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Abstract

Traditionally, semantic trees have played an important role in proof theory for validating

the unsatisfiability of sets of clauses. More recently, they have also been used to implement

more practical tools for verifying the unsatisfiability of clause sets in first-order predicate

logic. The method ultimately relies on the Herbrand Base, a set used in building the

semantic tree. The Herbrand Base is used together with the Herbrand Universe, which

stems from the initial clause set in a particular theorem. When searching for a closed

semantic tree, the selection of suitable atoms from the Herbrand Base is very important

and should be carried out carefully by educated guesses in order to avoid building a tree

using atoms which are irrelevant for the proof. In an effort to circumvent the creation

of irrelevant ground instances, a novel approach is investigated in this dissertation. As

opposed to creating the ground instances of the clauses in S in a strict syntactic order,

the values will be established through calculations which are based on relevance for the

problem at hand. This idea has been applied and accordingly tested with the use of the

Smart Semantic Tree Theorem Prover (SSTTP), which provides an algorithm for choos-

ing prominent atoms from the Herbrand Base for utilisation in the generation of closed

semantic trees. Part of this study is an empirical investigation of this prover performance

on first-order problems without equality, as well as whether or not it is able to compete

with modern theorem provers in certain niches. The results of the SSTTP are promising

in terms of finding proofs in less time than some of the state-of-the-art provers. However,

it can not compete with them in terms of the total number of the solved problems.
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CHAPTER 1

Introduction

The distinction between syntax and semantics is an important tool in the study of lan-

guage, making the latter an object of investigation itself. While syntax defines a language

in terms of its expressions and their grammar, semantics specifies the meanings of these

expressions, a distinction that was crucial in the development of the theory of language.

But also in the areas of philosophical logic and mathematical reasoning this distinctions

allowed for the creation of powerful and rich formalisms that allowed these fields to evolve

into the disciplines they are today. But while these formalisms were honed over centuries

to simplify and develop computational tasks, when reasoning and proving theorems, math-

ematicians would typically rely on semantic arguments using examples to illustrate their

points. Only in the late 19th and early 20th century serious attempts were made to put

mathematical reasoning on a formal logical foundation based on rigorous syntax.

With the advent of computer technology some of the first intelligent systems built

were theorem provers that attempted to model the mathematical reasoning process. One

of the first attempts at a general system for automated theorem proving was the 1956

Logic Theory Machine of Allen Newell and Herbert Simon [32], a program that sought to

establish proofs through symbolic logic by applying chains of possible axioms. However,
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whilst the system was successful with a few simple theorems, the searches it had to

perform rapidly became too slow. Consequently, a more general system for modelling the

mathematical reasoning process was needed, developing rigorous calculi and techniques

aiming to reduce the reliance on human-oriented heuristics.

While early techniques were still based to some extent on semantic approaches like

exploiting the Herbrand universe, a major breakthrough happened in 1965, when Alan

Robinson invented the resolution-refutation principle [39], which significantly improved

reasoning by using the purely syntactic tool of unification. In the 1970s, simple versions

of the resolution method were incorporated into logic programming languages, of which

Prolog is the most prominent example. The big gain in efficiency by these methods meant

that human-oriented mathematical theorem proving played only a minor role in the in-

vestigation. While there were notable exceptions like the Boyer-Moore theorem prover

Nqthm [11], which uses resolution together with methods related to induction in attempt-

ing to find proofs of statements (clauses) through the use of a version of Lisp, the majority

of work in automated reasoning has been dedicated in an attempt to devise calculi for

automated-reasoning systems that can prove theorems by purely syntactic means [38, 46].

At the Argonne National Laboratory, another family of attempts was under development

since the early 1960s to find proofs in pure operator (equational) systems (i.e., predicate

logic with equations). A very prominent system of this family is OTTER, which was

developed in the mid-1980s [29] and later updated and renamed as PROVER9 [27] by

McCune, its developer. PROVER9 uses the resolution principle, together with a variety

of strategies (such as demodulation, weight and resonance strategies). In the 1990s, at

the Max Planck Institute for Computer Science Weidenbach et al. [55] developed SPASS,

an automated theorem prover for first-order logic with equality. SPASS was released after

experimenting with many prototypes using several data structures, sorted unification, and

memory models. Furthermore, Voronkov et al. developed VAMPIRE [36] which is also an
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automated theorem prover for first-order logic with equality. Today, all these automated

theorem proving systems are still being improved on an annual basis to compete in the

CADE ATP System Competitions [48].

While the concentration on purely syntactic reasoning methods has lead to the devel-

opment of powerful systems, it has also entailed the loss of potential information and to

forgo heuristics that allow humans to perform much more advanced reasoning tasks than

machines. Consequently, there has been a recent resurgence in attempts to reintroduce

semantic techniques into rigorous automated reasoning. Reasoning in our calculus is done

by trying to show that it is impossible to construct a model. However, since this is done

using a calculus, our system has more in common with the traditional systems mentioned

above than with the human-oriented proof planning approach [12, 21].

The goal of this thesis is to contribute to this effort by exploring a semantic oriented

calculus that revisits the idea of the Herbrand Universe (HU ). In particular, we are

interested in building a semantic tree calculus for first-order logic. Semantic trees can

be considered as a powerful tool for establishing the unsatisfiability of finite sets of first-

order clauses. Building a semantic tree depends on the Herbrand Base (HB), which is

generated with the help of the HU ; in turn, this stems from the input set of clauses for

a given theorem [31]. The elements in the HB can be selected in many different orders

for the construction of proofs. A good selection will lead to a shorter proof, whilst a bad

selection will lead to a longer proof. Note that, if the selection is not fair, this may mean

that no proof can be constructed at all.

The motivation of this work is centred on exploring how to make a smart selection of

the atoms from the HB to build a closed semantic tree in an efficient way. This is difficult

owing to the fact that the program needs to determine, in an intelligent way, which atoms

are useful in the proof construction and which are not. A major novel aspect of this work

is to construct the HB in such a way that only elements are added to it that are considered
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useful in the proof construction. This refines the work concerned with selecting the proper

atoms from the HB by providing various heuristic techniques throughout the construction

of the tree. The motivation of this work is concerned with establishing a subset of the

HB for any given problem that can be used to construct a small closed semantic tree.

In this thesis, a corresponding theorem prover for building closed semantic trees, called

SSTTP (Smart Semantic Tree Theorem Prover), will be presented.

This dissertation follows the idea of incorporating the use of semantics into automated

theorem proving by building an efficient smart semantic tree prover. In particular, it

makes the following contributions:

1. We adapt the Set-of-Support strategy together with the Herbrand procedure to

introduce an algorithm that generates a Smart Herbrand Base (SHB) of atoms.

The intention is that the algorithm will generate those atoms first that will be

useful in building a closed semantic tree. Since we assume that the assumptions for

the theorem are consistent it is necessary to use the theorem’s clauses in the proof.

Just as in the Set-of-Support strategy in resolution theorem proving, our algorithm

prefers clauses which either are part of the original theorem clauses or are derived

from them.

2. We create a new calculus, called the SSTTP calculus, that is based on the Herbrand

Base Generation algorithm (HBG) to build closed semantic trees. The proofs of

soundness and completeness of this calculus can be found in Chapter 6.

3. We show two ways to ground atoms inside the SHB. The first grounding method

is based on the canonical order of the HU but with restrictions. The second uses

placeholder variables that will substituted during the creation of the closed semantic

tree. We will use the second grounding strategy, because – as we will find out

empirically in Section 5.3 – it will typically generate semantic tree proofs faster.
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4. We give four different heuristics to improve the efficiency in finding proofs. These

heuristics try to reorder the atoms inside the SHB to prefer the creation and appli-

cation of useful atoms.

5. We investigate to which degree the SSTTP prover is able to compete with state-

of-the-art provers. To this end we make experiments with all suitable problems

from the TPTP library. The experimental results can be found in Chapter 8. These

results are mixed in that they show that the SSTTP prover can prove fewer theorems

only than the other systems, but also that it can prove some of the problems faster

than other systems.

The dissertation is organised as follows: Chapter 2 introduces the most important

related work. Chapter 3 presents the terminology used in this dissertation, along with an

introduction into various useful resolution-refutation principles embedded within SSTTP.

Chapter 4 introduces Herbrand’s Theorem, the HU, the HB, as well as Herbrand Inter-

pretations, and further highlights how such concepts are used in building semantic trees.

Next, Chapter 5 presents the SSTTP calculus and the structure for effectively creating se-

mantic trees for given sets of clauses by carefully selecting atoms from the HB. Following,

the soundness and completeness of the calculus are proved in Chapter 6. Subsequently,

the heuristics that are implemented in the SSTTP system and their performance are

presented in Chapter 7. Finally, we demonstrate in Chapter 8 the effectiveness of this

prover by comparing its performance with that of three state-of-the-art theorem provers

by testing them on theorems from the TPTP problem collection [47].
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CHAPTER 2

Related Work

There is a wide range of approaches to theorem proving, and in the following we will

provide a brief overview of systems, which are either most relevant to our work since they

are built around semantic methods and the Herbrand theorem, or are state-of-the-art

efficient systems with which we will compare our method in Chapter 8. For a general

introduction, as well as for a broad and deep exposition of the field, the interested user is

pointed to [13, 3, 38]. Provers that build on Herbrand’s theorem are HERBY [1, 31], WIL-

LOW [25], and PrHERBY [22]. Also related is the Model Evolution Calculus [6], which

is based on the Davis-Putnam-Logemann-Loveland Procedure [49]. The corresponding

prover is known as DARWIN [5]. Furthermore, there are various systems that adopt se-

mantic selection techniques so as to guide the search for proofs by resolution. Some of

the most efficient existing theorem proving systems are PROVER9 [27], SPASS [55] and

VAMPIRE [36], all of which have been regular participants in the CADE competitions

for many years. Also, there is the iProver system which is a theorem prover system that

uses semantic selection based on the Inst-Gen calculus [23]. The idea of this calculus is

to ground clauses of a given set by mapping all variables into a prominent constant to

proof the unsatisfiablity of that given set. Moreover, iProver integrates state-of-the-art
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implementation techniques such as redundancy elimination, indexing, semantic selection

and saturation algorithms. In addition to these techniques, iProver implements the or-

dered resolution calculus in order to gain simplicity [23]. Furthermore, there is a number

of systems that use semantic selection techniques to find proofs not using resolution such

as leanTAP [8] and ileanTAP [35]. These systems are tableau-based theorem provers for

first-order logic. They use a free variable technique (using rigid variables) to reduce the

size of the search space [7].

In the rest of this section, some literature is introduced that is related to our SSTTP sys-

tem. Section 2.1 discusses some theorem proving systems that are based on the Herbrand

Base for solving problems. These systems differ in the way in which they use the heuristics

to improve their efficiency. Following, Section 2.2 introduces new research that is based

on the DPLL (Davis-Putnam-Logemann-Loveland) Procedure-the so-called ME calculus

(Model Evolution Calculus). This new calculus generates a Herbrand Interpretation at

the end of the proof for a given problem. We also discuss the relationship between the

ME calculus and the SSTTP calculus. Section 2.3 provides a brief introduction on the

semantic-based prover. Section 2.4 presents a brief description of the powerful systems

that will be compared in Chapter 8 with SSTTP.

2.1 Herbrand Base Systems

HERBY [1, 31] is an automated theorem prover based on the semantic tree developed at

McGill University. It implemented in C, and uses Herbrand Base and Universe to obtain

a close semantic tree for a given problem. Moreover, it implements various heuristics for

choosing the proper atoms from the Herbrand Base during the build of the tree. How-

ever, the work done by Almulla and Newborn in building HERBY [1, 31] encountered

some difficulties in proving theorems. They said that HERBY needs to develop an atom

reordering heuristic and examine how to select atoms for each node in the tree. More-
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over, HERBY requires a more sophisticated approach for assigning constants to unground

literals in theorems [1, 60].

Another work done by Patrice Lapierre was the building of WILLOW [25], which is an

extension of HERBY’s semantic tree theorem proving heuristics. WILLOW provides new

high-level operations in an effort to simplify the closure of semantic trees. Such operations

include the detection of useless and unused atoms, and the reuse of closed subtrees.

WILLOW also provides new grounding strategies and an extended set of atoms selection

heuristics [25]. WILLOW provides the same grounding method as HERBY [1, 31], which

is modulo grounding, along with three other methods. One of its methods is expensive,

whereas the other requires a huge amount of computations in building the tree. The

third grounding strategy is free variables grounding, which is to replace all local variables

in the atom by introducing new free variables. The main problem with the approach is

establishing a way of instantiating these variables.

WILLOW [25] provides two ways of instantiation. Unfortunately, however, its ap-

proach has a serious drawback: it compromises the completeness of the prover, since

failure nodes may not be detected. Lapierre said that the problem could be fixed by

rebuilding the subtrees whenever a free variable is instantiated, or otherwise by allowing

the duplication of an atom on the same path. But these approaches are not implemented

in WILLOW.

In another approach, Newborn and his students started to build programs that work

in parallel to prove theorems. One of Newborn’s students wrote a paper that discusses

a program called PrHERBY [22]. PrHERBY, implemented in C, is a parallel semantic

tree theorem prover that combines semantic trees and resolution refutation methods.

Moreover, it has a parallel grounding scheme that allows each system to have its own

instance of generated atoms. Unfortunately, however, this requires many processors in

order to run the program efficiently.
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These Herbrand base systems are the systems most related to our SSTTP system.

But because their development was discontinued in 2001, it proved exceedingly difficult

to get hold of the systems and to make experiments with them.

2.2 The Model Evolution Calculus

The Model Evolution Calculus is a calculus presented by Baumgartner [6]. It is based on

the Davis-Putnam-Logemann-Loveland Procedure [49]. Baumgartner presents this calcu-

lus as a generalisation of the FDPLL calculus [6, 4]. FDPLL is built from the DPLL pro-

cedure by lifting it to the first-order level. The Model Evolution Calculus does not resort

to ground instantiations but rather contains a more systematic treatment of universal

literals. As a consequence, it has the potential of leading to much faster implementations

than FDPLL. The corresponding prover is called DARWIN [3]. The programming lan-

guage of DARWIN is OCaml. There is some similarity between DARWIN and SSTTP,

if we try to show the inconsistency of a consistent set, then both of them may provide a

Herbrand model of a given problem. We present examples of this in subsection 8.1.2. The

differences between them are based in the choice of the split. SSTTP splits according to

the SHB [41, 42] and DARWIN splits according to the candidate set that it presents [3].

Section 8.1 describes how ME works, as well as the differences between the ME calculus

and the SSTTP calculus.

2.3 Semantically guided provers

SCOTT [43] is an automated theorem prover for first-order logic. It is a variant of

OTTER [29] and is based on resolution but with a restriction applied in terms of the

inference rules. The programming language of SCOTT is C. SCOTT demands, where

one of the parent clauses in each inference step must be false when evaluated in a model.

It achieves good results, although the evaluation in a model also requires some degree of
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computation. The system has been developed since 1991 and comes in a series of versions,

some of them incomplete. Completeness is achieved by introducing several models to select

clauses rather than restricting the selection on a single model [19]. Owing to performance

issues, a new approach was developed so as to guide selection by soft constraints [45].

This technique provides the system a combination between the speed of a single model

and the strength of multiple models. The soft semantic guidance allows the system to

solve more problems with equational reasoning as opposed to simple first-order logic.

There are other systems that make attempts to guide clause selection. One of them is

the semantic clause graph-prover [14]. This system constructs a clause graph from all the

models that are generated from the given theorem. Subsequently, it starts searching for a

proof from the links of the graph. The selection requires some heuristics in order to speed-

up the performance of the system. A problem with the approach is that it is necessary to

generate models from the background theory through the application of a model generator,

such as FINDER [44]. Often, this is a time consuming process, particularly if the size of

the cardinality is chosen to be bigger than 2 [14].

2.4 State-of-the-art systems

There are many theorem provers that have competed in CASC for several years. Most of

them accomplish interesting results in special niches; however, the three systems presented

in this section seem to be the most powerful general first-order theorem provers in the

field. We provide a brief description of these also as we use them for an evaluation of the

strength of SSTTP, as presented in Chapter 8.

2.4.1 PROVER9

PROVER9 [27, 20] is an automated theorem prover for first-order logic that is based on

resolution. PROVER9 is a system that was developed from the OTTER prover [29] and
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was implemented in C. It uses binary resolution and unit-deletion strategies to find proof.

Moreover, it supports reasoning with equality and lists. Its syntax format is user-friendly

and easy to use. In order to prove a theorem, PROVER9 seeks to establish a contradiction

by negating the goal statement and generating all possible facts from the hypothesis. This

strategy is recognised as being quite powerful; occasionally, however, it takes time and

may look not as particularly intelligent when compared to the way in which a human

mathematician approaches a problem since general purpose first-order theorem provers

only very inefficiently deal with arithmetic expressions. A special ‘production mode tool’

has been developed in PROVER9 to deal with such expressions [40]. The implementation

of PROVER9 is similar to OTTER in many ways, especially when considering it uses

similar weighting functions that make the decision as to which clauses to select next in

the proof search. Normally, PROVER9 cycles through two clause selection functions if

there is no semantic guidance. The first one is selecting the oldest clause; the second is

selecting the lightest clause. If semantic guidance is used, PROVER9 allows more than

one finite interpretation. It evaluates each input or derived clause in its interpretations.

The clause is signed as true if it is true in all of the interpretations; if not, it is signed

false (except when a parameter showed the evaluation as being expensive, then the clause

is signed as true). In other words, PROVER9 cycles through these three clause selection

functions if semantic guidance is used: first, the oldest clause is selected; second, the

lightest true clause is selected; and third, the lightest false clause is selected. The ratio in

which each is of the three functions is chosen is specified by parameters. Examples can

be found in [28]. Typically, PROVER9 adopts many strategies to guide the search proof.

The most widely implemented strategy is referred to as ‘hints’, which allows the user to

input some clauses to test them with the derived clauses from the search space. The

program then gives priority to the matching clauses to continue searching for the result.

The only problem associated with strategy is how useful hints can be selected. Ernst [17]
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used the data-mining approach on the TPTP library [47] to produce useful hints that can

be used to prove more problems.

2.4.2 SPASS

SPASS [55] is an automated theorem prover for first-order logic. It supports equality and

various non-classical logics. It is case analysis based on the sorts and splitting rule. The

programming language used to implement SPASS is C; this is an easy to use tool and

development platform. This prover is regularly updated by new features to adapt with

commercial software and to increase the performance. It has a number of modules in its

library that deal with different reduction rules and inference selection. In order to run the

prover, a set of clauses in a clause normal form is given. Subsequently, the prover attempts

to find a proof according to the chosen strategy [55]. When a clause can to be split into two

sub-clauses that have at least one positive literal, the SPASS immediately performs the

splitting rule. Furthermore, there are different strategies associated with selecting the next

splitting clause [56]. In addition to new selection and renaming strategies, SPASS version

3.0 developed a user/machine interface, which handles the formula-clause relationship, the

clause set input and the output [58]. The latest enhancements to the prover are sub-term

contextual rewriting and improved split backtracking. Furthermore, there are important

improvements with the speed of the parser, in an extended sort procedure, with input file

commands, and with the TPTP [47] input file syntax [57].

2.4.3 VAMPIRE

VAMPIRE is an automated theorem prover for first-order logic with equality. Initially, the

main focus of VAMPIRE is its efficiency. Because of this, VAMPIRE creates huge data

structures to index the clauses. Over the years, each version of VAMPIRE achieved higher

strength, and more problems in the CADE competition could be solved than before [48].

VAMPIRE is written in C++ and based on two calculi: first, binary resolution with su-
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perposition and negative selection; and second, positive and negative hyperresolution but

only for logic without equality [36]. Like SPASS [55], this prover implements an OTTER-

style saturation algorithm [29] and a DISCOUNT-style algorithm [2, 16]. DISCOUNT is

an equational theorem prover that deals with equations derived from the problem. Its

idea is based on selecting an unprocessed equation and converting it to normal form,

and then using it to produce new unprocessed equations. Subsequently, the unprocessed

equation is added to the set of processed equations after it is used for interreduction.

This procedure is completed after the proof is found or all equations are processed [15].

In addition, VAMPIRE makes use of an implementation using the so-called limited re-

source strategy [37]. When the time given for the proof search is limited, this strategy

allows the program to create only structures that can be used in order to minimise the

necessary resources. VAMPIRE uses splitting without backtracking to avoid wasting time

and memory. In VAMPIRE 1.1, many techniques used to split are blocking and paral-

lel splitting, new literals used for splitting and branch rewriting used for splitting [36].

VAMPIRE is not only used as a theorem prover but also as a tool to identify first-order

properties automatically. Moreover, it can be used for reasoning with theories and quan-

tifiers because it supports many theory functions on integers, real numbers, strings and

arrays. Furthermore, it can analyse many input languages, such as C programs. It has

the ability to run several proofs in parallel, if requested by the user [24].
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CHAPTER 3

Fundamentals of theorem proving

This chapter presents the basic fundamental concepts in first-order logic and theorem

proving that are used in the following and are relevant for the explanation of the SSTTP the-

orem prover. Section 3.1 defines the logic principles and provides various examples. The

next section, Section 3.2, describes the resolution strategies used in the SSTTP prover.

3.1 Logic Terminology

The majority of theorem provers have been devised for first-order logic, with this same

group also encompassing the SSTTP prover. In this particular language, a statement is

referred to as a well-formed formula (WFF, or sometimes just ‘formula’) [1, 31, 13]. In this

context, the interpretation of a formula is established as devising a statement regarding

a particular area of discourse. In an effort to establish formulae syntax, a number of

definitions can be provided in relation to literals, logical operators, atoms, quantifiers and

terms, as detailed below.

Definition (Logical operators) Logical operators are symbols used to compose more

complex formulae from simpler formulae, inductively starting with atomic formulae. In
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this dissertation, we define five operators: ∧ (and), | (or), ∼ (negation), → (if . . . then),

↔ (if and only if).

Definition (Quantifiers) ∀ (universal quantifier), ∃ (existential quantifier).

Definition (Term) A term is a variable symbol, constant symbol or function symbol

with arguments that are also recognised as terms. These are described below.

Definition (Variable) In the specific context of this dissertation, a variable is seen to

represent any discourse domain element, and is recognised as being a string of digits,

letters or underscores beginning with a letter.

More specifically, a capital letter is used at the beginning of a variable, and is commonly

selected from the end of the alphabet,i.e. X, Y, Z, U, V, and W . A distinction can be made

between constants and variables by considering the context in which they appear (notably,

in this dissertation, the first letter is a distinctive factor).

Definition (Constant symbol) A constant symbol is seen to represent a particular

aspect of the discourse domain. This is represented through a number of digits, letters or

underscores beginning with a letter.

In specific consideration to this dissertation, a constant is initiated with the use of a

lower-case letter, which is most commonly selected from the beginning of the alphabet,

i.e. a, b, c, ship, and horse.

Definition (Function symbol) A function symbol represents a function; such as in the

case of a map that maps discourse domain elements to other domain elements. This is

recognisable through the use of a string of digits, letters or underscores initiated with the

use of a letter. Each function symbol is utilised along with a fixed arity. Throughout

the course of this research, a function symbol encompasses the same naming criteria as a
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constant symbol, whereas a function symbol, on the other hand, comprises one or more

arguments, whilst a constant symbol, in contrast, offers zero arguments. Importantly,

these arguments are terms.

Some examples of particular function symbols are as follows: abs(X), representing the

absolute value function; minimum(X, Y ), representing the function mapping X and Y

to the minimum of the two.

Definition (Predicate symbol) A predicate symbol stands for a relation on the do-

main of discourse. This particular relation is either TRUE or FALSE within the domain,

and is represented through the use of a number of digits, letter or underscores, initiated

with the use of a letter. A predicate symbol has zero or more arguments. Each predicate

symbol goes with a fixed arity and expects as many arguments, which are terms. If P

is a predicate symbol and t1, . . . , tn are n terms then P (t1, . . . , tn) is an atom. No other

expressions are atoms.

Examples of predicates are as follows: above(a, b) (read, “a is above b”),

larger-or-equal(square(X), X) (read, “The square of X is larger than or equal to X”).

Definition (Literal) A literal is an atom or the negation of an atom. If A is an atom,

then the two literals A and ∼A are said to be complements of each others and the set

{A,∼A} is called a complementary pair.

For instance, consider the atom likes(X, Y ), then likes(X, Y ) and ∼likes(X, Y ) are

literals.

Definition (Well-formed formula) A well-formed formula (wff) is defined recursively

as follows:

• An atom is a wff.

17



• If w and v are wffs, then so are w|v, w ∧ v, w → v, and w ↔ v.

• If w is a wff, then, for any variable X, then so are: ∀X.w and ∃X.w.

Definition (Clause) A clause is a finite disjunction of zero or more literals. A clause

with no literals is called the empty clause (denoted by �). A clause with one literal

only is called a unit clause.

A number of theorem provers adopt a type of formulae that is clause normal in nature

as opposed to a particular set of formulae. Notably, [31] provides a conversion algorithm.

Definition (Ground) A clause is ground in the instance that no variables are recognised

in any of its literals.

Definition (Interpretation) An interpretation of a formula F in first-order logic com-

prises a nonempty domain D, and the attribution of ‘values’ to each of the constant

symbols, function symbols and predicate symbols included in F , as shown below:

• An element in D is attributed to each constant symbol.

• A mapping from Dn to D is attributed to each n-ary function symbol.

• A mapping from Dn to {TRUE, FALSE} is assigned to each n-ary predicate symbol

Definition (Follows) In the case of a set of wffs, one assigned interpretation makes each

wff comprise the logical value of TRUE, meaning that particular interpretation fulfils the

set of wffs. A wff W is logically following from a set Γ of wffs if every interpretation

satisfying Γ also satisfies W .

Definition (Satisfiable) A set S of clauses is satisfiable if there is a minimum of one

interpretation that is seen to fulfil all of the clauses in S. If this does not happen, the set

S is unsatisfiable.
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Definition (Theorem) Let a set of formulae Γ and a formula ϕ be given. We say that

ϕ is a theorem under the assumptions (also called axioms) Γ if the set Γ ∪ {∼ϕ} is

unsatisfiable, that is, if it has no model.

Definition (Substitution) In the discourse domain, a substitution σ is a mapping link-

ing variables to terms. This signifies a finite set of the form {t1/v1, t2/v2, . . . , tn/vn}, where

every vi is a variable, every ti is a term different from vi and not containing it, and where

no two elements are having the same variable following the stroke symbol (/).

Example 3.1.1 Let us consider the substitution {b/Y, f(g(c))/R}, here the constant b

substitutes for variable Y and the function f(g(c)) substitutes for variable R. Please

note that upper-case letters are variables, whereas lower-case letters denote functions and

constants.

Definition (Unifier) A substitution σ is referred to as a unifier for a set of atoms

{P1, . . . , Pk} if and only if applying σ to P1 is the same as applying it to P2 and, in a

comparable vein, when applying it to all atoms, i.e. [P1]σ = [P2]σ = . . . = [Pk]σ where

every Pi is an atom. The set {P1, . . . , Pk} is recognised as being unifiable if there is an

associated unifier.

Definition (Subsumption) Considering that P1 and P2 are two atoms, P1 is subsumes

P2 if there is a substitution σ such that [P1]σ = P2.

Example 3.1.2 Suppose P1 = likes(X, Y ) and P2 = likes(a, b). Then, likes(a, b) is

subsumed by likes(X, Y ) with σ = {a/X, b/Y }.

Definition (Most general unifier) The most general unifier (mgu), µ, of two atoms

instances P1 and P2 defined as the unifier that creates a substitution instance P3 such that

P3 subsumes every other substitution instance of P1 and P2; in other words, it creates

19



the most common instance. When establishing the mgu, an algorithm can be used that

spans back to Robinson, and is seen in various textbooks, such as [31].

Example 3.1.3 Suppose P1 = P (X, f(X), f(a)) and P2 = P (f(Y ), Z, U) are two atoms.

Then the mgu of P1 and P2 is µ = {f(Y )/X, f(f(Y ))/Z, f(a)/U}, because [P1]µ =

[P2]µ = P (f(Y ), f(f(Y )), f(a)).

Definition (Binary resolvent) Consider two clauses C1 = l11|l12| . . . |l1n and C2 =

l21|l22| . . . |l2m. Suppose literals l1i and l2j are complements, Then apply resolution rule to

get a binary resolvent of C1 and C2.

