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ABSTRACT 

A variety of geophysical and geological data have been used to interpret the tectonic 

evolution of the southwestern part of the Sirte Basin in Libya and to analyse the dominant 

structures in the area. Despite the wealth of studies in the Sirte Basin, the tectonic 

evolution of the area, and in particular the effect of igneous intrusion, remains uncertain.  

The study attempts to address these issues.  Seven seismic reflectors representing the tops 

of units from the basement through Mid-Eocene unit, were picked and traced around the 

area. The various interpreted maps of these seismic marks reveal that seven fault zones 

dominate the area, and contributed to the formation of different high and low structures.  

The majority of these faults are NW-SE trending, particularly in the north part, while 

further to the south a NE-SW trend is noticeable. The lateral thickness variation of the 

sedimentary fill is extremely affected by these fault zones, and a number of depocentres 

have been created. The analysis of the tectonic subsidence curves that produced based on 

well data of nine real boreholes, and six pseudo wells, reveals that the tectonic subsidence 

of the Sirte Basin caused by two rift phases. Initial syn-rift subsidence began in the mid-

Cretaceous (~100 Ma) and ended at ~84 Ma and was followed by slow post-rift 

subsidence which continued until renewed rifting and rapid syn-rift subsidence at ~65 

Ma. This second phase of rifting and rapid subsidence continued through the Paleocene–

Eocene, during which ~400 m–615 m of subsidence occurred.  Rifting appears to have 

ceased at ~40 Ma, after which a second phase of slow post-rift subsidence, representing 

the second thermal basin sag, took place right up to the present. Analysis of the tectonic 

subsidence curves shows that maximum crustal stretching factor in the area is 1.226 

(22.6% extension).  
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The seismic interpretation reveals that a few numbers of sills intruded into the pre Upper 

Cretaceous in the north part of the study area, probably during the Late Cretaceous 

rifting, but were too small to have had significant potential impact on the host rocks. The 

gravity and magnetic interpretation shows that three broad highs dominated the northern 

part of the area, and a wide depocentre extends NE-SW at the southern part. The depth to 

the top of these structures ranges from ~3300 m–5700 m, but they extend deeper. The 

Moho depth as determined by the gravity models is ~26.6 km–35.8 km. The models show 

quite a deep basement depth (~9.5 km) under the troughs, while it is relatively shallow 

(~4.5 km) beneath the positive anomalies.  
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1 CHAPTER-1 

INTRODUCTION 

 

1.1 Background  
 

The study area is part of the Sirte Basin, one of the most significant Libyan hydrocarbon 

basins. Approximately 320 oil and gas fields are distributed in five major basins; the 

Sirte, Ghadamis and Murzuq basins, in which production started as early as 1957, and the 

Kufrah Basin and Cyrenaica Platform where production started more recently. Each of 

these basins is characterized by different depositional environments ranging from 

continental to marine, which led to formation different structural and stratigraphic traps.  

The Sirte Basin is the youngest sedimentary basin in Libya. The area of the Sirte Basin 

occupies about 230,000 km² (Montgomery, 1994; Hallett and El Ghoul, 1996), mostly of 

sand desert characterized by a huge sand dunes forms known as a sand sea. Among the 

world‘s petroleum provinces, the basin ranks number 13th (Klett et al, 1997). The Sirte 

Basin generally consists of a northwest-southeast-trending mosaic of narrow horsts and 

troughs, which distinguishes it from the adjacent intracratonic basins (Lewis, 1990). The 

depths of the reservoirs in the basin range from 700 m to 4000 m, with an average field 

depth of 2100 m. The thickness of sediments in the basin ranges from 1 km at the south, 

near the Tibisti Uplift to as much as 7 km in the Ajdabiya Trough.  Cenozoic carbonates 

and bioherms form the reservoirs on the platforms, whereas the structural highs in the 

eastern part of the basin are dominated by the significant clastic stratigraphic traps of 

Mesozoic age (Ahlbrandt, 2001). 
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1.2 Geographic setting 

The Sirte Basin is the largest Libyan Basin, located in the central north onshore Libya. It 

is bounded by the Tripolitanian, Ghadamis and Gargaf zones to the west, the Tibisti and 

Kufrah zones to the south, the Cyrenaica zone to the east, and the Mediterranean Sea to 

the north (Figure 1.1).  

 
Figure 1.1: Geographical location of Sirte Basin and the study area, the figures adapted from:  

(a) Hassan S Hassan, et al (2009)  

(b) http://www.earthbyte.org/Resources/ICONS/AFR/SirteBasin/AFR.SirteBasin.html 

(c) https://www.google.co.uk/maps/place/Libya 

a 

b 

c 

http://www.earthbyte.org/Resources/ICONS/AFR/SirteBasin/AFR.SirteBasin.html
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The study area is located in the south-western part of Sirte Basin, it is south of the Zallah 

Trough, and it is bounded from the northeast corner by the Beda platform. The northern 

part of the area is dominated by Barrut Arch, while the southern part is a depocentre 

represents the Abu Tumayam Trough (Figure 1.2). The area is located between 

longitudes 18º E and 19º E, and latitudes 27º N and 28º N.    

 

 
 

Figure 1.2: shows the main structures dominated the Sirte Basin  which oriented almost 

northwest-southeast, and the location of the study area. (Source: Thomas, 1995). 

 

1.3 Motives of the study  

Despite the history of exploration, the geoscientists who are interested in the Libyan 

petroleum domain believe that the four producing basins in Libya are still in the emerging 

stage of exploration maturity because (1) the wells density is extremely low in numerous 

potential areas and (2) in a lot of the extensive areas, mostly basin centres, valid deep 

objectives have been reached by only a few wells.  

Abu Tumayam 
trough 

The study area 
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Zallah trough, including the adjoining Abu Tumayam trough is one of these areas of 

exceptional potential; this study has been proposed to be conducted on part of this area.  

In particular it was proposed to study the magmatism in the area to determine whether or 

not, the Al Haruj Al Swad volcanic plateau has any role or impact on the promising 

adjacent area, as the presence of magmatic suites, with its thermal input to the basin, may 

have a significant role on the generation and/or remobilization of hydrocarbon, and trap 

formation.  

 

1.4 Aims and objectives 

Using seismic imaging and interpretation of the basin structures, as well as the 

interpretation and analysis of other geological and geophysical data, and modeling over 

the areas of interest, the study aims to: 

 

1- Delineate the major and minor subsurface structures that dominated the area, 

especially the deep objectives, and try to understand their evolution through 

geological time, and see how they contributed in the petroleum system.  

2- Delineate any igneous intrusions and assess their abundance and their impact on 

the petroleum system.  

3- Studying the subsidence history of the area in order to address the following 

questions/issues 

a- whether the Sirte Basin underwent one or multiple episodes of rifting 
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b-  whether the post-Maastrichtian basin sag over the earlier Cretaceous 

grabens, which has a bearing on oil migration, is a result of continuing 

subsidence or solely due to the compaction of deeper units.  

c- whether the rift in the study area was accompanied by the  igneous 

intrusions  

d- whether the time of rifting in the Sirt arm (the NW-SE trending part of the 

triple junction system of Sirte Basin), corresponds to that in the Sarir-

Hameimat arm (E-W trending), which formed during the Triassic, Middle 

and Late Jurassic, and Early Cretaceous.   

e- whether the Abu Tumayam Trough is connected to the east with the 

Maradah Trough 

4- Analyse the main subsurface strata and define the major and minor structures in 

the area, and track the lateral and vertical extending of these features.  

 

1.5 Datasets  

 

 Seismic data set 

A number of 2D seismic lines and 3D volumes of seismic data was available for this 

study, the specification and details for these two types will be given in chapter-3 (Seismic 

interpretation chapter). 
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 Gravity and magnetic data set 

The study will benefited from about 2800 land gravity values with their elevation 

distributed across the whole study area. Also, the area is covered by 1.0 km gridded 

magnetic data, Chapter-6 will give details about the history, distribution and specification 

for both types of this data.   

 Borehole data set 

The well log data (sonic, gamma, density, resistivity, and formation tops) for nine 

boreholes distributed across the study area were essentially used to guide the seismic 

interpretation and to control the restoration and gravity modelling.  The names of these 

wells are: 

G1a-72, P1-72, F3a-72, T1-72, A1-NC177, B2-NC177, S1-72, Q1-72 and U1a-72, and 

their location is shown on the seismic maps. 

 

1.6  Software used in analysis 

Various software has been used to carry out different analyses on one or more of the 

datasets. The main ones are: 

 KINGDOM 8.4 

This software has been used for seismic data interpretation, it has enabled the user to load 

the 2D or 3D seismic data and enabled borehole information to be imported. The 

software enables the display the seismic surveys and interpreted surfaces and faults either 

in map view or vertical view, the software is also supported by the VuPAK facility to 

enable 3D viewing.  
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 OASIS MONTAJ software (version 6.3.1) 

This software was used to process and interpret the gravity and magnetic data, the 

software is including a rich set of features that provide ease of use and enable the user to 

access the data set, process, map, and apply the interpretation filters. 

 GM-SYS modelling capability 

This sub-software of OASIS MONTAJ, models and displays the gravity and magnetic 

data simultaneously, including the surface data, response curves and well information. 

 MOVE
TM

 software 

In this study the software is used to construct 2D geological models based on the 

interpreted seismic sections, then to restore and backstrip the models using the 

application of unfolding and decompaction of the deposited units.  

 Basin Analysis Toolbox (Version 3, May 2002) 

This program consists of multi programmed worksheets each of which do a specific 

function for computing basin characteristics. This program was used to calculate and plot 

the decompaction and backstripping curves for the wells that have been used in this 

study.  

1.7 Thesis overview 

The thesis consists of seven chapters, including this chapter.  

Chapter 2 describes the geological and stratigraphic background of the area, reviews past 

work on its tectonic development through time, and also gives a brief description of the 

main reservoirs and their rock elements.   
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Chapter 3 presents the 2D and 3D seismic datasets and their interpretation, both in terms 

of sections and the production of a series of maps (i.e., time structure, depth, isochron and 

isopach). The study attempts to identify the main faults and to track them through the 

different depositional units.  

 

Chapter 4 combines the available well data with the seismic interpretation to determine 

the tectonic subsidence history of the area. The available well data are used to create the 

burial decompacted curves and tectonic subsidence curves, and combined restoration and 

backstripping are carried out for some interpreted seismic lines.  

 

Chapter 5 focuses on the magmatic intrusions in the area: their size, distribution and how 

they are related to each other, and discusses the time of their intrusion. Some examples of 

igneous intrusions from Gjallar Ridge in the Norwegian Margin will be shown to 

compare them with the sills in my study area (Sirte Basin).  

Chapter 6 uses the gravity and magnetic data to identify and map the regional structures, 

particularly that deeper than the seismic investigation or where the seismic coverage is 

lacking.  The gravity and magnetic data are gridded and several filters are applied to 

distinguish short wavelength sources from the long wavelength sources, to delineate the 

boundary of the features, and to estimate their depths. Gravity models are constructed to 

see how much the crust was thinned and to compare the results with stretching factors 

estimated from the tectonic subsidence calculation. 

Finally, in Chapter 7, the results from these chapters are discussed and set in the context 

of the evolution of the basin. 
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2    CHAPTER-2 

GEOLOGICAL SETTING 

2.1 Tectonic setting   

To understand the tectonic evolution of Sirte Basin it is useful to consider the plate tectonic 

history of Libya and surrounding regions, which is described by many authors, such as 

Morgan et al. (1998), Guiraud (1998), and Anketell (1996). For instance, El Makhrouf (1996) 

related the collapse of Sirte Basin to the break-up of Pangaea. Wilson and Guiraud (1998) 

studied the relationship between the plate tectonics and observed magmatism; Jongsma and 

others (1987) proposed that the Midena wrench offshore Libya formed as a result of plate 

tectonics; the relationship between plate motions and hotspot tracks has been discussed by 

Fouad (1991). These and many other studies provide the basis to understand the plate tectonic 

evolution of Libya. The following is a summary of the region‘s major tectonic events.  

2.1.1 Paleozoic  

The formation of Gondwana was completed by the early of Paleozoic (540 Ma), after which a 

period of magmatism began and continued until the 440 Ma. During this time the mobile belts 

that separate the master cratonic blocks of western Gondwana were intruded by granite and 

syenites. Thickening of the crust associated with uplift, rifting and erosion took place. While 

the northern part of Gondwana (north western Africa) was passive, the activity of subduction, 

convergence and mountain building took place in the southern part (south-western Africa). A 

wide, shallow shelf bordered the northern part of Gondwana (Figure 2.1), which started 

moving northward during the Ordovician time (Vail, 1991; Sutcliffe et al., 2000). 

Paleomagnetic studies show that during the Ordovician, the Avalonian and Cadomian terranes 
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split up and moved northward, colliding first with Laurentia and subsequently with Baltica, as 

part of Caledonian orogeny (Unrug, 1997, and Unrug et al., 1999).  

North Africa from Morocco to the Middle East, was dominated by continental siliciclastic 

deposition during the early Paleozoic (Cambrian), and during Ordovician and Silurian most of 

the deposition was marginal marine to marine (Hammuda et al,
 
1985).   

The Paleozoic basins in Libya are restricted due to the uplift and erosion events that took place 

during the late Silurian time (Caledonian Orogeny). While the Hercynian orogeny created 

major trends, such as the Gargaf Arch extending east- west between the Ghadamis Basin and 

Murzuq Basin, the Sirt- Tibisti arch trending north-south and separating the Kufrah and 

eastern basins from the Murzuq basin and Ghadamis basin in the west (Klitzsch, 1971).  

The abundance of Ordovician glacial and periglacial characteristics in Libya and Algeria 

strongly supports the hypothesis that the location of western Gondwana was close to the South 

Pole at this time Periglacial rocks dominate most of the reservoirs of Murzuq Basin 

(Brenchley et al., 1994). Following a marine transgression, Silurian marine deposition 

produced a thick black shale sequence which formed the major source rocks of the 

hydrocarbon accumulation in North Africa (Luning et al., 2000).   

 Overlying the early Silurian black shales in Libya is the Akakus Formation, formed from pro-

delta and delta sediments. Western Gondwana underwent rifting and crustal separation, 

producing the regional top Silurian unconformity (Boote et al., 1998). Four transgressive 

sequences dominated the Early Devonian in Libya, by the mid-Devonian the region 

experienced large scale deltaic deposition, which was ultimately uplifted and eroded. The 

collision of the north western margin of Gondwana with Laurasia occurred during the mid-

late Devonian (Hallett, 2002). During Late Carboniferous compressional tectonics (Hercynian 
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Orogeny), uplift and  erosion of the widely distributed Devonian marine siliciclastic deposits 

and early Carboniferous marine- continental deposits occurred in Libya, producing major 

trends such as the Jefarah uplift, Gargaf Arch and Sirt-Tibisti arch, which subsequently form 

the Paleozoic basin margins (Luning et al., 2000).   

Fold belt development in the Atlas Mountains in the mid-Carboniferous, due to the collision 

between Gondwana and Laurasia, was accompanied by development of associated foreland 

basins to the south. In Libya, the final flooding event in the mid-Carboniferous produced the 

Dimbabah Formation, after which the Hercynian Orogeny in the late Carboniferous reached its 

peak, causing a widespread  uplift and deformation of the North African margin (Klitzsch, 

1971). Extensive erosion took place (Boote et al., 1998) and a series of sags and swells formed 

from the former North African platform, which dominated the entire region from western 

Egypt to Morocco. In Libya, a number of troughs and platforms trending ENE-WSW were 

formed such as Sirt Arch, Al Gargaf Arch, Nafusa Uplift, Ennedi-Al Awaynat Uplift (Figure 

2.2). The Sirt Arch was formed from the inversion and subsequent deep erosion of the former 

Kalanshiyu Trough. The Qarqaf Arch was resulting in the detachment of the Murzuq Basin 

from the Ghadamis Basin. Thus, all these events/structures were caused by the superposition 

of Hercynian trends over the Lower Paleozoic trends.  

By mid-late Carboniferous time most of Libyan region was exposed, the major marine 

regression that dominated the North Africa, led to erosion and terrestrial deposition (De Wit et 

al., 1988). The Permian rifting subsequently extended from the Tethys gulf toward the west 

along the suture line of the Gondwana-Laurasia (Figure 2.1) (Ricou 1994, Hallett 2002).   
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Figure 2.1: The reconstruction of Pangaea at 265 Ma during Early Permian.  Northwards 

movement of Gondwana from Silurian until Carboniferous, then in the Late Paleozoic collided 

with Laurasia to form the Pangaea Supercontinent. Then a proto-Tethys Ocean developed by 

the early Permian (source Hallett 2002). 

 
Figure 2.2: The Hercynian Orogeny: during which uplifting, erosion and deformation took 

place across much of Libya and a new series of east-west to northeast southwest structural 

elements formed over the remains of earlier Pan-African structures 

 (Modified from Anketell, 1996). 



Chapter-2                                                                                                        Geological Setting                                                                                            

 

13 
 

2.1.2 Mesozoic events 

The supercontinent Pangaea, formed as a result of the collision between West Gondwana and 

Laurasia, and persisted until the Jurassic. The suture was a place of the major of dextral shear-

zone and significant strike-slip development (De Wit et al., 1988). In North African margins, 

the configuration of many of the Triassic basins is controlled by the collision between the 

west Gondwana and Laurasia which involved a major dextral shear-zone and a considerable 

strike-slip component that propagated a pull-apart geometry along this broad shear-zone (De 

Wit et al., 1988; Boote et al., 1998).   

The Pangaea break-up started during the Triassic when an extension and crustal thinning 

dominated the North African continental margin; Triassic rift structures are preserved in Libya 

and Tunisia. By the late Triassic the incipient break-up had spread to the East and West parts 

of former Gondwana, coupled with rifting along the African eastern margin and along the 

southern margin of the Arabian plate (Morgan et al., 1998). Triassic extensional fault systems 

are present onshore and offshore Libya, which are characterized in the Triassic succession by 

a number of unconformities. Wilson and Guiraud (1998), state that the Triassic sediments in 

eastern Libya may have been deposited in incipient syn-rift grabens. The Triassic deposition 

occurs first in the Libyan offshore basins and then onto the Nafusah Uplift, which formed the 

Tethyan shoreline, whereas Triassic terrestrial sedimentation dominated the rest of Libya 

(Wilson and Guiraud, 1998).  

The presence of continental Jurassic sediments in Libya is rare, but deposition probably 

continued in the Triassic rifts. In the Jabal Nafusah, a short period of marine Jurassic 

sedimentation was followed by a return to a continental deposition, similar to that seen to the 

south (Morgan et al., 1998). 
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Dercourt et al. (1986) calculated that the eastward displacement of Africa during the early 

Cretaceous to be about 2.5cm/year. Such movement of Africa caused the stretching and Sirt 

Arch collapse in the mid-Cretaceous. Meanwhile, the northern margin of the African plate 

tilted seaward. The Sirte Basin was formed from the remains of the northern part of the 

collapsed Sirt Arch into five major grabens (Hameimat, Ajdabiyah, Maradah, Zallah and 

Hun), separated by four grand platforms (Amal-Jalu, Zeltan, Zahrah-Bayda, and Waddan). 

The orientation of these structural features was generally north-northwest–south-southeast. In 

the Late Cretaceous and Paleocene, the Basin kept the same structural fabric throughout the 

recurrent episodes of faulting (Figure 2.3) (Barr and Weegar, 1972; Gumati and Kanes, 1985; 

Baird et al., 1996). 

In the Hameimat and As Sarir Troughs  there is evidence of subsidence and pull-apart that 

took  place in the Neocomian and Barremian, and the continental sands covered an extensive 

area which form one of the most valuable hydrocarbon reservoirs in the province. The early 

Cretaceous marine rocks are restricted to the northern margin of Libya. In the late Cretaceous, 

extension again became dominant along the Tethys southern margin, and the sediments of 

shallow marine carbonate covered most of the horsts of the Sirte Basin by the end of 

Cretaceous, some of these sediments form significant hydrocarbon reservoirs, and at the same 

time, the grabens had been broadly infilled   (Guiraud, 1998; Boote et al., 1998). 

2.1.3 Cenozoic events 

Uplift and marine regression characterize the early Cenozoic in western Libya, while in the 

Sirte Basin the earlier Cretaceous grabens underwent a gentle subsidence. Major subsidence 

persisted in the Ajdabiyah Trough, while wide carbonate platforms were formed in the Sirte 
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Basin. The major carbonate hydrocarbon reservoirs in Libya consist of the Paleocene and 

Eocene carbonates (Hallett, 2002). Subsidence in the Hun Graben occurred during Priabonian 

to Burdigalian times. This period was dominated by the change of movement direction of 

Africa toward the northwest (Dercourt et al., 1986). Since the end of the Oligocene a number 

of great changes have occurred in the western Mediterranean. In the Sirte Basin these events 

are represented by tilting towards the ENE, gentle folding, and subsidence, while on the 

Medina and Sirt Wrenches offshore the events are represented by the dextral wrenching 

(Anketell, 1996). 

Since the Tortonian, the northeastward drift of Africa has persisted with a rate of ~1.0 cm/ 

year. The Messinian time is characterized by huge rise in salinity, during which the drop of the 

Mediterranean sea level exceeds 500 m, and huge thickness of evaporites were deposited in 

the Mediterranean deep basins, in Libya this event is represented by deposition of thin layers 

of evaporites in some wells of the Sabratah Basin and in the Sahabi Formation. The base-level 

drop in the Messinian time which exceeds 500 m below present sea level is further confirmed 

by the presence of the buried deep valleys close to Ajdabiyah (Barr and Walker, 1973; Hallett, 

2002).  

 

2.2 Tectonic history of Sirte Basin 

After the Pan-African orogeny, early Paleozoic sediments were deposited in the Kalanshiyu 

Trough, following this, around the mid-Devonian this ancient trough likely became inactive 

(Hallett, 2002). Uplift, erosion, and peneplanation took place during Mid-Devonian, after 

which the depositions of the Mid-Devonian through Carboniferous had occurred all across 

central Libya. During the Hercynian Orogeny, the Kalanshiyu Tough and some of early 
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Paleozoic tectonic structures were inverted to create what is known as Sirte Arch (Figure 2.2), 

which was trending northeast from Chad to Cyrenaica. Many events were acting and 

deforming the Sirte Arch – which involving faulting and intensive erosion- finally caused 

removal of the whole Paleozoic depositions over the Arch crest. Few places still preserve 

traces of the lower Paleozoic sequences of Kalanshiyu Trough such as Abu Tumayam Trough, 

close to the Al Haruj al Aswad (Vail, 1991; Hallett, 2002). 

Many authors have studied the Sirte Basin‘s tectonic history. It is likely that a combination of 

causes formed the Sirte Basin. The timing of various tectonic events is still not completely 

solved especially regarding the collapse phase (Hallett, 2002).   

Some authors, particularly Gras and Thusu (1998) related to the onshore and Finetti (1985) for 

the offshore, believe that the incipient rifting began in Triassic, and also believed that syn-rift 

extension was limited to the period of between the Triassic and Early Cretaceous, and was 

followed by thermal sagging which finally lead to the marine transgression in the Cenomanian 

time. Continuation of rifting until the present time is proposed by Wennekers et al. (1996).  

Baird et al. (1996) believe that rifting began after the mid-Cretaceous, and during the 

Cenomanian and late Campanian it was the dominant force. Following this the rift-infill 

episode started and persisted until the end of the Maastrichtian, after which much of the Sirte 

Basin experienced a sag subsidence. By the Oligocene the final tectonic stage was starting, in 

which northeast tilting dominated the area, and the Ajdabiyah Trough continued to subside. 

The intermittent and likely shallow Triassic rifting is not in doubt now, both in the eastern 

Sirte Basin as well as in the offshore (Hallett, 2002). Abdunaser and McCaffrey (2014) 

documented that the Sirt basin underwent an anticlockwise rotation of axis through time from 

NE–SW (Early Cretaceous) through N–S (Upper Cretaceous) to NW–SE (Paleocene and 
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Eocene). And they related this inversion to the anticlockwise rotation of the African continent 

with respect to Eurasia. Also they proposed that the internal differences in relative motion 

between west and east Africa, caused a clockwise change in the extension direction which in 

turn probably caused the anticlockwise rotation of the Sirt basin axis. 

It has been suggested that in the Sirte Basin, the bounding faults are listric faults, the western 

and eastern margins formed by the master-faults associated with antithetic faults on the former 

and synthetic faults on the later. This suggestion was based on the observation that in the 

western Sirte Basin, some of the grabens are asymmetrically, but has yet to be demonstrated 

(Baired et al., 1996). 

Anketell (1996) demonstrated that, during the Aptian, the location of the spreading axis of the 

sea-floor in the central Tethys shifted to be closer to the continental margin of Africa. Based 

on the Anketell's (1996) tectonic model, the WNW-ESE system of major wrench-zones, which 

initially controlled the Sirte Basin geometry, was created by this switching event. Dewey and 

others (1989) distinguished several phases of African motion with respect to Europe, during 

the first phase (175 Ma
_
118 Ma) the African motion with respect to Europe was a sinistral 

strike slip, this motion corresponding to the central Atlantic opening, due to Africa and north 

America separation. Then a north-easterly directed compression phase took place during the 

interval 118 Ma
_
84 Ma. It is believed that the Abu Tumayam Trough (part of this study area) 

kept its original NNE-SSW trend, which defined the underlying basement (Anketell, 1996). 

During the Aptian, the extensional regime persisted and ultimately caused the collapse of the 

Tibisti-Sirt Arch to form a series of troughs and platforms, during the Cenomanian this area 

was completely flooded by shallow continental seas. Anketell (1996) suggested that there is a 

relationship between the collapse of the Sirt Arch and the Shear Zone of the South Atlas-
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Jifarah, proposing a general model to demonstrate the tectonic relationship between the 

Cyrenaica in the east of Libya with Sabratah and Sirte Basins in the west.  

In the Sirte Basin, the fracture zone formed in a series of NW-SE splays that controlled the 

troughs location in the Sirte Basin, these troughs can be considered as pull-apart grabens 

(Anketell, 1996). The post-rift sag period is characterized by the Cenomanian marine 

transmigration sediments, while the Campanian deposition formed the Sirt Shale- (organic-

rich sediments). Then subsidence continued during the late Cretaceous which at the end 

caused the platforms gradual-onlap. Generally the extension, with block faulting, dominated 

the late Cretaceous period.  

 

Figure 2.3: The series of main pronounced horsts and grabens produced by the rifting 

on the Sirt Arch which began in the Triassic. In the Cenomanian, the marine 

transgression flooded these tectonic elements (modified from Anketell, 1996).   
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Burke and Dewey (1974) proposed that the western margin of the Sirte Basin roughly 

corresponds to the boundary between the two plates in the proposed model for Africa during 

the Cretaceous. The Dewey and others model (1989) proposed that the present day geology of 

the west Mediterranean region can be explained obviously by the complex interaction that 

took place within the frame work of kinematics of the major plates.  

The Ajdabiyah western margin underwent growth faulting during the late Eocene after which 

the area subsided by over 700 m, at the same time sinistral strike-slip faulting affected on the 

Az Zahrah–Al Hufrah platform on the western margin of Sirte Basin. During the Oligocene 

the subsidence in the Ajdabiyah Trough persisted, about 500 m of subsidence is observed from 

well data. Much of the Sirte Basin was tilted northeast ward in the Miocene, and a huge 

accumulation of sediment was deposited in the Ajdabiyah Trough. In the southern Sirte Basin, 

gentle folding was dominant (Gumati and Kanes, 1985; Anketell, 1996).   

During the Paleocene time, the old structures of the Hon Graben reactivated and formed a new 

prevalent pattern of structures combined with volcanism. Regionally this deformation the 

western Sirte Basin compatible in terms of timing and trends with other structural kinematics 

in the Mediterranean Sea, such as the Sicily channel rifts (Argnani, 1993; Hinsbergn et al, 

2011). The convergence between Arica and Europe during this time (66.7 Ma) slowed down 

and became erratic (Dewey et al, 1989). 
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2.3 Stratigraphy of Sirte Basin 

2.3.1 Paleozoic deposition  

The Paleozoic was related to the megacycle of Gondwana (Boote et al., 1998). High latitude 

passive margin sedimentation represents the lower sequence of this megacycle which extended 

from the Cambrian to Silurian. The upper sequence which represents lower latitude deposition, 

deposited during the collision between Gondwana and Laurasia and which form Pangaea, this 

sequence extending from Devonian to Permian. In the northern Sirte Basin and due to the lack 

of any diagnostic criteria, the geologists in most oil companies apply Burollet's term 1960 

―Qarqaf Group‖ for the sequence of quartzites underlying the Mesozoic deposits. Hofra and 

Amal are two formations introduced by Barr and Weegar (1972). 

Petrographically the two new formations are similar to the quartzitic sandstones of Qarqaf 

Group, and both overlay the supposed basement. Many questions have been raised after the 

subsequent studies of the Basin, most of these questions directed at the environment and age 

of the quartzites of the Sirte Basin. Bonnefous (1972) announced his answers to such 

questions based on his results from the analysis of well D2-104A; he proposed that a major 

unconformity separated two distinct ages of the quartzites of the Sirte Basin. 

Wennekers et al. (1996) published a result from a study conducted by Robertson Group for 

thirteen wells in the Sirte Basin. The palynology study of these wells show major age 

revisions. According to this study, the quartzites of the Sirte Basin were deposited during the 

period of early Carboniferous through early Cretaceous.  
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2.3.2 Mesozoic deposition     

2.3.2.1 Pre-Upper Cretaceous 

With the exception of the Hercynian structural highs the Presence of Mesozoic rocks are 

common over most of Libya basins, during the rifting phase of the Sirte Arch development 

(Figure 2.3). Triassic and Jurassic sediments can be found in some horsts and grabens, during 

this period when continental deposition was dominating the interior of Libya, while the 

northern margin was dominated by the marine deposition (Hallett, 2002). 

The area was dominated by a continental sandstone deposition during the early Cretaceous 

including the Nubian and Messak formations. After the end of the rift phase, the marine 

transgression progressively flooded northern Libya during the upper Cretaceous, and the 

continental area was confined only in a few small islands by the end of the Maastrichtian.  

In the Sirte Basin, the Triassic and Jurassic are generally absent, while Lower Cretaceous 

clastics are encountered in SE Sirte Basin and in some grabens in the centre of the Basin 

(Shelmani et al., 1992). 

Particularly, wells in the Zeltan High area have some Lower Cretaceous clastics below the 

marine Upper Cretaceous sediments. Their thickness, in general, is less than 50 m. Some 

occurrences are also encountered in the southern part of the Dahra-Beda platform with 

thicknesses of up to 100 m. 

 

2.3.2.2 Upper Cretaceous  

 Cenomanian sequence 

In the Sirte Basin, especially in S and SE, the Bahi Sandstone (Cenomanian) forms the basal 

part of the Upper Cretaceous marine sequence. It is generally distributed on and around the 
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southern parts of the Dahra and Waddan uplifts, with a thickness ranging from a few metres to 

50 m. However in some wells a thickness of 457 m is recorded, probably representing some 

other pre-Upper Cretaceous clastics, as yet identified. The Bahi Formation is generally 

composed of coarse and relatively loose sandstone (Getech study, 2000). 

Another clastic unit often present at the base of the marine Upper Cretaceous succession is the 

Maragh Clastics (Cenomanian). It is mostly found in the Dahra platform, and its average 

thickness is about 20 m, but increases to both the E and S to over 100 m. It is generally formed 

of sandstone and green claystone. This configuration suggests that before the advent of the 

deposition of the dominantly marine units of the Sirte Basin, it was preceded by fluvial-

marine, probably deltaic sedimentation (Megerisi and Mamgain 1980a; Megerisi et al. 1980b). 

