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Abstract

The publications contained within this thesis present the application and develop-

ment of computational methods for the study of metallic nanoparticles and nanoal-

loys. Principally these studies are dedicated to their structural characterisation and

their interactions with small molecules; vital first steps toward understanding their

role in key catalytic processes. Publications have also assessed the applicability of

statistical mechanical methods and dispersion corrected DFT to these studies.

Palladium-iridium nanoalloys, which are under current investigation for their

catalytic properties, are studied extensively using a range of computational meth-

ods. Their interactions with hydrogen and benzene are probed in order to better

understand their role in tetralin hydroconversion and the preferential oxidation of

CO. Structures are revealed to reflect the strongly demixing behaviour of the bulk

alloy, with nanosize effects seen in their interactions with hydrogen.

The Birmingham Parallel Genetic Algorithm is presented and applied to the

direct density functional theory global optimisation of Iridium and both gas-phase

and surface supported gold-iridium nanoparticles. The program is shown to be

capable of overcoming previous size restrictions while characterising quantum size

effects in the iridium and gold-iridium structures. Significant differences are seen

between the surface-supported and gas-phase gold-iridium structures.
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1 | Introduction

1.1 Metallic Nanoparticles

Nanoparticles (NPs) are aggregates of atoms, ions or molecules whose size can be

anywhere between 1 and 100 nm.1,2 There is considerable interest in NPs as their

properties often differ from those of their constituent atoms or molecules or of their

corresponding bulk materials.3,4 These properties often depend on the NP size and,

as such, can be tuned by altering NP size and shape. The stability of NPs can also

be affected by their size, with certain “magic-number” size NPs, with closed electron

shells or complete geometric shells, displaying increased stability.5,6

Metallic NPs are clusters of metallic elements. Those made up of two or more

elements are known as nanoalloys (NAs). Metallic NAs and NPs have a range of

potential optical, magnetic and catalytic applications.7 The combination of metallic

elements in a NA mean a system’s properties are no longer only dependent on the size

and shape of the cluster but also on the composition and ordering of the elements.

This can produce materials with well-defined, tunable properties.7,8.

The presence of more than one element in a NA enables the formation of a new set

of isomers, known as homotops.9 These are structures of the same size, geometry

and composition which differ only in the ordering of their constituent elements.

The number of possible homotops NH for a particular N -atom cluster structure is

calculated as follows:

NH =

N !

NA!NB!
(1.1)
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1.1. METALLIC NANOPARTICLES CHAPTER 1

where NA and NB are the numbers of atoms of elements A and B. NH rises combi-

natorially with system size and is greatest for 50/50 compositions. This is without

symmetry considerations which can reduce the actual total number of inequivalent

homotops, depending on the order of the point group.

The ordering of elements found in NAs give rise to a set of common mixing

patterns, shown in figure 1.1. The core-shell arrangement, where a core of atom

type A is surrounded by a layer of atom type B, is commonly seen in nanoalloy

systems.

Mixed-Random Janus Mixed-Ordered

Core-Shell Multi-Layer

Figure 1.1: Common mixing patterns seen in NAs.

The mixing pattern seen in a NA is a often as a result of a combination of factors

which include:

1. The relative strengths of the homo- and heterometallic bonds.

2. The surface energies of the bulk elements.

3. The relative sizes of the constituent elements.

4. The presence of substrates or ligands.

5. Charge transfer.

6. Magnetic effects.

2



1.2. GENETIC ALGORITHMS CHAPTER 1

The structural characterisation of nanoalloys is a vital first step toward under-

standing their properties. It is possible to characterise the structures and ordering

of NAs using both experimental and computational methods. Electron microscopy

techniques, such as transmission electron microscopy (TEM) and scanning trans-

mission electron microscopy (STEM) allow atomic resolution. If STEM is combined

with high angle angular dark field (HAADF) imaging, it becomes possible to distin-

guish between atom types based on their differing atomic numbers, and therefore to

characterise the chemical ordering in a NA.7

Computationally, a range of methods exist to characterise NAs, including basin-

hopping,10 genetic algorithm11 and statistical mechanical methods, such as the Free

Energy Concentration Expansion Method.12

1.2 Genetic Algorithms

A genetic algorithm (GA) is a search method based on the principles of natural

selection.13–15 GAs have been developed and applied extensively to the global opti-

misation of cluster geometries. When first applied to atomic clusters GAs utilised

binary strings to represent geometries, which were operated on bitwise.16,17 The

representation of geometries in Cartesian coordinates was introduced by Zeiri,18–20

which removed the need for conversion between the binary strings and Cartesian

coordinates. Deaven and Ho later combined the energetic evaluation of each cluster

geometry with a local minimisation of the coordinates with respect to the coordi-

nates.21 This transforms the energy landscape of the cluster into a stepped surface,

greatly reducing the search space the GA has to explore to find the global minimum.

This energetic evaluation of a potential cluster geometry can be performed at

varying levels of theory, depending on the system and its size. The structures of

larger clusters can be modelled accurately using emperical potentials parametrised

on the properties of the bulk material. These include Lennard-Jones,22 Born-

Mayer,23 Sutton-Chen,24 Murrell-Mottram25 potentials and those based on the sec-

ond moment approximation of the tight-binding schemeCleri1991.

3



1.3. PALLADIUM-IRIDIUM CHAPTER 1

Figure 1.2: The 2D structures of Pt+6 and Au10 and the cubic structure of Ir10.

For some subnanometre clusters empirical potentials fitted to the bulk are no

longer capable of accurately describing the energy landscape of the system.26 Sys-

tem such as, Pt
n

, Au
n

and Ir
n

require a quantum mechanical description of their

landscape in order to characterise the 2D structures seen for Au
n

and Pt
n

and the

cubic structures seen for Ir
n

(figure 1.2).27,28

Au requires such a quantum mechanical description because of relativistic effects

which promote s-d hybridisation. Relativistic effects are prevalent throughout 3rd

row elements due to the size of the respective nuclei and it is therefore to be expected

that most will require such a quantum mechanical description.

Numerous GAs have been developed and applied to the global optimisation of

clusters at various levels of theory.29–34 However, a quantum mechanical description

of the landscape greatly increases the computational cost of global optimisation.

This limits the possible size of the system it is possible to study with these methods.

1.3 Palladium-Iridium

Pd clusters have been studied and applied in a range of catalytic processes, including

methanol decomposition and the oxidation of cyclohexane.35–40 Ir clusters are cur-

rently used as catalysts for a range of organic reactions. These include olefin hydro-

genation, oligomerization, and ring-opening of cycloalkanes. 41 Larger Ir nanoparti-

cles have been shown to be active in C-C bond hydrogenolysis.42 Selective molecular

recognition has also been seen in supported Ir cluster-based catalysts.43

It is widely known that alloying metals can result in increased catalytic activity

4



1.3. PALLADIUM-IRIDIUM CHAPTER 1

and efficiency.44,45 In NA systems it is normally hoped that combining metals will ei-

ther result in a lower cost catalyst or in increased efficiency through the combination

of the catalytic properties of the constituent metals.This can result in synergistic

catalytic properties which are better than either metal alone.

Figure 1.3: STEM images of PdIr NA clusters, with a HAADF image shown top
right.46

Palladium-Iridium is a strongly demixing alloy system,47–49 the properties of

which are reflected in those of the corresponding NAs. Pd-Ir nanoalloys have been

investigated both theoretically50–52 and experimentally.53–59 for their catalytic prop-

erties and their potential application to key catalytic processes. These studies have

included applications to tetralin hydroconversion and the preferential oxidation of

CO (PROX).53–55,58,60 A scanning transition electron microscopy (STEM) image of

PdIr clusters used in these studies is shown in figure 1.3.

Tetralin hydroconversion (Figure 1.4) is a model process used to study the ef-

fectiveness of a catalyst in the removal of polyaromatic hydrocarbons from diesel

fuel. This is a particularly important process as the combustion of polyaromatic

hydrocarbons produces particulate which, according to current legislation, must be

reduced in emissions.55 Studies have also been conducted on the application of Pd-

Ir to the preferential oxidation of CO (PROX), a process for the removal of CO

from H2 streams used in proton-exchange membrane fuel cells.54 In both processes

it was hoped that the combination of Pd and Ir would impart the catalytic proper-

ties of each metal into the resulting catalyst and give an increased efficiency in the

5



1.3. PALLADIUM-IRIDIUM CHAPTER 1

nanoalloy catalyst.

H2
n

Figure 1.4: Tetralin hydroconversion.

Supported Ir catalysts have been shown to be active in C-C bond hydrogenolysis

and successfully applied to tetralin hydroconversion.61 Pd exhibits increased thiore-

sistance and improved hydrogen activation properties when compared with other

noble metals. Depending on the relative proportions of the metals, the addition of

Pd to Ir has shown that increased activity and selectivity could be obtained from

the catalyst.55

In PROX it has been shown the addition of Ir to Pd inhibits the formation of

hydrides, which would otherwise poison the catalyst and result in reduced perfor-

mance. This decrease in the overall sorption (adsorption and absorption) properties

of the Pd-Ir catalyst results in increased performance.53

6



2 | Methodology

2.1 Global Optimisation

The potential energy surface (PES) of a system is a representation of its potential

energy with respect to its atomic or molecular coordinates.62 The PES, V (r), of an

N -atom system is a (3N + 1) dimensional object based on 3N spatial coordinates,

represented by the vector r, and the potential energy V of the system. The PES has

several key features: these include points at which rV (r) = 0, which correspond

to local minimum structures, and saddle points corresponding to transition states.

The local minimum with the lowest V is known as the global minimum.

The location of the global minimum on a PES is known as global optimisation

and is a common problem throughout the sciences. Global optimisation is a compu-

tational demanding task as the number of local minima on the PES tends to grow

exponentially with system size. Global optimisation is an ‘NP-hard’ problem, as no

known algorithm exists to guarantee the location of the global minimum within a

time that scales with the system size.

A variety of methods are available specifically tailored for the global optimisa-

tion of cluster geometries. These include basin-hopping10 and genetic algorithms.11

These methods have been widely applied and demonstrated to capable of accurately

and completely sampling the PES of a cluster to determine its global minimum

structure.

7



2.1. GLOBAL OPTIMISATION CHAPTER 2

2.1.1 Birmingham Cluster Genetic Algorithm

The Birmingham Cluster Genetic Algorithm (BCGA) is a genetic algorithm for

structural characterisation of metallic nanoparticles and nanoalloys.11

The BCGA is a generation based genetic algorithm and a run begins with a

initial generation of a fixed number of cluster geometries, generated with random x,

y and z coordinates. These coordinates are scaled to ensure that the volume of the

cluster’s scales correctly with the number of atoms. The clusters are then evaluated

with either an empirical potential, such as the Gupta potential (BCGA-Gupta), or

through a DFT calculation (BCGA-DFT) via interfaces to common DFT programs.

The choice of whether to evaluate a clusters’ potential energy with an empirical

potential or DFT depends on the size and type of system being studied. Direct DFT

global optimisation is extremely computationally expensive and limits calculations

to around 10 atoms. This, however, is a highly interesting size range where quantum

size and relativistic effects, such as spin-orbit coupling, tend to determine structures

and the use of DFT is required to describe these interactions.26,63–65

This evaluation is combined with a local minimisation of a cluster’s potential

energy with respect to its atomic coordinates. This is performed using either an

internal L-BFGS routine or the in-built minimisation routine of the interfaced DFT

program.66 This transforms the complex energy landscape of the cluster into a sim-

pler stepped surface, as shown in figure 2.1. The clusters are assigned a fitness based

on their energy, with a higher fitness representing a lower energy.

A second generation, made up of offspring and mutants, is produced. The num-

ber of offspring and mutants in this new generation is fixed, with the number of

mutants normally set to be around 10% of the total generation.

Offspring are a product of crossover which is carried according to the Deaven and

Ho cut and splice method.21 Crossover requires two parent clusters to be selected.

This selection is based on the clusters’ fitness and performed through roulette wheel

selection. Clusters with a higher fitness have a higher probability of being selected

and passing on their structural characteristics to the next generation. Mutation is

8
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A0

A

B

B0

B’

C

C0

{X}

V

Figure 2.1: The transformation of the landscape of reaction coordinate X into a
stepped surface after local minimisation with repect to energy V.
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2.2. EMPIRICAL POTENTIALS CHAPTER 2

carried out according to a variety of mutation schemes, including atom-displacement,

homotop-swapping and the introduction of a new random geometry to the genera-

tion.

The program will go on creating and evaluating new generations of clusters

through crossover and mutation until convergence is achieved. This is defined as

being when the energies of the generation do not change for a set number of gener-

ations.

2.2 Empirical Potentials

2.2.1 Gupta Potential

The Gupta potential is based on the second moment approximation to tight-binding

theory and is constructed from an attractive many-body term, V m, and a repulsive

pair term, V r, summed over all N atoms.67

V
clus

=

NX

i

[V r

(i)� V m

(i)] (2.1)

where, for element types a and b and bond length r
ij

,

V r

(i) =
NX

j 6=i

A(a, b)e(�p(a,b)(rij/r0(a,b)�1)) (2.2)

and

V m

(i) =

"
NX

j 6=i

⇣2(a, b)e(�2q(a,b)(rij/r0(a,b)�1))

#1/2
. (2.3)

where A, ⇣, p and q are parameters fitted to experimental values of the lattice

parameters, experimental cohesive energies and elastic constants, respectively, at 0

K.68

10



2.3. MOLECULAR QUANTUM MECHANICS CHAPTER 2

2.3 Molecular Quantum Mechanics

2.3.1 Quantum Chemistry

The aim of quantum chemistry is solution of the non-relativistic, time-independent

Schrödinger equation.

ˆH = E (2.4)

The Hamiltonian operator, ˆH, is the differential operator for the energy of a molec-

ular system.

