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ABSTRACT 

TUNABLE MICROWAVE AND MILLIMETRE-WAVE METAMATERIAL 

STRUCTURES AND APPLICATIONS 

MARINA MAVRIDOU 

Doctorate of Philosophy 

School of Electronic, Electrical and Systems Engineering 

University of Birmingham 

 

Novel designs of metamaterial structures as well as novel techniques and configurations 

for tuning metamaterials are presented in this PhD thesis. The proposed tuning techniques 

overcome the challenges that exist in other tuning techniques available thus far. Moreover, 

possible applications of tunable metamaterials in communication systems are proposed. 

Initially, tunable Electromagnetic Band-Gap (EBG) structures are proposed for low 

frequencies operation (3GHz to 6GHz) employing a novel biasing technique for varactor 

diodes. Subsequently, the proposed tunable EBG structures are applied to closely spaced 

antennas, achieving isolation enhancement for Multiple Input Multiple Output (MIMO) 

systems. Moreover, a new technique of tuning High Impedance Surface (HIS) structures is 

presented, with low-loss performance and no parasitic effects, based on employing two types 

of piezoelectric actuators, each type being suitable to a different frequency band. Particularly, 

bender piezoelectric actuators are used for configurations operating at low mm-wave 

frequencies (~15GHz) and stack multilayer actuators for operation at higher mm-wave 

frequencies (60GHz) where achieving a low loss performance is even more challenging. Two 

tunable antenna designs are also proposed incorporating both tunable HIS structures (at 

15GHz and 60GHz). Finally, novel configurations of tunable Frequency Selective Surfaces 

(FSS) are proposed based on the concept of piezoelectric actuators to obtain a tunable 
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response. Again, this is carried out for two operating bands, 15GHz and 60GHz. The 

particular designs of tunable HIS and FSS, are directly scalable to even higher frequencies 

(THz), offering a promising solution at this band. 
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CHAPTER 1.  

INTRODUCTION 

 

1.1 BACKGROUND 

1.1.1 Metamaterials and Meta-surfaces 

Metamaterials are artificial periodic structures that exhibit electromagnetic properties 

which are not available in nature, such as negative [1] or near-zero refractive index [2]. Due 

to these extraordinary properties, they have attracted a lot of research interest recently for 

cloaking [3], super-reflection [4] tunnelling [5] and other applications. Moreover, it has been 

demostrated that metamaterial structures have the ability to enhance the performance or 

reduce the size of antennas and other microwave devices exploiting some of their unique EM 

properties [6-9]. Meta-surfaces are typically 2-dimensional metamaterial structures [10, 11] 

formed by periodic arrays of metallic elements printed on dielectric substrates or apertures 

etched off metallic sheets. A periodic surface can be characterized as a meta-surface if it 

consists of unit cells with sub-wavelength dimensions and exhibits extraordinary 

electromagnetic properties. 

Electromagnetic Band-Gap (EBG) structures are a type of metamaterials that have the 

property of prohibiting electromagnetic wave propagation within a specific frequency band 

[12]. Initially, Photonic Band-Gap (PGB) structures were investigated which prohibit 

electromagnetic wave propagation in the optical region. These structures consist in photonic 

crystals, i.e. periodic arrangements of high dielectric constant cavities in a low dielectric 

region. PGBs were then scaled to lower frequencies for applications in the microwave and 

millimetre-wave frequency regimes in which case the term EBGs was coined [12-15]. Various 
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implementations of EBG structures have been reported. Some typical implementations consist 

of periodic arrays of metallic elements, such as dipoles, printed on dielectric substrates [16-

19] as well as arrays of aperture type elements etched off a metallic screen [20].  

EBGs have been extensively employed to suppress surface waves (and thus also surface 

currents) [15, 17, 21]. Due to this characteristic they can be applied to achieve directivity 

improvement for a single antenna [15] and isolation enhancement between the elements of an 

antenna array [22-23]. A typical S21 response of an EBG structure can be seen in Fig. 1.1.1, 

which shows the measured S21 for surface wave propagation along a square patch array for 

transverse electric (TE) and transverse magnetic (TM) waves. The common band-gap region 

of the TE and TM modes is shaded [18]. 

 

Fig. 1.1.1 Typical response of a square patch EBG array (taken from [18]). 

Frequency Selective Surfaces (FSS) are two-dimensional metamaterial structures formed 

from periodic arrays of metallic elements printed on dielectric substrates or apertures in 
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metallic contacting planes. As their name suggests, they selectively allow electromagnetic 

waves to pass through them, depending on their frequency. More specifically, they exhibit 

stop-band and pass-band characteristics when illuminated by an electromagnetic wave with an 

arbitrary angle of incidence. If the angle of incidence becomes 90
o
, then there is surface wave 

propagation and hence in this case the structure can be approached as an EBG structure [24, 

25].  

The geometry of the elements can vary from simple square or dipole elements to more 

complicated shapes such as Jerusalem crosses, spirals, loops and many others. Depending on 

the geometry and the separation of the elements, different reflection and transmission 

characteristics are obtained. In the case of conducting periodic elements, a stop-band region is 

created (i.e. high reflection coefficient) at the FSS resonance (which is related to the resonant 

frequency of the metallic elements), while at other frequencies, the FSS is completely 

transparent. Similarly, aperture FSSs, exhibit a pass-band region with full reflection at 

frequencies away from the resonance [24, 25]. As an example, the reflection and transmission 

response of a square aperture FSS is depicted in Fig. 1.1.2. In addition, in complementary 

arrays, i.e. arrays with elements of the same shape such that if the two arrays are put on top of 

each other, a complete perfectly conducting plane is obtained (Fig. 1.1.3), the reflection 

coefficient of the conducting array is equal to the transmission coefficient of the aperture 

array and vice versa, assuming that there is no dielectric substrate (free-standing FSSs). 

The frequency selectivity they exhibit makes FSS eligible for applications like microwave 

filters [24-26], beam splitters [27], multi-band reflectors [28] and arrays [29], radomes [30] or 

absorbers [31]. In addition, they have been extensively studied for applications in antenna 

systems [32, 33]. Moreover, FSSs can also be operated as Partially Reflective Surfaces (PRS) 
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at frequencies near the resonance, which is useful in certain applications such as Fabry-Perot 

type antennas [34-37].  
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Fig. 1.1.2 Reflection and transmission response of a square aperture FSS array. 

 

(a)                                                             (b) 

Fig. 1.1.3 Example of complementary FSS arrays, (a) circular patches array and (b) 

circular apertures array. 
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If a FSS is placed at close proximity over a ground plane, or is printed on a grounded 

dielectric substrate, it acts as a High Impedance Surface (HIS) [21]. High Impedance 

Surfaces (HIS) have been extensively investigated for their property to provide an engineered 

reflection phase for impinging electromagnetic waves [18, 21, 36-43]. They exhibit full 

reflection with a reflection phase of zero at a specific frequency, acting as an Artificial 

Magnetic Conductor (AMC). Thus, in such structures the magnetic field tangential to the 

surface vanishes for a range of frequencies. They are complementary to Perfect Electric 

Conductors (PEC) which introduce a phase shift of 180
o
 to the reflected plane waves.  

HISs were introduced by Sievenpiper [21], who proposed mushroom-type metallic 

elements in a 2-D periodic arrangement printed on a grounded dielectric substrate. An 

understanding of the structure’s geometry can be realized through Fig. 1.1.4 and it essentially 

consists of metallic patches connected to the ground plane through vias. Later on, it has been 

proven that a HIS response can be achieved without the need of vias [36-40] which 

complicate the fabrication, especially at higher frequencies. A typical HIS response is 

presented in Fig. 1.1.5 corresponding to a structure with an AMC operation at 56.6GHz. As 

useful bandwidth in AMC structures is considered the range of frequencies where the 

reflection phase is between – 90
o 

and +90
 o

 (shaded in the figure). However, HISs can also be 

operated at various reflection phase values for different applications. They can be applied as 

ground planes in printed [21] or in cavity antennas for profile reduction [36, 37], but they 

have also been employed for their phase shifting properties in applications such as 

relfectarrays [41], polarisation converters [42], holographic surfaces [43] etc.  



6 
 

 

Mushroom-type metallic patches

Ground plane

Dielectric substrate

Vias

 

(a)                                                             (b) 

Fig. 1.1.4 Mushroom-type HIS structure, (a) front view, (b) cross section. 
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Fig. 1.1.5 Reflection phase response of a square loop element HIS array. 



7 
 

1.1.2 Overview of Tuning Techniques for Metamaterial Structures 

As mentioned in the previous section, the resonant frequency of a FSS depends on the 

shape of the elements, their separation, the geometry and the dielectric constant and thickness 

of the supporting material. Similarly, the different geometrical parameters, as well as the 

substrate type and thickness, affect the response of EBG and HIS structures. The 

reconfiguration of the response of these structures is an important characteristic for a number 

of applications such as reconfigurable antennas in terms of frequency [44] or pointing angle 

of the main beam [45], and tunable filters [46]. These are required for varying environment 

applications, like multi-band communication systems or cognitive radios [47]. 

In order to be able to reconfigure this response, various tuning techniques for metamaterial 

structures have been investigated. These tuning techniques can be classified in two categories. 

Namely, tuning based on tunable components, and tuning based on tunable materials. 

Tunable or active components can be solid state components such as varactor [44-46, 48] or 

PIN diodes [49], or Radiofrequency Micro-Electro-Mechanical Systems (RF MEMS) [50-54]. 

These are incorporated in the structure to physically or effectively change one of the periodic 

array geometrical parameters. More specifically, varactor diodes are employed to change the 

capacitance of the conductive elements forming the structure. Generally, periodic elements 

correspond to an equivalent capacitance and/or inductance depending on their size and shape. 

Thus, adding a variable capacitance to each element results in a change of its electrical length.  

This way, a dynamic control of the frequency response can be achieved [44-46, 48]. On the 

other hand, PIN diodes act as switches that are employed to actively change the shape or size 

of the array’s elements [49]. Both techniques require external biasing either to dynamically 

change the capacitance or to switch ON and OFF the varactor or PIN diode respectively. 

Switching time is low in these components so they are employed in low frequency 
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(microwave regime) applications. Moreover, their use is prohibitive in higher microwave 

frequencies because they exhibit high losses, parasitic effects and non-linearities.  

Furthermore, there are various types of Micro-Electro-Mechanical Systems (MEMS) such 

as MEMS varactors or MEMS switches which can be employed the same way as the 

corresponding solid state components, but with better performance for higher frequencies [50, 

53, 54]. Nevertheless, there are also MEMS that can provide electromechanical actuation and 

thus can be used for tuning since an appropriate micro–actuator can be employed to 

mechanically (i.e. physically) change the size, shape, spacing and orientation of the 

metamaterial structure elements as well as the distance between two layers (either two layers 

of arrays or an array layer and the ground plane), and have shown promising results [51, 52]. 

However, typically in order to obtain tuning, a MEMS component has to be integrated to each 

element of the periodic structure. This implies an upper frequency limit for the suitability of 

this technology (30GHz–90GHz [50, 51, 53, 54]), as the dimensions of the periodic elements 

decrease with the frequency, impeding the incorporation of an electrically large component in 

the unit cell of the array. This size restriction is mainly caused from the packaging of such 

components. Fully integrated ones would occupy less space and hence could be suitable for 

higher frequencies. For example, in [51], magnetic MEMS have been employed acting as the 

dipoles that form the periodic array of a FSS. The particular MEMS/dipoles are tilted to an 

angle when a magnetic field is applied. By doing this, the dipole’s effective length (i.e. its 

projected length on the substrate’s surface) decreases with the angle, and so the resonant 

frequency increases. A different approach is presented in [52] where only one MEMS 

structure comprising a movable membrane is employed and proposed for THz frequencies. 

The membrane is supported by four anchored flexure arms which can be pulled down if a 

voltage difference is applied between the top and bottom electrodes. This results in a vertical 
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and homogeneous displacement of the membrane. At high frequencies the size of elements is 

very small, and it decreases as the frequency increases. Consequently, at THz frequencies an 

array of periodic elements can be integrated on the movable MEMS membrane [52]. This 

structure can consist of either two layers of periodic arrays, or a layer of arrays and a metallic 

ground plane.  With the external voltage the air gap between the two layers can be controlled, 

resulting in a variation of the electromagnetic coupling between the two layers. Therefore this 

approach can be used to tune the resonant frequency, the bandwidth and other parameters.   

Finally, tunable materials such as ferroelectric substrates [55] at lower microwave 

frequencies and more recently liquid crystals [56-58] and graphene [59, 60] at higher 

millimetre-wave frequencies have been investigated producing promising results. These 

tuning techniques are essentially based on changing the properties of the material, by applying 

an electric or magnetic field. This in turn changes the frequency response of the structure 

since it alters the guided wavelength and hence the resonance frequency. For example, 

nematic liquid crystals (LCs) possess a voltage dependant dielectric anisotropy. In the 

unbiased state the liquid crystal molecules are oriented horizontally (i.e. parallel to the surface 

of the periodic array if the LC is used as a substrate) while by applying a voltage the 

molecules rotate, becoming vertical (i.e. perpendicular to the periodic surface) at a certain 

voltage value. The electric permittivity of the LC therefore varies between two values 
//

  and


 , for the unbiased and biased state respectively. This property has been extensively 

exploited to obtain tunable metamaterial structures [56-58]. Similar concepts apply in 

ferroelectric substrates. Graphene on the other hand is a material with variable complex 

conductivity under electric-field biasing. Thus, it has been employed to fabricate the 

conductive elements of periodic structures and not the substrate [59, 60]. The main 
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disadvantage of these tuning techniques is that they exhibit high losses and very low 

switching speeds in the case of liquid crystals [58].  

1.2 MOTIVATION AND OBJECTIVES 

In section 1.1, a brief description of EBG, FSS and HIS metamaterial structures has been 

carried out, along with an overview of existing tuning techniques for such structures. It is 

evident that significant amount of work has been already carried out concerning tunable 

metamaterials, since the latter can be applied in numerous applications such as frequency 

reconfigurable [44] or beam-scanning antennas [44, 45], tunable filters [46, 49-51, 55, 56], or 

reflectarrays [53, 54, 57-60]. However, there are still many challenges that need to be dealt 

with depending on the frequency regime. More specifically, varactor and PIN diodes have 

been successfully employed for low microwave frequencies but require complex biasing 

networks. This is caused by the fact that a tunable component has to be incorporated to each 

of the elements which form the periodic structure. Subsequently, due to the increased number 

of elements and thus of tunable components biasing is highly non-trivial.  

Furthermore, as the frequency increases, the use of semiconductor based components 

becomes prohibitive, so alternative tuning techniques have to be considered such as MEMS 

and liquid crystals. Similarly to the other tunable components, multiple MEMS need to be 

employed, integrated to the individual elements, which also implies a complexity in the 

design in terms of the biasing network, but furthermore it imposes an upper limit at the 

frequency of operation due to the size of the MEMS as explained in the previous section. 

Liquid crystals on the other hand are more appropriate for high millimetre-wave and 

submillimetre-wave frequencies but exhibit low switching speeds and high losses. Thus, the 

motivation of this PhD thesis is to investigate and propose novel designs of metamaterial 

structures and introduce novel techniques and configurations for tuning metamaterials 
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that overcome the aforementioned challenges. This could greatly benefit antenna designs 

based on periodic surfaces and generally communication systems in terms of flexibility and 

efficiency, while it could offer the possibility to expand the functionality of traditional 

metamaterial structures at high frequencies (THz). For this reason another objective of this 

thesis is to explore possible applications of tunable metamaterials in communication 

systems.  

Initially, novel biasing techniques for varactor diodes are investigated for tuning EBG 

structures operating at low frequencies (3GHz to 6GHz). The application of tunable EBG 

structures for isolation enhancement of closely spaced passive and novel reconfigurable 

antennas in MIMO systems is also investigated. Additionally, a new low-loss technique of 

tuning HIS structures is investigated, as an effort to address the issue of excessive losses and 

parasitic effects of tuning techniques employed thus far for the realization of tunable HISs. 

The technique is based on employing two types of piezoelectric actuators, each type being 

suitable to a different frequency band. Particularly, bender piezoelectric actuators are used for 

configurations operating at low mm-wave frequencies (~15GHz) and stack multilayer 

actuators for operation at higher mm-wave frequencies (60GHz) where achieving a low loss 

performance is even more challenging. Moreover, this tuning technique achieves significantly 

improved switching speeds compared to LCs or ferroelectrics. The incorporation of both 

tunable HIS structures in tunable antenna designs is studied. Finally, tunable FSS are 

introduced making several design considerations in order to propose novel configurations and 

to exploit the concept of piezoelectric actuators to obtain a tunable response. Again, this is 

carried out for two operating bands, 15GHz and 60GHz. The particular designs of tunable 

HIS and FSS, are directly scalable to even higher frequencies (THz), while having addressed 

the issue of high losses and low switching speed, offering a promising solution at this band.       
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1.3 OUTLINE OF CHAPTERS 

This PhD thesis is focused on tunable metamaterial structures and their applications for 

microwave and millimetre-wave frequencies. In total it is organized in seven chapters. In this 

Chapter, an introduction to the background of the thesis has been carried out, along with a 

description of the motivation of this research.  

In Chapter 2, the theoretical background on which the work in this thesis is based is 

described. Various tools have been employed in order to analyze the three investigated types 

of metamaterials, EBG, FSS and HIS structures. More specifically dispersion analysis of 

surface waves is explained for EBGs, while a ray optics theory approach is adopted and 

analyzed for FSS and HIS. In addition, a brief description of the operation of Leaky Wave 

Antennas (LWA) is included in the Chapter, since a tunable LWA is proposed later on in 

Chapter 5. Subsequently, full-wave periodic analysis based on Floquet theorem is described 

which is employed to characterize periodic structures since it has the advantage of analyzing 

just the unit cell instead of the complete structure, giving useful insight for the behaviour of 

the structures under investigation. Finally, the operation of varactor diodes and piezoelectric 

actuators, which are the tuning components employed to tune different types of metamaterial 

structures, is explained in order to provide an initial understanding of the proposed tuning 

techniques throughout this PhD thesis. 

Chapter 3 is devoted to the analysis and design of tunable EBG structures based on 

varactor diodes with simplified biasing configuration. Initially simulated results are presented, 

performed to evaluate the tunability of the structures, and then measurements of fabricated 

prototypes are provided validating the concept. Subsequently, the proposed tunable EBGs are 

employed to improve the isolation of closely spaced antennas for MIMO systems. Simulation 
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and measurements are presented and explained. Finally, the concept is extended using tunable 

monopole antennas. A novel tunable monopole antenna is introduced. Then, two same 

antennas are incorporated with the tunable EBG structures, achieving high isolation across 

their tuning range. The proposed EBGs and antennas are designed to operate at frequencies 

from 3GHz to 6GHz.      

In Chapter 4, designs of tunable HIS are studied for low millimetre-wave frequencies. 

Tuning of the proposed HIS structures is based on bender piezoelectric actuators. These are 

employed to produce a displacement when voltage is applied to them, and hence change the 

cavity distance between the two layers forming the structure, i.e. the ground plane and the 

periodic array placed at a small distance above it. This results in a change of the reflection 

phase response of the structure. The first two designs that are being investigated exhibit a 

single resonance (at a specific state of the actuators), which is around 15GHz for the first HIS 

structure and around 30GHz for the second. The third design that is presented, is multi-

resonant, resulting in a broadband HIS operating at 15GHz. This is also tuned using the same 

tuning technique. The tunability of the structures has been evaluated extracting their reflection 

characteristics through full wave periodic analysis carried out in 3D electromagnetic 

simulation software. Simulation results demonstrate that the proposed configurations can be 

employed as dynamic impedance surfaces obtaining significant phase shift with a low-loss 

performance. Moreover, measurements are presented for the first design validating the 

simulated results. Finally, as a practical application, a dipole antenna is presented, placed 

above the proposed tunable HIS, obtaining a significant tuning of its operational frequency. 

In Chapter 5, a tunable HIS for higher mm-wave frequencies is investigated. The HIS 

consists of a periodic surface placed over a ground plane creating an air cavity. Initially, the 

HIS design is optimized in order to obtain a fast variation of the reflection phase with 
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frequency, making the proposed HIS very sensitive to small changes of the cavity thickness. 

The tuning technique employed in this Chapter is similar with the one introduced in Chapter 

4. However in this Chapter the tuning is obtained by virtue of compact stack multi-layer 

piezoelectric actuators that produce a small displacement between the two layers, when 

voltage is applied to them. Thus, this technique is more appropriate for the targeted frequency 

band, since due to the reduced dimensions at higher frequencies, a smaller displacement is 

required to dynamically change the reflection phase response of the structure. Simulated and 

measured results are presented, achieving a phase shift of over 200 degrees at about 60GHz. 

In addition, a losses evaluation is performed. Finally, a continuous beam steered antenna 

application is proposed based on a 1D hollow Leaky-Wave Antenna (LWA) formed by a 

Partially Reflective Surface (PRS) placed on top of the proposed tunable HIS.  

