Luna-Vargas et al. 2005). The structural domains of the USPs are correlated with the 

shape of the hand, with a palm, thumb and the finger domain which bind the Ub 

molecules. The boundary between the fingers and palm is the region where the 

isopeptide bond is actually broken (Hu, Li et al. 2002). The active domain containing 

the Cys, His and Asn/Asp varies in size being 300-800 residues long, with USP16 and 

USP30 lacking the active Asn/Asp. Despite lacking the Asn/Asp, USP16 and USP30 

remain active and have evolved a separate mechanism to stabilise the active His 
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(reviewed in Nijman, Luna-Vargas et al. 2005). Binding of Ub causes a conformational 

change within USPs which causes the residues of the catalytic triad to move into 

proximity with each other to allow the cleavage of the isopeptide bond (Hu, Li et al. 

2005). The USP family of DUBs are the most promiscuous of the DUBs being able to 

cleave most linkage types (Faesen, Luna-Vargas et al. 2011). 

The OTU family makes up the next largest group of DUBs, with 14 members, and is 

subdivided into four subfamilies, OTUBs, OTUDs, OTULINs, and A20-like DUBs 

(reviewed in Komander, Clague et al. 2009). Each subfamily is distinguished by their 

catalytic domain, with the OTUDs having the smallest catalytic domain. The OTU 

family was named due to their involvement in the formation of the ovaries in 

Drosophila melanogaster, but the first of this family found to have DUB activity was 

Otubain (OTUB1) (Goodrich, Clouse et al. 2004). The Ub-binding site of this family 

has diverged, with yeast OTU domain-containing protein 1 (Otu1) DUB utilising a large 

loop to bind Ub, whereas OTUB1, Otubain2 (OTUB2) and A20 use disordered apo-

structures. Further to this difference, the distal Ub-binding site in Otu1 is precluded by a 

helical domain. Although this family utilise the active Cys and His they do not require 

the Asn/Asp to be active and instead have evolved a hydrogen binding network which 

stabilises the His residue, as seen in OTUB2 (Nanao, Tcherniuk et al. 2004). The OTU-

family exists in both active and inactive forms, based on a conformational change, with 

the active form having the Cys residue nearer to the His residue of the catalytic triad 

(Edelmann, Iphofer et al. 2009). The OTU family has been shown to be very specific to 

the linkages it cleaves with six members only cleaving one linkage type, including the 

K48-specific DUB OTUB1 which is implicated in regulating Ub and DNA breaks 

(Nakada, Tai et al. 2010, Mevissen, Hospenthal et al. 2013). Four of the OTU family 

cleaving two linkage types, including A20 which cleaves K11 and K48 , as well as 
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OTUD3 which can cleave both K6 and K11 . The OTU family members display four 

mechanisms that make them linkage specific, with only one mechanism dependent 

solely on the OTU catalytic domain. Two of these mechanisms require the proximal Ub 

to be bound in a certain way, either by an UBD or S1’ ubiquitin binding sequence to 

specify which linkage can be cleaved. The final mechanism allows recognition of poly-

Ub chains by using an S2 sequence to provide the specificity (Mevissen, Hospenthal et 

al. 2013).  

The smallest groups of Cys-dependent DUBs are the MJD and UCH families; both 

contain only four family members. The UCH family has a conserved active domain that 

has a loop that restricts access to the active site, as the loop straddles the C-terminus of 

Ub (Johnston, Larsen et al. 1997). Originally this restriction was believed to limit 

substrates to small proteins; however, more recent research has shown a conformational 

change which allows larger substrates to access this site (Johnston, Larsen et al. 1997, 

reviewed in Komander, Clague et al. 2009). Apart from cleaving incorrectly linked Ub, 

the UCH family is believed to be involved in the processing of newly translated Ub 

(Larsen, Krantz et al. 1998). 

Like the UCH family, the MJD family also contains a loop that restricts the active site 

(reviewed in Komander, Clague et al. 2009). However, the MJD family is more 

divergent than other Cys-DUBs, having evolved later than the other described DUBs, 

with no homologues in yeast, although the catalytic triad is still present (reviewed in 

Nijman, Luna-Vargas et al. 2005). 

The final category of DUBs is the JAMM family, which does not use the active Cys but 

a Zn
2+

 ion. The binding of the Zn
2+

 to a water molecule polarizes this water molecule to 

create a non-covalent bond between the water and the Ub molecule. This allows protons 
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to pass from the water molecule to the newly formed intermediate, which breaks the Ub 

isopeptide bond (Maytal-Kivity, Reis et al. 2002, Tran, Allen et al. 2003). Most JAMM-

type DUBs are part of larger complexes, for example Pad1 homolog 1 (POH1) which is 

a member of the 26S proteasome (Cope, Suh et al. 2002, Yao and Cohen 2002, Dong, 

Hakimi et al. 2003). JAMM-type DUBs are unlikely to have originally functioned as 

DUBs, as bacterial homologues do not have DUB activity, but have evolved this 

function as the Ub system has become more prevalent in eukaryotes (Burns, Baumgart 

et al. 2005, reviewed in Nijman, Luna-Vargas et al. 2005). 

The removal of Ub is important, not only to recycle free-Ub back into the cell, but also 

to protect substrates from degradation by the proteasome. Removal of poly-Ub chains 

which signal degradation can stop the substrate being recognised by the proteasome, 

thereby stabilising substrates.  

1.5.1 Deubiquitinating enzyme specificity 

The extensive Ub system within higher eukaryotes suggests there is little functional 

redundancy between DUBs. The increase in E3-ligases and the complexity of Ub 

signalling is correlated with a corresponding increase in DUBs, to add further regulation 

to the Ub system (Semple, Grp et al. 2003). DUB specificity depends on a number of 

factors, such as whether the modification is mono- or poly-Ub. Poly-Ub chains can also 

be distinguished based on linkage type, as previously discussed with the specificity of 

DUBs such as the OUT family (Section 1.5) (Mevissen, Hospenthal et al. 2013). Further 

to the Ub modification, some DUBs show specificity to the substrate through sequences 

around the DUB active domain, which has been demonstrated by the CYLD DUB, 

specifying its interaction with NEMO (Saito, Kigawa et al. 2004, reviewed in Nijman, 

Luna-Vargas et al. 2005). Many DUBs, particularly JAMM-type DUBs, are part of 
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larger complexes, with BRCC36 as part of the BRCA1-A complex, indictative of its 

role in DDR, along with POH1 being part of the proteasome (Dong, Hakimi et al. 2003, 

Nabhan and Ribeiro 2006). The interactions of the other complex components can limit 

the substrates accessible to the DUB, increasing substrate specificity. The proteasome, 

although targeting most proteins within the cell, due to the structure of the proteasome 

components only Ub-chains of four moieties or more can be recognised (Thrower, 

Hoffman et al. 2000). The cellular localisation of the DUB will also act to restrict the 

available substrates, providing further specificity of DUBs to substrates. Therefore, 

there are many criteria which act to make DUBs specific to certain substrates, adding 

increased regulation to the Ub system in higher eukaryotes (reviewed in Nijman, Luna-

Vargas et al. 2005). 

1.6 Evolution of the Ub conjugation enzymes 

The Ub protein is highly conserved within eukaryotes, along with the enzymatic cycle 

that attaches and removes the Ub. However, the number and function of the enzymes 

involved varies between species.  

The Ub-cycle is seen in yeast, which are ancient organism, although there are fewer 

enzymes, with only 68 E3 enzymes and 20 DUBs present. There has been an 

exponential increase in the E3 and DUB enzymes throughout evolution with 442 E3s 

and 78 DUBs in mice. Consistent with this increase, there is also an increase in the 

number of E2 enzymes, although not to the same extent as the E3s and DUBs. 

Conversely there is a decrease in E1 enzymes with eight enzymes in yeast which is 

reduced to two in humans (Semple, Grp et al. 2003). 

It is therefore implied by Semple et al. that the rise in Ub enzymes suggests an increase 

in the use of Ub as a signalling mechanism and tighter regulation on the pathways 
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involved. The anomaly in this expansion is in Caenorhabitis elegans which has a higher 

number of E3 enzymes than would be expected. It is not known what caused this 

increase and it appears to be an isolated incident (Fig. 1.6). The increase in the number 

of E3s suggest specificity in substrate selection and distinct pathways for the enzymes 

(Semple, Grp et al. 2003). 

 

Figure 1.6. Schematic of the increase in Ub E3-ligase and DUB enzymes in 

different species. Data from (Semple, Grp et al. 2003). Throughout evolution there is 

an increase in the number of E3 and DUB enzymes. C.elegans is anomalous with an 

unexplained increase in both E3-ligases and DUBs. The increase in the numbers of both 

enzymes is believed to be linked. 

 

1.7 Ubiquitin binding domains 

Along with the expansion of Ub system, cells have developed more ways of recognising 

Ub, with 20 different families of Ub binding domains (UBDs) (reviewed in Husnjak and 

reviewed in Dikic 2012, reviewed in Scott, Oldham et al. 2014). The classical 

recognition of Ub is through an α-helical domain, which interacts with the hydrophobic 

patch around the Ile44 residue of Ub (reviewed in Dikic, Wakatsuki et al. 2009). The 

binding domains that interact with the Ile44 patch include UIMs (Ub-interacting motif), 

MIU (motif interacting with Ub), DUIM (double-sided Ub-interacting motif), UBA 

(Ub-associated), CUE (coupling of ubiquitin conjugation to endoplasmic reticulum 
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degradation), GAT (GGA and TOM), VHS (Vps27/Hrs/STAM) and UBAN (Ubiquitin 

binding in ABIN and NEMO domain) binding domains. The number and layout of the 

α-helices varies between the binding domains, with the largest family, the UIMs, only 

having one, whereas the VHS domains have eight helices (Fig. 1.7) (reviewed in Hicke, 

Schubert et al. 2005). 

Ub binding domains can also use a Zinc ion in order to bind Ub.. There are four UBD 

families that use the zinc ion which are the UBZ (Ub-binding zinc finger), NZF (Npl4 

zinc finger), ZnF (Zinc finger) UBD and the A20 domain. With many DNA damage 

response and replication proteins possessing Zinc UBDs, including WRNIP, the 

helicase interacting partner, the translesion synthesis polymerase κ, as well as the E3 

ligase important in modifying PCNA, Rad18 (reviewed in Husnjak and Dikic 2012). 

A smaller family of UBDs are the Pleckstrin homology (PH) fold family, including 

GLUE (GRAM-like Ub binding in EAP45) and PRU (pleckstrin-like receptor for Ub) 

domains. The PH domains have a distinct β-sandwich fold, although the mechanism of 

binding Ub of the PRU and GLUE domains is different. (reviewed in Dikic, Wakatsuki 

et al. 2009). 

A further set of UBDs include UEV (ubiquitin-conjugating enzyme E2 variant) and 

UBC (Ub-conjugating enzyme-related) domains (reviewed in Husnjak and Dikic 2012). 

Although the structure of the UEV domains are conserved between this family of 

binding-domains, the mechanism of Ub binding has diverged between proteins 

(Pornillos, Alam et al. 2002).  

There are also some unclassified UBDs including the binding domains of some JAMM-

type DUBs and the PFU and UBM (Ub-binding-motif) domains (reviewed in Husnjak 

and Dikic 2012). The JAMM type DUBs, as previously stated (Chapter 1 Section 1.5), 
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did not originally function as DUBs and, therefore, the UBD evolved from a domain not 

originally used to bind Ub (Burns, Baumgart et al. 2005).  

The diversity of the UBDs demonstrates not only the requirement for different domains 

to bind specific Ub modifications but, as seen with the JAMM domains, that as the Ub 

system has become more important in higher eukaryotes there have evolved more 

mechanisms for recognising Ub. 

The recognition of Ub-modifications has been shown to be important in many pathways 

in eukaryotic cells including the repair of DSBs.  
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Figure 1.7. Protein structure of the Ub-binding domains. The yellow ribbon 

represents the protein structure of Ub, the pink dots are the Ile44 residue, the green 

ribbon represents the Ub-binding domains (UBD). Many UBDs bind Ub through a 

helical domain, as seen with the UIM, CUE,UBA and GAT domains. The number of 

helices varies between the different binding motifs. Domains such as NZF bind Ub 

through a Zinc ion rather than a helix, however the Ile44 residue is still contacted. The 

final domain pictured, UEV,is a mix of α-helices and β-sheets and resembles the active 

domain of the E2-conjugating enzyme. Reprinted by permission from Macmillan 

Publishers Ltd: Nature Reviews Molecular Cell Biology (Hicke, Schubert et al. 2005). 
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1.8 The Double Strand Break Response 

DNA can be damaged in a variety of ways, including damage caused by endogenous 

and exogenous agents that cause different types of lesions, which require diverse repair 

mechanisms (reviewed in Sancar, Lindsey-Boltz et al. 2004). The different pathways 

vary from enzymatic removal of modifications to bases, such as the removal of aberrant 

methyl groups on the O
6
-methylguanine DNA, to the removal of entire sections of 

damaged DNA. This includes nucleotide excision repair (NER), base excision repair 

(BER) or removal of bases from both strands of DNA for interstrand crosslink repair 

(ICL), combining both NER and Homologous Recombination (HR) to repair the lesion 

(Koike, Maki et al. 1990, Huang, Svoboda et al. 1992, Kubota, Nash et al. 1996, 

reviewed in Noll, Mason et al. 2006). The regulation of all these repair responses 

requires Ub modifications to efficiently signal repair. 

DSBs are lethal to cells if they remain unrepaired, therefore there are two pathways that 

can repair them (Huang, Clarkin et al. 1996, Takata, Sasaki et al. 1998). Non-

homologous end joining (NHEJ) works throughout the whole cell cycle and ligates the 

broken ends together; however this process is error prone as base pairs might be deleted 

during end processing (Rothkamm, Kruger et al. 2003, reviewed in Betermier, Bertrand 

et al. 2014). On the other hand HR only occurs during S and G2 phase of the cell cycle, 

when there is a sister chromatid that acts as a template for repair (Kadyk and Hartwell 

1992, Rothkamm, Kruger et al. 2003). If repair fails, cells are destined for apoptosis;, 

unless another fault arises leading to diseases including cancer, due to the accumulation 

of mutations (Lips and Kaina 2001, reviewed in Jackson 2002). 
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1.8.1 Ubiquitin and the Early Double Strand Break response 

When DNA is damaged, early sensors are the first to respond. Poly-ADP-ribose 

polymerase (PARP1) is the first protein that is rapidly recruited to sites of DSBs, 

inducing poly-ADP-ribose (PAR) chains at the break. The PARP1 accumulation causes 

efficient recruitment of the Mre11/NBS1/Rad50 (MRN) complex, which is recruited 

quickly to breaks and acts to tether the broken DNA ends together through the Rad50 

subunit (de Jager, van Noort et al. 2001). The recruitment of MRN by PARP1 is 

probably due to an interaction between PARP1 and Mre11, and also through the binding 

of a putative PAR-binding domain within Mre11 that binds to PAR molecules (Haince, 

McDonald et al. 2008). Once MRN is at the sites of damage it can dissociate the 

inactive ATM dimer into an active kinase (Fig. 1.8). The C-terminal end of the MRN 

subunit Nbs1, has a conserved motif that recruits ATM to the DSB (You, Chahwan et 

al. 2005). The TIP60 histone acetyl transferase complex participates in ATM activation 

by acetylating K3106 of ATM, along with MRN (Sun, Xu et al. 2007). Once activated 

ATM phosphorylates downstream targets of the DSB response starting a cascade (Lee 

and Paull 2005). 

Activated ATM phosphorylates the H2AX histone variant to form γH2AX which acts as 

a signal to the cell to recruit the mediators of the damage response (Burma, Chen et al. 

2001). The γH2AX chromatin mark appears as rapidly as a minute after the damage has 

occurred and then spreads 1-2 Mbp either side of the break site  spreading its maximum 

distance between 10-20 mins after damage (Rogakou, Pilch et al. 1998, Rogakou, Boon 

et al. 1999). This chromatin mark, although not necessary for the initial opening of 

chromatin structure, is believed to be the modification that allows recruitment of repair 

proteins potentially by maintaining the decondensed state of chromatin until the break 

can be repaired (Kruhlak, Celeste et al. 2006). This γH2AX mark acts as a recruitment 
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signal for mediators of DNA repair such as Mediator of DNA-damage checkpoint 1 

(MDC1) which is also phosphorylated by ATM in response to damage (Fig. 1.8). The 

phosphorylated MDC1 binds to phospho-group on the modified H2AX and acts as 

platform to bring in further repair proteins (Spycher, Miller et al. 2008, Stucki, 

Clapperton et al. 2008). 

The E3-ligase RNF8 is one such protein recruited to phosphorylated-MDC1 through its 

forkhead-associated (FHA) domain, however the interaction is not solely dependent on 

phosphorylation of MDC1 but also on the demethylation of MDC1 by JMJD1C (Kolas, 

Chapman et al. 2007, Mailand, Bekker-Jensen et al. 2007). JMJD1C is a histone 

methyl-transferase that regulates chromatin, impacting on the transcription and the DSB 

response (Watanabe, Watanabe et al. 2013). The methyl-transferase is stabilised upon 

damage induction due to its interaction with RNF8 and this causes the ubiquitination at 

sites of damage (Watanabe, Watanabe et al. 2013). RNF8 is recruited to breaks prior to 

another E3-ligase, RNF168, which is recruited to breaks through the two MUI domains 

within RNF168 which binds to poly-Ub chains that form at damage sites (Doil, Mailand 

et al. 2009, Pinato, Scandiuzzi et al. 2009, Stewart, Panier et al. 2009). The kinetics of 

RNF8 and RNF168 recruitment to break sites varies, with RNF8 being recruited faster 

and shuttled on and off the sites of damage rapidly, while the movement of RNF168 is 

much slower. There are also fewer than half the number of RNF8 molecules at sites of 

damage than RNF168 molecules, suggesting that the limiting factor at break sites is 

RNF8 recruitment (Mok, Cheng et al. 2014). Both RNF8 and RNF168 interact with the 

E2 enzyme, Ubc13, and another E3-ligase, HECT and RLD domain containing E3 

protein ligase 2 (HERC2), which promotes the interaction of RNF8 with Ubc13 and 

stabilises RNF168. HERC2 is phosphorylated on Thr4827 in order to bind the RNF8 

FHA domain (Bekker-Jensen, Rendtlew Danielsen et al. 2010). To interact with both 
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MDC1 and HERC, it is necessary for RNF8 to oligomerize as more than one FHA 

domain is needed (Bekker-Jensen, Rendtlew Danielsen et al. 2010). Loss of HERC2 

causes defects in the DDR, with failure to recruit Tumour protein P53 binding protein 1 

(53BP1), a chromatin associated gene involved in promoting NHEJ repair, the BRCA1-

A complex, a complex formed of the E3 ligase BRCA1, Rap80 (receptor-associated 

protein 80), two DUBs BRCC36 and BRCC45, Merit40 (Mediator of Rap80 

interactions and targeting 40 kd), and RNF168. Further to this, RNF8 increases it’s 

binding to another E2 enzyme, UbcH8, therefore causing RNF8 to produce K48-linked 

chains rather than K63-linked chains (Bekker-Jensen, Rendtlew Danielsen et al. 2010). 

There is much debate surrounding the role of RNF8 and RNF168 at DSBs. There is 

evidence that despite RNF8 being recruited first it appears that RNF168 can prime 

mono-Ub on γH2AX K13/15, which can then be extended by RNF8 to create K63-

linked chains (Mattiroli, Vissers et al. 2012). More recently, it has been shown that 

RNF8 is responsible for the K63-chains on the histone variant H1, independently of 

RNF168. This suggests that RNF8 acts to ubiquitinate substrates at the break which 

then recruits RNF168 to the damage (Mattiroli, Vissers et al. 2012). RNF8 is known to 

make both K48-linked and K63-linked chains depending on which E2 interacts with 

RNF8, with UbcH8 creating K48-chains and Ubc13 creating K63-linking chains. Both 

types of chains form at sites of damage through these separate ligase activities, meaning 

RNF8 can act to regulate different processes at the damage site (Lok, Sy et al. 2011, 

Meerang, Ritz et al. 2011, reviewed in Mallette and Richard 2012). The Ub chains are 

known to recruit the BRCA1-A complex through the Rap80 protein which has tandem 

SUMO interacting motif (SIM)-UIM-UIM domains and binds to SUMO and the K63-

linked chains that form at damage (Hu, Paul et al. 2012). The Ub chains are also 

important in the recruitment of 53BP1, although through indirect interactions. The 
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Tudor domain of 53BP1 binds to the methylated histone variant H4 at lysine residue 20 

(H4K20me2) (Fig. 1.8), but this mark is unavailable to 53BP1 unless the trimethylation-

specific demethylase Jumonji domain 2 (JMJD2) is ubiquitinated with K63-linked 

chains which acts as a signal for its removal from chromatin (Botuyan, Lee et al. 2006, 

Mallette, Mattiroli et al. 2012). Two isoforms of JMJD2, JMJD2A and JMJD2B, have 

been identified as blocking 53BP1 from accessing histones, as well as the chromatin 

remodeller, Lethal (3) malignant brain tumour like 1 (L3MBTL1), which also blocks 

53BP1 from accessing the chromatin. L3MBTL1 is marked by K48-chains and is 

extracted by Valosin containing protein (VCP) to allow 53BP1 recruitment (Acs, 

Luijsterburg et al. 2011, Mallette, Mattiroli et al. 2012). The K48-linked chains appear 

quickly after damage but are just as rapidly cleared (Feng and Chen 2012). The roles of 

these chains are under dispute as RNF8 mutants that cannot make K48-chains do not 

inhibit repair (Lok, Sy et al. 2011). However, there is a lot of evidence showing that Ub-

chains formed at damage are needed to recruit many DDR proteins. 

Interestingly an RNF168 paralogue, RNF169, is also recruited to DSBs by RNF168. 

Although RNF169 is an E3-ligase, its enzymatic activity does not appear to act at 

DSBs, instead RNF169 acts to antagonise the recruitment of 53BP1 and BRCA1-A by 

binding to and blocking the Ub-chains. RNF169 thereby acts as a negative regulator of 

repair, stopping excessive recruitment of repair proteins to the break site (Poulsen, 

Lukas et al. 2012). 

To allow the repair proteins access to the DSB, the chromatin structure must be 

remodelled to an open conformation. Histone Ub modifications are a known mechanism 

of changing chromatin structure. An E3-ligase complex Ring1b/Bmi1 is known to 

mono-ubiquitinate histone H2A on K118/K119. Unlike other DDR proteins, the 
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Ring1b/Bmi1 complex is normally found on chromatin and does not require damage to 

be recruited. However, after damage, Bmi1 localises to the break site by an interaction 

with Nbs1 and is stabilized (Ismail, Andrin et al. 2010, Wei, Ojo et al. 2014). The 

mono-ubiquitination of K118/K119 is dependent on the phosphorylation of H2AX by 

ATM and a related kinase, Ataxia telangiectasia and Rad3-related (ATR). Without 

recruitment of Ring1B/Bmi1, other DDR proteins such as 53BP1 and BRCA1 cannot be 

recruited to DSBs and cells display increased radiosensitivity (Ismail, Andrin et al. 

2010). 

The relaxation of chromatin can also be attributed to the mono-ubiquitination of histone 

H2B at K120 by another E3-ligase complex, RNF20/40. RNF20 has been shown to 

interact with Nbs1 of the MRN complex and have a role in resection (Nakamura, Kato 

et al. 2011). The mono-ubiquitination of H2B by this E3-ligase complex, promotes the 

methylation of different lysine residues on histone H3, H3K4 and H3K79. Further to 

this, the mono-ubiquitination of H2B recruits chromatin remodellers such as SNF2h 

(Sucrose Non-fermenting 2 homolog) and the FACT complex (facilitates chromatin 

transcription) (Zhu, Zheng et al. 2005, Nakamura, Kato et al. 2011). All together these 

actions allow efficient recruitment of BRCA1 and the strand invasion protein, Rad51, to 

breaks; however 53BP1 is recruited independently of RNF20-mono-Ub (Nakamura, 

Kato et al. 2011). The requirement of RNF20 suggests the RNF20/40 complex has an 

important role in modulating chromatin around DSBs and therefore plays a role in 

regulating HR. 
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Figure 1.8. Depiction of the early response to a DSB. On damage, early sensor 

proteins, PARP and MRN are recruited to the break, the Rad50 component of the MRN 

complex tethers the broken ends together. The MRN complex activates the ATM 

kinase. ATM phosphorylates histone H2AX which recruits MDC1, which itself is 

phosphorylated by ATM. Phosphorylated MDC1 recruits the E3-ligase RNF8, which 

ubiquitinates proteins around the break. The ubiquitination recruits another E3-ligase 

RNF168 which amplifies the Ub signal. The Ub modification recruits the BRCA1-A 

complex through Rap80 and opens up histone marks for the binding of 53BP1. 
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1.8.2 Homologous recombination 

Homologous recombination (HR) occurs during the S and G2 phases of the cell cycle 

when there is a sister chromatid available, which act as a template for the synthesis of 

the missing bases in the break ensuring an error free method of repair (Kadyk and 

Hartwell 1992, Rothkamm, Kruger et al. 2003). 

An important step that commits the pathway to HR is the resection of the break, which 

is initially started by the Mre11 nuclease as part of the MRN complex (Taylor, Cecillon 

et al. 2010). Resection is continued, in part, by phosphorylated CtIP (CtBP-interacting 

protein) which binds the BRCT domain of BRCA1, forming the BRCA1-C complex 

(Wong, Ormonde et al. 1998). The interaction of BRCA1:BARD1 with CtIP is cell-

cycle regulated so that it only occurs during S and G2 phase (Yun and Hiom 2009, 

Escribano-Diaz, Orthwein et al. 2013). However, it has been demonstrated that the 

interaction of BRCA1 and CtIP is not necessary for resection of DSBs, with CtIP 

potentially interacting directly with DNA (Nakamura, Kogame et al. 2010, Peterson, Li 

et al. 2011, Reczek, Szabolcs et al. 2013, Polato, Callen et al. 2014). The recruitment of 

CtIP to the DSB requires the dimerization of CtIP. Although BRCA1 is not required for 

CtIP resection, the interaction does appear to accelerate resection by removing RIF1 and 

53BP1 from DNA ends (Cruz-García, López-Saavedra et al. 2014). Whether this 

removal of 53BP1 and RIF1 requires the E3 ligase activity is not fully understood. 

The combined resection of MRN and BRCA1-C remove between 50-100bp around the 

break site leaving a 3’ single stranded overhang (Mimitou and Symington 2008, Buis, 

Stoneham et al. 2012). The resection of the break is inhibited by factors that promote 

NHEJ, this has namely been 53BP1, which, along with other factors, is believed to 

protect the broken ends of the DNA and, therefore, the BRCA1-C complex must 
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remove these factors from the ends of the DNA before resection can occur (Bunting, 

Callen et al. 2010, Chapman, Barral et al. 2013, Zimmermann, Lottersberger et al. 

2013). However, 53BP1 is recruited to breaks even if HR is set to occur and it is now 

believed to have a role in opening the heterochromatin in order to allow repair factors to 

access the DSB (Kakarougkas, Ismail et al. 2013). 53BP1 also interacts with 

Replication protein A (RPA) on the single stranded overhang, although the function of 

this interaction is not well understood (Yoo, Kim et al. 2005). 

Once CtIP and MRN have carried out the initial resection, the 3’ overhang is extended 

further by the helicase BLM (Bloom syndrome protein) and the nucleases Dna2 (DNA 

replication helicase/nuclease 2) or Exo1 (exonuclease 1) (Cejka, Cannavo et al. 2010). 

The single stranded DNA (ssDNA) is coated by RPA, which protects the DNA, 

removes secondary structures and recruits repair factors to the break (Sugiyama, 

Zaitseva et al. 1997). RPA must be replaced by Rad51 for homology searching and 

subsequent repair (reviewed in Krejci, Altmannova et al. 2012). There are five 

paralogues of Rad51 which exist in two complexes. The first complex contains 

Rad51B/Rad51C/Rad51D/XRCC2 (BCDX2), whereas the second complex contains 

only Rad51C and XRCC3 (CX3). These paralogue complexes can bind DNA and have 

weak ATPase activity but have distinct roles in HR. The BCDX2 complex works before 

the formation of the Rad51 filament, unlike the CX3 complex which acts downstream 

of Rad51 recruitment (Chun, Buechelmaier et al. 2013).  

In order for the displacement of RPA to occur, Rad51 requires further factors for 

loading, which include BRCA2, an interactor of BRCA2, DSS1 (deleted in split 

hand/split foot 1), and Rad52 (Sugiyama and Kowalczykowski 2002, Gudmundsdottir, 

Lord et al. 2004, Wang and Haber 2004, Jensen, Carreira et al. 2010). The interaction of 
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DSS1 with BRCA2 stabilises the latter and improves its function (Li, Zou et al. 2006). 

Rad51 binds to the BRC repeats within BRCA2, with six Rad51 molecules binding to 

one BRCA2 molecule (Jensen, Carreira et al. 2010). BRCA2 itself interacts with the 

coiled coil domain of BRCA1 via Partner and localizer of BRCA2 (PALB2), recruiting 

BRCA2 to the DSB (Zhang, Ma et al. 2009). PALB2 has also been shown to have a 

physical interaction with Rad51 and can aid in the displacement of RPA alone or in 

conjunction with BRCA2 (Buisson, Dion-Cote et al. 2010). Once formed, the Rad51 

filament can invade the template DNA and search for homologous sequences. In order 

to find these sequences, which are usually around 100 bp long, the Rad51 helical 

filament stretches out the ssDNA and then invades the double stranded DNA (dsDNA) 

of the template DNA creating a D-loop (Ira and Haber 2002, Filippo, Sung et al. 2008). 

Rad51 physically interacts with the template DNA and allows the extension of the 3’ 

overhang by the filament dissociation, leaving the 3’ hydroxyl group accessible. The 

DNA is extended until it has filled in the break and the ssDNA is recaptured at the other 

side creating a double Holliday junction (HJ) (Filippo, Sung et al. 2008). The BLM 

helicase with Topo IIIα performs double HJ dissolution as the preferred method of 

resolving this structure, as it avoids sister chromatid exchange (Wu and Hickson 2003). 

This works by BLM and TopoIIIα moving each HJ towards each other until they 

converge, the resulting structure can then be unwound without the need for 

endonuclease activity (Plank, Wu et al. 2006). However, resolvase enzymes can cut the 

four-way DNA junction in one of two ways. One way is where the sister chromatids 

remain as they were originally with no genetic information being exchanged between 

sister chromatids. The second way is where a cross-over of genetic information occurs 

and there is a switch between the chromatids. How the junction is resolved depends on 

the resolvase involved, for example cleavage of the HJ by Mus81/Mms4 resolvase 
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complex causes cross-over of genetic information between sister chromatids (reviewed 

in Hartlerode and Scully 2009). The use of the sister chromatids allows faithful and 

error-free repair of the DSB. Despite this, HR is not the most prominent form of repair 

as it only occurs during S and G2 phases of the cell cycle, unlike NHEJ which occurs 

throughout the cell cycle (Saleh-Gohari and Helleday 2004). 

1.8.3 Non-homologous end-joining 

The most prevalent form of repair, NHEJ, is an error-prone method of repair that occurs 

throughout the whole of the cell cycle, unlike HR. NHEJ does not use a template to 

ensure that genetic information is not lost, instead the repair factors specific for NHEJ 

act to ligate the broken DNA ends (reviewed in Valerie and Povirk 2003). 

Microhomology is known to be used occasionally in NHEJ but only a few base pairs are 

matched and only act to guide the breaks to ligate in the correct place but NHEJ can 

also act without using microhomology (reviewed in Lieber, Lu et al. 2008).  

NHEJ repair is an important pathway for the immune system, used in V(D)J 

recombination, giving rise to different immunoglobulin chain genes to provide a wide 

variety of antibodies (reviewed in Malu, Malshetty et al. 2012). 

There are two NHEJ pathways, canonical and alternative. During canonical-NHEJ (C-

NHEJ), the first proteins recruited to the break, which drive repair towards NHEJ, are 

the Ku70/80 heterodimer. The Ku70/80 heterodimer has high affinity to duplex DNA 

structure and, therefore, binds the ends of the DNA and blocks resection (Walker, 

Corpina et al. 2001, Sun, Lee et al. 2012). Ku70 and Ku80 form a ring around the DNA 

double helix, although they do not come into physical contact with any of the bases of 

the DNA. Once in a complex with DNA, the Ku70/80 complex also brings in the DNA-

dependent protein kinases (DNA-PKs) in to the break site (Gottlieb and Jackson 1993, 
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Gell and Jackson 1999). DNA-PKs then can act as a bridge to tether the two broken 

ends of the DNA together (reviewed in Weterings and van Gent 2004). The binding of 

DNA-PKs makes the Ku70/80 heterodimer translocate along the DNA, dependent on 

the p460 kinase subunit of DNA-PKcs, in order to accommodate this large kinase 

(Calsou, Frit et al. 1999). The Ku70/80 heterodimer is stabilised on DNA ends by the 

interaction of Paralogue of XRCC4 and XLF (PAXX) (Ochi, Blackford et al. 2015). 

The Ku:DNA:DNA-PKs complex then phosphorylates NHEJ factors, most importantly 

itself. This autophosphorylation of DNA-PKs within the complex acts to recruit 

nucleases. The most well-known nuclease is Artemis, although others that have been 

implicated including Flap structure-specific endonuclease 1 (FEN1) (Wu, Wilson et al. 

1999, Goodarzi, Yu et al. 2006). Also recruited to the Ku:DNA complex are two 

polymerases, pol µ and λ, which bind via their BRCT domains, with pol µ acting as the 

main polymerase that fills in the gap between the broken ends (Mahajan, McElhinny et 

al. 2002). However, as there is no template DNA required, the polymerases have greater 

flexibility in order to allow for synthesis (Ramadan, Shevelev et al. 2004). Finally, 

XLF:XRCC4 is recruited to ligate the DNA ends back together. In order to allow this to 

happen XRCC4 interacts with polynucleotide kinase/phosphatase (PNKP) which 

restores the 5’phosphate group and the 3’ hydroxyl group onto the broken ends of the 

DNA, making them compatible for re-ligation (Jilani, Ramotar et al. 1999, Koch, Agyei 

et al. 2004). XLF:XRRC4 is known to be able to ligate across gaps, so although the 

damage has been repaired, the lack of template means incorrect information can be 

incorporated into the DNA or information lost (Gu, Lu et al. 2007). However, DSBs can 

be repaired at any point in the cell cycle and at a much quicker rate than repair of DSBs 

by HR (Mao, Bozzella et al. 2008, Mao, Bozzella et al. 2008). 
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The distinct pathway of alternative-NHEJ (Alt-NHEJ) is a Ku-independent process, but 

it can be restricted by Ku (Bennardo, Cheng et al. 2008). Similarly to C-NHEJ, Alt-

NHEJ simply ligates the broken ends of the DNA back together. However, unlike C-

NHEJ, Alt-NHEJ uses regions of microhomology, in a process that is slower than C-

NHEJ (Guirouilh-Barbat, Huck et al. 2004, Han and Yu 2008). Alt-NHEJ is considered 

to be a back-up repair pathway for when C-NHEJ and HR fail, therefore, it follows that 

early response proteins such as PARP1, MRN and CtIP are also required for Alt-NHEJ 

(Wang, Wu et al. 2006, Bennardo, Cheng et al. 2008, Truong, Li et al. 2013). The 

broken ends are resected back until short regions (5-20bp long) of homology are 

reached (reviewed in McVey and Lee 2008). These regions anneal, creating 3’ flaps 

which are then removed. The ends can then be ligated back together using Ligase 1 

(Lig1) or Ligase 3 (Lig3) (reviewed in Simsek and Jasin 2011). 

The repair of damage is a tightly regulated process so that the process does not occur 

aberrantly and to ensure efficient repair.  

1.8.4 DUBs in Double Strand Break Repair 

Ub is well documented in signalling the recruitment of proteins to the sites of DNA 

damage in order to facilitate repair; however, it must be removed by DUBs once DNA 

is repaired (reviewed in Bekker-Jensen and Mailand 2011). Recent screens have shown 

that there are many different DUBs that can have a detrimental effect on the DNA 

damage response (Nishi, Wijnhoven et al. 2014). The large number of different DUBs 

that effect DNA repair show the importance of Ub as a signalling molecule in this 

pathway and also demonstrates the tight regulation required for this process (reviewed 

in Panier and Durocher 2013). 
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One of the first DUBs known to have a role in DNA repair was Ub-specific protease 1 

(USP1), which targets both the mono-Ub of FANCD2 (Fanconi anemia 

complementation group D2) and PCNA (Nijman, Huang et al. 2005, Huang, Nijman et 

al. 2006). USP1 needs its cofactor UAF1 (USP1 associated factor 1) in order to have 

strong DUB activity, as on its own it has very weak DUB activity (Cohn, Kowal et al. 

2007). USP1 and mono-Ub FANCD2 are both cell-cycle regulated and co-localise on 

the chromatin (Garcia-Higuera, Taniguchi et al. 2001, Nijman, Huang et al. 2005). The 

mono-ubiquitinated form of FANCD2 is recruited to DNA damage and interacts with 

BRCA1 and Rad51 in order to repair interstrand crosslinks (ICLs) (Taniguchi, Garcia-

Higuera et al. 2002). USP1/UAF1 is known to promote HR in cells by promoting the 

disassembly of Rad51 foci (Murai, Yang et al. 2011).  

USP1 also removes the mono-Ub mark from PCNA, which is important for TLS during 

replication (Hendel, Krijger et al. 2011). The USP1/UAF1 complex is recruited to 

mono-Ub-PCNA via the Enhanced level of genomic instability 1 (ELG1) protein (Lee, 

Yang et al. 2010). The loss of USP1 in transgenic mice and DT40 chicken cells causes 

genomic instability, supporting the hypothesis that USP1 is required for effective repair 

of DNA by HR (Kim, Parmar et al. 2009, Murai, Yang et al. 2011(Oestergaard, 

Langevin et al. 2007)). As USP1 protein levels are cell cycle regulated, when levels are 

low (in G1 phase) there is an increase in the amount of mono-Ub-PCNA if the cell is 

stressed by UV (Cotto-Rios, Jones et al. 2011). USP1/UAF1 has an important role in 

ICL repair by also removing the FANCD2- or PCNA-mono-Ub. This action could be 

through releasing the FAN1 (FANCD2/FANCI-associated nuclease 1) and SNM1A 

(DNA cross-link repair 1A) nucleases from the FANCD2 complex (reviewed in Huang 

and D'Andrea 2010).  
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USP7 is well studied due to its role in regulating p53 and therefore the G2/M 

checkpoint. The levels of p53 are usually kept low in the cell by the Mdm2 E3 ligase 

targeting p53 for degradation. USP7 has been shown to be able to deubiquitinate p53 in 

vitro and in vivo (Li, Chen et al. 2002). Conversely, USP7 also stabilises MDM2 and, 

therefore, this pathway must be highly dynamic to allow correct regulation of the p53 

pathway (Li, Brooks et al. 2004). Upon DNA damage, ATM phosphorylates p53 on 

Ser15 which drives the phosphorylation on Thr18, as well as indirectly causing the 

phosphorylation of Mdm2 through the c-Abl (mammalian Abelson murine leukaemia 

viral oncogene homolog 1) kinase (Baskaran, Wood et al. 1997, reviewed in Canman, 

Lim et al. 1998, Dumaz, Milne et al. 1999, Goldberg, Vogt Sionov et al. 2002). Thr18 

phosphorylation is believed to reduce the affinity of Mdm2 for p53, reducing 

ubiquitination of p53 and, therefore, reducing the degradation of p53 (Dumaz, Milne et 

al. 1999, Schon, Friedler et al. 2002). Phosphorylation of Mdm2 upon DNA damage is 

thought to cause destabilisation of Mdm2 and the subsequent activation of p53 

(reviewed in Alarcon-Vargas and Ronai 2002). The binding partner of Mdm2, MdmX, 

is also deubiquitinated by USP7 in normal cells but upon DNA damage the interaction 

of USP7 and MdmX is reduced resulting in a decrease in MdmX levels and again a 

stabilised p53 (Meulmeester, Maurice et al. 2005). 

Further to its role in stabilising p53, USP7 has been implicated in Deubiquitinating 

Forkhead box O4 (FOXO4), a transcription factor that is important in regulating cell-

cycle progression. The removal of the mono-Ub from FOXO4 is necessary for 

controlling the transcriptional response to oxidative stress and base-excision repair after 

oxidative damage (van der Horst, de Vries-Smits et al. 2006). 
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A DUB known to be associated with DNA damage repair is BRCC36, a JAMM-type 

DUB that is in complex with BRCA1, BRCA2 and Rad51. The aberrant expression of 

BRCC36 is seen in many breast cancers suggesting an important role in the DNA 

damage response (Dong, Hakimi et al. 2003). Depletion of BRCC36 sensitises cells to 

ionising radiation. This sensitivity may be due to BRCC36 preventing the 

phosphorylation of BRCA1 and stopping the recruitment of BRCA1 to damage foci 

(Chen, Arciero et al. 2006). BRCC36, therefore, seems to have a role in activating 

BRCA1, and, although BRCC36 is a DUB, it is implicated in increasing the E3 ligase 

activity of the BRCA1:BARD1 heterodimer (Dong, Hakimi et al. 2003). BRCC36 is 

specific to K63-linked Ub and is known to antagonise the RNF8-Ubc13 chains formed 

at DSBs, this is thought to allow Ub remodelling by BRCA1 at the break sites (Shao, 

Lilli et al. 2009). Further to the role of BRCC36 at DSBs, a new target for BRCC36 

DUB activity is the ICL repair protein FANCG (Fanconi anemia complementation 

group G). The poly-ubiquitination of FANCG occurs upon DNA damage and is 

required to recruit FANCG to chromatin and facilitate HR by permitting the loading of 

Rad51 after crosslink repair (Zhu, Yan et al. 2014). 

