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ABSTRACT 

A pivotal component of prognosis research is the prediction of future outcome risk. This 

thesis applies, develops and evaluates novel statistical methods for development and 

validation of risk prediction (prognostic) models. In the first part, a literature review of 

published prediction models shows that the Cox model remains the most common approach 

for developing a model using survival data; however, this avoids modelling the baseline 

hazard and therefore restricts individualised predictions. Flexible parametric survival models 

are shown to address this by flexibly modelling the baseline hazard, thereby enabling 

individualised risk predictions over time. Clinical application reveals discrepant mortality rates 

for different hip replacement procedures, and identifies common issues when developing 

models using clinical trial data. 

In the second part, univariate and multivariate random-effects meta-analyses are proposed 

to summarise a model’s performance across multiple validation studies. The multivariate 

approach accounts for correlation in multiple statistics (e.g. C-statistic and calibration slope), 

and allows joint predictions about expected model performance in applied settings. This 

allows competing implementation strategies (e.g. regarding baseline hazard choice) to be 

compared and ranked. A simulation study also provides recommendations for the scales on 

which to combine performance statistics to best satisfy the between-study normality 

assumption in random-effects meta-analysis. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction to research area 

A pivotal component of clinical research is understanding and predicting future outcome risk 

in those with existing disease, to tailor treatment strategies and inform patient counselling. 

Prognosis research is crucial for this purpose, and a recent series outlined a framework of 

four types of prognosis research studies.1-4 The most well-known is clinical prediction 

modelling, which has become more popular over time.5 A clinical prediction model is a 

statistical model that is used to predict the risk of a defined outcome or event. There are 

different types of clinical prediction models depending on the aim of the model and the group 

of patients for which the model is intended. Two types of clinical prediction models are 

diagnostic and prognostic models. A diagnostic model is used to predict the probability of 

having a particular disease or condition in patients that are suspected of having the disease 

or condition. For example, Wells et al. published a model to help predict the probability of 

having a pulmonary embolism (PE) in patients suspected of having a PE.6 The tool was 

developed to help identify patients that are unlikely to have a PE and therefore do not require 

further testing. A prognostic model, on the other hand, aims to predict the probability of a 

particular future outcome or event in patients that have a certain condition or disease of 

interest.1 An example of a prognostic model developed for patients with advanced epithelial 

ovarian cancer is PIEPOC (Prognostic Index of EPithelial Ovarian Cancer) which is used to 

predict the 5-year probability of overall survival and classifies patients into low, intermediate 

or high risk of mortality.7 

This thesis is focused on the application and development of statistical methods for 

prognosis research, with particular emphasis on the use of prognostic models for clinical 

prediction. The importance of prognosis research is being increasingly recognised,1 
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especially with regard to the development and validation of prognostic models that are both 

clinically useful and applicable in clinical practice. However, current evidence suggests that 

prognosis research is limited by poor research standards and inadequate reporting, and 

methodology work is needed to improve the development and external validation of 

prognostic models to ensure they are robust for use in the clinical settings of intended use.1 

This thesis therefore aims to apply and develop novel methodology for prognosis and 

prognostic model research, in order to overcome some of the many challenges facing this 

field. 

1.2 What is prognosis research? 

Prognosis research aims to understand, explain and predict future outcomes in patients with 

an existing disease or health condition. It is an important area of clinical research for many 

reasons.1 In particular it aims to identify measurable variables (such as biomarkers) whose 

values are associated with the risk of a future outcome of interest. In prognosis research, 

these variables may be referred to as prognostic factors, prognostic markers or predictors, 

and these names are often used interchangeably. Using multiple prognostic factors in 

conjunction, a multivariable prognostic model (a prognostic model with more than one 

variable in it) can be developed to make individualised predictions about a patient’s outcome 

risk based on their own set of prognostic factor values. This helps patients understand the 

course of disease and their likely outcome, and helps clinical decision-making in terms of 

treatment selection for individual patients or for groups of patients with different prognoses.8-

10 

Prognosis research needs a clearly defined start point and patient population, and a clearly 

defined outcome (or outcomes) of interest. The start point for follow-up should be similar for 

all patients, for example recruiting patients soon after diagnosis of a particular disease and 
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preferably at the same stage of disease.11 The patient population that will be used to collect 

data for model development (and in which the model is intended to be used) needs to be 

well-defined, for example, a specific age group, or only including patients with advanced 

disease. The outcome of interest also needs to be clearly defined and is usually an event 

such as death (does the patient die, yes or no) or disease progression (does the patient’s 

disease advance, yes or no). Outcomes in prognosis research are often binary and patients 

recruited into studies are usually followed up over time to observe if and when the event of 

interest occurs. 

Prognostic studies often develop models using cohort data, in which patients are followed up 

over time to observe the event of interest. Cohorts can be retrospectively collected from one 

or more centres, for example by identifying patients with a particular condition or disease 

from hospital records. This type of study design is simple and low cost but may be subject to 

selection bias if information is incomplete.12 Single centre studies may be limited to small 

sample sizes. Alternatively, prospective cohort studies could be run across multiple centres 

recruiting patients from a clearly defined group for follow-up. Prospective studies give the 

opportunity to collect information on any potential prognostic factors thought to be of interest. 

However, due to strict inclusion and exclusion criteria, any model developed may not be 

generalizable to wider patient populations.12 For example, a model developed in patients with 

advanced disease may not be generalizable to patients with less advanced disease. Data 

may be collected prospectively for purposes other than developing a prognostic model, for 

example a randomised clinical trial with different treatment arms. Although prognosis 

research may not be the primary aim for collection of the data, it provides a rich opportunity 

to develop prognostic models for patients with the disease of interest. Chapter 4 aims to 

highlight some of the challenges using randomised control trial (RCT) data to develop a 

prognostic model. Other sources of data include registries (for example, cancer registries) 
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and e-health record databases such as QResearch,13 which offer large sample sizes and 

broader coverage of patient populations across many centres such as GP practices. 

Below is an example of a prognostic model including details of the data such as the start and 

end points as well as a description of the model itself to illustrate the concepts above. 

Example of a prognostic model: 

The Nottingham Prognostic Index is a well-known and widely used prognostic model that 

was first published in 1982 by Haybittle et al.14 The model was developed using retrospective 

data from 387 patients that had primary operable breast cancer (start point) and were 

followed up over five years for the event of death (outcome). Patients all had a simple 

mastectomy and triple-node biopsy and had all been treated by the same surgeon at 

Nottingham City Hospital. There were eight candidate predictors considered for inclusion in a 

multivariable Cox model. The authors fitted a multivariable model with all candidate 

predictors in it and then retained only those that were significant at the 5% level for the final 

model. This was simplified further (using a scaling factor to reduce the number of β-

coefficients that were not equal to 1) to arrive at the final index, 

NPI= 0.2 x size + lymph-node stage + tumour grade 

where size is measured in cm, lymph-node stage is coded as 1=A, 2=B, 3=C and tumour 

grade is coded as 1=I, 2=II, 3=III. As the value of the index increases, the prognosis for a 

patient gets worse. The index was classified as high (>4.4), medium (2.8 to 4.4) or low (<2.8) 

and survival curves were plotted for the different prognostic groups. 
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The NPI was later validated by applying it prospectively and following patients for up to six 

and a half years.15 The model has also been tested in slightly different settings such as in 

women with small invasive breast cancers or in younger women with primary breast cancer 

(aged under 40 years at presentation).16,17 

1.2.1 Framework for prognosis research 

The development and validation of prognostic models is just one aspect of prognosis 

research. Although there is a lot of activity in prognosis research, the research is often of 

poor quality and has little impact on clinical practice.18 Over the last few years, there has 

been a collaborative effort to provide more structure to the field and offer recommendations 

for improvement and areas that require further research.1,8 

In 2013 a series of four articles were published by the PROGRESS (PROGnosis RESearch 

Strategy) partnership to improve prognosis research.1-4 These articles provide a foundation 

for researchers interested in prognosis research and provide recommendations for 

overcoming some of the challenges in this field. PROGRESS started by proposing a 

framework which is given below,1 and each of the four papers in the series focused on one of 

the research themes. 

1 Fundamental prognosis research: Studying the natural course of a disease or 

condition with current clinical practice.1 

2 Prognostic factor research: Studying individual factors that are associated with 

the outcome.2 

3 Prognostic model research: The use of multiple prognostic factors to develop a 

model from which risk of the outcome can be predicted for individuals. This 
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research theme also includes validation and assessing the clinical impact of the 

prognostic model.3 

4 Stratified medicine research: The use of prognostic information to make 

treatment decisions that are personalised to individuals.4 

The content of this thesis mainly fits into research theme three (prognostic model research) 

as it will explore and apply methods for developing and validating multivariable prognostic 

models. An earlier series of four papers on ‘Prognosis and prognostic research’ from 2009 

focused more on prognostic model research (theme 3). The first paper provided an 

introduction to prognostic research and its importance;8 the other papers covered topics on 

developing a prognostic model,19 validating a prognostic model,20 and lastly the application 

and clinical impact of prognostic models.21 

The next two sections introduce the fundamental statistical concepts of prognostic model 

research. In particular, the statistical models used to develop clinical prediction models are 

described for outcomes that are generally observed over a short follow-up and where follow-

up is complete for all patients (logistic regression) and also for outcomes that require longer 

follow-up to observe events and in which follow-up duration differs for different patients 

(survival analysis). 

1.3 Logistic regression 

In clinical prediction studies, the outcome of interest is often binary. Logistic regression 

models are most often used to model binary outcomes when the duration of follow-up is 

relatively short.3 
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A logistic regression model can be written as 

 logit൫pi൯=α + βxi (1.1) 

where the event probability for patient i (pi=P(Y=1) for the binary outcome Y = 0 or 1) is 

modelled using a logit transformation, α is the estimated intercept, xi=(x1, x2, x3, …)T is the 

vector of predictor values for individual i and β=(β1, β2, β3, …) is the vector of coefficients 

(log odds ratios) estimated for the predictors in the model (βxi=β1x1+β2x2+β3x3+…). The 

logit transformation is 

 logit൫pi൯=logቆ
pi

1-pi

ቇ (1.2) 

Probabilities can only take values between 0 and 1 which is why the logit transformation is 

used. If the untransformed probabilities were modelled, fitted values and predictions could 

easily fall above one or below zero 22 However, using the logit function (Figure 1.1) means 

that modelled probabilities and future predictions remain between the bounds of 0 and 1. 

The model (1.1) can be estimated using maximum likelihood to give the fitted model, 

 logit൫pො i൯=αෝ + β෡xi  

Odds ratios (OR) are typically reported for each variable in a logistic regression model 

instead of the β෡-coefficients and can be calculated as exp(β෡j) for any variable j in the model. 
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Figure 1.1: Logit function used to model the event probability in a logistic regression 
model. 

For the purpose of predicting outcome probabilities in patients, the inverse transformation is 

applied to the estimated linear predictor (LPi=αෝ + β෡xi) to get the predicted probability for 

patient i. The inverse transformation to obtain the predicted probability is given by 

 pො i ൌ
eLPi

1+eLPi
 (1.3) 

1.3.1 Example prognostic model developed using logistic 

regression 

A prognostic model was developed to predict the risk of developing complications after blunt 

chest wall trauma using retrospective data from 274 patients who presented to a single 

trauma centre in South Wales.23 The aim of the model was to provide a tool to assist 
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clinicians in the management of patients with blunt chest wall trauma. ‘Complications’ was a 

composite outcome including in-hospital mortality, morbidity including all pulmonary 

complications, ICU admission or a hospital stay of seven or more days. The authors 

developed a multivariable logistic model including five prognostic factors: age, number of rib 

fractures, chronic lung disease, use of pre-injury anticoagulants and oxygen saturations. 

They then simplified the model by scaling the regression coefficients to produce an easy to 

calculate risk score for patients (Figure 1.2). The mean probability of developing 

complications was reported for risk groups based on the total risk score (calculated by 

summing the risk scores for each prognostic factor). For example, a risk score of less than 

10 has a (mean) predicted probability of complications of 13%, whereas a risk score of 31 or 

more has a (mean) predicted probability of complications of 88%. 

 

Figure 1.2: Regression coefficients and risk scores for patients developing 
complications after blunt wall chest trauma. Original article by Battle et al.23 Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/2.0). 

1.4 Survival analysis 

In many diseases or conditions in prognosis research, many events may not be expected 

within a short time frame or the event may not occur at all for some patients. For example, 

consider the event of death following diagnosis of breast cancer. Patients would need to be 
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followed up for many years to gain a sufficient number of events and many would not die 

within the study duration. Therefore, the time until the event occurs is generally not normally 

distributed and may be subject to censoring. There are different types of censoring, namely 

left, right and interval censoring. Left or interval censoring are less common especially within 

prognosis research so will not be considered in this thesis. Right censoring is very common 

in survival studies and a patient is said to be right censored if they choose to withdraw from 

the study before having the event of interest, they are lost to follow-up, or if the study ends 

prior to observing the event for that patient (Figure 1.3). In all these cases, patients are 

censored at the last time of follow-up where they were known to not have had the event of 

interest, and censoring is independent to the event occurrence. For right censored data, the 

data can only be analysed at a particular time point t (snapshot analysis) using logistic 

regression if the outcome of interest is binary (such as in the case of mortality – alive or dead 

at time point t) and if censoring does not occur before time t. Therefore survival analysis 

methods are usually preferred to logistic regression in prognostic model research, as 

censoring usually occurs in practice unless the follow-up period is short. 

End of 
study 

Lost to 
follow-
up 

X = Event

Withdrew 
from study 

Figure 1.3: Example of survival data with right censoring. 
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Censored patients still provide valuable information as it is known that they had not had the 

event of interest up until the time they were censored. Ideally, this information should not be 

wasted by excluding these patients from analyses. Survival analysis methods allow for 

censored patients to be included in the analysis up until the time at which they were 

censored. Some core concepts for survival methods are now described. 

1.4.1 Functions in survival data 

There are a few key functions in survival analysis which are described below for random 

variable T which is the survival time. 

Survival function 

The survival function S(t) is defined as the probability of an individual surviving to time t or 

longer.24 This can be written as 

 Sሺtሻ ൌ	P(T≥t) (1.4) 

where 0 < t < ∞. The survival function can be estimated using a non-parametric technique 

known as the Kaplan-Meier method and then plotted as Kaplan-Meier curves.25 This is done 

by estimating the survival probability at each unique event time (further details on calculating 

survival probabilities can be found in textbooks such as Collett (1994)24). The estimated 

survival probability remains the same until the next event time, creating a step function. An 

example of a Kaplan-Meier curve is shown below in Figure 1.4, using data from a trial in 

pancreatic cancer that will be used in Chapter 4. The probability of survival can only 

decrease over time as more patients experience the event. Kaplan-Meier curves can be used 

to compare groups (for example, by sex) as a preliminary step in survival analysis before 

modelling the data. 
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Figure 1.4: Kaplan-Meier curve showing survival probability for a trial in pancreatic 
cancer. 

Probability density function 

The probability density function f(t) is given by the probability of the event occurring at time t. 

This is an unconditional probability and the function will normally be positively skewed. As 

with all probability density functions, the total area under the curve will equal one. 

 	fሺtሻ ൌ lim
δ→0

P(t൑	T൏	t+δ)

δ
 (1.5) 
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Hazard function 

The hazard function h(t) is frequently used in survival analysis and can be written as 

 	hሺtሻ ൌ lim
δ→0

P(t൑	T ൏	t+δ | T൒	t)
δ

 (1.6) 

The hazard function at time t is the instantaneous rate of experiencing the event at time t 

conditional on the event having not already occurred prior to time t. 

Cumulative hazard function 

The cumulative hazard function H(t) is the total amount of hazard accrued up until time t.24 It 

can be written as 

 Hሺtሻ ൌ න hሺuሻ du
t

0
 (1.7) 

Relationships between functions 

The functions described above are related to each other and can be calculated from one 

another. For example, survival probability at time t can be calculated by transforming the 

cumulative hazard function at time t.24 

 	Sሺtሻ ൌ eି Hሺtሻ  
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Inversely the cumulative hazard function can be calculated from the survival function. 

 	Hሺtሻ ൌ െ ln Sሺtሻ  

And the hazard function can be calculated from the probability density function and survival 

function, 

 hሺtሻ ൌ
fሺtሻ

Sሺtሻ
.  

The (cumulative) hazard function is usually the scale used for prognostic modelling and will 

be described further in the following sections. However, it is often the survival function that is 

easier to interpret and of interest for prognosis of patients, as it gives the probability of the 

patient not having the event within a certain time period; whereas the hazard function gives 

the rate of hazard at time t which is harder to interpret and can change over time. 

1.4.2 Cox proportional hazard model 

The Cox proportional hazards model is a semi-parametric model and can be written as 

 hi ሺtሻ ൌ h0ሺtሻ e βxi (1.8) 

where h0ሺtሻ is the baseline hazard function and this is multiplied by the exponential of the 

linear predictor made up of the linear combination of estimated β-coefficients and variables in 

the model. The Cox model became popular because it does not make any distributional 

assumptions for the shape of the baseline hazard function, yet the β-coefficients can still be 
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estimated using maximum likelihood of the partial likelihood.26 A hazard ratio (HR) is usually 

reported for each variable in the model where HR=exp(β෡). 

For prediction, the survival function is more intuitive than the hazard function and can be 

written by transforming the model in (1.8). 

 Siሺtሻ=S0(t)eβxi
 (1.9) 

Proportional hazards assumption 

The Cox model, and the other survival models that will be described below, all assume that 

the hazard functions for all variables in the model are proportional, in other words that the 

effect of a variable (the HR) remains constant over time. For illustration, consider a simple 

model with sex as the only predictor (0=female, 1=male) and a HR=2. The assumption is that 

the hazard rate for males is twice the hazard rate for females at any time point. It is important 

to check that this assumption holds for all candidate variables. This can be done graphically 

using ‘log-log’ plots in which -ln(-ln(S(t)) is plotted against ln(t). Categorical variables can be 

plotted by category and continuous variables need to be categorised into groups before 

plotting. Lines should appear approximately parallel if the proportional hazards assumption is 

valid.27 Figure 1.5 shows an example log-log plot for white blood cell count in patients with 

advanced stage pancreatic cancer where the lines are approximately parallel, in an 

application to be considered within Chapter 4. 
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Figure 1.5: Log-log plot for white blood cell count (WBC) in advanced stage pancreatic 
cancer. 

The proportional hazards assumption can also be checked by calculating Schoenfeld 

residuals.28 Schoenfeld residuals are partial residuals that do not depend on time, therefore 

they can be plotted against time to check for any possible relationships. A test for the null 

hypothesis of zero slope (constant over time) can be performed for individual variables or as 

a global test for multiple variables in a model.27,29 

1.4.3 Parametric models 

The Cox model makes no distributional assumption for the shape of the baseline hazard, 

however different distributional assumptions can be used for the baseline hazard. These 

models are still proportional hazards models but are referred to as parametric models. 
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There are several distributional shapes that can be used for the hazard function but the 

exponential and Weibull are perhaps the most common. The simplest parametric model is 

the exponential model (1.10) which assumes that the hazard function is constant over time. 

The Weibull model (1.11) is more flexible in shape due to the additional parameter γ and 

reverts back to the exponential model when γ=1 (see Figure 1.6 for example shapes of the 

Weibull model). Other parametric models that can be fitted include the Gompertz and log-

normal models. 

Exponential hሺtሻ ൌ λ e βxi (1.10) 

Weibull hሺtሻ ൌ λ γ tγ-1 e βxi (1.11) 

 

 

Figure 1.6: Examples of hazard functions using the Weibull distribution. 
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Parametric models are especially useful for making predictions because the baseline hazard 

function is explicitly modelled, however they are restricted in the shapes they can take. For 

example, using a Weibull model only allows monotonic increasing or decreasing functions for 

the baseline hazard. This often does not fit real data very well as it is possible that the hazard 

could both rise and fall over time. It can therefore be difficult to choose an appropriate 

parametric model (if one exists) and requires trying several models which could be quite time 

consuming. If the baseline hazard is not modelled appropriately, predictions from the model 

will not be valid and so more flexible parametric models have been proposed. 

1.4.4 Flexible parametric models 

Flexible parametric models seek to be more flexible in the shape of the baseline hazard 

function, in order to appropriately capture the shape observed in the data available. Though 

the idea of flexibly modelling the baseline hazard function using splines had been explored 

much earlier,30,31 the use of flexible parametric models have become popularised through so-

called Royston-Parmar models, as proposed by Royston and Parmar in 2001,32 and then 

extended considerably by Royston and Lambert.33,34 These authors focused on methodology 

to explicitly model the baseline hazard function as in parametric models but allow flexibility in 

the shape it can take by using restricted cubic splines, therefore overcoming the restricted 

shapes of hazard function in parametric models such as the Weibull model. Examples of 

baseline hazard functions modelled using flexible parametric models are given in Figure 1.7. 

These are two examples from data that will be used later in this thesis, but both have turning 

points in the hazard function that would be difficult to model using standard parametric 

survival models. Flexible parametric models and modelling the baseline hazard function is 

the focus of chapters 2 to 4. 
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Figure 1.7: Examples of baseline hazard functions modelled using flexible parametric 
survival models. 

Restricted cubic splines 

Cubic splines can be used to create flexible and smooth functions that are able to fit tightly 

curved shapes. This is done by fitting a series of cubic functions and joining them at certain 

points (called knots). The cubic functions are connected smoothly by ensuring that their first 

and second derivatives are equal at the knot positions. Cubic splines can be unstable in the 

tail regions, especially when there is little data in these regions. Therefore restricted cubic 

splines are used to constrain the function to be linear in the tails (i.e. before the first knot and 

after the last knot).22 

Consider having m+2 knots (kmin < k1 < k1 <…< km < kmax) including the boundary knots at 

various positions of variable x that is to be modelled using restricted cubic splines. In survival 

analysis, the boundary knots are defined as the minimum and maximum survival times of 
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uncensored observations (first and last event times). The spline function for variable x is 

given below in (1.12) where new variables are created (z1,…,zm+1) and parameters 

(γ0,…,γm+1) are estimated.34,35 

 splineሺxሻ ൌ γ0+γ1z1+γ2z2+…+γm+1zm+1 (1.12) 

and the z variables are calculated as follows: 

z1 ൌ x 

zj 	ൌ 	(x -	kj)+
3-λj	(x	-	k1)+

3-(1	-	λj)(x	-	km)+
3 

λj 	ൌ 	
kmax	-	kj

kmax		-	kmin
 

for j=2, …, m+1 and u+= ቄu if u	>	0
0 if u	≤	0

. 

Model 

Royston-Parmar models are fitted on the log cumulative hazard scale and use ln(time) rather 

than the original time scale as it is more stable.33 Therefore the log cumulative hazard 

function can be written as 

 ln(Hiሺtሻ)=ln H0ሺtሻ+βxi (1.13) 
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where lnH0ሺtሻ is the baseline cumulative hazard function that can be modelled using 

restricted cubic splines, giving 

 ln(Hiሺtሻ)=splineሺlntሻ+βxi (1.14) 

If there are zero knots, spline(lnt)=	γ0+γ1lnt which is the baseline hazard for a Weibull model. 

Royston-Parmar proportional hazards models are a generalisation of the Weibull model.34 

The degrees of freedom for the baseline hazard function are calculated as d.f. = m +1. 

Royston and Lambert suggest that 2-3 d.f. are usually adequate to model the baseline 

hazard function in small datasets and 4-5 d.f. in larger datasets.34 If the purpose of the model 

is to predict absolute risk for patients, an adequate number of knots should be used (usually 

more than 2) to capture the shape of the baseline hazard.36 However, hazard functions using 

different d.f. can be fitted and plotted for comparison with each other and with the function 

obtained through non-parametric estimates. This will give an idea of whether the shape is 

reasonably captured and also check that it not over-fitted. The authors also suggest 

comparing AIC and BIC from models using different d.f. for the baseline hazard to help 

decide how many d.f. are adequate to capture the shape of the baseline hazard. 

In Stata, the AIC and BIC are calculated as shown in (1.15) and (1.16) below: 

 AIC=(-2× lnሺlikelihoodሻ) +(2×k) (1.15)

 BIC=(-2× lnሺlikelihoodሻ) +(ln(N)×k) (1.16)
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where k is the number of parameters estimated in the model and for survival analyses, N is 

the number of events.37-39 Both the AIC and BIC are measures of model fit with a penalty for 

increasing the number of parameters in the model. The difference between them is that the 

BIC includes a stronger penalty due to the inclusion of the sample size in the calculation. A 

model with a smaller AIC or BIC is preferred. 

The positions of the knots are usually based on centiles of the uncensored (log) event times. 

For example, if one internal knot is used it will be placed at the 50th percentile, if two internal 

knots are used they would be placed at the 33rd and 67th centiles. Royston and Lambert say 

that good fit can be achieved without optimal positioning of knots.34 

In most cases when the baseline hazard function is modelled adequately, the hazard ratios 

for variables obtained from a Royston-Parmar model are almost exactly the same as for a 

Cox model. Therefore, apart from using a few additional d.f. to model the baseline hazard 

function, at a minimum the model estimates are the same as from a Cox model. A problem 

could arise if there was insufficient data to model the baseline hazard. For example, if there 

are too few events for the number of knots used. Royston-Parmar models are more flexible 

than standard parametric models and the hazard function is explicitly modelled,34 thereby 

allowing the model to be used for predicting absolute outcome risk over time in patients of 

interest. The advantages of Royston-Parmar models will be demonstrated in Chapters 2 and 

4. 

In survival analysis, proportional hazards modelled (fitted on the hazard scale) are most 

common. Royston-Parmar models can also be fitted on the proportional-odds scale which is 

a generalisation of the log-normal model or fitted on the probit scale.40 However, 
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interpretation of estimates from models fitted using the odds or probit scales are more 

difficult and will not be focused on in this thesis. 

1.4.5 Non-proportional hazards 

The models described above all assume that hazards are proportional for all variables in the 

model. However, the proportional hazards assumption does not always hold. When 

necessary, time-dependent effects can be fitted for variables that are not proportional. Time-

dependent effects are modelled by allowing an interaction between the β-coefficient and 

time. This can be modelled more complexly by including a restricted cubic splines function as 

will be explored in Chapter 4. In general, the development of a prognostic model should keep 

the fitted model as simple as possible, without unnecessary complexity as this complicates 

interpretation and implementation of the model and often is a consequence of over-fitting. 

1.4.6 Example prognostic model developed using a flexible 

parametric survival model 

The recently published Melanoma Severity Index was developed to predict the risk of death 

over time in patients diagnosed with a single invasive cutaneous melanoma.41 The data used 

to develop the prognostic model came from a population-based cancer registry in 

Queensland, Australia (n=28654). The multivariable prognostic model was fitted using 

Royston-Parmar flexible parametric modelling on the probit scale and included eight 

prognostic factors: (1) gender, (2) age at diagnosis, (3) thickness, (4) smooth rank 

transformed thickness (an additional transformed variable for thickness), (5) body site, (6) 

ulceration, (7) positive lymph nodes, and (8) metastasis. Interpretation of the beta-

coefficients for a probit survival model is more complex and the authors give the following 

interpretation: 
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A one-unit change in a covariate results in a one-beta change in risk on the probit 

(inverse normal probability) scale, where beta is the regression coefficient for the 

variable in question. However, in a more general sense, a positive beta coefficient 

means that an increase in the covariate raises the predicted probability of death from 

melanoma. Conversely, a negative beta coefficient means that an increase in the 

covariate reduces the predicted probability of death.41 

As flexible parametric modelling was used, the model predictions are not restricted to certain 

time points, for example 5 or 10-year survival probabilities. To demonstrate how the 

Melanoma Severity Index performs, the authors reported predicted probabilities of survival 

after 10 years for 12 hypothetical melanoma patients.41 

1.5 Model development considerations 

Chapters 2 to 4 focus primarily on the development of prognostic models (including a review 

of published prediction models in Chapter 3). Although complex statistical methods are being 

developed, there is little agreement on the right approach for developing reliable prognostic 

models.9 There are many statistical considerations when developing a prediction model and 

it is good practice to write a protocol in advance of the analysis beginning.42 The aim is to 

develop a model that discriminates well between individuals that will have the event and 

those that will not have the event (good discrimination) and also predicts accurately (good 

calibration between observed and predicted risk).19 Ideally a model should be developed with 

clinical input rather than just relying on statistical procedures alone. For example, if a variable 

is known clinically to be prognostic, it should be included in the multivariable model 

regardless of statistical significance.11 However, below are a few statistical considerations. 

This list is by no means exhaustive and these considerations are relevant whether modelling 

a binary or time-to-event outcome. 
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Selection of candidate prognostic factors 

Many hypotheses are tested for inclusion/exclusion of each variable when developing a 

multivariable model and it is not always sensible to test every variable that is recorded in a 

dataset, especially when the sample size is small. The power to detect effects in a 

multivariable model is fairly complex to calculate and is based on the number of events 

rather than number of observations when the outcome is binary. Simulation studies have led 

to a rule of thumb that there should be a minimum of 10 events per variable (EPV).43 

Variables (also known as candidate prognostic factors or candidate predictors) should be 

selected based on subject knowledge (systematic review and/or expert judgement), 

distributions (ideally predictor distributions should be wide), missingness (if a predictor is not 

recorded in practice, it may not be useful in a model) and similarity to other variables 

(variables could be clustered or some excluded if highly correlated with others, using data 

reduction methods).10,12,19,22 Candidate predictors should not be selected based on 

association with the outcome and therefore should not be based on univariable analyses 

which could lead to missing important predictors.22,44 

Data quality and missing values 

Data should be fit for purpose and measurement error should be minimal.19 If values are 

missing for predictors, these can be handled in different ways. Complete case analysis 

(removing observations with any missing values) can be used if the proportion of 

observations with missing values is small, typically less than 5%.22 Otherwise multiple 

imputation can be used to handle missing data; however imputation techniques assume that 

values are missing at random which may not always be a reasonable assumption.45,46 
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Data handling and modelling continuous predictors 

Data handling can include creating new variables from old ones (potentially combining 

multiple variables into one new variable) or collapsing a categorical variable into fewer 

categories if required.19 Continuous variables may not be linear in a multivariable prognostic 

model, therefore it is important to consider how to model them more appropriately. Creating a 

categorical variable with two or more categories from a continuous variable is not advised as 

there is a loss of information and power, nor is using optimal cut-points to categorise a 

continuous variable advisable.44,47,48 Instead it is better to consider transformations of the 

continuous variable if it is not linear on its original scale. The variable may be linear after 

applying a simple transformation such as the natural logarithm. Alternatively, more complex 

methods can be used such as multivariable fractional polynomials which use combinations of 

transformations to achieve a better model fit.49-51 However, with increased complexity in the 

functions, there is added difficulty in interpreting predictor effects and increased potential for 

over-fitting (i.e. developing a model that is over-fitted to the data observed by chance). 

Variable selection strategy for inclusion in the multivariable model 

There are multiple strategies that can be used to select variables to be included in the 

multivariable model, however there is little agreement over the ‘best’ approach as yet.19,52 

Commonly used approaches include fitting the full model (containing all candidate variables) 

or using automatic variable selection methods such as backward elimination.19,52 The full 

model approach means that candidate variables are selected possibly using data reduction 

techniques and then all candidate predictors are included in the multivariable model. This 

method has been said to avoid selection bias, over-fitting and results in meaningful 

confidence intervals.19,22 Backward elimination is an automatic selection procedure that starts 

with the full model and sequentially removes variables based on a series of hypothesis 

tests.19 Automatic selection procedures are data-driven variable selection techniques that 
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make decisions regarding inclusion or exclusion of variables based on hypothesis tests and a 

pre-specified significance level for inclusion/exclusion. In backward elimination, variables are 

removed sequentially if the p-value for a variable (usually using a Wald test) exceeds the 

specified significance level. Backward elimination is preferred to forward selection which 

begins with the null model (no variables in it) and sequentially adds ‘significant’ variables that 

meet the inclusion p-value.53 

Other considerations 

There are many other topics to consider when developing a multivariable prognostic model. 

These include deciding if there are any interactions between variables that should be tested 

or included in the model, trying to avoid over-fitting by having adequate data but also 

checking and adjusting the final model for this (called shrinkage),22 checking for possible 

outliers and deciding if any sensitivity analyses should be planned. 

1.6 Validating a prognostic model 

Model development involves estimating model parameters to minimise errors in the dataset 

at hand; therefore parameter estimates and selected predictors are based on the information 

available within one particular dataset. However, as mentioned in Section 1.5, when tailoring 

model functions, the selection of predictors, and the specification of continuous predictors, 

over-fitting may be an issue such that the model does not perform as well when taken 

outside of the development data. 

Therefore, once a prognostic model has been developed, validation of that model is required 

to quantify how well the model performs both internally (in the same data or population used 

to develop the model) and externally (in new data from an external but relevant 

population).54,55 Statistically, a model should ideally have unbiased predictions and predict 
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accurately across a wide range of different individuals (with different case-mix variations), 

and explain as much variation as possible. Clinically a model may be useful in two ways: if it 

reliably can classify patients into prognostic groups (i.e. groups that have different 

prognoses) or a model that can be used to estimate the prognosis for individual patients.56 A 

model may be clinically useful, even when not statistically considered ideal. For example, if 

predictions in the high risk group are upwardly biased, then it may not be clinically important 

if the true risk is still high enough to trigger the same clinical action. 

The Transparent Reporting of a multivariable prediction model for Individual Prognosis or 

Diagnosis (TRIPOD) statement gives guidelines for the reporting of studies that develop 

and/or validate clinical prediction models.42 Using TRIPOD, studies can be classified into 

different types depending on whether they perform any validation of the model developed 

and what type of validation. Type 1 studies have a single dataset available and the authors 

either develop a model and look at apparent performance (Type 1a), or develop and validate 

using resampling techniques for internal validation (Type 1b). Type 2 studies split a single 

dataset for development and validation, either using a random split (Type 2a) or non-random 

split (Type 2b). Type 3 studies have separate datasets for model development and 

validation, and Type 4 studies only validate an existing model.42 The different types of 

validation and their purpose are now discussed. 

1.6.1 Internal validation 

The aim of internal validation is to evaluate the performance of the developed model using 

the same data (or same population) as that used for model development. 



29 
 

Apparent validation 

When model performance and model fit are evaluated in exactly the same data used for 

model development, this is known as apparent validation. Usually this gives an indication of 

the best possible performance of that model, as over-fitting usually causes performance to 

deteriorate in other datasets. If apparent validation suggests poor model performance, it is 

unlikely that the model will perform adequately in other datasets. 

Data splitting 

When the dataset is initially split for model development and validation (also referred to as 

training and testing sets), this is known as data splitting. For example, 70% of the data may 

be used for model development and 30% reserved for validation. If data come from multiple 

centres, data can be split by centre to achieve the required proportions in each set. However, 

if the dataset is split randomly, it is likely to only differ due to chance variation and therefore 

this is not usually considered a good validation technique.56 

To develop the best possible prediction model, as much data as possible should be used in 

model development to avoid missing genuine prognostic factors due to low power.22 If only a 

proportion of the data is used for model development, parameter estimates may be less 

stable than if all the available data were used.12 Therefore performing a single split is not very 

efficient,57 nor does it provide an external dataset for validation as the population is the same 

as for model development. This will not give a true indication of how the model is likely to 

perform in other populations for which the model may be intended for use. The model 

performance could also vary depending on the actual split that is made. Steyerberg states 

that ‘split-sample validation is a method that works when we do not need it. It should be 

replaced in medical research by more efficient internal validation techniques, and by 

attempts of external validation’.12 



30 
 

Cross validation 

An improvement upon simple data splitting is to split the data multiple times, each time 

reserving a different portion of the data for validation and developing the model in the rest. 

Leave-one-out cross-validation means leaving one patient out of the analysis at a time and 

predicting the outcome for that individual using the model with n-1 patients. This is repeated 

n times and model performance is summarised across the n patients when excluded. 

However, reserving groups of patients for cross-validation, (for example, 10-fold cross-

validation would divide the data into 10 parts) is more accurate.22 

Bootstrapping 

Bootstrapping is another technique that is often used in internal validation and does not 

require excluding any data for validation, therefore using the maximum amount of data for 

model development. This method validates the modelling process, for example, the variable 

selection procedure if performed in each bootstrap sample.58 It also provides an estimate of 

the expected optimism, which can be used to down-weight the model parameter estimates. 

Nonparametric bootstrapping is done by sampling with replacement from the original data to 

obtain a new sample of the same size as the original data, and this is called a bootstrap 

sample. The model is then developed afresh in this dataset using the same procedure (e.g. 

selection process) as in the development of the original model, as far as possible. The 

apparent performance of the new model is then estimated in the bootstrap sample. Then, its 

performance is also calculated in the original dataset, and its difference with the apparent 

performance is estimated (‘optimism’ estimate). This process is repeated many times (for 

example, taking 1000 bootstrap samples), and the average optimism estimate obtained. This 

indicates the potential optimism in the original developed model and thus ‘optimism-adjusted’ 
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performance statistics can be derived for the original model, simply by subtracting the 

optimism from the apparent performance.58,59 

An example of bootstrapping used for internal validation of a prognostic model can be given 

for PIEPOC (mentioned in Section 1.1), where the authors used bootstrapping with 200 

samples to obtain bias-corrected estimates of calibration performance of observed and 

predicted probabilities.7 

1.6.2 External validation 

A model will nearly always perform better within the data used for development as it is 

optimised for that data, hence external validation is needed to check performance of the 

model and assess generalizability or transportability of the model in new but similar 

patients.60 External validity is evaluated by assessing model performance in data that is 

completely external to that in which the model was developed. 

Ideally, the model performance will be checked in multiple datasets to get a better idea of 

how well it performs in multiple different settings or different patient groups (with different 

case-mix variation). If multiple validation datasets are available, model performance can be 

evaluated in each of them and summarised using meta-analysis methods.61,62 This will 

produce summary estimates of the average performance and the heterogeneity in 

performance across settings. Ideally, a model will have excellent average performance and 

no heterogeneity. Heterogeneity would suggest that the model performs better in some 

settings or populations than in others and may not be suitable for use in all of them. Novel 

meta-analysis methods are considered in Chapter 5 for pooling performance statistics 

obtained through ‘internal-external cross validation’ which is an approach that was proposed 



32 
 

for both developing and ‘externally’ validating a model multiple times when several studies 

are available. 

1.6.3 Validation statistics 

Validation of a model requires calculating performance statistics. These can include 

measures of model fit, which test statistical validity (for example R2 measures the proportion 

of explained variation), but also examining how well the model discriminates (separates) 

between individuals who had the event and those that did not (discrimination) and if the 

model’s predicted (expected) outcome risk agrees with the observed outcome risk on 

average (calibration). 

Overall model performance statistics 

Overall performance statistics such as explained variation (R2 or Nagelkerke’s R2 for survival 

data) and the Brier score are measures of overall model fit.22 The Brier score can be 

calculated for binary outcomes and is the average squared difference between the observed 

outcome (0 or 1) and predicted probability (ranges from 0 to 1). The Brier score is not directly 

applicable to survival data due to censoring, but can be calculated at specific time points.12 

Measures of overall model performance can be broken down into components of calibration 

and discrimination.12 In this thesis, calibration and discrimination will be considered 

separately as these are more clinically meaningful. 

Calibration 

The calibration of a model is a measure of how well the predicted probabilities from the 

model agree with the observed outcome. Assessing calibration of the model shows how 

much the model over or under-predicts absolute outcome risks over time. Recalibration of 

the model can be considered if the model does not calibrate well in external populations.63 In 
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particular recalibration may be needed if the baseline risk is higher or lower than in the 

development data or if the predictor effects differ. Unfortunately a recent systematic review of 

articles which reported some kind of external validation of a multivariable prediction model, 

found that 67% of the articles did not report calibration performance of the prediction model.54 

This shows that calibration, an important element of model performance, is often wrongly 

ignored and Chapters 5 and 6 will look at methods to address this. 

The calibration statistics included in this thesis are: 

 Calibration-in-the-large: For a logistic regression model, this is the difference between 

the mean number of predicted events (mean(Y෡)) and the mean number of observed 

events (mean(Y)).12,64 Mean(Y෡) is calculated by averaging the predicted probabilities of 

the event (using the prognostic model) and the mean(Y) is calculated by averaging the 

binary event indicator for whether an event was observed or not (0 or 1). This can also be 

estimated by fitting a logistic model for the probability of the outcome (p) with the linear 

predictor (LP) as a covariate (offset term), 

 logit൫pi൯ = α+β(LPi) (1.17) 

where the estimate of α given β=1 is the estimate of calibration-in-the-large.12 

Calibration-in-the-large should be close to zero for a well calibrated model. 

 

Calibration-in-the-large can also be calculated for a survival model by evaluating the 

difference between mean observed and expected probabilities of events at specified 

time points. 
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 Expected/observed ratio: The ratio of expected and observed number of events should 

be close to one if the model calibrates well in the validation dataset. This is easily 

calculated for a logistic model using the expected and observed number of events or can 

be calculated as the ratio of expected and observed probabilities (of the event) at 

specified time points for a survival model. 

 

 Calibration slope: Relates to the slope of the calibration plot where patients are often 

categorised into risk groups, for example using deciles of predicted probability of having 

the event. The predicted probability for each risk group is plotted (on the x-axis) against 

the observed outcome proportion in that risk group (on the y-axis). If a line is fitted 

through the points on the graph, the slope of the line is the calibration slope. A model that 

calibrates well in the validation dataset would result in a calibration slope=1. A calibration 

slope<1 indicates that a model over-predicts, and conversely a calibration slope>1 

indicates that a model under-predicts. 

 

Rather than categorising patients into risk groups, a calibration model can be fitted in the 

validation dataset. Using a logistic model for example, the calibration model is given by 

(1.17) where pi is the probability of the binary outcome Yi and LPi is the linear predictor 

from the developed model, then β෡ is the estimated calibration slope.65,66 

Discrimination 

Discrimination is a measure of how well a model can differentiate between individuals who 

have the event of interest and those that do not. A model is more likely to discriminate well if 

the range of predicted probabilities is wide. The C-statistic and the D-statistic are the two 

discrimination statistics of particular focus in this thesis: 
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 C-statistic: The probability of concordance between predicted and observed outcomes is 

calculated by looking at all possible pairs in which one individual had the event and the 

other did not have the event. The C-statistic is calculated as the proportion of pairs in 

which the individual that had the event had a higher predicted probability than the 

individual that did not have the event.22 This is equivalent to the area under the ROC 

curve for a logistic model.10 For a survival model, Harrell’s C-statistic is the proportion of 

pairs in which the individual with the higher predicted survival probability survived longer 

than the other individual.10 Pairs, in which both individuals are censored, both have the 

event at the same survival time or where one individual is censored at an earlier time 

than the other individual’s survival time, cannot be ordered and therefore cannot be 

included in the calculation. The closer the C-statistic is to the value one, the better the 

model discriminates between individuals of high and low probability of the event. A value 

of 0.5 suggests that the model does no better than chance alone. Other C-statistics have 

been proposed for survival data,67,68 but Harrell’s C-statistic will be used in this thesis. 

 

The following figure is taken from Collins et al.54 and shows the C-statistic in internal and 

external validation across a range of reviews, highlighting again that discrimination in 

external validation data is generally worse than in the development data, due to over-

fitting and thus over-optimism in the developed data. 
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Figure 1.8: Paired C-statistics from development and external validation, also showing 
if authors overlap or not (originally published by Collins et al.54). Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/2.0). 

 D-statistic: Proposed by Royston and Sauerbrei, the D-statistic is used for survival 

models as a measure of separation. The D-statistic can be defined as 

 D = κ σ* 

where σ* is an estimate of the standard deviation (σ) of the ‘true’ prognostic index (xβ) 

which is assumed to be Normal(μ,	σ2).69 The σ* is estimated by fitting a Cox model to the 

standard normal order statistics for xiβ෡ of individuals in the study. This is then multiplied 

by the scaling factor 	κ		=	ඥ8 π⁄  to give the D-statistic. The κ	-scaling is used so that the 

D-statistic is an estimate of the log hazard ratio for two prognostic groups, if the data 

were split into two equal groups using the median prognostic index.70 So values of the D-

statistic further from zero indicate better separation. 
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Reclassification statistics 

Other metrics that could be calculated include reclassification statistics such as Net 

Reclassification Improvement (NRI) which is used to compare two nested models, for 

example, models with and without a new biomarker, to evaluate the improvement due to the 

additional marker.71 For a binary outcome, reclassification tables can be constructed based 

on cut-points for probability of the event occurring and tabulating the number of patients that 

fall into each category based on each model. The NRI summarises the movement 

(reclassification) of patients either upwards (low to high risk) or downwards (high to low risk) 

in patients that had the event and patients that did not have the event. Therefore, the NRI is 

estimated as 

NRI෢  = ቀpොup, events	-	pොdown, eventsቁ 	-	 ቀpොup, nonevents	-	pොdown, noneventsቁ 

where pොup, events is a probability calculated as the proportion of patients that had the event 

that moved up a category (comparing the original model with the new model) out of all 

patients that had the event. The other probabilities can be calculated in a similar way, for 

patients reclassified downwards and/or patients that did not have the event.71 Further 

developments later meant that the NRI could also be calculated avoiding the use of cut-

points, called the continuous NRI (NRI>0) and calculated for survival models.72,73 However, 

more recent publications have shown that there are issues with reporting of reclassification in 

the literature,74 and also with the methodology.75-78 In particular, the NRI is affected by 

miscalibration of the model and can also result in optimistic p-values for biomarkers that do 

not have predictive value (shown through simulation).77 
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1.7 Presentation of prognostic models for clinical decision 

making 

Prognostic models can be presented in different ways for use in clinical practice; the 

assistive approach provides predicted probabilities of the outcome of interest and allows the 

clinician to use their own judgement in how they manage the patient, while a directive 

approach recommends different management strategies for patients in different risk 

categories (such models are also called clinical prediction rules or clinical decision rules).21 

Most prediction models are presented as assistive tools, making the assumption that having 

accurate predictions helps clinical decisions, which may not always be true.79 Therefore, 

following development and validation of a prognostic model, impact studies should be 

conducted to assess the influence of the model on clinical decisions and patient outcomes.3 

Models can be presented in different formats depending on how the model is intended for 

use. The model formula for predicting outcome probability from a logistic model or survival 

model (using baseline survival probability at a given time point) could be published in the 

format given in equation (1.3) or (1.9). Alternatively, the model could be simplified to a 

scoring system, in which predictor coefficients are scaled and rounded to produce simple 

point scores which can be added up and used to look up the corresponding predicted 

probability of outcome. A graphical presentation for assigning risk scores could be used 

instead, such as a nomogram, for which risk scores are assigned using bars for each 

variable and summed up to give the overall risk score and corresponding probability of the 

outcome (example in Figure 1.9).80 
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Figure 1.9: Example of a nomogram (Reprinted from the American Journal of 
Obstetrics and Gynecology, 194, Grobman and Stamilio,80 Methods of clinical 
prediction, 888-894, Copyright 2006, with permission from Elsevier. 