 

 Turonian-Campanian sequence 

Within the Sirte Basin there are a number of formations that represent this time span, and were 

all lumped within the Rakb Group (Barr and Weegar, 1972), although the name Rakb has been 

used in many concession areas to formation level only. The Turonian part of the sequence is 

represented by the Etel Formation or its lateral equivalent the Argub Formation (Argub 

Carbonate), which is recognised in NW Sirte Basin. The Etel Formation (Turonian) is 63 m 

thick in well J1-72 and is composed of mottled shale and anhydrite with calcilutite near the 

top. It is underlain by the Cenomanian Lidam Formation and overlain by the Coniacian 

Rachmat Formation. The Rachmat Formation (Coniacian) is composed of 32 m of clastic 

calcilutite and grey shale with muddy phosphatic sand at the top. The Sirte Shale (Campanian) 

represents the upper part of the Rakb Group, and may occasionally be referred to as the Rakb 

Formation (A1-72). It is composed of black to grey shale, and bioclastic limestone and 



Chapter-2                                                                                                        Geological Setting                                                                                            

 

23 
 

sandstone with glauconite and fossil debris. The thickness of the Sirte Shale increases in 

troughs and diminishes over platforms (Geological map of Libya, 1985). 

 

 Maastrichtian sequence 

The Cretaceous marine transgression took place during the Maastrichtian sequence. This is 

found in all areas of the Sirte Basin. Waha Limestone, Kalash, Lower Tar Marl, Abiod, and 

Gheriat are the most common names of the Maastrichtian sequence formations. In the Sirte 

Basin, the Gheriat and Kalash formations (Maastrichtian- locally Danian) are the most 

commonly used formation names. The Gheriat Formation (well L1-13) is composed of 45 m 

of white crystalline dolostone, sandy at the base. 

Kalash is the name proposed by Barr and Weegar (1972) for the formation overlying the Sirt 

Shale formation. In the Zallah Trough, the well El-57 is selected to be a type section, the 

Formation is composed of about 100 m of foraminifera-rich micritic argillaceous limestone. 

Proposed to be deposited in low-energy neritic shallow marine environment, the limestone 

changes to be sandy near the group of small islands distributed within this shallow sea, while 

it is predominantly chalky in the eastern Sirte (Barr and Weegar, 1972). 

2.3.3 Cenozoic deposition 

2.3.3.1   Paleocene sequence 

The sequence is distributed in NW-SE trending zones, in the Ajdabiyah Trough at the NE arm 

of the Sirte Basin, the sequence is up to 2550 m thick, in the Maradah Trough it is up to 2300 

m thick and in the Zallah Trough up to 3000 m thick, and in SE Sirte Basin it is up to2000 m 

thick. 
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The Paleocene sequence is strongly influenced by ENE-WSW trending tectonic trends 

producing highs and lows in the thickness of the formations. However, this trend is interrupted 

by a NNW-SSE trend. In the Sirte Basin, the Paleocene sequence consists of several 

formations which are: Hagfa Shale and locally Defa Limestone (Danian), Beda (Montian), 

Dahra (Landenian), Khalifa (Montian-Landenian), Megraf (Danian-Montian), Zelten 

(Landenian) and Harash (Landenian). In the north, north-east, and south-east Sirte Basin, the 

sequence of Paleocene is represented by the Lower and upper Sabil members (Danian – U. 

Landenian) (Hallett, 2002). 

The Hagfa Shale (Danian) represents the early depositions of the Paleocene sequence in the 

central Sirte Basin. The distribution of this shale seems to be restricted to the central and 

southern central part of the Sirte Basin. It is composed of grey to dark grey shale and 

claystone, with some occasional calcareous intercalations especially abundant in the upper 

part. The formation is a product of a lagoonal or non-agitative clay-rich basin (Barr and 

Weegar, 1972). 

The Hagfa Shale is generally overlain by the Khalifa Formation, and sometimes replacing it. 

The Khalifa Formation is generally restricted to the middle part of the Upper Paleocene, but in 

some areas in the Basin the formation has a longer age span (Montian – Landenian), and is a 

lateral equivalent of the Beda and Dahra formations. The Khalifa Formation has two units: the 

lower one is shale and the upper is carbonate, which overlies the Dahra Formation and 

sometimes solely referred to as the Khalifa Formation. Zelten Formation (Upper Paleocene) is 

overlain The Khalifa Formation, the composition of the Zeltan formation is chalk and chalky 

limestone, with thicknesses ranging from 20 m to 400 m.  Its area of distribution is mostly 

around the Dahra Platform, and in the S and E of the Basin (Bezan, 1996; Hallett, 2002). 
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2.3.3.2 Lower Eocene sequence 

The thickness of the Eocene sequences as a whole in the Sirte Basin ranges from 1500 m in 

the Maradah Trough to 1600 m in the Zallah Trough. In the Sirte Basin the evaporitic Gir 

Formation (Ypresian) dominates the Lower Eocene succession, which is distributed 

throughout the Sirte Basin and its thickness is seemingly tectonically controlled, mainly in the 

Zallah Trough (800 m thick) and Maradah Trough (700 m). The Gir Formation is composed of 

three members: 

- Kheir Limestone (latest Paleocene earliest Eocene) is of shoal facies, usually dominated by 

large forams (Nummulites and Alviolina), its thickness reaches over 450 m.  

- Facha Dolomite (Ypresian) which is a transition in facies between the Kheir Formation and 

the Gir Evaporites. Is usually identified in the central part of the Sirte Basin and might be 

either lumped with the overlying or underlying unit. Its thickness is usually around 100 m, but 

values exceeding 350 m may be found locally (Getech study, 2000). 

- The Gir Evaporite Member (between 400 m-700 m thick) is the most conspicuous part of the 

formation, and it is distributed along two NW-SE oriented zones, the eastern one covers the 

Ajdabiyah and Maradah troughs, while the western one covers the Zallah Trough. The 

Formation is composed of alternating white to buff dolostone and thick, white anhydrite. 

Within the Sirte Basin, anhydrite forms 20 to 80% of the Formation, but no definite trend has 

been identified.   
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2.3.3.3 Middle-Upper Eocene sequence 

The Middle Upper Eocene sequence is distributed largely in the Zallah Trough (up to 900 m 

thick) and Maradah Trough (up to 1300 m thick). The sequence is represented by the Middle 

Eocene Gialo Formation and its equivalent, and the Upper Eocene Augila Formation or its 

equivalent. The Middle Eocene sequence extends in its distribution to the Maras Brega Trough 

in E Sirte and on the Cyrenaica platform. The maximum thickness of over 700 m is reached in 

the E Sirte occurrences, decreasing westwards to less than 200 m. The Gialo Formation 

(Lutetian) is composed of grey calcarenite and calcilutite, chalk and grey shale, fossiliferous 

and occasionally dolomitic. In the Sirte Basin, the Middle-Upper Eocene sequence is thus 

dominated by neritic and shoal facies.  

 

2.3.3.4 Oligocene sequence       

The shoreline of Libya underwent a northward migration during the Oligocene. Minor 

regressions and minor transgressions took place during the Mid-Oligocene and Late- 

Oligocene respectively (Mastera, 1985).  

The outcrops of the Oligocene rocks are found between the Hun Graben to the west and 

further than Al Haruj al Aswad to the east. The Oligocene deposits are present in all parts of 

Sirte Basin. The Najah Group consists of the Arida Formation (sandstone and shale) and the 

laterally equivalent non-marine Diba Formation. In the northeastern and southeastern parts of 

the Sirte Basin, the Najah Group extends into the Miocene, in the Maradah and Regima 

formations. However, these higher parts of the Group are included with the overlying mega 

sequence. The Arida Formation is composed of the alternation of thick-bedded sandstone and 

claystone in the lower part with limestone intercalations, occasionally thick, in the upper part. 
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The thickness in some wells reaches about 364 m. The environment of deposition suggest that 

the Lower-Mid Oligocene sequence is the product of deposition in a narrow seaway (about 

400 km wide) extending NNW-SSE from the Sarir area in the SE to the Sirte Bay in the NW 

(Hladil et al., 1991). 

 

2.3.3.5 Miocene sequence  

The Sirte Basin almost closed during the Neogene, apart from its central part, which extended 

southeastwards into the Sarir low in SE Sirte. The distribution of the Neogene megasequence 

is largely in the central part of the Sirte Basin Ajdabiyah Trough where it varies from 300 m in 

its middle part to over 2000 m in its northern part at Sirte Bay (Barr and Weegar, 1972). 

Benfield and Wright (1980) studied the Neogene succession in the southeastern Sirte Basin. 

They assigned Maradah Formation to the Lower and Middle Miocene sequences, and they 

proposed a new name for the post-Middle Miocene section (Kalanshiyu). Well T2-65 has been 

chosen to be the representative section, it is located beyond the Sarir field. The Maradah 

Formation is 500 m thick, and was deposited under fluvial conditions to the south and marine 

conditions at Gialo, Augila and An Nafurah. In the Ajdabiyah Trough, the thickness of 

Maradah Formation increases to over 850 m and the age extends from Aquitanian to 

Serravallian. The Kalanshiyu Formation (Miocene and Pliocene) overlies the Maradah 

Formation. Benfield and Wright (1980) differentiated between the two formations, since the 

carbonates in the Maradah Formation are more than in the Kalanshiyu Formation. In the 

southeast Sirte Basin, the Kalanshiyu Formation is widespread presence, extending from the 

area south of As Sarir to the Ajdabiyah Trough. The SI-103 well has been chosen by Benfield 

and Wright (1980) to represent the Kalanshiyu Formation. The thickness averages 150 m in 
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the Intisar area, while it is over 200 m thick in the Hameimat Trough (Benfield and Wright, 

1980). 

  

2.3.3.6 Pliocene and Quaternary    

The Pliocene time in the Sirte Basin is represented by two formations, the lower formation is 

the Al Hishah and the upper Formation is Qarat Weddah. The Al Hishah Formation is 

composed of sandstone, calcarenite, and gypsum that is produced from deltaic to estuarine 

deposits. In the Al Qaddahiyah area, the thickness of this formation reaches 20 m. At Bi'r 

Zaltan, Maradah, Sabkhat Ghuzayil, a similar deposition to the Al Hishah Formation has been 

found by the Libyan Industry Research group (The geological map of Libya, 1985). The 

Pliocene is the main age of the Formation, but might be extended to the early Pleistocene 

(Innocenti and Pertusati, 1984). The Qarat Weddah Formation was found at the Al Jaghbub 

oasis, but might be found westward as far as the Al Aqaylah region. The formation was 

deposited across a range of environments, but it is mainly represented by aeolian sands, 

interbedded with lacustrine depositions such as marls, clays and rare gypsum. 60 m of this 

Formation is at Al Aqaylah, while it is thinner towards the east. At Wadi al Hamim and 

Ajdabiyah, the Qarat Weddah Formation is present, while the Al Hishah Formation is absent, 

but where both formations are present the Qarat Weddah Formation always overlies the Al 

Hishah Formation. The Qarat Weddah Formation assigned to Pliocene to early Pleistocene 

(Hallett, 2002). 

In Libya about 30 percent of the land surface is covered by the Post-Pliocene sediments. The 

Quaternary deposition in the south of Misratah and Ajdabiyah region is represented by the 

extensive sabkha deposits. The Quaternary sand seas of the interior Libya is the most amazing 
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and extensive deposits in the area. The extension of the Great Sand Sea in eastern Libya is 

more than 400 km from Jabal Zalmah to Al Jaghbub. The linear dunes dominated in most of 

these areas, frequently extending for tens of kilometres and reaching of 200 m in heights. 

Despite the beauty and splendour of these dune fields, they represent the biggest obstacles to 

geological and geophysical surveys (Geological map of Libya, 1985). A general stratigraphic 

chart of Sirte Basin is shown in Figure 2.4. 
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Figure 2.4: Stratigraphic chart of the Sirte Basin 

Modified from (Rusk, 2001). 
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2.4 Stratigraphy and lithology of the study area 

‗All the following descriptions in this section and sub-sections are from personal well log 

observations‘. 

Based on the nine well logs available for this study (see Chapter 1), the chrono- stratigraphic 

and details of the formation lithology have been summarized. Most of the wells in the study 

area have reached only the Upper Cretaceous, or in some wells such as well F3A-72, G1-72 

and P1-72 they penetrated the top of Lower Cretaceous, the Bahi/Nubian formations 

(sandstone). From the seismic data, it can be noted that there is still a thick succession between 

the Bahi/Nubian sandstone and the Precambrian acoustic basement. Due to the lack of 

information below the Upper Cretaceous, the analysis of the lithology of the area will start 

only from the Upper Cretaceous formations.  

2.4.1 Mesozoic 

2.4.1.1 Upper Cretaceous succession  

The deepest well in the area is the P1-72 which reached to 13140 feet and penetrated the Bahi 

Formation, a Cenomanian unit mostly overlying the Lower Cretaceous Nubian sandstone. The 

Formation is mainly composed of sandstone, off white to white to occasionally light grey, 

moderate to high hardness, with calcite to silica cement, and poor to fair porosity. In some 

wells such as U1-72 the Formation has pale to golden yellow direct fluorescence. Locally very 

thin layers of limestone are interbedded with the main formation, the limestone is 

characterized by the grey to milky white colour, is soft to moderately hard, microcrystalline, 

and with traces of pyrite.   
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The Bahi Formation is overlain by either the Lidam Formation or the Etel Formation.   The 

Lidam Formation is about 1000 feet thick and dominantly limestone, deposited during the 

Cenomanian, tan to light brown, occasionally grey, in colour, soft and argillaceous. The 

limestone is interbedded with dolomite and clay, the dolomite has approximately the same 

colour and it is hard and microcrystalline, contains some fossils. The Etel Formation was 

deposited during the Turonian and overlies the Lidam Formation where that is present.  In well 

U1A-72 the Etel Formation is about 1800 feet thick, mainly composed of shale with different 

colours ranging from light grey to dark grey and dark green, including soft, washable and 

calcareous marl. Thin layers of sandstone, limestone, siltstone and clay are interbedded in the 

main formation. The sandstone is colourless, white and grey in colour, medium to well sorted, 

with a carbonate to silica cement. The limestone is white, soft to moderately hard, chalky, 

includes some black organic material and poor porosity. The siltstone is white, grey 

occasionally colourless, moderately hard, has a carbonate to argillaceous cement, is chalky 

and has moderately to well sort grains. In general the Etel formation forms a seal for the lower 

Nubian sandstone reservoir.  

The interval of Coniacian–Maastrichtian is represented by three formations which are the 

Rachmat Formation, Sirt Formation and Kalash Formation sequentially from bottom to top. 

The Rachmat Formation is mainly shale light-dark grey, occasionally greenish, fissile- sub 

fissile occasionally sub blocky. Overlying Rachmat Formation is the Sirt Shale Formation 

which is characterized by grey colour, fissile to sub blocky, firm, containing traces of pyrite, 

silty in parts and calcareous. Thin layers of limestone, sandstone and siltstone are interbedded 

this thick layer of Sirt Shale with properties that like those interbedded the Lidam Formation. 

The most upper formation of Upper Cretaceous is the Kalash Formation (Coniacian), in well 
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A1-NC177 the Kalash Formation overlies the Sirt Shale Formation, with a relatively small 

thickness 65 feet and mainly composed of limestone, tan to grey in colour, medium hard and 

silty. 

2.4.2 Cenozoic 

2.4.2.1 Paleocene 

During the Paleocene time, a series of different formations have been recognized and defined 

in most of the wells in the area. The oldest formation in the Paleocene sequence is the Hagfa 

Formation. In well A1-NC177 the Formation directly overlies the Kalash Formation and is 

composed of limestone and shale with a thickness of about 500 feet. The limestone is creamy 

white in colour occasionally tan, moderately hard to hard, slightly dolomitic, containing some 

fossils, and is argillaceous in part. The shale is dark grey to grey in colour, sub-fissile to 

blocky, moderately hard and slightly calcareous.  In well U1A-72 Hagfa Formation is overlain 

by the Beda Formation, which has a thickness of about 1100 feet. The composition of this 

formation is limestone and shale. The limestone is calcilutite, creamy to light brown with 

medium hardness, argillaceous to crypto- to microcrystalline, with poor porosity and no oil 

shows. The shale is grey to dark grey occasionally greenish, sub flaky to flaky, soft to firm, 

high calcareous, silty in parts with traces of pyrite.  Hagfa and Beda Formations represent the 

lower Paleocene depositions.  

The upper Paleocene sequence is represented by a number of known formations, beginning at 

the bottom by Dahra Formation which in well T1-72 has a thickness of about 820 feet, the 

formation at the bottom is mainly shale characterized by dark grey to greenish grey colour, 

soft, sub blocky to sub fissile and slightly calcareous. The shale layer interbedded with thin 

layers of marl which has grey to brownish grey, soft and washable. The formation is capped 
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by a calcilutite interbedded with calcarenite layers which are cream and light grey colour, 

moderately hard, and cryptocrystalline- microcrystalline, mainly chalky and argillaceous. 

Above the Dahra Formation is the Zeltan Reservoir Formation, this Formation is relatively 

thin: in well A1-NC177 the Formation has a thickness of about 276 feet. The formation is 

composed mainly of limestone, interbedded with thin layers of shale and marl. The uppermost 

formation in the Paleocene sequence is the Zeltan Formation, which is in well G1A-72 has a 

thickness of 370 feet. The Formation is mainly composed of limestone interbedded with shale 

layers. The limestone is dark grey to light grey occasionally white in colour, crypto- 

microcrystalline, moderately hard-soft, argillaceous, pyritic, and has no visible porosity.    

 

2.4.2.2 Eocene 

There are three main known formations deposited during the Eocene, the Gir (lower Eocene), 

Gialo (Middle Eocene), and Augila (Upper Eocene) Formations.  

The Gir Formation consists of two members, the Facha Member which is considered as a 

recognized unit of Gir Formation and occasionally called Gir Facha Formation. In well F3A-

72, the Facha Member has a thickness of 330 feet. The main lithology of this member is a 

dolomite which is characterized by a tan white to light grey colour, with clear microcrystalline 

cement and no visible porosity. The second lithology of this member is a limestone, white to 

grey in colour, hard to moderately hard, slightly dolomitic and pyritic with traces of oil shows.  

The second member of the lower Eocene Gir Formation is the Hon Member, in well U1A-72 

the thickest part of this member is about 2800 feet. The Formation mainly consists of 

anhydrite, white and tan in colour occasionally creamy. The thick anhydrite layer is 

interbedded with thin layers of dolomite, shale and claystone. The dolomite is a creamy 
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colour, microcrystalline and firm to moderately hard with visible porosity. The claystone has 

traces with pyrite and some fossils. The shale is green to grey in colour, soft and calcareous. 

The Gialo Formation (middle Eocene) is overlies the Gir Formation. In well A1-NC177 the 

thickness of the formation is about 1050 feet. The formation mainly consists of chalky white 

soft limestone occasionally argillaceous with some fossils fragments. The limestone is 

interbedded with thin layers of claystone, chert and dolomite. The claystone is moderately 

hard, blocky with traces of pyrite, the chert is black to dark brown in colour, bright and very 

hard, while the dolomite is creamy and brown in colour, microcrystalline, firm with good 

porosity.  

The Augila Formation is the uppermost formation in the Eocene Sequence, overlying the 

Gialo Formation. In well A1-NC177 the Augila Formation has a thickness of about 260 feet. 

This Formation is mainly claystone with a yellow to pale grey colour, occasionally red to 

brown. The formation is very soft, sticky, calcareous and occasionally sandy. Thin layers of 

sandstone and limestone are interbedded the claystone layer. The sandstone is white and pale 

yellow, blocky, calcareous and poorly consolidated. The limestone is white to yellow, 

microcrystalline and dolomitic.  

 

2.4.2.3 Post Eocene  

Most the wells that have been drilled in the area started logging and recording lithology just a 

few hundreds of feet above Gialo Formation (top middle Eocene). In the well A1-NC177 the 

uppermost part is a basalt with a thickness of about 57 feet; the well is very close to the Al 

Haruj Al Swad plateau.  Under this basaltic layer is a white to pale yellow sandstone layer, 

calcareous and poorly consolidated. At a depth of 500 feet the sandstone is interbedded with 
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argillaceous claystone layers, with a wide variation in colour from yellow, grey, green and 

brown colour.  In well B2-72 this surface layer begins at a depth of 1000 feet with a whitish 

yellow and pink sand, mostly poorly lithified, but occasionally moderately hard, and 

calcareous, interbedded with layers of sandstone and a washable creamy and sticky clay. In 

well B15-NC177, the surface layer extends to approximate 570 feet. In well G1A-72 the post 

Gialo Formation (middle Eocene) is the first interval logged and consists of limestone and 

clay. The limestone is white to slightly tan, sandy and occasionally argillaceous, while the clay 

is tan to red colour and calcareous. In well Q1-72  the same layer starts with colourless, 

yellowish  sand, interbedded with a pink and light grey colour clay, soft and sandy and slightly 

become claystone, plus thin layers of siltstone reddish to brown in colour interbedded, and the 

last tens of feet is shale green to grey in colour, soft with some of limestone. In well T1-72 

approximately the same composition and the thickness is about 1770 feet. Limestone, shale 

and claystone are the lithology of the most upper layers in well U1A-72.  

Table 2.1 and Figure 2.5 (A, B, and C) include data on the thickness of the major sequences 

are evident from the wells in the area of study. 

 

Age EOCENE PALEOCENE U. CRETACEOUS 

A1-NC177 3966 2364 608+ 

B2-72 4896 1752+ - 

B15-72 5066+ - - 

F3A-72 3866 4121 1875 

G1-72 4029 4092 3043 

P1-72 3949+ 3990 3541 

Q1-72 4416 3884 310+ 

U1A-72 4625 3694 1841 

T1-72 4105 3947 594+ 

S1-72 4585 3556 296+ 

Table 2.1: thickness in feet of the units during the different 

major sequences in group of wells in the area. 
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Figure 2.5a: Thickness of Eocene units. 
 

 

 
Figure 2.5b: Thickness of Paleocene units. 

 

+ 

+ 

+ 

Thickness of Eocene units 

Thickness of Paleocene units 
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Figure 2.5c: Thickness of Upper Cretaceous units. 

Note: where the sign + exist by the number means the thickness still extends up or down, but 

there is no record due to drilling restriction in the well  

 

 

2.5 Petroleum system of the Sirte Basin 

2.5.1 Temperature gradient 

Various studies of the temperature gradient in Libyan basins have been carried out during the 

last decades, in particular El Hamyouni (1984), El Hamyouni et al. (1984), Gumati (1985), 

Gumati et al. (1988), Gumati et al. (1996), Galushkina et al. (2012), and the Tunisian offshore 

data by Al Hawas (1984). In the Sirte Basin, Gumati (1985) used variable surface temperature 

and the bottom-hole temperature (BHT), to construct the temperature gradient. Analysing the 

data from twenty eight wells, Gumati concluded that the relationship between the BHT 

(bottom-hole temperature) with depth showed a very strong correlation factor of 0.96 with 

temperature gradient of 22ºC and surface temperature intercept of 29ºC. Getech modelling of 

+ 
+ 

+ 
+ 
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the hydrocarbon maturity of wells from the Sirte Basin also matched this latter figure.  Gumati 

(1985) also observed that platforms normally have a higher thermal gradient than troughs, 

with a mean temperature gradient of 21ºC/km for the troughs and 25ºC/km for the platforms. 

The western and eastern flanks of the Sirte Basin are relatively hotter than the central part, 

which has a temperature gradient of less than 20ºC per km. The temperature gradient in the 

southern part of the Sirte Basin is around 18ºC per km and according to El Hamyouni‘s map 

(1984), drops further towards the south.  

 

By age of  

top seal 

By 

reservoir 

age 

By trap 

type 

By 

reservoir 

 type 

By 

reservoir 

depth (m) 

By reservoir 

temperature-

C 

Oligocene  

8.4% 

Oligocene- 

Eocene 

8.4% 

Structural 

83.7% 

Carbonate 

42.2% 

0 - 600   

0% 

10-38˚C  

14.3% 

U. 

Palaeocene 

20.7% 

Palaeocene 

33.8% 

Stratigraphic 

16.3% 

Clastic 

57.8% 

600-1200  

14% 

38 - 66˚C  

23% 

L. 

Palaeocene 

27.1% 

U. 

Cretaceous/ 

Paleozoic 

28.3% 

  1200-

1800  

25% 

66 - 93˚C  

53% 

Cretaceous 

43.8% 

Cretaceous 

sandstones 

25.5% 

  1800-

2400   

6% 

93-121˚C  

8% 

    2400 – 

3200  

49% 

121-149˚C 

 2% 

    Below 

3200  

 6% 

 

Table 2.2: Sirte Basin, Classification of Hydrocarbon Discoveries  

(Modified from: Parsons et al., 1980). 
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A geothermal gradients study in the Maradah Trough was carried out by Ibrahim (1996) from 

which he concluded that ~70% of the discoveries in the area of study were correlated with 

high geothermal gradients (Parsons et al., 1980). Table 2.2 shows the classification of the 

reservoirs, according to different criteria.  

 

2.5.2 Source rocks 

 Pre-Upper Cretaceous  

In the Sirte Basin there is no available source rock older than the Triassic: older units are 

either depleted and the hydrocarbons escaped, over mature or were not sufficiently organic-

rich to start with. The Triassic source rocks are probably limited to the SE part of the Sirte 

Basin and around the Sarir Trough. They are mature and make a substantial contribution to the 

petroleum reserves of the SE part of the Sirte Basin (i.e., Mragh Graben) where giant fields are 

commonly found. This source rock is lacustrine shale which contains the two types of 

kerogen, the migration of the hydrocarbon from the Triassic source rock to the adjacent 

formation started in the late Eocene (Thusu, 1996; Baair, et al 2001).     

 

 Upper Cretaceous and Paleogene source rocks  

The Upper Cretaceous shows maximum total organic matter (TOC) in the southern part of the 

Sirte Basin and within the Hagfa Trough (2.5% TOC), decreasing towards the NE (0.5% in the 

Ajdabiyah Trough), with a richer arm extending SE towards the Sarir Trough (El Hamyouni et 

al., 1984). The map produced by the above authors was based on analyses of shale samples 

from over 70 wells from the Sirte Basin. The analyses are for all shales distributed within the 

Upper Cretaceous section of the Sirte Basin. However the most significant source level within 
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the Upper Cretaceous sequence is the Turonian-Campanian (Rakb Group), with its persistent 

black shale column of the Sirte Formation. In the Dor Al Abid Trough, up to 122 m of organic 

rich shale occur at different levels of the Upper Cretaceous sequence (in concession areas 31 

and 11), and contain 1.9 - 3% of good quality algal organic matter. In the Hagfa Trough, some 

shale with above average TOC values of 30-49% has been encountered, and the overall 

average of the sequence is 2%. In the Ajdabiyah Trough, the organic matter decreases 

drastically to 0.4-0.7% with deterioration in quality to woody-type. However, these rocks are 

restricted to the marginal parts of the trough, while the central part of the trough contains shale 

with 2% TOC of amorphous algal type organic matter. The organic matter content of the 

Paleogene sequence and in particular, the Lower Paleocene Hagfa shale contains 1.58% TOC 

on average. However, the Paleocene shales are generally not mature. Gumati (1985), studied 

the maturity of the Cretaceous and Paleogene of the Sirte Basin by modelling with three 

temperature gradients. He found that the best correlation with the observed maturity values 

occurred when a temperature gradient of 22ºC per km and surface temperature of 29ºC were 

used. He also found that for the deeper Cretaceous levels, the calculated maturity is often 

underestimated, and he suggested that a higher temperature gradient might have existed during 

the Cretaceous. The observed and calculated maturities given by Gumati et al. (1996) are 

shown in Table 2.3. 

The petroleum system in the Sirte Basin differs from one to another and because of this, the 

details about the petroleum system will focus particularly on the area of study. 

 The effective source rocks in the Facha region and in the northern part of Zallah Trough reach 

330 m in thickness (Figure 2.6).  
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    Source level observed R0% measured R0% well 

Turonian 1 

 

QQQ1-11 

Campanian 0.69 

 

EE1-6 

Campanian 0.38 0.62 O1-103 

Maastrichtian 0.71 0.7 AA1-6 

Maastrichtian 0.66 0.73 EE1-6 

L. Paleocene 0.5 0.58 QQQ1-11 

Table 2.3: The observed and calculated maturity for different ages 

 (Gumati et al., 1996). 
 

The amount of hydrocarbons generated from this kitchen is not significant because it is 

believed that it is matured early (EL Alami, et al., 1989). 100 m of effective source rocks, at 

peak maturity exist in the Zallah area. This kitchen generated the oil reservoired in the Ghani 

groups and Zallah fields. El Alami (1996) suggested that the Zallah Trough kitchen sourced 

the Az Zahrah-Al Hufrah field, while Roohi (1996) suggested that hydrocarbons in these fields 

migrated from the Maradah Trough, he based his argument on the difficulty of how the Zallah 

Trough could charge these far large fields (Hallett, 2002).     

  

2.5.3 Reservoir rock 

The studies of the reservoir rocks show that the Farrud Member (Lower Paleocene) is the main 

reservoir for  the Ghani fields, and it is well developed, with high porosity ~25%, due to 

dolomitization and leaching in the ancient shoal regions. Up to 5000 barrel of oil per day 

(BOPD) per well is the potential production of these areas, while the production of the inter-

shoal areas barely reaches 3000 BOPD per well. In 1991, three pay-zones in the Ghani field 
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produced nearly 100,000 BO per day.  The environment of Facha Member was restricted, 

varying between evaporites and open marine limestone (Abugares, 1996). The quality of Az 

Zahrah Formation (Upper Paleocene) reservoir is fair. At the Facha, Taqrifat and Mabruk 

fields the Formation is hydrocarbon bearing. In the Zallah Trough, the Zelten carbonate 

however is not well enough developed, the Formation is a moderately deep-marine setting, 

and consists of argillaceous and micritic limestone (Abushagur and Lemon, 1991). 

 

Figure 2.6:  Zallah Trough and Abu Tumayam Trough Petroleum Systems 

(Modified from Hallett, 2002). 
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A thickness of 100 to 150 m of excellent reservoir quality is represented by the Facha 

Dolomite Member (Lower Eocene), which is oil bearing in the Zallah fields, which have been 

in continuous production since 1979.           

The dolomitization process enhanced the porosity of the Facha member. Both the Abu 

Tumayam Trough and the Al Kotlah Graben connect northwards with Zallah Trough. The 

Rich Sirt Shale source rock is the source kitchen in the Al Kotlah Graben. The peak maturity 

of this source rock was found in the area extending between Ayn an Naqah Fields and the Kuf 

(Figure 2.6). The fields in the Al Kotlah Graben such as Haram, Al Kuf, Dur-Mansur, and Al 

Kotlah are charged from this source kitchen, as well as the southern part of the Az Zahrah-Al 

Hufrah Platform. 

Unlike the above mentioned fields the Abu Alwan field shows different carbon isotope values 

and a different chemical signature of its oil samples from the Al Kuf, Warid and Al Kotlah 

samples (Abdulghader, 1996; Ambrose, 2000).  

Different formations are reservoirs in these fields, such as Samah dolomites for Al Kotlah; Al 

Kuf, Cretaceous basal marine sands for Dur-Mansur; Abu Alwan, and quartzites for Haram. 

The Al Hulayq Ridge, Al Abraq oil pool, and the Sabah field, are probably also sourced from 

the Al Kotlah Graben source kitchen, although this would mean a long distance migration, 

almost over 100 km. The Maradah Trough however most likely sourced the giant Ar Raqubah 

Field (El Alami et al., 1989). VEBA Oil Company resumed exploration in the northern part of 

the Abu Tumayam Trough in 1993 based on the good shows from well Fl-72 reported in 1966 

by the MOBIL Oil Company. The exploration activities continued in the area ultimately 

culminated in the  discovery of the new Ayn An Naqah field in concession 72, and extra wells 



Chapter-2                                                                                                        Geological Setting                                                                                            

 

45 
 

in concession NC 177. The production rate of Facha dolomites reservoir in Well Bl-NC 177 

ranges from 1800 - 2500 BO per day, with a 42° API oil gravity (Ross, et al. 1991). 