C1, C2

[{C1 − l1i}|{C2 − l2j}]σ
If σ = mgu(l1i, l2i)

Example 3.1.4 Assume we have two clauses:

C1 : ∼P (a)|Q(a, b)

C2 : ∼Q(X, b)|Q(X, c)

There is no literal of C1 that is complementary to any literal in C2. However, if we

substitute a for X in C2 then the literals Q(a, b) and ∼Q(a, b) are complementary literals

and they can be resolved away to produce the binary resolvent C3.

C3 : ∼P (a)|Q(a, c)

Definition (Input set (base set)) The set of base clauses (better known as the base

set) are those that make up the axioms and the theorem’s negated conclusion following

the conversion of wffs into clause form.

Definition (Resultion deduction) Considering a set S of clauses, a resolution deduc-

tion of C from S may be recognised as a finite sequence C1, C2, . . . , Ck of clauses, where
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each Ci is either a clause from S or a resolvent of preceding clauses, and Ck = C. Carrying

out the deduction of the empty clause � from S is referred to as a refutation, or a proof

of S.

3.2 Resolution Principle

In an effort to circumvent the creation of ground instance sets, as deemed necessary

in Herbrand’s process outlined in Chapter 4, there will be some consideration towards

resolution of the Robinson principle. This can be recognised as a significant breakthrough

owing to the fact it may be directly applied to any particular set S of clauses-notably,

not only ground clauses-in an effort to test S unsatisfiability.

The resolution principle has the underlying principle of establishing whether or not

S comprises the empty clause �. If S does indeed contain �, S is then considered

unsatisfiable; if not, the subsequent stage involves establishing whether � can be derived

from S.

Processes concerned with resolution proof are more effective than any earlier process

owing to the fact that an infinitely branching search space is replaced with a finitely

branching search space through unification introduction. Following the resolution princi-

ple’s introduction, a number of changes have been devised and applied in efforts to further

increase their efficiency. Some such changes include linear resolution, lock resolution, se-

mantic trees and a set-of-support strategy of Wos [13]. Throughout this dissertation, the

resolution principle, set-of-support and semantic trees are combined in a new semantic

tree theorem prover, referred to as SSTTP. The set-of-support approach is discussed in

the following section.
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3.2.1 Set-of-support

Wos, Robinson, and Carson proposed the set-of-support strategy in 1965 [59]. As touched

upon in the first chapter, a problem comprises a number of axioms A1, A2, . . . , An and

a conclusion B. The set-of-support (SoS) strategy involves at least one parent of each

resolvent being chosen from amongst the clauses ensuing from the goal negation (negated

conclusion) or otherwise from their descendants [34]. In order to ascertain theorem proof,

there is a need to establish that A1∧A2∧. . .∧An∧∼B is unsatisfiable. If A1∧A2∧. . .∧An

is satisfiable (and typically it is assume that the axioms are satisfiable), where resolving

only in this set will not induce the empty clause; therefore, in such an instance, it can

be considered a valuable approach to avoid resolving clauses in A1 ∧ A2 ∧ . . . ∧ An. The

set-of-support approach precisely rules out such resolvents.

Definition (SoS) A subset T of a set S of clauses is referred to as a set-of-support if

S\T is satisfiable. A set-of-support resolution phase is a step involving two clauses where

not both are from S\T , that is, at least one is from T . A set-of-support deduction may be

defined as a deduction where each and every resolution step is a set-of-support resolution

step.

Theorem 3.2.1 (Completeness of the SoS strategy) If S is a finite set of unsatis-

fiable clauses and T is a subset of S such that S\T is satisfiable, then there is a set-of-

support deduction of � [the empty clause] from S with T as set-of-support [13].

The proof of the completeness of the SoS strategy can be found in Chang textbook page

110 [13].

Example 3.2.2 Let S be the following set of clauses:

1. P (X1, a, Z1)
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2. ∼P (Y1, f(b), U1)

3. ∼P (X2, Y2, U2)|P (Y2, Z2, V )|∼P (X2, V,W )|P (U2, Z2,W )

4. ∼P (k(X3), X3, k(X3)). ← negated conclusion (SoS)

SoS proof:

5. ∼P (X2, Y2, k(X3))|P (Y2, X3, V )|∼P (X2, V, k(X3))← a resolvent of literal P (U2, Z2,W )

from 3 and 4

6. ∼P (X2, Y1, k(f(b)))|∼P (X2, U1, k(f(b)))← a resolvent of 2 and literal P (Y2, X3, V )

from 5

7. � ←− a resolvent of 1 and 6
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CHAPTER 4

Herbrand Theorem

In 1930, Herbrand made a very valuable contribution to mechanical theorem proving. Her-

brand was a mathematician of French origin who died young but who provided a number

of valuable contribution to mathematical logic. ‘Herbrand’s Theorem’ a well-known the-

orem, identified a relation between quantification theory and propositional logic [18, 1].

Accordingly, this chapter provides the theoretical basis for establishing theorem proof

through creating and devising closed semantic trees. SSTTP, our own program, which

creates such trees through a logical and intelligent approach, is discussed in Chapter 5.

Moreover, Section 4.1 provides an introduction to the Herbrand universe through a set of

clauses, whilst Section 4.2 presents the Herbrand base of the set of clauses. Subsequently,

Section 4.3 discusses and defines the Herbrand interpretations of a set of clauses, with

semantic trees utilised in mind of establishing the unsatisfiability of sets of clauses de-

tailed in the following two sections. Furthermore, Section 4.5 considers the two different

forms of Herbrand’s Theorem, as well as their respective application in establishing the

unsatisfiability of sets of clauses.
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4.1 Herbrand Universe

As has been defined, a set of clauses is unsatisfiable only in the event that it is assigned

the FALSE value within all domain interpretations. Owing to the fact that it is not

possible to take into account all interpretations across all domains, it would be valuable

to direct attention to one particular domain H, such that S is unsatisfiable only in the

instance that S is FALSE within all interpretations over this domain H. Importantly,

such a domain does exist, and is referred to as the Herbrand Universe of S, which may

be described as discussed in the following paragraph.

The Herbrand Universe of a particular set S of clauses (HU(S) for short) may be

defined as a finite set or, otherwise, potentially a countable infinite number of constants

and ground terms identified in S. Should S be seen to comprise no function symbols,

HU(S) is then recognised as a finite set. Furthermore, should there be no constant

encompassed within S, it is then necessary to choose randomly one from the universe of

discourse, which then should be a member of the Herbrand Universe.

Definition (Canonical order) The Herbrand Universe is constructed by using a canon-

ical order, where the individual terms are itemised in the following way: The constants

come first, with the ground terms listed following, adopting a term depth of 1, followed by

those with a term depth of 2, etc. Importantly, ground terms with the same term depth

are then listed in line with their arity; those of equal arity are ordered in line with their

lexicographical order.

Example 4.1.1 Let us consider the following problem, in which X is a variable, a is a

constant symbol, and f is a function symbol.

1. P (X) ←− negated conclusion (SoS)

2. ∼P (a)|Q(X)
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3. ∼Q(f(X))

The canonical Herbrand Universe is: HU = {a, f(a), f(f(a)), f(f(f(a))), . . .}

Definition (Ground instance) A ground instance of a clause C is a clause obtained

by replacing the variables in C by members of the Herbrand Universe of S.

Example 4.1.2 Let S = {P (X), Q(f(Y ))|R(Y )}. Moreover, let C = P (X) be the first

clause in S and HU(S) = {a, f(a), f(f(a)), f(f(f(a))), . . .} be the Herbrand Universe of

S. Then the ground instances of C are P (a), P (f(a)), P (f(f(a))), and so on.

4.2 Herbrand Base

The Herbrand Base of a particular set S of clauses (HB(S) for short) is described as a

finite set or, otherwise, potentially a countable infinite number of all ground instances of S

clause atoms. The arguments of these atoms are all potential combinations of the terms in

Herbrand Universe. When all of the atoms are listed in regard to their arity or according

to lexicographical order in the cases of those with equal arity, they are recognised as

adopting a canonical order.

Definition (Herbrand Base) Let S be a set of clauses. The set of ground atoms of the

form P n(t1, . . . , tn), for all n-place predicates in S, where t1, . . . , tn are elements of HU, is

called the Herbrand Base of S.

Example 4.2.1 Reconsider the problem from example 4.1.1. Then the canonical ordering

of the Herbrand Base is HB = {P (a), Q(a), P (f(a)), Q(f(a)), P (f(f(a))), Q(f(f(a))), . . .}.

4.3 Herbrand Interpretations

SSTTP uses different ways for producing atoms of the Herbrand base. An alternative

technique for producing Herbrand base atoms is being suggested in this dissertation, which
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is better suited for using the approach to prove theorem directly than listing the Herbrand

base atoms in canonical order as described above (or in [31]). This new technique gives

rise to the Smart Herbrand Base, which will be presented in Chapter 5.

Definition (Herbrand-interpretation) A Herbrand-interpretation may be defined as

the attributing of logical value, either TRUE or FALSE, to each Herbrand base atom.

Importantly, should the number of Herbrand base atoms be infinite, N , then the value

of each of these interpretations is then 2N . An interpretation does not satisfy (or fails)

a clause in the instance that the atoms of various Herbrand Base atom subsets-when

assigned TRUE or FALSE values-are seen to conflict with the clause. Such a conflict

may be identified through highlighting that the subset atoms, with their assigned values,

resolve with the literals of the clause so as to yield the empty clause. On the other hand,

the clause is satisfied by the interpretation [31].

Example 4.3.1 For the problem in example 4.1.1, any interpretation that assigns TRUE to

atom P (a) and FALSE to atom Q(f(a)) fails Clause 2 because P (a) resolves with the

first literal of Clause 2 (i.e., ∼P (a)) to yield the empty clause.

Definition (Unsatisfiable) A Herbrand interpretation is seen to fail a set of clauses if

it is seen to fail at least one of the set’s clauses. If this is not the case, the set’s clauses are

satisfied. A set of clauses is satisfiable in the instance that there is at least one Herbrand

interpretation that is seen to satisfy each of the clauses. In contrast, the set of clauses is

unsatisfiable.

One way of identifying the unsatisfiability of the clauses is through the application of

a truth table. One alternative approach is through the adoption of semantic trees, as will

be discussed in the subsequent section.
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Example 4.3.2 Consider again the problem from example 4.1.1. The canonical Her-

brand Base is given as {P (a), Q(a), P (f(a)), Q(f(a)), P (f(f(a))), Q(f(f(a))), . . .} in ex-

ample 4.2.1. In this example, it can be seen that there is an infinite number of Herbrand

interpretations, as the following truth table 4.1 shows. Each interpretation is shown to

fail at least one clause. The first interpretation fails Clause 3 because the fourth atom

Q(f(a)) resolves with Clause 3 to yield the empty clause. The second interpretation fails

Clause 2 because the first and fourth atoms of the interpretation resolve with the liter-

als of the clause ∼P (a)|Q(X) to yield the empty clause. The same goes for the rest of

interpretation.

Interpretations on the HB Unsatisfiable clauses
P (a) Q(a) P (f(a)) Q(f(a)) . . .

T T T T . . . 3
T T T F . . . 2
T T F T . . . 1,3
T T F F . . . 2
. . . . . . . . . . . . . . .
F F F T . . . 1,3
F F F F . . . 1

Table 4.1: Herbrand interpretations of example 4.1.1

In the Example, all of the interpretations involve the attributing of a TRUE or

FALSE value to an infinite number of atoms; importantly, however, only the first four

atoms need to be detailed in canonical order in order to highlight that all of the inter-

pretations are unsuccessful in one clause; in other words, all of the partial interpretations

on the first four atoms fails at least one clause of the problem, thus establishing the un-

satisfiability of the problem’s set of clauses. In actuality, every partial interpretation on

just the third and the fourth atoms of the canonical order, namely P (f(a)) and Q(f(a)),

fails at least one clause of the problem, thus suggesting that four partial interpretations

are inadequate in terms of identifying the unsatisfiability of the problem’s clauses.
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4.4 Semantic Trees

Following the discussion of the Herbrand universe and the Herbrand base, semantic trees

are now the focus of consideration. It will be seen in the sequel that finding a proof for a

set of clauses is equivalent to generating a semantic tree.

Definition (Semantic tree) A semantic tree of a set S of clauses is defined as a binary

tree T with root N0, with branches (edges) labelled by atoms from HB, such that: if N is

a node in T , then its two outgoing branches are label with complementary literals hb and

∼hb. Let I(N) be the set of literals which are labels along the edges of the path from the

root to N . Then for every node N in T , I(N) does not contain complementary literals.

To each node N a set of clauses is assigned, denoted K(N) as follows:

1. To the root node N0 the given set of clauses S is assigned (i.e. K(N0) = S).

2. For any other node N with the nodes on the path to it labelled N0, N1, . . . , Nt and

with the branch leading immediately to it labelled with atom hb or its negation, ∼hb,

all resolvents of hb or its negation with all clauses in the setK(N0), K(N1), . . . , K(Nt)

and with the clauses so generated are assigned to K(N). However, a resolvent is

not added to K(N) if it appears already in K(N0), K(N1), . . . , K(Nt) or in K(N).

Definition (failure node) A node N is referred to as a failure node if I(N) makes some

ground instance of a clause in S false, but I(N ′) does not for every ancestor node N ′ of

N .

Definition (Closed semantic tree) A semantic tree is recognised as closed in the in-

stance that every tree branch terminates at a failure node.

Definition (Canonical semantic tree) A canonical semantic tree of depth D is a se-

mantic tree of depth D in which each of the left branches at depth d ≤ D is labelled with
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the dth atom and where each of the right branches at depth d ≤ D is labelled with the

complement of the dth atom of the canonical Herbrand Base.

Example 4.4.1 Let us consider the problem from example 4.1.1. Then from the example

we take some atoms from HB which are {P (a), Q(f(a))}, that is, all what we need in

building a closed semantic tree. How we can find such a set of atoms we will see in

Chapter 5. Figure 4.1 shows a closed semantic tree for the problem from the example 4.1.1.

1.P (X)
2.∼P (a)|Q(X)
3.∼Q(f(X))

N0

4.(2) Q(X)

N1

5.(3) �

N2σ1 = {a/X}

6.(4) �

N3 σ2 = {f(a)/X}

7.(1) �

N4 σ3 = {a/X}

P (a) ∼P (a)

Q(f(a)) ∼Q(f(a))

Figure 4.1: Closed semantic tree of the problem from example 4.1.1

The order in which atoms were selected was hb1 = P (a), hb2 = Q(f(a)). First, the root

node is assigned the set of clauses S from the problem from example (i.e. K(N0) = S)

and the depth of the root node is 0. Because the empty clause is not in K(N0), the

semantic tree under construction is extended. Then the branch from N0 labelled with

P (a) is constructed and we arrive at node N1. The set of clauses in K(N1) is found by

resolving P (a) with the clauses in K(N0):

K(N1) = {Q(X)}

In Figure 4.1, the notation describing Clause 4 says that it is formed by resolving the
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atom on the branch leading to N1, that is atom P (a), with the literal in Clause 2 yielding

the clause Q(X). Because N1 is at depth 1 and is not a failure node, D is increased to 2

and the construction continues.

The branch labelled with atom Q(f(a)) is constructed, and node N2 is arrived at next.

The set of clauses in K(N2) is found by resolving Q(f(a)) with the clauses in K(N0) and

K(N1):

K(N2) = {�}

In Figure 4.1, Clause 5 is generated by resolving atom Q(f(a)) with the literal in Clause

3 yielding the empty clause with σ1 = {a/X}. Once the empty clause is generated, it is

unnecessary to generate other clauses at that node. So, node N2 is a failure node.

The construction continues by constructing the branch labelled with ∼Q(f(a)) and we

arrive at node N3. The set of clauses in K(N3) is found by resolving ∼Q(f(a)) with the

clauses in K(N0) and K(N1):

K(N3) = {�}

In Figure 4.1, Clause 6 is generated by resolving atom ∼Q(f(a)) with the literal in Clause

4 yielding the empty clause with σ2 = {f(a)/X}. Once the empty clause is generated, it

is unnecessary to generate other clauses at that node. So, node N3 is a failure node.

The construction then backtracks to the root and constructs the right branch of N0,

labelling it with ∼P (a) and leading to node N4, where:

K(N4) = {�}

In Figure 4.1, Clause 7 is generated by resolving atom ∼P (a) with the literal in Clause

1 yielding the empty clause with σ3 = {a/X}. Once the empty clause is generated, it is

unnecessary to generate other clauses at that node. So, node N4 is a failure node, and

thus a closed semantic tree is constructed.
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4.5 Herbrand’s Theorem

In the context of automated theorem proving, Herbrand’s Theorem provides a foundation

upon which various ATPs (Automated Theorem Provers) rely. In order to establish

whether or not a set S of clauses can be considered unsatisfiable, there is a need to take

into account only interpretations over the Herbrand universe of S. Should the value be

FALSE under all interpretations over the Herbrand universe of S, the conclusion can

then be drawn to show that S is unsatisfiable. Owing to the fact that here are a countless

number of such interpretations, a systematic approach to ordering may be utilised, such as

through the application of a semantic tree. Notably, there are two versions of Herbrand’s

Theorem, as highlighted in the Newborn textbook, [31, p.47-48].

Version I: If S is an unsatisfiable set of clauses, there exists some integer k, such that

every partial interpretation over the first k atoms of the canonical Herbrand Base fails S.

Version II: If S is an unsatisfiable set of clauses, there exists some k such that every

path in a canonical semantic tree for S beginning at the root and of length at most k

leads to a failure node. The semantic tree is said to be closed in this case.

The version most widely cited in the literature is the second one; however, the first

of these is recognised as most valuable in the context of this dissertation. Such theorem

proof may be identified through reviewing classical textbooks, such as that by Chang and

Lee [13, p.61].

Accordingly, this particular theorem may be adopted in different ways, such as by

validating the accuracy of the proofs of theorems established through the adoption of

resolution-refutation, or otherwise in mind of proving the unsatisfiability of various clause

sets, provided there is available a smart approach of choosing atoms from the Herbrand

base to be used in mind of creating the closed semantic trees, as will be done throughout

the course of this dissertation. The resolution principle of Robinson will be applied,
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alongside the set-of-support approach of Wos, in order to effectively create closed semantic

trees for unsatisfiable sets of clauses.
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CHAPTER 5

Smart Semantic Tree Theorem Calculus

Throughout the course of this research, efforts have been directed towards building a

program to prove theorems by constructing a closed semantic tree depending on a Smart

Herbrand Base. This Smart Herbrand Base is a subset of the original Herbrand base,

which is generated through the application of a smart algorithm. The algorithm is de-

signed to generate the atoms of the Smart Herbrand Base by using a resolution technique.

This idea will allow us to use the useful atoms of the Herbrand Base, which will give us

an efficient semantic tree theorem proving program (SSTTP). Section 5.1 presents the

HBG algorithms with details and examples. Section 5.2 describe the SSTTP calculus and

how it works to generate SHB atoms and to construct a close semantic tree. Further-

more, in Section 5.3, a brief description is provided of the placeholder variable that the

SSTTP program used in order to deal with the variables.

5.1 HBG Algorithm

The algorithm that generates the SHB is motivated by the Set-of-Support strategy.

We call this algorithm Herbrand Base Generation (HBG). It starts like the original

SoS, with the input set of clauses S = {A1, A2, . . . , An, B1, B2, . . . , Bm}, where the set
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{A1, A2, . . . , An} is generated from the axiom set and the set {B1, B2, . . . , Bm} is gener-

ated from the negated conclusion and forms the initial Set-of-Support (SoS). However,

it has a different way of using the resolution technique to generate a Smart Herbrand

Base in the aim to build closed semantic trees in an effective way. The algorithm uses

the resolution rule only to check whether or not the given two literals resolve with each

other. Accordingly, it is not actually performing resolution because we do not want to

use it for proving; we only use it to help us with the selection of the useful atoms from

the Herbrand Base. The steps of the HBG algorithm are shown next:

1. Put the clause(s) of the negated conclusion (denoted by {B1, B2, . . . , Bm}) in front

of the axioms, to build a list L = (B1, B2, . . . , Bm, A1, A2, . . . , An).

2. Try to resolve the first literal in the first clause in L denoted by l1 with all literals

in clauses from L occurring after it. If a resolvent occurs then we put the atom

of the literal l1 in the updated SHB after checking that this literal l1 is a ground

atom (i.e., it does not have any variables). If it has variables then we put them in

the SHB set after we give them placeholder variables temporarily until they will be

substituted by an element from the Herbrand Universe when we use them in the

semantic tree.

3. If no resolvent occurs, we then jump to the next literal l2 in L and repeat step 2. If

there is no clause to jump to (i.e., at the end of the list), then exit (stop algorithm).

4. Delete the resolved upon literal lj and literals that resolved with it from the corre-

sponding clauses in L.

5. Keep repeating the above four steps as long as the input set is not empty.

The outcome of this algorithm is a smart ordering (noncanonical ordering) of atoms

in the Herbrand’s base (SHB), which, it is hoped, will lead to the faster construction of
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closed semantic trees.

Example 5.1.1 Let us consider the following simple example, let S be the following set

of clauses:

1. ∼M(f(a)) ←− negated conclusion (SoS)

2. ∼H(X)|M(X)

3. ∼H(X)|H(f(X))

4. H(a)

HBG proof (construct the initial SHB):

• Clause 1 resolves with M(X) from 2

• Then put M(f(a)) (after substituting X by f(a)) in SHB

• And delete 1, M(X) from 2

• Next, the remaining clauses are:

2. ∼H(X)

3. ∼H(X)|H(f(X))

4. H(a)

• Clause 2 resolves with H(f(X)) from 3 and with 4

• Then put H(f(H0)) (after replacing X with a placeholder H0) and H(a) (after

substituting X by a) in SHB

• And delete 2 and H(f(X) from 3 and delete 4

• Next, the remaining clauses are
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3. ∼H(X)

Stop algorithm. SHB = {M(f(a)), H(f(H0)), H(a)}. The closed semantic tree of this

example is shown in Figure 5.1. And during the build of the semantic tree, the placeholder

variable H0 will substituted with a. Therefore, SHB = {M(f(a)), H(f(a)), H(a)}.

1.∼M(f(a))

2.∼H(X)|M(X)

3.∼H(X)|H(f(X))

4.H(a)

N0

5.(1) �

N1

6.(2) ∼H(f(a))

N2 σ1 = {f(a)/X}

7.(6) �

N3σ2 = {a/H0}

8.(3) ∼H(a)

N4 σ3 = {a/X}

9.(8) �

N5

10.(4) �

N6

M(f(a)) ∼M(f(a))

[H(f(H0))]σ2 = H(f(a)) ∼H(f(a))

H(a) ∼H(a)

Figure 5.1: Closed semantic tree of the problem from example 5.1.1.

We figure that, in order to make the algorithm complete, the SHB needs to be regen-

erated whenever we reach an open node with an empty SHB. Moreover, after we complete

the construction of the tree, we will join all the Smart Herbrand Base sets together in one

set, which is our smart set that will prove the given theorem. This idea is presented in

the following example.
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Example 5.1.2 Let us consider the following simple example. Let S be the following set

of clauses:

1. P (a) ←− negated conclusion (SoS)

2. ∼P (X)|P (f(X))

3. ∼P (f(f(a)))

HBG proof (construct the initial SHB):

• Clause 1 resolves with ∼P (X) from 2

• Then put P (a) (after substituting X by a) in SHB

• And delete 1, ∼P (X) from 2

• Next, the remaining clauses are

2. P (f(X))

3. ∼P (f(f(a)))

• Clause 2 resolve with clause 3

• Then put P (f(f(a))) (after substituting X by f(a)) in SHB

• And delete 2 and 3

Stop algorithm. SHB1 = {P (a), P (f(f(a)))}. The semantic tree of the first generation of

SHB is shown in Figure 5.2.
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1.P (a)

2.∼P (X)|P (f(X))

3.∼P (f(f(a)))

N0

4.(2) P (f(a))

N1σ1 = {a/X}

5.(3) �

N2

6.(2) ∼P (f(a))

N3 σ2 = {f(a)/X}

7.(1) �

N4

Open node (i.e., semantic

tree is not closed)

P (a) ∼P (a)

P (f(f(a))) ∼P (f(f(a)))

Figure 5.2: Semantic tree of the SHB1 from example 5.1.2

All elements in the SHB have been used, but no proof has been constructed. So, the

HBG algorithm is rerun to generate an extended Smart Herbrand Base.

The algorithm stopped in the open node N3, let S be the following set of clauses of the

path of N3:

1. P (a) ←− negated conclusion (SoS)

2. ∼P (X)|P (f(X))

3. ∼P (f(f(a)))

4. P (f(a))

6. ∼P (f(a))

This set is now used to extend the SHB. HBG proof:
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• Clause 1 resolves with ∼P (X) from 2

• Then put P (a) (after substituting X by a) in SHB if it is not in the previous one

• And delete 1, ∼P (X) from 2

• Next, the remaining clauses are

2. P (f(X))

3. ∼P (f(f(a)))

4. P (f(a))

6. ∼P (f(a))

• Clause 2 resolves with clause 3

• Then put P (f(f(a))) (after substituting X by f(a)) in SHB if it is not in the previous

one

• And delete 2 and 3

• Next, the remaining clauses are

4. P (f(a))

6. ∼P (f(a))

• Clause 4 resolves with clause 6

• Then put P (f(a)) in SHB if it is not in the previous one

Stop algorithm. The second generation of SHB is SHB2 = {P (f(a))}. Then the al-

gorithms continues building the tree, and forms a closed semantic tree at the end with
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SHB = SHB1 ∪ SHB2 = {P (a), P (f(f(a))), P (f(a))}. The closed semantic tree is shown

in Figure 5.3.

1.P (a)

2.∼P (X)|P (f(X))

3.∼P (f(f(a)))

N0

4.(2) P (f(a))

N1σ1 = {a/X}

5.(3) �

N2

6.(2) ∼P (f(a))

N3 σ2 = {f(a)/X}

7.(6) �

N4

8.(4) �

N5

9.(1) �

N6

P (a) ∼P (a)

P (f(f(a))) ∼P (f(f(a)))

P (f(a)) ∼P (f(a))

Figure 5.3: Closed semantic tree of example 5.1.2.

The SSTTP prover works by completing multi-resolution steps with the base set of the

given theorem, and positions the resolvent atom in the SHB as HBG algorithm shows. It

then builds the tree with the SHB using depth-first search approach. The left-most branch

closed first. If this branch cannot be closed, the algorithm has run out of elements from the

finite set of SHB elements constructed so far. Then, it extends the SHB by constructing

new elements and continues building the tree until it is closed (or the algorithm runs out
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of resources). Subsequently, it backtracks to the previous level and accordingly builds

the right branch of the parent node. It continues building the whole tree in a depth-

first manner. At the end, if all the leaf nodes of the tree are closed (failed) then it has

constructed a proof.

Next, the SSTTP approach is tested with an example selected from the TPTP library.

Example 5.1.3 Let us consider the following problem from the Analysis domain (ANA013-

2.p) in TPTP. Let S be the following set of clauses: (1 and 2 are negated conclusion

(SoS))

1. ∼P0(f3(f0(c0, c1), f0(f2(f1(X0)), c1), c1), f3(X0, f0(f2(f1(X0)), c1), c1), c1)

2. P1(c1)

3. ∼P2(X1)|P0(X2, X2, X1)

4. ∼P1(X3)|P2(X3)

First, the initial SHB will be constructed from the original set of clauses. Then in a second

step a closed semantic tree will be built. We show next the construction of the initial SHB.

HBG proof:

• Clause 1 resolves with P0(X2, X2, X1) from 3

• Then put P0(f3(f0(c0, c1), f0(f2(f1(f0(c0, c1))), c1), c1), f3(f0(c0, c1),

f0(f2(f1(f0(c0, c1))), c1), c1), c1) into the SHB after applying the substitution

σ = {f3(f0(c0, c1), f0(f2(f1(f0(c0, c1))), c1), c1)/X2, f0(c0, c1)/X0, c1/X1} to the re-

solving atom.

• And delete 1, P0(X2, X2, X1) from 3

• Next, the remaining clauses are
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2. P1(c1)

3. ∼P2(X1)

4. ∼P1(X3)|P2(X3)

• Clause 2 resolve with ∼P1(X3) from 4

• Then put P1(c1) into the SHB after applying the substitution σ = {c1/X3} to resol-

vent atom.