ˆH = �1

2

NX

i=1

r2
i

� 1

2

MX

A=1

1

M
A

r2
A

�
NX

i=1

MX

A=1

Z
a

r
iA

+

NX

i=1

NX

j>i

1

r
ij

+

MX

A=1

MX

B>A

Z
A

Z
B

R
AB

(2.5)

The M nuclei in the system are represented by A and B, with i and j representing

the N electrons.Here M
A

is the mass of nucleus A and r
pq

is distance between

particles p and q

Terms 1 and 2 of ˆH describe the kinetic energy of the electrons and nuclei.

Term 3 represents the effective electrostatic interactions between the nuclei and the

electrons. Terms 4 and 5 are the repulsive potentials due to electron-electron and

nucleus-nucleus interactions, respectively.

The Hamiltonian operator in equation 2.5 is shown in atomic units, where phys-

ical quantities are expressed as multiples of physical constants. The mass of nucleus

A, M
A

, is given as a multiple of the mass of an electron.

The Laplacian operator r2
q

is the sum of differential operators in cartesian co-

ordinates.

r2
q

=

@2

@x2
q

+

@2

@y2
q

+

@2

@z2
q

(2.6)

The wave function,  
i

, represents the i’th state of the system.

11
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i

(x1,x2, ...,xN

,R1,R2, ...,RM

) (2.7)

The system depends on the 3N spatial coordinates {r
i

} and N spin coordinates

{s
i

}, collectively termed {x
i

}, of the electrons and the 3M spatial coordinates of the

nuclei {r
i

}. The wave function  
i

contains all quantum information for a system.

In equation 2.4, E is the energy of the state described by  
i

.

The Born-Oppenheimer approximation assumes that because the mass of a nu-

cleus is far greater than that of an electron it is possible to make an approximation

that the electrons of a system will be moving in a field of fixed nuclei. As the nuclei

are clamped their kinetic energies become zero and the nucleus-nucleus repulsion

becomes a constant. The Hamiltonian in equation 2.5 now reduces to the electronic

Hamiltonian shown in 2.8

ˆH
elec

= �1

2

NX

i=1

r2
i

�
NX

i=1

MX

A=1

Z
a

r
iA

+

NX

i=1

NX

j>i

1

r
ij

=

ˆT +

ˆV
Ne

+

ˆV
ee

(2.8)

This makes the solution of Schrödinger equation with ˆH
elec

the electronic wave

function  
elec

, and the electronic energy E
elec

. The total energy E
tot

becomes the

sum of E
elec

and a constant nuclear repulsion term, shown in 2.9.

E
nuc

=

MX

A=1

MX

B<A

Z
a

Z
b

r
AB

(2.9)

E
tot

= E
elec

+ E
nuc

(2.10)

The square of  is the electron density ⇢(r), or the probability that electrons

1,2,...N are found simultaneously in volume elements dx1, dx2, ...., dxN

. The electron

density is defined as the multiple integral over all spin coordinates and all but one

spatial coordinate.

⇢(r) = N

Z
...

Z
| (x1,x2, ...,xN

)|2 ds1, dx2, ..., dxN

(2.11)

12
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2.3.2 Density Functional Theory

At the heart of density functional theory is the use of electron density to replace

the complicated N -electron wave function. The electron density, unlike the wave

function, is an experimentally observable quantity.

For the electron density to replace the wave function it must be possible to

construct the Hamiltonian from it. The Hamiltonian of a system is defined by three

variables, the number of electrons N , the nuclear charges Z
a

and the position of

the nuclei in space R
A

. The electron density has cusps corresponding to R
A

. The

positions of the nuclei are also related to the charges of the nuclei through equation

2.12. The total number of electrons can also be obtained by integrating the electron

density (equation 2.13).

lim

ria!0


@

@r
+ 2Z

a

�
⇢̄(r) = 0 (2.12)

Z
⇢(r1)dr1 = N (2.13)

The first proof that the Hamiltonian of a molecular system could be constructed

from the electron density was formulated by Hohenberg and Kohn in 1964.69 Their

first theorem states that ‘the external potential, V
ext

(r) is a unique functional of

⇢(r); since, in turn V
ext

fixes ˆH we see that the full many particle ground state is

a unique functional of ⇢(r)’.69 The ground state energy of a system, defined by an

external potential V
ext

, is therefore available through a functional of the ground state

electron density ⇢0, E0[⇢0], as are its underlying components.

Their second theorem states that the ground state energy of a system E0 is

obtained from the true ground state electron density ⇢0.

Kohn-Sham showed that the exact ground state energy E0 of an N -electron

system can be obtained from equation 2.14.70

13
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E[⇢] = � ~
2m

e

nX

i=1

Z
 ⇤
i

(r1)r2
1 i

(r1)dr1 �
NX

I=1

Z
Z

I

e2

4⇡✏0rI1
⇢(r1)dr1

+

1

2

Z
⇢(r1)⇢(r2)e2

4⇡✏0rI2
dr1dr2 + E

XC

[⇢]

(2.14)

The terms in 2.14 represent the kinetic energy of the electrons, the electron-

nuclei interactions, the coulombic interactions between all orbitals and the exchange-

correlation energy E
XC

, respectively. The exchange correlation energy is a functional

of the electron density representing all non-classical electron-electron interactions

but, its analytical expression is unknown and therefore requires approximation.

The Kohn-Sham orbitals  
i

(i = 1, 2, ..., n) are one-electron spatial orbitals

through which it is possible to obtain the exact ground state electron density ⇢0

at a given position r. This is achieved by summing over all occupied Kohn-Sham

orbitals, as shown in equation 2.15.

⇢ (r) =
nX

i=1

| 
i

(r)|2 (2.15)

The Kohn-Sham orbitals may be obtained through solving the Kohn-Sham equa-

tions shown in equation 2.16, where ✏
i

are the Kohn-Sham orbital energies and V
XC

is the exchange-correlation potential.

(
� ~2
2m

e

r2
i

�
NX

I=1

Z
I

e2

4⇡✏0rI1
dr2 +

Z
⇢ (r2) e2

4⇡✏0rI2
+ V

XC

(r1)

)
 
i

(r1) = ✏
i

 
i

(r1) (2.16)

To solve the Kohn-Sham equations an initial guess is made for the electron

density. The equations are then solved self-consistently by first computing V
XC

as

a function of r. An initial set of orbitals is obtained by solving the Kohn-Sham

equations and is used to compute an improved density using 2.15. This process

is repeated until the density and exchange-correlation energy converge, from which

point the ground state energy is obtained using 2.14.
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2.3.3 Exchange-Correlation Functionals

Several approximations are available for the exchange-correlation functional of the

Kohn-Sham equations, most of which are based on the Local Density Approximation

(equation 2.17).

ELDA

XC

[⇢] =

Z
⇢ (r) ✏

XC

(⇢ (r)) dr (2.17)

The Local Density Approximation (LDA) is based on the properties of the uni-

form electron gas, which is a hypothetical system of electrons against a positive

background charge distribution, whose form for its exchange and correlation ener-

gies is known. In equation 2.14 ✏
XC

(⇢ (r)) is the exchange-correlation energy of a

particle in this uniform electron gas.

Open-shell systems, have a differing number of spin-up, ↵, and spin-down, �,

electrons. These systems greatly benefit from the use of unrestricted exchange-

correlation functionals where two spin densities, ⇢
↵

and ⇢
�

, are used instead of one.

The LDA functional can be extended to depend on these two spin densities, becom-

ing the Local Spin Density Approximation (LSDA), with equation 2.17 becoming

2.18.

ELSDA

XC

[⇢
↵

, ⇢
�

] =

Z
⇢ (r) ✏

XC

(⇢
↵

(r) , ⇢
�

(r)) dr (2.18)

Applications of LDA and LSDA functionals are limited to solid-state applica-

tions. For molecular systems a variety of functionals, based on the Generalised

Gradient Approximation (GGA) are utilised. These include the gradient of the

density and are generally of the form given in equation 2.19.

EGGA

XC

[⇢
↵

, ⇢
�

] =

Z
f (⇢

↵

, ⇢
�

,r⇢
↵

,r⇢
�

] dr (2.19)
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Dispersion Correction

Van-der-Waals forces comprise three main interactions found within a molecular

system. These include the attractive or repulsive forces between two permanent

dipoles (Keesom force), the force due to the induction of an induced dipole due to

permanent dipoles (Debye forces) and the force between two instantaneously induced

dipoles (London dispersion forces). The London forces arise from the response of

electrons to instantaneous charge density fluctuations elsewhere in a system.

Exchange-correlation functionals fail to describe the London dispersion compo-

nent of the vdW forces. There are a range of methodologies available for the inclu-

sion of these forces within a DFT calculation, ranging in accuracy and additional

computational cost. The simplest of these is Grimme’s DFT+D2 correction. In the

DFT+D2 approach,71 the total energy is described by a sum of the Kohn-Sham en-

ergy, E
DFT

and a vdW semi-empirical pair correction E(2)
disp

, to account for missing

vdW forces.

E
DFT�D

= E
KS�DFT

+ E(2)
disp

(2.20)

E(2)
disp

is given by

E(2)
disp

= �s6

Nat�1X

i=1

NatX

j=i+1

C6
ij

R6
ij

f
dmp

(R
ij

) (2.21)

where N
at

is the total number of atoms, C6
ij

is the dispersion coefficient, R
ij

is the

bond distance for atom pair ij and s6 is the global scaling factor, dependent on

the choice of exchange-correlation functional. A damping factor, f
dmp

, is used to

prevent singularities at small distances.

Several methods building on Grimme’s method seek to achieve higher accuracy

while maintaining the low computational cost. These methods seek to improve

the accuracy of the C ij

6 terms by introducing some environmental dependence to

the term.. Methods of this type include those of Tkatchenko and Scheffler, Becke-

Johnson and Grimme’s DFT+D3 approach.72–74
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The DFT+D3 approach seeks to improve on the accuracy of DFT+D2 through

on-the-fly calculation of dispersion coefficients during the DFT calculations and the

inclusion of a three-body component to the E
disp

term,

E
disp

= E(2)
disp

+ E(3)
disp

(2.22)

where E(3)
disp

is given by

E(3)
disp

=

X

ABC

f
f(3) (r̄ABC

)EABC (2.23)

and the sum is over all triples ABC. Geometrically averaged radii r̄ABC are used in

the damping function, f
f(3). The inclusion of three-body terms increases the scaling

of the computational cost from O(N2
atoms

) to O(N3
atoms

) but the cost of the inclusion

of the D3 correction is still negligible when compared with the overall cost of a DFT

calculation.

The optPBE functional is an example of the vdW-DF approach,75–78 which re-

quires no external input and instead seeks to treat dispersion interactions directly

using the electron density. The exchange-correlation energy is given by

E
XC

= EGGA

x

+ ELDA

c

+ Enl

c

, (2.24)

where EGGA

x

is the exchange energy for a given GGA functional and ELDA

c

is the

LDA correlation energy. Dispersion is included directly using a non-local correlation,

Enl

c

, which is calculated using a double space integral of the form

Enl

c

=

ZZ
dr1dr2 n (r1)' (r1, r2)n (r2) , (2.25)

where n(r) is electron density and ' is an integration kernel. The choice of exchange

functional important, as Dion’s original revPBE approach was shown to produce

intermolecular binding distances which were too large.78 The optPBE functional

seeks to overcome these problems by using a less repulsive exchange functional.
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2.3.4 Plane-Wave DFT

It is possible to solve the Schrödinger equation for a periodic system, defined by

lattice vectors a1, a2 and a3 using Bloch’s theorem. The solution is a sum of terms

given in equation 2.26.

 k (r) = eik·ruk (r) , (2.26)

The functions eik·r are known as plane-waves and make it possible to solve the

Schrödinger equation in terms of k, rather than r. While the vectors r exist in real

space the k exist in reciprocal space, or k -space, and are defined by their reciprocal

lattice vectors, b1, b2 and b3. Reciprocal space is such that a larger real vector is

represented by a shorter reciprocal vector.

A primitive cell in k -space is known as the Brillouin zone. There are several

important points in the Brillouin zone, the most significant of which is the point at

which k = 0, or the �-point.

It is possible to expand uk (r), where uk (r) is a periodic function with the same

periodicity of the cell, in terms of plane waves,

uk (r) =
X

G

cGe
[iG·r], (2.27)

where the vectors defined by G are in reciprocal space. The combination of equations

2.26 and 2.27 gives

 k (r) =

X

|G+k|<Gcut

ck+Ge
[i(k+G)r]. (2.28)

The summation in 2.28 is truncated to only include solutions with a kinetic

energy less than G
cut

, otherwise the solution would require an infinite summation

over all possible values of G.

Large cut-offs are required for plane waves oscillating on short length scales,

which is exactly the behaviour of the wave functions of core electrons. These core
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electrons, however, are normally not involved in bonding and can instead be replaced

with pseudopotentials. This approximation reduces the number of plane waves re-

quired in a calculation and reduces the overall computational cost. Commonly

used pseudopotentials are ultrasoft pseudopotentials and projector augmented-wave

pseudopotentials.

2.4 Statistical Mechanical Methods

2.4.1 Free Energy Concentration Expansion Method

The free energy concentration expansion method (FCEM) is a statistical mechan-

ical approximation for the prediction of chemical ordering in NAs of up to 1000

atoms.12,79

FCEM expressions for binary alloys are obtained using the Ising model Hamil-

tonian and an expansion of the partition function and free energy in terms of solute

concentration. The free energy of a multicomponent alloy consisting of distinct

arrays of N
p

(p = 1, 2...) geometrically identical atomic sites, characterised by con-

centrations, cI
p

of constituents I, is given by12

F = kT
X

p

 
N

p

X

I

cI
p

ln cI
q

!
(2.29)

+

X

pq

 
N

pq

1

2

X

I

wII

pq

(cI
p

+ cI
q

)

!