Chapter 6 is focused on tunable FSS structures applying the same tuning techniques as the 

ones described in Chapters 4 and 5. Initially, a novel design of multi-layer Frequency 

Selective Meta-Surfaces (FSmS) is presented achieving significant tuning of the pass-band 

response with low losses, operating at low mm-wave frequencies. In contrast to conventional 

FSS, the proposed FSmS consist of multiple layers of non-resonant sub-wavelength periodic 

meta-surfaces. In particular, a periodic array of square loop elements is placed between two 

periodic arrays of square apertures on metallic sheets, separated by thin sub-wavelength air 

cavities. The combination of the square loop array and one square aperture array produces a 

HIS response. This response is tuned using the piezoelectric actuators by changing the 

distance between the two surfaces which in turn alters the resonance condition of the 

complete structure and thus the central frequency of the pass-band. Subsequently, the design 

and tunability of the proposed FSmS is presented and compared with an alternative design.  

The angular stability is also studied and discussed. Simulation and measurement results are 



15 
 

presented validating the proposed concept. Finally, a tunable FSS for higher mm-wave 

frequencies consisting of two square aperture arrays printed on dielectric substrates and 

separated by an air cavity is investigated. Tuning of the band-pass filter response of the 

double layer FSS is achieved by means the stack piezoelectric actuators positioned around the 

surfaces. The proposed actuators dynamically change the thickness of the air cavity, due to 

their property of expanding vertically under DC biasing, which results in tuning the 

transmission characteristics of the structure. 

Finally, in Chapter 7 the conclusions and main contribution of this PhD thesis are 

presented. Moreover, possible future work is discussed.  
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CHAPTER 2.  

THEORETICAL BACKGROUND 

 

This Chapter presents the theoretical background on which the work in this thesis is based. 

Section 2.1 focuses on the three types of periodic surfaces that will be investigated in terms of 

their tunability later on this thesis, i.e Electromagnetic Band-Gap (EBG) structures, 

Frequency Selective Surfaces (FSS) (consisting of multiple layers) and High Impedance 

Surfaces (HIS). EBG metamaterial structures are described based on dispersion analysis of 

surface waves, while both multi-layer FSS and HIS structures are analysed employing a ray 

optics theory approach. In addition, a brief description of the operation of Leaky Wave 

Antennas (LWA) is carried out to provide an understanding of a tunable LWA proposed in 

Chapter 5. Subsequently, in section 2.2, a description of full-wave periodic analysis is 

performed. This is the method employed to analyse periodic structures and is based on 

Floquet theorem. The technique has the advantage of analysing only a unit cell instead of the 

complete structure, giving useful insight for the behaviour of the structures under 

investigation and significantly reduces the computational time. Finally, section 2.3 provides a 

brief explanation of the operation of varactor diodes and piezoelectric actuators which are the 

tuning components employed to tune different types of metamaterial structures.  

2.1 PERIODIC STRUCTURES 

Periodic structures are formed by an infinite repetition of a basic building block which is 

defined as unit cell of the structure. There can be 1-D, 2-D or 3-D periodic structures, 

produced from the repetition of the unit cell shifted by one, two or three translation vectors 

respectively. When electromagnetic waves propagate in a periodic structure, the electric and 

magnetic fields have the same magnitude in all unit cells with an added phase shift in 
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consecutive unit cells. This can greatly simplify the analysis of such structures, since only one 

unit cell can be analyzed employing boundary conditions that take into account the phase shift 

between the unit cells [1]. Often, different types of periodic structures are characterized as 

metamaterials due to the fact that they exhibit electromagnetic properties which are not 

available in nature. This thesis focuses in three basic types introduced in Chapter 1 (section 

1.1.1), classified according to a specific electromagnetic property.    

2.1.1 Electromagnetic Band-Gap (EBG) Structures 

As explained in section 1.1, Electromagnetic Band-Gap (EBG) structures are metamaterial 

structures which exhibit stop-band and pass-band regions for surface waves propagation and 

thus suppress surface waves in the band-gap regions [2-5]. Surface waves are slow waves. 

This means that the propagation constant β is greater than the free space wave number k0 and 

their phase velocity is smaller than the speed of light. They can occur on the boundary 

between a metal and free space. Their propagation is bound to the interface, and they decay 

exponentially into the surrounding materials. They only radiate if there are discontinuities, for 

example if the medium of propagation is terminated or if the metallic surface is textured with 

a specific pattern.  

An estimation of the band-gap region of a specific EBG topology i.e. the frequency range 

where no surface wave propagation occurs, can be performed extracting a dispersion diagram. 

This essentially consists in calculating the value of the propagation constant β within the 

irreducible Brillouin zone. It can be performed by varying β on the contour of the irreducible 

zone and determining the frequencies where a mode is supported by the structure [2, 6]. The 

irreducible Brillouin zone is defined in the reciprocal lattice [2, 6] of the periodic structure 

after finding all symmetry axes and is the smallest area that if repeated (mirrored at the 

symmetry axes) will produce the reciprocal lattice. In Fig. 2.2.1, the unit cells of a dipole and 
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a square patch array are shown with their corresponding reciprocal lattice. The irreducible 

Brillouin zone is shaded in both examples.  For the case of the dipole array with periodicities 

px and py along the x and y axis respectively, β should be varied as follows:   

ΓΧ:   0 ≤ βx ≤ π/px ,   βy = 0 

ΧM:  βx = π/px ,   0 ≤ βy ≤ π/py 

MK:   0 ≤ βx ≤ π/px ,   βy = π/py  

KΓ:   βx = 0 ,   0 ≤ βy ≤ π/py 

Similarly, for the square patch array with periodicity p (Fig. 2.1.1b), β is varied along the 

contour of the irreducible zone: 

ΓΧ:   0 ≤ βx ≤ π/p ,   βy = 0 

ΧM:  βx = π/p ,   0 ≤ βy ≤ π/py 

MΓ:   0 ≤ βx ≤ π/p ,   0 ≤ βy ≤ π/p  

This procedure will provide information of all the allowed modes in the structure. The 

regions where no modes are propagating will be the bang-gap regions of the EBG. Usually the 

light line is also plotted in the dispersion diagram which indicates the propagation of waves in 

free space. Slow waves are below this line, if fast waves existed they would be located above 

it. As an example, the dispersion diagram of a square patch array with p=11mm and d=8mm 

is shown in Fig. 2.1.2. For the particular structure no absolute band-gap occurs as can be seen 

from the figure. 
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Fig. 2.1.1 Examples of unit cells (left) and their corresponding reciprocal lattices with the 

irreducible Brillouin zones (right). (a) Dipole element array, (b) Square element array.  
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Fig. 2.1.2 Dispersion diagram for square patch array with p=11mm and d=8mm.   

2.1.2 Frequency Selective Surfaces (FSS) 

Typically the resonant frequency of Frequency Selective Surfaces (FSS) is defined by the 

dimensions of the periodic elements, their separation and the type and thickness of the 

substrate, as mentioned in Chapter 1. However, multi-layer FSS are being investigated in this 

thesis, whose response is not related to the individual FSS resonance but predominantly to a 

cavity type resonance producing a pass-band response [7].  

In order to explain this, let’s assume two FSS arrays printed on either sides of a dielectric 

substrate with thickness S and relative electric permittivity εr, as shown in Fig. 2.1.3. The 

structure can be studied employing ray optics theory, as it resembles a Fabry-Perot 

interferometer [7]. For a plane wave with an arbitrary angle of incidence θ, in order to obtain 
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a transmission maximum, the two transmitted rays φ1 and φ2 must be in phase, i.e. Δφ should 

satisfy: 

 N2
21
 ,  with N=0, 1, 2,...                                                                      (2.1-1) 

FSS array 1
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Fig. 2.1.3 Schematic diagram of double layer FSS with two arrays printed on either sides 

of a dielectric substrate.  

Taking into account the optical path length that the rays follow due to reflections between 

the two surfaces and the phase shift introduced by the transmission and reflection at the 

surfaces, (2.1-1) can be written: 
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where λr is the wavelength in the substrate, φΤ1 and φΤ2 the phases of the transmission 

coefficients and φR1 and φR2 the phases of the reflection coefficients at FSS array 1 and 2 

respectively.  
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From Fig. 2.1.3 it can be extracted that:  
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Substituting the above in (2.1-2) we get: 
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Rearranging the resonance condition (2.1-3), the substrate thickness for N=0 can be 

calculated from: 
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In the special case of an air filled cavity, εr is equal to 1 and the relations (2.1-3) and (2.1-

4) can be simplified to: 
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Moreover, for normal incidence and taking into account that for aperture FSS the reflection 

phase is close to π, the cavity thickness is approximately half-wavelength. The same can be 

extracted for conducting arrays who exhibit a reflection phase close to – π, for N=2. As an 

example of the above analysis, two FSSs with different reflection characteristics are 

considered, placed at distance S=2mm and operating at 15GHz. If the reflection phase of FSS 

array 1 is φR1=159.62
o
 for normal incidence, (2.1-6) is satisfied for φR2=−87.62

o
. This is in 

excellent agreement with full-wave simulations, according to which a resonance at 15GHz is 

obtained with an FSS exhibiting a reflection phase of φR2=−87.56
o
 at this frequency. 

2.1.3 High Impedance Surfaces (HIS) 

High Impedance Surfaces (HIS) have already been briefly explained in section 1.1. Most 

of their applications are based on their property of acting as AMC at a specific frequency. 

However they also behave as EBGs, since they don’t support surface waves at certain 

frequencies, so two distinct phenomena occur which do not necessarily coincide in frequency 

[8]. The AMC operation of HISs is not related to the resonance of the FSS array but to the 

resonance of the resonant type cavity formed between the FSS and the ground plane [8, 9]. A 

schematic diagram of a HIS structure formed by a periodic array printed on a grounded 

dielectric substrate of thickness t is illustrated in Fig. 2.1.4. The condition to achieve AMC 
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performance, i.e the resonance condition (2.1-7) is derived from ray optics theory by setting 

the phase difference between the direct wave φ0 and reflected wave φ1 equal to 2Nπ [6]. After 

taking into account the optical path length followed in the cavity, the reflection at the ground 

plane and the transmission at the periodic array the phase difference Δφ is given from:   
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where φΤ is the phase of the transmission coefficient of the FSS array, λ the wavelength in the 

propagation medium (dielectric or air) and t the cavity distance.  

From (2.1-7) can be seen that the cavity distance (in this case the substrate thickness) t can 

be calculated from: 
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Fig. 2.1.4 Schematic diagram of a High Impedance Surface.  
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2.1.4 Leaky Wave Antennas (LWA) 

Leaky Wave Antennas (LWA) are antennas whose operation is based on fast waves 

produced from surface waves propagating in waveguiding structures due to discontinuities. In 

contrast to slow waves, the propagation constant β of fast waves, also called leaky waves, is 

smaller than the free space wave number k0 and their phase velocity is greater than the one of 

the light. Moreover, they are characterized by a complex propagation constant [10]: 

 jk                                                                                                                     (2.1-9) 

where β is the phase constant and α the attenuation constant. 

The attenuation constant, also referred to as leakage rate, is related to the beamwidth of the 

radiated beam, while the phase constant defines the angle of the beam according to: 

0

sin
k


                                                                                                                     (2.1-10) 

where θ the angle of the main radiated beam with respect to the normal direction. From (2.1-

10) it is evident that in order for radiation to occur, β≤k0 should be satisfied, since from 

trigonometry sinθ≤1.  

Leaky Wave Antennas have attracted a lot of interest as they require a simple feeding, they 

have high directivity and efficiency, and they are very good candidates for beam-scanning 

applications due to their dispersive properties. It has been shown that static one-dimensional 

LWAs can achieve a steering of the main radiation beam with frequency, if the antenna’s 

source is placed towards the one end of the structure [10]. 
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2.2 PERIODIC ANALYSIS AND ELECTROMAGNETIC SOLVERS 

Periodic structures can be analysed employing Floquet’s theorem which is an extension of 

Fourier series theorem [1]. According to this theorem, the problem of an infinite periodic 

structure can be reduced to the analysis of a single unit cell. The scattered fields from the 

periodic array and the induced currents from plane wave excitation can be expressed as a 

Fourier series where the periodicity is equal to that of the unit cell.  

Using the appropriate boundary conditions, electromagnetic fields can be calculated 

through various techniques. One of these techniques is Method of Moments (MoM) which is 

a Frequency domain – Integral Equation method, based on solving the integral equation of the 

unknown currents reducing them to a linear system of simultaneous equations [11]. Other 

techniques include Time domain-Differential equations such as Finite Difference Time 

Domain (FDTD) [12, 13], Finite Element Method (FEM) [14] or Transmission Line Matrix 

(TLM) [15]. The aforementioned techniques are employed by different commercial 

simulation software packages and have advantages and disadvantages depending on the 

geometry of the structure under investigation. For example, MoM is very accurate for the 

analysis of simple structures but not suitable for structures with arbitrary geometries since it 

cannot take into account fine details. On the other hand, both FDTD and FEM are suitable for 

small and moderate size structures with arbitrary shapes.  

2.2.1 Commercial 3D Electromagnetic Solvers 

Some of the commercial simulation softwares that can be employed to perform periodic 

analysis are ANSYS HFSS, Analyst
TM

 and FEKO. In this PhD thesis CST Microwave 

Studio
TM

 simulation software has been used.  
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CST Microwave Studio
TM

 is a 3–D simulation software which was originally based on 

Finite Difference Time Domain (FDTD). FDTD is a numerical method of solving the 

electromagnetic fields for periodic structures and is based on Time domain-Differential 

equations [12, 13]. CST includes various electromagnetic solvers, each suitable for different 

type of structures. In this thesis three of them were utilized, the finite integral Time-Domain 

(TD) solver, the finite-element Frequency-Domain (FD) solver and the Eigenmode solver. 

The TD solver employs a numerical technique similar to FDTD with the main difference 

being that it uses the integral form of Maxwell equations, as opposed to the differential form 

employed by FDTD. It is ideal for analysing structures for a broadband frequency range but it 

is not suitable for highly resonant structures. It can be employed for the analysis of the unit 

cell of a 2D periodic structure applying electric boundaries along the one repetition axis and 

magnetic boundaries along the other axis. However, this solver can produce results just for 

normally incident plane wave. If an oblique angle of incidence needs to be considered, then 

FD solver has to be employed. This solver is appropriate for the analysis of highly resonant 

structures. Moreover, it gives the option of periodic boundary conditions for the unit cell of 

periodic structures. These boundary conditions can be applied to arbitrarily shaped unit cells 

and infinite size structures are assumed, introducing the appropriate phase shift between 

consecutive periodic elements. Finally, the Eigenmode solver is suitable for the simulation of 

closed resonant loss free structures. It is a FD based solver used to calculate the frequencies 

and the corresponding electromagnetic field patterns (eigenmodes), where no excitation is 

applied. In this thesis it is employed to obtain dispersion diagrams of the periodic structures 

under investigation. It also includes the feature of periodic boundary conditions, which are 

utilized in the simulation of the unit cell for the generation of the dispersion diagram, since 

the solver calculates the eigenmode frequencies of the supported modes [16]. 
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2.3 TUNING COMPONENTS 

Tuning of periodic structures can be achieved with various techniques as described in 

section 1.1.2 and it consists in using either a tuning component or a tunable substrate. The 

work in this thesis has focused on the use of two types of components, varactor diodes for low 

frequency applications (below 10GHz) and piezoelectric actuators for higher frequency 

applications (from 10GHz to ~60GHz). 

2.3.1 Varactor Diodes 

Varactor diodes, also known as varicap diodes or variable capacitance diodes are diodes 

that exhibit a capacitance across their terminals that depends on the voltage applied to them. 

The symbol that is typically used to represent the varactor diode is the one shown in (Fig. 

2.3.1a), alternatively the symbol shown in Fig. 2.3.1(b), corresponding to a capacitor with a 

variable value can also be utilized. As diodes, they are semiconductor devices that consist of a 

PN junction optimised to perform as a variable capacitor under reverse bias. Three regions are 

created in the diode, the P region illustrated in blue in Fig. 2.3.2, the N region illustrated in 

red and the white region that corresponds to the depletion zone. When voltage is applied the 

regions P and N can conduct current but the depletion zone acts as an insulator as no current 

carriers are available.  This is how the capacitor is created, since two conducting areas are 

formed around a non conducting dielectric. As the voltage increases the depletion zone 

occupies more space, so the distance between the two effective metallic plates increases 

resulting in a decrease of the diode’s capacitance (Fig. 2.3.2b).  

Ideally the diode would only exhibit the variable capacitance Cv and no losses but in a 

practical case, the equivalent circuit of a varactor is as depicted in Fig. 2.3.3. The resistance Rs 

can arise from the semiconductor, from the lead and package elements of the component and 
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a small part could be caused from the dielectric substrate. The inductance Ls is attributed also 

to the packaging and finally there is a parasitic capacitance Cp [17].    

anode cathode

 

          (a)                                                   (b) 

Fig. 2.3.1. Alternative symbols for varactor diode representation. 
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N

Depletion zone Depletion 

zone

 

(a)                                                   (b) 

Fig. 2.3.2. Illustration of PN junction in a varactor under reverse bias: (a) unbiased state 

corresponding to maximum capacitance, (b) biased state. 
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Fig. 2.3.3. Equivalent circuit of a varactor diode representation. 
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As mentioned in section 1.1.2, varactor diodes are suitable for a variety of applications 

where tuning is desired. However they are not appropriate for high frequency applications as 

they exhibit high losses and non-linearities.  

2.3.2 Piezoelectric Actuators 

The piezoelectric effect is a physical phenomenon that consists in the generation of an 

electric potential when pressure is applied to specific type of materials such as quartz crystals, 

called piezoelectric materials. However, the inverse effect is also observed in certain 

materials, where expansion of the material is obtained when voltage is applied to it, 

converting electrical energy to mechanical energy. This inverse piezoelectric effect is the 

principle of operation of the piezoelectric actuators in order to produce displacement. There 

are different types of piezo-actuators classified depending on their displacement mode in 

Longitudinal Stack Actuators, Shear Actuators, Tube Actuators, Contracting Actuators and 

Bending Actuators. In this work, two types of piezo-actuators have been used; the bending or 

bender actuators and a type of longitudinal stack actuators available from Physik Instrumente 

(PI) [18]. 

2.3.2.1 Bender Actuators 

Bending or bender actuators are built from two layers of ceramic plates placed on top of 

each other (Fig. 2.3.4a). Each ceramic layer has the property of expanding or contracting 

when exposed to positive or negative electrical potential respectively due to the inverse 

piezoelectric phenomenon. Different voltage is applied to the upper and lower layer through 

the three electrodes (+V, 0, −V) provoking an expansion to the upper layer and a contraction 

to the lower one. This phenomenon creates a bending of the actuator, similar to the principle 

of thermostatic bi-metals, that translates the small change in the length of the ceramic plates 
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into a large vertical displacement (Fig. 2.3.4b). The total displacement of a piezoelectric 

bender actuator depends on its total length and can be described from (2.3-1) where ΔLbend the 

bending displacement, n the number of ceramic layers, d a transversal piezoelectric 

deformation coefficient, lf the actuator’s free length, hp the height of each layer and V the 

operating voltage (Fig. 2.3.4). They have a quick time response of less than 10msec and can 

achieve displacements up to several millimetres with a blocking force of up to a few newtons 

and a maximum operating voltage of 60V [18]. 
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Fig. 2.3.4. Schematic of piezoelectric bender actuator at (a) unbiased stated and (b) biased 

state. 
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2.3.2.2 Stack Multilayer Piezo-actuators  

The next type of actuators described here, are a sub-category of longitudinal stack 

actuators. They are built from Lead (Pb) Zirconate (Zr) Titanate (Ti) (PZT) ceramic disks 

placed on top of each other forming stacks, also known as PZT stacks. A schematic diagram 

can be seen in Fig. 2.3.5(a). Due to the inverse piezoelectric phenomenon, each of the disks 

has the property of expanding vertically when exposed to an electric potential. In the stack, 

the disks are separated by thin metallic electrodes where the voltage is applied. Consequently, 

the total expansion ΔL of the actuator is the sum of the expansion of each disk. The maximum 

operating voltage is proportional to the thickness of the disks and the total displacement a 

piezo-stack actuator can produce is proportional to its total length and more specifically equal 

to 10% of its length. An estimation of the displacement can be made from (2.3-2) where d33 is 

a strain coefficient that describes the forces applied to the actuator and the properties of the 

piezoelectric material used, n is the number of ceramic layers and V is the applied voltage 

[18]. In order to achieve maximum displacement a mechanical preloading for the actuators is 

desired. This can be for example a spring which is supported on the surface to be displaced, 

on the side opposite the actuator and applies a small force opposing the expansion of the 

actuator. Therefore without preloading, a slightly smaller displacement is expected. A 

photograph of a stack multilayer piezo-actuator is shown in Fig. 2.3.5(b). 

VndL 
33

                                                                                                              (2.3-2) 
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                    (a)                                     (b) 

Fig. 2.3.5. (a) Schematic diagram of piezoelectric stack multilayer actuator and (b) 

photograph of a commercial actuator. 

The main advantages of this type of piezoelectric actuators are their high accuracy and 

reliability for nano-positioning applications, their low-cost and their very fast response in the 

order of microseconds, which is important for applications such as communication and radar 

systems. Moreover, they exhibit sub-nanometre resolution, high energy conversion efficiency, 

low voltage operation, large force and reduced Electromagnetic Interference (EMI). The 

maximum operating voltage in this type of actuators is 120V, while the maximum 

displacement that can be obtained is 38μm which is significantly less than the one obtained 

from bender actuators. This makes them suitable for higher frequency applications where a 

small displacement will have a significant effect [18].    
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CHAPTER 3.  