• And delete 2 and ∼P1(X3) from 4

• Next, the remaining clauses are

3. ∼P2(X1)

4. P2(X3)

• Clause 3 resolve with clause 4

• Then put P2(X1) into the SHB after applying the substitution σ = {X1/X3} to

resolvent atom and because substitution is a variable X1 then we replace it by a

placeholder variable H0

• And delete 3 and 4

Stop algorithm. SHB =

{P0(f3(f0(c0, c1), f0(f2(f1(f0(c0, c1))), c1), c1), f3(f0(c0, c1), f0(f2(f1(f0(c0, c1))), c1), c1), c1)︸ ︷︷ ︸
hb1

,

P1(c1)︸ ︷︷ ︸
hb2

, P2(H0)︸ ︷︷ ︸
hb3

}. The closed semantic tree of this example is shown in Figure 5.4.
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1. ∼P0(f3(f0(c0, c1), f0(f2(f1(X0)), c1), c1), f3(X0, f0(f2(f1(X0)), c1), c1), c1)

2. P1(c1)

3. ∼P2(X1)|P0(X2, X2, X1)

4. ∼P1(X3)|P2(X3)

N0

5.(1) �

N1

6.(3) ∼P2(c1)

N2 σ1 = {c1/X1}

7.(4) P2(c1)

N3σ2 = {c1/X3}

8.(6) �

N4σ3 = {c1/H0}

9.(7) �

N5

10.(2) �

N6

hb1 ∼hb1

P1(c1) ∼P1(c1)

[P2(H0)]σ3 = P2(c1) ∼P2(c1)

Figure 5.4: Closed semantic tree of the problem (ANA013-2.p) from example 5.1.3

While building of the tree, the placeholder variable H0 will be substituted by the constant

c1. The following are the steps in the construction of the closed semantic tree: First,

the root node is assigned to the set of clauses S from the problem from the example (i.e.

K(N0) = S) and the depth of the root node is 0. Because the empty clause is not in K(N0),

the semantic tree under construction is extended. Then the branch from N0 labeled with

hb1, the first element in SHB, is constructed and we arrive at node N1. The set of clauses

in K(N1) is found by resolving hb1 with the clauses in K(N0):

K(N1) = {�}
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In Figure 5.4, the notation describing Clause 5 says that it is formed by resolving the atom

on the branch leading to N1, that is atom hb1, with the literal in Clause 1 yielding the

empty clause. Once the empty clause is generated at a node, it is unnecessary to generate

other clauses at that node. So, node N1 is a failure node.

The construction continues by constructing the branch labeled with ∼hb1 and we arrive

at node N2. The set of clauses in K(N2) is found by resolving ∼hb1 with the clauses in

K(N0):

K(N2) = {∼P2(c1)}

In Figure 5.4, the notation describing Clause 6 says that it is formed by resolving the atom

on the branch leading to N2, that is atom ∼hb1, with the literal in Clause 3 yielding the

clause ∼P2(c1) with σ1 = {c1/X1}. Because N2 is at depth 1 and is not a failure node, D

is increased to 2 and the construction continues.

The branch labeled with atom hb2 is constructed, and node N3 is arrived at next. The

set of clauses in K(N3) is found by resolving hb2 with the clauses in K(N0) and K(N2):

K(N3) = {P2(c1)}

In Figure 5.4, the notation describing Clause 7 says that it is formed by resolving the

atom on the branch leading to N3, that is atom hb2, with the literal in Clause 4 yielding

the clause P2(c1) with σ2 = {c1/X3}. Because N3 is at depth 2 and is not a failure node,

D is increased to 3 and the construction continues.

The branch labeled with atom hb3 is constructed, and node N4 is arrived at next. The

set of clauses in K(N4) is found by resolving hb3 with the clauses in K(N0), K(N2), and

K(N3):

K(N4) = {�}

In Figure 5.4, the notation describing Clause 8 says that it is formed by resolving the
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atom on the branch leading to N4, that is atom hb3 = P2(H0), with the literal in Clause 6

yielding the empty clause with σ3 = {c1/H0}. And now we replace the placeholder variable

H0 with the constant c1 globally. So, hb3 = P2(c1). Once the empty clause is generated at

a node, it is unnecessary to generate other clauses at that node. So, node N4 is a failure

node.

The construction continues by constructing the branch labeled with ∼hb3 and we arrive

at node N5. The set of clauses in K(N5) is found by resolving ∼hb3 with the clauses in

K(N0), K(N2), and K(N3):

K(N5) = {�}

In Figure 5.4, the notation describing Clause 9 says that it is formed by resolving the

atom on the branch leading to N5, that is atom ∼hb3 = ∼P2(c1), with the literal in Clause

7 yielding the empty clause. Because N5 is a failure node then the construction continues

with N2 and constructs the right branch of N2, labelling it with ∼hb2 and leading to node

N6, where:

K(N6) = {�}

In Figure 5.4, Clause 10 is generated by resolving atom ∼hb2 with the literal in Clause

2 yielding the empty clause. Once the empty clause is generated, it is unnecessary to

generate other clauses at that node. So, node N6 is a failure node, and thus a closed

semantic tree is constructed.
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5.2 SSTTP Calculus

The SSTTP calculus starts with a clause set Φ, a candidate set and a Smart Herbrand

Base set SHB. Initially the candidate set is Φ (same as the clause set) and the SHB is

the empty set (denoted by ∅). So, the input is of the form [Φ, Φ, ∅] and, after the

derivation rules, we will get the proof of the clause set if all the leaves of the tree are

closed; otherwise, the algorithm continues until it runs out of resources (time or space) or

no rule is applicable. If there is no proof rule applicable then the SHB becomes an actual

model of the input clause set.

The calculus is refutationally sound and complete: Φ is a theorem if and only if from

[Φ, Φ, ∅] we can build a tree using the SSTTP calculus rules so that each leaf is closed

(that is, of the form [�, *, *], * stands for an arbitrary set). Chapter 6 will give the

soundness and completeness proof of the calculus. In the rules, we represent a clause set

Φ as (∼l|C, l′|C ′,Φ′), Where ∼l|C and l′|C ′ are two clauses from Φ and Φ′ is the rest

of clauses from Φ. Moreover, we denote by ∼l|C a clause D, such that ∼l is a literal

of D whilst C is the clause obtained by removing ∼l from D. And s is an atom of the

SHB set. The SSTTP calculus consists of three rules: HBG, Build tree and Close. All the

three rules take three input sets and give three output sets. The first two sets are clause

sets and the third one is a set of atoms. In SSTTP, we apply the HBG rule exhaustively.

Then, we apply the Build tree rule and the close rule whenever it is possible until we get a

proof or SHB is empty. If SHB is empty, then we apply the HBG rule exhaustively again.

So, we continue until a proof is found (that is, a closed semantic tree is constructed).

Therefore, the mechanism for the application of rules can be described as follows:

(HBG+ ◦ (Build tree | Close)+)+

where + means at least one application and ◦ means composition.
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• HBG:

Φ ∼l|C, l′|C ′,Φ′ SHB
Φ ∼l|C,C ′,Φ′ SHB, [l]σ If


σ = mgu(l, l′)

[l]σ /∈ SHB

The HBG rule describes the generating procedure of the Smart Herbrand Base (SHB)

for a given set of clauses. In this rule, we have three inputs: Φ which is the clause set,

∼l|C, l′|C ′,Φ′ is the candidate clause set that will be used to generate the Smart Herbrand

Base and SHB is the set of the Smart Herbrand Base atoms. Initially, the first and the

second inputs are the same (the original clause set) and the SHB is empty. Through this

rule, we will use only the second clause set and keep the first clause set unchanged. Then,

check the applicability of the resolution rule in the second clause set. If the resolution rule

is applicable then we delete the literal l′ from the clause C ′. After that, the algorithm

positions ∼l|C and C ′ together with Φ in one set and inserts l in the SHB after applying

σ to it. The HBG rule is applied repeatedly whenever we need to generate an SHB atom.

Example 5.2.1 will exemplify the HBG rule.

• Build tree:

Φ︷ ︸︸ ︷
∼l|C, l′|C ′,Φ′ Ψ [s]σ, SHB

∼l|C, l′|C ′,Φ′, [C]σ Φ, [C]σ SHB | ∼l|C, l′|C ′,Φ′, [C ′]σ Φ, [C ′]σ SHB

with


σ = mgu(l, l′, s)

[C]σ /∈ Φ and [C ′]σ /∈ Φ

The Build tree rule describes the derivation process of the semantic tree theorem prover

for a given set of clauses. In this rule, we have three inputs: Φ = ∼l|C, l′|C ′,Φ′ which

is the clause set, Ψ is the candidate clause set and [s]σ, SHB is the set of the Smart
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Herbrand Base atoms. The candidate set of the premise will not be used in the rule

because for the generation of all possible Smart Herbrand Base atoms with the HBG rule

it is necessary to use the full clause set Φ, with the new clauses included. Hence, the

candidate set of the conclusions (the second component of the conclusions) will be a copy

of the clause set (the first component of the conclusions). The Build tree rule works by

splitting along the two literals ∼l and l′ into two different clauses. Then, resolve ∼l|C

with [s]σ to get [C]σ in the left branch and resolve l′|C ′ with [∼s]σ to get [C ′]σ′ in the

right branch. The Build tree rule is applied to construct a semantic tree. Note that, s

is always ground or contains placeholder variables which can be instantiated only once.

Such an instantiation of a placeholder variable will always happen globally, that is, to the

full proof tree. Example 5.2.2 will explain how an instantantiation via σ = mgu(l, l′, s) is

applied.

• Close:
C,Φ′ Ψ SHB
� Ψ SHB If C is empty clause.

The Close rule describes the closure procedure of the semantic tree theorem prover. If

Φ = C,Φ′ contains the empty clause �, then this node is a leaf node and it is closed.

Example 5.2.1 Let Φ = {∼P (X1)|P (f(X1)),∼P (a))|∼P (f(X2)), P (X3), P (b)}. Apply

the HBG rule to generate the SHB set.

In the first run of the rule, the SHB = {P (H0)}. P (H0) comes after resolving ∼P (X1)

from the first clause and P (X3) from the third clause with substitution σ1 = {X1/X3}.

But because the atoms inside the SHB have to be ground, we replace variable X1 by H0

which is a placeholder variable.

In the second run of the rule, P (b) comes inside SHB after resolving ∼P (X1) from

first clause and P (b) from the forth clause with substitution σ2 = {b/X1}.

In the third run of the rule, the SHB = {P (H0), P (b), P (f(H1))}. P (f(H1)) comes
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after resolving P (f(X1)) from the first clause and ∼P (f(X2)) from the second clause with

substitution σ3 = {X1/X2}. But because the atoms inside the SHB have to be ground, we

replace variable X1 by H1 which is a placeholder variable.

Example 5.2.2 To explain how σ = mgu(l, l′, s) is computed in the Build tree rule we

consider example 5.2.1. Let Φ = {∼P (X1)|P (f(X1)),∼P (a))|∼P (f(X2)), P (X3), P (b)}

and s = P (H0) which is the first atom of SHB. Now, apply the Build tree rule.

In the left hand side, we get a clause [P (f(H0))]σ and a substitution {H0/X1} after

resolving ∼P (X1) from the first clause and s = P (H0).

In the right hand side, we get one clause [�]σ and a substitution {H0/X3} after re-

solving P (X3) from the third clause and s = P (H0).

Thus, σ = mgu(P (X1)︸ ︷︷ ︸
l

, P (X3)︸ ︷︷ ︸
l′

, P (H0)︸ ︷︷ ︸
s

) = {H0/X1, H0/X3}.

Example 5.2.3 Consider example 5.1.2. Φ = {P (a),∼P (X)|P (f(X)),∼P (f(f(a)))}.

Table 5.1 shows the steps of applying the SSTTP calculus. Figure 5.3 shows the closed

semantic tree of this example. Note that, The SSTTP prover builds the tree using depth-

first search approach. To construct this tree according to the SSTTP calculus, we apply the

HBG rule two times. So, we get two atoms inside the SHB which are P (a), P (f(f(a))).

Then, we apply the Build tree rule twice to generate N1 then N2 in the left path as in

Figure 5.3, and the close rule to close N2. In the right, we build N3. After that, the

SHB is empty and the node N3 is still open. So, we apply the HBG rule exhaustively

again with all the clauses in the path of N3 as an input and a candidate set. Then, we

get one atom inside the SHB which is P (f(a)). Then, we continue with the build tree

rule to get N4, N5 and the close rule to close these nodes. Now, we return to the root to

build the right node N6 then apply the close rule to close it. Then we get a proof (closed

semantic tree).
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Clause set Candidate set SHB set
Initially the SHB is empty:

Φ Φ ∅
Start with the HBG rule:

Φ P (f(X)),∼P (f(f(a))) P (a)
Apply the HBG rule again:

Φ ∅ P (a), P (f(f(a)))
The HBG rule stops because the candidate clause set is empty.
Start with the Build tree rule:
1 Φ ∅ P (a), P (f(f(a)))
1.1
(left)

Φ, P (f(a)) Φ, P (f(a)) P (f(f(a)))

1.1.1
(left)

Φ, P (f(a)),� Φ, P (f(a)),� ∅

Now apply the Close rule, because there is an empty clause, to close branch 1.1.1 (left)
1.1.2
(right)

Φ, P (f(a)),∼P (f(a)) Φ, P (f(a)),∼P (f(a)) ∅

Because the SHB is empty and this branch is still open, apply the HBG rule:
The first two runs of HBG are redundant. So, the third run will give:

Φ, P (f(a)),∼P (f(a)) Φ, P (f(a)),∼P (f(a)) ∅
Φ, P (f(a)),∼P (f(a)) ∅ P (f(a))

The HBG rule stops because the candidate clause set is empty.
Apply the Build tree rule:
1.1.2.1
(left)

Φ, P (f(a)),∼P (f(a)),� Φ, P (f(a)),∼P (f(a)),� ∅

Apply the Close rule, because there is an empty clause, to close branch 1.1.2.1 (left)
1.1.2.2
(right)

Φ, P (f(a)),∼P (f(a)),� Φ, P (f(a)),∼P (f(a)),� ∅

Apply the Close rule, because there is an empty clause, to close branch 1.1.2.2 (right)
1.2
(right)

Φ,� Φ,� P (f(f(a))), P (f(a))

Apply the Close rule, because there is an empty clause, to close branch 1.2 (right)
The proof is done.

Table 5.1: Applying the SSTTP calculus to the clause set of example 5.2.3.
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5.3 Variable Instantiation

This section presents the methods how SSTTP deals with variables. There are different

ways how to do that. In this dissertation, two ways for dealing with variables instantiation

are investigated. The first one is the conditional canonical order grounding, which grounds

variables according to the Herbrand Universe (HU ) order, which is generated applying

various conditions. The second method is the placeholder variable grounding, which

grounds variables by new free rigid variables.

5.3.1 Conditional canonical order grounding

This method grounds the variables according to the canonical order of the HU but with

certain conditions applied. Such conditions depend on the number of the generation of

the SHB: for example, the first generation of the SHB picks the first element in the HU ;

the second generation of the SHB picks the second element in the HU ; and so forth.

In more detail, let HU = {h1, h2, h3, . . .}, and Φ = {P (X1)|C,∼P (X2)|C ′, . . .} where C

represents the remaining literals of the first clause and C ′ represents the remaining literals

of the second clause. When applying the HBG rule, [P (X1)]σ is added to the SHB. But

because the substitution σ = {X1/X2} is not ground, substitute the variable X1 with

the first element in the HU. Therefore, SHB1 = {P (h1)}. Now, start applying the Build

tree rule and the Close rule. If the semantic tree is not closed, then apply HBG again to

regenerate the SHB. In the second generation of the SHB, substitute the variable X1 with

the second element in the HU. Thus, SHB2 = {P (h2)} and the building of the semantic

tree can continue. If it is not closed, apply HBG again and substitute X1 with h3 and so

on.
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5.3.2 Placeholder variable grounding

This method grounds the variables with new free variables. It is like variable renaming

the variables with new names so that it will not conflict with other variables in the tree.

Free variables are not local to a given clause, but rather are global to all clauses in the

semantic tree. These variables are grounded whenever a unification occurs with one side

of a constant or a function from the HU set during the process of building the tree. When

one of the free variables is ground, all its occurrence are grounded in the tree with the

same substitution. After constructing a closed semantic tree, if there are still free variables

in the tree, they will be grounded with an arbitrary constant. This is implemented in

the SSTTP program and tested with problems from the TPTP problem library. In more

detail, let Φ = {P (X1)|C,∼P (X2)|C ′, . . .} where C represents the remaining literals of

the first clause and C ′ represents the remaining literals of the second clause. When

applying the HBG rule, [P (X1)]σ is inserted in to the SHB. But because the substitution

σ = {X1/X2} is not ground, substitute the variable X1 with H1 first then start applying

the Build tree rule and the Close rule. This H1 is a placeholder variable acting as a

constant during the building of the semantic tree and will be substituted only when a

substitution with a ground term occurs. For example, if σ = {a/H1} occurs during the

building of the semantic tree then substitute all the occurrence of H1 inside the semantic

tree by a.

The next example 5.3.1 describes the difference between the two grounding methods.

Example 5.3.1 Let S be the following set of clauses:

1. ∼Q(f(a))

2. ∼R(f(b))

3. ∼P (X1)|R(f(X1))
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4. P (X2)|Q(X3)

Compute the HU of the example:

HU(S) = {a, b, f(a), f(b), f(f(a)), f(f(b)), . . .}.

The Smart Herbrand Base that is generated from the HBG rule:

SHB = {Q(f(a)), R(f(b)), [P (X1)]σ}.

Now, we solve the example according to the two methods:

1. Conditional canonical order grounding:

This grounding method will substitute variables before inserting atoms inside the

SHB according to the canonical order of the HU but with one condition. This con-

dition depends on the generation number of the SHB. If the program is in the first

generation of the SHB, we then take the first element in the HU which is a and

substitute X with a in the SHB. If the program is in the second generation of the

SHB, we then take the second element in the HU which is b and substitute X with

b in the SHB and so on.

In example 5.3.1, we start with the first generation of the SHB:

The substitution σi = {a/X}, and SHB = {Q(f(a)), R(f(b)), [P (X1)]σi}

= {Q(f(a)), R(f(b)), P (a)}.

The result of the first generation give us a non-closed semantic tree, as shown in

Figure 5.5. Accordingly, we start the second generation of the SHB to get a closed

semantic tree, as shown in Figure 5.6:

The substitution σj = {b/X}, and SHB = {Q(f(a)), R(f(b)), P (a), [P (X1)]σj}

= {Q(f(a)), R(f(b)), P (a), P (b)}
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1.∼Q(f(a))
2.∼R(f(b))
3.∼P (X)|R(f(X))
4.P (X)|Q(Y )

N0

5.(1) �

N1

6.(4) P (X)

N2 σ1 = {f(a)/Y }

7.(2) �

N3

8.(3) ∼P (b)

N4 σ2 = {b/X}

9.(3) R(f(a))

N5σ3 = {a/X}

10.(6) �

N6 σ4 = {a/X}
Open node
(semantic tree not closed)

Q(f(a)) ∼Q(f(a))

R(f(b)) ∼R(f(b))

P (a) ∼P (a)

Figure 5.5: 1st generation of the semantic tree of example 5.3.1 with conditional canonical
order grounding.
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1.∼Q(f(a))
2.∼R(f(b))
3.∼P (X)|R(f(X))
4.P (X)|Q(Y )

N0

5.(1) �

N1

6.(4) P (X)

N2 σ1 = {f(a)/Y }

7.(2) �

N3

8.(3) ∼P (b)

N4 σ2 = {b/X}

9.(3) R(f(a))

N5σ3 = {a/X}

12.(6) �

N8 σ4 = {a/X}

10.(8) �

N6

11.(6) �

N7 σ5 = {b/X}

Q(f(a)) ∼Q(f(a))

R(f(b)) ∼R(f(b))

P (a) ∼P (a)

P (b) ∼P (b)

Figure 5.6: Closed semantic tree of example 5.3.1 with conditional canonical order ground-
ing after 2nd generation of the SHB.
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2. Placeholder variable grounding:

This grounding method will substitute variables before inserting atoms in to the

SHB by placeholder variables. Subsequently, they will be substituted according to the

unification inside the Build tree rule.

In example 5.3.1, we start with the first generation of the SHB:

SHB = {Q(f(a)), R(f(b)), P (H0)}.

We then get a closed semantic tree, as shown in Figure 5.7.

1.∼Q(f(a))
2.∼R(f(b))
3.∼P (X)|R(f(X))
4.P (X)|Q(Y )

N0

5.(1) �

N1

6.(4) P (X)

N2 σ1 = {f(a)/Y }

7.(2) �

N3

8.(3) ∼P (b)

N4 σ2 = {b/X}

9.(8) �

N5σ3 = {b/H0}

10.(6) �

N6 σ4 = {b/X}

Q(f(a)) ∼Q(f(a))

R(f(b)) ∼R(f(b))

[P (H0)]σ3 = P (b) ∼P (b)

Figure 5.7: Closed semantic tree of example 5.3.1 with placeholder variable grounding
after only 1st generation of the SHB.

58



As we can see in example 5.3.1, the conditional canonical order approach can be

wasteful, since it first instantiates X by a and then by b, although only the latter is needed.

However, the placeholder variable grounding approach replaces X by the placeholder H0

which is directly instantiated by b. That is, in this example we expect the placeholder

variable grounding method to be better in time processing (faster) and in memory usage

than the conditional canonical order grounding method as it allows the semantic tree to

choose the required substitution as per its need from the unification during the building

of the semantic tree.

59



60



CHAPTER 6

Soundness & Completeness

The SSTTP theorem prover is based on a combination of the first-order resolution strat-

egy and a Herbrand strategy for introducing a refutation theorem proving procedure by

constructing a closed semantic tree. In order to show that the SSTTP calculus is sound,

we have to show that for any set of clauses Φ if from Φ a closed semantic tree has been

constructed applying the calculus rules that then the set of clauses Φ is unsatisfiable. The

corresponding proof is presented in Section 6.1. Moreover, the calculus is complete; that

is, if a given set of clauses Φ is unsatisfiable, then it is possible to construct a closed se-

mantic tree using the rules of the SSTTP calculus. In Section 6.2 a completeness proof of

the proof procedure is presented. Furthermore we show that, if the SSTTP calculus rules

are applied using a fair strategy, then a proof, if it exists, will be found in finitely many

steps as shown by Corollary 6.2.3, since a fair strategy cannot postpone the application of

a rule indefinitively and other rule applications will not prevent a rule from being applied.

6.1 Soundness proof

To prove the soundness of the SSTTP calculus, it suffices to show the validity of each

rule of the SSTTP calculus; that is, to show that, if a clause set is satisfiable and a rule
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is applied, at least one of the resulting clause sets is satisfiable (lemma 6.1.1). This corre-

sponds to the contrapositive statement that, if a closed semantic tree can be constructed,

then the original clause set must be unsatisfiable (theorem 6.1.2).

Lemma 6.1.1 For each rule of the SSTTP calculus, if the first component of the premise

of the rule is satisfiable (that is, the clause set (1) in the rule below is satisfiable), then

one of the first components of its conclusions is satisfiable as well (that is, clause set (2)

or clause set (3) is satisfiable).

Proof The proof consists of three parts, namely showing that each of the three rules in

calculus is sound.

• HBG: Since the clause set does not change in the HBG rule in Section 5.2, the

property holds trivially.

• Build tree: According to Build tree rule in Section 5.2, let us abbreviate the first

component of the premise as (1) and the first components of the conclusions as (2)

and (3), respectively.

(1)︷︸︸︷
Φ︷ ︸︸ ︷

∼l|C, l′|C ′, Φ′ Ψ [s]σ, SHB
∼l|C, l′|C ′, Φ′, [C]σ︸ ︷︷ ︸

(2)

Φ, [C]σ SHB | ∼l|C, l′|C ′, Φ′, [C ′]σ︸ ︷︷ ︸
(3)

Φ, [C ′]σ SHB

with


σ = mgu(l, l′, s)

[C]σ /∈ Φ and [C ′]σ /∈ Φ

Assume (1) is satisfiable; that is, there is a model M that satisfies (1). Assume

furthermore that (2) is unsatisfiable, then M is not a model of (2). Now we show

that M is a model of (3), hence (3) is satisfiable.
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Looking at (3), it consists of four components; the first three are the same as (1),

for whichM is a model. On the other hand, if we resolve (∼l|C) with (l′|C ′) in (1),

we get [C]σ|[C ′]σ where σ is always ground even if there are a placeholder variables,

i.e., they act as a ground terms. Because resolution is sound,M will satisfy at least

one of [C]σ and [C ′]σ. Since (2), which is ∼l|C, l′|C ′,Φ′, [C]σ, is unsatisfiable and

M is a model of the first three components of (2), M cannot satisfy [C]σ. Hence,

M must model the other part of the resolution [C ′]σ. Thus, M satisfies (3).

• Close rule: Since the premise of the Close rule in Section 5.2 contains the empty

clause, which is always unsatisfiable, the lemma 6.1.1 is trivially true (the premise

of the lemma 6.1.1 is not satisfiable).

Theorem 6.1.2 (Soundness) For all clauses in Φ, if Φ has a closed semantic tree, then

Φ is unsatisfiable.

Proof Let T be a subtree of a semantic tree and let N be its root. If T is a one-node

tree, then N can only have an empty clause (�), which is trivially unsatisfiable. If T

has more than one node, we can assume by induction that all the children nodes of N

are unsatisfiable. Furthermore, we can then also conclude that N is unsatisfiable by the

contrapositive of Lemma 6.1.1.

6.2 Completeness & Fairness

In this section we will first see a proof of the completeness of the SSTTP calculus. The

idea of this proof is to show that any resolution proof, which must exist because of the

completeness of resolution, can be transformed into an SSTTP proof by using a complexity

measure for the clause set. The complexity, c(C), of a clause, C, is defined as the number

of literals, li, in C. We prove the completeness by induction on the complexity of the
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clause set Φ. Furthermore we show in this section that a fair strategy will eventually

construct a proof if it exists.

Definition (Complexity) Let Φ be a set of clauses. Thus, Φ is either the empty clause,

�, or it is a conjunction of clauses, Φ = C1, . . . , Cn. We define the complexity, c(C), of a

clause, C, as follows:

c(C) =


0 If C = �

m− 1 If C = l1| . . . |lm where m ≥ 1

If Φ is a conjunction of clauses then

c(Φ) =
n∑
i=1

c(Ci) for Φ = C1, . . . , Cn

Remark Since the SHB is generated by binary resolution steps, at any stage in the proof

construction it contains only finitely many elements. Hence the HBG rule can be applied

only finitely often before the SHB will be regenerated.

Theorem 6.2.1 (Completeness) For all clauses in Φ, if Φ is unsatisfiable, then there

exists a proof (closed semantic tree) using rules of the SSTTP calculus. Therefore, the

SSTTP calculus is complete.

Proof We prove the theorem by induction on c(Φ). Let Φ = C1, . . . , Cn. Assume Φ 6=

{�}, since the case Φ = {�} is trivial.

• Base case: If c(Φ) = 0, then every clause Ci contains a single literal and if Φ is

unsatisfiable, then there must be two complementary clauses, Ci = ∼l and Cj = l′

in Φ with σ = mgu(l, l′). Thus, by the HBG rule, we add [l]σ to the SHB set.

Then, by the Build tree rule, we build a semantic tree using [l]σ from the SHB.
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Accordingly, we split the tree with the positive [l]σ in the left branch in order to get

the empty clause by resolving [l]σ with the clause Ci. The other split part consists

of the negative [∼l]σ in the right branch to get the empty clause by resolving [∼l]σ

with the clause Cj. Finally, by the Close rule, we close the left branch because of

the empty clause and we close the right branch because of the empty clause.

Concretely, consider Φ is an unsatisfiable set of clauses. Let C0 be the clause con-

taining ∼l and C1 the clause containing l′. The rest of the clauses in Φ is called Φ′.

The following is a SSTTP calculus proof:

Φ C0, C1,Φ′ SHB
Φ �,Φ′ SHB, [l]σ HBG rule

C0, C1,Φ′,� Φ,� SHB | C0, C1,Φ′,� Φ,� SHB Build tree rule

� � SHB | � � SHB Close rule

• Step case: Let the complexity for c(Φ) be greater than 0. We assume that the

completeness of SSTTP for all clause sets with complexity smaller than c(Φ) holds.