�
X

{IJ}

"
V IJ

pq

�
cI
p

cJ
q

+ cJ
p

cI
q

�
+ kTcI

p

cJ
p

cI
q

cJ
q

1

b
ln

 
cosh

 
b
2V IJ

pq

kT

!!#
.

Clusters are treated as a series of symmetry inequivalent shells belonging to the

different layers of a cluster.80 Numerical minimisation of F gives all I-constituent

equilibrium concentrations for shell number p, cI
p

. The model requires the input of

the number of atoms in each shell, N
p

, and the number of nearest-neighbour (NN)

broken-bonds belonging to p and q shells.
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The first term in the expression is the configurational entropy of the system,

the second term contributes the homoatomic interactions, wII

pq

, the third term the

effective heteroatomic interactions, V IJ

pq

, between constituents I and J. The last term

is the short range order contribution (b is obtained by fitting FCEM predictions to

Monte Carlo simulations).79

Homoatomic interactions, wII

pq

, can be derived using several methods. It can be

estimated using site energies derived from experimental dimer bond energies, surface

energies and cohesive energies, using the Naval Research Laboratory tight-binding

(NRL-TB) method or through the coordination dependent bond energy variation

method (CBEV).79,81,82 The effective heteroatomic interactions, V IJ

pq

are estimated

using the �H
mix

of a system.

Using FCEM it is also possible to minimise the free energy for a series of tem-

peratures, giving the temperature dependence of site concentrations. This can be

used to characterise phase separation in alloy systems.

2.4.2 Coordination Dependent Bond Energy Variations

In order to understand fully the role bond energy variations, �w
pq

, play in systems

with small atomic mismatches, or similar heteroatomic interactions, more reliable

energetic data is required. One such method for obtaining more accurate �w
pq

is

the use of coordination-dependent bond energy variations (CBEV), extracted from

DFT-computed surface energies.82

The surface energy of a system can be written in terms of NN pair-bond-energy

variations, �w
pq

, relative to that of the bulk value, w
b

, and the number of broken

bonds, �Z
p

as

E
s

=

X

p

1

2

0

@
X

q(q 6=p

�wII

pq

��Z
p

w
b

1

A . (2.30)

The functional dependence of CBEV is approximated by a polynomial function.

The coefficients of the polynomial are fitted to the DFT computed energies for six
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surfaces (111), (100), (110), (311), (331) and (210).

For a p � q pair-bond with �Z
p

and �Z
q

NN broken bonds, the variation,

�w
pq

, is considered as a polynomial of two coordination variables: one symmetric,

x
pq

= �Z
p

+ �Z
q

, for the total number of broken bonds and one anti-symmetric,

y
pq

= �Z
p

��Z
q

, which takes into account the possible non-equivalence of two sites.

DFT-calculated surface energies are mapped into the six-coefficients of a poly-

nomial (a(1,0), a(2,0), a(0,2), a(3,0), a(1,2), a(4,0)) and odd powers of y are omitted due to

symmetry considerations (�w
pq

= �w
qp

)

�w
pq

= a1,0xpq

+ a2,0x
2
pq

+ a0,2y
2
pq

+ a3,0x
3
pq

+ a1,2xpq

y2
pq

+ a4,0x
4
pq

. (2.31)

The use of a polynomial allows energy variations to be treated as coordination-

dependent functions, rather than numerical values. This ensures transferability

between different geometries without the need to refit interactions.

2.5 Energetics

2.5.1 Binding Energy

The binding energies E

b

were calculated using the following expression

E

b

=

E

AnBm � (nE
A

+mE

B

)

N
(2.32)

where E

AnBm is the total energy of the cluster and E

AN and E

BN are the spin-

polarised atom of type A and B.
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3 | The Structural Characterisation

of Palladium-Iridium Nanoalloys

3.1 Introduction

PdIr NAs are currently under investigation for their application in a wide-range of

catalytic processes. A vital first step in rationalising these catalytic properties is

their structural characterisation. In the following studies of PdIr nanoalloys three

methods were utilised to achieve this; direct DFT global optimisation with the

BCGA-DFT method, a hybrid approach utilising the BCGA-Gupta method and

subsequent DFT calculations and the FCEM/CBEV statistical mechanical method.

In publication 1 the direct DFT global optimisation of N = 8 � 10 Pd
n

Ir
N�n

clusters is performed using the BCGA-DFT method.63 Significant quantum-size ef-

fects are revealed in the system. Cubic structures are seen for Ir and Ir-rich clusters,

including Pd2Ir6, Pd3Ir6 and Pd4Ir6 as shown in figure 3.1. The mixing energies

of clusters were in many cases found to be positive, an indication of the preference

for the monometallic structures over the bimetallic.83 The spin of these clusters was

further investigated through a series of reoptimisations at various fixed multiplicities.
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Figure 3.1: Cubic structures of Pd2Ir6, Pd3Ir6 and Pd4Ir6 from BCGA-DFT calcu-
lations.

Publication 2 is a comparative study of two methods used for the characterisation

of structure and chemical ordering in NA systems. The first, more commonly used

method, was a hybrid approach whereby low energy minima are produced using

the BCGA-Gupta method. A selection of the minima are taken and their ordering

refined using DFT local minimisation.84 The global minima produced from this

hybrid approach were compared with those produced by the FCEM/CBEV method.

Statistical mechanical methods are less commonly used for the structural char-

acterisation of nanoalloys but offer some distinct advantages.85,86 The FCEM is such

a method, which is capable of predicting the chemical ordering of a fixed NA geom-

etry. This approach has a very low computational cost when compared with other

global optimisation and DFT-based methods and is capable of characterising the

compositional ordering of NPs of thousands of atoms.12 These methods rely on the

accuracy of the input energetics. FCEM utilises accurate bond energy variations de-

rived from the CBEV method,87 which itself relies on the input of surface energies

calculated using DFT.88

In this study surface energies were calculated for Pd and Ir for the (111), (110),

(100), (311), (331) and (210) surface orientations. These were then used, in combi-

nation with the corrected cohesive energies of Pd and Ir,89 in the parametrisation

of the CBEV parameters used in the FCEM calculations that followed.

FCEM calculations were performed on the 38-atom Pd4Ir34, Pd8Ir30 and Pd20Ir18

and 79-atom Pd4Ir75 and Pd8Ir70 truncated octahedra. Local minimisations were

performed on the resulting structures and compared with the results of the hybrid
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BCGA-Gupta/DFT method. The results of the FCEM/CBEV calculations were

shown to be accurate, especially in the case of the 79-atom cluster.
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3.2 Publication 1
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the DFT Level
Jack B. A. Davis, Sarah L. Horswell, and Roy L. Johnston*

School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom

*S Supporting Information

ABSTRACT: The global optimization of PdnIr(N−n) N = 8−10 clusters
has been performed using the Birmingham Cluster Genetic Algorithm
(BCGA). Structures were evaluated directly using density functional
theory (DFT), which has allowed the identification of Ir and Ir-rich PdIr
cubic global minima, displaying a strong tendency to segregate. The
ability of the searches to find the putative global minimum has been
assessed using a homotop search method, which shows a high degree of
success. The role of spin in the system has been considered through a
series of spin-restricted reoptimizations of BCGA-DFT minima. The
preferred spin of the clusters is found to vary widely with composition,
showing no overall trend in lowest-energy multiplicities.
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Comparative Modelling of Chemical Ordering in Palladium-Iridium Nanoal-

loys

Authors

Jack B. A. Davis, Sarah L. Horswell and Roy L. Johnston

Journal The Journal of Chemical Physics

Volume 141

Pages 224307

DOI 10.1063/1.4903188

Submitted

1st October 2014

Accepted

18th November 2014

3.3.1 Author Contribution
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on the 38, 79 and 201-atom NAs. The author also performed the BCGA-Gupta

calculations and the DFT calculations on the low energy minima which were used

for the comparison.
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Comparative modelling of chemical ordering in palladium-iridium
nanoalloys

Jack B. A. Davis,1 Roy L. Johnston,1,a) Leonid Rubinovich,2 and Micha Polak2,b)
1School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
2Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Received 1 October 2014; accepted 18 November 2014; published online 9 December 2014)

Chemical ordering in “magic-number” palladium-iridium nanoalloys has been studied by means of
density functional theory (DFT) computations, and compared to those obtained by the Free En-
ergy Concentration Expansion Method (FCEM) using derived coordination dependent bond energy
variations (CBEV), and by the Birmingham Cluster Genetic Algorithm using the Gupta potential.
Several compositions have been studied for 38- and 79-atom particles as well as the site prefer-
ence for a single Ir dopant atom in the 201-atom truncated octahedron (TO). The 79- and 38-atom
nanoalloy homotops predicted for the TO by the FCEM/CBEV are shown to be, respectively, the
global minima and competitive low energy minima. Significant reordering of minima predicted by
the Gupta potential is seen after reoptimisation at the DFT level. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4903188]
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4 | Small Molecule Adsorption and

the Effect of Dispersion

Correction

4.1 Introduction

The following publications set out to determine the most favourable adsorption sites

on a variety of mono- and bimetallic NAs, which after structural characterisation,

is the next step in rationalising the catalytic properties of a NA.

In Publication 3 random search global optimisation method is used to determine

the most favourable, or lowest energy, adsorption site.90 This is a relatively sim-

ple method whereby a predetermined NA structure is placed adjacent to a ligand

molecule. The NA is then rotated randomly while the ligand molecule remains fixed.

The system is then locally minimised using VASP. This procedure is repeated for

a fixed number of steps and the lowest energy adsorption site is then taken. This

program is available through Bitbucket.91

This method was applied to the 38-atom PdIr truncated octahedra (TO) ob-

tained using the FCEM/CBEV methodology. These were ideal structures to study

the effect of the composition on the adsorption properties of a NA system. The lowest

energy adsorption site were determined for H2 and benzene for three compositions,

Pd4Ir34, Pd8Ir30 and Pd20Ir18, and the monometallic TO structures. Significant

quantum-size effects in adsorption of H2 were seen in the Ir and Ir-rich system.
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Publication 4 is a study of the effect of a variety of dispersion corrections on

the adsorption of CO on monometallic Pt, Au, Pd and Ir 38-atom TO and 55-atom

Icosahedral (Ico) structures. The effect of dispersion corrections is of significant

current interest and has not been previously investigated for NPs.92,93 The effect

of Grimme’s D2 and D3 corrections and the optPBE vdW exchange-correlation

functional are compared with results using the standard PBE exchange-correlation

functional. Significant effects are seen in the Pt and Au systems, with limited effects

seen for the Ir and Pd clusters. Some differences are also seen when comparing the

TO and Ico geometries.

While other higher-level methods which accurately describe dispersion are avail-

able,94,95 the choice of the D2 and the D3 dispersion corrections was based on their

current application in a wide range of computational studies and their low compu-

tational cost.71,74,96 The choice of optPBE was based on a comparison of a range of

vdW exchange-correlation functionals. These seek to calculate the dispersion forces

directly from the electron density, not from pre-computed coefficients such as D2

and D3. Five exchange-correlation functionals were tested, vdW-DF, vdW-DF2,

optPBE, optB86 and optB88.75,77,78,97,98 The binding energy E
b

was calculated for

Pt, Au, Pd and Ir 38-atom TOs (table 4.1) and compared with the standard PBE

results. The opt functionals are all optimised for metallic systems. The optPBE

functional was chosen for our study because it gives E
b

values similar to the PBE

exchange-correlation functional. The gaps in table 4.1 are due to convergence issues

with the optB88 functionals.

Pt Au Pd Ir
E
b

/ eV E
b

/ eV E
b

/ eV E
b

/ eV
PBE -4.391 -2.415 -2.824 -5.698
optB86 -4.782 -2.741 -3.102 -6.476
optB88 - -2.619 - -4.343
optPBE -4.418 -2.455 -2.777 -5.989
vdW-DF -3.947 -1.752 -2.390 -5.441
vdW-DF2 -4.086 -2.102 -2.433 -5.138

Table 4.1: Binding energies E
b

, per atoms, for the 38-atom Pt, Au, Pd and Ir TOs
for PBE and vdW exchange-correlation-functionals.
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The Effect of Dispersion Correction on the Adsorption of CO on
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ABSTRACT: The effect of dispersion corrections at a range of theory
levels on the chemisorption properties of metallic nanoparticles is
presented. The site preference for CO on Pt, Au, Pd, and Ir nanoparticles
is determined for two geometries, the 38-atom truncated octahedron and
the 55-atom icosahedron using density functional theory (DFT). The
effects of Grimme’s DFT-D2 and DFT-D3 corrections and the optPBE
vdW-DF on the site preference of CO is then compared to the “standard” DFT results. Functional behavior is shown to depend
not only on the metal but also on the geometry of the nanoparticle with significant effects seen for Pt and Au. There are both
qualitative and quantitative differences between the functionals, with significant energetic differences in the chemical ordering of
inequivalent sites and adsorption energies varying by up to 1.6 eV.
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5 | The Development of Parallel Ge-

netic Algorithms

5.1 Introduction

The following publications outline the development of a parallel methodology for

the DFT global optimisation of metallic NPs and NAs and its application to small

monometallic Au and Ir clusters and AuIr NAs, both in the gas-phase and supported

on a MgO(100) surface.

In publication 5 the parallel pool methodology is presented and implemented

within the BCGA. This new scheme was benchmarked through its application to

the global optimisation of Au5Ag5, using the Gupta potential, and Au10, at the DFT

level. Further testing was performed on Au20, which allowed the parallelism of the

method to be assessed.

The successful application of the methodology was followed by the development

of the Birmingham Parallel Genetic Algorithm (BPGA),99 a new object-oriented

Python-based program. The BPGA was developed specifically for the direct DFT

global optimisation of clusters, utilising an interface to the Vienna Ab-initio Simu-

lation Package (VASP).100–103 The choice of both an object-oriented design and the

Python programming language was to ensure a highly-transferable, modifiable and

easily maintainable code.