TUNABLE EBG STRUCTURES USING VARACTOR DIODES AND 

APPLICATIONS 

 

EBG structures have been proposed in the past for isolation enhancement between closely 

spaced antennas, such as the elements of an antenna array [1] or the antennas of multiple input 

multiple output (MIMO) communication systems [2, 3]. Various configurations have been 

proposed such as multiple slots etched in the ground plane of the antennas [4, 5], and metallic 

patch EBG structures which suppress the surface waves and currents in common ground 

planes and therefore isolate closely spaced antennas [6-8]. Although EBG structures require a 

large number of elements (ideally infinite) in order to exhibit their full properties, there are 

various reports of isolation improvement using EGB structures with only a small number of 

elements along the virtual line that connects the two antennas [6, 8].  Even with this small 

number of elements, the obtained results demonstrate that surface wave suppression can be 

achieved within the area of interest. 

Recently, miniaturized EBG structures have been proposed for broadband mutual coupling 

reduction between UWB monopoles, employing double-layer structures and exploiting the 

coupling between the layers to achieve the miniaturization [9]. However, for multi-band or 

tunable antennas, low mutual coupling in all the frequency bands of interest is desired. 

Tunable or reconfigurable antennas are required in many applications where the antenna’s 

performance has to adapt to a varying environment, for example in multi-band 

communication systems or cognitive radios [10-12].  

In this Chapter, novel tunable two–layer varactor-loaded EBG structures are presented, 

with a wide tuning range and significantly simplified biasing network. The structures consist 
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of apertures (slots or slits) etched off a metallic ground, and a varactor-loaded patch printed 

on a thin dielectric substrate, placed on top of each aperture. The proposed EBGs are initially 

excited by a microstrip line and exhibit a stop-band in the S21 response which is then tuned by 

changing the voltage applied to the varactor diodes. The proposed structure is then employed 

for enhancing the isolation between printed antennas. Initially two ultra wideband (UWB) 

monopoles are used in order to demonstrate the tuning range of the proposed structure. 

Tunable monopoles are also presented resulting in a tunable two-element antenna with high 

isolation across the tuning range. Simulations were performed in a full-wave software 

package (CST Microwave Studio
TM

) to predict the performance of the proposed design. 

Prototypes of the proposed structures have been fabricated and tested and the measured results 

are presented yielding good agreement with the simulated results. 

3.1 TUNABLE EBG STRUCTURES 

The proposed tunable EBG structures consist of slots or slits etched off a metallic ground. 

The slots are λ/2 long and are located in the centre of the ground plane, while the term slit 

refers to λ/4 long structures at the edge of the ground plane with an open termination (see Fig. 

3.1.7). A varactor-loaded split patch is placed on top of each slot/slit as depicted in Fig. 

3.1.1(a), printed on a thin dielectric substrate separating the patches from the slots/slits and 

the ground. A better visualization of the different layers of the structure can be obtained from 

the cross-section of the structure illustrated in Fig. 3.1.1(b). Due to the close distance of the 

patches and the slots/slits, there is a strong coupling that alters the resonant frequency of each 

individual slot-patch resonator when the capacitance value of the varactor is changed. One of 

the advantages of the proposed multi-layer structure is the electrical isolation between the 

diodes and the ground plane which greatly simplifies the biasing network.   

 As a working example, the ground plane with the slots/slits is printed on a 1.52mm thick 
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Taconic RF-35 dielectric substrate (εr=3.5, tanδ=0.0018) with overall dimensions 

50mm×30mm. On the other side of the substrate, a 50Ω microstrip line excites the slots to 

allow an investigation of the band-gap regions of the proposed EBG structure and its 

tunability.  
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Fig. 3.1.1 Schematic diagram of proposed structure with microstrip line excitation: (a) 

Proposed tunable EBG structure with four slots, (b) Cross section.  

3.1.1 Dispersion Characterization of Slots in a Ground Plane 

In this section, the proposed EBGs are studied using a rigorous full-wave dispersion 

analysis. Initially, we assume a 1D periodic array along the x-axis of slots etched off the 

ground plane and conducting patches placed on top of them, printed on a thin dielectric 
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substrate of thickness h=0.055mm and dielectric constant εr=3, separating the patches from 

the slots and the ground. The microstrip line is also included in the design. The unit cell of the 

structure is depicted in Fig. 3.1.2(a). The slot has a length of 15.5mm and a width of 0.5mm, 

and is situated exactly at the middle of the unit cell whose periodicity is Dx=8mm, while the 

width of the patch is 1mm. The dimensions have been chosen to obtain a band-gap at 

frequencies around 3GHz. Due to the close distance of the patch and the slot, there is a strong 

coupling that alters the resonant frequency of the structure if the dimensions of the patch are 

changed and thus the frequency of the band-gap is altered. In order to evaluate how the patch 

length affects the resonant frequency, simulations have been carried out changing this 

parameter. The dispersion diagram for propagation at this direction (ΓΧ) has been extracted 

using the simulation software (CST) Eigenmode solver by applying periodic boundaries and 

imposing the appropriate phase shift between the boundaries, and is illustrated in Fig. 

3.1.3(a). This is performed varying the patch length from 4mm to 8mm. It can be observed 

that as the patch length decreases the band-gap is shifted towards higher frequencies (from 

2.75GHz to 3.44GHz). The same behaviour is observed in Fig. 3.1.3(b) which presents the S21 

response of a structure formed by 4 unit cells. Good agreement of the two approaches 

(dispersion diagram and S21) is obtained for the band-gap region of the structure. From this 

study, it can be concluded that as the patch length px decreases, the coupling between the 

patch and the slot also decreases, leading to the frequency shift of the band-gap. Based on this 

study, a varactor diode is employed on the patch which effectively changes the patch electric 

length, in order to be able to dynamically control the frequency as demonstrated in the next 

sections (section 3.1.2 – 3.1.4).     
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Fig. 3.1.2 Unit cell of EBG structure, (b) Representation of the reciprocal lattice and the 

irreducible Brillouin zone.  
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(b) 

Fig. 3.1.3 Dispersion diagram along the ΓΧ direction and (b) S21 response for different 

patch lengths.   

3.1.2 Design of Single Tunable Slot-Patch Structure 

A single tunable slot-patch structure is investigated in this section, as the resonator which 

constitutes the building block of the proposed EBGs. The structure is shown in Fig. 3.1.4, 

where the slot has the dimensions given in the previous section, and is placed exactly at the 

middle of the metallic ground. The patch has length px=8mm and width 2mm. Different thin 

substrates have been investigated but for the particular design the patch is printed on a 130μm 

thick RO3010 substrate (εr=10.2, tanδ=0.0023) shown in light blue in the figure. A varactor 

diode is inserted in the middle of the patch where a small gap is etched producing a split 

patch. The dimensions of the slot and the patch have been chosen such that the resonance 

would occur in the frequency range of interest (2GHz-5GHz). More specifically, the slot itself 

produces a minimum in the S21 response around 8GHz since its length is about λ/2 at this 
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frequency. The resonant frequency is then reduced due to the strong capacitive coupling 

between the slot and the varactor loaded patch. Apart from the actual patch which is 

perpendicular to the slot; two metallic lines along the y direction are also included in the 

design serving as biasing lines for the varactor (see Fig. 3.1.1a and Fig. 3.1.4). These lines are 

isolated in practice from the patch through RF choke inductors which are not shown in the 

figures. The electrical isolation of the diode from the ground plane significantly simplifies the 

biasing by eliminating the need for additional slots and the use of DC blocking capacitors on 

the ground plane. 

The complete structure is simulated in CST, modelling the varactor as an ideal lumped 

capacitor with parametrically changed capacitance. The extracted S21 response is shown in 

Fig. 3.1.5(b) while the corresponding S11 response is depicted in Fig. 3.1.5(a). It can be 

observed that a sharp minimum is produced in the S21, which is tuned towards lower 

frequencies as the capacitance increases. This is expected since the total equivalent 

capacitance of the resonator increases, causing a decrease in the resonance frequency. For 

C=0.5pF to C=1.4pF, the resonant frequency is tuned from 3.9GHz to 2.75GHz resulting in a 

tuning range of 34.6%. This single slot-patch structure has proven the validity of the concept 

and can be considered the unit cell of the proposed tunable EBG structure. 
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Fig. 3.1.4 Schematic diagram of proposed single slot-patch structure.  
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(b) 

Fig. 3.1.5 Simulated (a) S11 and (b) S21 response of a single slot-patch structure for 

different capacitance values.  

3.1.3 Design of Multiple Tunable Slot-Patch EBG 

Subsequently, four slots were etched off the ground plane with the dimensions described in 

the previous sections (Fig. 3.1.1a). The periodicity of the structure is 8mm. This is equal to 

the length of each patch, which means that the patches are connected, reducing the number of 
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the required biasing lines. Fig. 3.1.1(a) shows that the first varactor diode is placed with the 

cathode on the left side, the next diode reversed with the cathode on the right side and so on 

for the other two diodes, allowing all the diodes to be correctly biased using only 5 biasing 

lines instead of 8. 
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(b) 

Fig. 3.1.6 Simulated (a) S11 and (b) S21 response of four slot-patch structures for different 

capacitance values.  
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Again, the varactors are modelled as capacitors with different capacitance values and the 

S21 response has been obtained, presented in Fig. 3.1.6(b). The corresponding S11 is shown in 

Fig. 3.1.6(a). Although the tuning is continuous, only four states are illustrated in the figure 

for clarity. It is evident that in the case of multiple slot-patch structures, a broader band-gap is 

produced. As the capacitance of the varactors increases, the band-gap shifts to lower 

frequencies while its bandwidth decreases. Nevertheless, a significant tuning range is 

achieved for capacitances from C=0.3pF to C=1.4pF, tuning the beginning of the band-gap 

from 3.85GHz to 2.77GHz and the end from 4.78GHz to 2.9GHz respectively. 

3.1.4 Design of Slit-patch Structures 

Finally, the concept is extended to slits instead of slots. The slits are etched in the middle 

of the long side of the ground plane (x axis) and have length l=6mm and width w=1mm. In 

this case the initial length of the slit without the patch is λ/4 at its resonant frequency, which is 

then reduced due to the coupling with the patches. The microstrip line is also moved 

accordingly and the patches are positioned in the middle of the slits as shown in Fig. 3.1.7. In 

this case a different substrate is employed for printing the patches. It consists in a 55μm thick 

polyester film with dielectric constant εr=3.  

A configuration with three slit-patch structures is investigated. The effect is similar to the 

case of the slot-patch structures, with the difference of a larger tuning range achieved with a 

smaller capacitance range (0.9pF compared to 1.1pF). This is expected since the substrate 

separating the varactor-loaded conducting patches from the slits is now significantly thinner, 

making the coupling between the two layers stronger. Other than that, similar tuning 

behaviour is observed, with the slit-patch structures giving a broadband S21 minimum, as can 

be seen in Fig. 3.1.8.  
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Fig. 3.1.7 Schematic diagram of three slit-patch tunable structures excited by microstrip 

line.   
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Fig. 3.1.8 Simulated S21 response of three slit-patch structures for different capacitance 

values.  

3.1.5 Equivalent Circuit Approach 

An equivalent circuit approach has been developed to analyse the proposed EBG structure 

in order to provide valuable insight and initial design guidelines. The slots or slits in a 

metallic plane can be modelled as a parallel LC circuit producing a resonance in the S21 

response. Depending on the length of the aperture, the resonance frequency can be calculated 
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and hence the product of L and C can be evaluated. The values of L and C can be estimated by 

matching the equivalent circuit response with the one obtained from full-wave simulations. 

Adding the varactor-loaded patch, introduces an extra capacitance as explained earlier, due to 

the close coupling between the aperture and the patch which decreases the resonance 

frequency. This is modelled as capacitance C1 parallel to the LC. The resulting equivalent 

circuit for the configuration with the one slot is shown in Fig. 3.1.9(a), where C1 includes the 

capacitance introduced by the patch itself and the one introduced by the varactor diode. A 

comparison between the responses obtained from the equivalent circuit and the full-wave 

simulations is shown in Fig. 3.1.10(a) for four values of the varactor’s capacitance showing a 

good agreement.  

The four-slot structure is modelled connecting four resonators in series (Fig. 3.1.9b). The 

length of the transmission line between the resonators l΄ is adjusted to match the distance 

between the slots. The obtained results in this case are depicted in Fig. 3.1.10(b). It is evident 

that for the four slots the agreement between full-wave and equivalent circuit simulations is 

not as good as for the case of one slot-patch. This is to be expected since the equivalent circuit 

approach does not take into account higher order mode interactions between the elements. 

However, the use of the equivalent circuit gives an insight into the behaviour of the proposed 

EBG structures. Moreover, it provides a fast and useful tool for an initial estimation of the 

structure’s response. 
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Fig. 3.1.9 Equivalent circuit for (a) a single slot-patch structure and (b) four slot-patch 

structures excited by microstrip line.  
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Fig. 3.1.10 S21 response comparison calculated from the equivalent circuit and full-wave 

analysis for (a) the single slot-patch and (b) the four slot-patch structures for different 

capacitance values. 
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3.1.6 Measurements of Fabricated Prototypes 

In this Section, measurements of the fabricated prototypes of the proposed tunable EBG 

structures are presented. Various prototypes have been fabricated and the experimental results 

validate the concept, giving the expected behavior.  

For the case of the single slot-patch, the fabricated prototype is shown in Fig. 3.1.11(a).  

The patch has been printed on a 130μm thick Rogers RO3010 dielectric substrate, also used in 

the simulations of the previous sections. The varactor diode used for this structure is the 

SMV1231 from Skyworks which according to its datasheet has a capacitance range from 

0.466pF to 2.35pF for biasing voltages of 15V to 0V respectively. Moreover, two RF choke 

inductors (L=10nH) have been used. 

The measured S21 results are presented in Fig. 3.1.11(c) with the corresponding S11 shown 

in Fig. 3.1.11(b). Compared with the simulation results, the measured S21 minimum is slightly 

higher and slightly shifted in frequency for all capacitance values. This can be attributed to a 

weaker coupling between the patch and the slot due to air gaps formed between the film and 

the ground during the soldering of the varactor on the thin substrate. The measured tuning 

range was 25.4%. Finally the losses and possible radiation of the structure have been 

calculated using the expression 
2

21

2

11
1 SS   and the results for different voltages are 

plotted in Fig. 3.1.11(d). It can be observed that there is about 30% to 40% losses/radiation in 

the proposed structure. However, simulating the structure considering lossless materials only 

an 8% (0.3dB) of radiation is exhibited. Thus, the rest is losses due to the materials of the 

prototype, the varactor diode and the soldering of the components.   
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(d) 

Fig. 3.1.11 (a) Photograph of a fabricated prototype, Measured (b) S11 and (c) S21 response 

of the single slot-patch structure for different voltages, and (d) Estimated radiation and losses 

from measured S-parameters. 

Subsequently, the multiple slot-patch EBG structure has been fabricated and measured 

(Fig. 3.1.12). The varactor diodes used for this structure are the SMV2019 from Skyworks 
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which have a nominal range of 0.3pF to 2.22pF for biasing voltages of 20V to 0V 

respectively. The measured S11 is depicted in Fig. 3.1.12(b) showing that the structure losses 

caused from both the varactor diodes and material losses are from 0.7dB to 1.5dB. Fig. 

3.1.12(c) shows the comparison between measured and simulated S21 for four different 

applied voltages. Good agreement has been obtained for the cases corresponding to C=0.3pF 

and C=0.5pF. However, as the capacitance of the varactor diodes increased, two distinct 

resonances appear. The resonance at the lower frequency end follows the expected behavior 

while the resonance at the higher frequency end appears to be fixed at 4GHz independently of 

the biasing voltage. This effect is apparent for both C=0.8pF and C=1pF and it is attributed to 

a fault in one of the varactor diodes. More specifically, the simulation results shown in the 

figure correspond to a reduction of one diode’s capacitance to C΄=0.32pF. The obtained 

agreement demonstrates that the maximum capacitance of one of the diodes is less than 0.4pF, 

resulting in the specific obtained resonance. In fact, this perturbation in the elements of the 

EBG structure actually gives an advantage since it increases the bandwidth of the stop-band. 

This effect will be exploited later on in section 3.2.1. Nonetheless, the achieved tuning range 

of the start of the stop-band for C=0.3pF to C=1pF is significant (Fig. 3.1.12d), namely 18.2% 

while the corresponding simulated tuning range is 24.8%.  
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Fig. 3.1.12 (a) Photograph of a fabricated prototype, (b) Measured S11 response, (c) 

Comparison of measured and simulated S21 response of four slot-patch EBG structure for 

different voltages and (d) Achieved tuning range for V=3V to V=20V. 

3.2 APPLICATION OF TUNABLE SLITS FOR ISOLATION IMPROVEMENT OF 

CLOSELY SPACED ANTENNAS 

As mentioned in the beginning of this Chapter, one of the main applications of EBG 

structures is the isolation enhancement in multiple antenna systems. Thus, the application of 

the proposed tunable structures in such cases is investigated for both static and tunable 

antennas. 

3.2.1 Isolation of Closely Spaced UWB Monopoles 

An array of two closely spaced ultra-wideband (UWB) monopoles with a common ground 

plane has been designed, printed on a FR-4 dielectric substrate as shown in Fig. 3.2.1(a). The 

substrate is 60mm long and 50mm wide, with a thickness of 1.55mm and a dielectric constant 

εr=4.5. A 50Ω Coplanar Waveguide (CPW) microstrip line is employed for the feeding of the 
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antennas. The dimensions for the monopoles are chosen to achieve an operation from about 

2.2GHz to 6.3GHz while the distance between them is less than λ/4 at the central operating 

frequency of the antennas. All the dimensions are shown Fig. 3.2.1(a).   

In Fig. 3.2.1(b) the simulated S–parameters of the structure are presented. It can be 

observed that the coupling between the two monopoles is about –10dB at the lower end of the 

operating frequency band, and it slowly decreases with frequency, since the electrical 

separation between the antennas increases.  
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(a)                                                                        (b) 

Fig. 3.2.1. (a) Schematic diagram of the antenna array with common ground plane and (b) 

simulated S-parameters response for the structure. 

3.3.1.1 Two Printed UWB Monopoles with One Slit-Patch Structure 

To reduce the mutual coupling between the two monopoles, the proposed double layer slit-

patch structure is employed. Most of the coupling in these closely spaced monopoles is 

caused by the strong currents in their common ground plane. Hence, employing the proposed 

EBG would disrupt these currents and result in an isolation improvement. Initially, a single 

slit was etched on the ground plane between the monopoles (Fig. 3.2.2a). The slit itself causes 

a reduction of the mutual coupling at its resonance frequency which for this length is 9GHz. 
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However, after placing the conductive patch in close proximity to the slit, the effective 

resonant length is reduced, shifting the S21 minimum in the frequency range of interest. The 

conducting patch is printed on the 55μm thick polyester dielectric sheet separating it from the 

slit and the ground, as shown in Fig. 3.2.2(b). The dimensions of the patch are the ones given 

in section 3.1.2 (length px=8mm and width 2mm) and are also shown in the same figure. The 

resonance of the element causes a transmission minimum in the S21 response which could be 

tuned in the frequency band of interest changing the length of the patch as demonstrated in 

section 3.1.1. Employing the proposed tunable structure, dynamic tuning of this transmission 

zero is produced. It should be pointed out again at this point that the electrical isolation of the 

diode from the ground plane of the antennas makes the biasing very straightforward 

eliminating the need for additional slots in the ground and the use of DC blocking capacitors.  
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l/2

 

(a)                                                                        (b) 

Fig. 3.2.2. Schematic diagram of the antenna array with: (a) one slit etched in the middle 

of the ground, (b) one slit-patch structure. 

Simulation results of the tuning of the S21 minimum for capacitance values between 0.3pF 

and 1.2pF are presented in Fig. 3.2.3(b) and the respective S11 response is shown in Fig. 

3.2.3(a). More than 30% tuning of the transmission minimum is achieved, from 2.9GHz to 
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4GHz with an isolation of about 20dB. As the capacitance increases, the null shifts to lower 

frequencies. Further tuning could be achieved for higher values of capacitance but the tuning 

range is limited by the S11 response which is affected, assuming values over −10dB at the 

lower frequency band. The simulated total antenna efficiency is above 80% for capacitances 

up to 1pF and is better than the efficiency of the antenna array without the slit-patch as shown 

in Table I. 
UWB monopoles - patch and varactor in the middle of the patch
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Fig. 3.2.3. Simulated scattering parameters for the UWB antennas with one slit-patch 

structure for different capacitance values: (a) S11 and (b) S21. 

TABLE I 

SIMULATED ANTENNA EFFICIENCY WITH AND WITHOUT THE PROPOSED SLIT-PATCH 

STRUCTURE 

f(GHz) C(pF) 
Total Antenna Efficiency % 

Without slit  With slit-patch structure 

4.744 0.31 82.02 84.58 

4.352 0.41 82.53 86.53 

4.032 0.51 81.5 87.77 

3.776 0.6 80.8 87.8 

3.56 0.7 79.6 86.8 

3.392 0.8 78.57 84.5 

3.24 0.9 77.6 81.9 

3.112 1 76.4 78.56 

2.896 1.2 72.9 71 
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3.3.1.2 Two Printed UWB Monopoles with Multiple Slit-Patch Structure 

The configuration described in the previous section achieved a reduction of the mutual 

coupling between the two antennas, but in a narrow frequency range. In order to obtain a 

more broadband isolation for each of the dynamic tuning states, two slit–patch elements have 

been employed, resembling more closely the EBG type structure presented in section 3.1.4. 