We have to show that we can apply SSTTP rules such that each subproblem has a

complexity smaller than c(Φ). Since c(Φ) > 0 there are some clauses in Φ that con-

tain at least two literals, and since Φ is an unsatisfiable set, there exists a resolution

proof for Φ. In each step of the resolution proof, we have a cut literal. Consider two

clauses (A∪ {l}) and (B ∪ {l′}), where l and l′ are two complementary literals with

σ = mgu(l, l′), then the resolvent is ([A]σ|[B]σ) and the cut part is [l]σ. This cut

part [l]σ from the resolution proof is generated by the HBG rule, which accumulates

this [l]σ in the SHB.

Now, pick this l and the clause C that contains l. Write C = A∪{l} where l /∈ A and
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A 6= {�}, since C contains at least two literals. Write Φ = ∆, C (note that ∆ cannot

be empty since Φ is unsatisfiable). As Φ = ∆, A ∪ {l} is unsatisfiable, both ∆, A

and ∆, l must be unsatisfiable. However, observe that c(∆, A) < c(Φ) (this follows

from the definition of c since Φ = ∆, A∪ {l}) and c(∆, l) < c(Φ). Therefore, by the

induction hypothesis, the SSTTP calculus produces two closed semantic trees, T1

and T2, with sets of premises ∆, A and ∆, l, respectively as shown in Figure 6.1.

∆, A

T1

. . .

� �. . . . . .

∆, l

T2

. . .

� �. . . . . .

Figure 6.1: Closed semantic tree of T1 and T2.

Now, consider the semantic tree T ′1, obtained from T1 by adding l to the clause A

and letting l percolate down to the leaves.

Observe that in T ′1, every clause that is a descendant of the premise A∪{l} is of the

form C ∪ {l}, where C is the corresponding clause in T1. Therefore, the leaves of

the new T ′1 obtained from T1 either contain the empty clause (when another clause

already contains l), or l.

– Case 1: If l ∈ ∆. A leaf of T ′1 contains the empty clause:

T ′1 is a closed semantic tree by the Close rule and we are done. Figure 6.2

shows the closed semantic tree of T ′1 , if l ∈ ∆.

– Case 2: If l /∈ ∆. A leaf of T ′1 contains l:
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∆, A ∪ {l}

T ′1

. . .

� �. . . . . .

Figure 6.2: Closed semantic tree of T ′1 when l ∈ ∆.

We can combine T ′1 and T2 using both SHB sets of T1 and T2. Since the leaves

of T ′1 also contain l, one of the premises of T2. We obtain a closed semantic

tree for Φ. Figure 6.3 shows the closed semantic tree of T ′1 , if l /∈ ∆.

∆, A ∪ {l}

T ′1

. . .

� l. . . . . .

. . .

� �. . . . . .

+T2

Figure 6.3: Closed semantic tree of T ′1 when l /∈ ∆
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This concludes the proof.

Whilst the completeness property guarantees that, for each unsatisfiable clause set

there is an SSTTP proof, fairness in the application of the rules guarantees that such

a proof will eventually be found. Therefore, any applicable rule from the SSTTP proof

sequence must not be postponed indefinitely.

Definition (Fairness) Fairness means that whenever a concrete rule application is pos-

sible, it will not be postponed indefinitely.

Definition (R− sequence) R = {r1, . . . , rn} is a sequence of rules from SSTTP that

consists of three different rules:

• HBG rule: ri where 0 ≤ i ≤ n.

• Build tree rule: rj where 0 ≤ j ≤ n.

• Close rule: rm where 0 ≤ m ≤ n.

Definition (π) A permutation π on a set R is a bijective (one-to-one) map from R to

itself.

In order to show the fairness result, it is important to know that a permutation of a

given sequence of rules from SSTTP can also produce a proof of Φ, i.e., if we reorder the

applicable rules then we still can get a proof if it exists. The next lemma will make this

formal.

Lemma 6.2.2 If R = {r1, . . . , rn} is a proof of Φ from SSTTP and π(R) = {rπ1 , . . . , rπn}

is an applicable sequence of rules, then π(R) is a proof of Φ from SSTTP.

Proof Assume Φ is an unsatisfiable set of clauses and R is a set of applicable rules

that form an SSTTP proof of Φ. Remember the SSTTP calculus consists of three rules:
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the HBG rule, the Build tree rule and the Close rule. To ensure the fairness of the

SSTTP proof, we have to show that, if we reorder any two applicable rules from R, we

still have a proof.

Since the sequence R is a proof, one of the rules ri must be the Close rule. It is trivial

that ri can be reordered with any rule and postponed until the end of the set because

the Close rule terminates any node that is applicable to use the Close rule. So, it does

not matter if we use the Close rule first or another applicable rule first (assumed that the

Close rule remains applicable).

Now, we have to show that if we reorder the HBG rule and the Build tree rule, the

proof is still fulfilled. Assume ri comes before rj in the sequence R, then we show that if

we reorder R by a permutation π so that rj comes before ri in π(R), then the sequence

π(R) is still a proof of Φ. Since R is a combination of the HBG rule, the Build tree rule

and the close rule, and the reorder of the close rule is trivial, as stated earlier, we need to

consider only the following cases:

Case 1: ri and rj are both HBG rules.

Case 2: ri is a HBG rule and rj is a Build tree rule.

Case 3: ri and rj are both Build tree rules.

• Case 1: There are at least four literals in Φ. This gives us two resolvents. Ac-

cordingly, in this case we can carry out two resolution steps: first, ri will produce

[lk]σk and put it in the SHB; and second, rj will produce [lm]σm and put it in the

SHB. Therefore, SHB = {[lk]σk, [lm]σm}. Moreover, if we change the order of the

rules–that is, if we start with rj first then ri–then we have SHB′ = {[lm]σm, [lk]σk}.

Since, SHB = SHB′, π(R) is also a proof.

• Case 2: Since both of them are applicable at this stage, SHB 6= {�}. If we first

execute ri then we will add a new atom [lk]σk to the SHB. Therefore, there will
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be at least two atoms in the SHB. Then the execution of rj will not depend on ri

because it will use one of the atoms that is already inside the SHB to split the tree

and it is not necessary to be [lk]σk. Since ri and rj do not depend on each other,

π(R) is also a proof.

• Case 3: In this case, both rules are applications of the Build tree rule. Since the

Build tree rule depends on resolution between two literals, there should be two

resolution steps (one for ri and the other for rj). Therefore, the set of clauses

consists of two complementary pairs of literals {∼lk, l′k} and {∼lm, l′m}. So, the set

of clauses Φ can be one of the following cases:

Case 3-1: each literal of complementary pair located in separate clause.

Φ = ∼lk|Ck, l′k|C ′k, ∼lm|Cm, l′m|C ′m, Φ′

Case 3-2: literals complementary pair located in two clauses.

Φ = ∼lk|∼lm|Ck, l′k|l′m|C ′k, Φ′

Case 3-3: literals complementary pair located in three clauses.

Φ = ∼lk|Ck, l′k|∼lm|Cm, l′m|C ′m, Φ′

Now, start proving each case separately:

– Case 3-1: Assume Φ = ∼lk|Ck, l′k|C ′k, ∼lm|Cm, l′m|C ′m, Φ′ and

SHB = {[si]σi, [sj]σj, [st]σt, . . . , [sn]σn}. The ri will split using [si]σi atom and

the rj will split using [sj]σj atom. If we start first with ri we get the following

two branches:

ri
Φ Ψ {[si]σi, [sj]σj, [st]σt, . . . }

Φ, [Ck]σi︸ ︷︷ ︸
N1

N1 {[sj]σj, . . . } | Φ, [C ′k]σi︸ ︷︷ ︸
N2

N2 {[sj]σj, . . . }
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If we split now with rj we get the following four branches:

rj
N1 N1 {[sj]σj, . . . }

Φ, [Ck]σi, [Cm]σj︸ ︷︷ ︸
N3

N3 {[st]σt, . . . } | Φ, [Ck]σi, [C ′m]σj︸ ︷︷ ︸
N4

N4 {[st]σt, . . . }

rj
N2 N2 {[sj]σj, . . . }

Φ, [C ′k]σi, [Cm]σj︸ ︷︷ ︸
N5

N5 {[st]σt, . . . } | Φ, [C ′k]σi, [C ′m]σj︸ ︷︷ ︸
N6

N6 {[st]σt, . . . }

Now let us see the permutation, which will start first with rj and get the

following two branches:

rj
Φ Ψ {[sj]σj, [si]σi, [st]σt, . . . }

Φ, [Cm]σj︸ ︷︷ ︸
N ′

1

N ′1 {[si]σi, . . . } | Φ, [C ′m]σi︸ ︷︷ ︸
N ′

2

N ′2 {[si]σi, . . . }

If we split now with ri we get the following four branches:

ri
N ′1 N ′1 {[si]σi, . . . }

Φ, [Cm]σj, [Ck]σi︸ ︷︷ ︸
N3

N3 {[st]σt, . . . } | Φ, [Cm]σj, [C ′k]σi︸ ︷︷ ︸
N5

N5 {[st]σt, . . . }

ri
N ′2 N ′2 {[si]σi, . . . }

Φ, [C ′m]σj, [Ck]σi︸ ︷︷ ︸
N4

N4 {[st]σt, . . . } | Φ, [C ′m]σj, [C ′k]σi︸ ︷︷ ︸
N6

N6 {[st]σt, . . . }

Since ri and rj do not depend on each other, i. e., ri used ∼lk|Ck, l′k|C ′k to

split with [si]σi and rj used ∼lm|Cm, l′m|C ′m to split with [sj]σj, the derivation

steps of the rules give the same results after reordering the rules. Hence π(R)

is also a proof.

– Case 3-2: Assume Φ = ∼lk|∼lm|Ck, l′k|l′m|C ′k, Φ′ and

SHB = {[si]σi, [sj]σj, [st]σt, . . . , [sn]σn}. The ri will split using [si]σi atom and

the rj will split using [sj]σj atom. If we start first with ri we get the following
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two branches:

ri
Φ Ψ {[si]σi, [sj]σj, [st]σt, . . . }

Φ, [∼lm|Ck]σi︸ ︷︷ ︸
N1

N1 {[sj]σj, . . . } | Φ, [l′m|C ′k]σi︸ ︷︷ ︸
N2

N2 {[sj]σj, . . . }

If we split now with rj we get the following four branches:

rj
N1 N1 {[sj]σj, . . . }

N1, [∼lk|Ck]σj︸ ︷︷ ︸
N3

N3 {[st]σt, . . . } | N1, [l′k|C ′k]σj︸ ︷︷ ︸
N4

N4 {[st]σt, . . . }

rj
N2 N2 {[sj]σj, . . . }

N2, [∼lk|Ck]σj︸ ︷︷ ︸
N5

N5 {[st]σt, . . . } | N2, [l′k|C ′k]σj︸ ︷︷ ︸
N6

N6 {[st]σt, . . . }

Now let us see the permutation, which will start first with rj then ri. We get

the following two branches:

rj
Φ Ψ {[sj]σj, [si]σi, [st]σt, . . . }

Φ, [∼lk|Ck]σj︸ ︷︷ ︸
N ′

1

N ′1 {[si]σi, . . . } | Φ, [l′k|C ′k]σj︸ ︷︷ ︸
N ′

2

N ′2 {[si]σi, . . . }

If we split now with ri we get the following four branches:

ri
N ′1 N ′1 {[si]σi, . . . }

N ′1, [∼lm|Ck]σi︸ ︷︷ ︸
N3

N3 {[st]σt, . . . } | N ′1, [l′m|C ′k]σi︸ ︷︷ ︸
N5

N5 {[st]σt, . . . }

ri
N ′2 N ′2 {[si]σi, . . . }

N ′2, [∼lm|Ck]σi︸ ︷︷ ︸
N4

N4 {[st]σt, . . . } | N ′2, [l′m|C ′m]σi︸ ︷︷ ︸
N6

N6 {[st]σt, . . . }

Since firstly ri and rj are not dependent on each other because they use different

substitutions, i. e., ri used [si]σi and rj used [sj]σj, and since secondly the

derivation steps of the rules give the same results after reordering the rules, it

follows that π(R) is also a proof.
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– Case 3-3: Assume Φ = ∼lk|Ck, l′k|∼lm|Cm, l′m|C ′m, Φ′ and

SHB = {[si]σi, [sj]σj, [st]σt, . . . , [sn]σn}. The ri will split using [si]σi atom and

the rj will split using [sj]σj atom. If we start first with ri we get the following

two branches:

ri
Φ Ψ {[si]σi, [sj]σj, [st]σt, . . . }

Φ, [Ck]σi︸ ︷︷ ︸
N1

N1 {[sj]σj, . . . } | Φ, [∼lm|Cm]σi︸ ︷︷ ︸
N2

N2 {[sj]σj, . . . }

If we split now with rj we get the following four branches:

rj
N1 N1 {[sj]σj, . . . }

N1, [l′k|Cm]σj︸ ︷︷ ︸
N3

N3 {[st]σt, . . . } | N1, [C ′m]σj︸ ︷︷ ︸
N4

N4 {[st]σt, . . . }

rj
N2 N2 {[sj]σj, . . . }

N2, [l′k|Cm]σj︸ ︷︷ ︸
N5

N5 {[st]σt, . . . } | N2, [C ′m]σj︸ ︷︷ ︸
N6

N6 {[st]σt, . . . }

Now let us see the permutation, which will start first with rj we get the fol-

lowing two branches:

rj
Φ Ψ {[sj]σj, [si]σi, [st]σt, . . . }

Φ, [l′k|Cm]σj︸ ︷︷ ︸
N ′

1

N ′1 {[si]σi, . . . } | Φ, [C ′m]σj︸ ︷︷ ︸
N ′

2

N ′2 {[si]σi, . . . }

If we split now with ri we get the following four branches:

ri
N ′1 N ′1 {[si]σi, . . . }

N ′1, [Ck]σi︸ ︷︷ ︸
N3

N3 {[st]σt, . . . } | N ′1, [∼lm|Cm]σi︸ ︷︷ ︸
N5

N5 {[st]σt, . . . }

ri
N ′2 N ′2 {[si]σi, . . . }

N ′2, [Ck]σi︸ ︷︷ ︸
N4

N4 {[st]σt, . . . } | N ′2, [∼lm|Cm]σi︸ ︷︷ ︸
N6

N6 {[st]σt, . . . }
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Since ri and rj do not depend on each other because they used different substi-

tutions, i. e., ri used [si]σi and rj used [sj]σj, the derivation steps of the rules

give the same results after reordering the rules. That is, π(R) is also a proof.

Corollary 6.2.3 (Fairness) If the strategy for the application of SSTTP rules is fair

then for any unsatisfiable clause set an SSTTP proof will be constructed eventually.

The corollary implies that as long as the SSTTP rules guarantee fairness throughout

the process of implementing the applicable rules, the order is not important in terms of

gathering the SSTTP proof of a given unsatisfiable clause set if the postponed rules are

executed eventually.
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CHAPTER 7

Implementation, Heuristics, and Experiments

For efficient implementation, SSTTP requires heuristics and a proper way of dealing with

variables. In case of variables instantiation, Bjork [9, 10] introduced a rule known as the

dilemma rule, which deals with rigid variables in a tableaux procedure. His system does

not allow any unification of rigid variables, except when the dilemma branches are merged.

Bjork was interested to find the instances of rigid variables that can help his system

progress further. Moreover, Bjork describes the difference between the rigid variables and

the constants. He said that the difference arises when we define substitutions, which are

finite mappings from both universal and rigid variable symbols to terms. In other work,

Voronkov [51] presents various strategies that deal with rigid variables. He studied the

complexity of methods using rigid variables, such as the method of matings or the tableau

method, on a decidable subclass of the predicate calculus with equality. He also dealt with

strategies for increasing multiplicity in rigid-variable methods. In this dissertation, the

placeholder variables are acting as rigid variables. They are used to replace the variables in

the SHB and they are treated as constants until they are intantiated with a ground terms

globally during the building of a semantic tree. In the SSTTP prover, the placeholder

variables are used to deal with variable instantiation, as described in Section 5.3.
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In the following, we will first briefly describe the implementation of the SSTTP prover

and then we add the heuristics to the SSTTP prover in order to improve its overall

performance. Such heuristic techniques help us to effectively select atoms from the Her-

brand base to build the SHB. Section 7.2 introduces the heuristics that are implemented

and tested in our prover. After that, Section 7.3 presents the comparison between the

heuristics.

7.1 SSTTP Implementation

In this section, we briefly describe the data structure that is used in the SSTTP pro-

gram and the phases the program goes through in order to generate the proof in Subsec-

tions 7.1.1 and 7.1.2, respectively.

7.1.1 SSTTP Data Structure

This subsection introduces the data structure of the SSTTP program. The data structure

presents the clause set as a structure of a link list of clauses. Each clause is built as a

link list of terms, which is constructed as a tree of a child and a sibling. For example, a

clause P0(X0, f0(c0, X1))|P0(c0, f1(f1(c1))) will be presented in a tree structure as shown

in Figure 7.1.

In addition, a parser is built to convert the CNF format from the TPTP library to a

clause set by using the Bison and Flex software. Furthermore, the SSTTP functions are

constructed.
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Figure 7.1: Data structure graph for a clause.

7.1.2 SSTTP phases

This subsection describes the construction of the Smart Semantic tree Theorem Prover

(SSTTP). This program will be used to achieve the effective construction of closed se-

mantic trees of unsatisfiable clauses. The SSTTP program is divided into three phases.

The first phase is a parsing module that operates on a given theorem. It converts the

input set into a simple format that is required by the second phase. In the second phase,

a collecting module gathers the SHB atoms with the help of the HBG algorithm, as de-

scribed in Section 5.1. Finally, the last phase is concerned with building the semantic

tree by using the atoms that were generated in the second phase. The following points

describe the three phases in more detail:
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1. Parsing TPTP problems:

Given a theorem (i.e. an unsatisfiable set S of clauses) selected from the TPTP li-

brary, the ‘ssttp parser.y’ and ‘ssttp lexer.l’ modules convert a conjunctive normal

form (CNF) format of the given input from TPTP to a clause set. With the help

of some functions from ‘clauses.c’ module in the SSTTP program, a simple clause

set format that represents the given problem is generated, which the rest of the

SSTTP program will use. The methods are implemented using the Flex and Bison

syntax [26].

2. Collecting Smart Herbrand Base atoms:

Given a set of clauses from the parser, the ‘collect.c’ module will generate the so-

called SHB with the help of functions from the ‘rename.c’, ‘unify.c’ and ‘meta var.c’

modules. Each one of these modules has a number of functions. An important func-

tion is ‘collect SHB()’ function from ‘collect.c’. This function executes the HBG al-

gorithm, which computes the smart atoms, and collects them in the SHB set with

the help of other functions in the program.

3. Building closed semantic tree:

Using the simplified clauses, which were generated by the parsing modules, and

the SHB atoms, which were generated by the collecting modules, the ‘semantic.c’

module builds a closed semantic tree.
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7.2 Heuristics

The heuristic strategies enhance the elimination of useless nodes in building semantic

trees. In this dissertation four heuristic strategies will be introduced and studied. Sub-

section 7.2.1 presents the unit preference heuristic with an example. The idea of heuristic

h1 is that it is beneficial to apply splitting on units first. Subsection 7.2.2 describes the

degree order heuristic. The degree order heuristic h2 is a generalization of the units first

heuristic h1 in that it applies splitting on simpler formulae first in order to obtain smaller

semantic trees. Subsection 7.2.3 shows the impact heuristic h3. Its idea is to select the el-

ement in the SHB that makes the biggest impact in the sense that the corresponding atom

resolves with as many clauses as possible. Finally, Subsection 7.2.4 introduces a strategy

h4 that is used to eliminate useless atoms inside the SHB whilst building the semantic

tree. These heuristic strategies were implemented and tested in the SSTTP prover. Af-

ter describing the heuristics in detail, an empirical comparison is drawn between all four

heuristics, as shown in Section 7.3 using the relevant problems from the TPTP problem

collection [47].

7.2.1 SSTTP-h1: Unit heuristic

The unit heuristic strategy used in the SSTTP prover is similar to the unit-preference

strategy that Nilsson [33] used in resolution to reduce the size of the literals.

Definition (Unit heuristic) Let Φ = {P1, . . . , Pn} be given. A Smart Herbrand Base

generated applying the Unit restriction heuristic h1 means that for any two elements hbi

and hbj in SHB = (hb1, . . . , hbm) holds if i < j and hbj has been generated with the

HBG rule by resolving on a unit then hbi must also be generated by resolving on a unit,

that is, all the elements in SHB, generated by resolving on a unit come before all the

others in SHB.
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The unit heuristic strategy collects all unit clauses from the base set of the given

input problem, and incorporates them within the SHB before generating atoms using the

SSTTP calculus. This will help the SSTTP prover to close at least one node immediately

after each level of the semantic tree. Hence, the complexity of the semantic tree is reduced.

Therefore, this strategy looks promising for the efficiency of the SSTTP prover in terms

of the size of the semantic tree and of the processing time. Tables 7.1, 7.2 show the

results of using the unit heuristic in testing the SSTTP prover with selected problems

from the TPTP library [47]. For these test we used the most powerful computer in the

School of Computer Science, GPU (with 24 CPU Intel 2.4 GHz computers with 47 GB of

RAM), and limited each run to at most 100 seconds. The selected problems presented in

this chapter are a subset of the full tables that can be found in the appendix. Here, we

choose only the problems that can be solved using one or both SSTTP with and without

the use of the heuristics to make the comparison fair. From the tables, we can observe

that 18 problems – highlighted in green – out of 57 (31.58%) were proved by SSTTP-h1

in less time and with a smaller number of nodes in the semantic tree than without the

heuristics. Moreover, (52.63%) of the results are the same, and on 9 results highlighted

in red (15.79%) h1 did not performed so well as without the heuristics.

For example, observe the problem number 41 (LCL446-2.p) in the Table 7.2. SSTTP with-

out the heuristics get a closed semantic tree with only 15 nodes in zero second. Whereas,

SSTTP with the unit heuristic cannot find a proof even until 100 seconds. Because of

the atoms chosen inside SHB. SSTTP-h1 waste time using useless unit atoms first and

postponing the useful atoms that generated by HBG algorithm. Example 7.2.1 shows the

SHB that give us a closed semantic tree for the problem (LCL446-2.p).
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Theorem SSTTP SSTTP-h1
time nodes number time nodes number

1 ANA013-2 0.000 7 0.000 9
2 ANA041-2 0.000 3 0.000 3
3 ANA042-2 0.000 3 0.000 5
4 CAT007-3 0.470 1739 0.000 11
5 COL101-2 0.000 3 0.000 3
6 COL102-2 0.190 503 0.200 503
7 COL103-2 0.000 3 0.000 3
8 COL104-2 0.200 503 0.190 503
9 COL105-2 0.000 5 0.000 5
10 COL109-2 2.640 1495 1.620 1101
11 COL111-2 0.000 5 0.000 5
12 COL112-2 0.000 7 0.000 11
13 COL113-2 0.000 3 0.000 3
14 COL114-2 0.000 5 0.000 5
15 COL115-2 0.000 7 0.000 11
16 COL116-2 0.000 3 0.000 3
17 COL117-2 2.580 1493 0.000 19
18 COL119-2 0.000 5 0.000 5
19 COL120-2 0.000 5 0.000 5
20 COL122-2 0.000 5 0.000 5
21 COL124-2 T/O - 1.120 1735
22 COM001-1 0.090 453 0.010 101
23 COM002-1 2.260 2769 1.760 1993
24 COM002-2 0.490 1809 0.020 143
25 FLD006-3 2.960 1097 0.000 11
26 FLD010-3 M/O - 15.550 1377
27 GEO079-1 0.000 7 0.000 7

Table 7.1: The test results of SSTTP prover, with and without the unit heuristic, in the
TPTP library. (T/O means time out and M/O means memory out)
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Theorem SSTTP SSTTP-h1
time nodes number time nodes number

28 KRS004-1 0.000 5 0.000 5
29 LAT272-2 0.000 7 0.000 7
30 LAT273-2 M/O - 0.000 13
31 LCL007-1 0.030 53 0.030 53
32 LCL076-2 0.000 11 0.000 11
33 LCL360-1 0.030 89 0.030 89
34 LCL432-2 0.000 5 0.000 5
35 LCL435-2 0.000 5 0.000 5
36 LCL436-2 0.000 5 0.000 5
37 LCL437-2 0.000 5 0.000 5
38 LCL438-2 0.000 21 0.000 23
39 LCL440-2 0.000 3 0.000 3
40 LCL441-2 0.000 17 0.000 19
41 LCL446-2 0.000 15 M/O -
42 LCL447-2 0.000 7 0.000 7
43 MGT022-1 0.000 53 0.000 31
44 MGT022-2 0.000 53 0.000 31
45 MGT036-3 0.220 227 0.020 81
46 MGT041-2 0.000 23 0.000 15
47 PUZ008-1 0.440 297 0.290 151
48 PUZ012-1 0.680 2553 0.010 119
49 PUZ018-1 M/O - 0.900 423
50 PUZ019-1 M/O - 14.210 2041
51 PUZ035-1 0.030 357 0.030 357
52 PUZ035-2 0.040 429 0.040 429
53 PUZ035-3 1.150 1495 1.170 1495
54 PUZ035-4 1.030 1731 1.050 1731
55 PUZ035-5 0.000 89 0.010 91
56 PUZ035-6 0.000 89 0.010 91
57 PUZ035-7 0.300 477 0.310 477

Table 7.2: Continue Table 7.1, Test results of SSTTP prover with and without the unit
heuristic in TPTP library. (T/O means time out and M/O means memory out)
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Example 7.2.1 Let us consider the following problem from the Logic Calculi domain

(LCL446-2.p) in TPTP. Let S be the following set of clauses:

1. ∼P0(f0(c0, c0, c1), f1(c2, c1), f2(c1))

2. P0(f0(X0, f0(X1, X0, X2), X2), f1(X3, X2), f2(X2))

3. ∼P0(X4, f1(X5, X6), f2(X6))|

∼P0(f0(X4, X7, X6), f1(X5, X6), f2(X6))|P0(X7, f1(X5, X6), f2(X6))

4. P0(f0(f0(X8, f0(X9, X10, X11), X11), f0(f0(X8, X9, X11), f0(X8, X10, X11),

X11), X11), f1(X12, X11), f2(X11))

The following are the first 7 atoms of the SHB that builds a closed semantic tree. And

these atoms are generated by SSTTP without using any heuristics:

SHB = {P0(f0(c0, c0, c1), f1(c2, c1), f2(c1)), P0(f0(H0, f0(H1, H0, c1), c1), f1(c2, c1), f2(c1)),

P0(H2, f1(c2, c1), f2(c1)),

P0(f0(f0(H3, f0(H4, H5, c1), c1), f0(f0(H3, H4, c1), f0(H3, H5, c1), c1), c1), f1(c2, c1), f2(c1)),

P0(f0(c0, f0(c0, c0, c1), c1), f1(c2, c1), f2(c1)), P0(f0(H6, f0(c0, c0, c1), c1), f1(c2, c1), f2(c1)),

P0(H7, f1(c2, c1), f2(c1)), . . . }.

The motivation behind the unit heuristic is to close branches containing unit clauses

earlier to reduce the size of the semantic tree. Unfortunately, this heuristic is only helpful

when the clause set contains unit clauses and the complementary literals of them. Also,

the use of the unit heuristic is useful when the unit clauses are grounded; that is, it is

better if we build semantic tree with grounded atoms from SHB as in example 7.2.2.

Example 7.2.2 Let us consider the following problem from the Category Theory domain

(CAT007-3.p) in TPTP. Let S be the following set of clauses:

1. P0(X0, X0)
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2. ∼P0(X1, X2)|P0(X2, X1)

3. ∼P0(X3, X4)|∼P0(X4, X5)|P0(X3, X5)

4. ∼P1(f0(X6))|P1(X6)

5. ∼P1(f0(X7))|∼P0(f0(X7), f1(X8))|P1(f2(X7, X8))

6. P1(f3(X9, X10))|P0(X9, X10)

7. P0(X11, f3(X11, X12))|P0(X12, f3(X11, X12))|P0(X11, X12)

8. ∼P0(X13, f3(X13, X14))|∼P0(X14, f3(X13, X14))|P0(X13, X14)

9. P1(f0(c0))

10. P1(f0(c1))

11. P0(f0(c0), f1(c1))

12. ∼P1(f2(c0, c1))

The following is the SHB without using any heuristics:

SHBa = {P0(H0, H0), P0(H1, H1), P0(H2, H2), P0(H3, H4), P0(H5, H6),

P0(H7, f3(H7, H8)), P0(H9, f3(H10, H9)), P0(H11, H12), P0(H13, H14),

P0(f0(c0), f1(c1)), P0(H15, H16), P0(H17, H18), P0(f0(H19), f1(H20)),

P0(H21, f3(H21, H22)), P0(H23, f3(H24, H23)), P1(f0(c0)), P1(f0(c1)),

P1(f0(H25)), P1(f2(c0, c1)), P0(H26, f3(H26, H26)), P0(H27, f3(H27, H27))}.