The proteasome subunit UCHL5 is involved in resection at break sites, promoting HR. 

By stabilising the Nuclear factor related to Kappa B (NFRKB) component of the 

chromatin remodelling complex, INO80 complex, UCHL5 indirectly causes the 

recruitment of the exonuclease Exo1 to the DSB. Exo1 can then resect the DNA around 

the break site to allow repair by HR (Nishi, Wijnhoven et al. 2014). 

Another DUB, USP44, has been implicated in restraining the RNF8/RNF168 Ub signal 

formed at DSBs, which are required for repair protein recruitment. USP44 is recruited 

to damage caused by lasers, which allow highly precise DNA damage at only small 



41 
 

regions of the genome. USP44 has also been shown to displace RNF168 from the 

damage sites. siRNAs to USP44 caused a mild but significant increase in conjugated Ub 

and 53BP1 at DSBs, correlating with the fact that the RNF8/RNF168 mediated 

modification is targeted by a number of DUBs as loss of USP44 does not completely 

deregulate the recruitment of these repair factors (Mosbech, Lukas et al. 2013). 

USP3 has been shown to also target H2A and H2B Ub and, when USP3 is 

overexpressed it can specifically inhibit the formation of irradiation induced foci (IRIF) 

of 53BP1, Rap80 and even RNF168 whilst not affecting RNF8 recruitment (Nicassio, 

Corrado et al. 2007, Doil, Mailand et al. 2009). 

OTUB1, a K48-specific DUB (Edelmann, Iphofer et al. 2009), acts to inhibit the 

formation of RNF8/RNF168 induced Ub-chains rather than degrading chains. OTUB1 

also interacts with the E2 enzyme Ubc13 and inhibits the formation of the K63-linked 

chains made by RNF168. OTUB1, therefore, acts to restrict the Ub signal at DSBs 

without using its enzymatic activity. OTUB1 knockdown resulted in more persistent 

53BP1 foci whereas overexpression of OTUB1 suppresses the formation of 53BP1 foci. 

However, early responders such as MDC1 as well as RNF8 and RNF168 are still 

recruited to sites of damage, meaning it is likely that it is only K63-chains downstream 

of RNF8 that are restricted by OTUB1 (Nakada, Tai et al. 2010). 

A highly related DUB, OTUB2, acts to modulate the repair choice of cells, but unlike 

OTUB1, OTUB2 acts on RNF8-dependent Ub chains on L3MBTL1. OTUB2 

constitutively binds to L3MBTL1, probably in order to stop aberrant ubiquitination and 

removal; however, when damage occurs the Ub signal exceeds the removal of chains 

and, therefore, L3MBTL1 is removed from chromatin. OTUB2 can also act to block the 

formation of damage induced K63-chains. By slowing down the Ub signal formed at 
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damage, OTUB2 regulates which mode of repair the cell utilises. When OTUB2 is lost 

from cells, the ubqiuitination of DSBs is rapid, recruiting 53BP1 and Rap80 to the break 

sites and restricting resection of the break, effectively blocking HR repair. Therefore, 

OTUB2 acts to slow the repair processes in order to allow the most effective method of 

DNA repair to be used (Kato, Nakajima et al. 2014). 

USP5 also works on HR, rather than NHEJ, by rapidly removing the Ub-chains from 

sites of damage. By interacting with Rad18, USP5 is recruited to damage and, upon 

knockdown, Rad51 foci are much more persistent, suggesting a role in regulating Rad51 

in HR repair (Nakajima, Lan et al. 2014). 

Another DUB, BAP1 has been shown to be phosphorylated upon DNA damage, 

resulting in recruitment of HR factors to the DSB. The detailed mechanism of BAP1 in 

recruitment of HR proteins is unknown but a few theories exist. BAP1 has been shown 

to interact with the BRCA1/BARD1 heterodimer, although it may be that this 

interaction is a transient (Jensen, Proctor et al. 1998, Nishikawa, Wu et al. 2009). The 

depletion of BAP1 decreases the BRCA1 foci upon damage, as well as affecting other 

HR protein recruitment like Rad51. The loss of recruitment of HR proteins upon BAP1 

depletion means HR repair is restricted (Yu, Pak et al. 2014). 

An important effector of HR is the BRCA2 protein which has been shown to be 

ubiquitinated. USP11 has been shown to interact with and deubiquitinated BRCA2. 

Depletion of USP11 causes sensitivity to DNA damaging agents, suggesting a role in 

the repair of DNA. However the role USP11 plays in repair is still undetermined as the 

increase in ubiquitination of BRCA2 on Mitomycin C (MMC) treatment is not regulated 

by USP11 (Schoenfeld, Apgar et al. 2004). 
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The requirement of DUBs for correct repair of DNA correlates with the fact that in 

many different cancers DUBs are seen to be misregulated (reviewed in Hussain, Zhang 

et al. 2009). 

1.9 DNA Replication 

Efficient repair of DSBs is required for genome stability. Another cellular process 

which must be highly regulated in order to maintain genome stability is DNA 

replication. DNA damage within cells can be caused by endogenous sources, and one 

source of these errors is DNA replication (reviewed in Mazouzi, Velimezi et al. 2014). 

Replication is the process by which DNA is duplicated before the cell divides into two 

daughter cells. Faithful replication must occur in order for correct transfer of genetic 

information. There are three stages of replication; initiation, elongation and termination, 

with each stage being tightly regulated (reviewed in Masai, Matsumoto et al. 2010). 

1.9.1 DNA Replication Initiation 

The first step in DNA replication occurs in the G1-phase of cell cycle where the origins 

of replication are licensed (Dimitrova, Prokhorova et al. 2002). The origins are 

distributed throughout the eukaryotic genome, with mammals having between 30,000-

50,000 replication origins, although what defines a site as an origin is unknown 

(Huberman and Riggs 1966, reviewed in Gilbert 2001). Origin licensing is the 

recruitment of the inactive replicative helicases by the origin recognition complex 

(ORC), Chromatin licensing and DNA replication factor 1(Cdt1) and Cell division cycle 

6 (Cdc6) (reviewed in Nishitani and Lygerou 2002). First, the six subunit ORC complex 

binds to the origin of replication (Bell, Kobayashi et al. 1993, Li and Herskowitz 1993); 

it can bind to dsDNA or to ssDNA of 80 or more bases with high affinity (Lee, Makhov 

et al. 2000, Li and Stillman 2012). ORC binds to chromatin with the Cdc6 AAA+ 
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(ATPases Associated with diverse cellular Activities) ATPase and is associated with the 

ATP binding subunit of the ORC complex—Orc1p (Klemm, Austin et al. 1997, Wang, 

Feng et al. 1999). Both these proteins bind ATP and the hydrolysis of ATP is required 

for ORC assembly although not by the Orc1p (Siddiqui and Stillman 2007). Cdc6 

protein (Cdc6p) is cell cycle regulated, with high levels being present in G1 when it is 

required for replication licensing (Hateboer, Wobst et al. 1998, Mailand and Diffley 

2005). It is phosphorylated during early S-phase by cyclin-dependent kinase 1 (Cdk1) to 

give an inactive form of Cdc6p, which stops aberrant replication licensing during S-

phase (Elsasser, Chi et al. 1999, Diffley 2004). Once ORC and Cdc6p are bound to the 

DNA, Cdt1 and the MCM helicase hexamer, comprised of the MCM subunits 2-7, are 

recruited to the origin (Fernandez-Cid, Riera et al. 2013). 

Cdt1 binds to the ORC-Cdc6p complex in order to load two MCM 2-7 hexamers. Cdt1 

first binds to the MCM hexamer before it can bind to the ORC-Cdc6p complex (Tanaka 

and Diffley 2002, Kawasaki, Kim et al. 2006). The C-terminal portion of Cdt1 binds to 

the MCM hexamer but it is the N-terminus of Cdt1 which is necessary to correctly load 

the MCM subunits onto the origin (Yanagi, Mizuno et al. 2003, Teer and Dutta 2008, 

You and Masai 2008, Takara and Bell 2011, Wu, Wang et al. 2012). Two Cdt1 

molecules are required at the ORC-Cdc6 complex to load the two MCM2-7 hexamers 

(Evrin, Clarke et al. 2009, Remus, Beuron et al. 2009, Takara and Bell 2011). The 

ORC6 subunit has two independent Cdt1 binding sites that allow loading of the MCM 

hexamers in a head-to-head orientation. CDK1 can act to phosphorylate one of the Cdt1 

binding sites within ORC6 and therefore inhibit the loading of the replicative helicases 

but also competes with Cdt1 for binding to the Orc subunit (Chen and Bell 2011). 

Therefore it is only when CDK1 levels are low, during G1, that the MCM 2-7 hexamers 

can be loaded onto origins (reviewed in Bashir and Pagano 2005, Wheeler, Lents et al. 
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2008). Once both Cdt1 proteins and the two MCM hexamers are bound to the ORC-

Cdc6 complex, further ATP hydrolysis by Cdc6 facilitates the release of the two Cdt1 

molecules (Randell, Bowers et al. 2006). As the cell progresses into S-phase the pre-

replication complex (pre-RC) is activated by two kinases, Cdc7 and CDK (reviewed in 

Bell and Dutta 2002, Tsuji, Ficarro et al. 2006, Thomson, Gillespie et al. 2010), which 

recruit Cdc45 to the pre-RC and subsequently the GINS complex (Go, Ichi, Nii and 

San) (Jares and Blow 2000, reviewed in Sclafani and Holzen 2007, Bruck and Kaplan 

2015). The four GINS proteins (Sld5, Psf1, Psf2 and Psf3) and Cdc45 physically 

interact with the loaded MCM hexamers and form the active helicase (Kubota, Takase 

et al. 2003, Moyer, Lewis et al. 2006). The loading of the GINS complex and Cdc45 are 

mutually dependent. The GINS complex is therefore required for replication initiation 

(Takayama, Kamimura et al. 2003). 

The MCM hexamer is initially bound to dsDNA, however, the DNA at the break must 

be opened and the MCM complex reloaded onto the ssDNA (Costa, Ilves et al. 2011, 

Bruck and Kaplan 2015). How the origin DNA denatures is under investigation, but the 

process in bacteria has been studied. The DnaA AAA+ ATPase enzyme in bacteria 

binds to the DNA and undergoes a conformational change on ATP hydrolysis (Fuller, 

Funnell et al. 1984, Erzberger, Mott et al. 2006, Duderstadt, Chuang et al. 2011). A 

filament of DnaA molecules forms a right handed helix on one strand of the origin DNA 

and as each monomer of DnaA is added, they destabilise the double helix structure 

(Erzberger, Mott et al. 2006). In bacteria this region of DNA is termed the DNA 

unwinding element (DUE), which is an AT-rich region allowing it to be denatured more 

easily (Kowalski and Eddy 1989). However it has been shown that the ORC complex 

does not melt the origin DNA (Lee, Makhov et al. 2000, reviewed in Diffley 2011). The 

next most likely candidate for origin unwinding is the MCM complex which, as it 
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changes from the inactive double hexamer to the active separated hexamer; disrupts the 

DNA to allow single strand binding (reviewed in Lei and Tye 2001, reviewed in Costa 

and Onesti 2008, Sun, Fernandez-Cid et al. 2014). The MCM complex binds the GINS 

complex and Cdc45 to create a CMG (Cdc45/MCM/GINS) active complex bound to 

ssDNA (Gambus, Jones et al. 2006, Moyer, Lewis et al. 2006). The CMG complex 

binds the DNA polymerase α (pol α) but only once RPA has also been recruited to the 

origin by Cdc7 (Adachi and Laemmli 1994, Mimura and Takisawa 1998, Tanaka and 

Nasmyth 1998, Aparicio, Stout et al. 1999, Walter and Newport 2000). The origin is 

then unwound, usually to around 150 bp and is coated and supercoiled by RPA (Fig 1.9) 

(Walter and Newport 2000). The start of DNA synthesis requires the interaction 

between pol α and DNA primase which creates the RNA primers that DNA synthesis 

initiates from (Conaway and Lehman 1982, Dornreiter, Hoss et al. 1990, Harrington and 

Perrino 1995, Waga and Stillman 1998). 
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Figure 1.9. Representation of the initiation of replication. The origin of replication 

complex binds to the origin DNA and binds the AAA+ ATPase, Cdc6. This complex 

then recruits two Cdt1 and MCM complexes, which are brought into in a head-to-head 

formation, ATP hydrolysis occurs and Cdt1 is released. The pre-replication complex 

(pre-RC) is then activated by two kinases, Cdc7 and CDK. Once activated the GINS 

complex and Cdc45 are recruited and Cdc6 is released. The origin DNA is denatured 

through an unknown mechanism and the ssDNA is coated in RPA. 
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1.9.2 Replication elongation 

Pol α is not used for elongation of DNA as both strands of DNA need to be duplicated, 

there are two polymerases associated with the CMG helicase, pol ε and pol δ, the 

leading and lagging polymerases, respectively (Tsurimoto and Stillman 1989, Weinberg 

and Kelly 1989, Waga and Stillman 1998, Fukui, Yamauchi et al. 2004). Each 

polymerase requires an RNA primer sequence created by a primase that is recruited to 

the fork; however, unlike the leading strand—that can be synthesised in one continuous 

stretch— the lagging strand is synthesised in short 1000-2000 bp fragments in 

prokaryotes, and 100-200 bp sections in eukaryotes, separated by RNA primers (Ogawa 

and Okazaki 1980, Kornberg 1988). The primers must be removed by Ribonuclease H 

(RNAseH) and FEN1, then the gaps filled in by DNA polymerase I (Stein and Hausen 

1969, Okazaki, Arisawa et al. 1971, Champoux, Gilboa et al. 1984, Ishimi, Claude et al. 

1988, Goulian, Richards et al. 1990, Harrington and Lieber 1994, Turchi, Huang et al. 

1994, Waga and Stillman 1994, Allen, Simcha et al. 2011). The fragments are then 

ligated back together by DNA ligase I (Henderson, Arlett et al. 1985, Waga and 

Stillman 1994, Levin, Bai et al. 1997). As the replication fork progresses newly 

available ssDNA, mainly on the lagging strand, is coated in RPA (Wold 1997). 

The replication fork recruits many factors to allow efficient elongation, including 

AND1, Timeless, Tipin and Claspin, which regulate the polymerases (Zhu, Ukomadu et 

al. 2007, Errico, Cosentino et al. 2009, Sercin and Kemp 2011, Aria, De Felice et al. 

2013). These proteins form a complex which protects the replication fork (Fig 1.10) 

(Katou, Kanoh et al. 2003, Noguchi, Noguchi et al. 2003, Gotter, Suppa et al. 2007). 

Timeless and Tipin are brought into the replication fork by RPA and make up the fork 

protection complex (FPC) (Noguchi, Noguchi et al. 2004, Ali, Shin et al. 2010, Leman 
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and Noguchi 2012, Witosch, Wolf et al. 2014). They bind to and mutually stabilise each 

other and cause the localisation of the complex to the nucleus (Gotter 2003). The fact 

that these proteins are evolutionarily conserved demonstrates their importance in 

replication (Gotter, Suppa et al. 2007). They are important as members of the inter-S-

phase checkpoint, which stabilises stalled replication forks, by activating Checkpoint 

kinase 1 (Chk1) in response to perturbed replication (Yoshizawa-Sugata and Masai 

2007, Kemp, Akan et al. 2010), and also regulates the replication fork throughout 

(reviewed in Leman and Noguchi 2012). By tethering the CMG helicases and the DNA 

polymerases together and actively affecting the enzymatic activity of both, the FPC 

links the DNA unwinding activity to the DNA duplication activity (Aria, De Felice et 

al. 2013, Cho, Kang et al. 2013). The FPC inhibits the action of the CMG complex in 

order to slow down the unwinding of the DNA, as well as stimulating the activity of the 

polymerases (Cho, Kang et al. 2013). Both Timeless and Tipin can interact directly with 

the MCM hexamer, with Tipin showing the highest affinity to the MCM7 subunit 

whereas timeless interacts with either MCM 4, 6 or 7 (Cho, Kang et al. 2013; Errico, 

Costanzo et al. 2007). The inhibitory role of the FPC on the CMG complex might not be 

required throughout normal replication. However, when the fork is stalled, either in 

response to drugs like HU, or due to hard to replicate DNA regions such as common 

fragile sites or secondary structures, this role may be important for fork stability. By 

linking unwinding and replication at the fork, the FPC stops accumulation of ssDNA 

that would otherwise cause activation of the ATR-CHK1 checkpoint pathway (Cho, 

Kang et al. 2013). The requirement of the FPC is demonstrated by the loss of Timeless 

and Tipin causing increased ssDNA and increased genomic instability in cells (Chou 

and Elledge 2006, Smith, Fu et al. 2009, Urtishak, Smith et al. 2009). 
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As the DNA is unwound there is an increase in the torsional stress ahead of the fork. 

This stress is relieved by breakage and ligation reactions which are mediated by Top1 

and Top2 topoisomerases, which break the DNA backbone to allow removal of the 

DNA supercoils which arise as the replication fork opens up the double helix; the DNA 

breaks are then repaired (Bermejo, Doksani et al. 2007). 

The DNA can therefore be duplicated until the replication fork collides with another 

replication fork travelling in the other direction to signal termination of replication 

(reviewed in Leman and Noguchi 2013). 

 

Figure 1.10. Schematic of the replication fork. The dsDNA is opened by the MCM2-

7 helicase in conjunction with the GINS complex and cdc45. Pol α lays down the RNA 

primer for DNA replication. The Pol ε is the leading strand polymerase and the lagging 

strand polymerase is Pol δ which interact to the helicases via a complex of proteins. 

These proteins include Claspin, Timeless and Tipin and the And1 protein. The 

polymerases also interact with the sliding clamp, Proliferating cell nuclear antigen 

(PCNA). Any ssDNA on the lagging strand is coated by RPA. 
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1.9.3 Replication Termination 

Replication termination is poorly understood, however the CMG complex must be 

removed from chromatin and the DNA resolved once replication is complete. The 

mechanism by which CMG is removed must be tightly regulated to stop aberrant 

removal of this complex when replication has not finished. How the DNA that is 

covered by the CMG complex is replicated upon termination is also not characterised. 

Recently one of the mechanisms for removal of the CMG complex has come to light. 

The MCM7 subunit of the helicase hexamer is poly-ubiquitinated, seemingly by a 

cullin-E3 ligase, with K48-linked chains. These chains signal to VCP, which can then 

extract the helicase directly off the chromatin. However, what signals the MCM7 

subunit to be modified solely at the end of replication is unknown (Maric, Maculins et 

al. 2014, Moreno, Bailey et al. 2014). Once the CMG has been removed the DNA is 

decatenated by Topoisomerase II, which allows the resolution of the two copies of the 

DNA (Baxter and Diffley 2008, Cuvier, Stanojcic et al. 2008). 

Interestingly, it has been shown that the BRCA1 E3-ligase is important for unloading 

the MCM replicative helicases when they collide with an ICL. BRCA1 is recruited 

quickly to stalled forks in order to unload the helicase. Although the Ub-system is 

important for removal of helicases both at ICL stalled forks and replication termination, 

BRCA1 is not involved in termination (Cuvier, Stanojcic et al. 2008). However, both 

events require a Ub-signal in order to remove the helicases (Cuvier, Stanojcic et al. 

2008, Maric, Maculins et al. 2014, Moreno, Bailey et al. 2014). 

However, the inter-S-phase checkpoint will act to stop the removal of the replication 

fork components to allow the cell time to bypass or repair a lesion that may be stalling 

the fork.  
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1.9.4 Stalled Replication forks 

The process of replication can be perturbed by many factors, these include chromatin 

bound proteins that the replication fork cannot bypass, or obstacles to the polymerase or 

helicase (reviewed in Mazouzi, Velimezi et al. 2014). Once a lesion has been reached 

by the fork, it is stalled and stabilised on the chromatin to stop the removal of the 

replication helicases unnecessarily as these cannot be reloaded during S-phase (Lopes, 

Cotta-Ramusino et al. 2001, Tercero and Diffley 2001, Lucca, Vanoli et al. 2004, 

Nishiyama, Frappier et al. 2011). Once forks are stalled the inter-S-phase checkpoint is 

activated with the ATR kinase as a major regulator of this checkpoint (Cobb, Bjergbaek 

et al. 2003). ATR is recruited to replication forks by its binding partner ATRIP (ATR 

interacting partner) which in turn is bound to the RPA which is coating the ssDNA at 

the fork (Zou and Elledge 2003, Ball, Myers et al. 2005, Namiki and Zou 2006, Ball, 

Ehrhardt et al. 2007). In order to activate the ATR at the replication fork, the RAD9-

RAD1-HUS1 (9-1-1) complex must also be loaded onto the DNA (Delacroix, Wagner 

et al. 2007). (St Onge, Besley et al. 2003, Delacroix, Wagner et al. 2007, Yan and 

Michael 2009, Takeishi, Ohashi et al. 2010). The loading of the 9-1-1 is an ATP and 

damage-dependent reaction and forms at the replication fork when the polymerase and 

the MCM helicase activities are separated creating stretches of RPA (Bermudez, 

Lindsey-Boltz et al. 2003, Zou, Liu et al. 2003). The 9-1-1 complex can only be loaded 

onto the DNA by a damage-specific clamp loader that recognises the template-primer 

border adjacent to the RPA stretch (Bermudez, Lindsey-Boltz et al. 2003, Zou, Liu et al. 

2003). The clamp loader, Rad17-replication factor C (RFC), is brought to forks by 

polymerase α (You, Kong et al. 2002). Once the RFC is localised at the fork, the 9-1-1 

is recruited by an early damage sensor, DNA topoisomerase 2-binding protein 1 

(TOPBP1), which binds to RAD9 (radiation-sensitive 9) via the casein kinase 2 (CK2) 
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phosphorylation mark at the amino acid residue, Ser387. TOPBP1 then interacts directly 

with ATRIP and can activate ATR (Mordes, Glick et al. 2008). How TOPBP1 activates 

ATR is still unknown, but once activated ATR then phosphorylates the downstream 

CHK1 kinase causing activation of the checkpoint (Guo, Kumagai et al. 2000). By 

having independent recruitment of both the ATR-ATRIP complex and 9-1-1-TOPBP1 

complex the S-phase checkpoint is only activated when absolutely necessary. 

The activation of CHK1 by ATR requires the binding of CHK1 to Claspin, this binding 

acts to bring CHK1 into the vicinity of ATR in a damage dependent manner (Kumagai 

and Dunphy 2000, Chini and Chen 2003). Upon damage, Claspin is phosphorylated at 

two sites due to ATR activation, although ATR is not necessarily directly 

phosphorylating Claspin (Chini and Chen 2003, Jeong, Kumagai et al. 2003, Kumagai 

and Dunphy 2003, Kim, Kakusho et al. 2008). CHK1 is phosphorylated by ATR at 

Ser317 and Ser-345 and this modification is maintained by the interaction of Claspin 

with the 9-1-1 complex (Zhao and Piwnica-Worms 2001, Wang, Zou et al. 2006). Once 

phosphorylated CHK1 dissociates from the replication fork in order to target 

downstream effectors to initiate the checkpoint, including inhibiting the activation of 

dormant origins (Smits, Reaper et al. 2006, reviewed in Cimprich and Cortez 2008). 

The checkpoint then causes replication to slow down by means of fewer origins being 

fired (Tercero and Diffley 2001, Merrick, Jackson et al. 2004). The CHK1 activity 

signals to the cell that replication has been blocked and allows the damage to be 

repaired before further replication occurs (Feijoo, Hall-Jackson et al. 2001, reviewed in 

Willis and Rhind 2009). Apart from the global effect of signalling damage, ATR acts to 

stabilise the fork so that replication can be restarted once the block has been repaired or 

bypassed (reviewed in Petermann and Helleday 2010). ATR phosphorylates many of 
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the components at the replication fork including the RFC, the MCM complex and the 

polymerases (Brush, Morrow et al. 1996, Bao, Tibbetts et al. 2001, Cortez, Glick et al. 

2004, Yoo, Shevchenko et al. 2004, Matsuoka, Ballif et al. 2007). Although it is 

unknown how most of these modifications stabilise the fork, the phosphorylation of 

MCM2 is known to bind polo-like kinase 1 (PLK1) (Trenz, Errico et al. 2008). PLK1 

acts locally to modify the chromatin and locally fire more origins (Fig 1.11). The ATR-

CHK1 checkpoint globally reduces origin firing but locally stimulates more origins to 

fire. So if the fork cannot be restarted the DNA around the stalled fork can be 

completely replicated, while slowing replication under conditions of replication stress 

(reviewed in Cimprich and Cortez 2008, Trenz, Errico et al. 2008). 

The protein kinase Wee1 was first discovered in fission yeast and is integral to the 

G2/M checkpoint that prevents cells with DNA damage entering mitosis (Fantes 1979, 

Russell and Nurse 1987, reviewed in Donzelli and Draetta 2003). By phosphorylating 

the conserved Tyr15 amino acid of Cdk1/Cdc2 the activity of this kinase is blocked and 

therefore the checkpoint is maintained until the cell is ready to enter mitosis, then the 

phosphatase Cdc25C removes these inhibitory marks (Featherstone and Russell 1991, 

Lundgren, Walworth et al. 1991, Parker, Athertonfessler et al. 1992). If ATR is 

activated during S-phase and subsequently Chk1 is activated, Wee1 and Cdc25C are in 

turn phosphorylated by Chk1 (Lee, Kumagai et al. 2001). The activation of Wee1 by 

this phosphorylation causes checkpoint activation so that the DNA can be repaired 

before entry into mitosis (Russell and Nurse 1987, reviewed in Donzelli and Draetta 

2003). Further to this, Wee1 has been implicated in protecting stalled forks during 

replication stress. It has been shown that Wee1 depletion slows fork speeds and creates 

Mus81-dependent DSBs that indicate stalled replication fork intermediates which are 

cleaved by the Mus81 endonuclease. Co-depletion of Mus81 and Wee1 decreases 
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genomic instability and allows progression through S-phase and restores entry to M-

phase (Dominguez-Kelly, Martin et al. 2011).  
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Figure1. 11. Representation of the ATR checkpoint once the replication fork has 

stalled. Once the helicase and the polymerase become uncoupled, ssDNA is exposed 

which is coated by RPA. This recruits ATR and its binding partner ATRIP. This brings 

in TOPBP1 and the clamp loader Rad17, which loads the 9-1-1 complex onto the stalled 

fork. ATR can then phosphorylates many components at the stalled fork including 

CHK1. CHK1 acts globally to stop origin firing, the PLK1 kinase acts locally to fire 

forks to complete the replication of that region of DNA. 
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Replication can be restarted by various different pathways once the block has been 

removed. To ensure replication is completed, the eukaryotic genome has dormant 

origins of replication that are not activated during normal replication. When replication 

is perturbed the cell can activate and fire these dormant origins, through PLK1 as 

previously discussed. Therefore allowing replication to proceed from another origin in 

order to ensure the whole genome is duplicated. Other methods of completing 

replication include re-priming the fork downstream of the lesion, by introducing a new 

RNA primer after the lesion to allow replication to proceed from this new primer, re-

modelling the fork to allow repair or replicating across the barrier, termed translesion 

synthesis (TLS) (Fig 1.12) (reviewed in Zeman and Cimprich 2014).  
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Figure 1.12. Representation of the different mechanisms of replication fork restart 

after fork stalling. The different mechanisms for rescue include firing of dormant 

origins in the proximity to the stalled fork, in order to complete the duplication event. 

Another mechanism involves the production of a new RNA primer after the lesion for 

replication to be reprimed from, the ssDNA gap can then be filled in. Further to this, the 

stalled fork can be restructured by helicases including, BLM, WRN and SMARCAL1. 

The fork can be reversed into a chicken-foot like structure and replication can occur 

using the newly replicated strand (blue) as a template for the stalled strand, this allows 

repair at the stalled fork. Lesions can be bypassed by switching polymerases to a more 

flexible versions. Replication can then occur across the lesion. The final mechanism for 

rescue involves the creation of a Holliday-junction structure. In this pathway, the newly 

replicated strand (blue) on one side of the fork is used as the template for the stalled 

strand (brown) so that replication can continue bypassing the lesion. This repair occurs 

behind the stalled fork. Reprinted by permission from Macmillan Publishers Ltd: Nature 

Cell Biology (Zeman and Cimprich 2014). 
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TLS allows the fork to carry on replicating across a damaged site; this process uses 

polymerases with low fidelity. However, the ability to bypass the damage means there is 

a greater chance of mutagenesis (reviewed in Waters, Minesinger et al. 2009). In 

mammalian TLS there are five known polymerases that can be recruited to the fork, pol 

η, κ, ζ, ι and Rev1, which are members of the Y-family of polymerases, each one with 

higher efficiency for specific lesions (except pol ζ) although there is some redundancy 

between polymerases (reviewed in Ohmori, Friedberg et al. 2001, reviewed in Prakash, 

Johnson et al. 2005). The main signal for the swap in the polymerases appears to be the 

ubiquitination of PCNA. The sliding clamp is known to be modified on Lys 164 by 

Rad6/Rad18 to give a mono-Ub mark at stalled forks (Fig 1.13 A) (Hoege, Pfander et 

al. 2002, Stelter and Ulrich 2003). The Y-family of polymerases contain a PCNA 

interacting peptide (PIP) and UBDs that would recruit them to the modified but not the 

unmodified form of PCNA, specifically bringing the polymerases to the damaged DNA 

(Fig 1.13 B) (Burnouf, Olieric et al. 2004, Kannouche, Wing et al. 2004, Vidal, 

Kannouche et al. 2004, Bienko, Green et al. 2005, Guo, Tang et al. 2006). Rev1 is a 

slight exception as, although it contains a UBD, it does not contain a PIP box but 

instead uses its BRCT domain to interact with PCNA (Pustovalova, Maciejewski et al. 

2013). Pol η has been shown to interact with mono-Ub PCNA and, along with Pol κ, 

requires Rad18 to form foci at the stalled forks (Kannouche, Wing et al. 2004, 

Watanabe, Tateishi et al. 2004, Bi, Barkley et al. 2006). 

Despite this, TLS does not seem to be purely dependent on PCNA ubiquitination, with 

more recent research demonstrating that TLS can occur without PCNA-mono-Ub, 

although at a lower efficiency (Hendel, Krijger et al. 2011). Further to this, HU, which 

causes stalled forks through the reduction in nucleotides, causes mono-ubiquitination of 

PCNA despite the fact TLS would not be sufficient to restart the stalled replication fork. 
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So although PCNA-mono-Ub plays a role in TLS, it is not the full story (Brown, Niimi 

et al. 2009). The mono-Ub mark may act to change many protein-protein interactions on 

PCNA, not just causing a polymerase switch (reviewed in Kirchmaier 2011). 

PCNA can also be poly-ubiquitinated at the same lysine by Mms2-Ubc13-Rad5 which, 

rather than stimulating TLS, promotes template switching to allow restart of the 

replication fork, although the mechanisms for this is not understood (Fig 1.13 B) 

(Branzei, Seki et al. 2004, Blastyak, Pinter et al. 2007). Two models are currently 

proposed, one which has been observed in bacteria and more recently in eukaryotic cells 

and involves the reversal of the replication fork into a chicken-foot structure. The 

reversal of the stalled helicases causes a single strand of DNA to be dissociated from the 

replication fork. The ssDNA can then be used as a primer to allow synthesis of the DNA 

which has been obstructed by the lesion. This model allows repair to occur at the stalled 

fork (Fig 1.13 C). 

The second model would permit repair to happen behind the fork. The DNA synthesised 

prior to the lesion anneals to the newly synthesised DNA from the other strand. This 

forms a HJ, allowing synthesis across the lesion using the newly synthesised strand as a 

template. Both models may coexist and be utilised depending on whether repair occurs 

at the fork or behind the fork (Fig 1.13 D) (reviewed in Atkinson and McGlynn 2009, 

reviewed in Branzei 2011, De Septenville, Duigou et al. 2012, Manosas, Perumal et al. 

2012). 
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Figure 1.13.Depiction of PCNA ubiquitination and its role in translesion synthesis. 

PCNA is ubiquitinated when the replication fork is stalled. A) Mono-Ub of PCNA is 

associated with polymerase switching, bringing in a translesion polymerases to the 

replication fork. The Y-polymerases allow replication across the lesion as they are less 

stringent. B) Poly-Ub of PCNA has two hypothesised models for allowing lesion 

bypass. C) The first pathway involves fork reversal into a chicken-foot structure. This 

then allows one of the newly synthesised DNA strands to be used for the extension of 

the other strand that was blocked by the lesion. D) The second mechanism is template 

switching, where one of the newly synthesised strands is again used as a template for 

the extension of the other strand; however, the fork is not reversed. The HJ created is 

resolved and replication can continue. 
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Another enzyme that can carry out TLS is an archaic primase and polymerase, called 

PrimPol (Iyer, Koonin et al. 2005). As well as carrying out TLS, PrimPol can re-prime 

the fork to allow replication to continue downstream of the lesion. PrimPol introduces a 

new RNA primer after the damage in order for replication to proceed from that point 

(Fig 1.14). PrimPol travels with the fork and may aid in unperturbed replication but 

recruitment is increased upon damage (Bianchi, Rudd et al. 2013, Garcia-Gomez, Reyes 

et al. 2013, Helleday 2013, Mouron, Rodriguez-Acebes et al. 2013).  

 

Figure 1.14. The action of Primpol to restart stalled replication forks. Primpol has 

two modes of action to allow replication to restart, either as a primase or as a 

polymerase. The polymerase action allows DNA synthesis to occur across the lesion, as 

with TLS. The primase action produces another RNA primer to re-initiate replication 

from the new primer, after the damage. Replication can then continue from the new 

primer and the gap left across the lesion repaired subsequently. Reprinted by permission 

from Macmillan Publishers Ltd: Nature Structural and Molecular Biology (Helleday 

2013). 

 

Another pathway to restart replication uses helicases, which remodel and stabilise the 

fork and can restart the fork up to 14 hrs after stalling (Fig 1.15) (reviewed in 

Petermann and Helleday 2010). The RecQ helicase family are involved in replication 

fork restart by driving an ATP dependent translocation of the replication fork in the 3’ 
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to 5’ direction. A well characterised member of the RecQ helicase family is the BLM 

helicase which is known to be able to restart replication forks. The three helicase 

activities that BLM possesses include 3’-5’ DNA unwinding, HJ migration and ssDNA 

annealing activity, which may all be used to restart replication (Karow, Chakraverty et 

al. 1997, Cheok, Wu et al. 2005, Plank, Wu et al. 2006, Cejka and Kowalczykowski 

2010, reviewed in Swuec and Costa 2014). BLM in vitro has been shown to be able to 

regress the fork into the chicken-foot structure, BLM may also be responsible for the 

reversion back to a replication fork structure (Ralf, Hickson et al. 2006, Machwe, 

Karale et al. 2011). If the chicken foot is not regressed, and instead is converted into a 

HJ, BLM can dissolve the double HJ structures as previously described (Section 1.8.2). 

The BLM protein has been shown to specifically interact with Holliday junctions and 

promote branch migration to converge the junctions and the resulting structure can be 

dissolved (Plank, Wu et al. 2006, Cejka and Kowalczykowski 2010). The action of 

BLM to restructure forks allows replication restart which therefore maintains genome 

stability. This is apparent in Bloom syndrome patients who lack the Bloom helicase and 

consequently have increased sister chromatid exchanges (SCE), a mark of genomic 

instability (Chaganti, Schonber.S et al. 1974, McDaniel and Schultz 1992, German 

1993, reviewed in Amor-Gueret 2006). 

Another RecQ helicase implicated in replication restart is the WRN helicase (Werners 

syndrome ATP-dependent helicase) (Gray, Shen et al. 1997). WRN is phosphorylated in 

an ATR-dependent reaction but recruited to chromatin in a separate mechanism 

(Pichierri, Rosselli et al. 2003). The N-terminal region of the WRN protein interacts 

with Rad1 of the 9-1-1 complex and brings the WRN helicase to the stalled fork 

(Pichierri, Nicolai et al. 2012). Once recruited, the WRN helicase makes different 

protein-protein interactions to regulate its activity, including interacting with Mre11 
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(Franchitto and Pichierri 2004). These protein interactions are probably mediated 

through the helicase-and-ribonuclease D-C terminal (HRDC) domain which forms a 

hydrophobic pocket (Kitano, Yoshihara et al. 2007). The RecQ C-terminal domain 

(RQC) of WRN forms a winged-helix domain that binds duplexed blunt ended DNA 

and is the domain responsible for unwinding DNA, using the β-wing, a hairpin structure 

made of winged-helix motif, to break the dsDNA open (Kitano, Kim et al. 2010). The 

WRN protein is highly modified, including modifications such as acetylation and 

ubiquitination (Blander, Zalle et al. 2002, Ianari, Gallo et al. 2004, Li, Wang et al. 

2010). The loss of WRN protein causes an increase in the amount of DSBs in the cell, 

as the stalled replication forks are cleaved by Mus81 (p6 ethyl methansulfonate, UV 

sensitive) in response to the loss of fork restructuring upon stalling (Franchitto, Pirzio et 

al. 2008, Murfuni, Nicolai et al. 2013). WRN also interacts with its partner, WRNIP1, 

which is also heavily modified, and interacts with the TLS polymerase, pol η to allow 

replication fork restart (Bish, Fregoso et al. 2008, Crosetto, Bienko et al. 2008, 

Yoshimura, Kobayashi et al. 2014). The way the WRN helicase promotes restart is still 

under investigation although as it is in the same family of helicases as BLM, the 

mechanism of restart may be related to the way BLM restarts stalled replication forks 

(Sidorova, Kehrli et al. 2013, reviewed in Kitano 2014). 

DNA translocases also have a role in stalled fork stabilisation, one such translocase is 

the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin 

subfamily A-like protein 1 (SMARCAL1) (Bansbach, Betous et al. 2009, Postow, Woo 

et al. 2009). SMARCAL1 is present at the replication fork during normal S-phase 

(Betous, Mason et al. 2012); however, the recruitment is amplified at stalled forks 

through an interaction with RPA and can then bind branched DNA structures to allow 

fork restructuring (Bansbach, Betous et al. 2009, Ciccia, Bredemeyer et al. 2009, 
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Yusufzai, Kong et al. 2009, Betous, Couch et al. 2013). SMARCAL1 is phosphorylated 

by ATR in order to negatively regulate its helicase activity (Bansbach, Betous et al. 

2009). However, this phosphorylation mark actually reduces the enzymatic activity of 

SMARCAL1, suggesting ATR phosphorylation occurs after SMARCAL1 has regressed 

the fork and then blocks further activity that would cause aberrant fork structures 

(Couch, Bansbach et al. 2013). Further to this, both siRNA and overexpression of 

SMARCAL1 cause an increase in damage markers during replication, suggesting its 

activity must be highly regulated (Bansbach, Betous et al. 2009). SMARCAL1 has been 

shown to anneal DNA in order to reverse the fork into a chicken foot structure, as well 

as migrate the fork (Yusufzai and Kadonaga 2008, Yusufzai, Kong et al. 2009). The 

orientation of RPA binding either activates or represses SMARCAL1 activity and, 

therefore, acts as a mechanism to selectively work on stalled forks and not replication 

intermediates, such as lagging-strand gaps that are bound by RPA (Bhat, Betous et al. 

2015). Surprisingly SMARCAL1 can also migrate and restructure HJ despite the lack of 

ssDNA and therefore RPA (Betous, Mason et al. 2012).  

The enzymatic activities of the proteins described above have similar functions. 

SMARCAL1 and WRN have been shown to purify together through RPA and to co-

localise at stalled replication forks (Ciccia, Bredemeyer et al. 2009, Betous, Glick et al. 

2013). Although they both have similar activities and both prevent Mus81 cleavage of 

stalled forks, they act independently to restart replication forks although some overlap 

of pathways is possible (Franchitto, Pirzio et al. 2008, Betous, Glick et al. 2013). 

In humans, there is another protein that is highly related to SMARCAL1 called 

ZRANB3 (zinc-finger, RAN-binding domain containing 3), which is also a member of 

the SWI/SNF translocases (Yusufzai and Kadonaga 2010). Unlike SMARCAL1, 
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ZRANB3 does not interact with RPA, but instead ZRANB3 does contain a PIP box and 

binds to poly-Ub-PCNA which is dependent on replication stress being sensed 

(Yusufzai and Kadonaga 2010, Ciccia, Nimonkar et al. 2012). The interaction of 

ZRANB3 appears to be dependent on PCNA, K63-linked Ub and branched DNA 

structures in order for it to only be recruited to stalled forks (Ciccia, Nimonkar et al. 

2012, Weston, Peeters et al. 2012). ZRANB3 can also regress forks and dissolve D-

loops, DNA structures where the two DNA strands cannot re-anneal due to a third DNA 

strand binding one of the strands. Further to this ZRANB3 has been shown to interact 

with TLS polymerases, so may contribute to the TLS pathway to resolves stalled 

replication forks. Loss of ZRANB3 results in increased SCEs suggesting that it may act 

to co-ordinate template crossovers during TLS (Ciccia, Nimonkar et al. 2012). 

Another DNA translocase, Fanconi anemia complementation group M (FANCM), can 

also resolve stalled forks and is intimately involved in ATR signalling at stalled forks 

(Collis, Ciccia et al. 2008, Gari, Decaillet et al. 2008, Schwab, Blackford et al. 2010). 