The number of slit–patch elements can be further increased to obtain even more broadband 

isolation, however, in the present work; it is limited to two for simplicity, as a proof of 

concept. The two slit-patch structures are situated in the ground plane as shown in Fig. 3.2.4. 

The periodicity of the resulting EBG structure is 10mm and the geometry of each unit cell is 

the same as the one of the single slit–patch structure.  

9mm

10mm

2mm  

Fig. 3.2.4. Schematic diagram of the antenna array with two slit-patch structures. 

Two cases have been investigated. The first consists of two same length slits, while the 

second is perturbed where one slit has length l1=6mm and the second has length l2=6.5mm. 

The perturbed case has been inspired from the measured result in Fig. 3.1.12(c), where one 

varactor had different capacitance value resulting in a more broadband band-gap. The 

simulated S–parameters for three capacitance values are presented in Fig. 3.2.5 for both cases. 
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It can be observed from Fig. 3.2.5(b) that the transmission zero produced in the S21 response 

is more broadband than the one obtained from the single slit-patch structure, while it is 

evident that the perturbed case results in an even more broadband reduction of the mutual 

coupling. Moreover, the achieved tuning of the unperturbed case for the selected capacitance 

values is from 3.4GHz to 4.5GHz while for the perturbed case it is from 3.28GHz to 4.3GHz. 

Further tuning towards higher frequencies could be achieved for smaller capacitance. On the 

contrary, the use of higher capacitance affects the S11 as in the case of a single slit–patch. Fig. 

3.2.6 illustrates a better comparison in terms of achieved bandwidth for the three different 

structures. The instantaneous bandwidth for each capacitance/voltage value is presented in 

Fig. 3.2.7 for the three configurations. The bandwidth has been defined as the frequency range 

with isolation of at least 17.5dB while without the slit-patch structures the obtained isolation 

in the area of interest is between 10dB and 15dB. It is evident from the graph that the 

configuration that gives more broadband reduction is the one with the two perturbed slits. The 

simulated total efficiency for the two slit-patch structures is 80% or more in the region of the 

mutual coupling reduction and is better than the case of no slit-patch structure.  
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Fig. 3.2.5. Simulated scattering parameters for the UWB antennas with two slit-patch 

structures with the same and different length slits, for different capacitance values: (a) S11 and 

(b) S21. 
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Fig. 3.2.6. Comparison of S21 for the UWB antennas with one slit-patch structure and two 

slit-patch structures with the same and different length slits. 
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Fig. 3.2.7. Comparison of isolation bandwidth versus capacitance for the UWB antennas 

with one slit-patch structure and two slit-patch structures with the same and different length 

slits.  

3.2.1.3 Measurements of Fabricated Prototypes 

Prototypes of the antenna array with the single slit element (Fig. 3.2.8) and the two 

perturbed slits (Fig. 3.2.10) have been fabricated in order to validate the simulation results. 

Initially, the configuration with the single slit was measured. Before the measurements, the 

polyester film has been aligned with the FR-4 board and glued to it. The varactor used for this 

prototype was the SMV1231 from Skyworks. The S-parameters of the monopoles have been 

measured and the S21 for five capacitance values is shown in Fig. 3.2.9(b). As expected, a 

transmission minimum is observed which is tuned when the biasing voltage changes. An 

isolation of at least 18dB is obtained throughout the tuning range. Compared with the 

simulation results, the measured S21 minimum is slightly higher and slightly shifted in 

frequency for all capacitance values. This can be attributed to a weaker coupling between the 

patch and the slit as explained in section 3.1.6 due to air gaps formed between the film and the 
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ground during the soldering of the varactor on the thin film.  Furthermore, the presence of the 

glue slightly alters the thickness of the film. Indeed, new simulation results have been 

produced for this configuration assuming an air gap of 38μm and a 70μm thick polyester film, 

yielding a good agreement with the measured results (Fig. 3.2.9b). For the capacitance range 

used, the antennas are well matched with S11 values below −10dB as can be observed from 

Fig. 3.2.9(a).  

 

Fig. 3.2.8. Photograph of the fabricated prototype of the structure with the UWB antennas 

and one slit-patch structure.  
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(b) 

Fig. 3.2.9. Measured S-parameters of the UWB antennas with one slit-patch structure for 

different voltages: (a) S11, (b) S21. 

Subsequently, the antenna array with two perturbed slit-patch structures shown in Fig. 

3.2.10 has been measured. The varactor diodes used in this case were the SMV2019 from 

Skyworks.  The measured S11 for three biasing voltages is illustrated in Fig. 3.2.11(a), along 

with the corresponding simulation results. It can be seen that the antennas are well matched 

with S11 values below −10dB. From the measured S21, shown in Fig. 3.2.11(b) it is evident 

that a broadband isolation is obtained of at least 19dB. Moreover significant tuning is 

achieved which is in good agreement with the simulation results, also included in the graph.  
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Fig. 3.2.10. Photograph of the fabricated prototype of the structure with the UWB antennas 

and two slit-patch structures with different length slits.  
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(b) 

Fig. 3.2.11. Measured and simulated S-parameters of the UWB antennas with two 

perturbed slit-patch structures for different voltages: (a) S11, (b) S21. 

3.2.2 Tunable Closely Spaced Monopoles with Tunable Isolation  

In the previous section it has been proven via simulation and experimental results that the 

proposed tunable EBG structures can be employed to achieve a tunable isolation enhancement 

for closely spaced antennas. UWB monopoles were employed in order to demonstrate the 

tuning range of the EBG structures. However, the proposed tunable structures can be also 

employed for the mutual coupling reduction of tunable antennas in a practical system. 

Significantly, the proposed two-layer biasing technique can also be employed to design 

tunable antennas with a simplified biasing network. Here, tunable monopole antennas have 

been designed utilizing the two-layer biasing technique and are used to replace the UWB 

monopoles of the previous section.  
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3.2.2.1 Design of Tunable Monopole Antenna 

The concept of the antenna design is based on the idea presented in [10, 11] and later 

extended in [12].  Initially, one antenna has been designed starting from the UWB monopole 

design employed thus far in this Chapter. Two slits have been etched off the ground plane of 

the monopole antenna as shown in Fig. 3.2.12(a). The dimensions of the slits are included in 

the figure. These slits affect the antenna’s impedance matching and thus create a narrowband 

response as illustrated in Fig. 3.2.13(a). The figure presents a comparison of the S11 response 

for one UWB monopole and the narrowband monopole produced with the introduction of the 

slits. It can be seen that for the specific dimensions the monopole’s operating frequency is 

around 6.8GHz. This response is then tuned by employing the concept of a closely coupled, 

varactor-loaded patch. The schematic diagram of the structure is depicted in Fig. 3.2.12(b) 

while the corresponding S11 response for different values of the varactor is presented in Fig. 

3.2.13(b). It can be observed that with the introduction of the varactor-loaded patch the 

operating frequency assumes lower values (between 3GHz and 5GHz for the specific 

capacitances) due to the coupling of the slits and the patches, as expected. 
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(a)                                                     (b) 

Fig. 3.2.12. Schematic diagram of (a) static narrowband antenna with slits etched off the 

ground and (b) tunable narrowband antenna using varactor loaded patches. 

Frequency (GHz)

1 2 3 4 5 6 7 8

S
1

1
 (

d
B

)

-30

-25

-20

-15

-10

-5

0

UWB monopole

narrowband monopole

 

(a)                                              



74 
 

Frequency (GHz)

2 3 4 5 6

S
1

1
 (

d
B

)

-50

-40

-30

-20

-10

0

C=0.6pF

C=0.8pF

C=1pF

C=1.2pF

C=1.5pF

 

(b) 

Fig. 3.2.13. Simulated S11 response for (a) one UWB monopole and one static narrowband 

antenna and (b) one tunable narrowband antenna for different capacitance values. 

3.2.2.2 Array of Two Tunable Monopoles with Tunable Slits 

The two tunable monopoles are placed at the same distance as the UWB monopoles in the 

previous section, employing two equal length slit-patch structures in their common ground. A 

schematic diagram of the complete structure including the biasing lines for all 6 used 

varactors (two in the EBG structure and two for each antenna) is presented in Fig. 3.2.14. It 

must be noted that the biasing network for each antenna in this structure is significantly 

simplified compared to the corresponding single layer varactor-loaded tunable antennas and 

slots presented in [10-12]. In Fig. 3.2.15, the S11 of the antennas is shown for different 

capacitance C2, achieving a wide tuning range from 4.6GHz to 3.1GHz (central frequency of 

each band). It should be pointed out that in order to achieve the optimum isolation in each 

operating band, different capacitance values were used for the EBG structure than the 

antennas, referred to with the parameter C. The values of C and C2 in each case are shown in 

the legend of the graph. The range of capacitances for the EBG structures is from 0.3pF to 
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about 0.9pF. 

 

 

Fig. 3.2.14. Schematic diagram of the tunable closely spaced antennas with two slit-patch 

structures. 
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Fig. 3.2.15. Simulated S11 of the tunable antennas with two slit-patch structures for 

different capacitance values.  

Fig. 3.2.16(a), (b), and (c) illustrate the S11 and corresponding S21 response with and 

without the tunable EBG structure for three states, namely for C2=0.6pF, C2=1pF and 

C2=1.5pF. It can be observed from the figures that the operating bandwidth of the monopoles 
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in each case is slightly increased with the presence of the EBG structure while the isolation is 

significantly enhanced in the corresponding band. More specifically, the in band isolation for 

0.6pF≤C2≤1.5pF has been improved by at least 7dB while in some cases the improvement has 

been of 20dB. A more detailed comparison of the proposed tunable antennas with and without 

the tunable slit-patch structures is given in Table II in terms of isolation and efficiency. 
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Fig. 3.2.16. Comparison of S11 and S21 with and without the proposed EBG structures for 

(a) C2=0.6pF, (b) C2=0.1pF and (c) C2=1.5pF. 

 

TABLE II 

SIMULATED TOTAL EFFICIENCY FOR TUNABLE ANTENNA WITH AND WITHOUT THE PROPOSED 

SLIT-PATCH STRUCTURE 

fc 

(GHz) 

C2 

(pF) 
C (pF) 

no slit-patch 

S21 at fc (dB) 

2 slit-patch  

S21 at fc 

(dB) 

ηtot % without 

slit-patch at 

ηtot % with 2 

slit-patch at 

 fc fS21min fc fS21min 

4.65 0.6 0.3 -13.1 -19.8 77.7 76.1 83.6 81.8 

4.4 0.7 0.35 -13 -20.1 77.9 79.2 85.5 79.8 

4.18 0.8 0.4 -12.8 -20 78.5 80.1 85.9 80.4 

3.98 0.9 0.45 -12.8 -20.6 78.1 79.8 85.6 77.7 

3.79 1 0.5 -12.6 -25 78.9 80.1 80.3 77.2 

3.62 1.1 0.625 -12.3 -24.5 79 80.7 83.6 77.1 

3.45 1.22 0.7 -12 -26.8 80.6 79.8 82.5 77.2 

3.27 1.4 0.8 -11.6 -30.1 81.2 81.4 79.7 81 

3.16 1.5 0.925 -11.6 -15.1 79.3 77.2 78.7 79.4 
 

 

Although the above results consist in estimated and no experimental performance, the 

design dimensions and the capacitance values can be achieved. Moreover, the agreement of 

the measured and simulated results of the other configurations investigated in this thesis 
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suggests the same for the proposed closely spaced tunable monopoles with tunable mutual 

coupling reduction.   

3.3 CONCLUSIONS 

Novel tunable two-layer slot-patch Electromagnetic Band-Gap (EBG) structures have been 

presented in this Chapter with significantly simplified biasing network. A wide tuning of the 

EBG’s stop-band has been achieved by changing the voltage applied to the varactors 

incorporated to the structure which are electrically isolated from the metallic plane. As a 

practical application, the proposed tunable EBG structures have been employed in the 

common ground plane of two closely spaced printed wideband monopole antennas, 

significantly reducing the mutual coupling between them. Simulation results and 

measurements of fabricated prototypes have been presented. Moreover, tunable monopoles 

have been designed using the proposed two-layer biasing technique and an isolation between 

them has been achieved using the proposed tunable EBG structures. The proposed tunable 

EBG structures, tunable antennas and the simplified two-layer biasing technique presented in 

this Chapter can be applied to a number of different applications involving electrically tunable 

structures with simplified biasing networks. 
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CHAPTER 4.  

TUNABLE HIGH IMPEDANCE SURFACES FOR LOWER 

MILLIMETRE-WAVE FREQUENCIES 

High Impedance Surfaces (HIS), as briefly explained in Chapter 1,  are eligible for 

numerous applications such as ground planes in printed antennas [1] or in resonant cavity 

antennas for reducing their profile [2, 3]. Other applications of HIS type structures include 

reflectarrays [4], polarisation converters [5] and holographic surfaces [6]. Furthermore, 

several tunable HIS structures have been proposed in the past few years using active 

components such as varactor diodes [7-9]. These components have been successfully 

employed for applications at low microwave frequencies, but are not suitable for higher 

frequencies mainly due to high losses and parasitic effects.  

As an effort to overcome these limitations, new designs of tunable HIS are studied in this 

Chapter, for low millimetre-wave frequencies. A novel low-loss technique for tuning HIS is 

presented and experimentally demonstrated. The tuning is achieved by virtue of employing a 

small number of piezoelectric bender actuators that can achieve a displacement under a DC 

bias. It is important to note that the actuators are placed around the HIS arrays, thereby not 

interfering with its radiation performance and hence resulting in a particularly low loss 

structure, which is especially challenging at mm-wave frequencies. The displacement 

produced by the actuators when they are biased with a DC voltage, alters the distance between 

the periodic arrays and the ground plane forming the HIS structures. This results in a change 

of the reflection phase response of the structures under investigation. Three designs are being 

investigated, operating at 15GHz and at 30GHz. Simulation results demonstrate that the 

proposed configurations can be employed as dynamic impedance surfaces obtaining 
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significant phase shift with a low-loss performance. Moreover, measurements are presented 

for the first design validating the simulated results. Finally, as a practical application, a dipole 

antenna is presented, placed above the proposed tunable HIS, obtaining a significant tuning of 

its operational frequency. 

4.1 TUNABLE HIS STRUCTURES 

Each of the three investigated HIS structures, consists of a doubly periodic array of 

metallic elements printed on a dielectric substrate which is placed at close proximity over a 

ground plane. In typical implementations of HIS structures, the substrate is grounded, creating 

a dielectric filled cavity between the array and the ground plane. Nevertheless, in the 

proposed configurations, an air cavity is created giving an extra degree of freedom for 

controlling the HIS reflection phase response. The first two designs exhibit a single resonance 

for a specific cavity thickness, while the third is multi-resonant. The tuning is achieved by 

means of piezoelectric bender actuators which support the upper layer (dielectric substrate 

with periodic array) of the structure (Fig. 4.1.1). A displacement is produced by the actuators 

when they are biased with a DC voltage, changing thus the cavity distance. This results in a 

dynamic tuning of the reflection phase response of the structure which is strongly dependant 

on this parameter as expected from (2.1-7), since as explained in section 2.1.3 the HIS 

performance is related to the resonance of the open cavity formed between the periodic array 

and the ground.  
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Fig. 4.1.1. Schematic diagram of proposed tunable HIS (dimensions are not to scale). 

4.1.1 Design of HIS for Operation at 15GHz  

Initially, a tunable HIS operating around 15GHz is designed. The proposed High 

Impedance Surface consists of a doubly-periodic array of square loop metallic elements 

printed on a 0.055mm thick dielectric substrate with εr=3 and tanδ=0.0018 placed at distance t 

from a ground plane. The unit cell of the proposed tunable HIS is shown in Fig. 4.1.2(a, b). 

The periodicity of the structure is p=6.5mm, the outer dimension of the square loop is 

dl=5.57mm, the inner square loop dimension is da=3.34mm and the initial cavity thickness is 

set to t=0.6mm. The dimensions and the geometry of the structure have been chosen so that a 

reflection phase of zero is obtained at around 15GHz with a fast variation of the reflection 

phase with frequency which makes the structure more sensitive to changes of the cavity 

distance. This means that a large phase shift can be achieved. Nevertheless there is a trade-off 

between the bandwidth and the losses that should be taken into account when designing the 

surface. A quick response in the phase of the reflection coefficient, i.e. a narrow bandwidth, 

results in a low value of the reflection magnitude which in turn corresponds to more losses.  
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Fig. 4.1.2. Unit cell of the HIS array: (a) top view, (b) perspective (dimensions are not to 

scale). 

As mentioned above, the periodic surface is supported by bender piezoelectric actuators 

placed between the ground plane and the periodic surface. A change in the biasing voltage of 

the bender actuators is translated to a bending of the actuators and thus a vertical displacement 

of the surface with respect to the ground plane as illustrated in Fig. 4.1.1. In order to evaluate 

the tuning range and the maximum phase shift that can be achieved from the proposed HIS, 

simulations have been carried out in CST Microwave Studio
TM

 simulation software. The 

displacement achieved by the bender actuators is modeled in the software as a parametric 

change of the cavity thickness t. 

Periodic boundary conditions have been employed to reduce the calculations of an infinite 

structure into a single unit cell and full wave analysis has been carried out in CST with 

normally incident plane wave excitation to extract its reflection characteristics. The simulated 

phase of the reflection coefficient is shown in Fig. 4.1.3(b) for different cavity distances 

which correspond to a displacement from zero (t=0.6mm) to 1.6mm (t=2.2mm). The 

corresponding reflection magnitude is shown in Fig. 4.1.3(a). For a displacement Δt of just 

0.4mm, a 142
o
 phase shift has been obtained for operation at 15GHz while for Δt=1.6mm the 
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obtained phase shift at the same frequency is about 190
o
. The maximum phase shift for this 

displacement is 243
o
 at 13.46GHz (Fig. 4.1.3c). Furthermore, the frequency where the AMC 

response occurs, i.e. where the reflection phase is equal to zero, is tuned from 15.53GHz to 

10.85GHz for  Δt =1.6mm.  

It is worth noting that as the cavity thickness increases, the HIS resonance is weaker and 

the slope in the reflection phase is decreased (increased bandwidth). This results in a non 

linear tuning of the phase response. This is shown more clearly in Fig. 4.1.3(c) where the 

phase shift Δφ versus the displacement Δt is depicted for frequencies 13.46GHz and 15GHz. 

In the same figure the fractional bandwidth of the HIS is shown for each displacement, which 

increases significantly for larger displacement. It is evident that there is a tradeoff between the 

tunability and the bandwidth, since for example at 15GHz from Δt=1mm to Δt=1.6mm the 

phase shift increases just by 11.4
o
 while the bandwidth of the AMC resonance is over 30%.    
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(c)                                           

Fig. 4.1.3. Simulated reflection (a) magnitude and (b) phase of the proposed HIS for 

different cavity thicknesses. (c) Phase shift for f=13.46GHz and f=15GHz and fractional 

bandwidth of the AMC resonance versus displacement. 
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4.1.2 Design of HIS for Operation at 30GHz  

In this section a scaling of the proposed structure is presented for operation at the mm-

wave region. The HIS is composed from the same type of elements (Fig. 4.1.2a, b) printed on 

a 0.8mm thick dielectric substrate with εr=2.2 and tanδ=0.009 (TLY-5 from Taconic
TM

). The 

dimensions have been changed with the aim of obtaining an HIS resonance at around 30GHz. 

The new dimensions are p=1.8mm, dl=1.6mm and da=1.3mm.  The initial cavity thickness is 

set to t=0.3mm.  

The unit cell of the new structure has been simulated to extract the reflection 

characteristics of the HIS. The magnitude of the reflection coefficient for different cavity 

thicknesses from t=0.3mm to t=0.9mm is presented in Fig. 4.1.4(a). The corresponding 

reflection phase is shown in Fig. 4.1.4(b). In this case, at 30GHz, a phase shift of 185.8
o
 is 

obtained for a displacement Δt of 0.3mm, while for Δt=0.6mm the obtained phase shift is 

220
o
.  It can be observed that although there is a great dependence between the cavity distance 

and the frequency of the AMC response, the other geometry parameters significantly affect 

the phase response. This argument can be supported if one observes the resonant frequency 

for t=0.6mm, which for the new structure is 26.85GHz. Moreover, a low-loss operation is 

obtained with the magnitude of the reflection coefficient being over -0.3dB for all cavity 

thicknesses. 
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Fig. 4.1.4. Simulated reflection (a) magnitude and (b) phase for different cavity 

thicknesses for operation at 30GHz.  

This study demonstrates that the proposed configuration operating around 30GHz achieves 

larger tuning range compared with the 15GHz design with the same or even less displacement 

from the actuators. This is also evident from Table I which shows the maximum phase shift 

Δφ obtained for a displacement Δt=0.4mm from the two proposed tunable HIS structures. 
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Furthermore, it validates the concept of employing the piezo-tunable HIS for operation at 

higher frequencies.     