Using SHBa the SSTTP prover builds a closed semantic tree consisting of 1739 nodes

in 0.470 sec. The following is the SHB with using the unit heuristic h1:

SHBu = {P0(H0, H0), P1(f0(c0)), P1(f0(c1)), P0(f0(c0), f1(c1)), P1(f2(c0, c1)),

P0(H1, H1), P0(H2, H2), P0(H3, H3), P0(H4, H5), P0(H6, H7), P0(H8, f3(H8, H9)),

P0(H10, f3(H11, H10)), P0(H12, H13), P0(H14, H15), P0(H16, H17), P0(H18, H19),
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P0(f0(H20), f1(H21)), P0(H22, f3(H22, H23)), P0(H24, f3(H25, H24)), P1(f0(H26)),

P0(H27, f3(H27, H27)), P0(H28, f3(H28, H28))}.

Using SHBu the SSTTP prover builds a closed semantic tree consisting of 11 nodes in

time close to 0 sec. Figure 7.2 introduce the closed semantic tree of example 7.2.2 using

the unit heuristic.

1. P0(X0, X0)

2. ∼P0(X1, X2)|P0(X2, X1)

3. ∼P0(X3, X4)|∼P0(X4, X5)|P0(X3, X5)

4. ∼P1(f0(X6))|P1(X6)

5. ∼P1(f0(X7))|∼P0(f0(X7), f1(X8))|P1(f2(X7, X8))

6. P1(f3(X9, X10))|P0(X9, X10)

7. P0(X11, f3(X11, X12))|P0(X12, f3(X11, X12))|P0(X11, X12)

8. ∼P0(X13, f3(X13, X14))|∼P0(X14, f3(X13, X14))|P0(X13, X14)

9. P1(f0(c0))

10. P1(f0(c1))

11. P0(f0(c0), f1(c1))

12. ∼P1(f2(c0, c1))

N0

13.(2) P0(H0, H0)
14.(3) ∼P0(H0, X15)|P0(H0, X15)

N1

15.(4) P1(c0)
16.(5) ∼P0(f0(c0), f1(X16))|P1(f2(c0, X16))

N2σ1 = {c0/X6} σ2 = {c0/X7}

17.(4) P1(c1)
18.(5) ∼P0(f0(c1), f1(X17))|P1(f2(c1, X17))

N3σ1 = {c1/X6} σ2 = {c1/X7}

19.(16) P1(f2(c0, c1))
20.(14) P0(H0, f1(c1))
21.(2) P0(f1(c1), f0(c0))
22.(3) ∼P0(f1(c1), X18)|P0(f0(c0), X18)
23.(5) ∼P1(f0(c0))|P1(f2(c0, c1))

N4σ = {c1/X16}

24.(12) �

N5

25.(19) �

N6

26.(11) �

N7

27.(10) �

N8

28.(9) �

N9

29.(1) �

N10

P0(H0, H0) ∼P0(H0, H0)

P1(f0(c0)) ∼P1(f0(c0))

P1(f0(c1)) ∼P1(f0(c1))

P0(f0(c0), f1(c1))
∼P0(f0(c0), f1(c1))

P1(f2(c0, c1)) ∼P1(f2(c0, c1))

Figure 7.2: Closed semantic tree of the problem from example 7.2.2 applying the unit
heuristic h1 which has the advantage that in this example the right subtree can always
immediately be closed. Examples in which this is the case have linear complexity.
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Observe that, using the unit heuristic allows the SSTTP to build a closed semantic tree

in less time and with smaller tree size. Because with the unit heuristic in this example,

SHB elaborate the grounded atoms first.

7.2.2 SSTTP-h2 : Degree order heuristic

In order to reduce the search spaces in first-order automated deduction, sort strategies are

useful with a view to the rearrangement of clauses. It has been reported in the literature

(see e.g., [53, 52, 30, 54, 50]) that such strategies can lead enormous gains in efficiency.

The degree order heuristic use a selection sort technique in order to sort the clauses inside

the semantic tree nodes. In spite of the inefficient time complexity that selection sort

has if it is applied on a large number of clauses, it has a simple implementation and it

performs well when memory is limited.

Definition (Degree order heuristic) Let T = N1, . . . , Nm be a semantic tree. When

computing the Smart Herbrand Base with the HBG-rule, the clause setsK(Nt) = {P1, . . . , Pn}

for t = 1, . . . ,m are ordered according to degree, that is, for all i, j ∈ {1, . . . , n} with i < j

holds degree(Pi) ≤ degree(Pj). (Note that the result of degree() is a number of literals

inside a given clause.)

The idea that we use is to order the clauses inside a semantic tree node by their degree

(also called ‘arity’). The degree of a clause is defined as a number of literals inside a given

clause. SSTTP-h2 applies a sort function that orders the clauses inside each node of the

semantic tree by ascending order. That is, it first lists all clauses with degree 1, which are

those clauses that have one literal (unit clauses). Then, it lists all clauses with degree 2,

which are clauses that have two literals. Then, it lists all clauses with degree 3, and so on.

The heuristic is to assist the SSTTP prover to allocate the atoms within the SHB, which

reduces the size of the clauses first. Accordingly, if the atom that is used to split the tree

is generated from a unit clause, then at least one of the branches within the semantic
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tree will close in one level as the unit heuristic is carried out. Moreover, if the atom

that is used to split the tree is generating from a clause of degree 2, then the new clause

that will be produced after the split of the build tree rule is a unit clause, and so on.

This technique will reduce the size of the semantic tree in each level, thereby hopefully

contributing to the efficiency of the SSTTP prover. Tables 7.3 and 7.4 show the results of

using the degree order heuristic h2 in testing the SSTTP prover with selected problems

from the TPTP library [47] (again using GPU for a maximum of 100 seconds). These

selected problems are a subset of original tables from the appendix. Here, we choose only

the problems that can be solved using one or both SSTTP with and without the use

of the heuristics to make the comparison fair. From the tables, we can observe that 22

problems – highlighted in green – out of 58 (37.93%) were proved by SSTTP-h2 in less

time and with a smaller number of nodes in the semantic tree. Moreover, (43.1%) of the

results are the same. For 11 problems – highlighted in red – (18.97%) h2 did not perform

as well as using SSTTP without the heuristics. Note that h2 – unlike h1 – can lead to

much bigger search spaces. Because, the SHB atoms of h2 help reduce the size of the new

clauses generating inside each nodes of the semantic tree.
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Theorem SSTTP SSTTP-h2
time nodes number time nodes number

1 ANA013-2 0.000 7 0.000 7
2 ANA041-2 0.000 3 0.000 3
3 ANA042-2 0.000 3 0.000 3
4 CAT007-3 0.470 1739 0.000 15
5 COL101-2 0.000 3 0.000 3
6 COL102-2 0.190 503 0.820 1367
7 COL103-2 0.000 3 0.000 3
8 COL104-2 0.200 503 0.740 1367
9 COL105-2 0.000 5 0.000 5
10 COL109-2 2.640 1495 0.610 525
11 COL111-2 0.000 5 0.000 5
12 COL112-2 0.000 7 0.000 7
13 COL113-2 0.000 3 0.000 3
14 COL114-2 0.000 5 0.000 5
15 COL115-2 0.000 7 0.000 7
16 COL116-2 0.000 3 0.000 3
17 COL117-2 2.580 1493 0.000 19
18 COL119-2 0.000 5 0.000 5
19 COL120-2 0.000 5 0.000 5
20 COL122-2 0.000 5 0.000 5
21 COL124-2 T/O - 0.000 47
22 COM001-1 0.090 453 0.000 67
23 COM002-1 2.260 2769 0.150 475
24 COM002-2 0.490 1809 0.010 99
25 FLD006-3 2.960 1097 M/O -
26 GEO079-1 0.000 7 0.000 7
27 GRP123-7.003 M/O - 19.040 9677
28 KRS004-1 0.000 5 0.000 5

Table 7.3: Test results of SSTTP prover with and without the degree order heuristic in
TPTP library. (T/O means time out and M/O means memory out)
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Theorem SSTTP SSTTP-h2
time nodes number time nodes number

29 LAT272-2 0.000 7 0.000 7
30 LAT273-2 M/O - 0.000 13
31 LCL007-1 0.030 53 0.000 7
32 LCL076-2 0.000 11 0.000 15
33 LCL360-1 0.030 89 0.010 55
34 LCL355-1 M/O - 0.010 39
35 LCL432-2 0.000 5 0.000 5
36 LCL435-2 0.000 5 0.000 5
37 LCL436-2 0.000 5 0.000 5
38 LCL437-2 0.000 5 0.000 5
39 LCL438-2 0.000 21 0.000 21
40 LCL440-2 0.000 3 0.000 3
41 LCL441-2 0.000 17 0.000 13
42 LCL446-2 0.000 15 M/O -
43 LCL447-2 0.000 7 0.000 7
44 MGT022-1 0.000 53 0.000 31
45 MGT022-2 0.000 53 0.000 31
46 MGT030-1 M/O - 79.180 2459
47 MGT036-3 0.220 227 0.000 23
48 MGT041-2 0.000 23 0.000 15
49 PUZ008-1 0.440 297 0.180 85
50 PUZ012-1 0.680 2553 0.000 63
51 PUZ018-1 M/O - 0.760 187
52 PUZ035-1 0.030 357 0.010 201
53 PUZ035-2 0.040 429 0.040 497
54 PUZ035-3 1.150 1495 2.170 3787
55 PUZ035-4 1.030 1731 0.900 2021
56 PUZ035-5 0.000 89 0.080 259
57 PUZ035-6 0.000 89 0.220 433
58 PUZ035-7 0.300 477 0.290 523

Table 7.4: Continue Table 7.3, Test results of SSTTP prover with and without the degree
order heuristic in TPTP library. (T/O means time out and M/O means memory out)
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The motivation behind the degree order heuristic is to sort the atoms inside SHB ac-

cording to their power to trigger resolution steps. These resolution steps can create the

empty clause if the SHB atom resolves with a unit clause inside the clause set or they can

yield a short new clause. Example 7.2.3 reorders the SHB according to their resolution

priority that comes from applying the HBG algorithm to a sorted clause set. Observe

that, using the degree order heuristic allows the SSTTP to build a close semantic tree

in less time and with short tree size than SSTTP without the heuristics. Because with

the degree order heuristic in this example, the tree always close one of the branches and

generate shorter new clauses first in the other branch.

Example 7.2.3 Let us consider the following problem from the Combinatory Logic do-

main (LCL007-1.p) in TPTP. Let S be the following set of clauses:

1. ∼P0(f0(X0, X1))|∼P0(X0)|P0(X1)

2. P0(f0(f0(X2, X3), f0(X3, X2)))

3. P0(f0(f0(f0(X4, X5), X6), f0(X4, f0(X5, X6))))

4. ∼P0(f0(f0(c0, f0(c1, c2)), f0(f0(c0, c1), c2)))

The following is the SHB without using any heuristics:

SHBa = {P0(f0(f0(H0, H1), f0(H1, H0))), P0(f0(f0(f0(H2, H3), H4), f0(H2, f0(H3, H4)))),

P0(f0(f0(c0, f0(c1, c2)), f0(f0(c0, c1), c2)))}.

Using SHBa the SSTTP prover builds a closed semantic tree consisting of 53 nodes

in 0.030 sec. The SHB with using the degree order heuristic h2 is the same as with-

out using the heuristics. But the semantic tree is different because of the reorder of

the clause set in each node. Therefore, the instantiation of the placeholder variables

is different and that constructs a closed semantic tree consisting of 7 nodes in 0 sec.

Figure 7.3 introduce the closed semantic tree of example 7.2.3 using the degree order
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heuristic which reorders the clause set in each node before applying the Build tree rule

(that is, reorder all the clauses that come from the path of each node). During the con-

struction of the tree, the placeholder variables were substituted. The first substitution

σ1 = {f0(f0(H2, H3), H4)/H0, f0(H2, f0(H3, H4))/H1} occurs when clause 6 in N2 is pro-

duced. The second substitution σ2 = {c0/H2, c1/H3, c2/H4} occurs when clause 9 in N4

is produced. Note that, to build a closed semantic tree of this example using the unit

heuristic, it takes 53 nodes in 0.030 sec as in Table 7.2. The SHB using h1 is the same

as SHB without the heuristic and also the same as SHB using h2. However, h2 produces

a smaller closed semantic tree because of the reorder strategy.
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1. P0(f0(f0(X2, X3), f0(X3, X2)))

2. P0(f0(f0(f0(X4, X5), X6), f0(X4, f0(X5, X6))))

3. ∼P0(f0(f0(c0, f0(c1, c2)), f0(f0(c0, c1), c2)))

4. ∼P0(f0(X0, X1))|∼P0(X0)|P0(X1)

N0

5.(4) ∼P0(f0(H0, H1))|P0(f0(H1, H0))
N1

6.(5) P0(f0(H1, H0))
7.(4) ∼P0(f0(f0(H2, H3), H4))|P0(f0(H2, f0(H3, H4)))

N2

8.(3) �
N3

9.(6) �
N4

10.(2) �
N5

11.(1) �
N6

P0(f0(f0(H0, H1), f0(H1, H0))) ∼P0(f0(f0(H0, H1), f0(H1, H0)))

P0(f0(f0(f0(H2, H3), H4), f0(H2, f0(H3, H4)))) ∼P0(f0(f0(f0(H2, H3), H4), f0(H2, f0(H3, H4))))

P0(f0(f0(c0, f0(c1, c2)), f0(f0(c0, c1), c2))) ∼P0(f0(f0(c0, f0(c1, c2)), f0(f0(c0, c1), c2)))

Figure 7.3: Closed semantic tree of the problem from example 7.2.3 applying the degree
order heuristic h2 which has the advantage that in this example the right subtree can
always immediately closed and that gives a linear complexity. The potential of h2 in
this example depends on the reordering of the clauses in each node before applying the
Build tree rule. h2 shows in this example a better performance than the other heuristics
investigated in the dissertation.
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7.2.3 SSTTP-h3 : Impact heuristic

The impact heuristic strategy is a method that should estimate how useful an SHB atom

is in producing a closed semantic tree by calculating a so-called impact number for each

atom inside the SHB.

Definition (Impact number) An impact number of an atom hbi, imp(hbi), is an inte-

ger number assigned to hbi ∈ SHB by calculating how many literals inside the clause set

match with hbi (irrespective of variable names).

Definition (Impact heuristic) Let SHB = (hb1, . . . , hbm) be a Smart Herbrand Base

of a given problem. If i < j where i, j ∈ {1, . . . ,m} then imp(hbi) ≥ imp(hbj).

The function ‘impact’ computes a number that represents how many clauses in each

node match with atoms from the SHB and attach the number to each atom. Then, it

chooses an atom with the maximum number to do the next split of the semantic tree.

This is supposed to generate the next node that will have more new clauses that give

more choice to close the semantic tree in less time and space. Tables 7.5 and 7.6 show the

results of using the impact heuristic in testing the SSTTP prover with selected problems

from the TPTP library [47] (again using GPU with a maximum of 100 seconds). These

selected problems are a subset of original tables from the appendix. Here, we choose only

the problems that both systems can solve in order to make comparison fair. From the

tables, we can observe that 19 problems – highlighted in green – out of 55 (34.55%) were

proved by SSTTP-h3 in less time and with a smaller number of nodes in the semantic

tree. Moreover, (41.82%) of the results are the same. For 13 results – highlighted in red

– (20.4%) h3 did not perform as well as when using SSTTP without the heuristics.
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Theorem SSTTP SSTTP-h3
time nodes number time nodes number

1 ANA013-2 0.000 7 0.000 9
2 ANA041-2 0.000 3 0.000 3
3 ANA042-2 0.000 3 0.000 3
4 CAT007-3 0.470 1739 0.030 117
5 COL101-2 0.000 3 0.000 3
6 COL102-2 0.190 503 3.130 3695
7 COL103-2 0.000 3 0.000 3
8 COL104-2 0.200 503 1.920 1477
9 COL105-2 0.000 5 0.000 5
10 COL109-2 2.640 1495 0.000 19
11 COL111-2 0.000 5 0.000 5
12 COL112-2 0.000 7 0.000 7
13 COL113-2 0.000 3 0.000 3
14 COL114-2 0.000 5 0.000 5
15 COL115-2 0.000 7 0.000 7
16 COL116-2 0.000 3 0.000 3
17 COL117-2 2.580 1493 0.190 117
18 COL119-2 0.000 5 0.000 5
19 COL120-2 0.000 5 0.000 5
20 COL122-2 0.000 5 0.000 5
21 COM001-1 0.090 453 0.040 215
22 COM002-1 2.260 2769 3.330 1301
23 COM002-2 0.490 1809 1.800 787
24 FLD006-3 2.960 1097 M/O -
25 GEO079-1 0.000 7 0.000 9
26 KRS004-1 0.000 5 0.000 7

Table 7.5: Test results of the SSTTP prover with and without the application of the
impact heuristic using suitable problems of the TPTP library.
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Theorem SSTTP SSTTP-h3
time nodes number time nodes number

27 LAT272-2 0.000 7 0.000 7
28 LCL007-1 0.030 53 0.010 33
29 LCL076-2 0.000 11 0.000 11
30 LCL360-1 0.030 89 2.450 545
31 LCL355-1 M/O - 3.530 545
32 LCL432-2 0.000 5 0.000 5
33 LCL435-2 0.000 5 0.000 5
34 LCL436-2 0.000 5 0.000 5
35 LCL437-2 0.000 5 0.000 5
36 LCL438-2 0.000 21 0.000 27
37 LCL439-2 M/O - 13.260 2369
38 LCL440-2 0.000 3 0.000 3
39 LCL441-2 0.000 17 0.000 17
40 LCL445-2 M/O - 0.210 333
41 LCL446-2 0.000 15 M/O -
42 LCL447-2 0.000 7 0.000 7
43 MGT022-1 0.000 53 0.000 25
44 MGT022-2 0.000 53 0.000 25
45 MGT036-3 0.220 227 0.140 87
46 MGT041-2 0.000 23 T/O -
47 PUZ008-1 0.440 297 0.780 277
48 PUZ012-1 0.680 2553 0.040 217
49 PUZ035-1 0.030 357 0.020 161
50 PUZ035-2 0.040 429 0.020 167
51 PUZ035-3 1.150 1495 0.500 611
52 PUZ035-4 1.030 1731 0.430 579
53 PUZ035-5 0.000 89 0.200 445
54 PUZ035-6 0.000 89 0.120 241
55 PUZ035-7 0.300 477 1.550 1591

Table 7.6: Continuation of Table 7.5: Test results of the SSTTP prover with and without
the application of the impact heuristic using suitable problems of the TPTP library.
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Using the impact heuristic to search for a proof helps to generate an effective SHB de-

pending on the input problem. The power of this heuristic is to reorder the SHB atoms

at each node in the semantic tree before executing Build tree rule. This heuristic works

better than SSTTP without the heuristics in the following category: Category Theory,

Combinatory Logic, Computing Theory, Management (Organisation Theory), Puzzles as

shown in tables 7.5 and 7.6. Unfortunately, the impact heuristic is not performing bet-

ter than the unit heuristic and the degree order heuristic with some problems as in the

following example 7.2.4.

Example 7.2.4 Let us consider the problem from the previous example 7.2.2. The fol-

lowing is SHB after using the impact heuristic:

SHBi = {P1(f0(H25)), P0(H1, H1), P0(H2, H2), P0(H3, H4), P0(H5, H6),

P0(H7, f3(H7, H8)), P0(H9, f3(H10, H9)), P0(H11, H12), P0(H13, H14),

P0(f0(c0), f1(c1)), P0(H15, H16), P0(H17, H18), P0(f0(H19), f1(H20)),

P0(H21, f3(H21, H22)), P0(H23, f3(H24, H23)), P1(f0(c0)), P1(f0(c1)),

P0(H0, H0), P1(f2(c0, c1)), P0(H26, f3(H26, H26)), P0(H27, f3(H27, H27))}.

Using SHBi builds a close semantic tree consist of 117 nodes in 0.020 sec. This results

is better than using SSTTP without the heuristics but it is not better than the unit heuristic

in example 7.2.2 and the degree order heuristic in example 7.2.3.

On the other hand, the affect of the impact heuristic appears in solving other problems

such as (COL109-2.p) from TPTP library. The examples 7.2.5 will illustrate how the

impact heuristic performing better than the unit heuristic and the degree order heuristic

in solving (COL109-2.p).

Example 7.2.5 Let us consider the following problem from the Combinatory Logic do-

main (COL109-2.p) in TPTP. Let S be the following set of clauses:

1. P0(f0(c0, c1, c2, c2), c3, f1(c2, c2))
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2. P0(f0(c4, c5, c2, c2), c3, f1(c2, c2))

3. P0(f0(c6, c7, c2, c2), c3, f1(c2, c2))

4. ∼P0(f0(f2(f2(c4, c0), f2(c6, c0)), X0, c2, c2), c3, f1(c2, c2))|

∼P0(f0(f2(f2(f2(c8, c5), c7), c1), X0, c2, c2), c3, f1(c2, c2))

5. P0(f0(f2(f2(f2(c8, X1), X2), X3), f2(f2(X1, X3), f2(X2, X3)), c2, c2), c3, f1(c2, c2))

6. ∼P0(f0(X4, X5, c2, c2), c3, f1(c2, c2))|∼P0(f0(X6, X7, c2, c2), c3, f1(c2, c2))|

P0(f0(f2(X6, X4), f2(X7, X5), c2, c2), c3, f1(c2, c2))

The Smart Herbrand Base from first generation consist of 7 atoms:

SHB ={P0(f0(c0, c1, c2, c2), c3, f1(c2, c2)), P0(f0(c4, c5, c2, c2), c3, f1(c2, c2)),

P0(f0(c6, c7, c2, c2), c3, f1(c2, c2)),

P0(f0(f2(f2(c4, c0), f2(c6, c0)), f2(H0, H1), c2, c2), c3, f1(c2, c2)),

P0(f0(f2(f2(f2(c8, c5), c7), c1), f2(f2(c5, c1), f2(c7, c1)), c2, c2), c3, f1(c2, c2)),

P0(f0(f2(f2(f2(c8, c5), c7), c1), f2(H2, H3), c2, c2), c3, f1(c2, c2)),

P0(f0(f2(f2(f2(c8, H4), H5), H6), f2(f2(H4, H6), f2(H5, H6)), c2, c2), c3, f1(c2, c2)), . . . }.

The Smart Herbrand Base from second generation consist of 24 atoms. Using both

generation of SHB, SSTTP without the heuristics builds a close semantic tree consisting

of 1495 nodes in 2.64 sec.

After computing the impact number of each atom inside SHB at each node during

the build of the semantic tree. The order of the atoms that give us the proof after two

generations of SHB are:

SHBi = {P0(f0(c0, c1, c2, c2), c3, f1(c2, c2)), P0(f0(c4, c5, c2, c2), c3, f1(c2, c2)),

P0(f0(c6, c7, c2, c2), c3, f1(c2, c2)),

P0(f0(f2(f2(f2(c8, H4), H5), H6), f2(f2(H4, H6), f2(H5, H6)), c2, c2), c3, f1(c2, c2)),

P0(f0(f2(f2(f2(c8, c5), c7), c1), f2(f2(c5, c1), f2(c7, c1)), c2, c2), c3, f1(c2, c2)),
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P0(f0(f2(f2(f2(c8, c5), c7), c1), f2(H2, H3), c2, c2), c3, f1(c2, c2)),

P0(f0(f2(f2(c4, c0), f2(c6, c0)), f2(H0, H1), c2, c2), c3, f1(c2, c2)),

P0(f0(f2(c6, c0), f2(c7, c1), c2, c2), c3, f1(c2, c2)),

P0(f0(f2(c4, c0), f2(c5, c1), c2, c2), c3, f1(c2, c2))}.

Using SHBi that generated by SSTTP-h3 builds a close semantic tree consist of 19

nodes in 0 sec. And this results is better not only than SSTTP without the heuristics

(that, give us 1495 nodes in 2.640 sec.) but also than SSTTP-h1 (that, give us 1101

nodes in 1.620 sec.) and SSTTP-h2 (that, give us 525 nodes in 0.610 sec.).

7.2.4 SSTTP-h4 : Meta duplicate elimination heuristic

In this section, we try to enhance the SSTTP prover environment by developing a heuristic

that deals with the placeholder variables that occur within the SHB in order to eliminate

redundancy. This heuristic is referred to as the meta duplicate elimination heuristic.

Definition (Meta duplicate elimination heuristic) Let SHB = (hb1, . . . , hbm) be a

Smart Herbrand Base of a given problem. If hbi has an empty placeholder variable (that

is, not instantiated with a ground term yet) and hbi is equivalent to hbj (i.e., hbj has an

empty placeholder variable as well) and i < j where i, j ∈ {1, . . . ,m} then delete hbj from

SHB.

The idea of this heuristic is to minimizes the number of proof steps required by remov-

ing the duplicated placeholder atoms from the SHB. These atoms are inconvenient when

they have an empty placeholder (meta) variables. When the SSTTP algorithm generates

the SHB atoms that contain variables, it replaces these variables by placeholder variables

assigned to an empty cell until they are grounded during the building of the semantic

tree (that is, we postpone the instantiation of variables until information is available with

what they should be instantiated). Therefore, when in the SHB there is a duplication of

such a kind of atoms, it is redundant to use them before they are ground. According to
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results of using the meta duplicate elimination heuristic h4 from tables 7.7 and 7.8, we

can observe that this heuristic yields a minimization of the size of the semantic tree in

many cases. Again, these results were obtained by testing the SSTTP prover with selected

problems from TPTP library [47] (running the GPU computer for at most 100 seconds).

These selected problems form a subset of original tables from appendix. Here, we choose

only the problems that can be solved using one or both SSTTP with and without the use

of the heuristics to make the comparison fair. From the tables, we can observe that 18

problems – highlighted in green – out of 55 (32.73%) were proved by SSTTP-h4 in less

time and with a smaller number of nodes in the semantic tree. Moreover, 61.82% of the

results are the same. For three results highlighted with red colour (5.45%) SSTTP did

not perform so well using h4 as when not using the heuristics.

The motivation of introducing the meta duplicate elimination heuristic is to reduce

the size of the SHB as much as possible, if the input problem consist of variables. In

general, this method solve more problems from TPTP library than any other heuristics

presented in this chapter. Moreover, using SSTTP with this heuristic is much better

than using SSTTP without the heuristics. Since SSTTP-h4 failed to beat SSTTP only in

three problems from the Puzzle domain in the experiments. The following example 7.2.6

shows the SHB and the result test of using SSTTP with the meta duplicate elimination

heuristic.

Example 7.2.6 Let us consider the problem from the previous example 7.2.2. The fol-

lowing is the SHB after using the meta duplicate elimination heuristic:

SHBm = {P0(H0, H0), P0(H7, f3(H7, H8)), P0(f0(c0), f1(c1)), P0(f0(H19), f1(H20)),

P1(f0(c0)), P1(f0(c1)), P1(f0(H25)), P1(f2(c0, c1))}.

Using SHBm the prover builds a closed semantic tree consisting of 31 nodes in 0 sec.