FANCM is a component of the replication fork and acts to regulate fork progression 

during normal replication. Forks lacking FANCM travel more rapidly and are inherently 

less stable than when FANCM is present, with an increase in forks stalling and 

collapsing, leading to increased genome instability (Luke-Glaser, Luke et al. 2010). 

Alongside its role in stabilising forks during unperturbed replication, FANCM has a role 

in restarting replication forks if they have stalled. The helicase can migrate HJ, dissolve 

D-loops and reverse forks, as with the previously described translocases, in an ATP-

dependent manner (Gari, Decaillet et al. 2008). FANCM and its binding partner, 

Fanconi anemia-associated protein 24 (FAAP24) bind to branched or ssDNA and also 

the histone-fold complex, MHF, which itself binds dsDNA. Together these complexes 

bind to forks and can reverse them with higher affinity than just FANCM alone, these 
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complexes also associate with components of the BLM-helicase-complex, suggesting 

overlapping functions (Yan, Delannoy et al. 2010). In cells that are lacking FANCM, 

there is also deficient ATR signalling during the inter-S-phase checkpoint, with 

decreased Chk1 phosphorylation (Collis, Ciccia et al. 2008, Luke-Glaser, Luke et al. 

2010). 

 

Figure 1.15. The action of helicases to restructure stalled replication forks. Many 

helicases have been implicated in the restart of replication forks. These include 

SMARCAL1, WRN, BLM and FANCM. Their main mode of action is to restructure 

the fork so that lesions can be bypassed. Helicase can both reverse the fork into the 

chicken-foot structure, so that replication can occur from another template and also 

restructure the fork back into the fork structure from the chicken-foot intermediate 

(Jones and Petermann 2012). 

 

If the fork can still not be restarted, it then collapses into a DSB in order to be repaired 

to enable replication to be completed. 

1.9.5 Collapsed Replication fork  

If the replication fork is stalled for an extended period of time then it undergoes fork 

collapse, the removal of the replication components from the fork and a subsequent 

DSB formation (Saintigny, Delacote et al. 2001, Hanada, Budzowska et al. 2007, 

Petermann, Orta et al. 2010, Jones, Kotsantis et al. 2014). The collapse of forks is 
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inhibited by ATR signalling and, therefore, after an extended period of time the ATR 

signalling must no longer be able to stabilise the fork. Why the forks eventually collapse 

in a checkpoint proficient cell is still unclear (Lopes, Cotta-Ramusino et al. 2001, 

Tercero and Diffley 2001, reviewed in Cimprich and Cortez 2008, reviewed in Branzei 

and Foiani 2010). Several replication factors have been shown to be lost from chromatin 

and targeted for degradation, such as Claspin. Claspin is first phosphorylated by PLK1 

which recruits the β-transducin repeat containing E3-Ub ligase protein (β-TRCP), an F-

box protein member of the Cullin1 Ub-ligase. The K48-linked chains are then sensed by 

the proteasome and the modified components removed (Mailand, Bekker-Jensen et al. 

2006, Mamely, van Vugt et al. 2006, Peschiaroli, Dorrello et al. 2006). The fork 

structure can then be cleaved by endonuclease complexes, including Mus81/Eme2 or 

Slx1/Slx4, into a DSB that can then be repaired by HR (Hanada, Budzowska et al. 

2007). 

If ATR signalling is absent, there is a process to collapse the forks which is regulated by 

Ring Finger protein 4 (RNF4) Ub E3-ligase, which may target components of the 

replication fork which are known to be degraded upon prolonged stalling, including 

Claspin (Ragland, Patel et al. 2013). RNF4 is recruited to the vicinity of its substrates 

via binding the SUMO modification via its SIM domains (Galanty, Belotserkovskaya et 

al. 2012, Yin, Seifert et al. 2012). In yeast, forks undergoing collapse are poly-

SUMOylated in a Mec1 (ATR)-independent mechanism, demonstrated by the loss of 

Mec1 signalling in yeast causing increased SUMOylation at the fork (Branzei, Sollier et 

al. 2006, Cremona, Sarangi et al. 2012). As well as RNF4 targeting and collapsing 

stalled replication forks, the Aurora A kinase in complex with polo-like kinase 1 

(AURKA/PLK1) also works in concert with RNF4 to collapse stalled forks into DSB by 

suppressing replication fork restart. Further to collapsing the fork, the action of RNF4 
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and PLK1 in ATR-deficient cells is believed to modify the inter-S-phase checkpoint 

(Yoo, Kumagai et al. 2004, Mailand, Bekker-Jensen et al. 2006, Mamely, van Vugt et 

al. 2006, Peschiaroli, Dorrello et al. 2006, Ragland, Patel et al. 2013). In cells where 

ATR is present, inter-S-phase checkpoint modification may occur but only after ATR 

has signalling is no longer able to stabilise the fork (Ragland, Patel et al. 2013).  

Once the fork is no longer stabilised the structures, such as the chicken-foot, are targets 

for endonucleases (Higgins, Kato et al. 1976), these cleave the stalled fork and cause 

DSBs (reviewed in Klein and Kreuzer 2002). 

One such endonuclease is Mus81 which is a member of the XPF/Mus81(Xenoderma 

pigmentosum group F) family of endonucleases, which target specific DNA structures 

(Hanada, Budzowska et al. 2007, Ciccia, McDonald et al. 2008). Mus81 is known to 

have two interaction partners, essential meiotic structure-specific endonuclease 1 

(Eme1) and Eme2, with Eme1 believed to be the main partner for the biochemical 

activity of Mus81 (Ciccia, Constantinou et al. 2003, Ciccia, Ling et al. 2007). Both 

interaction partners exhibit very similar actions, acting on 3’ flap structures, but they 

also have distinct substrates, demonstrating a separation of function between the two 

complexes (Pepe and West 2014). Further to this separation of function, it appears that 

the interaction of Mus81 with these partners is cell-cycle regulated. Mus81 binds to 

Eme2 from the onset of S-phase, whereas Eme1 is bound throughout the cell cycle 

(Pepe and West 2014). The action of Mus81 on stalled forks is well established; 

however, the effect of the binding partner was never fully investigated, with recent work 

demonstrating that it is in fact Eme2 that is required for resolution of stalled replication 

forks (Pepe and West 2014). The Mus81/Eme2 heterodimer is more active as an 

endonuclease with a broader range of substrates than Mus81/Eme1, preferentially 
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cutting replication forks and being able to cleave 3’ flaps, 5’ flaps and D-loops. On the 

other hand Mus81-Eme1 cuts 3’ flaps and HJ. The 3’ flap endonuclease activity is 

evolutionarily conserved, although the Mus81-Eme2 has a second step to processing the 

3’ flap that cuts opposite the nicked duplex DNA, which results from removing the 3’ 

flap, thereby creating smaller duplex DNA products. These findings show that it is the 

Mus81-Eme2 heterodimer that is important for cleaving stalled replication forks that 

can no longer be stabilised or restarted (Pepe and West 2014). 

The Rad2/XPG endonuclease member, Gen endonuclease homolog 1 (Gen1), dimerises 

around branched DNA like HJ (Rass, Compton et al. 2010). If Mus81 is lacking from 

yeast, Yen1 (yeast homologue of Gen1) overexpression can compensate for this loss, 

suggesting overlapping functions for these endonucleases (Munoz-Galvan, Tous et al. 

2012). 

Another endonuclease complex, Slx4/Slx1, is recruited to stalled replication forks; 

however, the Slx4/Slx1 heterodimer does not have a clear role in resolving stalled 

replication forks (Roberts, Zaidi et al. 2008, reviewed in Rass 2013). Instead, it is 

currently accepted that Slx4 acts as a scaffold protein for other proteins required for the 

repair of the fork, including the Mus81-Eme2 endonuclease (Stoepker, Hain et al. 

2011). The endonuclease activity of Slx4-Slx1 is required to resolve HJ during HR 

repair (Fig1.16) (Fekairi, Scaglione et al. 2009). 
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Figure 1.16. The action of endonucleases and the substrates they act on. Mus81-

Eme2 works on replication fork structures throughout evolution. Although, other 

endonucleases could cleave replication forks in the evolutionary past, in humans their 

preferred substrate is the Holliday junction. Holliday junctions do form as an 

intermediate of replication fork restart and can be cleaved by Slx1/Slx4 or Gen1 

(Schwartz and Heyer 2011) with kind permission from Springer Science and Business 

Media. 

 

1.9.6 DUBs in Replication 

To ensure replication occurs efficiently once per cell cycle mechanisms have evolved to 

bypass lesions that may block fork progression. This is highly regulated, in part by 

DUBs. Ub is known to be required for effective replication of DNA, resulting in a 

requirement for DUBs in replication. They have been studied in the involvement of 

viral DNA replication within host cells (Si, Gao et al. 2008, Nag and Finley 2012). 

However the role of DUBs in eukaryotic replication is currently not very well 

understood but is an active area of research. 

The PCNA mono-Ub and poly-Ub marks are important for TLS after damage, the 

removal of these modifications is caused by USP1; however, the ubiquitinated PCNA 
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appears to be persistent in the cell after UV damage. The persistent Ub is partly due to 

the high turnover of USP1 within the cell and the loss of USP1 mRNA upon UV 

damage means that there is less USP1 in the cell after UV damage and, therefore, the 

ubiquitination of PCNA is long lived (Huang, Nijman et al. 2006, Cohn, Kowal et al. 

2007, Cotto-Rios, Jones et al. 2011). Although the reduction in USP1 being the cause of 

the persistent Ub does not stand true for treatment with HU, as USP1 is still present but 

the PCNA-Ub is also still persistent and it is not understood why USP1 is not 

deubiquitinating PCNA (Brown, Niimi et al. 2009). 

USP3 regulates H2A and H2B ubiquitination and is required for S-phase progression 

and preventing replication stress, as it regulates the chromatin state of the DNA 

throughout replication. Consistent with USP3 being required during S-phase, USP3 

depletion causes an increase in DNA breaks and an activation of the ATR checkpoint 

pathway (Nicassio, Corrado et al. 2007). By regulating chromatin, USP3 also regulates 

the DNA damage response by removing Ub from around the break and activating 

ATM/ATR (Nicassio, Corrado et al. 2007, Sharma, Zhu et al. 2014).  

The role of DUBs in replication is an emerging field and, as Ub is being shown to be 

important in the replication process, there is a great deal of scope for the regulators of 

marks like Ub. 

Changes to the regulation of replication can therefore give rise to diseases including 

cancer. 

1.9.7 DNA damage and Replication in Cancer 

A hallmark of cancer is genetic instability, and various different cancers have mutations 

in genes that regulate replication (reviewed in Negrini, Gorgoulis et al. 2010, Shlien, 

Campbell et al. 2015). If replication does not occur faithfully, for example if a non-
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proofing polymerase is recruited to the fork, then DNA mutations can occur (reviewed 

in Waters, Minesinger et al. 2009, Koskiniemi, Hughes et al. 2010). If replication 

cannot be completed, regions of DNA cannot be separated during mitosis, this can lead 

to DNA damage and aberrant chromosomal segregation (Chan, Palmai-Pallag et al. 

2009, Lukas, Savic et al. 2011). Therefore the regulation of the DNA repair pathway 

and DNA replication are important to maintain the integrity of genome. One mechanism 

that regulates these pathways is the ubiquitin proteasome system (UPS) (reviewed in 

McBride, Iwamoto et al. 2003, reviewed in Branzei and Foiani 2010, Tu, Chen et al. 

2012). 

Many cancers are known to correlate with mutations within genes important in the 

DDR. If repair is defective then mutations in cells accumulate, increasing the risk of a 

cell becoming cancerous (reviewed in Vogelstein, Papadopoulos et al. 2013, Pearl, 

Schierz et al. 2015). The cell cycle checkpoint protein, p53, is one such protein mutated 

in many cancers (reviewed in Olivier, Hollstein et al. 2010). Patients with Li-Fraumeni 

syndrome have early onset cancers including sarcomas, breast cancers and adrenal gland 

cancers (Li, Fraumeni et al. 1988). Without the loss of p53, the G1/S checkpoint is 

triggered when damage occurs, and cells undergo apoptosis and do not transform into 

cancers (reviewed in Vogelstein, Lane et al. 2000). However, when p53 is mutated, the 

checkpoint is not triggered and cells continue through the cell-cycle with damage and 

therefore increasing genomic instability, resulting in cancer (Jackson, Post et al. 2011, 

Gabrielli, Brooks et al. 2012). 

Well known repair genes mutated in cancers include the HR components BRCA1 and 

BRCA2 which are correlated with breast and ovarian cancers (Hall, Lee et al. 1990, 

Narod, Feunteun et al. 1991, Wooster, Neuhausen et al. 1994, Moynahan, Chiu et al. 
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1999, Yuan, Lee et al. 1999) Further to these mutations, the early response proteins 

Mre11, Nbs1 and Rad50 have all been linked to hereditary breast cancers (Hsu, Wang et 

al. 2007). 

Further to this mutations within the key DSB signalling protein, ATM, cause Ataxia 

telangiectasia (A-T) disease with a predisposition to cancer. ATM mutations are also 

correlated with breast cancers but also several types of leukeamias (Gatti, Berkel et al. 

1988, Hecht and Hecht 1990, Savitsky, Barshira et al. 1995). 

Deregulation of a few other genes related to the DDR and replication have been linked 

to leukaemia, including the members of the Fanconi anaemia (FA) complex and BLM 

(Fanconi 1967, German 1997, Xie, de Winter et al. 2000). 

It is becoming apparent that many cancers are related to mutations within repair 

proteins. Therefore, many new therapies are targeting the repair pathways in order to 

specifically kill cancerous cells (reviewed in Gullotta, De Marinis et al. 2010). One such 

treatment is PARP inhibitors in BRCA1 deficient tumours. Damage in cells treated with 

PARP inhibitors can eventually be repaired by HR; however, in the cancer cells with 

mutated HR proteins the damage is unrepaired and cancer cells cannot survive. This is 

termed synthetic lethality (Fig 1.17) (Farmer, McCabe et al. 2005, Lord, McDonald et 

al. 2008). 



75 
 

 

Figure 1.17. Mode of action of PARP inhibitors and synthetic lethality in cancer 

cells. Single strand breaks are repaired using PARP. When PARP inhibitors are used the 

single strand break is converted into a double strand break, which in normal cells can be 

repaired but in cancer cells (where a DDR protein is mutated) the damage cannot be 

repaired and the cells die. Reprinted by permission from Macmillan Publishers Ltd: 

Nature Reviews Clinical Oncology (Sonnenblick, de Azambuja et al. 2015). 

 

1.10 The Proteasome 

Although K48 is the canonical signal for proteasomal degradation, all poly-Ub chains, 

regardless of their confirmation, can be bound by the regulatory particle (19S) of the 

proteasome (Chau, Tobias et al. 1989, Finley, Sadis et al. 1994). The proteasome is 

comprised of a proteolytic barrel (20S) made up of two α-rings which flank two β-rings 

where the proteolysis of the protein occurs. Each ring, both α and β, is formed from 

seven subunits, with the β subunits, β1, β2 and β5 conferring the proteolytic activity of 

the proteasome (Loewe, Stock et al. 1995, Groll, Ditzel et al. 1997). The α-rings control 

the entry of the substrate into the proteolytic core and will only form an open 

confirmation once activated by the AAA+ ATPases of the 19S particle (Loewe, Stock et 
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al. 1995, reviewed in Pickart and Cohen 2004, Smith, Chang et al. 2007). The 20S can 

be bound at either end by the 19S regulatory particle, which is formed of the “base”, 

with six AAA+ ATPases, and the 12 subunit “lid” (Peters, Franke et al. 1994, 

Glickman, Rubin et al. 1998). These six ATPases are required to form a conformational 

change which opens a pore within the α-ring, allowing substrate entry (Smith, Chang et 

al. 2007, Rabl, Smith et al. 2008, Matyskiela, Lander et al. 2013). The energy produced 

by the ATPases also acts to unfold the substrate by pulling the substrate through the 

pore (Martin, Baker et al. 2008, Zhang, Wu et al. 2009, Aubin-Tam, Olivares et al. 

2011, Maillard, Chistol et al. 2011). Within the 19S particle there are three Ub-binding 

proteins, adhesion regulating molecule 1 (ADRM1), Proteasome (prosome, macropain) 

26S subunit, non-ATPase, 4 (PSMD4/Rpn10) and a DUB, Pad one homolog 1(POH1) 

(Fig 1.18) (Deveraux, Ustrell et al. 1994, Verma, Aravind et al. 2002, Schreiner, Chen 

et al. 2008). The distance between POH1 and either PSMD4 or ADRM1 is around 70-

80Å meaning only poly-Ub chains of four or more moieties are recognised by the 

proteasome as the poly-Ub must be bound by one of the Ub-receptors as well as POH1 

to allow removal of the chain from the substrate (Riedinger, Boehringer et al. 2010, 

Lander, Estrin et al. 2012, Schreiber and Peter 2014). 

Along with POH1 there are two other DUBs that can associate with the proteasome, Ub 

carboxyl-terminal hydrolase isozyme L5 (UCHL5) and Ub-specific peptidase 4 (USP4), 

although they are not core components (Koulich, Li et al. 2008). 
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Figure 1.18. Structure of the proteasome. The 26S proteasome is compromised by the 

20S core (Grey) and the 19S cap (multi-coloured). The 19S cap is made of the “Base” 

and the “lid”. The base contains ATPases which control the entry of the substrate into 

the 20S core. The “lid” is important in substrate recognition with three Ub binding 

subunits, Rpn13/ADRM1 (Orange), Rpn10/PSMD4 (Gold) and the DUB 

POH1/Rpn11/PSMD14 (Green). The 20S core region is comprised of four rings, two α-

ring, made of seven subunits, and two β-rings also formed from seven subunits each. 

The β-rings are important for the degradation of the targeted proteins. Reprinted by 

permission from Macmillan Publishers Ltd: Nature (Lander, Estrin et al. 2012), 

copyright (2012) 

 

1.10.1 The Ubiquitin-Proteasome system (UPS) 

The recognition of Ub by the “lid” of the proteasome is an important regulatory 

mechanism for a variety of important cellular processes. These processes include DNA 

damage, with the proteasome being recruited to sites of damage, regulating the Ub-

chains formed at DNA breaks as well as helping the recruitment and clearance of repair 

proteins (reviewed in McBride, Iwamoto et al. 2003, Jacquemont and Taniguchi 2007, 

Shi, Ma et al. 2008). The Ub-Proteasome system (UPS) is also linked to transcriptional 

regulation through many mechanisms including modulating protein levels within the 
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cell (reviewed in Muratani and Tansey 2003). An important role of UPS is in cell cycle 

control, maintaining the correct balance of p53 for either progression through the G1/S 

checkpoint or causing a block in order to allow DNA repair (reviewed in Bassermann, 

Eichner et al. 2014, reviewed in Pant and Lozano 2014). In the immune response, the 

proteasome has roles both proteolytic and non-proteolytic to activate the NF-κB protein 

(Palombella, Rando et al. 1994, reviewed in Chen 2005). Faults within the UPS have 

also been shown to cause neurodegeneration, highlighting the important role it has 

within regulating many cellular processes (reviewed in Ciechanover and Brundin 2003). 

In order to determine which components of the UPS were members of the DNA repair 

pathways a screen of DUBs was performed. 

1.13 siRNA screen of DUBs 

A screen has previously been carried out by a former PhD student, Laura Butler, 

reverse-transcribing 103 predicted DUBs into HeLa cells. In order to synchronise the 

cells in the same phase of the cell cycle, cells were then serum starved for 24 hours, 

then released into normal media for 24hours in order to allow cells to progress through 

the cell cycle. In order to induce DSBs cells were treated with 16 hours 3mM HU before 

fixing. Changes in the levels of conjugated-Ub were tested using the FK2 antobody 

conjugated to horseradish peroxidase, with luminescence measured on a plate reader. 

This screen showed that siRNA against the proteasome associated DUB, POH1 had 

significantly increased conjugated-Ub after release from HU. On the other hand siRNA 

against a little known DUB, USP50, appeared to show a decreased FK2 signal. 

1.14 Summary 

There is a large volume of research demonstrating the importance of Ub in a variety of 

cellular processes, particularly DNA damage and DNA replication. Therefore, it follows 
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that the regulation of the Ub by DUBs is also critical for cells to maintain correct 

cellular functions (reviewed in Amerik and Hochstrasser 2004). 

Ub in the DDR is a highly researched topic with emerging evidence of the tight 

regulation of the poly-Ub chains that form at DSBs. There is evidence of K48-, K63- 

and potentially K6-linked chains that form at the break sites (Morris and Solomon 2004, 

Polanowska, Martin et al. 2006, Sobhian, Shao et al. 2007, Doil, Mailand et al. 2009, 

Stewart 2009, Mallette and Richard 2012, reviewed in Brown and Jackson 2015). On 

the other hand, Ub is implicated in efficient replication but the field is still in its infancy 

and there is a lot of scope for investigation (Hendel, Krijger et al. 2011, Maric, 

Maculins et al. 2014, Moreno, Bailey et al. 2014). 

The proteasome, as an integral part of Ub processing, is known to be important for the 

DSB response (reviewed in McBride, Iwamoto et al. 2003, Jacquemont and Taniguchi 

2007, Shi, Ma et al. 2008, Finley 2009). DUBs are also important for Ub processing 

within the cell and act to disassemble Ub-chains and can protect substrates from 

degradation (reviewed in Guterman and Glickman 2004). The large number of DUBs 

within the cell means that there is potential for drugs to be targeted against specific 

DUBs to target specific pathways (Semple, Grp et al. 2003, reviewed in Lim and Baek 

2013).  

Therefore understanding the role of the proteasome and DUBs in the cell will increase 

the understanding of Ub-signalling in important processes such as DSB repair and 

replication. This opens up a range of potential drug targets for cancer therapies. 

1.14 Aims 

1. To continue the characterisation of the proteasome and POH1 at sites of damage, 

finishing work from a previous PhD student. 
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2. To determine whether USP50 is an active DUB 

3. To characterise USP50 and its DDR role within cells  
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2. Materials and Methods 

2.1 Molecular Biology 

2.1.1 Bacterial transformations 

1-50 ng of plasmid DNA was transferred into pre-chilled eppendorfs with 10µl of 

Escherichia Coli DH5α (Bioline). The bacteria were incubated on ice for 20 mins 

before being heat shocked at 42°C for 30 seconds. Bacteria were transferred back onto 

ice for a further 2 mins prior to 200µl Luria Bertani (LB) being added. Cells were 

incubated at 37°C for 45 mins then plated onto LB agar plates containing either 

Ampicillin (50 µg/ml) or Kanamycin (50 µg/ml) depending on the antibiotic resistance 

within the transformed plasmid. Plates were incubated at 37°C overnight. 

2.1.2 Plasmid DNA preparation 

Single transformed bacterial colonies were selected from plates and grown up in 

overnight starter cultures at 37°C at 200 rpm. 10 ml starter cultures were required for 

Minipreps and 300 ml starter cultures were grown for Maxipreps. Bacteria cultures were 

spun down in a centrifuge at 3000 rpm for 30 mins to pellet the bacteria. The 

supernatant was discarded. The DNA extraction was then performed using the Genejet 

from ThermoFisher Miniprep or Maxiprep kits following the manufacturer’s protocol. 

2.1.3 RNA extraction 

Cells were plated and then RNA extracted using the Bioline RNA extraction kit using 

the manufacturer’s instructions 

2.1.4 cDNA synthesis 

RNA was converted into cDNA using the Bioline cDNA synthesis kit. Controls were 

performed without the reverse transcriptase. 
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2.1.5 Quantification of Nucleic Acids 

DNA and RNA were quantified using the Labtech Spectrophotometer using ND-1000 

software. Blank measurements were made using the resuspension solution of the nucleic 

acid, either H2O or 1x TE buffer. 1 µl of sample was loaded onto the pedestal and the 

concentration of nucleic acid measured. The programme used depended on the sample 

(DNA-50 or RNA-40). 

2.1.6 Polymerase Chain Reaction 

PCR was used to amplify DNA fragments, including amplification of cDNA and 

cloning DNA. PCR reactions were also used to introduce selected mutations into 

plasmids. Standard reactions were carried out using Pfu polymerase from Thermo and 

dNTPs from Bioline as outlined in Table 2.1 and Table 2.2. 

Constitutent Stock Concentration Final Concentration Volume in 50 µl 

Pfu buffer 10 x 1 x 5 µl 

Pfu enzyme 2.5 U/µl 2.5U 1 µl 

dNTPs 10 mM 400 µM 2 µl 

Forward Primer 20 µM 0.8 µM 2 µl 

Reverse Primer 20 µM 0.8 µM 2 µl 

DNA Variable 1 µg - 

H2O - - Up to 50 µl 

Table 2.1. Standard PCR reaction mix 
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Step Temperature °C Time Cycles 

Initial denaturing 95 5 minutes 1 

Denaturing 95 30 seconds 25-30 

Annealing 55 1 minute 25-30 

Extension 72 2 minutes 25-30 

Final Extension 72 2 minutes 1 

Hold 4 Infinite - 

Table 2.2. Standard PCR programme 

Extension times vary depending on the length of the template DNA usually calculated 

as a minute per Kilobase (kb) of DNA. Annealing temperatures were calculated 

depending on the melting temperature (Tm) of the primers -5°C.  

2.1.7 Agarose gel electrophoresis 

DNA was visualised on 1% Agarose gels made with 1x TAE buffer and Ethidium 

Bromide at a concentration of 1:100,000. Gels were loaded into a tank and submerged 

in 1x TAE buffer. 5 µl of the relevant DNA standards were loaded onto the gel 

(Thermofisher Hyperladder 1kb or Hyperladder IV). The samples containing QIAGEN 

loading dye were loaded into each well of the gel and ran at 130 volts. DNA was 

visualised using UV light on the GeneSnap by Syngene system. 

2.1.8 DNA Gel extraction 

DNA was visualised on a UV light box and cut out using a scalpel. Samples were 

weighed in an Eppendorf, and then extracted using the QIAGEN gel extraction kit 

according to the manufacturer’s instructions. 
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2.1.9 Restriction enzyme digest 

DNA was digested using NEB enzymes and the recommended buffers. Standard 

restriction digests were carried out as outlined (Table 2.3). Reactions were performed at 

37°C for an hour. 

Constituent Volume 

Enzyme 1 1 µl 

Enzyme 2 1 µl 

10 x Buffer 1 µl 

BSA 1 µl 

DNA 1 µg 

H2O Up to 10 µl 

Table 2.3 Standard restriction enzyme mix 

2.1.10 DNA ligation 

Plasmid and fragment DNA were digested with the same restriction enzymes to leave 

matching cut ends.  The ligation was set up using 3:1 fragment to vector ratio with the 

vector at 10-50 ng per reaction. Ligations were carried out using 400U T4 DNA ligase 

with 1µl T4 ligase buffer made up to 10 µl with H2O. Reactions were carried out at 

room temperature for 1 hour. Control ligations containing vector only or insert only 

were performed. All reactions were transformed into E. Coli DH5α as in 2.1.1.  

2.1.11 Site-Directed Mutagenesis 

Site-directed mutagenesis was performed with specifically designed primers (Table 

 2.5), primers contained mutations surrounded by 10-20 bps either side. PCR reactions 

were carried out as below. Negative controls were carried out without the primers. 
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After amplification the reaction was treated with 1µl DpnI and incubated at 37°C for 1 

hour to digest the original template DNA. To determine if the amplification was 

successful, 10µl of the reaction was run on a 1% agarose gel as in 2.1.6. If the 

amplification had worked 2µl of the DNA was transfected into competent E.Coli DH5α 

as in 2.1.1. 

2.1.12 DNA Sequencing 

Once DNA had been extracted as in 2.1.2, DNA was quantified as in 2.1.3, then diluted 

to a concentration of 10 ng/µl in 10 µl sent to Source Biosciences for Sanger sequencing 

and analysed on SeqMan software. 

2.1.13 Cloning USP50 mutants 

USP50 was amplified out of the addgene USP50- Flag plasmid vector using specially 

designed primers containing restriction enzyme sites. The forward primer for the 

pET28a plasmid contained a BamH1 restriction site. The reverse primer contained the 

Xho1 restriction enzyme site. The PCR fragments and the pET28a vector were digested 

with BamH1 and Xho1 restriction enzymes. The digested USP50 fragment was then 

ligated as in 2.1.10. DNA was run on a gel to check the size of the plasmid, to confirm 

the fragment had been inserted. Correct plasmids were transfected into bacteria to 

amplify the plasmid as in 2.1.1. Point mutations were introduced using specifically 

designed primers as in 2.1.11 and the plasmid DNA sequenced. For a list of primers see 

Table 2.5. 

The pcDNA5/FRT/TO USP50 plasmids were designed and sent to GenScript for 

synthesis. These plasmids were made siRNA resistant by introducing a series of silent 

point mutations as shown below. 

USP50 siRNA sequence 5 - TAT GAT ACC CTT CCA GTT A 
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siRNA resistant form -   TAT GAC ACA CTA CCA GTT A 

Amino Acid -         Tyr   Asp   Thr   Leu   Pro   Val 

USP50 siRNA sequence 7 - C TAC CCA GCA TTT ACG 

siRNA resistant form -  C TAT CCG GCT TTT ACG 

Amino Acid -              Tyr    Pro   Ala   Phe  Thr 

2.2. Protein Methods 

2.2.1 SDS Polyacrylamide Gel Electrophoresis (SDS PAGE) 

Biorad gel casting equipment was used to make polyacrylamide gels. The percentage of 

acrylamide depended on the protein being studied (see Table 2.4). 

Consituent (ml) Resolving Gel Stacking Gel 

 6% 10% 15% 5% 

H2O 7.9 5.9 3.4 2.7 

30% polyacrylamide 

mix 

3.0 5.0 7.5 0.67 

1.5 M Tris pH 8.8 3.8 3.8 3.8 - 

1.0 M Tris pH 6.8 - - - 0.5 

10% SDS 0.15 0.15 0.15 0.04 

10% PS 0.15 0.15 0.15 0.04 

TEMED 0.012 0.006 0.006 0.004 

Final Volume (ml) 15 15 15 4 

Table 2.4. SDS polyacrylamide gel solutions. 

The resolving gel was poured between the glass plates and covered in water-saturated 

isobutanol and allowed to set. The water-saturated isobutanol was removed before the 
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stacking gel was poured on top. Plastic combs were inserted to form wells. The comb 

was removed once the stacking gel had polymerised. 

Gels were loaded into the Biorad tank and filled with 1x SDS Running buffer. 5µl of 

ThermoFisher PageRuler Prestained protein ladder was loaded into one of the wells. 

Protein samples were loaded in 4x SDS loading buffer and sonicated before loading 

onto the gel then ran at 130 volts. 

Gels were then either Western blotted (2.2.2) or stained with Coomasie (2.2.3) 

2.2.2 Western Blot 

Protein gels were transferred on PVDF immobillon membrane. The membranes were 

activated in methanol and then stored in water. Transfers were set up in Biorad Trans-

blot cassettes, sponges and 3mm filter paper were soaked in transfer buffer. The transfer 

was built with a sponge and 2 pieces of filter paper either side of the membrane and gel. 

The cassette was then placed in the tank and submerged in 1 x Transfer buffer and ran at 

100 volts for 1 hour. 

Once the transfer was complete the membrane was blocked in 5% marvel milk in PBS 

with 0.1% Tween (PBStw), unless otherwise stated, for a minimum of 30 mins before 

being transferred into primary antibody overnight at 4°C on a roller (Table 2.7). Blots 

were then washed 3x 10 mins in PBStw and then transferred into secondary HRP 

antibodies in 5% marvel milk for a minimum of 1 hr whilst being rocked (Table 2.7). 

The blots were again washed 3x 10 mins in PBStw. Once washed the membranes were 

probed with homemade ECL (0.1 M Tris pH 7.8, Lumional, Courmic Acid, H2O2), 

excess removed and placed inside a plastic wallet inside a cassette. Fuji film X-Ray film 

was placed in the cassette for varying length of time based on the strength of the ECL 

signal and the film developed inside the Xograph Compact X4 developer. 
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2.2.3 Coomassie stain 

Gels were soaked in Coomassie blue stain (1.25g brilliant blue, 10% Acetic acid, 45% 

Methanol, 45 % H2O) for 30 mins at room temperature on a rocker. Gels were then 

destained using 10% ethanol, 10% Acetic acid and 80% H2O, overnight. 

2.2.4 Protein Expression 

Bl21 E.Coli  were transformed with pET 28a protein expression  vector containing the 

protein of interest.  Colonies were picked and grown up in 10 ml starter cultures 

containing Kan at 37°C overnight at 200 rpm (Table 2.9). Starter cultures were then 

transferred into 1 litre LB containing Kan and grown for 6 hours at 37°C at 200 rpm. 

Bacterial expression was induced using 200 mM IPTG and bacteria left to grow 

overnight at 20°C at 200 rpm. 

2.2.5 Protein Isolation 

Bacteria were pelleted by centrifuging at 3000 rpm for 30 mins at 4°C. Bacteria were 

lysed in 2 ml ice cold lysis buffer (50 mM Sodium Phosphate pH7, 300 mM Sodium 

Chloride, 5% Glycerol, 10 mM beta-Mercaptoethanol) with 1 protease inhibitor tablet 

and 5 mg/ml Lysozyme per 10ml. Resuspended bacteria were left on ice for 5 mins and 

then sonicated at 20% intensity for 1 min. Lysed bacteria were spun at 13000 rpm to 

pellet debris. Supernatant was transferred to a 15 ml falcon tube and made up to 10 ml 

with lysis buffer and 500 µl of Nickel beads and rotated at 4°C overnight. 

Beads were pelleted by pulse centrifugation and washed 3x ice cold wash buffer (50 

mM Sodium phosphate pH7, 300 mM Sodium Chloride, 5% Glycerol, 10 mM beta-

mercaptoethanol, 50 mM Imidazole) with agitation between each wash. The protein was 

then eluted using 400 µl ice cold lysis buffer plus 300 mM Imidazole, vortexed and left 

on ice for 1 hour. The falcon tube was spun at 1000 rpm for 2 mins and supernatant 
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kept. The supernatant was spun through a filter column at 13000 rpm to remove any 

remaining beads. Eluted proteins were dialysed in a dialysis column in dialysis buffer 

(25 mM TRIS-HCl pH7.5, 10% Glycerol, 2 mM DTT, 150 mM KCl) overnight at 4°C. 

Proteins were checked by Coomassie (2.2.3) then stored at -80°C until required. 

2.2.6 Deubiquitinating assay 

In order to determine if the purified USP50 enzyme had any Deubiquitinating activity a 

Deubiquitinating assay was carried out. Proteins were serially diluted across four 

different concentrations from 10nM to 1.25nM with dialysis buffer. Proteins were then 

incubated with 50 mM HEPES pH7.5, 10 mM DTT, 0.01% Tween and 0.25 µg/ml 

poly-Ub. After 10 mins, 4.8% DMSO is added and the reaction is incubated overnight at 

28°C shaking at 200 rpm. The reaction is stopped by adding 4x SDS loading buffer and 

analysed using Western blotting (2.2.2) 

2.2.7 Binding Assay 

Proteins were expressed as in 2.2.4. Proteins were then isolated as in 2.2.5 but not 

eluted. Beads were washed 3x ice cold wash buffer and then equilibrated into Tris with 

BSA (TBSA – 50 mM Tris pH7.5, 0.1% BSA) by carrying out 3 x 1ml washes. Beads 

were then resuspended in 50 µl TBSA with 0.5µg Ub. Beads were incubated on ice for 

30 mins with gentle agitation every 5 mins. Controls were carried out using Ni-beads 

without bound proteins and a reaction without beads. Beads were pelleted and solution 

removed, beads were then washed 3x 1ml washes of TBSA. Proteins were eluted by 

adding 50 µl 4x loading buffer and resolved on an SDS PAGE gel (2.2.1) and analysed 

by Western blotting (2.2.2). 
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2.2.8 Flag Immunoprecipitation 

Cells with Dox inducible USP50-Flag were plated on a 10 cm plate and Dox treated for 

48 hours. Cells were washed with 5 ml ice cold PBS before being scraped in ice cold 

Nuclear Lysis Buffer (10 mM HEPES pH7.6, 200 mM NaCl, 1.5 mM MgCl2, 10% 

Glycerol, 0.2 mM EDTA, 1% Triton) for every 10 ml, 1 protease inhibitor tablet, 1 

phosphatase tablet, 20 µM MG132 and 1 µl DNase were added. The lysed cells were 

transferred into a pre-chilled Eppendorf 1.5 ml tubes and rotated at 4°C for 1 hour. The 

Eppendorf was spun at 1500 rpm at 4°C for 10 mins and the supernatant kept, the pellet 

discarded. 50 µl of the supernatant was mixed with 20 µl 4x Loading buffer and boiled 

at 95°C for 5 mins.  

For every IP 9 µl Flag-agarose beads were washed out of storage buffer into PBS by 

doing 3x 1ml PBS washes centrifuging at 3000 rpm between each wash. 91 µl of PBS 

was added for every 9 µl of agarose beads. Once the beads were resuspended in PBS, 

100µl were transferred into a bijou. 

Into each bijou 1.5 ml of nuclear lysis buffer and 2 ml of PBS was added, then 500 µl of 

supernatant added to each bijou. The bijous were rotated overnight at 4°C. 

The bijous were spun at 1000 rpm and 3 ml of the supernatant removed, the remaining 

1ml including beads was transferred into a pre-chilled Eppendorf. The Eppendorf was 

centrifuged at 3000 rpm for 1 min and the beads left to settle. The supernatant was then 

removed before 3x 1 ml PBS-0.02% tween washes. The wash buffer was completely 

removed before adding 60 µl 2x loading buffer. This was boiled at 95°C for 5 mins and 

then 10 µl loaded onto an SDS PAGE gel (2.2.1) and analysed by western blotting 

(2.2.2). 
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2.3. Cell Biology 

2.3.1 Tissue culture 

HeLa, U2OS, MCF7, BJ h-Ras and NIH3T3 cells were grown in Dulbeccos Modified 

Eagle Media (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) and 1% 

Pencillin/Streptomycin. Monolayers of cells were cultured in Corning T75 flasks and 

kept at 37°C and 5% CO2. When cells reached 80% confluency they were passaged by 

removing all media, washing the cells with 1x PBS, then adding 2ml 1x Trypsin/EDTA 

and leaving cells at 37°C until cells have detached. Cells were split 1:10 into new flasks.  

Stocks of cells were stored in liquid nitrogen at a concentration of 1x10
6
 cells per ml. In 

order to freeze cells they were trypsinised, counted using a haemocytometer, pelleted 

and resuspended in the relevant amount of freezing media (70% DMEM, 20% FCS, 

10% DMSO). Cells were cooled at a -1°C/min in the -80°C freezer before being 

transferred into liquid nitrogen. 

2.3.2 Plasmid transfection 

DNA plasmids were transfected into cells using the nonliposomal transfection reagent 

FuGENE 6 at a ratio of 4 µl:1 ng FuGENE:DNA following the manufacturers 

guidelines. 

2.3.3 siRNA transfection 

siRNA transfections were carried out using the transfection reagent Dharmafect1 

(Dharmacon) following the manufacturer’s instructions (Table 2.8) 

2.3.4 shRNA transfection 

Lentiviral shRNA was purchased from Sigma-Aldrich. Viral particles were transfected 

as per the manufacturers’ protocol. Cells were selected by Puromycin resistance and 
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clones picked and grown up. Clones were screened by the increase of 53BP1 foci upon 

shRNA expression. The shRNA sequence was the same as the USP50-7 siRNA 

sequence (Table 2.6). 

2.3.5 Stable cell line creation 

HeLa Flip-In cells were plated in 10cm dishes and transfected with pcDNA5/FRT/TO-

USP50 constructs along with the Pog44 recombinase at a ratio of 3:1 (as in 2.3.1). Cells 

were left for 48hrs and then treated with Hygromycin to select cells that had been 

successfully transfected. Control transfections were carried out without the Pog44 

recombinase. 

Colonies were selected and expanded. 

2.3.6 Immunofluorescent staining 

Cells were plated in a 24 well plate on 13 mm circular glass coverslips at a density of 5 

x 10
4
 cells/ml. Cells were treated as required and then fixed in 4% PFA (unless 

otherwise stated). Once fixed, cells were permeabilised with 0.2% TritonX in PBS, for 5 

mins. Following permeabilisation, cells were blocked using 10% FCS in PBS for a 

further 5 mins. Cells were incubated with the desired primary antibody at stated 

concentrations for 1 hr at room temperature in 10% FCS/PBS, unless otherwise stated 

(Table 2.7). Cells were then washed in FCS/PBS before being incubated for 1 hour with 

AlexaFluor antibodies at a concentration of 1:2000. Cells were washed in PBS and then 

fixed for 10 mins in 4% PFA before being washed again in PBS. DNA was stained 

using Hoescht at 1:20,000 for 5 mins and then washed with PBS before mounting onto 

Snowcoat slides using Immunomount mounting media (Table 2.8). 
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2.3.7 EdU staining 

HeLa cells were plated on coverslips in a 24 well plate at a density of 2 x 10
4 

 cells/ml 

and treated as required. Cells were then incubated with 10 µM final concentration of 

EdU. Staining was carried it out following Click-iT
®
 EdU Imaging Kits (Table 2.8). 

When stated in the protocol slides were counter stained with 53BP1 primary antibody in 

10% FCS/PBS (Table 2.7) for 1 hour at room temperature. Slides were washed in 10% 

FCS/PBS before being incubated for 1 hour at room temperature in AlexaFluor 555. 