TABLE I 

COMPARISON OF TWO TUNABLE HIS DESIGNS IN TERMS OF ACHIEVED PHASE SHIFT FOR FIXED 

DISPLACEMENT (ΔΤ=0.4MM) 

Tunable HIS f(GHz) Δφ (Degrees)  

Design 1 15 142
o
 

Design 2 30 202.7
o
 

  

4.1.3 Multi-Resonant Elements for Broadband Tunable ΗIS 

The two tunable HIS designs that have been presented in this Chapter so far, exhibit a 

single resonance response for a specific cavity thickness. This implies that although they 

achieve a significant phase shift, they can be operated as phase shifting surfaces at a specific 

frequency or for a very narrow frequency range depending on the required phase shift. In this 

section, a multi-resonant HIS design is investigated. The unit cell of the structure is shown in 

Fig. 4.1.5. It consists of two metallic dipole elements of same width, but different lengths 

printed on a thin dielectric substrate with thickness h=0.055mm, permittivity εr=3 and 

tanδ=0.0018, placed over a ground plane at distance t. The linear dipole geometry was chosen 

due to its simplicity. However, due to the geometry, this structure is dependant on the 

polarisation of the incident wave, in contrast to the designs presented thus far which were 

symmetric for both planes and hence polarisation independent. The dimensions of the 

structure’s geometrical parameters are l1=8.8mm, l2=8.4mm, px=7.7mm, py=10.6mm, and 

w=0.5mm as illustrated in Fig. 4.1.5(a), while the initial cavity distance is set at t=0.6mm. The 

same tuning technique is used, employing the bender actuators in order to dynamically change 

the cavity distance and obtain a phase shift.  
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                               (a)                                                     (b) 

Fig. 4.1.5. Unit cell of the multi-resonant HIS array: (a) top view, (b) perspective 

(dimensions are not to scale). 

The structure is simulated applying periodic boundary conditions in CST to extract the 

reflection characteristics of the multi-resonant HIS. The magnitude of the reflection 

coefficient for different cavity thicknesses from t=0.6mm to t=1.6mm is presented in Fig. 

4.1.6(a) with the corresponding reflection phase shown in Fig. 4.1.6(b). Due to the small 

difference in the length of the two dipoles, two AMC resonances occur at different but close 

frequencies. This is evident from Fig. 4.1.6, especially for t=0.6mm where the two resonances 

occur at 14.73GHz and 15.27GHz. As the cavity thickness increases the resonances are 

shifted to lower frequencies as expected, and they tend to converge. This is caused from the 

fact that the difference in length of the two dipoles becomes less significant as the frequency 

decreases. The achieved maximum phase shift from the proposed multi-resonant HIS is 487
o
 

for Δt=1mm at 14.38GHz and 280.8
o
 for Δt=0.4mm at 14.88GHz. The latter is almost 

doubled compared to the one obtained for the same displacement from the single resonant 
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HIS presented in section 4.1.1. It should be pointed out that although a Δφ=487
o
 does not 

have a physical meaning since it is over 360
o
, the obtained result indicates that a phase shift of 

360
o
 can be obtained for a range of frequencies. Indeed this can be extracted from Fig. 4.1.7 

which presents the phase shift versus frequency for different displacements Δt. It can be 

observed that a Δφ=360
o
 can be obtained for frequencies between 14.18GHz to 14.87GHz, 

while a Δφ=180
o
 can be obtained from 13.39GHz to 15.26GHz by adequately adjusting the 

biasing voltage of the actuators. 
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Fig. 4.1.6. Simulated reflection (a) magnitude and (b) phase for different cavity 

thicknesses for the proposed multi-resonant HIS.  
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Fig. 4.1.7. Phase shift versus frequency for different displacement (with respect to 

t=0.6mm).  
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4.1.4 Measurements  

A prototype of the tunable HIS structure presented in section 4.1.1 has been fabricated and 

tested to validate the simulation results. A periodic array of 38×38 copper square loop 

elements printed on a 0.055mm thick, polyester film (εr=3) with overall dimensions 

240mm×240mm (~12λ×12λ) has been used for the measurement (Fig. 4.1.8a). The periodic 

surface has been glued to polystyrene foam (εr≈1) to make it rigid while keeping it light-

weight, and then positioned on top of the ground plane supported by the piezoelectric 

actuators.  

In practice, the maximum tuning range of the structure depends on the maximum 

displacement produced by the actuators. The operation of the bender actuators proposed for 

this application has been described in Chapter 2. The particular actuators that have been 

employed for the measurements are the commercial actuators PL140.11 from Physik 

Instrumente
TM

 (PI) (Fig. 4.1.8b). They are 45mm long, 11mm wide and 0.6mm thick and can 

achieve a maximum displacement of 1mm for a biasing voltage of 60V with a nominal error 

of ±20% [10]. Consequently, the initially cavity distance between the ground plane and the 

periodic array has been set from the thickness of the actuators (~0.6mm) and has then 

increased by applying voltage to the electrodes.  

Two horn antennas have been used to measure the reflection characteristics of the 

proposed HIS, one as a transmitter and one as a receiver, aiming the structure under test with 

a small angle of incidence/reflection as illustrated in Fig. 4.1.9. The measured reflection phase 

for biasing voltages V=0V–60V is presented in Fig. 4.1.10. Significant tuning has been 

achieved with the AMC (zero phase) frequency shifting from 15.2GHz to slightly less than 

13GHz. In addition a significant phase shift (Δφ) has been obtained from the proposed tunable 

HIS with the maximum Δφ of 177.4
o
 observed at about 14GHz. The corresponding magnitude 
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is not shown here, since due to the very low losses of the structure, there was no prominent 

resonance but just a 0.5dB ripple below zero over the measured frequency range caused by 

standing wave reflections during the measurement. Although the concept of the proposed 

design has been validated from the measurements, a comparison with the simulated 

performance (also included in Fig. 4.1.10) has shown that the actual displacement that has 

been achieved from the actuators was about 0.8mm instead of 1mm, which is within the initial 

expected error of the supplied actuators. 

       

(a)                                                             (b) 

Fig. 4.1.8. Photograph of (a) fabricated periodic surface and (b) of a bender actuator.  
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Fig. 4.1.9. Schematic representation of measurement set up.  
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Fig. 4.1.10. Simulated and measured reflection phase of the proposed tunable HIS for 

different biasing voltages (V=0V – 60V). 

 

 



96 
 

4.2 TUNABLE DIPOLE ANTENNA WITH TUNABLE HIS GROUND PLANE 

As an initial practical application of the proposed tunable HIS structures, a frequency 

tunable dipole antenna is presented. The antenna is placed above the proposed single resonant 

tunable HIS which acts as an active ground plane. Due to image theory, if a dipole antenna is 

placed at close proximity above a PEC surface, reverse image currents are produced which 

depending on the distance of the antenna from the PEC surface could result in cancelling out 

the radiation. On the other hand, if a PMC surface is placed below the antenna positive image 

currents are produced enhancing the radiation again depending on the distance (i.e. the phase 

shift between the dipole antenna and its image). The HIS acts as a PMC at a specific 

frequency and thus can reduce the profile of the structure and improve the matching. Tuning 

of the HIS response changes the antenna’s impedance matching, obtaining a significant tuning 

of its operational frequency. A schematic diagram of the structure is shown in Fig. 4.2.1. The 

concept of employing a tunable HIS as a ground plane of an antenna has already been 

proposed for low frequency operation (~2.5GHz) where varactor diodes have been employed 

to tune the HIS response. These required a biasing network and also produced non-linearities, 

limiting the antenna’s performance [8]. The aforementioned disadvantages are avoided with 

the configuration presented here. 

t+Δtt

Dipole antenna

coaxial cable
ground plane

 

Fig. 4.2.1. Schematic diagram of tunable dipole antenna with active HIS ground plane. 
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4.2.1 Design of Broadband Bow-tie Dipole Antenna 

Initially, a broadband bow-tie dipole antenna has been designed, operating in the frequency 

range of interest, i.e. the tuning range of the HIS. The antenna is printed on a 0.8mm thick 

TLY-5 Taconic
TM

 dielectric substrate (εr=2.2, tanδ=0.0009) placed at distance 4.5mm above a 

ground plane, and is fed by a coaxial cable. A top view of the structure with all the 

dimensions of the antenna design is presented in Fig. 4.2.2. As can be observed from the 

figure, the feeding points have been chosen with a small offset in order to optimize the 

antenna’s matching. The simulated S11 of the broadband antenna is depicted in Fig. 4.2.3, 

showing a good matching from 10.1GHz to 14.5GHz.  

9mm

2mm

0.2mm

0.5mm

35mm

Feeding points

 

Fig. 4.2.2. Top view of bow-tie dipole printed on dielectric substrate. 
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Fig. 4.2.3. Simulated S11 response for the broadband bow-tie dipole antenna.  

4.2.2 Tunability Evaluation of Dipole Antenna with Tunable HIS Ground Plane  

Subsequently, the ground plane of the antenna presented in the previous section is replaced 

with the square loop element tunable HIS structure proposed in section 4.1.1, as shown in Fig. 

4.2.1. A 5×5 array of metallic square loop elements placed at distance t above a ground plane 

has been employed in this configuration with the dimensions described in section 4.1.1 

(p=6.5mm, dl=5.57mm and da=3.34mm). The periodic array has been perforated in the middle 

of the central element, to allow the coaxial cable to pass through it. The initial HIS cavity 

distance is t=0.6mm and the distance between the ground plane and the substrate of the dipole 

antenna is S=2mm (Fig. 4.2.1). Hence, the profile of the structure is reduced with the 

introduction of the HIS. As the HIS cavity thickness changes due to the displacement 

produced from the actuators, the frequency of the AMC resonance is tuned. Consequently, the 

impedance matching of the dipole antenna is altered, resulting in a more narrowband response 

which is tuned along with the AMC resonance. This is evident from the simulated S11 shown 

in Fig. 4.2.4 for different HIS cavity thicknesses.  
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Fig. 4.2.4. Simulated S11 response of tunable bow-tie dipole antenna for different HIS 

cavity distances.  

TABLE II 

AMC AND DIPOLE ANTENNA OPERATING FREQUENCY FOR DIFFERENT HIS CAVITIES 

t (mm) fAMC (GHz) fC (GHz) 

0.6 15.44 15.3 

0.8 14.63 14.4 

1 13.86 13.75 

1.2 13.15 13.3 

1.4 12.51 12.9 

1.6 11.92 12.6 

 

A better comparison of the frequency of the AMC resonance and the central frequency of 

the antenna for each HIS cavity thickness is presented in Table II.   It can be observed that 

there is good agreement between the frequency where the HIS reflection phase is zero (fAMC) 

and the central operating frequency of the dipole antenna, especially for small cavity 

distances. Moreover, E- and H-plane radiation patterns are presented in Fig. 4.2.5 for different 

frequencies, corresponding to different HIS cavity thicknesses. An asymmetry is observed for 

the E-plane patterns, probably due to the offset of the dipole feeding. The simulated response 
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of the antenna validates the expected frequency reconfiguration of the dipole antenna with a 

tuning range of 19.4%.   
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Fig. 4.2.5. Simulated (a) E-plane and (b) H-plane radiation patterns for different 

frequencies corresponding to different HIS cavities.  
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4.3 CONCLUSIONS 

In this Chapter, dynamically tunable low-loss High Impedance Surfaces based on 

piezoelectric bender actuators for operation at 15GHz and 30GHz have been demonstrated 

through simulation and experiments. Each of the proposed HIS structures, consists of an air 

cavity created between a periodic surface and a ground plane. Piezoelectric bender actuators 

are employed to support the periodic surface and produce a displacement between the surface 

and the ground plane. The displacement is produced by the actuators when they are under DC 

bias, and changes the cavity thickness resulting in a significant tuning of the reflection phase 

response. A significant advantage of the proposed structures is that since the actuators are not 

interfering with the radiation performance of the HIS array, the losses are very low.  

Initially three different tunable HIS structures have been designed. Measurements for the 

first structure have been presented, giving a phase shift of 177.4
o
 at 14GHz. Finally, a tunable 

dipole antenna with an active HIS ground plane has been presented, as an application of the 

proposed structures. The proposed structures and tuning technique are directly scalable to 

higher mm-wave frequencies as is demonstrated in the next Chapter of this thesis, paving the 

way for a new class of low-loss tunable mm-wave metamaterial structures. 
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CHAPTER 5.  

TUNABLE PERIODIC STRUCTURES FOR HIGHER MILLIMETRE-

WAVE FREQUENCIES 

Higher mm-wave and submm-wave frequencies present a significant challenge in terms of 

the development of tunable structures such as metasurfaces. Different tuning techniques 

compared to those employed in lower RF and microwave frequencies have to be employed. 

More specifically, for mm-wave frequencies, Micro-Electro-Mechanical Systems (MEMS) 

have been successfully employed in tunable HIS surfaces acting as reflectarrays [1, 2]. 

However, in order to obtain tuning, a MEMS component has to be integrated to each element 

of the periodic structure. This implies an upper frequency limit for the suitability of this 

technology, as the dimensions of the periodic elements decrease with the frequency, impeding 

the incorporation of an electrically large component in the unit cell of the array. In addition, 

tunable materials such as liquid crystals [3-5] at higher mm-wave and submm-wave 

frequencies have been investigated producing promising results. The main disadvantage of 

this tuning technique is that liquid crystals exhibit high losses and very low switching speeds. 

In this Chapter, we propose a dynamically tunable low-loss phase shifting HIS at mm-

wave frequencies based on electromechanical reconfiguration obtained by the use of a small 

number of piezoelectric actuators whose operation is described in Chapter 2. The actuators 

exhibit a displacement under a voltage bias which is translated to a dynamic control of the 

reflection phase. Similarly to the tunable HIS structures presented in Chapter 4, the proposed 

structure consists of a periodic surface placed above a ground plane at a distance t, creating an 

air cavity. Alternative designs are investigated using CST Microwave Studio
TM

 simulation 

software. In addition, experimental results are presented, demonstrating a dynamic impedance 
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surface performance with a phase shift of over 200
o
 at about 60GHz.  

As mentioned in Chapter 2, an important application of HIS surfaces is in Fabry-Perot type 

Leaky-Wave Antennas (LWA) which have been extensively investigated due to their high 

gain performance and simple fabrication [6-8]. They are directly scalable to mm-wave 

frequencies offering a viable solution for operation at this band. Moreover, they have attracted 

a lot of interest as they are very good candidates for beam-scanning applications due to their 

dispersive properties as explained in Chapter 2. Thus, static one-dimensional LWAs can 

achieve beam steering with frequency, if the antenna’s source is placed towards the one end 

of the structure [9], with improved scanning performance when using an HIS as a ground 

plane [10]. Furthermore, since several applications require beam-scanning for a fixed 

frequency operation, various topologies have been proposed recently, for electronic 

reconfiguration of LWAs [11, 12]. Varactor diodes are employed in [11] to achieve scanning 

of a composite right/left handed leaky-wave antenna.  In [12] an active HIS is used as ground 

plane. The HIS is loaded with varactor diodes that give a tunable reflection response, which in 

turn achieves scanning of the radiation beam for a fixed frequency. Nevertheless, the use of 

such tunable components imposes a limit for the operation frequency, as they suffer from high 

losses, non-linearities and parasitic capacitance at mm-wave frequencies. 

 In this Chapter, an application of the proposed tunable HIS structures in dynamically 

beam steered mm-wave Leaky-Wave Antennas (LWA) is presented. The structure consists of 

a periodic Partially Reflective Surface (PRS) and the proposed tunable HIS acting as an active 

ground plane. The significant change in the reflection phase of the HIS for a fixed frequency 

alters the resonant condition of the LWA and thus controls the pointing angle of the antenna’s 

radiation beam for a fixed frequency.  
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5.1 DESIGN OF TUNABLE HIS FOR OPERATION AT 60GHz 

The proposed structure is designed to operate around 60GHz and is presented in Fig. 

5.1.1(a). It consists of a 2D periodic metallic array placed above a ground plane at a distance 

t, creating an air cavity. The unit cell of the proposed tunable HIS is depicted in Fig. 5.1.1(b, 

c). The structure is formed by the periodic surface and the ground and acts as a HIS reflecting 

the impinging waves with zero phase shift at a specific frequency  and a wide range of 

reflection phases at other frequencies. In typical implementations of HIS structures, the 

substrate is grounded, creating a dielectric filled cavity between the array and the ground 

plane. Nevertheless, in the proposed configuration an air cavity is created giving an extra 

degree of freedom for controlling the HIS reflection phase response which is strongly related 

to the cavity thickness. Consequently, tuning of the reflection phase can be obtained by 

mechanically changing the distance between the ground plane and the periodic surface. For a 

dynamic tuning of the reflection phase, piezoelectric actuators are employed supporting the 

ground plane. Biasing the actuators induces their vertical expansion which is translated to a 

movement Δt of the ground plane (Fig. 5.1.1a). The cavity thickness is subsequently 

decreased, changing the reflection phase response of the structure. A plastic supporting base is 

used to hold in place the actuators, and the two surfaces. As will be discussed in section 5.2, 

the choice of plastic affects the performance of the prototype and a rigid material is used. It 

should be noted that the actuators are positioned below the ground thereby not interfering 

with the reflected radiation. 
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Fig. 5.1.1. (a) Schematic of the proposed tunable HIS with the supporting base 

(dimensions not to scale), (b) unit cell of the proposed periodic surface (top view), (c) unit 

cell of the proposed HIS (perspective view). 

5.1.1 Evaluation of Tuning Range  

The maximum tunability of the presented concept depends largely on the maximum 

achievable displacement from the piezoelectric actuators. The piezo-actuators proposed for 

the design under investigation, are commercial stack multilayer actuators whose operation has 

been described in section 2.3.2.2. The particular model has a length of 18mm and can achieve 

a nominal maximum displacement of 18μm for an applied voltage of 120V (see section 5.2).  
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Based on the information of the actuators’ displacement, the unit cell of the structure has 

been designed, choosing the geometry and dimensions so that a maximum phase shift could 

be obtained from the structure by changing the actuators’ biasing voltage. Different 

geometries have been considered for the proposed configuration and a square loop metallic 

element has been chosen for the HIS array based on the fast variation of its reflection phase 

with the frequency. This characteristic is the key aspect of the design, in order to make it more 

sensitive to small variations of the cavity thickness and achieve a large phase shift. In Fig. 

5.2.2, the reflection phase for a square loop element and a simple square patch with the same 

periodicity are shown for comparison. It is evident that the slope for the square patch has a 

smaller gradient, which results in a smaller phase shift for the same variation of the cavity 

thickness. This is in line with the variations of the reflection characteristics of free-standing 

Frequency Selective Surfaces (FSSs) [13]. 
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Fig. 5.1.2. Reflection phase comparison for a square patch array and the proposed square 

loop design. 

The elements of the array were printed on a dielectric substrate with εr=2.2, tanδ=0.0009 

and thickness h=0.8mm (Fig. 5.1.1c). In order to evaluate the tuning range of the structure, 
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two slightly different square loop geometries have been considered. The periodicity and the 

outer dimension of the square loop are p=1.75mm and lout=1.5mm respectively for both cases 

while the inner dimension of the square loop lin is 0.9mm in the first case and 1mm in the 

second (Fig. 5.1.1b). Moreover, two cases have been investigated for the cavity distance, one 

producing a first order cavity resonance and another producing a second order resonance in 

the frequency range of interest. Full wave analysis has been carried out in CST to extract the 

reflection characteristics of the proposed configurations for normal incident plane waves, 

applying periodic boundary conditions at the unit cell which assume an infinite structure. 

5.1.1.1 Sub-wavelength Cavity Distance  

Initially, the cavity distance between the ground plane and the periodic array is set at 70μm 

which corresponds to about λ/70 at 60GHz. The simulated phase and magnitude of the 

reflection coefficient for the case of lin=0.9mm is shown in Fig. 5.1.3 for different cavity 

thicknesses. The magnitude of the reflection coefficient (Fig. 5.1.3a) shows that for t=70μm 

the AMC cavity resonance occurs at 56.7GHz, which is tuned towards higher frequency by 

reducing the cavity thickness. It should be noted that a minimum occurs at the frequency of 

the cavity resonance. However, the periodic surface design proposed here is based on closely 

spaced sub-wavelength (less than λ/3) square loop elements which yield low losses. The 

simulated phase of the reflection coefficient is shown in Fig. 5.1.3(b) for different cavity 

thicknesses which correspond to a displacement Δt from zero (t=70μm) to 20μm (t=50μm). It 

can be observed that a significant phase shift of Δφ=120.8
ο
 at 57.4GHz for Δt=20μm (which 

is slightly more than the maximum displacement the actuators can produce) is obtained with 

this design.  

Subsequently, the geometry with lin=1mm is studied. The simulated phase and magnitude 

of the reflection coefficient for this case is shown in Fig. 5.1.4 for cavity thicknesses ranging 
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from 70μm to 50μm. For a displacement of Δt=15μm and Δt=20μm, a phase shift of 115
o
 and 

140
o
 has been obtained respectively, for operation at 54.3GHz. Hence, compared to the 

previous design, for the same displacement a larger phase shift is obtained but for a slightly 

lower frequency. Furthermore, as can be seen from Fig. 5.1.4(a) the frequency of the AMC 

resonance, is tuned from 53.5GHz to 55.2GHz for Δt =20μm. However, it should be pointed 

out that in both designs the reflection phase at the inflection point (i.e. maximum slope) is not 

0
o
 as would be typically expected by an HIS surface, but ~ -150

o
. This is because of the 

additional phase shift that the impinging waves undergo when travelling in the dielectric 

substrate of the periodic surface, which can be easily calculated from the optical path length. 