While using the original SHB used in example 7.2.2 it builds a closed semantic tree con-

sisting of 1739 nodes in 0.470 sec.
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Theorem SSTTP SSTTP-h4
time nodes number time nodes number

1 ANA013-2 0.000 7 0.000 7
2 ANA041-2 0.000 3 0.000 3
3 ANA042-2 0.000 3 0.000 3
4 CAT007-3 0.470 1739 0.000 31
5 COL101-2 0.000 3 0.000 3
6 COL102-2 0.190 503 0.210 419
7 COL103-2 0.000 3 0.000 3
8 COL104-2 0.200 503 0.080 253
9 COL105-2 0.000 5 0.000 5
10 COL109-2 2.640 1495 2.660 1495
11 COL111-2 0.000 5 0.000 5
12 COL112-2 0.000 7 0.000 7
13 COL113-2 0.000 3 0.000 3
14 COL114-2 0.000 5 0.000 5
15 COL115-2 0.000 7 0.000 7
16 COL116-2 0.000 3 0.000 3
17 COL117-2 2.580 1493 2.690 1493
18 COL119-2 0.000 5 0.000 5
19 COL120-2 0.000 5 0.000 5
20 COL122-2 0.000 5 0.000 5
21 COM001-1 0.090 453 0.000 41
22 COM002-1 2.260 2769 0.140 307
23 COM002-2 0.490 1809 0.250 567
24 FLD006-3 2.960 1097 0.020 45
25 FLD010-3 M/O - 10.610 3467
26 GEO079-1 0.000 7 0.000 7

Table 7.7: Test results of SSTTP prover with and without the meta duplicate elimination
heuristic in TPTP library. (T/O means time out and M/O means memory out)
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Theorem SSTTP SSTTP-h4
time nodes number time nodes number

27 KRS004-1 0.000 5 0.000 5
28 LAT272-2 0.000 7 0.000 7
29 LCL007-1 0.030 53 0.020 53
30 LCL043-1 M/O - 5.920 1083
31 LCL076-2 0.000 11 0.000 11
32 LCL360-1 0.030 89 0.020 89
33 LCL432-2 0.000 5 0.000 5
34 LCL435-2 0.000 5 0.000 5
35 LCL436-2 0.000 5 0.000 5
36 LCL437-2 0.000 5 0.000 5
37 LCL438-2 0.000 21 0.000 17
38 LCL440-2 0.000 3 0.000 3
39 LCL441-2 0.000 17 0.000 17
40 LCL446-2 0.000 15 0.000 15
41 LCL447-2 0.000 7 0.000 7
42 MGT022-1 0.000 53 0.000 53
43 MGT022-2 0.000 53 0.000 53
44 MGT036-3 0.220 227 0.080 63
45 MGT041-2 0.000 23 0.000 23
46 NUM015-1 M/O - 0.450 2771
47 PUZ008-1 0.440 297 T/O -
48 PUZ012-1 0.680 2553 0.050 183
49 PUZ035-1 0.030 357 0.000 109
50 PUZ035-2 0.040 429 0.010 171
51 PUZ035-3 1.150 1495 1.730 2245
52 PUZ035-4 1.030 1731 1.490 2587
53 PUZ035-5 0.000 89 0.000 29
54 PUZ035-6 0.000 89 0.000 29
55 PUZ035-7 0.300 477 0.240 387

Table 7.8: Continue Table 7.7, Test results of SSTTP prover with and without the meta
duplicate elimination heuristic in TPTP library. (T/O means time out and M/O means
memory out)
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7.3 Heuristics comparison

In order to gain performance, we presented in the previous sections four different heuris-

tics. The first one (SSTTP-h1) deals with the size of the clauses. It chooses to start with

the unit clauses. The second (SSTTP-h2), concentrates on the reordering of the clauses

in each node before choosing the SHB atoms to split with. The third (SSTTP-h3), uses

a mathematical technique to compute the most effective atom from the SHB to split

with. Finally, the fourth heuristic (SSTTP-h4) deals with a different strategy to assist

the SSTTP prover to solve more problems from the TPTP library. This heuristic is based

on the placeholder grounding method. It helps the prover to eliminate useless atoms

that are grounded by placeholder variables from the SHB. These atoms can be generated

again by the HBG rule, if the prover needs to instantiate them to a different ground term.

Each one of the heuristics performs better than the others in different domains from the

TPTP library. Table 7.9 and Figure 7.4 shows the performance of the SSTTP prover

with and without using the heuristics. Observe that SSTTP-h1 performs better in the

Puzzle domain than the others. SSTTP-h2 is best at the problems from the Management

(Organisation Theory) domain, while, SSTTP-h3 solves more problems from the Logic

Calculi domain. Finally, SSTTP-h4 gains more results in the Group Theory and Number

Theory domains. In total, SSTTP-h4 is of use in most of the results from the experi-

ments. Further details for the rest of the theorems can be found in Appendix A. Since the

results of the heuristics are close to each other, the experiments of making a combinations

between them have not been done. However, it will be interesting to investigate this in

future.
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Domain Input-theorems SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4
1 ALG 1 0 0 0 0 0
2 ANA 20 3 3 3 3 3
3 CAT 1 1 1 1 1 1
4 COL 19 16 17 17 16 16
5 COM 5 3 3 3 3 3
6 FLD 24 1 2 0 0 2
7 GEO 3 1 1 1 1 1
8 GRP 47 0 0 1 0 3
9 KRS 13 1 1 1 1 1
10 LAT 5 1 2 2 2 1
11 LCL 169 12 11 12 14 13
12 MGT 9 4 4 5 3 4
13 MSC 13 0 0 0 0 0
14 NUM 5 0 0 0 0 1
15 PLA 12 0 0 0 0 0
16 PUZ 40 9 11 10 9 8

Total 386 52 56 56 53 57

Table 7.9: Analysis of SSTTP output in each category of TPTP library in case of the
number of problems solved.
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Figure 7.4: Comparison of SSTTP with and without the heuristics in each category of
TPTP library. The y-axis represents the number of problems solved.
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CHAPTER 8

Related Systems and Experimental Comparison

In this chapter we come back to the related works chapter. The ME calculus and its

relationship with the SSTTP calculus are discussed in more detail. Then we present

a comparison between the performance of the SSTTP prover and three state-of-the-art

systems, which are PROVER9 (32) version 2009-11A, SPASS V 3.7, and VAMPIRE 0.6.

All of the experiments were carried out on GPU with 24 CPU Intel 2.4 GHz processors

with 47 GB of RAM. A period of 100 seconds was the time limit for the experiments on

the CNF problems of the TPTP v5.1.0 [47] without equality.

During the implementation of the SSTTP prover we had to carefully test its correctness

to ensure soundness of final system. Tests were carried out using unit testing for the

crucial functionality (e.g., unification algorithm, meta-variable substitution). In addition

we tested correctness of the system by running it on a set of known non-theorems verifying

that it could not derive invalid proofs. For this purpose we constructed a set of 386

non-theorem problems derived from the CNF problems without equality given in the

TPTP library [47] by simply negating their theorems and replacing any variables in them

by new constants. Table 8.1 presents the performance of the SSTTP prover on these

non-theorem problems.
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non-theorems Model found Time out Memory out
Total 386 72 149 165

Table 8.1: Testing the SSTTP prover on non-theorem problems from the TPTP library.
Note that “Model found” means that the prover was able to find out that the input non-
theorem was not unsatisfiable, that is, for each of the non-theorems, the theorem prover
either could establish that it is satisfiable, or it ran out of time, or out of memory.

8.1 Comparison to the ME calculus

Previously in Section 2.2, a summary of the ME calculus was presented. In this section,

the idea of the ME calculus is described in more detail. The ME calculus is built on

the DPLL procedure. At the present time, most of the SAT solvers are based on the

DPLL procedure. The simplicity, polynomial space requirements, and the ability to eas-

ily integrate powerful heuristics to reduce the search space make the DPLL procedure

popular. The use of such heuristics allow current SAT solvers to tackle large satisfiability

problems with hundreds of thousands of variables making them notably very powerful.

Therefore, automated reasoning tool developers now are using SAT solvers as back-ends

to solve first-order satisfiability problems [6].

DPLL was extended, thus creating the ME calculus, which lends a number of critical

ideas from FDPLL. The objective of the ME calculus is to create a Herbrand model of a

particular set Φ of clauses, if such a model exists.

The ME calculus rules work on the form A ` Φ, where A is a finite set of literals,

potentially with variables and parameters referred to as a context, and Φ is the set of

clauses potentially comprising variables.

The main rules of the calculus have the objective to identify when a Herbrand inter-

pretation IA is not a model of Φ, and accordingly complete repairs so that this status is

achieved. Such repairs are concerned with the computation of most general unifiers. The

progressive repair approach is otherwise recognised as evolution.
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The main objective of the pseudo-literal ∼v in a context Λ is to present a default

truth-value for those ground literals where the value has not been established by the rest

of the context. In actuality, consider a ground literal L where neither L nor L̄ is generated

by Λ. If L is found to be positive, it is false in IΛ owing to the fact it is not generated by

Λ. Should L be identified as negative, on the other hand, then it is true in IΛ owing to

the fact that it is created by ∼v.

It can be seen that, when Φ0 is unsatisfiable and A0 is merely {∼v}, all potential

evolution sequences finitely fail, meaning the calculus is complete. It is further demon-

strated that, on the other hand, if all evolution sequences for I{∼v} finitely fail, Φ0 is then

guaranteed to be unsatisfiable, thus meaning the calculus is sound [6].

DARWIN is a first simple application of the ME calculus [5], which is known to

comprise three basic derivation rules, namely Split, Assert and Close, along with three

optional rules, namely Resolve, Subsume and Compact. Such rules may be recognised in

both Baumgartner papers [6, 5].

The proof procedure presented by DARWIN comprises five steps in its main loop:

Candidate Selection, Context Unifier Computation, Backtracking and Candidate Gen-

eration. Furthermore, a number of heuristics are also involved, with the various steps

and heuristics detailed in the paper of Baumgartner (Section 3, pages 7–9, and Section

4.7, pages 17–18) [5]. Prior to entering the main loop, there is the initialisation of the

candidate set, with all the literals that could be added to the initial context through the

implementation of Assert, which are only the unit clauses from the specified clause set.

The DPLL process underwent complete lifting to create the ME calculus for first-order

clausal logic, whereas the SSTTP calculus, on the other hand, is centred on a resolution-

refutation principle. Following the process for solving the previous examples in both the

ME and SSTTP calculi, it can be recognised that there are a number of both similarities

and differences between the approaches: similarities include the fact that both provide a
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Herbrand model of a particular problem, whereas the differences include the choice of split,

where SSTTP splits in line with the SHB , DARWIN splits depending on the candidate

set present. Moreover, the split of the SSTTP provides the clause set with a new clause,

which is additional information pertinent to the problem, thus meaning solving becomes

much simpler, whereas DARWIN does not add any additional information, where the split

adds only the literal of the split to the context. In the case of DARWIN, the candidate

set is created prior to theorem proving, whereas with SSTTP, the SHB is created at any

point throughout the theorem proving process. In addition, choosing the literals within

the candidate set ultimately depends on the completion of a heuristic search; in SSTTP,

the selection of literals within the SHB depends on the HBG rule. This relies on the

resolution approach, which provides the literals to the SHB if such literals are a resolvent

of any two clauses within the clause (problem) set.

In the next two subsection, we use two examples to exemplify the way how DARWIN

and the SSTTP calculus deal with an unsatisfiable and a satisfiable problem set.

8.1.1 ME vs. SSTTP for an Unsatisfiable Problem

The next example 8.1.1 shows how DARWIN proof an unsatisfiable set. It is the same

example that we used in example 5.2.3 to exemplify the SSTTP solver in section 5.2. Two

different solutions are presented next, the first shows how DARWIN works with using its

heuristic mechanism, the second generates a proof with the ME calculus without using

any heuristics.

Example 8.1.1 Φ = {P (a),∼P (X)|P (f(X)),∼P (f(f(a)))}.

• DARWIN solution (with heuristics): ∼v ` P (a),∼P (X)|P (f(X)),∼P (f(f(a)))

First Assert unit clauses:

∼v, P (a) ` P (a),∼P (X)|P (f(X)),∼P (f(f(a)))

∼v, P (a),∼P (f(f(a))) ` P (a),∼P (X)|P (f(X)),∼P (f(f(a)))
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Assert P (f(a)) from clause 2 because it is derived from P (a) and clause 2:

∼v, P (a),∼P (f(f(a))), P (f(a)) ` P (a),∼P (X)|P (f(X)),∼P (f(f(a)))

Close with clause 2:

∼v, P (a),∼P (f(f(a))), P (f(a)) ` �

The proof is done.

• ME-solution (without using heuristics): ∼v ` P (a),∼P (X)|P (f(X)),∼P (f(f(a)))

Split clause 2:

∼v,∼P (u) ` P (a),∼P (X)|P (f(X)),∼P (f(f(a)))

Close with clause 1:

∼v,∼P (a) ` �

The right part from last Split of clause 2:

∼v, P (a) ` P (a),∼P (X)|P (f(X)),∼P (f(f(a)))

Assert clause 3:

∼v, P (a),∼P (f(f(a))) ` P (a),∼P (X)|P (f(X)),∼P (f(f(a)))

Assert P(f(a)) from clause 2:

∼v, P (a),∼P (f(f(a))), P (f(a)) ` P (a),∼P (X)|P (f(X)),∼P (f(f(a)))

Close with clause 2:

∼v, P (a),∼P (f(f(a))), P (f(a)) ` �

The proof is done.

For example 8.1.1, SSTTP solves the problem with three atoms from the SHB and

two applications of the HBG rule. However, DARWIN solves the problem with three

literals from the clause set and three applications of the Assert rule. This is owing to

the fact that DARWIN utilises a heuristic search when selecting a unit clause. However,

if DARWIN solves the problem without the use of heuristics but only through blind

application of the ME rules, the proof will be longer. So, this mean that in this case

SSTTP finds a shorter proof than DARWIN.
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8.1.2 ME vs. SSTTP for a Satisfiable Problem

Now, let us see how both DARWIN and SSTTP work if the problem is satisfiable. The

next example is from Baumgartner paper (DARWIN: A Theorem Prover for the Model

Evolution Calculus) [5].

Example 8.1.2 Φ = {P (X, a)|S(a), Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼P (a, a)|∼Q(X, Y )|∼R(f(a, Y ))}.

• Start the proof:

∼v ` P (X, a)|S(a), Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼P (a, a)|∼Q(X, Y )|∼R(f(a, Y ))

• The candidates for the Split rule are P (X, a) from clause 1 and Q(u, v) from clause

2. Split with P (X, a) from clause 1 (the literal P (X, a) is preferred over the other

split literal, Q(u, v), because it is universal, while Q(u, v) is not):

∼v, P (X, a) ` P (X, a)|S(a), Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼P (a, a)|∼Q(X, Y )|∼R(f(a, Y ))

• Assert R(f(X, a)) from clause 3 because it is derived from P (X, a) and clause 3:

∼v, P (X, a), R(f(X, a)) ` P (X, a)|S(a), Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼P (a, a)|∼Q(X, Y )|∼R(f(a, Y ))

• Subsume P (X, a) from the context with clause 1:

∼v, P (X, a), R(f(X, a)) ` Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼P (a, a)|∼Q(X, Y )|∼R(f(a, Y ))

• Resolve P (X, a) from the context with the first literal from clause 4:

∼v, P (X, a), R(f(X, a)) ` Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼Q(X, Y )|∼R(f(a, Y ))
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• Assert ∼Q(X, a) from clause 4 because it is derived from R(f(X, a)) and clause 4:

∼v, P (X, a), R(f(X, a)),∼Q(X, a) ` Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼Q(X, Y )|∼R(f(a, Y ))

• Close with clause 2:

∼v, P (X, a), R(f(X, a)),∼Q(X, a) ` �

• The right part from last Split with P (X, a) from clause 1 (use the complement of

the Skolemized version of P (X, a) , say, ∼P (c, a)):

∼v,∼P (c, a) ` P (X, a)|S(a), Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼P (a, a)|∼Q(X, Y )|∼R(f(a, Y ))

• Assert S(a) because it is derived from ∼P (c, a) and clause 1:

∼v,∼P (c, a), S(a) ` P (X, a)|S(a), Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼P (a, a)|∼Q(X, Y )|∼R(f(a, Y ))

• Split with Q(u, v) from clause 2:

∼v,∼P (c, a), S(a), Q(u, v) ` P (X, a)|S(a), Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼P (a, a)|∼Q(X, Y )|∼R(f(a, Y ))

• Owing to the fact that no more candidates can be established, the procedure termi-

nates, and subsequently returns the context {∼v,∼P (c, a), S(a), Q(u, v)} to highlight

the satisfiability of the clause set. This means the proof is complete.

In this example, DARWIN shows that the problem is satisfiable. Also, SSTTP shows that

the problem is satisfiable as well in the next example 8.1.3.

Example 8.1.3 Φ = {P (X, a)|S(a), Q(X, Y )|Q(Y,X), R(f(X, Y ))|∼P (X, Y ),

∼P (a, a)|∼Q(X, Y )|∼R(f(a, Y ))}. Table 8.2 shows the steps of applying SSTTP calculus

and how they are stopped to proof that the problem is satisfiable.
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Clause set Candidate set SHB set
Initially the SHB is empty:

Φ Φ ∅
Start with HBG rule:

Φ S(a), Q(X, Y )|Q(Y,X), R(f(X, Y )),
∼Q(X, Y )|∼R(f(a, Y ))

P (a, a)

HBG rule again:
Φ S(a), Q(Y,X), R(f(X, Y )),

∼R(f(a, Y ))
P (a, a), Q(X, Y )

HBG rule again:
Φ S(a), Q(Y,X) P (a, a), Q(X, Y ),

R(f(a, Y ))
We stop HBG rule because no more resolvent in the candidate clause set.
Now, we start Build tree rule:
1 Φ S(a), Q(Y,X) P (a, a), Q(X, Y ),

R(f(a, Y ))
1.1
(left)

Φ, R(f(X, a)),
∼Q(a, a)

Φ, R(f(X, a)), ∼Q(a, a) Q(X, Y ), R(f(a, Y ))

1.1.1
(left)

Φ, R(f(X, a)),
∼Q(a, a),�

Φ, R(f(X, a)),∼Q(a, a),� R(f(a, Y ))

Apply the Close rule, because there is an empty clause, to close branch 1.1.1 (left)
1.1.2
(right)

Φ, R(f(X, a)),
∼Q(a, a),�

Φ, R(f(X, a)),∼Q(a, a),� R(f(a, Y ))

Apply the Close rule, because there is an empty clause, to close branch 1.1.2 (right)
1.2
(right)

Φ, S(a) Φ, S(a) Q(X, Y ), R(f(a, Y ))

1.2.1
(left)

Φ, S(a),
∼P (a, a)|R(f(a, a))

Φ, S(a),∼P (a, a)|R(f(a, a)) R(f(a, Y ))

1.2.1.1
(left)

Φ, S(a),
∼P (a, a)|R(f(a, a)),
∼P (a, a)|∼Q(X, Y ),
∼P (a, a)

Φ, S(a),∼P (a, a)|R(f(a, a)),
∼P (a, a)|∼Q(X, Y ),∼P (a, a)

∅

Because SHB is empty, apply HBG rule to the candidate set. However, it will not generate
any new atoms because there is no more resolvent in the candidate set.
So, the proof is done and the clause set is satisfiable.

Table 8.2: Applying the SSTTP calculus to the clause set of example 8.1.3.
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DARWIN proves that the clause set is satisfiable and also SSTTP, the HBG will stop

generating any atoms in the SHB as can be seen in example 8.1.3. The examples show

that SSTTP executes only three HBG rules and four Build tree rules before it stops,

because no more resolution steps occur to generate SHB atoms. This concludes that the

problem is satisfiable. DARWIN solves the problem by executing nine rules. So, this

mean that in this case SSTTP finds the result in fewer steps than DARWIN.

8.2 Experimental Comparison of SSTTP to State-of-

the-Art Provers

The performance of the SSTTP on the applicable TPTP problems has been reported

in Chapter 7, with an overview of the results provided in Table 7.9. Moreover, Ta-

ble 8.3 and Figures 8.1, 8.2 summarise the number of problems solved by each of the

systems: SSTTP-h4, PROVER9, SPASS, VAMPIRE (within 100s on GPU). It compares

the SSTTP program used with the h4 strategy to three state-of-the-art provers. The

results show that no prover has proved all the TPTP theorems. The highest number

of proofs were found by the PROVER9 with 281 solved problems, whereas the VAM-

PIRE proved 255 and the SPASS proved 253, whilst the SSTTP-h4 proved 57 theorems.

The decision of choosing the SSTTP-h4 to compare with, is based on the analysis of the

outcomes of table 7.9, where better results can be identified when utilising the SSTTP-h4

on the TPTP rather than the other SSTTP heuristics. Moreover, it can also be seen that,

through the use of the meta duplicate elimination heuristic, an additional 5 theorems

were solved by the SSTTP prover. In addition, various theorems that could not be solved

using the SSTTP – specifically in the categories NUM and GRP – were solved by using h4.

This provides confirmation of the importance of the meta duplicate elimination heuristic

filtering the Smart Herbrand Base when creating a semantic tree provers. Accordingly,

the view is tested that the SSTTP prover with h4 heuristic can – although it cannot prove
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all TPTP input theorems – be faster than other state-of-the-art provers in searching for

the proof of some of the theorems. This could indeed be established as summarised in

Tables 8.4 and 8.5. Note that the green cells in the tables show that the SSTTP-h4 can

perform better than at least one of the other systems. Specially with the PROVER9, the

SSTTP-h4 needs in 61.4% of the results around the same time. Approximately, 73.68%

of the results were proved by the SSTTP-h4 in less time than at least one of the other

provers. On the other hand, only for 16 results out of 57 (28.07%) – highlighted in red –

the SSTTP-h4 performed worse than all the other provers. Further details of the rest of

the theorems are in Appendix B. The tables in Appendix B provide details of the names

of each TPTP theorem (Column 2), whilst the results of proving the TPTP through the

application of the theorem provers can be seen in columns 3-6. These columns indicate

whether or not a proof has been established for each of the theorems and the program’s

execution time (in seconds) to establish a proof. Importantly, the search process is ter-

minated when the size of the proof exceeds the memory size, or otherwise when the 100s

time limit is reached.

In conclusion, the SSTTP prover could not solve more than the other three state-

of-the-art theorem provers. However, for most of the problems proofs are found faster

with SSTTP than with the other systems, specially when compared with SPASS and

VAMPIRE. Note that our experiments are done by executing the SSTTP prover with the

heuristic h4. The experiments show that SSTTP performs better in the categories CAT,

COL, COM, GEO from the TPTP library than in other categories. In order to make the

comparison more substantial the results could be enhanced by adding more techniques for

variable instantiation and dealing with equality so that the domain of the problem test

set is enlarged. This is left to future work.
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Domain Input-theorems SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE
1 ALG 1 0 1 1 1
2 ANA 20 3 9 10 10
3 CAT 1 1 1 1 1
4 COL 19 16 19 19 19
5 COM 5 3 4 5 5
6 FLD 24 2 12 17 16
7 GEO 3 1 1 2 2
8 GRP 47 3 29 29 29
9 KRS 13 1 8 8 8
10 LAT 5 1 5 5 5
11 LCL 169 13 137 104 105
12 MGT 9 4 9 9 9
13 MSC 13 0 7 8 9
14 NUM 5 1 4 4 5
15 PLA 12 0 7 5 4
16 PUZ 40 8 28 26 27

Total 386 57 281 253 255

Table 8.3: Analysis of the SSTTP-h4 and the state-of-the-art provers output from the
TPTP library.
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Figure 8.1: Comparison of the SSTTP-h4 and three state-of-the-art theorem provers using
examples from the TPTP library. The y-axis represents the number of problems solved.
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Figure 8.2: Comparing the SSTTP-h4 with three state-of-the-art provers in case of total
solved problems from the TPTP library.
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Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE
1 ANA013-2 0.000 0.000 0.020 0.180
2 ANA041-2 0.000 0.000 0.020 0.005
3 ANA042-2 0.000 0.000 0.020 0.004
4 CAT007-3 0.000 0.000 0.010 0.070
5 COL101-2 0.000 0.000 0.020 0.120
6 COL102-2 0.210 0.000 0.020 0.101
7 COL103-2 0.000 0.000 0.010 0.120
8 COL104-2 0.080 0.000 0.020 0.122
9 COL105-2 0.000 0.000 0.020 0.120
10 COL109-2 2.660 0.000 0.010 0.061
11 COL111-2 0.000 0.000 0.010 0.080
12 COL112-2 0.000 0.000 0.020 0.160
13 COL113-2 0.000 0.000 0.020 0.120
14 COL114-2 0.000 0.000 0.010 0.111
15 COL115-2 0.000 0.000 0.010 0.081
16 COL116-2 0.000 0.000 0.010 0.030
17 COL117-2 2.690 0.000 0.010 0.161
18 COL119-2 0.000 0.000 0.010 0.030
19 COL120-2 0.000 0.000 0.010 0.080
20 COL122-2 0.000 0.000 0.010 0.004
21 COM001-1 0.000 0.000 0.010 0.031
22 COM002-1 0.140 0.000 0.010 0.031
23 COM002-2 0.250 0.000 0.010 0.008
24 FLD006-3 0.020 0.000 0.010 0.005
25 FLD010-3 10.610 0.000 0.020 0.062
26 GEO079-1 0.000 T/O 0.020 0.160
27 GRP123-1.003 3.140 0.000 0.030 0.100
28 GRP123-4.003 1.450 0.000 0.030 0.264
29 GRP125-4.003 6.520 0.000 0.010 0.270

Table 8.4: Analysis of the SSTTP and the state-of-the-art provers output in each category
of the TPTP library.
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Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE
30 KRS004-1 0.000 0.000 0.010 0.090
31 LAT272-2 0.000 0.000 0.030 0.081
32 LCL007-1 0.020 0.000 0.020 0.171
33 LCL043-1 5.920 0.000 0.040 0.042
34 LCL076-2 0.000 0.000 0.090 0.030
35 LCL360-1 0.020 0.000 0.010 0.030
36 LCL432-2 0.000 0.000 0.020 0.110
37 LCL435-2 0.000 0.000 0.020 0.140
38 LCL436-2 0.000 0.000 0.030 0.310
39 LCL437-2 0.000 0.000 0.020 0.140
40 LCL438-2 0.000 0.000 0.010 0.100
41 LCL440-2 0.000 0.000 0.010 0.110
42 LCL441-2 0.000 0.000 0.010 0.240
43 LCL446-2 0.000 0.000 0.020 0.081
44 LCL447-2 0.000 0.000 0.020 0.090
45 MGT022-1 0.000 0.000 0.020 0.181
46 MGT022-2 0.000 0.000 0.030 0.421
47 MGT036-3 0.080 0.000 0.010 0.040
48 MGT041-2 0.000 0.000 0.010 0.240
49 NUM015-1 0.450 0.000 0.020 0.142
50 PUZ012-1 0.050 0.000 0.330 0.186
51 PUZ035-1 0.000 0.000 0.100 0.221
52 PUZ035-2 0.010 0.000 0.090 0.181
53 PUZ035-3 1.730 0.000 0.110 0.006
54 PUZ035-4 1.490 0.000 0.060 0.101
55 PUZ035-5 0.000 0.000 0.010 0.051
56 PUZ035-6 0.000 0.000 0.010 0.190
57 PUZ035-7 0.240 0.000 0.020 0.111

Table 8.5: Continue Table 8.4, Analysis of the SSTTP and the state-of-the-art provers
output in each category of the TPTP library.
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CHAPTER 9

Conclusion and Future Work

This dissertation has described the SSTTP theorem prover in detail, in particular it has

described its algorithm, the data structures used, and a proof procedure. The main

motivation behind the development of the SSTTP calculus was to explore the potential

to use the Herbrand procedure to create an efficient theorem prover. This objective has

been fulfilled to some extent, with the present version of SSTTP applying a semantic tree

generator centred on proving theorems in CNF format from the TPTP library without

equality. In the evaluation of the performance of the SSTTP prover compared to other

modern, highly efficient provers, it is important to consider that the SSTTP calculus is a

relatively new development whereas the other systems are long established. A significant

degree of knowledge has been developed to combine the Herbrand procedure with binary

resolution. More specifically, SSTTP is seen to perform well in regard to clause set

problems. In regard to testing, SSTTP tests can be carried out at a dedicated link (http:

//www.cs.bham.ac.uk/˜nas991/SSTTP.html). Importantly, subsequent developments

can focus on an improved application of low-level implementation structures, such as

clauses, literals, substitutions and terms, as well as on improved memory management

(making use of term indexing). Furthermore a more sophisticated approach for handing
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variables instantiation could improve the performance of SSTTP.

9.1 Concluding Remarks

This dissertation has examined a semantic tree approach to automated theorem proving.

Throughout the dissertation, a new calculus has been introduced with the aim of providing

atoms for generating semantic trees in a more efficient way than just taking them from the

standard Herbrand base. Importantly, it was demonstrated that a set of theorems from

the TPTP library can be proved this way. Moreover, this thesis has demonstrated how a

combination of binary resolution and semantic trees generation can be used for developing

of a Smart Semantic Tree Theorem Prover. The approach focuses on semantic trees, which

play only a minor role currently in automated theorem proving. The contributions of this

dissertation are:

1. We have described in details in Chapter 5 the HBG algorithm that successfully

generates SHB atoms. These atoms help in building close semantic trees from a

specified unsatisfiable clause set through the application of the SSTTP calculus

rules.

2. The soundness and the completeness of the SSTTP calculus that we have created,

have been proved in Chapter 6.