Following this, the staining was continued as per the manufacturer’s guidelines. Slides 

were mounted using Immunomount mounting media on Snowcoat slides and stored at 

4°C until required. 

2.3.8 Fibre Spreading 

Fibre spreading uses two thymidine analogues, CldU and IdU, to allow visualisation of 

fork progression as the analogues are incorporated into newly synthesised DNA. 

Cells were seeded at a density of 5x 10
4
 cells/well, in 6 well plates and treated as 

required (siRNA knockdown 2.3.2). Cells were incubated at 37°C with CldU at a final 

concentration of 25 µM for 20 mins. Cells were washed with PBS and then media and 

then incubated for a further 20 mins in 250 µM IdU at 37°C (Table 2.8). Cells were 

washed twice with ice-cold PBS, trypsinised and resuspended in 1ml of PBS and 

counted. The desired concentration was 50 x 10
4
 cells/ml and cell concentrations were 

adjusted to this and stored on ice. 

For each treatment four Snowcoat slides were labelled, 2 µl of the cell sample was 

placed on the each slide near the label and left for approximately 5 mins to allow to dry 

slightly. On top of each sample 7 µl of spreading buffer (200 mM Tris pH7.4, 50 mM 

EDTA, 0.5% SDS) was pipetted and mixed with the sample and incubated for 2 mins. 
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Slides were gradually tilted to allow the slow spread of the sample down the slide. Once 

the buffer has reached the bottom, the slides are allowed to dry for 2 mins. Slides were 

then fixed in a 3:1 ratio of Methanol:Acetic acid for 10 mins and then air dried for 5-10 

mins and stored at 4°C till staining. 

2.3.9 Fibre Immunostaining 

Slides must be kept shielded from light as much as possible throughout this process. 

Slides were washed 2 x 1ml H2O and rinsed with 2.5M HCl before denaturing the DNA 

with 2.5M HCl for 1 hour 15 mins. Slides were rinsed with 2 x PBS followed by 2 x 5 

min washes in Blocking solution (PBS, 1% BSA, 0.1% Tween20). Slides were 

incubated in blocking solution for 30 min-1 hr. Once blocked, 115µl of primary 

antibodies was added to each slide, Rat αBrdU (AbD Serotec) was at a concentration of 

1:1000 and Mouse αBrdU (Becton Dickinson) was used at 1:750, the slides were 

covered with large coverslips to get even distribution of the antibodies. Antibodies were 

incubated on the slides for 1 hour (Table 2.7). Slides were washed 3 x PBS and then 3 x 

Blocking solution for 1 min, 5 mins and 25 mins respectively. Following the washes the 

slides were incubated with 115µl of secondary antibodies (α Rat AlexaFluor 555 and 

αMouse AlexaFluor 488) in blocking solution at a concentration of 1:500 again covered 

with a large coverslip for 1 hour 30 mins. Slides were washed 2 x PBS, then 3 x 

blocking solution for 1 min, 5 mins and 25 mins respectively, followed by 2 x PBS. 

Mounting media was applied to the slide and a large coverslip placed over the slide and 

left to dry. Coverslips were secured with clear nail varnish and stored at -20°C till 

analysed on the microscope. 
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2.3.10 Colony survival assays 

Colony survival assays were used to determine sensitivity to cells in response to 

different damaging agents (Table 2.8). 

HeLa cells were plated at 2 x 10
5
 cells/ml in a 24 well plate and treated as required (e.g. 

siRNA and drug treatments). Cells were then trypsinised and cells and transferred to a 6 

well plate (volume transferred based on plating density experiments), with one 6 well 

plate per treatment, 3 wells were plated at a 1:2 dilution. Plates were incubated for 14 

days at 37°C at 5% CO2 until colonies formed. Colonies were stained using 0.5% 

Crystal violet at 50% methanol, washed with PBS and the H2O and colonies counted.  

2.3.11 Double strand break repair assays 

Double strand break repair assays were carried out using U2OS cells with a stable DR-

GFP for HR repair or EJ5-GFP for NHEJ. 

Cells were plated at a density of 3 x 10
6 

cells per/well and treated with siRNA as in 

2.2.3. 

Cells were transfected using RFP plasmid as a transfection control and a Sce-I plasmid 

to induce the double strand break. After 16hours cells were put into fresh media and left 

for a further 32 hours. Cells were then trypsinised and transferred into FACs tubes 

(Bioline) and spun at 1800rpm for 5 mins. Supernatant was removed and cells 

resuspended in 500µl 4% PFA and left to fix for 30mins on a rocker protected from 

light. After the cells are fixed they are spun down at 1800 rpm for 5 mins to pellet the 

cells. Supernatant is removed and the cells are resuspended in PBS and stored at 4°C 

until analysis is performed. Analysis was carried out on the Cyan4 Flow cytometer 

using Summit software. 
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2.3.12 Cell cycle FACs analysis 

Cell cycle profiles were analysed using BrdU incorporation into cells and visualised by 

FACs. 

Cells were plated at a density of 3 x 10
6
 cells/well of a 6 well plate and treated as 

required (e.g siRNA). Cells were incubated for 30 mins in 30 µM BrdU then washed in 

PBS and then trypsinised. The media, PBS wash and trypsin were collected and spun at 

1400 rpm for 5 mins. The supernatant was removed, discarded and the cell pellet 

washed in PBS and spun as before. Supernatant was removed and cell pellet 

resuspended in 1ml cold PBS before 4ml 100% ethanol added dropwise whilst 

vortexing. Tubes are stored for up to a month at -20°C until stained. 

In order to stain the cells they were spun at 1400rpm for 5 mins at 4°C. All ethanol is 

removed and the pellet resuspended in 1ml of pepsine (15mg pepsine in 20 ml of 30 

mM HCl), then a further 2ml of pepsine added. Cells were incubated at 37°C for 20 

mins protected from light, agitated every 5 mins. Cells were spun down again at 1400 

rpm for 5 mins and the supernatant discarded. The pellet was resuspended in 1.5 ml 2N 

HCl and incubated in the dark at room temperature for 20 mins. Cells were spun at 1400 

rpm for 5 mins and the supernatant removed, the pellet was resuspended in 1 ml PBS 

and then a further 4 ml PBS added and spun as before. The pellet was resuspended in 4 

ml of Bu buffer (0.5% FCS, 0.5% Tween20, 20 mM HEPES pH8, PBS) and vortexed. 

Cells were spun as before and resuspended in 250 µl Bu buffer with BrdU antibody 

(1:50) and incubated for 45 mins at room temperature in the dark. After incubation 5 ml 

PBS was added to each tube and spun as before, the supernatant was removed and the 

pellet resuspended in 100 µl Bu buffer with 1:2000 AlexaFluor 488 and incubated in the 
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dark for 30 mins. 5 ml of PBs was added to each tube, tubes were covered in foil and 

stored at 4°C overnight. 

Tubes were spun down at 1400rpm for 5 mins and the pellet resuspended in 25 µl/ml 

Propidium Iodide, 50 µg/ml RNase in PBS and incubated at room temperature for 30 

mins in foil (Table 2.8). Cells were analysed using Accuri software. 

2.3.13 Cell titre Glo assay 

The Cell titre Glo assay measures cell viability through the measuring the concentration 

of ATP produced by metabolically active cells. Lucerifin is oxygenated in the presence 

of ATP to Oxylucerifin which produces a luminesence signal that correlates to the 

number of viable cells. 

Cells were plated at a density of 1000 cells/well of a 96 well plate with a transparent 

bottom and opaque sides. Cells were treated as required and then incubated at 37°C, 5% 

CO2 until treatment has reached optimal levels but not allowing cells to become 

confluent. Once cells are ready all media is removed and then 100µl of media added 

back into each well. The assay was performed following manufacturers guidelines and 

analysed using a Victor plate reader. 

2.5 Microscopy 

2.5.1 Zeiss microscopy 

Images of immunofluorescent staining were captured on the Zeiss 510 Meta confocal 

microscope, using three lasers to give excitation at 647, 55 and 488 nM wavelengths. 

Images at each wavelength were collected sequentially at a resolution of approximately 

1024 x 1024 pixels, using the Plan-Apochromat 100x/1.4 Oil objective. 
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2.5.2 Leica Microscopy 

Immunofluorescent staining was imaged using the Leica DM6000B microscope using a 

HBO lamp with 100W mercury short arc UV bulb light source and four filter cubes, A4, 

L5, N3 and Y5  to produce excitations at wavelengths 360 488, 555 and 647 nm 

respectively. Images were captured at each wavelength sequentially using the Plan 

Apochromat HCX 100x/1.4 Oil objective at a resolution of 1392x1040 pixels. 

  



99 
 

2.4 Primers sequences 

Primer Name Primer Sequence Purpose 

BGH_Rev TAGAAGGCACAGTCGAGG Sequencing 

CMV_Fwd CGCAAATGGGCGGTAGGCGTG Sequencing 

T7_Fwd TAATACGACTCACTATAGGG Sequencing 

T7_Rev TATGCTAGTTATTGCTCAG Sequencing 

GAPDH_Fwd ATTGTCAGCAATGCATCCTG Control 

GAPDH_Rev ATGGACTGTGGTCATGAGCC Control 

USP50_IR_Fwd GATGCTCAGGAATTCTTGCGTTGTGTCCTA

AATGAAC 

Mutagenesis 

USP50_IR_Rev GTTCATTTAGGACACAACGCAAGAATTCC

TGAGCATC 

Mutagenesis 

USP50_Fwd GGAAGTATATCACCGCTCTGC Control 

USP50_Rev TGATCTTCTCCGGGAGTAGTGG Control 

pET-F-BamH1 ATGGGTCGCGGATCCTTTACTTCTCAGCCG

TCTCTCC 

Cloning 

Pc5-R-Xho1 ATTCTCGAGCTCGAGCTAGGCCTGGGTGA

CTGAATTCTTGC 

Cloning 

USP50_QR_Fwd CAACAAGATGCTCGGCGATTCTTGATTTG Mutagenesis 

USP50_QR_Rev CAAATCAAGAATCGCCGAGCATCTTGTTG Mutagenesis 

USP50_N240/241D_F

wd 

CAAGACGCACTGACCTGGGACGACGAAAT

TCACTGCTCC 

Mutagenesis 

USP50_N240/241D_R

ev 

GGAGCAGTGAATTTCGTCGTCCCAGGTCA

GTGCGTCTTG 

Mutagenesis 

Table 2.5 Primer sequences and function 
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2.5 siRNA sequences 

siRNA Name 5’-3’ Sequence 

NTC Dharmacon ON-TARGETplus SMARTpool D-001810-01-20 

Bard1 Sense: UGG UUU AGC CCU CGA AGU AAG [dT][dT] 

Antisense: [Phos] CUU ACU UCG AGG GCU AAA CCA 

[dT][dT] 

BRCA2 Dharmacon On-targetPLUS SMARTpool  L-003462-00-0005 

53BP1 Dharmacon On-targetPLUS SMARTpool  L-003548-00-0005 

POH1 F AGAGUUGGAUGGAAGGUUU 

USP50 5 UAUGAUACCCUUCCAGUUA 

USP50 6 CAACACAUGCUGCGUGAAU 

USP50 7 CUACCCAGCAUUUACGAAA 

USP50 8 GGACCUCACUCCUUAUAUU 

USP8 Dharmacon On-targetPLUS SMARTpool L-005203-00-0005 

WRN Dharmacon On-targetPLUS SMARTpool  L-010378-00-0005 

Wee1 Dharmacon On-targetPLUS SMARTpool  L-005050-00-0005 

SMARCAL1 Dharmacon On-targetPLUS SMARTpool  L-013058-00-0005 

XPC Dharmacon On-targetPLUS SMARTpool  L-016040-00-0005 

Table 2.6 siRNA sequence or catalogue number, all primers are from Dharmacon 

(Thermo Fisher) 
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2.6 Antibodies 

Antibody Animal Procedure Concentration Time Supplier 

γH2AX (phospho 

S139) 

Rabbit IF 1:2000 1 hour Abcam 

γH2AX (phospho 

S139) 

Mouse IF 1:2000 1 hour Abcam 

γH2AX (phospho 

S139)-FITC 

- IF 1:200 Overnight 

4°C 

(Dark) 

Millipore 

53BP1 Mouse IF 1:1000 1 hour Abcam 

β-actin Rabbit WB 1:2000 Overnight 

4°C 

Abcam 

BRCA1 (D9) Mouse IF 1:200 Overnight Santa Cruz 

FK2 (M2) Mouse IF 1:8000 1 hour on 

ice 

Enzo 

Flag Mouse WB 1:2000 Overnight 

4°C 

Sigma 

GFP Mouse WB 1:5000 Overnight 

4°C 

Roche 

Hexa-Histidine Mouse WB 1:1000 Overnight 

4°C 

Sigma 

CENPF Rabbit IF 1:1000 1 hour 

(pre-

extract 

with 

TritonX) 

Abcam 

BrdU Mouse Fibres 1:750 1.5 hours 

in the dark 

Becton 

Dickinson 

BrdU Rat Fibres 1:1000 1.5 hours 

in the dark 

AbD Serotec 

BrdU Mouse FACs 1:50 45 mins in 

the dark 

Dako 
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T7-tag Goat WB 1:1000 Overnight 

4°C 

Abcam 

Poh1 Rabbit WB 1:1000 Overnight 

4°C 

Epitomics 

MDC1 Rabbit IF 1:500 Overnight 

4°C 

Grant Stewart 

Mus81 Mouse WB 1:250 Overnight 

4°C 

Santa Cruz 

c-Myc (A14) Rabbit IF 1:2000 1 hour Santa Cruz 

Myc Mouse IF 1:2000 1 hour Santa Cruz 

Sug1 79 Rabbit IF 1:500 2 hours 

(pre-

extract 

with YG 

buffer for 

3 mins) 

Andy Turnell 

Ub (P4D1) Mouse WB 1:2000 Overnight 

4°C 

Santa Cruz 

WRN Rabbit WB 1:1000 Overnight 

4°C 

Abcam 

Wee1(C20) Rabbit WB 1:1000 Overnight 

4°C 

Santa Cruz 

Goat α Rat 

AlexaFluor 555 

Goat Fibres 1:2000 1.5-2 

hours 

Life 

Technologies 

Goat α Mouse 

AlexaFluor 488 

Goat IF 1:2000 1 hour Life 

Technologies 

Goat α Rabbit 

AlexaFluor 488 

Goat IF 1:2000 1 hour Life 

technologies 

Goat α Mouse 

AlexaFluor 555 

Goat IF 1:2000 1 hour Life 

technologies 

Goat α Rabbit 

AlexaFluor 555 

Goat IF 1:2000 1 hour Life 

technologies 

Donkey α Mouse Donkey IF 1:2000 1 hour Life 
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AlexaFluor 488 technologies 

Donkey α Rabbit 

AlexaFluor555 

Donkey IF 1:2000 1 hour Life 

technologies 

Rabbit α Mouse 

HRP 

Rabbit WB 1:5000 1 hour Dako 

Swine α Rabbit 

HRP 

Swine WB 1:5000 1 hour Dako 

Table 2.7 Antibodies including species raised in, dilution, conditions and protocols 

2.7 Drug treatments and Inhibitors 

Name Activity Storage Final 

Concentration 

Supplier 

Aphidicolin Inhibits 

polymerases α 

1mg/ml we 

DMSO at -

20°C 

1 µg/ml Sigma 

Camptothecin Inhibits 

topoisomerase I 

causing DSBs 

10mM in 

DMSO at -

20°C 

10 µM Sigma 

Cisplatin Crosslinks DNA 1mM made 

fresh in 0.9% 

Saline 

0.5 nM-25 nM Sigma 

Hydroxyurea Ribonucleotide 

reductase, 

creating stalled 

and collapsed 

replication forks 

1M stock in 

H2O at -20°C 

3 mM Sigma 

MG132 Inhibits 

proteasome 

10mM in 

DMSO at -

80°C 

5 µM Viva 

VE-821 Inhibits ATR 

kinase 

1mM in 

DMSO at -

80°C 

5µM Grant 

Stewart 

Propidium 

Iodide solution 

Fluorescent 

DNA stain 

1 mg/ml at 

4°C 

25 µg/ml Sigma 
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Hoescht Fluorescent 

DNA stain 

10 mg/ml in 

PBS at -20°C 

500 ng/ml Sigma 

CldU Thymidine 

analogue, 

incorporates 

into DNA 

2.5 mM in 

DMEM at -

20°C 

25 µM Sigma 

IdU Thymidine 

analogue, 

incorporates 

into DNA 

2.5mM in 

DMEM at -

20°C 

250 µM Sigma 

EdU Thymidine 

analogue, 

incorporates 

into DNA 

10 mM in 

DMSO at -

20°C 

10 µM Thermo 

Fisher 

Table 2.8 Cell treatment and stains 

2.8 Buffers 

PBS 

1 Tablet (Sigma) in 200 ml H2O 

LB Broth 

10g LB Broth powder (Sigma) in 500 ml H2O 

LB agar 

1 Capsule LB agar (Thermo Fisher) in 500ml H2O 

50x TAE Buffer 

2M Tris base, 17.5% Acetic Acid (Glacial), 10% 0.5M EDTA pH 8 

10x Tris-EDTA (TE) pH 8 
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100 mM Tris-HCl pH 8, 1mM EDTA 

Tris-BSA (TBSA) 

50 mM Tris- HCl pH 7.5, 0.1% BSA 

4x SDS Loading Buffer 

0.25M Tris pH 6.8, 8% SDS, 40% Glycerol, 6 M Urea, 10% β-Mercaptoethanol 

1x SDS Running Buffer 

10% 10x Tris/Glycine/SDS in 90% H2O 

1x Transfer Buffer 

10% 10x Tris/Glycine, 10% Methanol, 80% H2 

Crystal Violet stain 

0.5% Crystal Violet, 50% Methanol, 49.5% H2O 

Coomasie Stain 

1.25g Brilliant Blue, 10% Acetic Acid (Glacial), 45% Methanol, 45% H2O 

De-stain 

10% Acetic Acid (Glacial), 10% Methanol, 80% H2O 

Protein Lysis Buffer 

50 mM Sodium Phosphate pH 7, 300 mM Sodium Chloride, 5% Glycerol, 10 mM β-

Mercaptoethanol 
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Protein Wash Buffer 

50 mM Sodium Phosphate pH 7, 300 mM Sodium Chloride, 5% Glycerol, 10 mM β-

Mercaptoethanol, 50 mM Imidazole 

Protein Dialysis Buffer 

25 mM Tris-HCl pH 7.5, 10% Glycerol, 2 mM DTT, 150 mM Potassium Chloride 

De-Ubiquitinating assay Buffer 

50 mM HEPES pH 7.5, 10 mM DTT, 0.01% Tween 20, 4.8% DMSO 

Flag Immunoprecipitation Nuclear Lysis Buffer 

10 mM HEPES pH 7.6, 200 mM Sodium Chloride, 1.5 mM Magnesium Chloride, 10% 

glycerol, 0.2 mM EDTA, 1 % Triton 

Fibre Spreading Buffer 

200 mM Tris pH 7.4, 50 mM EDTA, 0.5% SDS 

Fibre Slide Fixative 

75% Methanol, 25% Acetic Acid (Glacial) 

YG pre-extraction Buffer 

20mM HEPES pH7.5, 20mM NaCl, 1mM DTT, 5mM MgCl2, 0.5% NP40 
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2.9 Antibiotics 

2.9.1 Tissue Culture Antibiotics 

100x Penicillin/Streptomycin (Invitrogen) was kept in 5 ml aliquots at -20°C and used 

at a working concentration of 1x. Stock concentration 10,000 U. 

2.9.2 Bacterial Antibiotics 

All antibiotics were stored in 1 ml aliquots at -20°C 

Antibiotic Stock Concentration Working Concentration 

Ampicillin 50 mg/ml in H2O 50 µg/ml 

Kanamycin 10 mg/ml in H2O 10 µg/ml 

Table 2.9 Antibiotics and working concentrations 
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3. The Proteasome and its constituent DUB, POH1, regulates 

the Ubiquitin chains at sites of Double Strand Breaks 

3.1 Introduction 

Ub conjugates are an important signalling mechanism in the double strand breaks 

(DSB) response (Mailand, Bekker-Jensen et al. 2007, Wang and Elledge 2007, Shi, Ma 

et al. 2008, Fradet-Turcotte, Canny et al. 2013). In this chapter the role of different Ub-

linkages and Ub-processing by the proteasome and its associated DUB POH1 was 

investigated. 

The formation of K48-, K63-, K6- and K27-Ub have all been linked to correct repair of 

DNA breaks by regulating the kinetics of proteins at the DSB (Morris and Solomon 

2004, Polanowska, Martin et al. 2006, Sobhian, Shao et al. 2007, Doil, Mailand et al. 

2009, Stewart, Panier et al. 2009, Gatti, Pinato et al. 2012, Mallette and Richard 2012). 

Many repair proteins have been demonstrated to be regulated by Ub-linkages with Ub 

required for recruitment or clearance from around the DSB. This includes the early 

sensor, MDC1, which requires Ub in order to be cleared from breaks (Shi, Ma et al. 

2008). Conversely the recruitment of 53BP1 and BRCA1 to DSB also requires the 

formation of poly-Ub chains (Sobhian, Shao et al. 2007, Acs, Luijsterburg et al. 2011, 

Mallette, Mattiroli et al. 2012, Mallette and Richard 2012, Fradet-Turcotte, Canny et al. 

2013). 

In order for repair of DSBs to progress efficiently, the Ub-linkages that are formed must 

also be regulated. Many DUBs have already been implicated in the regulation of these 

chains and consequently the repair of DSBs (Chapter 1 Section 1.8.4).  

In addition to the DUBs, the proteasome has also been implicated in the repair of DSBs. 

The proteasome is not only required for the degradation of substrates, potentially 

clearing proteins from DSBs, but also the processing of Ub back into the cell to 
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replenish the free-Ub pool in order to allow formation of new Ub-modifications upon 

sensing of DSBs (Eytan, Armon et al. 1993, Hanna, Leggett et al. 2003, Krogan, Lam et 

al. 2004, Jacquemont and Taniguchi 2007, Shi, Ma et al. 2008). 

Therefore the role of the proteasome and its Ub-processing activities were investigated 

in conjunction with the role of proteasome associated DUB-POH1 at DSBs. Further to 

this the importance of the individual lysine residues within Ub and therefore potential 

poly-Ub chain type, upon the kinetics of repair proteins was also studied. 

3.2 The role of the proteasome at DSBs is not limited to protein degradation 

Shi et al. have demonstrated that proteasome inhibition causes persistent MDC1 foci 

coupled with loss of BRCA1 foci. To determine whether the defect in the protein 

clearance was due to a loss of degradation or loss of free-Ub due to inhibited Ub-

processing, the effect of proteasome inhibition on MDC1 and BRCA1 was tested.  

HeLa cells were plated on coverslips and transfected with Myc-Ub or Myc-LacZ, 

treated with MG132 for an hour before 2 Gy IR then allowed to recover for 4 hours in 

MG132 before fixing and staining. The transfection of cells with Myc-Ub allows the 

distinction between the proteolytic activity of the proteasome and the effect of Ub-

starvation brought about by proteasome inhibition. As an early sensor protein of the 

DDR, MDC1 has been shown to be undergoing clearance from the breaks by 4 hours 

after damage (Shi, Ma et al. 2008). In MG132 treated cells which were transfected with 

Myc-LacZ, MDC1 foci were persistent at 4 hours supporting the data from Shi et al. 

Conversely, MG132-treated cells transfected with Myc-tagged Ub had reduced numbers 

of MDC1 foci, at levels seen in untreated cells (Fig 3.1 A and B). These results suggest 

that the proteasome is required for the clearance of MDC1. However since transfection 

with Myc-Ub can reduce MDC1 foci numbers back to untreated levels the 
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overexpression of Ub is sufficient to allow clearance in MG132 treated cells. Therefore 

it is likely to be the Ub-processing activity of the proteasome that is required for MDC1 

clearance rather than proteolytic degradation.  

This suggests that maintenance of the free-Ub pool by the proteasome is required for 

MDC1 clearance, implying the clearance of MDC1 requires formation of de novo Ub 

modifications upon damage. 

The observation that MDC1 clearance requires Ub to be available in the cell supports 

the idea that Ub modifications are important for MDC1 removal from chromatin. To try 

and assess if a specific Ub-linkage type was required for this clearance, Ub mutants 

were transfected into cells. As poly-Ub chains form through the seven conserved 

lysines, mutations that change one of those lysines to an arginine (KR) limit which 

types of chains can form. Three mutated Ub constructs were used, where the K63, K48 

or K6 residues were converted into arginine (K63R, K48R and K6R). These were 

transfected into the cells before MG132 treatment and damage. Cells were fixed 4 hours 

post IR and stained for MDC1. Interestingly the introduction of Myc-Ub-K63R, Myc-

Ub-K48R or Myc-Ub-K6R abrogated the clearance of MDC1 with Ub-Myc. The K63R 

mutant had the most dramatic MDC1 retention but all three mutants used had a 

significant increase in MDC1 foci when compared to Wild-type Myc-Ub transfection 

(Fig 3.1 B). So although de novo Ub-conjugates are required for MDC1 clearance, there 

did not appear to be one single lysine residue that was required for MDC1 clearance, 

rather several variants reduced foci loss. It is therefore possible that either mixed 

linkages or multiple chains are needed for MDC1 clearance. 

The clearance of MDC1 was suggested to be a prerequisite to BRCA1 recruitment as 

proteasome inhibited cells can neither clear MDC1 nor recruit BRCA1 (Shi, Ma et al. 
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2008). As MDC1 clearance can be restored by Myc-Ub overexpression in cells treated 

with proteasome inhibitors, it was considered that BRCA1 recruitment may also be 

restored by Myc-Ub transfection. As with the previous experiment, cells were 

transfected with Myc-LacZ or Myc-Ub and treated with MG132 before being damaged 

with 2 Gy IR. One hour later cells were fixed and stained for BRCA1.  

Unlike MDC1 foci, there was no rescue of the defect seen upon MG132 treatment. 

BRCA1 foci were unable to form regardless of the addition of Ub back into the cell (Fig 

3.1 C). Therefore it is likely BRCA1 recruitment requires the proteolytic activity of the 

proteasome in order to be recruited to DSBs. Degradation of an upstream repair protein 

is a possibility. Although MDC1 is a candidate, the clearance by Myc-Ub would, in 

theory, allow partial recruitment of BRCA1 in these cells. This demonstrates that the 

recruitment of BRCA1 requires the proteolytic activity of the proteasome, although the 

target for degradation is currently unknown. However the role of the proteasome to aid 

repair is not solely due to its proteolytic function but also relies on the maintenance of 

free-Ub in the cell. 

. 
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Figure 3.1. Replenishment of the free-Ub pool can partially restore MDC1 

clearance but is not sufficient for BRCA1 recruitment upon proteasome inhibition. 

HeLa cells were transfected with Myc-LacZ or Ub-Myc for 24 hrs before MG132 

treatment. Cells were left for 1 hour and treated with 2 Gy IR. A) Confocal microscopy 

images of MDC1 foci after treatment and fixed 4 hours after IR. B) Quantification of 

MDC1 foci in MG132 treated cells expressing either Myc-LacZ or Ub-Myc or Ub-

Mutants, K63R, K48R and K6R.Ub-Myc transfected and treated as described (n=100, 2 

repeats) *** represents significance p < 0.001. C)  Confocal images depicting 

representative images of BRCA1 foci after treatment and fixed 1 hour after IR. White 

line represents DNA from Hoescht staining. Scale bar = 10µm 
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3.3 53BP1 recruitment can be restored by overexpressing Ub in proteasome 

inhibited cells 

Similarly to BRCA1, 53BP1 recruitment to DNA damage sites is lost after proteasome 

inhibition although whether this is due to the proteolytic activity or Ub-starvation, due to loss 

of free-Ub pool, is not known (Jacquemont and Taniguchi 2007). Ub modifications at the 

break site are required for 53BP1 recruitment, although 53BP1 is not known to directly bind 

to poly-Ub chains. Instead the ubiquitination and subsequent degradation of JMJD2A is 

believed to open up the H4K20me2 mark that can therefore be bound by the Tudour domain 

of 53BP1 (Mallette, Mattiroli et al. 2012, Mallette and Richard 2012). Therefore whether the 

recruitment of 53BP1 was dependent on the proteolytic activity of the proteasome was 

investigated. 

Cells were plated, transfected with Myc-LacZ or Myc-Ub and then treated with MG132 

before being damaged with 2 Gy IR and fixed 1 hour later. Cells were stained for 53BP1 to 

determine how proteasome inhibition affected foci formation. As expected MG132 treatment 

abrogated 53BP1 foci formation. Interestingly, the recruitment of 53BP1 could be brought 

back to levels seen in untreated cells by the introduction of Ub-Myc (Fig 3.2 A and B). 

Consequently, the recruitment of 53BP1 was not dependent on the proteolytic activity of the 

proteasome; instead the availability of Ub was the factor inhibiting recruitment. These data 

suggest that the proteasome is important for 53BP1 localisation to DSBs but through its role 

in maintaining the free-Ub and allowing de novo Ub-modifications to form rather than the 

proteolytic role.   

To try and distinguish if a specific linkage was involved in the recruitment of 53BP1, Ub 

KR mutations were introduced into cells. The experiment was carried out as above but as 
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well as Myc-Ub and Myc-LacZ, K63R-Ub, K48R-Ub, K27R-Ub or K6R-Ub was also 

transfected into cells. The rescue of 53BP1 foci upon WT-Myc-Ub transfection was not 

observed when cells were transfected with K63R-Ub.  Cells transfected with K63R-Ub had as 

few 53BP1 foci as cells transfected with Myc-LacZ, demonstrating a requirement for K63 

residue in 53BP1 localisation. Intriguingly, the K6R-Ub and K27R mutants showed a partial 

rescue of 53BP1 foci, suggesting the K6 and K27 residues may also promote the recruitment 

of 53BP1 but are not the most integral residues. The K48R mutant rescued 53BP1 foci back 

to levels comparable with Myc-Ub (Fig 3.2 B). From these experiments it would seem that 

K63-linked poly-Ub chains or mixed chains, containing the K63 , K27 and K6 residues, may 

act to bring 53BP1 to DSBs. 

This was further supported by a reciprocal experiment where Ub mutants which only 

contained one lysine residue, such as K63O, K48O, K6O, K27O and K63-K6O-Ub were 

transfected into cells. As expected the K6O, K48O and K27O-Ub mutants could not rescue 

53BP1 foci as all these mutants lacked the K63 residue which has been shown to be required 

for 53BP1 recruitment. The K63O mutation only had a partial rescue of 53BP1 foci, 

suggesting K63O is not enough for the complete rescue of foci localisation. Interestingly, the 

K63-K6O mutant had the greatest effect on rescuing foci at DSBs and in conjunction with the 

data from the K63R and K6R mutations gives a strong indication that K63 and K6 linkages 

are important for 53BP1 recruitment (Fig 3.2 C). However, the K6-K63O-Ub transfection did 

not have as many 53BP1 foci as seen in cells with WT-Myc-Ub, suggesting that the K6 and 

K63 residues are important but not completely sufficient for 53BP1 foci formation. There 

may be another lysine residue required, potentially the K27 residue, or the lysine mutations 

may be causing an unknown defect in 53BP1 foci recruitment. 
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These data suggest a model where 53BP1 foci formation is not dependent on the proteolytic 

activity of the proteasome but instead requires the maintenance of the free-Ub pool by the 

proteasome in order to form poly-Ub chains, potentially of mixed K6-K63 linkages.  
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Figure 3.2 53BP1 foci recruitment requires poly-Ub chains, likely through K63 and K6 

linkages. HeLa cells were plated on coverslips and transfected with Myc-LacZ and Ub-

Myc. 24 hrs post transfection cells were treated with 5µM MG132 for 1 hr. Cells were 

subjected to 2 Gy IR allowed to recover for 1 hour, fixed in 4% PFA the stained for 53BP1 

foci A) Confocal microscopy of 53BP1 in Myc-LacZ and Myc-Ub transfected cells B) 

Quantification of 53BP1 foci in Myc-LacZ, Myc-Ub and Ub K  R mutant transfected cells 

(75 cells per treatment, 3 repeats) C) Quantification of 53BP1 foci in Myc-LacZ, Myc-Ub 

and Ub mutants containing only specified lysine residues transfected cells (75 cells per 

treatment, 3 repeats).White line shows the outline of DNA from Hoescht staining. Scale bar 

= 10µM. Error bars = Standard Error. T-test show significance at p < 0.001.  
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3.4 Damage-dependent ubiquitin chains are restricted by the proteasome-

associated DUB POH1 

The previous experiment highlights an important role for K63-linked Ub at DSBs. RNF8 and 

RNF168 are known to form Ub-chains at sites of damage, with RNF168 being important for 

creating K63-linked chains on H2A and H2AX (Doil, Mailand et al. 2009, Stewart, Panier et 

al. 2009, Lok, Sy et al. 2011). However, whether the proteasome actually acts on the Ub-

conjugates at DSBs is not known. The 19S lid of the proteasome contains a JAMM-type DUB 

POH1 which cleaves Ub chains en bloc from substrates, cleaving the isopeptide bond between 

the substrate and the proximal Ub. This protects the Ub from degradation by detaching the Ub 

modification before it enters the catalytic core of the proteasome or in fact saving the 

modified substrate from degradation by removing the signal before it is committed to 

degradation (Yao and Cohen 2002). Additionally, POH1 is a K63-specific DUB that can 

cleave the isopeptide linkages between Ub moieties of these chains rather than just between 

the substrate and proximal Ub (Cooper, Cutcliffe et al. 2009, Patterson-Fortin, Shao et al. 

2010).  

The following work was a collaborative effort carried out by members of the Morris lab. 

Laura Butler carried out a screen of 103 putative DUBs in the human genome, studying the 

levels of conjugated Ub (FK2) after release from HU, a damaging agent. Pools of 4 siRNAs 

against each DUB were transfected into cells plated onto 96 well plates. The cells were serum 

starved for 24 hours in order to synchronise the cells into the same phase of the cell cycle, 

damaged with 3 mM HU for 24 hours before being released into fresh media for 16 hours. 

Once fixed cells were probed with FK2-HRP antibody and the luminescence measured. The 

pool of siRNA towards POH1 significantly increased luminescence suggesting an increase of 
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Ub-conjugates after release from damage, thereby  POH1 may be acting to restrict conjugated 

Ub that forms after damage (Fig 3.3 A and B). 

As POH1 had an increased FK2 signal after damage as measured by increased luminescence 

signal, FK2 foci were visualised using IF and counter stained with γH2AX as a marker of 

damage. When comparing cells treated with siRNA to POH1 to a Non-targeting control 

(NTC) and damaged with 2 Gy IR, the cells depleted of POH1 had an increase in FK2 foci 

number as well as the foci being larger and brighter which co-localised with γH2AX. Unlike 

the small FK2 foci seen in NTC treated cells, the FK2 foci present in POH1 siRNA cells 

extended past the diameter of the γH2AX foci when visualised by confocal microscopy (Fig 

3.3 C and D). This suggests that POH1 acts to restrict the damage-dependent Ub conjugates 

formed at the DSB. However as a component of the proteasome, the POH1 siRNA may be 

causing a defect with the proteasome which is causing the enlarged FK2 foci, rather than it 

being a POH1 specific defect. 

Upon damage, RNF8 and RNF168 conjugate K63-linked chains at the DSB (Doil, Mailand et 

al. 2009, Stewart, Panier et al. 2009, Lok, Sy et al. 2011). To establish whether POH1 was 

acting on the K63-linked chains which form at DSBs, Joanna Morris used an antibody 

specific to K63-linked poly-Ub to look at foci upon POH1 knockdown by IF. U20S cells were 

transfected with NTC or POH1 siRNA before being exposed with 2 Gy IR, fixed and stained 

for K63-linked Ub. An increase in the diameter of the K63 foci can be seen in cells depleted 

of POH1 when compared to control cells (Fig 3.3 E and F). So, the K63-specific action of 

POH1 is appears to be necessary for regulation of Ub-chains formed at the sites of damage. 
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Figure 3.3 The proteasome-associated DUB POH1 increases conjugated Ub, specifically K63-linked chains at DSBs A). 

Schematic of the treatment course prior to measuring FK2 luminesence. B). Screen 103 putative DUBs. FK2 luminesence was 

plotted as scatter plot of averaged Z-score from three repeats for each DUB carried out by Laura Butler (LB). C) Confocal images 

of FK2 foci after POH1 depletion after damage. U2OS cells were transfected with NTC or POH1 siRNA for 72 hrs before being 

subject to 2 Gy IR and fixed 1 hr later. Cells were stained for FK2 (Green) and γH2AX (Red) as a marker of damage and imaged by 

confocal microscopy carried out by Helen Stone (HS). D) Quantification of average foci diameter of FK2 foci when cells were 

treated with NTC or POH1 siRNA calculated with ImageJ. ***= p, 0.001 calculated by Alex Garvin. F) Confocal images of K63 

specific foci after POH1 depletion. U2OS cells were treated with NTC or POH1 siRNA for 72 hrs, exposed to 2 Gy IR and fixed 1 

hr later before staining with K63 antibody and imaged by confocal microscopy performed by Joanna Morris (JM). E) 

Quantification of K63-Ub foci size calculated using Image J. 
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POH1 is an active JAMM-type DUB that is a constitutive part of the 19S lid of the 

proteasome. In order to assess whether the constraint on damage-associated Ub-conjugates 

was specifically due to the catalytic DUB activity of POH1 or because of an effect of POH1 

loss on the whole proteasome, Laura Butler created catalytically dead mutants. The 

introduction of two point mutations (H113A and H115A) within the JAMM motif rendered 

POH1 inactive as a DUB (termed JAMM
M

) but the protein remained intact, with the mutant 

POH1 being incorporated into the 19S lid (Gallery, Blank et al. 2007). This incorporation of 

the JAMM
M 

POH1 was demonstrated by expressing Flag-tagged WT-POH1 and JAMM
M

 and 

using the Flag-tag to immunoprecipitate (IP) any proteins bound to POH1. Both WT and 

mutant POH1 could bind the other 19S lid component PSMD4 indicating both versions of 

POH1 could be incorporated into the proteasome (Fig 3.4 A). 

To establish the importance of the catalytic activity of POH1 on Ub-conjugates, HeLa cells 

were treated for 24 hours with NTC or POH1 siRNA before transfection with either a siRNA 

resistant WT or the JAMM
M 

version of POH1. Cells were irradiated with 2 Gy IR and fixed 1 

hour later and stained with FK2 antibody. The introduction of the siRNA resistant WT POH1 

plasmid caused a reduction in size of the FK2 foci, seen on POH1 depletion. Whereas cells 

expressing a JAMM
M

 mutant version of POH1 displayed larger FK2 foci, similar to those 

seen on POH1 knockdown alone (Fig 3.4 B and C). This is indicative of the protease activity 

of POH1 acting on the Ub-conjugates. 

These results demonstrate that the constituent DUB, POH1, is required to limit the amount of 

K63 poly-Ub chains which form when the cell senses a DSB.
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Figure 3.4 Catalytically dead POH1 cannot reduce FK2 foci size seen on POH1 

knockdown. A) Flag-IP showing Flag-tagged POH1 and JAMM
M

 expression and 

associatiom with other components of the proteasome 19S lid. 293T cells were 

transfected with siRNA Resistant POH1 constructs and Flag-IP performed. Western 

blot analysis probed with anti-Flag and anti-PSMD4 antibodies B) FK2 confocal 

images upon POH1 depletion and expression of siRNA resistant version of POH1 and 

a catalytically dead mutant. U2OS cells were treated with NTC or POH1 siRNA then 

transfected with WT or JAMM
M

 siResistant POH1. Cells were damaged with 2 Gy IR, 

fixed after 1 hr and stained for Flag (Red) and FK2 (Green) and imaged by confocal 

microscopy carried out by Laura Butler (LB). White outlines represent DNA as seen 

by Hoescht staining. Scale bars = 10µM. C) Quantification of FK2-Ub foci intensity 

for cells depleted of POH1 and co-transfected with siRNA resistant WT-POH1 and 

JAMM
M 

POH1. *** = p< 0.001 
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3.5 POH1 restricts 53BP1 foci size 

As seen in 3.3 the inhibition of the proteasome causes a loss of 53BP1 accumulation at DSBs, 

however the introduction of excess Myc-Ub allows the formation 53BP1 foci, with the K63 

residue being necessary for foci formation (Fig 3.2 B and C). Further to this, the proteasomal 

DUB, POH1, has been shown to counteract the formation of K63-linked chains at sites of 

damage (Chapter 3 Section 3.4). Thus, the role of POH1 in controlling 53BP1 recruitment to 

DSBs was investigated.  

Laura Butler used U20S cells transfected with NTC or POH1 siRNA for 72 hrs and stained 

for 53BP1 after 2 Gy IR. The cells depleted of POH1 had larger 53BP1 both in number and 

size much like the FK2 and K63 foci previously discussed (Fig 3.5 A-C). Two possible 

explanations could explain this increase in 53BP1 accumulation, either more 53BP1 is 

recruited to DSBs or the recruited 53BP1 is not being efficiently cleared from break sites 

resulting in an accumulation of the protein.  

A time course looking at 53BP1 at various time points post IR was carried out by Laura 

Butler to determine if 53BP1 can be effectively removed in cells with reduced POH1 

expression. U20S cells were transfected with NTC or POH1 siRNA before being subjected to 

2 Gy IR. Cells were fixed at various time points between 0 and 24 hrs after damage and 

stained for 53BP1. Foci were quantified and despite the increase in number of 53BP1 foci 

upon POH1 depletion, the rate of foci clearance was similar between control and POH1 

depleted cells (Fig 3.5 D). Efficient clearance of 53BP1 foci suggests that, rather than an 

accumulation of 53BP1 at DSBs, there is an increased recruitment of 53BP1 to breaks.  