 The faulted anticlines with a northwest-southeast trend are the most common structures in this 

area. The Al Kotlah kitchen sourced these fields except the Barrut field   (Schneiter, 2000; 

Hallett, 2002). 

2.5.4 Seal rock 

In the Zallah Trough, there are two main seals, within the Paleocene-Eocene sequences. The 

lower one is the Paleocene shale of the Rabia and Khalifa formations and forms a regionally 

extensive seal for carbonates of the Az Zahrah and Farrud formations. The upper one is the 

Eocene Hun Evaporites Member, which sealed the Facha Dolomite reservoir from the top. In 

the Zallah Trough, the thickness of the evaporites is over 600 m. The south part of the Trough 

is extensively faulted, particularly on the Al Hulayq Spur and in the Meulagh Graben. Sealing 

faults are common in the area, such as when the Hun evaporites move down against the Facha 

reservoir and make a fault trap. The Hun evaporites also sealed the western flank of Ghani 

field, but other faults in the area are believed to be conduits for hydrocarbon migration 

(Abugares, 1996). 

2.5.5 Type of traps 

In the Zallah Trough the structural traps were during the Eocene and form the majority of the 

hydrocarbon traps. The western flank of the basin is extensively faulted and deformed whilst 

in the eastern part there is no significant disturbance. Most of the structural traps are located in 

the western part due to this Eocene tectonism. The group of fields are located at the north part 

of the Basin, such as Facha-Taqrifat, Mabruk, are located up dip of the central basin, and 
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essentially are faulted anticlines trending northwest. The main structure of the Ghani fields is a 

syncline, which is known the At Ar Ramlah syncline, located deep in the trough. The western 

and deepest part of the Zallah Trough is represented by the Ma'amir Graben, where the Fidda 

fields and Hakim fields are located (Figure 2.6). Structurally, the group of Zallah fields are the 

larger anticline in the Basin, west to the Ma'amir Graben the structure partially faulted. The 

Meulagh Graben represents the extremely complex structure and the Abraq-Themar area 

characterized by a compressional flower structures. A faulted anticline is the structure of the 

Sabah field. Zallah Trough and Abu Tumayam Trough are linked by a narrow sub-basin 

derived the Sabah field (Schroter, 1996). 
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3 CHAPTER-3 

SEISMIC INTERPRETATION 

 

3.1 Introduction 

 

Seismic interpretation is one of the main tools in this study because the seismic method is the 

highest resolution source of information about the subsurface strata and structures. This 

chapter demonstrates the type of seismic data that has been used, the methodology of picking, 

and the detailed description of the resulting maps of the interpreted surfaces and faults.      

3.2 Seismic data 

Two types of seismic data have been used in this study, 2D seismic lines and 3D seismic 

volumes. The whole seismic data covers about 63% of the study area, about 20% of the 

covered area is overlapped by both types of data and the rest is covered either by 3D or 2D 

data. 

3.2.1 2D-seismic data 

110 2D seismic lines covering about 48.5 % of the study area (Figure 3.1) have been used for 

this study. The 2D seismic lines are gathered from different seismic surveys (Table 3.1). 

3.2.2 3D seismic data 

A number of 3D seismic volumes have been generated by different oil companies in the area 

of study (concession 72 and NC177).  In the Sirte Basin, five separate volumes of 3D data 

cover about 34.5% of the study area have been released from Petro-Canada Oil Company for 

this study. Table 3.2 and Table 3.3 show the characteristics of these surveys.  
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Figure 3.1: Location map of the 2D and 3D seismic data 

coverage that have been used in this study. 
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Survey year Number of lines 

82 12 

84 07 

85 26 

88 23 

89 18 

90 10 

99 14 

 

Table 3.1: Survey year and number of lines used from 

each survey in the study for 2-D seismic data. 

 

 

 X. Min X. Max Y. Min Y. Max area km
2
 

Naga- 1 250343 269081 3019252 3033433 281 

Naga- 2 250450 261986 3033852 3048460 171 

Naga- 3 231400 281562 3049412 3062960 690 

Naga- 4 231506 278811 3064332 3079046 651 

Naga- 5 246426 278392 3079046 3100954 706 

Table 3.2: Location and coverage area characteristics of each available 3D volume. 
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 First 

inline 

Last 

inline 

First 

cross line 

Last 

cross line 

Total 

lines 

Naga- 1 5011 5500 1625 2249 1116 

Naga- 2 5523 6000 1624 1998 803 

Naga- 3 6001 6500 984 2647 2165 

Naga- 4 6501 7000 985 2545 2062 

Naga- 5 7001 7758 1457 2526 2830 

Table 3.3: Line characteristics of each available volume of 3D data. 

 

3.3 Interpretation strategy  

 

As a first step, the entire database of 2D lines and 3D volumes of the seismic data have been 

successfully loaded into the Kingdom™ software. The synthetic seismograms for 10 borehole 

wells were used to tie the whole seismic data through the entire area. The interpretation started 

by picking the horizons of interest along the 2D profiles. About 7 seismic markers represent 

different geological times and events were interpreted. The name of these markers (horizons) 

starting from the top of the seismic section are: top of the Gialo Formation (Top Middle 

Eocene) which represents the uppermost continuous horizon in the section. The top of the Gir 

Formation (Top Lower Eocene) which represent the seal for the Facha reservoir, the top of 

Facha Member (intra-lower Eocene), the top of Beda Formation (Top Lower Paleocene), the 

top of Sirt-Shale Formation (Top of Campanian), the top of Pre-Upper Cretaceous, and the top 

of Pre-Cambrian basement.  In all the interpretation work, the pick tracked the horizon peak. 

After picking of the 2D lines was finished, the picking of the same horizons throughout the 3D 
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data was started by initially picking every 20
th

 inline and 40
th

 cross-line in a loop direction, 

then in the second stage the picking increasing by choosing the middle line between every two 

inlines and crosslines of the first stage. The third stage produces the initial map of the horizon 

for the entire area by using the auto picking option. The last stage is to identify the areas of 

incorrect interpretation and to re-pick these manually until a satisfactory interpretation had 

been completed. Groups of the major and some of the minor faults we also tracked and 

mapped on the in-lines 3D data. All the mapped horizons and faults will be described and 

illustrated in the next sections of this chapter.  Areas, where there is no seismic data coverage, 

were left blank on all the maps.      

3.4 Horizon mapping and interpretation 

3.4.1 Horizon of Top Gialo (Top Mid-Eocene) 

The first interpreted horizon in this study is the top of Gialo Formation which is the shallowest 

continuous horizon that can be tracked on the data (Figure 3.2). The Gialo Formation as 

described in chapter two is predominantly a massive sandy, shaley and chalky limestone 

overlaying the Gir Formation. The Gialo Formation is the main reservoir in the Gialo field and 

is hydrocarbon bearing in other fields (Hallett, 2002). The horizon is segmented by a number 

of major and minor faults extending approximately NW-SE (Figure 3.2).   

The time structure map of top Gialo (Figure 3.3) shows that the surface in general dips 

northward (seaward), with some high and low structures. The main high structure which 

dominates the north part (Enaga-5 area) coincides with the area of the Barrut Arch (Hallett and 

El Ghoul, 1996). 
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Figure 3.2: Interpreted seismic line, inline 7550 of Enaga-5 3D volume, 

the line exemplifies the seismic markers and the faults crosscut these markers. All the 

deposits above the Bahi Formation are carbonate, while below are mainly sandstone. 

 

 

The structure is elongated WSW-ENE and interrupted by several approximately NW-SE 

normal and ramp faults which represent the extensional fault system formed during the second 

rift phase between 65 Ma-40 Ma.  These faults dip in two opposite directions (Figure 3.2) 

defining an elongated narrow graben, itself segmented it into two sub-structures north and 

south labelled on the map by H1A and H1B, with areas for the outer closure contours ~180 

km
2
 and 148 km

2
 respectively. The Barrut Arch separates the Zallah Trough in the north from 

the Abu Tumayam Trough in the south. The south portion of the H1A high is the footwall of 

numerous parallel to sub-parallel normal faults forming the fault zone-1, these faults together 

having a total heave ~1.0 km, and total throw of 0.3 sec (~840 m). The age of most faults 

within fault-zone-1 is younger than the Mid-Eocene as these faults cut the Mid-Eocene (Gialo 

Formation) and terminate in the Upper Cretaceous, others are truncated by the opposite faults 

and terminate at the Lower Paleocene. 
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Figure 3.3: Gialo TWT structure contour map (Top Mid-Eocene), 

the contour interval is 0.05 sec, the surface regionally dipping northward and segmented into 

high and shallow structures by several fault groups mostly extending WNW-ESE. The figure 

shows the location of seismic lines 7320 and 7550 from Naga-5 and the seismic lines 6810 and 

6910 from naga-4(red lines marked by circled numbers 1, 2, 3 and 4 respectively). 

 

The master fault of this fault zone has a ramp fault shape propagating deeply and cuts all the 

units to reach the basement (Figure 3.2 and Figure 3.4). The north portion of the Barrut Arch 

H1B represent the anticlinal hanging wall of the same fault zone (Figure 3.4) possibly 

representing a rollover anticline, and is characterised by a number of secondary sub-parallel 

antithetic faults dipping southward and forming fault zone-2 (Figure 3.2). At the depth of 
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Gialo surface, the maximum heave of these faults is ~125 m and a maximum throw of 0.058 

sec (~162 m). These faults also crosscut the units from the post Mid-Eocene until the top of 

Upper Cretaceous unit, however there is no obvious evidence from the seismic section that 

these faults were active during the Cretaceous rifting, which means that their age is probably 

restricted to the late Eocene. The subsidence history will be discussed in chapter-4. 

 Further to the south (Figure 3.3) the surface is dominated by a low semi closure structure 

(graben shape) located within the Enaga-4 region and labelled L1. The west boundary of this 

graben is undefined due to the limitation of the data coverage, but it‘s interpreted area is 

estimated to be ~330 km
2
, the graben is formed from two fault zones first is the fault zone-3 

(south flank) which is composed of a number of parallel to sub-parallel normal faults dipping 

northward and making a total sum of heave of ~1.0 km and a total sum of throw of ~0.27 sec, 

most of these faults terminate within the pre-Upper Cretaceous unit (Figure 3.4). The fault 

zone-3 obviously caused the time-stratigraphic units above the top lower Eocene (upper blue 

interpreted surface) in the hanging wall to be thicker than the equivalent units in the footwall, 

which appears to support that these faults were active in a Mid-Eocene. The dip of faults in 

this zone seems to be fixed and does not decrease with depth; unlike the fault zone-1 were the 

fault‘s dip decreases with depth.  The second fault zone is fault zone-4, the maximum heave is 

(~600 m) and vertical motion ~0.16 sec (~523 m) the later decreasing with depth, and the 

increase of thickness of units in the hanging wall being less than seen in the previous fault 

zone. Units above the top of the Lower Eocene clearly have a rollover anticline shape along 

the master fault of this zone, this feature disappears with deep. The second low structure 

(labelled L2) is located northwest of the Barrut Arch.  
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Figure 3.4: (a) Enaga-5 inline 7320 (b) Enaga-4, inline 6910, (c) Enaga-4, inline 6810 

 (See Fig. 3.3 for the location of this profile).
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Figure 3.5: Average velocities from the seismic datum to the top of the interpreted seismic 

marks, (a) Gialo surface (Top Mid-Eocene), (b) Gir surface (top Lower Eocene 

(c) Facha surface (intra-Lower-Eocene), (d) Beda surface (Top Lower Paleocene). 
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Figure 3.6: The average velocities from the seismic datum to top of the interpreted seismic 

marks, (a) top Sirt-shale surface (Top Campanian), (b) top Pre-Upper Cretaceous surface. All 

contour intervals (50 m/sec) except where specified. 

 

The third low structure (L3) is located within the region of the Enaga-3 has an elongated shape 

extending E-W. The
 
surface tends to be shallower to the south. One low closure exists to the 

west of this elevated area labelled L4, but it is not well constrained. 

Interpreted maps have been produced using the time-depth conversion utility in the Kingdom 

software, based on the average and interval velocities maps (Figure 3.5 through Figure 3.7). 

The velocity maps were computed from the sonic borehole data, by taking the whole sonic 

data for each available well, importing this data into an excel, and computing the average 

velocity at each surface, then the interval velocity between each two subsequent surfaces was 

computed.   
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Figure 3.7: Interval velocities for the interpreted seismic marks, 

(a) The Gialo-Gir interval (Top Mid-Eocene- Top Lower Eocene), (b) Gir-Facha interval 

(Lower Eocene interval), (c) Facha-Beda interval (U. Paleocene interval), (d) Beda- Sirt-shale 

interval (Top Paleocene- Top Campanian). Where not specified contour interval is 50 m/sec. 
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The depth structure map of Gialo surface has been produced (Figure 3.8) based on the average 

velocity map (Figure 3.5). The map shows approximately the same features that appear in the 

time structure map. The maximum depth of the surface is about 800 m at the structure L2, 

while the surface rises to zero depth (pinches out) southward due to the presence of the fault 

zone-5 which has formed the depression of the north side. The H1A and H1B structures have a 

minimum depth of 233 m and 263 m respectively, and the depth of the narrow graben between 

them reaches 530 m. The graben L1 shows a maximum depth of 700 m. This variation in 

depth reflects the impact of the rift faults on the area, especially on the Barrut structure. The 

lateral thickness variation for the interval between the Gialo surface (Top Mid-Eocene) and 

the next interpreted mark ‗Gir surface‘ (Top Lower-Eocene) has been shown by  

Continue of fig. 3.7: Interval velocities for the interpreted seismic marks, (e) Sirt-

shale- base of Bahi interval (Top Campanian to Top Pre U-Cretaceous). (f) Pre-Upper 

Cretaceous to basement interval. Contour interval (50 m/sec).  
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Figure 3.8: Depth contour map of Gialo surface (Top Mid-Eocene), with a contour interval of 

50 m, the depth map confirmed the components H1A and H1B of the main structure Barrut 

Arch, and the low structures (L1, L2, L3, L4). 

 

the isopach map (Figure 3.9) which was computed using the interval velocity map (Figure 

3.7). The lithology of this unit is mainly limestone, with a good porosity that made it one of 

the promising prospects (Montgomery, 1994), particularly in the presence of the fault zones as 

described previously. The unit‘s thickness increase to ~500 m between fault zone-1 and fault 

zone-3, decreases northward of the fault zone-1 and southward of fault zone-3 (~300 m). The 
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area L3 in the middle of the map makes a significant closure with a height of 325 m; about 

half of the available wells were drilled at the margin of this structural low. The unit thickens 

gradually to ~760 m toward the north-east corner, which is the maximum thickness for this 

interval in the area. The fault zone-5 at the south flank of L3 (Figure 3.10) bounds a structural 

high to the south where the unit‘s thickness is extremely reduced (<50 m).  

 
Figure 3.9: Isopach contour map for the deposits between Gialo-surface and Gir-surface (Top 

Mid-Eocene and Top lower-Eocene), the contour interval is 50 m, the map demonstrate the 

observed reduction of the thickness southward, and how the fault system affected the horsts 

and grabens thicken. 
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It is useful to remember that during the deposition of this unit (Mid-Eocene time), the entire 

basin was dominated by shallow marine conditions, and was affected by the closure of Tethys 

as the northeast ward movement of Africa caused stretching  and rifting in north Africa 

(Hallett, 2002). The WNW-ESE fault system dominated the area and the structural highs and 

lows with the associated variation of the thickness of the stratigraphic units, likely resulted 

from this plate movement.  

 

3.4.2 Horizon of Top Gir (Top of Lower-Eocene) 

 

The second interpreted horizon in this study is the top Gir Formation (top Lower Eocene) 

Figure 3.2. As discussed in previous chapters, the Gir Formation is mainly comprised of 

evaporites, from the top of Facha Member (dolomite) at the base to the Mesdar Member at the 

top (Barr and Weegar, 1972). The Gir evaporites are the seal formation for the underlying 

Facha reservoir.  The time structure map of the top Gir unit (Figure ‎3.12) shows the general 

symmetry between this surface and the previously described Gialo Horizon.  The surface dips 

northward and is interrupted by the same group of fault zones, the majority of faults striking 

WNW-ESE and dipping either NNE or SSW.  These mostly extensional faults segment the 

surface into horsts and grabens. The extension of the Barrut Arch is still clear with a decrease 

in the area of the outer closure contour for the two crests of the arch, H1A and H1B. However, 

here the H1A segment is less shallow than H1B. The structural lows L1, L2 and L3 also still 

appear at this surface, but the L4 structure is beginning to disappear. The time structure 

contour map of Gir surface was converted to a depth structure contour map (Figure ‎3.11) using 

the average velocity map (Figure 3.6) that shows a maximum velocity of 3755 m/sec at well 

P1-72, and a general  
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Figure 3.10: Arbitrary regional N-S seismic line, along the whole area. 

(See Fig. 3.9 for the Location) The line shows the main features. 
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Figure 3.12: TWT structure map of the Top Gir Formation  

(Top Lower Eocene), the surface still represents the vertical 

extension of the horsts (H1A and H1B) and grabens  

(L1, L2 and L3), also the northward dipping  

of the surface is clearly demonstrated. 
 

Figure 3.11: Depth structure contour map of Gir  surface  

(Top Lower-Eocene), the contour interval is 100 m,  

the depth map confirms the northward dipping and 

 the downward extensional features such as; H1A  

and H1B of the main structure (Barrut Arch),  

and the low structures (L1, L2 and L3). 

Sec 
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velocity increase northeastward (basinward). The depth structure contour map demonstrates 

the same regional northward dip of the Gir surface. Fault zone-3 and fault zone-4 still have a 

strong expression at this level and graben L1 formed from these faults shows the maximum 

depth (~1400 m) at its east side, while its minimum depth (~250 m) is in the south of the area.  

The rollover anticline structure at the hanging wall fault block of fault zone-1 (Figure 3.10), 

produced a significant structural trap with this evaporitic seal rock.  

The depositional thickness between the Gir surface and the underlying top of the Facha 

Member is shown by the isopach map (Figure ‎3.13).  This unit has an overall thickness of 

between 45 and ~1250 m. The map demonstrates the heterogeneity of thickness and presence 

of multiple of closures particularly adjacent to the numerous distributed faults in the area, for 

instance fault zone-3 produced a variation in thickness between the foot wall and hanging wall 

of ~300 m in area of graben L1. Barr & Weegar (1972) stated that the Gir Formation has a 

maximum thickness in the Zallah and Abu Tumayam Troughs, and the south part of the study 

area is part of Abu Tumayam Trough (Figure ‎3.13)  

The majority of faults that dominated the Gir-Facha unit are tectonically related to the second 

rapid and important rift phase which affected the area during 65 Ma-40 Ma as will be shown 

in the next chapter. 

3.4.3 Horizon of Top Facha Member (lower Eocene) 

The third target of the seismic interpretation in this study is the Facha Member (Intra lower-

Eocene), which is the lower member of the Gir Formation (Barr and Weegar, 1972). The 

Facha member mainly comprises of vuggy finely-crystalline dolomite interbedded with thin 

layers of micritic limestone. The importance of Facha Member comes from its porous 
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Figure 3.14: TWT structure map of the Top Facha Member 

(lower Eocene), H1B still clear demonstrated, while H1A 

started to disappear. The grabens (L2and L3) slightly dip 

westward, while graben L1 is nearly horizontal. The regional 

northward dipping of the surface is clearly demonstrated. 

Figure 3.13: Isopach contour map between Gir surface and 

Facha surface (Top Lower-Eocene and Intra-Eocene surface), 

the contour interval 100 m, the map demonstrates regional 

decrease in thickness northward and northeastward. 
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dolomite, which made it one of the significant reservoirs in the area, sealed by the middle 

member of Gir Formation (Hun evaporites). The regional time structure contour map of the 

Facha (Figure ‎3.14) shows the similarity of this surface to the overlying surfaces described 

above, but there are some important differences. For instance the sub-structure (H1A) of the 

Barrut Arch tends to become less prominent, while the north-east part of the arch is still 

dominant. The surface controlled by the same group of fault zones, a structural high H2 occurs 

south of the east end of graben L1, representing the foot wall of the fault zone-3 (Figure 3.4). 

The structural low L1 is still clearly present at this level. The morphology of the structures is 

shown by the depth structure map (Figure 3.14) derived from the average velocity map (Figure 

3.5c). The surface affected by fault zone-6 as is shown in (Figure 3.15) which represents a 

compilation of two 2D seismic lines (line 72-99-27 and Line 72-89-18), the total heave of fault 

zone-6 is ~300 m, and the total throw decreasing within the time motion interval, from 0.11 

sec at the most upper surface to 0.05 sec at the TWT 1.43 sec). The fault zone appears to have 

controlled the folding of the hanging wall resulting in its anticlinal shape (H1B). 

The isopach map of Facha-Beda unit (intra Lower-Eocene- top lower Paleocene) is shown in 

(Figure 3.16). The isopach map was derived using the interval velocity map (Figure 3.7c), the 

velocity map shows the southwestward increase of velocity to reach a maximum of 4440 

m/sec at well A1-NC177. The isopach map reveals that the thickness decreases regionally 

southward, many high and low thickness closures reflect the heterogeneity of thickness due to 

the continuing impact of most of the previous described fault zones. The maximum thickness 

of this stratigraphic unit (855 m) occurred in the north. The interval thins over the Barrut Arch, 

where the structural high H2 shows an outer closure contour of thickness 600 m, The Facha-

Beda interval also represents the deposition during the rapid subsidence during the second rift 
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phase of the basin, the rift event characterized these strata and the overlying sediments by an 

NWW-SEE extensional faults. 

 

 

Figure 3.14: Depth structure contour map of Facha Member (intra Lower Eocene), the contour 

interval is 100 m, the depth map confirms the regional northward dip (seaward) and the 

vertical extent of varies features such as; H1A and H1B of the main structure (Barrut Arch), 

and clarifies the closures of high structures H2 and H3. 
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Figure 3.15: Combination of two 2D- seismic profiles, the line demonstrates the fault zone-6 and other numerous faults that affected 

the area, in the north part of Barrut Arch (see Fig. 3.14 for the location of these lines). 
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Figure 3.16: Thickness variation of top Facha-Beda interval, (contour interval 50 m). 

 

3.4.4 Horizon of Top Beda Formation (Top Lower-Paleocene) 

The fourth seismic horizon that has been interpreted represents the top of the Beda Formation 

(Top Lower-Paleocene), which is composed of three members, the lowermost the Thalith 

(limestone), the middle the Farrud Member and the upper the Rabia (shale) (Garea, 1996). In 

the Abu-Tumayam Trough the middle member is composed of porous, skeletal, calcarenite 
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micritic and oolitic limestone, the most important exploration target in the area (Bezan et al., 

1996). 

The topography of the top Beda is shown by the time structure and by depth contour maps 

(Figure ‎3.17a and Figure ‎3.17b); both clearly demonstrate the structural high of the Barrut 

Arch (H1B), dipping steeply northwestward and slightly southeast ward and extending 

eastward. The effect of previous described fault zones also dominates this surface, and a new 

small structural low (L4) appears northeastward of the structural high H3.  

The lateral thickness variation for the section from the top Beda Formation to the top of Sirt 

Shale Formation (Top Campanian) is shown by the isopach maps (Figure ‎3.17c). The map 

shows the maximum thickness of the unit (~1410 m) at the northeast side of the area, while the 

thinnest part (500 m-300 m) appears southward, the fault zone-1 and fault zone-2 clearly 

affect the Barrut Arch (the thickness contrast between the foot wall and hanging wall reaches 

~500 m), as do fault zone-3  and fault zone-5 on the thickness of this unit as is clear on the 

seismic sections (Figure 3.10 and  Figure ‎3.18a). The Enaga-2 area is dominated by a major 

fault striking NW-SE and dipping NE (Figure ‎3.18b), which produced a heave of ~350 m and a 

throw of ~0.04 sec, the fault displacement can be seen at all the stratigraphic levels from the 

surface to the basement.  The thickness of this interval may result from deposition during 

major tectonic subsidence during the second rift phase from 65 Ma-40 Ma. The thickness 

variation clearly reflects the impact of rifting on the area, particularly in the north.  
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Figure 3.17: (a), (b) and (c) are TWT structure map, depth contour 

map, and thickness contour map of top Beda Formation 

respectively. The first and second maps demonstrate clearly the 

structures H1B. The surface at graben L1 is nearly horizontal, 

while at graben L2 and L3 slightly dipping westward. The new 

closure south to L3 and the faulted high structure H3 is well 

demonstrated, the contour interval is (0.05 sec).   
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Figure 3.18: (a) N-S seismic profile 6300 from Enaga-3, demonstrating the variation in thickness between the 

foot wall and hanging wall of the fault zone-5. (b) N-S seismic profile 5700 from Enaga-2 demonstrate the NW-SE 

fault dominating the area and affecting all the stratigraphic units (see fig. 3.17 for the location of these lines). 
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3.4.5 Horizon of Top Sirt Shale Formation (Top Campanian) 

The fifth interpreted horizon is the top of the Sirt Shale Formation, organic-rich shale, the 

source for most hydrocarbons in the Sirte Basin (Hallett, 2002). Tectonically the Formation is 

related to the first post rift period (first basin sag period). The time structure map for this surface 

(Figure ‎3.19) shows that the Barrut Arch (H1) has become slightly larger (~450 km
2
) by 

extending northeastward, but has reduced in height to ~330 m.  

The fault zones-1 and fault zone-2 have a minor effect on this surface probably because these 

fault blocks formed in the second rift phase (~65 Ma-~40 Ma). However, the surface is still 

dominated by some faults within the fault zone-4 and fault zone-5 (Figure ‎3.19a). The structures 

highs H2 and H3 have also become less pronounced. The depth map (Figure ‎3.19b) created 

based on the average velocity map (Figure 3.6e) shows the deepest part of the surface (3510 m) 

is located at the eastern middle part of the area.  

The structures L1, L2 and L3 have depths of ~3385 m, ~3400 m and 3430 m respectively, the 

surface affected by the fault zone-7 (Figure ‎3.20a) and dipping regionally northward, similar to 

the overlying surfaces is described previously. Based on the interval velocity map (Figure 3.7e), 

an isopach map has been produced for the interval between this surface (top Campanian) and 

the next interpreted surface (base upper Cretaceous); the map (Figure ‎3.20b) demonstrates the 

lateral thickness variation during this period.  Numerous high and low closures emphasize the 

impact of faults on the thickness of this unit within the area, particularly in the north where the 

closures demonstrate rapid thickness changes controlled by the NW-SE fault zones, indicating 

that these closures are fault controlled. The area of L2 shows a thickness of ~680 m, while in 

structural low L3 the formation reaches a maximum thickness of ~780 m at the eastern side. 
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Figure 3.19: (a) TWT structure map (b) depth map, both for top Sirt Shale Formation (Top Campanian), Barrut Arch (H1) has 

become slightly larger by extending northeast and less high.  NW-SE occasionally W-E faults still interrupted the surface. The 

structures H2 and H3 also have become less prominent. The contour interval map (a) is (0.1 Sec) and for map (b) is (150 m). 
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Figure 3.20: (a) NE-SW 2D-seismic profile demonstrating the 

impact of fault zone-8 on the interpreted surfaces. (b) The 

isopach map of the stratigraphic unit between the top Sirt Shale 

Formation (top Campanian) and the Base Cenomanian. The map 

emphasizes the impact of the fault zones on the thickness of the 

unit, particularly at the north part. The contour interval is (50 m). 

Note: the two red lines denoted by 1 and 2 in (b) represent the 

location of the Seismic profiles 72-88-11 and 72-89-02 

respectively.   
 

m 
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Starting from the centre of the area the thickness increases gradually southeastwards, and it is 

the youngest interval to do so.  

3.4.6 Base Cenomanian (Top pre-Upper-Cretaceous) 

The sixth interpreted horizon is the base of Cenomanian or top of pre-Upper Cretaceous, 

which is considered the earliest unconformity in the Sirte Basin, where marine sediments lie 

unconformably on the pre-Upper Cretaceous non-marine sequences. This major unconformity 

was caused by the erosion of the most of the Paleozoic sequences and also much of the 

Mesozoic sequences in some parts of the basin (Montgomery, 1994). Most of these non-

marine sediments are Cambro-Ordovician quartzites (El Hawat et al., 1996) which form the 

main reservoirs in several major fields in the basin (Ahlbrandt, 2001). The unit dominated by a 

numerous faults active in the first rift phase, the faults trending mainly NW-SE (Figure 3.21), 

the average throw of these faults is 0.06 sec and their heaves range from 50-350 m. The time 

structure map of the unconformity surface (Figure ‎3.22) shows similar structures to the 

overlying surfaces, but with some differences. The southwest part of the Barrut Arch (H1A) is 

shallower than northeast part (H1B). To the northeast the arch is separated from the Beda 

Platform (H4) by a minor structural low. North and northwestward the arch dips gently toward 

the south tip of Zallah Trough (L2). The map emphasizes a deep low closure at the east end of 

graben L1, and shows that the structural high H2 is split by a small low into two sub-

structures, H2A and H2B, the latter is lower and smaller than the former.  

The lateral change of thickness of the pre-Upper Cretaceous depositional section is shown by 

the isopach map (Figure ‎3.22b), which demonstrates that the section has a maximum thickness 

exceeding 3110 m at the lower east part of the area, and decreases northward to less than 500 m 
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in L1 . The low and high thickness closures are fewer in number and of lower magnitude than 

for the younger units, but however they still reflect the thickness variation due to the impact of 

the fault zones that have been shown previously: thickness variation between the centre and 

flanks of the closures range from 200-300 m The structural lows L1, L2 and L3 have sequence 

thicknesses at their crests ~1125 m, ~1000 m and ~1170 m. 

3.4.7 Horizon of Top-Basement 

The seventh and deepest interpreted horizon is the top of acoustic basement, but this may differ 

from the basement determined from gravity or magnetic data because of the limited quality and 

depth of penetration of the seismic data. True basement consists mostly of igneous rocks, 

ranging in age between 670-460 Ma, although some deep wells have penetrated Jurassic and 

early Cretaceous granites (Schurmann, 1974).  

 

Figure 3.21: 2D- seismic profile which is demonstrates the first rift phase that effected the pre 

Upper Cretaceous stratigraphic units. See Figure 3.20b for the location of this profile. 
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Figure 3.22: (a) Time structure map of base Cenomanian or the top of pre-upper Cretaceous, the map displays how the SW 

portion of the Barrut Arch has become shallower than the NE portion, the NW-SE faults dominate the area.  

The contour interval is (0.1 sec). (b) The isopach map of the Pre Upper Cretaceous unit, the map illustrate  

the southward increase of thickness, see the text, the contour interval is (200 m). 

m 
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Although the petroleum geologists do not pay much interest to the Proterozoic, some reservoirs 

in the eastern Sirte Basin produce significantly from these rocks, which consists of deeply 

weathered and intensively fractured Pan-African age granophyric granite (Williams, 1971 and 

1972).  

The time structure map of this surface in the study area (Figure 3.24a) reveals the east-west 

trending Barrut Arch (H1) in the north. Numerous parallel to sub-parallel WNW-ESE 

extensional faults, related to the different fault zones described previously break its continuity 

and fracture its surface into blocks. The northern and southern margins are relatively steep due 

to the effect of the fault zones which cause abrupt depressions on its topography, while the 

eastern margin dips more gently. The second broad high structure is the H3 which trends north-

south, in the south dips to the east, and cut by a number of NW-SE faults.  