In publication 7 the BPGA was applied to the global optimisation of Ir
N

N =

10� 20 clusters, a system under investigation for its catalytic properties.43,104 Per-
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forming the global optimisation at the DFT level of theory revealed the cubic struc-

tures seen in Ir clusters of this size.28,105–107 The structures of several sizes were

revealed for the first time.

The draft publication demonstrates the application of the BPGA to the global

optimisation of gas-phase and supported N = 4�6 Au
n

Ir
N�n

NAs. There is a large

computational cost associated with performing a global optimisation in the presence

of a surface MgO(100) slab and therefore these calculations benefited from the paral-

lelism of BPGA. This study revealed significant differences in the surface-absorbed

and gas-phase global minimum structures, including differences in structure and

chemical ordering.
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5.2 Publication 5

Title

Pool-BCGA: A Parallelised Generation-Free Genetic Algorithm for the Ab-

Initio Global Optimisation of Nanoalloy Clusters

Authors

Armin Shayeghi, Daniel Götz, Jack B. A. Davis, Rolf Schäfer and Roy L.
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5.2.1 Author Contribution

The development of the pool genetic algorithm and its implementation within the

BCGA was performed by Armin Shayeghi and Daniel Götz ((T.U. Darmstadt). The

author’s contribution to this work was the testing of the pool methodology and its

application to the Au20. The application to Au20 allowed the parallelism of the

methodology to be tested on a large system whose gas-phase structure is widely

known.27
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Pool-BCGA: a parallelised generation-free genetic
algorithm for the ab initio global optimisation of
nanoalloy clusters

A. Shayeghi,*a D. Götz,b J. B. A. Davis,c R. Schäfera and R. L. Johnston*c

The Birmingham cluster genetic algorithm is a package that performs global optimisations for homo- and

bimetallic clusters based on either first principles methods or empirical potentials. Here, we present a new

parallel implementation of the code which employs a pool strategy in order to eliminate sequential steps

and significantly improve performance. The new approach meets all requirements of an evolutionary

algorithm and contains the main features of the previous implementation. The performance of the pool

genetic algorithm is tested using the Gupta potential for the global optimisation of the Au10Pd10 cluster,

which demonstrates the high efficiency of the method. The new implementation is also used for the

global optimisation of the Au10 and Au20 clusters directly at the density functional theory level.

1 Introduction
Modern nanoscience involves the study of promising nanoscale
materials, which exhibit a wide variety of interesting physical
and chemical properties. Nanoparticles composed of atoms
and molecules lie between the atomic and bulk regimes with
strongly size and composition dependent properties.1 It remains
desirable to close the gap between well-understood bulk properties
and our knowledge of atomic behaviour in nanoscale research.

A detailed structural characterisation of this transition regime
is therefore of high interest in order to rationalise the exceptional
characteristics of nanoscale materials. Generating geometric
structure candidates for a comparison with experimental obser-
vations is laborious for large systems and eventually becomes
infeasible. From a theoretical view it is useful to carry out a
global optimisation of the potential energy surface (PES) as a
function of all coordinates, while the level of theory needed has
to adequately represent the system being studied.

Since the electronic structure of large nanoparticles is expected
to resemble the bulk phase, tailored model or empirical potentials
(EPs) such as Gupta,2 Sutton–Chen,3 and Murrell–Mottram,4 fitted
to properties of the solid phase, enable a reasonable description
of the PES. For smaller nanoparticles, i.e. nanoclusters, a
quantum chemical treatment becomes necessary for which

the computational costs are greater than in the case of using
EPs. But unbiased global optimisation at this higher level of theory
therefore requires the development of an efficient algorithm.

Nanoalloys (nanoparticles composed of more than one
metal) are of considerable interest for their catalytic, optical
and magnetic properties.5 Their global optimisation is further
complicated by the presence of a large number of homotops –
inequivalent permutational isomers.6,8 For this reason, the
strategy was developed of optimising selected structures with
DFT after searching by means of atomistic models using the
second-moment approximation to the tight-binding model
(SMATB).7 Evolutionary algorithms such as the Lamarckian
Birmingham cluster genetic algorithm (BCGA),9 which combines
local minimisation with a genetic algorithm (GA), are useful tools
for searching the conformational space for the global minimum
(GM) structure and lowest-energy local minima, especially when
combined with first principles methods in the density functional
theory (DFT) based BCGA approach.10 This procedure notably
enables the theoretical investigation of elaborate mono- and
bimetallic clusters using a GA with results consistent with
experiments.11–16 For details on global optimisation algorithms,
especially focused on genetic algorithms and basin hopping
techniques, the reader is referred to the literature.17,18

The first use of GAs for global geometry optimisation of mole-
cular clusters was reported by Hartke,19 and Xiao and Williams,20

using binary encoded geometries and bitwise acting genetic
operators on binary strings.21–23 Later a GA approach that
operated on cartesian coordinates of the atoms was introduced
by Zeiri,24 which removed the requirement for encoding and
decoding binary genes.9 This was followed by the development
of GAs for cluster optimisation by Deaven and Ho,25 who
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performed gradient driven local minimisations for newly
generated cluster structures. Further, Doye and Wales established
how local minimisations effectively transform a multidimensional
PES into a staircase-like surface, where the steps represent basins
of attraction.26 This coarse-grained representation of the PES
reduces the conformational space and therefore simplifies the
PES that the GA has to search. The local minimisations generally
correspond to a Lamarckian evolution, since individuals pass on a
proportion of their characteristics to their offspring. This proce-
dure has been found to improve the efficiency of global optimisa-
tions and is implemented within the BCGA program, following
the approach of Zeiri using real-valued cartesian coordinates.9,24

Recent GA implementations are the OGOLEM code for arbitrary
mixtures of flexible molecules of Dieterich and Hartke,27 the hybrid
ab initio genetic algorithm (HAGA), for surface and gas-phase
structures,28,29 and the gradient embedded genetic algorithm
program (GEGA) for the global optimisation of mixed clusters
formed by molecules and atoms.30,31 Very recently the surface
BCGA (S-BCGA)32 and the first principles based GA of Vilhelmsen
and Hammer33 for the global optimisation of supported clusters
have been reported. Also very recently the perturbation theory
re-assignment extended GA for mixed-metallic clusters has
proven to be very useful.34

The traditional generation based BCGA program is a sequential
code where local optimisations of individuals are not independent
from one-another. In fact, a limitation on treatable cluster sizes
or rather the level of computational sophistication arises due to
the sequentially performed geometry optimisations acting as a
bottleneck.35 Newly created individuals of a given population
are geometrically relaxed with respect to their total energy.
The best population members, with respect to their fitness
(determined by a fitness function which depends on the total
energy), are then selected for mating and mutation in order to
create novel structures and to form the next generation. This
cycle is then repeated until the energy of the lowest-lying isomers
changes by less than a specified threshold within a certain number
of generations. Thus, if more than the optimum number of

processors is used in a first principles based global optimisa-
tion, the overall CPU time plateaus and the cores are used
inefficiently due to the imperfect parallelisation of the local
optimisations. In order to improve the efficiency of this
approach, the goal must be to enable the independent relaxa-
tion of several geometries at the same time as schematically
shown in Fig. 1, where several GA processes simultaneously
optimise geometries managed by a global database (pool). This,
however, cannot be implemented efficiently within the generation-
based BCGA program.

Since the DFT-BCGA code employed here makes use of a
plane-wave self-consistent field (PWscf) pseudopotential
approach, a benchmark calculation of a geometry optimisation
for the predicted GM structure of Au20 (Td symmetry)36–38 has
been performed in order to demonstrate the importance of an
improved GA parallelisation to counter the imperfect DFT
parallelisation. The total CPU time in these minimisations,
starting from a random atom displaced version of the already
optimised structure is shown in Fig. 2. The Au20 cluster was
chosen for the benchmark calculations since, especially for
such a large system, local optimisations lead to a slowdown in
the global optimisation. The corresponding benchmark calcu-
lations indicate that the optimum number of processors should
be below 100 cores (the best price-performance ratio should be
for 36–64, as shown in the inset of Fig. 2) since a larger number
of cores would not speed up the calculations efficiently. The
total CPU time can be reduced by one order of magnitude going
from 10 cores to 100 but does not improve significantly when
using up to 300 cores. Benchmark calculations for a local
optimisation of the Au10 cluster show the same tendency, with
lower absolute CPU time, and are therefore not shown here.
This indicates the importance of developing a parallelised GA

Fig. 1 Scheme of a global database (containing structural information)
organizing slaves which independently apply genetic operators to the n
individuals of the database. The population is held by a master acting as a
pool of constant size.

Fig. 2 Logarithmic benchmark plot of a local relaxation for the Td isomer
of Au20 starting from a random atom displaced version of the already
optimised structure at the PBE/PWscf level of theory. It is shown, that the
optimum number of processors is below 100 cores in this case as using a
larger number of cores would not scale efficiently. The inset shows
the derivative of the total CPU time versus the number of processors.
The optimal number of processors for the global optimisation is in the
range 36–64.
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code which uses several GA subprocesses performing local
minimisations on an efficient and ideal number of processors
(48 cores in this case) at the same time, managed by a global
database (see Fig. 1).

In this work, we present a significantly improved GA implemen-
tation which incorporates the BCGA and eliminates serial bottle-
necks by replacing the generation based GA approach by a flexible
pool model,35 here denoted as pool-BCGA. Within this pool strategy
individual subprocesses share the entire work leading to a paralle-
lisation of the algorithm. This procedure allows several geometry
optimisations to be run at the same time. The gain in speed is
obvious as local optimisations are the bottlenecks in a global
optimisation, especially when using ab initio methods in local
relaxations. In principle, one could also think about running parallel
geometry optimisation tasks in the generation based BCGA. But,
several ongoing optimisations would have different time demands
and therefore each generation would have to wait for the slowest
population members leading to processor idle times.

The development of parallel GA implementations has previously
been reported for both atomic and molecular clusters,27,33,35,40,41

Global geometry optimisation at the DF T42 or ab initio43 level is
generally found to be very expensive and not suitable for larger
clusters, for which global optimisation at a lower level of theory
would be appropriate. This leads to the commonly found two-stage
procedure of performing the global search at e.g. the force-field or
semi-empirical level, followed by a DFT or ab initio refinement of
the best candidates.44 In the DFT-BCGA code used in this work, the
global optimisation is performed at the relatively cheap pseudopo-
tential PWscf level, which enables larger systems to be treated at
the DFT level, while the best candidates can still be refined using a
higher level of theory. However, the direct GA method is easily
implemented with higher level approaches such as MP2 and CC
calculations. The flexible concept replaces the generation based
algorithm by using a global database consisting of geometric and
energetic information about a specified number of individuals.
Several independent subprocesses make use of this database by
applying mating and mutation operators to the pool members and
form new individuals. These new individuals compete with current
members of the pool and are immediately added to the pool if they
are lower in energy.

We first test the method for the global optimisation of the
Au10Pd10 cluster, using the Gupta potential, for an extensive
statistical analysis of the new implementation. The 20-atom
cluster is also interesting from a catalytic point of view,45 and
offers an ideal test system, especially due to the large number of
homotops N = (NAu + NPd)!/NAu!NPd! E 185 000 for a given
geometry.8 The resulting knowledge from these investigations,
in terms of mating and mutation, is further used for the DFT
based global optimisation of the Au10 cluster. It represents a
suitable test system for the DFT case in order to compare
the efficiency of both implementations, as it has been well
studied in the past.38,46,47 Finally, the parallelisation of the code
is tested by carrying out the global optimisation of Au20 at the
DFT level, a system previously well studied experimentally36,37

while geometries have been found by genetic algorithms38,48 and
the basin-hopping approach39 based on DFT.

2 Methodology
2.1 Computational details

In the benchmark calculations, employing the Gupta empirical
potential in geometry optimisation steps, many-body scaling
parameters are chosen according to values for Au–Pd nanoclusters
with 34-/38-atoms49 and 98-atoms13 from the literature.

In the DFT calculations, the Perdew–Berke–Ernzerhof (PBE)
xc functional,50 and ultrasoft pseudopotentials of the Rabe–
Rappe–Kaxiras–Joannopoulos type,51 with nonlinear core
corrections are employed. For the calculation of electronic
energies, a kinetic energy cutoff of 40 Ry and an electronic self
consistency criterion of 10!5 eV are used. The efficiency
of electronic convergence for metallic states is improved using
the Methfessel–Paxton smearing scheme.52 Local relaxations
are performed with total energy and force convergence thresh-
old values of 10!3 eV and 10!2 eV Å!1, respectively. All DFT
calculations are performed within the Quantum Espresso (QE)
package.53

2.2 Pool-BCGA

To make use of the flexible parallelisation possibilities asso-
ciated with a pool configuration, the application of mating
and mutation operators to given geometries and their local
optimisation and fitness assignment is managed by indepen-
dently working pool-BCGA subprocesses synchronizing with a
global database. As well as handling the atom coordinates and
total energy of all structures currently in the pool, the global
database is also needed to coordinate the individual sub-
processes during runtime. The general workflow of the pool
strategy is depicted in Fig. 3. The first step (‘‘initial-mode’’)
consists of constructing an initial pool of individuals by

Fig. 3 The genetic operators are applied by the subprocesses on the
members of this pool. The flowchart shows how a single pool subprocess
works independently from other instances, while all subprocesses
communicate with the global database.
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generating random structures within a spherical or cubic
simulation cell, which is set to be larger than the dimensions
of the random cluster. This continues until the desired pool
size is reached followed by the second step (‘‘pool-mode’’). In
the pool-mode, mating and mutation operators are employed
on clusters chosen according to either a roulette selection
condition, where a random selection is weighted by the assigned
fitness, or a tournament selection, and adopt the Deaven–Ho
crossover method using a cut and splice crossover operator.25

Random rotations are performed on parent clusters which
are then cut horizontally about one (1-point) or two (2-point)
positions parallel to the xy plane. Complementary fragments are
then spliced together. For 1-point crossover, the cutting plane
can be chosen at random or weighted according to the relative
fitnesses of the two parents, while in the 2-point case the cutting
planes are chosen at random.