The enlarged 53BP1 foci suggest that, by limiting the K63-Ub at damage, POH1 restricts the 

amount of 53BP1 recruited to DSBs. 
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The increase in 53BP1 foci could be due to a number of reasons. One cause may be due to the 

depletion of POH1 inhibiting the proteasome, therefore there may be an increase in 53BP1 

protein in the cell, resulting in the increase in size and number of 53BP1 foci after damage. 

This would suggest 53BP1 protein levels would be the limiting factor in recruitment to DSBs. 

Another possibility is that POH1 depletion is causing a deregulation of the Ub-chains which 

are important in the recruitment of 53BP1, with an increase in the Ub-chains at DSBs there 

could be a corresponding increase in 53BP1 foci formation. This would suggest the Ub signal 

is the limiting factor in the recruitment of 53BP1. 

To understand how POH1 was acting to limit the amount of 53BP1 binding to sites of 

damage, cells expressing low levels of 53BP1 were examined with and without POH1 

expression. The siRNA against 53BP1 reduced but did not abolish 53BP1 protein levels. 

U20S cells were transfected with either NTC, POH1, 53BP1 or combined POH1 and 53BP1 

siRNA. Western blot analysis showed that 53BP1 knockdown reduced the amount of 53BP1 

protein in cells. Importantly it also demonstrates that POH1 depletion did not cause a gross 

change in 53BP1 protein expression when compared to control siRNA. Further to this, co-

depletion of POH1 and 53BP1 did not restore 53BP1 protein levels as would be expected if 

POH1 depletion were blocking the degradation of 53BP1 and causing an increase in protein 

levels (Fig 3.5 E). This suggests the knockdown of POH1 is not significantly increasing the 

amount of 53BP1 protein in the cell and it is unlikely that a reduction in degradation of 

53BP1 is responsible for the increase in foci seen upon POH1 depletion. 

As 53BP1 protein levels appear unaffected by POH1 depletion, the ability of cells to form 

53BP1 foci in co-depleted cells was investigated. U20S cells were transfected with either 

NTC, POH1, 53BP1 or combined POH1 and 53BP1 siRNA for 72 hours and then subjected 
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to 2 Gy IR. They were fixed after an hour and stained for 53BP1 foci. As expected POH1 

depletion caused an enlargement of 53BP1 foci when compared to NTC, whereas 53BP1 

siRNA significantly reduced the amount of 53BP1 foci as expected. Combined siRNA 

treatment of 53BP1 and POH1 caused visible 53BP1 foci despite the reduced 53BP1 protein 

levels, suggesting that amplified Ub-signalling may be sufficient for 53BP1 to respond to 

DSBs (Fig 3.5 E-G). These data support the hypothesis that the restriction of Ub-chains by 

POH1 is antagonising 53BP1 recruitment. 

These results suggest that the POH1 DUB is tightly regulating the levels of K63 Ub-

conjugates that form at damage sites. These Ub-chains are a potent signal to recruit proteins 

such as 53BP1, whose foci formation varies depending on the extent of these modifications.
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Figure 3.5 POH1 depletion increases 53BP1 recruitment to damage sites. A) Confocal images of 53BP1 (Red) and γH2AX (Green) after 

POH1 depletion. U2OS cells transfected with NTC or POH1 siRNA for 72 hrs before being damaged with 2Gy IR and fixed 1 hr later. B) 

Quantification ofdiameter of 53BP1 foci (n=100 foci/treatment, 2 repeats). C) U20S cells either untreated or treated with 2Gy IR, allowed to 

recover for 1 hr then fixed and stained for 53BP1. Bottom panels show Z-stack projections of 16 confocal images. D) Clearance of 53BP1 

foci after POH1 depletion. U2OS cells transfected with NTC or POH1 siRNA, damaged with 2 Gy IR and fixed at various time points and 

stained for 53BP1 and average number of foci quantified at each time point (n=50 cells/time point, 3 repeats). E) Western blot demonstrating 

knockdown of POH1, 53BP1 and combined POH1 and 53BP1. F) Confocal images of 53BP1 foci after POH1 53BP1 and combined siRNA 

treatment. Cells treated as in E, damaged with 2 Gy IR, fixed 1 hr later and stained for 53BP1 G) Quantification of average 53BP1 foci in 

53BP1 depleted and combined 53BP1 and POH1 depleted cells (>5 foci/cell n =100). White line shows DNA as stained by Hoescht. Scale 

bar = 10 µM. 
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3.6 POH1 regulates NHEJ repair through 53BP1 recruitment 

53BP1 promotes the repair of DNA breaks through NHEJ and opposes HR, although the 

exact mechanism by which 53BP1 stimulates NHEJ is not elucidated (Bothmer, Robbiani et 

al. 2011). As previously demonstrated, 53BP1 recruitment is increased upon POH1 depletion; 

therefore it is plausible that NHEJ may also be affected by POH1 knockdown. In order to 

determine whether NHEJ repair was affected by POH1 depletion an integrated reporter assay 

was utilised by Ruth Densham. HeLa cells containing an EJ5-GFP reporter, where GFP is 

only expressed if NHEJ is functional (Fig 3.6 A) (Bennardo, Cheng et al. 2008), were treated 

with NTC, POH1, 53BP1 or a combination of POH1 and 53BP1 siRNA. After cells had been 

incubated with siRNA for 24hrs they were transfected with the iSce-I to induce a DSB and an 

RFP- transfection control. 

Unsurprisingly, reduction of 53BP1 protein caused a decrease in functional NHEJ. However, 

the fault in NHEJ can be recovered by the codepletion of 53BP1 with POH1. These data are 

consistent with the foci analysis, in which 53BP1 foci could be induced by POH1 depletion 

even in cells with low 53BP1 protein levels. Intriguingly, POH1 knockdown alone also 

caused a decrease in NHEJ, suggesting either that the excess 53BP1 in these foci is having an 

inhibitory effect on NHEJ or POH1 is regulating another factor that is required for NHEJ 

repair. Since rescue of NHEJ occurs after codepletion of POH1 and 53BP1,  the reduction in 

NHEJ repair upon POH1 siRNA appears to be due to the increased 53BP1 at DSBs (Fig 3.6 

B). Therefore the increased 53BP1 protein at DSBs may be acting to block NHEJ, perhaps by 

stopping access of another protein required for NHEJ to the break sites. 

Ub-conjugates are important for the recruitment of 53BP1. The K63-linked chains are limited 

by the proteasome associated DUB POH1, which in turn restricts the amount of 53BP1 that is 



127 
 

recruited to breaks. By regulating the amount of 53BP1 at breaks, POH1 maintains the correct 

balance of repair proteins to allow efficient NHEJ to occur.

  3.6 POH1 regulates NHEJ repair by limiting the recruitment of 53BP1 to DSBs. A) 

Schematic of the EJ5-GFP reporter assay. HeLa cells containing a GFP gene interrupted 

by a puromycin resistance gene inserted, stopping GFP expression. Upon transfection 

of Sce1 the puromycin gene is removed and if NHEJ is proficient the GFP gene is 

repaired and cells express GFP. B) Quantification of GFP and RFP positive cells in 

NTC, POH1, 53BP1 or 53BP1 and POH1 depleted cells expressed as percent of NTC 

performed by Ruth Densham (mean of three replicates) Significance determined by t-

test * = p,0.05, **= p,0.01. 
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3.7 Summary 

Ub conjugates are a well-established signalling mechanism within DSB repair, however the 

DUBs that are counteracting these chains are still being revealed. The proteasome has many 

roles within the cell, including degrading proteins (reviewed in Adams 2003). This chapter 

demonstrates two distinct roles of the proteasome at DSBs. 

Firstly, the proteolytic activity of the proteasome, or other proteases affected by MG132, is 

required for the recruitment of BRCA1 to DSBs, as proteasome inhibition causes loss of 

BRCA1 foci. This defect cannot be rectified by the introduction of Ub into these cells, 

suggesting BRCA1 recruitment involves the degradation of another substrate (Fig 3.1C). 

Secondly, the Ub-processing is important for MDC1 clearance and 53BP1 recruitment. The 

Ub-starvation caused by proteasome inhibition, caused persistent MDC1 foci and loss of 

53BP1 foci (Eytan, Armon et al. 1993, Hanna, Leggett et al. 2003). However, rescue of these 

foci kinetics was observed when excess Ub was introduced into the cells showing the 

importance of de novo Ub-modifications after damage (Fig 3.1 A and B, Figure 3.2). The loss 

of new Ub-chains does not directly implicate the proteasome for Ub processing at DSBs, but 

rather the Ub starvation upon proteasome inhibition is causing foci kinetic defects (Eytan, 

Armon et al. 1993) (Fig 3.7). In an unperturbed cell the proteasome is constantly replenishing 

the free Ub-pool, therefore upon damage de novo Ub modifications can form around the break 

site. This causes the clearance of MDC1 and allows the recruitment of 53BP1 and BRCA1 to 

allow repair to occur (Fig 3.7 A). In cells that have an inhibited proteasome these damage-

dependent Ub modifications cannot be formed, subsequently causing persistent MDC1 at 

damage and blocking the recruitment of 53BP1. The loss of proteolytic activity also blocks 

BRCA1 from being recruited to DSBs (Fig 3.7 B) 
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However, immunofluorescent staining has shown the localisation of the proteasome at DSBs 

in a Ub-dependent manner, suggesting the proteasome does have a role directly at the break 

site (Appendix Fig. A1 and A2). 

The use of Ub-mutants gives an indication of which lysines residues are likely to be involved 

in the foci kinetics of MDC1 and 53BP1. There was not one lysines residue within Ub which 

was obviously required for MDC1 clearance, with all Ub-mutants introduced causing 

persistent MDC1 foci. This could be due to MDC1 clearance requiring mixed poly-Ub chains 

or multiple distinct Ub-modifications, the introduction of a Ub lacking all lysines could be 

used to determine if mono-Ub is required for MDC1 clearance. However the K63 and to some 

extent to K6 and K27 residues appear to be necessary for 53BP1 recruitment (Fig 3.1 B, Fig 

3.2 B and C). The use of the Ub-mutants can only give an idea of the linkage type as the 

introduction of an arginine residue may affect the interactions with Ub-binding domains 

which can cause unknown affects to the foci kinetics. 

The results presented in this chapter suggest that K27-linked Ub may have a minor role in the 

recruitment of 53BP1 foci. This is in partial agreement with Gatti et al, however, we observe 

only a mild defect in 53BP1 recruitment when cells are transfected with K27R (Gatti, Pinato 

et al. 2012). Further to this cells, complemented with K27O Ub cannot efficiently restore 

53BP1 foci numbers. Instead, we find that K63 is the major residue required for 53BP1 

recruitment, but there is a minor requirement for both K6 and K27 residues.  

Furthermore, other groups have suggested that 53BP1 recruitment involves K48-linked Ub in 

order to signal removal of chromatin bound factors by VCP (Acs, Luijsterburg et al. 2011, 

Meerang, Ritz et al. 2011). However, the data in this chapter shows no requirement for the 

K48 residue of Ub for 53BP1 foci formation. Although K48-Ub does form at sites of damage 
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there is no evidence presented to show a direct requirement of K48 for 53BP1 recruitment. 

Further to this, VCP depletion does reduce the ability of cells to form 53BP1 foci but it does 

not complete ablate foci formation (Acs, Luijsterburg et al. 2011, Meerang, Ritz et al. 2011). 

It is therefore likely that there are many mechanisms that are both direct and indirect which 

regulate 53BP1 localisation to DSBs; however the data presented suggest a strong reliance of 

K63-linked Ub as opposed to K48 poly-Ub. 

Due to the defect of foci kinetics on MG132 treatment, it was assumed that proteasome 

inhibition was working. Western blot analysis was performed to confirm proteasome 

inhibition (Butler, Densham et al. 2012); this correlates with the results observed matching 

published results of proteasome inhibition on foci kinetics (Jacquemont and Taniguchi 2007, 

Shi, Lin et al. 2007). 

The role of the proteasome and its associated DUB, POH1, at DSBs was also investigated 

during this chapter, demonstrating a role of the proteasome DUB POH1 in Ub processing at 

break sites. Increased Ub-conjugates are apparent both by luminescence and IF upon POH1 

knockdown by RNA interference. These conjugates co-localised with the damage marker 

γH2AX and were additionally shown to be K63-linked chains, a chain type known to be 

created at DSBs by RNF8/RNF168 (Fig 3.3). POH1 was shown to limit the extent of these 

conjugates at DSBs, actively limiting 53BP1 foci formation. 

Loss of POH1 caused an escalation in size and intensity of 53BP1 foci (comparable to the 

increase in FK2 foci size upon POH1 depletion) which could be rescued by knockdown of 

53BP1 itself. The low level of 53BP1 expression in knockdown cells was sufficient to form 

foci in POH1 depleted cells but not in POH1 competent cells (Fig 3.5). Taken together these 
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results indicate that POH1 acts to restrict K63-chains at damage and in doing so controls the 

recruitment 53BP1. 

The importance of this stems from the role of 53BP1 in promoting NHEJ. Cells with 

decreased 53BP1 protein levels have a defect in this repair pathway which can be restored by 

POH1 depletion. This may be due to 53BP1 being recruited to breaks. Interestingly, POH1 

depletion alone also has defective NHEJ which correlates with excess 53BP1 at breaks also 

having a deleterious effect on repair (Fig 3.6). This might be due to excess 53BP1 binding to 

DNA ends and blocking other NHEJ factors, such as Artemis or XLF:XRCC4, from 

accessing the broken DNA ends. Immunofluorescent analysis could be performed to 

determine whether other NHEJ factors are excluded from break sites in POH1 depleted cells 

and whether this could be restored by 53BP1 knockdown. However, this chapter demonstrates 

that the modulation of Ub-conjugates at DSBs by POH1 creates a fine balance for recruitment 

of repair proteins to allow efficient repair. 

As a component of the proteasome, it may be expected that POH1 depletion would cause 

similar repair defects as proteasome inhibition. However, proteasome inhibition had more 

severe phenotype than POH1 depletion, which could be explained by the amount of free-Ub 

in the cell. Proteasome inhibition caused a decrease in free-Ub in the pool whereas POH1 

depletion did not reduce the free-Ub, therefore POH1 knockdown does not inhibit the 

formation of de novo Ub modifications (Liu, Buus et al. 2009). 

This chapter therefore demonstrates a role for K63-chains in recruiting 53BP1 foci, however 

53BP1 is not known to bind K63-linked chains, suggesting the recruitment of 53BP1 is not 

directly through the interaction of 53BP1 with the Ub-chains. The current hypothesised model 

is that POH1 is likely regulating another substrate which ultimately allows 53BP1 foci 
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formation. By limiting the K63-linked chains in the vicinity of the break, POH1 causes the 

ejection of chromatin factors around the DSB. By removing these chromatin factors, 53BP1 

can then access these histone modifications and be recruited to the damage. However when 

POH1 is not present the K63-signal is amplified causing a subsequent increase in 53BP1 

recruitment (Fig 3.8). This chapter shows that the proteasome has diverse functions at the 

DNA break with Ub regulation via POH1 being integral to 53BP1 recruitment and 

consequently NHEJ repair. Further insights into the mechanism of POH1 Ub-chain regulation 

and how this regulated DSB repair, has since been published (Butler, Densham et al. 2012)
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Figure 3.7 Model of how the proteasome Ub-processing regulates repair proteins. A) 

The proteasome is required to degrade an unknown substrate in order to allow BRCA1 

recruitment. MDC1 protein clearance and 53BP1 protein recruitment require free-Ub 

produced by the proteasome. Suggesting damage-dependent modifications are required for 

correct foci kinetics. B) Proteasome inhibition inhibits the clearance of MDC1 and 

recruitment of 53BP1 due to loss of Ub-modifications. BRCA1 recruitment is blocked by 

the loss of degradation of a substrate. 
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Figure 3.8 Model of POH1 actions at DSBs. POH1 is acting on the K63-linked Ub 

formed at DSBs, by reducing the poly-Ub modification on a substrate. It is maintaining 

the unknown substrate and blocking 53BP1 recruitment to chromatin marks. When the 

signal is increased, such as in close proximity to breaks POH1 is not sufficient to stop 

the substrate from being removed from chromatin and 53BP1 can bind the histone 

marks (red circles). 
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4. USP50 is an inactive DUB, whose depletion does not cause a 

major defect in the repair of double strand breaks 

4.1 Introduction 

Further to investigating POH1, the screen of 103 putative DUBs carried out by Laura Butler 

(Chapter 3 Fig 3.7 B) identified another DUB of interest, USP50. In contrast to POH1 siRNA, 

treatment with USP50 siRNA, cells showed significantly decreased FK2 luminesence, a 

measure of conjugated ubiquitin, after release from HU. It is unexpected that depletion of a 

DUB would cause a decrease in the amount of conjugated-Ub, therefore the role that USP50 

plays after release from HU was investigated. 

USP50 has been classified as an inactive DUB. As a UCH type DUB, USP50 requires the 

cysteine catalytic triad in order to cleave the isopeptide bond between Ub moieties or Ub and 

the substrate. However, the catalytic triad in USP50 is lacking the last aspartic acid/asparagine 

residue required for activity and therefore believed to be inactive, although no data was shown 

to prove the loss of activity (Quesada, Dı́az-Perales et al. 2004). 

Very little is currently known about the function of USP50 in the cell. One paper by Aressy et 

al. found that USP50 interacts with the heat shock protein, Hsp90 with this interaction 

causing a stabilisation of Wee1 by preventing degradation of Wee1 by the proteasome. They 

showed the reduction in Wee1, caused by USP50 depletion,  increased G2/M checkpoint 

bypass. However this checkpoint bypass only occurred when the G2/M checkpoint was 

already compromised by overexpression of the checkpoint phosphatase Cdc25B, with USP50 

depletion exacerbating this defect in the checkpoint. However, when the checkpoint was 

intact, with endogenous levels of Cdc25B expression, the loss of USP50 did not cause 

aberrant entry into mitosis (Aressy, Jullien et al. 2010). Therefore USP50 may play a role as a 
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back-up regulator to the G2/M checkpoint but it is unknown whether this could be the cause 

of decreased conjugated Ub.  

The loss of enzymatic activity may account for the decreased level of Ub-conjugates after 

release from HU, when cells are treated with USP50 siRNA. However this requires further 

investigation.  

As not much research has been carried out into the function of USP50 protein it was an 

intriguing prospect to characterise this DUB and its potential role in the DNA damage 

response. 

4.2 USP50 probably arose due to a gene duplication of USP8 

As USP50 is not very well characterised, initial investigation was performed by bioinformatic 

research to determine if USP50 was linked to other genes with known roles. 

There have been several studies looking at the evolutionary relationship between DUBs; 

however the positioning of the DUBs on the evolutionary tree varies between studies. USP50 

has been shown to share different common ancestors in separate studies, with USP50 being 

shown to be closely related to USP8 or USP39 (Ye, Scheel et al. 2009, Clague, Barsukov et 

al. 2013). 

To determine which DUB USP50 was most related to bioinformatics research was performed. 

The Ensembl database showed that, in humans, USP50 lies on chromosome 15 at position 

q21.1. The protein comprises of a short N-terminal sequence that does not contain any 

currently classified domains, followed by the UCH domain, which is the only annotated 

domain on the Ensembl database. The active UCH DUB, USP8, which is highly conserved 

back to Saccharomyces cerevisiae with a homologue Doa4, lies next to USP50 on 
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chromosome 15. USP50 and USP8 have a small overlap between the C-terminal regions of 

both genes on the human chromosome (Fig 4.1A). The close proximity of USP50 and USP8 

could be indicative of them being closely related; however as gene proximity does not 

necessarily equate to relatedness further research was required. 

Bioinformatic studies that was performed showed that at the amino acid level there are 54% 

of amino acids which are either conserved, or retain the same properties as the original amino 

acid, between USP50 and the C-terminus of USP8 (Appendix Fig. A3). However USP8 is 

much larger than USP50, at 1118 amino acids (aa) to compared to 339 aa for USP50. USP8 

contains an N-terminal region and a further C-terminal extension of 39 amino acids (referred 

to as the tail), which contains the final amino acid of the catalytic triad, not present in USP50. 

Along with the proximity of the two genes, the high sequence similarity at the amino acid 

level led to the hypothesis that USP50 arose due to a gene duplication of the C-terminal 

portion of USP8. The human DNA sequences of USP50 and USP8 have diverged more than 

the amino acid sequences. This may suggest that while the DNA sequence can still change 

there is a constraint on the DNA sequence that is maintaining the amino acid sequence. 

To determine the structure of USP50, the known structure of the catalytic domain of USP8 

(PDB 3N3K) was used to predict the structure of USP50, using the Swiss Model Workspace 

Suite, due to their sequence similarity. The USP50 amino acid sequence was threaded onto 

the structure of the catalytic domain of USP8 to produce a model of the USP50 structure (Fig 

4.1 B and C). Although the structures of USP50 and USP8 were very similar there were some 

distinct differences, including two β-sheets which are visible in USP8 but not present in 

USP50. Further to the missing β-sheets, the model of USP8 has a loop between two α-helices 

as marked in Fig 4.1D. This loop is missing in the USP50 structure based on sequence data 

from Ensembl, however whilst sequencing USP50 plasmids, a stretch of six amino acids that 
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correspond to the loop that is observed within USP8, therefore the structure of USP50 may be 

more similar to that of USP8 than previously realised (Fig 4.1 D).  

The Swiss PDB model shows the C-terminal tail of USP8 threads back into the active site to 

position the Aspartic acid residue into the proximity of the Cysteine and Histidine in the 

catalytic triad. This region is lacking in USP50, therefore the Aspartic acid of the catalytic 

triad is not complete; however the active site is more open in USP50 as it is not restricted by 

the tail region, as in USP8 (Fig 4.1 E).  

However this structure is only a model based on the amino acid sequence, and is therefore 

only an approximation of the structure. To fully elucidate the structure of USP50, in depth 

experimental evidence would be required, including NMR or determining the crystal structure 

by X-ray cystallography. 

The conservation of the amino acid sequence, as well as the proximity of the USP50 to the C-

terminus of USP8, supports the hypothesis that USP50 arose from a gene duplication of 

USP8. However examination of the threaded structure suggests possible similarities and 

differences between USP8 and USP50 which may affect their function in the cell.  
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Fig 4.1 USP50 is evolutionarily related to USP8. A) Ensembl database map of USP50 on 

chromosome 15q21.1 positioned next to USP8. B) Ribbon model of USP50 (blue) 

threaded onto USP8 catalytic domain (3N3K) (purple). USP8 retains a C-terminal tail that 

is truncated in USP50. Green asterisk is part of the USP8 N-terminal extension. Red 

asterisk represents the USP8 tail. C) Ribbon structure of USP50. D) Ribbon structure of 

USP8 with structural differences of USP50 marked by red asterisk. Orange arrow heads 

represent β-sheet structural differences. Grey arrowhead represents loop that although not 

present in USP50 structure was represented in sequencing data. E) Catalytic triad of USP8. 

The Cysteine and Histidine residues that are present in both USP50 and USP8 are marked 

by black arrow heads, the Aspartic acid (red arrowhead) is a present in USP8.  



140 
 

4.3 USP50 is conserved across higher eukaryotic species, with a conserved Ub-

binding domain 

The Ensembl gene database indicates that USP50 is present in 51 species, with the earliest 

species known to have USP50 being fish, including Coelacanths and Platyfish. There is 

currently no known homologue of USP50 in S. cerevisiae or lower eukaryotes. Across the 40 

species where the sequence is known, USP50 has a conservation of around 70% at the amino 

acid level, showing high conservation of most amino acids across the majority of the species 

(Appendix Fig. A4a). However, not all the species have retained the exact same amino acid in 

a particular position but may instead have an amino acid with similar properties. This high 

level of conservation suggests that USP50 is being maintained and protected from mutation 

across species. Therefore USP50 might have an important role within the cell that requires the 

conservation of the protein. 

Although there is a high conservation of USP50 as a whole, the individual amino acids may 

differ in a small number of species meaning they are not 100% conserved throughout all the 

species included (Appendix Fig. A4b). The conservation of the individual amino acids was 

studied to try and identify highly conserved regions of the protein. By looking at which amino 

acids remain completely conserved across all 40 species it was possible to see if certain 

regions of the protein are more likely to be functionally important, as these residues are likely 

to be protected from changes throughout evolution.  

A model of USP50 interacting with Ub was created in the Swiss Model Workspace Suite. To 

create this model, the amino acid sequence of USP50 was threaded onto the structure of USP7 

bound to Ub (PDB 1NBF). This gave an estimate of the Ub-binding pocket within USP50 

based on a known structure. On this model the positions of the 100% conserved residues were 
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mapped, these residues appeared to be in positions which are likely to interact with Ub (Fig 

4.2 A and B). This suggests that the Ub-binding capacity of USP50 might be conserved. 

Further investigation is required to determine if these residues are required for Ub-binding. 

To assess whether USP50 can bind Ub, His-USP50 protein was produced to carry out in vitro 

Ub-binding assays. Mutations were introduced using site-directed mutagenesis in regions 

which were hypothesised to inhibit binding to Ub. Mutations of the N240 and N241 to 

Aspartic acid (D) residues were believed to affect Ub-binding due to their position on the 

UPS50 model (Fig 4.2 C). Wild-type (WT) and mutant USP50 (ND) were cloned into the 

bacterial expression vector pET28a, which introduced a poly-His tag onto USP50 allowing 

the attachment to the Nickel (Ni
+
)
 
beads. The immobilised proteins were incubated on ice 

with K48-linked poly-Ub chains to allow binding to the USP50 proteins. Any unbound 

protein was washed away so that only Ub bound to the USP50 protein remained. The USP50 

proteins were resuspended into 4x Lamelli buffer to denature the bonds between USP50 and 

any bound Ub. The amount of bound Ub was then analysed on a Western blot and probed for 

Ub (P4D1). 

WT-USP50 was able to bind Ub, indicating that USP50 is able to bind K48-linked Ub chains 

in vitro. Interestingly, WT-USP50 appeared to only bind chains that are four Ub moieties or 

longer (Fig 4.2 D). The ND mutation partially restricts Ub-binding domain, with a reduced 

level of Ub binding to the mutated USP50 (Fig 4.2 D). As Ub-binding is not completely 

abolished it could suggest the N240.241 residues are involved in Ub-binding but are not 

essential for binding, therefore Ub can still bind but with less efficiency. Another potential 

cause is that the mutation from an N to a D does not cause a dramatic change in the properties 

of the amino acid therefore the mutant is still able to bind to Ub but with reduced efficiency. 

The change of residue from an N to a D does change a small polar residue into a larger 
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charged residue therefore they do possess different attributes which may be acting to reduce 

Ub-binding.  

The use of in vitro studies to test Ub-binding gives an initial indication that USP50 is able to 

bind Ub; however in vitro assays do not fully recapitulate the role of the protein in vivo. 

Therefore to determine if USP50 could bind Ub in vivo, overexpression of a WT Flag-tagged 

USP50 in an inducible HeLa cell system, allowed the Ub-binding activity of USP50 to be 

tested in vivo (Fig 4.2 E). Treatment of these cells with 2µg/ml Dox which caused Flag-

USP50 overexpression; cells were then lysed and incubated with M2 Flag agarose beads to 

selectively bind the Flag-tagged USP50. Any proteins interacting with USP50 would be 

bound indirectly through USP50. Cell lysates were probed by Western Blot for Ub (P4D1) to 

determine if there was enrichment for Ub in cells overexpressing USP50. In Dox treated cells, 

where USP50 was overexpressed, there was an increase in Ub-conjugates pulled down from 

cells. USP50 can therefore bind to Ub-conjugates in vivo (Fig 4.2 E). 

Unexpectedly, it was also apparent that in whole cell extract (WCE) of Dox treated cells, 

which overexpressed USP50-Flag, there was an increase in high molecular weight Ub-chains 

(Fig 4.2 E). This could indicate that USP50 overexpression is stopping the deconjugation of 

these chains, potentially by blocking the chains from the proteasome and other DUBs from 

accessing the poly-Ub. However further work is required to confirm that the increase in Ub-

conjugates observed was due to USP50 overexpression and not due to the Flag expression or 

Dox treatment to the cells. 

The conservation of residues predicted to interact with Ub based on the USP50-Ub threaded 

model suggested that the role of USP50 in cells may require Ub-binding. Although USP50 is 

capable of binding Ub both in vitro and in vivo, whether USP50 only binds specific Ub-
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linkages need further investigation. Studying endogenous USP50 Ub-binding may help 

identify the ubiquitinated substrate that USP50 is indirectly binding. 
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Fig 4.2 USP50 can bind Ub. A) Pymol USP50 ribbon model (blue) bound to Ub 

(red) as based on the USP7 bound to Ub model (PDB 1NBF), with residues 

conserved across 42 species marked it yellow and binding mutant residues in orange 

as in C). B) Conserved residues (yellow) in USP50 appear to interact with Ub around 

the Ile44 (green) interacting patch of Ub. C) Position of mutated residues N240-N241 

(orange) which were mutated to Aspartic acid residues (D) to create a potential Ub-

binding mutant (ND-USP50) D) In vitro Ub-binding assay showing WT-USP50 is 

able to bind K48-linked chains whereas the ND-USP50 mutant was less able to bind 

chains, especially of lower molecular weights, despite similar levels of both WT and 

ND-USP50 being present in the assays. E) Immunoprecipitation of Flag-tagged WT-

USP50 from HeLa cells showing an enrichment of higher molecular weight Ub-

chains in cells overexpressing USP50. WCE = Whole cell extract. 
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4.4 USP50 does not show in vitro DUB activity but protects Ub-chains from 

cleavage 

As USP50 has Ub-binding capability it was investigated whether USP50 was also active as a 

DUB. Quesada et al. previously reported that USP50 displayed no protease activity; however 

they did not show the data to support this claim (Quesada, Dı́az-Perales et al. 2004). The loss 

of the aspartic acid residue of the catalytic triad would imply that USP50 is no longer active 

as a protease. Although the aspartic acid/asparagine residue is not always necessary for 

protease activity, as seen with USP16 and USP30 (Nijman, Luna-Vargas et al. 2005).  

The DUB activity of USP50 was assessed using purified protein, isolated from BL21 (DE3) 

bacteria (Avvakumov, Walker et al. 2006). Increasing concentrations of USP50 protein was 

incubated with linear-linked poly-Ub2-8 at 28°C overnight constantly shaking. USP8 protein 

was used as a control for positive DUB activity. Western blots were performed to determine 

whether the linear Ub-linkages had been cleaved into smaller moieties. 

While reactions containing USP8 showed a reduction of larger Ub-conjugates and the 

production of mono-Ub with increasing concentrations of USP8 protein, USP50 reactions 

displayed no change in Ub-conjugates despite the amount of USP50 introduced (Fig 4.3 A). 

Therefore, although USP50 can still bind Ub-chains, as shown in Section 4.3, this data 

suggests it cannot cleave them. However this was only tested with linear Ub chains meaning 

there may be a linkage that has not been tested that USP50 is specific to, despite the ability of 

USP50 to bind both K63 and linear Ub. 

As USP50 can bind Ub-chains but does not appear to cleave them, the ability of USP50 to 

protect Ub-chains from degradation by active DUBs was investigated. K63-linked Ub chains 

were incubated with increasing concentrations of USP8, USP50 or USP8 with the highest 
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concentration of USP50 at 28°C overnight and then run on a gel. Unfortunately USP50 

protein could not be detected by the His-antibody, however when USP8 was incubated with 

USP50 protein there was less degradation of Ub-chains. There was a reduction in the 

generation of mono-Ub in USP8 DUB assays which contained USP50, when compared to 

assays containing USP8 alone. The reduction in deconjugation of chains was especially 

apparent in chains that were four and six Ub moieties in length (Fig 4.3 B). Therefore 

although USP50 was not apparent on the gel, there was a difference between the degradation 

of chains when USP50 is incubated with USP8. It may be that the level of USP50 is too low 

to be detected by the gel but is sufficient to bind to and protect chains. This supports the 

observation that USP50 overexpression increases larger Ub-chains in whole cell lysates 

(Section 4.3). 

Unfortunately protein purification of USP50 was inefficient, with very low concentrations of 

USP50 protein purified from bacteria. In vitro studies using USP50 protein were hampered by 

the poor expression. 

As USP50 is binding, but does not seem to be cleaving, Ub-chains there is a potential function 

to protect Ub-chains from cleavage by other DUBs.
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Fig 4.3 USP50 cannot deconjugate Ub chains. A) Increasing concentrations of USP8 and 

USP50 were incubated with linear Ub chains for 16 hours. USP8 was able to deconjugate 

these chains, reducing the amount of high molecular weight chains and producing mono-Ub 

however at no concentration of USP50 was a change in the composition of Ub-chains 

observed. B) Incubation of USP50 with USP8 reduced the amount of deconjugation of K63-

linked Ub chains when compared to USP8 alone. Less mono-Ub was produced and chains of 

4 or 6 Ub moieties were preferentially protected. 
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4.5 Generation of USP50 antibodies 

As depletion of USP50 was required to determine the role of USP50 in the cell, it was 

necessary to determine if USP50 antibodies were able to detect USP50 proteins. To do this 

western blot analysis was performed using USP50 overexpression vectors to confirm the 

ability of the USP50 antibodies to specifically detect USP50 protein. It had already been 

previously published that endogenous levels of USP50 were not detectable by Western blot 

analysis (Aressy, Jullien et al. 2010). 

Six commercially available antibodies were tested against cells expressing GFP-tagged 

USP50 or untransfected cells. Unfortunately, none of the commercially available antibodies 

was able to specifically detect USP50, producing non-specific banding patterns with no band 

running at the correct size for USP50-GFP expression and no band being solely in the USP50-

GFP lane (Fig 4.4 A). Therefore it did not appear that these commercial antibodies were 

specific against USP50. 

We commissioned Genscript to produce a “Western blot guaranteed” antibody. Three short 

peptide sequences were designed to be on the external surface of USP50 and not within the 

Ub-binding site based on the USP8/USP50-threading model, in order to maximise the 

likelihood of finding an available epitope. Six polyclonal antibodies were produced and tested 

against USP50 purified protein and USP50 overexpressing cell lysates. Purified protein or 

whole cell lysates with and without Flag-USP50 overexpression were run on Western blot and 

incubated with the six Genscript antibodies as well as the Flag antibody and the T7 antibody. 

The Flag antibody was able to distinguish the tagged overexpressed version of USP50 in the 

whole cell lysate, whereas the T7 antibody will identify the purified USP50 protein as it 

contains a T7 tag. 
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Whilst both the T7 and Flag antibodies where specifically able to distinguish bands of the 

correct size in the correct lanes, none of the Genscript antibodies were able to specifically 

distinguish the correct bands (Fig 4.4 B). Most of the antibodies did not produce a signal in 

the lane with purified protein except one antibody #15735. When running the whole cell 

lysates all of the antibodies gave non-specific banding patterns. None of the antibodies 

showed an increased signal that would correlate to the Flag-USP50 overexpression. Therefore 

as no commercial or commissioned antibody was able to specifically detected USP50, as 

purified protein or when overexpressed in cells, endogenous USP50 levels could not be 

analysed. 
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Fig 4.4 USP50 antibodies could not specifically identify USP50 protein. A) Six commercially available antibodies were tested against 

cells whole cell lysates of untreated cells (Lane 1) and cells overexpressing a USP50-GFP construct (Lane 2). Although the USP50-GFP 

protein could be detected specifically by a GFP antibody, none of the six antibodies specifically identified USP50. B) Six commissioned 

antibodies from Genscript were tested against purified USP50 protein with a T7 tag (Lane 1) as well as whole cell lysates that were untreated 

(Lane 2) or overexpressing a Flag-tagged USP50 protein (Lane 3). Although the purified protein could be detected using the T7 antibody and 

the overexpressed Flag-USP50 was visible with the Flag antibody none of the commissioned USP50 antibodies were able to specifically 

identify either the purified USP50 protein or the flag-tagged overexpressed USP50. 
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Therefore in order to confirm that USP50 siRNA could cause a reduction in the levels of a 

siRNA sensitive USP50, Flag-tagged protein was transiently transfected into cells. Reduction 

in the Flag protein levels were assessed as a measure of loss of USP50 protein. Cells were 

treated with either one of the four individual USP50 siRNAs and a pool of these USP50 

siRNAs, and then western blot analysis performed using the Flag antibody in order to see any 

reduction in the overexpressed protein. The USP50 siRNAs, but not NTC siRNA, could 

reduce the amount of Flag-tagged protein seen in cell lysates (Fig 4.5 A and B). Therefore 

USP50 siRNA could reduce the levels of USP50 protein in the cell, which supports the 

assumption that USP50 siRNA is reducing the endogenous levels of USP50 protein in the 

cell. 

RNA levels of USP50 were also tested after treatment with USP50 siRNAs in order to see if 

there was a reduction in the mRNA levels of endogenous USP50 mRNA upon siRNA 

treatment. mRNA was extracted from cells and reverse transcribed into cDNA, which was 

then amplified using USP50 specific primers and GAPDH primers as a loading control. In 

cells treated with USP50 siRNA there is a reduction in the amount of USP50 mRNA when 

compared to NTC siRNA treated cells (Fig 4.5 C). 

Therefore even though there was no specific antibody available to check the levels of 

endogenous USP50 there is evidence that the siRNAs were working, due to the reduction in 

both USP50 mRNA and Flag-tagged protein.
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Fig 4.5 USP50 siRNA can deplete USP50 levels within the cell. A) Western blot analysis 

looking at levels of Flag-USP50 in cells treated with NTC siRNA, individual USP50 

siRNAs or a pool of USP50 siRNAs. GFP was used as a transfection control. Percent of 

knockdown was determine by normalising Flag-USP50 levels to the amount of GFP in the 

cells and then worked out as a percent of the NTC control. B) Graphical representation of 

the Flag-expression after siRNA treatment. Averages of densitometry results from 2 

individual Western blots, with Flag expression normalised against the GFP expression. 

Error bars = SD. C) mRNA was extracted from cells treated with NTC, individual USP50 

or a pool of USP50 siRNAs and converted to cDNA. USP50 primers were used to 

specifically amplify USP50 cDNA (Full gel image in Appendix Fig. A5) and GAPDH 

primers were used as a control. 
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4.6 USP50 depletion causes increased spontaneous damage-associated foci 

In vitro studies of USP50 have shown no evidence of DUB activity, likely due to the loss of 

the aspartic acid residue in the C-terminus (Section 4.4). USP50 can still bind Ub both in vitro 

and in vivo. The role that USP50 plays in cells however is still poorly understood and was 

therefore investigated. 

As USP50 siRNA caused a decrease in FK2 luminesence after release from HU (Fig 4.6 A), 

immunofluorescence was carried out on USP50 depleted cells to look for a defect with the 

recruitment of damage proteins, BRCA1 and 53BP1. These proteins require damage 

dependent ubiquitination for efficient recruitment. Intriguingly, there was a significant 

increase in both BRCA1 and 53BP1 foci upon USP50 depletion without any exogenous 

damage being applied (Fig 4.6 B-E). 

Repeats were carried out in different cell lines in order to determine whether this was a HeLa 

cell specific effect of the USP50 siRNA. A breast cancer cell line, MCF7, was treated with 

NTC or USP50 siRNA and stained for 53BP1. MCF7s treated with USP50 siRNA also 

showed a significant increase in 53BP1 foci when compared to cells treated with the NTC 

siRNA (Fig 4.6 F). 

As previously discussed USP50 is conserved in mice (Section 4.3), therefore it was 

investigated whether the increase in damage-associated foci on USP50 siRNA treatment was 

also conserved between these species. To do this, USP50 siRNA specific for the mouse 

transcript was used in NIH3T3 cells. Again USP50 siRNA treated cells had significantly more 

53BP1 foci without addition of exogenous damage (Fig 4.6 G).  
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Together these data show that the increase in 53BP1 foci occurs between cell lines and 

between species, suggesting deregulation of a conserved role across species and not an off 

target effect of siRNA treatment. 
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  Fig 4.6 USP50 siRNA treatment causes increased DNA-damage associated foci without 

exogenous damage. A) Screen of 103 putative DUBs after release from HU carried out by 

Laura Butler. B) Immunofluorescent images displaying an 53BP1 foci in HeLa cells after 

USP50 siRNA. White line represents DNA as visualised by Hoescht staining. C) 

Quantification of 53BP1 foci in NTC and USP50 siRNA treated cells. (100 cells per 

treatment, n=3. D) Immunofluorescent images showing BRCA1 foci in HeLa cells after 

USP50 siRNA. White line represents DNA as visualised by Hoescht staining. E) 

Quantification of BRCA1 foci after NTC or USP50 siRNA treatment (100 cells oer 

treatment n=3). F) Quantification of 53BP1 foci in MCF7 cells after treatment with NTC or 

USP50 siRNA (70 cells per treatment, n =3).G) Quantification of 53BP1 foci in mouse 

NIH3T3 cells after treatment with NTC or USP50 siRNA (70 cells per treatment, n =3). *** 

T-test p<0.01. 
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4.7 USP50 siRNA does not grossly reduce the cells ability to repair damage 

Due to the increase in damage-associated foci in all tested cell lines upon USP50 siRNA 

treatment, there is evidence suggesting the depletion of USP50 is causing a defect giving rise 

to damage foci. There are many potential reasons why these cells have increased damage-

associated foci, including DSB repair defects such as, inefficient clearance of repair proteins 

or genomic instability due to a fault during replication or transcription. Understanding why 

these foci arise was consequently investigated further. 