The isopach map of the pre-Upper Cretaceous unit (Figure 3.24b) shows many closures 

distributed in the area with different thickness peaks, due to the unconformity that caps this 

range units (top acoustic basement- base of Upper Cretaceous), the isopach map shows only the 

present day thickness which ranges from ~3130 m at the south to less than 300 m at the northern 

half of the area. Although some of the thickness variations are fault controlled, however the 

unconformity effect should be taken in to consideration. The unit is tectonically related to the 

first rift phase, which likely started before the Cretaceous and persists through the early 

Cretaceous time.  
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Figure 3.23: (a) Time structure map of the top basement, the grand high structure, Barrut Arch (H1) which trends east-west, several 

parallel to sub-parallel WNW-ESE faults crosscut the arch, the contour interval is (0.1 sec). (b) The isopach map of the Pre Upper 

Cretaceous, the map illustrates the southward increase of thickness, see the text. The contour interval is (200 m). 
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3.5 Measurements and analysis of faults 

Mapping out the distribution and interrelationships of faults is necessary to understand 

their role in basin development. One or two time levels from each data set (Enaga-1 

through Enaga-5) was chosen for further analysis of the faults that dominated each of 

these areas. 

3.5.1 Faults of Enaga-5 area 

Faults at lower level (below Upper Cretaceous)  

The seismic facies at the time depth 2.8 sec are shown in (Figure 3.24a), this time slice 

cuts the basement surface at multiple points. The faults at this level are relatively short 

(1.5 km-3.8 km) in map view trend approximately NW-SE: about 43% are trending N50˚-

60˚W, nearly 39% are trending N60˚-70˚W, 9% are N70˚-80˚W, and the rest (9%) are 

N40-50˚W (Figure 3.24b). The dip of the master fault of this group decreases with depth 

due to its arcuate shape (Figure 3.24c), so that the associated parallel secondary faults in 

the hanging wall (synthetic faults) merge with it at depth. The faults appear to be more 

concentrated in the NE side of Enaga-5 area, and the majority are dipping northeastward 

(basinward - Figure 3.24b). Faults of this depth are interpreted as the initial faults of the 

early-rift phase that dominated the Sirte Basin between the Pre-Upper-Cretaceous and the 

late Cretaceous. 

 

Faults at upper level (above Upper Cretaceous) 

The second level has been chosen at the average depth of Top-Facha surface on the 

seismic at ~0.964 sec (Figure 3.25a), the faults are distributed in two groups, the upper 

group affecting the units above the Upper Cretaceous, The faults configuration at Facha  
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Figure 3.24: The fault blocks dominating the area of Enaga-5 nearly at the average 

basement depth, the faults superimposed on (a) time slice at 2.8 sec which cut the 

basement at several points (b) depth structure map of the basement (c) seismic profile 

7420 from Enaga-5. The red line on Fig. b shows the location of the seismic profile. 

 

level as interpreted on the seismic sections appear nearly parallel, some secondary faults 

dip towards the master fault (antithetic) and link with each other. 

The interpreted faults from the maps are shown in Figure 3.25b & c: numerous widely 

distributed faults striking NW by different angles with the north dominate the area. 

Measuring of these angles show that nearly one-third (32%) are N60˚-70˚W, 18% are 

N50˚-60˚W, 18% are N30˚-40˚W, 12% are N40˚-50˚W, 8% are N70˚-80˚W, 6% are 

N10˚-20˚W and 6% are N20˚-30˚W. the majority of these faults (65%) are dipping NNE 

and the rest are SSW (Figure 3.25c). The majority of faults dip NNE or SSW, Figure 

3.26 and Figure 3.27 demonstrate the shape, area and dip of samples of these faults: 

several appear corrugated, but the data quality precludes further analysis. 

8 km 

8 km 

5.5 km 
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Figure 3.25: (a) Seismic profile 7650 from Enaga-5 demonstrates two groups of faults. 

The first group affected the upper layers related to the second rift phase, and the second 

group of faults at the lower layers are related to the first rift phase (b) whole interpreted 

faults at time slice 0.804 sec, close to the depth of Facha surface (intra-lower Eocene) 

superimposed on the time structure contour map of the surface (c) fault distribution and 

dip superimposed on the depth structure map of Facha surface. 

 

Location of the 

seismic line 7650 
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Figure 3.26: Plan view of some interpreted faults from the seismic data of the Enaga-5 

area, the maps show the NNE faults dip.  
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Figure 3.27: Plan view of some interpreted faults from the seismic data of the Enaga-5 

area, the maps show the SSW faults dip. 
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3.5.2 Faults of Enaga-4 area 

The first level of analysis has been chosen from the area of Enaga-4 is at the basement 

level. Figure 3.28a shows the time slice at the 2.796 sec, where it cuts the basement 

horizon at multiple points. The seismic profile 6690 (Figure 3.28b) is chosen to 

demonstrate the interpreted faults in this area; the profile shows two master fault-zones 

dominating the area and crossing all the deposited units to form a graben shape. The 

structures at the lower units (below the top of pre-Upper-Cretaceous) are more 

complicated than at upper level, as they are affected by group of synthetic and antithetic 

secondary faults which are probably related to the first rift phase. The distribution of the 

faults at the basement level is shown in (Figure 3.28c), the strike measurements show that 

about 26% are N25˚-40˚E, 23% are N50˚-60˚W, 15% are N40˚-50˚W, 15% are N80˚-

90˚W, 9% are N30˚-40˚W, 6% are N20˚-30˚W and 6% are N60˚-70˚W. 

The second time level of analysis from Enaga-4 area is at the middle of the section 

(Figure 3.29a). Some of faults that appear at this level can be traced as deep as the top of 

Campanian or slightly below. Others are Late Paleocene to Late Cretaceous in age, while 

the rest cut across the whole section (Figure 3.29b). The top Campanian unit has been 

chosen to investigate the properties of the area‘s faults, the isopach map of this unit 

(Figure 3.29a) shows the strikes of the dominant faults: 29% are N20˚-30˚W, 22% are 

N30˚-40˚W, 22% are N40˚-50˚W, 15% are N50˚-60˚W, and the rest 12% are N80˚-90˚W. 

The majority are dipping either SW or NE, the variation of dip and strike angles has made 

some of these faults connected or cross each other Figure 3.29b and 5.30c.        
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Figure 3.28: (a) Time slice at 2.796 sec from Enaga-4 area, the interpreted faults often 

coincide with the change of the seismic character. (b) 3D seismic profile demonstrates 

the master and secondary faults that dominate the area, form the graben and affected the 

thickness of units. (C) The interpreted faults from the depth map of Enaga-4 at the 

basement level. 

 

 
Figure 3.29: The second time level from area of Enaga-4 (a) demonstrates the 

interpreted faults and their impact on the thickness of the Upper Cretaceous unit. (b) 3D 

seismic line clearly shows the increase in thickness on the hanging wall side. (c) Time 

slice at 1.6 sec from Enaga-4 with the multi interpreted faults. 

 

6 km 

6 km 

6 km 

6 km 
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3.5.3 Faults of Enaga-3 area 

The area of Enaga-3 is less faulted than Enaga-4 and Enaga-5, the N-S seismic profile 

6490 (Figure 3.30a) represents the fault zones in the area, it is clear that the units younger 

than the Upper Cretaceous are more fault dominated than the lower units. The fault zone 

has an average throw of ~200 m and an average heave of ~500 m, the master faults 

combined mostly with a synthetic secondary faults. Figure 3.30b shows the distribution of 

Enaga-3 faults superimposed on Facha-Beda isopach map, the strike measurements of 

these faults show that 22% are N50˚-60˚W, 22% are N60˚-70˚W, 17% are N30˚-40˚W, 

17% are N0˚-20˚W, 13% are N80˚-90˚W, and 9% are N50˚-60˚E. The fault trends mostly 

show coincidence with the variation of seismic characters as appears in the seismic slide 

(Figure 3.30c). 

 
Figure 3.30: Sample from Enaga-3 (a) 3D seismic profile demonstrates the second rift 

fault zone.  (b) The interpreted faults from the isopach map of Top Gir- Top Facha unit 

(lower Eocene). (c) The time slice at 0.864sec shows the WNW-ESE interpreted faults 

in the area. 

 

 

6 km 

6 km 
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3.5.4 Faults of Enaga-1 and Enaga-2 area 

The last samples for the fault investigation have been taken from Enaga-1 and Enaga-2, 

both areas are dominated by an arcuate master fault associated with secondary synthetic 

faults. In Enaga-1 these faults are concentrated within the pre-Upper Cretaceous unit 

(Figure 3.31a), while in Enaga-2, the master fault cuts the whole depositional units, and at 

the surface is associated with an antithetic secondary fault (Figure 3.31b). The dip angles 

of faults in Enaga-2 are at a lower angle than in Enaga-1.The fault strike measurements at 

the top of pre-Upper-Cretaceous unit in both areas (Figure 3.31c) show that 25% are 

N30˚-40˚W, 18% are N40˚-50˚W, 15% are N20˚-30˚W, 9% are N50˚-60˚W, 9% are 

N60˚-70˚W, 10% are N20˚-30˚E, 7% are N80˚-90˚W and 7% are N0˚-20˚W. It is obvious 

that the big variation of unit thickness is largely controlled by these faults.  

Rose diagrams for each chosen surface have been produced (Figure ‎3.32a through 

Figure ‎3.32h), each diagram shows the percentage of trends within each 10 degree, and 

the mean trend direction represented by the arrows. One can conclude that the majority of 

trends at all the surfaces strike within N31˚-60˚W (Figure ‎3.32g), however a number of 

trends strike E-W and a small numbers of trends particularly below the top of Cretaceous 

have NE-SW direction which likely related to the first syn-rift period. According to 

Anketell (1996) this type of faults is related to the paleo-stress field that resulted from the 

interaction between Africa and Europe.     
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Figure 3.31: Sample from Enaga-2 & Enaga-1: (a) & (b) N-S 3D seismic profiles from 

Enaga-1 and Enaga-2 respectively, demonstrate the main and the synthetic secondary 

faults impacting on both areas. (c) The interpreted faults constructed from the thickness 

map of the pre- Upper Cretaceous unit. 

 

 

 

2.5 km 
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Figure 3.32: Rose diagrams for the trends. (a) and (b) from area of Enaga-5 at top of 

lower Eocene and top basement respectively, (c) and (d) from Enaga-4, (e) From Enaga-3, 

(f) from Enaga-1 & 2, (g) all diagrams superimposed over each other, (h) demonstrates 

multi surfaces trends interpreted  from area of Enaga-5. 

Note that the basement and pre-Upper 

Cretaceous fault system                    

represent the first rift phase. 

The Campanian, L. Paleocene, L. Eocene1 

L. Eocene2 fault systems                                 

represent the second rift phase.  
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3.6 3-D visualization of interpreted data (surfaces and faults) 

 

Utilizing the 3D surface visualization with free rotation and zoom facility in kingdom 

software offer a good opportunity for a better understanding of the interpreted surfaces 

geometry and any relationships among these surfaces and the faults that cross cut them. 

In this section samples of 3D visualization are shown to demonstrate details of the 

interpreted surfaces and faults. Figure 3.33a&b show a 3-D view of the interpreted 

surfaces, the high structures and grabens that previous described are clearly 

demonstrated, the parallelism and the northward dip of the depositional strata is 

noticeable.     

As seen in the previous sections there are several fault zones including numerous faults 

dominating the area of study, their distribution and strikes vary widely. In this section 

more details about their relationships and dip directions can be clarified.  

Figure 3.34a & b show some of these faults (some have been masked to make the 

visualization clear) crosscutting three different surfaces (Gir, Sirt-shale and Basement), 

one can note that the faults differ in their vertical extent (ages), some start at the basement 

and extend to a certain depth, which could be assigned to the first syn-rift faults (first rift 

phase), while others which start and stop at a certain depth, appear to be post-rift faults; 

some that start from the topmost surface and extend to a certain depth, might represent 

the second syn-rift faults, and the rest nearly crosscut all the strata, which probably 

indicates an early initiation and reactivation through time. It is quite clear from Figure 

3.34c the quantity of faults in the area, and how they are related to each other vertically 

and laterally. Figure 3.34d also demonstrates the relationship among some of the faults 

themselves, and how they affect the surfaces and how they appear on the original data.  
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Figure 3.33 a &b: The 3-D view of part of data volume with the interpreted surfaces as 

labeled: 1- Gialo, 2- Gir, 3- Facha, 4- Beda, 5- Sirt-shale, 6- Cenomanian Base, 

  7-Basement. 
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Figure 3.34: Some of the interpreted surfaces and faults in a 3-D view (a) and (b) are 

arbitrary selected faults to view the variation of vertical extension with different angle 

of view (c) the relationship between more interpreted faults (d) selected faults and 

surfaces with part of data volume. 
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4 CHAPTER-4 

        SUBSIDENCE HISTORY 

4.1 Introduction 

The cumulative changes in a rock volume through time produce the present-day 

stratigraphic thickness. The original thickness (decompacted thickness) of any 

stratigraphic unit can be obtained by analysing the rate of subsidence through time 

quantitatively. Starting with the seismic interpretation and based on the available 

borehole information, this chapter aims to calculate the decompacted depth of 

stratigraphic units during the evolution of the basin, to differentiate between subsidence 

resulted from the sediment load and the tectonic subsidence, and finally to subdivide the 

tectonic subsidence into initial and thermal subsidence.  

4.2 Subsidence history study  

The study of basin subsidence and sea level change offers the possibility to reconstruct 

the configuration of the sedimentary basin through time. To produce the subsidence and 

sediment accumulation curves there are three corrections that need to be applied to the 

present-day thicknesses (Allen & Allen, 1990): 

- Decompaction: this corrects for the progressive loss of porosity due to the depth of 

burial.  This has a significant impact on the thickness of the units, and most of the work 

in this chapter focused upon this factor. 

- Paleobathymetry: the water depth at the time of deposition, this will define its relative 

position to the present-day sea level.  Correcting for paleobathymetry requires the 

estimation of the water depth during deposition of each stratigraphic unit, which is not 

easy to do without detailed palaeontological studies. 



Chapter-4                                                                                              Subsidence History 

 

97 
 

- Absolute sea level change: applied to correct the effect of the eustatic sea level change 

that affects a local and regional area.  Such eustatic corrections can be carried out 

approximately by using commonly published sea level change curves, although the 

accuracy of these is widely debated. 

   

4.2.1 Decompaction and Restoration using models data 

To compute the thickness of a stratigraphic unit at any time in the past, it is necessary to 

remove sequentially overlying units, and to calculate the porosity the unit would have 

had prior to compaction (Allen et al., 1990). To achieve the decompaction process, two 

main rock parameters (porosity and density) must be estimated for the stratigraphic unit 

at any interest depth, because the variation of porosity with depth, and subsequently the 

average bulk density have significant impact on the decompaction of the stratigraphic 

units through time.  

Two approaches to the decompaction were used in this study, the MOVE
TM

 structural 

modelling and analysis software and the Basin Analysis Toolbox program. The first 

software used in this study for dealing with a seismic data model, while the second has 

been used for dealing with the borehole data. Two models have been built by the first 

software (MOVE
TM

 structural modelling) for two different seismic sections (see Figure 

4.1 for the location and length). 
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 Model-1 

The first model was built from a regional north-South 3D seismic profile in the area 

with a length of 82 km (see location map Figure 4.1). Seven interpreted horizons 

represent the main stratigraphic packages overlying the basement were chosen to 

illustrate the decompaction processes: from top to bottom, the top formations of these 

stratigraphic packages are; the Augila, Gialo, Gir, Facha, Beda, and Sirt-Shale 

Formation, and the pre Upper Cretaceous sequence. Table 4.1 shows the age, period and 

lithology that have been assigned for each package based on well log, seismic and 

stratigraphic data. The MOVE
TM

 Software is designed to accept the default values for 

main parameters required to initiate the model which are; surface porosity, grain density 

and the depth coefficient for the main lithology for each package as shown in Table 4.2. 

Based on the input model data shown in Table 4.1 and the initial data shown in Table 

4.2, the software calculated the parameters for each layer in the model, as shown in 

Table 4.3. 

S.N Top of the Unit Age (Ma) Time Lithology 

1 Surface unit Fm 0-40.4 U. Eocene LS+SS 

2 Gialo Fm 40.4-48.4 M. Eocene LS 

3 Gir Fm 48.4-53.5 L. Eocene Anhydrite 

4 Facha Mem 53.5-61.7 L. Eocene Dolomite 

5 Beda Fm 61.7.70.6 L. Paleocene Shaly- LS 

6 Sirt-Shale Fm 70.6-99.6 U. Cretaceous LS+SH 

7 Pre-U. Cret. 99.6-? Pre-U. Cret SS+SH 

Table 4.1: The age and lithologies assigned to units used in the decompaction models, 

where LS is limestone, SS is sandstone and SH is shale. 
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Figure 4.1: Location map for the profiles used for MOVE
TM

 models, and the location of 

the wells used for decompacted tectonic subsidence curves. 

 

S.N FM SS % SH% LS% Surface-Ф 

(fraction) 

depth 

coefficient 

(1/km) 

Grain density 

(g/cm^3) 

1 SS 100 0 0 0.49 0.27 2500 

2 SH 0 100 0 0.63 0.52 2720 

3 LS 0 0 100 0.41 0.40 2710 

 

Table 4.2: The initial decompaction parameters used by 

MOVE
TM

 structural software for the three main lithologies (SS, SH and LS). 
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Age and 

colour key 

Top 

Formation 

SS 

% 

SH 

% 

LS 

% 

Surface-

Ф 

(fraction) 

Depth 

coefficient 

(1/km) 

Grain 

density 

(g/cm^3) 

U. EOC S. unit 50 0 50 0.45 0.33 2605 

M. 

EOC 

Gialo 0 0 100 0.41 0.4 2710 

L. 

EOC 

Gir - - - 0.38 0.32 2960 

L. 

EOC 

Facha - 20 80 0.45 0.424 2712 

PAL- 

EOCENE 

Beda - 30 70 0.476 0.436 2713 

U. 

CRET 

Sirt-Sh - 40 60 0.498 0.45 2714 

PRE-U-

CRET. 

Pre. U .Cr 40 30 30 0.53 0.345 2716 

 

Table 4.3: The percentage of the main lithology (SS, SH, LS) in the composition 

of the stratigraphic units that assumed for the MOVE
TM

 decompaction models,  

where SS is sandstone, SH is shale and LS is limestone, Ф is porosity. 

 

 

 

 

The decompaction process started with the parameters in the Tables 4.1- 4.3 and with 

the original interpreted section shown in (Figure 4.2a).  The first step was converting 

the seismic section from time to a depth section, using the check-shot data of the wells. 

The maximum initial thickness of the sedimentary section is about 6300 m and the 

surface layer thins to zero at 2.66 km from the southern end of the line. Several normal 

faults cut the interpreted stratigraphic units: some of these faults extend from the surface 

to the basement, while the others terminate at shallower depths.  

For decompacting a layer using the MOVE
TM

 software, the procedure is first to partially 

restore motion on all the faults that cut that layer, then to undeform (―unfold‖) the 

surface of that layer to the datum level and, finally to decompact the layer and to 

partially decompact all underlying layers (partially: because each unit still undergo the 
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compacted due to its load and the overlies units load). Using these steps, the surface 

layer has been decompacted (Figure 4.2b), the general shape of the stratigraphic units 

still look the same as in the original model, while the thickness of the layers slightly 

increased as the compaction resulting for the uppermost layer has been removed.  The 

next step for building the model is to move the stratigraphic units on faults 1 through 7 

in sequence from right to left using the option of assigning the heave value instead of 

joining beds or joining point to point, using the option of shear angle for each fault 

movement, the values of those parameters are tabulated in (Table 4.4). The thickness 

history of the stratigraphic units through time resulting from this MOVE
TM

 structural 

model is shown in Table 4.5. 

  Fault no Heave value (m) Shear Angle 

1 25 90
ᵒ
 

2 40 90
ᵒ
 

3 25 90
ᵒ
 

4 80 75
ᵒ
 

5 90 75
ᵒ
 

6 30 90
ᵒ
 

7 20 90ᵒ 

 

Table 4.4: The heave and simple shear angle values assigned 

to the faults. 

 

The results of the next steps are shown in Figure 4.2c through Figure 4.3c. The 

basement morphology after these last three processes is still highly undulating, and 

shows a maximum and minimum magnitude depth of 5770 m and 4170 m respectively, 

with tendency of the overlaying layers to be more or less horizontal (see Table 4.5 for 

the thickness change through time).  
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Figure 4.2a: The original stratigraphic model based on the N-S interpreted seismic 

section. 

 
Fig. 4.2b: The model after decompacting the surface unit. 

 

 
Fig. 4.2c: The model after moving on all the faults that cut the Mid-Eocene unit (upper 

green) and then unfolding this unit to the 0.0 m datum. 
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Figure 4.3a: The model after decompacting Mid-Eocene unit. 

 

 

 
Fig. 4.3b: The model after the second movement on the faults (2, 7 and 8) then 

unfolding the late Lower-Eocene unit. 

 

 

 
Fig. 4.3c: The model after decompacting the late Lower-Eocene unit. 
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The next three steps through the decompaction processes are shown in (Figure 4.4a, 

4.4b and 4.4c), the first demonstrate the model after unfolding the bottom formation in 

the Lower-Eocene unit (violet coloured formation) to the 0.0 m datum, this processes 

made the underlying units appear thickener, while the second figure shows the 

decompaction of the same described unit this process shows the Paleocene unit (green 

coloured) appears almost smooth. The third figure shows the geometry of the model 

after unfolding the Paleocene unit, this unfolding process reduced the roughness of top 

surface of the underlying Upper-Cretaceous unit (red coloured), and made its undulation 

looks much softer.   

Restoration of the sediment units continued by decompacting the Paleocene unit 

followed by moving the units on fault-9 with a heave and simple shear angle equal to 30 

and 90˚ respectively. The result of these two sequential processes shown in Figure 4.5a, 

the undulation of the Upper Cretaceous surface from syncline to anticline shape still 

slightly appears, the thickness of the two remains sediment units is also continuing to 

increase.  

Figure 4.5b shows the model after unfolding the surface of the Upper Cretaceous unit to 

the 0.0 m datum and Figure 4.5c demonstrates the geometry and thickness after 

decompacting this unit and moving the last unit (pre-Upper-Cretaceous) on the last 

three faults sequentially.  

The next two restoration steps reveal the morphology and depth of the seismic 

interpreted basement before any sediment deposition took place (Figure 4.6). The depth 

of the basement on the restored section is between 1800 m and 770 m. The basement in 

general appears to dip southward, while the sediment units generally dip northward 



Chapter-4                                                                                              Subsidence History 

 

105 
 

(seaward).  The thickness variation of units through time is shown in (Figure 4.7 and 

Figure 4.8).   

 

Figure 4.4a: The geometry and thickness of the model units after unfolding the earliest 

deposition of the Lower-Eocene unit (violet coloured unit). 

 

 

 
Fig. 4.4b: The view of the model after decompacting of the earliest sediments of the 

Lower-Eocene unit.  
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Fig. 4.4c: The geometry and thickness of the modelled units after unfolding  

the Paleocene unit (green coloured).   

 

 

 
Figure 4.5a: The model after decompacting the Paleocene unit followed by 

movement on the fault-9 with heave and shear angle equal 30 and 90˚ respectively. 

 

 
Fig. 4.5b: The geometry of the model after unfolding surface of Upper Cretaceous unit 

to the 0.0 m datum. 
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Fig. 4.5c: The model after decompacting the Upper Cretaceous unit and movement on 

the last three faults appearing on the right side in the previous figure. 

 

 

 
 

Figure 4.6a: The geometry of the remaining strata after unfolding the Pre-Upper-

Cretaceous unit. 

 

 
Fig. 4.6b: The original morphology of the basement rock.   
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Time U. 

Eocene 

Mid- 

Eocene 

L. 

Eocene2 

L. 

Eocene1 

Paleo-

cene 

U. 

Cret 

Mid- 

Cret 

0 629 570 806 412 740 419 560 

40.4  778.8 887.7 431.44 763.43 425.7 568.6 

48.4   1182.82 473.2 805.62 437.9 582.8 

53.5    764.9 947.14 475.84 620.27 

61.7     1188.1 523.77 657.4 

70.6      831.7 774.1 

83.5       1006.35 

99.5        

Table 4.5: Thickness history of the stratigraphic units through time, derived by Basin 

Analysis Toolbox program, for the location L-1 of the modelled N-S profile (see the 

location map Fig. 4.1). 

 
Figure 4.7: The thickness variation curves of the stratigraphic 

units through time For the location L-1. 
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Figure 4.8: Magnitude of change of thickness of the units through the restoration. 

 

Two different decompacted curves, constructed from the previously described model, 

have been computed one shown in (Figure 4.9) derived by the MOVE
TM

 software, and 

the second shown in (Figure 4.10) derived by the Basin Analysis Toolbox (BAT) 

program. This programme required the data of lithology, depth at the top, depth at the 

bottom, and age for each unit in an input worksheet, then programmed worksheets 

based on the algorithms of Sclater and Christie (1980) were used to calculate the 

decompacted burial history and the thickness of the strata. The analysis of the 

decompacted burial history curves derived from each method at location L1 shows that 

the rift began at 100 Ma or earlier  and continued until ~83.5 Ma (Cenomanian through 
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Turonian), during which time 822 m (using MOVE
TM

 program) or 866 m (using the 

BAT program) of subsidence had occurred. Following this time, the subsidence rate 

decreased until 70.6 Ma (Top Campanian), by which time a further 509 m (MOVE
TM

) 

or 220 m (BAT) of subsidence had occurred.  The reduced subsidence rate during this 

period is interpreted as the first thermal subsidence phase, called by some authors (e.g. 

Johnson and Nicoud, 1996) the ―rift infill phase‖. The subsidence rate then increased, 

remaining higher from 70.6 Ma until 40.4 Ma, during which time 2532 m (MOVE
TM

) or 

2140 m (BAT) of subsidence occurred.  As the amount of subsidence during this phase 

was approximately three times the initial subsidence, it is likely that it represented 

renewed rifting.  During the last 8 Ma (Lutetian time) of this phase, the subsidence rate 

decreased. Johnson & Nicoud (1996) suggested that from 65.5 Ma to 55.8 Ma there was 

a large sag basin without faulting followed by a period of reactivated faulting and 

graben-fill from ~55.8 Ma till ~50 Ma, however this suggestion is not consistent with 

our derived subsidence pattern. 

 

 



Chapter-4                                                                                              Subsidence History 

 

111 
 

 

Figure 4.9: The decompacted depth versus time, calculated by 

MOVE
TM

 software, at location L-1 on the N-S profile. 

 

 

Figure 4.10: The decompacted depth versus time, calculated by 

BAT program at location L-1 on the N-S profile. 
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The last phase of subsidence history took place from 40.4 Ma to the present day. 

Although the time period of this phase is twice the previous phases, but the total 

subsidence was only 266 m (MOVE
TM

) or 220 m (BAT). This period is interpreted as 

the phase of relatively slow thermal subsidence, and was accompanied by northeast 

tilting (Baird et al., 1996).  

As described early in this section, the decompacted burial history has been computed 

for five different locations on the regional N-S profile, one has been described above in 

detail, the produced decompacted burial history curves for the other locations are in 

(Figure 4.11). The analysis of these curves, reveal that southward L-1 through L-5 the 

slope of the part of curve that represents Upper-Cretaceous (83.5 Ma-70.6 Ma) period 

increases and the curve tends to represent two phases (initial rift phase and the first 

thermal sagging phase) as one phase. In general the curves show two different rate of 

subsidence, first cycle (relatively slow stage) started at 100 Ma through 70.6 Ms 

(Cretaceous time) in which the amount of subsidence for the locations L2 through L5 

shown in Table 4.6, and the second cycle (rapid stage) started from 70.6 Ma through 

40.4 Ma (Paleocene-Mid-Eocene) with an amount of subsidence also shown in Table 

4.6, this two stages of subsidence followed by the tilting and quite slow subsidence 

period, starting in the upper Eocene and continued until the present day (Baird et al., 

1996). 

Comparison between the burial history curves computed from BAT and by MOVE
TM 

from location L-1 with the tectonic phases of the Sirte Basin proposed by Johnson and 

Nicoud (1996) is given in (Figure 4.12).   
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Figure 4.11a, b, and c: Decompacted burial history for the shown locations computed by 

MOVE
TM

 software, and d, e and f show the decompacted burial 

history for the same locations computed by BAT program. 
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Continuation of Fig. 4.11g: shows decompacted burial history for the chosen location 

computed by MOVE
TM

 software, and h show the decompacted burial 

 history for the same location computed by BAT program. 

 

 

 
 

Figure 4.12: Comparison the burial history curves computed by BAT and by MOVE
TM

 

from location L-1 with the tectonic phases of the Sirte Basin proposed by Johnson and 

Nicoud (1996). 

g h 

Proposal of  
Johanson and 
Nicoud (1996) 
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Figure 4.13: Decompacted burial history from well S1-72, in which 

the first thermal sag phase is much clear than in the location L-1. 

 

 

 Total subsidence during 

First cycle (initial rift + first 

thermal sagging) (m) 

Total subsidence during 

Second cycle (2
nd

 rift phase + 

second thermal sag) (m) 

            Location 

 

Derived Tool 

L-2 L-3 L-4 L-5 L-2 L-3 L-4 L-5 

BAT 

program 

860 1249 1332 1325 2576 2409 1562 1478 

MOVE
TM

 

software 

927 1260 1051 1103 2727 2530 1949 1767 

Table 4.6: The total magnitude of subsidence during the first and second cycles of rift in 

four different locations along the N-S profile, computed by two different tools. 

 

Also one can note that during the first cycle, the calculations by BAT show the 

maximum subsidence at location L-4 and the minimum at L-2, while the MOVE
TM

 

software shows the maximum at L-3 and the minimum at L2. During the second cycle 

the results from both programs show the maximum subsidence at L-2 and the minimum 
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at L-5, the whole subsidence shows maximum magnitude at L-3 and minimum 

magnitude at L-5. Generally the actual borehole data shows the first thermal sag phase 

much clear than in the pseudo boreholes (L-1 through L-5) as shown in Figure 4.13.  

 Model-2  

The second model has been built on profile-2 (see the location map Figure 4.1) with the 

same parameters and stratigraphic units used for model-1 and shown in previous tables, 

the profile length is about 14.3 km, and the original interpreted seismic section shows 

the maximum sediment thickness of 5675 m at km 5.8 from the left edge.      

The geometry and thickness of the stratigraphic units through the restoration steps are 

shown in (Figure 4.14, Figure 4.15 and Table 4.7). As one can note the maximum of the 

total increase of thickness took place upon L. Eocene-1 unit (427 m) and the Mid-

Cretaceous unit underwent the minimum total increase in thickness. Also from Figure 

4.16 and Figure 4.17 one can be observe that at each step of restoration, the increase in 

thickness is always maximum at the top unit, and minimum at the lower unit.          

Again this model, as in the previous model, shows that the rapid change in thickness 

took place during the period 70.6 Ma - 40.4 Ma which coincidence with the period of 

maximum subsidence.  
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Figure 4.14: Different steps for the second model constructed from the seismic data of 

profile-2, (a) the original interpreted section, (b) after decompacting the surface unit, (c) 

and (d) after move on faults, unfolding and decompacting the Mid-Eocene unit, (e) and 

(f) after unfolding and decompacting the L. Eocene-1 unit, (g) and (h) unfolding and 

decompacting the L. Eocene-2 unit.  
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Figure 4.15: The rest of the restoration steps, (a) and (b) unfolding and decompacted of 

the Paleocene unit, (c) and (d) unfolding and decompacted of Upper Cretaceous unit, (e) 

and (f) unfolding and decompacted the lower most sediment unit. 

 

 

 
Time U. 

Eocene 

Mid- 

Eocene 

L.  

Eocene2 

L. 