In contrast to the default settings of the generation based
GA, where the number of offspring grows with an increasing
mutation rate, in a pool-GA calculation mutation and mating
are performed with a certain probability as the pool size is kept
fixed. This must be taken into account when setting the
parameters in a typical pool-GA run. The offspring structures
compete with the structures present in the pool according
to their total energy after their local optimisation. Offspring
with a better fitness (lower total energy) replace higher lying
pool members. After checking for repeated optimised struc-
tures using a moments of inertia selection routine, the pool is
sorted by ascending total energy. Finally, convergence is
achieved when the minimum energy in the pool changes by
less than a pre-defined energy difference (typically 10!3 eV)
within a specified total number of optimised geometries.
This ensures an elitist behaviour of the GA in combination
with good diversity in the pool. If convergence is not reached,
the subprocesses start a new cycle, repeating the steps
described above.

When executing the pool-GA, general runtime configuration
settings are read from input files before the GA initially
synchronises with the global database. The GA then enters
the pool convergence loop. If the convergence criterion is not
reached, the GA continues with a check for the current mode
(‘‘initial-’’ or ‘‘pool-mode’’). As mentioned above, initial-mode
means that new structures are created by randomly choosing
atom coordinates inside the simulation cell while the pool-
mode uses either mating or mutation operators in order to
form new individuals. The new structures are then locally
optimised by either passing the atom coordinates to an external
ab initio quantum chemistry program (e.g. QE53 or NWChem54)
or one of the empirical potentials (e.g. Gupta) embedded in the
code. This pool-based approach allows the code to be easily
restarted if it runs out of CPU time. The user is left free to
restart as many subprocesses as preferred, depending on the
available computational resources. However, aborted local
optimisations are not restarted. Instead, new subprocesses
are initiated, starting with new geometries which are generated
from the current pool configuration by the evolutionary principles
mentioned above.

3 Results and discussion
3.1 Assessment with the Gupta potential: Au10Pd10

Here the a single pool-GA subprocess and the previous genera-
tion based GA are applied to the global optimisation of the
Au10Pd10 cluster using the Gupta potential. This procedure
serves as a test of the implementation before the GA is extended
to the DFT-based version. Using a less expensive calculation also
allows the parameter space for using the pool-GA to be classified
and to show the equivalence of both implementations. However,
only the parameters in which the two implementations differ
substantially are tested here. For a detailed description of the
BCGA code in general its functionality and settings, the reader is
directed to the literature.9

Fig. 4 compares the pool-GA, for different pool sizes, to a
random structure search. The same mutation rate is used in all
calculations, with an atom exchange mutation rate of 0.5 because of
homotops, beside the cluster replacement mutation adding new
random structures. By applying the atom exchange mutation opera-
tor to the replacement mutation, the GA becomes considerably
more efficient.17,55 The solid lines represent averaged evolutionary
progress plots from 1000 GA runs for each case. Evolutionary
progress plots describe the evolution of the globally lowest-lying
structure with the number of generations or optimised structures,
respectively. The runs are averaged in order to test reproducibility
and permit a meaningful statistical statement. Increasing the
population size tends to reduce the efficiency of finding the GM.
This is due to the increasing number of individuals in the pool
and taking into consideration the same roulette selection
scheme and parameters used in all calculations, a higher prob-
ability for selecting bad parents is to be expected when the pool
size is increased. The optimum population size should be large

Fig. 4 Comparison of averaged evolutionary progress plots for different
population sizes for a single pool-GA subprocess. A constant mutation rate
of 0.2 with an atom exchange rate of 0.5 is employed. Each solid line
represents the evolution of the global energetically lowest-lying structure
versus the number of optimised structures averaged over 1000 GA runs
to demonstrate reproducibility. The implementation is also compared to
a random structure search as internal standard for probing the general
efficiency and comparability.
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enough to accommodate a high structural diversity, but small
enough to remain largely elitist. A comparison to the generation-
based GA, in the same way as mentioned above, shows the same
behaviour and is therefore not depicted here. The random struc-
ture search, which in both cases acts as an internal standard,
illustrates the high efficiency of both GA implementations in
general and shows that a single pool-GA subprocess has a
comparable efficiency to the generation-based GA. The pool-GA
and the generation based approach compare well, as shown in
Fig. 5, where both implementations are compared to a random
structure search. Typically, the random search is not able to find
the GM. Fig. 6 shows lognormal fits to probability densities of
finding the GM after a certain number of optimised structures
within the 1000 GA runs for several pool sizes. An additional
plot, embedded in this figure, describes the linear scale up of
the maximum number of optimisations needed versus the pool
size. The good comparability of both GA approaches makes the
pool-BCGA implementation a powerful tool for the prediction of
cluster structures since many subprocesses can be run at the
same time, while the convergence of the pool, using a single
subprocess, compares well to the generation based code. This
allows a much higher efficiency through communication of
several subprocesses via the global database.

In order to test how the mutation rate influences both a single
pool-GA subprocess and the generation based code, Fig. 7 shows
averaged evolutionary progress plots where both GAs are com-
pared for different mutation rates while using a population size of
10. The general trend is that mutation reduces the efficiency of
finding the GM structure which means that mutation on average
produces higher lying structures. While the pool-GA, shown in
Fig. 7(a) rapidly loses efficiency with increasing mutation rate, the
generational GA (Fig. 7(b)) is less influenced, which initially might
appear as an unexpected result. It becomes clearer, however, if
one considers, that in the pool implementation the population
size is kept fixed. In the traditional BCGA the number of offspring

is, by default, 0.8 times the generation size. The mutation rate
is then multiplied by the sum of the generation size and the
number of offspring. For a population size of 10 and a mutation
rate of 0.2, this means 8 offspring are generated from mating
and 3.6 mutants on average since (10 + 8) ! 0.2 = 3.6. For the
pool-GA, therefore, the efficiency seems to be lowered with
increasing mutation rate due to the reduced mating rate which
makes the implementation less elitist. However, the structural
diversity in a given population can be increased by using a low
mutation rate and, therefore, it should not be completely
neglected. Again lognormal fits to probability densities of
finding the GM after a certain number of optimised structures
within 1000 GA runs, depending on the mutation rate, are
shown in Fig. 8. The plot embedded in this figure shows an
exponential scale up of the maximum number of optimisations
needed versus the mutation rate. The probability densities for
mutation rates larger than 0.8 could not be well fitted due to
the very small efficiency of finding the GM.

3.2 Assessment with plane wave DFT

3.2.1 Au10. Since the systematic global optimisation of neutral
Aun (n = 2–20) cluster structures has been reported previously
using GAs coupled with DFT,38,48 we employ this system in order
to test the efficiency of the DFT based pool-GA. First, global
optimisation is performed for the Au10 cluster using the sequen-
tial generation based DFT-BCGA program with a mutation rate
of 0.1 and a population size of 10. The pool-GA is further used
to perform a global optimisation of the same cluster with a pool
size of 10 and a mutation rate of 0.1 in order to test whether
both implementations find the GM and the same local minima.
Additionally, the total number of optimised structures is com-
pared for both cases in order to explicitly prove the parallelisa-
tion efficiency for a given example. The benchmark calculations
illustrated in Fig. 9 show the total number of optimised
structures for a limit of 12 hours walltime for up to 5 pool
subprocesses each ideally running on 48 processors, showing

Fig. 5 Comparison of averaged evolutionary progress plots for the generation
based GA and the single pool-GA for a population size of 10 using a mutation
rate of 0.2 and an exchange rate of 0.5. Also included is the result of a random
structure search. The GM structure of the Au10Pd10 cluster at the Gupta
potential level is embedded.

Fig. 6 Lognormal fits to probability densities of finding the GM in 1000 GA
runs depending on the population size. The number of optimisations needed
to find the GM scales linearly with the size as can be seen in the inset.
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the best price-performance ratio in local relaxations (see Fig. 2).
The generation based GA is also compared running on up to
240 cores, which is the same amount as in the calculations using
5 pool subprocesses. It is clear that the sequential GA plateaus
when using a large number of cores due to the imperfect DFT
parallelisation, while a linear scale-up in the pool-GA case is
evident, when using an optimum number of cores.

The resulting structures below 0.4 eV from the predicted
GM, as obtained at the pwSCF/PBE level of theory, are shown in
Fig. 10. Both implementations are able to find identical local
minima when optimising a comparable number of structures.
The evolutionary progress plot (Fig. 11) shows an example for
the pool-GA case, where the GM is found after the optimisation
of about 50 structures. This number, however, varies from run
to run due to the stochastic nature of the GA, which originates
from constructing the initial population by producing random
structures. In any case, it shows how the current best (lowest
energy) solution evolves towards the planar GM isomer 10-a
with D2h symmetry.

The potential lowest energy isomers below 0.4 eV, as
obtained at this level of theory, including the planar GM isomer
10-a are in agreement with the previous findings of Götz et al.47

However, the trigonal prism with both triangular faces and two
rectangular faces capped, suggested by Choi et al.,56 has been
found to lie high in energy at this level of theory, as well as all
other isomers found in these previous studies. A new planar
isomer 10-g, which has been described for the Au10

! cluster,57

and a 3D structure 10-e were also found to lie below 0.4 eV.
Nevertheless, it should be mentioned that the relative energies
obtained at this level of theory, using loose convergence criteria,
should always be treated with care. A reminimisation of the

Fig. 8 Lognormal fits to probability densities of finding the GM in 1000
GA runs depending on the mutation rate. The number of optimisations
needed to find the GM scales exponentially with the mutation rate as can
be seen in the inset. The probability density for higher mutation rates or a
random structure search cannot be well fitted due to the very small
efficiency of finding the GM.

Fig. 9 Comparison of the total number of geometry optimisations from
the pool-GA, with up to five subprocesses each running on 48 cores, to
the generation based approach as obtained in 12 hours. A linear scale-up
of the total number of optimisations is observed when several parallel
working subprocesses are used on an optimum number of cores. The top
horizontal axis, showing the number of subprocesses, only corresponds to
the pool calculations.

Fig. 7 Influence of the mutation rate on the averaged evolutionary pro-
gress plots averaged over 1000 GA runs for of (a) a single pool-GA
subprocess and (b) the generation based GA for a constant size of 10
compared to a random structure search as an internal standard. Mutation
reduces the efficiency of finding the GM.
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structures at a higher level of theory or the use of tighter
convergence conditions can unpredictably change the energetic
ordering, although 10-a is expected to remain the GM.

The PES can be described by a sequence of local minima inter-
connected by transition states where monotonic sequences form
funnels.58 A given topology, once in a funnel, must eventually
overcome several energy barriers in order to reach the GM or
another specific local minimum as the PES is explored. This means
that a given local optimisation within a GA optimisation task could
potentially relax into a so-called metabasin with small geometrical
deviation from the minimum. Therefore energetic discrepancies
should not only be discussed as depending on the xc functional
and pseudopotentials used, but should also be attributed to the
cases where local optimisations end in metabasins near a local
minimum, leading to an apparently wrong energy ordering.

However, this should not be interpreted as a problem.
Genetic algorithms used in this manner can be thought of as
a coarse grain filter. The idea is to reduce a large configuration
space to a manageable size. The reduced configurational space

then opens up the possibility of a more detailed description of
only a few isomers at a higher level of theoretical complexity,
often required for the description of binary clusters in combi-
nation with experiments.

3.2.2 Au20. The ability of the pool-GA to scale linearly with
the number of processors is shown in Fig. 9. This allows the
global optimisation of cluster structures, directly at the pwSCF/
PBE level, for clusters larger than previously possible with the
sequential GA in a reasonable time. The pool-GA is used to
perform a global optimisation on the Au20 cluster. Calculations
were performed with a pool size of 10 and a mutation rate of 0.1.
The tetrahedral structure (Td) of Au20 is well known and has been
shown previously by both theory,38,39,48 and experiment.36,37

The structures of the putative pool-GA GM and minima lying
below 0.5 eV are shown in Fig. 12. The pool-GA successfully finds
the tetrahedral structure, 20-a, as the GM. The tetrahedron is
first found after the optimisation of only 56 structures. There is a
large gap between the GM and the next lowest-lying structure, a
distorted geometry with C1 symmetry. Structures similar to 20-b
are seen in minima 20-e and 20-g, while structures 20-c, 20-f
and 20-h are C1 geometries based on more subtle distortions of
the tetrahedron.

4 Conclusions
We have demonstrated the efficiency of the new pool-based
parallel implementation of the BCGA. The new implementation
leads to a greater efficiency for the global optimisation of mono-
atomic or binary clusters. The change in implementation makes
the approach efficient for an arbitrary numbers of parallel
processes, as shown by the benchmark calculations. In addi-
tion, the pool-BCGA can also adapt to the given utilisation of a
given high-performance computer, as it supports different
numbers of processors in order to achieve maximum efficiency.
Since processor speed is generally starting to plateau, it will be
more and more appropriate to develop better parallel algorithms
suitable for future computer architectures. The pool-BCGA is a

Fig. 10 Structures of Au10 below 0.4 eV from the predicted GM (10-a) as
obtained from the DFT-based pool-GA global optimisation approach. The
nomenclature of the individual isomers is sorted by increasing energy at
the pwSCF/PBE level of theory.

Fig. 11 Evolution of the globally lowest-lying isomer for Au10 with the
number of optimised structures within a pool-GA run, relative to the energy
E0 of the GM isomer 10-a. Each step represents a new global minimum
depicted here within the pool-GA run.