As the foci were associated with the DNA damage response, it was first investigated whether 

the increase in foci was due to a defect in repair of DSBs. A time course was carried out to see 

if 53BP1 foci could be cleared after different time points during recovery from IR. HeLa cells 

were treated with USP50 or NTC siRNA, damaged with 2 Gy IR and fixed at various time 

points after damage. Cells were stained for 53BP1 and foci quantified at each time point. 

Despite there being more 53BP1 foci in USP50 siRNA treated cells, the ability of cells to 

clear these foci happens at a similar rate as in NTC siRNA treated cells, with both siRNA 

treatments clearing roughly 2 foci per hour from 1 hour post IR onwards (Fig 4.7A). 

Therefore the increase in 53BP1 foci is unlikely to be due to an inability to clear repair 

proteins from damage but because more foci are arising in these cells. 

Further to the time course, in order to investigate whether USP50 siRNA treated cells were 

less able to repair DSBs a colony survival assay was performed. HeLa cells were treated with 

siRNA against USP50, NTC and BRCA2 as a positive control and subjected to increasing 

doses of IR. Cells were plated sparsely and left to form colonies for 10-14 days before fixing 

with crystal violet in 50% methanol and colonies counted. The assumption for this assay is 

that each colony forms from a single cell, therefore a reduction in colony number is due to a 

decrease in the survival of cells. USP50 depletion does not cause a significant decrease in 
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colony forming units when compared to the NTC treated cells, therefore cells treated with 

USP50 siRNA are not sensitive to IR unlike cells treated with BRCA2 siRNA (Fig 4.7 B). As 

IR induces DSBs, USP50 siRNA treatment does not cause cells to become sensitive to DSBs, 

further suggesting that USP50 siRNA does not cause a defect in DSB repair. 
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Fig 4.7 USP50 siRNA treatment does not cause sensitivity to IR. A) HeLa cells treated 

with NTC or USP50 siRNA were subjected to 2 Gy IR and fixed at specified timepoints 

during recovery. Cells were stained for 53BP1 and foci at each timepoint quantified and 

plotted. (70 cells per treatment n=3). B) Survival colony assays were performed on cells 

treated with NTC, USP50 or BRCA2 siRNA and subjected to increasing doses of IR. Cells 

were plated and left to form colonies before being fixed, stain and quantified (n=4) Error 

bars = SEM. 
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The induction of DSBs by IR occurs independently of the stage of the cell-cycle, therefore IR 

cannot distinguish whether there is a defect specific to either HR or NHEJ. GFP reporter 

assays were used to look separately at USP50 siRNA treatment on HR and NHEJ repair (Fig 

4.8 A and B). U2OS cells were treated with siRNA against NTC, USP50 and BARD1 as a 

positive control. The restriction enzyme iSce-I and the transfection control, RFP, were 

transfected into the cells. If cells are able to repair the break induced by the iSce-I restriction 

enzyme GFP was expressed (Fig 4.8 A and B). Therefore GFP expression was measured on a 

FACs machine as a read out of repair. It is assumed that RFP positive cells had also been 

successfully transfected with the iSce-I enzyme and had consequently undergone DSB 

formation. Therefore cells that were positive for both GFP and RFP were calculated as a ratio 

of RFP positive cells to determine the ratio of transfected cells that had undergone successful 

repair. USP50 siRNA caused a slight reduction of GFP-RFP double positive cells, to roughly 

80%, in both HR and NHEJ assays, but not to the extent to which BARD1 siRNA reduced 

double positive cells, as BARD1 siRNA is known to cause a defect in both repair pathways 

(Westermark, Reyngold et al. 2003). The knockdown of USP50 did not cause a significant 

decrease in the proportion of GFP-RFP double positive cells when compared to the NTC 

siRNA knockdown in either HR or NHEJ reporter assays (Fig 4.8 C and D). Therefore USP50 

siRNA treatment does not cause a gross difference in the cells ability to perform HR or NHEJ 

repair. 

Despite the increase in damage foci that appear in cells upon USP50 siRNA treatment, the 

repair of DSBs seems largely unaffected. As cells are still able to survive IR treatment and 

efficiently clear 53BP1 from damage sites, any decrease in the repair pathways does not 

appear to drastically affect cell viability. USP50 is therefore unlikely to have a major role in 
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either NHEJ or HR repair, suggesting that the increased 53BP1 foci are arising due to another 

pathway being deregulated in the cells.

 

  
Fig 4.8 USP50 siRNA treatment does not cause a major reduction in cells ability to 

repair DSBs. A) Representation of NHEJ GFP assay. B) Representation of HR GFP 

assay. C) Percent of GFP and RFP positive cells as a proportion of NTC cells. USP50 

siRNA did not cause a large decrease in the cells ability to repair by NHEJ. D) Percent of 

GFP and RFP positive cells as a proportion of the NTC control siRNA treated cells. 

USP50 depletion did not greatly reduce the cells ability to perform HR. Experiments were 

carried out in triplicate (n=3) 
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4.8 Generation of inducible USP50 knockdown and overexpression cell lines 

In order to ensure reproducibility of results, stable cell lines were produced which had both 

inducible shRNA expression to induce USP50 knockdown, as well as inducible Flag-tagged 

siRNA resistant USP50 overexpression. 

HeLa Flip-In cells were lentivirally infected with NTC or USP50 shRNA by Dr Alex Garvin 

and then cells selected using Puromycin to obtain stably transfected cells.  Knockdown of 

USP50 was tested by inducing shRNA against USP50 or NTC, with 100 µM IPTG and then 

cells examined for 53BP1 foci. If there was the same increase in 53BP1 foci in shUSP50 cells 

as seen with USP50 siRNA it was assumed USP50 was being knocked down. HeLa cells 

containing either shNTC or shUSP50 were plated and treated with IPTG for 72 hours before 

fixing and staining for 53BP1 to be visualised by immunofluorescence. In shNTC expressing 

cells there was no significant increase in 53BP1 upon incubation with IPTG. Conversely, both 

clones tested, which contained shUSP50, showed a significant increase in the 53BP1 foci. 

However clone #22 had a higher number of foci in cells not treated with IPTG, where shRNA 

against USP50 had not been induced, coupled with slightly less foci per cell in cells treated 

with IPTG (Fig 4.9 A). This may be due to a slightly leaky expression of the shUSP50 in 

these cells. Therefore experiments were continued with clone #15. This result suggests that 

the USP50 shRNA is capable recapitulating the phenotype observed with siRNA. 

To confirm that the increase in 53BP1 foci observed in shUSP50 #15 cells was due to a 

reduction in USP50 protein levels, cells were transfected with a transient siRNA sensitive 

USP50-Flag construct which was sensitive to shRNA. Western blot analysis was performed to 

determine if the shRNA could reduce the levels of the Flag-tagged USP50 protein. Cells 

expressing shNTC expressed USP50-Flag protein regardless of IPTG treatment; however 

shUSP50 could reduce levels of USP50-Flag protein when cells were treated with IPTG in 
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order to induce knockdown (Fig 4.9 B). Cells containing the shUSP50 only showed a 

reduction in USP50-Flag when treated with IPTG, therefore the reduction in USP50-Flag is 

dependent on the shRNA induction. This suggests the shUSP50 #15 contained an inducible 

shRNA against USP50 that could efficiently knockdown USP50 protein and give rise to 

increased 53BP1 foci. 

 

  

  

Fig 4.9 USP50 shRNA can reduce USP50 levels within the cell. A)HeLa cells stably 

transfected with shNTC or shUSP50 were treated with 100µM IPTG to induce shRNA 

expression for 72 hours. Cells were fixed and stained for 53BP1 and foci numbers 

quantified. Cells expressing shUSP50 displayed increased 53BP1 foci (100 cells per 

treatment, n=3) T-test p<0.01. B) Western blot analysis visualising Flag-USP50 protein 

levels after shNTC and shUSP50 exposure.  
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In order to determine if the damage-associated foci could be rescued by reintroducing USP50 

to depleted cells, a shRNA resistant form of Flag-USP50 was expressed in an inducible 

manner. HeLa-Flip In cells were transfected with a shResistant Flag-USP50 in a 

pcDNA/FRT/TO vector and the POG44 recombinase in order to stably transform the cells. 

Cells were selected with hygromycin and colonies picked and expanded. Expression of Flag-

USP50 was tested by treating cells with Dox in order to induce protein expression and lysates 

run on Western blot to determine if USP50-Flag was expressed. Dox treated cells expressed a 

Flag-tagged protein running the expected size of USP50, suggesting that Flag-USP50 was 

being expressed but was dependent on Dox treatment (Fig 4.10A). 

As there was expression of the shRNA resistant Flag-USP50, cells were tested to see if the 

reintroduction of USP50 could prevent the formation of 53BP1 foci in cells expressing the 

shRNA against USP50. The cells that successfully expressed the Flag-tagged USP50 were 

treated with IPTG to cause expression of shNTC or shUSP50. After 24 hours cells were then 

treated with different concentrations of Dox to induce USP50-Flag expression and then fixed 

after 48 hours. Cells were stained for 53BP1 and foci were quantified. As previously 

demonstrated, shUSP50 cells treated only with IPTG had an increase in 53BP1 foci above 

shNTC expressing cells. In shNTC the addition of increasing concentrations of Dox did not 

significantly change the number of 53BP1 foci. However, when increasing concentrations of 

Dox were added to shUSP50 expressing cells, the number of 53BP1 foci decreased to levels 

seen in shNTC treated cells (Fig 4.10 B). This suggests that the reintroduction of shRNA 

resistant USP50 is reversing the effect of the USP50 knockdown. Therefore the increase in 

53BP1 foci upon USP50 shRNA does seem to be dependent on the reduction of USP50 and is 

unlikely to be due to an off target affect as the reintroduction of USP50 can rescue the 

increase in 53BP1 foci. 



164 
 

Cells lines that could either inducibly express shNTC or shUSP50, as well as overexpress 

shRNA resistant USP50-Flag protein were successfully produced. 

 

  
Fig 4.10 Flag-USP50 overexpression can reduce 53BP1 foci numbers in shUSP50 

treated cells. A) Western blot analysis to confirm expression of Flag-USP50 in an 

inducible manner in HeLa-Flip In cells. B) HeLa-Flip In cells were treated with IPTG 

to induce expression of shNTC or shUSP50 for 24 hours. Cells were treated with 

increasing concentrations of Dox to induce expression of Flag-USP50 for 48 hours. 

Cells were fixed and stained for 53BP1 and foci quantified (70 cells per treatment, n = 

3) T-test p<0.01. Error bars = SEM. 
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4.9 The Ub-binding activity of USP50 is required to inhibit 53BP1 foci formation 

As USP50 does not appear to have DUB activity but can still bind Ub (Section 4.3 and 4.4) it 

was investigated whether the ability of USP50 to bind Ub was important for its role in the 

cell.  

The ND-mutant partially inhibits Ub-binding as previously described. This mutant was 

introduced into the stable cell line system. Western blot analysis was performed to show that 

the ND-USP50 mutant was being expressed in these cell lines. Dox treatment of the cells 

caused expression of USP50 ND to levels similar to WT-USP50 (Fig 4.9 A). 

To determine if the Ub-binding activity of USP50 was required for the prevention of 53BP1 

foci, the Ub-binding mutant was expressed in cells depleted of USP50. Cells expressing 

USP50-ND were fixed and stained for 53BP1 foci and quantified. In cells depleted of USP50, 

but expressing the ND mutant there was a partial reduction in the average number of 53BP1 

foci when compared to those expressing WT-USP50 (Fig 4.11 B). Conversely, the expression 

of WT-USP50 could significantly reduce the number of 53BP1 in cells back to roughly 2 foci 

per cell, which is similar to foci numbers in cells treated with NTC siRNA (Fig 4.9 A). Due to 

the reduction of 53BP1 upon WT expression, but only partial reduction in 53BP1 foci 

numbers with the ND mutation, it can be assumed that the Ub-binding activity of USP50 is 

required for its activity in the cell. As the ND-USP50 protein levels are comparable, although 

slightly reduced compared to those of WT-USP50, the incomplete reduction in 53BP1 foci is 

not due to there being less USP50 protein in the cells. 

As the USP50-ND mutant only partially restricts Ub-binding it will be important to perform 

this experiment with a USP50 which has fully abolished Ub-binding to see whether this is no 

longer able to reduce 53BP1 foci numbers. 
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Complementation of USP50 into knockdown cells gives evidence against the siRNA 

producing an off target effect. The Ub-binding mutant only producing a partial reduction in 

damage-associated foci suggests that the ability to bind Ub is necessary for the function of 

USP50.

  
Fig 4.11 Ub-binding mutant of USP50 can only partially reduce 53BP1 foci 

numbers after USP50 shRNA expression. A) Western blot analysis to confirm that 

ND-USP50 could be expressed at levels similar to WT-USP50. B) HeLa cells expressing 

shUSP50 were then left uninduced or induced to express WT-USP50 or ND-USP50 and 

53BP1 foci counted (50 cells per treatment, n=2) T-test p<0.01. 
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4.10 Summary 

Within this chapter, USP50 has been characterised as an inactive DUB that has maintained the 

ability to bind Ub (Section 4.3 and 4.4). This small protein is likely to have arisen due to a 

gene duplication of the C-terminus of USP8, leading to high amino acid conservation between 

this region of USP8 and USP50 (Section 4.2). However, in humans, USP50 has been 

truncated leading to the loss of the aspartic acid which forms part of the catalytic triad, 

potentially explaining the lack of protease activity (Section 4.4). Interestingly, although the 

USP50 DNA sequence is 70% conserved across 40 species, this missing aspartic acid is 

actually present in some species, including mice (Section 4.3). Whether these species still 

retain DUB activity is unknown and is worth further investigating as it may give insights into 

the role of USP50. If USP50 is performing the same role in all species but acts a DUB in 

some species and not others, it may suggest USP50 is acting to stop access to chains either by 

removing the Ub-chains or by binding Ub-chains to block another Ub-binding protein.  

In vivo, the loss of USP50 caused spontaneous damage-associated foci which were 

reproducible in two human cell lines and in a mouse cell line (Section 4.6). This phenotype 

can be rectified by WT-USP50 but not a mutant which can only partially bind Ub, implying 

the Ub-binding activity is required for USP50 function (Section 4.3 and 4.9). However, a 

mutant that can complete abolish Ub-binding is still required to fully elucidate the Ub-binding 

function of USP50 in the cell and to help determine the ubiquitinated substrate that USP50 is 

binding. 

There were a few possible reasons for the increased damage-associated foci, a fault in DSB 

repair was investigated as the first possible explanation. However, no defect was detected in 

the clearance of damage-associated protein 53BP1 or sensitivity to the DSB inducing agent IR 

(Section 4.7). This coupled with only a slight reduction in the ability of cells to repair DSBs 
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by HR or NHEJ suggests USP50 is not playing a significant role in the repair of DSBs despite 

the increase in damage-associated foci. Therefore, further investigation was required into the 

USP50-dependent mechanism that is causing the increased 53BP1 foci as it is unlikely a DNA 

repair defect. 

These experiments were conducted without being able to confirm knockdown of endogenous 

USP50 due to the lack of a specific available antibody. Moreover, endogenous USP50 is 

expressed at low levels making its expression difficult to detect (Aressy 2010). Therefore 

there is a caveat to these experiments. However knockdown of USP50 was tested using 

complementation assays, but also by overexpressing a tagged version of USP50, with 

knockdown detected by loss of the tag rather than using an antibody specific to USP50 

(Section 4.5 and 4.9). 

Inducible cell lines were also created to allow both inducible knockdown and overexpression 

of USP50. As these cells were clonally selected, all cells should display the same knockdown 

and overexpression efficiency allowing more reproducible results (Section 4.8). 

The results of this chapter suggest that USP50 is a Ub-binding protein that functions to limit 

the formation of damage-associated foci through an unknown pathway. Therefore further 

work was performed to elucidate how loss of USP50 was causing the increase in damage-

associated foci. 
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5. USP50 maintains genome stability during replication 

5.1 Introduction 

The lack of a major function in the DDR, raises the question of what is the cause of increased 

damage-associated foci in USP50 depleted cells. Consequently, elucidating which pathway 

USP50 plays a role in and how it acts to suppress the damage foci seen on its depletion was 

investigated. 

As the damage foci do not appear to arise due to faulty DSB repair as there is no sensitivity to 

IR damage and 53BP1 foci can effectively be cleared (Fig 4.7), another pathway must be 

malfunctioning to cause the damage-associated foci. DNA damage does not require the 

addition of exogenous DNA damaging agents, such as IR or UV damage, but can occur due to 

endogenous sources including the disruption of a couple of pathways, namely replication or 

transcription. Replication stress is defined as the slowing or stalling of replication forks. Forks 

can stall in a manner of ways, including through the actions of drugs such as HU or Cpt, or 

through difficult-to-replicate regions of the genome. These regions consist of repetitive 

sequences or DNA secondary structures, including G4 quadruplexes. Further to this, 

DNA:RNA hybrids and protein complexes on the DNA, including transcription machinery, 

can cause replication stress. The cell has many mechanisms which allow stalled forks to 

restart, however if the fork cannot be restarted it can be cleaved into a DSB structure that can 

be repaired by HR-mediated repair to allow replication to continue (reviewed in Mazouzi, 

Velimezi et al. 2014). 

Transcription mainly occurs during the G1 phase of the cell cycle but can occur in S-phase 

with histone genes being transcribed (Robbins and Borun 1967). There is emerging evidence 

that repair proteins, including Ku70 and Ku80, are required for transcription activation and 
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TOP2B may induce DSBs in order to initiate transcription (Mayeur, Kung et al. 2005, Ju, 

Lunyak et al. 2006). Therefore the increased damage-associated foci observed in S-phase may 

result from either replication or transcription being deregulated by USP50 loss. Determining 

the cell cycle phase in which the damage occurs can narrow down the pathway that USP50 is 

working in. 

5.2 USP50 loss is not epistatic with Wee1 loss 

USP50 has been implicated in preventing aberrant bypass of the G2/M checkpoint by 

inhibiting the degradation of Wee1 (Aressy, Jullien et al. 2010). Defective checkpoint 

signalling might be the cause of increased damage in the cell. If the cell enters mitosis without 

completing replication, the chromosomes cannot separate correctly due to under-replicated 

regions causing anaphase bridges, or broken chromosomes which manifests as damage in the 

daughter cells (Chan, Palmai-Pallag et al. 2009, Naim and Rosselli 2009) 

In a paper by Aressy et al 2010, the loss of USP50 in cells overexpressing Cdc25B made 

them more prone to bypass the G2/M checkpoint (Aressy et al 2010). Aberrant phosphatase 

activity of Cdc25B activates the CDK1 kinase which causes entry into M phase (Lammer, 

Wagerer et al. 1998, Karlsson, Katich et al. 1999). Aressy et al attributed the checkpoint 

failure observed to the destabilization of Wee1 upon USP50 depletion, via Hsp90. 

Knockdown of USP50 was shown to decrease Wee1 protein levels, which could be rescued 

by MG132 treatment (Aressy et al 2010). The loss of Wee1 would cause G2/M checkpoint 

bypass, as normally Wee1 opposes the action of Cdc25B by phosphorylating Thr14 and 

Tyr15 on CDK1, causing CDK1 to become inactive and consequently stopping entry into M-

phase (Lundgren, Walworth et al. 1991, Parker, Athertonfessler et al. 1992). The 

destabilisation of Wee1 on USP50 depletion in Aressy et al coupled with overexpression of 

Cdc25B, will be activating CDK1 thereby allowing access into M-phase in these cells. 
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Therefore, in cells with an impaired checkpoint, USP50 loss caused an increase checkpoint 

bypass, which could potentially be the cause of the damage observed (Aressy, Jullien et al. 

2010). Reduction of Wee1 has already been shown to cause increased γH2AX, similar to the 

observed increase seen in USP50 depleted cells and therefore the increase in damage-

associated foci may be caused indirectly through loss of Wee1 protein (Dominguez-Kelly, 

Martin et al. 2011).  

One of the initial questions addressed in this project was whether USP50 knockdown was 

causing a loss of Wee1 protein. Western blot analysis of Wee1 protein levels was tested under 

different knockdown conditions. HeLa cells were treated with NTC, USP50, Wee1 or 

combined USP50 and Wee1 siRNA, lysed and protein levels analysed by SDS-PAGE. In cells 

treated with Wee1 siRNA there was a decrease in the amount of protein visible, however 

USP50 knockdown did not cause a dramatic drop in Wee1 protein levels (Fig 5.1 A). Thus, 

from this data it does not appear USP50 depletion is causing a drastic destabilisation of Wee1, 

unlike as previously demonstrated by Aressy et al. 

Secondly, as the loss of Wee1 has been shown to cause increased damage (Dominguez-Kelly, 

Martin et al. 2011), it was hypothesised that the damage seen in USP50 depleted cells may be 

arising through the deregulation of Wee1. To test this, HeLa cells were treated with siRNA 

against USP50, Wee1 or combined USP50 and Wee1 siRNA. After 72 hours, cells were fixed 

and stained for 53BP1. As expected, both USP50 and Wee1 single depletions caused an 

increase in the number of 53BP1 foci above that of NTC control. However, the depletion of 

both USP50 and Wee1 increased 53BP1 foci significantly above either knock alone as shown 

by Students T-test (Fig 5.1 B and C). Unfortunately, there was not a suitable antibody 

available to confirm USP50 depletion; however the increased 53BP1 gave an indication that 

the siRNA was having an effect. Although the knockdown of both USP50 and Wee1 together 
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did cause a greater number of 53BP1 foci than either siRNA alone, the increase was not 

additive (Fig 5.1 C). If the spontaneous damage foci observed in USP50 depleted cells were 

due to a problem in the Wee1 pathway, it would be expected that there would not be a 

significant difference between the single siRNA treatments and the combined USP50 and 

Wee1 siRNA. Therefore, the spontaneous damage-associated foci in USP50 depleted cells 

appear to be arising from a defect in a pathway distinct from the Wee1 pathway, however as 

there is not an additive increase there may still be some overlap between the USP50 and 

Wee1 pathway that gives rise to a proportion of the damage foci seen. 

.

  

Figure 5.1 USP50 and Wee1 combined siRNA increase 53BP1 foci numbers above 

either siRNA alone. HeLa cells were plated and transfected with NTC, USP50, Wee1 or 

USP50/Wee1 siRNA and fixed after 72 hours. A) Western blot analysis showing Wee1 

knockdown with β-actin as a loading control. B) Cells were stained for 53BP1 foci and 

imaged by confocal microscopy. White line represents DNA as marked by Hoescht staining. 

Scale bar = 10µM C) Quantification of 53BP1 foci for each siRNA treatment and analysed 

by students t-test (75 cells per treatment n=3) Error bars = S.E.  



173 
 

5.3 USP50 siRNA treatment does not cause a gross change in the cell cycle profile 

of cells 

As USP50 depletion has already been associated with a reduced G2/M checkpoint (Aressy, 

Jullien et al. 2010), cell cycle analysis on USP50 depleted cells was performed. 

U2OS cells were treated for 72 hours with NTC, USP50 or Wee1 siRNA before being pulsed 

with BrdU which was incorporated into replicating DNA. An antibody against BrdU was used 

to detect incorporation, and DNA was stained with Propidium Iodide (PI). The amount of 

BrdU incorporation can be plotted against the amount of PI staining to distinguish the cell 

cycle phase each cell is in. Cell cycle analysis was carried out on the Accuri FACs machine. 

Asynchronous cells produce a distinctive horseshoe profile where G1 cells have low BrdU 

and PI staining compared to other phases of the cell cycle, S-phase cells have increased BrdU 

staining and increasing PI staining. Finally, cells in G2/M have low BrdU but increased PI 

staining. The loss of USP50 did not cause a significant change in the cell cycle profile when 

compared to NTC siRNA cells, although there did appear to be a slight increase in G1 cells 

(Fig 5.2 A). This increase in G1 cells could also potentially be early S-phase cells as it is 

difficult to distinguish between G1 and early S-phase cells. Despite this, there does not appear 

to be a gross change to the cell cycle profile when USP50 was depleted. 

On the contrary, Wee1 siRNA caused a change in the cell cycle profile, with a spike of cells 

in G2/M phase and a greater proportion of cells in S-phase. There are also a greater number of 

cells that are no longer within the normal cell cycle profile, as apparent by both the horseshoe 

plot and the quantification. The horseshoe plot suggests many cells have increased DNA 

content, potentially due to re-replication of DNA. However as Wee1 siRNA causes a cell 
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cycle defect which is not observed in USP50 depleted cells, there is further evidence 

suggesting USP50 and Wee1 are not functioning in the same pathway.  

If cells are perturbed during the cell cycle, cells can accumulate in one specific phase due to 

checkpoint activation in order to allow the cell time to overcome any defects that have arisen. 

If checkpoints are defective, cells can pass through the checkpoint despite any damage that 

has occurred, preventing damage from being repaired. 

When cells were exposed to 5 Gy IR and allowed to recover for 24 hours, cells accumulate in 

G2/M phase of the cell cycle. Both NTC and USP50 siRNA treated cells accumulated in 

G2/M after 5 Gy IR (Fig 5.2 B). These results suggest that the G2/M checkpoint is intact as 

cells have not entered mitosis. 

In addition, the use of 3 nM Aphidicolin (Aph) causes early replication specific defects due to 

the inhibition of DNA polymerases α and δ (Krokan, Wist et al. 1981). Therefore DNA 

replication cannot occur and cells cannot progress through S-phase. To examine whether 

USP50 depletion allowed S/G2 checkpoint bypass, cells were treated with Aph for 16 hrs 

before being pulsed with BrdU and fixed. The Aph treatment caused an accumulation in S-

phase for both control and USP50 depleted cells. These results suggest that the S/G2 

checkpoint is still active as cells cannot progress through S-phase (Fig 5.2 B). 

As the cell cycle profiles of NTC and USP50 siRNA treated cells did not significantly differ 

from each other, there is no indication of USP50 playing a role in the regulation of the cell-

cycle.
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Figure 5.2 USP50 siRNA treatment does not cause a gross change in the cell cycle 

profile. U2OS cells were plated and treated with siRNA against NTC, USP50 and 

Wee1 for 72 hrs then pulsed with BrdU, fixed and stained with PI. A) FACs analysis of 

BrdU versus PI staining to give the cell cycle profile of each treatment. B) Prior to 

BrdU pulse cells were treated with 5Gy IR and left to recover for 24 hours, or 3nM 

Aph for 16 hours to trigger checkpoint activation. Cells were analysed by Accuri FACs 

and percent of cells in each phase of the cell cycle plotted (Average of 2 experiments).  
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5.4 The damage-associated foci observed upon USP50 siRNA treatment arise in a 

specific phase of the cell cycle 

As a gross cell cycle defect was unlikely to be the cause of the increased damage-associated 

foci upon USP50 siRNA treatment, further experiments were required to understand why 

there was an observed increase in damage-associated foci. To determine if the foci were 

arising in a specific cell cycle phase, cells were counter stained with a cell cycle marker. 

Determining which phase of the cell cycle the damage-associated foci were arising in could 

indicate which pathway was faulty upon USP50 siRNA treatment. Initially to test this, HeLa 

cells were depleted of USP50 and stained for γH2AX, as a marker of damage and CENPF, a 

centromere protein, which stains cells late S and G2 phase of the cell cycle (Kao, McKenna et 

al. 2001). 

It was apparent from this experiment that the increase in γH2AX was in CENPF positive 

cells. Quantification showed that there were foci in the CENPF positive cells but very few in 

the CENPF negative cells upon USP50 siRNA treatment (Fig 5.3 A and B). Therefore the 

damage foci observed were arising in a cell cycle specific manner, specifically S or G2 phase 

of the cell cycle. 

It was hypothesised that the increased foci in G2 phase was due to a replication defect with 

damage being carried through into G2 phase. However as CENPF marks late S-phase cells, 

and G2 cells, a marker of S-phase was required to determine if the damage was arising during 

replication (Kao, McKenna et al. 2001).
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Figure 5.3. The increase in damage-associated foci in USP50 siRNA treated cells 

arose in a cell-cycle dependent manner. A) HeLa cells were plated and treated with 

NTC or USP50 siRNA for 72 hours, pre-extracted in 0.2% TritonX, fixed and then 

stained for CENPF as a late S/G2 marker and the damage marker γH2AX. Cells were 

imaged by confocal microscopy. White outline represents DNA as shown by Hoescht 

staining. Scale bar = 10 µM. B) Quantification of γH2AX foci in CENPF positive and 

negative cells after siRNA treatment (50 cells per treatment, n = 2)  
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To test whether the damage-associated foci were replication specific, HeLa cells were pulsed 

for 30 mins with EdU, a thymidine analogue, which is incorporated into DNA as it is 

replicated, thereby distinguishing S-phase cells (Chehrehasa, Meedeniya et al. 2009). Using 

the Click-it EdU kit, EdU was visualised by IF and counter stained for 53BP1 foci (Fig 5.4 

A). Quantification of foci in EdU positive or EdU negative cells showed there were more 

53BP1 foci in EdU positive cells compared to EdU negative cells upon USP50 depletion. 

There is also an increase of 53BP1 foci in EdU negative cells upon USP50 depletion but the 

majority of foci arose in the EdU positive cells indicating an S-phase dependent increase in 

damage-associated foci (Fig 5.4 B). Intensity of EdU staining was quantified by ImageJ 

software and plotted against the number of 53BP1 present in the cell. In USP50 depleted cells 

there were more foci in cells with more EdU incorporation, with a slight positive trend 

suggesting that there is a greater number of foci in cells where more EdU was incorporated 

(Fig 5.4 C). This result in conjunction with the CENPF staining indicates there is an increase 

in the number of foci in cells undergoing replication.
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Figure 5.4. 53BP1 foci occur during S-phase. HeLa cells were plated on coverslips 

and treated with NTC or USP50 siRNA for 72 hours before being incubated with 10 

µM EdU for 30mins. Cells were fixed and stained for EdU incorporation and 53BP1 

foci. A) Cells were imaged by confocal microscopy. White line represents DNA as 

indicated by Hoescht staining. B) 53BP1 foci were counted in EdU positive and EdU 

negative cells and the average number of foci per cell plotted (40 cells per treatment, 

n=2) C) Images were analysed using ImageJ software to determine EdU intensity as a 

measure of S-phase progression. 53BP1 foci were counted and plotted against the EdU 

intensity to determine whether 53BP1 foci increased throughout S-Phase. Lines 

represent best fit of data fit (80 cells per treatment).  
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DSBs arise during replication when replication forks are stalled and cannot be restarted 

(reviewed in Petermann and Helleday 2010). These forks are cleaved by endonucleases; the 

major endonuclease is Mus81/Eme2, which displays specificity to 3’and 5’ flaps as well as 

stalled replication fork structures. Cleavage by Mus81/Eme2 forms DSBs which are then 

repaired by HR repair to allow replication to continue (Pepe and West 2014). As the repair 

foci observed arise during S-phase, it was hypothesised that the Mus81/Eme2 endonuclease 

may be responsible for the increased 53BP1 foci observed on USP50 siRNA treatment. To 

test this, knockdowns of USP50, Mus81 and a combined knockdown of USP50 and Mus81 

were carried out on HeLa cells and protein levels tested by Western blot analysis. USP50 

siRNA did not appear to affect Mus81 protein levels but siRNA towards Mus81 caused a 

large drop in Mus81 protein in cells, confirming the knockdown (Fig 5.5 A). 

Further to this, to confirm that the Mus81 endonuclease gave rise to S-phase specific 53BP1 

foci, HeLa cells were treated with NTC or Mus81 siRNA before being subjected to 3mM HU 

for 16 hours. This exposure to HU would usually cause replication forks to collapse into 

DSBs (Saintigny, Delacote et al. 2001). In these experiments the loss of Mus81 protein 

caused a significant decrease in 53BP1 foci observed (Fig 5.5 B). Therefore the majority of 

53BP1 foci arising during S-phase are Mus81-dependent. 

To examine whether the damage-associated foci seen on USP50 depletion were dependent on 

Mus81, HeLa cells were treated with NTC, USP50, Mus81 or combined USP50 and Mus81 

siRNA and stained for 53BP1. Quantification of foci showed that combined depletion of 

USP50 and Mus81 caused a reduction in 53BP1 foci when compared to USP50 siRNA alone 

(Fig 5.5 C). These results suggest that the 53BP1 foci that occur on USP50 knockdown are 

Mus81-dependent. 
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All together these results indicate that the damage foci which occur when cells are treated 

with USP50 siRNA arise during replication and are dependent on the endonuclease Mus81. 

This is consistent with a model where USP50 is required during replication potentially to stop 

replication forks stalling or the cleavage of stalled forks into DSBs occurs more readily. 

 

  

Figure 5.5 The increase of 53BP1 foci seen on USP50 depletion are dependent on 

Mus81. HeLa cells were plated and treated with NTC, USP50, Mus81 or a combination 

of Mus81 and USP50 siRNA for 72 hours. A) Western blot analysis showed Mus81 

knockdown, β- actin was used as a loading control. B) HeLa cells treated with NTC or 

Mus81 siRNA were incubated for 56 hours. Cells were then incubated with 3mM HU for 

16 hours to induce replication fork collapse. Cells were fixed and stained for 53BP1 foci. 

Microscopy was used to quantify the foci number and averages plotted (70 cells per 

treatment , n=3) C) Cells that were not treated with HU were fixed and stained for 

53BP1 foci. Foci were quantified using confocal microscopy and numbers plotted (70 

cells per treatment, n=3) Statistics were carried out using Students T-test. 
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5.5 USP50 siRNA treatment sensitises cells to replication-stress inducing drugs 

To try and distinguish how USP50 is acting during replication, USP50 depleted cells were 

treated with various different drugs that disrupt replication. The process of replication can be 

disrupted in a variety of ways including the forks colliding with a lesion, such as crosslinked 

DNA, bulky lesions, depletion of nucleotides or inhibition of the polymerases (Edenberg 

1976, Krokan, Wist et al. 1981, Koc, Wheeler et al. 2004). Distinguishing whether there is 

specific sensitivity to replication stress inducing drugs was used to give an indication into 

what pathway USP50 has a function in.  

One cause of fork stalling is the collision with a crosslink within the DNA. This can either be 

an inter-strand crosslink or an intra-strand crosslink. Cisplatin is known to cause intrastrand 

crosslinks as well as interstrand crosslinks primarily between guanine residues. When the 

replication fork encounters an interstrand crosslink the two strands of DNA cannot be 

separated and the fork stalls (Chvalova, Brabec et al. 2007). The repair of the Cisplatin-

induced damage requires HR-mediated repair, and hence BRCA2, therefore BRCA2 depletion 

was used to confirm Cisplatin treatment was working (Yuan, Lee et al. 1999, Bhattacharyya, 

Ear et al. 2000). HeLa cells treated with NTC, USP50 or BRCA2 siRNA, plated and left for 

two weeks before staining and colonies counted. The USP50 depleted cells showed no 

decrease in survival compared to NTC siRNA cells (Fig 5.6 A). BRCA2 depletion did cause 

increased sensitivity of cells to Cisplatin treatment, therefore showing Cisplatin was causing 

crosslinks within the cells. Thus, it appears USP50 depletion does not affect the cells ability 

to resolve the interstrand crosslinks. 

UV light is known to cause replication stress by inducing thymidine dimers on one strand of 

the DNA. The bulky lesion caused has to be removed by NER or bypassed by TLS. A 

component of the NER pathway required for recognition, and subsequent repair, of bulky 
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lesions is the Xeroderma pigmentosum complementation group C (XPC) protein (Cordeiro-

Stone and Nikolaishvili-Feinberg 2002, Melis, Luijten et al. 2011). Loss of XPC therefore 

causes sensitivity to UV light, so XPC depletion was used as a control to determine UV light 

treatment was causing the expected damage. 

HeLa cells were treated with siRNA against NTC, USP50 and XPC and then exposed to 

increasing doses of UV light. Cells were plated at low density and left for two weeks to form 

colonies, stained with crystal violet and then colonies counted. Results were plotted as a 

percent of the colonies formed on the untreated plates for each knockdown. Although XPC 

depleted cells were highly sensitive to UV irradiation, USP50 depleted cells showed no 

significant difference between NTC treated cells (Fig 5.6 B). Therefore, despite the 

replication specific defect that UV light causes, USP50 does not have a role in the bypass or 

repair of this lesion. 

The experiment was repeated using Camptothecin (Cpt), which causes replication specific 

damage as it binds to the topoisomerase Topo I. When the replication fork encounters the 

Cpt/Topo I ternary complex the single strand nick becomes a DSB (Hsiang, Lihou et al. 1989, 

Tsao, Russo et al. 1993). As repair of these breaks requires HR-mediated repair, loss of 

BRCA2 causes sensitivity to Cpt and can be used to confirm the action of the drug (Pommier, 

Redon et al. 2003). USP50 depletion caused increased sensitivity to Cpt at lower doses; 

however the sensitivity does appear to plateau at higher concentrations (Fig 5.6 C). However 

this result demonstrates the USP50 depletion does sensitise cells to Cpt.  

Replication stress can be induced by other means, HU causes inhibition of the ribonucleotide 

reductase enzyme which results in a reduction of nucleotides (Koc, Wheeler et al. 2004). 

During replication this loss of nucleotides causes the replication fork to stall, extended 
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treatment with HU results in DSBs as stalled forks cannot be restarted (Petermann, Orta et al. 

2010). To determine whether USP50 depletion caused sensitivity to HU treatment, HeLa cells 

were depleted of USP50 or BRCA2 and then exposed to increasing concentrations of HU for 

16 hours. Two weeks post treatment colonies were stained using crystal violet and counted. 

Data was plotted as a percent of the untreated plates for each knockdown. Loss of BRCA2 

causes sensitisation of cells to HU as BRCA2 is required to stabilise the Rad51 filaments that 

form at stalled forks and allow HR-mediated repair of collapsed forks (Davies and Pellegrini 

2007, Esashi, Galkin et al. 2007). Cells depleted of USP50 formed fewer colonies than NTC 

control plates when treated to HU, with the percent of surviving colony forming units of 

USP50 depleted cells being very similar to the sensitivity caused by BRCA2 loss (Fig 5.6 D). 

Together these survival assays indicate that loss of USP50 increases sensitivity to drugs that 

cause collapsed replication forks, rather than agents that cause cross links within the DNA. 

To confirm that the replication-stress induced sensitivity was specific to USP50 loss, the 

inducible cell lines were utilised to knockdown endogenous USP50 and then rescue the 

depletion with exogenous overexpression of siRNA resistant USP50. The inducible cell lines, 

where USP50 depletion without overexpression of an shRNA resistant form of USP50, 

showed sensitivity to the HU as previously observed with siRNA depletion. However when 

USP50 was reintroduced to these cells the sensitivity to HU was no longer seen (Fig 5.6 E). 

This shows that USP50 loss is causing a replication specific sensitivity that can be rescued by 

a siRNA resistant form of USP50. 

Therefore, the sensitivity is unlikely to be due to an off target effect of the siRNA and USP50 

appears to play an important role in a replication pathway that is distinct from the repair of 

DNA crosslinks. 
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Figure 5.6. USP50 knockdown causes sensitivity to replication stress inducing drugs. HeLa cells were plated and transfected with 

siRNA against NTC, USP50 or BRCA2, treated as shown and incubated for two weeks. Cells were stained with 0.5% Crystal Violet in 

50% Methanol and colonies counted. Percent survival was calculated from untreated colony numbers for each siRNA and plotted. A) Cells 

were incubated with increasing concentrations of Cis for 2 hours before plating at low density B) HeLa cells were treated with increasing 

doses of UV exposure before plating at low density, C) Cells were incubated for 2 hours in Cpt then replated at low densities. D) Cells 

were incubated with increasing concentrations of HU for 16 hours before plating at low density. E) HeLa stable cell lines were treated 

with IPTG to induce knockdown for 24 hours then treated with Dox to induce USP50 overexpression for a further 32 hours. Cells were 

treated with 3 mM HU for 16 hours and then plated at low (three replicates per treatment, n=4). Error bars = S.E. 
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5.6 USP50 depletion causes sensitivity to overexpression of constitutively active 

H-Ras
V12 

Cancerous cells undergo increased proliferation and consequently replication, making cancer 

cells more prone to undergoing replication stress, with more damage arising during replication 

in cells undergoing oncogene-induced replication stress (Bartkova, Horejsi et al. 2005, 

Gorgoulis, Vassiliou et al. 2005). Activated oncogenes are thought to promote genomic 

instability by increasing the number of stalled or collapsed forks. Mutations in H-Ras that 

create a constitutively active oncogene has been shown to cause oncogene-induced replication 

stress as part of its action (reviewed in Hills and Diffley 2014). 

USP50 loss sensitises cells to exogenous forms of replication stress, to test whether USP50 

depletion could also sensitise cells to oncogene-induced replication stress, a human fibroblast 

cell line containing an inducible constitutively active h-Ras (h-Ras
V12

) was obtained from the 

Petermann Group (University of Birmingham). Dr P. Kotsantis had already demonstrated the 

inducible Ras expression of these cells (Fig 5.7 A). 

BJ-TERT- h-Ras
V12 

cells were plated and treated with Tamoxifen (4OHT) to induce h-Ras
V12

 

expression or Ethanol (EtOH) as a control. Simultaneously, cells were transfected with NTC 

or USP50 siRNA and left for 72 hours before fixing and staining for 53BP1 foci. 