If the reference plane in the simulation had been chosen at the square loop array and not at the 

top of the dielectric substrate, this additional phase would not be present.  

So far, all the presented reflection coefficients correspond to normally incident plane 

waves. However, in Fig. 5.1.4 the case of 30
o
 incidence is also shown for t=50μm. It can be 

observed that due to the sub-wavelength cavity the response is affected but not significantly 

compared to the half-wavelength case discussed later on.  
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Fig. 5.1.3. Simulated reflection characteristics of the proposed periodic surface with 

lin=0.9mm for different cavity thickness (50μm–70μm) (a) reflection magnitude, (b) reflection 

phase (for normal incidence). 
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Fig. 5.1.4. Simulated reflection characteristics of the proposed periodic surface with 

lin=1mm for different cavity thickness (50μm–70μm) (a) reflection magnitude, (b) reflection 

phase (for normal incidence and for 30
o
 incidence in the case of t=50μm). 

5.1.1.2 Half-wavelength Cavity Distance  

Although a significant phase shift has been obtained with the configurations that have been 

investigated in the previous subsection, the small height of the cavity leads to practical 

difficulties during the measurements since positioning and aligning the periodic surface at 

such a small distance from the ground plane proved to be non trivial for the first experiment 

as described in section 5.2. This led us to investigate a second set of designs where the HIS 

cavity has been increased to about λ/2. For the case of lin=0.9mm the cavity thickness has 

been changed to t=2.52mm. For this thickness, a maximum slope of the reflection phase at 

about 62GHz is obtained. This is the second resonance of the cavity with that particular 

thickness while the first resonance occurs at about 10GHz. In the case of the new cavity, for a 

displacement of Δt=10μm and Δt=20μm, a phase shift of 90
o
 and 126

o
 has been obtained 
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respectively for operation at 61.8GHz which is approximately the frequency of the inflection 

point of the phase curves (Fig. 5.1.5b). Furthermore, from Fig. 5.1.5(a) it can be observed that 

the reflection magnitude is higher with the half-wavelength cavity, i.e. the losses are smaller, 

compared to the initial cavity thickness, which is a useful feature for our design. This is due to 

the lower currents induced on the elements of the periodic surface for increased cavity 

thickness, as has been observed in simulations.  
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(b) 

Fig. 5.1.5. Simulated reflection characteristics of the proposed periodic surface with 

lin=0.9mm for different cavity thickness (2.5mm–2.52mm) (a) reflection magnitude, (b) 

reflection phase (for normal incidence). 

Similarly, for the design with lin=1mm the HIS cavity has been increased to about λ/2, 

resulting in a second order resonance around 58GHz. The simulation results for different 

cavity thicknesses from t=2.65mm to t=2.62mm are presented in Fig. 5.1.6. Again, high 

reflectivity values, and hence low losses, slightly lower than the corresponding design of the 

previous subsection, are obtained with the proposed design (Fig. 5.1.6a). Moreover, as shown 

in Fig. 5.1.6(b), an even greater phase shift is achieved, compared to the design with sub-

wavelength cavity, with a maximum of Δφ1=217
o
 at 58.14GHz for a displacement Δt=20μm, 

which is close to the maximum displacement the selected actuators can produce. From the 

same figure it can be observed that with the use of a different actuator, providing a 

displacement of Δt=30μm, a maximum phase shift of Δφ2=262
ο
 can be obtained at 58.25GHz. 

It should be pointed out that significant more phase shift is obtained with this design than the 

one with lin=0.9mm.  
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Fig. 5.1.6. Simulated reflection characteristics of the proposed periodic surface with 

lin=1mm for different cavity thickness (2.62mm–2.65mm) (a) reflection magnitude, (b) 

reflection phase (for normal incidence and for small angles of incidence for t=2.62mm). 

In addition, comparing the two half-wavelength designs (with lin=0.9mm and 1mm) it can 
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and the bandwidth. More particularly, from Fig. 5.1.5(b) and Fig. 5.1.6(b) it can be seen that 

more phase shift leads to less bandwidth. However, if a more broadband performance is 

desired, the multi-resonant elements technique described is the Chapter 4 (section 4.1.3) can 

be applied. 

Finally, the angular stability of the half-wavelength structure has been assessed for the 

design with lin=1mm (Fig. 5.1.6). As expected, the increased cavity distance results in an 

angularly unstable structure, even for small angles of incidence from 5
o
 to 15

o
.  

5.1.2 Losses Evaluation 

In this section an investigation is being carried out on the main factors contributing to the 

losses in the proposed configuration and on whether a more appropriate design could have 

been chosen instead, exhibiting less loss.  

This study has been performed for the half-wavelength design with lin=0.9mm. Initially, 

simulations have been carried out for the unit cell of the structure for three different cases. 

First, taking into account both dielectric and metal losses, then only dielectric losses with 

lossless metal and finally only metal losses with the dielectric considered lossless. The 

magnitude of the reflection coefficient for all three cases is depicted in Fig. 5.1.7. It can be 

observed that the minimum for lossy materials is −0.95dB while for lossy dielectric only and 

lossy metal only it is −0.07dB and −0.88dB respectively. This means the losses are mainly 

attributed to the metal with only a very small part related to the dielectric substrate.  

Subsequently, another study has been carried out to evaluate the losses for two other 

possible configurations. The first case that has been considered comes from placing the 

periodic surface upside-down, so that the array is on top and the AMC cavity is formed partly 

from the dielectric substrate and partly from air as depicted in Fig. 5.1.8(b). In order to 

achieve a resonance at the same frequency the air cavity is now set at 1.382mm. In this case 
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the minimum of the reflection magnitude is −1.8dB as opposed to −0.95dB which 

corresponds to the original configuration. Furthermore, a dielectric filled cavity is also 

simulated with the cavity thickness now set at 1.694mm. The dielectric that has been 

employed is the same one used for the original configuration i.e. TLY-5 with dielectric 

constant εr=2.2 and tanδ=0.0009. The minimum in this case is equal to −2.4dB. The reflection 

coefficient magnitude for all the aforementioned configurations is presented in Fig. 5.1.9. It is 

evident that the proposed design is greatly advantageous in terms of losses compared with the 

two other configurations.  
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Fig. 5.1.7. Magnitude of the reflection coefficient for lossy and lossless materials. 
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Fig. 5.1.8. Unit cell of (a) original design, (b) design with air and dielectric and (c) design 

with dielectric filled cavity. 
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Fig. 5.1.9. Magnitude of the reflection coefficient for the configurations of Fig. 5.1.8. 

5.2 FABRICATION AND MEASUREMENTS 

So far in this Chapter simulation results have been presented, demonstrating the concept of 

the proposed tunable HIS for higher mm-wave frequencies. In order to validate the simulation 

results, two prototypes have been fabricated and measured using piezoelectric actuators to 

provide the tuning of the proposed HIS. The actuators that have been employed for these high 

frequency configurations are the P-885.51 commercial stack multilayer actuators from Physik 

Intrumente (PI). The particular model has a length of 18mm and can achieve a nominal 

maximum displacement of 18μm for an applied voltage of 120V [14] as mentioned in section 

5.1.1. The photograph in Fig. 2.3.5(b) shows one of the actuators without the wires used to 

apply the DC voltage, which are carefully soldered to one of the small metallic bits visible in 

the picture. The “+” sign indicates the positive polarization. The measurement results are 

presented in this section. Moreover, some of the problems that have been encountered are 

discussed as well as possible ways to address them.  
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5.2.1 Initial Measurements 

Initially, a prototype of the proposed design with lin=0.9mm and half-wavelength cavity 

has been fabricated and measured. A 23×23 (8λ×8λ) square loop element array printed on a 

60×60mm
2
 TLY-5 dielectric substrate has been fabricated as shown in Fig. 5.2.1(a). In order 

to support the actuators and the ground plane a plastic base has been made. The plastic that 

has been used was nylon, which was proven to be unsuitable for the experiment as explained 

later on. It was designed so that two actuators would exactly fit on each side of a plane surface 

where the ground plane (40×60mm
2
) is mounted. The starting position of the actuators is 

adjustable with screws to achieve the desired cavity thickness which in this case is 2.5mm. 

Finally, the periodic surface has been secured on top of the two actuators. A photograph of the 

complete structure is shown in Fig. 5.2.1(b).  

 

(a) 

 

(b) 

Fig. 5.2.1. Photograph of (a) fabricated 23×23 element array and (b) of the complete 

structure. 
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Before starting the measurement, a characterization of the two actuators has been carried 

out to validate their expansion properties and also to test the operation of the biasing and their 

integration in the plastic base used for supporting the structure. An optical interferometer has 

been used in order to measure the displacement which is in the order of micrometers. The 

displacement of both actuators for voltages from 0 to 120V has been measured and the results 

are presented in Table I. As it can be observed from the table, each actuator achieved different 

displacement for the same applied voltage. For voltage values up to 20V no measurable 

displacement occurred while the maximum ΔL was 14.3μm and 10.5μm for actuators 1 and 2 

respectively. Although a slight difference was expected between them, the fact that actuator 2 

achieved less displacement, is attributed to the way the negative electrode has been soldered 

on it. As can be seen from Fig. 5.2.1(b), there is excessive soldering on the left actuator 

(actuator 2) that may prevent the proper expansion of the ceramic disk that lies in the specific 

position. Furthermore, due to possible deformation of the plastic base not even actuator 1 has 

reached the nominal maximum ΔL (18μm). 

TABLE I 

PIEZO-ACTUATORS DISPLACEMENT MEASUREMENT FOR DC VOLTAGES FROM 30 TO 120V 

DC Voltage (V) 
Actuator 1 

ΔL (μm) 

Actuator 2 

ΔL (μm) 

30 1.6 0.7 

40 3.5 0.9 

50 4.5 1.4 

60 6 2.9 

70 7.4 3.7 

80 8.5 4.1 

90 10.8 5.5 

100 11.8 8.5 

110 12.9 9.1 

120 14.3 10.5 
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Once the structure was complete, two standard gain V-band horn antennas were employed 

in order to measure the magnitude and phase of the reflection coefficient from the periodic 

surface. Both antennas were fed from a Vector Network Analyzer (VNA). One was connected 

to channel 1 and served as the transmitter and the other was connected to channel 2 and 

served as the receiver. Before starting the measurement, a full two-port calibration of the 

VNA was carried out for the frequency range of interest. The horns were positioned aiming 

towards the periodic surface at a distance of more than 20cm away from it and at an angle of 

incidence/reflection of about 15
o
. A schematic representation of the measurement set up is 

shown in Fig. 5.2.2. The reflection has been measured through the S21 between the two horn 

antennas for different applied voltage at the actuators.  

VNA

hornhorn

θ

Port 1 2

 

Fig. 5.2.2. Schematic representation of measurement set up. 

The phase response for voltages 0V, 60V and 120V is presented in Fig. 5.2.3 after being 

normalized with respect to a measurement of a flat metallic surface placed in the same 

position as the array. It can be seen that a phase shift of about 30
o
 is obtained at about 58.2 

GHz when 120V are applied to the piezo-actuators with respect to the unbiased state. It 

should be pointed out that with the particular mounting of the structure, the cavity distance is 



121 
 

increased when the voltage is applied to the actuators, since they support the periodic surface 

and not the ground plane as assumed in the simulations.  

Although the concept of the design, which was to obtain a dynamic phase shifting surface, 

has been validated, there is a disagreement with the simulation results. In particular, the 

obtained phase shift is significantly less than what was expected from the periodic 

simulations. Even considering a maximum displacement Δt=10μm, which is a valid 

assumption from Table I, the achieved phase shift was expected to be 90
o
. The disagreement 

can be attributed to two major factors. First, the most important factor for this discrepancy is 

the finite size of the measured periodic surface. Indeed, we have carried out a full wave 

simulation of a finite size structure in CST (Fig. 5.2.4), and it was found that the phase shift 

for Δt=10μm is about 60
o
 which is closer to the measured one than the infinite size simulation 

result. The finite structure simulation also produced the sharp peak that appears in the 

measurements just above the cavity resonance (over 58.3GHz). Inspection of the electric field 

inside the cavity showed that this effect is due to a resonance across the lateral dimensions of 

the finite array which distorts the field distribution in this direction.  Second, the disagreement 

can also be attributed to the imperfect flatness of the two surfaces and the approximate 

alignment between them which is particularly crucial at mm-wave frequencies and should 

ideally be performed using quasi-optical techniques. Finally, the measured frequency of the 

cavity resonance (where the slope in the phase is maximum) is 58.2GHz while the simulated 

one is 61.8GHz. This is because the actual cavity thickness was slightly more than 2.5mm 

which resulted in a resonance at a lower frequency. This has been taken into account at the 

simulation of the finite size array where, as can be seen from Fig. 5.2.4, the cavity thickness is 

varied between 2.68mm and 2.69mm (Δt=10μm) and the cavity resonance occurs at the same 

frequency as the measurement. 
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Fig. 5.2.3. Measured reflection phase of the fabricated prototype for three different 

voltages. 
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Fig. 5.2.4. Simulated reflection phase for finite size structure. 
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5.2.2 Improved Measurements 

Subsequently, a prototype of the proposed structure with lin=1mm has been fabricated and 

measured. According to the investigation carried out in section 5.1.1, this design is expected 

to give more phase shift compared to the alternative one with lin=0.9mm. The configuration 

that has been selected is the one with half-wavelength distance again, since it has proven in 

practise to be significantly easier to position the periodic array at λ/2 distance from the ground 

plane, rather than λ/70. Moreover, this design is more sensitive to changes of the cavity 

thickness, thus producing more phase shift.  

From the initial measurements presented in the previous section, it has been concluded that 

a larger size array is necessary in order to obtain results that are closer to those corresponding 

to the infinite array considered in the simulations. Thus, the periodic array that has been used 

for this measurement (Fig. 5.2.5a) consists of an array of 46×46 copper square loop elements 

printed on a 0.8mm thick, TLY-5 Taconic
TM

 substrate with overall dimensions 

100mm×100mm (~20λ×20λ). Moreover, a different, more rigid material has been used, and a 

completely different supporting base has been designed and fabricated. The structure is made 

of plastic acetal copolymer (POM) material and has been designed in order to support all the 

individual components of the proposed structure as shown in Fig. 5.2.5(b). The periodic 

surface has been positioned on the supporting base, on top of the ground plane which in turn 

is supported by four new piezoelectric actuators (Fig 5.2.5b). The actuators have been placed 

in specially designed openings within the four vertical posts of the base, which also include 

the necessary gaps to provide access for the electrodes connected to the actuators.  

The same two horn antennas as before have been used for the measurement of the 

reflection characteristics. The measured reflection phase for different actuation states (V=0V–

120V) is presented in Fig. 5.2.6(a), normalized with respect to a measurement of just a planar 
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metallic surface placed at the same position as the array. In this configuration, the cavity 

thickness decreases with the voltage, because the actuators support the ground plane. A 

maximum phase shift of 200.55
o
 is obtained at about 58.14GHz, validating the simulated 

performance of the proposed design. The measured reflectivity and reflection phase versus the 

DC voltage are depicted in Fig. 5.2.6(b) for the frequency of the maximum phase shift. It can 

be observed from the graph that the phase changes almost linearly with the applied voltage. 

However, the reflectivity is lower than expected from the simulation results. This is studied 

and explained in detail in section 5.2.3.  

Finally, a comparison between full wave simulation results and measurements is carried 

out in Fig. 5.2.6(c) for V=0V and V=120V, corresponding to cavity thicknesses t=2.648mm 

and t=2.63mm respectively, i.e. to a displacement Δt=18μm. The maximum phase shift 

obtained from the simulation results for the specific displacement is 208.57
o
 at 58.16GHz. . It 

is evident that there is good agreement between the measured and simulated results. The small 

discrepancies and fluctuations observed in the measurements are due to the fact that the 

dielectric substrate used for the periodic surface is not perfectly flat and therefore it was not 

exactly parallel with respect to the ground during the experiment.  

 

(a) 
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(b) 

Fig. 5.2.5. Photograph of (a) the fabricated periodic surface and (b) the complete structure 

with the supporting base and the actuators. 
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Fig. 5.2.6. (a) Measured reflection phase versus frequency for different voltages, (b) 

Measured reflectivity and reflection phase at the frequency of the maximum phase shift for 

different voltages and (c) Comparison of simulated and measured reflection phase for V=0V 

and V=120V.  



127 
 

5.2.3 Effect of Copper Conductivity 

Although the improved measurement results presented in the previous section have 

validated the proposed concept in terms of the achieved phase shift, it can be observed that the 

measured reflectivity is lower than that expected from simulations. This is attributed mostly to 

the reduced conductivity of the printed copper elements on the specific substrate experienced 

at these frequencies.  

The reduction of the conductivity occurs because of the roughness of the copper surface. 

Due to the resonant nature of the proposed structure and the strong currents induced on the 

elements, the ohmic losses are significantly increased with decreased copper conductivity. 

Indeed, simulations have been carried out for reduced copper conductivity and for t=2.64mm, 

presented in Fig. 5.2.7. The simulations show that while a 100% conductivity (5.96×10
7
 S/m) 

gives a reflectivity of  0.81, a 20% conductivity (1.192×10
7
 S/m) results in a reflectivity of 

0.57, and a 5% of copper conductivity (0.298×10
7
 S/m) gives a reflectivity of 0.35 which is in 

agreement with the measurement results.  

The effect of the copper conductivity was further investigated by fabricating and 

measuring other structures operating at 60GHz, such as a static HIS with the array printed 

directly on a metal backed substrate of similar type. This was performed to eliminate the 

possibility of any losses caused by the slight misalignment of the two surfaces (periodic array 

and ground plane) which could be present in the proposed tunable configuration. The 

reflection magnitude and phase for the static structure are shown in Fig. 5.2.8. Matching of 

the simulation and measured results in this case, for a design with a resonance at about the 

same frequency as the tunable HIS and a slope of the reflection phase comparable to the one 

obtained from the proposed configuration, have resulted in a copper conductivity of 

0.2384×10
7
 S/m which is 4% of the ideal value (Fig. 5.2.8a).  
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However, according to literature on the subject, 4% of the ideal copper conductivity is not 

reasonable. Typically with a surface roughness of about 5μm, 25% of the ideal value is 

expected [15]. If the roughness is further increased the value of the conductivity is not 

affected. This reduced conductivity of 1.49×10
7
 S/m (25% of the ideal value) results in 4dBs 

of losses in our structure. Hence, the rest of the losses can be attributed the thickness variation 

of the substrate which causes energy loss due to reflection in other directions. The variation of 

thickness in the two measured prototypes (tunable and static) was ~6%. Nevertheless, this 

problem could be eliminated by using better quality materials such as optically flat quartz 

substrate and fabrication processes appropriate for high mm-wave and submm-wave 

frequencies [4, 5]. 
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Fig. 5.2.7. Reflectivity for t=2.64mm for different copper conductivity values. 
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Fig. 5.2.8. Comparison of simulated and measured reflection (a) magnitude and (b) phase 

for static HIS structure. 
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5.2.4 Alternative Design with Quartz Substrate for Improved Losses Performance 

As mentioned in the previous section, the reduced copper conductivity in the proposed HIS 

has a very significant effect in the exhibited losses of the structure. It also stated that this can 

be avoided with the appropriate choice of material and fabrication process. Thus, an 

alternative tunable HIS is proposed in this section, with the periodic array printed on a quartz 

substrate for an improved losses performance. The unit cell of the structure is as illustrated in 

Fig. 5.1.1(b, c). However, the dimensions have been modified, compared to the designs 

presented in section 5.1.1 in order to obtain an HIS response in the desired frequency, since a 

different substrate is now utilized. Namely, the thickness of the substrate is h=550μm (which 

is a typical quartz wafer thickness [5]) with εr=3.78 and tanδ=0.002. The rest of the 

dimensions are p=1.35mm, lout=1.15mm and lin=0.79mm. The cavity thickness t is varied 

from 2.62mm to 2.6mm. The simulated reflection coefficients of the structure are shown in 

Fig. 5.2.9. It can be observed that the AMC resonance occurs around 58.5GHz and 59GHz 

and the maximum losses are 1.3dB (Fig. 5.2.9a). Moreover, a phase shift of 203.5
o
 is obtained 

for Δt=20μm at 58.76GHz (Fig. 5.2.9b) which is similar to the one obtained from the original 

design with lin=1mm and λ/2 cavity.    
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Fig. 5.2.9. Simulated reflection (a) magnitude and (b) phase of alternative HIS with quartz 

substrate for different cavity thicknesses. 