Eocene1 

Paleo-

cene 

U. 

Cret 

Mid- 

Cret 

0 842 870 683 520 560 305 259 

40.4  1179 746 545 580 311 264 

48.4   1107 625 631 326 278 

53.5    947 726 355 298 

61.7     974 414 331 

70.6      655 399 

83.5       528 

99.5 

       Table 4.7: The thickness of the stratigraphic units after each decompaction step. 
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Figure 4.16: Thickness of the stratigraphic 

units change through time. 

 

 
Figure 4.17: The amount of increase in thickness after each decompaction step. 
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The decompacted burial history curves of this model are shown in (Figure 4.18), in 

general the curves are similar to the previously described curves in the area. Here the 

initial rift phase (99.9 Ma-83.5 Ma) and the first thermal sagging phase (83.5 Ma-70.6 

Ma) have approximately the same rate of subsidence, the maximum subsidence took 

place during this period is 1056 m, and then the rapid subsidence of magnitude 2570 m 

took place during the period 70.6 Ma-40.4 Ma (period of second rift phase), after which 

a noticeable slowing in subsidence rate is observed during which only 412 m of 

subsidence occurred in the period of 40.4 Ma- present day. The maximum and 

minimum basement depth after decompacting all the stratigraphic units are ~1210 m 

and 690 m respectively. A small point to take into consideration is the fact that the 

second rift phase took place at 65.5 Ma (as shown in wells tectonic curves), and the 

models show it at 70.6 Ma due to the lack of data at 65.5 Ma. 

 

Figure 4.18: Decompacted burial history curves constructed from the data of 

model-2 at a location 6 km apart from the left edge of the profile. 
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4.2.2 Decompaction Restoration using well data 

Data from nine wells distributed in the study area (see the location in Figure 4.1), have 

been used for more subsidence history investigation. The depth of the formation tops 

have been taken from the well logs, and then assigned to their geological time using the 

common stratigraphic chart in the area.  This time only the BAT program was used to 

create the decompacted burial history curves for each well, Figure 4.19 and Figure 4.20a 

show the curves of two wells, first Ga1-72 from the northernmost side, the second U1a-

72 from southernmost side, and Figure 4.20b Figure 4.20c show the curves of two other 

wells, one F3a-72 from the easternmost side, the last A1a-NC177 from the westernmost 

side (note that the central area represented by well T1-72 that was shown previously).  

 

Figure 4.19: The subsidence curves at well G1a-72. 
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               Figure 4.20: (a) The subsidence curves at well U1-72. (b) The subsidence curves at well F3a-72. 

 

b a 
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Fig. 4.20c: The subsidence curves at well A1-NC177.  

 

 

 
 

4.3 Tectonic subsidence   

The Sirte Basin formed by lithospheric stretching, in which thermal subsidence takes 

place after an initial rapid subsidence during rifting (McKenzie, 1978). To produce the 

tectonic subsidence curves and estimate the stretching factor, the worked modelled data 

and the borehole data from the last section have been backstripped, using the programed 

backstripping worksheet, in the BAT program. The results and analysis of these tectonic 

subsidence curves will be shown in the following pages.   

 

 

c 



Chapter-4                                                                                              Subsidence History 

 

124 
 

4.3.1 Tectonic subsidence estimation from borehole data          

The subsidence analysis has been based upon two types of data, the well data, and pseudo 

well data derived from the interpreted seismic data. As described previously, the 

decompacted burial subsidence history curves have been computed for 9 different 

boreholes (see the location map Figure 4.1). The tectonic subsidence curve was computed 

from each decompacted history curve, estimating the sediment load at each well for the 

lithology and properties (porosity, density, and thickness) of each stratigraphic unit. The 

calculation is based on the McKenzie (1978) model, and used three main equations 

(Allen et al., 1990), the variation of porosity Ф with depth y, when the surface porosity 

is Ф0 (Athy, 1930; Sclater and Christie, 1980). 

Ф= Ф0*℮
-cy 

                                              [Equation 1] 

Where c is the coefficient determining the slope of the Ф depth curve. 

-The bulk density of the whole sedimentary column (ρb) made up of i layers 

ρb=∑i{[ Фi ρw + (1-Фi)ρsgi]/s}yʹi                   [Equation 2] 

Where Фi is the mean porosity of the ith layer, ρsgi is the sediment grain density of the 

same layer, S is the total thickness of the column corrected for the decompaction, yʹi is the 

thickness of the ith sediment layer. 

-The sediment load effect can then be computed according to the formula: 

 Y=S{[ρm - ρb]/[ρm-ρw]}              [Equation 3] 

Where Y is the basement depth corrected for the sediment load. 

 ρm, ρb and ρw, are the densities of mantle, mean sediment column, and water, 

respectively. 
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Figure 4.21: The tectonic subsidence curves, calculated based on stratigraphic data 

from 9 boreholes distributed in the study area (see Fig. 4.1 for the location), all the wells 

show a normal extension basin shape with  two phases of rifting and two phase of thermal 

sagging (see the text). 

 

The tectonic subsidence curves (TS) recovered from 1-D backstripping at the 9 boreholes 

are shown in (Figure 4.21).  All the tectonic subsidence curves discussed here have been 

computed without applying any paleobathymetry or any sea-level corrections. All show 

an initial rapid subsidence phase (initial rifting phase during the Late Cretaceous 

(Cenomanian through Santonian -100 Ma
_
83.5 Ma) ranging from 121 m well B2-NC177 

to 630 m at well A1-NC177.  This rapid initial subsidence was followed by a period of 

slower, probably thermal subsidence until 65.5 Ma (Campanian and Maastrichtian) 

termed by Johnson and Nicoud (1996) the rift-infill phase. The tectonic subsidence 
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curves then show a second phase of rapid subsidence, identified as a second rift phase, 

during the Paleocene, early Eocene and Mid-Eocene, and corresponding to the phase of 

fault activity in the late Paleocene-early Eocene (Gumati et al., 1991). Finally the tectonic 

subsidence curves for all wells show slower subsidence during the second thermal 

subsidence phase from the late Eocene ~40.4 Ma to the present day. The range of 

subsidence during this phase varies from ~17 m (well S1-72) to 121 m (well G1a-72).  

The quantitative analysis of these curves is shown in (Figure 4.22 and Figure 4.23) from 

which one can note the following; at all the wells, the maximum magnitude of subsidence 

occurred during the second rift phase (65.5 Ma-40.4 Ma), the second highest magnitude 

of subsidence is the initial rift phase (99.9 Ma-83.5 Ma), the third highest magnitude of 

subsidence is not assigned to one phase, in some wells such as G1a-72, U1a-72, F3a-72, 

A1-NC177, S1-72, T1-72, and B2-Nc177 it took place at the first thermal sagging phase 

(83.5 Ma-65.5 Ma), while in the rest of wells it took place during the late thermal sagging 

and tilting phase (40.4 Ma-0.0 Ma), and of course the fourth highest is vice versa of the 

third one. During the oldest phase (initial rift phase) the highest and lowest subsidence, 

appear at point location of wells b2-NC177 and A1-NC177 respectively. During the 

second phase of basin history (first thermal sagging phase), the wells that located close to 

the flanks of the area (F3a-72, A1-NC177, U1a-72 and G1a-72) show the highest rate of 

subsidence respectively. During the noticeable rapid and massive subsidence phase 

(second rift phase), the subsidence looks increases northeastward (toward the basin 

centre), the highest and lowest magnitude of subsidence occurred at wells, F3a-72 and 

P1-72 respectively. Finally during the recent phase (2
nd

 thermal sagging phase and 

northeast tilting), the maxima of subsidence shown at wells Q1-72 and S1-72 respectively 
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and decreases to the northwest. More observations can be noted from the subsidence 

curves; at all the wells the rift phases were initiated at nearly the same time, and that is 

probably due to their location in relation to the main basin (Sirte Basin) since they are all 

located on the south west flank of the basin, and all are within relatively small area.   

 

 
 

 
Figure 4.22: The amount of tectonic subsidence (a) during the initial rift phase (b) during 

the first thermal phase, derived from the borehole data. 
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Figure 4.23: The amount of tectonic subsidence (a) during the second rift phase (b) 

during the second thermal phase, derived from borehole data. 

 

Also it is noticeable that the rapid subsidence phase (65.5 Ma-40.4 Ma) interspersed with 

a short period of relatively slower subsidence, such as the period of 60 Ma-59 Ma, 58 

Ma-57 Ma and 56 Ma-53 Ma. 

The cumulative tectonic subsidence maps through time are shown in (Figure 4.24) the 

maps show the North West area to have the lowest subsidence, while the maximum 

subsidence changes from one place to another through the geological time. 
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Figure 4.24: The cumulative tectonic subsidence maps through geological time (a) at the 

end of the first rift phase ~ 83.5 Ma (b) at the end of the first thermal basin sagging ~65.5 

Ma, (c) at the end of the second rift phase ~48.3 Ma, and (d) at the present day. 

 

4.3.2 Tectonic subsidence estimation from modelling data 

The same technique was applied to six different pseudo-wells derived from the MOVE
TM

 

data.  Five of these (L-1 through L-5) are on the regional north-south profile and the sixth 

(L-6) on the second profile (Figure 4.1).  
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Figure 4.25: The tectonic subsidence curves calculated based on data constructed from 

six location on the move-models (see Fig. 4.1 for the location), again all the 

assumed locations show a normal extension basin shape with two phases 

of rifting each of which followed by a phase of thermal 

sagging (see the text). 

 

The resulting tectonic subsidence curves (Figure 4.25) show the same general shape as 

those from the wells in (Figure 4.21), but the magnitude of the different phases of 

subsidence varies.  However, the curves lack the resolution of the well data as they are 

based on fewer data points (the number of modelled stratigraphic packages) rather than 

the number of units identified in the wells. Again the curves show that there were two rift 

events, each of which was followed by a phase of thermal subsidence, however the 

amount of subsidence during the thermal phases appear here greater than what has been 
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calculated from the actual well data. The first rift phase started at ~100 Ma during the late 

Cretaceous (Cenomanian through Santonian), a first thermal sag phase until 66 Ma 

(Campanian and Maastrichtian). The second rift phase from 66 Ma - 40.4 Ma, shows 

substantial subsidence and was followed by the second thermal sagging period from 40.4 

Ma-present day.  

 

4.3.3 Estimation of the stretching factor (β) value 

The stretching factor (β) can be estimated in a variety of ways. One of the most reliable 

methods is from the best fit between the observed and computed tectonic subsidence 

curves, the latter being obtained from McKenzie‘s (1978) equations. Two other methods 

are also explored here: from sum of horizontal displacement on faults, the heave 

measured from the seismic section; and from the sum of the heaves from the restorations 

carried out using the MOVE
TM

 software. 

Theoretical tectonic subsidence curves have been fitted to those derived from the 9 actual 

wells, and from the 6 pseudo-wells from the MOVE
TM

 model.  The best fit obtained is 

shown in (Figure 4.26 and Figure 4.27).  In all cases, two rift phases have been used, as 

the shape of all curves strongly suggests that there were two rift phases. The results show 

that the distribution of stretching between the two rift phases varied throughout the area. 

The minimum and maximum β values during the first rift phase are 1.045 and 1.14, 

which suggests that the maximum crustal stretching was about 14% took place beneath 

well B2-NC177. 
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Figure 4.26: Comparison of the Tectonic subsidence curves computed from 9 well data 

with predicted subsidence Theoretical curves (β) obtained from McKenzie‘s (1978) 

equation, as shown the (β) values estimated from the best fit obtained. 

 

The minimum and maximum β values during the second rift phase are 1.07 and 1.12, 

indicating that the maximum crustal stretching was 12% beneath the well S1-72 and Q1-

72. However the total tectonic subsidence for both rift phases obtained from the wells, 

shows the minimum and maximum β values of 1.157 and 1.226, which suggests that the 

maximum crustal stretching in the area was 22.6%, obtained at well B2-NC177.     

The minimum and maximum of the total β values obtained from MOVE
TM

 -models are 

slightly higher at 1.181 and 1.236 respectively (Figure 4.27).  
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.  

Figure 4.27: Comparison of the tectonic subsidence curves, computed from six different 

location (pseudo wells) on the move-models with predicted subsidence Theoretical 

curves β obtained from McKenzie‘s (1978) equation, the β values estimated 

from the best fit obtained. 

 

The sum of the heaves of the rift faults in the seismic section can give an indication of the 

amount of the extension, although the horizontal displacement of the faults is always 

underestimated because small faults are unresolved on seismic, leading to a significant 

percentage of underestimated of the crustal stretching factor (Marrett and Allmendinger, 

1992; Reston and McDermott, 2014).  

The seismic section of the inline 7505 from the Enaga-5 area has been chosen to compute 

the sum of the heaves. The line is 22 km long, and the sum of the heaves is 2.76 km, 

giving 14.3% extension. This is only 63% of the stretching value that calculated from 
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matching with the predicted (β) curves, within the range of underestimation predicted by 

Marrett and Allmendinger (1992). 

The computed crustal stretching value from MOVE
TM

-model is also quite small 

compared with that estimated from comparison with the McKenzie‘s curves. This is due 

to two factors, firstly the model depends on the interpreted seismic line so it will include 

the same source of underestimation as described above; secondly, it is more difficult to 

simulate all of the resolved faults while creating the model due to their large number. 

Regardless, the total horizontal displacement that has been computed from a total of 11 

movement on fault steps, from one of the models created on an interpreted seismic 

section from Enaga-5 area is ~1150 m (1.15 km), the original length of the line is 22 km. 

therefor the extension percentage is ~5.51%, so as expected it represents only 23% of the 

stretching value that calculated from matching with the predicted (β) curves. 

 

4.4 Estimation and application of the paleowater depth in the 

subsidence calculation 

 
The backstripping studies reveal that thermal contraction and the loading of the sediments 

are the main factors that affecting the subsidence of rifted basins (Watts et al., 1984). 

However, there are other factors have smaller effects - such as global sea-level changes, 

paleobathymetry, climate evolution and erosion and unconformities in the section - that 

when combined together can be significant. The lack of any quantitative data about the 

paleowater depth in the area of study, made the estimation of the paleobathymetry values 

in this study lead to the possibility that the estimated values are not highly credible, 

therefore all the available information about the depositional environments related to the 
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sedimentary units have been gathered, as well as the information about the type of fossils 

that are found within each of the sedimentary units. A summary of this information is 

given in Table 4.8 and Table 4.9, (details about each formation can be found in Chapter 

2). Based on this information and with help of Ian Boomer (pers. Comm., 2014), 

approximate paleobathymetric values have been assigned for each of the sedimentary 

units, the estimated values controlled by the information identified by Bezan (1996) and 

Muftah (1996) which stated that the value of the paleowater depth in the Sirte Basin 

never reached 200 m. Table 4.10: shows the general estimated paleowater depth assigned 

for each sedimentary unit, and sometimes slight changes have been made from one well 

to another according to the some changes in the percentages of the unit‘s lithology 

identified in these wells. 

The set of tectonic subsidence curves produced by applying the primary estimated 

paleowater depth values are shown in (Figure 4.28). Obviously the figure shows the 

tectonic subsidence curves (TS) for each well resulted from three different application, 

the first (blue) are the previously described curves which resulted from applying zero 

paleowater depth, and plotted here for comparison, the second (brown) resulted from 

applying the minimum paleowater depth and the third (green) resulted when the 

maximum paleowater depth has been applied. It is clear from the figures that while 

applying the minimum values (0-45 m) the general shape of the curves is still nearly the 

same (blue and brown), However when the estimated maximum paleowater depth is 

applied (40 m-200 m), a noticeable drop in the curves results, which means that an 

increasing in the subsidence values has been registered. 
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UNIT Age Lithology Type of fossils Deposition 

Environments 
Augila U. Eocene Calcareous Shale 

sequence, pass into 

Limestone 

Benthonic and 

planktonic 

foraminifera 

Shallow marine  

Gialo Mid Eocene Massive shally 

sandy limestone 

Rich in 

Nummulite 

 

Gir Lower 

Eocene 

Massive bio-clastic 

micritic LS then 

microcrystalline 

anhydrite 

interbedded with 

fine dolomite 

Nummulite fauna Shallow water 

Facha Lower 

Eocene 

Mainly dolomite Benthonic and 

planktonic 

foraminifera 

Open marine, 

deposited 

around the 

margin 

Zeltan Upper 

Paleocene 

(Thanetian) 

Shally chalky 

micritic Limestone 

with thin stringers 

of shale 

Globorotalia, 

pseudomenardii + 

Morozovella 

velascoensis 

 

Dahra Mid 

Paleocene 

(Selandian) 

Calcarenite micritic 

LS interbedded 

with thin dolomite 

and shale layers 

 Shallow water 

Al 

Beda 

Lower 

Paleocene 

(Danian) 

Skeletal Oolitic 

micritic LS 

Molluscs, 

Echinoids, Corals 

+ dasycladacean 

Algae and 

foraminifera 

 

Table 4.8: Summary of the characteristics of the specified units used for estimating the 

paleowater depth. 
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UNIT Age Lithology Type of 

fossils 

Deposition 

Environments  
Hagfa  Early Paleocene 

(Danian) 

Sequence of 

calcareous shale 

with very thin 

stringers of LS 

planktonic 

foraminifera 

Deep water 

marine 

environment  

Kalash U. Cret. 

(Maastrichtian 

and early 

Danian) 

micritic 

Limestone 

Benthonic and 

planktonic 

foraminifera 

Low energy 

environment in 

Shallow marine  

Rachmat U. Cret. 

(Santonian) 

Thick shale 

frequently 

interbedded with 

dolomite and LS  

Foraminifera, 

Ostracods 

Shallow marine 

Etel U. Cret. 

(Turonian) 

Sequence of thin 

bedded of 

dolomite, 

anhydrite, shale 

and siltstone 

Nummulite 

fauna 

Very shallow 

marine, shore 

marine 

incursion   

Lidam U. Cret 

(Cenomanian) 

Dolomite + 

Calcarenite  

Fossils is very 

rare due to 

dolomitization 

 

Maximum 

marine 

transgression  

Bahi  Upper Cret. 

(Cenomanian) 

Poorly sorted 

sandstone, 

siltstone and 

conglomerate  

Un- 

fossiliferous  

Non marine 

contains fresh 

water algae  

Nubian Pre-upper Cret. Un silicified 

Sandstone with 

lacustrine shale 

 Non marine 

Table 4.9: Summary of the characteristics of the specified units used for estimating the 

paleowater depth. 

 



Chapter-4                                                                                              Subsidence History 

 

138 
 

Unit name Age Ma Max dept. 

(m) 

Min. dept. 

(m) 

Augila U. Eocene 0-40 40 10 

Gialo Mid Eocene (Lutetian) 40.4-48.6 120 30 

Gir L. Eocene(Ypresian) 48.6-53 80 20 

Facha L. Eocene 53-55.8 130 30 

Zeltan U. Paleocene (Thanetian) 55.8-56.8 180 45 

Dahra Mid Paleocene (Selandian) 56.8-61.7 130 25 

Beda L. Paleocene (Danian) 61.7-63.5 70 15 

Hagfa L. Paleocene (Danian) 61.7-65.5 180 45 

kalash U. Cret (Maastrichtian) 65.5-83.5 100 25 

Rachmat U. Cret. (Santonian) 83.5-89.3 200 45 

Etel U. Cret. (Turonian) 89.3-93.5 100 25 

Early U. Cret U. Cret (Cenomanian) 93.5-99.6 120 35 

Table 4.10: The maximum and minimum paleowater depth values that assigned for 

different stratigraphic units which used to produce the new tectonic subsidence curves. 

 

 

Figure 4.28: The effect of applying the paleowater depth on the subsidence curves of the 

nine wells, the same previous stratigraphic data from the 9 boreholes has been used. 
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Four noticeable events in the tectonic subsidence values appear when high values of the 

paleowater depth are given. The first is at the end of the first rift phase (~83.5 Ma), when 

a value of ~200 m of water depth is applied, this makes the second tectonic phase (first 

post rift phase) appear in most wells as a slight uplift instead of subsidence. The second 

and third noticeable subsidence values are during the second rift phase (~61.7 Ma and 

~55.8 Ma); here the subsidence curves show peaks and troughs during its slope, due to 

the wide relative changes in the values of water depth (80 m-180 m). The fourth event 

has been noticed at the beginning of the last phase (second post rift, ~40.4 Ma) when 120 

m water depth applied, this also leads to a slightly uplift even in some wells since that 

time to the present.  

Adjusting the paleowater depth values at the wells shows an uplift event during the 

period 83.3 Ma- 65.5 Ma and 40.4 Ma- present, and reveals that the water depth in these 

wells should not exceed the values shown in (Table 4.11)  to get the minimum amount of 

subsidence after which the event will reverse to uplift.  

 

Well 

name 

G1- 

72 

P1- 

72 

F3A- 

72 

A1- 

NC177 

B2- 

NC177 

T1- 

72 

U1- 

72 

Q1- 

72 

S1- 

72 

At 

83.3 Ma 

195 140 210 200 145 160 185 145 165 

At 

40.4 Ma 

55 85 100 100 100 100 90 120 100 

 

Table 4.11: The maximum water depth (m) could be apply at the certain ages shown, to 

get a subsidence events curve shape above which the curves will 

turns to uplift. 
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4.5 Sensitivity of tectonic subsidence to global sea level change  

There is no current method to determine the amount of eustatic variations during 

deposition of a sedimentary section (Guidish et al., 1985; Burton et al, 1987; Kendall and 

Lerche, 1988), and because of this, the authors estimations of the long-term sea-level 

change show significant differences, particularly at Late Cretaceous time (Miller et al., 

2005). Number of authors attempted to estimate the magnitude of global sea-level 

changes, such as Vail et al. (1977) who based their proposal on the depositional 

sequences concepts (top-lap and base-lap) (Mitchum et al., 1977); Pitman (1978) put a 

different approach to estimating global eustasy, he has documented that the long-term 

global scale sea-level fluctuation could result only from the variable rate and length of the 

seafloor spreading. Watts & Steckler (1979) estimated the mean sea-level variation, 

based on the stratigraphic record and paleo-environmental data.  Pitman‘s sea-level curve 

has the same overall trends to that of Watts and Steckler, but shows a significant bigger 

amplitude sea-level rise. Miller et al. (2005) published more recent curves of the relative 

sea-level change, which is similar put less in magnitude to that proposed by Watts and 

Steckler as shown in (Figure 4.29).  

In order to observe the impact of eustasy on the tectonic subsidence curves in the study 

area, the magnitude of sea-level change versus geological time has been derived from the 

curves of Watts & Steckler (1979) and Miller et al. (2005) and shown in Table 4.12, these 

values has been applied in the BAT program for the 9 wells. The produced tectonic 

subsidence curves of this application are shown in (Figure 4.30). Analysis of these curves 

shows that; in general at all the wells, the application of both curves (Watts and Miller) of 
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sea-level change always reduces the TS depth by small amount, however the reduction of 

Watts Model is little bit more  than the one by Miller. 

 

 
Figure 4.29: The Global relative sea-level change, since the Late-Triassic till the present 

day, according to estimation of Vail et al.  (1977) (blue line), Pitman (1978) (green line), 

Watts & Steckler (1979) (black line) and Miller et al. (2005) (brown line).  

Modified from Watts et al. (1984). 

 

 

 
Age (Ma) 

0 33.9 40.4 44.3 48.4 53.5 55.8 57.7 60 65.5 83.5 90 93 99.6 

Watts Model (m) 

0 48 60 65 75 75 80 80 85 100 75 60 58 10 

Miller Model (m) 

0 20 35 50 58 60 59 52 50 42 45 44 42 40 

 

Table 4.12: The magnitude in meters of sea level change versus time (Ma), 

comparing with present day sea-level, derived from the published 

curves of Watts et al. (1979) and Miller et al. (2005). 

 

 

Regarding the age and location, the largest effect of applying the sea-level change, 

appears during the period of first thermal sagging (83.5 Ma-65.5 Ma), at the point 
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location of well G1-72. Only in well P1-72 the TS curve resulted from applying Watts-

model shows some uplift during this phase. The final amount of the TS of all wells did 

not change.    

 

 

Figure 4.30: The effect of the sea-level change, on the tectonic subsidence curves of the 

nine wells in the study area. Most of the wells show a non-significant effect and only 

slightly change in the shape of the curves. 

 

4.6 Effecting of applying the paleowater depth and eustasy 

simultaneously 

For more investigation, the previous values of minimum and maximum paleowater depth 

and the eustasy values have been applied at the same time, the TS curves produced from 

this application shown in (Figure 4.31). In this case, the curves show that the original 
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curve (blue) always appears between the minimum and maximum curves, and in most 

wells, it is close to the maximum curve.  

 

 
Figure 4.31: The effect of applying the paleowater depth and eustasy values at the same 

time, on the tectonic subsidence curves of different wells. 

 

The first rift phase and first post rift phase are well defined on the maximum curves 

which show uplift in the second phase. The third and fourth phases also are very clear. In 

general the wells located at the south and west flanks (U1-72, Q1-72, S1-72 and A1-

NC177) show the maximum tectonic subsidence during the second rift phase (65.5 Ma-

40,4 Ma).   
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The minor uplift during the last phase (40.4 Ma-present) that appeared when applying the 

paleowater without eustasy has been removed in this case, and all the wells show clear 

subsidence. Also it is noticeable that the final tectonic subsidence value did not change 

significantly when applying these two factors simultaneously.  

One more thing should mentioned here, is that the computed minimum and maximum 

stretching factor (β) in the area after applying the paleowater depth experienced very 

negligible change, from 1.157 to 1.181 (2.4%) for the minimum value, and from 1.226 to 

1.237 (1.1%) for the maximum value.   

 

4.7 Comparisons with published subsidence work in the Basin  

In fact the abundant of well data in the Sirte Basin encourage many authors to study its 

subsidence history, i.e. Gumati et al. (1991), Van der Meer and Cloetingh, (1993a, b), 

Tmalla (1996), Abadi et al (2008). Here, I attempt to compare the results of this study, ‗ 

further will be noted by S-3‘, with the results of older study (Gumati et al., 1991), ‗further 

will be noted as S-1‘, and also with the latest (Abadi et al., 2008), ‗further will be noted 

as S-2‘. Both studies (S-1 and S-2) have been done as a regional study on the basin using 

well data only, 100 wells were available for Gumati and Nairn and 225 wells for Abadi. 

The comparison will be focused on the results related to my study area. Initially for 

comparing with Gumati and Nairn results, the cumulative tectonic subsidence maps 

(Figure 4.32) published in his study will be used. The subsidence results of well G1a-72 

will be used for comparison with Abadi study. In general, both authors documented that 

there are multi mutual rapid rifts and thermal sagging phases. Gumati and Nairn (1991) 

demonstrated the main four phases, similar to what was demonstrated previously in this 
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study, while Abadi et al. (2008) divided these main four phases into relatively short sub-

phases according to each single change in the rate of tectonic subsidence (Figure 4.32). 

As one can note, the TS curves computed from the both studies (this study and Abadi 

study) for the same well G1a-72), have a very similar shape, however the magnitude of 

the accumulative tectonic subsidence versus time is different from study to another. By 

the end of the initial rift phase (~90 Ma) the accumulated TS calculated from S-2 is 390 

m, from S-1 at this age the result not shown and from this study it is 432 m.  

 
Figure 4.32: (a) and (b) The TS curve for the well G1a-72 computed by Abadi et al. 

(2008) and from this study respectively. (c) and (d) contour maps for the cumulative TS 

of the Sirte Basin at 64 Ma and at 50 Ma respectively, published by Gumati et al. (1991). 

The small red rectangular shows the location of this study. 
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By the end of the first thermal sagging phase (~65 Ma) the accumulated TS computed by 

S-1 is 600 m, by S-2 is 530 m, and by S-3 is 586 m. By close to the end of the second 

rapid rift phase (~50 Ma) the accumulative TS from S-1 is 1400 m, from S-2 is 735, and 

from S-3 is 1056 m. At the present day the maximum accumulation of TS from S-1 is not 

shown, from S-2 is 830 m, and from S-3 is 1116 m. Table 4.13 summarize these TS 

values versus time from the three studies. 

 

Age (Ma) Gumati study (S-1) Abadi study (S-2) This study (S-3) 

90 Not shown 390 432 

65 ~600 530 586 

50 ~1400 735 1056 

present Not shown 830 1116 

Table 4.13: Summary the tectonic subsidence at the point location of well 

G1-72 as computed from three different studies. 

 

Regarding the cumulative stretching factor, Gumati and Nairn (1991) documented that 

the crustal thinning in the entire Sirte Basin ranging from 10%-40% in platform areas and 

25-75% in the grabens. The minimum and maximum crustal thinning factor from Abadi 

study for the entire Sirte Basin is 08% and 30% of the original thickness respectively, as 

shown in (Figure 4.33). Focusing on the study area, the maximum thinning factor derived 

from Abadi study is 16%, while the value calculated from this study is 22.6%. 

From this comparison, we can note that all the values computed by this study are greater 

than the values from Abadi (2008) study, and smaller than the values from Gumati and 

Nairn (1991) study, and it looks like that this difference appears because each study used 
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a different programs and the flexibility of changing the input parameters is different from 

one program to another. Also most of the TS curves of the wells used in this study show 

good agreement with TS curves of some wells used by Gumati and Nairn study (1991) 

(Figure 4.34).      

 

 
 

Figure 4.33: Plotted maps demonstrating the crustal thinning factor (a) the total thinning 

factor as computed for the whole basin by Abadi et al. (2008), the white square shows the 

area of this study (see the text), (b), (c) and (d) for the first rift phase, second rift phase, 

and the total rift, as computed from this study. 
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Figure 4.34: The good matching between the TS curves of the wells used in this study 

(coloured ones) with some wells that have relatively low TS used 

in Gumati et al. study (1991),  (non- coloured ones). 

 

 

Furthermore comparison can be done with the results of Van Der Meer and Cloetingh 

study (1993b), where they proposed that the increase of the intraplate compression can 

cause a magnification in the flexural bending, which in turn causing a subsidence in the 

basin centre and uplifting in the basin flanks. Their study based on 20 well distributed 

within the Sirte Basin (Figure 4.35) and focused on the structuration of the Sirte Basin 

and differential movement of the separate basement blocks. Although all the used wells 

are out of my study area, but the nearest well G1-47 (Figure 4.35) can be used to show an 

example of the tectonic subsidence curves resulted from the study (Figure 4.36). 
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Figure 4.35: Map of Van Der Meer study area showing the main structural and the 

locations of the wells used in the study. After Van der Meer and Cloetingh (1993b). 

The red rectangular define the area of this study. 

 

 

 
Figure 4.36: Tectonic subsidence curve for well Gl-47 corrected for paleo-waterdepth and 

long-term sea level changes. Adapted from Van Der Meer et al. (1993b). 

 

 



Chapter-4                                                                                              Subsidence History 

 

150 
 

The overall observation from the tectonic subsidence curves of Van Der Meer and 

Cloetingh (1993b) during the period Cenomanian-Early Miocene can be summarized by a 

number of phases. The first phase low subsidence rates period (Cenomanian-Campanian) 

represents the pre-rift events, this observation is not in consist neither with the results of 

this study nor with the Gumati and Nairn (1991) and Abadi (2008), since my analysis 

shows an initial rift phase during this interval. The second phase is the actual rifting 

phase of rapid subsidence took place during late Campanian- Paleocene, here the 

beginning and the end of this rift phase is earlier than our results. Then the post-rift phase 

characterized by the decelerating tectonic subsidence rates in response of the thermal re-

equilibration. 