Quantification of the foci showed that knockdown of USP50 in EtOH treated cells increased 

foci. The expression of h-Ras
V12

 in NTC siRNA cells increased 53BP1 foci above that seen in 

EtOH cells. However, the combined knockdown of USP50 with h-Ras
V12

 expression caused a 

significant increase in the number of 53BP1 foci when compared to USP50 depletion in EtOH 

treated cells, suggesting the defect which leads to increased damage-foci on h-Ras
v12 

overexpression was exacerbated by USP50 depletion (Fig 5.7 B). 
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To determine whether cells were sensitive to this h-Ras
V12

 overexpression, the viability of 

cells was tested using the Cell titre Glo assay. Colony survival assays were attempted but due 

to the increased senescence upon h-Ras
V12 

overexpression there was not sufficient time for 

cells to form colonies that could be quantified. Therefore Cell titre Glo was used to measure 

the amount of ATP produced by cells as a measure of viability. BJ h-Ras
V12 

cells were plated 

on a 96 well plate at 1500 cells per well, transfected with NTC or USP50 siRNA and then 

treated with increasing concentrations of 4OHT. After 6 days, the Cell titre Glo reagent was 

added to the plate and readings were taken on the Victor plate reader. 

Once data was plotted as a percentage of the untreated cells it was apparent that the siRNA 

USP50 treated cells were less viable upon h-Ras
V12 

expression than NTC. The viability 

appears to plateau which may be due to a threshold level of h-Ras
V12

 being expressed (Fig 5.7 

C). Despite this, the USP50 depleted cells are less viable than control cells. 

Together with the increase in 53BP1 foci seen in USP50 depleted cells expressing h-Ras
V12 

expression, the Cell titre Glo assay supports the theory that USP50 knockdown is sensitising 

cells to h-Ras
V12 

overexpression.
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  Figure 5.7. USP50 depletion increases sensitivity of cells to oncogene-induced 

replication stress. A) Western blot performed by Dr Kotstantis showing inducible h-Ras
V12

 

expression after tamoxifen (4OHT) treatment of the Human foreskin fibroblasts BJ h-Ras
V12

 

cells. B) BJ h-Ras
V12 

cells were plated and knockdown for USP50 or NTC and 

simultaneously treated with 30nM 4OHT or EtOH and incubated for 4 days. Cells were 

fixed and stained for 53BP1. Foci were counted and average foci number plotted (70 cells 

per treatment, n=3). C) BJ h-Ras
V12 

cells were plated in a 96 well plate and transfected with 

NTC or USP50 siRNA and simultaneously treated with increasing concentrations of 4OHT 

and incubated for 6 days. Cell titre Glo reagent was added to media and luminescence was 

read on the Victor plate reader. Percent luminescence was calculated from the untreated 

samples of each siRNA treatment and plotted. (Three replicates per treatment, n =2) Error 

bars = S.E. 
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5.7 USP50 siRNA treatment causes an increase in replication fork stalling or 

stopping 

The spontaneous DNA damage, combined with the sensitivity to replication-stress inducing 

drugs, suggests that USP50 is regulating replication but the mechanism is unknown. To try 

and clarify how USP50 was working during replication, Fibre analysis on cells depleted of 

USP50 was carried out to study the kinetics of replication forks. 

HeLa cells were treated with siRNA against NTC or USP50 for 72 hours before being 

incubated with thymidine analogue CldU for 20 mins, washed out, and then incubated for a 

further 20mins with IdU, another thymidine analogue (Fig 5.8 A). Cells were lysed and the 

DNA strands spread down a Snowcoat slide. Antibodies specific against CldU or IdU were 

used to distinguish replication fork progression by labelling the incorporation of the 

thymidine analogues. Fibres were analysed by fluorescent microscopy and structures and 

speeds calculated by ImageJ. The structures indicated in Fig 5.9B show different stages of 

replication to allow insight into how replication is proceeding after different treatments.  

Replication fork speed was calculated by measuring the CldU and IdU tracks of ongoing 

forks. 

By distinguishing and quantifying the different structures, the effects of reduced USP50 

expression on replication forks were analysed. There were more first label terminations in 

USP50 depleted cell, suggesting there were more forks stalling in USP50 depleted cells. 

However, there was not a significant increase in second label initiations which represent new 

origins firing (Fig 5.8 B). Therefore it may be that the forks are stalling but can be restarted 

prior to new origins being fired, or replication can be completed without the need for new 

origin firing. 
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When studying ongoing forks, the length of the CldU and IdU tracks can be used to calculate 

how fast replication forks are travelling. The length of the CldU and IdU tracks were 

measured using ImageJ and calculations performed to determine the length in µm. When 

plotting the fork speeds, the USP50 siRNA treated cells had the majority of forks running at 

between 0.6 and 0.8 kb/min, slightly slower than the control cells whose speed peaks around 1 

kb/min. This can be seen by the shortening of fibre lengths, shown in Fig 5.8 C. There were 

also a greater proportion of forks running at the slower speeds and consequently less forks 

travelling at faster speeds, shifting the trend of the graph slightly left, suggesting the slowing 

of forks in the cells treated with USP50 siRNA. However, a peak of forks running between 1 

and 1.2 kb/min goes against the trend seen in USP50 depleted cells (Fig 5.8 C). Overall 

however, there is a trend of forks running slower in USP50 depleted cells which indicates 

replication stress. 

These results demonstrate that the loss of USP50 expression is causing perturbed replication, 

with more forks being stalled.
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Figure 5.8 USP50 siRNA treatment causes an increase in stalled and slowed forks. A) 

Schematic of fibre treatment. HeLa cells were incubated for 20 mins CldU, washed and then 

incubated a further 20 mins with IdU. B) Cells were lysed and DNA spread on slides. 

Antibodies against CldU and IdU were used to show incorporation into DNA. Images of 

DNA Fibres were captured and analysed using ImageJ. Structures were counted and 

calculated as a percent of all structures and plotted (n=3). C) Fibre speeds were calculated 

by measuring ongoing forks in ImageJ and calculating Kb/min from fibre lengths. 

Representative images displayed. Results were plotted as a percent of total ongoing forks 

(n=3). Error bars = S.E. 
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5.8 USP50 siRNA treatment causes more replication forks to collapse 

The fibre data shows that upon USP50 siRNA treatment there is an increase of replication 

forks being stalled or collapsed. The increase of 53BP1 foci in a Mus81 dependent manner 

suggest these are collapsed forks. When a fork stalls it becomes uncoupled from the active 

helicase creating long stretches of RPA coated ssDNA. This RPA signal recruits the ATR 

kinase, which along with other factors, stabilise the fork through phosphorylation of targets 

such as CHK1 and other replication fork components (Petermann, Woodcock et al. 2010, 

Couch, Bansbach et al. 2013) (Discussed in Chapter 1 Section.1.9.4). Therefore it was 

investigated whether the USP50 depletion was affecting the intra-S-phase checkpoint by 

looking at ATR activation. To determine if ATR was being activated western blot analysis 

was performed to see whether CHK1 was being phosphorylated in response to replication 

stress. 

Cells transfected with NTC or USP50 siRNA for 70 hours were then treated with an ATR 

inhibitor VE-822 (ATRi), with or without 3mM HU, for 2 hours, before cells were lysed 

(Fokas, Prevo et al. 2014). Lysates were run on an SDS-page gel to measure CHK1 

phosphorylation. Western blot analyses indicates that ATR is active upon knockdown of 

USP50, with CHK1 phosphorylation occurring at Ser345 in cells treated with 2 hours HU, 

where the HU causes stalled forks (Fig 5.9 A). This is lost upon ATRi treatment, 

demonstrating that the ATRi is able to effectively inhibit ATR kinase activity. When cells are 

not treated with HU there is no CHK1 phosphorylation regardless of siRNA or inhibitor 

treatment, therefore despite the increase in stalled or collapsed forks in USP50 depleted cells 

it is not sufficient to cause an ATR checkpoint activation that is visible by Western blot 

analysis. As CHK1 phosphorylation occurred following USP50 siRNA treatment when cells 

were treated with HU, it would seem USP50 is not causing a loss of the intra S-phase 
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checkpoint, as ATR is still able to phosphorylate CHK1 upon HU treatment. Therefore the 

increased 53BP1 foci do not arise because replication forks cannot be stabilised by ATR 

signalling in cells treated with USP50 siRNA. 

By inhibiting ATR, stalled replication forks are no longer stabilised and are more prone to 

collapse into DSBs. Recent evidence suggests that loss of ATR signalling causes replication 

forks to actively collapse in a RNF4 and PLK1 dependent processes (Ragland, Patel et al. 

2013). These collapsed forks are marked by 53BP1, hence the increase in 53BP1 foci upon 

ATRi treatment. To distinguish if USP50 is working downstream of the ATR kinase, USP50 

knockdown was combined with ATRi. 53BP1 foci were quantified in NTC, USP50 siRNA, 

ATRi or combined USP50 siRNA and ATRi treated cells, after 2 hours of 3 mM HU. The use 

of 3 mM HU for two hours causes replication forks to stall, but not collapse into DSBs. This 

is due to ATR signalling being activated by the stalled forks, as previously described, which 

stabilises the stalled forks. The addition of ATRi should cause these stalled replication forks 

to collapse prematurely and cause an increase in 53BP1 foci numbers. Both USP50 siRNA 

and ATRi treatment caused increased 53BP1 foci above those seen in control cells, when cells 

were treated with HU. The ATRi treatment caused a greater number of 53BP1 foci than 

USP50 siRNA treatment alone; however USP50 siRNA combined with ATRi caused an 

additive increase of foci after 2 hours HU treatment (Fig 5.9 B and C). This would indicate 

that USP50 is not acting in the same pathway as ATR. It may be that loss of USP50 is leaving 

forks inherently unstable, which is aggravated by the loss of ATR signalling. 

Despite ATR signalling being active in USP50 depleted cells it was investigated whether 

USP50 was causing stalled forks to collapse more readily. USP50 depleted cells were exposed 

to different HU exposures. HeLa cells were treated with either short (2 hours) or long (24 

hours) exposure to 3mM HU (Fig 5.9 C and D). At 2 hours forks would be stalled but 
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stabilised by ATR, at 24 hours HU treatment stalled forks can no longer be stabilised by ATR 

and will collapse into DSBs (Petermann, Orta et al. 2010). If USP50 was causing accelerated 

collapse of stalled forks there would be an increase of 53BP1 foci in USP50 depleted cells 

treated with 3 mM HU for 2 hours. 

Although there was an increase in 53BP1 foci in USP50 siRNA treated cells above NTC, after 

2 hrs HU, the average foci per cell in USP50 depleted cells did not differ between no HU 

treatment and 2 hrs HU treatment, both having roughly six foci per cell (Fig 5.9 C and E). 

This suggests that USP50 siRNA is not destabilising stalled replication forks as if it was it 

would be expected that there would be more foci in the 2 hr HU treatment than no HU 

treatment upon USP50 siRNA treatment (Fig 5.9 C). This correlates with the fact that ATRi 

caused a greater increase in 53BP1 foci after 2 hrs HU than USP50 depletion. Therefore this 

data, along with the previous data which suggests USP50 and ATR were not in the same 

pathway, indicates USP50 is not required to stabilise stalled replication forks. 

Conversely, USP50 depleted cells treated with 24 hours HU had a large increase in 53BP1 

foci when compared against 0 and 2 hours HU treated cells (Fig 5.9 D). Therefore stalled 

forks do not appear to be collapsing more readily, but that there are more forks collapsing 

once they can no longer be stabilised by ATR. 

Interestingly, when cells were transfected with NTC or USP50 siRNA and then treated with 

ATRi but were not subjected to HU treatment, combined ATRi and USP50 siRNA treated 

cells had an increase in 53BP1 foci. However, the cells treated with both USP50 siRNA and 

ATRi did not show a significant increase in 53BP1 foci above USP50 siRNA alone and only a 

slight increase above ATRi treated cells (Fig 5.9 C). This was unlike the result seen when 

cells were treated with 2 hours 3mM HU, where there is an additive increase in 53BP1 foci. 
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The lack of additive increase in USP50 siRNA and ATRi treated cells when there was no HU 

suggests that, without an increased number of stalled forks caused by HU treatment, the 

stalled forks affected by ATRi and USP50 siRNA are the same, hence there is not the 

increase. 

The addition of 2 hrs HU to USP50 depleted cells did not increase the average number of foci 

per cell. However, as the experiment only measures 53BP1 foci, assumed to be collapsed 

forks, it is unknown if USP50 depletion is having an effect on the stalling of forks. However, 

it appears that the collapse of forks in USP50 depleted cells is not aggravated by 2 hr HU 

treatment.  

As these experiments do not measure stalled forks, but markers of DSBs, there are two 

explanations for the increase in 53BP1 foci in USP50 depleted cells in the 24 hour HU 

treatment (Fig 5.9 D) as well as the combined USP50 depleted and ATRi treated cells (Fig 5.9 

B and C). Firstly, more forks are stalling initially, which eventually form DSBs. Or secondly, 

a pathway which allows replication to continue without the formation of DSBs is no longer 

functional and therefore forks which could normally be restored and restarted are forming 

breaks. This would indicate that replication fork restart is defective upon USP50 siRNA 

treatment.
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Figure 5.9 USP50 depletion does not cause a defect in the inter S-phase checkpoint. A) 

HeLa cells were plated and transfected with NTC or USP50 siRNA and left for 68 hours. 

Cells were treated with 5 µM ATRi (VE-821) for 2 hours. After ATRi treatment cells were 

treated with 2 hours 3 mM HU. Cells were lysed and western blot analysis performed, 

demonstrating ATR activation after HU treatment by CHK1 phosphorylation, this was 

inhibited by VE-821 treatment. B)  Cells were fixed and stained for 53BP1 Average foci 

number per treatment were plotted (50 cells per treatment, n=2) C) Quantification of 53BP1 

foci in ATRi treated cells. D) HeLa cells were plated and transfected with NTC or USP50 

siRNA for a total of 72 hours, prior to fixing cells were either left untreated or incubated with 

3 mM HU for either 2 or 24 hours. Cells were fixed and stained for 53BP1and average foci 

number plotted. E) Cells treated as in B) and C) but not treated with HU. Average 53BP1 foci 

plotted. (50 cells per treatment, n=2) Error bars = S.E.  
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5.9 USP50 and WRN depletion are epistatic for 53BP1 foci 

Stalled replication forks can be restarted once the block on replication has been resolved or 

bypassed (Discussed in Chapter 1 Section1.9.4). However, if the fork cannot be restarted the 

replication fork can collapse into a DSB forms which can be repaired by HR-mediated repair 

to allow replication to continue (Saleh-Gohari, Bryant et al. 2005). One mechanism that 

allows replication restart prior to break formation is through fork remodelling by helicases, 

including the WRN and SMARCAL1 helicases (reviewed in Petermann and Helleday 2010). 

The WRN helicase and its interacting partner WRNIP are known to be ubiquitinated, which 

could potentially mean it is a substrate for USP50 binding (Bish, Fregoso et al. 2008, Li, 

Wang et al. 2010). It has been demonstrated that WRN depletion causes an increase in DNA 

damage during replication without causing a cell-cycle-defect (Sidorova, Li et al. 2008, Patro, 

Frohlich et al. 2011). 

Further to this, depletion of SMARCAL1 increases spontaneous DNA damage foci 

(Bansbach, Betous et al. 2009). As reduction in these helicases cause phenotypes similar to 

those observed on USP50 depletion, it was hypothesised that USP50 might work in the same 

pathways as one of these helicases. 

HeLa cells were plated and transfected with NTC, USP50, WRN, SMARCAL1 single 

siRNAs or combined USP50 and WRN or combined USP50 and SMARCAL1 siRNA for 72 

hours. Cells were fixed and then stained for 53BP1. Foci were counted and the average 

number plotted on a graph. The depletion of USP50 caused an increase in 53BP1 foci, as did 

WRN and SMARCAL1 knockdown, with all the siRNAs alone giving a similar average 

number of 53BP1 foci per cell. When USP50 and WRN were knocked down together there 

was not a significant difference in the number of 53BP1 foci between the co-depleted cells 
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and either siRNA alone (Fig 5.10 A and B). Conversely, the co-depletion of USP50 and 

SMARCAL1 showed a significant increase of 53BP1 foci when compared to the individual 

siRNA treatments. This increase was not additive, but indicates that USP50 and SMARCAL1 

are giving rise to 53BP1 through different pathways, though there may be some functional 

overlap of these pathways. Due to the increase in 53BP1 foci on co-depletion of USP50 with 

SMARCAL1 this pathway was not studied any further. As there was no increase in average 

53BP1 foci when USP50 and WRN were co-depleted in cells, it suggests that the 53BP1 foci 

are arising through the same mechanism which required further investigation. 

To confirm the knockdown of WRN, a Western blot was performed to investigate protein 

levels. It was apparent that WRN protein levels were reduced in cells treated with siRNA 

against WRN. However, WRN protein was visible in both NTC and USP50 siRNA 

transfected cells (Fig 5.10 C). As well as confirming the knockdown of the protein, it also 

demonstrated that USP50 depletion was not causing a loss of WRN protein. 

The epistatic nature of the 53BP1 in USP50 and WRN co-depleted cells when compared 

against either siRNA alone is indicative of these proteins acting in the same pathway. This 

suggests USP50 may have a role in restoring stalled forks through the WRN helicase to 

prevent collapse into a DSB.
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Figure 5.10 USP50 appears to work in the same pathway as WRN. HeLa cells were 

treated with NTC, USP50, WRN, SMARCAL1 or USP50 and WRN or USP50 and 

SMARCAL1 siRNA for 72 hours. A) Cells were fixed and stained for 53BP1. Foci were 

quantified and averages plotted (70 cells per treatment, n=3) Significance was determined 

by Students T-test, Scale bars = S.E. B) Images showing representative 53BP1 foci per 

treatment. White line represents DNA as visualised by Hoescht staining. Scale bar = 10µM 

C) Western blot analysis confirming reduction in WRN protein upon siRNA treatment.  
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5.10 Proteasome inhibition can reduce 53BP1 foci in USP50 depleted cells 

Ubiquitination is a major signal for the proteasome and as USP50 Ub-binding appears to be 

important for its role within the cell (Chapter 4 Section 4.3), it was tested whether proteolytic 

degradation also played a role in regulating the pathway which USP50 is functioning in.  

MG132 treatment has been shown to inhibit 53BP1 foci formation (Jacquemont and 

Taniguchi 2007); however introduction of Ub can restore foci as discussed in Chapter 3 

Section 3.3 (Fig 5.11 A). The loss of the proteolytic activity is coupled with a loss of free Ub 

(Hanna, Leggett et al. 2003). The formation of poly-Ub chains at sites of damage is required 

for 53BP1 to be recruited, by removing the chromatin bound protein JMJD2A, allowing 

53BP1 to access the H4K20me2 mark (Mallette, Mattiroli et al. 2012). 53BP1 also interacts 

directly with the mono-Ub mark on H2AK20 via its UDR (Fradet-Turcotte, Canny et al. 

2013). Therefore in proteasome inhibited cells 53BP1 foci can form in the absence of the 

proteolytic activity, as long as there is an excess of Ub present (Chapter 3 Section 3.3). 

In order to determine if the increase in damage-associated foci in USP50 siRNA treated cells 

was linked with degradation by the proteasome, cells depleted of USP50 for 24 hours were 

transfected with Myc-Ub for a further 48 hours to create an excess of Ub within the cells, 

allowing Ub-signalling to occur despite the inhibited proteasome. Before fixing, cells were 

treated with MG132 for a further hour. Quantification of the foci showed that exposure to 

MG132 reduced the number of 53BP1 regardless of USP50 status. However, when cells were 

treated with MG132 but supplemented with Myc-Ub, 53BP1 foci cannot be restored upon 

USP50 depletion despite the ability of the cell to form 53BP1 foci (Fig 5.11 B). Therefore the 

53BP1 foci that arise upon USP50 depletion appear to be dependent on the proteolytic activity 

of the proteasome. 
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As proteasome inhibition reduces 53BP1 foci upon USP50 depletion, there may be a role for 

USP50 in blocking the proteasome from degrading a substrate.  

 

  
Figure 5.11 Increased 53BP1 foci formation seen on USP50 siRNA treatment is no 

longer observed upon MG132 treatment. HeLa cells were treated with NTC or USP50 

siRNA and 24 hours later transfected with Myc-LacZ or Myc-Ub and incubated for 43 

hours. Cells were treated with 5 µM MG132 before treatment. A) Cells were subjected to 

2 Gy IR then allowed to recover for 1 hour before fixing. Cells were stained for 53BP1 

and foci counted. Average foci numbers were plotted (70 cells per treatment, n=3). B) 

Cells were fixed, cells and stained for 53BP1 and foci numbers quantified. Average foci 

number was plotted, significance was determined by Students T-test (50 cells per 

treatment, n = 2) Error bars = S.E. 
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5.11 Summary 

The results of this chapter demonstrate that USP50 depletion causes an increase in damage-

associated foci arising during S-phase of the cell cycle in a Mus81-dependent manner (Fig 

5.5). The increase in 53BP1 foci seen in EdU negative cells upon USP50 depletion may be 

53BP1 bodies which represent damage carried through the cell cycle into G1, but the damage 

may still have arisen during replication (Fig 5.4) (Lukas, Savic et al. 2011). Thus there 

appears to be a defect in the replication of the cells treated with USP50 siRNA as the majority 

of 53BP1 foci do occur in an S-phase specific manner (Fig 5.3 and 5.4). The fault in 

replication causes an increased sensitivity to not only drugs that cause replication stress, but 

to overexpression of h-Ras
V12

, which provides a model of oncogene-induced replication stress 

(Fig 5.7). However, the mechanism by which USP50 is facilitating faithful replication is still 

under investigation despite results in this chapter have given an indication to the pathway 

involved. 

In USP50 depleted cells the intra-S-phase checkpoint still remains intact as ATR is still 

active, suggesting stalled replication forks can still be stabilised through ATR signalling (Fig 

5.9). Although when ATR is no longer sufficient to stabilise the stalled replication forks, the 

collapse of the forks is exacerbated by USP50 loss. Stalled forks can be restarted by 

mechanisms including helicase dependent fork remodelling (reviewed in Petermann and 

Helleday 2010). As 53BP1 foci formation appears to be epistatic with WRN depletion in 

USP50 knockdown cells, it is likely that USP50 is functioning as part of the same  pathway 

that WRN acts in (Fig 5.10). The increase in DSBs could consequently be stalled forks that 

could not be restored by the WRN helicase and thus are converted into DSBs before repair. 

Although USP50 appears to be part of the WRN pathway, it is unknown what role USP50 

plays in restoring stalled replication forks. As the WRN protein does not appear to be lost 
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upon USP50 depletion it is unknown how USP50 could be regulating this pathway. Therefore 

more research is required to elucidate the mechanism of USP50 control within the WRN 

pathway. 

By studying 53BP1 foci, there is an assumption of DNA damage, corroborated by the loss of 

53BP1 upon Mus81 depletion; however no evidence to show increased DSBs has been 

demonstrated. Further to this, by studying 53BP1 foci, it cannot be said whether there is an 

increase in stalled forks in USP50 depleted cells that eventually form DSBs or whether there 

is the same number of stalled forks but USP50 depletion prevents restart by other 

mechanisms. Although fibre data can go some way to show that there is increased first label 

termination, again it is unknown if these are stalled or collapsed replication forks (Fig 5.8). If 

USP50 is working in the WRN pathway it would suggest that normally USP50 is enabling 

fork restart after stalling and therefore depletion causes increased fork collapse, however this 

needs to be further tested. 

The WRN protein is known to be recruited to the replication fork (Su, Mukherjee et al. 2014); 

however the localisation of USP50 has not been shown. Exogenous GFP-tagged USP50 is 

usually cytoplasmic but has been shown to translocate to the nucleus upon damage (Aressy, 

Jullien et al. 2010). In our hands toxicity of overexpressing the protein has led to problems 

studying the localisation of USP50, however further work, including iPOND may be utilised 

to determine if USP50 is at the fork, or is regulating another factor away from the replication 

fork. 

Similarly to Chapter 3, MG132 has been used as a proteasome inhibitor, the loss of 53BP1 

foci indicate that the inhibitor is working but there is no evidence into the reduction of 

proteolytic activities (Fig 5.11). The role of the proteasome in the USP50 pathway will also 
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require further investigation, potentially using fibre analysis to determine if the decrease in 

foci also correlates with a rescue of other defects seen on USP50 depletion including 

replication fork structures and fork speed. This can be used to determine whether USP50 is 

acting to protect a substrate, which is required for fork stability, from degradation.  

The use of cells which overexpress h-Ras
v12

 are used as a model of replication stress, although 

the overexpression of this oncogene can cause other defects within the cell (Fig 5.7). Without 

evidence that the decrease in viability of cells upon USP50 depletion is due to the increased 

replication stress rather than other faults caused by h-Ras
V12 

overexpression it can only be 

suggested that USP50 is sensitising cells to oncogene-induced replication stress. This 

suggestion is supported by the decreased survival of USP50 knockdown cells to exogenous 

replication stress inducing drugs, such as HU and CPT (Fig 5.6). Therefore further work 

could be performed using other models of oncogene-induced replication stress to confirm 

USP50 causes sensitivity to other causes of replication stress. 

In addition, it would be interesting to see the role of USP50 in non-cancerous cells as most of 

the experiments to date have been carried out in cancer cell lines. This would be interesting as 

it may prove a useful target for cancer therapies if USP50 could specifically sensitise cancer 

cells to replication stress, especially to oncogene-induced replication stress. 

Although the mechanism by which USP50 allows faithful replication is still not elucidated, 

the role of USP50 in replication has not been shown before, presenting a novel role for this 

Ub-binding protein. Current experiments suggest a model where stalled forks that can no 

longer be stabilised by ATR are restructured in a USP50/WRN dependent manner to allow 

restart and when USP50 is lost the fork cannot be restarted by this mechanism and is 
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converted into a DSB (Fig 5.12). USP50 also could provide a potential therapeutic target that 

could specifically sensitise cancer cells to replication stress, either exogenous or endogenous.

6. Discussion 
Fig 5.12 Hypothesised model of USP50 function during replication. A) USP50 

binds to a ubiquitinated substrates and as part of a larger complex, possibly VCP. 

USP50 works after ATR signalling is no longer stabilising forks and promotes WRN 

fork remodelling to allow replication to continue without forks collapsing into DSBs. 

B) When USP50 is not present WRN cannot remodel the fork and therefore the fork 

collapses into a DSB. 
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6.1 Introduction 

Ub is an important signalling molecule in eukaryotic cells and the role it plays in the repair of 

DSBs has been extensively studied, with K63-linked chains being required for protein 

recruitment to breaks (Sobhian, Shao et al. 2007, Doil, Mailand et al. 2009). Conversely, the 

function of Ub in replication is an emerging field, with evidence for ubiquitination being 

necessary for the bypass of lesions by the replication fork (Hoege, Pfander et al. 2002, Stelter 

and Ulrich 2003, Kannouche, Wing et al. 2004, Watanabe, Tateishi et al. 2004). More recent 

work has also demonstrated the need for ubiquitination of Mcm7 at replication termination to 

remove fork components from the DNA (Maric, Maculins et al. 2014, Moreno, Bailey et al. 

2014). 

DUBs have been shown to be important for the regulation of these Ub signals, with loss of 

DUBs having negative effects on the pathways involved. There are already several DUBs that 

have been implicated in DSB repair discussed in Chapter 1 Section 1.8.4 (Panier and 

Durocher 2013). The JAMM-type DUB, BRCC36, localises to damage through the Rap80 

complex, acting on the K63-linked chains produced by RNF8 (Dong, Hakimi et al. 2003, 

Shao, Lilli et al. 2009). USP3 is required for the removal of Ub from histones H2A and H2B, 

and consequent regulation of repair protein recruitment (Nicassio, Corrado et al. 2007, Doil, 

Mailand et al. 2009). Another USP-type DUB—USP44—has been shown to displace 

RNF168 from damage sites and its depletion causes a slight increase in conjugated Ub at 

DSBs (Mosbech, Lukas et al. 2013). This shows that more than one DUB is likely to be 

involved in controlling the Ub at damage site. Further to this, both OTUB1 and OTUB2 have 

been shown to inhibit the formation of the Ub chains at DSBs, both acting to reduce the 

amount of Ub conjugates at DNA damage. OTUB2 reduces chains via its catalytic activity, 

whereas OTUB1 does not require its enzymatic activity to inhibit chains (Kato, Nakajima et 
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al. 2014). Instead, OTUB1 interacts with the E2 enzyme, Ubc13, stopping the formation of 

RNF8/RNF168-dependent K63-linked chains (Nakada, Tai et al. 2010). As many components 

of the repair pathway are ubiquitinated, there is a requirement for many DUBs at DSBs to 

ensure tight regulation of repair. The high level of regulation of proteins at DSBs means that 

aberrant repair signalling is unlikely to occur. 

As the role of Ub in replication is less characterised than it is in DSB repair, there are fewer 

DUBs known to be involved. USP1 is known to deubiquitinate PCNA once the clamp protein 

has promoted the bypass of lesions blocking the fork (Huang, Nijman et al. 2006). Recent 

work has also shown that USP20 is phosphorylated by ATR in response to replication stress. 

Once phosphorylated, USP20 is stabilised and in turn deubiquitinates and stabilises Claspin to 

maintain the fork in response to stalling (Yuan, Luo et al. 2014). Similarly to DSB repair, it is 

likely that there are many DUBs involved in controlling replication in order to guarantee 

correct DNA duplication. However, as less is known about Ub in replication, it follows that 

the DUBs have also not been characterised. 

Results of an siRNA screen against 103 putative DUBs in the human genome indicated a role 

for two DUBs in response to HU treatment. The experiments discussed within this thesis 

show a role for POH1/PSMD14/rpn11, a component of the proteasome (Glickman, Rubin et 

al. 1998), at DSBs. Further to this, a poorly characterised DUB, USP50 is involved in faithful 

replication—potentially in promoting fork stability. 

6.2 The proteasome and its associated DUB, POH1, in DSB repair 

6.2.1 Functions of the proteasome at DSBs 

The proteasome is an integral component of the DSB repair pathway (Krogan, Lam et al. 

2004, Jacquemont and Taniguchi 2007). The 19S lid of the proteasome contains a JAMM 
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DUB called POH1, which removes the Ub-chains from substrates and, therefore, provides the 

Ub for the free-Ub pool (Yao and Cohen 2002). 

Proteasome inhibitors are commonly used to study the proteolytic activity of the proteasome, 

however, the loss of degradation is coupled with a depletion of free-Ub (Hanna, Leggett et al. 

2003). The reduction in free-Ub means new Ub modifications cannot be formed, causing 

defects that might be attributed to the proteolytic activities of the proteasome. Previous 

studies have demonstrated that proteasome inhibition disrupts the formation of 53BP1 and 

BRCA1 foci at DSBs (Jacquemont and Taniguchi 2007, Shi, Ma et al. 2008). 

Both BRCA1 and 53BP1 proteins are recruited to DSBs via Ub-chains, however the 

mechanisms of recruitment is different for these repair proteins. BRCA1 is recruited by K63-

linked Ub ligated by RNF8 and RNF168 through the interaction of BRCA1 with Rap80. The 

tandem UIM motifs in Rap80 bind to the K63-chains bringing in BRCA1 as part of the 

BRCA1-A complex (Kim et al. 2007, Sobhian et al. 2007, Wang et al. 2007)  

Despite the recognition of mono-Ub by the UDR in 53BP1, there is only in vitro evidence of 

53BP1 interacting with K63-linked di-Ub chains (Gatti M et al 2015). 53BP1 also binds to 

modified histones via its Tudor domain, binding to H4K20me2. In undamaged chromatin 

there are two currently-researched proteins that bind to the H4K20me2 mark that could be 

blocking 53BP1 recruitment—JMJD2A and L3MBTL1 (Acs, Luijsterburg et al. 2011, 

Mallette, Mattiroli et al. 2012).Current research suggests that the modification of both 

JMJD2A and L3MBTL1 by poly-Ub facilitate the removal of these proteins thereby allowing 

access to H4K20me2 by 53BP1 (Acs, Luijsterburg et al. 2011, Mallette, Mattiroli et al. 2012)  

A study by Shi et al. showed that MDC1 clearance from breaks was dependent on the 

proteasome, claiming the proteolytic activity was the necessary activity. Without the 
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degradation of MDC1, BRCA1 could not be recruited (Shi, Ma et al. 2008). However, as 

demonstrated in Chapter 3 Section 3.2 the removal of MDC1 was not solely dependent on the 

proteolytic activity of the proteasome, as Myc-Ub transfection could significantly reduce the 

number of MDC1 foci in cells treated with MG132 prior to irradiation. This suggests that the 

clearance of MDC1 was possible despite the impaired proteolytic action of the proteasome. 

Therefore MDC1 clearance requires Ub-modifications in order to be cleared, which is not 

possible in cells treated with MG132 due to the loss of the free-Ub pool (Hanna, Leggett et al. 

2003).  

Shi et al demonstrated that BRCA1 foci formation was disrupted by proteasome inhibition, 

which they attributed to MDC1 persistence at break sites. I also showed that BRCA1 foci 

could not form in MG132 treated cells and this could not be restored by the introduction of 

excess Ub into the cell. BRCA1 recruitment therefore does require the proteolytic activity of 

the proteasome. Yet, as previously discussed, MDC1 could be cleared to levels seen in control 

cells by the introduction of Myc-Ub into MG132 treated cells; suggesting MDC1 is not the 

block that is stopping BRCA1 recruitment (Chapter 3 Section 3.2). It is therefore likely that 

the recruitment of BRCA1 requires the degradation of an upstream protein, however further 

research is required into what this substrate might be as these results suggest MDC1 is not the 

block on BRCA1 recruitment. 

On the other hand, 53BP1 foci recruitment was restored by the transfection of Myc-Ub 

(Chapter 3 Section 3.3). This observation demonstrates that while the proteolytic action of the 

proteasome is still impaired, 53BP1 foci could form. The recycling of Ub back into the free-

Ub pool is an essential role of the proteasome for 53BP1 recruitment. 
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The use of MG132 although previously shown to block degradation by the proteasome, 

western blot analysis to confirm that degradation could not be carried out by the cell was not 

performed as part of this project. However, the defects seen in repair protein kinetics upon 

MG132 treatment, such as MDC1 persistence and loss of BRCA1 and 53BP1 foci formation 

matches previously published faults in repair foci kinetics upon proteasome inhibition. 

Further to this there was no analysis of free-Ub levels within cells treated with MG132 to 

confirm that the affect observed could be due to a loss of the free-Ub pool. However, the 

rescuing of certain phenotypes, such as MDC1 clearance and 53BP1 recruitment, upon 

addition of Myc-Ub indicates the defects seen upon MG132 treatment was due to Ub 

starvation rather than loss of proteolysis. 

These results demonstrate that distinct pathways are required for the recruitment of 53BP1 

and BRCA1 to DSBs despite both relying on the poly-Ub that forms. 

6.2.2 Ub linkages in the DSB response 

The use of Ub mutations converting K to R were used in Chapter 3 Section 3.2 and 3.3 to try 

and determine which linkages of poly-Ub were important, firstly in MDC1 clearance and, 

secondly in 53BP1 recruitment. While I was not able to confirm if a single specific Ub lysine 

residue was needed for the MDC1 clearance, the K63 residue was important for 53BP1 foci 

formation. K63-linked chains are formed at DSBs by two E3 ligases—RNF8 and RNF168—

signalling the recruitment of repair proteins such as BRCA1-A complex (Kolas, Chapman et 

al. 2007, Mailand, Bekker-Jensen et al. 2007, Wang and Elledge 2007, Doil, Mailand et al. 

2009). Thus, as K63-linked chains are thought to be the predominant chain type at DSBs it 

follows that 53BP1 recruitment relies on the K63 residue within Ub. Despite the importance 

of the K63 residue, K6 and K27 also appear to play a minor role in the recruitment of 53BP1.  
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53BP1 foci recruitment was partially reduced by the introduction of K6R-Ub, suggesting this 

residue was also important for 53BP1 foci formation. However, foci numbers are not reduced 

to levels seen in MG132 treated cells, nor K63R transfected cells, suggesting there is only a 

partial reliance on the K6 residue. The reciprocal experiments with only the K63 residue 

showed that 53BP1 foci could not be fully restored by Ub with this residue alone, whereas the 

reintroduction of K6-K63 only Ub showed a greater increase in foci, though still not 

completely back to WT levels. These results demonstrate a need for both K63 and K6 

residues in Ub. Therefore both K63 and K6 chains and chains of mixed K6 and K63 linkages 

are required for 53BP1 recruitment to DSBs. 

Recent work has suggested that the K27 poly-Ub chains are created by RNF168 and are a 

major signalling molecule for 53BP1 recruitment (Gatti M et al 2015). The experiments 

performed in this thesis show that K27O-Ub is not sufficient to restore 53BP1, however the 

introduction of K27R-Ub did show a decrease in 53BP1 formation to a similar extent as K6R. 

These results show that while the K27 residue does not appear to be the major linkage as 

suggested in Gatti et al it may play a role in the recruitment of 53BP1. As 53BP1 foci cannot 

be fully restored by K6-K63O-Ub further experiments could be performed to determine if K6-

K27-K63O-Ub could fully restore 53BP1 foci. However the work performed indicates that 

unlike in Gatti et al, K63 is the major linkage required for 53BP1 recruitment which is 

consistent with Doil et al 2009 and Stewart et al 2009.  

Although the use of Ub mutants cannot provide conclusive information on the linkage-type of 

poly-Ub chains, important residues can be distinguished. K to R Ub mutants have previously 

been shown to be stable, with linkages being formed through the remaining lysines but the 

introduction of an incorrect residue may have unknown effects (Baboshina and Haas 1996). 

The introduction of a mutation may effect interactions with other Ub moieties or how Ub is 
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bound by Ub-binding domains. Therefore the K to R Ub mutants, though useful for indicating 

which linkages are likely to be important, cannot provide a definitive answer. 

6.2.3 POH1 is a K63-specific DUB that regulates DNA damage dependent Ub 

The recruitment of the proteasome to DSBs means it is perfectly located to regulate Ub-

conjugates at sites of damage (reviewed in Gudmundsdottir, Lord et al. 2007). Other DUBs 

have already been shown to act on the Ub-chains at repair; however, the importance and 

complexity of the repair pathway means there are multiple mechanisms working to control 

this process (discussed in Chapter 1 Section 1.8.4). To identify potential DUBs involved in 

DSB repair, a screen of siRNAs against 103 putative DUBs showed that siRNA against POH1 

caused an increase in conjugated-Ub, as measured by luminescence from the FK2-HRP 

antibody, after release from HU. 

POH1, as a constitutive component of the 19S lid of the proteasome, is known to cleave Ub 

chains en bloc from substrates destined for degradation (Yao and Cohen 2002). The loss of 

this action is unlikely to be the cause of the increased FK2 luminesence signal as the en bloc 

activity is not damage specific. Further to this, the FK2 antibody used to detect the Ub-

conjugates also detects unanchored poly-Ub chains which would be produced by POH1 

cleaving at the proximal Ub (Fujimuro, Sawada et al. 1994). Therefore it is unlikely that the 

increase in conjugated-Ub after release from HU was due to the loss of the en bloc mode of 

action (Chapter 3 Section 3.4). 

POH1 has also been shown to specifically cleave K63-linked Ub-chains in addition to its en 

bloc activities. A reduction in K63-specific activities could be responsible for the observed 

increased FK2 luminescence, as there could be an accumulation of K63 poly-Ub chains when 

POH1 is depleted (Cooper, Cutcliffe et al. 2009). The results of Chapter 3 Section 3.4 
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demonstrate that the loss of POH1 increases Ub conjugates, specifically at sites of damage, 

with larger K63-Ub foci forming at damage. In response to DSBs, two E3-ligases, RNF8 and 

RNF168, are known to form K63-linked chains, which are responsible for the recruitment of 

repair factors (Mailand, Bekker-Jensen et al. 2007, Doil, Mailand et al. 2009). One such repair 

factor is 53BP1, in Chapter 3 Section 3.5 it was shown the K63-residue is required for 53BP1 

recruitment, suggesting K63-linked poly-Ub is important in 53BP1 foci formation. As POH1 

is limiting the K63-linked chains at DSBs it would suggest that POH1 is restraining 53BP1 

recruitment through limiting the extent of these poly-Ub chains. Further work outside this 

thesis has demonstrated that when POH1 is knocked down, JMJD2A was removed from 

chromatin regardless of the damage status of the cells. Consequently, there is more 

H4K20me2 available for 53BP1 binding, causing an escalation in 53BP1 recruitment.  

Therefore POH1 seems to be one regulatory mechanism in a highly controlled cellular 

pathway. The regulation of RNF168-dependent chains has also been seen by two HECT E3-

ligases, TRIP12 and UBR5, which also act to limit the spread of 53BP1 on chromatin after 

damage. However TRIP12 and UBR5, rather than acting to reduce the poly-Ub chains at 

DSBs, cause decreased stability of RNF168. Therefore the reduction of RNF168 limits the 

amount the Ub conjugates at the sites of DSBs. The increase in poly-Ub chains at DSBs when 

TRIP12 and UBR5 are depleted causes enlarged 53BP1 foci (Gudjonsson, Altmeyer et al. 