Presentation formats will be summarised for articles included in the literature review (Chapter 

3), however, this thesis focuses on development and validation of the statistical model rather 

than presentation of the final model and how the model can be used to aid clinical decision 

making. 

1.8 Importance of improving methodology in prognosis 

research 

Many other areas of clinical research are well established with good methodology and 

reporting standards leading to advances in clinical practice. For example, there is a 

considerable amount of methodological literature about how to appropriately design, analyse 

and report a clinical trial to test new treatments, to ultimately identify more effective 

treatments for patients with particular conditions and lead to a change in practice. Despite a 

lot of activity in prognosis research, the improvement in the understanding of prognosis for 

many diseases or conditions is very slow and only a small proportion of the research impacts 
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on clinical practice.1,81 Methodological improvements are needed, as many of the problems 

arise from poor use of statistical methods and reporting. For example, publication bias of 

prognostic factor studies, inappropriate dichotomising of continuous prognostic factors is 

endemic, and therefore replication of initial evidence can be rare.47,82 

The application and development of more sophisticated statistical methods therefore 

warrants urgent attention in prognosis research. For example, a systematic review of 

prognostic models in cancer found that almost all studies of time-to-event data used the Cox 

proportional hazards model.83 The Cox model has potential limitations in prognostic 

modelling due to the baseline hazard not being explicitly modelled. Flexible parametric 

models such as Royston-Parmar models should be considered as an alternative, and they 

have potential advantages as predictions can be made over time.34 It is therefore important to 

evaluate the use of Royston-Parmar models and their advantages in prognostic modelling, 

and this will be a major focus in this thesis. 

There are also many prognostic models being developed and published, but very few of 

them are being externally validated. Several systematic reviews of prognostic or prediction 

models have looked at reporting of model validation. Mallett et al. published a review on the 

reporting of performance of prognostic models in cancer and found that only 34% of articles 

included some form of validation in the original article and only 21% of models were 

externally validated (either in original article or subsequent publication).84 Another systematic 

review by Bouwmeester et al. stated that `the majority of model development studies 

reported predictive performance in the development data only’ and ‘only a very few model 

development studies reported an external validation of the model in the same paper’.85 

Collins et al. published a systematic review on the methodological conduct and reporting of 
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external validation of multivariable prediction models and found that in general, reporting of 

external validation was poor and that calibration was often not reported. They concluded: 

It may therefore not be surprising that an overwhelming majority of developed 

prediction models are not used in practice, when there is a dearth of well-conducted 

and clearly reported (external validation) studies describing their performance on 

independent participant data.54 

A suggestion made by PROGRESS is that there should be a shift of focus from developing 

new models to validating and updating existing models.3 Research should be building upon 

what is already known and new biomarkers or genetic markers should be evaluated by 

considering if they improve prediction after accounting for known prognostic factors. It is also 

important to validate a model in multiple settings, and PROGRESS state: 

The collation and synthesis of individual participant data from multiple studies offers a 

natural opportunity to increase sample size. Models can then be developed using 

data from a subset of studies and assessed on data from the remaining studies. 

Variation in model accuracy across studies and its causes can be explored.3 

Reporting of any external validation tends to be lacking and poor quality, therefore validating 

in multiple settings is even less common. Methods have been published for simultaneously 

developing and externally validating a model multiple times when individual participant data 

are available from multiple studies (internal-external cross-validation).69 Few studies have 

considered how to combine performance statistics across multiple studies or clusters.61,62,69 

Meta-analysis methods for combining performance statistics across multiple studies will 

therefore be developed and evaluated in Chapters 5 and 6 of this thesis. 
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1.9 Aims and overview of thesis 

The overarching aim of the thesis is to apply, develop and evaluate novel statistical methods 

for prognosis research, with particular focus on prognostic models. In particular, this thesis 

aims to: 

 Apply the flexible parametric survival model of Royston and Parmar to address clinically 

relevant questions in hip replacement, pancreatic cancer and breast cancer research. 

 Review current practice for modelling the baseline hazard in prognostic model research, 

and illustrate the benefits of the Royston-Parmar approach over the standard Cox model. 

 Illustrate methodological issues for prognostic model development using randomised 

clinical trial data with multiple treatment groups, with recommendations. 

 Propose and evaluate a novel multivariate meta-analysis approach for validating the 

performance and implementation of prognostic models across multiple settings. 

The thesis has seven chapters. Chapters 2 to 4 focus primarily on model development issues 

and comparisons between the flexible parametric approach and the Cox model in novel 

settings. Therefore these chapters only consider time-to-event data and survival analysis. 

Chapters 5 and 6 focus on model validation in multiple settings. In these chapters logistic 

models are also considered. Several articles have been published on prognosis research 

since starting this PhD in 2011. For example, the PROGRESS Group published a framework 

and highlighted areas that require methodological research1-4 To reflect these advances and 

keep up with the field, the original thesis plan was adapted to include validation as this was 

one of the areas identified as requiring methodological research. An outline of the chapters is 

given below. 

Chapter 2 explores the use of flexible parametric survival models for the purpose of outcome 

risk prediction and comparison across relevant patient groups. The models are developed in 
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registry data collected from osteoarthritis patients who had hip replacement surgery. This is a 

large dataset which is ideal for exploring the use flexible parametric methods for individual 

prediction over time. Here comparisons are made between different types of hip 

replacement. The aim of this chapter is to highlight the advantages of using flexible 

parametric models for absolute risk prediction and comparison of mortality rates, compared 

to the standard Cox model. 

Chapter 3 reviews how recent prediction model articles developed and possibly validated a 

clinical prediction model using time-to-event data. The main aim is to establish if/how 

researchers are modelling the baseline hazard and if/how absolute risk predictions are being 

made for patients from the developed model, to ascertain areas for improvement. 

Chapter 4 examines methodological issues when developing a new prognostic model using 

randomised trial data. Data from two clinical trials of patients with advanced stage pancreatic 

cancer are used, but challenges are present due to different treatment groups, missing data, 

and non-proportional hazards for treatment leading to a time-dependent effect being 

required. The model is internally validated but no external data were available at the time for 

external validation of the model. 

Chapter 5 develops a novel multivariate random-effects meta-analysis method for validating 

a prediction model when multiple studies are available. The approach summarises the joint 

discrimination and calibration performance of a model, whilst accounting for their correlation. 

It produces a summary of calibration and discrimination performance, and quantifies the 

amount of heterogeneity in model performance across studies. The results of the meta-

analysis are used to predict how well the model would be expected to perform in a new but 

similar study that was not included in the meta-analysis. It is also shown to help identify the 
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best implementation strategy, in particular regarding recalibration of the model intercept 

(baseline hazard). 

Chapter 6 uses simulation to evaluate the random-effects meta-analysis approach proposed 

in Chapter 5; in particular, to investigate whether the assumption that performance statistics 

across studies come from a normal distribution is plausible. A range of performance statistics 

are evaluated under a range of different scenarios, including differing levels of heterogeneity 

for either the intercept or predictor effects. 

Chapter 7 includes discussion of the overall findings from this thesis and makes 

recommendations for further work. 
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CHAPTER 2: HIP REPLACEMENT SURGERY 

IN OSTEOARTHRITIS PATIENTS 

2.1 Introduction 

This chapter aims to demonstrate the use and advantages of flexible parametric survival 

methods in a real clinical dataset. Royston-Parmar models are fitted to compare mortality 

and revision rates over time between osteoarthritis patients receiving cemented and 

uncemented procedures in hip replacement surgery. This chapter shows how the shape of 

the baseline hazard function can be explored and demonstrates how it can be modelled (on 

the log-cumulative hazard scale) using restricted cubic splines which were introduced in 

Chapter 1. Clinical conclusions and recommendations for hip replacement are made based 

on the results identified. Further, the advantages of using flexible parametric models are 

shown in terms of predicting adjusted survival probabilities for groups of patients and also for 

individuals based on their own predictor values. The clinical findings of this chapter were 

published in the BMJ.86 

2.2 Background to hip replacement procedures 

A hip replacement may be necessary when the hip joint is damaged, causing pain and 

difficulty in daily activities such as walking. Surgery is considered when the problem cannot 

be treated non-surgically to relieve pain, such as by taking painkillers, the use of steroid 

injections or other pain relieving creams or gels.87 Common reasons for damage to the hip 

joint include osteoarthritis, rheumatoid arthritis and hip fractures.88 The investigations in this 

chapter look at primary total hip replacement (THR) in patients with osteoarthritis which is the 

most common type of arthritis. 
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THR has become a very common procedure with almost 69000 primary THRs recorded by 

the National Joint Registry in 2010.89 A primary THR is the initial surgery in which the hip is 

first replaced, as opposed to a revision which refers to later surgery on the replaced hip. The 

surgical procedure involves removing the femoral head and any damaged cartilage from the 

acetabulum (hip socket). A metal stem is inserted into the hollow centre of the femur with a 

ball attached to the upper part of the stem. A prosthetic cup is then fixed into the 

acetabulum.90 

As well as the different designs and materials used for prostheses, procedures can be 

categorised by the method for fixing the prostheses in place and as such, procedures can be 

classified as either cemented, uncemented or hybrid. An alternative to THR is hip resurfacing 

which preserves more of the patients’ bone. A short description on each of these procedures 

is now given below. 

2.2.1 Cemented procedures 

In cemented THRs, the prostheses are fixed in place using bone cement to fill the space 

between the stem and the bone. The cementing technique has moved away from finger-

packing high viscosity cement into the bone, towards using a cement gun with low viscosity 

cement to force the cement into the space between the stem and the bone. This change in 

method of cement fixation has resulted in a lower implant failure rate as there is less 

loosening of the implant over time.91,92 An example of a stem used in a cemented THR is 

shown in Figure 2.1. A cemented THR is often considered more suitable for older patients 

and those in poor health as the recovery time is shorter than other procedures and allows the 

patient to bear weight on their hip fairly soon after surgery.93 
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Figure 2.1: A cemented stem (image courtesy of The McMinn Centre and Smith & 
Nephew). 

2.2.2 Uncemented procedures  

The prostheses used in an uncemented THR have a textured surface or coating (seen in 

Figure 2.2). The prostheses are fitted very close to the surface of the bone and the porous 

surface encourages bone growth to fix the bone to the prosthesis. For the bone to bind to the 

prosthesis, the prosthesis must be fitted very tightly to the bone by being no more than 1-

2mm apart.93 The recovery time for this procedure is longer than for a cemented procedure 

and the patient is unable to bear weight on the hip as the bone needs time to bind to the 

prostheses. However, after recovery, uncemented THRs have been shown to be successful 

in younger and more active patients as there is less loosening over time than with cement,94 

and thus time to revision is thought to be prolonged. 
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Figure 2.2: An uncemented stem and cup (image courtesy of The McMinn Centre and 
Smith & Nephew). 

2.2.3 Hybrid procedures 

THRs are classified as a hybrid hip replacement if an uncemented acetabular cup and a 

cemented stem are used. A reverse-hybrid hip replacement is where a cemented acetabular 

cup and an uncemented stem are used. 

2.2.4 Birmingham Hip Resurfacing 

Hip resurfacing is a conservative procedure in which very little bone is removed and capped 

with a large diameter metal bearing (Figure 2.3). Birmingham hip resurfacing (BHR) first 

became available in 1997.95 It uses a metal head and a metal acetabular cup, and this is 

referred to as a ‘metal-on-metal’ joint. BHRs are not suitable for all patients and studies have 

raised some concerns, for example by showing an increased failure rate in women.96 

However, the BHR has been shown to be successful in younger (aged under 55) and more 

active males.97 
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Figure 2.3: A Birmingham Hip Resurfacing implant (image courtesy of The McMinn 
Centre and Smith & Nephew). 

2.3 Data 

A database of 335841 primary THRs or hip resurfacings performed on osteoarthritis patients, 

recorded between 2003 and 2011 was obtained from the National Joint Registry (NJR) by 

Smith and Nephew in August 2011. This dataset included cemented, uncemented and hybrid 

THRs, as well as BHRs in men only. The dataset was formally obtained by Smith and 

Nephew to be used by their clinical teams to investigate survivorship. The dataset was 

passed to Mr Derek McMinn (pioneer of the BHR and an unpaid consultant for Smith and 

Nephew and part of their clinical team) for such research purposes. Subsequently, Mr 

McMinn asked Prof. Richard Riley to provide professional statistical analysis of the data. 

Kym Snell then wrote the analysis plan, and performed all the analyses under the 

supervision of Prof. Riley. The variables recorded in the dataset, along with a brief 

description, are displayed in Table 2.1. American Society of Anesthesiologists (ASA) grade 

definitions are reported as presented in the NJR 8th Annual Report 2011.89 
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Table 2.1: Variables in hip replacement dataset with brief description. 

Variable Description 

Index Number Patient identifier 
Age Age of patient at primary surgery 
Gender Male or female 
ASA Grade Pre-operative physical status classification system 

     P1: Fit and healthy 
     P2: Mild disease not incapacitating 
     P3: Incapacitating systemic disease 
     P4: Life threatening disease 
     P5: Expected to die within 24 hours with or without an operation

Side Left or right side of hip 
Primary operation date Date of primary hip replacement 
Procedure type Cemented, uncemented, hybrid or BHR 
Surgery approach Approach to hip used by surgeon 
Complexity Complex or non-complex procedure 
Endpoint type Unrevised, revised or death 
Revision Binary indicator for revision as endpoint 
Death Binary indicator for death as endpoint 
Time to event (years) Time from primary surgery to either revision, death or end of 

follow-up 

 

Patients were followed up from the date of primary surgery until either death (from any 

cause) or first revision. Thus, for each patient, his or her time to death, time to revision or 

time until censored (whichever came first) was recorded in years. The aim was to investigate 

survivorship (of hip or patient) up to their first revision, and so for any patient that received a 

revision, no mortality information was utilised after the revision surgery. Patients were 

censored due to loss to follow-up or if they had not experienced an event (revision or death) 

before the end of the study. 
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2.4 Objectives 

2.4.1 Clinical objectives 

The pre-specified primary clinical objective was to assess if there was any difference in the 

mortality and revision rates over time between osteoarthritis patients receiving cemented and 

uncemented THRs for a first hip replacement. 

Secondary objectives included: 

 Comparing mortality and revision rates for cemented and uncemented THRs in 

specific subgroups of patients such as different ASA grades. 

 Comparing mortality and revision rates for cemented THRs, uncemented THRs and 

BHRs in men under 55 years of age (i.e. the subset of patients BHRs are aimed at). 

2.4.2 Statistical objectives 

Alongside the clinical objectives, for this thesis there is also a statistical objective, which is to 

implement flexible parametric modelling techniques and demonstrate the advantages of 

modelling the baseline hazard function by fitting Royston-Parmar models rather than Cox 

regression models. In particular, by modelling the baseline hazard function, it will be shown 

how it is possible to obtain absolute survival estimates in addition to relative risk estimates 

such as hazard ratios, normally reported after fitting a Cox regression model. Comparisons of 

absolute survival probabilities will also be made at specific time points, and population-

averaged survival curves will be predicted and plotted for particular covariates, such as 

procedure type, whilst adjusting for confounding factors included in the model. These 

advantages of modelling the baseline hazard function will be highlighted throughout the 

results, shown in Section 2.6 and discussed further at the end of the chapter. 



52 
 

2.5 Methods 

The pre-specified statistical analysis plan is now summarised. 

2.5.1 Data cleaning, inclusion and exclusion criteria 

Any patients missing data for age, gender, procedure type or ASA grade were excluded from 

all analyses. This resulted in 11 patients being removed for missing age or gender. This 

represented a very small proportion of the total number of patients, and so more 

sophisticated methods for handling missing data (such as multiple imputation) were not 

considered necessary. Surgery approach was missing for 5.5% of patients and therefore this 

variable was excluded from the analyses. Later sensitivity analyses including this variable 

suggested that it did not impact upon the investigations of the survival difference between 

procedure types (Appendix A1). In the dataset, duplicate entries existed for 911 patients that 

underwent hip replacement surgery on both hip sides on the same date. Any such patient 

that had a different procedure type on each side was excluded from all analyses (24 

patients); those patients receiving the same procedure type on both sides remained in all 

analyses (887 patients), but their duplicate entry was removed and a variable named ‘both 

sides’ was created to identify them from patients having a single hip replacement. Patients 

that received a ‘hybrid’ hip replacement were excluded from all analyses as this labelling 

makes no distinction between hybrid and reverse hybrid, and such patients were not relevant 

to the clinical objectives. This resulted in a further 51530 patients being excluded and left a 

total of 283365 patients for use in our analyses (including BHR men). 

2.5.2 Summary of data 

Baseline characteristics of patients and follow-up information (e.g. number censored and 

number of deaths) were summarised for the dataset as a whole as well as by procedure 
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type. Mean, standard deviation (SD), median, interquartile range (IQR) and the minimum and 

maximum values were reported for continuous variables, and total numbers and proportions 

were reported for categorical variables. Patient follow-up was summarised by the median 

duration (reverse Kaplan-Meier method)98 and total follow-up in person-years for each 

procedure type and overall. 

2.5.3 Analysis of primary outcomes 

Survival analysis methods were used to investigate the two primary outcomes, time to death 

and time to revision, and the association with each of five variables available in the dataset: 

procedure type, gender, age at primary surgery, ASA grade before the operation, complexity 

and if both sides were replaced. 

Initially, Kaplan-Meier plots were produced for each variable to show unadjusted differences 

in the probability of survival over time. To quantify these associations and investigate the 

primary outcomes listed above, Royston-Parmar survival models were then fitted to obtain 

both unadjusted and adjusted results for each variable.40 Royston-Parmar models were 

introduced in Chapter 1. The hazard ratios estimated using this approach were practically 

identical to those obtained through fitting a Cox regression model. 

The multivariable (adjusted) models were fitted using a backward elimination procedure 

which forced procedure type to remain in the model and retained any other variables that 

remained statistically significant (as defined by p<0.1). Age was included as a continuous 

variable and a linear association with outcome was assumed. The linearity assumption was 

checked by plotting martingale residuals from the multivariable model against age and using 

a smoother.99 The smoothed line did not deviate from the line y=0, supporting the linear 

assumption for age. 
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Using the estimates from the multivariable model, adjusted survival curves were predicted 

and plotted by calculating the population-averaged survival curve for each procedure type. 

This was done by predicting the survival curve for each patient in the dataset, using their own 

predictor values but assuming they received a particular procedure (e.g. cemented). The 

individual survival curves were then averaged to give the population-averaged survival curve 

for that procedure type.34 This was repeated for each procedure type, so that the entire 

dataset was used for each survival curve. This also allowed the difference in the mean 

absolute survival probabilities between procedure types to be calculated at different time 

points, after adjusting for the other variables in the model. 

For analyses relating to mortality as the outcome, any patient that had a revision was 

censored on the date of revision and for analyses of revision, patients that died before having 

a revision were censored on the date of death. It is not possible to know that censoring due 

to revision is not informative for the outcome of death; therefore the results from the mortality 

analyses relate only to patients that had not had a revision prior to time t. For example, 

interpreting a hazard ratio at time 2 years relates to the mortality rate of patients that had not 

had a revision before 2 years. 

2.5.4 Assessing the proportional hazards assumption 

In survival analysis, hazard ratios are assumed to remain constant over time. If the 

proportional hazards assumption is violated, this implies that the hazard ratio changes over 

time. Non-proportional hazards can be incorporated into the model by including time-

dependent effects. One of the many advantages of Royston-Parmar models is the ease in 

which time-dependent effects can be incorporated into the model, fitted using restricted cubic 

splines.33 `Log-log’ plots were used to check the proportional hazards assumption for each 

variable. Non-parallel lines suggest that the proportional hazards assumption does not 
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hold,100 and time-dependent effects should be considered. Continuous variables such as age 

were categorised into quartiles to produce the ‘log-log’ plot. 

2.5.5 Number of knots for the baseline hazard function 

The baseline hazard function is modelled in Royston-Parmar models using restricted cubic 

splines with a specified number of knots. A suitable number of knots for the data was 

decided by plotting the baseline hazard function for the null model using different numbers of 

knots and using this to inform the decision. The AIC and BIC were also considered to aid the 

choice of knots (defined in Chapter 1, equations (1.15) and (1.16)). A model with a smaller 

AIC or BIC is preferred. 

2.5.6 Analysis of secondary outcomes 

A secondary analysis aimed to check if any differences observed between procedure types 

remained consistent across the different ASA grades. Therefore, the multivariable model 

described in Section 2.5.3 (but excluding ASA grade) was re-fitted for patients in each of the 

ASA grades separately, and the hazard ratio for cemented versus uncemented procedures 

was estimated for each ASA grade. 

Data on BHR procedures were only available for males. Thus, another secondary analysis 

was conducted to compare BHR to cemented and uncemented THRs in males under 55 

years of age as this is the subset of patients that BHR is often aimed at.97 A similar modelling 

strategy was followed to that described in Section 2.5.3, although no adjustment was 

required for gender. Adjusted survival curves were estimated and plotted for the three 

procedure types. 
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2.6 Results 

2.6.1 Summary of data for cemented and uncemented THRs 

In the dataset, a total of 154996 patients received cemented THRs and 120017 patients 

received uncemented THRs between April 2003 and July 2011. The cemented group were 

followed up for a median length of 3.55 years (range: 0.001 to 9.65 years) and the 

uncemented group for a median length of 2.45 years (range: 0.001 to 8.58 years). 

Table 2.2 shows that baseline characteristics were not balanced between the cemented and 

uncemented groups. The mean age in the cemented group was almost 7 years older than 

the uncemented group. In the uncemented group, there were more males (42.1% compared 

to 34.5% in the cemented group) and a higher proportion of patients with ASA grade 1 

(20.2% compared to 14.4% in the cemented group). There were also more patients 

categorised as complex procedures in the cemented group (8.5%) than in the uncemented 

group (0.7%). Approach appeared relatively balanced between cemented and uncemented 

groups, although the lateral approach was used more frequently in the cemented group 

(21.1% compared to 12.3% in the cemented group) and the posterior approach which was 

the most common approach in both groups, was used more in the uncemented group than 

the cemented group (52.3% compared to 41.9% in the cemented group). 

During follow-up, in the cemented group 11745 (7.6%) patients died and 1589 (1.0%) had a 

revision, whilst in the uncemented group 3728 (3.1%) patients died and 1917 (1.6%) had a 

revision. 
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Table 2.2: Summary of baseline characteristics, outcome and follow-up by procedure 
type. 

 
 

Cemented 
(n=154996) 

Uncemented 
(n=120017) 

Overall 
(n=275013) 

Baseline characteristics    
Age, years Mean (SD) 73.20 (8.69) 66.69 (10.09) 70.36 (9.87) 

Median 73.79 67.00 71.15 
IQR 67.96 – 79.24 60.46 – 73.67 64.16 – 77.31 
Range 15.93 – 103.41 15.40 – 106.15 15.40 – 106.15 

Gender, n (%) Male 53409 (34.46) 50529 (42.10) 103938 (37.79) 
Female 101587 (65.54) 69488 (57.90) 171075 (62.21) 

ASA grade, n 
(%) 

1 22336 (14.41) 24276 (20.23) 46612 (16.95) 
2 107395 (69.29) 82104 (68.41) 189499 (68.91) 
3 24369 (15.72) 13151 (10.95) 37520 (13.64) 
4 852 (0.55) 456 (0.38) 1308 (0.48) 
5 44 (0.03) 30 (0.02) 74 (0.03) 

Surgery     
Approach, n (%) Anterior 485 (0.34) 429 (0.37) 914 (0.35) 

Antero-lateral 12223 (8.56) 7161 (6.12) 19384 (7.46) 
Hardinge 34366 (24.06) 28834 (24.66) 63200 (24.33) 
Lateral (inc. harding) 30137 (21.10) 14321 (12.25) 44458 (17.11) 
Posterior 59855 (41.90) 61086 (52.25) 120941 (46.56) 
Trochanteric osteotomy 1164 (0.81) 96 (0.08) 1260 (0.49) 
Other 4620 (3.23) 4989 (4.27) 9609 (3.70) 
Missing 12146 (7.84) 3101 (2.58) 15247 (5.54) 

Complexity, n 
(%) 

Non-complex 141825 (91.50) 119172 (99.30) 260997 (94.90) 
Complex 13171 (8.50) 845 (0.70) 14016 (5.10) 

Both sides, n 
(%) 

No 154798 (99.87) 119497 (99.57) 274295 (99.74) 
Yes 198 (0.13) 520 (0.43) 718 (0.26) 

Follow-up     
Endpoint, n (%) Death 11745 (7.58) 3728 (3.11) 15473 (5.63) 

Revision 1589 (1.03) 1917 (1.60) 3506 (1.27) 
Unrevised 141662 (91.40) 114372 (95.30) 256034 (93.10) 

Length of follow-
up, person-years 

Total 535035 323477 858512 

 

2.6.2 Proportional hazards assumption 

By visual inspection of ‘log-log’ plots, the proportional hazards assumption was assessed for 

all of the variables considered in modelling both outcomes. Figure 2.4 shows approximately 

parallel curves for procedure type with mortality as the outcome. Parallel curves suggest that 
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there is no problem with the proportional hazards assumption, and this was the case for the 

majority of plots. An exception was gender for the outcome of revision, Figure 2.5 shows a 

section where both curves are overlaid. However, there is little spacing between the curves 

in this figure and only a small amount of crossover, so this was not considered of great 

concern. For these reasons, all the Royston-Parmar models were fitted assuming 

proportional hazards. The complete set of log-log plots for all variables can be found in 

Appendix A1. 

 
Figure 2.4: ‘Log-log’ plot for procedure type and the outcome of mortality. 
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Figure 2.5: ‘Log-log’ plot for gender and the outcome of revision. 

2.6.3 Number of knots for the baseline hazard function 

Royston-Parmar models with between 2 and 10 d.f. for the baseline hazard function were 

fitted for each of the outcomes and plotted against time. Figure 2.6 shows little difference in 

the shape of the estimated baseline hazard function using 1 knot (2 d.f.) compared to as 

many as 9 knots (10 d.f.) for the outcomes of mortality and revision. 

The AIC and BIC can aid the choice of d.f. to use in modelling the baseline hazard. In this 

case, the sample size was large and so increasing the d.f. resulted in a large reduction in 

AIC and BIC, even though the function did not appear to change much visually. Based on 

AIC alone, 10 d.f. was best for both outcomes. Based on BIC alone, 10 d.f. was best for 

mortality and 6 d.f. for revision. However, in cases of large datasets, Royston and Lambert 

suggest basing the decision on ‘feel’ rather than formal statistics.34 Therefore it was decided 

that 5 d.f. would be adequate and is recommended as the default number for large datasets. 

Figure 2.6 suggests that visually any more knots would result in what appears to be over-

fitting. 
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Figure 2.6: The baseline hazard function estimated using different degrees of freedom 
for the outcomes of (a) mortality and (b) revision. AIC=Akaike information criterion, 
BIC=Bayesian information criterion. 

a) 

b) 
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The baseline hazard function relates to the hazard function when all the covariates in the 

model are equal to zero.34 Assuming a model with all the variables included, the baseline 

hazard would relate to a female that had a non-complex, uncemented procedure on one side 

only, was aged 0 years and categorised as ASA grade 1. This does not relate to any patient 

in the dataset due to age 0, but alternatively age could be mean-centred to make the 

baseline more meaningful and it would then relate to someone of average age. The shape of 

the baseline hazard function (Figure 2.6) for both mortality and revision reflect the high initial 

hazard immediately following surgery, after which the hazard rate rapidly declines and 

remains low for revision but increases slowly over time for mortality. Cox proportional 

hazards models do not explicitly model the baseline hazard function, and are thus inferior to 

the Royston-Parmar approach in this regard (STATISTICAL ADVANTAGE OF ROYSTON-

PARMAR MODELS 1: Estimating and displaying the baseline hazard function). 

2.6.4 Primary outcome analyses 

Unadjusted survival analysis 

The Kaplan-Meier unadjusted survival curves for procedure type are shown in Figure 2.7. 

This shows that patients receiving a cemented THR had a lower probability of survival and a 

higher probability of no revision over time when compared to patients receiving an 

uncemented THR. The unadjusted probability of patient survival at 8 years is 90.9% (95% CI: 

89.5% to 90.7%) in the uncemented group and 82.3% (95% CI: 81.9% to 82.7%) in the 

cemented group. The difference between cemented and uncemented procedures in terms of 

revision is much smaller than for survival as the outcome, with an unadjusted probability of 

no revision at 8 years of 97.8% (95% CI: 97.6% to 98.0%) and 96.6% (95% CI: 96.3% to 

96.9%) in cemented and uncemented procedures respectively. 
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Figure 2.7: Kaplan-Meier unadjusted survival curves for procedure type with (a) 
mortality and (b) revision as the outcomes (95% CIs given by dashed lines). 

a) 

b) 
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Kaplan-Meier plots for the other variables were also produced (see Appendix A2). The 

Kaplan-Meier plots suggested that women had a better outcome than men in terms of both 

mortality and revision. The probability of survival was highest for the youngest quartile of 

patients and lowest for the oldest quartile of patients as would be expected. Conversely, the 

youngest quartile of patients had the lowest probability of no revision over time. Patients 

categorised as complex procedures had a lower probability of survival over time compared to 

patients that had non-complex procedures. 

Fitting unadjusted Royston-Parmar models for mortality as the outcome resulted in an 

unadjusted hazard ratio of 1.83 (95% CI: 1.76 to 1.90), suggesting a higher mortality rate in 

the cemented group compared to the uncemented group. A hazard ratio of 0.53 (95% CI: 

0.50 to 0.57) was estimated for revision as the outcome, indicating a hazard of revision 47% 

lower in cemented versus uncemented procedures. The univariable hazard ratio estimates 

obtained by fitting Royston-Parmar models (Table 2.3) are practically identical to those from 

Cox regression for most variables (STATISTICAL ADVANTAGE OF ROYSTON PARMAR 

MODELS 2: For proportional hazards, the hazard ratio estimates are practically 

identical to Cox regression but one additionally obtains the baseline hazard). However, 

as there are large imbalances in baseline characteristics between the two procedure groups 

(seen in Table 2.2), these univariable hazard ratio estimates are likely to be confounded and 

therefore adjusted analyses are more appropriate. 
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Table 2.3: Univariable (unadjusted) estimates from Royston-Parmar and Cox models for mortality and revision. 

Variable 
Mortality Revision 

Royston-Parmar Cox Royston-Parmar Cox 
HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value 

Uncemented procedure 1 - 1 - 1 - 1 - 

Cemented procedure 
1.826 

(1.760 to 1.895) 
<0.001 

1.826 
(1.760 to 1.895) 

<0.001 
0.534 

(0.500 to 0.571) 
<0.001 

0.534 
(0.499 to 0.571) 

<0.001 

Age (years) 
1.095 

(1.093 to 1.098) 
<0.001 

1.095 
(1.093 to 1.098) 

<0.001 
0.980 

(0.976 to 0.983) 
<0.001 

0.980 
(0.977 to 0.983) 

<0.001 

Female 1 - 1 - 1 - 1 - 

Male 
1.302 

(1.261 to 1.344) 
<0.001 

1.302 
(1.261 to 1.344) 

<0.001 
1.227 

(1.147 to 1.312) 
<0.001 

1.226 
(1.147 to 1.312) 

<0.001 

ASA grade 1 1 - 1 - 1 - 1 - 

ASA grade 2 
1.577 

(1.499 to 1.659) 
<0.001 

1.577 
(1.499 to 1.659) 

<0.001 
0.965 

(0.885 to 1.052) 
0.422 

0.966 
(0.886 to 1.053) 

0.433 

ASA grade 3 
3.654 

(3.456 to 3.864) 
<0.001 

3.653 
(3.455 to 3.863) 

<0.001 
1.129 

(1.006 to 1.266) 
0.039 

1.130 
(1.007 to 1.267) 

0.037 

ASA grade 4 
6.702 

(5.894 to 7.620) 
<0.001 

6.700 
(5.893 to 7.618) 

<0.001 
0.492 

(0.245 to 0.988) 
0.046 

0.492 
(0.492 to 0.175) 

0.046 

ASA grade 5* 
4.245 

(2.460 to 2.878) 
<0.001 

4.244 
(2.460 to 7.324) 

<0.001 - - - - 

Non-complex 1 - 1 - 1 - 1 - 

Complex 
1.492 

(1.426 to 1.561) 
<0.001 

1.505 
(1.438 to 1.574) 

<0.001 
0.805 

(0.707 to 0.916) 
0.001 

0.791 
(0.693 to 0.903) 

0.001 

Single side 1 - 1 - 1 - 1 - 

Both sides 
0.533 

(0.347 to 0.817) 
0.004 

0.533 
(0.347 to 0.817) 

0.004 
1.672 

(1.007 to 2.777) 
0.047 

1.670 
(1.006 to 2.773) 

0.047 

*Not estimable for revision as the outcome 
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Adjusted results 

Mortality 

To adjust for baseline confounding in the mortality comparisons, procedure type was forced 

into the Royston-Parmar model and the variables age, gender, ASA grade and complexity 

were identified as statistically significant and thus also included. The model estimates (Table 

2.4) are again practically identical to those from Cox regression. The adjusted hazard ratio 

for cemented compared to uncemented procedures is 1.11 (95% CI: 1.07 to 1.16) which 

remained statistically significant (p<0.001), but was substantially smaller than the unadjusted 

estimate (HR=1.83) due to the adjustment for confounding. The hazard of mortality is 

estimated to be 11% higher in patients that received a cemented procedure compared to 

patients that received an uncemented procedure, assuming that they had not had a revision 

before this time. Other estimates from this multivariable model suggest a 1-year increase in 

age is associated with an increase in the hazard of death of 9% (95% CI: 6.9% to 15.5%) 

and the hazard for ASA grade relative to ASA grade 1 increases as grade increases. The 

hazard of death is also 53.7% (95% CI: 48.9% to 58.7%) higher for males compared to 

females and 39.5% (95% CI: 33.2% to 46.2%) higher for complex procedures compared to 

non-complex procedures.  

A sensitivity analysis was performed by refitting the model for mortality but including the 

variable ‘approach’ which was missing in over 15000 patients (see Appendix A3), hazard 

ratios were similar for the variables included in Table 2.4 and there was still a highly 

significant difference between cemented and uncemented procedures. 
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Table 2.4: Multivariable Royston-Parmar model estimates for mortality as the outcome. 

Variable Hazard ratio 95% Confidence interval P-value 

Uncemented procedure 1 - - 
Cemented procedure 1.111 1.069 to 1.155 <0.001 
Age (years) 1.090 1.088 to 1.092 <0.001 
Female 1 - - 
Male 1.537 1.488 to 1.587 <0.001 
ASA grade 1 1 - - 
ASA grade 2 1.192 1.133 to 1.255 <0.001 
ASA grade 3 2.152 2.033 to 2.278 <0.001 
ASA grade 4 3.517 3.091 to 4.002 <0.001 
ASA grade 5 2.937 1.702 to 5.070 <0.001 
Non-complex 1 - - 
Complex 1.397 1.333 to 1.464 <0.001 

 

Unlike Cox regression, Royston-Parmar models also estimate the baseline hazard. This 

allows the population-averaged survival curves for the cemented and uncemented procedure 

types to be estimated. These can be thought of as ‘adjusted’ for the included variables of 

age, gender, ASA grade and complexity (STATISTICAL ADVANTAGE OF ROYSTON 

PARMAR MODELS 3: Population-averaged `adjusted’ survival curves). The mean 

probability of survival at 8 years in patients receiving either a cemented or uncemented THR 

is quite high, 0.850 (95% CI: 0.846 to 0.854) for cemented and 0.863 (95% CI: 0.858 to 

0.868) for uncemented patients (Figure 2.8). There was a significant absolute difference in 

the mean probability of survival between the cemented and uncemented groups over time, 

although the difference in survival curves is much smaller than that seen in the unadjusted 

Kaplan-Meier plot (Figure 2.7a). 
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Figure 2.8: Population-averaged (adjusted) survival curves for procedure type and 
mortality as the outcome (95% CIs given by dashed lines). 

Importantly however, although the absolute difference between cemented and uncemented 

procedures is statistically significant, the difference in predicted mean survival probabilities at 

any given time is very small (STATISTICAL ADVANTAGE OF ROYSTON PARMAR 

MODELS 4: Estimating differences in absolute S(t) over time, after adjustment for 

covariates in the model). Table 2.5 shows the absolute mean survival probabilities for the 

cemented and uncemented groups and the difference in mean absolute survival probabilities 

at different times following surgery. The difference increases over time and the largest 

difference is seen at 8 years with a difference in mean survival probabilities of 0.013 (95% 

CI: 0.007 to 0.019). 
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Table 2.5: Mean survival probabilities and difference in mean survival probabilities 
between procedure types at selected time points. 

Time point 
Cemented S(t)  

(95% CI) 
Uncemented S(t) 

(95% CI) 
Difference  
(95% CI) 

1 year 0.986 
(0.985 to 0.986) 

0.987 
(0.987 to 0.988) 

0.001 
(0.001 to 0.002) 

2 year 0.971 
(0.970 to 0.972) 

0.974 
(0.973 to 0.975) 

0.003 
(0.002 to 0.004) 

3 year 0.953 
(0.952 to 0.954) 

0.958  
(0.956 to 0.959) 

0.005 
(0.003 to 0.006) 

4 year 0.932 
(0.931 to 0.933) 

0.939 
(0.937 to 0.941) 

0.006 
(0.004 to 0.009) 

5 year 0.910 
(0.908 to 0.912) 

0.919 
(0.916 to 0.921) 

0.008 
(0.005 to 0.011) 

8 year 0.850 
(0.846 to 0.854) 

0.863 
(0.858 to 0.868) 

0.013 
(0.007 to 0.019) 

 

Revision 

The multivariable model for revision included procedure type along with adjustment for age, 

gender and ASA grade. Complexity and both sides were not significant in the stepwise 

selection process when modelling revision and therefore not included in the final model. The 

adjusted hazard ratio for cemented procedures compared to uncemented procedures was 

0.57 (95% CI: 0.53 to 0.62), shown in Table 2.6. This suggests that the hazard of revision 

was 43% lower at any time point in patients who received a cemented procedure compared 

to an uncemented procedure. As mortality is a competing risk to revision, this result relates 

only to patients that had not died before this time. The hazard of revision was also higher for 

males compared to females but decreased with age and with increasing ASA grade up to 

grade 3 (a lower hazard ratio was observed for grade 4 compared to grade 1 although not 

significant and a hazard ratio was not estimable for grade 5 due to small numbers in this 

category). 
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Table 2.6: Multivariable Royston-Parmar model estimates for revision as the outcome. 

Variable Hazard ratio 95% Confidence interval P-value 

Uncemented procedure 1 - - 
Cemented procedure 0.578 0.539 to 0.621 <0.001 
Age (years) 0.987 0.984 to 0.991 <0.001 
Female 1 - - 
Male 1.151 1.076 to 1.232 <0.001 
ASA grade 1 1 - - 
ASA grade 2 1.087 0.995 to 1.187 0.065 
ASA grade 3 1.377 1.223 to 1.550 <0.001 
ASA grade 4 0.599 0.298 to 1.204 0.150 
ASA grade 5* - - - 

*Not estimable 

The population-averaged (adjusted) survival curves in Figure 2.9 show a greater probability 

of no revision for the cemented group compared to the uncemented group, with similar 

absolute probabilities to those seen in the unadjusted Kaplan-Meier plot (Figure 2.7b). 

However, as for mortality at 8 years of follow-up, the mean predicted probability of no 

revision was 0.979 (95% CI: 0.978 to 0.981) in the cemented group and 0.964 (95% CI: 

0.962 to 0.967) in the uncemented group which are both higher than for mortality. There was 

a difference in mean predicted revision probabilities of 0.015 at 8 years (95% CI: 0.012 to 

0.017) assuming patients were still alive at this time. 
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Figure 2.9: Population-averaged (adjusted) survival curves for procedure type and 
revision as the outcome (95% CIs given by dashed lines). 

Predictions for individuals 

One of the advantages of modelling the baseline hazard function using Royston-Parmar 

models is the ability to make predictions, not only for patient groups but for individual 

patients, based on the specific values that they take for covariates in the model 

(STATISTICAL ADVANTAGE OF ROYSTON PARMAR MODELS 5: Making risk 

predictions for groups of patients and individuals). The predicted difference in mortality 

rates and survival probabilities between cemented and uncemented procedures at 1, 5 and 8 

years following the THR are given in Table 2.7. The differences were predicted for individuals 

of different ages, gender, ASA grades and complexity. Table 2.7 shows that for a 50 year old 

male, categorised as ASA grade 2 that had a non-complex procedure, the predicted 

difference in mortality rate between cemented and uncemented procedures is 0.36 (95% CI: 

0.22 to 0.50) per 1000 person-years at 8 years. Whereas for someone of the same gender, 

ASA grade and complexity but of age 80, the predicted difference in mortality rate is 4.79 per 
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1000 person-years (95% CI: 3.02 to 6.56). The largest predicted difference in 8 year survival 

between procedure types (cemented – uncemented) is 0.0377 (95% CI: 0.0240 to 0.0515), 

observed for an 80 year old male, categorised as ASA grade 3 with a complex primary THR. 

Table 2.7: Predicted difference between procedure types in mortality rate (cemented – 
uncemented) and survival probability (uncemented – cemented) at 1, 5 and 8 years. 

Age Gender Grade Complex 

Difference in mortality rate 
(per 1000 person-years) 

Difference in survival 
probability 

1 year 5 year 8 year 1 year 5 year 8 year 

50 M 1 No 0.150 0.299 0.302 0.0002 0.0012 0.0020 

50 M 1 Yes 0.209 0.417 0.421 0.0002 0.0016 0.0028 

50 M 2 No 0.178 0.356 0.360 0.0002 0.0014 0.0024 

50 M 2 Yes 0.249 0.497 0.502 0.0003 0.0019 0.0033 

50 M 3 No 0.322 0.643 0.650 0.0004 0.0025 0.0043 

50 M 3 Yes 0.449 0.896 0.906 0.0005 0.0034 0.0059 

50 F 1 No 0.096 0.203 0.210 0.0001 0.0008 0.0013 

50 F 1 Yes 0.134 0.283 0.293 0.0002 0.0011 0.0019 

50 F 2 No 0.114 0.242 0.250 0.0001 0.0009 0.0016 

50 F 2 Yes 0.160 0.337 0.349 0.0002 0.0012 0.0022 

50 F 3 No 0.207 0.436 0.452 0.0002 0.0016 0.0028 

50 F 3 Yes 0.288 0.609 0.631 0.0003 0.0022 0.0039 

80 M 1 No 1.992 3.977 4.021 0.0022 0.0134 0.0213 

80 M 1 Yes 2.778 5.547 5.607 0.0031 0.0176 0.0268 

80 M 2 No 2.374 4.740 4.792 0.0026 0.0155 0.0241 

80 M 2 Yes 3.311 6.611 6.683 0.0036 0.0202 0.0297 

80 M 3 No 4.286 8.558 8.651 0.0047 0.0243 0.0338 

80 M 3 Yes 5.977 11.935 12.066 0.0064 0.0299 0.0377 

80 F 1 No 1.278 2.700 2.798 0.0015 0.0092 0.0152 

80 F 1 Yes 1.782 3.766 3.902 0.0020 0.0123 0.0198 

80 F 2 No 1.523 3.218 3.334 0.0017 0.0107 0.0175 

80 F 2 Yes 2.124 4.488 4.650 0.0024 0.0143 0.0225 

80 F 3 No 2.750 5.810 6.019 0.0031 0.0177 0.0268 

80 F 3 Yes 3.835 8.103 8.395 0.0043 0.0227 0.0324 
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The hazard function is a rate that can change over time. Thus, although the hazard ratio is 

assumed to be constant over time in the Royston-Parmar models fitted, the difference in 

absolute survival probabilities or mortality rates between groups can vary as the baseline 

hazard rate changes over time. The absolute difference in mortality rates will be larger at 

time points when the baseline hazard rate is higher. Using a 60 year old male, categorised 

as ASA grade 2 having a non-complex primary THR as an example, the predicted difference 

in mortality rate between cemented and uncemented procedures is greatest immediately 

following surgery, after which it reduces to 0.42 per 1000 person-years (95% CI: 0.27 to 

0.58) at 1 year after surgery and then remains fairly constant around 0.85 from 4 to 8 years 

following surgery (shown in Figure 2.10). 

 

Figure 2.10: Difference in mortality rate (per 1000 person-years) between procedure 
types (cemented – uncemented) for a 60 year old male, ASA grade 2 having a non-
complex primary THR (95% CI given by dashed lines). 
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2.6.5 Secondary analyses 

Results by ASA grade 

Mortality 

Each ASA grade was examined separately, with adjustment made for age, gender and 

complexity. There were too few patients in ASA grade 5 for the model to be fitted in that 

subgroup of patients. A significant difference in mortality between cemented and 

uncemented procedures was seen for ASA grade 2 patients with a hazard ratio of 1.15 (95% 

CI: 1.10 to 1.21) and ASA grade 4 patients with a hazard ratio of 1.37 (95% CI: 1.03 to 1.83), 

yet there was no significant difference observed for ASA grade 1 or grade 3 patients with 

hazard ratios close to one (Table 2.8). 