Although the timing of the subsidence phases defined from this study is not always 

matching the Van Der Meer and Cloetingh study (1993b), but the later attempted to 

explain the short-term deviation (uplift pulses) from the predicted subsidence pattern in 

terms of intraplate stress levels.  These uplift pulses also noted in this study (Figure 4.31) 

during the second rift phase when the eustasy and paleowater depth have been applied, 

and if the uncertainty of the paleowater depth and eustasy has been neglected then the 

intraplate compression can be strongly accepted as one of the explanations of these 

events. 
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5 CHAPTER-5 

EMPLACEMENT OF SILLS IN THE SIRTE BASIN 

 

5.1 Introduction 

An improved understanding of the relationships between magmatism and tectonics has 

come from the geophysical investigations of modern plate boundaries and knowledge of 

the behaviour of the element, which in turn, can help to reveal the environments of the 

ancient tectonics (e.g. McKenzie, 1978; McKenzie & Bickle, 1988). The relationship 

between the igneous rocks and the tectonic setting in which the igneous rocks were 

produced, is now widely accepted (e.g. Pearce et al., 1973; McKenzie 1985; Hutton, 

1988; Pitcher, 1993; Pearce et al., 1995; and Wilson et al., 1998). This chapter will give a 

brief idea about the igneous rocks existing in the area and their time of creation, and 

compare the seismic image of sills intruded elsewhere with sills emplaced in study area.  

 

5.2 Timing of magmatic activity of Libya 

The oldest rocks in Libya are in the Al Awaynat inlier close to the border junction of 

Libya, Egypt, and Sudan (Figure 5.1); this inlier has been studied by Sandford (1935), 

Mahrholz (1968), Schurmann (1974), Klerkx (1980), Cahen et al. (1984), and (Morgan et 

al., 1998). The radiometric age dates of these rocks ranges from 2900 Ma to 2500 Ma, 

Granulites and gneisses (the metamorphosis of granite) are the main composition. The Al 

Awaynat rock is characterized by the presence of the Cenozoic ring intrusions (Morgan et 

al., 1998).  
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The isotopic ages (potassium-argon) of the basement igneous rocks that have been 

penetrated in a dozen wells in the Sirte Basin, are in the range 670 to 460 Ma (Cahen et 

al., 1984). 

The presence of Precambrian sediments in Cyrenaica has been proved recently, these 

sediments were previously considered as Cambro-Ordovician in age (Baudet, 1988).  

The isotopic ages of the metamorphosed rhyolites that dominate the western part of the 

Upper Tibisti massif (Figure 5.1), range from 526 to 790 Ma (Oun et al., 2000). The 

eastern part of the Upper Tibisti is more similar to the Al Awaynat inlier than the western 

part (Klerkx, 1980; Mahrholz, 1968). 

Offshore Libya basalts flows were emplaced during the mid to late Permian.  The 

potassium-argon (K-Ar) radiometric dating technique shows the age of the granite that 

penetrated on the Waddan horst is 256 Ma, while the microsyenite sills in the Amal area 

have been dated at 245 Ma (Wilson and Guiraud, 1998).  According to Wilson and 

Guiraud (1998) these intrusions experienced no significant metamorphism or orogenic 

events.  

In Libya, igneous activity related to rifting that eventually led to the break-up of Pangaea, 

is represented by granodiorite emplaced at 230 Ma in the Waddan Platform and 207 Ma 

granodiorite from the Amal oilfield. These events are contemporaneous with the 

Mediterranean region initial rifting phase (Wilson and Guiraud, 1998; Banerjee, 1980). 

The rifting of the Tibisti-Sirt Arch and the associated volcanic activity persisted until the 

early Cretaceous through the Jurassic, and was accompanied by the widespread 

deposition of continental sands (poorly cemented, and yellow to red sandstone). Van 

Houten (1983) suggested that the Sirt Arch, at this time was present over a ‗fixed-mantle 
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hot-spot‘ that caused a thinning and weakness in the overlying crust. The hotspot paths in 

both Libya and the Atlantic show that during the Jurassic Africa moved southward, and 

northward during most of the Cretaceous and a northeast movement since the Campanian 

(Dercourt et al., 1986).  

   

Figure 5.1: Map of Libya with the places of magma activity (see the text) 
Modified from Hallett (2002). 

 

Wilson and Guiraud (1998) proposed that in the Sirt Basin some of the magmatic events 

represented by intrusions of granite aged between ~152 Ma and ~120 Ma (Tithonian - 

Aptian) and volcanic rocks corresponding to this period dated 148 to 127 Ma (Wilson and 

Guiraud, 1998). On the offshore Pelagian Shelf, the sinistral strike-slip faulting and the 

extensive rifting that characterized the late Cretaceous caused an increased in magmatism 

at this time (Wilson and Guiraud, 1998). 
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In Cyrenaica and in the Ajdabiyah Trough, since the Tortonian, marine sediments were 

deposited and the eruption of huge amounts of basalt and basaltic lavas occurred at 

centres of volcanics along the ‗ancient Tripoli- Tibisti Uplift‘ (Hallett, 2002).  

Also from Eocene to recent times volcanic rocks were erupted in the area from the Tibisti 

Massif to Gharyan along the same axis (Gumati and Kanes, 1985). In the Al Haruj al 

Aswad and Tibisti Mountains the volcanic activity has only recently ceased (Wilson and 

Guiraud, 1998). In northern Libya, the basement underlying the thick sedimentary rocks 

has been penetrated in a group of deep oil wells. Table 5.1 summarize these magmatism 

events and ages in sequence. 

 

Area, event and rocks Radiometric Age 

Al Awaynat inlier (Granulites and gneisses) 2900 Ma-2500 Ma 

Rhyolites of western part of upper Tibisti massive 790 Ma-526 Ma 

Sirte basin igneous rock 670 Ma-460 Ma 

Granite of the Waddan Horst 256 Ma 

Off shore Libya 254 Ma 

The microsyenite sills in the Amal area 245 Ma 

Granodiorite of the Waddan platform 230 Ma 

Granodiorite of the Amal oil field 207 Ma 

Some granite intrusion in the Sirte Basin 152 Ma-122 Ma 

volcanic rocks were erupted in the area from Tibisti 

Massif to Gharyan along the line of the ancient Tripoli-

Tibisti Uplift 

Since Eocene to 

recent time (55.8 

Ma-0 Ma) 

The huge basaltic and basanic lava were erupted along 

the line of the ancient Tripoli-Tibisti Uplift 

Since Tortonian 

11.6 Ma 

Table 5.1: Summary of the magmatic activities and radiometric-ages of their rock in 

Libya. 
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5.3 Interpretation of the igneous intrusions  

Sills can be clearly imaged from seismic data because of their high acoustic impedance 

contrast. The abrupt termination of these reflectors is also characteristic. Occasionally 

vertical offsets or dike-like connections occur between two sill segments emplaced at 

slightly different stratigraphic levels. Shallow intrusions are often saucer-shaped, 

transgressive, and commonly rough, while in general the deep intrusions are smooth and 

long (Polteau et al., 2007). The intersection geometry relationship between the sill 

complexes is one of the important characters for the identification of a reflection from 

sill.  Demonstration of some interpreted sills from Gjallar Ridge area is given in the next 

section to use later on for comparison with sills in my study area. 

 

5.4 Tectonic evolution of the Gjallar Ridge  

The Norwegian Volcanic Rifted Margin has been exposed to several rifting phases since 

Caledonian time. The volcanics, normal and strike-slip faults are expected to exist 

beneath the North and South Gjallar Ridge. Reflections of deep smooth domal shape in 

seismic data, are suggested to have be formed during the Atlantic rifting by inducing 

boudinage and isostatic instability of the lower ductile crust in the shear zone (Gernigon 

et al., 2003). 

The suggestion that the late magma rising in the crust is controlled by the important 

stretched areas, is proposed to explain the repartition of magmatic sills in the sedimentary 

basin, and of the volcanics emplaced during the break-up. Sills are mainly intruded in the 

areas where there is significant post-rift subsidence and between the crustal domes.  

 



Chapter-5                                                               Emplacement of Sills in the Sirte Basin 

156 
 

 
Figure 5.2: Structural map of the outer Vøring Margin. BCU, base Cretaceous 

unconformity; BL, Bivrost Lineament; FFC, Fles Fault Complex; FG, Fenris Graben; 

GFZ, Gleipne Fracture Zone; GS, Gleipne saddle; HG, Hel Graben; HT, Halten Terrace; 

JMFZ, Jan Mayen Fracture Zone; ND, Naglfar Dome; NGR, north Gjallar Ridge; NH, 

Nyk High; NS, Någrind Syncline; RaB, Rån basin; RR, Rån ridge; Rym FZ, Rym Fault 

Zone; SGR, south Gjallar Ridge; TP, Trøndelag Platform; VD, Vema Dome; VMH, 

Vøring Marginal High; VS, Vigrid Syncline. Adapted from Gernigon et al., (2003). 
 

 
Figure 5.3: Depth-converted 3D seismic profile across the north Gjallar Ridge. The base 

Tertiary unconformity truncates a large part of the fault activity. Adapted from Gernigon 

et al., (2003). 

Base Tertiary  
unconformity 
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The Gjallar Ridge is an area located in the west of the Vøring Basin (Figure 5.2), and the 

geology of this area is quite complex. Regional structural work (e.g. Brekke, 2000) 

pointed out that during basin development multiple phases of rifting took place. The 

Gjallar Ridge is one of the areas that provide an excellent opportunity to explore the 

evolution of volcanic margins. 

Both the potential field and seismic data image show that the area of the Ridge overlies a 

deep crustal body (Corfield et al., 2004). 

The north Gjallar Ridge mostly dissected by arrays of NW-dipping faults strongly 

truncated by the base Tertiary unconformity (Figure 5.3). Each block is characterized by 

well-layered reflections represent the syn-rift deposits (Swieciki et al., 1998). The recent 

drilling data indicates that the age of these deposits is Campanian–Maastrichtian 

(Gernigon et al., 2003) so it is suggested that the Base Tertiary unconformity represents a 

hiatus between Lower Maastrichtian and Upper Paleocene (and/or Lower Eocene) series.  

Paleocene interval sediments in the north Gjallar Ridge are slightly faulted in Early 

Paleocene to Early Eocene time. The Latest Paleocene break-up probably took place a 

few million years after the Ridge faulting; this suggests a progressive focus of crustal 

deformation to the west (Roberts et al., 1997). 

The south Gjallar Ridge is characterizes by the elongated rotated block, which is bounded 

by steep NW-dipping normal faults. The south Gjallar Ridge is similar to the north 

Gjallar Ridge that the Early Campanian–Early Paleocene is the assumed age of faulting 

activity, the difference between them being that in the north Gjallar Ridge, the listric 

faulting is evident, while in the south Gjallar Ridge the sequential deformation is the 
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dominated structural style, also the faults in the south Gjallar Ridge show less 

displacement (Gernigon et al., 2003). 

 

 

5.5 Interpretation of Sills from the Gjallar Ridge: a comparative study  

Gjallar Ridge has been chosen for the comparison of sills with my study area as it was the 

subject of my MSc thesis (Saleem, 2004). In this section I summarise those results before 

comparing them with the geometry of sills in the study area. Gjallar Ridge is located in 

the Norwegian continental margin in the North East Atlantic, the area is bounded by 

latitudes 66° 43′ 37.3″ N and 67° 17′ 23″.7 N and longitudes 4° 06′ 20.1″ E and 5° 25′ 

34.6″ E (Figure 5.4a).  The base map of the seismic survey used for sills interpretation in 

this area is shown in Figure 5.4b. 

 

5.5.1 Sill names and groups   

Sills are identified by their high amplitude; from this, two areas of high concentration of 

high amplitude reflectors have been identified. Area-1 is located at the south east quarter 

of the whole study area and represents the sills of group-1, and area-2 which is located 

approximately in the south west quarter of the study area and represents the sills of 

group-2 (Figure 5.5). All the interpreted sills are named MS followed by a number (e.g. 

MS7, MS10, MS12 …).   
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Figure 5.4a: Location map of the Gjallar Ridge area                                                             

Adapted from Roberts et al. (1997). 
 

 

Fig. 5.4b: Base map of the Gjallar Ridge seismic survey used in the study. 

Location of the 

Gjallar Ridge 
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            Figure 5.5: Location of the interpreted sills relative to the entire area. 

 

 

Group-1 (eastern group) includes the following sills: MS7, MS10, MS18, MS19, MS20, 

MS23, MS24, and MS25 (Figure 5.6). Group-2 (western group) includes the following 

sills: MS12, MS13, MS14, MS15, MS17, MS22, MS27, AND MS28 (Figure 5.5). In 

addition to these two groups, there are two relatively large sills, extending between and 

connecting the two groups, which they are MS16, and MS26.  
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5.5.2 Sills of group one (Eastern-Group) 

As described above, sills of group-1 are MS7, MS10, MS18, MS19, MS20, MS23, 

MS24, and MS25. Table 5.2 shows the important statistics of these sills. The following is 

the observation and description of some of these sills: 

Table 5.2: Some statistics of group 1 sills, calculated from the interpreted maps, and 

seismic sections. 

 

The first sill chosen is MS7, this sill extends NE-SW, and the shape of the sill in the plan 

appears as an elliptical body, with three arms, as shown in (Figure 5.7). The sill in N-S 

profile is horizontal in its eastern part, it becomes slightly downwards concave in the 

western profiles (Figure 5.9). In E-W profiles, it is inclined at the south part and it 

becomes sub-horizontal in the north. The boundary is both curved and fingered, the 

western boundary has less sinuosity than the eastern side where a fluid-escape pipe 

appears to rise from the edge of the sill. 

Sills 

Name 

Long axis 

(km) 

Short axis 

(km) 

Min. dep. 

(ms) TWT 

Max. Dep. 

(ms) TWT 

Thickness 

(m) ±5 

Area 

(Km
2
) ±2.5 

MS7 14.3 2.4 4040 4256 99 51.7 

MS10 21.53 7.78 4368 4836 72 154.6 

MS18 16.09 7.10 4468 5180 51 110.2 

MS19 5.18 1.89 4532 5124 69 10.55 

MS20 13.53 3.20 3728 3932 93 53.84 

MS23 5.47 2.20 4136 4408 78 8.76 

MS24 8.74 2.85 3990 4498 42 26.57 

MS25 3.28  4272 4616 36 7.71 
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The relative location of this sill with respect to other sills is shown in (Figure 5.6). In 

addition to fluid-escape pipes, the sill is also affected by some local minor faults, the 

amplitude of the sill reflector is almost high (Figure 5.7), but there are some areas where 

it is discontinuous due to fractures and minor faults, as in the mid-northern and mid- 

southern.   

The second sill MS10 extends NE-SW as demonstrated in Figure 5.10: . Along the E-W 

profile the sill appears segmented in the southern part, and it becomes two adjacent 

synclines intersecting each other in the northern part, merging to one syncline in the 

extreme north, in N-S profile the sill has a saucer shape at the center area (Figure 5.10). 

The boundary of the sill, in general, is a combination of straight lines interrupted by some 

prominences. Near the northern side, the sill rises up and takes the curvature shape 

dipping toward the south. The continuity of the sill is interrupted by some minor faults. 

Pipes A, and B rise from the eastern and western sides of the sill respectively. In general, 

the amplitude of SW part is lower than the rest of the sill, probably due to the sill 

pinching out to below the tuning thickness.  
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Figure 5.6: Oblique 3D view showing the relationship of sills of group-1 

intersecting a volume of seismic sections. 

1.  

 
 

Figure 5.7: The amplitude map of sill MS7 in plan view,  

the contrast of the amplitude clarified the minor and major faults. 
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Figure 5.8: Portion of crossline 4969 in study area showing the interpreted 

reflector of sill MS7 with some minor  faults characteristic the surface. 

 

 

 
 

Figure 5.9: Oblique 3D view of sill MS10 intersecting N-S crossline 6450 with some sills 

reflectors appears in the seismic section, the surface is characteristic by some faults. 

 

 

MS20 

MS10 
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Figure 5.10: Part of Inline 7528 that represent the shape of sill MS10  

in profile view, faults (F) characteristic the surface. 

 

 
The third sill MS20 is the uppermost sill in the group and it is roughly parallel to MS7 

with no intersection (Figure 5.6), the sill has an irregular elongated shape with some 

indentation and fingers especially at the southern part (Figure 5.11), extending NE-SW. 

In the seismic profiles, the sill is slightly concave-up horizontal structure (Figure 5.12). 

The sill is slightly fractured, and the highest amplitude is at the central part.  

The last chosen sill in the first group is MS25, it extends NE-SW, in plan view the sill 

appears lobed, and dips toward the SE (Figure 5.13). In E-W profile the sill appears as an 

inclined sheet dipping eastward, in N-S profile it has the same shape dipping southward 

with slightly concave-up in the east, and becomes flattens in the west (Figure 5.14). The 

sill is characterized by some faulted areas and by a fluid-escape pipe rising from the west 

side. Its amplitude in general is uniformly.    
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Figure 5.11: Plan view of sill MS20 shows its geometry 

and Surface characteristics. 

 

 
Figure 5.12: Portion of seismic section of cross-line 5014,  

represents the profile view of Sill MS20 with faults. 
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Figure 5.13: Plan view of sill MS25 showing its geometry and boundary,  

note the SE dipping of the surface and its faulted areas. 

 

 

 

 
Figure 5.14: Portion of seismic section of Inline 6742 represents 

the reflector of sill MS25 in the sill complex. 
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5.5.3 Sills of group-2 (western group) 

 

Referring to section 3.4.1, the sills of group two are, MS12, MS13, MS14, MS15, MS17, 

MS22, MS27, and MS28 (Figure 5.15). Table 5.3 shows their important measurements 

Sills 

Names 

Long axis 

(km) 

Short axis 

(km) 

Min. dep. 

(ms) TWT 

Max. Dep. 

(ms) TWT 

Thickness 

(m) ±5 

Area 

(Km
2
) ±2.5 

MS12 16.68 4.70 4864 5412 87 77.76 

MS13 4.55 2.64 3504 3616 63 13.10 

MS14 13.45 4.25 4264 4560 57 54.94 

MS15 6.11 1.83 4564 4828 90 15.40 

MS17 16.26 6.27 4768 5760 129 77.35 

MS22 6.40 4.02 4552 4860 78 20.24 

MS27 10.24 7.56 4012 4462 36 57.42 

MS28 4.09 2.95 4344 4644 51 8.79 

Table 5.3: Some measurements of sills of group 2, calculated from the interpreted maps, 

and seismic sections. 

 

MS12 is the first chosen sill in this group, it extends NE-SW, it has an ellipsoid shape 

with a width increasing toward NE (Figure 5.16), and generally dips SW. In E-W profile 

it seems to be a syncline, while In N-S profile the sill has a saucer shape in the eastern 

part, becoming sub-horizontal at the NW side and inclined at SW side (Figure 5.17). 
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Figure 5.15: The relationship of sills of group-2 in 3-dimension 

Note that some colors just for distinguishing the various sills. 

 

 

 

 

 



Chapter-5                                                               Emplacement of Sills in the Sirte Basin 

170 
 

The sill has a range of amplitude from -88 to -1, the NE part of the sill characterized by 

the lowest amplitude. Pipe-C rises from the eastern side of the sill. The sill is 

characterized by some minor faults extending NW-SE and NE-SW. 

The second sill is MS14 which has a long axis that extends approximately NE-SW, the 

sill seems irregular in form (Figure 5.18). In E-W profile, the sill appears to be sub- 

horizontal sheet slightly dipping eastward, in N-S profile it seems to be a combination of 

two adjacent saucers (Figure 5.19). MS14 intersects MS27, also it intersects with the 

MS22 from the north side, and with MS15 from the SW side (Figure 5.15). The sill is 

fractured by some nearly E-W minor faults especially at the northern part which has the 

lower amplitude than the southern part. The sill along with MS15 and another small sill 

not interpreted make a complex shape in the profile, because they intersect each other in a 

triangle shape. 

 

Figure 5.16: Oblique 3d view of sill MS12 showing the geometry  

of the sill and Multiple direction faults disturbed its surface. 
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Figure 5.17: Sill MS12 in profile view of Inline 8450, with 

appearance of Some other sills and features. 

 

 

 
 

Figure 5.18: Plan view of seismic attribute map of sill MS14 shows 

the amplitude distribution and the frilly and irregular boundary of the sill. 
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Figure 5.19: Seismic profile of crossline 8266 shows the shape of the interpreted 

reflector of sill MS14 and its relation to some other  sills reflectors  in the group. 

 

 

Another sample from group-2 is MS15 extends approximately E-W, it has an irregular 

shape in plain (Figure 5.20). In E-W profile, the sill has a saucer shape at the center, the 

concaved decreases northward and southward, in N-S profile it has the same shape, but 

with less concaved (Figure 5.21). The sill is intersecting MS14 from the east side (Figure 

5.15). The amplitude is slightly uniformly distributed, some of the minor faults cut the 

sill (Figure 5.20). 

The third chosen sill is MS27 has a sinuous boundary and is pyriform shape, its long axis 

extends NW-SE (Figure 5.22). In E-W profile it appears as a saucer with an eastern wall 

longer than the western (Figure 5.23), in N-S profile it seems slightly flatten, and 

fractured saucer shape, the southern wall becoming longer westward. The sill MS27 

intersects sill MS28, and its western part intersect MS14 (Figure 5.15), the eastern side of 

the sill influence by pipe C. The mid area seems to have higher amplitude than the rest 

area (Figure 5.22). The sill appears to be a feeder to the upper sills. 
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Figure 5.20: Oblique 3d view of sill MS15 intersecting E-W Inline 6760 

and N-S Crossline 8500, note the inward dipping of the surface. 
 

 

 

Figure 5.21: Seismic profile of Inline 6475 showing the reflector 

of sill MS15 and its relationship to other sills reflections. 
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Figure 5.22: Plan view of seismic attribute map representing the Amplitude 

distribution of sill MS27, the high amplitude belt likely resulted due to 

the intersection with the other sills. 

 
 

 
 

Figure 5.23: Part of seismic section of Inline 7159 showing the shape of sill MS27 

and its intersection relationship to sills MS28  and MS14 in profile view . 
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5.5.4 Groups of connected sills 

 

It has been mentioned in section 5.4.1 that there are two interpreted sills relatively large 

in their areas which extends through areas of group one and two and connects the two 

groups. These sills are MS16 and MS26. Some statistics of these sills are shown in Table 

5.4. 

Sills 

Names 

Long axis 

(km) 

Short axis 

(km) 

Min. dep. 

(ms) TWT 

Max. Dep. 

(ms) TWT 

Thickness 

(m) ±5 

Area 

(Km
2
) ±2.5 

MS16 24.62 13.01 4192 5164 120 348 

MS26 23.99 14.12 4272 5052 135 269 

Table 5.4: Some statistics of MS16 and MS26 sills, calculated from the interpreted maps, 

and seismic sections. 

 

 Sill MS16 and Sill MS26  

MS16 and MS26 have an approximately rectangular shape with some fingers pointed 

toward the north and east, their boundary sinuously and notched. The two sills extend 

NE-SW, in general, they dipping toward SW (Figure 5.24, Figure 5.25and Figure 5.26). 

In E-W profile they appear as a concave-up sheet combined with a horizontal one, this 

shape becomes wavier northward (Figure 5.27 and Figure 5.28). Their surfaces is 

characterized by some minor faults extends N-S and E-W. Both sills are very similar to 

each other in most characteristics (Figure 5.24). The two sills are lies approximately at 

the mid-depth of the all interpreted sills (Figure 5.24). The two sills are characterized by 

a relatively negative amplitude (-85 to -1) (Figure 5.25and Figure 5.26). The mid area of 

the two sills affected by pipe C and F, while pipe D influence them from the west side 
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(Figure 5.27 and Figure 5.28) the south boundary cannot be defined because it is out of 

the survey area. 

 

 

           Figure 5.24: Oblique 3D view showing the matching of sill MS26 to sill MS16, 

            note that the Color is just for distinguish between the two sills. 
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Figure 5.25: Seismic attribute map of sill MS16 in plan view shows 

the geometry and the amplitude distribution of the sill. 

 
 

 
Figure 5.26: Seismic attribute map of sill MS26 in plan view shows 

the geometry and amplitude distribution of the sill. 
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Figure 5.27: (a) Profile view shows the pipes A and B that effect some 

sills (e.g. MS7, MS10, MS18) from east and west Side respectively.(b) Profile view 

represents pipe D which has an effect On sills  MS16 and MS26 from the west side. 

(c) Profile view represents the pipes E and C that have effecting on some sills (e.g. 

MS23, MS24 and MS26). 

 

 

 

c 
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5.6 Sills interpretation in the study area 
 

The study area as mentioned in chapter-3 includes five volumes of 3D seismic data 

(Figure 5.28); investigation of the entire data shows that group of strong and abrupt 

discontinuous reflectors occur in the Enaga-5 area. Twelve of these reflectors are 

interpreted as sills, named N5-1 through to N5-12.  Most of the sills are located to the 

east of the area, but some are in the centre or to the west (Figure 5.29). Table 5.5 shows 

some statistics of these sills, and the observations and description of each interpreted sill 

are given in the following pages.  

 

Figure 5.28: The base map of the study area including the 3D seismic surveys.
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Figure 5.29: Map of relative location of the sills in the area of Enaga-5. 
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 Sill N5-1 

The sill is located in the eastern part of the Enaga-5 area, the geometry in the plan 

view appears more or less like a right triangle shape dipping northeast ward (Figure 

5.32). The sill is affected by number of WNW-ESE faults particularly in the lower 

west part of its area. In the oblique view (Figure 5.30 and Figure 5.31), as well as on 

the N-S profiles (Figure 5.33) the sill appears anticlinal at the uppermost part 

(eastern side) and as a sub-horizontal sheet at the bottom (western side), where it 

nearly links with the sill N5-2. In the E-W profiles the sill lies horizontally and is in 

general concordant with the host strata. The present day depth of the sill ranges from 

3.8 km and 4.6 km, the sediment at this depth is Lower Cretaceous, which in the 

nearest well (G1-72) is composed mainly of sandstone slightly interbedded with clay 

and dolomite.  

 Sill N5-2 

The sill is located at the north-eastern part of the Enaga-5 area, the geometry of the 

sill in the plan view is similar to Sill N5-1 (Figure 5.34), with a smooth edge apart 

from a small protuberance to the north. The sill extends E-W and dips westward. On 

the N-S profiles the sill starting with a dipping sheet shape at the west becomes a 

saucer shape at the eastern part (Figure 5.35), this shape probably indicates that its 

depth at the time of the emplacement was relatively shallow, the sill characterized by 

moderate amplitude (6000) and patches of high amplitude distributed along its area 

(Figure 5.39b). The present day depth ranges from 4.2 km to 5 km. The western part 

of the sill is over lapped by the sill N5-1, the overlapped led to clear reduction in the 

amplitude particularly where the two sills are very close to each other.   
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 Sills N5-3 

The sill is extending beneath the sill N5-2, and they almost parallel to each other. 

The sill geometry in plan view is saucer-shaped, dipping to the west (Figure 5.36). In 

the N-S profiles the sill appears concave-up and dipping mainly northward (Figure 

5.37). The eastern edge appears straight due to the limitation of the data coverage.  

The sill is concordant with the strata. The amplitude map shows a wide range 264-

12900 (Figure 5.40c), partly reflecting the poorer quality of the data here than in the 

Gjallar Ridge region, and the lower left part has the maximum value of the sill 

amplitude. 

 
Figure 5.30: The relative relationship of sills N5-1, N5-2, and N5-3, 

in oblique view, sill N5-2 seems to be nested in sill N5-3.  
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Figure 5.31: Relative relationships of Sill N5-1 and N5-5. 

 

 

 

 

 

 

 

 

 

 

Figure 5.32: The Sill-N5-1 in plan view, group of normal faults dominated the sill 

area. 

 

 

 

 

  

 

 
 

 

N5-1 

N5-5 
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Figure 5.33: View of sill-N5-1, sill-N5-4 and sill-N5-5 in Inline 7660 

and their level relative to one of the interpreted horizons. 

 

 

 

Figure 5.34: Plan view of sill N5-2 and the N-S faults in the sill area. 

 

1.0 km 
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Figure 5.35: Line 7750 shows the interpreted horizons and sills, sill-N5-1 merged in 

sill-N5-2 which appear as a feeder to it. 

 

 Sill N5-4 

The sill is located in the middle right part of Enaga-5 area, it has an elongated shape 

extending east-west with a width increasing eastward (Figure 5.38).  A number of 

faults in the sill area affect its continuity and amplitude. In the eastern side of the N-S 

profiles the sill appears as a single segment dipping northward, and as moving 

westward it tends to be horizontal, further moving westward the sill reversing its dip 

to southward. This shape continues till a point where the sill splits into two segments, 

one at the same original level and the other rising along a fault (Figure 5.33). The 

separation between the two segments increases moving westward and the lower one 

links with another sill segment, forming a new concordant southward dipping sheet.  

 

 

2.0 km 
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Sill name Long axis 

(Km) 

Short axis 

(km) 

Minimum 

2WT 

Depth (sec) 

Maximum 

2WT 

Depth (sec) 

Thickness 

2WT 

(sec) 

Area 

Km2 

N5-1 6.75 3.58 1.86 2.29 0.040 23.11 

N5-2 6.50 3.9 2.20 2.49 0.056 22.42 

N5-3 9.00 3.7 2.35 2.75 0.040 30.4 

N5-4 8.95 2.17 1.70 1.90 0.030 21.61 

N5-5 4.94 2.40 1.81 2.15 0.034 13.54 

N5-6 6.30 1.3 2.39 2.66 0.038 9.30 

N5-7 6.70 2.25 2.44 2.58 0.039 14.82 

N5-8 7.00 1.6 2.18 2.42 0.038 13.833 

N5-9 5.204 1.45 2.03 2.41 0.026 6.939 

N5-10 12.96 1.894 1.47 1.62 0.028 21.232 

N5-11 10.50 2.34 1.49 1.60 0.036 18.46 

N5-12 12.00 2.19 2.27 2.48 0.032 61.499 

Table 5.5: Some statistics of the sills in Enaga-5 area, calculated 

from the interpreted maps, and seismic sections. 
 

 Sill N5-5 

The sill extends east-west in the eastern part of Enaga-5, dipping toward the 

northwest, and being crosscut by a number of faults particularly in the west. In the 

plan view the sill has a trapezoidal shape with the long base to the south (Figure 

5.40).  On the in-line seismic profiles the sill is a northward dipping sheet mostly 

concordant with the host rock layers. The western tip nearly links with the eastern tip 

of sill N5-1, but moving eastward the two sills overlap each other (Figure 5.33). The 

sill has the high amplitude at the centre area which reaches 12400 (Figure 5.39e). 
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 Sill N5-6 

The sill extends east-west and consists of three connected segments, the eastern one 

dipping south-southwest, the middle one dipping north-northeast, and the western 

segment dipping northward. The sill has an elongated shape with an uneven edge. A 

number of north-south faults crosscut the sill area (Figure 5.41). The amplitude of the 

sill ranges from 270-13000 (Figure 5.39f).        

 

Figure 5.36: Plan view of sill N5-3 shows its geometry and morphology. 
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Figure 5.37: The inline 7740 with the group of faults affecting the continuity of sills 

N5-1, N5-2, N5-3. 

 

 

Figure 5.38: Plan view of sill N5-4, NW-SE faults and the E-W fault that divert the 

sill. 

 

 

 

2.0 km 
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Figure 5.39 a, b, c, d, e and f: The amplitude maps of group of interpreted sills. 

 

 

1.0 km 1.25 km 

2.5 km 3.0 km 
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Figure 5.40: Plan view of Sill N5-5 shows its geometry and morphology. 

 

 

Figure 5.41: Sill N5-6 in plan view and the Normal fault disturbance at its surface. 
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 Sill N5-7 

The sill is located in the upper left of the Enaga-5 area and extends NW-SE. In 

general the sill is saucer-shaped is inclined to the southeast and offset by NNW-SSE 

faults (Figure 5.42). On the inline profiles, the sill is concave up (Figure 5.50a).  