Fig. 12 Structures of Au20 below 0.5 eV from the predicted GM 20-a as
obtained from the generation based DFT-BCGA global optimisation
approach. The nomenclature of the individual isomers is guided by the
energy order at the pwSCF/PBE level of theory.
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good example of how this can be done efficiently. Additionally,
the use of distributed computing architectures (e.g. BOINC)
would be now enabled where server could potentially manage
the pool while optimisations can be run on an arbitrary number
of clients. Since the amount of data transferred between server
and clients is small, bandwidth requirements would be minimal.

By replacing the sequential working generation concept,
serial bottlenecks are eliminated. A typical pool calculation
can be started as a job array of several pool-GA subprocesses
enabling the treatment of larger cluster sizes than previously
studied or even opens up the possibility of using a higher level of
theory. Alternatively, one can think about using wavefunction
based methods in geometry relaxations for the global optimisa-
tion of small cluster systems as implemented in program
packages such as CFOUR,59 or NWChem v6.3,54 which enable
geometry optimisations based on coupled cluster methods.
Such a pool implementation would emerge as the method of
choice, especially in this sophisticated task of performing global
optimisation using multi-electron wavefunctions to account for
electron correlation with higher accuracy.

Also the very recently developed S-BCGA could be improved by
using the flexible pool concept, which would allow the study of
more complicated supported clusters, such as larger clusters and
nanoalloys, and permit calculations at a higher level of theory.

A comparison of the results obtained by the generation- and
pool-based BCGA show that the pool-GA is finally able to find
all isomers predicted by the generation based implementation
while both GAs give results in good agreement with existing
global optimisation calculations reported in the literature.
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The Birmingham parallel genetic algorithm and its
application to the direct DFT global optimisation
of IrN (N = 10–20) clusters†

Jack B. A. Davis,*a Armin Shayeghi,b Sarah L. Horswella and Roy L. Johnston*a

A new open-source parallel genetic algorithm, the Birmingham parallel genetic algorithm, is introduced

for the direct density functional theory global optimisation of metallic nanoparticles. The program utilises

a pool genetic algorithm methodology for the efficient use of massively parallel computational resources.

The scaling capability of the Birmingham parallel genetic algorithm is demonstrated through its appli-

cation to the global optimisation of iridium clusters with 10 to 20 atoms, a catalytically important system

with interesting size-specific effects. This is the first study of its type on Iridium clusters of this size and

the parallel algorithm is shown to be capable of scaling beyond previous size restrictions and accurately

characterising the structures of these larger system sizes. By globally optimising the system directly at the

density functional level of theory, the code captures the cubic structures commonly found in sub-nano-

metre sized Ir clusters.

1. Introduction
Nanosized materials are currently being investigated for poten-
tial use in a variety of applications. This is because the nano-
sizing effects seen in such materials result in properties
different from those of the bulk material. These properties can
also be tuned, normally through altering the size and shape of
the cluster.

Metallic nanoparticles are such materials, with potential
optical, magnetic and catalytic applications.1 Small Ir nano-
particles, in particular, are currently used as catalysts for a
range of organic reactions, including olefin hydrogenation,
oligomerisation, and ring-opening of cycloalkanes.2 Ir has
been shown both experimentally3 and theoretically4 to exhibit
significant nanosize-induced hydrogen adsorption capacity.
Larger Ir nanoparticles have been shown to be active in C–C
bond hydrogenolysis.5 Selective molecular recognition has also
been seen in supported Ir cluster-based catalysts.6

A key step in rationalising properties, such as the catalytic
activity of nanoparticles, is their structural characterisation. To
achieve this it is necessary to sample comprehensively the
potential energy landscape (PES) of the nanoparticle. A wide

variety of methods is available for the exploration of the PES.
These methods include statistical mechanical methods, such
as the CBEV/FCEM method,7,8 basin-hopping methods,9 such
as GMIN,10 and genetic algorithms, such as the Birmingham
cluster genetic algorithm (BCGA).11 The choice of method
largely depends on the size and complexity of the system.

It is necessary to decide the level of theory required to repli-
cate accurately a particular PES of a system. For example, the
electronic structure of larger nanoparticles is thought to
resemble closely that of the bulk material. This means the use
of empirical potentials, such as the Gupta potential,12 is suit-
able for the accurate representation of the PES. Statistical
mechanical methods, such as CBEV/FCEM, may be best suited
to these larger systems.8 However, for smaller, sub-nanometre
clusters a much more computationally demanding quantum
mechanical description of the cluster PES is necessary as
quantum-size effects, such as spin–orbit coupling, tend to
dominate.13–15 A variety of methods has been developed to
achieve this, many of which have been outlined by Heiles and
Johnston.16

The cubic structures adopted by sub-nanometre Ir clusters
have been previously shown up to the CCSD(T) level of
theory,17–24 differing from the fcc structure of the bulk
material. It is therefore vital that any global optimisation of
IrN (N = 10–20) structures is performed directly at the density
functional theory (DFT) level of theory at least.

A quantum description of the PES greatly increases the cost
of exploring it comprehensively, limiting the size of the cluster
it is possible to investigate.16 It is therefore necessary that
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C5NR03774C
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efficient parallel methodologies, with the ability to utilise
greater computational resources, are developed. There have
been several implementations of parallel schemes within
genetic algorithms for both atomic and molecular clusters but
few combine this parallelism with direct DFT global
optimisation.25–29

This work presents the global optimisation of IrN (N =
10–20) clusters directly at the DFT level of theory. This is
achieved using the Birmingham parallel genetic algorithm
(BPGA), a new open-source genetic algorithm available via Bit-
bucket.30 The BPGA utilises a pool genetic algorithm methodo-
logy combined with the evaluation of potential cluster
geometries in parallel.25 This combination ensures highly
efficient scaling when compared with generation based genetic
algorithms and allows the structural characterisation of larger
and more complex systems. The pool methodology has been
recently applied to metallic clusters31 and was benchmarked
and applied successfully to the global optimisation of the
much studied Au10 and Au20 clusters.31 Its predictions for
Ag10

+ have also been shown to be accurate when compared
with spectra from molecular beam experiments.32 The BPGA
incorporates this highly efficient algorithm within a flexible
Python framework.

Due to the 5d76s2 ground state and other low lying states
originating from its 5d86s1 configuration,33 the spin of the IrN

clusters must be considered in the calculations.33 To account
for this, spin-polarised DFT global optimisations are per-
formed. The use of spin-polarised local minimisations effec-
tively doubles the computational cost and can only now be
performed due to the parallelism of the BPGA.

The BPGA is also capable of globally optimising bimetallic
nanoalloys, whose PES is complicated by the presence of
homotops.34 It is hoped that this work demonstrates that
scaling capability of the BPGA and its ability to utilise mas-
sively parallel architectures, which enable the program to
predict accurately the geometries of metallic nanoparticles.

2. Methodology
2.1. Birmingham parallel genetic algorithm

The BPGA is a parallel genetic algorithm for the structural
characterisation of nanoparticles. The program is written in
object-oriented Python. This allows greater flexibility and the
ability to utilise the large existing libraries of Python code,
such as the atomic simulation environment.35 Python is well
suited to job submission, required by the DFT interface, on a
large shared HPC resource, such as ARCHER.36 The program is
open-source and available via BitBucket.30

The BPGA utilises a pool methodology, shown in Fig. 1.25,31

This differs from a generation-based code, where structures
belong to and are evaluated generation by generation. When
executed in parallel, multiple instances of the BPGA are
started sequentially within a run. Each instance is a separate
BPGA run with its own set of processes. The BPGA initially
generates a fixed-size pool of n random geometries and places

them in a central database file which is available to the other
instances of the program. In the present study the pool is set
to n = 15 random geometries. These initial geometries are
fixed so that no two atoms are overlapping.

In the local minimisation the energy of a structure is mini-
mised with respect to its coordinates. This transforms the PES
into a simpler stepped surface, greatly reducing the search
space. If an instance becomes free and all structures in the
pool are being or have been minimised the instance will con-
tinue to evaluate further random structures. If one of these
new structures is lower in energy than the highest energy
cluster in the pool, the new lower energy structure will replace
it.

Once the initial pool of structures has been minimised,
offspring and mutants are produced through crossover and
mutation. The choice of producing either an offspring or
mutant is based on the mutation rate, which is set to anywhere
between 0–100% of the fixed pool size. In the present work the
mutation rate is set to 10%.

Mutation is defined as the selection of a cluster at random
from the pool and the displacement of two of its atoms by up
to 1 Å. Other mutations schemes are available in the code,
including generating a new random geometry or, for bimetallic
systems, swapping unlike atoms.

Selection for crossover is carried out using the tournament
method. Once selected, clusters undergo crossover according
to the Deaven and Ho cut and splice method.37 The cutting
plane is weighted based on the fitness of each of the clusters
selected. A higher fitness represents a lower energy.

A local minimisation of the offspring is performed and its
energy is checked against those of the other structures in the
pool. If the offspring’s energy is lower than that of the highest
energy structure in the pool, the offspring structure replaces it.
Convergence is achieved when the energies of the structures in

Fig. 1 The pool scheme used by the BPGA. Arrows represent DFT local
minimisations.
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the pool differ by no less than 10−3 eV. For larger clusters, con-
vergence may not be achievable. In this case the lowest energy
structure in the pool after a run of around 500 separate mini-
misations is taken as the putative global minimum.

The BPGA also has the ability to perform a DFT-level global
optimisation of a cluster supported on a surface. This
method, within a generation based code, has been demon-
strated previously.38

2.2. DFT

Gamma-point, spin-polarised DFT calculations were per-
formed with VASP.39–43 Projected-augmented wave (PAW)
pseudopotentials were used with the PBE exchange correlation
functional.44,45 A plane-wave basis set with a cut-off of 400 eV
was used. Methfessel–Paxton smearing, with a sigma value of
0.01 eV, was utilised to improve metallic convergence.46

2.3. Energetics

The binding energies per atom were calculated using

Eb ¼
1
N

EIrN " NEIrð Þ; ð1Þ

where N is the total number of atoms, EIrN
is total energy of an

N-atom Ir cluster and EIr is the energy of a spin-polarised
Ir atom.

The stability of the clusters, relative to their N + 1 and N − 1
neighbours, is given by their second-order differences Δ2E,
calculated using

Δ2E ¼ 2EIrN " ðEIrNþ1 þ EIrN"1Þ: ð2Þ

3. Results
The BPGA calculations were performed on the UK’s national
supercomputer ARCHER.36 Each was run in parallel with eight
instances of the code operating on the pool. The theoretical
scaling of this parallel pool methodology has been shown pre-
viously.31 Around 500 structures were evaluated for each
cluster size. Due to the high computational cost of the calcu-
lations multiple runs are not possible for each system size.

The parallelism within the code, and the scaling capabili-
ties of VASP on ARCHER, allows for spin-polarised calculations
to be carried out during the global optimisation. The binding
energies Eb, point groups and spin multiplicities of the puta-
tive global minimum are given in Table 1. The coordinates of
the global minima and the additional minima discussed are
supplied in the ESI.†

Overall, the putative global minima from the BPGA searches
are in good agreement with structures suggested in previous
work on Ir clusters.18,21–23 Some structures have been pre-
viously characterised and give a good indication of the ability
of the BPGA to find the putative global minimum at a given
level of theory. Other structures are reported here for the
first time.

The BPGA successfully finds the C2v dimer-capped
(“house”) structure, shown in Fig. 2, as the putative global
minimum for Ir10 and scales successfully well beyond this pre-
vious 10-atom limit. The putative global minimum structures
of IrN (N = 11–20) clusters are shown in Fig. 3.

The overall global minimum structure for Ir11 is a triangle-
capped cube. This structure, together with a second highly
competitive low lying minimum, an edge-bridged structure
based on the Ir10 “house”, are shown in Fig. 4. The two struc-
tures differ by 0.05 eV. The global minimum structure is a
high spin structure with a spin multiplicity of 4, compared
with the competitive minimum’s multiplicity of 2. The spin
polarised DFT global optimisation has allowed this lower
energy putative global minimum to be reported for the first
time.

The additional Ir in Ir12 now makes it possible to complete
a third cubic face and the 3 × 2 × 2 D2h cuboid structure
becomes the global minimum. For Ir13 the extra Ir bridges an
edge on one of the cubes.

It was thought that the global minimum structure for Ir13

may be a C4v structure, with an Ir atom capping an end of the
cuboid, and that the cubic bounding cell used to generate the
initial random geometries may have biased the search against
any elongated structures. Local minimisations were carried out
on C2v centre edge-bridged, Cs top edge-bridged and C4v top-
capped cuboid structures, shown in Fig. 5. The C2v centre
edge-bridged structure locally minimises into a face-capped Cs

structure. The structures were found to lie 0.26, 0.33 and 0.97

Table 1 Binding energies Eb, point groups and multiplicities (2S + 1) for
the putative global minimum of IrN (N = 10–20) clusters

Cluster Point group Eb/eV (2S + 1)

Ir10 Cs −4.914 3
Ir11 C1 −4.932 4
Ir12 D4h −5.172 3
Ir13 Cs −5.139 4
Ir14 Cs −5.220 3
Ir15 C2v −5.206 2
Ir16 Cs −5.301 3
Ir17 Cs −5.348 4
Ir18 D4h −5.452 7
Ir19 C1 −5.416 2
Ir20 C1 −5.436 3

Fig. 2 The dimer-capped (“house”) structure of Ir10.
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eV higher in energy than the putative global minimum struc-
ture from the BPGA search, respectively. This structural prefer-
ence is also confirmed by previous work on Ir13.19,20

The structure of Ir14 is a dimer-capped 3 × 2 × 2 cuboid,
analogous to the Ir10 structure with the dimer lying perpen-
dicular to the long edges of the Ir12 cuboid structure. This
structure has been previously shown.21 Upon addition of an
extra Ir, the structure of Ir15 becomes a trimer-capped cuboid,
with the Ir3 trimer lying parallel to the long sides of the rect-
angular face.