Table 2.8: Adjusted procedure type hazard ratios (cemented versus uncemented) for 
mortality, fitted for each ASA grade separately. 

ASA Grade N 
Procedure type 

hazard ratio 
95% Confidence interval P-value 

1 46612 0.992 0.884 to 1.112 0.885 
2 189499 1.153 1.096 to 1.213 <0.001 
3 37520 1.038 0.963 to 1.118 0.328 
4 1308 1.371 1.027 to 1.832 0.032 

 

Revision 

Adjusting for age and gender, there was a significant difference in the hazard of revision 

between cemented and uncemented procedures in ASA grades 1, 2 and 3 separately (all 

p<0.001), hazard ratios were unestimable for ASA grade 4 and 5 subgroups. The hazard of 

revision was 39% lower in ASA grades 1 and 2, and 54% lower in ASA grade 3 patients 

receiving a cemented procedure compared to an uncemented procedure (Table 2.9). 
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Table 2.9: Adjusted procedure type hazard ratios (cemented versus uncemented) for 
revision, fitted for each ASA grade separately. 

ASA Grade N 
Procedure type 

hazard ratio 
95% Confidence interval P-value 

1 46612 0.605 0.512 to 0.715 <0.001 
2 189499 0.604 0.554 to 0.659 <0.001 
3 37520 0.460 0.384 to 0.550 <0.001 

 

Inclusion of Birmingham Hip Resurfacing – under 55 male only analyses 

BHRs are primarily aimed at younger patients (<55 years of age).97 Therefore secondary 

analyses were conducted on a subset of patients which match the age range in which BHRs 

are intended for use. Although the mean age of patients was more similar in the three 

procedure groups (ranging from 49.16 in BHR to 51.01 in cemented) after removal of 

patients older than 55 years, baseline characteristics were still not balanced for ASA grade or 

complexity (Table 2.10). The number of patients included in analyses were also reduced 

(N=11483) with fewer events (deaths=98, revisions=195). 
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Table 2.10: Summary of baseline characteristics, outcome and follow-up by procedure 
type in males under 55 years of age. 

 
 

BHR 
(n=3560) 

Uncemented 
(n=6193) 

Cemented 
(n=1730) 

Baseline characteristics    
Age, years Mean (SD) 47.92 (5.50) 48.49 (6.09) 49.13 (5.87) 

Median 49.16 50.33 51.01 
IQR 44.66 – 52.28 45.76 – 53.02 46.71 – 53.37 
Range 19.03 – 54.99 17.13 – 54.99 18.10 – 54.99 

ASA Grade, n (%) 1 2077 (58.34) 2595 (41.90) 692 (40.00) 
2 1421 (39.92) 3225 (52.07) 925 (53.47) 
3 59 (1.66) 360 (5.81) 108 (6.24) 
4 2 (0.06) 12 (0.19) 4 (0.23) 
5 1 (0.03) 1 (0.02) 1 (0.06) 

Complexity Non-complex 3511 (98.62) 6119 (98.81) 1525 (88.15) 
Complex 49 (1.38) 74 (1.19) 205 (11.85) 

Both sides, n (%) No 3531 (99.19) 6143 (99.19) 1716 (99.19) 
Yes 29 (0.81) 50 (0.81) 14 (0.18) 

Follow-up     
Endpoint, n (%) Death 10 (0.28) 56 (0.90) 32 (1.85) 

Revision 60 (1.69) 107 (1.73) 28 (1.62) 
Unrevised 3490 (98.03) 6030 (97.37) 1670 (96.53) 

Length of follow-
up, person-years 

Total 11637 15886 5991 

 

Mortality 

Table 2.11 shows the multivariable model estimates for mortality in males under 55 years of 

age. This is used to demonstrate a situation where hazard ratios alone can be very 

misleading. Here, the hazard ratio for cemented compared to BHR was 3.86 (95% CI: 1.82 to 

8.18) and was highly significant (p<0.001). Thus, the hazard of mortality was estimated to be 

almost four times higher in males under 55 years of age that received the cemented 

procedure relative to BHR. This sounds dramatic, but knowledge of the baseline hazard is 

required to make this result more clinically meaningful. 
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Table 2.11: Multivariable Royston-Parmar model estimates for mortality as the 
outcome in males under 55 years of age. 

Variable Hazard ratio 95% Confidence interval P-value 

BHR procedure 1 - - 
Cemented procedure 3.863 1.824 to 8.182 <0.001 
Uncemented procedure 3.073 1.552 to 6.082 0.001 
Age (years) 1.045 1.002 to 1.089 0.039 
ASA grade 1 1 - - 
ASA grade 2 1.756 1.056 to 2.920 0.030 
ASA grade 3 9.340 5.255 to 16.601 <0.001 
ASA grade 4 11.527 1.550 to 85.70 0.017 
ASA grade 5* - - - 
Non-complex 1 - - 
Complex 1.840 0.901 to 3.758 0.094 

*Not estimable 

To illustrate that the baseline hazard is necessary to interpret hazard ratios correctly, Table 

2.12 shows the relevant results from the analysis of all males as well as the analysis of 

males under 55 years of age (the full results of the all male analysis can be found in 

Appendix A4). The hazard ratio for cemented versus BHR was much larger in the under 55 

male analysis (HR=3.86) than in the analysis of males of all ages, where the hazard ratio for 

cemented compared to BHR was 1.67. However, even though the hazard ratio is larger, the 

absolute difference in S(t) is actually smaller in the under 55 group, due to the lower baseline 

hazard rate. 

This is more easily understood using a simple example; say there is a constant hazard rate 

for a group A and group B of 0.2 and 0.8 respectively; this would give a hazard ratio of 4 for 

group B relative to group A. However, if the hazard rates were 0.6 and 1.2 for groups A and 

B respectively, the hazard ratio would be 2 yet the absolute difference in hazard rates would 

be 0.6 in both cases. Thus the larger hazard ratio observed for the under 55 male only 

analysis is relative to the lower baseline hazard in this subgroup of patients than that seen in 

males of all ages, and therefore the hazard ratio has to be larger to show even a small 
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absolute difference. At 6 years, the baseline hazard for all males is estimated to be 1.848 per 

1000 person-years and only 0.458 per 1000 person-years for males under 55 years. 

In absolute terms, the difference in survival probabilities between cemented and BHR 

procedures was only 0.018 (95% CI: 0.008 to 0.028) at 6 years (Table 2.12). This difference 

is smaller than the difference between the two procedures in males of all ages which was 

0.044 (95% CI: 0.029 to 0.060) at 6 years, even though the hazard ratio was much larger. 

So, larger hazard ratios do not necessarily imply larger absolute differences as they depend 

on the baseline hazard to which the comparison is being made (STATISTICAL 

ADVANTAGE OF ROYSTON PARMAR MODELS 6: Identify significant hazard ratios 

that are clinically important in relation to baseline risk). 
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Table 2.12: Comparison of hazard ratios and absolute survival probabilities in mortality analyses of males of all ages and males under 
55 years of age. 

Time 
point 

Analysis 
HR  

cemented vs. BHR 
(95% CI) 

Predicted  
BHR S(t)  
(95% CI) 

Predicted 
cemented S(t) 

(95% CI) 

Absolute diff in S(t) 
BHR – cemented 

(95% CI) 

Baseline hazard  
h(t) (per 1000 person-

years)** 

1 year All males 1.667 
(1.349 to 2.061) 

0.990 
(0.988 to 0.992) 

0.983 
(0.982 to 0.984) 

0.006 
(0.004 to 0.009) 

0.923 

1 year Males <55 years 3.863  
(1.824 to 8.182) 

0.999 
(0.998 to 1.000) 

0.995 
(0.993 to 0.998) 

0.003 
(0.001 to 0.006) 

0.475 

6 years All males 1.667 
(1.349 to 2.061) 

0.921 
(0.906 to 0.936) 

0.877 
(0.873 to 0.881) 

0.044 
(0.029 to 0.060) 

1.848 

6 years Males <55 years 3.863 
(1.824 to 8.182) 

0.994 
(0.990 to 0.998) 

0.976 
(0.966 to 0.985) 

0.018 
(0.008 to 0.028) 

0.458 

** Baseline hazard relates to a BHR patient, aged 50 years, ASA grade 1 having a non-complex procedure. 
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The population-averaged survival curves are given in Figure 2.11. The probability of survival 

over time was very high in males under 55 years of age receiving any of the three 

procedures. However, small differences between procedures were observed and patients 

receiving a BHR had the greatest probability of survival at 6 years with a probability of 0.994 

(0.990 to 0.998). 

 

Figure 2.11: Adjusted survival curve for procedure type including BHR in men under 
the age of 55 where the outcome is mortality (95% CIs given by dashed lines). 

Revision 

There was no significant difference in revision rates between BHR and either cemented or 

uncemented procedures as seen in Table 2.13 (Wald test p=0.213 for procedure type). 
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Table 2.13: Multivariable Royston-Parmar model estimates for revision as the outcome 
in males under 55 years of age. 

Variable Hazard ratio 95% Confidence interval P-value 

BHR procedure 1 - - 
Cemented procedure 0.833 0.529 to 1.313 0.432 
Uncemented procedure 1.185 0.860 to 1.634 0.300 
ASA grade 1 1 - - 
ASA grade 2 1.404 1.045 to 1.886 0.024 
ASA grade 3 1.654 0.897 to 3.051 0.107 
ASA grade 4* - - - 
ASA grade 5* - - - 

*Not estimable 

Figure 2.12 shows that the difference between survival curves of all three procedure types is 

very small. 

 

Figure 2.12: Adjusted survival curve for procedure type including BHR in men under 
the age of 55 where the outcome is revision (95% CIs given by dashed lines). 
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2.7 Discussion 

In this chapter, an in-depth analysis has compared THR procedures in terms of mortality and 

revision, whilst identifying statistical advantages of Royston-Parmar models. Here, the key 

conclusions and limitations are summarised. 

2.7.1 Summary of clinical findings 

The clinical findings were published in the BMJ (Appendix A5).86 Annual reports by the NJR 

have presented analyses of revision rates and reported differences between procedures, 

also using flexible parametric models. However, very limited analysis has been performed by 

the NJR for the outcome of mortality.89,101,102 The NJR annual reports give unadjusted 30 and 

90-day mortality rates but do not include mortality analyses of the same depth as for revision; 

in particular, adjusted analyses are not presented. 

This study of the NJR data found small but significant differences between survival 

probabilities of patients receiving cemented and uncemented procedures. After adjusting for 

age, gender, ASA grade and complexity of procedure, the hazard of death was 11.1% (95% 

CI: 6.9% to 15.5%) higher in patients that received a cemented THR compared to an 

uncemented THR, assuming patients had not already had a revision. This hazard ratio 

corresponded to a difference in mean predicted survival probabilities of 0.013 (95% CI: 0.007 

to 0.019) at 8 years. The hazard of revision was 42.2% (95% CI: 37.9% to 46.1%) lower in 

patients that received a cemented compared to an uncemented THR and this corresponded 

to a difference in mean predicted probabilities of 0.015 (95% CI: 0.012 to 0.017) at 8 years, 

assuming they had not died before this time. Although these differences are small, due to the 

number of hip replacements that are performed each year, if genuine it could still have 

important implications and is therefore of public health interest. There were around 71 500 

primary hip replacements recorded by the NJR for 2011.102 If hypothetically, these were all 
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planned to be cemented procedures and changed to receive uncemented procedures, 

assuming the model results to be true, a predicted 929 fewer deaths (95% CI: 500 to 1359) 

would occur within 8 years, for patients who had not received a revision by this time. The 

analysis of males under the age of 55 suggested an increased hazard of mortality in 

cemented and uncemented THRs relative to BHRs but no significant difference between 

procedures for revision (p=0.213). 

After examining each ASA grade separately, there was a significant increase in hazard 

associated with cemented rather than uncemented procedures found within ASA grade 2 

(p<0.001) and ASA grade 4 patients (p=0.032). The procedure hazard ratio was not 

significant in ASA grade 1 (p=0.885) or ASA grade 3 (p=0.328) and was unestimable in ASA 

grade 5 patients. A significant procedure hazard ratio for revision was found in ASA grades 

1, 2 and 3 (all p<0.001) but was unestimable in ASA grade 4 and 5 patients. If there was a 

genuine increased mortality risk from cemented, it would be expected to appear in each of 

the subgroups of patients even if the effect size differed, but it does not. Therefore, this 

raises some doubt about the causality of the cemented effect for mortality as it was not 

significant in all grades even with large numbers. However, the reduced revision risk for 

cemented procedures was observed in each ASA grade for revision. 

Since this work was published in the BMJ, other studies have also been published supporting 

some of the findings of this chapter. One study compared metal-on-metal hip resurfacing to 

cemented and uncemented THRs using a propensity matched analysis of the hospital 

episode statistics database, and found that patients receiving a metal-on-metal resurfacing 

had a higher survival probability than patients receiving cemented (HR=0.51, 95% CI:0.45 to 

0.59) and uncemented (HR=0.55, 95% CI:0.47 to 0.65) THRs.103 Confounders such as a 

comorbidity index, rurality, area deprivation and surgical volume were included in their study 
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but not available in the analyses included in this chapter. This suggests that even after 

adjusting for further confounders, the difference in mortality rates between hip resurfacings 

and THRs still remains. A systematic review and meta-analysis of randomised controlled 

trials comparing cemented and uncemented THRs concluded that there was no significant 

difference in revision rates between cemented and uncemented THRs.104 They also found no 

difference in the mortality rates between cemented and uncemented THRs. These findings 

could be due to relatively few RCTs in the literature, and thus low power to detect small 

differences, compared to the large cohort studies used in this chapter and other published 

studies. Events for both mortality and revision are relatively rare so the sample size required 

to detect any ‘significant’ differences would need to be large. If an RCT was to be powered 

for the difference observed between cemented and uncemented procedures for mortality 

(hazard ratio=1.111), 2834 events would be required for 80% power and type I error of 0.05. 

Therefore, based on the 5-year estimated population-averaged survival probabilities, at least 

33350 patients would need to be recruited to observe that number of deaths within 5 years 

(without even allowing for loss to follow-up). Another potential reason for no significant 

difference between procedures in the systematic review could be because patient 

characteristics should be more balanced in RCTs and differences seen between procedure 

types in cohort studies could be due to residual confounding not measured as patients are 

not randomised to procedure type. 

One of the major limitations to the data used in this chapter is the limited number of variables 

recorded and the potential for residual confounding. The analyses have considered all 

information available in the dataset, however important factors such as smoking, activity 

level, deprivation levels and comorbidity scores were not recorded in the dataset and 

therefore could not be adjusted for. There may also be errors in the entry of data, for 

example patients recorded as ASA grade 5 are unlikely to receive hip replacement surgery 
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as they are expected to die within 24 hours with or without an operation. Therefore it is more 

likely that these patients are ASA grade 1-4 but recorded as ASA grade 5 in error. Another 

limitation is that patients were only considered up to the time of revision if they had one, and 

so mortality after revision was not considered. Further, clinical studies with additional patient 

information should be undertaken to confirm any differences in mortality and revision found in 

these analyses. 

2.7.2 Statistical advantages of flexible parametric models in this 

dataset 

One of the key features of the Cox proportional hazards model is that it is semi-parametric.105 

This means that no distributional assumptions are made for the baseline hazard function. 

This makes Cox models very easy to fit and the most popular modelling technique for time-

to-event data. Parametric models such as the exponential or Weibull models use a 

parametric distribution for the baseline hazard function, and as such often do not adequately 

fit the underlying shape of the hazard function in real data as they are limited in the shapes 

that can be fitted.34 

Although Cox regression models are very easy to fit and do not make any distributional 

assumptions, they are limited in their use for prediction modelling. Royston-Parmar models 

however, are just as easy to implement in software packages such as Stata and have many 

advantages due to the explicit modelling of the baseline (cumulative) hazard function. 

Throughout this chapter, six key statistical advantages of using Royston-Parmar models 

were identified. 
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ADVANTAGE 1: Estimating and displaying the baseline hazard function 

Using restricted cubic splines with varying degrees of freedom makes it possible to model the 

cumulative baseline hazard function flexibly. Whereas standard parametric models are not 

very flexible and most cannot model functions that have turning points, Royston-Parmar 

models are very flexible. Software packages such as those in Stata also make it easy to 

display the baseline hazard function. 

ADVANTAGE 2: For proportional hazards, the hazard ratio estimates are practically 

identical to Cox regression but one additionally obtains the baseline hazard 

Royston-Parmar models still produce hazard ratios which (when the baseline hazard is 

modelled correctly) are almost identical to those obtained from a Cox proportional hazards 

model. However, by modelling the baseline hazard function, it is possible to make predictions 

over time that would not be possible using a Cox model. 

ADVANTAGE 3: Population-averaged (`adjusted’) survival curves 

Population-average survival curves can be plotted to graphically show survival functions for 

groups of patients (for example procedure type), adjusting for other covariates in the model 

This is a good alternative to Kaplan-Meier survival curves which are generally produced for 

one variable and therefore are unadjusted step functions. Using Royston-Parmar models, 

predicted survival curves are averaged over the population assuming each procedure type 

for example, resulting in survival curves that are ‘adjusted’ for the other variables in the 

model. 
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ADVANTAGE 4: Estimating differences in absolute S(t) over time, after adjustment for 

covariates in the model 

From the population-averaged survival curves, the differences in absolute S(t) can be 

calculated, after adjusting for covariates in the model. This gives the average difference in 

survival functions at particular time points and allows the absolute survival difference to be 

reported in addition to the hazard ratios that are usually reported. 

ADVANTAGE 5: Making risk predictions for groups of patients and individuals 

By modelling the baseline hazard function using Royston-Parmar models, predictions are 

possible for individuals by using their specific covariate values in the model and therefore 

being able to predict their survival and hazard over time. This is important for prognosis 

research and if such a model were used in clinic, it would be possible to use the information 

to help make clinical decisions for an individual based on their characteristics rather than 

averages for groups of patients. 

ADVANTAGE 6: Identify significant hazard ratios that are clinically important in 

relation to baseline risk 

Advantage 6 is an important one as a hazard ratio is only useful when we know what it is 

relative to i.e. the baseline. Using the hazard ratio from the under 55 male only analysis as 

an example, it is possible to conclude that there is a significant four-fold increase in the 

hazard of mortality for patients that received the cemented procedure compared to patients 

that received the BHR (HR=3.96, p<0.001). This hazard ratio is very similar to that obtained 

by fitting a multivariable Cox model. The hazard ratio only gives the hazard of death for 

cemented patients relative to BHR patients. This does not give any information about their 

absolute risk of mortality which is low with a (predicted) mean probability of death of 0.024 in 
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patients that received a cemented procedure compared to 0.006 in the BHR group at 6 years 

resulting in a small difference in mean probabilities of 0.018 at 6 years. 

2.7.3 Potential pitfalls and situations when Royston-Parmar models 

are not required 

Royston-Parmar models may not always be necessary to use instead of Cox proportional 

hazards models. In some cases, only relative measures such as hazard ratios may be 

required. For example, if testing whether a new prognostic factor is significantly associated 

with the outcome of interest. The benefits of modelling the baseline hazard are clear when 

absolute risk prediction is of interest as the baseline hazard function facilitates absolute risk 

prediction over time and individualised predictions. However, it is also important to ensure 

that there is adequate data (sufficient number of events) available as additional d.f. are used 

to fit the restricted cubic spline function for the baseline hazard. Caution should also be taken 

not to overfit the baseline hazard function to the data. Overfitting of the baseline hazard could 

occur if too many knots are used and/or there are an insufficient number of events. 

2.7.4 Further work 

As an extension, competing risks survival models might be used for the analysis of revision 

accounting for the competing risk of death, in order to derive absolute risk predictions in a 

‘real world’ setting where death can prevent revision occurring. In this chapter, analyses for 

mortality assumed that a patient had not had a revision before that time, as individuals that 

had a revision were censored at their revision time. The results of the mortality analyses are 

therefore in a hypothetical setting where no revision would occur beforehand. Ideally, 

mortality information would be available even if a patient had subsequent revisions after the 

initial THR. Methods for handling competing risks involve fitting separate models for the 

competing events which has been done in this study or fitting a model stratified by competing 
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events.34,106 This would need some exploration as strictly speaking, death is a competing 

event for revision but revision is not a competing event for death, even though patients have 

not been followed up for death after having a revision. 

As a further analysis, patients could be matched using propensity scores. This approach 

attempts to account for the differences in baseline characteristics between treatments (in this 

case, procedure type) by matching patients on their propensity score,  

Pr(Ti=1|Xi) 

which is the conditional probability of receiving treatment T based on covariates X for 

individual i, usually calculated using a logistic or probit model.107,108 The results of such an 

analysis could be compared to those reported in this chapter. However, residual confounding 

could still be an issue and cannot be dealt with properly until additional variables (such as 

smoking and comorbidities) are recorded or made available. In addition to this, the 

propensity score approach may not be any better than multivariable modelling. In an editorial 

by Winkelmayer and Kurth, the authors say that in most situations ‘the use of propensity 

scores has no apparent advantage compared with traditional methods’.109 Also saying, ‘Only 

if the outcome is rare relative to the number of confounders and the number of study subjects 

in the smaller exposure group is sufficiently large to warrant multivariable propensity score 

estimation, then this statistical technique has a legitimate role to potentially reduce bias and 

expand the possibilities in observational outcomes research’.109,110 



89 
 

2.8 Conclusion 

Clinically, a small but significant difference has been found between cemented and 

uncemented procedures suggesting that patients receiving a cemented THR had a higher 

mortality rate but lower revision rate than patients receiving an uncemented THR. Whether 

this is genuine or due to residual confounding requires further research. Ideally a RCT in 

which the baseline characteristics of patients receiving the different procedure types were 

balanced could give more conclusive results as to whether the observed effect is real. 

However, due to the length of follow-up required and the number of patients that would be 

needed to detect such a small difference, this is unlikely to happen. In addition to this, 

sometimes a particular procedure may be best suited to an individual due to the 

requirements of that individual, for example, older patients receiving cemented THRs and 

young active males receiving BHRs. It is important to consider the other advantages and 

disadvantages of each procedure when the differences in mortality and revision are small. 

Statistically, this dataset also highlighted the importance of modelling the baseline hazard 

function and the advantages of using Royston-Parmar models rather than Cox regression 

models. This is particularly important in prediction modelling, where ideally predictions should 

be made on an individual basis for patients and risk of an outcome presented in absolute 

terms rather than hazard ratios alone or predictions for groups of patients. 

In the following chapter, a literature review is performed to assess how clinical prediction 

models have been developed and reported in some of the leading journals. This will give an 

indication of the types of models fitted to time-to-event data, if and how the baseline hazard 

function is modelled and how results are reported. In particular, to ascertain whether flexible 

parametric modelling is being used in making predictions for individuals and if not, 

summarise what methods are being used for absolute risk predictions.  
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CHAPTER 3: ESTIMATING THE BASELINE 

HAZARD AND ABSOLUTE RISK IN 

MULTIVARIABLE PREDICTION MODELS: A 

REVIEW OF CURRENT PRACTICE 

3.1 Introduction and objectives 

Chapter 2 illustrated how the baseline hazard can be modelled using Royston-Parmar 

models. It also highlighted some of the statistical advantages of modelling the baseline 

hazard, such as the ability to predict survival curves for individuals as well as for groups of 

patients. Royston-Parmar models were first published in 2001 and can easily be fitted in 

software packages such as Stata and R.32,34,40,111 Therefore, it is of interest to evaluate if and 

how these (or other methods for baseline hazard estimation) are being implemented in the 

development of multivariable prediction models using time-to-event data. Such models 

consider multiple prognostic factors in combination, usually to examine the independent 

prognostic value of each factor and/or to use the overall model for making absolute risk 

predictions for new individuals. Therefore modelling of the baseline hazard could be 

advantageous but do researchers model the baseline hazard at all and, if not, how do they 

propose to use their model for making absolute risk predictions? 

The primary objective of this chapter is therefore to review published journal articles that 

develop a multivariable prediction model (for any purpose), and to thereby identify: 

(i) If the baseline hazard is being modelled in practice and, if so, what methods are 

being used. 

(ii) How absolute risk predictions are being presented from the developed model and 

whether the baseline hazard is being used to do so. 



92 
 

(iii) How the developed model enables absolute risk predictions for new individuals 

and whether the baseline hazard is utilised toward such predictions. This will 

enable the different methods used for development and validation of the models 

to be identified and summarised, especially with regard to estimation of the 

baseline (cumulative) hazard function and absolute risks. 

Secondary objectives of the review are to: 

 Assess how the fitted models were reported; for example, how the baseline hazard 

was reported (if modelled) and whether beta estimates were reported or only hazard 

ratios. 

 Assess if and how the proportional hazards assumption was checked. 

 Assess how continuous variables were included in the multivariable model i.e. 

linearly, categorised or transformed. 

 Summarise how authors validated their prediction model (where relevant). 

The findings of the review should therefore help identify areas for improvement, current good 

practice, and recommendations for better use of the baseline hazard in prediction research. 

Note that a review published by Bouwmeester et al. aimed to investigate the reporting and 

methods used for prediction studies.85 The authors conducted a systematic review of all 

prediction studies published in six high impact journals in 2008. Some of the studies included 

in the Bouwmeester et al. review are also included in the review done in this chapter; 

however, whereas they were interested in all prediction studies, this chapter is only 

interested in prediction models using time-to-event data as primary interest is in the baseline 

hazard function and how absolute risk predictions are derived. 
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3.2 Method 

3.2.1 Identifying a set of articles for review 

A database of multivariable prediction models was available to use for the literature review. 

This was kindly provided by collaborators at UMC Utrecht, Prof. Karel Moons and Thomas 

Debray. The database was created as part of a systematic review looking at the 

development, validation and impact of prediction models, published as part of the 

PROGRESS series.3 The database consisted of 71 prediction models, published in six 

leading clinical journals between 2006 and 2009. These journals were: 

 Annals of Internal Medicine 

 British Medical Journal 

 Journal of American Medical Association 

 Lancet 

 New England Journal of Medicine and 

 PLOS Medicine 

3.2.2 Inclusion/exclusion criteria 

The original review and database included publications describing the development, external 

validation, or impact assessment (or combination) of a prognostic model and no other 

selection criteria. From this database, articles were screened and included in this current 

review if a multivariable prediction model was developed for time-to-event data and survival 

models were used. For this reason, prediction models developed using logistic regression or 

other methods not suitable for time-to-event data were excluded. The word ‘developed’ here 

is used to encompass any type of risk prediction model that was either completely newly 

created or was a modification of an existing model (e.g. removal or addition of one or more 

predictors). Exclusions were also made for articles modelling data that were not right 
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censored, for example data that used interval censoring, as only right censored data are of 

interest in this thesis. 

3.2.3 Review process 

The selection of articles for inclusion was done independently by two reviewers (Snell and 

Debray) and agreed upon with discussion from a third reviewer (Riley) if necessary. Note that 

the review did not aim to identify all published prediction models, but rather to obtain a 

sample in leading medical journals for qualitative evaluation. The review team felt that 

qualitative saturation of the issues and methods could be obtained using this existing 

database. Also, as the review aimed to evaluate methodology used for model development 

for clinical prediction, no restriction was considered necessary with regard to the patient 

population at baseline. This was consistent with the previous work by Bouwmeester et al.85 

Therefore relevant articles could be for either healthy or diseased individuals at baseline or, 

in other words, prognostic models (diseased) and risk prediction models (healthy) were both 

included as long as time-to-event data was of interest using survival models. 

3.2.4 Evaluation of relevant articles 

A protocol specifying the aims of the literature review and the information to be recorded 

from each relevant journal article was written prior to starting the review. The protocol was 

then checked and amended by the review team before being finalised. A spreadsheet 

containing all relevant questions was used by each reviewer to record information from all 

relevant journal articles independently. The first reviewer (Snell) then compared and 

combined (where necessary) the information recorded by both reviewers. Where reviewers 

differed in their answers, the article was read a further time and an answer agreed upon by 

the first reviewer (Snell) and third reviewer (Riley). A summary of the information collected for 
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each article is given below and the full protocol can be found in Appendix B1. Five sections 

were of interest: 

Background 

Background information was collected to give an overview of the types of studies included in 

the literature review and the clinical research areas they covered. This included the type of 

populations and disease areas of interest, the starting point at baseline (for example, healthy 

patients recruited, diagnosis of a disease etc.), the primary aims of the study (such as 

evaluation of candidate risk/prognostic factors, or derivation of a model for absolute risk 

prediction) and the outcome modelled (such as death in patients with a disease or diagnosis 

of a disease in healthy patients). 

Description of development data 

Information was collected from each article about the data used to develop the prediction 

models, including a summary of model sample size, number of events and candidate 

predictors, as well as summarising whether authors reported missing data, their approach to 

dealing with missing information and how the length of follow-up was reported. 

Model development methods and baseline hazard 

Information was collected from each article about the techniques used to develop the 

prediction models, whether the baseline hazard was explicitly estimated and, if so, how. Also, 

whether the authors checked the proportional hazards assumption (if a proportional hazards 

model was fitted), how continuous variables were modelled, whether univariable analyses 

were reported in addition to multivariable analyses, and how variables were selected for 

inclusion in the multivariable model. 
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Reporting of results and presentation of absolute risk 

For each article, information was extracted about how results were reported from the 

analyses, for example whether authors reported hazard ratios or the betas (log HRs) from 

the developed model. Also, for articles that modelled the baseline hazard, details on how 

they reported it were recorded. It was also of interest to record how estimates of absolute risk 

were reported and presented, and to summarise the process needed to obtain absolute risk 

estimates from the developed model. 

Validation 

All articles included in the review developed a multivariable model. For the articles that 

included model validation in addition to model development, the methods used for validation 

were also summarised. This included whether internal and/or external validation was 

performed (and how), what validation statistics were reported, whether the baseline hazard 

was compared or discussed (if modelled), and whether absolute risk was compared between 

the development and validation datasets (or between groups within a dataset). 

3.3 Results 

3.3.1 Identification of relevant articles 

The original database of multivariable prediction models contained 71 articles published 

between 2006 and 2009. From this, 40 were excluded leaving 31 articles eligible for inclusion 

in the review (Figure 3.1, see Appendix B2 for full list of articles excluded). Thirty-three of the 

exclusions were due to the methods used for development of the prediction models not 

modelling a time-to-event outcome: 25 used logistic regression and 8 articles used other 

methods including linear regression, Poisson mixed models for rate per 1000 live births (not 

rate over time) and Bayesian models such as a naive Bayesian classifier which aims to 

predict future risk of an event at any time point rather than modelling a rate over time (see 
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Appendix B2). Five articles were excluded because the primary aim was to validate an 

existing prediction model and not to develop a model, and two further articles were excluded 

because of interval censored data , rather than right censored. 

 

3.3.2 Summary of articles included in the review 

The 31 articles included in the literature review published studies that included the 

development of a multivariable prediction model using time-to-event data. Table 3.1 gives a 

summary of the types of articles that were included in the review. The two most common 

disease areas were cardiovascular disease in 20 articles (64.5%) and oncology in seven 

Existing database of prediction models published in 6 leading clinical journals between 

2006 and 2009 (n=71) 

Total number of exclusions (n=40) 

Reasons for exclusion: 

 Not modelling time-to-event outcome (n=33) 

o Logistic regression (n=25) 

o Other modelling (n=8) 

 Validation study, not model development (n=5) 

 Interval censoring (n=2) 

Journal articles included in review (n=31) 

Figure 3.1: Flow diagram of journal articles for inclusion in literature review. 
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articles (22.6%).112-118 Other research areas included diabetes,119,120 liver transplantation,121 

HIV/AIDS,117 hormonal contraceptive,122 and osteoporotic fracture.123 Two articles covered 

more than one research area.117,120 Three articles reported genetic studies in oncology.112-114 

These studies were genetic in that they focused on gene dosage and/or gene expression in 

relation to survival. 

Study populations 

The patient populations differed across the articles: 13 (41.9%) related to patients with a 

disease or condition of interest at baseline,112-117,120,121,124-128 17 articles (54.8%) used healthy 

individuals at baseline,118-120,122,123,129-140 and three of the articles included patients with 

suspected disease or individuals at high risk of the disease of interest.120,141,142 One article 

included all three patient populations as it included two studies, one which consisted of 

patients with cardiovascular disease or were considered to have a high risk of cardiovascular 

disease, and the second study included healthy patients free from cardiovascular disease.120 

One article differed from the others in that it did not try to predict onset of a disease in 

healthy patients nor an outcome in patients with a disease, but instead followed healthy 

males who had received a hormonal contraceptive and looked at the time to recovery of 

sperm to various thresholds after treatment had stopped.122 

Study objectives 

Though all studies developed a multivariable prediction model, the primary aim of the studies 

varied widely. Fourteen of the articles (45.2%) aimed to develop a completely new prediction 

model either to be used in a clinical setting or elsewhere for making absolute risk 

predictions,115,117-119,123-125,128,134,136,138-140,142 and of these, three compared the developed 

model to an existing model.134,138,139 Six articles (19.4%) aimed to develop a new model by 

adding new factors to an existing model and then comparing the models.129,132,133,135,137,141 
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Two articles (6.5%) aimed to compare model performance as their primary aim.126,131 For 

example, Gaziano et al. compared a model that included laboratory information to a model 

that did not include laboratory information in the assessment of cardiovascular risk, but did 

not give details on how the variables were selected for each model.131 

The remaining nine articles (29.0%) had a primary aim to investigate association between 

the variables in the model and the outcome, therefore using the developed model for 

absolute risk prediction was not the main intention.112-114,116,120-122,127,130 However, four of 

these nine articles still reported or considered absolute risk in some way (see Table 3.1).112-

114,122 
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Table 3.1: Summary of research areas, populations included and whether absolute risk estimation was of interest. 
Article (First 
Author, ref.) 

Clinical research area Population at baseline 
Interested in absolute risk estimates? If not, what was of 
interest? 

Daly124 Angina Patients newly diagnosed with stable angina Yes 

Fox125 
Acute coronary syndrome 
(ACS) 

Patients with acute coronary syndrome Yes 

Patel116 Prostate cancer 
Patients with T1c to T3b, node negative and 
nonmetastatic adenocarcinoma of the 
prostate 

No, compared prognostic significance of Gleason score 
7 with tertiary grade 5 vs. other Gleason scores. 

Schnabel140 Atrial fibrillation 
Individuals without atrial fibrillation 
(retrospectively selected) 

Yes 

Montalvo126 Hypertension Patients with hypertension Yes, used in comparing predictive power of two models. 

Sekhri141 Angina Patients with suspected angina 
Yes, to assess incremental prognostic value of exercise 
ECG. 

Buckley127 Angina Patients newly diagnosed with angina 
No, only associations between risk factors and outcome 
by reporting HRs. 

de Ruijter129 Cardiovascular disease (CVD) Patients without history of CVD (birth cohort) 
Yes, used in comparison of models with new biomarkers 
in terms of predictive performance. 

Stebbing117 HIV/AIDS & associated cancer 
Patients with AIDS-associated Kaposi’s 
sarcoma 

Yes 

Parimon115 
Allogeneic hematopoietic cell 
transplantation (HCT) and 
cancer 

Patients having first allogeneic HCT Yes 

Lauer142 Coronary artery disease (CAD) 
Patients with suspected coronary disease 
and normal electrocardiogram 

Yes 

Denes130 
Coronary heart disease (CHD) 
and cardiovascular disease 

Healthy postmenopausal asymptomatic 
women with an intact uterus 

No, examined association of ECG abnormalities with 
outcome using HRs. 

Moylan121 Liver transplantation 
Patients registered on liver transplantation 
waiting list pre- and post-MELD 

No, association between factors and outcome pre- and 
post-MELD. 

Liu122 
Spermatogenesis & hormonal 
contraceptive 

Healthy eugonadal men Yes, look at recovery probability over time. 

Gaziano131 Cardiovascular disease Patients without history of CVD Yes, used to compare models. 



101 
 

Article (First 
Author, ref.) 

Clinical research area Population at baseline 
Interested in absolute risk estimates? If not, what was of 
interest? 

Sattar120 
Cardiovascular disease & 
diabetes 

PROSPER: non-diabetics with pre-existing 
vascular disease or raised risk of disease. 
BRHS: non-diabetic males without (self-
reported) CVD. 

No, interested in associations between metabolic 
syndrome and risk of outcomes by reporting HRs 

Melander132  Cardiovascular disease 
Patients without CVD (population based 
study) 

Yes, used to compare models to assess inclusion of 
contemporary biomarkers. 

Rassi128 Chagas’ heart disease Patients with Chagas’ disease Yes 

Chen113 
Non-small-cell lung cancer 
(NSCLC) 

Patients who underwent surgical resection of 
NSCLC. 

Yes, used to compare risk groups for gene-signatures 
developed. 

Zethelius133 Cardiovascular disease Elderly men (around age 71) 
Yes, used to assess improvement in risk stratification by 
adding biomarkers to model. 

Cook134 Cardiovascular disease 
Healthy non-diabetic women free of CVD and 
cancer 

Yes 

Ingelsson135 Coronary heart disease Patients without CVD 
No, reported HRs and compared performance of models 
using discrimination, calibration and risk reclassification. 

Ridker136 Cardiovascular disease Healthy women free of CVD and cancer Yes 

Paynter137 Cardiovascular disease 
Healthy women free of major chronic disease 
including CVD and cancer 

Yes, to assess whether a particular genetic variation 
improved risk prediction. 

Hippisley-Cox138 Cardiovascular disease Patients without diabetes and CVD Yes 

Crijns114 Ovarian cancer 
Patients having surgery for advanced stage 
serous ovarian cancer 

Yes, to show high and low risk profiles for the gene 
expression profile that was developed. 

Tice118 Breast cancer 
Women undergoing mammography with no 
previous diagnosis of breast cancer 

Yes, developed tool for 5-year risk prediction 

Hippisley-Cox119 Type II diabetes 
Patients without prior diagnosis of type I or II 
diabetes (primary care patients) 

Yes 

Bredel112 Gliomas Patients with gliomas 
Yes, to compare survival for risk groups of the multigene 
risk scoring model.  

Hippisley-Cox139 Cardiovascular disease 
Patients without CVD or cerebrovascular 
disease (primary care patients) 

Yes 

Hippisley-Cox123 Osteoporotic fracture 
Patients without previous hip, distal radius or 
vertebral fracture (primary care patients) 

Yes 

Table 3.1 continued… 
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3.3.3 Development data description and size 

Table 3.2 shows the sample sizes for each prediction model along with the number of events 

and candidate predictors. Sample sizes of the development cohort ranged from 63 in Chen et 

al. to 2540753 in Hippisley-Cox et al.113,119 The problem of missing participant data was 

common with 26 of the 31 articles (83.9%) reporting this issue and the other five articles 

(16.1%) not reporting whether there was any missing data or not.113,114,116,122,142 Complete 

case analysis was performed in 22 of the 26 articles (84.6%) with reported missing data, two 

of which (by the same first author) used a complete case analysis first and then used multiple 

imputation to account for the missing information,123,138 while another article used complete 

case analysis but stated that ‘imputation was tested but did not influence the identification of 

multivariable predictors or the discriminative power of the model’.125 Another two articles just 

used multiple imputation (without mentioning the use of complete case analysis),119,139 one 

other used median values for imputation,117 and one was not clear on how they had dealt 

with missing data for model development.118 

The number of candidate predictors ranged from 6 to 48 with a median of 13 (excluding two 

of the genetic studies investigating gene-signatures which considered hundreds or more 

genes). Using the rule of thumb for sample size required to develop a multivariable prediction 

model, there should be at least 10 events for each predictor considered in the model.43 Using 

this rule, at least nine articles (29.0%) include at least one multivariable model in which the 

number of events was not large enough for the number of candidate predictors.112,120,124,126-

129,133,141 The ratio of events to predictors could not be calculated for six studies that did not 

report the number of events. Also worth noting is that the Hippisley-Cox et al. studies had 

extremely high power due to the use of a large database of health records (QResearch) 

consisting of information collected from around 530 practices, totalling over 2 million 

participants.119,123,138,139 
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Table 3.2: Sample size, number of events and candidate predictors by model. 

First Author, ref. Outcome 
Description (if >1 model 
developed) 

Sample size for 
development 

No. 
Events

No. candidate 
predictors

No. of events 
per predictor 

Daly124 Death/MI  2528 93 20 4.7 

Fox125 
Death 
Death/MI 

 
21688 
21688

1757
3110

48
36.6 
64.8 

Patel116 PSA failure  2370 613 6 102.2 

Schnabel140 Atrial fibrillation  4764 457 21 21.8 

Montalvo126 
Cardiovascular events 
Death 

 
504 
504

76
74

15
5.1 
4.9 

Sekhri141 CHD death/ACS 
Whole cohort 
Summary ECG subset 
Detailed ECG subset 

8176 
4848 
1422

576
351
110

21
27.4 
16.7 
5.2 

Buckley127 

Acute MI 
Coronary artery bypass grafting 
Percutaneous transluminal coronary 

angioplasty 
Death from ischaemic heart disease 
Death from any cause 

 

1785 
1785 
1785 
1785 
1785

116
152
108

84
175

10

11.6 
15.2 
10.8 
8.4 

17.5 

de Ruijter129 Cardiovascular death  302 35 11 3.2 

Stebbing117 Death  326 NS 13  

Parimon115 Death  1401 688 14 49.1 

Lauer142 Death  33268 1619 12 134.9 

Denes130 
Incident CHD events 
Incident CVD events 

 
14749 
14749

246
595

11
22.4 
54.1 

Moylan121 

Transplant 
 
Death 
 
Too sick for transplant 

HCC 
Without HCC 
HCC 
Without HCC 
HCC 
Without HCC 

2365 
43323 
2365 

43323 
2365 

43323

1617
20353

197
6998

187
2052

10

161.7 
2035.3 

19.7 
699.8 

18.7 
205.2 
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First Author, ref. Outcome 
Description (if >1 model 
developed) 

Sample size for 
development 

No. 
Events

No. candidate 
predictors

No. of events 
per predictor 

Liu122 Recovery to thresholds  1549 NS 19  

Gaziano131 Cardiovascular events  6186 3400 8 425 

Sattar120 
Incident CVD events 
 
Incident diabetes 

PROSPER 
BRHS 
PROSPER 
BRHS 

4812 
2737 
4812 
2737

772
440
287
105

13 
11 
13 
11

59.4 
40 

22.1 
9.5 

Melander132  
Cardiovascular events 
Coronary events 

 
4483 
4600

364
216

18
20.2 

12 
Rassi128 Death  331 130 24 5.4 

Chen113 Death/recurrence of cancer 
16-gene signature 
5-gene signature 

63 
101

NS
NS

4 + 485 genes 
4 + 16 genes

 

Zethelius133 
Death 
 
Death from CVD 

Whole cohort 
Without CVD 
Whole cohort 
Without CVD 

1135 
661 

1135 
661

315
149
136

54

19

16.6 
7.8 
7.2 
2.8 

Cook134 Cardiovascular events  15048 390 8 48.8 

Ingelsson135 Cardiovascular events  3322 291 11 26.5 

Ridker136 Cardiovascular events  16400 504 35 14.4 

Paynter137 Cardiovascular events  22129 NS 12  

Hippisley-Cox138 Incident CVD events  1283174 65671 14 4690.8 

Crijns114 Cancer death  157 NS 6 + 15909 genes  

Tice118 Diagnosis of cancer  377440 NS 7  

Hippisley-Cox119 Diagnosis of diabetes  2540753 78081 9 8675.7 

Bredel112 Death  189 192 27 7.1 

Hippisley-Cox139 Cardiovascular events  1535583 96709 13 7439.2 

Hippisley-Cox123 
Incident osteoporotic fracture 
Incident hip fracture 

 
2357895 
2357895

21184
12369

18
1176.9 

687.2 

NS: Not stated in the article. 

Table 3.2 continued… 
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Length of follow-up was reported using the median time in 14 articles (45.2%),112-

114,116,124,132,133,135-138,141,142 with interquartile ranges in six of the 14 articles. Mean follow-up 

was reported in six articles (19.4%),120,126,128,130,134,139 but only one reported a standard 

deviation along with it.126 The range of follow-up duration was reported in eight articles 

(25.8%), five of which had reported median follow-up and the other three had reported mean 

follow-up. The maximum follow-up was given in 12 articles (41.9%),113,115,117,122,124,125,127,129-

131,135,140 some of which were only observed from Kaplan-Meier plots rather than being 

reported in the text. Four of the 12 articles reporting maximum follow-up, reported this 

alongside other statistics such as the mean or median. Three articles (9.7%) reported the 

number of person-years for follow-up (one of which had also reported maximum follow-up 

duration),119,123,131 and one article only reported the minimum follow-up duration, without other 

follow-up information.121 

3.3.4 Model development methods 

Modelling method 

All 31 articles (100%) used the semi-parametric Cox proportional hazards model to develop 

the prediction models. Therefore none of the articles explicitly modelled the baseline hazard 

function (discussed in Section 3.3.6) and thus Royston-Parmar models or other such 

methods that model the baseline hazard were not utilised in this cohort, indicating the 

overwhelming dominance of Cox models in this field. 

Proportional hazards assumption 

The proportional hazards assumption was only checked in 17 (54.8%) of the studies. The 

other fourteen articles (45.2%) did not discuss the proportional hazards assumption or time-

dependent effects of predictors; therefore it is unknown whether this was checked as part of 
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the analysis.113,114,117,119,120,124,126,128,129,131,134,136,139,141 None of their prediction models included 

time-dependent effects for any of the variables in the prediction model. 