Moving eastward through the profiles the dip of the sill turns northward. Patches of 

high amplitude are distributed through the area especially at the boundary and at the 

northern west part of the sill area (Figure 5.45a). The western half of the sill is wider 

than the eastern half (1.4 km and 2.67 km).   

 

 
Figure 5.42: Plan view of sill N5-7 and the normal N-S faults 

dominating the sill area. 
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 Sill N5-8 

The sill is located approximately at the middle of the Enaga-5 area, it is undulatory, 

extends NW-SE and dips in general northwestward (Figure 5.43). On the inline 

profiles the sill in the middle area appear as a two linked segments of gentle saucer 

shape, moving westward the sill shape tends to be more or less a horizontal sheet, 

and moving eastward through the profiles the shape turns to a northward dipping 

sheet. A number of faults dominate the surface of the sill and affect its continuity and 

amplitude (Figure 5.44). The amplitude map shows ranges of 611-69410, the highest 

amplitude appears at the upper left area of the sill. 

       

Figure 5.43: Plan view of sill N5-8 and the N-S and NW-SE faults disturb its area. 
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Figure 5.44: 3D Seismic profile illustrates the sills N5-6, N5-8 and N5-10, note the 

slightly forced folded over adjacent tips of sills N5-6 and N5-8  and over the  

sill N5-10. 

 

 Sill N5-9  

The sill is located in the central west part of Enaga-5 area, it extends NW-SE and 

dips northwestward, with a number of faults offsetting its surface, decreasing its 

amplitude and reducing its continuity, and the sill in the plan view has a fish shape 

(Figure 5.46), deepening to the NW and rising and then flattening to the SE. In the 

eastern N-S profiles the sill appear as a curved sheet dipping northward, with a 

horizontal south tip (Figure 5.50a).The amplitude map shows a wide range of RMS 

from 840
_
12850, the sill mostly with a high amplitude especially at the lower right, 

mid and left areas (Figure 5.45c). Many faults are easily noticed on the sill maps.    

2.0 km 
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Figure 5.45: a, b, c, d, e and f: the amplitude maps of group of interpreted sills. 

 

 

2.0 km 

2.0 km 4.0 km 
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Figure 5.46: The geometry and morphology of sill N5-9. 
 

 Sill N5-10  

The sill is located in the centre of Enaga-5 area, extends more or less east-west and 

dips southward (Figure 5.47). In the plan view the sill appears elongated much longer 

(10.38 km) than it is wide (2.25 km). Many N-S and some E-W fault trends cut 

across the sill, such as one at the westernmost part of the sill area which divides the 

western end of the sill into two segments. On the N-S profiles the sill appears as a 

southward dipping sheet consisting of a group of linked segments (Figure 5.50c), 

moving westward the sill takes on a saucer shape. The amplitude map shows that the 

sill is mostly characterized by high amplitude especially at the middle part (Figure 

5.45d). 
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Figure 5.47: Sill N5-10 in plan view. 

 

 

 Sill N5-11   

The sill is located in the eastern part of Enaga-5, and forms an E-W elongated dome, 

dipping N and S.  The sill narrows moving westward (Figure 5.48). In the N-S 

profiles, the sill appears as a sinuous sheet concordant with the strata (Figure 5.48 

and Figure 5.50c). The western part of the sill is higher amplitude than the eastern 

part. The boundary is more sinuous to the east than elsewhere (Figure 5.45e). 

 Sill N5-12     

The sill is located in the middle of the eastern part of Enaga-5, and is also elongated 

east-west. In the plan view the sill appear as two parts, the eastern one wider (1.8 

km) than the western one (0.62 km) (Figure 5.49). The sill has a saucer shape with 

the eastern part dipping NW, and the western part dipping NE. N-S profiles across 

the eastern part show the sill as a northward dipping sheet, and as moving westward 

the sill turns to a saucer shape further moving westward the sill returns to the dipping 
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sheet shape (Figure 5.50b). The range of the amplitude is 770-13300 with the highest 

amplitude concentrated in the western part. The trends of faults are clear in both the 

plan view and amplitude map (Figure 5.45f).  

 

 

Figure 5.48: The geometry and morphology of sill N5-11 in plan view. 

 

 

Figure 5.49: The sill N5-12 in plan view, and the E-W faults that dominate its area. 
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Figure 5.50 a, b and c: The shape of a group of sills in the N-S 3D seismic profiles. 
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5.7 The relationships and timing of the interpreted sills  

 

In the N-S profiles as well as in 3D view, one can note that the sill N5-1, N5-2, and 

N5-3 more or less extend parallel to each other and that their concave up shape was 

controlled by the synformal structure of the host bedding (Figure 5.30 and Figure 

5.35). The layers above these sills form anticlines, the faults that dominated the pre-

Upper Cretaceous unit controlled the continuity of these sills (Figure 5.37).  

The south-western tip of sill N5-1 is linked to the northern tip of sill N5-5 (Figure 

5.30 and Figure 5.31). Sill N5-1 seems to be nested within sill N5-2. The deepest sill 

in the group is N5-3 which appears to be rooted at or near the top of basement and 

the uppermost one is N5-10 which was emplaced in the Upper Cretaceous section 

(Figure 5.51). Moving westward through the seismic profiles, sill N5-1 becomes very 

close to sill N5-2 until they link with each other, at that point the second appears to 

be a feeder to the first. Tracking the path of sill N5-4 through the N-S profiles shows 

that the sill steps upward to the east.  

 All the sills are affected by the numerous faults that crosscut the strata nearly from 

the surface layer to the basement, which means that these faults recently took place 

and they are younger than any strata or intrusions. As a result, we currently consider 

that the present day depths of most of the sills (except sills N5-4, N5-10 and N5-11) 

are in the interval of pre-Upper Cretaceous unit, the sills N5-4, N5-10 and N5-11 are 

in the Cretaceous unit.  
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Figure 5.51: Oblique view illustrates the N5-sills relationships. 

 

The slightly forced folding of the pre-Upper Cretaceous surface over the sills N5-1, 

N5-2 and N5-3 (Figure 5.37), also above the right and left tips of sill N5-8 and N5-6 

respectively, and absence of this event on the surfaces of the upper layers, probably 

indicate that these sills were emplaced early in the Upper Cretaceous (Figure 5.44).  

Sill N5-10 and N5-11 were emplaced into the Upper Cretaceous sediment, and in 

feeding-relationship through one of the faults that dominated the area (Figure 5.50c). 

The emplacement of sill N5-10 appears to have affected sediment at least as young 

as Eocene (Figure 5.44).  

These two different levels of emplacement and the associated events of the overlying 

units, raises a question, whether the sills really emplaced during two different ages 

(Cretaceous and Oligocene) or they both emplaced during the Oligocene. The 
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apparent events are supporting the first proposal, and if that the case, the deeper 

emplacement sills could be related to the volcanic activity that accompanied the 

rifting on the Tibisti-Sirt Arch, probably in the Cretaceous, perhaps related to a 

mantle hotspot (Dercourt et al., 1986), and the shallower emplacement sills could be 

related to the Oligocene volcanic eruptions.  While the second hypothesis is also a 

possibility if it is assumed that the pre-Upper Cretaceous group of sills where deep 

enough to affect the units above the Cretaceous, and all the sills emplacement related 

to the Oligocene event.      

 

 

5.8 Comparison and discussion between the two areas (Sirte Basin 

and Gjallar Ridge) 
 

The comparison between the Gjallar Ridge area and the study area (Sirte Basin) 

shows firstly the quality and resolution of seismic data in the comparison area 

(Gjallar Ridge) was better, making the detection of sills intrusion easier and more 

certain, while in the study area (Sirte Basin) the quality of data is much less and also 

a big difference in the resolution of data (inline spacing 42 m as opposed to 8 m).        

The igneous intrusions in the Gjallar Ridge are abundant throughout the area, while 

in the study area are less common and restricted to certain parts, although the study 

area is very close to extensive Oligocene-Miocene volcanic outcrops (Al Haruj al 

Aswad).   

The depths of the observed sills in both areas are similar. In the Gjallar Ridge area, 

the sills occur from 3.5 sec to 5.7 sec, but consistently 2.5 sec-3.5 sec beneath the 

present seafloor, and 0.5 sec-2.7 sec beneath the seafloor during emplacement in the 

Oligocene (Cordfield, et al., 2004).  In the study area, the present day depth range is 
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1.47 sec-2.75 sec, but consistently 1.27 sec and 1.4 sec beneath the surface at the 

emplacement time (Oligocene) (Figure 5.30), from which it could be concluded that 

the compaction and permeability/porosity of the rocks at the equivalent depth may 

have encouraged sill intrusion. 

The observed sills in Gjallar Ridge, match the general characteristics of the shallow 

sill intrusions (the strong reflector, abrupt termination, and occasional up-and-down-

stepping through the sedimentary column).  The sills in the study area partially have 

some of these characteristics, but are less clearly defined.  

In both areas the deformation of the surrounding and overburden rocks of the sill 

complex is not on a large scale, but it could be noted on a local scale. This 

observation may be explained in view of sill mechanisms, since the presence of the 

fractures and minor faults in abundant, made the magma found easy paths to 

propagate without significant deforming caused to the surrounding. 

In Gjallar Ridge some pipes (fluid escape structures) have been identified, which 

affect the observed sills. From the stratigraphic level reached by these pipes it is 

suggested that their development probably occurred after the sill intrusions. In the 

study area, most of the sills described previously are affected by the numerous major 

faults that dominating the area and which also appear to be taking place after the 

emplacement of these sills. 

With respect to the intersection and cross-cutting of the sills, the investigation of 

their reflectors along the E-W and N-S profiles in Gjallar ridge shows that there are 

direct and indirect relations between the sills. 
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Figure 5.52: Comparison between the Gjallar Ridge and study area in depth and age 

of emplacement(see the text) (a) original seismic section from Gjallar Ridge (b) the 

interpretation of the same section (c) the interpreted section from the study area. 

 

 

A direct relationship means that the interpreted sills intersect each other, as shown in 

Figure 5.21, and this could be evidence that they are two separate events. The 

indirect relationship means that the two interpreted sills are connected to each other 

by other small sills or dikes. Of course, the existence of these relations may be useful 

for explaining the emplacement mechanism, and sill feeding mechanisms. For 

instance, the existence of these small sills between two relatively big sills probably 

means that the lower sill was feeding the upper one through these small sills. In the 

Sirte Basin, this kind of relation between the sills does not exist on a large scale, but 

it can be noted occasionally such as the relation between N5-1 and N5-5.   
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Meaning can be attached to the relationship between thickness and area of the 

observed sills as in the case of thick and large areas of Gjallar Ridge sills (> 340 

km
2
) (Figure 5.53 and Figure 5.54), it could be an indication of the ease of lateral 

propagation of magma, due to soft rocks that exist in the path of the propagation, or 

probably due to abundance of fractures and minor faults. Also, it could be an 

indication of the volume of magma pulses at the time of emplacement. However, the 

size of small sills as in the study area (<31 km
2
) (Figure 5.55) could indicate the 

opposite; either the host rock was more resistant (e.g. a hard sandstone), or the 

volume of the magma pulses was less. The faults and fractures are abundant in both 

areas.      
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Figure 5.53 a, b and c: Charts represent areas, thicknesses and circularities 

of the sills respectively, in the comparison area (Gjallar Ridge). 
 

 

 

 

a 

b 

c 
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Figure 5.54 a, b and c: Charts represent areas, thicknesses and circularity 

of the sills of group-2 in the comparison area (Gjallar Ridge). 
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Figure 5.55: Charts represent: areas, thicknesses and circularities of the 

Sills in the study area (Sirte Basin). 



Chapter-6                                                               Gravity and Magnetic Interpretation 

  

208 
 

6 CHAPTER-6 

GRAVITY AND MAGNETIC INTERPRETATION 

Part I 

Gravity 
 

6.1 Introduction 

This chapter describes the distribution and the reduction processes of the gravity data 

of the study area, and gives the interpretation of the different amplitude anomalies 

and investigates their sources. The anomalies, particularly the ones with high and 

large amplitude, are compared with the regional features that dominate the area. 2D 

forward models have been constructed from the gravity data to simulate the 

subsurface beds and structures. Finally, the gravity interpretation anomalies have 

been compared with the interpretation of the seismic data and conclusions drawn.      

6.2 History and specification of gravity data  

The gravity data used in this study is part of the Libyan Gravity compilation project 

(LGCP). During this project all available gravity data were collected from all 

different sources such as the oil companies that have worked in Libya and National 

Oil Corporation (NOC), were processed to produce the Bouguer Anomaly, merged 

into a single dataset and reprocessed with standard parameters as in the following: 

The theoretical gravity for this latitude was calculated using the international gravity 

formula GRS80, which gives the theoretical gravity value (Ƴ) at any given latitude 

(Ф) by:   

       Ƴ=978.0327(1+0.0053024 sin
2 

Ф - 0.0000058 sin
2
 2Ф) gal, (Moritz, 1988).  

The (Ƴ) value is then subtracted from the observed gravity to apply the latitude 

correction. The height of every single gravity station below or above the datum (sea 

level) was used to calculate the free air correction which compensates for the 
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decrease in gravity with increased distance from the centre of the Earth, where the 

topographic mass is ignored; applying the free air correction produced the Free Air 

Anomaly. The Bouguer correction was calculated using a density of 2670 kg/m
3
: the 

low relief of the area meant that changing this value did not significantly change the 

pattern of anomalies; the low relief also removed the need for a Terrain Correction.  

All data were tied to the geodetic reference system 1980 (GRS) allowing the 

compilation of all the data into a single dataset. The distribution of the gravity data in 

the study area varies from one place to another (Figure 6.1), and the data was gridded 

at a cell size of 0.5 km. 

 

6.3 Gravity maps and filters have been used 
 

 Bouguer Gravity map  

The gravitational attraction of the material below sea level is called the Bouguer 

anomaly, and because the Bouguer anomaly is a result of applying the Bouguer 

correction upon the Free Air Anomaly (Fowler, 2005). So after the effect of the 

latitude and elevation has been removed, and the Bouguer correction has been 

applied together with the terrain correction where necessary, the Bouguer anomaly 

map results (Figure 6.2), giving information about the density variation due to the 

subsurface sources alone.  Inspection of the resulting Bouguer gravity anomalies map 

reveals the following:  

The maximum gravity value is -11 mGal, the minimum value is -36 mGal, and the 

generally negative values suggest that the applied density of 2670 kg /m3 is 

somewhat high, but as noted previously does not affect the pattern of anomalies. The 

map is dominated by a large low labeled L1, interpreted as a depocentre, extending 
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                               Figure 6.1: Gravity distribution in the study area.                              Figure 6.2: Bouguer gravity map. 
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Figure 6.3 a, b and c: Zero-order Regional-Residual separation.      Figure 6.4  a, b and c: First-order Regional-Residual separation. 
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Figure 6.5 a, b and c: Second-order Regional-Residual separation.       Figure 6.6 a, b and c: Third-order Regional-Residual separation.
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from the south edge of the map to 27˚ 30ʹ north and form the east edge of the map to 

18˚ 35ʹ west, the anomaly has two average axes 36 km and 57 km, show its 

considerable extent and area which covers approximately 2050 km
2
. Other gravity 

lows are in the northeast of the area (‗L2ʼ) and at the northwest corner (‗L3ʼ and 

‗L4ʼ). Relative gravity highs surround these lows, the highest two anomalies ‗H1ʼ 

and ‗H2ʼ located NW of ‗L1ʼ and ‗H3ʼ, ‗H4ʼ, ‗H5ʼ, ‗H6ʼ and as shown on the map 

Figure 6.2. The northern band of gravity highs is interpreted as having a common 

cause at depth.  

 

 Residual gravity anomaly map 

Gravity is inherently non-unique, with any given anomaly being explicable by a 

small structure with a large density contrast or a larger and shallower structure with a 

smaller density contrast.  The long spatial wavelength anomalies are produced by the 

deep density contrasts and called regional trends, while the short spatial wavelength 

produced by the shallow density contrasts, and are termed residual gravity anomalies. 

The important separation between the regional and residual anomalies (Lowrie, 

2002) must be done carefully, otherwise may be some significant anomalies within 

the target depth could be removed with the regional trends, or alternatively some 

regional trends could be included in the residual anomaly and cause a 

misinterpretation. As a result the separation between the two sources was carried out 

in four stages using the polynomial trend separation technique: Figure 6.3 a, b, c 
_
 

Figure 6.6 a, b and c show the shape of total gravity field ‗Bouguer anomaly‘, the 

removed regional trend and the residual field constructed from the profile A-A1 as 

shown on the map.  
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Comparing the four graphs and corresponding maps, one can conclude that neither 

the zero order regional map nor the 1
st
 order map are adequate representations of the 

shallow residual gravity, whereas the similarity between the 2
nd

 and 3
rd

 order 

indicates that they are more reasonable. The 2
nd

 order separation has been chosen and 

it will be accepted for further subsurface interpretation in the area (Figure ‎6.8) as it 

identified the target subsurface structures better than the Bouguer anomaly map, 

allowing a more quantitative interpretation.  

The residual map is dominated by a group of trends of high (positive) gravity, with 

intervening low (negative) gravity anomalies thought to represent sub-basins. The 

first trend running NE-SW in the middle of the map can be divided into three main 

anomalies (H1, H2 and H4).  H1 has the highest gravity value in the area (+14 

mGal), having a domal maximum, becoming elongated SW-NE, with a total area of 

720 km
2
. Anomaly H2 peaks at +9 mGal and is elongated NW-SE, with an area of 

about 540 km
2
. The third anomaly in this trend is H4 is not fully resolved by the 

available data, but appears to extend generally E-W and tends NE ward, has a peak 

value of +8 mGal, and an area of about 500 km
2
.  

The other high anomalies H3, H5, H6 and H7 do not follow this general NNE-SSW 

trend. H3 in the SE corner has a maximum gravity value of +10 mGal, is elongated 

NW-SE and an area of about 980 km
2
. H5 in the North West corner extends NE-SW 

with maximum gravity value of +12 mGal and a minimum area of about 600 km
2 

but
 

probably extends to the SW of the area covered. The weak high H6 extends east from 

H2 before disappearing off the map.  Finally, H7 is located in the southwest corner of 

the map: from what can be seen it would appear domal reaching values of at least +7 

mGal.  
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Figure 6.8: The 2

nd
 order of Residual 

gravity map. 
Figure 6.7: The total horizontal gradient 

of gravity anomaly. 
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 Analysis of total horizontal gradient map 

One of the most common methods proposed for geological boundary delineation is 

the total horizontal gradient (THG) of the potential field (Zhang et al., 2011). The 

total horizontal gradient is derived by calculating the horizontal derivative at each 

measurement point in both X and Y direction, then calculating the square root of the 

summation of squares of these derivatives. The method can reveal both lithological 

changes and also the styles of deformation and structural system (Zhang et al., 2011). 

In the study area, the total horizontal gradient (THG) map (Figure ‎6.7) reveals details 

of the anomalies that have been defined and described from the residual map 

(Figure ‎6.8). To extract further details and carry out a quantitative analysis of these 

anomalies some processing has been applied to the THG grid. First the upward 

continuation filters for a multi scales applied on the residual anomaly grid to obtain 

the residual grid at different levels (500 m, 1000 m, 3000 m, 5000 m, 7000 m and 

8000 m), ‗the result of these upward continuation will attenuate the high frequency 

(short sources) anomalies and  emphasise the deeper (long sources) anomalies 

(Blakely, 1996), then for each upward level the vertical derivative gradient has been 

computed, finally we computed the THG for every grid that resulted from the 

previous step, and from this a set of maps have been created. Figure 6.9 a, b, c, d, e 

and f show these maps. By using these maps, further information can be determined 

about the anomalies which are defined on the residual map:  
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Figure 6.9 a, b, c, d, e and f: The THG of the upward continuation of the residual anomalies at different levels as shown. 
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Figure 6.10: The location of the profiles G-G1, R-R1 

 and T-T1 with respect to the THG anomalies. 

 

The boundary of the broad anomaly labeled H1 in the residual map (Figure ‎6.8) is 

clearly defined on the THG map (Figure ‎6.7), the map demonstrates the maxima of 

this anomaly approximately at its centre while the flanks represented by the 

maximum gradients, this is likely to be body boundary rather than faults. Profile G-

G1 (Figure 6.10) has been chosen as the best representative line of section of these 

anomalies, using the set of the THG maps that have been produced previously. 

Figure 6.11 represents the THG values along the profile G- G1 (see Figure 6.10 and 

Figure 6.11).    
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Figure 6.11: Graph represents the total horizontal gradient anomalies at different upward- levels along the profile G-G1,  

the seismic line represents only the defined section of the gravity graph. 



Chapter-6                                                               Gravity and Magnetic Interpretation 

  

220 
 

One can observe that the center and flanks of anomaly H1 is clearly represented by 

the gradients of the first and second upward (1000 m and 3000 m) which indicates 

either the source is near the surface and extends to depth or it is deep, but strong 

enough to appear clear in the map. A comparison of these anomalies with seismic 

will be given later. The profile G-G1 also crosscut the broad +ve anomaly H3, 

analyzing this anomaly through the THG maps and profile graph show that the 

anomaly terminates eastward by a more steeply dipping fault than the westward one. 

The gradient delineates the elongated crest of the anomaly. The map suggests that a 

network of faults dominates the area, for examples the faults that bound the graben 

L1and the broad area between the H1 and H5 low, the majority of these faults strike 

NNW-SSE, some are E-W while the rest are NE-SW. Unfortunately, no seismic 

survey covers the area of H3. One more fact can be observed from the graph of 

profile G-G1, that the maximum value of every single anomaly through all upward 

levels are located above each other, which means that the source events for all the 

anomalies on the profile are vertical (Tatchum et al., 2011).         

R-R1 is a second profile that has been taken in the north part of the study area 

(Figure 6.10), along the main anomalies H1, H2 and L3 that appear in the residual 

map (Figure ‎6.8). Analysis of anomaly H2 through the THG maps and through the 

profile graph (Figure 6.12) show that its west flank started at a shallow depth with a 

maximum amplitude along the profile and extending NW-SE, the source of this 

boundary extends to deep levels with a deviation of 0.5 km toward NE (this can be 

noticed from the location of the maxima gradient along the upward curves). The east 

boundary appears to be less pronounced than the west, and its shape 
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Figure 6.12: Graph of the total horizontal gradient anomalies at deferent upward levels along the profile R-R1, 

The seismic line represents only the defined section of the gravity graph. 
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on the chart indicates that, with depth, the amplitude tends to zero which indicates 

extension limitation. The THG map also defines the boundary of the anomaly H5 at 

the northwest of the area, both flanks of the anomaly extending NE-SW. An arbitrary 

seismic line covers a short portion (~28 km) of the gravity profile R-R1 is shown in 

Figure 6.12. The structural high on the left side of this line, ‗in which both the 

basement and the strata above are uplifted and faulted‘ clearly coincident with the 

gravity anomaly H1, the line also shows the faults related with the anomaly‘s 

boundaries. The beginning part of the profile (left most side) is influenced by the 

western-most extent of the anomaly H1, again this area is not covered by any seismic 

data, however the graph indicates this is due to a structural high. The rifted area 

between km 20 and km 35 on the seismic section is well represented by graben shape 

on the gravity charts.  

The third profile T-T1 has been taken at the southern-most of the area crosscuts the 

main southern anomaly H7 and the previously described anomaly H3. Figure 6.13 

shows the residual anomalies and varies of THG graphs along the profile T-T1. 

The second vertical derivative map (Figure 6.14) has also computed to confirm the  

 

location of the peaks of the previously described anomalies.  
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Figure 6.13: Graph of the total horizontal gradient anomalies 

 at different levels along the profile T-T1. 

 

 
 

Figure 6.14: The second vertical derivative map 

 which delineates the location of the anomaly top.  
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Part II 

Magnetic 

 

Introduction 

The magnetic data used in this study is part of the ‗African Magnetic Mapping 

Project‘ (AMMP) data. The AMMP project compiled all available ground, airborne 

and marine magnetic data for all of Africa. In the study area, the data format is a 1.0 

km grid (Figure 6.15) at a constant 1.0 km elevation above terrain. This section 

describes this magnetic data to obtain quantitative constraints on the subsurface 

structure in the study area.    

 

6.4 Magnetic maps and filters used 
 

 Total magnetic intensity map 

The total magnetic intensity map represents the residual magnetic field after 

removing the regional fluctuated magnetic field (Richard et al., 1998), which is 

usually recorded by a fixed base station in the survey area. The residual field is the 

local field produced by the magnetized rocks beneath the observed point, and, of 

course, the determination of this component is the purpose of any magnetic survey.  

Figure 6.16 shows the total magnetic intensity of the study area: two broad high 

positive anomalies dominate the middle of the area and a third smaller one with 

lower amplitude, other moderately high anomalies scattered on the map as shown. 
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                             Figure 6.15: The original magnetic data coverage.              Figure 6.16: The total magnetic intensity map.
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These high anomalies labeled by M1-M7. There are a number of low negative 

anomalies labeled by L1-L5 distributed between the high anomalies, the first two 

anomalies separated above the contour value of +140 nT, anomaly M1 above this 

contour cover an area of about 610 km
2
, and has a maximum magnetic intensity of 

about +348 nT, the anomaly elongated SW-NE and dipping SE ward. Anomaly M2 

is smaller than M1, with an area of 160 km
2
 and a maximum intensity of +220 nT.  

M2 is roughly domal. The third anomaly M3 (could be considered a subsidiary to 

anomaly M1 since they separated from each other only at the contour level above 

130 nT and its maxima is only 140 nT. The total area of adjacent anomalies M1 and 

M3 at the outer closure contour line (130 nT) is about 810 km
2
, while anomaly M3 

has an area at the same closure contour ~200 km
2
. The other magnetic highs have 

relatively low amplitudes but apart from M5 occur at the edge of the map.             

The negative anomalies lie in two trends the first is SW-NE trend including (L1, L2), 

L1 and L2 have their closure at -40nT. The second trend extending WNW-ESE and 

including the (L3 L4 and L5), these low anomalies have their closure at -80nT.  

 Reduction to the pole anomaly map 

The shape of a magnetic anomaly is affected by a number of factors (e.g. the shape 

of the source body, the orientation of both the causative body and the Earth‘s local 

magnetic field. Reduction to the pole (RTP) (Baranov et al., 1964) transforms the 

magnetic field as if it has arisen from the same source placed at the North magnetic 

pole, by changing the original inclination to 90˚ (Telford et al., 1990), removing the 

bi-polar nature of the magnetic anomaly and so producing a single anomaly directly 

over the causative body. 
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After reduction to the pole (Figure 6.17), the anomalies, in general, become better 

defined. The maximum intensity of the main high positive anomalies M1, M2, and 

M3 increase to be 425 nT, 447 nT, and 215 nT respectively. The area of M1/M2 and 

M3 at the outer closure contour (110nT) is 1000 m
2
 and 500 m

2
 respectively. The 

contrast between the positive and negative anomalies is steeper, and the negative 

anomalies increase as well, L1 and L2 are nearly completely merged into one large 

low, with amplitude of -220 nT; and L3 becomes -50nT, L4 is a NW-trending narrow 

relative low between M1/M3 and M2; and L5 moves away from the edge of the map. 

The other values on the map range from -130nT to +80 nT. A new low magnetic 

anomaly L6 is seen at the SW corner of the map with a maximum negative amplitude 

of -100 nT. 

 Analysis of the total horizontal gradient map 

In potential field studies, the steepest portion of the magnetic or gravity anomaly is 

commonly caused by the abrupt lateral change in rock properties at dipping contacts 

or faults (Grauch et al., 2003). 

The horizontal gradient method can be used to delineate these edges, the maximum 

value of the horizontal gradient of the reduced to the pole magnetic data indicates the 

steepest gradient (Grauch et al., 2001). Many features could be represented by the 

maximum location of the total horizontal gradient map, such as faults, contacts, or 

magnetization abrupt changes within the same rock unit (Grauch et al., 2003). The 

magnetic total horizontal gradient (THG) map which is produced from the reduction 

to the pole magnetic intensity map of the study area (Figure 6.18) reveals details 

about the magnetic features in the area, and differentiates the previous shown RTP 

anomalies.
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                                                       Fig. 6.17                                                                       Fig 6.18 

Figure 6.17: The reduction to the pole magnetic anomaly map for the study area. 

Figure 6.18: The total horizontal gradient of the RTP magnetic data.
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The extension of the anomalies M1, M2, and M3 are terminated by a group of faults 

trending mainly NNW-SSE, occasionally E-W. Faults define the flanks of M2 are 

more or less N-S. The rest of the map shows other significant trends; particularly at 

the lower right part NW-SE, the THG map also delineates the trends of extremely 

low magnetic anomalies distributed between the described high anomalies and have 

different directions as the map demonstrated. Estimating the depth of the causative 

sources and correlation of these anomalies with the regional geology and seismic 

data will be given in the further section of this chapter.      

 

6.5 Correlations between gravity and magnetic anomalies  

6.5.1 Depth estimation 

Methods for the estimation of the depth of source of the anomaly (both gravity and 

magnetic) are based on the general principle that steep gradient anomalies are 

produced by shallow sources whereas broad gradient anomalies are produced by 

deeper sources as sketched in Figure 6.19 (Grauch et al., 2003). However, the 

interpretation must consider the effect of the properties of the source since broad 

shallow sources with a gradual change in properties can be mistaken for deeper 

sources.  Furthermore, overlying or neighboring sources cause interference between 

anomalies and complicate depth estimation (Grauch et al., 2006).   

The quantitative estimation of the depths using some method can be considered a 

final, solution where the ideal cases exist; such as when the anomaly and the noise 

are well separated (Xiong, 2003).  

One method used in this study is the power spectrum analysis method. Spector and 

Grant (1970) described how the depth of a magnetic layer or body can be revealed by 
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taking the slope of its power spectrum versus frequency (Figure 6.20). Using the 

Oasis montaj-Geosoft software, the power spectrum plots for magnetic and gravity 

data were produced to estimate the source depth.  

 

Figure 6.19: How the gravity anomalies are functioned in the depth of the source, 

Modified from (Chapin et al., 1999). 
 

 

Figure 6.20: Power spectrum analysis and depth estimated of aeromagnetic data from 

Matonipi Lake area, Province of Quebec, Canada.  

Adapted from (Spector et al., 1970). 
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The second method used is the 3D Euler deconvolution technique, developed by 

Hood (1965) for the interpretation of the vertical gradient over a point and dipole in 

the aeromagnetic data, and modified by others (e.g. Thompson, 1982) adapted the 

method for profile data interpretation. In 1990, Reid and others developed the 

technique for gridded 3D data. This technique can be used to determine both the 

location and depth of the source of the gravity or magnetic bodies with an accuracy 

of about +/- 20% (Reid et al., 1990).  

 The power spectrum of the gravity data in the study area (Figure 6.21) shows that 

the curve can be divided into segments of different slope, from which the source 

depth can be derived using the expression h=-S/4π, where:  h is the depth to the top 

of the source; S is the slope of the log (energy) spectrum. The maximum depth as 

pointed on the graph is 11.9 km which is absolutely relatively deep sources (deeper 

than the basement), then there is a 7.35km source depth which is almost confirmed 

with the depth to the top of the deepest basement, 3.5 km also still within the range 

of the basement depth, the last two values are 2.0 km and 1.2 km and these are 

corresponding to the relatively shallow sources. The same process has been done, to 

calculate the power spectrum of the magnetic data, which is shown in Figure 6.21 the 

sources depth derived from the power spectrum of the magnetic data is more or less 

confirmed the values that obtained from the gravity; the high wavelength causative 

sources have approximate depth of 11.44 km. The magnetized basement rock has a 

range of depth 7.16 km
_
3.18 km, while the short wavelength sources have a depth 

range of 2.7 km
_
0.6 km.   
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Figure 6.21: The depth estimation for the entire area by the slope of the radially averaged  

power spectrum.  (a) From the gravity data. (b) From the magnetic data. 

b 
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The power spectrum method does not readily resolve the location of the different 

sources on the map. To do this, ‗3D Euler Deconvolution‘ was used. The depth 

determined by this method based on the derivatives of the gridded gravity and 

magnetic data (Hsu, 2002). During the application of the technique, there are some 

parameters that should be specified to classify the results of the depth solution of the 

input grid. These parameters are:  

-Structural Index (SI): this is a function of the geometry of guessing geological 

source that output the Euler solution, Table 6.1 shows some inferred geological 

structures, and the corresponding structural index value as obtained from 

experimental modeling carried out by Reid et al. (1990). 