3. We introduced different variable instantiation approaches, and have provided key

examples for creating semantic trees through each approach in Section 5.3. The first

approach is based on the canonical order of the HU but with restriction depending

on the number of SHB generations. The second approach, that we adopted in

SSTTP prover, uses placeholder variables. These variables are substituted globally

during the execution of the SSTTP calculus that builds the closed semantic tree.

This approach generates semantic tree proofs faster than the first approach.
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4. We discussed and studied various heuristics centred on enhancing the overall prac-

ticality of generating semantic trees for unsatisfiability proofs in Chapter 7. The

approaches are the degree order heuristic, the impact heuristic, the meta duplicate

elimination heuristic, and the unit heuristic. Such approaches were applied to the

semantic tree prover SSTTP and accordingly tested on TPTP library theorems.

5. We have considered in Chapter 8 the creation of semantic trees as an alternative

approach to deriving the unsatisfiability of clause sets, contrasting SSTTP with

DARWIN. Moreover, this chapter has presented experiments which compare the

SSTTP prover against three state-of-the-art theorem provers using all suitable prob-

lems from the TPTP library. As a final remark, the SSTTP prover was not as

successful as originally hoped, nonetheless it has provided shorter proofs within a

shorter time scale for some of the problems under consideration.

9.2 Future Works

In this section, a number of suggestions are made how future work can look like in order

to improve the performace of the semantic tree approach.

• Grounding strategies for variables (as introduced in Chapter 5) within atoms from

the Herbrand base were introduced in regard to a particular set of clauses. Sub-

sequent examination of the effects of grounding strategies on the practicality of

managing variables instantiation are expected to be a valuably contribution to en-

hancing the generation of semantic trees for unsatisfiability proofs.

• Regardless of the value associated with search methods, the majority of research in

this domain has focused on the creation of new inference systems, which are either

more restrictive or more powerful than already existing ones implementation. Other
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control methods and heuristics centred on eradicating or re-organising atoms in the

Herbrand base also need to be taken into account.

• The SSTTP prover accepts CNF problems without TPTP library equality. Regret-

tably, a large number of problems from the library could not be used owing to these

restrictions of the program on parsing only CNF format from the TPTP library.

The SSTTP prover can be extended by embedding equality within the system: for

example, through the application of paramodulation and e-resolution, the explicit

utilisation of equality axioms, and resolution through equality and unification. The

presentation of equality within the SSTTP can, without question, help improve the

efficiency through permitting it to prove more complex theorems. This can be seen

when considering that, when the axioms of reflexivity, symmetry and transitivity

for equality are incorporated, any clause comprising an instance of substitution of

one such clause is a duplication that can be dismissed. Therefore, dealing with the

equality is the most important point in the future works to begin with.

• Finally, the approach could be extended in a way that it makes use of the high

number of processors advanced computers have these days. For this it would be

necessary to explore a parallel version of the semantic tree prover, with a number

of different design alternatives available when parallelising the generation of such

trees. Hopefully, by doing the extensions described above, the SSTTP prover will

become a powerful system that can compete in the CADE ATP system competition.
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APPENDIX A

SSTTP Output Details from all categories of

TPTP library

Table A.1 Analysis of ALG theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 ALG002-1 M/O - M/O - M/O - M/O - M/O -
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Table A.2 Analysis of ANA theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 ANA001-1 M/O - M/O - T/O - M/O - M/O -

2 ANA002-1 T/O - T/O - T/O - T/O - T/O -

3 ANA002-2 T/O - T/O - T/O - T/O - T/O -

4 ANA002-3 M/O - T/O - T/O - T/O - T/O -

5 ANA002-4 M/O - M/O - T/O - T/O - M/O -

6 ANA003-2 T/O - T/O - T/O - T/O - T/O -

7 ANA003-4 M/O - M/O - M/O - M/O - M/O -

8 ANA004-2 T/O - T/O - T/O - T/O - T/O -

9 ANA004-4 M/O - M/O - M/O - T/O - M/O -

10 ANA004-5 T/O - T/O - T/O - T/O - M/O -

11 ANA005-2 T/O - T/O - T/O - T/O - T/O -

12 ANA005-4 T/O - T/O - T/O - T/O - M/O -

13 ANA005-5 M/O - M/O - T/O - T/O - M/O -

14 ANA013-2 0.000 7 0.000 9 0.000 7 0.000 9 0.000 7

15 ANA025-2 M/O - M/O - T/O - M/O - T/O -

16 ANA037-2 M/O - M/O - T/O - M/O - M/O -

17 ANA038-2 M/O - M/O - T/O - M/O - M/O -

18 ANA039-2 M/O - M/O - M/O - M/O - M/O -

19 ANA041-2 0.000 3 0.000 3 0.000 3 0.000 3 0.000 3

20 ANA042-2 0.000 3 0.000 5 0.000 3 0.000 3 0.000 3

Table A.3 Analysis of CAT theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 CAT007-3 0.470 1739 0.000 11 0.000 15 0.030 117 0.000 31
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Table A.4 Analysis of COL theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 COL101-2 0.000 3 0.000 3 0.000 3 0.000 3 0.000 3

2 COL102-2 0.190 503 0.200 503 0.820 1367 3.130 3695 0.210 419

3 COL103-2 0.000 3 0.000 3 0.000 3 0.000 3 0.000 3

4 COL104-2 0.200 503 0.190 503 0.740 1367 1.920 1477 0.080 253

5 COL105-2 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5

6 COL109-2 2.640 1495 1.620 1101 0.610 525 0.000 19 2.660 1495

7 COL110-2 T/O - T/O - T/O - T/O - T/O -

8 COL111-2 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5

9 COL112-2 0.000 7 0.000 11 0.000 7 0.000 7 0.000 7

10 COL113-2 0.000 3 0.000 3 0.000 3 0.000 3 0.000 3

11 COL114-2 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5

12 COL115-2 0.000 7 0.000 11 0.000 7 0.000 7 0.000 7

13 COL116-2 0.000 3 0.000 3 0.000 3 0.000 3 0.000 3

14 COL117-2 2.580 1493 0.000 19 0.000 19 0.190 117 2.690 1493

15 COL118-2 M/O - T/O - T/O - T/O - M/O -

16 COL119-2 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5

17 COL120-2 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5

18 COL122-2 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5

19 COL124-2 T/O - 1.120 1735 0.000 47 M/O - M/O -
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Table A.5 Analysis of COM theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 COM001-1 0.090 453 0.010 101 0.000 67 0.040 215 0.000 41

2 COM002-1 2.260 2769 1.760 1993 0.150 475 3.330 1301 0.140 307

3 COM002-2 0.490 1809 0.020 143 0.010 99 1.800 787 0.250 567

4 COM003-1 M/O - M/O - T/O - T/O - M/O -

5 COM003-2 T/O - T/O - T/O - T/O - M/O -
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Table A.6 Analysis of FLD theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 FLD001-3 T/O - T/O - M/O - T/O - T/O -

2 FLD002-3 T/O - T/O - T/O - T/O - T/O -

3 FLD003-1 M/O - T/O - T/O - T/O - T/O -

4 FLD004-1 M/O - T/O - T/O - T/O - T/O -

5 FLD005-1 M/O - T/O - T/O - T/O - T/O -

6 FLD005-3 T/O - T/O - T/O - T/O - T/O -

7 FLD006-1 T/O - T/O - T/O - T/O - T/O -

8 FLD006-3 2.960 1097 0.000 11 M/O - M/O - 0.020 45

9 FLD007-1 T/O - T/O - T/O - T/O - T/O -

10 FLD007-3 T/O - T/O - T/O - T/O - T/O -

11 FLD008-1 M/O - T/O - T/O - T/O - T/O -

12 FLD008-2 M/O - T/O - M/O - T/O - T/O -

13 FLD008-3 T/O - T/O - T/O - T/O - T/O -

14 FLD008-4 T/O - T/O - T/O - T/O - T/O -

15 FLD009-1 M/O - T/O - T/O - T/O - T/O -

16 FLD009-3 T/O - T/O - T/O - T/O - T/O -

17 FLD010-1 T/O - T/O - T/O - T/O - T/O -

18 FLD010-3 M/O - 15.550 1377 T/O - T/O - 10.610 3467

19 FLD010-5 T/O - T/O - T/O - T/O - T/O -

20 FLD011-1 T/O - T/O - T/O - T/O - T/O -

21 FLD011-3 T/O - T/O - T/O - T/O - T/O -

22 FLD012-1 M/O - T/O - T/O - T/O - T/O -

23 FLD012-2 M/O - T/O - T/O - T/O - T/O -

24 FLD012-3 T/O - T/O - T/O - T/O - T/O -
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Table A.7 Analysis of GEO theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 GEO001-4 T/O - T/O - T/O - M/O - T/O -

2 GEO002-4 M/O - T/O - T/O - T/O - M/O -

3 GEO079-1 0.000 7 0.000 7 0.000 7 0.000 9 0.000 7
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Table A.8 Analysis of GRP theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 GRP001-5 T/O - M/O - M/O - M/O - M/O -

2 GRP003-1 T/O - T/O - T/O - T/O - T/O -

3 GRP004-1 T/O - T/O - T/O - T/O - T/O -

4 GRP005-1 T/O - T/O - T/O - T/O - T/O -

5 GRP006-1 T/O - T/O - T/O - T/O - T/O -

6 GRP025-3 T/O - T/O - T/O - T/O - T/O -

7 GRP026-3 T/O - T/O - T/O - T/O - T/O -

8 GRP027-2 M/O - T/O - T/O - T/O - T/O -

9 GRP028-1 T/O - T/O - T/O - T/O - M/O -

10 GRP028-3 T/O - T/O - T/O - T/O - T/O -

11 GRP028-4 T/O - T/O - T/O - T/O - T/O -

12 GRP029-2 T/O - T/O - T/O - T/O - T/O -

13 GRP031-2 T/O - T/O - T/O - T/O - T/O -

14 GRP034-4 T/O - T/O - T/O - T/O - T/O -

15 GRP039-6 T/O - T/O - T/O - T/O - T/O -

16 GRP123-1.003 T/O - T/O - T/O - T/O - 3.140 3009

17 GRP123-1.005 M/O - M/O - M/O - M/O - M/O -

18 GRP123-2.003 T/O - T/O - T/O - T/O - T/O -

19 GRP123-3.003 M/O - M/O - M/O - M/O - M/O -

20 GRP123-3.004 M/O - M/O - M/O - M/O - M/O -

21 GRP123-4.003 T/O - T/O - T/O - T/O - 1.450 257

22 GRP123-4.004 M/O - M/O - T/O - M/O - M/O -

23 GRP123-6.003 M/O - M/O - T/O - T/O - M/O -

24 GRP123-6.005 M/O - M/O - T/O - M/O - M/O -
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Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

25 GRP123-7.003 M/O - M/O - 19.040 9677 T/O - M/O -

26 GRP123-7.005 M/O - M/O - T/O - T/O - M/O -

27 GRP123-8.003 M/O - M/O - T/O - M/O - M/O -

28 GRP123-8.004 M/O - M/O - M/O - M/O - M/O -

29 GRP123-9.003 M/O - M/O - T/O - T/O - M/O -

30 GRP123-9.004 M/O - M/O - T/O - M/O - M/O -

31 GRP124-1.004 M/O - M/O - T/O - M/O - M/O -

32 GRP124-1.005 M/O - M/O - T/O - M/O - M/O -

33 GRP124-2.005 M/O - M/O - M/O - M/O - M/O -

34 GRP124-3.004 M/O - M/O - M/O - M/O - M/O -

35 GRP124-3.005 M/O - M/O - M/O - M/O - M/O -

36 GRP124-4.004 M/O - M/O - T/O - M/O - M/O -

37 GRP124-4.005 M/O - M/O - T/O - T/O - M/O -

38 GRP124-6.004 M/O - M/O - M/O - M/O - M/O -

39 GRP124-6.005 M/O - M/O - T/O - M/O - M/O -

40 GRP124-7.004 M/O - M/O - T/O - M/O - M/O -

41 GRP124-7.005 M/O - M/O - T/O - M/O - M/O -

42 GRP124-8.004 M/O - M/O - M/O - M/O - M/O -

43 GRP124-9.004 M/O - M/O - M/O - M/O - M/O -

44 GRP124-9.005 M/O - M/O - T/O - M/O - M/O -

45 GRP125-1.003 M/O - M/O - T/O - T/O - M/O -

46 GRP125-4.003 T/O - T/O - T/O - T/O - 6.520 3931

47 GRP125-4.004 M/O - T/O - T/O - T/O - M/O -
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Table A.9 Analysis of KRS theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 KRS001-1 M/O - M/O - T/O - M/O - T/O -

2 KRS002-1 M/O - M/O - T/O - M/O - M/O -

3 KRS003-1 M/O - M/O - T/O - M/O - M/O -

4 KRS004-1 0.000 5 0.000 5 0.000 5 0.000 7 0.000 5

5 KRS006-1 M/O - M/O - T/O - T/O - M/O -

6 KRS007-1 M/O - M/O - T/O - M/O - M/O -

7 KRS008-1 M/O - M/O - M/O - M/O - T/O -

8 KRS009-1 M/O - M/O - T/O - T/O - M/O -

9 KRS010-1 T/O - T/O - M/O - T/O - T/O -

10 KRS012-1 M/O - M/O - M/O - M/O - M/O -

11 KRS013-1 M/O - M/O - T/O - M/O - M/O -

12 KRS015-1 T/O - T/O - T/O - T/O - M/O -

13 KRS016-1 M/O - M/O - M/O - T/O - M/O -

Table A.10 Analysis of LAT theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 LAT005-1 M/O - T/O - T/O - T/O - T/O -

2 LAT005-2 M/O - M/O - T/O - T/O - T/O -

3 LAT270-2 T/O - T/O - T/O - T/O - T/O -

4 LAT272-2 0.000 7 0.000 7 0.000 7 0.000 7 0.000 7

5 LAT273-2 M/O - 0.000 13 0.000 13 0.390 453 M/O -
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Table A.11 Analysis of LCL theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 LCL001-1 M/O - M/O - M/O - M/O - M/O -

2 LCL002-1 M/O - M/O - M/O - M/O - M/O -

3 LCL006-1 M/O - M/O - M/O - M/O - M/O -

4 LCL007-1 0.030 53 0.030 53 0.000 7 0.010 33 0.020 53

5 LCL008-1 M/O - M/O - M/O - M/O - M/O -

6 LCL009-1 M/O - M/O - M/O - M/O - M/O -

7 LCL011-1 M/O - M/O - M/O - M/O - M/O -

8 LCL012-1 M/O - M/O - M/O - M/O - M/O -

9 LCL013-1 M/O - M/O - M/O - M/O - M/O -

10 LCL014-1 M/O - M/O - M/O - M/O - M/O -

11 LCL016-1 M/O - M/O - M/O - M/O - M/O -

12 LCL017-1 M/O - M/O - M/O - M/O - M/O -

13 LCL018-1 M/O - M/O - M/O - M/O - M/O -

14 LCL022-1 M/O - M/O - M/O - M/O - M/O -

15 LCL023-1 M/O - M/O - M/O - M/O - M/O -

16 LCL025-1 M/O - M/O - M/O - M/O - M/O -

17 LCL026-1 M/O - M/O - M/O - M/O - M/O -

18 LCL027-1 M/O - M/O - M/O - T/O - M/O -

19 LCL028-1 M/O - M/O - M/O - M/O - M/O -

20 LCL029-1 M/O - M/O - M/O - M/O - M/O -

21 LCL030-1 M/O - M/O - M/O - M/O - M/O -

22 LCL031-1 M/O - M/O - M/O - M/O - M/O -

23 LCL032-1 M/O - M/O - M/O - M/O - M/O -

24 LCL039-1 M/O - M/O - M/O - M/O - M/O -

25 LCL040-1 M/O - M/O - M/O - M/O - M/O -
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Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

26 LCL041-1 M/O - M/O - M/O - M/O - M/O -

27 LCL042-1 M/O - M/O - M/O - M/O - M/O -

28 LCL043-1 M/O - M/O - M/O - M/O - 5.920 1083

29 LCL044-1 M/O - M/O - M/O - M/O - M/O -

30 LCL045-1 M/O - M/O - M/O - M/O - M/O -

31 LCL046-1 M/O - M/O - M/O - M/O - M/O -

32 LCL047-1 M/O - M/O - M/O - M/O - M/O -

33 LCL048-1 M/O - M/O - M/O - M/O - M/O -

34 LCL049-1 M/O - M/O - M/O - M/O - M/O -

35 LCL050-1 M/O - M/O - M/O - M/O - M/O -

36 LCL051-1 M/O - M/O - M/O - M/O - M/O -

37 LCL052-1 M/O - M/O - M/O - M/O - M/O -

38 LCL053-1 M/O - M/O - M/O - M/O - M/O -

39 LCL054-1 M/O - M/O - M/O - M/O - M/O -

40 LCL055-1 M/O - M/O - M/O - M/O - M/O -

41 LCL056-1 M/O - M/O - M/O - M/O - M/O -

42 LCL057-1 M/O - M/O - M/O - M/O - M/O -

43 LCL058-1 M/O - M/O - M/O - M/O - M/O -

44 LCL059-1 M/O - M/O - M/O - M/O - M/O -

45 LCL060-1 M/O - M/O - M/O - M/O - M/O -

46 LCL061-1 M/O - M/O - M/O - M/O - M/O -

47 LCL062-1 M/O - M/O - M/O - M/O - M/O -

48 LCL063-1 M/O - M/O - M/O - M/O - M/O -

49 LCL064-1 M/O - M/O - M/O - M/O - M/O -

50 LCL064-2 M/O - M/O - M/O - M/O - M/O -
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Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

51 LCL065-1 M/O - M/O - M/O - M/O - M/O -

52 LCL066-1 M/O - M/O - M/O - M/O - M/O -

53 LCL067-1 M/O - M/O - M/O - M/O - M/O -

54 LCL068-1 M/O - M/O - M/O - M/O - M/O -

55 LCL069-1 M/O - M/O - M/O - M/O - M/O -

56 LCL070-1 M/O - M/O - M/O - M/O - M/O -

57 LCL072-1 M/O - M/O - M/O - M/O - M/O -

58 LCL073-1 M/O - M/O - M/O - M/O - M/O -

59 LCL075-1 M/O - M/O - M/O - M/O - M/O -

60 LCL076-1 M/O - M/O - M/O - M/O - M/O -

61 LCL076-2 0.000 11 0.000 11 0.000 15 0.000 11 0.000 11

62 LCL076-3 M/O - M/O - M/O - M/O - M/O -

63 LCL077-1 M/O - M/O - M/O - M/O - M/O -

64 LCL077-2 M/O - M/O - M/O - M/O - M/O -

65 LCL078-1 M/O - M/O - M/O - M/O - M/O -

66 LCL079-1 M/O - M/O - M/O - M/O - M/O -

67 LCL080-1 M/O - M/O - M/O - M/O - M/O -

68 LCL080-2 M/O - M/O - M/O - M/O - M/O -

69 LCL081-1 M/O - M/O - M/O - M/O - M/O -

70 LCL082-1 M/O - M/O - M/O - M/O - M/O -

71 LCL083-1 M/O - M/O - M/O - M/O - M/O -

72 LCL083-2 M/O - M/O - M/O - M/O - M/O -

73 LCL084-2 M/O - M/O - M/O - M/O - M/O -

74 LCL084-3 M/O - M/O - M/O - M/O - M/O -

75 LCL085-1 M/O - M/O - M/O - M/O - M/O -
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Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

76 LCL089-1 M/O - M/O - M/O - M/O - M/O -

77 LCL100-1 M/O - M/O - M/O - M/O - M/O -

78 LCL103-1 M/O - M/O - M/O - M/O - M/O -

79 LCL105-1 M/O - M/O - M/O - M/O - M/O -

80 LCL106-1 M/O - M/O - M/O - M/O - M/O -

81 LCL109-1 M/O - M/O - M/O - M/O - M/O -

82 LCL110-1 M/O - M/O - M/O - M/O - M/O -

83 LCL112-1 M/O - M/O - M/O - M/O - M/O -

84 LCL115-1 M/O - M/O - M/O - M/O - M/O -

85 LCL116-1 M/O - M/O - M/O - M/O - M/O -

86 LCL117-1 M/O - M/O - M/O - T/O - M/O -

87 LCL118-1 M/O - M/O - M/O - M/O - M/O -

88 LCL119-1 M/O - M/O - M/O - M/O - M/O -

89 LCL129-1 M/O - M/O - M/O - M/O - M/O -

90 LCL130-1 M/O - M/O - M/O - M/O - M/O -

91 LCL131-1 M/O - M/O - M/O - M/O - M/O -

92 LCL168-1 M/O - M/O - M/O - M/O - M/O -

93 LCL256-1 M/O - M/O - M/O - M/O - M/O -

94 LCL257-1 M/O - M/O - M/O - T/O - M/O -

95 LCL355-1 M/O - M/O - 0.010 39 3.530 545 M/O -

96 LCL356-1 M/O - M/O - M/O - M/O - M/O -

97 LCL357-1 M/O - M/O - M/O - M/O - M/O -

98 LCL358-1 M/O - M/O - M/O - M/O - M/O -

99 LCL359-1 M/O - M/O - M/O - M/O - M/O -

100 LCL360-1 0.030 89 0.030 89 0.010 55 2.450 545 0.020 89

137



Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

101 LCL361-1 M/O - M/O - M/O - M/O - M/O -

102 LCL362-1 M/O - M/O - M/O - M/O - M/O -

103 LCL363-1 M/O - M/O - M/O - M/O - M/O -

104 LCL364-1 M/O - M/O - M/O - M/O - M/O -

105 LCL365-1 M/O - M/O - M/O - M/O - M/O -

106 LCL366-1 M/O - M/O - M/O - M/O - M/O -

107 LCL367-1 M/O - M/O - M/O - M/O - M/O -

108 LCL368-1 M/O - M/O - M/O - M/O - M/O -

109 LCL369-1 M/O - M/O - M/O - M/O - M/O -

110 LCL370-1 M/O - M/O - M/O - M/O - M/O -

111 LCL371-1 M/O - M/O - M/O - M/O - M/O -

112 LCL372-1 M/O - M/O - M/O - M/O - M/O -

113 LCL373-1 M/O - M/O - M/O - M/O - M/O -

114 LCL374-1 M/O - M/O - M/O - M/O - M/O -

115 LCL375-1 M/O - M/O - M/O - M/O - M/O -

116 LCL376-1 M/O - M/O - M/O - M/O - M/O -

117 LCL377-1 M/O - M/O - M/O - M/O - M/O -

118 LCL378-1 M/O - M/O - M/O - M/O - M/O -

119 LCL379-1 M/O - M/O - M/O - M/O - M/O -

120 LCL380-1 M/O - M/O - M/O - M/O - M/O -

121 LCL381-1 M/O - M/O - M/O - M/O - M/O -

122 LCL382-1 M/O - M/O - M/O - M/O - M/O -

123 LCL383-1 M/O - M/O - M/O - M/O - M/O -

124 LCL384-1 M/O - M/O - M/O - M/O - M/O -

125 LCL385-1 M/O - M/O - M/O - M/O - M/O -
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Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

126 LCL386-1 M/O - M/O - M/O - M/O - M/O -

127 LCL387-1 M/O - M/O - M/O - M/O - M/O -

128 LCL388-1 M/O - M/O - M/O - M/O - M/O -

129 LCL389-1 M/O - M/O - M/O - M/O - M/O -

130 LCL390-1 M/O - M/O - M/O - M/O - M/O -

131 LCL391-1 M/O - M/O - M/O - M/O - M/O -

132 LCL392-1 M/O - M/O - M/O - M/O - M/O -

133 LCL393-1 M/O - M/O - M/O - M/O - M/O -

134 LCL394-1 M/O - M/O - M/O - M/O - M/O -

135 LCL395-1 M/O - M/O - M/O - M/O - M/O -

136 LCL396-1 M/O - M/O - M/O - M/O - M/O -

137 LCL397-1 M/O - M/O - M/O - M/O - M/O -

138 LCL398-1 M/O - M/O - M/O - M/O - M/O -

139 LCL399-1 M/O - M/O - M/O - M/O - M/O -

140 LCL400-1 M/O - M/O - M/O - M/O - M/O -

141 LCL401-1 M/O - M/O - M/O - M/O - M/O -

142 LCL402-1 M/O - M/O - M/O - M/O - M/O -

143 LCL403-1 M/O - M/O - M/O - M/O - M/O -

144 LCL404-1 M/O - M/O - M/O - M/O - M/O -

145 LCL405-1 M/O - M/O - M/O - M/O - M/O -

146 LCL414-1 M/O - M/O - M/O - M/O - M/O -

147 LCL415-1 M/O - M/O - M/O - M/O - M/O -

148 LCL420-1 M/O - M/O - M/O - M/O - M/O -

149 LCL421-1 M/O - M/O - M/O - M/O - M/O -

150 LCL425-1 M/O - M/O - M/O - M/O - M/O -
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Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

151 LCL426-1 M/O - M/O - M/O - M/O - M/O -

152 LCL427-1 M/O - M/O - M/O - M/O - M/O -

153 LCL428-1 M/O - M/O - M/O - M/O - M/O -

154 LCL429-2 M/O - M/O - M/O - M/O - M/O -

155 LCL430-2 M/O - M/O - M/O - M/O - M/O -

156 LCL432-2 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5

157 LCL433-2 M/O - M/O - M/O - M/O - M/O -

158 LCL435-2 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5

159 LCL436-2 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5

160 LCL437-2 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5

161 LCL438-2 0.000 21 0.000 23 0.000 21 0.000 27 0.000 17

162 LCL439-2 M/O - M/O - M/O - 13.260 2369 M/O -

163 LCL440-2 0.000 3 0.000 3 0.000 3 0.000 3 0.000 3

164 LCL441-2 0.000 17 0.000 19 0.000 13 0.000 17 0.000 17

165 LCL443-2 M/O - M/O - M/O - M/O - M/O -

166 LCL444-2 M/O - M/O - M/O - M/O - M/O -

167 LCL445-2 M/O - M/O - M/O - 0.210 333 M/O -

168 LCL446-2 0.000 15 M/O - M/O - M/O - 0.000 15

169 LCL447-2 0.000 7 0.000 7 0.000 7 0.000 7 0.000 7
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Table A.12 Analysis of MGT theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 MGT001-1 M/O - M/O - T/O - M/O - T/O -

2 MGT007-1 M/O - M/O - T/O - M/O - T/O -

3 MGT022-1 0.000 53 0.000 31 0.000 31 0.000 25 0.000 53

4 MGT022-2 0.000 53 0.000 31 0.000 31 0.000 25 0.000 53

5 MGT028-1 M/O - M/O - T/O - T/O - M/O -

6 MGT030-1 M/O - M/O - 79.180 2459 M/O - M/O -

7 MGT032-2 M/O - M/O - M/O - M/O - M/O -

8 MGT036-3 0.220 227 0.020 81 0.000 23 0.140 87 0.080 63

9 MGT041-2 0.000 23 0.000 15 0.000 15 T/O - 0.000 23
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Table A.13 Analysis of MSC theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 MSC001-1 M/O - M/O - M/O - T/O - M/O -

2 MSC002-2 M/O - T/O - M/O - T/O - T/O -

3 MSC005-1 M/O - M/O - T/O - T/O - M/O -

4 MSC006-1 T/O - T/O - T/O - T/O - T/O -

5 MSC008-2.002 T/O - T/O - T/O - T/O - T/O -

6 MSC015-1.005 T/O - T/O - T/O - T/O - T/O -

7 MSC015-1.010 M/O - M/O - M/O - M/O - M/O -

8 MSC015-1.015 M/O - M/O - M/O - M/O - M/O -

9 MSC015-1.020 M/O - M/O - M/O - M/O - M/O -

10 MSC015-1.022 M/O - T/O - T/O - M/O - M/O -

11 MSC015-1.025 M/O - T/O - T/O - M/O - M/O -

12 MSC015-1.027 M/O - T/O - T/O - M/O - M/O -

13 MSC015-1.030 M/O - T/O - T/O - T/O - T/O -

Table A.14 Analysis of NUM theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 NUM015-1 M/O - M/O - M/O - M/O - 0.450 2771

2 NUM016-1 M/O - M/O - M/O - M/O - M/O -

3 NUM016-2 M/O - M/O - M/O - M/O - M/O -

4 NUM017-1 T/O - T/O - M/O - T/O - T/O -

5 NUM283-1.005 M/O - M/O - M/O - M/O - M/O -
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Table A.15 Analysis of PLA theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 PLA001-1 T/O - M/O - M/O - T/O - T/O -

2 PLA002-1 M/O - M/O - M/O - M/O - M/O -

3 PLA002-2 M/O - M/O - T/O - M/O - M/O -

4 PLA003-1 T/O - T/O - T/O - T/O - M/O -

5 PLA031-1.001 T/O - T/O - T/O - T/O - T/O -

6 PLA031-1.002 T/O - T/O - T/O - T/O - T/O -

7 PLA031-1.003 T/O - T/O - T/O - T/O - M/O -

8 PLA031-1.004 T/O - T/O - T/O - T/O - M/O -

9 PLA031-1.005 T/O - T/O - T/O - T/O - M/O -

10 PLA031-1.006 T/O - T/O - T/O - T/O - T/O -

11 PLA031-1.007 T/O - T/O - T/O - T/O - T/O -

12 PLA031-1.008 T/O - T/O - T/O - T/O - T/O -
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Table A.16 Analysis of PUZ theorems in case of total run time and number of nodes.

Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

1 PUZ001-1 T/O - T/O - T/O - T/O - T/O -

2 PUZ001-3 T/O - T/O - T/O - T/O - T/O -

3 PUZ002-1 T/O - T/O - T/O - T/O - T/O -

4 PUZ003-1 T/O - T/O - T/O - T/O - T/O -

5 PUZ005-1 M/O - M/O - T/O - T/O - M/O -

6 PUZ008-1 0.440 297 0.290 151 0.180 85 0.780 277 T/O -

7 PUZ010-1 M/O - M/O - T/O - T/O - M/O -

8 PUZ012-1 0.680 2553 0.010 119 0.000 63 0.040 217 0.050 183

9 PUZ017-1 M/O - M/O - T/O - T/O - M/O -

10 PUZ018-1 M/O - 0.900 423 0.760 187 M/O - M/O -

11 PUZ018-2 M/O - M/O - T/O - M/O - M/O -

12 PUZ019-1 M/O - 14.210 2041 M/O - T/O - M/O -

13 PUZ021-1 T/O - T/O - T/O - T/O - T/O -

14 PUZ028-1 M/O - M/O - T/O - T/O - T/O -

15 PUZ028-2 M/O - M/O - T/O - T/O - M/O -

16 PUZ028-5 M/O - M/O - M/O - M/O - M/O -

17 PUZ028-6 M/O - M/O - M/O - T/O - M/O -

18 PUZ029-1 T/O - T/O - T/O - T/O - T/O -

19 PUZ030-1 T/O - T/O - T/O - T/O - T/O -

20 PUZ031-1 T/O - T/O - T/O - T/O - T/O -

21 PUZ034-1.003 T/O - T/O - T/O - T/O - T/O -

22 PUZ034-1.004 T/O - T/O - T/O - T/O - T/O -

23 PUZ035-1 0.030 357 0.030 357 0.010 201 0.020 161 0.000 109

24 PUZ035-2 0.040 429 0.040 429 0.040 497 0.020 167 0.010 171
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Theorem
SSTTP SSTTP-h1 SSTTP-h2 SSTTP-h3 SSTTP-h4

time nodes time nodes time nodes time nodes time nodes

25 PUZ035-3 1.150 1495 1.170 1495 2.170 3787 0.500 611 1.730 2245

26 PUZ035-4 1.030 1731 1.050 1731 0.900 2021 0.430 579 1.490 2587

27 PUZ035-5 0.000 89 0.010 91 0.080 259 0.200 445 0.000 29

28 PUZ035-6 0.000 89 0.010 91 0.220 433 0.120 241 0.000 29

29 PUZ035-7 0.300 477 0.310 477 0.290 523 1.550 1591 0.240 387

30 PUZ036-1.005 T/O - T/O - T/O - T/O - T/O -

31 PUZ037-1 T/O - T/O - T/O - T/O - T/O -

32 PUZ037-2 T/O - T/O - T/O - T/O - T/O -

33 PUZ037-3 T/O - T/O - T/O - T/O - T/O -

34 PUZ047-1 M/O - M/O - M/O - M/O - M/O -

35 PUZ052-1 T/O - T/O - T/O - T/O - T/O -

36 PUZ053-1 T/O - T/O - T/O - T/O - T/O -

37 PUZ054-1 M/O - M/O - M/O - M/O - M/O -

38 PUZ056-2.005 M/O - M/O - T/O - M/O - M/O -

39 PUZ056-2.025 M/O - M/O - M/O - M/O - M/O -

40 PUZ056-2.027 M/O - M/O - M/O - M/O - M/O -
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APPENDIX B

Provers Output Details from all categories of

TPTP library

Table B.1 Analysis of ALG theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 ALG002-1 M/O 0.000 19.400 0.047
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Table B.2 Analysis of ANA theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 ANA001-1 M/O T/O T/O T/O

2 ANA002-1 T/O T/O T/O T/O

3 ANA002-2 T/O T/O T/O T/O

4 ANA002-3 T/O T/O T/O T/O

5 ANA002-4 M/O T/O 37.410 T/O

6 ANA003-2 T/O T/O T/O 26.892

7 ANA003-4 M/O 1.190 0.050 0.143

8 ANA004-2 T/O T/O T/O T/O

9 ANA004-4 M/O 2.130 0.080 0.533

10 ANA004-5 M/O T/O T/O T/O

11 ANA005-2 T/O T/O T/O T/O

12 ANA005-4 M/O T/O T/O T/O

13 ANA005-5 M/O T/O T/O T/O

14 ANA013-2 0.000 0.000 0.020 0.180

15 ANA025-2 T/O 0.000 0.010 0.053

16 ANA037-2 M/O 0.000 0.020 0.131

17 ANA038-2 M/O 0.000 0.010 0.102

18 ANA039-2 M/O 0.000 0.020 0.032

19 ANA041-2 0.000 0.000 0.020 0.005

20 ANA042-2 0.000 0.000 0.020 0.004

Table B.3 Analysis of CAT theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 CAT007-3 0.000 0.000 0.010 0.070
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Table B.4 Analysis of COL theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 COL101-2 0.000 0.000 0.020 0.120

2 COL102-2 0.210 0.000 0.020 0.101

3 COL103-2 0.000 0.000 0.010 0.120

4 COL104-2 0.080 0.000 0.020 0.122

5 COL105-2 0.000 0.000 0.020 0.120

6 COL109-2 2.660 0.000 0.010 0.061

7 COL110-2 T/O 0.000 0.010 0.121

8 COL111-2 0.000 0.000 0.010 0.080

9 COL112-2 0.000 0.000 0.020 0.160

10 COL113-2 0.000 0.000 0.020 0.120

11 COL114-2 0.000 0.000 0.010 0.111

12 COL115-2 0.000 0.000 0.010 0.081

13 COL116-2 0.000 0.000 0.010 0.030

14 COL117-2 2.690 0.000 0.010 0.161

15 COL118-2 M/O 0.000 0.010 0.061

16 COL119-2 0.000 0.000 0.010 0.030

17 COL120-2 0.000 0.000 0.010 0.080

18 COL122-2 0.000 0.000 0.010 0.004

19 COL124-2 M/O 0.000 0.010 0.005

Table B.5 Analysis of COM theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 COM001-1 0.000 0.000 0.010 0.031

2 COM002-1 0.140 0.000 0.010 0.031

3 COM002-2 0.250 0.000 0.010 0.008

4 COM003-1 M/O T/O 0.790 0.306

5 COM003-2 M/O 0.000 0.010 0.007

149



Table B.6 Analysis of FLD theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 FLD001-3 T/O 0.000 5.370 8.054

2 FLD002-3 T/O 0.000 2.040 8.808

3 FLD003-1 T/O T/O 0.180 41.278

4 FLD004-1 T/O T/O 0.160 41.706

5 FLD005-1 T/O T/O 0.300 4.741

6 FLD005-3 T/O 0.000 0.450 0.320

7 FLD006-1 T/O 0.000 0.020 0.007

8 FLD006-3 0.020 0.000 0.010 0.005

9 FLD007-1 T/O T/O T/O T/O

10 FLD007-3 T/O 0.000 0.080 0.078

11 FLD008-1 T/O T/O T/O T/O

12 FLD008-2 T/O T/O T/O T/O

13 FLD008-3 T/O T/O 33.470 T/O

14 FLD008-4 T/O 0.000 0.350 0.723

15 FLD009-1 T/O T/O 0.210 4.854

16 FLD009-3 T/O 0.000 0.570 0.138

17 FLD010-1 T/O 0.000 0.020 0.105

18 FLD010-3 10.610 0.000 0.020 0.062

19 FLD010-5 T/O 0.000 0.150 0.701

20 FLD011-1 T/O T/O T/O T/O

21 FLD011-3 T/O 0.000 0.380 7.066

22 FLD012-1 T/O T/O T/O T/O

23 FLD012-2 T/O T/O T/O T/O

24 FLD012-3 T/O T/O T/O T/O
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Table B.7 Analysis of GEO theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 GEO001-4 T/O T/O T/O T/O

2 GEO002-4 M/O 0.000 0.040 0.134

3 GEO079-1 0.000 T/O 0.020 0.160
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Table B.8 Analysis of GRP theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 GRP001-5 M/O 0.000 0.020 0.063

2 GRP003-1 T/O 0.000 0.020 0.071

3 GRP004-1 T/O 0.000 0.010 0.006

4 GRP005-1 T/O 0.000 0.010 0.090

5 GRP006-1 T/O 0.000 0.010 0.110

6 GRP025-3 T/O T/O T/O T/O

7 GRP026-3 T/O T/O T/O T/O

8 GRP027-2 T/O T/O T/O T/O

9 GRP028-1 M/O 0.000 0.030 0.151

10 GRP028-3 T/O 0.000 0.020 0.215

11 GRP028-4 T/O 0.000 0.010 0.161

12 GRP029-2 T/O 0.000 1.510 1.030

13 GRP031-2 T/O 0.000 0.030 0.045

14 GRP034-4 T/O 0.000 0.010 0.004

15 GRP039-6 T/O 0.040 0.080 0.418

16 GRP123-1.003 3.140 0.000 0.030 0.100

17 GRP123-1.005 M/O T/O T/O T/O

18 GRP123-2.003 T/O 0.000 0.020 0.172

19 GRP123-3.003 M/O 0.000 0.030 0.149

20 GRP123-3.004 M/O T/O T/O T/O

21 GRP123-4.003 1.450 0.000 0.030 0.264

22 GRP123-4.004 M/O T/O T/O T/O

23 GRP123-6.003 M/O 0.000 0.030 0.157

24 GRP123-6.005 M/O T/O T/O T/O
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Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

25 GRP123-7.003 M/O 0.000 0.030 0.124

26 GRP123-7.005 M/O T/O T/O T/O

27 GRP123-8.003 M/O 0.000 0.020 0.174

28 GRP123-8.004 M/O T/O T/O T/O

29 GRP123-9.003 M/O 0.000 0.020 0.174

30 GRP123-9.004 M/O T/O T/O T/O

31 GRP124-1.004 M/O 0.000 0.040 0.247

32 GRP124-1.005 M/O T/O T/O T/O

33 GRP124-2.005 M/O T/O T/O T/O

34 GRP124-3.004 M/O 0.000 0.040 1.554

35 GRP124-3.005 M/O T/O T/O T/O

36 GRP124-4.004 M/O 0.000 0.070 1.079

37 GRP124-4.005 M/O T/O T/O T/O

38 GRP124-6.004 M/O 0.000 0.160 0.862

39 GRP124-6.005 M/O T/O T/O T/O

40 GRP124-7.004 M/O 0.000 0.170 0.889

41 GRP124-7.005 M/O T/O T/O T/O

42 GRP124-8.004 M/O 0.000 0.080 0.891

43 GRP124-9.004 M/O 0.000 0.150 0.929

44 GRP124-9.005 M/O T/O T/O T/O

45 GRP125-1.003 M/O 0.000 0.020 0.040

46 GRP125-4.003 6.520 0.000 0.010 0.270

47 GRP125-4.004 M/O T/O T/O T/O
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Table B.9 Analysis of KRS theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 KRS001-1 T/O 0.000 0.020 0.006

2 KRS002-1 M/O 0.000 0.020 0.101

3 KRS003-1 M/O 0.000 0.020 0.151

4 KRS004-1 0.000 0.000 0.010 0.090

5 KRS006-1 M/O T/O T/O T/O

6 KRS007-1 M/O T/O T/O T/O

7 KRS008-1 T/O T/O T/O T/O

8 KRS009-1 M/O T/O T/O T/O

9 KRS010-1 T/O 0.000 0.030 0.184

10 KRS012-1 M/O 0.000 0.010 0.210

11 KRS013-1 M/O 0.000 0.010 0.131

12 KRS015-1 M/O 0.000 0.010 0.091

13 KRS016-1 M/O T/O T/O T/O

Table B.10 Analysis of LAT theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 LAT005-1 T/O 0.000 0.460 0.567

2 LAT005-2 T/O 0.000 0.240 0.357

3 LAT270-2 T/O 0.000 0.010 0.120

4 LAT272-2 0.000 0.000 0.030 0.081

5 LAT273-2 M/O 0.000 0.020 0.080
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Table B.11 Analysis of LCL theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 LCL001-1 M/O T/O T/O T/O

2 LCL002-1 M/O 0.330 9.420 T/O

3 LCL006-1 M/O 0.000 4.170 25.875

4 LCL007-1 0.020 0.000 0.020 0.171

5 LCL008-1 M/O 0.000 0.010 0.202

6 LCL009-1 M/O 0.000 0.120 0.204

7 LCL011-1 M/O 0.010 2.560 2.709

8 LCL012-1 M/O 0.140 T/O 56.664

9 LCL013-1 M/O 0.000 0.020 0.005

10 LCL014-1 M/O 0.030 2.030 19.930

11 LCL016-1 M/O 0.040 T/O 34.426

12 LCL017-1 M/O 0.110 T/O 26.499

13 LCL018-1 M/O 0.060 T/O 43.960

14 LCL022-1 M/O 0.000 0.020 0.198

15 LCL023-1 M/O 0.000 0.120 0.083

16 LCL025-1 M/O 0.010 18.310 1.686

17 LCL026-1 M/O 0.020 38.010 1.826

18 LCL027-1 M/O 0.000 0.030 0.073

19 LCL028-1 M/O T/O T/O 37.638

20 LCL029-1 M/O 0.000 0.620 0.229

21 LCL030-1 M/O 0.180 T/O T/O

22 LCL031-1 M/O T/O T/O 56.854

23 LCL032-1 M/O T/O T/O T/O

24 LCL039-1 M/O 4.780 0.540 0.174

25 LCL040-1 M/O 0.090 T/O 5.680
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Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

26 LCL041-1 M/O 0.000 0.070 0.038

27 LCL042-1 M/O 1.670 T/O 0.317

28 LCL043-1 5.920 0.000 0.040 0.042

29 LCL044-1 M/O 0.000 0.280 0.100

30 LCL045-1 M/O 0.250 T/O 0.334

31 LCL046-1 M/O 0.000 0.070 0.101

32 LCL047-1 M/O 0.000 0.460 T/O

33 LCL048-1 M/O 0.000 0.280 T/O

34 LCL049-1 M/O 0.030 0.870 T/O

35 LCL050-1 M/O 0.030 0.620 T/O

36 LCL051-1 M/O 0.120 T/O T/O

37 LCL052-1 M/O 0.020 5.590 7.219

38 LCL053-1 M/O 0.010 5.770 9.485

39 LCL054-1 M/O T/O T/O T/O

40 LCL055-1 M/O 0.010 1.500 7.344

41 LCL056-1 M/O 0.010 1.170 7.172

42 LCL057-1 M/O 0.010 1.150 7.313

43 LCL058-1 M/O 0.220 T/O T/O

44 LCL059-1 M/O 0.020 10.930 T/O

45 LCL060-1 M/O 0.250 T/O T/O

46 LCL061-1 M/O T/O T/O T/O

47 LCL062-1 M/O T/O T/O T/O

48 LCL063-1 M/O T/O T/O T/O

49 LCL064-1 M/O 0.030 36.470 19.847

50 LCL064-2 M/O 0.000 0.530 0.893
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Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

51 LCL065-1 M/O 0.010 0.080 0.229

52 LCL066-1 M/O 0.000 0.050 0.044

53 LCL067-1 M/O 0.070 31.750 9.735

54 LCL068-1 M/O 0.180 T/O 1.564

55 LCL069-1 M/O 0.000 0.380 0.182

56 LCL070-1 M/O 0.070 T/O 28.014

57 LCL072-1 M/O 0.010 6.960 0.271

58 LCL073-1 M/O T/O T/O T/O

59 LCL075-1 M/O 0.010 0.190 0.238

60 LCL076-1 M/O 0.010 0.080 0.024

61 LCL076-2 0.000 0.000 0.090 0.030

62 LCL076-3 M/O 0.000 0.120 0.019

63 LCL077-1 M/O 0.000 0.040 0.048

64 LCL077-2 M/O 0.000 0.080 0.020

65 LCL078-1 M/O T/O T/O T/O

66 LCL079-1 M/O 0.000 0.020 0.111

67 LCL080-1 M/O 0.010 7.060 20.072

68 LCL080-2 M/O 0.010 6.630 20.095

69 LCL081-1 M/O 0.000 0.020 0.187

70 LCL082-1 M/O 0.000 0.020 0.175

71 LCL083-1 M/O 0.000 0.370 0.653

72 LCL083-2 M/O 0.000 0.370 0.179

73 LCL084-2 M/O 2.010 T/O T/O

74 LCL084-3 M/O 1.670 T/O T/O

75 LCL085-1 M/O 0.530 T/O T/O
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Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

76 LCL089-1 M/O 0.000 0.110 1.181

77 LCL100-1 M/O T/O T/O T/O

78 LCL103-1 M/O 0.040 T/O 46.227

79 LCL105-1 M/O T/O T/O T/O

80 LCL106-1 M/O 0.000 0.020 0.030

81 LCL109-1 M/O T/O T/O T/O

82 LCL110-1 M/O 0.000 0.030 0.138

83 LCL112-1 M/O 0.000 0.030 0.075

84 LCL115-1 M/O 0.000 0.240 0.361

85 LCL116-1 M/O 0.570 T/O 33.238

86 LCL117-1 M/O 0.000 0.080 0.201

87 LCL118-1 M/O 0.000 0.290 2.283

88 LCL119-1 M/O T/O 19.760 23.708

89 LCL129-1 M/O 1.970 T/O T/O

90 LCL130-1 M/O 0.000 0.030 0.119

91 LCL131-1 M/O 0.020 7.110 37.713

92 LCL168-1 M/O T/O T/O T/O

93 LCL256-1 M/O 0.000 1.140 7.128

94 LCL257-1 M/O 0.000 0.140 0.164

95 LCL355-1 M/O 0.000 0.030 0.030

96 LCL356-1 M/O 0.000 0.020 0.012

97 LCL357-1 M/O 0.000 0.030 0.006

98 LCL358-1 M/O 0.000 0.320 0.063

99 LCL359-1 M/O 0.000 0.030 0.132

100 LCL360-1 0.020 0.000 0.010 0.030
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Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

101 LCL361-1 M/O 0.000 0.020 0.141

102 LCL362-1 M/O 0.000 0.020 0.062

103 LCL363-1 M/O 0.000 0.020 0.035

104 LCL364-1 M/O 0.000 0.090 T/O

105 LCL365-1 M/O T/O T/O T/O

106 LCL366-1 M/O 0.000 0.020 0.084

107 LCL367-1 M/O 0.000 0.290 T/O

108 LCL368-1 M/O 0.120 1.560 T/O

109 LCL369-1 M/O 0.110 T/O T/O

110 LCL370-1 M/O 0.110 T/O T/O

111 LCL371-1 M/O 0.110 T/O T/O

112 LCL372-1 M/O T/O T/O T/O

113 LCL373-1 M/O 0.210 T/O T/O

114 LCL374-1 M/O T/O T/O T/O

115 LCL375-1 M/O T/O T/O T/O

116 LCL376-1 M/O T/O T/O T/O

117 LCL377-1 M/O T/O T/O T/O

118 LCL378-1 M/O 0.010 1.480 7.077

119 LCL379-1 M/O 0.010 1.310 7.188

120 LCL380-1 M/O 0.010 1.130 7.238

121 LCL381-1 M/O 0.010 1.530 7.089

122 LCL382-1 M/O 0.120 T/O T/O

123 LCL383-1 M/O T/O T/O T/O

124 LCL384-1 M/O 0.020 0.470 T/O

125 LCL385-1 M/O 0.170 T/O T/O
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Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

126 LCL386-1 M/O 0.150 T/O T/O

127 LCL387-1 M/O 0.120 T/O T/O

128 LCL388-1 M/O 0.230 T/O T/O

129 LCL389-1 M/O 0.190 T/O T/O

130 LCL390-1 M/O 0.260 T/O T/O

131 LCL391-1 M/O T/O T/O T/O

132 LCL392-1 M/O 0.260 T/O T/O

133 LCL393-1 M/O T/O T/O T/O

134 LCL394-1 M/O T/O T/O T/O

135 LCL395-1 M/O T/O T/O T/O

136 LCL396-1 M/O 0.010 1.670 7.146

137 LCL397-1 M/O 0.000 0.060 0.165

138 LCL398-1 M/O 0.000 0.070 0.191

139 LCL399-1 M/O 0.010 1.120 0.212

140 LCL400-1 M/O 0.020 4.120 9.895

141 LCL401-1 M/O 0.010 4.690 T/O

142 LCL402-1 M/O 0.010 1.280 T/O

143 LCL403-1 M/O 0.200 T/O T/O

144 LCL404-1 M/O 0.170 T/O T/O

145 LCL405-1 M/O 0.010 1.470 10.234

146 LCL414-1 M/O 0.000 0.270 0.362

147 LCL415-1 M/O T/O T/O T/O

148 LCL420-1 M/O T/O T/O T/O

149 LCL421-1 M/O T/O T/O T/O

150 LCL425-1 M/O T/O T/O T/O
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Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

151 LCL426-1 M/O T/O T/O T/O

152 LCL427-1 M/O T/O T/O T/O

153 LCL428-1 M/O 0.000 0.020 0.181

154 LCL429-2 M/O 0.000 0.050 0.172

155 LCL430-2 M/O 0.000 0.040 0.152

156 LCL432-2 0.000 0.000 0.020 0.110

157 LCL433-2 M/O 0.000 0.020 0.314

158 LCL435-2 0.000 0.000 0.020 0.140

159 LCL436-2 0.000 0.000 0.030 0.310

160 LCL437-2 0.000 0.000 0.020 0.140

161 LCL438-2 0.000 0.000 0.010 0.100

162 LCL439-2 M/O 0.000 0.010 0.181

163 LCL440-2 0.000 0.000 0.010 0.110

164 LCL441-2 0.000 0.000 0.010 0.240

165 LCL443-2 M/O 0.000 0.010 2.974

166 LCL444-2 M/O 0.270 T/O T/O

167 LCL445-2 M/O 0.000 0.050 0.082

168 LCL446-2 0.000 0.000 0.020 0.081

169 LCL447-2 0.000 0.000 0.020 0.090

161



Table B.12 Analysis of MGT theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 MGT001-1 T/O 0.000 0.060 0.097

2 MGT007-1 T/O 0.000 0.040 0.052

3 MGT022-1 0.000 0.000 0.020 0.181

4 MGT022-2 0.000 0.000 0.030 0.421

5 MGT028-1 M/O 0.000 0.010 0.173

6 MGT030-1 M/O 0.000 0.020 0.195

7 MGT032-2 M/O 0.000 0.020 0.131

8 MGT036-3 0.080 0.000 0.010 0.040

9 MGT041-2 0.000 0.000 0.010 0.240

Table B.13 Analysis of MSC theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 MSC001-1 M/O T/O 0.020 0.258

2 MSC002-2 T/O 0.000 0.010 0.171

3 MSC005-1 M/O 0.000 0.010 0.191

4 MSC006-1 T/O 0.000 0.010 0.132

5 MSC008-2.002 T/O 0.070 0.310 10.911

6 MSC015-1.005 T/O 0.000 0.030 0.102

7 MSC015-1.010 M/O 0.000 0.030 0.168

8 MSC015-1.015 M/O 0.070 26.530 1.760

9 MSC015-1.020 M/O T/O T/O 61.900

10 MSC015-1.022 M/O T/O T/O T/O

11 MSC015-1.025 M/O T/O T/O T/O

12 MSC015-1.027 M/O T/O T/O T/O

13 MSC015-1.030 T/O T/O T/O T/O
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Table B.14 Analysis of NUM theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 NUM015-1 0.450 0.000 0.020 0.142

2 NUM016-1 M/O 0.000 0.050 0.161

3 NUM016-2 M/O 0.000 0.030 0.260

4 NUM017-1 T/O T/O T/O 61.369

5 NUM283-1.005 M/O 0.000 1.500 4.753

Table B.15 Analysis of PLA theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 PLA001-1 T/O 0.000 T/O T/O

2 PLA002-1 M/O 0.000 0.030 0.140

3 PLA002-2 M/O 0.000 0.020 0.082

4 PLA003-1 M/O 0.000 0.030 0.201

5 PLA031-1.001 T/O 0.010 25.930 T/O

6 PLA031-1.002 T/O 0.000 21.370 T/O

7 PLA031-1.003 M/O 0.020 T/O T/O

8 PLA031-1.004 M/O T/O T/O 63.329

9 PLA031-1.005 M/O T/O T/O T/O

10 PLA031-1.006 T/O T/O T/O T/O

11 PLA031-1.007 T/O T/O T/O T/O

12 PLA031-1.008 T/O T/O T/O T/O
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Table B.16 Analysis of PUZ theorems in case of total run time.

Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

1 PUZ001-1 T/O 0.000 0.240 0.241

2 PUZ001-3 T/O T/O T/O T/O

3 PUZ002-1 T/O 0.000 0.030 0.070

4 PUZ003-1 T/O 0.000 0.070 0.120

5 PUZ005-1 M/O 0.000 0.040 0.010

6 PUZ008-1 T/O 0.000 0.120 0.225

7 PUZ010-1 M/O 0.160 14.170 T/O

8 PUZ012-1 0.050 0.000 0.330 0.186

9 PUZ017-1 M/O 0.140 T/O 0.087

10 PUZ018-1 M/O 0.000 T/O 0.226

11 PUZ018-2 M/O T/O T/O T/O

12 PUZ019-1 M/O 0.000 0.080 0.221

13 PUZ021-1 T/O 0.000 0.130 0.336

14 PUZ028-1 T/O T/O T/O T/O

15 PUZ028-2 M/O T/O T/O T/O

16 PUZ028-5 M/O 0.000 0.350 0.184

17 PUZ028-6 M/O 0.020 0.080 0.566

18 PUZ029-1 T/O 0.000 0.080 0.120

19 PUZ030-1 T/O 0.000 0.080 0.118

20 PUZ031-1 T/O 0.000 0.120 0.208

21 PUZ034-1.003 T/O T/O T/O T/O

22 PUZ034-1.004 T/O T/O T/O T/O

23 PUZ035-1 0.000 0.000 0.100 0.221

24 PUZ035-2 0.010 0.000 0.090 0.181
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Theorem SSTTP-h4 PROVER9 SPASS v3.7 VAMPIRE

25 PUZ035-3 1.730 0.000 0.110 0.006

26 PUZ035-4 1.490 0.000 0.060 0.101

27 PUZ035-5 0.000 0.000 0.010 0.051

28 PUZ035-6 0.000 0.000 0.010 0.190

29 PUZ035-7 0.240 0.000 0.020 0.111

30 PUZ036-1.005 T/O 0.000 0.190 0.150

31 PUZ037-1 T/O 0.000 0.030 0.057

32 PUZ037-2 T/O 0.000 0.100 0.138

33 PUZ037-3 T/O 0.000 T/O 10.193

34 PUZ047-1 M/O 0.000 0.300 0.121

35 PUZ052-1 T/O T/O T/O T/O

36 PUZ053-1 T/O T/O T/O T/O

37 PUZ054-1 M/O T/O T/O T/O

38 PUZ056-2.005 M/O T/O 0.090 T/O

39 PUZ056-2.025 M/O T/O T/O T/O

40 PUZ056-2.027 M/O M/O T/O T/O
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Source Book in Mathematical Logic, 1879–1931, pages 618–628. 1931. 4

[19] Kahlil Hodgson and John Slaney. TPTP, CASC and the Development of a Seman-
tically Guided Theorem Prover. AI Commun., 15(2,3):135–146, 2002. 2.3
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