Continuous variables 

Continuous variables may not have a linear association with outcome and therefore it is 

necessary to explore non-linear functions for such variables as part of the model 

development. In general, few authors specifically stated how continuous variables were 

modelled unless they used transformations or more complex non-linear functions. For this 

reason, information on how continuous variables were modelled was extracted primarily by 

observing how variables were reported in the results. Five articles (16.1%) used, or at least 

considered, fractional polynomials or restricted cubic splines for non-linear functions of 

continuous variables,119,123,134,138,142 and nine (29.0%) used or considered a particular 

transformation (e.g. ln(x)) for continuous variables.114,121,131-134,136,137,139 Ten articles (32.3%) 

categorised at least one continuous variable which may result in a loss of prognostic 

information from that variable.112,113,115-118,120,126,128,130 

Variable selection 

Variable selection using automatic methods such as stepwise, forward and backward 

selection methods was performed in 10 articles (32.3%).113,115,117,121,122,124,125,128,132,136 In three 

of these 10 articles, automatic selection strategies were applied after selecting variables for 

inclusion based on univariable results.115,121,125 Of the remaining 21 articles, two used the 

results of univariable analysis to determine variables to include in the multivariable 

model,112,141 one of which included all significant variables (from the univariable analysis) and 

the other was not clear on the multivariable selection strategy.141 Eleven articles (35.5%) pre-

specified variables for the multivariable model and two articles (6.5%) included all variables 

in the multivariable model.116,142 Other model selection strategies included principal 
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component analysis in one article,114 and selection based on BIC in three articles 

(9.7%).119,123,139 The variable selection strategy in the other two articles was not clear.118,140 

3.3.5 Reporting of results 

Reporting of univariable analyses 

Univariable analyses were reported in 11 articles (35.5%),113,114,116,117,122,124,125,127,128,133,141 and 

age and sex adjusted analyses reported as a base analysis, rather than univariable 

analyses, in one article (3.2%).140 Of the 11 articles that reported univariable results, all of 

them reported hazard ratios, 10 (90.9%) reported 95% confidence intervals, and eight 

(72.7%) gave p-values. Only one article reported beta estimates for univariable analysis.117 

The article that reported age and sex adjusted analyses as the base analysis instead of 

univariable analyses, reported the age and sex adjusted hazard ratios (with p-values).140 

Reporting of multivariable analyses 

Compared to univariable analysis, there was a wider variety in the statistics reported for 

multivariable/adjusted analyses with 26 of the 29 articles (89.7%) reporting hazard ratios, 22 

(75.9%) reporting 95% confidence intervals, 21 (72.4%) reporting p-values, nine (31.0%) 

reporting beta estimates, six (20.7%) reporting standard errors and one article (3.4%) 

reporting the Chi-squared values. 

Multivariable results (model beta estimates or HRs) were reported for all included variables in 

the model for 21 articles (67.7%), and one article (3.2%) reported the multivariable results 

but omitted two variables for which fractional polynomial functions had been fitted.123 Seven 

articles (22.6%) reported adjusted results for only a partial set of included variables (rather 

than the full fitted model),112,118,121,130,132,133,135 and two (6.5%) did not report any results from 

their multivariable model, only results on how well the model performed.126,129 
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3.3.6 Modelling the baseline hazard and reporting absolute risk 

predictions 

Modelling the baseline hazard 

One of the primary objectives of the literature review was to assess if and how the baseline 

hazard was modelled in the multivariable prediction models. All 31 articles used Cox 

proportional hazards models in which the baseline hazard is not explicitly modelled over 

time. However, eight articles (25.8%) estimated baseline survival/hazard at a particular time 

point.118,119,123,134,136,138-140 The description of baseline hazard information was often very brief 

and without explicit details, and can be summarised across the eight articles as follows: 

i. Four of the eight articles used a 10-year baseline survival estimate from the baseline 

survival function.119,123,138,139 In these four articles (by the same first author), the baseline 

survival function was estimated as a step function that would be equivalent to the Kaplan-

Meier estimate if there were no variables in the model (null model).27 However, estimating 

the baseline survival function after fitting a Cox model results in a function that is adjusted 

for the variables in the model and in these four articles, the baseline survival function is 

centred on mean values of continuous variables (because variables were mean-centred 

in the model). The whole function was not of interest in these four articles and only the 

survival estimate at 10 years was extracted. 

ii. One article used Kaplan-Meier estimates (product-limit estimator) for the average 10-year 

survival, calibrated to the Framingham data.134 They stated ‘to address the 

generalisability of the final WHS risk prediction model with hsCRP, we calibrated the 

predicted probabilities to observed risk in the Framingham Heart Study’, and ‘The 

projected 10-year risk from the WHS models was calibrated to the 10-year rate of 

cardiovascular outcomes among women in the Framingham data’. However, no further 

details are given of how their developed model was calibrated to the Framingham data. 
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iii. One article developed a risk prediction model for 10-year risk which includes a baseline 

survival term. However, the authors do not describe how this value was estimated.136 

iv. One article reported 10-year baseline survival with the coefficients of their prediction 

model but did not state how this was estimated.140 

v. One article used multiple stages to obtain age and race specific incidence rates and 

adjusted for those dying from other causes over time.118 See section on ‘Absolute risk for 

prediction in new individuals’ for a description of the developed model for absolute risk 

prediction.  

In summary, with the exception of (v) which used incidence rates as a baseline, seven of the 

eight articles all estimated baseline survival at a particular time point. Though the exact 

estimation methods for the baseline survival function were not detailed, it is likely that an 

approach available in statistics software such as the Kalbfleisch and Prentice estimator was 

used (see Appendix B3).143 

Presenting absolute risks 

The second primary objective was to assess how absolute risk was reported from the 

developed model. This section summarises how absolute risks from the developed models 

were reported, whilst the subsequent section considers how authors presented the model in 

a way that allow others to use it to derive absolute risks for new individuals. There is overlap 

between these two sections as sometimes the authors used the same approach for reporting 

their model as for telling others how to use their model for new predictions. Recall that 25 

articles were in some way interested in absolute risk (Table 3.1) and six were not interested 

in absolute risk. For this reason, only 25 articles are considered in this section and the 

following section on ‘Absolute risk for prediction in new individuals’. 



110 
 

Of the 25 articles that were interested in absolute risk, 14 articles provided absolute risks for 

reporting purposes only, five articles provided absolute risks for informing new prediction only 

and six articles provided absolute risks that could be considered for both reporting and new 

predictions (Figure 3.2). This section focuses on reporting of absolute risks, therefore only 

discusses the 20 articles that provided absolute risks for this purpose. 

 

Figure 3.2: Flow chart of articles interested in absolute risk. 

Absolute risk estimates were reported in a variety of ways, both graphically and tabulated. 

Eleven of the 20 articles reported absolute risk over time and nine articles reported absolute 

risk at a particular time point. The 20 articles are now summarised: 

Absolute risk over time 

After a model was developed, the most common method to show absolute risks derived from 

the model was figures of cumulative risk or incidence such as Kaplan-Meier plots for risk 

groups, where the risk groups are created by categorising the risk score (linear predictor, Xβ) 

from a Cox model and a Kaplan-Meier curve is then generated separately for each group. 

This was done in nine articles, in which survival/incidence curves were plotted for between 

two and four risk groups.112-115,117,126,128,129,132,137,142 An example of this is by Rassi et al. shown 
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in Figure 3.3, in which the risk score was categorised into low, intermediate and high risk 

groups in the development and validation cohorts and survival curves produced using 

Kaplan-Meier estimates for each group.128 Absolute risk over time can then be seen for each 

risk group from the curves. Another article produced survival curves for risk groups derived 

from a comparative model, but not the model developed in the article,142 and one other article 

displayed ‘adjusted’ survival curves for three genotypes of a particular SNP. The authors did 

not give information on how this was done other than stating, ‘Adjusted survival curves were 

generated by stratifying Cox proportional hazards models by genotype’.137 

 

Figure 3.3: Example of how absolute risk estimates can be reported using Kaplan-
Meier survival curves for risk groups derived from a developed multivariable 
prediction model. Reproduced with permission from Rassi et al.128 Copyright 
Massachusetts Medical Society. 
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Absolute risk at particular times 

Another way in which absolute risk was reported from the developed model was by 

displaying tables of risk score or risk groups and corresponding risk estimates at one 

particular time point. Two articles by the same first author, reported tables of deciles of risk 

score in men and women separately with the predicted and observed risk at 10 years (Figure 

3.4).123,138 Observed and expected risk or number of events were also plotted rather than 

tabulated in five articles.119,123,131,139,140 Another article tabulated the cumulative probability of 

an event for each of three risk groups in three models of increasing complexity.141 One article 

gave probability of recovery (of sperm after hormonal contraceptive) to different thresholds at 

four time-points. These probabilities were model-based and given for a hypothetical man.122 

 

Figure 3.4: Predicted and observed fracture risk at 10 years for deciles of risk score in 
men and women. Originally published by Hippisley-Cox et al.123 Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/2.0). 
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Reclassification tables were included in two articles.133,140 Such tables also include absolute 

risk information by a particular time-point, as groups of patients are categorised into risk 

groups using two comparative models to see how many are ‘reclassified’ based on the new 

model. An example of a reclassification table is given in Figure 3.5 in which risk groups were 

created for individuals with <5%, 5-15% and >15% risk of atrial fibrillation within 10 years. 

 

Figure 3.5: Example of reclassification table. Reprinted from the Lancet, 373, Schnabel 
et al.140 Development of a risk score for atrial fibrillation (Framingham Heart Study): a 
community-based cohort study, 739-45, Copyright 2009, with permission from 
Elsevier. 
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The ways in which absolute risks were reported, as summarised above, included 

comparisons of observed and predicted risk as well as comparisons between development 

and validation datasets. 

Absolute risk for prediction in new individuals 

The previous section focused on how absolute risks were reported following the model 

development, and were primarily for the purpose of model checking and validation. This 

section now focuses on how authors reported absolute risk for the purposes of making 

predictions in new patients. 

Eleven of the 25 articles presented the developed multivariable prediction model in a way 

that could be used by others to predict the risk of an event in new individuals. The most 

common method (six articles) was to assign points to each of the covariates in the model that 

can be summed to get the risk score. This is then accompanied by a table of risk scores and 

corresponding absolute risk up to a particular time point.115,117,124,128,134,140 One of these 

articles included a figure of risk score by absolute risk in addition to a table, the risk score 

sheet and figure for absolute risk are shown in Figure 3.6.124 

Two articles published a web address to an online risk calculator, which can be used to 

predict risk up to a specified time-point in new individuals.125,140 Fox et al. included a 

snapshot of the online calculator in their article (Figure 3.7) which was referred to as a 

‘simplified nomogram’. An online risk calculator was published in addition to the point score 

system (discussed in the paragraph above) in the other article.140 The four articles by 

Hippisley-Cox et al. did not include links to online risk calculators in the published articles 

(and are therefore not included in the 11 that published their model in a way that could be 

used for prediction), but these calculators have since been developed: QRISK2 for 
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cardiovascular disease risk, QFracture for risk of osteoporotic fracture and QDiabetes for risk 

of type 2 diabetes.119,123,138,139 QRISK2 predicts 10-year risk and the other two risk calculators 

can be set for between one and 10-year risk, at one year increments. 

 

Figure 3.6 Example of how a risk score can be reported and equated to risk estimates 
at a given time point. Reproduced from BMJ, Daly et al.124 332, 262-5, 2006, with 
permission from BMJ Publishing Group Ltd. 
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Figure 3.7: Example of an online risk calculator using a developed model. Reproduced 
from BMJ, Fox et al.125 333, p1091-4, 2006, with permission from BMJ Publishing 
Group Ltd. 

A nomogram is a graphical form of a point score system that uses bars of varying length for 

each covariate in the model. The points corresponding to each risk factor can be summed for 

a total score which relates to a time specific risk or survival probability. Based on this 

definition, there was only one nomogram published.142 

Two articles published an equation for absolute risk up to a specified time point (one was 

included in the appendix rather than the article itself).134,136 The 10-year risk formula 

published by Ridker et al. was written out for 10-year cardiovascular risk which takes a 

similar form to the survival function given in Chapter 1 (Equation (1.9)).136 The difference in 

the article was that rather than the equation being written for survival probability S(t), it was 
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written for percentage risk (=1 – S(t) x100%) at a particular time point (t=10 years), taking the 

form 

Riskሺ%ሻ=(1-S0(t=10))eLP
×100% 

The baseline survival term S0(t) can be estimated for a particular time point (here 10 years) 

as discussed in the section above on ‘Modelling the baseline hazard‘. 

One article reported risk prediction charts for 5-year cardiovascular risk.131 Separate charts 

were produced for men and women (see Figure 3.8 for the male risk prediction chart). This is 

a graphical method in which the individual’s location on the chart is determined by the values 

of their risk factors and the different coloured regions correspond to the different risk levels.  

One article developed a multiple-stage algorithm for estimating risk of breast cancer at five 

years for women having a mammogram.118 Multiple stages were required to obtain firstly age 

and race specific incidence rates from an external database (SEER), then adjust for those 

dying from other causes over time (using US vital statistics), and combining with the HR 

estimates from a proportional hazard model before then making further adjustments. Though 

the algorithm is complex, the important observation for this thesis is that external data about 

incidence over time for different types of women is being used to translate the estimated 

model hazard ratios to absolute risk predictions for new women. 
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Figure 3.8: Risk prediction charts for men. Reprinted from the Lancet, 371, Gaziano et 
al.131 Laboratory-based versus non-laboratory-based method for assessment of 
cardiovascular disease risk: the NHANES I Follow-up Study cohort, 923-31, Copyright 
2008, with permission from Elsevier. 

All of the above methods for predicting risk in new patients were for predicting risk up to a 

specified time point. Two articles displayed Kaplan-Meier plots for the risk groups created 

from the score system.117,128 These have been discussed in the section on ‘Presenting 

absolute risks’ as they compared Kaplan-Meier curves for risk groups but these could also be 

used with the risk score system to give an estimate of survival over time (see Figure 3.3 for 

example). However, such predictions are the average for the risk group rather than for the 

individual conditional on their covariate values. 
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3.3.7 Validation 

Some form of validation was performed in 26 of the 31 articles (83.9%). Twenty-five of these 

26 articles (96.2%) used internal validation (using the same data as model development),113-

115,117-119,123-126,128-142 two articles (7.7%) performed temporal validation (using more recent 

data for validation),125,140 and seven articles (26.9%) performed external validation (using a 

different dataset to the development data).112-114,117,125,128,142 Models could be validated using 

more than one type of validation in an article, for example, internally and externally validated. 

Discrimination and calibration performance of the model 

Discrimination measures were reported in 22 articles (84.6% of the 26 articles that included 

validation). This included the C-statistic or area-under-the-curve (AUC), reported in all 22 

articles,115,117-119,123-126,128-132,134-142 D statistics reported in five articles,119,123,134,138,139 and ROC 

curves displayed in seven articles.117,126,129-131,135,141 

Calibration was reported in 17 articles (65.4% of the 26 articles that included validation) and 

included the Hosmer-Lemeshow test in seven articles,131,132,134-137,140 comparison of observed 

and predicted risk (graphically or tabulated) in eight articles,115,117,119,123,138-140,142 

expected/observed ratio in two articles,118,138 and the Gronnesby and Borgan calibration test 

in one article.133 

Other statistics for model checking 

Other measures included the Brier score in three articles,119,136,139 R2 in five 

articles,119,123,134,138,139 likelihood ratio tests in three articles,133-135 and AIC and BIC in one 

article.134 Another article also reported Entropy and Yates slope as global measures of model 

fit.136 Two articles reported the k statistic for concordance (in comparing models),126,134 eight 

articles (30.8%) reported reclassification improvement,118,132,133,135-139 and four articles 
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(15.4%) reported integrated discrimination improvement.132,133,136,137 The three genetic 

articles validated gene-signatures by using log-rank tests for the difference in survival 

between high and low risk groups as defined by the gene-signatures.112-114 

Consideration of absolute risk in validation 

Eleven articles considered validation of model performance in terms of absolute risk, mostly 

when checking calibration of the model (discussed above). Absolute risks were compared 

between the development and validation datasets by comparing observed and expected risk 

for deciles of predicted risk according to the prediction model at a specified time point 

(reported in five articles),118,119,123,138,139 or by plotting Kaplan-Meier survival curves for risk 

groups in each dataset (reported in five articles, see Figure 3.3 for example).112-114,117,128 

Another article plotted Kaplan-Meier and predicted survival curves for risk groups in the 

validation dataset.115 The survival curves were predicted using the fitted Cox model, but no 

detail was given on how the predicted curves were derived. 

Comparison of absolute risk 

In six articles, absolute risk was compared across different models (but not different 

datasets). Four of these articles compared absolute risk between different models using risk 

reclassification tables,134-137 one article compared models using observed and expected 

risk,134 another using Kaplan-Meier survival risk for risk groups to compare models,126 and 

one other compared cumulative probability at specified time points for different models.141 
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3.4 Discussion 

3.4.1 Main findings 

This chapter has presented a review of the methods and reporting of multivariable prediction 

models in leading medical journals. The first of the primary aims was to identify if and how 

researchers are modelling the baseline hazard in the development of multivariable prediction 

models. The review found that 100% of the 31 articles used Cox proportional hazards 

modelling to develop a prediction model using time-to-event data. This finding is slightly 

higher than another review by Mallett et al. on prognostic models in cancer, which found that 

94% of studies fitted Cox models.84 Two other reviews (not focused specifically on modelling 

survival data) also found that the Cox model was the most commonly used approach in the 

studies that used survival data to develop the model.144,145 The key feature of Cox modelling 

is that the baseline hazard function is not explicitly modelled; therefore none of the articles 

included in the review in this chapter, modelled the baseline hazard over time within their 

multivariable model, which meant that other approaches were required to estimate absolute 

risk from the fitted multivariable model. Altman also notes that the baseline hazard function is 

required for absolute survival estimates and that none of the articles in the review he 

conducted on models for breast cancer, modelled the baseline hazard.11 

The most common method of presenting absolute risk was to produce Kaplan-Meier survival 

curves for risk groups, defined by categorising risk scores from the model into groups and 

then plotting the Kaplan-Meier curve for each group separately. The review by Altman found 

that 54% of studies produced a graph (Kaplan-Meier survival curves) to show the expected 

survival for risk groups.11 Authors also produced tables or plots of risk scores and 

corresponding absolute risk estimates at a specified time point. 
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Absolute risk is important when making predictions for individuals and the authors most 

commonly used the point scoring system with corresponding risk estimates to make absolute 

risk predictions for individuals at a specified time point, for example 10-year risk. Other 

methods for predicting risk in individuals included online risk calculators, nomograms and 

colour-coded risk prediction charts, however all of these were for a single estimate of risk up 

to a specified time point. Two articles used Kaplan-Meier estimated survival/risk for risk 

groups and this was the only method for predicting a profile of risk over a whole time period 

from the prediction model. However, this is also limited as it only gives average estimates for 

groups of individuals rather than individual predictions. This highlights the limitation of not 

explicitly modelling the baseline hazard function in the Cox model. If the baseline hazard is 

modelled, as demonstrated in Chapter 2, it allows predicted risk for an individual over a 

whole time range, rather than being limited to a single predicted risk by a particular time point 

or an average predicted risk over time for categorised risk groups.34 Modelling the baseline 

hazard therefore offers greater flexibility in how the model could be presented and used to 

enhance predictions for patients. 

In general, even when baseline survival was reported at a particular time-point, there was 

very little information on how it was estimated. For example, Ridker et al. and Schnabel et al. 

reported baseline survival at a particular time point but did not state either in the article or 

appendices how this value was obtained.136,140 Particularly, when new prediction models are 

developed for risk up to a particular time point (and are not the original survival models), it 

should be clear how the baseline survival or hazard has been calculated. 

3.4.2 Other important findings 

Aside from absolute risk, this review also looked at other statistical issues. Missing data was 

an issue amongst the articles included in the review, reported in 84% of articles. However, 
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complete case analysis was the most common approach and few used any method of 

imputation. This leads to a reduction in sample size of the development dataset leading to 

imprecise model estimates and biased estimates if missingness is associated with the 

outcome.12 This is an area in which the methods for imputation are available and can be 

implemented in many software packages, yet are often ignored for a simpler approach.22 Five 

articles (16%) used multiple imputation, either for their primary analysis or as a sensitivity 

analysis. This is slightly higher than in a previous review of clinical prediction articles which 

found that only 8% of included articles used multiple imputation.85 but comparable to a review 

of models for chronic kidney disease which found that 18% used multiple imputation, 

however the number of studies that this relates to was small.145 

Variable selection methods remain a debatable topic with data-driven methods such as 

automatic selection strategies often being criticised.22,146,147 In this review, 32% of articles 

used automatic selection procedures. Three articles used univariable results to select 

variables for inclusion in multivariable model selection. This approach in particular has been 

heavily criticised as it may result in potentially important variables being excluded.44,83 

Variables were pre-specified for a multivariable model in 36% of the studies, however it is not 

always possible to have prior information on variables that are clinically important and data-

driven methods are sometimes necessary, but should be used with care. Also, at least 29% 

of articles had fewer than 10 events per variable (EPV) considered. This is lower than the 

50% found by Bouwmeester et al. in a review of clinical prediction articles,85 but similar to a 

review of risk prediction models for type II diabetes which found that 21% of studies had less 

than 10 EPV and that EPV could not be calculated in 33% of articles.144 When using data-

driven variable selection methods, it is important to ensure that there are enough events 

when developing a model. Studies into EPV have warned that a low ratio of EPV can result 

in poor accuracy and precision in regression coefficient estimates and their significance 
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tests, leading to important predictors being missed and unimportant factors being deemed 

predictors.43,148 

Hazard ratios with confidence intervals and p-values were the most common results reported 

for both univariable and multivariable analyses. Interpretation of results using hazard ratios 

means that it is done on the relative scale. As highlighted in Chapter 2, it is important to know 

what the hazard is relative to. If the baseline hazard is small, a large hazard ratio may not 

mean a large absolute difference in survival and likewise when the baseline hazard is large, 

a hazard ratio closer to the value of one does not necessarily mean a small difference in 

absolute survival probabilities. Particularly in prediction and prognostic modelling, it is 

important to model this baseline hazard and report absolute survival probabilities in addition 

to hazard ratios. Even if the study is only interested in identifying important variables, 

consideration of how they change absolute risk is informative. 

The Hippisley-Cox et al. articles included in the review all used a large database with data 

from many practices.119,123,138,139 So if the baseline hazard is modelled, they would need to 

consider if it is consistent from practice to practice. Currently they implicitly assume it is 

consistent as practice was not accounted for, however this may not be true. Authors would 

face a similar issue when developing a risk prediction model from multiple studies.69,149 This 

issue is considered in detail in Chapter 5. 

3.4.3 Limitations of the review 

Extractions in this review are dependent on reporting standards and some information was 

difficult to extract. For example, it was often not stated whether the proportional hazards 

assumption was checked or whether non-linear functions were tested for continuous 

variables. This might indicate that it was not considered, but of course it may have been 
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done but not reported. Several other reviews have also commented on poor reporting on 

many key aspects of model development and/or validation of prediction models,11,54,83,84,144,145 

which has led to the recent publication of the TRIPOD (transparent reporting of multivariable 

models for prediction or diagnosis) statement which provides guidelines for reporting of 

multivariable prediction models.42,59 

The review in this chapter used a database of articles from a previous review.3 Therefore, it 

was dependent on the previous search strategy. This was not necessarily a limitation in that 

the previous review was more inclusive than necessary for this review, it was also updating 

other (previous) reviews and used a published search strategy for prognostic models.150 

However, the review was limited to general medical journals which the authors acknowledge 

do not include the majority of prognostic models. 

Another limitation of the review is that developing a model intended for absolute risk 

prediction was not always the main goal for authors and absolute risk was not discussed in 

all of the articles. For this reason, a reduced number of 25 articles were considered in the 

review when looking at reporting absolute risk. Also, these articles may not consider it 

necessary to validate the model. A further limitation is that in using an existing database of 

prediction models, the review is limited to clinical articles between 2006 and 2009. There is 

the possibility that since 2009 flexible parametric modelling or other methods in which the 

baseline hazard is modelled may have increased in popularity. 

3.5 Recommendations 

Based on the findings of the review, a number of core recommendations for improving the 

development of multivariable prediction models are made in Box 3.1. Mallett et al. already 
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provide suggested improvements for reporting,83 and TRIPOD has recently published their 

guidelines.42,59 

Box 3.1: Recommendations for improvements in the development of multivariable 
prediction models using time-to-event data, based on findings of the review. 

 Move away from Cox modelling and rather consider other approaches (such as 

flexible parametric models) that explicitly modelling the baseline hazard in order to: 

o Make absolute risk predictions for individuals directly from the model. 

o Alleviate the need to create risk groups and thus lose information. 

o Examine the impact of each predictor on absolute risk, not just relative risk. 

o Allow risk predictions over time rather than limiting predictions to one 

particular time. 

o Check model performance in terms of calibration of observed and predicted 

absolute risks, in the whole population and also subgroups (e.g. across 

different populations or practices with variation in case-mix) 

 Check if the proportional hazards assumption holds or if time-dependent effects are 

required. 

 Model continuous variables on their continuous scale, with potential consideration of 

non-linear functions. 

 Compare complete case analysis with a multiple imputation analysis. 

 Pay attention to sample size constraints (events per variable > 10). 

 Do not base inclusion of a predictor on univariable results. Consider clinical 

judgement and previous studies to select predictors where possible. 

  



127 
 

3.6 Conclusion and next steps 

The most important finding of this literature review of the development of prediction models is 

that Cox modelling is the common approach, and so the baseline hazard is not being 

explicitly modelled. This creates problems when trying to use the model to make absolute 

risk predictions, and typically forces researchers to create risk groups (and thus lose the 

ability to make individual-level predictions) and focus on predictions by one time-point, rather 

than over time. However, if parametric or flexible parametric models were fitted instead of the 

Cox model, the baseline hazard function would be explicitly modelled over time, and 

therefore individual risk profiles could be predicted at any time point.32,34 To demonstrate this, 

the following chapter uses flexible parametric methods to develop a prognostic model for 

advanced pancreatic cancer using clinical trials data. 
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CHAPTER 4: DEVELOPING A PROGNOSTIC 

MODEL UTILISING THE BASELINE HAZARD 

AND DATA FROM CLINICAL TRIALS: AN 

EXAMPLE IN PANCREATIC CANCER 

4.1 Introduction and objectives 

Chapter 2 identified several statistical advantages of using Royston-Parmar models. One of 

the major benefits was explicitly modelling the baseline hazard function which can then be 

used for predictions. This is particularly important in the context of prognostic modelling, 

where a risk prediction model is needed to predict outcome risk in diseased patients. Despite 

this, the literature review in Chapter 3 highlighted that the baseline hazard function is not 

usually modelled by researchers when developing prediction models from survival data. 

Models were mostly developed using a Cox proportional hazards model and then risk groups 

were created by categorising patients based on their risk score (linear predictor) alone, thus 

ignoring the baseline hazard. Kaplan-Meier survival curves could then be estimated for each 

risk group, to obtain estimated survival probabilities over time. However this forces 

individuals to be in one of the risk groups, thereby collapsing the individual risk to be similar 

to others in the group. In contrast, Royston-Parmar models explicitly model the baseline 

hazard. This allows for smooth survival functions to be estimated for individuals as well as for 

risk groups and so Royston-Parmar models seem potentially very pertinent for prognostic 

model research. 

To investigate this and demonstrate the advantages and limitations, this chapter explores the 

use of Royston-Parmar modelling of the baseline hazard in the development of prognostic 

models. The data considered come from advanced pancreatic cancer trials, and the use of 
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trials data bring some particular issues and challenges, which will also be highlighted and 

explored. 

The primary aims of this chapter are: 

 To show the added benefit of modelling the baseline hazard in prognostic models, 

especially in terms of making individualised risk predictions. 

 To compare the use of the baseline hazard when making predictions to the current 

typical method of using risk groups and ignoring the baseline hazard. 

 To identify and illustrate issues in modelling the baseline hazard using randomised 

trial data for the purposes of prediction, specifically when there are multiple treatment 

groups and a time-dependent treatment effect. 

4.2 Summary of available pancreatic cancer trials data 

Data from clinical trials are increasingly being used to develop and validate risk prediction 

models. For example, the IMPACT database, which included data from eight randomised 

controlled trials (as well as three observational studies), was used to develop a prognostic 

model for outcome after traumatic brain injury.151 Clinical trials provide a prospective cohort 

of patients, with a rich set of prognostic factors measured at baseline, good quality follow-up 

and complete follow-up for most patients. In this chapter, a prognostic model will be 

developed using data from two international phase III trials sponsored by British Biotech. 

4.2.1 Details of the two trials 

The primary aim of each trial was to compare the effect of treatments in patients with 

advanced pancreatic cancer where death was the primary end point. Pancreatic cancer was 

the 10th most commonly diagnosed cancer in the UK in 2010 and prognosis for patients with 
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pancreatic cancer is poor with only around 4% surviving five or more years.152 The inclusion 

criteria for patient selection were similar for both trials, including patients aged 18 or over 

with a histological or cytological diagnosis of non-resectable pancreatic cancer and 

Karnofsky performance status >50% in trial BB128 or >60% in BB193. Trial BB193 also 

specified ranges of values of laboratory parameters. Although the patients recruited to each 

trial were similar, the treatments differed between the trials. The first trial (BB128) included a 

total of 414 patients randomised to gemcitabine or one of three doses of marimastat, 5, 10 

and 25mg. The second trial (BB193) randomised 239 patients to receive gemcitabine + 

placebo or gemcitabine + marimastat 10mg. The number and proportion of patients in each 

of the treatment groups along with the number of events and number of patients censored 

are given in Table 4.1. The median and maximum follow-up durations were 21.1 months 

(95% CI: 20.2 to 22.8) and 25.8 months respectively in BB128 and 20.3 months (95% CI: 

18.9 to 21.3) and 23.3 months in BB193. Median follow-up was calculated using the reverse 

Kaplan-Meier method.153 

Table 4.1: Number and proportion of events and censoring by treatment group and 
total number of patients receiving each treatment in both trials. 

Treatment 

N Events 
(% of 

treatment 
group) 

N Censored 
(% of 

treatment 
group) 

N Total  
(% of trial) 

Trial BB128    
 Gemcitabine (1000mg/m2) 97 (94.2) 6 (5.8) 103 (24.9) 
 Marimastat (5mg) 98 (94.2) 6 (5.8) 104 (25.1) 
 Marimastat (10mg) 101 (96.2) 4 (3.8) 105 (25.4) 
 Marimastat (25mg) 96 (94.1) 6 (5.9) 102 (24.6) 
Trial BB193    
 Gemcitabine (1000mg/m2) + placebo 107 (89.9) 12 (10.1) 119 (49.8) 
 Gemcitabine (1000mg/m2) + marimastat (10mg) 113 (94.2) 7 (5.8) 120 (50.2) 

 

Kaplan-Meier survival plots for each trial are shown in Figure 4.1. For trial BB128, as 

reported by Bramhall et al., there was no statistically significant difference in overall survival 
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between marimastat 25mg and gemcitabine (log-rank, p=0.78); overall survival was lower in 

marimastat 10mg than gemcitabine but not statistically significant when using the Bonferroni 

adjustment for multiple testing (HR=0.76, 95% CI: 0.57 to 1.01, p=0.05), and survival was 

lower in marimastat 5mg compared to gemcitabine but again not statistically significant 

(HR=0.82, 95% CI: 0.62 to 1.09, p=0.16).154 For trial BB193, Bramhall et al. reported no 

significant difference in overall survival between the two treatment arms, gemcitabine + 

placebo and gemcitabine + marimastat (HR=0.99, 95% CI: 0.76 to 1.30 , p=0.95).155 

In summary, there is some evidence in the BB128 trial (though not statistically significant) of 

a possible difference between gemcitabine and marimastat. However in the BB193 trial, 

marimastat does not seem to add any value over gemcitabine when compared to 

gemcitabine with a placebo. Therefore in terms of prognosis, it seems more important to 

consider whether patients received gemcitabine or not. 
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Figure 4.1: Kaplan-Meier survival plots for treatment in trial (a) BB128 and (b) BB193. 

a) 

b) 
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4.2.2 Comparison of gemcitabine and no gemcitabine patients 

Information recorded for patients at baseline included demographics such as age, sex and 

race; haematology and serum chemistry variables such as haemoglobin, white blood cell 

count (WBC), aspartate aminotransferase (AST), bilirubin, alkaline phosphatase, albumin, 

lactate dehydrogenase (LDH), blood urea nitrogen (BUN) and CA19-9; and variables relating 

to the cancer such as stage (I-IV), tumour size and whether it had extended into nearby 

tissue (T0-T4), whether regional lymph node metastasis was present (N0, N1) and whether 

the cancer had metastasised (M0, M1). The summary statistics for these variables pooled 

across the two trials are given in Table 4.2 below. The pooling of the two trials and different 

treatment groups is discussed further in Section 4.4.1. The mean age and proportions for sex 

and race are similar across treatment groups. The median values for WBC and alkaline 

phosphatase are slightly higher in the gemcitabine treatment group compared to the no 

gemcitabine group with 8.1 g/dL versus 7.6 g/dL for WBC and 155IU/L versus 132.5 IU/L for 

alkaline phosphatase. Patients were followed up over time until death occurred or patients 

were censored and had a median survival time of 5.5 months in the gemcitabine group and 

3.7 months in the no gemcitabine group. 

There is a rule of thumb based on simulation studies that there should be at least 10 EPV 

considered for inclusion when developing a survival model.43,148 This is to ensure that the 

sample size is large enough to avoid problems with precision and over-fitting, especially 

when using automatic selection procedures. Across the two trials, a total of 16 variables were 

considered and a very high event rate in pancreatic cancer meant that there were 612 

events. Using this rule of thumb, the EPV is 38, which is sufficient for developing a 

prognostic model. 
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Table 4.2: Summary statistics for baseline characteristics by treatment group 
categorised as receiving gemcitabine or not receiving gemcitabine, with patients 
pooled across the two trials. 

 
No gemcitabine 

(n=311) 
Gemcitabine 

(n=342) 

Demographics Mean (SD) Mean (SD) 
Age at entry (years)  62.62 (9.96) 61.62 (10.20) 
   
 n (%) n (%) 
Sex   
     Male 172 (55.31) 196 (57.31) 
     Female 139 (44.69) 146 (42.69) 
Race   
     White 272 (87.46) 318 (92.98) 
     Black 24 (7.72) 11 (3.22) 
     Oriental 6 (1.93) 1 (0.29) 
     Other 9 (2.89) 11 (3.22) 
     Missing 0 (0.00) 1 (0.29) 
   
Cancer Information n (%) n (%) 
Stage   
     I 15 (4.82) 17 (4.97) 
     II 34 (10.93) 38 (11.11) 
     III 58 (18.65) 46 (13.45) 
     IV 200 (64.31) 239 (69.88) 
     Missing 4 (1.29) 2 (0.58) 
Tumour   
     T0 2 (0.64) 6 (1.75) 
     T1 82 (26.37) 76 (22.22) 
     T2 71 (22.83) 73 (21.35) 
     T3 126 (40.51) 154 (45.03) 
     T4 6 (1.93) 1 (0.29) 
     Missing 24 (7.72) 32 (9.36) 
Nodes   
     N0 115 (36.98) 128 (37.43) 
     N1 124 (39.87) 127 (37.13) 
     Missing 72 (23.15) 87 (25.44) 
Distant Metastasis   
     M0 97 (31.19) 97 (28.36) 
     M1 200 (64.31) 236 (69.01) 
     Missing 14 (4.50) 9 (2.63) 
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No gemcitabine 

(n=311) 
Gemcitabine 

(n=342) 

Laboratory Tests Median (IQR) Median (IQR) 
Haemoglobin, g/dL ** 12.40 (1.58) 12.37 (1.51) 
WBC, 109/L 7.55 (6 – 9.55) 8.1 (6.5 – 10.45) 
AST, IU/L 24 (17 – 40) 26 (18 – 40) 
Bilirubin, µmol 13.68 (10.26 – 21.38) 13.68 (10.26 – 22.23) 
Alkaline Phosphatase, IU/L 132.5 (91 – 236) 155 (97 – 260) 
Albumin, g/L ** 38.12 (4.16) 37.98 (4.35) 
LDH, IU/L 161 (134 – 201) 168.5 (135.5 – 218) 
BUN, mmol/L 9.29 (7.86 – 11.43) 8.57 (7.14 – 11.43) 
CA19-9, KU/I 654 (84.5 – 4850) 800 (93 – 4500) 
   
Follow-up   
Endpoint, n (%)   
     Dead 295 (94.86) 317 (92.69) 
     Alive 16 (5.14) 25 (7.31) 
Median follow-up length (months) 20.72 20.69 
Median survival (months) 3.72 5.46 

** Mean (SD) reported for normally distributed variables instead of median (IQR). 

4.2.3 Missing data 

All patients had a survival time recorded along with whether this was the time to death or 

censoring, therefore all patients could potentially be included in a survival analysis. 

Information was complete for age, sex and treatment. However, there was missing data for 

the other variables (Table 4.3). Information on nodes was missing for almost a quarter of 

patients, whereas other variables were missing in up to 9% of patients. 

Table 4.2 continued… 
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Table 4.3: Number of observations missing by variable. 

Variable 
Number (%) missing 

(N=653) 

Age 0 (0.00) 
Sex 0 (0.00) 
Race 1 (0.15) 
Treatment 0 (0.00) 
Stage 6 (0.92) 
Tumour 56 (8.58) 
Nodes 159 (24.35) 
Metastasis 23 (3.52) 
Haemoglobin 41 (6.28) 
WBC 41 (6.28) 
AST 29 (4.44) 
Bilirubin 24 (3.68) 
Alkaline phosphatase 24 (3.68) 
Albumin 25 (3.83) 
LDH 32 (4.90) 
BUN 33 (5.05) 
CA19-9 47 (7.20) 

 

4.3 Previous modelling using the advanced pancreatic trial 

data 

The data from these trials has previously been used by Stocken et al. to develop a 

prognostic model for advanced pancreatic cancer.156 The authors combined the two trials to 

form one dataset with the inclusion of a trial variable in the model. They also decided to 

create and use a new treatment variable based on whether or not patients received the 

experimental drug marimastat or not. A multivariable Cox proportional hazards model was 

used to develop the prognostic model for pancreatic cancer.156,157 Variables were selected 

using the strategy proposed by Collett, which in summary first tests variables in a univariable 

analysis and then includes significant variables in a backward elimination process.24 The 

variables that were not significant in the univariable analysis were then tested by adding 

them to the multivariable model one at a time. Stocken et al. developed the model using a 
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complete case analysis but later explored the use of multiple imputation. The authors also 

included second degree fractional polynomial terms for CA19-9 due to non-linearity. 

The Stocken model was developed using Cox proportional hazards regression and therefore 

did not explicitly model the baseline hazard. Stocken et al. used the final model to categorise 

patients into risk groups based on the risk score from the model. They then produced 

Kaplan-Meier survival curves displaying the average survival function for each of the risk 

groups (see Appendix Figure C1.1). This method of using Kaplan-Meier curves to report 

survival probabilities for patients after fitting a Cox model was used in several of the articles 

included in the literature review (see Chapter 3). 

The published paper by Stocken et al. has been cited 20 times according to Web of Science 

(search date: 1 May 2015). 

4.4 Prognostic model development 

From here onwards, the data are now used to develop a new prognostic model using the 

Royston-Parmar modelling approach, and to thereby go beyond the Cox modelling approach 

of Stocken et al. to improve individualised predictions. The details of model development are 

now described, and along the way key issues are numbered and emphasised in bold. 

4.4.1  Combining trials and treatment groups 

Recall that in Section 4.2.2, patients were placed into two treatment groups rather than the 

six original groups from the two trials. The treatments were simplified into patients that 

received gemcitabine (includes gemcitabine in BB128, gemcitabine + placebo and 

gemcitabine + marimastat in BB193) and patients that did not receive gemcitabine (includes 
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marimastat at 5, 10 and 25mg in BB128) (CLINICAL TRIALS ISSUE 1: Dealing with 

multiple treatment groups in the development of a prognostic model). The decision to 

combine treatment groups into those receiving or not receiving gemcitabine was based on 

the published results of the two trials (see Section 4.2) which gave some suggestion (though 

not formally statistically significant) that patients receiving gemcitabine had a better survival 

in BB128 when compared to marimastat at any dose. This difference is more noticeable in 

the early months (Figure 4.1a). Furthermore, there was no noticeable difference (neither 

statistical nor visual) between gemcitabine + placebo and gemcitabine + marimastat in 

BB193, suggesting that marimastat did not improve the survival of patients already receiving 

gemcitabine.154,155 The hazard functions for each treatment group were also estimated (using 

3 d.f.) and compared. The shapes of the hazard functions for treatment groups in which 

patients received gemcitabine were similar. The hazard functions of treatment arms that did 

not include gemcitabine were also similar in shape to each other. This supports the decision 

to combine treatment groups based on receiving gemcitabine or not (Figure 4.2). Clinically, 

for the model to be relevant, it was also important to predict outcome for those receiving 

gemcitabine or not. It is also worth noting that combining treatment groups breaks the 

randomisation, but this is only a problem for prediction if the effect of the original trial 

treatment groups actually differs (otherwise predictions are the same for each group, and 

therefore including multiple groups is unnecessary). 
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Figure 4.2: Estimated hazard functions for individual treatment groups, (a) patients 
receiving gemcitabine and (b) patients not receiving gemcitabine. 

b) 

a) 
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To begin with, data from the two clinical trials were combined to form a single dataset for 

model development as was done by Stocken et al. (CLINICAL TRIALS ISSUE 2: Handling 

multiple trials in the development of a prognostic model). As discussed in Section 4.2, 

the patient populations are similar for both trials and therefore the baseline hazard should be 

similar. Using the combined data to develop a prognostic model also gives more power to 

detect genuine prognostic factors and develop a more clinically useful model. For the same 

reason, it was also decided not to include a trial variable in the model and thus force both 

trials to have the same baseline hazard. This is because a trial variable would not be 

meaningful if the model was used to predict outcome in future patients that did not belong to 

either of these trials. This assumption will however also be looked at later in this chapter (see 

Section 4.6.2). Note that to allow a separate baseline hazard for each trial, a random effect 

could be fitted on the intercept (baseline hazard), however, this cannot be reliably estimated 

when there are only two trials. 

4.4.2 Dealing with missing data 

To handle the missing data, multiple imputation (MI) was used (CLINICAL TRIALS ISSUE 3: 

Dealing with missing data). Assuming data are missing at random, i.e. that the probability 

of a variable being missing depends on observed data rather than unobserved data, MI can 

be used to give unbiased regression estimates and standard errors and is generally 

considered more efficient than complete-case analysis.158 When several variables have 

missing values, multiple imputation by chained equations (MICE) uses a set of imputation 

models to impute values for each variable in turn using the other variables in a regression 

model. This is restricted to individuals that have an observed value for the variable being 

imputed, and then used to predict values for individuals that are missing values for that 

variable. The missing values for the next variable are then imputed, this time including the 

already imputed values for the first variable in the imputation model. The missing values are 



142 
 

imputed for each variable in turn until all missing values have been imputed. This is said to 

be a cycle. Several cycles are run to stabilize the results and produce one imputed dataset. 

The whole procedure is repeated multiple times resulting in several imputed datasets. Each 

imputed dataset is analysed separately and then estimates are combined across the 

datasets to give overall estimates using Rubin’s rules.45,46 The total variance for an estimate 

includes both the within-imputation variance and the between-imputation variance, therefore 

reflecting the uncertainty due to the missing data as well as the uncertainty in the parameter 

estimate itself. 

The variable ‘nodes’ was not recorded for 24% of patients and therefore it was decided to 

exclude this variable from model development. If this missingness reflects the information 

often not routinely recorded for pancreatic cancer patients, including nodes in the prognostic 

model may make the model unusable in clinical practice. Harrell supports data reduction 

including eliminating variables that are missing in a large number of patients and likely to be 

missing in future patients as this also makes the model more likely to validate well in future 

data.22 

Statisticians used to think that only a small number of imputed datasets (M) were required for 

statistical efficiency (M=3-5 commonly used).45 However, as more research has been done in 

the area, suggestions have been made to use a larger M to reduce the loss of power.159 

Further studies have looked at the number of imputed datasets required for reproducibility of 

the results if the analysis was repeated. This has led to a rule of thumb, that the number of 

imputed datasets should be selected to be at least equal to the percentage of incomplete 

cases.46 In the advanced pancreatic cancer data, 24% of patients are missing values for at 

least one of the variables considered in the model development, therefore M=25 was 

selected for analyses with multiple imputation. 
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The variables recorded in both trials were the same; therefore there was no problem in 

combining the datasets and imputing missing values. However, if a variable was only 

recorded in one trial and not the other, that variable could not be included in the analysis. 

Imputing values for a variable in a whole study would mean using the observed values from 

the other study, which may not be sensible as the distribution of values for that variable could 

be different in each study, though methodology work is ongoing to address this.160 

Summary statistics are shown for the data available for each variable as well as for a 

complete case analysis (n=496) and using multiply imputed data (Table 4.4). The summary 

statistics are very similar in all three settings, suggesting no obvious bias due to the 

missingness of these variables in the complete case for any of the summary statistics. 

However, the estimates from the multiply imputed data are closer than the complete case 

estimates when compared to all available data. There is no difference in the median survival 

or follow-up between all available data and the imputed data because the outcome was 

complete for all individuals. 
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Table 4.4: Summary statistics for all available data, complete case and multiply 
imputed data. 

 
All available 

data 
Complete case 

(n=496) 
Multiply imputed data 

(n=653) 

 Mean (SD) Mean (SD) Mean (SD) 
Age at entry (years)  62.09 (10.09) 61.90 (10.02) 62.09 (10.09) 
    
 Percentage Percentage Percentage 
Sex    
     Male 56.36 55.65 56.36 
     Female 43.64 44.35 43.64 
Race    
     White 90.49 89.31 90.46 
     Black 5.37 6.45 5.37 
     Oriental 1.07 1.21 1.08 
     Other 3.07 3.02 3.09 
Stage    
     I 4.95 5.44 4.98 
     II 11.13 10.89 11.16 
     III 16.07 16.53 16.09 
     IV 67.85 67.14 67.77 
Follow-up    
Endpoint    
     Dead (%) 93.72 93.55 93.72 
     Alive (%) 6.28 6.45 6.28 
Median follow-up (months) 20.69 21.12 20.69 
Median survival (months) 4.70 4.84 4.70 

All available data:  Uses all available data for each variable. 
Complete case:  Uses observations that are complete for all variables considered for 

model development. 
Imputed data:   Uses all observations and averages across multiply imputed datasets. 