5.3 BEAM-SCANNING LEAKY WAVE ANTENNA BASED ON TUNABLE HIS 

GROUND PLANE  

As an application of the proposed tunable HIS structures, a beam-scanning Leaky Wave 

Antenna (LWA) is designed in this section. LWA have the property to exhibit steering of the 

direction of the main beam with frequency as explained in Chapter 2. However, a beam-

scanning for a fixed frequency is obtained with the proposed configuration. The tunable HIS 

structure described in section 5.1.1 with lin=1mm is employed in this section as a ground 

plane in a 1D hollow LWA (Fig. 5.3.1a). The specific HIS design was selected due to its low 

profile and large tuning range of its reflection phase. A PRS formed by an array of square 

metallic elements printed on a TLY-5 substrate, is placed on top of the HIS at a distance 

t1=1.5mm as depicted in Fig. 5.3.1(a, b) creating a resonant cavity type LWA. The excitation 

of the antenna cavity is achieved by an ideal dipole placed on one side of the cavity, with a 

vertical metallic ground closing that side also shown in Fig. 5.3.1. The HIS thickness t is 
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initially 50μm (corresponding to V=120V) and is then gradually increased to 70μm. The total 

antenna profile is about λ/2. The operation of the antenna can be described employing the ray 

optics approach explained in [6-8] and is based on satisfying a resonance condition in order to 

obtain constructive interference and thus high directivity performance. The HIS acts as a 

tunable ground plane that introduces the required phase shift which in turn alters the resonant 

condition of the cavity and thus controls the pointing angle of the antenna’s radiation beam 

for a fixed frequency. The unit cell of the PRS is shown in Fig. 5.3.1(c). Its periodicity is 

equal to the periodicity of the HIS array (p=1.75mm) while the size of the patch is d=1.5mm. 

The dimensions of the PRS have been chosen so that high reflection magnitude values are 

obtained from the surface which leads to high directivity as explained in [7]. 
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Fig. 5.3.1. (a) Cross section and (b) perspective view of the proposed LWA with the 

tunable ground plane (dimensions are not to scale), (c) Unit cell of the PRS array. 

5.3.1 Analysis of Beam Scanning Range  

A simple approximate plane wave analysis assuming infinite size arrays can be employed 

to provide initial guidelines of the antenna beam scanning range that can be achieved using 

the tunable HIS developed in the previous section. Equation (5.3-1) developed in [6, 8] is 

used, describing the power pattern of the LWA and considering a tunable reflection phase φ 

of the ground: 
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where R is the reflection magnitude of the PRS array, φPRS the reflection phase of the PRS, θ 

the angle of incidence on the PRS and F(θ) the radiation pattern of the primary feed of the 



134 
 

resonant cavity. The excitation of the antenna cavity in our study is achieved by an ideal 

dipole placed on one side of the cavity, with a vertical metallic ground closing that side, 

resulting in a uni-directional LWA (Fig. 5.3.1a, b). This is expressed in (5.3-1) by the term 

F(θ) which is the radiation pattern of a dipole over a ground plane given from (5.3-2): 
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where s the distance between the dipole and the metallic wall and k the wave number. The 

beam angles obtained from this analytical approach for different displacement Δt, which 

corresponds to different reflection phase values of the HIS ground, are shown in Fig. 5.3.2 for 

a fixed frequency, f=54.6GHz. It is evident from this theoretical analysis assuming an infinite 

size structure, that the beam scanning range Δθ is 58
o
 for Δt=20μm with θ the angle of the 

main beam. This displacement corresponds to a phase shift Δφ=134.6
ο
 of the active HIS 

ground plane as can be seen from Fig. 5.1.4(b). 

The above analysis assumes that the reflection phase of the HIS does not depend on the 

angle of incidence. In order to evaluate the angular stability of the proposed HIS, the 

reflection phase is presented in Fig. 5.3.3 for different HIS distances versus the angle of plane 

wave incidence θi. It can be seen that the reflection phase increases with the angle of 

incidence, showing that the proposed structure is not angularly stable. This instability can be 

attributed mainly to the electrically thick dielectric substrate on top of the array which 

introduces a different optical path depending on the angle of incidence and partly to the 

proposed design geometry. Consequently, this reflection phase variation of the HIS has been 

taken into account by expressing φ as a function of θ in (5.3-1) and the radiation patterns have 

been recalculated. In this case, the beam scanning range at f=54.6GHz for the same 

displacement is reduced to 41
o
 as depicted in Fig. 5.3.2. Although the beam scanning 
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capability would be larger for an angularly stable design as shown from the analysis 

performed here, the proposed HIS still provides a significant scanning of the main beam. 

However, alternative designs can be considered with reduced dielectric substrate thickness, 

which would result in a more stable HIS structure and thus an increased beam scanning range. 
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Fig. 5.3.2. Angle of the radiated beam for operation at 54.6GHz as a function of the displacement 

Δt (with Δt=0μm corresponding to HIS distance t=50μm and Δt=20μm to t=70μm) considering both 

angularly stable and unstable HIS.  
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Fig. 5.3.3. Simulated reflection phase of the proposed HIS at 54.6GHz versus the angle of 

incidence for different HIS thicknesses.  
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5.3.2 Finite Size Antenna  

A practical finite size implementation of the proposed LWA has been designed and 

simulated in a full 3D EM software package (CST Microwave Studio
TM

). Both the PRS and 

the HIS surfaces are formed by arrays of 3×19 elements. The antenna is fed by a dipole which 

is positioned in the cavity, towards the one end of the antenna. On the same side, a vertical 

metallic wall is placed where the antenna is terminated (Fig. 5.3.1a, b). 

It is worth reminding here that the reflection phase of the proposed HIS was not zero at its 

resonant frequency (i.e. the frequency of the maximum slope in the reflection phase). The 

value of the phase has been taken into account in the design of the antenna since it is crucial 

for the definition of the cavity thickness. The antenna’s performance has been simulated for 

different HIS cavity distances while keeping t1 constant, and a beam reconfiguration with 

continuous scanning from 15
o
 to 50

o
 has been obtained for operation at 54.6GHz (Fig. 5.3.4a). 

The obtained beam scanning range Δθ=35
ο
, corresponds to a phase shift of Δφ=134.6

ο
 of the 

tunable HIS ground plane as mentioned earlier for normal plane wave incidence. This phase 

shift changes the resonance condition of the antenna resonant cavity and thus controls θ for a 

fixed frequency of operation due to the frequency dispersion properties of LWAs. It should be 

noted that the operating frequency of the antenna is slightly different to the frequency of the 

maximum Δφ achieved from the infinite size periodic HIS in section 5.1.1 (which is 

54.3GHz). This is due to the finite size of the structure considered here and the expected 

discrepancy with the infinite size periodic model considered in section 5.1.1.  

A maximum directivity of 16.4dBi has been achieved with the proposed antenna for 32
o
 

pointing angle of the main beam which corresponds to t=60um. The variation of the 

directivity for the other pointing angles is less than 3dB. However, it can be observed from 

Fig. 5.3.4(a) that for angles close to broadside the beamwidth is wide and it becomes narrower 
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as the beam is scanned to larger angles. This is a typical behavior of LWAs [9].  

Finally, a 1D LWA antenna has been designed with a metallic ground plane (in the absence 

of the HIS) and a single PRS array, in order to investigate the tunability/sensitivity of such a 

structure compared to the proposed beam-scanning antenna. The antenna design consists of 

the 3×19 PRS array described earlier placed at a distance t=3.7mm above the ground plane. 

The cavity thickness has been selected such that an operation at the same frequency range 

(around 55GHz) is obtained. The directivity achieved is of similar value to the HIS based 

design.  Following the same concept, the actuators can be employed to support the ground 

plane of the antenna, and bring it closer to the PRS when they are biased and displacement is 

produced. This will change the cavity distance and consequently the resonant frequency. The 

structure has been simulated in CST for three cavity distances, corresponding to a maximum 

displacement Δt=100μm. 

The pointing angle of the main beam is shown in Fig. 5.3.4(b) for operation at 54.6GHz 

compared with the respective angle of the proposed beam-scanning antenna with the tunable 

HIS ground. For t=3.7mm, the angle is θ=33
ο
, with a scanning of just 2

o
 achieved for 

t=3.6mm. Moreover, for Δt=20μm (from t=3.62mm to 3.6mm) less than 1
o
 difference in the 

pointing angle is obtained. This suggests that the particular structure is much less sensitive in 

small cavity changes. The above study demonstrates the importance of the tunable HIS in the 

beam scanning LWA design, because the available displacement in the case of the HIS results 

in an extensive tuning of its reflection phase. The enhancement of the beam-scanning 

capability of LWA antennas with the introduction of a HIS as a ground plane was expected as 

it has already been demonstrated in [10].   
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Fig. 5.3.4. (a) Simulated H-plane radiation patterns at 54.6GHz of the proposed beam-scanning 

hollow LWA, and (b) Angle the main beam versus the displacement Δt for the LWA with an active 

HIS ground plane and a conventional ground plane. 
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5.4 CONCLUSIONS 

In this Chapter dynamically tunable low-loss HIS type phase shifting surfaces based on 

stack multilayer piezoelectric actuators have been demonstrated through simulation and 

experiments giving a phase shift of over 200
o
 at 58.14GHz. The proposed technique is 

directly scalable to higher mm-wave and submm-wave frequencies, where more phase shift 

could be obtained with the same or even less available displacement, paving the way for the 

realization of a new class of tunable quasi-optical components. Different geometries and 

cavities have been investigated in terms of tuning range and losses performance. Moreover a 

continuous beam steering antenna application is proposed based on a 1D hollow Leaky-Wave 

Antenna (LWA) configuration formed by a Partially Reflective Surface (PRS) placed on top 

of the proposed tunable HIS. Continuous scanning of a highly directive beam from 15
o
 to 50

o
 

is achieved at 54.6GHz.  
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CHAPTER 6.  

TUNABLE FREQUENCY SELECTIVE META-SURFACES 

The term “meta-surfaces” is used to describe periodic arrays of either metallic elements 

printed on a dielectric substrate or apertures in a conducting plane. They are normally made of 

non-resonant unit cells of sub-wavelength dimensions [1] in contrast to the well-known 

Frequency Selective Surfaces (FSS) which consist of larger resonant unit cell dimensions [2, 

3]. As explained in Chapter 1, in order to obtain tuning of an FSS response, a change on the 

effective size of the element has to be performed. This has been achieved in recent years by 

introducing varactor [4] or PIN diodes [5] on each element for low frequency applications, or 

MEMS [6, 7] for mm-wave frequencies. Moreover, tunable substrates have been employed, 

where by changing the permittivity of the substrate the guided wavelength is changed 

resulting in a different operating frequency. Such tunable substrates can be ferroelectric 

substrates [8] for lower microwave frequencies which have the disadvantage of high losses, 

and liquid crystals which are suitable for higher mm-wave frequencies but also exhibit high 

losses and very low switching speeds [9]. 

In this Chapter, tunable Frequency Selective Meta-Surfaces (FSmS) are investigated for 

both lower and higher mm-wave frequencies applying the tuning techniques described in 

Chapters 4 and 5 respectively. Initially, a novel design of multi-layer Frequency Selective 

Meta-Surfaces (FSmS) is presented achieving significant tuning of the pass-band response 

with low losses, operating at low mm-wave frequencies. The proposed FSmS consist of 

multiple layers of closely spaced non-resonant sub-wavelength periodic meta-surfaces 

creating air cavities between them. A pass-band response is produced which is tuned using 

bender piezoelectric actuators that change the distance between two of the surfaces. This 
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alters the resonance condition of the complete structure and thus the central frequency of the 

pass-band. Alternative designs are also being investigated and compared with the proposed 

FSmS. Finally, a tunable FSmS for higher mm-wave frequencies consisting of two square 

aperture arrays printed on dielectric substrates and separated by an air cavity is investigated. 

In this case, tuning of the band-pass filter response of the double layer FSS is achieved using 

stack piezoelectric actuators positioned below one of the meta-surfaces. The actuators 

dynamically change the thickness of the air cavity, due to their property of expanding 

vertically under DC biasing, which results in tuning the transmission characteristics of the 

structure. Simulation results are presented validating the behaviour of the proposed structures. 

Moreover, measurements for the multi-layer tunable FSmS (operating at lower mm-wave 

frequencies) have been carried out and are included in the Chapter. 

6.1 TUNABLE FREQUENCY SELECTIVE META-SURFACES FOR LOWER 

MILLIMETRE-WAVE FREQUENCIES 

In this section, tunable Frequency Selective Meta-Surfaces (FSmS) structures for lower 

mm-wave frequencies are investigated based on bender actuators. Initially, a double layer 

structure is studied. It comprises two periodic arrays of aperture FSS separated by a half 

wavelength air cavity. Subsequently, a multi-layer structure is investigated. This is formed by 

an array of metallic square loops placed between two arrays of square apertures in metallic 

sheets, separated by sub-wavelength air cavities. The main feature of the proposed FSmS 

designs is that their operation is based on a resonant cavity effect, and not the resonance of the 

periodic array elements (which are of sub-wavelength dimensions).  

6.1.1 Design of Double-Layer FSmS (λ/2 cavity) 

As explained in section 2.1.2, a Fabry-Perot type resonant cavity can be typically obtained 
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from two periodic arrays acting as Partially Reflective Surfaces (PRS), i.e. FSSs operated at 

frequencies away from their resonance, placed at half-wavelength distance from each other 

[10]. This resonant cavity normally produces a pass-band response. Thus, tuning of the pass-

band is obtained by changing the resonant cavity thickness which alters the resonance 

condition. This is achieved using bender piezoelectric actuators as in the case of the tunable 

HIS structures proposed in Chapter 4. 

Initially, a double-layer structure is considered as illustrated in Fig. 6.1.1. It is designed to 

operate around 15GHz and it consists of two Partially Reflective Surfaces (PRS1 and PRS2 in 

the figure). Both PRSs are identical, formed by 2D periodic arrays of square apertures etched 

off metallic sheets, printed on thin dielectric substrates. The unit cell of the structure is shown 

in Fig. 6.1.2. The substrate thickness is h=0.055mm while its permittivity is εr=3. The 

periodicity of the structure is p=7mm and the dimensions of the square apertures are da1= 

da2=4.5mm (~λ/4 at 15GHz) as illustrated in Fig. 6.1.2. Moreover, the cavity thickness is 

varied from t=7.5mm to t=8.5mm which is slightly less than half-wavelength at 15GHz. This 

change in the cavity thickness is performed employing the bender actuators which produce a 

displacement Δt under DC bias (Fig. 6.1.1). However, in order to evaluate the performance 

and tunability of the FSmS structure, full wave simulations are carried out in CST applying 

periodic boundary conditions to the unit cell.  
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Fig. 6.1.1. Schematic diagram of proposed tunable double-layer FSmS (dimensions are 

not to scale). 
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Fig. 6.1.2. Unit cell of proposed tunable double-layer FSmS.  

In the simulation software, the change in the cavity thickness is modelled by parametrically 

changing the value of t. The extracted transmission magnitude under plane wave normal 

incidence is depicted in Fig. 6.1.3. It can be observed that a pass-band response is produced as 

expected with a very low insertion loss. The central frequency of the pass-band is tuned from 

17.08GHz to 15.39GHz (Δf=1.69GHz) for a displacement Δt=1mm. Thus, a significant tuning 

can be achieved from the particular tunable FSmS. However as shown in section 6.1.3, due to 

the large profile, the structure is very sensitive to changes of the angle of incidence. 
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Fig. 6.1.3. Simulated transmission magnitude of proposed tunable double-layer FSmS for 

different cavity thicknesses t.  

6.1.2 Design of Multi-Layer FSmS (sub-wavelength cavities)  

Subsequently, a novel multi-layer Frequency Selective Meta-Surfaces (FSmS) 

configuration is investigated. The proposed FSmS is based on the double-layer FSmS of the 

previous section. More particularly, one of the PRSs of the double-layer FSmS is replaced by 

a composite double-layer structure described in section 6.1.2.1, acting both as a PRS and a 

HIS. This composite structure will be referred to as High Impedance Partially Reflective 

Surface (HI-PRS) and it consists of an array of square loop metallic patches printed on a thin 

substrate and an array of square apertures on a metallic sheet printed on the same type and 

thickness substrate (Fig. 6.1.4a). The two surfaces are separated by a sub-wavelength air 

cavity t. Next, the other PRS is placed at a distance S from the HI-PRS (Fig. 6.1.4 a, b).  Due 

to the reflection phase values of the HI-PRS, a significant reduction of the cavity thickness S 

and therefore the overall profile of the FSmS is achieved as explained in section 6.1.2.2. 

Tuning of the pass-band response is obtained by changing the HI-PRS cavity t using the 
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bender actuators which alters the reflection phase and consequently the resonance condition. 
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(b) 

Fig. 6.1.4. Unit cell of the multi-layer FSmS, (b) Schematic diagram of proposed tunable 

FSmS structure (dimensions are not to scale). 

6.1.2.1 Design of High Impedance Partially Reflective Surface 

It is well known that in order to obtain a HIS response, a periodic surface has to be placed at 

close proximity to a ground plane or to be printed on a grounded substrate. At such structures 

no transmission occurs, and total reflection of the incident waves takes place. However, it has 

been shown in recent works [11] that if the ground plane is replaced with a non-resonant 

aperture array (inductive surface), the high impedance response is maintained, while obtaining 
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a partial transmission/reflection of incident waves.  

Based on the above, the HI-PRS has been designed starting from the HIS of section 4.1.1. A 

square loop array is printed on a thin dielectric substrate with thickness h=0.055mm and εr=3. 

The periodicity of the structure and the dimensions of the square loop element are p=7mm, 

lout=5mm and lin=3.5mm (see Fig. 6.1.4a) which are slightly modified compared to the HIS 

dimensions of section 4.1.1. Moreover, the ground plane is replaced with a square aperture 

array of the same periodicity (p=7mm) and aperture size da2=4.5mm. The array is printed on 

the same type and thickness substrate and placed over the square loop array at a distance t as 

shown in Fig. 6.1.4. 

  The structure has been simulated in CST for different cavity distances t from 1mm to 3mm 

and the extracted reflection coefficients for normal incidence are depicted in Fig. 6.1.5. It can 

be seen from the magnitude of the reflection coefficient (Fig. 6.1.5a), that a partial reflection 

is obtained, while a high impedance operation in terms of the reflection phase is achieved for 

operation between approximately 10GHz and 15GHz for the particular cavity thicknesses 

(Fig. 6.1.5b). In Fig. 6.1.5(a), it is shown that the minimum of the reflection magnitude 

becomes less prominent as the cavity thickness increases corresponding to higher reflection 

and reduced transmission of the incident plane wave. Moreover, Fig. 6.1.5(b) shows a 

decreased slope of the reflection phase for increased cavity thickness.  
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Fig. 6.1.5. Simulated reflection (a) magnitude of the HI-PRS and the PRS and (b) phase 

of the HI-PRS for different cavity distances t for normal incidence. The resonance condition 

for two alternative designs is also shown.  
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6.1.2.2 Frequency Selective Meta-Surfaces Based on High Impedance PRS 

The HI-PRS described in the previous section is subsequently employed to create the 

proposed FSmS (Fig 6.1.4). The square aperture PRS placed at distance S below the HI-PRS 

has periodicity equal to the periodicity of the HI-PRS array (p=7mm), while the size of the 

aperture is da1=4.5mm. As explained earlier, the concept of the proposed FSmS is based on a 

cavity type resonance, which is obtained by satisfying the resonance condition (2.1-5) which 

is written as: 





 NS

PRSPRSHI
22

2



,   N=0,1,2...                                      (6.1-1) 

where φHI-PRS is the reflection phase of the HI-PRS, φPRS the reflection phase of the PRS and λ 

the free space wavelength. For operation at 16.11GHz, substituting the reflection phase of the 

HI-PRS for t=1mm which is φHI-PRS=−80.88
o 

(Fig. 6.1.5b) and the reflection phase of the PRS 

which is φPRS=157.81
o
 in (6.1-1), the cavity distance is calculated to be S=2mm. Indeed, from 

the simulated transmission coefficient magnitude of the proposed FSmS for t=1mm and 

S=2mm shown in Fig. 6.1.6(a), a pass-band is observed at f=16GHz which is very close to the 

calculated operational frequency from the theoretical analysis.   

By employing the same tuning technique as in the case of the tunable HIS structures of 

Chapter 4, the reflection phase of the HI-PRS can be tuned. This is achieved using the bender 

actuators to increase the cavity distance t by displacing the upper layer of the composite 

structure, as illustrated in Fig. 6.1.4(b). It is expected that if the cavity distance S between the 

PRS and the HI-PRS is kept constant, then the resonance condition (6.1-1) will be satisfied 

for lower frequencies as t increases and tuning of the pass-band will be obtained. This can be 

demonstrated from the black dotted line in Fig. 6.1.5(b) which shows the ideal phase for the 

HI-PRS that satisfies the resonance condition (6.1-1). The points where the dotted line 
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intersects the simulated reflection phase define the expected tuning range which as can be 

seen from the figure is 2.1GHz for displacement from t=1mm to t=3mm. Indeed, the 

transmission response of the proposed tunable FSmS for t between 1mm and 3mm is 

presented in Fig. 6.1.6(a) and shows a tuning of the pass-band from 16GHz to 14GHz, which 

is only slightly less than that expected from the theoretical analysis.  Moreover, it can be 

observed that the insertion loss is between 0.28dB (t=2mm) and 0.85dB (t=1mm). The 

corresponding reflection magnitude of the structure is also shown in Fig. 6.1.6(b). The 

reflection magnitude is below −10dB for all cavity distances, except from t=1mm where it is 

slightly higher than −10dB.  
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Fig. 6.1.6. Simulated (a) transmission and (b) reflection of the proposed tunable FSmS for 

different cavity distances t (keeping S=2mm). 
The slightly increased insertion loss at the extreme cases of t=3mm and more significantly 

t=1mm is attributed to mismatch effects and becomes more pronounced in the following case. 

If the HI-PRS is operated close to the AMC frequency, and more specifically where the 

reflection phase is φHI-PRS=−10
o
, then from (6.1-1) the cavity thickness S becomes equal to 

4.24mm. For this case, the ideal reflection phase φHI-PRS versus frequency is presented in Fig. 