-Window Size: a window greater than 3x3 is needed to give a solution, with a 

window of 10x10 giving acceptable results (Reid et al., 1990), but high -resolution 

data yield excellent results with a lower window size such as (5x5), all the solutions 

within this window will be assigned to one source.  

-Depth Tolerance: this is a factor controlling the number of solutions (i.e., Solutions 

will be rejected if the uncertainty is greater than a specified percentage) (Reid et al., 

1990).  

In order to determine all the probable sources, and build up the depth solution from 

all of them, the technique has been applied multiple times, each with different 

structural index values.  

Starting with the gravity, Figure 6.22(a) shows the depth solution for the residual 

gravity using structural index ‗SI‘ (0.0) and window size ‗W.S‘ equal 5.0, these 

parameters give the maximum of depth solution number, in which the depth ranges  
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Structural Index Structural Index Type Inferred geological structure shape 

Grav. Mag. 

 0.0 contact Two adjacent bodies 

-0.5 0.5 Step Fault 

0 1 Line of poles Dyke 

1 2 Point poles Vertical pipe (e.g., Kimberlite) 

2 3 Point dipole Point source (nominally spherical) 

Key: Grav.= gravity, Mag.= Magnetic 

Table 6.1: Inferred geological structures and the corresponding structural index 

obtained from structural index model that gave good results when applied on the real 

data from central England, Birmingham-Oxford ridge   

(Reid et al., 1990). 

 

approximately from 2000 m to 7756 m, and as can be noted most results are come 

from the borders of the anomalies. The second trial used a structural index (0.5) and 

a window size 5.0 and depth tolerance 20%, Figure 6.22b shows the depth solution of 

these parameters which belongs to the top of the anomalies sources, the values of 

depth range from 2300 m
_
10827 m. As one can note, these values confirm the values 

that were obtained previously from the power spectrum method. 

Some observation can be noted from the map, the area of H1 has a range from 3300 

m
_
6800 m, and Area of H2 has a range from 3900 m

_
5500 m and the depth of the 

area of H3 anomaly ranges from 3800 m
_
5700 m. Seismic interpretation has given 
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Figure 6.22:  (a) 3D Euler deconvolution depth-solution in the contacts area, (b) 3D Euler deconvolution depth-solution for the top of 

sources.  Both maps are constructed and superposed on the residual map. 

a b 
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Figure 6.23: (a) 3D Euler deconvolution depth-solution in the contacts area, (b) 3D Euler deconvolution depth-solution for the top of 

sources.  Both maps are constructed and superposed on the RTP map.
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depth to the top of these anomalies ~5160 m, ~5200 m and ~5500 m respectively 

(see chapter-5). The outer perimeter of the anomalies has a larger depth values range 

from 8000 m-10800 m, which means that these anomalies have deep sources within 

the basement from which they obtain the smooth broad shape.      

The area of L1 shows a depth range from 4000 m
_
6000 m. Unexpected low depth 

solution values (2000 m
_
4500 m) appear within the area of L2 low, which cannot be 

confirmed from seismic due to the lack of data, the depth of the region of L4 ranges 

from 2000 m
_
7000 m. Most of the remaining low gravity areas have no solutions at 

or near their centers. The same processing is applied for the magnetic data after 

reduction to the pole.  Figure 6.23(a) shows the estimated depth solutions resulting 

from applying SI value equal 0.0 and W.S. value 5.0. These parameters gave depth 

solutions for the contacts, which range between 900 m and ~6000 m. The strike and 

dip of the contacts and faults can also be inferred from this map. The estimated depth 

to the causative magnetic sources is shown in Figure 6.23(b), the range of these 

depths is 1480 m-7000 m, the area of the anomaly M1 has an approximate range of 

1000 m-5000 m, the area of M2 has a depth ranges from 3000 m-7000 m, while the 

flanks of M3 have a depth of over 6500 m. It is clear that some of the depth solutions 

mentioned previously is overestimating the depth to the top of the basement, which 

likely comes from dense structures within the basement. A depth map has been 

produced from the residual gravity (Figure 6.24a), which shows more conformity 

with seismic (Figure 6.24b) than the magnetic data. The NNW-SSE trends can be 

noted from these depth maps and confirmed with the previous gravity and magnetic 

maps. Both depth maps restrict the depth estimation for sources of the top basement 

and below (Figure ‎6.25).  
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Figure 6.24: (a) The depth map for the gravity sources restricted to the basement level (b) Seismic time structure map for the top of the 

basement. 

m m 
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Figure 6.26: The location of the seismic lines that 

selected for comparison between seismic, and 

gravity /magnetic anomalies. 
 

Figure 6.25: The depth map for the magnetic sources of 

basement level and below. 
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6.5.2 Comparing with seismic 

The seismic data provides more details about the subsurface stratigraphy and 

structure than other tools, but potential field data could reveal the deep structures 

beyond the range of the seismic, and also provide information where there is no 

seismic coverage. To correlate the structures between the gravity/magnetic data and 

the seismic data, seismic lines across the two main magnetic anomalies are chosen as 

shown in (Figure ‎6.26). The seismic lines are compared with the corresponding 

magnetics (reduced to the pole (RTP), its second vertical derivative (2VD), its total 

horizontal gradient (THG) and the second order residual gravity (RES). Because the 

original vertical scale of the different charts varies considerably, it has been partly 

rescaled to illustrate them in the same figure.  

Both of the two main anomalies M1 and M2 are compared with three seismic lines: 

one from the 2D data, the second is a 3D in-line and the third is a 3D cross-line.  

For the first anomaly M1, three seismic lines have been chosen. First is the 2D 

seismic line 72-89-10 which shown in Figure 6.27. The section shows a basement 

structural high, with the overlying strata forming a faulted anticline, especially within 

the Lower Cretaceous and older units, suggesting that the basement was uplifted after 

deposition of the Upper Cretaceous. The percentage of difference between the 

seismic depth (5196 m) and the gravity depth (5260 m) for this basement high is 

~1.5%. The RES and 2VD values mimic the seismic basement geometry, and the 

THG for RTP and RES gravity both show their minimum at the top of the basement 

structure high and the maximum at the edges, and delineate the dominant faults in the 

area, particularly the ones that cross the Early Cretaceous Units at the left side of the 

line.   
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Figure 6.27: The magnetic and gravity charts of the profile corresponding 

to 2D-seismic  line 72-89-10, for comparison between the structures in both. 

 

The second line is the interpreted 3D seismic in-line 6000 of Enaga-2 survey, which 

shown in Figure 6.28 with its corresponding charts. Not many features appear in this 

line, but regardless, the match between the RES and RTP charts clearly show the 

shape of the strata, since strata are dipping northward on both the seismic and the 

potential field graph.  
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Figure 6.28: The magnetic and gravity charts with the corresponding 3D-seismic 

Inline 6000 from Enaga-2 survey, for comparison between the  

structures in both.    

 

  

Figure 6.29: The magnetic and gravity charts with the corresponding 3D-seismic 

Cross-line 1710 from Enaga-2 survey, for comparisons between the structures in 

both.    
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The third line is the 3D seismic cross-line 1710 from Enaga-2 survey, Figure 6.29 

shows the line and its corresponding charts. Small parts of the anomaly M1 appear in 

the right tip of the line; the THG of the RTP is clearly delineating the faults in the 

area particularly that dominates the lower strata (L. C.). Again here the westward 

rising of the strata is matching with the reading increasing of the charts.  

For the second magnetic anomaly M2, the first chosen line is 72-88-12 from the 2D 

survey, the section of this line and the corresponding magnetic and gravity charts are 

shown in Figure 6.30, as can be noted the residual gravity chart (RES) and the 

reduction to the pole RTP both show their maxima at the point where the anticline 

shape of the interpreted basement appear. Note that the shape of the anomaly 

suggests that the source is wider than this basement structure, which gives evidence 

to support the presence of deeper wide root of this basement crest. Also, some 

normal faults dominate the Lower Cretaceous strata are well represented by the THG 

chart. The second seismic line is the in-line 6990 from Enaga-4 3D survey, Figure 

6.31 shows the line and it‘s corresponding charts, the RTP and the RES chart show 

forward relation with the structure high (faulted anticline) that appears on the right 

side of the section. The maxima of the THG for both RTP and RES are shown at the 

km 7.25 of the seismic section, at the relatively highly faulted area of raised strata, at 

this point the strata are shallower and more faulted.  

The third seismic line is the cross-line 1600, also from Enaga-4 survey. The line 

section and the related charts have been shown in (Figure 6.32), in this line all the 

strata are nearly horizontal then at the location 11 km away from the east end begin 

shallower, and thin at 26 km start to become horizontal again.  
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Figure 6.30: Structural comparison between the magnetic/ gravity graphs, and the 

corresponding 2D-seismic line 72-88-12.    

 

 

Figure 6.31: The magnetic and gravity charts with the corresponding 3D-seismic 

Inline 6990 from Enaga-4 survey, for comparison between the structures in both. 



Chapter-6                                                               Gravity and Magnetic Interpretation 

  

245 
 

 

Figure 6.32: The magnetic and gravity charts with the corresponding 3D-seismic 

Cross-line 1600 from Enaga-4 survey, for comparisons between the structures in 

both.    

 

Below the top of Lower Cretaceous, the area is highly faulted, which is well 

represented by the THG of the RTP, at the right tip of the section the magnetic charts 

show abrupt shallowing of strata while the seismic does not. This probably indicates 

that is has been caused by a deeper and feature.    

6.6 Correlation of gravity anomalies with the geological map 

The interpretation of geophysical data in conjunction with the geological data is very 

important because it helps constrain the origin of the potential field anomalies. It is, 

therefore, good to compare the surface geology (rock outcrops) with the potential 

field data.  

The three main geological units outcropping in the study area are Paleogene 

sediment, upper Oligocene sediment, and Oligocene-Miocene volcanic rock.  
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Figure 6.33: The surface geology map (source: the geological map of Libya produced 

by the Libyan Industry Research centre, 1985). 

 

 
Figure 6.34: The gravity anomalies superimposed on the  

known regional geological features in the area. 
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Comparing the surface geology map (Figure 6.33) with the gravity and magnetic 

maps, one can note that the lower left area of the map which covers the Oligocene-

Miocene volcanics has a high gravity and magnetic response and shows minimum 

source depth in both magnetic and gravity depth maps. Correlating the regional 

subsurface structural geology with the gravity and magnetic maps of the area, some 

observations can be noted; the known Abu Tumayam Trough is represented by a 

clear elongated low gravity and magnetic anomaly as shown in (Figure 6.34), the Al 

Beda Platform represented by a high gravity and magnetic anomaly, the Al Hulayq 

Ridge area also appears as a clear contact line in the gravity map. In general there is 

a good match between the potential field maps and the surface and subsurface 

geology map.        

 

6.7 2D Gravity modeling 

Using the GM-sys facility (one of the facilities including in the Oasis Montaj 

software), two gravity models have been constructed from the gravity data along the 

profiles A-A1 and B-B1 (Figure 6.35), The two models have been created using the 

calculated densities data derived from the density logs where available or derived 

based on the lithology of units and their porosities. Table 6.2 show the final 

calculated density assigned to each package. The structure of each model is 

controlled by the depth converting of the interpreted horizons and regional features 

on the seismic data. The path of each profile has been chosen where there is a good 

resolution of gravity data, and crosscut number of anomalies. 
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Unit S. U. Gialo  

(M. Eoc) 

Gir 

 (L. Eoc 2) 

Facha 

 (L. Eoc1) 

Beda 

 (Paleoc.) 

Density g/cc 1.938 2.198 2.5 2.485 2.559 

Unit 
U. Cret. 

Pre- U. 

Cret. Basement L. Crust Mantle 

Density g/cc 2.597 2.621 2.64 2.41 3.3 

Table 6.2: The average densities calculated for different Units from a group of wells 

that described previously in chapter-2. 

 

 
Figure 6.35: The location of the gravity profiles A-A1 and B-B1. 
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6.7.1 Model A-A1 

The first model has been constructed along the profile A-A1 which extends nearly N-

S and is 119 km long (Figure 6.35). The calculated average density has been 

assigned for each single depositional package, density values of 2.64 g/cc, 2.75 g/cc, 

and 3.3 g/cc have been given for the basement, lower crust and mantle, respectively. 

The upper part of the model (Figure 6.36) simulates the depositional strata units such 

as seen on the seismic section along the same profile. The model shows the average 

basement depth of ~7.5 km and the minimum of 4.58 km, while in the south of the 

area it reaches a maximum of ~9.8 km. It is obvious that the basement depth value 

derived from the model is not always consistent with the values that have been 

interpreted from the seismic, and this is likely because of the uncertainty of picking 

the right basement horizon, due to the lack of clarity of data. The model reveals that 

the depth of the interface between the upper and lower crust is ~18 km
_
20.5 km, as 

shown in Figure 6.37, the maximum and minimum depth to the Moho is ~35.78 km 

and ~29.1 km respectively.  According to the McKenzie theory (1978) the extension 

factor of the crust (β) can be estimated from the variation of the Moho depth, since 

β=L/L1 where L is the original crustal thickness (31.2 km) and L2 is the thinned 

crust (19.3 km). Therefore, the estimated β value according to this model is ~1.6.  

 

6.7.2 Model B-B1 

The second model was constructed along the profile B-B1 which extends SW-NE 

with 102 km long (Figure 6.35). The density value for each unit is the same as in 

model A-A1. Again the model tries to simulate the subsurface structures down to the 
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Moho depth (Figure 6.38 and Figure 6.39), the basement surface show a maximum 

depth of ~9680 m and a minimum of 4780 m. The morphology of the Moho indicates 

a maximum depth of ~35.6 km gives L1 (30.8 km), and a minimum depth of 26.6 km 

gives L2 (16.9 km), from which the crustal extension factor (β) value calculated and 

found ~1.8.  
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Figure 6.36: The gravity model A-A1, focuses on the upper part of the model and demonstrate the depositional 

 strata with the main features dominated the area and basement morphology, note that H2 anomaly (red line)  

shows a depth 5200 m in seismic. 

H2 



Chapter-6                                                               Gravity and Magnetic Interpretation 

  

252 
 

 
 

Figure 6.37: The gravity model A-A1, focuses on the lower part of the subsurface till the Moho interface. 
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Figure 6.38: The gravity model B-B1, focuses on the upper part of the model and demonstrate the depositional 

strata and the basement morphology. 
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Figure 6.39: The same model B-B1 zooming the lower crust surfaces till the Moho interface. 
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7 CHAPTER-7 

DISCUSSION AND CONCLUSION 
 

This thesis has presented the results of a multidisciplinary analysis of the structure and 

evolution of the Sirt Basin, Libya.  The study has been based on well data linked by a 

combination of 2D seismic profiles and 3D seismic grids, both of limited penetration, and 

gravity and magnetic data.   

Backstripping of the well data has been used to infer the subsidence history.  Two main 

cycles of subsidence can be inferred: one starting at ~100 Ma and the other starting at ~65 

Ma.  Both show the concave up geometry of rapid subsidence decreasing with time 

associated with rift events, and thus are interpreted as resulting from two phases of rifting, 

starting at 100 Ma and 65 Ma respectively. 

 

As described in Chapter 4, the subsidence history study of the area shows that the basin 

underwent two main cycles (each comprising syn-rift and post-rift) of tectonic subsidence. 

Although the details are dependent on poorly constrained paleowater depths and eustatic sea 

level variations, the basic pattern is robust.  The first episode began at or before the mid-

Cretaceous (~100 Ma), and ending at ~84 Ma, producing between 120 and 670 m of water-

loaded tectonic subsidence. This phase of subsidence corresponding to the southeast motion 

of Africa with respect to Europe 118 Ma
_
92 Ma followed by northeast motion during 92 

Ma
_
84 Ma (Dewey et al., 1989). At this time, the Sirt Arch collapsed producing a series of 

horsts and grabens. The restoration models show that syn-rift sediments are underlain by a 

rough and undulating surface at the top of the pre-Upper Cretaceous section. In general this 

episode is a period of extension inducing block faulting with a system of WNW-ESE wrench 

zones (Dercourt, et al. 1986), as it has been noted from the seismic.    
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The tectonic subsidence curves show that the syn-rift phase was followed by the second 

episode of more gradual subsidence, probably the corresponding post-rift phase, which 

started at ~83.5 Ma and continued until ~65.5 Ma.  During this time, relatively low (20 

m
_
169 m) tectonic subsidence took place.  The post-rift phase most likely corresponds to a 

period of tectonic quiescence following the end of the sea floor spreading in the western 

Mediterranean region and the beginning of the closure of Tethys (Ricou, 1994). During this 

time Africa was still moving northeastern ward relative to Europe with bit of tilted to the 

north (Dewey et al., 1989).   

 

A second cycle of syn-rift and post-rift subsidence started at the end of the Cretaceous, with 

relatively rapid syn-rift subsidence from 65.5 Ma-40.4 Ma as a result of renewed rifting, 

crustal thinning, and block faulting.  During this Paleocene- Eocene phase there was 401 

m
_
614 m of water-loaded tectonic subsidence (Chapter 4). This rift phase appears to be 

related to a change in the relative motion between Africa and Europe at this time (Anketell 

and Kumati, 1991b), Dewey and others model (1989) proposed a very slow convergence of 

Africa w. r. t. Europe during (65 Ma
_
51 Ma) and the motion of Africa became erratic. This 

period correlated to renewed subsidence and sedimentation in some parts of North Sea 

(Ziegler, 1975), which is consists with our model of Sirte basin.  

The major hydrocarbon reservoirs in the basin formed within the wide carbonate platforms 

established during this period (Hallett, 2002).  It is noticeable from the MOVE
TM

 restoration 

models that by the end of lower Paleocene (Danian time) (Fig. 4.54b) the topography of these 

carbonate sediments became much more gentle over the infilled Cretaceous troughs.   

The second rift phase was followed by the second post-rift phase (40.4 Ma-present day), 

during which very gentle tectonic subsidence (17 m
_
169 m) took place over the older 
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Cretaceous grabens, as demonstrated by the computed tectonic subsidence curves.  Structural 

restoration using MOVE
TM

 showed that this gentle subsidence and the gentle folding that 

appears on the seismic data probably represents the effect resulted by the brief changes of 

African movement with respect to Europe from northwestward during the Oligocene, to 

northeastward drift at about 20 Ma (Dercourt, et al., 1986). This period was also 

characterized by eruption of broad volumes of lavas from the volcanic centres, such as the Al 

Haruj al Aswad volcanic plateau which is recently ceased (Wilson and Guiraud, 1998), (see 

below). 

The total tectonic subsidence curves, show the minimum and maximum β values of 1.157 and 

1.226, which suggests that the maximum crustal stretching in the area was 22.6%,  produced 

by the first rift phase (~14%) and  the second rift phase (~12%). 

 

 The seismic data tie the well data together, allowing the mapping of the regional 

stratigraphy, and has also allowed the identification of igneous intrusions, dominantly sills.  

The coverage of the 2D and 3D seismic data that have been used is only 63% of the study 

area, and the 3D data are split into five separate volumes all of rather limited quality and 

penetration, hindering the tracing of reflectors across the whole area. Nevertheless, seven 

horizons representing various important surfaces in the area were interpreted, revealing that 

the area is dominated by a number of fault zones affecting the strata units and controlling 

their thickness.  However, as most of these faults cut the late post-rift and show significant 

thickness changes in the post-Eocene, it is likely that they are either young faults or possibly 

reactivation of older basement structures. In either case, the seismic image mostly reveals the 

minor adjustments during post-rift subsidence.   These fault zones are:  
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Fault zone-1, in the area of Enaga-5, caused a total heave of ~1.0 km and a total throw of 

~0.3 sec. The master fault of this zone has a ramp fault shape propagating deeply to reach the 

basement and affects the  Barrut Arch structural high. Most of the faults within fault-zone-1 

were active more recently than the Mid-Eocene, as these faults cut the Mid-Eocene (Gialo 

Formation) and all units below; the faults can be traced as deep as the Upper Cretaceous.   

Fault zone-2 dominates the NE portion of the Barrut Arch, the maximum throw of this fault 

zone is 0.058 sec (~162 m), the age of faults in this zone is also younger than the Mid-

Eocene, but cuts down to the top of Upper Cretaceous surface, which they are likely to be 

related to the post-rift of the second rift phase, that started at the end of Upper Cretaceous and 

continued to the Mid-Eocene. 

Fault zone-3 forming the south flank of graben shape low structure L1 within the Enaga-4 

area, and composite number of parallel to sub-parallel normal faults dipping northward and 

making a total sum of heave of ~1.0 km and a total sum of throw of~0.27 sec, most of these 

faults are post Mid-Eocene in age, but they truncated all the units below and end within the 

pre-Upper Cretaceous unit (Fig.3.5). The fault zone-3 obviously has made the time 

stratigraphic units in the hanging wall thicker than the equivalent units in the footwall, where 

there is a variation in thickness reaching ~300 m in some area such as the graben L1. 

Fault zone-4 occurs on the north flank of the graben L-1, and produces a maximum heave of 

(~600 m) and vertical motion of ~0.16 sec (~523 m) the last is being decrease with depth, the 

increase of thickness of the stratigraphic units in the hanging wall is less than what is in the 

fault zone-3. Layers above the top of Lower Eocene clearly have a rollover anticline shape 

along the master fault of this zone, this feature disappears as moving deeply.  
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Fault zone-5 at the south flank of L3 in Enaga-3 area (Fig. 3.10). This fault zone caused the 

stratigraphic units northern ward appear shallower than in the southern ward, and the 

thickness variation between the hanging wall and footwall blocks is noticeable, particularly 

for the units above the Upper Cretaceous. 

Fault zone-6 is another fault zone dominating the Barrut Arch, the total heave of this fault 

zone is ~300 m, and the total throws decreasing within the time motion interval, from 0.11 

sec at the most upper surface to 0.05 sec at the TWT 1.43 sec, the fault zone has a folded 

strata at the hanging wall.  

Fault zone-7 dominated the area of Enaga-2. This has numerous parallel faults which impact 

the whole stratigraphic section from the surface to the basement.  

 

The majority of faults in the area extend NW-SE (N31˚-60˚W). A group of them are E-W 

trending, and a few, particularly below the top of Cretaceous, are NE-SW, and may be related 

to the first syn-rift phase, and match with the general fault style of the south arm of the basin 

(the Tibisti-Abu Tumayam Arm).   

The thickness maps of the interpreted surfaces demonstrate the impact of these faults on the 

thickness of the depositional units and how they control the formation of potentially 

significant highs and lows in the area:  

In the north part of the area, the Barrut Arch is a basement structural high, which is divided 

by the fault zones into two parts.  The SW portion represents the footwall of Fault zone-1 and 

the NE portion represented a rollover anticline in the hanging wall of fault zone-1, and is also 

dominated by a number of parallel faults which forming the fault zone-2. 

The second structural high H2 exists in the Enaga-4 area, in the foot wall of the fault zone-3. 

This structure made a significant trap for the hydrocarbon of the Facha Unit (one of the 
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reservoir units in the area). The structure extends in depth from lower Eocene unit until the 

pre-Upper Cretaceous unit where it becomes gentler. 

The third high structure H3 dominates the central area of Enaga-2; it is a basement high 

structure controlled by fault zone-7.  

The interpretation also shows part of the Beda Platform H4 at the NE corner of the area. 

In contrast to these highs there are number of depocentres distributed around these highs, 

with different characteristics of areas and thickness and maximum depth, as following:  

Structural low L1 is a semi-closure (graben shape) located within the Enaga-4 area, the 

graben being bounded by the fault zone-3 (south flank) and fault zone-4 (north flank). 

Structural low L2, located northwest of the Barrut Arch, is probably the extension of L1, but 

the lack of data means that this interpretation cannot be confirmed.  

Structural low L3 is located within the region of Enaga-3, has an elongated shape extending 

E-W, bounded from the south by the fault zone-5. 

The isopach map of the pre-Upper Cretaceous unit and the basement depth map both well 

demonstrate the Abu Tumayam Trough, but by the end of the pre-Upper Cretaceous a big 

unconformity took place and the overlying stratigraphic units show an inverse dipping of 

their strata (northward dipping), making the Trough area appear as an elevated area on maps 

of the younger units. This is also noted from the restoration model that created by the 

MOVE
TM

 software, however Abdunaser and McCaffrey (2014) documented an inversion 

took place at a different time (Middle
_ 

Late Eocene) at Zallah Trough.   

Thus, the seismic data have allowed the identification of a series of faults which control the 

development of local structural highs and lows, some of potential hydrocarbon interest.  

However it is clear that the main structures that led to the formation of the basin are not 

imaged in the available seismic data, nor is the basement that will have been offset and 
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extended by motion on the early faults.  The amounts of extension measurable from the faults 

imaged on the seismic are relatively small (B factor estimate for comparison with 

subsidence). 

 

The seismic does however provide an image of other aspects of the basin‘s evolution, in 

particular, the intrusion of magma. 

The results of the interpretation of the integrated data in the study area (Southwest Sirte 

Basin) shows that the area of study, particularly in the north, is characterized by the presence 

of groups of sills within the pre-Upper Cretaceous deposits, apart from three which were 

emplaced within Upper Cretaceous strata. Some of them are more or less parallel to each 

other, and some are in feeding relationships with others.  

The emplacement levels of the sills and the associated events of the overlaying units, lead to 

a question whether the sills were emplaced during two different intervals (Cretaceous and 

Oligocene) or all were emplaced during the Oligocene. In the first case, the deeper sills could 

be related to the volcanic activity that accompanied the rifting on the Tibisti-Sirt Arch, 

probably in the Cretaceous, perhaps related to a mantle hotspot (Dercourt et al., 1986), and 

the shallower emplacement sills could be related to the Oligocene volcanic eruptions.  In the 

second case, the deeper sills would have been emplaced at the same time as the shallower 

ones, probably in the Oligocene.      

Also the comparison between the study area and the Gjallar Ridge area show several 

observations such as: 

 The high quality and resolution of the Gjallar Ridge data were very helpful for 

detection and interpretation of the sills, while the quality and resolution of the Sirte 

Basin data is much lower.   
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 In the study area, sills are less numerous and less widespread than beneath the Gjallar 

Ridge. 

 The observed sills in the Gjallar Ridge have strong reflectors, abrupt termination, and 

occasional up-and-down-stepping through the sedimentary column, which are 

consisting with the shallow sill intrusions, while the sills in the study area partially 

match these characteristics.    Both occur at a similar depth beneath the paleo-surface. 

 The presence of the fractures and minor faults in both areas form easy paths for the 

magma propagation, and reduced the deformation of the overburden and surrounding 

rocks. 

 In Gjallar Ridge, the fluid escape structures appear to rise from the edge of the sills 

suggesting that they were formed by rising fluids being diverted and focused by more 

impermeable sills, a bit like drips off an umbrella except both the drips and the 

umbrella are upside down.   In the study area most of the sills affected by numerous 

major faults that dominated the area.    

 Thick and large areas of the observed sills in the Gjallar Ridge (> 340 km
2
) can be 

related probably to the easy lateral propagation of magma, or could be due to the 

abundance of the fractures and faults in the area, or probably due to plenty of fullness 

magma pulses at the time of emplacement. While the areas of sills in the Sirte Basin 

are relatively small (< 31 km
2
) which could be indicated to the opposite of these 

characteristics.    

 The depths of the observed sills in both areas are relatively shallow, where in the 

Gjallar Ridge the proposed emplacement age of these sills is the Oligocene, at which 

the range of their depths was ~0.5 sec-2.7 sec, While in the study area, the average 

depths of the sills at Oligocene was 1.54sec and 2.06 sec for the Cretaceous.  
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Due to the limitations of the seismic data in the study area, the gravity and magnetic data 

have been used to reveal the subsurface structures especially where there is no seismic 

coverage or for looking at the structural sources deeper than the available seismic data 

penetration. The interpretation of the gravity data has been carried out using the second order 

residual map as this identified the target subsurface structures better than the Bouguer map. 

Regarding the magnetic data, reduction to the pole maps has been used for the interpretation 

as these maps remove the effect of latitude on the anomaly and focus the anomalies over the 

causative structures.  

The residual map reveals five main high structures dominated the area two of them H1 and 

H2 are proud and cover an area of 720 km
2
 and 540 km

2
 respectively, and the others are less 

in their amplitudes and areas. The map also reveals a large (2050 km
2
) depocentre 

dominating the south part of the area. In general, the residual gravity map is consistent with 

the reduction to the pole magnetic map (RTP), the latter showing the presence of three 

prominent positive anomalies M1, M2, and M3 close to the gravity anomalies H1and H2. The 

large elongated negative magnetic area is also consistent with the negative gravity area, both 

define the north boundary of the ‗Abu Tumayam Trough‘. The total horizontal gradient maps 

(THG) for multi-levels (different upward continuation filter applied upon the residual map) 

have been created in order to delineate the lateral boundaries of the observed anomalies, and 

track them vertically by number of profiles. The profiles reveal that the source of the anomaly 

H1 has domal shape and its top is relatively shallow but the anomaly extends in depth.   

Applying quantitative methods of depth estimation (power spectrum and 3D Euler 

deconvolution) reveal that the top of these anomalies have depth ranges of 3300 m
_
6800 m 

for H1, 3900 m
_
5500 m for H2 and 3800 m

_
5700 m for H3, depth right at the limit of seismic 
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penetration.  The seismic interpretation shows basement highs at the top of these anomalies 

(5160 m, 5200 m, and 5500 m respectively) at the deeper end of the source depths deduced 

from the potential field data values, indicating a broad compatibility.  Occasionally the 

solutions appear to be deeper than the seismic basement depth and this also could be referred 

to the dense causative structures within the basement.  

The comparison between the seismic sections and the gravity/magnetic charts clarifies that 

the residual gravity and the RTP anomalies are consistent with the tentative identification of 

structural highs near the bottom of the seismic data, while the THG of the RTP is very useful 

tool for delineating the fault zones. The interpretation maps of gravity and magnetic show 

consistency with the surface and subsurface geological features, since they delineate the 

tectonic boundaries between the troughs and platforms in the area, such as Al Beda Platform 

which are represented by high gravity and magnetic anomaly, also the Al Hulayq Ridge 

represented clearly by the gravity. The Abu Tumayam Trough is visible through both gravity 

and magnetic, the trough is bounded to the east by a high magnetic and gravity area, and the 

upward continuation maps reveal that this high anomaly is continued in depth, which likely to 

mean that this trough is isolated geologically from the Maradah Trough by this structure.  

 

The gravity models proposed that the basement under the gravity troughs is quite deep (~9.5 

km), while it is relatively shallow (~4.5 km) beneath the positive anomalies. The models also 

reveal that the Moho depth in the area ranges from 26.6 km-35.8 km. From the thinning of 

the basement, the crustal extension factor (β) value is calculated to be ~1.8-1.6.  Although 

there is spatial correlation between areas of major crustal thinning and those of the most 

tectonic subsidence, the latter is consistently smaller, with values of the subsidence derived 

extension factor reaching values where gravity gives values of 1.83-1.63. This difference 
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probably is the result of the subsidence-derived values only showing the amount of thinning 

since the Mid Cretaceous, whereas the crustal thinning shows the complete thinning of the 

crust.    
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