4.4.3 Stratification factors 

Several articles have been published recommending that randomisation factors included in 

the design of a trial should also be included in the analysis of data.161-164 Not accounting for 

the randomisation factors in the analysis of trials data can lead to wider confidence intervals 

and larger p-values when testing the treatment effect.163 Within each of the two trials, 

patients were assigned to treatment arms based on minimization as the randomisation 

method, using the following factors: pancreatic cancer staging, Karnofsky score, 
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recurrent/newly diagnosed disease, gender and study centre. These factors were used for 

randomisation as they were considered to be prognostic. Although information on most of 

these factors was not available in the dataset provided for prognostic model development, 

stage and sex were available and so they were forced into any models fitted. (CLINICAL 

TRIALS ISSUE 4: Dealing with trial stratification factors in the modelling). 

4.4.4 Proportional hazards assumption 

There were 17 candidate predictors available in the dataset. The assumption of proportional 

hazards was checked for each variable considered for inclusion in the multivariable model 

using plots of –ln(-ln(survival probability)) against log time (referred to as ‘log-log’ plots) and 

a test based on Schoenfeld residuals for non-proportional hazards in univariable Cox 

models. To produce log-log plots, continuous variables had to be categorised and this was 

done by dichotomising haematology and serum chemistry variables into normal and 

abnormal values as defined by clinical investigators. Age was dichotomised using the mean 

value of 63 years. When the assumption of proportional hazards holds, the lines in the log-

log plot should appear approximately parallel. 

A statistical test can be performed to check if hazards are not proportional by checking if 

there is a deviation from zero slope of scaled Schoenfeld residuals over time in a generalised 

linear regression.27,29 The p-values of the proportional hazards test (Table 4.5) suggest that 

the assumption might not hold for the variables albumin, LDH, BUN, stage, tumour, 

metastasis and treatment (all p<0.05). Therefore this needed to be considered during model 

development. 
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Table 4.5: P-values for proportional hazards test of factors within a univariable model 
based on scaled Schoenfeld residuals. 

Variable Proportional hazards test p-value 

Age 0.286 
Sex 0.401 
Race 0.723 
Haemoglobin 0.609 
WBC 0.142 
AST 0.767 
Bilirubin 0.580 
Alkaline phosphatase 0.348 
Albumin <0.001 
LDH 0.021 
BUN 0.020 
CA19-9 0.645 
Treatment with gemcitabine 0.011 
Stage 0.001 
Tumour 0.014 
Nodes 0.819 
Metastases <0.001 

 

Although there were a few variables with significant p-values for the statistical test, most of 

the log-log plots were not too concerning. However, the log-log plot for treatment of 

gemcitabine or no gemcitabine (Figure 4.3) showed crossing lines. This suggests that a time-

dependent effect may be required to model treatment correctly. For this reason, it was 

decided to start by fitting separate prognostic models to each treatment group and gradually 

work towards a more complex model involving both treatments. The full set of log-log plots 

can be found in Appendix Figure C2.1 to Figure C2.3. 
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Figure 4.3: Log-log plot for treatment and death as the outcome. 

4.5 Development and internal validation of treatment 

specific prognostic models 

4.5.1 Development 

Choosing d.f. for baseline hazard 

For each treatment specific prognostic model, the two trials were combined for the purpose 

of model development and the trial variable was ignored as discussed earlier. To examine 

model fit, the baseline hazard functions from null Royston-Parmar models (model with no 

variables included) using between 1 and 4 d.f. were plotted and compared to the shape of 

the kernel smoothed function.27 Using the hazard function plots (Figure 4.4) and the AIC and 

BIC as a guide, 2 or 3 d.f. seemed sufficient for each treatment group because it captured 

the same trend as larger d.f. Based on this, Royston-Parmar models with 3 d.f. for the 

baseline hazard function were fitted in the gemcitabine and no gemcitabine treatment 

groups. 
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Figure 4.4: Hazard functions estimated by kernel smoothing and spline functions with 
between 1 and 4 degrees of freedom for (a) gemcitabine and (b) no gemcitabine 
treatment groups. 

a) 

b) 
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Modelling stage 

Stage originally had four categories (stage I, II, III and IV) which were simplified into two 

categories (stage I/II versus III/IV). This decision was based on how Stocken et al. modelled 

stage in the previously published prognostic model,156 and also because the dataset consists 

of patients with advanced stage pancreatic cancer, so there are small numbers in the stage I 

and II categories (approximately 5% and 11% of patients were stage I and II respectively), 

compared to stages III and IV. 

Variable selection 

The method used for selecting variables for inclusion in the multivariable model was an 

automatic selection procedure which considers non-linear functions for continuous variables. 

The variables were included in each treatment specific multivariable model if they were 

selected using the multivariable fractional polynomials for multiply imputed data (MFPMI) 

command in Stata using significance level α=0.157 for inclusion in the model. Backward 

elimination with α=0.157 is used as a proxy for all-subset model selection based on AIC.165 

Vergouwe et al. also used this method for model selection with imputed data.166 In summary, 

multivariable fractional polynomials (MFP) does the following:49,50 

 Determines the fitting order, by performing likelihood ratio tests for each variable 

comparing the full model (model including all variables included for model selection, 

fitted linearly for continuous variables) with a model excluding that variable. The 

fitting order is determined by ordering the variables based on the likelihood ratio test 

p-values from most to least significant. 

 Using the fitting order and a specified significance level (e.g. α=0.157), each variable 

is considered in turn. For categorical variables, a likelihood ratio test is performed to 

test whether the variable should be dropped from the model. For continuous 
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variables, the deviance of a model using the ‘best’ fractional polynomial of second 

degree (FP2) for the variable under consideration is compared to the deviance of a 

model excluding that variable (߯ସ
ଶ test). If this test was significant, the FP2 model is 

compared to a model in which the variable is modelled linearly (߯ଷ
ଶ test). If this test 

was significant, the FP2 model is compared to an FP1 model (߯ଶ
ଶ test). 

 The procedure cycles through the variables in the same order until there is no 

change in the variables selected or the functional form of each variable. 

Instead of testing for possible complex FP2 functions, MFP was restricted to FP1 for non-

linear functions for simplicity and to reduce the number of tests performed. Rather than the 

first hypothesis test comparing the model with the FP2 term for a variable versus the model 

without the variable (null) for variable inclusion or exclusion, the first hypothesis is now FP1 

versus null (߯ଶ
ଶ test). If the variable is not excluded based on this first test, a second test is 

then performed comparing FP1 to the linear form of the variable. 

Rather than a single dataset being used for model development, there are multiple datasets 

here as a result of the multiple imputation strategy outlined in Section 4.4.2. A study 

comparing different methods for variable selection strategies using imputed data showed that 

stacking the imputed datasets and using weights according to the fraction of missing for each 

variable seemed a reasonable approach to use in this case.167 The fraction of missing 

differed considerably from variable to variable (between 0.00 and 0.32) so rather than using 

an averaged fraction of missing in the weighting, the variable specific fraction of missing was 

used when considering inclusion of that variable. The weighting given to each variable in the 

stacked dataset is shown in (4.1) below, 
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 wi=(1-fi)/M (4.1) 

where wi is the weighting used for each observation in the stacked dataset when considering 

the inclusion or exclusion of variable Xi, fi is the fraction of missing for variable Xi and M is the 

number of imputed datasets. MFPMI allows the MFP procedure to be implemented for model 

selection while using the stacking method with variable specific weightings described above. 

Following variable selection using MFPMI, the selected variables (including any non-linear 

functions) were refitted using the MI package which uses Rubin’s rules to combine the 

estimates across datasets to obtain the final model estimates. A summary of the modelling 

strategy discussed above is given in Box 4.1. 
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Box 4.1: Steps taken in developing treatment-specific models for advanced pancreatic 
cancer. 
Step 1: Combine treatment groups 

Both trials were combined to form one dataset and the original trial treatment 

arms were combined to form two new treatment groups: gemcitabine and no 

gemcitabine. Models were then developed for each of these treatment groups 

separately as the new treatment groups did not have proportional hazards 

(see step 3). 

Step 2:  Impute missing data 

Assuming data are missing at random, multiple imputation was used to 

generate 25 imputed datasets. 

Step 3: Check proportional hazards assumption 

‘Log-log’ plots and a test of scaled Schoenfeld residuals over time were used 

to assess whether the proportional hazards assumption was reasonable for 

each variable. 

Step 4:  Decide d.f. for baseline hazard 

Null Royston-Parmar models were fitted for each treatment group using 

between 1 and 4 d.f. The decision was based on plots of hazard functions, as 

well as AIC and BIC statistics. 

Step 5: Select variables for inclusion in final models 

Imputed datasets were stacked and variable selection was performed using 

MFPMI. This uses backward elimination with α=0.157 and considers 1st 

degree fractional polynomial functions for continuous variables. 

Due to multiply imputed data being used, a weighting is applied to each 

observation when considering inclusion/exclusion in the model. This weighting 

is based on the fraction of missing information for that variable and the 

number of imputed datasets. 

Trial stratification factors were included in the model regardless of significance 

as they were already considered prognostic for advanced pancreatic cancer. 

Step 6: Obtain model estimates using Rubin’s rules for multiply imputed data 

Refit variables selected in previous step including any non-linear functions 

using MI package to obtain final model estimates. 
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4.5.2 Results of model development 

The models developed for each treatment group are given in Table 4.6. Twelve predictors 

were included in either one or both of the models. Sex and stage were forced into the models 

as they were stratification factors in the trials and clinically considered prognostic. However, 

neither stage nor sex were significant predictors in the treatment specific models. First 

degree fractional polynomial terms were selected for AST (in the gemcitabine model) and 

CA19-9, whereas the other continuous variables were modelled linearly. Alkaline 

phosphatase, albumin, LDH, ln(CA19-9) and metastasis were included in both models. 

Interestingly, the variables age and WBC were included in the gemcitabine model but were 

not retained in the no gemcitabine model. Conversely, haemoglobin and BUN were retained 

in the no gemcitabine model but not the gemcitabine model. AST was modelled as an FP1 in 

the gemcitabine model but linearly in the no gemcitabine model (CLINICAL TRIALS ISSUE 

5: Using selection procedures to identify prognostic factors in a model). 
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Table 4.6: Hazard ratio estimates for variables selected using MFP in gemcitabine and 
no gemcitabine treatment groups modelled separately. 

Variable 
Gemcitabine  No gemcitabine 

HR (95% CI) P-value  HR (95% CI) P-value 

Age 
1.019 

(1.007 to 1.032) 
0.002  - - 

Male 1 - 
 
 

1 - 

Female 
0.824 

(0.649 to 1.045) 
0.110  

0.842 
(0.656 to 1.080) 

0.176 

Haemoglobin - -  
1.058 

(0.972 to 1.153) 
0.194 

WBC 
1.065 

(1.031 to 1.099) 
<0.001  - - 

AST - -  
0.996 

(0.991 to 1.000) 
0.044 

(AST/100)-0.5 1.686 
(1.307 to 2.174) 

<0.001  - - 

Alkaline 
phosphatase 

1.002 
(1.001 to 1.002) 

<0.001  
1.001 

(1.001 to 1.002) 
0.001 

Albumin 
0.951 

(0.924 to 0.980) 
0.001  

0.902 
(0.870 to 0.935) 

<0.001 

LDH 
1.001 

(1.0005 to 1.002) 
0.002  

1.004 
(1.003 to 1.005) 

<0.001 

BUN - -  
1.032 

(0.998 to 1.067) 
0.065 

Ln(CA19-9) 
1.084 

(1.032 to 1.138) 
0.001  

1.169 
(1.112 to 1.229) 

<0.001 

Stage I/II 1 - 
 
 

1 - 

Stage III/IV 
0.930 

(0.613 to 1.411) 
0.734  

1.014 
(0.673 to 1.529) 

0.945 

No Metastasis 1 - 
 
 

1 - 

Metastasis 
1.359 

(0.968 to 1.907) 
0.076  

1.441 
(1.053 to 1.972) 

0.022 

 

Interestingly, when the two models were re-fitted with the same set of variables forced to be 

included, the hazard ratios appeared similar across models for most of the variables (Table 

4.7), suggesting the data may be combinable for the development of a single prognostic 

model (see Section 4.6). 
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Table 4.7: Comparable multivariable model hazard ratio estimates for gemcitabine and 
no gemcitabine treatment groups modelled separately. 

Variable 
Gemcitabine  No gemcitabine 

HR (95% CI) P-value  HR (95% CI) P-value 

Age 
1.019 

(1.006 to 1.032) 
0.003  

0.997 
(0.985 to 1.010) 

0.695 

Male 1.000 - 
 
 

1.000 - 

Female 
0.838 

(0.648 to 1.083) 
0.176  

0.803 
(0.613 to 1.053) 

0.113 

Haemoglobin 
0.978 

(0.888 to 1.077) 
0.647  

1.048 
(0.959 to 1.145) 

0.299 

WBC 
1.064 

(1.031 to 1.098) 
<0.001  

1.032 
(0.989 o 1.077) 

0.146 

(AST/100)-0.5 1.653 
(1.277 to 2.139) 

<0.001  
1.337 

(1.033 to 1.732) 
0.027 

Alkaline 
phosphatase 

1.002 
(1.001 to 1.002) 

<0.001  
1.001 

(1.001 to 1.002) 
0.001 

Albumin 
0.955 

(0.925 to 0.985) 
0.004  

0.908 
(0.873 to 0.943) 

<0.001 

LDH 
1.001 

(1.0004 to 1.002) 
0.002  

1.004 
(1.003 to 1.005) 

<0.001 

BUN 
1.017 

(0.982 to 1.054) 
0.351  

1.029 
(0.993 to 1.065) 

0.111 

Ln(CA19-9) 
1.086 

(1.035 to 1.141) 
0.001  

1.167 
(1.110 to 1.228) 

<0.001 

Stage I/II 1.000 - 
 
 

1.000 - 

Stage III/IV 
0.911 

(0.599 to 1.386) 
0.664  

1.009 
(0.667 to 1.526) 

0.966 

No Distant 
Metastasis 

1.000 - 
 
 

1.000 - 

Distant 
Metastasis 

1.374 
(0.977 to 1.931) 

0.068  
1.430 

(1.043 to 1.961) 
0.026 
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4.5.3 Internal validation using the same data 

When a prognostic model is developed, it is important to validate its performance, first 

internally and then, if possible, externally. See Chapter 1 for an introduction to validation 

methods and statistics (Section 1.6). So here, validation of the two developed models is now 

considered. 

Methods 

Section 4.5.2 developed two prognostic models, one for each treatment group. For internal 

validation of each model, patients were categorised into four risk groups, based on quartiles 

of the risk score (using the linear predictor from the model, xβ), so risk group 1 had the best 

survival and risk group 4 had the worst survival. The calibration of each treatment specific 

survival model was internally validated by plotting the observed survival curves (Kaplan-

Meier) and the mean predicted survival curves from the model for each treatment group. In 

order to do this, the risk score was calculated for each patient using the treatment specific 

model. Harrell’s C-statistic for discrimination168,169 was also calculated to assess model fit. 

This was done by using the model obtained using multiple imputation methods (using 

Rubin’s rules for the parameter estimates) and looking at validation in each of the imputed 

datasets. Risk groups were derived using quartiles of risk scores in all of the imputed 

datasets combined to determine the cut-points, which were used within each of the 25 

imputed datasets for comparability. 

Results 

The internal validation plots show that the treatment specific models (reported in Table 4.7) 

predict well on average for the risk groups within each treatment group. The calibration plots 

were created for each of the imputed datasets, Figure 4.5 shows the calibration between 

expected and observed survival probabilities over time within one of the imputed dataset as 
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an example. There were slight differences between plots from the different imputed datasets 

due to the different values imputed for predictors, but Figure 4.5 is representative of what 

was generally seen across the imputed datasets. The expected survival functions lie close to 

the observed survival functions but there are slight deviations from this. Overall, the 

gemcitabine model fits marginally better than the no gemcitabine model. The no gemcitabine 

model slightly underestimates survival in the first seven months and then overestimates 

survival thereafter for patients in risk group 1 with the lowest risk of death. 
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Figure 4.5: Kaplan-Meier (observed) and mean predicted (expected) survival for 
internal validation of each treatment specific model (a) gemcitabine and (b) no 
gemcitabine in one of the imputed datasets. 

a) 

b) 
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Validation statistics are reported for both treatment specific models in Table 4.8. The value of 

Harrell’s C-statistic can range between 0.5 and 1.0, with values close to 1.0 suggesting good 

discrimination. The no gemcitabine model had better discrimination when validated within the 

same data used for development (average C-statistic=0.721) compared to the gemcitabine 

model (average C-statistic=0.688). 

Table 4.8: Harrell’s C-statistic for treatment specific models. 

 Gemcitabine No gemcitabine 

Average C-statistic (across imputed datasets)  0.688 0.721 
Range (across imputed datasets) 0.681 to 0.694 0.716 to 0.726 

 

4.5.4 Internal-external validation using other treatment group 

As two datasets were formed (one for modelling in each treatment group), an interesting 

option is to validate each model using the other dataset not used for its development. This is 

a sort of internal-external validation approach; internal as the same trial data are used, but 

external because a new group of patients on a different treatment are used for the validation 

(CLINICAL TRIALS ISSUE 6: Use of trial data for model validation). Each model was 

developed in one treatment group and the cut-points for risk groups calculated as quartiles of 

risk score in the development data. The other treatment group was then categorised into risk 

groups for which mean predicted survival curves were created using the model and 

compared to the observed survival functions in the validation data (Figure 4.6). 
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Figure 4.6: Kaplan-Meier (observed) and mean predicted (expected) survival using 
treatment specific models in the other treatment group, (a) gemcitabine model in no 
gemcitabine patients and (b) no gemcitabine model in gemcitabine patients. One 
imputed dataset used for illustration. 

a) 

b) 
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Discrimination 

There still appears to be good discrimination between risk groups when the model is fitted in 

the other treatment group, as they remain well separated (seen in Figure 4.6). This suggests 

that the linear predictor (i.e. prognostic factor effects, HRs) is similar in both gemcitabine and 

no gemcitabine treatment groups. The similar discrimination is expected, as Table 4.7 

showed that the HRs were very similar in both treatment specific models. However, the 

discrimination is slightly less than expected in the no gemcitabine model, and slightly more 

than expected in the gemcitabine group. 

The internal validation (Section 4.5.3) showed that the models discriminated reasonably well 

with average C-statistics across imputed datasets of 0.688 and 0.721 for the gemcitabine 

and no gemcitabine models respectively. When each model was applied to the other 

treatment group in an internal-external validation, the average C-statistics were 0.691 and 

0.680 for the gemcitabine and no gemcitabine models. These values suggest slightly better 

discrimination of the gemcitabine model in the other treatment group, whereas the no 

gemcitabine model performed slightly worse in the other treatment group. 

Calibration 

Figure 4.6 shows visually that calibration is poor. In particular, the baseline hazard is higher 

in the no gemcitabine treatment group and neither model validates well in the other treatment 

group. The gemcitabine model over-predicts survival probabilities over time in all risk groups. 

The prediction for a risk group can even exceed the observed survival curve of the next risk 

group. For illustration, Table 4.9 shows the observed and expected survival probabilities at 

six months in the imputed dataset used for Figure 4.6. The expected survival probability for 

risk group 3 is 0.384 which even exceeds the observed survival for risk group 2 of 0.371. In 
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contrast, the no gemcitabine model under-predicts survival probabilities as would be 

expected, given that the gemcitabine model over-predicts survival. 

Table 4.9: Observed and expected six month survival probabilities of treatment 
specific models tested in the other treatment group (in one imputed dataset). 

Model Risk group 
Six month survival probability 

Observed Expected 

Gemcitabine 

1 0.602 0.691 
2 0.371 0.550 
3 0.211 0.384 
4 0.048 0.180 

No gemcitabine 

1 0.689 0.644 
2 0.654 0.434 
3 0.430 0.230 
4 0.116 0.031 

 

4.5.5 Conclusion about the two developed models 

Validation of the treatment specific models showed that they calibrated well within the same 

data used for development of the model, but did not discriminate particularly well in either 

treatment group (average C-statistic=0.688 and 0.721 for gemcitabine and no gemcitabine 

models respectively). Validation of each treatment specific model in the other treatment 

group (internal-external validation) highlighted quite consistent discrimination, but a different 

baseline risk of gemcitabine and no gemcitabine patients. This caused the gemcitabine 

model to over-predict survival in the no gemcitabine patients and the no gemcitabine model 

to under-predict survival in gemcitabine patients. Figure 4.6 showed that survival probabilities 

vary more between risk groups (greater discrimination) in the no gemcitabine treatment 

group than in the gemcitabine treatment group. The next section moves on to developing a 

single prognostic model for both treatment groups rather than having separate models. 
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4.6 Development and internal validation of a single 

prognostic model including treatment 

The previous sections in this chapter show how treatment specific models can be developed 

and validated. However, the aim might be to develop one prognostic model that can be used 

for both treatment groups with the same set of predictors. In this situation, both the treatment 

groups should contribute to the same model development. This is complicated here as 

graphical checks indicated that the proportional hazards assumption does not hold for 

treatment (see Figure 4.3) and so separate baseline hazards may be necessary. To begin 

with, for simplicity a proportional hazards model was fitted before considering more complex 

models. 

4.6.1 Assuming proportional hazards 

The aim was to assess how well the model predicts and how much the failed proportional 

hazards assumption affects the predictions. Following variable selection using MFPMI and 

refitting the model using Rubin’s rules, the hazard ratio estimates for the proportional 

hazards model with 3 d.f. for the baseline hazard are reported in Table 4.10. Age was not 

retained in the model which is a consequence of it being only significant in the gemcitabine 

model and not in the no gemcitabine model. Also, haemoglobin was not retained in the 

model as it was not significant (at even the 10% level) in either of the treatment specific 

models. Bilirubin was not retained in either of the treatment specific models but is significant 

(p=0.019) in the proportional hazards model with both treatment groups included and is 

modelled using a fractional polynomial term (power of -1). LDH, which was previously 

modelled linearly, is included in this model using the natural log function and is highly 

significant (p<0.001). The hazard ratios for the other variables are reasonably similar to the 

hazard ratios from the treatment specific models. 
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Table 4.10: Hazard ratio estimates from model assuming proportional hazards for 
treatment. 

Variable Hazard ratio (95% CI) P-value 

Male 1 - 
Female 0.827 (0.699 to 0.979) 0.028 
WBC 1.043 (1.018 to 1.069) 0.001 
(AST/100)-0.5 1.545 (1.274 to 1.873) <0.001 
(Bilirubin/100)-1 0.973 (0.951 to 0.996) 0.019 
Alkaline phosphatase 1.001 (1.0006 to 1.002) <0.001 
Albumin 0.934 (0.916 to 0.952) <0.001 
Ln(LDH) 1.851 (1.439 to 2.381) <0.001 
BUN 1.027 (1.003 to 1.051) 0.028 
Ln(CA19-9) 1.111 (1.073 to 1.150) <0.001 
No gemcitabine 1 - 
Gemcitabine 0.640 (0.541 to 0.756) <0.001 
Stage I/II 1.000 - 
Stage III/IV 0.953 (0.715 to 1.272) 0.744 
No distant metastasis 1 - 
Metastasis 1.432 (1.136 to 1.807) 0.002 

 

The C-statistic for the proportional hazards model is 0.705 when averaged across the 

imputed datasets with a range of 0.702 to 0.708. 

4.6.2 Inclusion of a time-dependent effect for treatment 

As discussed previously, there is evidence to suggest that the proportional hazards 

assumption does not hold for treatment (see Figure 4.3). The Royston-Parmar model 

assuming proportional hazards was given in equation (1.13). Writing the model out again, 

now using the spline variables created in Stata (rcs_1 to rcs_n), the model presented in 

Section 4.6.1 can be written as 

 ln൫Hiሺtሻ൯=γ0+γ1rcs_1+…+γnrcs_n+βxi (4.2)
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where γ0 is the constant, γ1 to γn are the coefficients for the spline variables, n is equal to the 

d.f. used for the restricted cubic spline function and βxi is the linear combination of 

regression coefficients and covariate values (β1*sex(female)+ β2*WBC+...) for patient i. This 

model can be extended to include a time-dependent effect for treatment by including an 

interaction between treatment and the baseline hazard function by adding spline terms for 

treatment. 

 ln൫Hiሺtሻ൯=γ0+γ1rcs1+…+γnrcsn+δ1rcs_trt_1+…+δkrcs_trt_k+βxi (4.3)

where δ1 to δk are the additional parameter estimates along with rcs_trt_1 to rcs_trt_k which 

are the additional spline variables created when k is the d.f. used for the time-dependent 

effect. When the time-dependent variable is binary as in the case of treatment, this effectively 

fits one baseline hazard function for patients not on gemcitabine and allows a different 

underlying hazard function for patients on gemcitabine. Royston-Parmar models were fitted 

using between 2 and 4 d.f. for the time-dependent effect within each imputed dataset, and 

the AIC and BIC for these models and the proportional hazards model were compared within 

datasets. In all of the 25 imputed datasets, the lowest AIC and BIC was observed for the 

model using 3 d.f. for the time-dependent effect of treatment (Table 4.11). There is also a 

clear improvement in AIC and BIC for the model using 2 d.f. for the time-dependent effect 

compared to the proportional hazards model reported in Section 4.6.1, suggesting improved 

model fit by including a time-dependent effect for treatment. Therefore, 3 d.f. seemed 

adequate to model the time-dependent effect for treatment. 
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Table 4.11: AIC and BIC for comparison of proportional hazards model (PH) and 
models with time-dependent effect for treatment (TD) with between 2 and 4 d.f. 

Imputed 
dataset 

AIC BIC 

PH 
TD  

2 d.f. 
TD  

3 d.f. 
TD  

4 d.f. 
PH 

TD  
2 d.f. 

TD  
3 d.f. 

TD  
4 d.f. 

1 1678.9 1665.8 1660.8 1662.8 1750.6 1746.5 1745.9 1752.4 
2 1669.8 1656.0 1649.7 1651.7 1741.5 1736.7 1734.9 1741.3 
3 1673.9 1661.1 1655.4 1657.2 1745.6 1741.8 1740.5 1746.9 
4 1677.6 1665.1 1659.1 1661.1 1749.3 1745.7 1744.3 1750.7 
5 1665.5 1652.8 1647.4 1649.4 1737.3 1733.5 1732.6 1739.0 
6 1678.6 1666.7 1660.2 1662.1 1750.3 1747.4 1745.4 1751.8 
7 1662.8 1648.9 1643.2 1645.2 1734.5 1729.6 1728.3 1734.8 
8 1678.9 1666.3 1660.8 1662.7 1750.6 1747.0 1745.9 1752.4 
9 1665.1 1651.3 1645.9 1647.9 1736.8 1731.9 1731.0 1737.5 
10 1672.7 1659.8 1653.8 1655.7 1744.4 1740.4 1738.9 1745.3 
11 1676.0 1663.3 1657.3 1659.3 1747.7 1743.9 1742.5 1748.9 
12 1671.1 1658.0 1652.0 1654.0 1742.8 1738.7 1737.2 1743.6 
13 1668.2 1655.2 1649.2 1651.1 1739.9 1735.9 1734.3 1740.7 
14 1672.1 1660.0 1654.7 1656.8 1743.8 1740.7 1739.9 1746.4 
15 1674.7 1661.9 1656.4 1658.3 1746.4 1742.5 1741.5 1747.9 
16 1674.6 1662.5 1656.9 1658.8 1746.3 1743.2 1742.0 1748.5 
17 1666.1 1652.3 1646.8 1648.7 1737.8 1732.9 1731.9 1738.3 
18 1680.5 1668.2 1661.6 1663.5 1752.2 1748.8 1746.7 1753.1 
19 1678.8 1666.3 1660.9 1662.9 1750.5 1746.9 1746.0 1752.5 
20 1677.0 1664.8 1658.2 1660.2 1748.7 1745.5 1743.4 1749.8 
21 1670.0 1657.4 1651.6 1653.5 1741.7 1738.1 1736.7 1743.2 
22 1675.2 1662.4 1656.4 1658.3 1746.9 1743.0 1741.5 1747.9 
23 1677.8 1664.6 1658.4 1660.2 1749.5 1745.2 1743.6 1749.9 
24 1672.2 1659.6 1653.7 1655.7 1743.9 1740.2 1738.8 1745.3 
25 1674.0 1661.4 1655.5 1657.4 1745.7 1742.1 1740.7 1747.1 

 

A likelihood ratio test comparing the time-dependent model (3 d.f.) to the model assuming 

proportional hazards for treatment (Section 4.6.1) gives a highly significant p<0.0001 in all of 

the imputed datasets, further evidence suggesting that a time-dependent effect is required to 

model the treatment effect. The hazard ratio estimates for the variables other than treatment 

in the time-dependent model are reported in Table 4.12 and are similar to the hazard ratio 

estimates from the proportional hazards model (Section 4.6.1). 
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Table 4.12: Hazard ratio estimates from the model including a time-dependent effect 
for treatment. 

Variable Hazard ratio (95% CI) P-value 

Male 1 - 
Female 0.831 (0.702 to 0.983) 0.031 
WBC 1.045 (1.020 to 1.071) <0.001 
(AST/100)-0.5 1.556 (1.285 to 1.884) <0.001 
(Bilirubin/100)-1 0.974 (0.952 to 0.997) 0.027 
Alkaline phosphatase 1.001 (1.0007 to 1.002) <0.001 
Albumin 0.932 (0.914 to 0.950) <0.001 
Ln(LDH) 1.821 (1.414 to 2.346) <0.001 
BUN 1.027 (1.003 to 1.052) 0.026 
Ln(CA19-9) 1.108 (1.070 to 1.148) <0.001 
Stage I/II 1 - 
Stage III/IV 0.955 (0.716 to 1.273) 0.752 
No distant metastasis 1 - 
Metastasis 1.439 (1.141 to 1.815) 0.002 

 

The time-dependent effect included for treatment means that the treatment effect is no longer 

represented by a hazard ratio estimate alone. This can therefore not be displayed in the table 

of hazard ratio estimates. It is easier to visualise by plotting the hazard functions of the two 

treatment groups to understand how they have been modelled as in Figure 4.7. The figure 

shows the baseline hazard function on either gemcitabine or no gemcitabine treatment, 

assuming mean values of covariates in the model, and male sex with stage III/IV cancer. 

This suggests that there is a difference between the hazard functions in the first six months 

but very little difference after this time. 
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Figure 4.7: Baseline hazard functions modelled in time-dependent model. 

Another way to visualise the time-dependent effect is to plot the hazard ratio for treatment 

over time. Figure 4.8 again shows that after around six months there is negligible difference 

between the treatments with a HR≈1. The hazard ratio for the first few days suggests a 

higher hazard of death for patients on gemcitabine compared to no gemcitabine with HR>1 

and wide confidence intervals. However, Figure 4.7 showed that the hazard of death in this 

early period was very low for both treatment groups and therefore a relative risk may be large 

but the absolute risk difference is small (see section 2.6.5, pages 75 to 79 for a previous 

illustration of this). After 15 days, the hazard ratio reduces to less than one in favour of 

patients on gemcitabine until around six months where the difference in hazards has 

diminished.
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Figure 4.8: Hazard ratio for treatment over time in time-dependent model. 

Inclusion of a trial variable 

As mentioned in Section 4.4.1, a decision was made not to include trial as a variable in the 

prognostic model. Here, this assumption was now checked by adding a trial variable to the 

model, to assess if the model fit significantly improved. Improvement was tested using a 

likelihood ratio test and also by comparing AIC and BIC between the two models (including 

and excluding the trial variable) within each imputed datasets. The likelihood ratio tests 

compares the two models with and without the trial variable within each imputed dataset and 

all p-values were greater than 0.05 (ranging from p=0.067 to p=0.173). The AIC was similar 

in models with and without trial and BIC was lower in models without trial, suggesting that 

trial does not improve the model fit significantly. The exclusion of the ‘trial’ variable thus 

appears justified, and allows for greater ease of use. 

4.6.3 Internal validation of the time-dependent model 

Due to the time-dependent effect fitted in the model, the two treatment groups effectively 

have different baseline hazard functions that are not proportional. This has implications when 
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creating risk-groups, as the time at which the linear predictor is calculated affects which risk 

group a patient is categorised into. For example, when calculating the risk score (linear 

predictor) at 3 months, the hazard is much higher for patients not on gemcitabine, making 

them more likely to fall into a higher risk group. In comparison, at 25 months this is not the 

case as hazards in the groups are similar. To avoid this problem, risk groups were created 

within each treatment group separately, as the baseline hazard function is assumed to be the 

same for everyone on the same treatment. 

Figure 4.9 shows the observed and expected survival curves for the treatment groups 

separately in one of the imputed datasets (others differed slightly but were similar). The 

expected survival curves are given for both the time-dependent model and the proportional 

hazards model from Section 4.6.1 for comparison. The same risk groups are used to 

compare both models and are based on quartiles of the risk score from the model including 

the time-dependent effect for treatment. If looking across the whole duration to maximum 

follow-up, the fit of the time-dependent model looks poor for most of the risk groups in both 

treatment groups. For some risk groups, the model over-predicts survival probabilities over 

time, such as risk group 3 in both treatments. In other risk groups, the model under-predicts 

survival, for example, risk group 2 of the no gemcitabine group. 

The calibration of the time-dependent model appears to be better than the proportional 

hazards model as the expected survival curves are generally closer to the observed survival 

than for the proportional hazards model. Also, calibration looks better for all risk groups in the 

gemcitabine group than in the no gemcitabine group at earlier time points. Risk group 1 in 

the no gemcitabine group shows that observed survival is higher than predicted using the 

model until about 8 months. 
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Figure 4.9: Kaplan-Meier (observed) and mean predicted (expected) survival using the 
time-dependent treatment effect model (TD) and proportional hazards treatment effect 
model (PH) for (a) gemcitabine and (b) no gemcitabine treatment groups in one of the 
imputed datasets. 

a) 

b) 
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The C-statistic for the time-dependent model is 0.655 averaged across imputed datasets with 

a range of 0.652 to 0.657, which is lower than for the proportional hazards model (average 

C-statistic=0.705). However, there is a trade-off between discrimination and calibration, as 

calibration was slightly better than in the proportional hazards model (Figure 4.9). Essentially, 

in the proportional hazards model, the larger discrimination is caused by the predicted 

probabilities being slightly too high in the upper group and slightly too low in the lower group, 

revealed by the poorer calibration in the proportional hazards model. A trade-off in 

discrimination and calibration has been illustrated previously, e.g. Debray et al. using logistic 

regression models.149 

In conclusion, the time-dependent model performs better than the proportional hazards 

model in each of the imputed datasets as was seen by lower AIC and BIC values. The 

comparison of observed and expected survival curves (Figure 4.9) showed that calibration 

was slightly better in the time-dependent model than in the proportional hazards model, and 

consequently discrimination was slightly lower in the time-dependent model. Overall, the 

model only has moderate discriminatory ability and it may be necessary to investigate further 

prognostic factors to improve this before it could be used in a clinical setting, to better 

distinguish those who will or will not have a poor outcome. However, the model does appear 

to have good calibration and discrimination within the first six months for gemcitabine 

patients. Gemcitabine is often used as a first line therapy for advanced stage pancreatic 

cancer and NICE guidelines state that it is considered for patients with advanced or 

metastatic pancreatic cancer and a Karnofsky performance≥50.170,171 Due to gemcitabine’s 

common usage and the poor prognosis in advanced stage pancreatic cancer patients in 

general, a model for prognosis of patients on gemcitabine up to six months may still be 

useful. Therefore, the developed model may be important, and so external validation studies 

are necessary. 
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4.7 Predictions for individuals 

Risk grouping has so far been used to help examine calibration, as observed versus 

expected risk can only be compared across groups of individuals. Calibration was quite good 

for risk groups of patients on gemcitabine, especially up to six months. However, once 

calibration is assessed at the group level, the availability of the baseline hazard allows 

individuals to have their own predicted risk over time, which may be somewhat different to 

the average in their risk group. This is a great advantage of the flexible parametric approach 

over the Cox model. Figure 4.10 illustrates this, by showing how different the predicted risk of 

two individuals within the same risk group can be. At six months, the predicted survival 

probabilities are 0.634 and 0.480 for patient 1 and 2 respectively, with a difference in survival 

probabilities of 0.154. By modelling the baseline hazard explicitly, individual predictions can 

be made rather than being restricted to grouping patients with potentially very different 

prognoses. If the baseline risk was unavailable (as from a Cox model), both patients 1 and 2 

would be given the same predicted outcome risk from risk group 2 and thus their differences 

are hidden. 

 
Figure 4.10: Predicted survival functions as derived from the developed time-
dependent model for two individuals from risk group 2 of gemcitabine patients, 
compared to the observed Kaplan-Meier estimate of survival for risk group 2. 
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4.8 Discussion 

A prognostic model developed for patients with advanced pancreatic cancer could be used to 

aid treatment decisions, by potentially identifying patients that could receive surgery or 

identifying patients suitable for future clinical trials or off-study treatments.156 Royston-Parmar 

models are a novel approach, currently not often used to develop prognostic models (as 

highlighted in previous chapters), however a recent publication by Baade et al. which 

includes Royston as an author did develop a model using the Royston-Parmar approach 

(described in Section 1.4.6).41 This chapter used Royston-Parmar modelling to develop a 

prognostic model for advanced pancreatic cancer that allows individualised predictions over 

time, and identified methodological issues when using clinical trials data for this purpose. The 

key findings and limitations are now discussed. 

4.8.1 Summary and comparison to previously published model 

A key aim of this chapter was to build upon the prognostic model published by Stocken et al. 

in which the clinical trials data were used to develop a prognostic model using a Cox 

proportional hazards model and a different categorisation of treatment.156 In doing so, the 

model has now been extended by modelling the baseline hazard using Royston-Parmar 

models and by changing the categorisation of treatment to gemcitabine versus no 

gemcitabine rather than marimastat versus no marimastat; a decision that was based on the 

original trial publication findings, and because advanced stage pancreatic cancer patients 

often receive gemcitabine as a first line chemotherapy if their Karnofsky performance score 

≥50 (recommended by NICE).154,155,171 The final model was therefore very different to that 

developed by Stocken et al.156 

Another reason for the difference in models is that Stocken et al. took a different approach to 

handling the functional form for continuous variables. The authors tested fractional 
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polynomials in univariable analysis and selected second degree fractional polynomials for 

CA19-9, and modelled BUN, AST and alkaline phosphatase linearly. In contrast to this, the 

model developed in this chapter used MFP (restricted to first degree fractional polynomials) 

to test for non-linear functions in the same process as the variable selection. This meant that 

the functional form of each variable was tested with the other variables in the model in an 

iterative process (i.e. in the multivariable analysis rather than univariable analysis). This 

resulted in non-linear functions for AST (power: -0.5), bilirubin (power: -1), LDH (natural log) 

and CA19-9 (natural log). 

4.8.2 Limitations and further work 

The apparent discrimination of the final model produced with a time-dependent effect for 

treatment was 0.655 and was lower than for the proportional hazards model which had a C-

statistic of 0.705, but the apparent calibration performance was better in the risk groups. 

Neither model discriminates between individuals with high and low risk of death particularly 

well. Model performance is usually somewhat optimistic when evaluated internally and 

therefore model discrimination is likely to be even lower when evaluated in external data.58 

Interestingly, Collins et al. also found that discrimination performance is generally higher 

when the external validation is done by the same authors that developed the model (mean C-

statistic 0.78) compared to independent investigators (mean C-statistic 0.72), shown in 

Figure 1.8.54 

If external data become available, the performance of both the original model developed by 

Stocken et al. and the one reported in this chapter should be evaluated and compared. The 

models were developed using the same data but use different treatment groupings and 

modelling strategies. External data would be required to judge if one model performs better 

than the other. However, given the generally low apparent discrimination performance, it is 
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likely that additional predictors will be required to improve discrimination and the model 

therefore substantially updated before it can be used. For this reason (i.e. because the model 

needs to be improved upon before it can be recommended), shrinkage of the predictor 

effects (βs) in the final model and optimism-adjusted estimates of discrimination were not 

considered necessary here.12,22,172 However, the predictors identified here and the modelling 

approach can be used as a starting point for further research. With more data, additional 

interaction terms might also be explored. 

4.8.3 Issues in using clinical trials data 

A review of prognostic models in cancer found 33% of the articles included used RCTs to 

develop prognostic models.83 Another important aim of this chapter was to catalogue the 

issues faced when using RCT data to develop a prognostic model. These were highlighted 

throughout the chapter and are now discussed below. 

(1): Dealing with multiple treatment groups in the development of a prognostic 

model 

The chapter considered separate models for each of the two treatment groups and then a 

combined model. Building a single model that utilises all treatment groups is recommended 

to maximise data and minimise the degrees of freedom used in modelling treatment. In the 

pancreatic cancer data, keeping the original treatment categories (six categories) would have 

meant inadvertently modelling a trial effect as the treatment categories were different across 

the two trials. By modelling all treatment groups in the same analysis, the power to detect 

genuine predictors is increased and it is therefore more likely to generate a reliable model, 

even if the model predictions are ultimately only required for one of the treatment groups. 

One caveat is that non-proportional hazards, and potentially interaction terms, may be 

required to handle the multiple treatment groups as illustrated, and this increases complexity. 
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Of course, if treatments are ineffective or have similar effectiveness, then modelling can be 

made simpler by removing treatment,8 or alternatively smaller treatment groupings can be 

identified. Exploring the shape of the baseline hazard function of each treatment category 

can aid the decision to combine categories if the shape of the underlying hazard function 

looks reasonably similar. In this example, this led to combining treatment categories in which 

patients received gemcitabine (regardless of whether they received marimastat or not). This 

decision should of course also consider clinical relevance and evidence of treatment effects. 

(2): Handling multiple trials in the development of a prognostic model 

The inclusion of a trial variable is problematic in a prognostic model, as the intention is to 

predict prognosis in new patients that do not belong to a trial. For this reason, in this chapter, 

the data from both trials were combined and steps were taken to ensure that differences 

between the two trials had been properly accounted for. The shape of the baseline hazard 

was plotted initially to check for similarity before combining and a test of including a trial 

variable into the final model was non-significant, suggesting that the variation between the 

trials had adequately been accounted for in the other variables and a trial variable was no 

longer necessary. If there are more than two trials in the study, a random effect could be 

considered for the baseline hazard function to enable a separate baseline effect per trial, but 

still producing an average baseline hazard to be used for prediction.149 The issue of multiple 

studies in prediction research is considered again in Chapters 5 and 6. 

(3): Dealing with missing data 

Missing data is a common issue and one that is not specific to clinical trials. Due to the high 

proportion of missing data for nodes (24%), it was excluded from model development. If this 

proportion of missing data is representative of measurement of nodes in clinics, and the 

prognostic model included nodes as a prognostic factor, the model could not be used in 
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almost a quarter of patients. In developing a prognostic model for survival in kidney cancer 

patients, Royston et al. made the decision to exclude any variables missing in more than 

10% of patients and suggest that decisions regarding handling of missing data (as well as 

other issues) should be decided before development begins.19 

Multiple imputation was used to account for missing data in the other variables considered 

for inclusion in the prognostic model. This resulted in added complexity in variable selection 

as there were 25 datasets rather than one dataset and therefore a stacked and weighted 

approach was used based on the literature. There were computational challenges in using 

MFP, multiply imputed data and Royston-Parmar models in combination. Some post-

estimation commands were adapted to deal with the current data but for validation and 

Kaplan-Meier plots, imputed datasets had to be considered separately. 

(4 and 5): Dealing with trial stratification factors and using selection 

procedures to identify prognostic factors in a model 

Whenever possible, clinical knowledge should influence the variable selection rather than 

being driven by the data alone. Trial stratification factors should be included in the prognostic 

model as they were part of the trial design, having been considered clinically important in 

relation to the outcome of interest. This is akin to utilising external evidence that certain 

variables are prognostic, and therefore including them automatically in the model. For this 

reason, in this chapter, the stratification factors sex and stage were included in the model 

regardless of statistical significance. 

In exploratory analyses of MFP (not reported), it was found variables that should be modelled 

linearly may be excluded when testing for more complex functions such as second degree 

FP functions due to the additional degrees of freedom used in the test. This can be a 
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problem when there is not enough data. Use of backward elimination meant that 

haemoglobin was retained in one of the treatment specific models even with a large p-value. 

The use of automatic selection procedures should always be used with caution and is not an 

issue exclusive to using clinical trials data. 

(6): Use of trial data for model validation 

Validation in external data is critical for all prognostic models developed. When there are two 

or more trials or two or more treatment groups, the model could be developed in one and 

validated in the other. This was demonstrated using the two treatment groups in an internal-

external validation in which the gemcitabine model was tested in no gemcitabine patients and 

vice versa. The treatment specific models showed moderate discrimination and did not 

calibrate well in the other treatment group, due to the different baseline hazard functions. 

However, as discussed removing data reduces power, and so generally it is not 

recommended to exclude data from model development unless the datasets are extremely 

large. This was evident by the single model (developed using all treatment groups) having 

more power to identify prognostic factors. Steyerberg et al. agree that data splitting is 

inefficient and instead recommend putting data altogether for model development, and using 

bootstrapping for internal validation purposes.57 

Interestingly, when there are multiple trials, Royston et al. and Debray et al. recommend an 

internal-external cross-validation approach whereby each trial is omitted and then – if 

performance is always adequate regardless of the omitted trial – the final model proposed is 

based on all available data.69,149 Chapter 5 extends that idea further.  