6.1.5(b) with the red dotted line. Consequently, the estimated tuning range of an alternative 

FSmS structure with S=4.24mm, can be extracted again from the intersection points of the 

ideal phase with the reflection phase for t=1mm and t=3mm. Therefore, as can be seen from 

the figure, the expected tuning range is Δf=2.84GHz which is larger than the one obtained 

from the design with S=2mm. This is also shown from the transmission response of the new 

structure for t=1mm to t=3mm (Fig. 6.1.7a), with the pass-band tuned from 14.77GHz to 

11.92GHz (Δf=2.85GHz). This increase in the tuning range of this particular alternative 
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structure is expected, since as we move towards the point where the reflection phase is zero, 

the phase curves for different cavity distances t tend to exhibit higher spectral separation, 

whereas at higher frequencies the phase curves tend to converge (Fig. 6.1.5b).  

However, although the last design has the advantage of a larger tuning range compared to 

the first design, it exhibits worse performance in terms of the insertion loss, particularly for 

small values of t. This is evident from the transmission coefficient as well as the reflection 

coefficient response of the structure (Fig. 6.1.7b). The latter is below −10dB only for the case 

of t=3mm while the insertion loss is 2.33dB for t=1mm. This effect is related to the resonant 

cavity nature of the structure. Such structures should have similar reflectivities between the 

layers forming the cavity in order to avoid impedance mismatch which causes increased 

insertion loss [10]. Therefore, a better explanation of the observed insertion loss can be 

obtained from Fig. 6.1.5(a), showing the reflection magnitude R of the PRS, as well as the 

values of R of the two HI-PRS designs at each operating frequency (corresponding to the 

different cavity distances t) with the dotted lines. It can be observed that the reflection 

magnitude of the HI-PRS with S=4.24mm (red dotted line) exhibits a large variation for 

t=1mm to t=3mm with respect to that of the PRS. In contrast, in the case of the proposed HI-

PRS with S=2mm (black dotted line) the total variation of the reflection magnitude is 

significantly less (ΔR=1.14dB as opposed to 1.84dB for the case of S=4.24mm) and follows 

closer the reflection magnitude of the PRS, resulting in better performance in terms of 

insertion loss. The losses have also been assessed using the expression 
2

21

2

11
1 SS   and it 

has been observed that the maximum losses at resonance are between 2% for t=1mm to 5% 

for t=3mm. In fact the t=1mm case has less losses, so indeed the insertion loss is caused by 

the impedance mismatch.  
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Fig. 6.1.7. Simulated (a) transmission and (b) reflection response for alternative design 

with S=4.24mm for different HI-PRS cavities. 
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6.1.3 Angular Stability Study 

So far, it has been demonstrated that the double-layer tunable FSmS and both alternative designs of 

the multi-layer tunable FSmS can provide a significant tuning of the pass-band filter response. One 

could claim that the first design (section 6.1.1) should be chosen, as it is more simple compared to the 

other two presented in this Chapter (section 6.1.2). Nevertheless, as already mentioned in section 6.1.1, 

it is expected that it is not angularly stable due to the large separation between its two layers. Indeed, 

simulations are performed for the magnitude of the transmission coefficient for angles of incidence 0
o
 

and 30
o
 which show that a large frequency shift of the pass-band is obtained with the angle of 

incidence (Fig. 6.1.8). More specifically, it can be seen from Fig. 6.1.8 that for t=7.5mm a 13.2% 

frequency shift is exhibited, while the corresponding frequency shift for t=8.5mm is 13.5% (i.e. 

slightly higher as the cavity thickness increases). 
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Fig. 6.1.8. Angular stability study for the double-layer tunable FSmS with half-

wavelength cavity.  
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Consequently, the two multi-layer designs (section 6.1.2) are expected to provide a better 

performance in terms of angular stability due to the reduced profile. Thus, the performance of the two 

designs is also evaluated. The design with S=2mm has a total profile varying from λ/6 for t=1mm to 

λ/4 for t=3mm, while for the case of S=4.24mm the profile is at least λ/3. As expected, this thinner 

profile results in a more angularly stable structure, which is evident from Fig. 6.1.9. In particular, the 

figure shows the transmission response for t=1mm for both designs with angles of incidence from 0
o
 

to 30
o
. It can be seen that the proposed structure exhibits a very small shift (1.1%) while the design 

with S=4.24mm undergoes a shift from 14.77GHz to 15.24GHz (3.1%). The proposed concept of 

multi-layer FSmS structures can be extended to even thinner cavities with optimised HI-PRS and PRS 

which will provide even better angular stability, but this is not within the scope of this thesis. 
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Fig. 6.1.9. Angular stability study for the proposed tunable FSmS with S=2mm, and the 

design with S=4.24mm (t=1mm). 
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6.1.4 Measurements 

Finally, a prototype of the proposed tunable FSmS has been fabricated in order to experimentally 

validate the concept. Three periodic arrays of 35×35 elements have been fabricated, two arrays of 

square apertures etched off a copper sheet and one array of square loop copper elements. Each of the 

arrays has been printed on thin polyester films with εr=3, tanδ=0.03, thickness 0.055mm and overall 

dimensions 250mm×250mm (12.5λ×12.5λ). Photographs of the fabricated periodic arrays are shown 

in Fig. 6.1.10. To facilitate the measurement set up and define the fixed distance S=2mm, the PRS 

array has been glued on a 2mm thick Rohacell-51 substrate (εr≈1) (Fig. 6.1.10a). The square loop 

array has been glued to the other side of the Rohacell-51 substrate, carefully aligning the two arrays 

(Fig. 6.1.10b). Subsequently, spacers of 1.1mm thickness where placed around the square loop array 

where the bender actuators have been positioned. Finally, the other square aperture array (forming the 

upper layer of the composite HI-PRS) has been glued to polystyrene foam (Fig. 6.1.10c) to make it 

rigid and placed on top, supported by the actuators. The bender actuators that have been used for this 

measurement are (as in the case of the tunable HIS measurement presented in Chapter 4) the 

PL140.11 from Physik Instrumente
TM

 (PI), which achieve a nominal maximum displacement of 1mm 

[12]. Two horn antennas have been used for the measurement of the transmission characteristics of the 

fabricated prototype for different voltages applied to the actuators. The measured transmission 

response in comparison with the corresponding simulated results is shown in Fig. 6.1.11. Good 

agreement has been obtained with an achieved tuning of 8.8% for Δt=1.2mm. Moreover, a dynamic 

range of more than 20dB at 15.3GHz has been achieved for voltages 0V and 60V, demonstrating that 

the proposed FSmS can be tuned from a transmitting to a reflecting structure. It should be pointed out 

at this point that the actuators used for this measurement produced a displacement of 1.2mm which is 

within the ±20% of manufacturing error [12]. 
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(a)                                                                  (b) 

 

(c) 

Fig. 6.1.10. Photographs of fabricated arrays. (a) PRS, (b) Square loop array from HI-PRS 

and (c) Square aperture array from HI-PRS.  
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Fig. 6.1.11. Measured transmission magnitude for different voltages and comparison with 

simulated results.  

6.2 TUNABLE FREQUENCY SELECTIVE META-SURFACES FOR HIGHER 

MILLIMETRE-WAVE FREQUENCIES 

Next, a double-layer FSmS structure is investigated operating around 60GHz. The 

structure is illustrated in Fig. 6.2.1. It should be highlighted that the proposed FSmS consist of 

non-resonant elements of sub-wavelength dimensions as in the case of the proposed FSmS 

structures presented in the previous paragraph. It is formed by two identical meta-surfaces 

placed at distance t from each other with the periodic arrays facing the inside of the cavity. 

The piezoelectric actuators employed for the configurations under investigation are stack 

actuators which are used to support the lower of the two layers as can be seen from Fig. 6.2.1. 

When biased, they produce a displacement which dynamically changes the cavity distance 

between the two layers of the structure bringing them closer to each other. Since the actuators 

are placed around the meta-surfaces, they do not interfere with the radiation performance and 

hence the proposed configurations result in particularly low loss values.  
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Fig. 6.2.1. Schematic diagram of the proposed tunable double-layer FSmS. 

6.2.1 Unit Cell Design 

The unit cell for both meta-surfaces consists of a square aperture on a metallic sheet as 

shown in Fig. 6.2.2. The sheet is printed on a dielectric substrate with thickness h=0.8mm, 

and properties εr=2.2 and tanδ=0.009. The periodicity of the structure is p=1.75mm while the 

aperture is da=0.7mm. The initial cavity thickness is set to t=3.37mm which gives a cavity 

resonance, i.e. a band-pass response at around 61.7GHz for 45
o
 angle of incidence. Since this 

is a large cavity (>λ/2), the structure is not angularly stable, hence it has been designed for a 

fixed angle of incidence which is suitable for applications such as quasi-optical filters. The 

magnitude of the transmission and reflection coefficients versus frequency has been extracted 

simulating the unit cell of the double-layer structure in CST simulation software applying 

periodic boundary conditions.  
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Fig. 6.2.2. Unit cell of the proposed double-layer FSmS (a) perspective and (b) top view. 

The simulated results for different cavity distances from t=3.37mm to t=3.35mm are 

shown in Fig. 6.2.3. It can be observed that for t=3.37mm (unbiased actuators) the pass band 

is centred at 61.75GHz with an insertion loss of 0.7dB. For a displacement of Δt=10μm and 

Δt=20μm, the resonance frequency is shifted to 61.9GHz and 62.1GHz respectively. 

Moreover, the magnitude of the transmission coefficient at 62.1GHz is changed from -0.7dB 

to -11.8dB for Δt=20μm giving an achieved dynamic range of 11.1dB. The achieved tuning 

shows that the proposed double layer FSmS can be dynamically switched between a 

transmitting and a reflecting structure. 
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Fig. 6.2.3. Simulated reflection and transmission magnitude of the proposed tunable 

double-layer FSmS for different cavity thicknesses. 

6.2.2 Losses Evaluation 

In section 6.2 it has been stated that the proposed structure exhibits low losses which is a 

very important aspect, particularly for higher mm-wave frequencies. Therefore, an evaluation 

is carried out in this section of the main factors contributing to the losses in the proposed 

configuration. Three different cases have been considered in order to estimate whether the 

dielectric material or the metallic losses are more significant. Initially, both dielectric and 

metal losses are taken into account in the simulation, then only the dielectric losses are 

considered and finally both materials are considered lossless. This has been performed for the 

case of t=3.37mm. When all losses are taken into account, the insertion loss of the structure at 

the resonance is 0.77dB. In the case where only dielectric losses are considered in the 

simulations, the corresponding insertion loss is 0.042dB. Finally, if both materials are 

considered lossless the insertion loss is 0.01dB. This means that about 0.73dB are attributed 
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to the metal with only 0.03dB related to the dielectric substrates. Nevertheless, the total 

exhibited losses are very low. 

Moreover, another study has been carried out to validate the choice of the air cavity in the 

proposed structure. The most important reason for choosing an air cavity as opposed to a 

dielectric filled one (with the two meta-surfaces printed on either side of the substrate), is to 

able to control the transmission characteristics by changing the cavity thickness. However, the 

reason that the arrays are facing the inside of the cavity and not the dielectric is to avoid 

losses. It has been shown from simulations that an alternative configuration with the periodic 

surfaces placed upside-down, so that the arrays are facing the outside of the cavity (Fig. 6.2.4) 

exhibits more losses. A comparison of the transmission magnitude of the two designs is 

depicted in Fig. 6.2.5. In order to achieve a resonance at the same frequency, the air cavity for 

the alternative design has been set at 4.115mm. In this case the insertion loss at the resonance 

is 5.44dB as opposed to 0.77dB which corresponds to the original configuration. It is evident 

that the proposed design is greatly advantageous in terms of losses compared with the 

alternative one. 

2a
d

1a
d
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Fig. 6.2.4. Schematic diagram of alternative structure. 
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Fig. 6.2.5. Comparison of transmission magnitude for the original tunable FSmS structure 

and the alternative design of Fig. 6.2.4. 

6.2.2 Fabrication Considerations 

For the practical implementation of the proposed tunable FSmS structure some 

considerations should be made. First of all, the size of the arrays has to be large enough 

(~10λ) to avoid diffraction effects. Secondly, the appropriate piezoelectric actuators should be 

selected. For the particular configuration the more suitable piezoelectric actuators are the 

commercial stack actuators P-885.51 from Physik Instrumente
TM

 (PI) that can achieve a 

nominal maximum displacement of 18μm for an applied voltage of 120V. The reason for 

choosing these actuators for this type of application is that they can produce the desired 

displacement (~20μm), they are low-cost and they have high accuracy and fast response [12]. 

The performance of the specific actuators has already been discussed in Chapter 5, where the 

same type has been employed for the measurement of the tunable HIS.  
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Finally, due the high frequency operation, the effect of the surface roughness has to be 

evaluated. It is worth reminding here that in the case of the tunable HIS operating at 60GHz, 

the surface roughness caused a significant reduction of the copper conductivity resulting in 

very high losses. Therefore, an evaluation of the copper conductivity effect for the proposed 

FSmS is presented. The unit cell of the structure has been simulated for the ideal copper 

conductivity (5.96×10
7
 S/m) and for reduced conductivities corresponding to the 50% 

(2.98×10
7
 S/m), 20% (1.192×10

7
 S/m) and 5% (0.596×10

7
 S/m) of the ideal value. The 

corresponding transmission magnitude for t=3.37mm is shown in Fig. 6.2.6. It can be 

observed that even for 0.596×10
7
 S/m conductivity, the insertion loss at the resonance is 

2.77dB. Therefore, in this type of structure this parameter has a less significant effect 

compared to HIS structures.    
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Fig. 6.2.6. Transmission magnitude for different values of copper conductivity. 

 

6.3 CONCLUSIONS 

In this Chapter, dynamically tunable low-loss Frequency Selective Meta-Surfaces have 

been presented. Initially tunable FSmS structures for lower mm-wave frequencies based on 



166 
 

piezoelectric bender actuators have been demonstrated through simulation and experiments. A 

new type of FSS has been presented based on multi-layer meta-surfaces achieving a measured 

tuning of the pass-band of 8.8% for operation around 14.7GHz. Moreover alternative designs 

have been investigated. The proposed structures and tuning technique are directly scalable to 

higher mm-wave frequencies paving the way for a new class of low-loss tunable mm-wave 

FSS and related structures.  

Subsequently, tunable double-layer meta-surfaces have been presented employing 

piezoelectric stack actuators for operation at higher mm-wave frequencies. Simulated results 

of the proposed configuration consisting of two layers and an air cavity between them showed 

promising results for tuning the reflection and transmission characteristics of mm-wave meta-

surfaces while achieving a low loss performance. Furthermore, a losses evaluation has been 

carried out and fabrication considerations have been discussed. 
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CHAPTER 7.  

CONCLUSIONS AND FUTURE WORK 

Tunable microwave metamaterials have attracted significant research interest in recent 

years, due to the important requirement for reconfigurable and multi-functional systems such 

as frequency reconfigurable or beam-scanning antennas, tunable filters, reflectarrays and 

many more. This PhD dissertation has studied and proposed novel designs of metamaterial 

structures and introduced novel techniques and configurations for tuning metamaterials at 

microwave and mm-wave frequencies. The proposed tuning techniques offer the advantages 

of low complexity implementation, low cost, low loss performance. For the analysis of the 

aforementioned structures and estimation of their performance, theoretical approaches and 

simulation tools have been employed, which were introduced in Chapter 2. 

In Chapter 3, novel tunable two-layer slot-patch Electromagnetic Band-Gap (EBG) 

structures have been presented for microwave frequencies. The proposed structures have been 

based on varactor diodes achieving a wide tuning of the EBG band-gap with significantly 

simplified biasing network. Subsequently, the proposed tunable EBG structures have been 

employed for isolation enhancement of two closely spaced printed wideband monopole 

antennas. Moreover, tunable monopoles have also been presented based on the proposed two-

layer biasing technique and an isolation between them has been achieved using the proposed 

tunable EBG structures. Prototypes of the proposed structures have been fabricated and 

measured validating the simulation results. Thus, the work performed in this Chapter has led 

to three contributions: first the proposal of novel tunable EBG structures, secondly the design 

of tunable antennas and thirdly the proposed simplified two-layer biasing technique which can 

be applied to a number of different applications involving electrically tunable structures.  
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In Chapter 4, dynamically tunable low-loss High Impedance Surfaces based on 

piezoelectric bender actuators for low mm-wave frequencies have been demonstrated through 

simulation and experiments. The proposed HIS structures have been designed such that 

maximum tunability is obtained employing piezoelectric bender actuators to 

electromechanically change the HIS cavity thickness. This has led in significant tuning of the 

reflection phase response of the structures. A prototype has been fabricated operating around 

14GHz and measurements have demonstrated the operation of the structure as an active 

impedance surface with low losses performance. Moreover, as an application of the proposed 

tunable HIS structures, a tunable dipole antenna with an active HIS ground plane has been 

presented. The work presented in this Chapter has led to further investigation and scaling of 

the proposed structures and tuning technique to higher mm-wave frequencies which has been 

carried out in Chapter 5. 

Thus, in Chapter 5 tunable low-loss HIS type phase shifting surfaces have been presented 

for operation at higher mm-wave frequencies. These have been based on stack multilayer 

piezoelectric actuators giving significantly less displacement than the bender actuators 

employed in Chapter 4. Nevertheless, a measured phase shift of over 200
o
 at 58.14GHz has 

been obtained with the proposed tunable HIS. Moreover an evaluation of the main factors 

contributing to losses in this type of structures operating at mm-wave and submm-wave 

frequencies has been presented giving useful information about design considerations that 

have to be made at such frequencies. Finally a 1D hollow Leaky-Wave Antenna (LWA) 

configuration with a continuous beam steering of 35
o
 has been proposed based on the 

proposed tunable HIS.  

Finally, in Chapter 6, tunable Frequency Selective Meta-Surfaces (FSmS) have been 

presented for both lower and higher mm-wave frequencies applying the tuning techniques 
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described in Chapters 4 and 5 respectively. Initially, a novel design of FSS has been presented 

based on multi-layer meta-surfaces for lower mm-wave frequencies. The tuning of the 

proposed FSS has been demonstrated using piezoelectric bender actuators with a measured 

tuning of the pass-band of 8.8% and very low insertion loss values. Similarly to the tunable 

HIS structures presented in Chapter 4, the proposed FSmS structures have the advantage of 

being scalable to higher mm-wave frequencies paving the way for a new class of tunable low 

loss metasurfaces and related applications. As a proof of the concept for higher mm-wave 

frequencies, tunable double-layer FSmS have been presented next employing piezoelectric 

stack actuators. Simulation results have shown that the proposed structure can be tuned from a 

transmitting to a reflecting structure for a specific operating frequency.  

Overall, the work carried out in this thesis has achieved to solve some of the most 

important issues that correspond to tunable metamaterials, especially for mm-wave 

frequencies, such as parasitic effects and switching speeds. Moreover, it has been 

demonstrated that low loss tuning techniques can be employed with the appropriate choice of 

fabrication procedures and materials. Future work could include new developments of new 

structures by taking advantage of the tuning techniques and technologies presented here. More 

specifically the piezoelectric actuators presented in this thesis can be employed to develop 

new high performance tunable mm-wave structures. Also some of the novel designs could 

lead to new types of antennas and FSS based structures.  

Particularly, as future development of the work carried out in Chapter 5, the beam scanning 

antenna could be further investigated, particularly in terms of designing and implementing a 

suitable feeding. Subsequently, a prototype could be fabricated and measured to validate the 

beam steering capabilities of the structure. 
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Furthermore, the concept of tunable HIS structures based on stack piezoelectric actuators 

can be employed to design tunable reflectarrays. This could be designed by dividing the 

periodic surface in lines of elements and imposing a different displacement at each line (each 

of which would be supported by a set of actuators). With a careful design, a non-uniform 

continuous height variation, could synthesize non-uniform phase responses. This could 

produce a controllable phase shift at each line of elements and consequently a dynamically 

tunable reflectarray. 

Finally, the proposed tuning technique based on piezoelectric actuators could be extended 

to design tunable metamaterial structures and antennas THz frequencies. Using the 

appropriate fabrication techniques for such frequencies, optically flat periodic surfaces could 

be constructed and used to create an active ground plane for a beam scanning antenna at 

submm-waves with very low loss performance. This could be extremely useful in the 

currently investigated THz imaging systems where electronically controlling the pointing 

angle of the antennas’ beam is required.  

The findings and results of this PhD dissertation have been presented at several European 

and international conferences. Namely, in the Loughborough Antennas and Propagation 

Conference (LAPC) of 2012 and 2014, the European Conference on Antennas and 

Propagation (EuCAP) of 2013-5, the European Microwave Conference (EuMC) of 2013 and 

the Metamaterials Congress (Metamorphose) of 2014. Moreover, a part of the work presented 

in Chapter 5 has been published in IET Microwaves, Antennas and Propagation while another 

part has been submitted for publication at Antennas and Wireless Propagation Letters 

(AWPL). Also, the work presented in Chapter 3 has been accepted for publication at IEEE 

Transaction on Antennas and Propagation (TAP). Finally part of the work presented in 

Chapter 6 has also been submitted in IEEE Transaction on Antennas and Propagation (TAP).  
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