The preference of Ir16 is shown to be a slightly deformed
L-shaped cubic structure, so that two elongated 3.1 Å bonds
can form between two cubes of the structure. Cubic bounding
may also have affected Ir16, as it follows from the structure of
Ir8, a cube, and Ir12 that the global minimum could be a 4 × 1
× 1 cuboid. This structure was assessed alongside two other
low-lying minima, T-capped and square-capped cuboid struc-
tures. The structures and relative energies of these minima are
shown in Fig. 6, with the 4 × 1 × 1 cuboid found to lie 0.88 eV
higher in energy than the BPGA global minimum.

The structure of Ir17 shows the additional Ir in between two
cubes of the Ir16 cuboid, the start of a complete 3 × 3 × 2
cuboid. The additional Ir of Ir18 sits between two cubes of the
L-shaped Ir17 cluster and forms the complete 3 × 3 × 2 cuboid.

The extra Ir in Ir19 caps a cubic face on the 3 × 3 × 2 cuboid.
This putative global minimum was tested against an edge-
bridged structure, which was believed to be the more likely
global minimum structure following the trend seen in smaller

Fig. 3 Putative global minimum structures for IrN (N = 10–20) from the BPGA searches.

Fig. 4 Putative global minimum (left) and competitive low-lying
minima (right). Relative energies and spin multiplicities (in brackets) are
shown below.

Fig. 5 Global minimum (top-left), top edge-bridged (top-right), centre
edge-bridged (bottom-left) and top-capped (bottom-right) cubic struc-
tures assessed for Ir13. The centre edge-bridged structure is shown after
local minimisation to the face-capped cuboid structure.
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clusters. The C1 edge-bridged structure, shown in Fig. 7, was
found to have a spin multiplicity of 6 and to be just 0.008 eV
lower in energy than the BPGA global minimum.

The energetic differences between the low lying minima of
Ir11 and Ir19 are far smaller than that seen for the various Ir13

minima and smaller than the error in the current DFT calcu-
lations. To determine accurately the global minimum, higher
level calculations, coupled with experiment, will be required in
the future.

The structure of Ir20 is analogous to that of Ir13 with an Ir2

dimer lying perpendicular to the long edges of the 3 × 3 × 2
cuboid structure.

The binding energies of the clusters give an indication of
the relative stability of the clusters, with more negative values
indicating greater stability. Eb values are shown in Fig. 8.
Overall, Eb tends to decrease as N increases, with Ir18 having
the lowest Eb.

For several N-atom clusters Eb is higher (less stable) than
for the N − 1 cluster: in particular Ir13, Ir15 and Ir19. Ir20,
despite Ir forming a dimer capping a face, has a higher Eb

than Ir18. The increased stability displayed by the even num-
bered clusters is more clearly shown by their second-order
difference plot shown in Fig. 9. Each odd numbered cluster
clearly shows decreased stability, indicated by a positive Δ2E,
relative to its even numbered neighbours.

The spin multiplicities of the clusters are given in Table 1.
All global minima are found to have multiplicities of between
2 and 7. This is a clear indication of the importance of mag-
netic effects in these clusters. In particular, high spin struc-
tures are shown to be the global minimum structures of Ir11

and Ir19. It is likely that these and other low energy minima
would have been excluded from the searches if non-spin-
polarized calculations had been carried out.

4. Conclusions
The BPGA has successfully coupled the computation resources
of ARCHER36 with the scaling capability of a pool genetic
algorithm methodology. This has allowed the direct DFT
global optimisation of IrN (N = 10–20) clusters, with some

Fig. 6 Putative global minimum (top-left), 4 × 1 × 1 cuboid, T-capped
and square capped 3 × 1 × 1 cubic structures assessed for Ir16.

Fig. 7 Putative global minimum (left) and edge-bridged cuboid struc-
ture for Ir19.

Fig. 8 Binding energies Eb, for IrN (N = 10–20) clusters.

Fig. 9 Second-order differences Δ2E, for IrN (N = 10–20) clusters.
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global minimum structures being reported here for the
first time.

The code has captured the cubic nature of the sub-nano-
metre Ir clusters with the putative global minima evaluated
and compared with previous results. For Ir11 and Ir19 their
spin has been shown to determine their global minimum
structures, which would have otherwise been missed in a low-
spin search. The use of spin polarized calculations has been
made possible because of the BPGA’s ability to utilise greater
computational resources. The structural characterisation of a
system is a vital first step in exploring its catalytic properties.
The structures of the IrN clusters will form the basis of future
studies of the catalytic properties of the system, including
modelling their interaction with small molecules.

The cubic structures found here are in agreement with
higher level CCSD(T) and CASSCF calculations on Ir8, reported
by Dixon et al.18 In future work, we will investigate the effect of
changing the functional in DFT calculations on Ir clusters; in
particular we will explore the use of meta-GGA functionals.47,48

The development of the BPGA will continue. This will
include the implementation of new features, such as the
global optimisation of a system in the presence of a ligand or
directly on a variety of surfaces. Further improvements to the
efficiency of the parallel scheme will also be made. The code
will be applied to a variety of new supported and ligated
mono- and bimetallic cluster systems. The number of inter-
faces to common quantum chemistry programs within the
BPGA will be expanded and applied to the global optimisation
of systems at theory levels beyond DFT.
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Abstract

The direct density functional theory global optimisation of MgO(100)-supported

AuIr nanoalloys is performed using the Birmingham Parallel Genetic Algorithm (BPGA).

The BPGA is a pool genetic algorithm for the structural characterisation of nanoalloys.

The parallel pool methodology utilised within the BPGA allows the code to charac-

terise the structures of N = 4� 6 AunIrN�n clusters in the presence of the MgO(100)

surface. The use of density functional theory allows the code to capture quantum size

e↵ects in the system which determine their structures. The searches reveal signifi-

cant di↵erences in structure and chemical ordering between the surface-supported and

gas-phase global minimum structures.

Introduction

Nanoalloys (NAs) are a class of nanomaterial composed of multiple metallic elements. The

combination of metals results in properties which are not only dependent on the size and

shape of the cluster but on the composition and ordering of elements.1 NAs have potential

optical, magnetic and catalytic applications.2

AuIr NAs have been investigated previously both theoretically and experimentally,3–5

particularity for CO oxidation catalysis. The activity of monometallic Au CO oxidation

catalysts was found to decrease over time, either because of sintering or poisoning.6 The

addition of Ir to the catalyst has been shown to prevent sintering and improve the overall

catalytic activity of the system through the formation of nanoalloy particles.3,5 In the studies

of both the mono- and bimetallic Au systems, the support was shown to play an important

role in the activity of the catalyst.7,8

The structural characterisation of NAs is a vital first step toward rationalising their

catalytic properties. In the present study the structures of N = 4 � 6 AunIrN�n NAs are

characterised using direct DFT global optimisation. This is performed both in the gas-phase

and in the presence of an MgO(100) slab to better understand the e↵ect of a surface on the
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structures of AuIr NAs. The use of direct DFT global optimisation is necessary to reveal

any quantum size e↵ects, commonly seen for Au and Ir, in the NA structures.9

Both the gas-phase and MgO(100)-supported global optimisations of the AuIr clusters

are performed using the Birmingham Parallel Genetic Algorithm (BPGA).10 The BPGA is a

pool-based genetic algorithm, capable of performing multiple DFT calculations in parallel.11

This parallelism is of particular importance for the surface-supported calculations. While

numerous methods for the direct DFT global optimisation of surface-supported clusters have

been developed,12,13 the inclusion of a surface slab within a local minimisation increases the

cost of the underlying DFT calculations and therefore greatly increases the overall cost of

the global optimisation.

Methodology

DFT

Gamma-point, spin-polarised DFT calculations were performed with VASP.14–18 Projected-

augmented wave (PAW) pseudopotentials were used with the PBE exchange correlation

functional.19,20 A plane-wave basis set with a cut-o↵ of 400 eV was used. Methfessel-Paxton

smearing, with a sigma value of 0.01 eV, was utilised to improve metallic convergence.21

BPGA

The BPGA is an open-source genetic algorithm for the direct DFT global optimisation

of nanoalloys.22 The program utilises a pool methodology which allows the evaluation of

multiple potential cluster geometries in parallel.11,23 Calculations are performed in parallel

with between 2 and 4 instances of the BPGA operating on shared pools, depending on the

size of the cluster. Depending on access to computational resources, the number of instances

could be far larger.

An initial pool of 10 random structures is generated and evaluated by local minimisation
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within VASP. These initial structures are prepared so that no two atoms are overlapping.

Once the initial pool has been minimised, crossover and mutation operations are carried

out. For crossover, pairs of clusters are selected from the pool through tournament selection.

O↵spring are then produced through single-point, weighted crossover, carried out according

to the Deaven and Ho cut and splice method.24 The mutation rate is set to 10% of the pool

size.

For the supported clusters the local minimisation of the cluster geometry is performed

in the presence of an MgO(100) slab, which is not relaxed during the calculation due to the

high computational cost of doing so. The slab unit cell used in the present study is 6⇥6⇥2

atoms with a 14.7 Å vacuum spacing, to ensure there is no interaction between the cluster

and the periodic cell. The use of two layers of MgO(100) has previously been shown to

be capable of replicating the behaviour of the surface and its e↵ect on the properties of a

cluster.25–28 The height of the cluster is fixed so that the lowest lying atom is 1.5 Å above

the surface, as is shown in figure 1.

h

Figure 1: An initial random geometry is generated and placed at a fixed height, h = 1.5 Å,
above the MgO(100) slab.

The mutation operator for the surface-supported clusters is a random rotation of the

cluster with respect to the fixed slab. For the gas-phase clusters, the mutation operators

are a random perturbation (up to a 1 Å displacement of 20% of the cluster atoms) for

monometallic clusters and a homotop-swap for bimetallic clusters.

Crossover and mutation operations are performed until the highest and lowest energies
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of the pool di↵er by no more than 10�3 eV. If complete convergence cannot be obtained the

lowest energy structure is selected from a run of around 150 local minimisations. Due to the

high computational cost, only one run is carried out per composition.

Energetics

The binding energies, Eb, were calculated using the following expression

Eb =
EAunIrm � (nEAu +mEIr)

N
(1)

where EAunIrm is the total energy of cluster AunIrm, EAu and EIr are the energies of single,

spin-polarised Au and Ir atoms and N is the total number of atoms (N = n+m).

The excess energies, �,29 of the clusters was calculated using

� = EAunIrm � n

✓
EAuN

N

◆
�m

✓
EIrN

N

◆
(2)

where EAuN and EIrN are the energies of the monometallic Au and Ir clusters with the same

total number of atoms as AunIrm.

The adsorption energies Eads of the surface -supported clusters were calculated as follows

Eads = Eslab+AunIrm � (Eslab + EAunIrm) (3)

where Eslab is the energy of the MgO(100) slab and EAunIrm is the energy of the AunIrm

cluster, locally minimised in the gas-phase.

Results

The putative global minimum structures of the gas-phase N = 4 � 6 AunIrN�n clusters

are shown in figures 2, 3 and 4. Global minimum structures for the MgO(100)-supported

N = 4� 6 AunIrN�n clusters are shown in figures 5, 6 and 7.
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Table 1: Binding energies Eb (gas-phase only), adsorption energies Eads (surface-
supported only), excess energies � and spin-multiplicities 2S+1 for the N = 4�6
AunIrN�n clusters.

Gas-Phase Surface-Supported
Eb / eV � / eV 2S + 1 Eads / eV � / eV 2S + 1

Au4 -1.546 0 1 -1.951 0 1
Au3Ir -1.840 0.948 3 -2.342 0.890 3
Au2Ir2 -2.397 0.845 5 -3.251 0.332 3
AuIr3 -2.928 0.843 5 -3.434 0.459 1
Ir4 -3.670 0 9 -2.933 0 3

Au5 -1.692 0 2 -1.973 0 2
Au4Ir -1.975 0.784 4 -2.341 0.317 2
Au3Ir2 -2.458 0.565 4 -2.963 0.132 2
Au2Ir3 -2.892 0.593 6 -2.784 0.371 4
AuIr4 -3.478 -0.137 4 -3.083 -0.307 2
Ir5 -3.890 0 8 -3.325 0 4

Au6 -1.929 0 1 -1.592 0 1
Au5Ir -2.117 1.113 3 -2.465 1.356 1
Au4Ir2 -2.500 1.060 5 -3.621 0.830 3
Au3Ir3 -2.913 0.829 7 -3.559 0.574 1
Au2Ir4 -3.382 0.255 7 -3.211 0.847 3
AuIr5 -3.730 0.415 7 -3.043 1.083 5
Ir6 -4.173 0 5 -3.494 0 5
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Global minima for the gas-phase and supported AunIr4�n clusters are all found to be

planar. The surface-supported global minimum structures are all found to be normal to

the plane of the surface as a result of the ‘metal-on-top e↵ect’ commonly seen in such

subnanometre size clusters.30 Ir4 is found to be a square, as seen in previous studies of gas-

phase Ir clusters,31 and Au4 is found to favour a rhombus structure. Di↵erences between the

gas-phase and adsorbed clusters are subtle. On the surface the structure of Au4 is elongated

so that two Au atoms can bond to two O atoms, increasing the Au-Au distance from 2.68

Å to 3.76 Å. The adsorbed structure of Ir4 is the same as the gas-phase structure, with the

square standing upright and bound to two O atoms.