A good example of RCT data being used to develop and validate a prognostic model is in 

traumatic brain injury.151 The IMPACT database (consisting of eight RCTs and three 
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observational studies) was used to develop and internally validate a prognostic model using 

internal-external cross-validation, each time excluding a study. The model was then 

externally validated using data from the CRASH trial.151 

4.9 Conclusion 

This chapter illustrated how clinical trials data can be used to develop a prognostic model for 

making absolute risk predictions over time and identified some of the challenges that 

researchers will face. A new pancreatic model was developed and internally validated, but 

due to its moderate discrimination, additional predictors are likely required before it can be 

useful for practice and further external validation is also necessary. 

So far, this thesis has focused mainly on prediction model development, in terms of both 

application (to hip replacements and pancreatic cancer) and methodology issues such as 

flexible parametric modelling and using trials data. The emphasis in the next couple of 

chapters moves instead to the validation performance of a prediction model. All prediction 

models require external validation to check that the model predicts reliably in new data from 

similar (or even different) settings or populations. The next chapter proposes a new meta-

analysis method for validation of a prediction model when multiple studies/datasets are 

available. 
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CHAPTER 5: VALIDATION OF A PREDICTION 

MODEL ACROSS MULTIPLE STUDIES 

5.1 Introduction and background 

The previous chapter showed the development and internal validation of a prognostic model 

using randomised clinical trials data. The final model’s performance was only internally 

validated, as external data were not available. Internal validity can be considered as 

checking the ‘reproducibility’ of the model.12 The model is expected to perform best in the 

data in which it was developed and over-fitting can often lead to very optimistic parameter 

estimates.172 However, methods such as bootstrapping of the original dataset can be used to 

evaluate this over-optimism and adjust the validation performance statistics accordingly.10 

Ideally, however, an external dataset would be used to validate the model (external 

validation) to assess how the model performs in a different but related population to that 

used for model development. By testing the model in external data, the ‘generalizability’ of 

the model can be evaluated to see how well the model performs in other similar populations 

or settings.12 

External validation is not possible when there is a single dataset available for model 

development and validation, as in the previous chapter. Randomly splitting a single dataset 

into two still produces samples from the same source, and so any testing of model 

performance is still considered to be internal validation.20 Examples of prediction models 

developed and validated using data splitting by clusters are the Hippisley-Cox et al. 

prediction models included as part of the literature review (Chapter 3).119,123,138,139 These 

models were developed using the QResearch database, which is a very large database 

containing data from multiple centres (approximately 530 general practices). The data were 
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split by randomly allocating two thirds of the practices to the development set and reserving 

the other third for validation. The authors validated performance of each model across all 

practices in the validation set but did not assess how the model performed in individual 

practices or areas. 

This chapter considers the scenario in which multiple studies (i.e. multiple datasets) are 

available for development and validation of a prognostic model. The multiple studies can be 

used in several ways to develop and validate a prognostic model. One approach is splitting 

the studies into two sets, one for development and the other for validation. This method 

ensures that the same data are not used for both development and validation. Another option 

for dealing with individual participant data (IPD) from multiple datasets (studies) is to develop 

the model using all of the available data (stratifying by study) and use internal-external cross-

validation (IECV) to evaluate performance across the studies. The IECV approach was 

proposed by Royston et al.69 and will be discussed in more detail below. Put simply, once a 

model has been developed using all of the studies it is then re-fitted several times (re-

estimating the βs), each time excluding one study, and then validating the model ‘externally’ 

using the excluded study. Multiple validation results of model performance are therefore 

available following IECV, one for each excluded study. IECV is an extension to internal 

validation in that performance of the model is ‘externally’ validated in each excluded study, 

therefore also evaluating the generalisability of the model.149 

This chapter proposes novel meta-analysis methods for summarising the performance of a 

model across multiple studies. Given multiple study estimates of the same validation 

performance statistic (e.g. C-statistic), one could just look at the average performance of a 

model across all studies. However, this chapter highlights why this is a missed opportunity as 

average performance is an incomplete picture, and additionally heterogeneity in model 
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performance across the different studies (settings, clusters etc.) is also of importance. Also, 

some of the performance statistics (such as the C-statistic and calibration slope) are 

potentially correlated, and therefore multivariate meta-analysis methods are proposed to 

appropriately account for this correlation when summarising model performance.173-175 

5.1.1 Aims and outline 

The aim of this chapter is to extend the IECV approach by incorporating meta-analysis of 

validation performance statistics. In particular, to propose univariate and multivariate meta-

analysis methods for summarising the IECV performance of a prediction model, and to help 

identify the best strategy for implementing the model in new populations. Two examples are 

used in this chapter. The first relates to a prediction model for deep vein thrombosis risk 

developed using logistic regression and IECV. The second example relates to a prognostic 

model for breast cancer mortality developed using Royston-Parmar models and IECV. It is 

worth noting that whereas previous chapters focused specifically on modelling time-to-event 

data, it is important to evaluate model performance regardless of the outcome type (binary or 

time-to-event). Therefore this chapter includes both logistic and Royston-Parmar models as 

examples. 

The remainder of the chapter is outlined as follows. Firstly, the IECV approach is described 

in fuller detail and then the datasets are introduced. Univariate and multivariate meta-

analysis methods are then described, with application to the datasets to illustrate their 

usefulness. Discussion is then given on the benefits and limitations of the work. 
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5.2 Internal-external cross-validation approach 

Internal-external cross-validation (IECV) is a method that was proposed for situations when 

several datasets are available for development and validation of a model.69 Development of 

prediction models will not be considered here as it has been discussed extensively in 

previous chapters. Instead, the predictors included in the model and the functional form of 

continuous predictors are assumed to be pre-specified and do not change within the 

validation process but the model parameters such as the β-coefficients are re-estimated. 

5.2.1 IECV framework and notation 

To understand how the IECV approach works, consider a set of K studies where k=1, …, K. 

Using the notation of Royston et al.,69 let Sk be the kth study reserved for validation 

performance and S(k) be the set of studies excluding study Sk (Table 5.1). The set of studies 

S(k) are to be used to derive the model (estimate the β-coefficients), and an individual study 

within this derivation set will be referred to as study j to differentiate it from the excluded 

study k reserved for validation. In each cycle of the IECV, the model is fitted using the set of 

studies S(k), (potentially stratifying by study),149 and then validated in study Sk. Therefore in 

cycle one, a model is fitted using studies 2 to K (S(1)) and externally validated in study 1 (S1). 

In the next cycle of IECV, study 2 is excluded from the derivation set (S(2)) and used to 

validate the model (S2). This is repeated for K cycles, each time excluding a different study 

from the derivation set and reserving it for validation. This means that the β-coefficients of 

the developed model are allowed to vary from cycle to cycle and in this chapter re-estimating 

the βs will be referred to as ‘model derivation’ to distinguish it from model development which 

would be done prior to beginning the internal-external cross-validation of model performance. 

After proceeding through all cycles in the IECV approach, there are K estimates produced for 

each performance statistic of interest (e.g. C-statistic, calibration slope, etc.). The focus in 

this chapter is on how meta-analysis can be used to combine the K estimates of model 
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performance for each performance statistic, to give an overall summary of model 

performance across the K excluded studies. 

Table 5.1: Internal-external cross-validation approach for K studies. 

Cycle 
Studies used to derive model 

(estimate βs)  

Studies used to evaluate 

model performance 

1 S(1) = Studies 2 to K S1 = Study 1 

2 S(2) = Studies 1 and 3 to K S2 = Study 2 

⋮ ⋮ ⋮ 

K S(K) = Studies 1 to K-1 SK = Study K 

 

5.2.2 Summarising performance 

Royston et al. propose summarising the performance statistics using a weighted average to 

obtain an overall summary of performance. For example, they consider the D-statistic which 

is a measure of separation defined in Chapter 1 (Section 1.6.3).69 An overall D-statistic can 

be calculated by combining the D-statistics from all Sk (Dk’s for k=1 to K) by 

 DIECV =
1

K
෍wk Dk

K

k=1

 (5.1) 

where wk are the standardised weights, 

wk	=	
wk

*

w*തതത 	=	

1
sk

2

1
K 	෎

1
sl

2

K

l=1

. 
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The weights wk
*  are based on the inverse variance method (1/sk

2 where sk is the standard 

error for Dk and can be estimated using bootstrap resampling) and are then standardised by 

dividing by the average weight w*തതത. The standard error for DIECV which can be used to give 

confidence intervals, can be calculated as 

 	SEሺDIECVሻ	=	 ቎
1

K	
1

K-1
෍wk

K

k=1

(Dk - DIECV)2቏

1/2

. (5.2) 

Although Royston et al. consider the D-statistic, their approach could also be used for other 

measures of model performance (such as the C-statistic, or calibration slope). 

5.2.3 Between-study heterogeneity 

The overall summary statistic of model performance proposed by Royston et al. in (5.1) is a 

weighted average of the individual estimates of model performance obtained from each 

study. Alternatively, this chapter now proposes that the performance statistics should be 

pooled using univariate and multivariate random-effects meta-analysis methods (described in 

Sections 5.4 and 5.5 below). Using a random-effects meta-analysis to pool statistics has the 

advantage of estimating the between-study heterogeneity (i.e. how much the model 

performance varies across studies). The between-study heterogeneity is important when 

considering consistency of performance across the populations in which the model will be 

implemented. An ideal model will have little or no heterogeneity, and consistently good 

performance. The further away from this ideal, the less reliable the model is. For example, if 

the model performs well on average but there is large heterogeneity, this would mean that in 

some settings the model performs poorly. If the average performance is poor and there is no 

heterogeneity, then the model performs consistently poorly. 
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Heterogeneity is also informative when deciding how to implement a model. Using the IECV 

approach, it is possible to look at different strategies for implementing the model in a new 

population. In this chapter the examples will consider three different implementation 

strategies when applying the model to a new study: (i) using the average intercept/baseline 

hazard from the derived model, (ii) using an intercept/baseline hazard from one of the studies 

included within the derivation data that has a similar outcome prevalence/incidence to the 

intended population, or (iii) estimating (recalibrating) the intercept/baseline hazard using new 

data from the intended population. These options for the model intercept were discussed by 

Debray et al.149 Again, extension of the IECV approach to include meta-analysis allows 

model implementation strategies to be formally evaluated, with those strategies with lowest 

heterogeneity potentially preferred if average performance is acceptable. 

5.3 Data 

In this chapter, meta-analysis methods are applied to two datasets containing information on 

multiple performance statistics obtained using the IECV approach. The first dataset consists 

of performance statistics from a diagnostic prediction model that was developed using 

logistic regression for a binary outcome. The second dataset considers validation of a 

prognostic model where a Royston-Parmar survival model was used. The same 

predictors/functions were included in all cycles of IECV, allowing only the predictor effects (β-

coefficients) to be re-estimated (referred to as model derivation in this chapter) and not the 

predictors included or functions to change. The baseline hazard function was estimated in 

each cycle of IECV, but then the shape was fixed in the validation study (the implementation 

strategy allowed a change in the constant not the shape of the function, detailed in Section 

5.3.2). Note that the key focus here is on combining the performance statistics using meta-

analysis, rather than how the set of included predictors were selected (e.g. in terms of 

handling of continuous predictors, etc.). 
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5.3.1 Dataset one: Deep vein thrombosis 

The first of these datasets was obtained from Debray et al. and was referred to as case study 

three in their paper (‘weak to moderate heterogeneity in predictor-outcome associations’).149 

The original data contained IPD from 12 studies with study sample sizes ranging from 153 to 

1768 patients. The studies were used by Debray et al. to develop a logistic regression model 

to predict the risk of having deep vein thrombosis (DVT) in patients that were suspected of 

having DVT. There were a total of 10014 patients across the 12 studies and 1897 (18.9%) of 

them had a true DVT. 

The prediction model was developed using logistic regression and including the following 

pre-specified variables: sex (male, female), surgery (recent surgery or bedridden, no recent 

surgery or bedridden) and calf difference (≥3cm, <3cm). The model fitted within each cycle of 

the IECV approach can be written for individual i in study j as 

 logit(pij)=αj+β1xi1+β2xi2+…+βnxin (5.3) 

The parameter estimates for all derived models (fitted as part of the IECV approach) are 

given in Table 5.2. The estimated β-coefficients were quite consistent across derived models 

suggesting that, regardless of the study excluded, the models were similar. 
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Table 5.2: DVT model parameter estimates for study-specific intercept and predictors, as provided by Debray et al. on request. 

Study (k) – 
excluded for 
validation 

Study-specific intercept (αjෝ) 
Sex 

(β෡1) 

Surgery 

(β෡2) 

Calf 

diff. (β෡3) Study 
1 

Study 
2 

Study 
3 

Study 
4 

Study 
5 

Study 
6 

Study 
7 

Study 
8 

Study 
9 

Study 
10 

Study 
11 

Study 
12 

Study 1 - -1.256 -2.528 -1.807 -2.511 -2.316 -3.061 -1.839 -2.165 -2.339 -2.038 -2.788 0.372 0.606 1.304 

Study 2 -2.694 - -2.555 -1.823 -2.538 -2.338 -3.080 -1.857 -2.192 -2.353 -2.059 -2.817 0.370 0.624 1.344 

Study 3 -2.670 -1.253 - -1.805 -2.504 -2.312 -3.062 -1.840 -2.157 -2.336 -2.033 -2.779 0.400 0.556 1.286 

Study 4 -2.604 -1.191 -2.443 - -2.426 -2.245 -3.005 -1.785 -2.082 -2.289 -1.967 -2.700 0.366 0.513 1.197 

Study 5 -2.682 -1.265 -2.538 -1.814 - -2.324 -3.070 -1.849 -2.173 -2.343 -2.045 -2.797 0.387 0.579 1.315 

Study 6 -2.672 -1.255 -2.529 -1.811 -2.508 - -3.066 -1.843 -2.161 -2.343 -2.041 -2.783 0.409 0.589 1.277 

Study 7 -2.672 -1.255 -2.529 -1.810 -2.509 -2.319 - -1.842 -2.162 -2.342 -2.040 -2.784 0.401 0.594 1.283 

Study 8 -2.677 -1.260 -2.532 -1.812 -2.513 -2.321 -3.068 - -2.166 -2.342 -2.042 -2.788 0.403 0.572 1.294 

Study 9 -2.660 -1.245 -2.515 -1.797 -2.498 -2.304 -3.050 -1.828 - -2.329 -2.026 -2.777 0.350 0.611 1.300 

Study 10 -2.677 -1.260 -2.531 -1.809 -2.515 -2.318 -3.066 -1.844 -2.168 - -2.039 -2.791 0.381 0.572 1.313 

Study 11 -2.678 -1.261 -2.533 -1.812 -2.515 -2.321 -3.069 -1.847 -2.167 -2.342 - -2.790 0.399 0.565 1.301 

Study 12 -2.672 -1.256 -2.528 -1.808 -2.509 -2.317 -3.064 -1.841 -2.162 -2.339 -2.038 - 0.391 0.585 1.293 

Note: Bold numbers represent the intercept used for validation in the excluded study for strategy 3, where the intercept from the study with the closest 

prevalence was selected. 
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The set of external performance statistics for the 12 studies were calculated for each of three 

different implementation strategies for using the model in practice (Table 5.3). For strategies 

1 and 3, a model with study-specific intercepts was fitted (using a dummy variable for study) 

and a random-intercept model was used for strategy 2. The implementation strategies for the 

model intercept when validating in the excluded study are as follows: 

Strategy 1: Estimate a new study-specific (recalibrated) intercept αkෞ in the validation 

dataset. 

Strategy 2: Use the average intercept from the derived random-intercept model in the 

validation dataset. 

Strategy 3: Select a study-specific intercept αjෝ  from one of the studies included in the 

derivation dataset that had the most similar prevalence to the validation 

dataset. 

The performance statistics measured in the validation dataset were the C-statistic, calibration 

slope, expected/observed number of events (E/O) and calibration-in-the-large. These 

performance statistics were introduced and defined in Section 1.6.3. 

Estimates and standard errors of the four performance statistics are given in Table 5.3 for 

each study, and the within-study correlation of the estimates for each pair of performance 

statistics is shown in Table 5.4. Standard errors and within-study correlations were obtained 

by non-parametric bootstrapping with 100 samples. Calibration-in-the-large and log(E/O) 

have a near perfect negative correlation (-0.997 to -1.000), by definition, and calibration 

slope and C-statistic have very strong within-study correlations ranging from 0.90 to 0.98. 

These correlations were similar regardless of the implementation strategy used. 
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Table 5.3: Performance statistics (and standard errors, σk) from the DVT model using IECV approach with three different strategies for 
the intercept, provided by Debray et al. on request. 

Study 
k 

Strategy 1: Intercept estimated in external 
validation study 

Strategy 2: Average intercept taken from 
derived random-intercept model 

Strategy 3: Intercept from a study included in 
derivation with a similar prevalence 

CITL 
Calibration 

slope 
Log(E/O) C-statistic CITL 

Calibration 
slope 

Log(E/O) C-statistic CITL 
Calibration 

slope 
Log(E/O) C-statistic 

1 
-0.172 
(0.098) 

0.903 
(0.131) 

0.140 
(0.080) 

0.678 
(0.024) 

-0.440 
(0.098)

0.905 
(0.136) 

0.349 
(0.081) 

0.678 
(0.025) 

0.114 
(0.094) 

0.905 
(0.132) 

-0.094 
(0.078) 

0.678 
(0.024) 

2 
-0.051 
(0.079) 

0.741 
(0.100) 

0.028 
(0.042) 

0.653 
(0.019) 

1.105 
(0.078)

0.745 
(0.100) 

-0.709 
(0.043) 

0.653 
(0.019) 

0.583 
(0.084) 

0.736 
(0.102) 

-0.344 
(0.045) 

0.652 
(0.019) 

3 
-0.172 
(0.224) 

1.418 
(0.397) 

0.135 
(0.174) 

0.761 
(0.055) 

-0.292 
(0.225)

1.396 
(0.405) 

0.223 
(0.176) 

0.756 
(0.057) 

-0.042 
(0.223) 

1.390 
(0.408) 

0.036 
(0.173) 

0.755 
(0.057) 

4 
-0.084 
(0.054) 

1.432 
(0.100) 

0.060 
(0.039) 

0.735 
(0.014) 

0.488 
(0.057)

1.434 
(0.099) 

-0.367 
(0.040) 

0.736 
(0.014) 

0.031 
(0.057) 

1.434 
(0.102) 

-0.022 
(0.040) 

0.736 
(0.014) 

5 
-0.185 
(0.122) 

0.742 
(0.164) 

0.141 
(0.094) 

0.649 
(0.031) 

-0.267 
(0.125)

0.744 
(0.165) 

0.201 
(0.096) 

0.649 
(0.032) 

0.016 
(0.121) 

0.749 
(0.159) 

-0.011 
(0.093) 

0.650 
(0.031) 

6 
-0.149 
(0.082) 

1.030 
(0.114) 

0.112 
(0.062) 

0.699 
(0.021) 

-0.055 
(0.084)

1.044 
(0.119) 

0.042 
(0.064) 

0.701 
(0.022) 

0.187 
(0.084) 

1.035 
(0.119) 

-0.144 
(0.063) 

0.700 
(0.022) 

7 
-0.178 
(0.090) 

1.017 
(0.117) 

0.156 
(0.080) 

0.694 
(0.023) 

-0.877 
(0.089)

1.020 
(0.122) 

0.732 
(0.078) 

0.694 
(0.023) 

-0.399 
(0.090) 

1.014 
(0.123) 

0.344 
(0.080) 

0.693 
(0.024) 

8 
-0.115 
(0.133) 

0.932 
(0.189) 

0.081 
(0.093) 

0.663 
(0.035) 

0.464 
(0.129)

0.936 
(0.192) 

-0.340 
(0.090) 

0.663 
(0.034) 

-0.038 
(0.132) 

0.943 
(0.192) 

0.028 
(0.092) 

0.665 
(0.034) 

9 
-0.139 
(0.068) 

0.994 
(0.099) 

0.098 
(0.048) 

0.690 
(0.017) 

0.118 
(0.073)

0.991 
(0.096) 

-0.084 
(0.052) 

0.689 
(0.017) 

-0.132 
(0.070) 

0.996 
(0.104) 

0.093 
(0.050) 

0.690 
(0.017) 

10 
-0.127 
(0.150) 

0.695 
(0.215) 

0.103 
(0.122) 

0.636 
(0.037) 

-0.081 
(0.144)

0.693 
(0.219) 

0.066 
(0.116) 

0.635 
(0.038) 

0.447 
(0.146) 

0.699 
(0.208) 

-0.373 
(0.119) 

0.637 
(0.036) 

11 
-0.135 
(0.111) 

0.921 
(0.140) 

0.094 
(0.078) 

0.701 
(0.026) 

0.258 
(0.111)

0.921 
(0.145) 

-0.185 
(0.078) 

0.700 
(0.026) 

0.132 
(0.110) 

0.916 
(0.140) 

-0.093 
(0.077) 

0.700 
(0.026) 

12 
-0.197 
(0.191) 

0.936 
(0.269) 

0.160 
(0.155) 

0.673 
(0.048) 

-0.570 
(0.190)

0.923 
(0.264) 

0.440 
(0.155) 

0.671 
(0.048) 

-0.458 
(0.193) 

0.930 
(0.256) 

0.359 
(0.157) 

0.672 
(0.046) 

Note: CITL refers to calibration-in-the-large and log(E/O) refers to log of the expected/observed number of events. 
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Table 5.4: Within-study correlations (ρWk) between performance statistics for the DVT 
model, obtained through bootstrapping, provided by Debray et al. on request. 

 
Study 

k 

CITL & 
calibration 

slope 

CITL & 
log(E/O)

CITL & 
C-

statistic 

Calibration 
slope & 
log(E/O) 

Calibration 
slope & 

C-statistic 

Log(E/O) 
& C-

statistic 

Strategy 1: 
Intercept 
estimated 
in external 
validation 
study 

1 -0.006 -1.000 -0.022 0.006 0.961 0.021 
2 -0.032 -1.000 -0.046 0.033 0.977 0.046 
3 -0.001 -0.999 0.009 0.001 0.955 -0.011 
4 0.118 -1.000 0.045 -0.117 0.919 -0.045 
5 0.046 -1.000 0.029 -0.046 0.983 -0.029 
6 -0.010 -1.000 -0.045 0.011 0.948 0.043 
7 0.047 -1.000 0.002 -0.047 0.912 -0.003 
8 0.071 -1.000 0.032 -0.072 0.953 -0.034 
9 -0.005 -1.000 -0.011 0.005 0.980 0.011 

10 0.108 -1.000 0.064 -0.108 0.900 -0.064 
11 0.000 -1.000 -0.025 0.002 0.956 0.026 
12 -0.035 -1.000 -0.029 0.036 0.980 0.030 

Strategy 2: 
Average 
intercept 
taken from 
derived 
random-
intercept 
model 

1 -0.051 -1.000 -0.054 0.053 0.960 0.054 
2 0.046 -0.990 0.037 -0.054 0.976 -0.035 
3 -0.051 -0.999 -0.037 0.052 0.958 0.037 
4 0.062 -0.999 -0.009 -0.065 0.928 0.014 
5 0.069 -1.000 0.055 -0.069 0.981 -0.056 
6 0.031 -1.000 -0.013 -0.031 0.959 0.013 
7 0.018 -0.999 -0.025 -0.013 0.923 0.025 
8 0.105 -0.999 0.042 -0.106 0.951 -0.038 
9 0.074 -1.000 0.068 -0.074 0.976 -0.068 

10 0.035 -1.000 0.012 -0.034 0.895 -0.012 
11 0.053 -1.000 0.015 -0.052 0.953 -0.012 
12 0.000 -0.999 -0.001 -0.003 0.981 -0.003 

Strategy 3: 
Intercept 
from a 
study 
included in 
derivation 
with a 
similar 
prevalence 

1 0.005 -1.000 -0.012 -0.004 0.963 0.013 
2 -0.006 -0.997 -0.033 0.002 0.978 0.034 
3 -0.053 -0.999 -0.049 0.054 0.959 0.050 
4 0.082 -1.000 0.015 -0.082 0.925 -0.014 
5 0.034 -1.000 0.022 -0.033 0.982 -0.022 
6 0.063 -1.000 0.020 -0.065 0.956 -0.019 
7 -0.014 -1.000 -0.025 0.015 0.925 0.025 
8 -0.002 -1.000 -0.052 0.001 0.954 0.051 
9 -0.010 -1.000 -0.021 0.011 0.981 0.021 

10 0.020 -0.999 -0.043 -0.024 0.892 0.043 
11 0.038 -1.000 -0.001 -0.040 0.956 0.000 
12 -0.036 -0.999 -0.041 0.036 0.980 0.039 

Note: CITL refers to calibration-in-the-large and log(E/O) refers to log of the 
expected/observed number of events. 
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5.3.2 Dataset two: Breast cancer 

The second dataset consisted of IPD from several European studies. The studies included 

patients with breast cancer that were followed up over time for the outcome of death. The 

studies were grouped by country before developing a multivariable prediction model and 

using IECV to evaluate performance of the model. Therefore the cluster here is the country, 

and there were eight countries considered. The IPD from each country ranged in size from 

69 patients to 3242 (total of 7435), with 2043 events that occurred across all countries. The 

maximum follow-up duration was 120 months and the median follow-up duration across all 

countries was 86.3 months (95% CI: 85.1 to 87.8 months). 

The prognostic model was developed by Hua,176 using Royston-Parmar flexible parametric 

modelling. The general form of the model fitted in each IECV cycle can be written on the log 

cumulative hazard scale for individual i in country j of the derivation set as 

 Ln(Hijሺtሻ)=H0jሺtሻ+β1xi1+β2xi2+…+βnxin (5.4) 

where H0jሺtሻ is the country-specific baseline cumulative hazard function modelled using 

restricted cubic splines with 3 d.f. This baseline (cumulative) hazard function can be written 

as 

 H0jሺtሻ=γ0j+γ1 ln t +γ2z1ሺln tሻ+γ3z2ሺln tሻ (5.5) 

The terms relating to log-time (γ1 ln t +γ2z1ሺln tሻ+γ3z2ሺln tሻ) determine the shape of the 

function. This is adjusted by a constant amount (γ0j) for each country j included in the IECV 

cycle (Table 5.5) giving a country-specific baseline hazard function. Table 5.6 and 5.7 give 
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the estimated β-coefficients (log HRs) in each cycle for the following pre-specified predictors: 

age (in years), tumour type (invasive ductal, invasive lobular, colloid, tubular, medullary, 

papillary, other or unknown), histological grade (good, moderate, poor, unknown), nodal 

category (negative, 1-3, >3 to 10, >10), post-menopausal or age>65 (yes, no), pT score 

(pT1, pT2, pT3/pT4), adjuvant treatment (yes, no, unknown) and hormone receptor status 

(negatives or unknown, at least one positive). 

The performance statistics available from the IECV approach were provided upon request by 

Hua,176 and include Harrell's C-statistic, D-statistic and calibration slope. The C-statistic and 

D-statistic were defined in Chapter 1 (Section 1.6.3). The calibration slope for the flexible 

parametric survival model however is calculated by fitting a Royston-Parmar model in 

country k (excluded for validation), 

ln(Hikሺtሻ)=γ0+γ1 ln t +γ2z1ሺln tሻ+γ3z2ሺln tሻ+β෡ൈLPik 

where the spline function (γ0+γ1 ln t +γ2z1ሺln tሻ+γ3z2ሺln tሻ) is taken from the model derived in 

the other countries and LPik is the linear predictor (linear combination of β’s and covariate 

values from the derived model) calculated for patient i in validation country k. The estimate of 

β (β෡) in the calibration model above is the estimated calibration slope. 
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Table 5.5: Breast cancer model parameter estimates (and standard errors, σj)	 for country-specific baseline hazard, provided by Hua 
on request. 

Country (k) 
– excluded 
for 
validation 

Country-specific constant in baseline hazard γ0j 
Implementation strategy (i.e. value of γ0j used for 

validation) 

Netherlands Ireland Sweden Slovenia Austria France Switzerland Denmark
Strategy 1: baseline 
hazard estimated in 
validation country 

Strategy 2: average 
baseline hazard from 
derivation countries 

Netherlands - 
-3.354 
(0.418) 

-4.332 
(0.398) 

-3.867 
(0.411) 

-3.017 
(0.362)

-3.568 
(0.328)

-3.548 
(0.358) 

-2.847 
(0.366) 

-3.296 
(0.029) 

-3.492 
(0.231) 

Ireland 
-3.207 
(0.217) 

- 
-4.260 
(0.246) 

-3.678 
(0.333) 

-2.892 
(0.275)

-3.497 
(0.218)

-3.475 
(0.249) 

-2.848 
(0.230) 

-3.244 
(0.131) 

-3.398 
(0.188) 

Sweden 
-3.247 
(0.222) 

-3.305 
(0.274) 

- 
-3.697 
(0.336) 

-2.926 
(0.278)

-3.538 
(0.223)

-3.552 
(0.254) 

-2.929 
(0.235) 

-4.329 
(0.083) 

-3.304 
(0.191) 

Slovenia 
-3.172 
(0.217) 

-3.221 
(0.270) 

-4.230 
(0.247) 

- 
-2.860 
(0.275)

-3.470 
(0.218)

-3.455 
(0.250) 

-2.824 
(0.230) 

-3.658 
(0.258) 

-3.321 
(0.186) 

Austria 
-3.196 
(0.222) 

-3.247 
(0.274) 

-4.252 
(0.251) 

-3.690 
(0.337) 

- 
-3.487 
(0.223)

-3.480 
(0.254) 

-2.847 
(0.235) 

-2.903 
(0.186) 

-3.441 
(0.190) 

France 
-2.851 
(0.248) 

-2.865 
(0.297) 

-3.880 
(0.275) 

-3.354 
(0.354) 

-2.562 
(0.297)

- 
-3.103 
(0.279) 

-2.478 
(0.260) 

-3.138 
(0.060) 

-3.001 
(0.201) 

Switzerland 
-3.122 
(0.218) 

-3.152 
(0.271) 

-4.163 
(0.248) 

-3.621 
(0.334) 

-2.854 
(0.276)

-3.442 
(0.218)

- 
-2.758 
(0.231) 

-3.422 
(0.115) 

-3.292 
(0.190) 

Denmark 
-3.196 
(0.221) 

-3.239 
(0.273) 

-4.248 
(0.250) 

-3.655 
(0.336) 

-2.867 
(0.279)

-3.495 
(0.221)

-3.472 
(0.254) 

- 
-2.855 
(0.062) 

-3.453 
(0.192) 

Note: Bold numbers represent the constant used for strategy 3: using the baseline hazard from the closest country based on proximity in the excluded country. 
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Table 5.6: Breast cancer model parameter estimates (and standard errors, σj) for categorical predictors, provided by Hua on request. 

Country (k) – 
excluded for 
validation 

β estimate (SE) 

Tumour type* Histological grade# Lymph nodes positiveϮ 

Invasive 
lobular 

Colloid Tubular Medullary Papillary Other Unknown Moderate Poor Unknown Np1-3 Np3-10 Np10+ 

Netherlands 
0.051 

(0.153) 
-0.661 
(1.012) 

-0.168 
(0.713) 

-0.897 
(0.362) 

-0.390 
(0.729) 

0.099 
(0.222) 

0.079 
(0.146) 

0.437 
(0.221) 

0.861 
(0.226) 

0.583 
(0.268) 

0.632 
(0.104)

1.408 
(0.108) 

1.858 
(0.135) 

Ireland 
-0.099 
(0.095) 

-0.307 
(0.711) 

-0.530 
(0.502) 

-0.774 
(0.222) 

-0.420 
(0.506) 

-0.076 
(0.131) 

0.023 
(0.066) 

0.426 
(0.159) 

0.786 
(0.157) 

0.608 
(0.163) 

0.715 
(0.066)

1.241 
(0.068) 

1.716 
(0.084) 

Sweden 
-0.122 
(0.096) 

-0.310 
(0.711) 

-0.539 
(0.502) 

-0.742 
(0.222) 

-0.419 
(0.506) 

-0.086 
(0.131) 

0.025 
(0.066) 

0.445 
(0.162) 

0.808 
(0.160) 

0.668 
(0.167) 

0.739 
(0.068)

1.242 
(0.070) 

1.671 
(0.088) 

Slovenia 
-0.101 
(0.096) 

-0.252 
(0.711) 

-0.529 
(0.502) 

-0.772 
(0.222) 

-0.662 
(0.583) 

-0.073 
(0.131) 

0.023 
(0.066) 

0.439 
(0.161) 

0.789 
(0.158) 

0.617 
(0.165) 

0.709 
(0.065)

1.253 
(0.067) 

1.697 
(0.084) 

Austria 
-0.119 
(0.097) 

-0.296 
(0.711) 

-0.496 
(0.502) 

-0.744 
(0.227) 

-0.257 
(0.580) 

-0.068 
(0.133) 

0.024 
(0.066) 

0.468 
(0.170) 

0.830 
(0.166) 

0.654 
(0.172) 

0.704 
(0.065)

1.248 
(0.067) 

1.724 
(0.084) 

France 
-0.121 
(0.100) 

0.260 
(1.005) 

-0.512 
(0.502) 

-0.763 
(0.222) 

-0.375 
(0.507) 

-0.113 
(0.140) 

0.010 
(0.074) 

0.301 
(0.196) 

0.652 
(0.190) 

0.469 
(0.194) 

0.803 
(0.070)

1.324 
(0.071) 

1.786 
(0.089) 

Switzerland 
-0.077 
(0.099) 

-0.285 
(0.711) 

-0.347 
(0.502) 

-0.733 
(0.227) 

-0.389 
(0.507) 

-0.043 
(0.135) 

0.023 
(0.066) 

0.423 
(0.159) 

0.748 
(0.157) 

0.552 
(0.164) 

0.689 
(0.066)

1.231 
(0.068) 

1.683 
(0.086) 

Denmark 
-0.100 
(0.107) 

-0.333 
(0.711) 

-1.060 
(0.709) 

-0.821 
(0.262) 

-0.422 
(0.506) 

-0.121 
(0.140) 

0.023 
(0.066) 

0.430 
(0.159) 

0.795 
(0.157) 

0.617 
(0.163) 

0.656 
(0.068)

1.163 
(0.070) 

1.620 
(0.087) 

* Reference category for tumour type was ‘invasive ductal carcinoma’. 
# Reference category for histological grade was `good’. 
Ϯ Reference category for lymph nodes positive is ‘negative’. 
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Table 5.7: Breast cancer model parameter estimates (and standard errors, σj) for 
predictors modelled continuously, as provided by Hua on request. 

Country (k) – excluded 
for validation 

β estimate (SE) 

Age 
Menopausal 

status 
pT score 

Adjuvant 
treatment 

Hormone 
receptor 

Netherlands 
0.015 

(0.005) 
-0.152 
(0.114) 

0.308 
(0.060) 

-0.113 
(0.049) 

-0.744 
(0.077) 

Ireland 
0.012 

(0.003) 
-0.071 
(0.077) 

0.326 
(0.038) 

-0.122 
(0.029) 

-0.576 
(0.053) 

Sweden 
0.011 

(0.003) 
-0.020 
(0.078) 

0.326 
(0.038) 

-0.106 
(0.031) 

-0.486 
(0.055) 

Slovenia 
0.011 

(0.003) 
-0.052 
(0.076) 

0.328 
(0.037) 

-0.114 
(0.029) 

-0.573 
(0.052) 

Austria 
0.011 

(0.003) 
-0.056 
(0.076) 

0.331 
(0.037) 

-0.113 
(0.029) 

-0.567 
(0.052) 

France 
0.008 

(0.003) 
0.001 

(0.082) 
0.315 

(0.039) 
-0.144 
(0.031) 

-0.596 
(0.056) 

Switzerland 
0.012 

(0.003) 
-0.059 
(0.077) 

0.317 
(0.038) 

-0.104 
(0.029) 

-0.572 
(0.053) 

Denmark 
0.012 

(0.003) 
-0.079 
(0.081) 

0.340 
(0.039) 

-0.114 
(0.030) 

-0.538 
(0.056) 

 

Different strategies were implemented for the baseline hazard function to be used in the 

excluded country for validation. All three implementation strategies use the restricted cubic 

spline function estimated in the derivation set of countries, but use different constants (γ0j). 

These implementation strategies were: 

Strategy 1: Estimate a new baseline hazard for the validation country. This was 

done by re-estimating the constant part of the baseline cumulative 

hazard function (γ0j in (5.5) now γ0k) in the validation country. 
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Strategy 2: Use a weighted average of the baseline hazard functions from the 

countries included in the model derivation. This is done by taking a 

weighted average of the γ0j’s. 

Strategy 3:  Use the baseline hazard function from one of the countries included in 

the derivation dataset, based on proximity to the validation country, i.e. 

γ0j selected from the closest country to the validation country. 

Estimates and standard errors of the performance statistics are given in Table 5.8 for each 

country, and within-study (within-country) correlations between the performance statistics are 

given in Table 5.9. Standard errors and correlations were obtained by bootstrapping with 

1000 samples. There is a strong correlation between the C-statistic and D-statistic within 

each country (ranging from 0.61 to 0.84) as would be expected considering that they are 

both measures of discrimination. Within-study correlations between the D-statistic and 

calibration slope are also strong (and similar across implementation strategies) with values 

ranging from 0.57 to 0.83. The within-study correlations between the C-statistic and 

calibration slope are weaker, ranging from 0.16 to 0.47, but again are similar across 

implementation strategies. 
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Table 5.8: Performance statistics (and standard errors, σk) from the breast cancer model using IECV approach with three different 
strategies for the baseline hazard, as provided by Hua on request. 

Country C-statistic D-statistic 

Calibration slope 
Strategy 1:  

Baseline hazard estimated 
in validation country 

Strategy 2:  
Average baseline 

hazard 

Strategy 3:  
Baseline hazard from 

closest country  
Netherlands 0.697 (0.008) 0.493 (0.027) 0.977 (0.012) 1.049 (0.012) 0.805 (0.012) 

Ireland 0.701 (0.036) 0.420 (0.117) 1.002 (0.057) 1.066 (0.057) 1.414 (0.056) 

Sweden 0.715 (0.023) 0.106 (0.056) 1.026 (0.036) 0.578 (0.037) 0.405 (0.037) 

Slovenia 0.735 (0.068) 0.326 (0.187) 0.991 (0.097) 0.870 (0.098) 0.919 (0.097) 

Austria 0.666 (0.050) 0.238 (0.168) 0.946 (0.088) 1.168 (0.086) 1.184 (0.086) 

France 0.682 (0.017) 0.182 (0.041) 0.969 (0.037) 0.896 (0.038) 0.951 (0.037) 

Switzerland 0.781 (0.027) 0.280 (0.063) 1.054 (0.052) 0.996 (0.053) 0.794 (0.054) 

Denmark 0.722 (0.016) 0.541 (0.058) 1.035 (0.030) 0.315 (0.029) 1.197 (0.030) 
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Table 5.9: Within-study correlations (ρWk) between performance statistics for the 
breast cancer model, obtained through bootstrapping, provided by Hua on request. 

Country 

C-
statistic & 

D-
statistic 

C-statistic 
& 

calibration 
slope 

(strategy 
1) 

C-statistic 
& 

calibration 
slope 

(strategy 
2) 

C-statistic 
& 

calibration 
slope 

(strategy 
3) 

D-statistic 
& 

calibration 
slope 

(strategy 
1) 

D-statistic 
& 

calibration 
slope 

(strategy 
2) 

D-statistic 
& 

calibration 
slope 

(strategy 
3) 

Netherlands 0.842 0.334 0.325 0.349 0.677 0.663 0.704 

Ireland 0.827 0.303 0.307 0.324 0.662 0.664 0.668 

Sweden 0.702 0.218 0.237 0.240 0.661 0.688 0.691 

Slovenia 0.762 0.300 0.294 0.297 0.782 0.777 0.779 

Austria 0.834 0.469 0.468 0.468 0.668 0.661 0.660 

France 0.807 0.438 0.451 0.442 0.750 0.764 0.754 

Switzerland 0.612 0.276 0.276 0.274 0.817 0.821 0.832 

Denmark 0.812 0.199 0.166 0.183 0.625 0.573 0.599 

Strategy 1: Baseline hazard estimated in validation country. 
Strategy 2: Average baseline hazard from derived model. 
Strategy 3: Baseline hazard from closest country included in model derivation. 

5.4 Univariate meta-analysis of model performance 

Methods for meta-analysis of validation performance statistics are now proposed. Meta-

analysis was defined by Glass in 1976 as, ‘the statistical analysis of a large collection of 

analysis results from individual studies for the purpose of integrating the findings’.177 Meta-

analysis is therefore the synthesis of several studies to summarise the effects (in this case, 

performance statistics) with a measure of the uncertainty for that pooled effect. By pooling 

the performance statistics obtained from each excluded study using the IECV approach, it is 

also possible to quantify the heterogeneity in model performance across studies. 
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In this section univariate meta-analysis is considered, which can be used for each 

performance statistic separately. There are two approaches commonly used for univariate 

meta-analysis, namely fixed-effect and random-effects which are detailed below. 

5.4.1 Fixed-effect meta-analysis of model performance 

A fixed-effect meta-analysis assumes that the true value of the performance statistic being 

pooled is the same in all studies. In other words, that there is one ‘true’ underlying value for 

the performance statistic that all of the studies are trying to estimate. The model can be 

written as 

 Yk = μ + ek (5.6) 

where Yk is the performance statistic estimate (e.g. calibration-in-the-large, C-statistic, etc.) in 

study k, µ is the pooled performance statistic and the within-study errors are assumed to be 

normally distributed, ek	~	N(0,	σk
2), where 	σk

2 is the variance of Yk and is assumed known. 

The fixed-effect model can also be written as 

 Yk ~ N(μ, σk
2). (5.7) 

The fixed-effect approach assumes that any differences in the performance statistic across 

studies are simply due to sampling error,178 and the pooled estimate μො is therefore interpreted 

as the best estimate of the underlying performance statistic. Maximum likelihood estimation 

of (5.7) shows that μො is simply a weighted average, with the study weights inversely 

proportional to the study’s variance (	σk
2).179 Thus the estimation method is also known as the 

inverse-variance method, with the weight for study k calculated as 
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wk	=	
1

σk
2. 

As mentioned, the fixed-effect approach assumes that the underlying model performance is 

the same in each study excluded for validation. Using fixed-effect meta-analysis is very 

similar to the approach taken by Royston et al. (described in Section 5.2.2) which takes a 

weighted average of the performance statistics to obtain the overall summary of 

performance.69 However, it seems reasonable that a prediction model could validate better 

(i.e. have better performance) in some studies than in others. This is referred to as between-

study heterogeneity and therefore measures are needed to quantify and account for 

heterogeneity in performance. 

The I2 statistic 

I2 is a measure of the percentage of total variation across studies that is due to between-

study heterogeneity rather than sampling error.180-182 

 I2	= ቆ
Q - df

Q
ቇ x 100% (5.8) 

where df is K–1, K is the number of studies and 

	Q	= ෍ w	k(Yk	-	μො)
2

K

k	=	1

. 

The wk are the weights and μො is the pooled result from a fixed-effect analysis. The Q-statistic 

is also a test for heterogeneity (compared to χK - 1
2 ); however the I2 statistic is generally 
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preferred for assessing heterogeneity between studies as it quantifies the impact of 

heterogeneity,182 although it is also open to criticism.183 

5.4.2 Random-effects meta-analysis of model performance 

A random-effects meta-analysis does not assume that there is one ‘true’ underlying effect, 

but rather that there is a distribution of ‘true’ study effects. This seems more reasonable for 

pooling performance statistics from different studies, as the prediction model would be 

expected to perform better in some studies than others due to differences in the patient 

populations. The random-effects meta-analysis model can be written as  

 Yk = μ + bk + ek (5.9) 

where bk is the between-study error, assuming bk~N(0,τ2) and 	ek is the within-study error, 

assuming ek~N(0,σk
2) with σk

2 assumed known. The random-effects approach can 

equivalently be written as 

 Yk ~ N൫μ, τ2 + σk
2൯. (5.10) 

The approach allows the risk prediction model's performance to differ in each validation study 

and thus allows the between-study variance (	τ2) in performance to be estimated. The pooled 

performance statistic estimate μො in a random-effects model should not be interpreted in the 

same way as for a fixed-effect model, but rather as the estimated average of the 

performance statistic; that is, the estimated average of the distribution of true validation 

performance across studies.184 



204 
 

There are several methods that can be used for estimation in a random-effects meta-

analysis; these include the DerSimonian and Laird method,185 maximum likelihood estimation 

(MLE) and restricted maximum likelihood (REML). Using REML, the likelihood is modified 

slightly to account for the data being used to estimate both the underlying mean and 

variance.179 In this chapter, REML is used for estimation of all random-effects analysis 

models. This produces estimates for τ and μ. Rucker et al. suggest that 	τ2 is preferred to the 

I2 statistic.183 However, 	τ2 is also harder to interpret as it is a variance and therefore the unit 

of measurement needs to be considered. Prediction intervals (discussed below) are easier to 

interpret and increase in width as 	τ2 increases (although they also incorporate within-study 

variance so do not only reflect between-study variability). 

5.4.3 Confidence and prediction intervals for model performance 

Following estimation of a meta-analysis model, a 100(1-α)% confidence interval for the 

mean pooled performance statistic µ can be estimated as 

 μො ± zα
2
 SE෢ (μො) (5.11) 

using a normal approximation ( zα
2
) to determine the confidence limits. For a 95% confidence 

interval,  z0.025 = 1.96, and this is multiplied by the estimated standard error of the pooled 

performance statistic estimate ቆSE෢ (μො)=ටVar෢ (μො)ቇ. White proposed that SE෢ (μො) is inflated to 

account for the uncertainty in the estimated between-study variance, and this is implemented 

in this chapter.186 
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A 100(1-α)% prediction interval for model performance in a new study (i.e. a study done 

subsequent to the meta-analysis) can also be derived following a random-effects meta-

analysis using the formula 

 μො ± tα, K - 2ටτ̂
2 +Var෢ (μො)  (5.12) 

where tα, K	-	2 is the 100 ቀ1-
α

2
ቁ% percentile of the t-distribution for K-2 d.f.187 This is an 

approximate prediction interval that uses the t-distribution to account for τ̂2 being an estimate 

itself and therefore having uncertainty that is otherwise not accounted for. 