2012), as seen with POH1 depletion. Combined POH1 and TRIP12 depletions have been 

shown to further increase the size of 53BP1 foci beyond either depletion alone (J.Morris 

unpublished results). Therefore there are multiple layers of regulating the Ub at sites of 

damage and consequently the recruitment of repair proteins, with the POH1 DUB being one 

of the factors involved. 
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53BP1 is thought to promote NHEJ repair through blocking resection, although the exact 

mechanism of how 53BP1 causes this block is still under investigation. 53BP1 interacts with 

a number of proteins that are also shown to block resection and therefore stop commitment to 

HR repair. One such protein is Rif1 which requires 53BP1 to be recruited to DSBs by 

interacting with the N-terminal region of 53BP1 and then antagonises resection at these 

breaks (Chapman, Barral et al. 2013, Di Virgilio, Callen et al. 2013, Zimmermann, 

Lottersberger et al. 2013). Downstream of Rif1, another protein Rev7 has been shown to 

block resection (Boersma, Moatti et al. 2015). 

Separately to Rif1 and Rev7, another interactor of 53BP1, which can promote NHEJ, is PTIP. 

By interacting with phosphorylated Ser25 on 53BP1, PTIP can block resection independently 

of Rif1 and Rev7 (Munoz, Jowsey et al. 2007, Callen, Di Virgilio et al. 2013). PTIP interacts 

with the endonuclease Artemis in order to block end resection and therefore stop the 

commitment to HR repair (Wang, Aroumougame et al. 2014). However Artemis can process 

the ends of the DNA in order to create compatible ends that can be ligated back together (Ma, 

Pannicke et al. 2002). Therefore 53BP1 acts to promote NHEJ through two independent 

pathways which block resection and stop HR repair occurring. Intriguingly in Chapter 3 

Section 3.6, the loss of POH1 actually caused a defect in NHEJ despite the increase in 53BP1 

at sites of damage. Therefore instead of solely blocking HR, the excess 53BP1 recruitment 

could potentially be inhibiting the access of NHEJ repair proteins to the DSB as well as 

blocking resection. Therefore, it is possible that POH1 is maintaining a fine equilibrium of 

53BP1 recruitment to breaks in order to allow efficient NHEJ. From the work demonstrated in 

this thesis, as well as further work performed in our lab, the current working model for the 

function of POH1 at DSBs is that the DUB activity of POH1 restricts the RNF8/RNF168-

dependent K63-linked chains at breaks. The length of the chains close to the break is still 
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sufficient to remove chromatin bound proteins in order to allow 53BP1 to be recruited to 

damage. However, the Ub-chains further from the break are shortened by POH1 and therefore 

the histone bound proteins are not removed, meaning 53BP1 is not recruited to these more 

distant histones. The increase in 53BP1 protein recruitment in POH1-depleted cells blocks the 

recruitment of other repair proteins, such as Artemis, to the break therefore inhibiting NHEJ 

(Chapter 3 Fig 3.8). 

This work has subsequently been published (Butler, Densham et al. 2012). 

6.3 USP50 is a poorly characterised DUB that is involved in replication 

Very little is currently known about the role of USP50 within the cell. Due to the low levels 

of endogenous expression and the believed lack of enzymatic activity, this protein has been 

largely disregarded (Quesada, Dı́az-Perales et al. 2004, Aressy, Jullien et al. 2010). However, 

as Ub regulation is a major signalling molecule in the cell, USP50 could have an important 

role independent of its DUB activity. 

6.3.1 USP50 is not enzymatically active but still retains Ub-binding activity 

It has been previously reported that USP50 does not have enzymatic activity as a DUB, 

although the evidence for this was not shown within the paper (Quesada, Dı́az-Perales et al. 

2004). The loss of the Asp/Asn residue of the catalytic triad is the likely cause of the loss of 

enzymatic activity. Although there are other DUBs that have been shown to retain enzymatic 

activity, specifically USP16 and USP30, despite  not having all three residues of the catalytic 

triad (Nijman, Luna-Vargas et al. 2005). However, in Chapter 4 Section 4.3 and 4.4, it is 

shown that, USP50 lacks enzymatic activity against linear and K48-linked Ub in vitro, but 

nevertheless can still bind Ub both in vitro and in vivo. The results shown in Chapter 4 

Section 4.3 show USP50 is probably regulating a ubiquitinated substrate, as an impaired Ub-
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binding mutant only partially rescues the DNA damage-associated foci seen upon USP50 

knockdown. Determining what the ubiquitinated substrate that USP50 is regulating will give 

greater insight into replication stability as another aspect of the pathway will be elucidated. 

Previously published DUB interactome studies have suggested that USP50 interacts with 

VCP; however, the use of USP50 overexpression could be providing an artefactual results  

(Sowa, Bennett et al. 2009), as the overexpression of USP50, as previously shown, causes 

aberrant binding to Ub-chains, potentially binding ubiquitinated substrates (Chapter 4 Section 

4.4). The AAA+ ATPase, VCP, is known to interact with Ub-binding proteins as adaptor 

modules (Mullally, Chernova et al. 2006, Schuberth and Buchberger 2008), however, recent 

work has shown that a Ub-binding protein, Spartan, interacts with VCP in order to inhibit 

replication stress (Davis, Lachaud et al. 2012, Ghosal, Leung et al. 2012, Mosbech, Gibbs-

Seymour et al. 2012). Therefore there is an adaptor of VCP already known to carry out one 

hypothesised role of USP50. 

Despite this, bioinformatic research as part of this project has shown that, apart from the Ub-

binding pocket, there is a hydrophobic patch visible on USP50—indicating a potential protein 

binding domain (Appendix  Fig. A6). This patch may bind to VCP meaning USP50 could be 

an interactor for a specific process regulated by VCP, or this patch may bind another protein 

making USP50 a Ub-binding adaptor for another complex required in replication fork 

stability. Further research is required to identify whether USP50 is part of a larger complex 

and, if so, what this complex is. 

Hence the role of USP50 may be as part of a larger complex where enzymatic activity 

depends on another subunit but the targeting of the complex to a specific substrate relies on 

USP50 binding Ub-chains of four or more moieties. However, until further research can be 



217 
 

performed to find out if USP50 is acting as a complex there is still the possibility USP50 may 

be working solely as a Ub-binding protein. 

6.3.2 USP50 siRNA causes the formation of spontaneous damage-associated foci during 

S-phase 

Results in this thesis demonstrate that USP50 siRNA caused an increase in damage-associated 

foci, which was not consistent with a defect in the DNA damage repair pathway (Chapter 4 

Section 4.7). A previous report showed that USP50 regulates the degradation of Wee1, with 

loss of USP50 destabilising Wee1 protein, which can be rescued by proteasome inhibition 

(Aressy, Jullien et al. 2010). As Wee1 knockdown causes genome instability and cell cycle 

defects, the loss of USP50 could have been causing the damage-associated foci indirectly 

through a loss of Wee1 (Dominguez-Kelly, Martin et al. 2011). However, in Chapter 5 

Section 5.2, there was no large loss of Wee1 protein on USP50 knockdown, as demonstrated 

by Western blot analysis. This coupled with an increase in 53BP1 foci seen upon USP50 and 

Wee1 combined knockdown, suggests that Wee1 and USP50 are working in different 

pathways to suppress the damage. Therefore the increase in 53BP1 foci observed was due to a 

fault in another pathway. 

However, the increase in 53BP1 foci in the double knockdown of USP50 and Wee1 was not 

additive when compared against either siRNA alone. This suggests that there may be some 

overlap in the pathways and some of the damage foci seen will be arising through the Wee1 

pathway. This correlates with the slight decrease in Wee1 protein seen upon USP50 depletion, 

suggesting USP50 siRNA is destabilising a small portion of Wee1 and causing some of the 

53BP1 foci observed. Although these results indicate the Wee1 pathway is not the main 

source of the damage-associated foci seen upon USP50 siRNA treatment. 
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Unfortunately knockdown of endogenous USP50 could not be assayed as no antibody tested, 

including three commercially available and six Genscript commissioned antibodies, were able 

to specifically detect USP50. Western blot analysis was used to detect purified USP50 protein  

via the T7 tag on the protein. Further to this cells over expressing a flag-tagged version of 

USP50 were also lysed and tested for USP50 expression using the Flag antibody to confirm 

that USP50 protein was present, but no USP50 antibody was able to specifically detect either 

the purified protein or the overexpressed protein. Therefore to confirm USP50 knockdown it 

was shown that USP50 siRNA could reduce levels of a flag-tagged version of USP50. 

Consequently it was assumed that siRNA would also be reducing endogenous levels of 

USP50 protein. 

Aressy et al implicated USP50 in the G2/M checkpoint, with loss of USP50 causing bypass of 

the checkpoint in cells where the checkpoint was already impaired by the overexpression of 

Cdc25B. Hence USP50 may be acting as a secondary regulation to the checkpoint (Aressy, 

Jullien et al. 2010). However, Chapter 5 Section 5.3 shows that when only USP50 is lost there 

is no gross change in the cell cycle profile. Therefore although USP50 may act as a back-up 

checkpoint regulator when the G2/M checkpoint is compromised; it is unlikely that the 

damage-associated foci observed were due to a cell cycle defect. 

Further investigation into the cause of the damage showed a S-phase specific rise in damage 

foci numbers (Chapter 5 Section 5.4). This increase, coupled with the specific sensitivity to 

replication stress-inducing drugs, shows a role for USP50 in replication (Chapter 5 Section 

5.5). The sensitivity to HU may also go some way to explaining the initial reduced FK2 result 

upon USP50 knockdown. As FK2 luminescence was not normalised to DAPI staining to 

ensure the same number of cells were being analysed and USP50 depleted cells are sensitive 
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to HU, there may have been increased cell death in these cells, hence giving a reduced signal 

for conjugated Ub (Chapter 3 Section 3.4). 

The cell-cycle-specific nature of the role of USP50 may mean that USP50 is regulated in a 

cell cycle specific manner, to control its activity. The potential interaction of USP50 with the 

Wee1 kinase (Aressy, Julian et al 2010), could mean USP50 is phosphorylated, or if USP50 is 

involved in fork stability it could be a target of ATR phosphorylation. Bioinformatic searches 

show that there are three putative phosphorylation sites which could be targets of kinases 

(Appendix Fig. A7). Additionally, there may be other posttranslational modifications, 

including ubiquitination or sumoylation, which would limit the action of USP50 to the S-

phase of the cell cycle. 

The S-phase specific increase in damage suggested a fault in replication. Replication forks 

can collapse into DSBs, marked by 53BP1, when they stall and can no longer be stabilised by 

ATR, as part of the intra-S-phase checkpoint (Tercero and Diffley 2001, reviewed in 

Cimprich and Cortez 2008). In Chapter 5 Section 5.8 it was demonstrated that the ATR-

dependent intra-S phase checkpoint is still functional in USP50 siRNA treated cells. When 

cells were treated with both USP50 siRNA and an ATR inhibitor, and then drugged with HU, 

there was a significant increase in 53BP1 foci when compared to cells treated with either 

USP50 siRNA or ATR inhibition alone in conjunction with HU. These results indicate ATR 

signalling is active upon USP50 depletion and can stabilise stalled replication forks. Once 

ATR is no longer sufficient to maintain the replication forks, there are more DSBs that form 

in USP50 siRNA treated cells.  

The additive increase seen in HU perturbed cells when USP50 is depleted and ATR is 

inhibited could be explained by two potential causes. 
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1) There are more stalled forks initially, which collapse into DSBs once ATR can no 

longer stabilise the forks. This theory would indicate that USP50 is acting to remove 

lesions before the fork interacts with them or USP50 is acting to stop the forks from 

stalling. 

2) The same numbers of forks are stalling but are less stable or cannot be resolved by a 

means that does not result is a DSB. This theory would suggest that USP50 is acting to 

stabilise stalled replication forks. 

In cells that were not exposed to HU but treated with combined USP50 siRNA and ATRi 

there was no increase in 53BP1 foci when compared to either USP50 siRNA or ATRi 

treatment alone (Chapter 5 section 5.8). Therefore without HU treatment the formation of 

53BP1 appears to be epistatic between USP50 and ATR inhibition, indicating USP50 and 

ATR are in the same pathway. However this is contrary to the results shown in cells treated 

with HU, when there is an increase in 53BP1 foci upon dual inhibition of USP50 and ATR. 

This suggests that there are only a limited number of stalled forks in these unperturbed cells, 

which had not been treated with HU. Therefore the combined inhibition of ATR and USP50 

cannot cause an additive increase in 53BP1 foci as all the stalled forks have already formed 

DSBs in the single treatments of USP50 siRNA or ATRi.  

Fibre analysis in Chapter 5 Section 5.7 suggests that there are more stalled or collapsed forks 

upon USP50 depletion; however, the increase is small and is not coupled with an increase in 

new origin firing. This small increase although significant suggests that there is a limited 

number of stalled or collapsed forks in USP50 siRNA treated cells. If ATRi cells had the 

same number of first label terminations it would support the hypothesis that in cells untreated 

with HU there is only a small number of stalled forks that can collapse into DSBs in USP50 

siRNA, ATRi or combined USP50 and ATRi treated cells. The results in Chapter 5 
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Section5.7 suggests there is a significant number of forks stalling or collapsing in USP50 

depleted cells, but more research is required to fully understand how USP50 is working to 

stabilise the replication fork. 

Replication forks collapse into DSBs once they can no longer be stabilised by ATR 

signalling. RNF4 has been shown to increase the amount of collapsed forks in ATR deficient 

cells, further indicating a role for Ub in replication fork stability (Ragland, Patel et al. 2013). 

The regulation of replication by Ub is still an emerging subject and the characterisation of a 

Ub-binding protein involved in replication fork stability demonstrates part of a pathway, 

which is not fully elucidated. RNF4 could be producing Ub chains which are bound by 

USP50, however there may be other ligases, both already implicated in replication, or not 

currently identified as having a role in replication, which produce the poly-Ub that is bound 

by USP50. To fully understand the pathway that USP50 is acting in, the E3 Ub-ligase also 

needs to be identified. 

In cells that still have ATR expression there are many mechanisms that allow the restart of 

stalled replication forks (discussed in Chapter 1 Section 1.9.4), one mechanism is through 

fork restructuring by helicase enzymes (reviewed in Petermann 2010) The WRN helicase is 

one such enzyme, which has shown similar defects upon depletion as USP50 knockdown—

with increased damage but no change in cell cycle (Sidorova, Li et al. 2008, Patro, Frohlich et 

al. 2011). The WRN helicase is known to be ubiquitinated, along with its interacting partner 

WRNIP, providing a potential docking site for USP50 (Bish, Fregoso et al. 2008, Li, Wang et 

al. 2010). Combined depletion shown in Chapter 5 Section 5.9 showed no increase in damage 

foci, which suggests the knockdowns are epistatic and therefore USP50 and WRN are 

working in the same pathway. However, these are preliminary results which still require 
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further investigation into how USP50 is regulating this mode of replication fork restart, 

including whether USP50 is directly binding WRN. 

Further preliminary work indicated that the reduction in USP50 causes increased 53BP1 foci 

in a proteasome dependent manner. Inhibition of the proteasome by MG132 treatment 

reduced the number of 53BP1 foci in USP50 siRNA treated cells, even when cells were 

transfected with Myc-Ub. This leads to the hypothesis that when USP50 is depleted, the Ub 

chains which USP50 should be binding to, are prone to attack by the proteasome. More work 

is required to fully understand the requirement of the proteasome in the pathway, but the 

potential targeting of the proteasome to the ubiquitinated substrate, that is no longer bound by 

USP50, could give an indication into the Ub-linkage that is being bound by USP50. 

Although USP50 appears to be protecting an unknown substrate from degradation, the 

cellular localisation of USP50 and hence the substrate, is not known. USP50 is a cytoplasmic 

protein but it has been shown to enter the nucleus upon DNA damage (Aressy, Jullien et al. 

2010). The results presented in Chapter 5 show a role for USP50 in replication fork stability, 

preventing collapse into DSBs but this does not mean that USP50 itself is at the replication 

fork. USP50 could be acting to anchor a substrate in the cytoplasm until it is required in the 

nucleus, or could be acting directly at a substrate at the fork. Currently, iPOND studies have 

not demonstrated USP50 being present at the fork (Sirbu, Couch et al. 2011, Dungrawala, 

Rose et al. 2015). This could be due to a number of reasons. 

1) USP50 is not at the fork and therefore would not be seen by iPOND 

2) USP50 is transiently at the fork and therefore cannot be captured at high enough 

frequencies at the fork by the iPOND method 
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3) USP50 is known to be expressed at low levels in the cell and therefore, USP50 is at 

the fork but at such low levels that it is not detected at a high enough frequency by 

iPOND 

Therefore to understand how USP50 is working to stabilise replication forks requires 

investigation into the cellular localisation of USP50.  

Stabilising replication forks is important especially in cancer cells as these cells generally 

undergo more proliferation and subsequently more replication than non-cancerous cells, they 

are also more prone to oncogene-induced replication stress (Bartkova, Horejsi et al. 2005, 

Gorgoulis, Vassiliou et al. 2005). The role USP50 plays in potentially stabilising the 

replication fork should, therefore, have a more important role in cancerous cells than non-

cancerous cells. Almost all experiments carried out in this thesis have been performed in cell 

lines generated from cancers, such as the HeLa cervical cancer cells or the osteocarcinoma 

U2OS cells (Scherer, Syverton et al. 1953, Kanzaki, Hilliker et al. 1994). USP50 depletion 

has been shown to sensitise cells to a model of oncogene-induced replication stress in human 

fibroblasts cells containing an inducible constitutively active h-Ras shown in Chapter 5 

Section 5.6. However, activated h-Ras may be causing other defects in the cell that are not 

due to oncogene-induced replication stress. Thus, USP50 could become a potential target for 

cancer therapies. 

6.3.3 USP50 is conserved across higher eukaryotic species 

As USP50 plays an important role in preventing replication fork collapse into DSBs it would 

be expected that this function is conserved across the species which contain USP50. 

Bioinformatic research shows USP50 is conserved across 42 species including mice; 

however, the mouse homologue of USP50 has retained the catalytic triad unlike the human 
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version (Chapter 4 Section 4.3). The loss of enzymatic activity has been attributed to the loss 

of the Aspartic acid residue, so potentially; the mouse USP50 could still be active. It was 

shown in Chapter 4 Section 4.5 that USP50 depletion in NIH3T3 cells still causes the increase 

in 53BP1 foci as seen in human cells suggesting a conserved function. It would be intriguing 

to know whether the mouse USP50 is still active and, rather than merely blocking the 

proteasome or another complex, is actually removing the chains to stop the signal.  

Recent work from the International Mouse Phenotyping Consortium has shown that mice 

which have a heterozygous mutation in USP50 display distinct differences from their wild-

type counterparts. The USP50 heterozygotes are larger with abnormal bone density as well as 

a decreased startle reflex. Whether these phenotypes are due to the loss of the same pathway 

that has been alluded to in this thesis remains to be examined. Further to this the propensity of 

these mice to cancer would be of interest. 

As preliminary data suggest USP50 is working in the same pathway as WRN, the phenotype 

of the WRN mouse was investigated. Although the WRN mouse phenotype was not available 

on the IMPC database, a study by Lebel and Leder discussed some phenotypes of 

homozygous mice. Homozygous Wrn -/- mice were born below the expected mendelian ratio, 

but those which survived did not display severe defects when compared to littermates. One 

wrn-/- mouse developed myocardial fibrosis and another developed a T cell lymphoma but 

apart from these defects no other phenotypes were characterised (Lebel and Leder 1998). 

However, until more extensive phenotyping data is available for wrn-/- mice it is not possible 

to do a full comparison between Usp50-/- and wrn-/- mice. 

Although more work is required to fully elucidate the role of USP50, the hypothesised model 

of USP50 action is to allow fork restart once replication forks have stalled. We propose that 
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USP50 is acting as part of a larger complex, with USP50 binding to Ub-modifications 

potentially at replication forks. The complex blocks aberrant degradation of the ubiquitinated 

substrates by the proteasome. USP50 then acts to allow the remodelling of the replication fork 

by the WRN helicase to allow fork restart. When USP50 is no longer present in the cell, the 

stalled replication fork cannot be remodelled and instead, once ATR can no longer stabilise it, 

collapses into a DSB. The break can then be repaired to allow replication to continue and cell 

survival (Chapter 5 Fig 5.12). 

The work presented has shown that USP50 has a role in replication which was not previously 

known, although further investigation is required to fully elucidate its function. 

6.4 Future Questions 

The POH1 story has been published, explaining how the proteasome associated DUB 

regulates the K63-linked chains at DSBs in order to allow faithful repair, however there are 

still some open questions surrounding this project (Butler, Densham et al. 2012). The role 

USP50 plays during replication still has many unanswered questions that require further 

investigation. 

6.4.1 Proteasome future questions 

Despite being published, there are still questions about how the proteasome and POH1 

regulate the Ub-chains and consequently DSB repair. When studying the function of the 

proteasome at sites of damage we did not explore how BRCA1 recruitment requires 

proteolytic activity. As proteasome inhibition blocked the recruitment of BRCA1 to DSBs it 

is hypothesised that a substrate must be degraded by the proteasome in order to allow BRCA1 

recruitment to DNA breaks, but what this substrate may be requires work. In order to 

determine what the degraded substrate possible experiments include: 
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A. Determining likely candidates that are present upstream of BRCA1 at DSBs and 

test the clearance of these proteins in MG132 treated cells. The candidates should 

not be cleared at later time points after DNA damage if the proteasome is required 

to remove them. 

B. Carry out ChIP analysis to determine if any proteins are more highly associated 

with DSBs after MG132 at later time points 

C. If any potential candidates arise from the previous two experiments, carry out 

depletion of this protein in MG132 treated cells and visualise whether BRCA1 foci 

can form when this protein is reduced. 

Work by Shi et al suggested MDC1 was degraded by the proteasome in order to promote 

BRCA1 recruitment. However work in this thesis suggests MDC1 clearance does not require 

the proteolytic activity of the proteasome, instead Ub-modifications cause MDC1 to be 

removed from the DSB. The work using K to R Ub mutants did not give an indication of a 

specific linkage was required for MDC1 clearance, therefore further investigation is required 

to determine whether a specific poly-Ub linkage is required for MDC1 clearance. This could 

be investigated by: 

A. Visualising MDC1 clearance as described in Chapter 3 Section 3.4 but using a Ub 

where all lysines are mutated to arginines meaning poly-Ub chains cannot form. If 

MDC1 can still be cleared it is likely to be a mono-Ub modification that is required for 

clearance 

B. Carry out a pull down of MDC1 and then carry about western blot analysis to see if 

there is mono-Ub or poly-Ub forming on MDC1 

C. If poly-Ub is forming on MDC1 carry out western blot analysis with K48 or K63 

antibodies to determine if it is either of these linkages that are forming on MDC1 
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D. If it is neither K48 or K63 poly-Ub that is forming on MDC1, carry out UbiCREST 

digestion on the MDC1 specific chains to work out which linkage specific DUB can 

cleave the chains that form on MDC1 

Unlike MDC1 there use of Ub K to R mutants did give an indication of which poly-Ub chain 

type is required for 53BP1 recruitment to DSBs. However, as 53BP1 recruitment to DSBs 

cannot be fully restored by K63O-Ub or K63-K6O there is potential that another linkage, 

potentially K27, is required for 53BP1 foci formation. The requirement of K27 poly-Ub is 

suggested by recent work by Gatti et al. however this research indicates K27 is the main 

linkage required which is not supported by data in this thesis (Chapter 3 Section 3.3). 

Therefore it would be interesting to further investigate which poly-Ub chains are necessary 

for 53BP1 recruitment by carrying out immunofluorescent staining using K6-K27-K63O in 

MG132 treated cells to see if 53BP1 can be restored to wild-type levels 

6.4.2. POH1 future question 

As well as studying the proteolytic role of proteasome at DSBs the requirement of 

proteasome-associated DUB, POH1, in the repair of breaks was also studied. This work 

showed that loss of POH1 increased K63-linked poly-Ub at DSBs and consequently 53BP1 

recruitment. Surprisingly though the loss of POH1 reduced NHEJ repair, which can be 

restored by 53BP1 reduction. As 53BP1 usually promotes NHEJ more work is required to 

determine how the increase in 53BP1 is inhibiting NHEJ rather than promoting it. The data 

presented in this thesis suggests that excess 53BP1 is somehow blocking NHEJ, but in order 

to determine the mechanism behind this further experiments are needed, such as: 

Possible experiments: 
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A. Carry out high resolution microscopy on 53BP1 foci to determine whether the kinetic 

of the foci change after POH1 depletion 

B. Study the recruitment of downstream NHEJ factors after POH1 depletion to determine 

whether their recruitment is affected by POH1 siRNA. 

C. If any downstream NHEJ factors are affected by POH1 depletion, carry out the same 

experiment but with codepletion of POH1 and 53BP1 to determine if recruitment can 

be restored. 

6.4.3 USP50 future questions 

The role of USP50 in replication still requires further investigation in order to determine the 

mechanism by which USP50 prevents replication forks collapsing into double strand breaks. 

As USP50 lacks enzymatic activity but still retains Ub-binding activity, it may be acting as a 

Ub-binding module for a larger complex. It has already been reported that USP50 interacts 

with VCP and therefore may be another Ub-binding component for VCP during a role in 

replication.As previously mentioned, there are external hydrophobic residues on the opposite 

face of the protein to the Ub-binding pocket (Appendix Fig. A6), which suggest USP50 is 

binding another protein or a complex of proteins. In order to determine whether USP50 is 

interacting with another protein that is required during replication there are several possible 

experiments that can be carried out: 

A. Create mutants of USP50 in which individual hydrophobic residues in the putative 

binding domain are changed. Mutated USP50 can be reintroduced into USP50 

depleted cells and cells stained for 53BP1 foci to determine if the mutated USP50 can 

rescue the increase 53BP1 foci seen on knockdown or if overexpression of the mutant 

USP50 are no longer able to rescue the damage-associated foci. 
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B. If any mutations in USP50 cannot rescue the increase in 53BP1 foci using the binding 

pocket mutants, carry out mass spectrometry with both wild-type USP50 and mutant 

USP50 to compare what interactions are lost in order to determine the binding partner 

of USP50. 

As well as USP50 functioning as part of a larger complex, it is likely that USP50 is binding to 

a ubiquitinated substrate which is involved in the stability of the replication fork. As Ub-

binding appears to be required for the function of USP50, understanding what the 

ubiquitinated substrate that USP50 is binding to will help elucidate the pathway that USP50 is 

working in and give further insight into how USP50 promotes replication fork stability. The 

experiments that can be performed to determine what the ubiquitinated substrate are: 

A. Create Ub-binding mutants which completely abolish the Ub-binding activity seen by 

in vitro binding assays. Once Ub-binding mutants have been established, perform IF 

on cells depleted of USP50 and transfected with the mutant USP50, to confirm that 

Ub-binding mutants cannot rescue the 53BP1 foci formed. 

B. Once mutations that abolish Ub-binding are confirmed, carry out mass spectrometry 

using USP50 wild-type and USP50 Ub-binding mutants to determine which 

interactions are different. This will need to be carried out in stable cell lines, as 

overexpression of USP50 appears to cause aberrant binding to Ub conjugates, which 

would therefore cause incorrect results (Chapter 4 Section 4.3) and, therefore, 

expression levels of USP50 will have to be controlled 

The substrate that USP50 is binding to must be being ubiquitinated by an E3 Ub-ligase. To 

fully understand the pathway that USP50 is working in to prevent DSB breaks forming during 

replication, the E3 Ub-ligase must be identified by carrying out experiments such as: 
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A. Carry out RNF4 codepletions with USP50 and study fork kinetics by fibre analysis to 

determine if there is an epistatic effect in codepleted cells, including looking at first 

label terminations. Further to this investigation, fork speeds can be analysed to see if 

fork progression is effected more by the codepletion of USP50 and RNF4. 

B. If RNF4 is not epistatic with USP50 depletion then orther ligases can be investigated. 

To determine if a Cullin ligase is involved, an inhibitor against neddylation, such as 

MLN4924 (Soucy TA 2009, Brownell JE 2010), can be used to determine if there is 

an epistatic effect on 53BP1 foci with USP50 depletion. If the neddylation inhibitor 

proves to be epistatic, then investigation into Cullin ligases can be carried out 

beginning with Cullins known to be involved in replication such as Cul4A. 

C. If the Cullin inhibitor does not yield any potential ligases, determining the 

ubiquitinated substrate could provide insight into the ligase, by investigating if any 

ligases are known to target the substrate of USP50 binding. To determine if USP50 is 

binding chains created by the identified ligase, immunofluorescence staining for 

53BP1 can be performed on cells codepleted of USP50 and the identified ligase. If 

foci formation is epistatic, a probable ligase will be identified. Fibre analysis can also 

be performed to see whether fork structures and speeds are affected by ligase 

inhibition and if they reproduce the phenotype seen on USP50 siRNA treatment. 

D. If no known ligase is found for the substrate, investigation into any known ligases are 

involved in replication fork stability can be undertaken. Whether the ligase is involved 

in the same pathway as USP50 can be determined by carrying out codepletions with 

USP50 and seeing if there is an epistatic formation of 53BP1 foci. Then carry out fibre 

analysis to determine if the fork structures and speeds are similar between USP50 

depleted cells, ligase depleted and codepleted cells.  
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Further to elucidating the ligase which is modifying the substrate, understanding the linkage 

specificity of USP50 can give insights into the signalling network which USP50 is acting in 

or whether it is a signal for degradation. The type of linkage is important to signal a specific 

pathway and therefore potential experiments to work out the modification type include: 

A. Perform in vitro binding assays with purified USP50 protein attached to Ni
+
 beads 

and incubate with different Ub linkages such as K63, K48 and linear Ub chains 

and determine if USP50 has an affinity for a specific linkage or chain length 

B. Use the inducible Flag-tagged USP50 to perform an in vivo flag pull down and 

carry out a Western blot of the bound Ub. By using antibodies specific to K48 and 

K63 it can be seen if there is an enrichment of either of these chain-types.  

C. If there is no enrichment for K48 or K63-linked Ub, use UbiCrest to determine 

which linkages USP50 is binding to. 

As USP50 appears to be involved in the stabilisation of replication forks, it could be 

hypothesised that USP50 is required at the fork. However USP50 has not be shown to be at 

the replication forks in previously studies. Another theory is that USP50 is acting on an 

upstream factor away from the replication fork that has a detrimental effect on the replication 

fork. To determine how USP50 is acting to stabilise replication forks, specifically if USP50 is 

at the replication fork, requires investigation, including: 

A. Use tagged USP50 to carry out IF staining to determine cellular localisation of USP50, 

cells can be counter stained with EdU to see if localisation changes during S-phase 

B. Pull down tagged USP50 and test whether it is binding to any replication fork 

components, either by western blot analysis of known ubiquitinated components or 

mass spectrometry of the bound proteins. 
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The specificity of USP50 to specific pathways during replication-stress suggests that there 

must be a signalling mechanism that controls this specificity. Therefore it could be 

hypothesised that USP50 is itself modified in response to the replication fork stalling. The 

major signalling mechanism to stalled replication forks is activation of the kinase ATR. This 

leads to the hypothesis that USP50 itself could be phosphorylated by ATR in response to fork 

stalling. Two potential phosphorylation sites have been identified that may be targets for 

ATR. It is intriguing to know whether USP50 is itself regulated to limit its role purely to S-

phase, by carrying out the following experiments: 

A. Using stable expressing USP50-Flag cell lines, carry out Western blot analysis using 

phosphatase inhibitors and determine if there is a band shift on the gel indicative of 

phosphorylation 

B. Carry out site directed mutagenesis of the putative phosphorylation domains and 

reintroduce mutated USP50 to depleted cells and stain for 53BP1 foci to see whether 

the phosphorylation sites are important for replication fork stability 

C. If there is no indication of phosphorylation, Western blot analysis can be carried out 

using N-Ethylmaleimide, to inhibit cysteine DUBs and SENPs (Sommer S 2013), to 

determine if a 8kDa band shift is apparent. 

The translational implications of understanding the role of USP50 in response to replication 

stress is not understood. As cancer cells are more prone to undergo oncogene-induced 

replication stress, USP50 could be a potential target for cancer therapies. However, the 

sensitivity of non-cancerous cells to the loss of USP50 must be investigated before therapies 

can be created. To determine if a USP50 inhibitor would be a good anti-cancer therapy, 

distinguishing if there is a cancer specific sensitivity to USP50 inhibition must be investigated 

by carrying out potential experiments, including: 
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A. Use cell lines which were not originally derived from cancer and deplete USP50 

and stain for 53BP1 foci. Quantify the foci numbers and determine whether there 

is an increase in foci number and if so, if it is as large as in cell lines derived from 

cancers 

B. Fibre analysis can be used in non-cancerous cell lines to see if the same amount of 

stalled forks are occurring in these cells upon USP50 knockdown as occurs in 

cancerous cell lines 

C. Test sensitivity of USP50 depleted non-cancerous cell lines to replication stress-

inducing drugs, such as hydroxyurea and Aphidicolin, by colony assay. Compare 

the sensitivity of USP50 depleted non-cancerous cells with cancerous cells and see 

if there is a change in sensitivity 

6.5 Conclusions 

In this thesis two DUBs—POH1 and USP50—have been identified to have novel roles in 

DSB repair and replication, respectively. Ub is emerging as a major signalling molecule for 

many processes in the cell, including DSB repair and replication. However the role of Ub in 

the DDR is much more established than the role of Ub in replication (Ulrich and Walden 

2010). Results in this thesis demonstrate the importance of the poly-Ub chains in the kinetics 

of repair proteins, specifically MDC1 and 53BP1. While the proteolytic activity of the 

proteasome is important for BRCA1 recruitment, the Ub processing function of the 

proteasome also plays a key role in allowing the progression of DSB repair (Chapter 3). The 

processing of Ub conjugates at DSBs, by the proteasome associated DUB, POH1, is shown to 

limit the spread of the K63 damage-dependent chains. By limiting the amount of K63-linked 

chains at DSBs there is a subsequently restriction of  53BP1. By restraining the amount of 

53BP1 that accumulates at DSBs, POH1 maintains a fine balance of repair proteins at the sites 
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of damage that allows NHEJ to progress. The poorly characterised DUB—USP50—has been 

shown to have a novel role in replication fork stability in this thesis. A role for USP50 in 

replication has not been demonstrated before; instead a role in maintaining the G2/M 

checkpoint is the only published action (Aressy, Jullien et al. 2010). Within this thesis, there 

is evidence indicating this inactive DUB is able to bind Ub and through this mechanism 

maintain genomic stability. While USP50 does not have an obvious effect on the intra-S 

checkpoint, the loss of this Ub-binding module causes replication forks to collapse, an effect 

that is exacerbated by loss of ATR signalling. The stabilisation of replication forks may be 

through binding an unknown substrate and protecting it from early degradation by the 

proteasome. Preliminary results suggest that USP50 may be working to restructure replication 

forks through the action of the WRN helicase, in order to allow fork restart without collapsing 

into a DSB. As USP50 is a small Ub-binding module it is likely that it is part of a larger 

complex. USP50 may therefore act as an adaptor for a larger complex that regulates  a 

ubiquitinated substrate from replication forks but only once ATR is no longer stabilising the 

fork, allowing WRN to remodel the fork (Chapter 5 Figure 5.13). Sensitivity assays provide 

evidence that there are distinct pathways for restarting stalled forks depending on the type of 

block encountered by the fork, as USP50 is not involved in the repair of ICLs despite their 

impact on replication fork progression (Chapter 5). Although the role of Ub in replication is 

still emerging, this work provides more evidence for the importance of ubiquitination in 

protecting replication forks. 

Increased replication and oncogene-induced replication stress mean that most cancer therapies 

escalate the damage caused during replication to selectively kill cancer cells (Helleday, 

Petermann et al. 2008). Current research is finding new ways to sensitise cells to replication 

stress, including RPA inhibition (Glanzer, Liu et al. 2014). The increased sensitivity to 
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replication stress, both endogenous and exogenous, when USP50 is depleted makes it an 

intriguing therapeutic target. 

Specific inhibitors to DUBs are already being investigated as cancer therapies due to the 

specificity of the inhibitors and the reduction in toxicity to standard treatments (Lim and Baek 

2013). Small molecule inhibitors of USP8 have already been developed. With the homology 

between USP50 and the USP8 C-terminus, there is potential for the development of USP50 

inhibitors. Inhibition of USP8 has been shown to induce apoptosis in cells, with small 

molecule inhibitors causing decreased cell growth (Byun, Lee et al. 2013). USP8 inhibitors 

have been shown to be specific to USP8, despite its homology with USP50, with the 

treatment of non-small cell lung cancer being effectively treated by USP8 silencing (Guedat 

and Colland 2007, Byun, Lee et al. 2013). The lack of the tail of USP50 means that although 

there is strong conservation between USP50 and USP8, they are distinct and could, therefore, 

be targeted specifically by inhibitors (Chapter 4 Section 2). 

Members of the Ub pathway are attractive therapeutic targets, so the discovery of a potential 

Ub-binding protein required for replication fork stability after stress makes USP50 a potential 

new therapeutic target.  
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Appendix 

A1 Localisation of the proteasome at DSBs 

HeLa cells were plated and transfected with either Ub-Myc or lysine-less Ub (K0-Ub-Myc) 

for 24 hours. Cells were damaged with 2 Gy IR allowed to recover for 1 hour before being 

pre-extracted with YG buffer (20 mM HEPES pH 7.5, 20 mM NaCl, 1 mM DTT, 5 mM 

MgCl2, 0.5% NP40) for 3 minutes before fixing in 4% PFA for 30 minutes. Cells were stained 

for γH2AX as a marker of damage and the proteasome using the Sug1 antibody. 

In cells transfected with Myc-Ub there is localisation of the γH2AX and the proteasome, 

however in cells transfected with K0-Ub-Myc show reduced colocalisation of γH2AX and the 

proteasome. This suggests that there is a requirement for poly-Ub chains for the recruitment 

of the proteasome to DSBs. 

 

 

Fig A1. Proteasome recruitment to DSBs is reduced in cells expressing K0-Ub-Myc. 

Confocal images of HeLa cells transfected with Ub-Myc and K0-Ub-Myc and stained for 

γH2AX (green) and the proteasome with Sug1 (red). White line represents DNA based on 

Hoescht staining. Scale bar = 10 µM 
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A2 Localisation of the proteasome to DSBs in MG132 treated cells 

HeLa cells were transfected with either Ub-Myc or Myc-LacZ for 24 hours prior to treatment 

with MG132 for 1 hour before being damaged with 2 Gy IR. Cells were left to recover for 1 

hour before being pre-extracted with YG buffer (20 mM HEPES pH 7.5, 20 mM NaCl, 1 mM 

DTT, 5 mM MgCl2, 0.5% NP40) for 3 minutes and then fixed in 4% PFA for 30 minutes. 

Cells were stained for γH2AX as a marker of damage and the proteasome using the Sug1 

antibody. 

In cells transfected with Myc-LacZ no foci formation of the proteasome is apparent. 

Conversely, cells expressing Ub-Myc were able to form proteasome foci that can partially 

localise to sites of damage. This supports the notion that proteasome recruitment to DSBs 

requires Ub conjugates. 

 

  
Fig A2. The Proteasome can form foci in MG132 treated cells when overexpressing 

Myc-Ub. Confocal images of HeLa cells transfected with Myc-LacZ and Ub-Myc and 

stained for γH2AX (green) and the proteasome with Sug1 (red). White line represents 

DNA based on Hoescht staining. Scale bar = 10 µM 
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A3 Amino acid alignment of USP50 and USP8 

USP50 and USP8 amino acid sequences were input into t-coffee software and aligned. Within 

USP50, 54% of amino acids were either conserved or had the same properties as those in the 

same position as USP8  

 

 

 

  

Fig A3 T-coffee alignment of USP50 and USP8. Amino acid sequence of USP50 and USP8 

input into t-coffee software to calculate alignment and conservation.  
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A4 USP50 alignment between 40 species 

Alignment of USP50 amino acid sequences from 40 different species to work out alignment 

and conservation of amino acids. Sequences were input into the T-coffee software. 
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A4 Alignment of USP50 amino acid sequences across 40 species. T-coffee 

alignment of USP50 amino acid sequences from 40 species. Conservation of amino 

acids was calculated as well as the probability of the alignment being correct, 

represented by the colours. 
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A5 USP50 cDNA after USP50 siRNA treatment 

Cells were plated and transfected with NTC or UP50 siRNA for 72 hours before mRNA was 

extracted. The mRNA was converted into cDNA and then amplified using USP50 specific 

primers. DNA was run on a 1% agarose gel containing Ethidium bromide. DNA was 

visualised using UV light and imaged using GeneSnap by Syngene system. 

 

 

  

A5 USP50 cDNA is reduced upon USP50 siRNA treatment. USP50-GFP plasmid was 

used as a positive control to confirm the reaction was working. Water replaced cDNA as a 

negative control or no primers were included to check for non-specific bands. cDNA from 

cells treated with NTC or USP50 5, 6, 7 or a mix of all siRNAs and run on a gel. 
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A6 Hydrophobic residues of USP50 on surface behind binding domain 

The electrostatic potentials of the amino acids in USP50 bound to Ub were calculated using 

Pymol. On the side of USP50 that does not bind Ub, there were two patches of uncharged 

amino acids, these may represent binding sites for other proteins. Uncharged amino acids are 

represented in white.  

 

A6 Potential binding domains of USP50. A) USP50 bound to Ub ribbon model was rotated 

180° and the surface electrostatic potential of the amino acids calculated using Pymol. Two 

patches of uncharged molecules were identified. B) View of patch 1 potential binding site. C) 

View of patch 2 potential binding domain. 
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A7 Putative phosphorylation sites of USP50 

PhosphoSitePlus bioinformatics searches indicates three potential phosphorylation sites in 

human USP50. Each site was seen in on mass spectrometry study. 

 

 

  

Fig A7 The putative phosphorylation sites of USP50. PhosphoSitePlus putative 

phosphorylation sites of human USP50. Three potential phosphorylation sites have been 

identified 
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