All surface-supported bimetallic structures favour the stronger Ir-O interactions over Au-

O. The structures of Au3Ir, Au2Ir2 and AuIr3 all di↵er from the gas-phase structures. The

structures of Au3Ir and Au2Ir2 are both Y-shaped in the gas-phase. On the surface the

preferred structure is a rhombus, with Au2Ir2 having an elongated Au-Au bond. The gas-

phase structure of AuIr3 is a distorted rhombus. On the surface, the three Ir atoms form a

linear chain with the Au atom bridging an Ir-Ir bond. In doing so AuIr3 is able to maximise

the number of Ir-O interactions.

The structure of the surface-supported Au5 is similar to that of Au4, with the structure

again having an elongated Au-Au bond so as to bond across two O atoms. The structure

of gas-phase Ir5 is an edge-bridged square, with the bridging atom lifting out of the square-

plane. The supported structure is a square-based pyramid structure with the basal plane

lying parallel to the surface, forming four Ir-O bonds.

The supported and gas-phase structures of Au4Ir are both tetrahedral structures. The

supported structure is similar to that of supported Au5 but the structure is now inverted

and a single Ir-O bond is formed. The supported Au3Ir2, Au2Ir3 and AuIr4 structures

are all edge-bridged squares. The di↵erences between these supported clusters and the

corresponding gas-phase global minima vary. For Au3Ir2 the di↵erence is simply a homotop

swap maximising Ir-O bonds, whereas for Au2Ir3 there is a larger structural di↵erence, with
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a tetrahedral structure being preferred in the gas-phase.

AuIr4 is found to have the same surface and the gas-phase structures; however the sup-

ported structure now only forms two Ir-O bonds, compared to the four Ir-O bonds of Ir5.

This may be due to an unfavourable interaction between the edge-bridging Au atom and the

MgO(100) slab, had the Ir square remained four-coordinate, but it should be noted that the

Ir4 square cluster also sits perpendicular to the surface, so it may just reflect the competition

between the metal-on-top e↵ect and localised Ir-O bonding e↵ects.

The gas-phase structure of Ir6 is a slightly bent double-square structure, with a 154� angle

between squares. On the MgO(100)-support the structure is a 3D trigonal prism bound to

the surface by four Ir-O bonds. The planar-triangular structure of Au6 is found in both

the gas-phase and on the surface. Au4Ir and Au5Ir have similar gas-phase and supported

structures, with the extra Au in Au5Ir capping a Au-Ir bond in the tetrahedral structure.

On the surface, the structure of Au5Ir is still based on the tetrahedral structure but the Au

atom now caps a face.

Both Au4Ir2 and Au3Ir3 have the same planar-triangular structure on the surface and in

the gas-phase. There are, however, di↵erences in the homotop of each structure as they try to

maximise Ir-O bonding. The Ir atoms in each surface-supported structure sit at the bottom

of the structure, forming a dimer and trimer, for Au4Ir2 and Au3Ir3, respectively. Au2Ir4 has

a planar bi-edge-bridged square structure in both the gas-phase and the surface, with the

two bridging Au atoms adopting cis positions in the gas-phase GM and trans positions in the

GM of the supported cluster. The gas-phase structure of AuIr5 is similar to that of Au2Ir4

except that the bridging Ir sits out of plane of the square. The lowest energy AuIr5 structure

on the MgO(100) surface is an Ir5 square pyramid (as for the Ir5 cluster) with one of the

edges on the square face bridged by Au. In contrast to Ir5, however, the square pyramid

lies on its side on the MgO surface (with only 3 Ir atoms in contact with the surface) which

may be due to an unfavourable interaction of the Au atom with the surface if the cluster

sits with the square face on the surface.
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Au4 Au3Ir Au2Ir2 AuIr3 Ir4

Figure 2: Putative global minimum structures of gas-phase AunIr4�n clusters. Au and Ir are
shown in gold and purple, respectively.

Au5 Au4Ir Au3Ir2

Au2Ir3 AuIr4 Ir5

Figure 3: Putative global minimum structures of gas-phase AunIr4�n clusters.

Au6 Au5Ir Au4Ir2 Au3Ir3

Au2Ir4 AuIr5 Ir6

Figure 4: Putative global minimum structures of gas-phase AunIr6�n clusters.
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Figure 5: Putative global minimum structures of MgO(100)-supported AunIr4�n clusters.
Au, Ir, Mg and O are shown in gold, purple, red and blue, respectively.

Figure 6: Putative global minimum structures of MgO(100)-supported AunIr5�n clusters.
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Figure 7: Putative global minimum structures of MgO(100)-supported AunIr6�n clusters.
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The results from our global optimisations, which are performed directly in the presence

of an MgO(100) slab, can be compared with those from other studies. In many studies

structures generated in the gas-phase are deposited on the surface, with very little change

in the cluster structure. For example, our surface-supported results for Ir4 and Ir6 clearly

di↵er from those reported in a recent study because of a di↵erence in methodology utilised

in their study.32

The spin multiplicities of the gas-phase and supported clusters are listed in table 1 and

are plotted in figure 8. The Ir and Ir-rich clusters are generally found to possess higher spins

than the Au and Au-rich clusters. The presence of the MgO(100) surface partially quenches

the spins of the supported clusters, with clusters having lower-spin configurations. This is

may be in part due to the Ir-O interactions which are favoured in these clusters, resulting in

some of the unpaired Ir electrons being involved in Ir-O bonding.

 1
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 0  1  2  3  4
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Gas-Phase
Supported

 2
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 0  1  2  3  4  5
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 0  1  2  3  4  5  6

2S
+1

n

Figure 8: Spin multiplicities 2S + 1 of the N = 4 � 6 AunIrN�n gas-phase and MgO(100)-
supported putative global minimum structures.

The adsorption energies Eads of the supported clusters are listed in table 1 and are plotted
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in figure 9. There are di↵erences between energies of supported clusters and the energies of

the supported clusters with the slab removed, in particular the Au and Au-rich clusters are

found to have the lowest Eads, which then increases until the composition reaches around

50/50.
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Figure 9: Adsorption energies Eads of the MgO(100)-supported N = 4�6 AunIrN�n clusters.

The excess energies plotted in figure 10, reveal the energetic preference for the alloy-

ing of the constituent elements in the nanoalloy. AuIr is found to be a strongly demixing

system, with positive � values found for almost all gas-phase and supported clusters sizes

and compositions. The only negative values are found for AuIr4, where from Ir5 there is

a 3D to 2D transition. The excess energies for the surface-supported clusters, particularly

for 4 and 5-atoms, are found to have lower excess energies. In these cases the surface could

be acting to promote alloying in the system. This trend, however, is not continued for the

6-atom clusters, with the gas-phase structures sometimes being less positive than those that

are surface-supported.
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Figure 10: Excess energies E� of the gas-phase and MgO(100)-supportedN = 4�6 AunIrN�n

clusters.

Conclusions and Future Work

The BPGA has been successfully applied to the global optimisation of both gas-phase and

MgO(100)-supported N = 4 � 6 AunIrN�n clusters. The direct global optimisation in

the presence of an MgO slab has revealed significant di↵erences in gas-phase and surface-

supported global minimum structures, with those on MgO(100) maximising the number of

Ir-O bonds. The MgO(100) surface not only a↵ects the structures and atomic ordering of

the AuIr clusters, but the surface is also observed to suppress the spin of the clusters.

Future work will include expanding the BPGA’s library of surface generators. In partic-

ular to include rutile, which has been shown to play an active role in increasing the catalytic

performance of AuIr.3 The larger number of surface sites on rutile will require greater com-

putational e↵ort and mutation schemes capable of exploring these sites completely during a

search.
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Parallelised Generation-Free Genetic Algorithm for the Ab Initio Global Optimisation

of Nanoalloy Clusters. Phys. Chem. Chem. Phys. 2015, 17, 2104–2112.

(24) Deaven, D. M.; Ho, K. M. Molecular Geometry Optimization with a Genetic Algorithm.

Phys. Rev. Lett. 1995, 75, 288–291.

(25) Gro, H.; Broqvist, P. CO-Induced Modification of the Metal/MgO(100) Interaction. J.

Phys. Chem. B 2003, 107, 12239–12243.

(26) Grönbeck, H.; Broqvist, P. Pt and Pt2 on MgO(100) and BaO(100): Structure, Bonding,

and Chemical Properties. J. Chem. Phys. 2003, 119, 3896–3904.

17



(27) Ferrando, R.; Fortunelli, A. Di↵usion of Adatoms and Small Clusters on Magnesium

Oxide Surfaces. J. Phys.: Condens. Matter 2009, 21, 264001.

(28) Ismail, R.; Ferrando, R.; Johnston, R. L. Theoretical Study of the Structures and

Chemical Ordering of Palladium-Gold Nanoalloys Supported on MgO(100). J. Phys.

Chem. C 2013, 117, 293–301.

(29) Ferrando, R.; Fortunelli, A.; Rossi, G. Quantum e↵ects on the structure of pure and

binary metallic nanoclusters. Phys. Rev. B 2005, 72, 085449.

(30) Barcaro, G.; Fortunelli, A. The Interaction of Coinage Metal Clusters with the

MgO(100) Surface. J. Chem. Theory Comput. 2005, 1, 972–985.

(31) Pawluk, T.; Hirata, Y.; Wang, L. Studies of Iridium Nanoparticles Using Density Func-

tional Theory Calculations. J. Phys. Chem. B 2005, 109, 20817–20823.

(32) Chen, Y.; Huo, M.; Chen, T.; Li, Q.; Sun, Z.; Song, L. The Properties of Irn (n = 2-10)

Clusters and their Nucleation on �-Al2O3 and MgO Surfaces: from Ab Initio Studies.

Phys. Chem. Chem. Phys. 2015, 17, 1680–1687.

18



6 | Conclusions and Outlook

This thesis has presented publications dedicated to the initial stages of understand-

ing the catalytic properties of NAs, their structural characterisation and their subse-

quent interactions with small molecules. Publications have also explored the applica-

bility of dispersion corrected DFT and the development of novel methods for their

structural characterisation, in both the gas-phase and supported on a MgO(100)

surface.

PdIr NAs, in particular, have been studied because of their promising catalytic

properties. In Chapter 3 their structural characterisation, for a range of PdIr NA

sizes, was performed with a variety of methods, including BCGA-Gupta, BCGA-

DFT and FCEM.

The use of direct DFT global optimisation, using the BCGA-DFT method, was

shown to be necessary for the structural characterisation of the system, with the

NA structures displaying significant quantum size effects. Cubic global minimum

structures were revealed for both monometallic Ir clusters and for the first time in

bimetallic PdIr clusters. Structures were found to prefer high spin configurations

and be strongly demixing, mirroring the behaviour of the bulk alloy.

The FCEM statistical mechanical method was shown to be capable of accu-

rately characterising chemical ordering, particularly in larger NAs, when compared

to the BCGA-Gupta method through direct DFT comparison. The FCEM method

was found to offer significant advantages over the BCGA approach, as FCEM cal-

culations require significantly less computational effort and can be performed on

considerably larger, and catalytically relevant, NAs. Statistical mechanical methods
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CHAPTER 6

are less commonly used in studies of compositional ordering and it is hoped that

this comparative study will promote their further development and application.

In Chapter 4 the interaction of metallic NPs and NAs with small molecules was

probed. The interaction of PdIr NAs with benzene and hydrogen was modelled using

a combined DFT and random search approach. The effect of dispersion corrections,

at a range of theory levels, was also established through the study of the adsorption

of CO on a range of metallic NPs.

The predicted lowest energy homotops for PdIr NAs from the FCEM method

provided ideal candidates for which to study the effect of composition on NA ad-

sorption properties. The interactions of two molecules, hydrogen and benzene, were

modeled in order to better understand the catalytic activity of PdIr in tetralin hy-

droconversion and the preferential oxidation of CO. Significant nanosize effects were

seen in the adsorption hydrogen onto Ir, with hydrogen binding dissociatively to the

surface of the NP. Both benzene and hydrogen were found to prefer the Ir (100) facet

of the bimetallic structures, with energetic preferences mirroring those displayed on

the corresponding bulk surfaces.

The effect of a range of dispersion corrections on the site preference for CO on

Pt, Au, Ir and Pd NPs were then determined. Previous studies on the effects of

the corrections are limited and this work was intended to show the effect of the

corrections at a range of theory levels. The corrections were found to have an effect

on both the site preferences and energetic ordering of sites. Particularly significant

effects were seen in the Pt and Au NPs. The study provides an initial insight in the

applicability of dispersion corrected DFT to the study of metallic nanoparticles.

Chapter 5 outlined the development of parallel methodologies, with the ability to

utilise massively parallel computational computational resources, for the structural

characterisation of metallics NPs and NAs. Initially the parallel pool methodology

was implemented with the BCGA and applied to the DFT global optimisation of

Au10 and Au20. These are NP whose structures have been well studied by both

experiment and theory. The method was shown to successfully characterise their
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CHAPTER 6

structures whilst efficiently utilising greater computational resources.

This methodology was then implemented within the new open-source BPGA

program and applied to both Ir and AuIr NPs and NAs. The BPGA successfully

revealed the structures of Ir NPs significantly larger than previously possible. The

spin-unrestricted global optimisations revealed the importance of spin in the system,

with high-spin global minima being preferred for a number of sizes. Finally, the

BPGA was applied to the global optimisation of gas-phase and MgO(100)-supported

AuIr NAs. The inclusion of the surface significantly increases the overall cost of these

calculations and this study benefited from the parallel methodology. Significant

structural differences were found between the gas-phase and surface-supported global

minima structures. The surface was also found to influence both the excess energies

and the spin of the clusters.

Future studies on the PdIr system must include close collaboration with exper-

imental groups in order to develop a more complete understand of their catalytic

properties. Theoretical studies must move beyond the structural characterisation

of PdIr and their interaction with small molecules to calculations of the barriers

present in the system. Collaboration should also extend to the assessment of pre-

dictions made by the BPGA, both for gas-phase and supported NAs.
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