The 95% prediction interval gives the lower and upper bound for the predicted true 

performance of the model in a new external study that is similar to one of those included in 

the meta-analysis. Using 95% prediction intervals for model performance is a novel way to 

view the generalisability of a model across multiple populations or settings, and has recently 

been suggested for C-statistics by van Klaveren et al.62 This is what external validation aims 

to achieve but is usually limited to validation in one or two external datasets. In using both 

the IECV approach and meta-analysis, the model is first developed using all available data 

and then essentially validated multiple times in studies not used to derive the model 

estimates. Using meta-analysis to produce 95% prediction intervals provides a new way to 

think about validation of a model in external populations as it provides a distribution for the 

performance statistic. A narrow prediction interval is reassuring that the model should 

perform well (for the statistic being considered, either a measure of discrimination or 

calibration) in a new population, which is ideal when the model is intended to be used in new 

populations. Narrow prediction intervals will relate to small 	߬̂2, such that the estimated 

between-study heterogeneity is close to zero. The 95% prediction intervals can also be used 
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to compare implementation strategies, where the best strategy would give an average pooled 

effect close to the ideal for that performance statistic (e.g. calibration slope=1) and have the 

narrowest prediction interval (smallest between-study heterogeneity). 

5.5 Multivariate meta-analysis of model performance 

Section 5.4 introduced univariate meta-analysis methods for combining each type of 

performance statistic separately. However, meta-analysis methods have also been extended 

for joint synthesis of multiple correlated statistics at the same time; so-called ‘multivariate’ 

meta-analysis methods. Jackson et al. discussed the advantages and limitations of using 

multivariate meta-analysis.173 The advantages arise from using the correlations to gain 

additional information; this leads to better statistical properties and makes use of the 

relationship between the multiple performance statistics being analysed, whereas a 

univariate analysis assumes that there is no correlation between performance statistics. 

Multivariate analysis may not always be possible as within-study correlations of the multiple 

statistics may be difficult to obtain.174 However, because IPD are available for the 

development and validation of the model using the IECV approach, correlations can be 

obtained through bootstrapping.188 The within-study correlations for each study in the two 

examples were estimated using bootstrapping and presented earlier (Table 5.4 and Table 

5.9), and are often large which emphasises why they should be considered. 

The pooled estimates resulting from a multivariate random-effects meta-analysis are often 

similar to the univariate results; however when some studies are missing one or more of the 

statistics at random, the multivariate analysis ‘borrows strength’ and can produce smaller 

standard errors for the pooled estimates compared to those from univariate analyses.174 

Furthermore, even without missing data, the multivariate approach allows joint inferences 

across the multiple measures of interest, for which accounting for correlation is essential. For 
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further details on the general benefits of multivariate meta-analysis, see Jackson et al. and 

Riley et al.173,174 

As multiple performance statistics (such as C-statistic, D-statistic and calibration slope) for a 

prediction model may be correlated, and will ultimately be considered jointly to make overall 

judgements about model performance, it seems a natural extension to consider multivariate 

meta-analysis in this setting. The univariate methods from Section 5.4 are therefore now 

extended for a bivariate meta-analysis below. Trivariate or greater extensions follow 

naturally, and are briefly considered in Section 5.6.3. 

5.5.1 Bivariate fixed-effect model 

Two performance statistics from each study k (e.g. a measure of discrimination and 

calibration such as the C-statistic and calibration slope) are now assumed to follow a 

bivariate normal distribution and the bivariate fixed-effect model can be written as 

 ൬
Yk1

Yk2
൰ 	~	MVNቌ൬

μ1
μ2
൰ ,ቆ

σk1
2 ρWkσk1σk2

ρWkσk1σk2 σk2
2 ቇቍ (5.13) 

where 	൬
μ1
μ2
൰ is the vector of means for the performance statistics, ቆ

σk1
2 ρWkσk1σk2

ρWkσk1σk2 σk2
2 ቇ is 

the within-study covariance matrix assumed known, σkq is the within-study standard deviation 

for performance statistic q = 1, 2 and ρWk is the within-study correlation between the two 

performance statistics in study k. 
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5.5.2 Bivariate random-effects model 

The bivariate random-effects model can be written as 

 ൬
Yk1

Yk2
൰ 	~	MVNቌ൬

μ1
μ2
൰ ,ቆ

σk1
2 + τ1

2 ρWkσk1σk2 + ρBτ1τ2

ρWkσk1σk2	+ ρBτ1τ2 σk2
2 + τ2

2 ቇቍ (5.14) 

where τq is the between-study standard deviation for performance statistic q = 1, 2, and ρB is 

the between-study correlation, with other terms as defined earlier. 

Within-study and between-study correlations 

In the bivariate random-effects model, the overall correlation between two performance 

statistics consists of within-study correlation and between-study correlation.189 The within-

study correlation is the correlation between the estimates of the performance statistics in a 

study, and is caused by the same patients’ data informing the estimates of each performance 

statistic.175 For example in the DVT dataset (described in Section 5.3.1), there is perfect 

correlation between the estimates of calibration-in-the-large and log(E/O) within each study, 

because the same data are used to estimate two statistics, related by definition. Calibration-

in-the-large is a difference and log(E/O) is a (log) ratio of the observed and expected number 

with DVT (Table 5.4). 

The between-study correlation describes the relationship between the true performance 

statistics across studies and is affected by differences in populations across the studies (e.g. 

treatments, characteristics, countries etc.).175 For example, it may be that a study population 

with a higher than average calibration slope is also likely to have a higher than average C-

statistic. 
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When conducting a multivariate meta-analysis, within-study correlations are used as input 

data along with the estimates and variances of the performance statistics from each study. 

The pooled values and between-study covariance matrix of model (5.14) are then estimated 

using for example REML.186 In other applications of meta-analysis (other than for use with 

the IECV approach), it is not always possible to obtain estimates of within-study correlations 

as authors do not usually publish these in the original study publications. Riley et al. 

evaluated the effect of not having within-study correlations and proposed a method for use 

when the within-study correlations are unknown.175,189 However this is unnecessary here, as 

with IPD, ρWk can be estimated in each study using bootstrapping,188 and this was used in 

the two examples as previously described. 

In this chapter, in keeping with the univariate meta-analyses, all multivariate meta-analyses 

are performed using REML via the ‘mvmeta’ package in Stata,186 and the estimated standard 

errors of the pooled estimates were inflated to account for uncertainty in the estimated 

variance-covariance matrix. In the article, White states, ‘The standard error provided for an 

REML analysis allows for uncertainty in estimating Σ by inverting the second derivative 

matrix of the restricted likelihood (1). This is not the standard approach (Kenward and Roger 

1997), and its properties require further investigation.’186 

5.5.3 Confidence and prediction ellipses 

Following a multivariate meta-analysis, marginal 95% confidence and prediction intervals can 

be calculated for each performance statistic using (5.11) and (5.12). It is also possible to plot 

regions for joint confidence and prediction between two performance statistics following a 

bivariate analysis.190,191 The formulae for the confidence ellipse are 
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 μ1 = μො1 + s1 * Constant * cosሺtሻ

μ2	=	μො2	+	s2	*	Constant	* cosሺt	+	arccos(r)ሻ 
(5.15) 

where s1 and s2 are the standard error estimates for μො1 and μො2, and r is the estimated 

correlation between μො1 and μො2, all coming from the variance-covariance matrix of the 

estimates, Var෢ ቆ
μො1

μො2
ቇ ൌ ቈ

s1
2 rs1s2

rs1s2 s2
2 ቉. 'Constant' is the boundary constant (see below) and t 

is varied between 0 and 2π to create the boundary of the ellipse. 

The formulae for the prediction ellipse are 

 

	μ1	=	μො1	+	ටs1
2 + ߬̂1

2 * Constant * cosሺtሻ 

μ2 = μො2 + ටs2
2 + ߬̂2

2 * Constant * cos൫t + arccos(rpred)൯ 

(5.16) 

where the variance-covariance matrix used for estimates of the standard errors and 

correlation come from Var෢ 	ቆ
μො1

μො2
ቇ + the estimated between-study variance-covariance matrix, 

resulting in ൥
s1

2 +  τ̂1
2 rs1s2 + ρෝBτ̂1τ̂2

rs1s2 + ρෝBτ̂1τ̂2 s2
2 + τ̂2

2 ൩.191 The correlation used for the prediction ellipse 

is now rpred=
rs1s2		+		ρෝBτ̂1τ̂2

ටs1
2 + τ̂1

2 ×	ටs2
2 + τ̂2

2
. 

The boundary constant ('Constant') gives the 100(1–α)% confidence or prediction region. 

There are different constants that can be used to produce the region, such as using the F-

distribution (F2,K	-	2) or χ2
2 distribution. As K (number of studies) gets larger, the distribution 
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2*(F2,K	-	2) approaches the χ2
2 distribution.192 In this chapter, the F-distribution was used as K 

is small in both datasets and therefore an F-distribution that accounts for the number of 

studies seems more appropriate, giving a larger confidence or prediction region than the χ2
2 

distribution. 

The 95% confidence ellipse is the region in which the pair of mean performance statistics is 

expected to lie. The 95% prediction ellipse contains the region in which the pair of true 

performance statistics is likely to fall in a new study. So for example, if the two performance 

statistics analysed in a multivariate meta-analysis are a discrimination statistic and a 

calibration statistic, the 95% prediction region gives a 95% prediction region for the joint 

discrimination and calibration performance in a new study population. 

As the univariate predictive distribution is approximately a univariate t-distribution with K–2 

d.f. to account for uncertainty in the estimate of τ,187 it seems sensible to approximate the 

bivariate predictive distribution by a bivariate t-distribution with K–2 d.f. Using this, it is also 

possible to calculate the predicted probability of a model performing to specified criteria for 

the performance statistics following a multivariate meta-analysis. For example, the predicted 

probability of the calibration slope lying between 0.9 and 1.1, and C-statistic ≥ 0.7 in a new 

population. This is done by drawing a large sample from a bivariate t-distribution (with K-2 

d.f.) using the mean vector and variance-covariance matrix from Equation (5.14). This can be 

performed using the ‘randmvt’ module in SAS or the ‘mnormt’ package in R software (see 

Appendix D1 for example R code). The joint probability is the proportion of paired samples 

that meet the criteria for both of the performance statistics. 
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5.6 Results 

The univariate and multivariate meta-analysis methods were applied to the two datasets 

introduced in Section 5.3, and the key findings are now described. 

5.6.1 Dataset one: Deep vein thrombosis 

Recall that the DVT model was developed to predict the risk of having DVT in patients that 

were suspected of having DVT. There were 12 studies available in which a logistic model 

was developed for the binary outcome of having DVT or not. The model included three 

predictors: sex, surgery and calf difference. Validation of the model was done using the IECV 

approach with each of the following applied: a stratified intercept (for implementation 

strategies 1 and 3) or random-effect intercept (for implementation strategy 2). The 

performance statistics calculated were calibration-in-the-large, calibration slope, log(E/O) and 

the C-statistic (reported in Table 5.3). 

Univariate results 

Firstly, the DVT model performance statistics obtained using the IECV approach were pooled 

using univariate meta-analysis. Only results from random-effects models are reported here, 

as there was evidence of heterogeneity for most of the performance statistics, as determined 

by the estimated between-study heterogeneity ߬̂ as well as looking at I2 (Table 5.10). 

The results of the random-effects model using REML as the estimation method are displayed 

in Table 5.10, for each implementation strategy (different choice of intercept) used to validate 

the derived prediction model in the excluded study. 
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Table 5.10: Univariate random-effects meta-analysis results for the DVT model performance statistics using different implementation 
strategies for the model intercept used in the validation dataset. 

Strategy Performance statistic 
Pooled estimate 

(SE) 

95% confidence 

interval 

95% prediction 

interval 

I2 % (approx. 

95% CI for I2) 

τ estimate (approx. 95% 

CI for τ) 

Strategy 1: 

Intercept estimated in 

validation study 

Calibration-in-the-large -0.125 (0.027) -0.178 to -0.072 -0.185 to -0.065 0 <0.001 (0.000 to <0.001) 

Calibration slope 0.972 (0.068) 0.839 to 1.104 0.551 to 1.392 63 (18 to 82) 0.176 (0.064 to 0.288) 

Log(Expected/Observed) 0.084 (0.019) 0.046 to 0.121 0.041 to 0.126 0 <0.001 (0.000 to <0.001) 

C-statistic 0.688 (0.010) 0.668 to 0.707 0.634 to 0.741 45 (3 to 73) 0.022 (0.004 to 0.040) 

Strategy 2: 

Average intercept taken 

from derived random-

intercept model 

Calibration-in-the-large -0.004 (0.158) -0.314 to 0.306 -1.244 to 1.235 97 (91 to 98) 0.533 (0.302 to 0.765) 

Calibration slope 0.973 (0.068) 0.839 to 1.107 0.550 to 1.397 62 (18 to 82) 0.177 (0.065 to 0.289) 

Log(Expected/Observed) 0.022 (0.116) -0.206 to 0.250 -0.888 to 0.932 97 (91 to 98) 0.392 (0.221 to 0.562) 

C-statistic 0.687 (0.010) 0.668 to 0.707 0.634 to 0.741 45 (2 to 73) 0.022 (0.004 to 0.039) 

Strategy 3: 

Intercept from a study in 

derivation set with a similar 

prevalence 

Calibration-in-the-large 0.046 (0.085) -0.121 to 0.213 -0.584 to 0.677 89 (66 to 95) 0.270 (0.135 to 0.404) 

Calibration slope 0.970 (0.068) 0.837 to 1.103 0.550 to 1.390 62 (17 to 81) 0.176 (0.064 to 0.288) 

Log(Expected/Observed) -0.028 (0.062) -0.150 to 0.094 -0.485 to 0.428 89 (65 to 95) 0.195 (0.095 to 0.296) 

C-statistic 0.687 (0.010) 0.668 to 0.707 0.634 to 0.740 45 (3 to 73) 0.022 (0.004 to 0.040) 
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Calibration of the model 

The average calibration slope is very similar for all three implementation strategies and close 

to one. This shows that regardless of the intercept used, on average the predicted risks of 

DVT are similar in the validation data compared to the derivation data across studies. The 

average calibration slope for the DVT model (using all three strategies) is around 0.97 (95% 

CI: 0.84 to 1.10), which is close to the ideal value of one (see Figure 5.1 for forest plot). The 

amount of between-study heterogeneity is also very similar when comparing the three 

implementation strategies (߬̂≈0.176). The 95% prediction interval for the calibration slope 

using strategy 2 (average intercept) is 0.55 to 1.40, and is very similar for the other two 

implementation strategies. This prediction interval is quite wide, due to the large 

heterogeneity of calibration performance in the different studies. A calibration slope of 0.6 or 

1.4 would mean the model could severely over/under predict in a new population or setting. 

Therefore, although the model performs well on average across studies, there is concerning 

heterogeneity that may cause poor calibration in individual populations. This illustrates how 

the average performance is an incomplete picture; calibration slope is good on average, but 

could be poor in particular populations. 

 

Figure 5.1: Forest plot from univariate random-effects meta-analysis of calibration 
slope (using strategy 2: average intercept) from the DVT model. 
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Another important measure is calibration-in-the-large. The pooled calibration-in-the-large is 

worst when the intercept is estimated in the validation study (μො= -0.125, 95% CI: -0.178 to -

0.072), however there is almost no heterogeneity (τ̂<0.001). The average calibration-in-the-

large is better when either the average intercept (strategy 2) or the intercept from a study 

with a similar prevalence (strategy 3) are used (-0.004 and 0.046 respectively), but there is a 

lot of between-study heterogeneity (τ̂=0.533 and 0.270 respectively), seen in Figure 5.2. It 

would be very unlikely to have data to estimate an intercept when applying the model to a 

new population or setting (strategy 1), therefore considering the other two strategies, using 

an intercept from a study with a similar prevalence would be better than using the average 

intercept as there is less heterogeneity. However, heterogeneity is still large, suggesting 

calibration-in-the-large may be poor in some study populations; this is shown by a 95% 

prediction interval of -0.58 to 0.68 (Table 5.10). The log(E/O) follows a similar pattern (when 

looking at heterogeneity and comparing implementation strategies) to the calibration-in-the-

large as these two validation measures have a very strong negative correlation (Table 5.10). 

The 95% prediction interval for expected/observed for implementation strategy 1 suggests 

the overall agreement is likely to be reasonable in new populations (1.04 to 1.13), with the 

number of DVT cases over-predicted by between 4% and 13%. However, the 95% prediction 

interval is unsatisfactory for the other strategies; for example, it is 0.41 to 2.54 for strategy 2 

indicating the number of predicted DVT cases in a new population could range from 59% too 

few up to 154% too many. 
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Figure 5.2: Forest plots from univariate random-effects meta-analysis of calibration-in-
the-large from the DVT model, for each implementation strategy. 



217 
 

Discrimination of the model 

The average C-statistic, used to measure discrimination of the model, is consistent 

regardless of which intercept is used (Table 5.10). This is seen in Figure 5.3 (μො=0.69, 95% 

CI: 0.67 to 0.71) and there is a small amount of between-study heterogeneity (τ̂=0.022). This 

suggests that the ability of the model to discriminate between individuals of very high and low 

risk is unaffected by the intercept, which is to be expected as the discrimination would only 

be affected by changes in the linear predictor rather than the intercept. The 95% prediction 

interval for the C-statistic ranges from 0.63 to 0.74, revealing consistent moderate 

discrimination across studies. 

 

Figure 5.3: Forest plot from univariate random-effects meta-analysis of the C-statistic 
when the average intercept is used from the DVT model (strategy 2). 

Bivariate random-effects meta-analysis 

The overall correlation between performance statistics across studies is seen in Figure 5.4. 

In particular, there is a strong positive correlation between the calibration slope and C-

statistic and these performance statistics were also robust against changes in which intercept 

was used. The correlation can be used in the analysis if the two performance statistics are 

analysed together in a bivariate random-effects meta-analysis (Equation (5.14)). 
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Figure 5.4: Scatterplot matrix for performance statistics from the DVT model, when 
using the average intercept in the validation data (strategy 2). 

The results of the bivariate random-effects meta-analysis of the calibration slope and C-

statistic are given in Table 5.11. The pooled estimates from the bivariate meta-analysis are 

very similar to those from the univariate analyses in this case. The 95% confidence intervals 

for both calibration slope and C-statistic are slightly narrower than the 95% confidence 

intervals obtained from the univariate analyses, potentially due to the utilisation of correlation 

gaining slightly more statistical precision.174 The marginal 95% prediction intervals are also 

slightly narrower as the estimate of τ is slightly smaller than in the univariate analyses. The 

between-study correlation was estimated as +1 in all three analyses (different 

implementation strategies), which indicates that the between-study correlation is poorly 

estimated.193 A between-study correlation is estimated iteratively but constrained between -1 

and +1; therefore a value of ±1 often indicates that it has reached the end of its parameter 

space. This is likely to occur when the within-study variance is very large relative to the 

between-study variance (unless the number of studies is very large). Riley et al. suggest that 

pooled estimates remain unbiased in this situation,193 however it may have more of an impact 

on joint predictive inferences. 
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Table 5.11: Bivariate random-effects meta-analysis of calibration slope and C-statistic from the DVT model, using different 
implementation strategies for the intercept. 

 
Performance 
statistic 

Pooled 
estimate 

(SE) 

95% 
confidence 
interval for 

pooled 
estimate 

Marginal 95% 
prediction 
interval for 

pooled 
estimate 

I2 % (approx. 
95% CI for I2) 

τ estimate 
(approx. 95% CI 

for τ) 

Between-study 
correlation ρෝB (95% 

confidence interval) 

Strategy 1: Intercept 
estimated in validation 
study 

Calibration slope 0.975 (0.062) 0.854 to 1.097 0.595 to 1.355 58 (16 to 78) 
0.159  

(0.059 to 0.259) 1.000 (cannot 
estimate CI) 

C-statistic 0.687 (0.009) 0.670 to 0.704 0.644 to 0.730 34 (2 to 63) 
0.017  

(0.004 to 0.031) 

Strategy 2: Average 
intercept taken from 
derived random-intercept 
model 

Calibration slope 0.975 (0.063) 0.851 to 1.099 0.588 to 1.362 58 (16 to 78) 
0.162  

(0.061 to 0.262) 1.000 (cannot 
estimate CI) 

C-statistic 0.686 (0.009) 0.669 to 0.704 0.642 to 0.730 35 (3 to 63) 
0.018  

(0.004 to 0.031) 

Strategy 3: Intercept from 
a study included in 
derivation set with a 
similar prevalence 

Calibration slope 0.972 (0.063) 0.849 to 1.094 0.589 to 1.355 57 (15 to 78) 
0.160  

(0.059 to 0.261) 1.000 (cannot 
estimate CI) 

C-statistic 0.686 (0.009) 0.669 to 0.703 0.642 to 0.729 34 (2 to 62) 
0.017  

(0.004 to 0.031) 
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Joint confidence and prediction regions 

An advantage of performing a bivariate meta-analysis is that the results can then be used to 

produce joint confidence and prediction regions for both performance statistics included in 

the analysis. Figure 5.5 shows the 95% confidence ellipse and 95% prediction ellipse for the 

calibration slope and C-statistic. The correlation (between estimates or between-study) 

affects how round or narrow the ellipses are. In the DVT data, both the 95% confidence and 

prediction ellipses are very narrow, resulting in several of the studies falling outside of the 

region. However, the correlation between the pooled performance statistic estimates was 

high (r=0.95 from Var෢ 	ቆ
μො1

μො2
ቇ) and the between-study correlation (ρෝB=1.00) was poorly 

estimated (discussed in the previous section). 

 

Figure 5.5: Joint 95% confidence ellipse and prediction ellipse for calibration slope 
and C-statistic from the DVT model using the F-distribution (strategy 2: average 
intercept used). 
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One way in which to quantify how the model and implementation strategy will perform in a 

new population or setting is to calculate the predicted probability of meeting criteria for the 

calibration slope and C-statistic (assessing model calibration and discrimination jointly), 

where the criteria for model performance should ideally be pre-specified. The predicted 

probability of the model performing with a C-statistic≥0.7 and 0.9≤calibration slope≥1.1 is 

only 2.4% when using implementation strategy 2: average intercept (see Table 5.12). This is 

because the prediction is for a higher C-statistic than was seen on average from the IECV 

approach (pooled C-statistic=0.69). If the criteria for model discrimination is relaxed to C-

statistic≥0.65, then the predicted probability of jointly meeting the C-statistic criteria and a 

calibration slope of between 0.9 and 1.1 is 42% for the average intercept approach of 

strategy 2. If the calibration slope criteria is also relaxed to between 0.8 and 1.2 then there is 

a predicted probability of 72% for meeting the performance criteria in a new population. A 

perfectly calibrated model would have a calibration slope=1, therefore specifying that the 

calibration slope should be within 0.8 and 1.2 corresponds to the model under- or over-

predicting by 20%. 
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Table 5.12: Joint predicted probabilities for performance of the DVT model (calibration 
slope and C-statistic) in a new population, using results from the bivariate analysis. 

Calibration 

slope 

bounds 

Minimum  

C-statistic 

Joint predicted probability 

Strategy 1:  

Intercept 

estimated in 

external validation 

study 

Strategy 2: 

Average intercept 

taken from 

derived random-

intercept model 

Strategy 3:  

Intercept from a study 

included in derivation 

with a similar prevalence

0.9 and 1.1 0.70 0.027 0.024 0.024 

0.8 and 1.2 0.70 0.145 0.140 0.138 

0.9 and 1.1 0.65 0.426 0.420 0.420 

0.8 and 1.2 0.65 0.728 0.720 0.723 

 

Recommendations 

Based on Table 5.12, all model implementation strategies have similar predicted 

performance. Given the low predicted probability for meeting even the relaxed C-statistic 

criteria, it is unlikely that any of the models are suitable for use for any of the 

implementations strategies. Note however, that joint inferences may be affected by the 

poorly estimated between-study correlation of +1, and so the aforementioned probabilities 

should be viewed as approximate. For example, if the between-study correlation was rather 

+0.5, then the predicted probability of the model performing with a C-statistic≥0.7 and 

0.9≤calibration slope≥1.1 would be 9.6% rather than 2.4% for strategy 2. However, it is clear 

that the relatively low C-statistic indicates that the model is unlikely to be suitable, and further 

predictors are needed to improve discrimination and reduce heterogeneity in calibration. 
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5.6.2 Dataset two: Breast cancer 

Recall that the breast cancer model was developed to predict the risk of death in patients 

with breast cancer. There were studies from eight countries that were included in the 

development and validation of the prognostic model using the IECV approach. Predictors 

included age, tumour type, histological grade, nodal category, post-menopausal or age>65, 

pT score, adjuvant treatment and hormone receptor status. Model performance statistics of 

interest are Harrell’s C-statistic, the D-statistic and calibration slope. These were presented 

in Table 5.8. 

Univariate results 

The pooled estimates of the performance statistics from a random-effects meta-analysis are 

given in Table 5.13, along with 95% confidence intervals, 95% prediction intervals and 

estimates of the between-study standard deviation τ. In this dataset, ‘study’ relates to country 

as individual studies were combined by country for model development and validation. The 

performance statistics include the C-statistic and D-statistic as measures of model 

discrimination, and the calibration slope using the three implementation strategies for the 

baseline hazard in the validation dataset: (1) baseline hazard estimated in external validation 

country, (2) weighted average of baseline hazards from derivation countries, and (3) baseline 

hazard from country closest in proximity that was included in the model derivation. The 

discrimination (C-statistic and D-statistic) would not be affected by using different 

implementation strategies. 
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Table 5.13: Univariate random-effects meta-analysis results for the breast cancer model performance statistics using different 
implementation strategies for the baseline hazard used in the validation dataset. 

Strategy 
Performance 
statistic 

Pooled 
estimate (SE) 

95% 
confidence 

interval 

95% prediction 
interval 

I2 % (approx. 
95% CI for I2) 

τ estimate (approx. 

95% CI for τ) 

All strategies* C-statistic 0.711 (0.012) 0.688 to 0.733 0.653 to 0.768 51 (0 to 85) 0.021 (0.000 to 0.047) 

All strategies* D-statistic 0.326 (0.063) 0.203 to 0.450 -0.082 to 0.734 88 (52 to 95) 0.154 (0.060 to 0.249) 

Strategy 1: Baseline hazard estimated 
in validation country 

Calibration slope 0.998 (0.016) 0.966 to 1.029 0.938 to 1.058 22 (0 to 68) 0.019 (0.000 to 0.051) 

Strategy 2: Weighted average baseline 
hazard from derived model 

Calibration slope 0.992 (0.080) 0.836 to 1.149 0.424 to 1.561 97 (89 to 99) 0.218 (0.099 to 0.337) 

Strategy 3: Baseline hazard from 
country included in model derivation, 
closest in proximity 

Calibration slope 0.957 (0.111) 0.740 to 1.173 0.156 to 1.757 99 (94 to 99) 0.308 (0.143 to 0.473) 

* Results are the same for each of the three implementation strategies using different baseline hazards for validation of the model. 
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Calibration of the model 

The calibration slope is closest to the ideal value of one when the baseline hazard is 

estimated in the validation data (average calibration slope=0.998). This has a narrow 95% 

confidence interval, and also narrow 95% prediction interval due to very little between-study 

heterogeneity (τ̂=0.02). So the calibration slope of the model in a new population is predicted 

(with 95% probability) to lie between 0.938 and 1.058. Estimating the baseline hazard in the 

country for which it is intended to be used is ideal but unlikely to happen in reality, 

considering the model could be implemented in countries where samples of individuals have 

not been collected that could be used for estimation. Therefore it is important to consider the 

other two implementation strategies as they are more plausible to use in practice. The 

calibration slope suggests slight miscalibration and large between-study heterogeneity when 

the baseline hazard from a nearby country is used (average calibration slope=0.957, τ̂=0.31). 

The model using the average baseline hazard calibrates better than the previously 

mentioned strategy, with an average calibration slope of 0.992. However, even though 

average calibration is good, there is large between-study heterogeneity (τ̂=0.22) suggesting 

that the model calibrates better in some countries than others. A 95% prediction interval for 

the calibration slope using strategy 2 is very wide (95% PI: 0.424 to 1.561) revealing 

potential for extremely poor calibration at the upper and lower limits, although the width of the 

interval also reflects uncertainty in τ̂. 

Discrimination of the model 

The pooled C-statistic is 0.711, which suggests that on average the model discriminates 

between individuals of high and low risk of breast cancer moderately well and similar to other 

prognostic models such as the pancreatic cancer model developed and validated in Chapter 

4. There is also very little between-study heterogeneity in the C-statistic (τ̂=0.02), so the 

model discrimination is quite consistent across the different countries. 
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The D-statistic can be interpreted as a log hazard ratio when patients are separated into two 

equal groups based on their prognostic index. Therefore values further away from zero show 

greater separation between the two prognostic groups. The pooled D-statistic for the breast 

cancer model is 0.326, which equates to a hazard ratio of 1.385 (95% CI: 1.225 to 1.568) 

between two equal sized prognostic groups. There is some between-study heterogeneity in 

the D-statistic with τ̂=0.15. 

Correlation between performance statistics 

The overall correlations between performance statistics from the breast cancer model are 

displayed in a scatterplot matrix (Figure 5.6). Using the scatterplots as a visual guide, the 

performance statistics for the survival model are not as strongly correlated as the C-statistic 

and calibration slope in the logistic model for the DVT model (Section 5.6.1). However there 

are still some strong overall correlations between the D-statistic and calibration slope when 

the average baseline hazard is used and when the baseline hazard from the closest country 

is used. There is also a very strong overall correlation between the C-statistic and the 

calibration slope using the baseline hazard estimated in the external validation country. The 

relationship between the C-statistic and calibration slope using either the average or closest 

country baseline hazards are weaker. There also appears only weak correlation between the 

C-statistic and the D-statistic. These overall correlations can be quite different from the 

within-study correlations (Table 5.9). 
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Figure 5.6: Scatterplot matrix for performance statistics of the breast cancer model. 

Bivariate random-effects meta-analysis 

Bivariate random-effects meta-analysis was performed for all pairs of C-statistic, D-statistic 

and calibration slope (using one of the implementation strategies at a time). The pooled 

estimates (Table 5.14) are very similar to those previously discussed from the univariate 

analysis, with little gain in precision as the 95% confidence and 95% prediction intervals are 

not much narrower than those estimated in the univariate analysis. However, the utilisation of 

correlation does enable more appropriate joint inferences in the multivariate meta-analysis 

(see below). 
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Table 5.14: Bivariate random-effects meta-analysis of performance statistics from the breast cancer model. 

Strategy 
Performance 
statistic 

Pooled 
estimate 

(SE) 

Marginal 95% 
confidence interval 
for pooled estimate 

Marginal 95% 
prediction interval 

for pooled estimate 

I2 % (approx. 
95% CI for I2) 

τ estimate 
(approx. 95% CI 

for τ) 

Between-study 
correlation ρෝB (95% 
confidence interval) 

All strategies* 
C-statistic 

0.710 
(0.011)

0.689 to 0.732 0.663 to 0.766 49 (0 to 85) 
0.020  

(0.000 to 0.047) -0.131  

(-0.878 to 0.801) 
D-statistic 

0.327 
(0.060)

0.210 to 0.444 -0.068 to 0.721 87 (52 to 95) 
0.150  

(0.060 to 0.240) 

Strategy 1: Baseline 
hazard estimated in 
validation country 

C-statistic 
0.712 

(0.011)
0.690 to 0.734 0.662 to 0.769 51 (0 to 84) 

0.020  
(0.000 to 0.045) 

1.000 

(cannot estimate 
CI) 

Calibration 
slope 

1.002 
(0.017)

0.968 to 1.035 0.921 to 1.083 39 (0 to 76) 
0.029  

(0.000 to 0.0.063) 

Strategy 2: Weighted 
average baseline hazard 
from derived model 

C-statistic 
0.710 

(0.012)
0.688 to 0.733 0.660 to 0.769 52 (0 to 85) 

0.021  
(0.000 to 0.048) 0.013 

(-0.806 to 0.815) Calibration 
slope 

0.994 
(0.081)

0.836 to 1.153 0.416 to 1.572 98 (89 to 99) 
0.222  

(0.101 to 0.343) 

Strategy 3: Baseline 
hazard from country 
included in derivation, 
closest in proximity 

C-statistic 
0.709 

(0.012)
0.686 to 0.733 0.655 to 0.771 55 (0 to 86) 

0.022  
(0.000 to 0.049) -0.296 

(-0.901 to 0.700) Calibration 
slope 

0.957 
(0.112)

0.738 to 1.177 0.145 to 1.769 99 (94 to 99) 
0.312  

(0.145 to 0.480) 

Strategy 1: Baseline 
hazard estimated in 
validation country 

D-statistic 
0.320 

(0.058)
0.207 to 0.433 0.027 to 0.697 86 (48 to 94) 

0.143  
(0.055 to 0.231) -0.741 

(-1.000 to 1.000) Calibration 
slope 

0.999 
(0.015)

0.969 to 1.028 0.949 to 1.048 13 (0 to 67) 
0.014  

(0.000 to 0.050) 

Strategy 2: Weighted 
average baseline hazard 
from derived model 

D-statistic 
0.335 

(0.062)
0.213 to 0.456 -0.044 to 0.746 88 (55 to 95) 

0.156  
(0.063 to 0.249) 0.866 

(0.348 to 0.979) Calibration 
slope 

0.995 
(0.081)

0.835 to 1.154 0.412 to 1.577 98 (89 to 99) 
0.224  

(0.102 to 0.346) 

Strategy 3: Baseline 
hazard from country 
included in derivation, 
closest in proximity 

D-statistic 
0.337 

(0.064)
0.212 to 0.462 -0.042 to 0.750 88 (54 to 95) 

0.156  
(0.062 to 0.251) 0.592 

(-0.198 to 0.916) Calibration 
slope 

0.962 
(0.111)

0.744 to 1.180 0.154 to 1.770 99 (94 to 99) 
0.311  

(0.144 to 0.478) 

* Results are the same for each of the three implementation strategies using different baseline hazards for validation of the model. 
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Joint predictions 

The joint 95% confidence and prediction ellipses for variables analysed together in the 

bivariate analyses are displayed in Figure 5.7. The 95% confidence and 95% prediction 

regions for the C-statistic and D-statistic are quite round as the correlation between these 

performance statistics is close to zero (ρෝB = -0.13). The confidence ellipse is the 95% 

confidence region for the mean of both performance statistics. The prediction ellipse is the 

95% prediction region for the value of both performance statistics in a new population. All of 

the pairwise plots, apart from C-statistic versus calibration slope (using strategy 1: baseline 

hazard estimated in the validation dataset), contain all of the data points within the 95% 

prediction region. The prediction ellipse for the C-statistic and calibration slope (using 

implementation strategy 1) does not contain all of the data points and this is likely to be due 

to the poorly estimated between-study correlation (reaching the value +1). 

The joint predicted probabilities for model performance in a new population are given in 

Table 5.15. The D-statistic of 0.3 corresponds to a hazard ratio of 1.35 if patients were 

separated into two equal groups based on their linear predictor. The predicted probability of 

the C-statistic≥0.7 and calibration slope between 0.9 and 1.1 is 0.15 for strategy 3 (baseline 

hazard from nearest country) and 0.21 for strategy 2 (average baseline hazard). However, 

the predicted probability is much higher at 0.67 for strategy 1. Considering whether the 

predicted probability may be higher because of the poorly estimated between-study 

correlation, the probability was predicted again assuming a between-study correlation of 

+0.5. The predicted probability remained at 0.67 suggesting that strategy 1 does perform 

better than the other two strategies and that this predicted probability is robust against poor 

estimation of the between-study correlation. The joint probabilities for D-statistic and 

calibration slope show similar results in that implementation strategy 1 performs better than 

strategies 2 or 3. 
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Figure 5.7: Joint 95% confidence and prediction ellipses for performance statistics from the breast cancer data. 
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Table 5.15: Joint predicted probabilities for specified values of performance statistics based on the breast cancer model in a new 
population. 

Implementation strategy 
Minimum C-

statistic 
Minimum D-

statistic 
Calibration slope 

bounds 

Joint probability  
of meeting performance 

criteria 

All strategies 0.7 0.3 - 0.368 

Strategy 1: Baseline hazard estimated in validation 
country 

0.7 - 0.9 and 1.1 0.674 

Strategy 2: Weighted average baseline hazard from 
derived model 

0.7 - 0.9 and 1.1 0.212 

Strategy 3: Baseline hazard from country included in 
model derivation, closest in proximity 

0.7 - 0.9 and 1.1 0.146 

Strategy 1: Baseline hazard estimated in validation 
country 

- 0.3 0.9 and 1.1 0.547 

Strategy 2: Weighted average baseline hazard from 
derived model 

- 0.3 0.9 and 1.1 0.205 

Strategy 3: Baseline hazard from country included in 
model derivation, closest in proximity 

- 0.3 0.9 and 1.1 0.144 
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Recommendations 

These predicted probabilities confirm that using the baseline hazard of a country nearby 

(strategy 3) does not work well for the breast cancer model and that using the average 

baseline hazard (strategy 2) is only slightly better (although marginal with joint probabilities of 

meeting the performance criteria of 0.15 for strategy 3 compared to 0.21 for strategy 2). Both 

of these strategies perform poorly compared to estimating (recalibrating) the baseline hazard 

in the new data (strategy 1). 

The source of heterogeneity may be identified in some cases. One of the countries (Sweden) 

was identified as being quite different to the other countries as calibration of the model was 

particularly poor for this country (calibration slope=0.578) when using implementation 

strategy 2 (weighted average baseline hazard). Therefore a sensitivity analysis was 

performed in which Sweden was removed and the IECV approach was repeated without it 

(see Appendix D2). The average calibration slope was closer to one (average=0.999) and 

the 95% prediction interval was narrower. The C-statistic did not change much but the joint 

probability for ‘good’ performance defined as C-statistic≥0.7 and calibration slope between 

0.9 and 1.1 increased from 0.21 to 0.32. Of course this makes sense, as reducing the 

heterogeneity shrinks prediction intervals and increases predicted probabilities for ‘good’ 

model performance; however, it is important to understand why this heterogeneity exists and 

what makes Sweden different from the other countries. For example, it may be due to a very 

different diagnostic system, leading to breast cancer diagnosis at a substantially earlier (or 

later) stage of disease compared to other countries. 

Overall, the breast cancer prediction model performs reasonably well in terms of 

discrimination (average C-statistic=0.71, 95% PI: 0.66 to 0.77) and calibration performance, 

especially when the baseline hazard is recalibrated by estimating it in the country in which 
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the model will be applied (strategy 1 average calibration=1.002, 95% PI: 0.92 to 1.08). This 

implementation strategy resulted in the least heterogeneity of model performance across 

validation countries. If it is not possible to recalibrate the model to the population in which it 

will be applied, using a weighted average baseline hazard is a good second choice, 

especially if Sweden is considered too different from the other countries and excluded from 

the analysis. Using the baseline hazard from the closest country proved to be a poor 

implementation strategy and had the most heterogeneous model performance, therefore this 

strategy is not recommended. 

5.6.3 Extension to trivariate random-effects meta-analysis 

The between-study correlation was poorly estimated (+1) between the C-statistic and 

calibration slope in both the DVT and breast cancer datasets. This was the case for all three 

implementation strategies for the DVT data and implementation strategy 1 (baseline hazard 

estimated in validation study) for the breast cancer data. Trivariate random-effects meta-

analysis was therefore considered to try and improve the estimation of between-study 

correlation between the C-statistic and calibration slope by incorporating further information 

from a third performance measure. 

The pooled results, confidence intervals and prediction intervals did not change much when 

a trivariate random-effects meta-analysis was performed using the DVT data with the 

addition of either log(E/O) or calibration-in-the-large (see Appendix D3). Between-study 

correlations for the C-statistic and calibration slope could still not be estimated for 

implementation strategy 1 (intercept estimated in validation study) and were estimated 

between +0.993 and +0.999 for the other analyses (different implementation strategies and 

whether log(E/O) or calibration-in-the-large were included in the trivariate meta-analysis). 

This suggests that there is potentially a very strong between-study correlation between the 
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C-statistic and calibration slope in these studies and that the predicted probabilities for model 

performance (to specified criteria) would only change slightly if the trivariate meta-analysis 

results were used instead of the bivariate results to derive the predicted probabilities or 

prediction ellipses. For example, the predicted probability for strategy 2 (average intercept) 

meeting the criteria of C-statistic≥0.7 and calibration slope between 0.9 and 1.1 changed 

from 0.024 to 0.037. 

In the breast cancer data, a trivariate random-effects meta-analysis of the C-statistic, D-

statistic and calibration slope (for implementation strategy 1) gave similar pooled results for 

the C-statistic and calibration slope compared to the bivariate meta-analysis. The between-

study correlation was estimated as +0.986, giving credence to a value close to +1 being 

genuinely plausible (i.e. not due to unreliable estimation as originally feared). As the 

between-study correlation and other estimates are similar to those from the bivariate 

analysis, the predicted probabilities and prediction ellipses from this trivariate meta-analysis 

are also very similar to those previously discussed for the bivariate analyses. 

5.7 Discussion 

Before a risk prediction model can be deemed clinically useful, it is important to assess how 

the model performs in external data that was not used for model development. This external 

validation is performed to evaluate the generalizability and transportability of the model to a 

range of plausibly related populations.12 With this in mind, an important consideration is how 

the developed model should be implemented in different populations. Debray et al. published 

a framework that includes different implementation strategies for clinical prediction models.149 

These implementation strategies also require validation, and the availability of IPD from 

multiple studies is an ideal opportunity to do this. Selecting an intercept to use in a specific 

population is a way of recalibrating or updating the model to improve performance within that 
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population. Several articles have mentioned that if a model does not perform particularly well 

when validated, the model should be updated (either by recalibrating or including additional 

predictors) rather than discarded and a brand new model developed.3,59,194 Moons et al. also 

say that ideally IPD from the new situation are available.194 This chapter supports this in that 

performance was best when the model was recalibrated using data from that study but also 

considered alternatives suggested by Debray et al. for when IPD are not available.149 

This chapter has extended the IECV approach by proposing novel univariate and multivariate 

meta-analysis methods to combine performance statistics across the excluded studies, and 

thereby summarise overall model performance, and even predict model performance in a 

new population for a given implementation strategy. Royston et al. suggested a weighted 

average of the individual values to give an overall statistic (Equation (5.1)).69 This overall 

performance statistic is similar to the pooled performance statistic from a fixed-effect meta-

analysis. However, it seems preferable to assume that the performance of the model in each 

study could vary and therefore the random-effects meta-analysis approaches proposed are 

more appropriate. The advantage of using the random-effects meta-analysis approach is that 

the between-study heterogeneity is estimated, which allows inferences regarding model 

performance in new populations (rather than average performance across all populations). 

Further, the chapter has suggested multivariate meta-analysis approaches, to jointly 

synthesise multiple performance statistics and make joint inferences about their likely value 

in new populations. The work presented in this chapter has also been accepted for 

publication in the Journal of Clinical Epidemiology. 

5.7.1 Related research in this field 

The development and validation of prediction models using IPD from multiple studies is 

receiving growing attention. Ahmed et al. conducted a review of articles developing and 
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validating risk prediction models using IPD meta-analysis.195 The authors identify 

heterogeneity in baseline risk across studies as a methodological challenge and recommend 

the use of Debray et al.’s framework of using IECV and selecting an appropriate intercept 

term relating to the population in which the model would be applied.149 

Other studies have used meta-analysis to combine performance statistics, such as Pennells 

et al., where the authors assessed the predictive performance of models developed from 

IPD.61 However, they did not use the IECV approach but instead considered developing the 

model in each study, pooling βs using meta-analysis as well as the performance statistics. 

The authors comment on comparing discrimination across studies, and that the study-

specific discrimination depends on the distributions of risk predictors within each study. 

Therefore, they caution against interpreting discrimination across studies when there are 

large differences in distributions of the risk predictors.61 A further point for debate is the 

weighting scheme used in the meta-analysis. The weighting of each study in the proposed 

random-effects models of this chapter is an inverse-variance. Pennells et al. recommend 

weighting by the number of events when the aim is to produce a weighted average of 

discrimination performance; however, they agree that inverse-variance weighting using 

random-effects models is more appropriate when the predicted performance in new 

populations is of interest.61 The random-effects approach is also more naturally extended to 

multivariate meta-analysis, as demonstrated here. 

Another study has looked at discrimination within clusters when a model is developed using 

clustered data, using meta-analysis to combine the cluster-specific discrimination statistics.62 

The authors recommended using random-effects meta-analysis for the pooling of cluster-

specific C-statistics across clusters, to assess the variability in discrimination across clusters. 

They also checked standardised residuals for the C-statistic on the probability and log-odds 
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scale to check for normality when pooling C-statistics in the meta-analysis and found that the 

residuals fitted the standard normal distribution better on the probability scale than on the 

log-odds scale.62 

5.7.2 Summary of key findings from this chapter 

The DVT and breast cancer models were used to illustrate the meta-analysis methods, but 

their usefulness warrants discussion. Different implementation strategies were assessed by 

using different intercepts or baseline hazards for validation in the excluded study. Strategy 2 

differed in the two examples, as one used prevalence to select an intercept and the other 

used the closest country. This chapter uses the performance measures of models developed 

by different authors, and evaluates the strategies that these authors selected. The measures 

of discrimination were not dependent on the intercept used, unlike some of the calibration 

measures. 

The DVT model considered in this chapter was developed by Debray et al. to illustrate 

methodology rather than being intended for clinical use.149 However, estimating the intercept 

within the population was the best strategy as it had the best average performance and least 

heterogeneity across studies when jointly considering the C-statistic and calibration slope. 

Calibration slope did not change depending on the implementation strategy used but 

calibration-in-the-large was least heterogeneous across studies when the intercept was 

estimated in the excluded study (strategy 1). If it is not possible to recalibrate the model to 

the intended population, strategy 3 is recommended (selecting intercept from study with 

similar prevalence level) as although C-statistics and calibration slopes were very similar for 

strategies 2 and 3, there was less heterogeneity in calibration-in-the-large across studies for 

strategy 3. 
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For the breast cancer model, the best model performance was achieved if the baseline 

hazard could be estimated for the population in which the model will be used. Using the IECV 

approach, the calibration slope was least heterogeneous when the baseline hazard was 

estimated in the excluded country (strategy 1). However, this approach of estimating the 

intercept or baseline hazard in the population for which it is intended is unlikely to be useful 

in practice. Using an intercept from a study with a similar prevalence level was a better 

approach than using the average intercept in the DVT model. In the breast cancer data, 

using the baseline hazard from the closest country did not work as well and therefore using 

the average intercept gave better validation performance. Even so, these implementation 

strategies had large between-study heterogeneity, indicating that model performance may be 

poor in many of the individual populations that the model could be used in, even if average 

performance across all of the excluded studies was good. A sensitivity analysis also showed 

that Sweden was quite different to other countries included and including it resulting in 

heterogeneity in model performance. This indicates that the model may also perform poorly 

in other countries outside of those included and would therefore need to be tested before the 

model is used in that country. 

Perhaps the most important and novel element of this chapter is the multivariate meta-

analysis proposal for jointly summarising multiple performance statistics. The bivariate (or 

trivariate) meta-analysis was demonstrated for combinations of performance statistics. There 

was very little difference between the pooled results of the multivariate meta-analysis and the 

univariate meta-analysis. The benefit of multivariate meta-analysis is more evident in 

situations where there are missing values for a study.174 However, jointly synthesising 

multiple performance statistics has the advantage of estimating the correlation between 

performance statistics which enables joint predictions to be made for combinations of 

performance statistics such as a measure of calibration and discrimination. This can be 
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helpful when comparing competing models or, as in this chapter, when comparing different 

implementation strategies by ranking them by their probability of meeting specified criteria for 

what is deemed to be a ‘good’ prediction model. Arbitrary values were selected for chosen 

statistical criteria in this chapter to illustrate the methods; however, criteria for a ‘good’ 

prediction model may include other statistical or clinical criteria. 

Another key finding is that there may be issues with the estimation of between-study 

correlation in multivariate meta-analysis when the within-study variances are large relative to 

the between-study variances, as discussed by Riley et al.193 Importantly, the authors noted in 

their simulation study that the pooled results were not biased, even when the between-study 

correlation was estimated as -1 or +1. However, this chapter showed that poor estimation of 

the between-study correlation can affect the joint confidence and prediction ellipses as they 

become too narrow, which was evident from the prediction ellipse of the C-statistic and 

calibration slope of the DVT model. Using additional information from a third performance 

statistic in a trivariate meta-analysis, the between-study correlations would often converge 

close to +1. 

The multivariate meta-analysis methods encourage the joint synthesis of discrimination and 

calibration performance of a prediction model, as in the literature, model calibration is often 

ignored.54 This could be due to ongoing debate on how best to measure calibration and when 

is a model well calibrated. One issue discussed by Vach is that a calibration slope of one 

does not necessarily indicate good calibration of a model,196 and this warrants further 

consideration in further research. 
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5.7.3 Limitations and further work 

In this chapter, (multivariate) normality was assumed for the distribution of true model 

performance across studies. This is a common assumption in meta-analysis but departures 

from this assumption would have implications on inferences made from the 95% prediction 

intervals and joint prediction regions. More flexible distributions have been proposed to allow 

for skewness and could be considered in further work.197 Normality has also been assumed 

for the within-study sampling distribution of each performance statistic. However, 

expected/observed was log transformed as it was considered more likely to be skewed. Van 

Klaveren et al.62 compared different scales for the C-statistic and found that residuals looked 

better for meta-analysis on the probability scale than on the log-odds scale, however this 

assumption will be interrogated further in Chapter 6. 

Further development of the multivariate approach could involve the use of multivariate meta-

regression for pooling performance statistics. Meta-regression combines the meta-analysis of 

the performance statistics with modelling study-level covariates to explain some of the 

heterogeneity in model performance across studies.198 This is different to including the 

additional covariates in the developed prediction model (which would account for differences 

between patients) as the covariates are included at the study level (which would account for 

between-study heterogeneity). A sensitivity analysis of the breast cancer model revealed one 

study as different to the others as the model performed far worse in Sweden than other 

countries. Meta-regression may be one way of identifying potential differences in 

studies/countries to help explain between-study heterogeneity in performance statistics and 

identify where the model will perform better and where it could perform worse. Potential 

problems with the meta-regression approach can include obtaining study-level covariate 

information for each study included in the meta-analysis and also having a large enough 
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number of studies to estimate the regression coefficients precisely and draw robust 

conclusions from the meta-regression.199 

5.8 Conclusions 

IECV is a useful approach for the development and validation of a prediction model when 

multiple studies are available as it maximises the amount of data used towards the 

development of the model as well as externally validating the model multiple times. This 

chapter has proposed using (multivariate) random-effects meta-analysis to pool performance 

statistics from IECV, in order to summarise average performance and the heterogeneity in 

performance across studies, which is important when considering the application of the 

model in specific populations. The real examples showed how prediction intervals from a 

random-effects meta-analysis help reveal how the model is expected to perform in new 

populations, and how a multivariate approach allows the joint synthesis of multiple correlated 

performance statistics. This is especially useful for making joint predictions of how a model 

will perform in a new population for combinations of two performance statistics (e.g. 

discrimination and calibration), and thereby helps identify the best reliable implementation 

strategy when using the model. 

A key assumption made in this chapter when using random-effects meta-analysis is that the 

‘true’ performance statistic (e.g. C-statistic) is normally distributed. However, there is no 

conclusive evidence to suggest that this is reasonable for the C-statistic,62 or any other 

performance statistic considered in this chapter. The next chapter aims to evaluate this 

normality assumption for some of the performance statistics in different settings through 

simulation. 
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CHAPTER 6: A SIMULATION STUDY TO 

EVALUATE THE DISTRIBUTIONS OF 

PERFORMANCE STATISTICS 

6.1 Introduction and aims 

In Chapter 5, (multivariate) random-effects meta-analysis was proposed for synthesising 

estimates of prediction model performance from multiple validation studies. This provides a 

pooled estimate of the average performance of the model as well as an estimate of the 

heterogeneity of performance across the validation studies. Recall that a univariate random-

effects meta-analysis of the C-statistic, as proposed in the previous chapter and in related 

work by van Klaveren et al.62 can be specified as follows: 

 
C෡ i~NormalቀCi, Si

2ቁ 

Ci~Normal(μ,τ2) 

(6.1) 

The C-statistic estimated in each study i (C෡ i) is assumed to be normally distributed with mean 

Ci and variance Si
2. This assumption of normality in the sampling estimate is a reasonable 

one if the sample size and number of events are large, as one can appeal to the Central 

Limit Theorem. The Ci’s (i.e. the true C-statistics in the studies) are also assumed to follow a 

normal distribution at the study level. This assumption is common in the meta-analysis 

field,184,187 and is especially important when making predictions for the potential C-statistic in 

a new study similar to one of those included in the meta-analysis. Therefore, if assuming the 

true C-statistics follow a normal distribution is inappropriate, this would make model (6.1) and 

subsequent prediction intervals invalid. Thus further research of this issue is needed to 
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ascertain whether the normality assumption is reasonable and, if not, whether a different 

scale may be preferable. Similarly, the between-study distribution of other performance 

statistics considered in Chapter 5 (such as the calibration slope) warrants investigation. 

Van Klaveren et al.62 also comment on this normality assumption for meta-analysis of 

performance statistics from prediction models, and attempted to look at the distribution of 

true C-statistics in clustered data. Assuming the cluster-specific C-statistics are normally 

distributed (both in terms of sampling estimates within-studies and true values across 

studies), the authors calculated standardised residuals and assessed the normality 

assumption using a normal probability plot and Shapiro-Wilk test applied to the residuals. 

They conclude that the C-statistic scale is appropriate, and indeed preferable to the logit 

scale. They state: 

When assessing the discriminative ability of risk models used to support decisions at 

cluster level we recommend meta-analysis of cluster-specific c-indexes. Particularly, 

random effects meta-analysis should be considered. 

The normality assumptions for derivation of a prediction interval were better met on 

the probability than on the log-odds scale.62 

However, by looking at residuals from random-effects models the authors do not separate 

between the sampling error (within clusters) and the between-cluster heterogeneity in their 

study; in other words the normality distribution of the errors is some (weighted) 

amalgamation of the sampling distribution and the between-study distribution. Therefore, it is 

not possible to draw firm conclusions about whether the between-study distribution is 

approximately normal from their work. Furthermore, they only consider example datasets, 
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rather than examination through statistical theory or simulation, and so their 

recommendations may not be generalizable. 

The aim of this chapter is therefore to explore the distributions and possible transformations 

of the C-statistic and other performance statistics to evaluate how reasonable the between-

study normality assumption is for pooling performance statistics using the univariate random-

effects meta-analysis models proposed in Chapter 5. To achieve this, an in-depth simulation 

study is conducted using logistic regression for the underlying true prediction model, from 

which the C-statistic, expected/observed number of events (E/O), calibration slope and 

calibration-in-the-large are calculated as measures of model performance. The distributions 

of these performance statistics across studies are then evaluated under different levels of 

between-study heterogeneity in either the intercept or predictor effect in the logistic model. 

The simulation uses large study samples to reduce sampling error to almost zero, thereby 

allowing the true between-study distributions of the performance statistics to be revealed 

under different conditions, and thus avoiding the amalgamation of the within-study and 

between-study distributions that potentially affects the work of van Klaveren et al.62 

The aims of the chapter are summarised as follows: 

1. Evaluate if true performance statistics are normally distributed 

Evaluate the distributions of the true C-statistic, calibration slope, calibration-in-the-

large and expected/observed proportion of events to assess if normality of between-

study performance statistics is a reasonable assumption when there is heterogeneity 

in either the baseline risk (intercept) or predictor effect (beta). This will also be 

evaluated in different scenarios such as in data with particularly high or low baseline 

risk and for different strengths of the predictor effect. 
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2. Consider appropriate transformations for performance statistics 

If any of the performance statistics are not approximately normally distributed when 

there is heterogeneity in the intercept or predictor effect, transformations of the 

statistic will be considered to see if the distributions of the transformed statistic are 

closer to a normal distribution. 

3. Make recommendations for the scale on which to combine performance 

statistics in a meta-analysis 

Based on the findings of this simulation study, recommendations will be made for the 

scale most appropriate for pooling performance statistics in the random-effects meta-

analysis models proposed in Chapter 5. 

6.2 Methods 

6.2.1 Specifying the ‘true’ prediction models and nine base 

scenarios for simulation 

In all the simulations, a ‘true’ logistic regression prediction model for a binary outcome such 

as diagnosis of DVT is considered (building on the DVT modelling work in Chapter 5), with 

just a single predictor of age included in the model for simplicity. Different scenarios and 

settings will be considered, covering applications where this ‘true’ model is correct, and 

others where this ‘true’ model is incorrect due to missing predictors or unexplained 

heterogeneity. In all situations examined, the ‘true’ model is applied to simulated patient data 

from a range of studies and the performance statistics (e.g. C-statistics) of interest calculated 

in each study. The between-study distributions of the calculated performance statistics are 

then examined for normality. 

The simplest scenarios for the ‘true’ logistic model, which are termed the ‘base scenarios’ are 

now defined. Information from Oudega et al. is used as a starting point for the parameter 
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values chosen in the true model and for the distribution of age.200 The authors developed a 

simple diagnostic rule to safely rule out DVT in patients with suspected DVT, without the 

need for referral. In the article, age had a mean of 60 years and a standard deviation of 17.6 

years. These values are used here within an assumed normal distribution for age when it is 

included as a predictor in the simulation study. The assumed ‘true’ logistic regression 

prediction model can be written as 

 logit ቀpijቁ=μα+μβ×ageij (6.2) 

where i represents the individual in study j and the age (in years) of individuals in each study 

is sampled from a Normal൫60, 17.62൯ distribution. Note that unrealistic ages sampled from 

the Normal൫60, 17.62൯ such as negative ages, very young and very old ages are not 

considered a problem as it is simply a ‘variable’ with a specified distribution in this simulation 

study. However, restricting the range of values to plausible age values is considered further 

in the extensions to the simulation study (Section 6.2.6). 

Oudega et al. reported a univariable odds ratio for age (per year increase) of 1.01 which 

approximately relates to μβ = 0.01.200 They also reported a DVT prevalence of 0.22 which, 

given μβ = 0.01, can be achieved by generating data with α = -1.274. If data are generated 

using the model with these parameter values for μα and μβ, the C-statistic of the model is 

approximately 0.55. This represents one base scenario for the simulation study. Eight further 

base scenarios were also considered, by varying model parameters to give combinations of 

different outcome prevalence levels and discrimination (C-statistic). This ranged from 

prevalence levels of 0.22 (as reported by Oudega et al.200), to a low prevalence of 0.05, and 

then a high prevalence of 0.9. The C-statistics ranged from around 0.55 (poor discrimination, 
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not much better than chance), to around 0.7 (moderate discrimination), and then 0.9 

(excellent discrimination), covering the range of poor to excellent C-statistic/AUC levels of 

discrimination, as defined by Hosmer and Lemeshow.201 A C-statistic of 0.7 is fairly 

representative of the discriminatory ability of a prognostic prediction model (such as in 

Chapter 4), and a C-statistic of 0.9 may be akin to the discrimination of an excellent 

diagnostic prediction model. 

The nine base scenarios are defined in Table 6.1 in terms of μα (representing the intercept) 

and μβ (representing the predictor effect) for the assumed ‘true’ model to be used in the 

simulations. 

Table 6.1: Parameter values of assumed prediction model in the nine base scenarios 
considered in the simulation study. 

Scenario μα μβ Prevalence* C-statistic* 

1 -1.274 0.010 0.22 0.55 
2  -2.957 0.010 0.05 0.55 
3 2.210 0.010 0.90 0.55 
4 -1.425 0.045 0.22 0.7 
5 -3.215 0.045 0.05 0.7 
6 2.440 0.045 0.90 0.7 
7 -2.386 0.145 0.22 0.9 
8 -5.133 0.145 0.05 0.9 
9 3.987 0.145 0.90 0.9 

*The μα and μβ values are selected to give the corresponding average prevalence and C-

statistic (average from 100 large samples each of 1000000 patients) when there is no 

heterogeneity in α or β (σα
2=0 and σβ

2=0). 

6.2.2 Specifying seven settings that allow for heterogeneity 

The nine base scenarios defined in Table 6.1 above are the basis for the simulation study, 

and the given μα and μβ values indicate the intercept and predictor effect values of the 

assumed ‘true’ model in each scenario given by (6.2). 
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As the aim of this chapter is to check the between-study distributions of true performance 

statistics when there is heterogeneity in true model performance, it was necessary to 

consider each base scenario in a range of seven different settings (Table 6.2) that introduce 

heterogeneity for either α or β when generating the patient-level data. This was done by 

sampling study-specific true intercept and predictor effect values, αj and βj values 

respectively for each study j from αj~Normal൫μα,σα
2൯, βj~Normal ቀμβ,σβ

2ቁ. Thus, there is 

heterogeneity in α if σα	>	0 and heterogeneity in β if σβ	>	0. In such situations, the assumed 

‘true’ model of (6.2) is incorrect, as it ignores heterogeneity and thus, when it is applied to a 

range of populations, will induce heterogeneity in its performance. If there is no 

heterogeneity, all the true study-specific intercepts are identical (=μα), as are the true study-

specific predictor effects (=μβ). Thus, in such situations the assumed true model (6.2) is 

correct in all populations. 

In this chapter, heterogeneity is considered for either α or β but not for both at the same time, 

for simplicity. Across the settings, three values were selected for σα and three values for σβ. 

The values were selected to give small, moderate and large variation in either α or β but are 

fairly arbitrary as the amount of variability in the performance statistic also depends on the α 

or β values themselves. The SDs for β (σβ’s) were chosen to be values of about half of each 

of the β values used in defining the scenarios. Therefore the largest value of σβ will be 

extreme for scenarios 1 to 3 and large for scenarios 4 to 6. The selected values of SDs for α 

or β are given in Table 6.2, for each of the seven different settings covered. 

In summary, the total number of simulations to be considered is therefore 63 (= 9 base 

scenarios x 7 settings), which covers a range of values for α and β, and the amount of 

heterogeneity present. 
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Table 6.2: Defined settings for simulation, with heterogeneity in either α or β across 
studies. 

Simulation setting 
Standard deviation for α and β in each 

scenario 

1: No heterogeneity σα = 0 σβ = 0 

2: Little heterogeneity in α σα = 0.1 σβ = 0 

3: Moderate heterogeneity in α σα = 0.5 σβ = 0 

4: Large heterogeneity in α σα = 1.0 σβ = 0 

5: Little heterogeneity in β σα = 0 σβ = 0.005 

6: Moderate heterogeneity in β σα = 0 σβ = 0.020 

7: Large heterogeneity in β σα = 0 σβ = 0.070 

 

6.2.3 Choice of sample size and number of studies 

To examine the between-study distribution of true performance statistics, sampling error of 

performance estimates (e.g. C-statistic) needed to be removed as otherwise the observed 

between-study distribution would be a mixture of sampling error and the true between-study 

distribution. To do this, ideally studies of infinite sample sizes were needed, but as this was 

not practical, various choices of ‘large’ sample sizes were trialled to reduce within-study 

sampling errors to a very small value (i.e. close to zero). Studies of size 10000, 50000, 

100000, 500000 and 1000000 were considered for scenario 1, and the smallest sample size 

that still gave negligible observed sampling error was chosen. This was studies of 500000 

(see section 6.3.1 and Appendix E1 for detailed justification). 

It was also important to examine the number of studies that needed to be generated in each 

simulation, to adequately reveal the shape of the between-study distribution for each 

performance statistic. Again using scenario 1, the numbers of studies considered were 100, 

500, 1000 and 2000 and the smallest number of studies that still showed the distribution 

clearly was chosen. This was 1000 (see section 6.3.1 and Appendix E1 for detailed 

justification). 
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6.2.4 Generating patient-level data and obtaining the distribution of 

true performance statistics 

For each scenario in each setting, data (i.e. an age and binary outcome response) needed to 

be generated for 500000 patients in each of the 1000 studies, so that the ‘true’ model could 

be applied to the data and performance statistics then calculated. 

The patient data were generated for each study j by first sampling αj and βj values from the 

distributions αj~Normal൫μα,σα
2൯, βj~Normal ቀμβ,σβ

2ቁ. Age was sampled for each patient from 

ageij ~ Normal൫60, 17.62൯, the linear predictor was then calculated for each patient as 

LPij=αj+βj×ageij and from this the outcome probability was calculated, pij=
exp	(LPij)

1+exp	(LPij)
. Using a 

Bernoulli distribution with probability pij, a binary outcome was sampled for each patient 

(outcome = 0 or 1). 

For each of the nine simulation scenarios (defined in Table 6.1) within each of the seven 

simulation settings (defined in Table 6.2), the distributions of the following true performance 

statistics were of interest: C-statistic, expected/observed number of events (E/O), calibration 

slope and calibration-in-the-large. For the simulated data in each generated study, these 

performance statistics were estimated as described in Chapter 1 (Section 1.6.3) for the ‘true’ 

model assumed for that scenario as specified in Table 6.1. 

The distribution of the obtained performance statistics across the 1000 studies was then 

summarised using the mean, SD, median, minimum, maximum and interval containing 95% 

of values. The coefficient of skewness and coefficient of kurtosis were also calculated. 

Summary statistics were then compared to those expected if the distribution was normal, for 

example an equal mean and median, skewness of 0 and kurtosis of 3. 
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The distributions of performance statistics was also considered graphically by plotting 

histograms (with normal distribution lines using mean and SD from data overlaid). The 

symmetry and shape of the distribution could then be compared to a normal distribution. 

Transformations 

In situations where the between-study distribution of performance statistics did not appear 

approximately normal, transformations of the statistic were also calculated, plotted and 

summarised to ascertain if they made improvements. Transformations considered were 

natural log, logit, arcsine (considered for the C-statistic) and square root (considered for 

E/O). Arcsine and square root transformations were included as previous work by Trikalinos 

et al. recommended variance stabilizing transformations for meta-analysis of proportions and 

rates.202 

6.2.5 Step-by-step guide to simulating data and summarising 

performance statistics 

For added clarity, the previous sections are now summarised in Box 6.1 to give a step-by-

step process of the simulation study. 
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Box 6.1: Outline of the steps taken in simulating data and then examining between-
study distributions of ‘true’ model performance statistics. 

Step 1: Define the assumed true prediction model (i.e. select one of the scenarios 1-9, 

Table 6.1). 

Step 2: Define the amount of between-study heterogeneity in either the study-specific 

intercepts (αj) or predictor effects (βj) (i.e. select one of the seven settings in 

Table 6.2). 

Step 3: Specify 1000 studies (study denoted by j) and, within each study, specify 

500000 individuals (individuals in a study are denoted by i) for which to 

generate data. 

Step 4: For each study j, sample a true intercept (αj) and predictor effect (βj) from 

αj~Normal൫μα,σα
2൯ and βj~Normal ቀμβ,σβ

2ቁ. 

Step 5: Within each study j, generate patients i =1, …, 500000 and generate the age 

value for each patient by sampling from ageij ~ Normal൫60, 17.62൯. 

Step 6: Within each study j, generate the binary outcome variable for each patient by 

first calculating the linear predictor for each individual, LPij=αj+βj×ageij and 

use this to calculate the probability of the event occurring by pij=
exp	(LPij)

1+exp	(LPij)
. The 

binary outcome is then sampled from a Bernoulli distribution, 

outcomeij~Bernoulli(pij).	

Step 7: Estimate the performance statistics of interest in each study, by taking the 

assumed ‘true’ prediction model, for the scenario chosen in step 1, 

logit ቀpijቁ=μα+μβ×ageij and fitting it to the generated data from steps 5 and 6. 

Step 8: Summarise the distribution of the obtained performance statistics across the 

1000 studies by calculating summary statistics (mean, SD, median, minimum, 

maximum and range containing 95% of values), plotting histograms and 

calculating coefficients of skewness and kurtosis. 

Step 9: Repeat steps 7 and 8 to ascertain if distributions are more normally distributed 

if transformations such as natural log, logit, arcsine or square root are applied 

to the calculated performance statistics. 
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Programming of simulations 

The simulation was conducted using Stata 13. An example of the Stata code used to 

generate the data and evaluate the distributions of the performance statistics is given in 

Appendix E2. Simulations typically took approximately 1 hour to run but up to 3 hours in 

some settings such as those in ‘Extension 3’ described below. 

6.2.6 Extensions: more realistic heterogeneity inducing mechanism 

Further, extended simulation settings were also considered as follows. 

Extension 1: Limiting the age range to between 18 and 100 years 

The values of age sampled for patients were restricted to between 18 and 100 years to be 

more realistic. Therefore, if an age<18 years or age>100 years was sampled for a patient, 

age for that patient would be classed as missing and another value would be sampled until 

an age within the specified range was found. 

Extension 2: Varying the distribution of age values across studies 

Previously the distribution from which age was sampled was Normal൫60, 17.62൯ and this 

remained the same across studies. In this additional simulation setting, the distribution from 

which age was sampled was allowed to vary across studies for both the mean and SD of age 

in each study. The mean and SD values for age were therefore also sampled assuming 

normal distributions. It was assumed that ageij~Normal ቀμj,	σj
2ቁ, where μj~Normal൫60,	102൯ 

and σj
2~Normal൫17.6,	42൯. 
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Extension 3: Including an additional predictor and interaction 

Additional simulation settings were also considered that involve generating data from a 

model that includes a second predictor and an interaction between age and the additional 

predictor. However, the ‘true’ model evaluated for performance in each study still only 

included age. Thus, these additional simulations reflect a situation where the ‘true’ model to 

be used in clinical practice is incomplete (i.e. it misses important predictors), and are 

therefore a potentially more realistic alternative to those settings described previously. For 

simplicity, no heterogeneity in the intercept or predictor effects was considered in this 

extended setting and simulations were also restricted to scenarios 4 to 6 where the predictor 

effect was moderate rather than weak (scenarios 1 to 3) or strong (scenarios 7 to 9). 

Scenarios 4 to 6 were considered ideal as the original predictor age, could discriminate 

reasonably well between patients that have the event and patients that do not, but with room 

for improvement in the model if a further predictor and interaction were added. 

The model for generating data in this extended setting can now be specified as follows: 

 logit ቀpijቁ=α + β1ageij+β2predij + β3(ageij×predij)  (6.3) 

This extended setting was considered for both a continuous and a categorical predictor 

(predij). For settings in which predij was continuous, the original distribution of age was used 

for predij (not restricting values or allowing the distribution to vary across studies), so values 

were sampled from Normal൫60, 17.62൯ and the predictor effect assumed to be weak 

(β2=0.01). Alternatively, when the additional predictor was categorical, a prevalence of 0.36 

was assumed (using sex as an example from Oudega et al.200 with β2=0.1), and a correlation 

of +0.5 assumed between age and pred so that they were not independent. 
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Different strengths of interaction effects were considered, depending on whether the 

additional predictor was continuous or categorical. The values of β3 were decided by 

comparing what the probability of the event would be with and without the additional predictor 

and interaction between the two predictors (Appendix E3). 

Table 6.3: Defined simulation settings for model with additional predictor and 
interaction between age and additional predictor. 

Simulation setting 
Additional predictor OR 

(OR=exp(β2)) 
Interaction OR 
(OR=exp(β3)) 

Extension 3(i) Continuous, OR=1.01 1.0010 
Extension 3(ii) Continuous, OR=1.01 1.0005 
Extension 3(iii) Continuous, OR=1.01 1.0001 
Extension 3(iv) Categorical, OR=1.1 1.0300 
Extension 3(v) Categorical, OR=1.1 1.0100 
Extension 3(vi) Categorical, OR=1.1 1.0050 

 

The data for the 500000 patients for each of the 1000 studies was generated, using the new 

model (6.3) with specified parameter values, in a similar manner to the steps outlined in Box 

6.1. Once more, the assumed ‘true’ prediction model only included a single predictor; that is, 

the additional predictor and the interaction were not included in the assumed ‘true’ prediction 

model for which performance was evaluated. The assumed value of the single coefficient, β1 

in the ‘true’ prediction model would, in reality also account for some of the variation in the 

other terms not fitted. Therefore, to calculate its assumed value, a large sample of five million 

patients was generated to estimate α and β1 and these estimates taken as the ‘true’ values 

for evaluating the prediction model in each study generated (Table 6.4). This affected the 

intercept values and the β1 values were slightly larger only when the missing predictor was 

continuous. 
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Table 6.4: Parameter values of assumed ‘true’ prediction model for extended 
simulation settings when data are generated including an additional predictor and 
interaction (original simulation setting 1 included for comparison). 

Scenario Simulation setting 
Assumed 

‘true’ α 
Assumed 
‘true’ β1 

4 

Setting 1: original base scenario -1.425 0.045 
Extension 3(i): missing continuous predictor & interaction -1.127 0.050 
Extension 3(ii): missing continuous predictor & interaction -1.116 0.050 
Extension 3(iii): missing continuous predictor & interaction -1.125 0.050 
Extension 3(iv): missing categorical predictor & interaction -1.393 0.045 
Extension 3(v): missing categorical predictor & interaction -1.390 0.045 
Extension 3(vi): missing categorical predictor & interaction -1.389 0.045 

5 

Setting 1: original base scenario -3.215 0.045 
Extension 3(i): missing continuous predictor & interaction -2.904 0.050 
Extension 3(ii): missing continuous predictor & interaction -2.905 0.050 
Extension 3(iii): missing continuous predictor & interaction -2.904 0.050 
Extension 3(iv): missing categorical predictor & interaction -3.184 0.045 
Extension 3(v): missing categorical predictor & interaction -3.176 0.045 
Extension 3(vi): missing categorical predictor & interaction -3.183 0.045 

6 

Setting 1: original base scenario 2.440 0.045 
Extension 3(i): missing continuous predictor & interaction 2.719 0.050 
Extension 3(ii): missing continuous predictor & interaction 2.672 0.050 
Extension 3(iii): missing continuous predictor & interaction 2.718 0.050 
Extension 3(iv): missing categorical predictor & interaction 2.486 0.045 
Extension 3(v): missing categorical predictor & interaction 2.488 0.045 
Extension 3(vi): missing categorical predictor & interaction 2.455 0.045 

 

6.2.7 Summary of elements considered in the simulation study 

To examine the normality assumption for the performance statistics, the distributions are 

evaluated under different conditions to ensure robust conclusions are drawn. A summary of 

the different elements considered to be important in this simulation study are given in Table 

6.5 below. 
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Table 6.5: Summary of elements that could affect the distribution of performance statistics and if/how they have been 
considered in this simulation study. 

Element If/how considered in this simulation study 

Values of prevalence Used to select intercept values in defined base scenarios (3 prevalence values) 

Values of C-statistic Used to select the predictor effects in defined base scenarios (3 values of the C-statistic) 

Heterogeneity in intercept (α) Intercept allowed to vary across studies with specified variances defined in simulation 

settings (3 values for SD of α) 

Heterogeneity in predictor effect (β) Predictor effect allowed to vary across studies with specified variances defined in 

simulation settings (3 values for SD of β) 

Distribution of intercepts across studies Assumed to be normally distributed across studies  

Further work: include different distributions such as log-normal 

Distribution of predictor effects across studies Assumed to be normally distributed across studies  

Further work: include different distributions such as log-normal 

Distribution of predictor values Age of patients assumed to come from same normal distribution for all studies 

Mean and SD later varied across studies in extension 2 

Complexity of model Original scenarios only include one predictor 

Additional predictor and interaction (excluded from prediction model) in extension 3 

Type of model Logistic regression model used for prediction model 

Further work: Use survival model as prediction model 
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6.3 Results 

6.3.1 Performance statistics when there is no heterogeneity (setting 1) 

When there is no heterogeneity in α and β, the assumed true prediction model specification 

is correct in all studies; therefore, any variability across studies in the simulated estimates of 

model performance can only be due to sampling error. Recall that in Section 6.2.3, it was 

emphasised that 500000 individuals were chosen per study in order to keep sampling error 

minimal. To illustrate this, data were generated for each of the nine scenarios defined in 

Table 6.1 for simulation setting 1, which had no heterogeneity in α or β. The summary 

statistics obtained for the performance statistics are reported below in Table 6.6. The means 

and medians are very similar because the distributions appear symmetric. More importantly, 

the range of values between the minimum and maximum are very small for most 

performance statistics in most scenarios. Therefore, although sampling error still exists when 

using 500000 individuals in each study, it is extremely small, and thus crucially will be 

swamped by the genuine between-study distribution when heterogeneity is introduced for α 

or β in settings 2 to 9 below. In other words, the observed distribution of performance 

estimates across the 1000 studies will be dominated by the true between-study distribution, 

therefore enabling the normality assumption to be examined as desired. Perhaps the only 

exception to this is for the calibration slope in scenarios 1 to 3, in which the predictor effect is 

only weak. However, the discriminatory performance of these models is poor and therefore 

these models are less likely to be of interest in reality if considering prediction intervals for 

model performance in a new setting. 
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Table 6.6: Summary statistics for the distribution of performance statistics in all 
scenarios when there is no heterogeneity in α or β (setting 1). 
Performance 
Statistic 

Scenario Mean (SD) Median 95% Range Min to max 

C-statistic 

1 0.5493 (0.0010) 0.5494 0.5473 to 0.5513 0.5458 to 0.5531
2 0.5495 (0.0019) 0.5494 0.5458 to 0.5532 0.5434 to 0.5555
3 0.5494 (0.0014) 0.5495 0.5469 to 0.5520 0.5451 to 0.5553
4 0.7028 (0.0009) 0.7029 0.7011 to 0.7046 0.6994 to 0.7063
5 0.7089 (0.0017) 0.7089 0.7055 to 0.7121 0.7039 to 0.7141
6 0.7066 (0.0012) 0.7066 0.7042 to 0.7089 0.7029 to 0.7103
7 0.9067 (0.0005) 0.9067 0.9058 to 0.9077 0.9050 to 0.9081
8 0.9301 (0.0007) 0.9301 0.9287 to 0.9315 0.9277 to 0.9321
9 0.9196 (0.0006) 0.9196 0.9185 to 0.9208 0.9177 to 0.9217

E/O 

1 1.0000 (0.0027) 1.0001 0.9946 to 1.0049 0.9911 to 1.0089
2 1.0001 (0.0062) 1.0001 0.9884 to 1.0122 0.9794 to 1.0234
3 1.0000 (0.0005) 1.0000 0.9991 to 1.0010 0.9985 to 1.0018
4 0.9999 (0.0026) 0.9999 0.9948 to 1.0047 0.9906 to 1.0086
5 1.0001 (0.0061) 0.9999 0.9885 to 1.0121 0.9809 to 1.0206
6 1.0000 (0.0005) 1.0000 0.9991 to 1.0009 0.9983 to 1.0013
7 1.0000 (0.0020) 1.0000 0.9962 to 1.0038 0.9924 to 1.0073
8 1.0001 (0.0052) 1.0001 0.9901 to 1.0105 0.9841 to 1.0154
9 1.0000 (0.0004) 1.0000 0.9993 to 1.0008 0.9987 to 1.0012

Calibration-
in-the-large 

1 0.0000 (0.0035) 0.0001 -0.0067 to 0.0072 -0.0109 to 0.0137
2 -0.0001 (0.0065) -0.0001 -0.0127 to 0.0123 -0.0244 to 0.0220
3 -0.0001 (0.0048) -0.0002 -0.0098 to 0.0093 -0.0179 to 0.0156
4 0.0001 (0.0036) 0.0001 -0.0066 to 0.0074 -0.0121 to 0.0134
5 -0.0001 (0.0067) 0.0001 -0.0132 to 0.0126 -0.0222 to 0.0210
6 -0.0003 (0.0050) -0.0003 -0.0099 to 0.0094 -0.0134 to 0.0177
7 0.0000 (0.0045) -0.0001 -0.0088 to 0.0089 -0.0169 to 0.0176
8 -0.0002 (0.0081) -0.0002 -0.0162 to 0.0154 -0.0236 to 0.0250
9 -0.0003 (0.0062) -0.0004 -0.0126 to 0.0119 -0.0194 to 0.0214

Calibration 
slope 

1 0.9992 (0.0199) 0.9987 0.9596 to 1.0377 0.9264 to 1.0736
2 0.9992 (0.0372) 0.9981 0.9283 to 1.0745 0.8769 to 1.1097
3 0.9999 (0.0270) 1.0005 0.9465 to 1.0526 0.9158 to 1.1105
4 0.9997 (0.0051) 0.9999 0.9893 to 1.0096 0.9829 to 1.0187
5 0.9995 (0.0089) 0.9994 0.9822 to 1.0164 0.9721 to 1.0256
6 1.0000 (0.0065) 1.0001 0.9867 to 1.0127 0.9814 to 1.0200
7 1.0001 (0.0033) 1.0000 0.9937 to 1.0068 0.9897 to 1.0106
8 1.0001 (0.0048) 1.0001 0.9907 to 1.0098 0.9849 to 1.0144
9 1.0000 (0.0040) 0.9999 0.9925 to 1.0080 0.9874 to 1.0148
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6.3.2 Distributions of performance statistics given heterogeneity 

(settings 2 to 7) 

The between-study distribution of the calculated performance statistics is now summarised 

for settings 2 to 9, for each performance statistic separately. 

Between-study distribution for true C-statistic 

Heterogeneity in alpha (settings 2 to 4) 

The between-study distribution for the C-statistic was approximately normally distributed for 

all nine scenarios in simulation settings 2 and 3 when there was little or moderate 

heterogeneity in α (σα=0.1 or σα=0.5 respectively). However, most scenarios exhibit little 

between-study variation (as seen in Table 6.7 for setting 3: σα=0.5). The SD of the between-

study distribution increases slightly for stronger predictor effects in scenarios 4 to 6 and 

larger still in scenarios 7 to 9, compared to setting 1: σα=0 in Table 6.6, but the distributions 

are still very narrow as seen by the range of values (minimum to maximum). The skewness 

in all scenarios remains close to the ideal of 0 and kurtosis remains relatively close to the 

ideal of 3. 

Table 6.7: Summary statistics for the distribution of the C-statistic in all scenarios 
when heterogeneity in α is moderate (setting 3: σα=0.5). 

Scenario Mean (SD) Median Min to max Skewness Kurtosis 

1 0.5494 (0.0010) 0.5494 0.5459 to 0.5527 -0.0312 3.5836 
2 0.5494 (0.0019) 0.5494 0.5429 to 0.5569 -0.1603 3.8797 
3 0.5494 (0.0014) 0.5495 0.5442 to 0.5548 -0.0239 3.4299 
4 0.7031 (0.0019) 0.7029 0.6988 to 0.7099 0.4313 3.0387 
5 0.7088 (0.0022) 0.7087 0.7023 to 0.7175 0.2915 3.3969 
6 0.7065 (0.0021) 0.7064 0.6997 to 0.7146 0.1509 3.2987 
7 0.9071 (0.0033) 0.9068 0.8982 to 0.9177 0.3652 2.9306 
8 0.9302 (0.0046) 0.9302 0.9132 to 0.9429 -0.0820 2.9636 
9 0.9196 (0.0044) 0.9194 0.9075 to 0.9362 0.1799 2.9647 
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The between-study distribution also remained approximately normally distributed for most 

scenarios when there was large heterogeneity in α (setting 4: σα=1.0). The coefficient of 

skewness for the C-statistic in different scenarios was between -0.32 and 0.24 with the 

exceptions of scenarios 4 and 7 where the average intercept (baseline risk) was selected to 

give a prevalence of 0.22 if there was no heterogeneity in α (Figure 6.1). For scenarios 4 and 

7, skewness of the C-statistic was estimated higher at 0.71 and 0.65 respectively which is 

considered moderately skewed. 

The between-study distribution of the C-statistic was very narrow when there was 

heterogeneity in α (simulation settings 2 to 4), especially when the predictor was weak as in 

scenarios 1 to 3. The SDs in these scenarios are similar to those in setting 1 where there is 

no heterogeneity in α or β. The C-statistic is a measure of discrimination and therefore is 

affected by the strength of the β and does not directly depend on α. However, for scenarios 

with stronger predictors (and therefore larger C-statistics), the SD for the distribution of C-

statistics increases as the level of heterogeneity in α increases. For example, scenarios 4 to 

6 have larger C-statistics than scenarios 1 to 3 and scenarios 7 to 9 have the largest C-

statistics of the nine scenarios, and therefore also have a larger increase in SD as 

heterogeneity in α increases. This is seen in Figure 6.1 which shows the distribution of the C-

statistic for scenario 1 (weak predictor), scenario 4 (moderate predictor) and scenario 7 

(strong predictor) for settings 1 to 4. 
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Figure 6.1: Histograms for the C-statistic in settings 1 to 4 (different values of σα) for 
scenarios 1, 4 and 7 (scenarios with average intercept from base case with weak, 
moderate and strong predictor effects respectively). 

Heterogeneity in beta (settings 5 to 7) 

As heterogeneity in β increases, the distribution of the C-statistic deviates more from 

normality. Firstly, when there was a small amount of heterogeneity in β (setting 5: σβ=0.005), 

the distributions were approximately normal in all scenarios. When heterogeneity increased 

to a moderate amount (setting 6: σβ=0.02), scenarios 7 to 9 which have a strong predictor 

started to skew. Lastly, when there was large heterogeneity in β (setting 7: σβ=0.07), none of 

the distributions were normal (Figure 6.2). Particularly for scenarios 7 to 9, the distributions 

were very skewed (skewness ~ -2.3) when heterogeneity in β was large (setting 7: σβ=0.07). 
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This is probably because discrimination was good (around 0.9 even when there was no 

heterogeneity in β, setting 1) and the C-statistic has a maximum value of one. For scenarios 

1 to 3 with a weak predictor, the between-study C-statistic is almost uniformly distributed and 

includes values less than 0.5 which would indicate the model inversely discriminating 

between events and non-events. The normality assumption is therefore often inappropriate 

for the C-statistic when there is heterogeneity in the predictor effect (β) and the C-statistic 

deviates from normality more as heterogeneity in β increases. Hence, transformations of the 

C-statistic were also considered to improve the between-study distribution. 

 

Figure 6.2: Histograms for C-statistic in all scenarios when heterogeneity in β is large 
(setting 7: σβ=0.07). 
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Transformations of the C-statistic 

Given the apparent non-normality of the C-statistic on its original scale in some settings, 

natural log, logit and arcsine transformations of the C-statistic were also evaluated to 

ascertain if it improved normality, especially, when heterogeneity in β was large in setting 7. 

The natural log transformation did not offer any improvement in achieving normality in 

scenarios and settings that deviated from normality on the original C-statistic scale. For 

example, in setting 7 when heterogeneity in β was large, skewness was around -3.3 for 

scenarios 7 to 9 and kurtosis was high (~17) for log-transformed C-statistics. Histograms for 

setting 7: σβ=0.07 are given in Appendix Figure E4.1). 

However, the logit transformation greatly reduced the skewness in most scenarios when 

heterogeneity in β was large (setting 7: σβ=0.07, see Figure 6.3 and Table 6.8). This was the 

simulation setting in which the C-statistic on the original scale deviated from normality the 

most. Scenarios 7 to 9 were still skewed (skewness of -1, Table 6.8) but far less skewed than 

on the original C-statistic scale (skewness of -2.4). In addition to this, the between-study 

distribution of the logit C-statistic was no worse in scenarios and settings that were 

approximately normal on the original untransformed scale. 

The arcsine transformation (as suggested by Trikalinos et al.202 for proportions) did improve 

some skewed distributions, however it did not perform as well as the logit transformation in 

the scenarios and settings considered (see Appendix Figure E4.2 and E4.3 for example 

comparisons of scales). 
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Figure 6.3: Histograms for logit(C-statistic) in all scenarios when heterogeneity in β is 
large (setting 7: σβ=0.07). 
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Table 6.8: Summary statistics and distribution skewness and kurtosis for C-statistic and logit transformed C-statistic in two 
simulation settings that showed skewed distributions for the C-statistic on the original scale. 

Simulation 
setting 

Scenario 
Mean Median Skewness Kurtosis 

C-statistic 
Logit 

C-statistic 
C-statistic 

Logit 
C-statistic 

C-statistic 
Logit 

C-statistic 
C-statistic 

Logit 
C-statistic 

Setting 4: 
large 
heterogeneity 
in α 
σα=1.0 

1 0.5494 0.1983 0.5494 0.1982 -0.0194 -0.0173 4.0557 4.0557 
2 0.5494 0.1981 0.5494 0.1982 -0.3168 -0.3077 7.5349 7.5351 
3 0.5494 0.1984 0.5495 0.1986 0.3264 0.3318 6.5436 6.5673 
4 0.7035 0.8640 0.7030 0.8617 0.7101 0.7238 3.0712 3.1072 
5 0.7085 0.8879 0.7084 0.8878 0.1035 0.1271 3.3865 3.4050 
6 0.7062 0.8772 0.7063 0.8776 0.2023 0.2234 3.1442 3.1891 
7 0.9082 2.2943 0.9075 2.2830 0.6477 0.8231 3.0547 3.5138 
8 0.9302 2.5978 0.9303 2.5911 -0.1147 0.1787 2.7381 2.7057 
9 0.9197 2.4435 0.9193 2.4328 0.2438 0.5141 2.7482 3.1975 

Setting 7: 
large 
heterogeneity 
in β 
σβ=0.07 

1 0.5261 0.1284 0.5379 0.1518 -0.1308 -0.0562 1.8153 2.2536 
2 0.5268 0.1340 0.5379 0.1521 -0.1329 -0.0591 1.8154 2.2633 
3 0.5266 0.1315 0.5379 0.1518 -0.1323 -0.0585 1.8122 2.2514 
4 0.6396 0.7005 0.6941 0.8194 -0.6462 -0.3442 2.2930 2.4276 
5 0.6445 0.7414 0.6993 0.8442 -0.6536 -0.3457 2.2961 2.4131 
6 0.6422 0.7215 0.6968 0.8321 -0.6519 -0.3491 2.2931 2.4164 
7 0.8686 2.1172 0.9047 2.2500 -2.2639 -0.8818 9.1098 3.8119 
8 0.8857 2.3479 0.9290 2.5710 -2.3922 -1.0531 9.4243 3.8061 
9 0.8784 2.2392 0.9180 2.4158 -2.3697 -1.0020 9.4760 3.8904 
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The logit transformed C-statistic was still skewed for scenarios 4 and 7 when there was large 

heterogeneity in α (setting 4: σα=1.0, Figure 6.4). However, across the range of scenarios 

and settings considered, the logit transformed C-statistic was more ‘normally’ distributed than 

the original C-statistic scale or other transformations considered. The logit scale is therefore 

a more appropriate scale to use for modelling the between-study distribution of C-statistics in 

a random-effects meta-analysis. 

 

Figure 6.4: Histograms for logit(C-statistic) in scenarios 4 and 7 when heterogeneity in 
α is large (setting 4: σα=1.0). 

Between-study distribution for expected/observed number of events 

Heterogeneity in alpha (settings 2 to 4) 

The ratio of expected and observed number of events (E/O) was centred on the ideal value 

of one when there was heterogeneity in α, but as σα increases, the SD of E/O also increased. 

E/O is a ratio therefore when the mean α relates to a population in which there are only a few 

events (as in scenarios 2, 5 and 8), a wider distribution is observed (Figure 6.5). There is 

more variability when the prevalence is low because small differences between the expected 
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and observed number of events translate to larger relative differences than if the 

denominator was larger. 

 

Figure 6.5: Histograms for E/O in all scenarios when there is little heterogeneity in α 
(setting 2: σα=0.1). 

E/O was approximately normally distributed in all scenarios when there was little 

heterogeneity in α (setting 2: σα=0.1); however the distributions became skewed when there 

was moderate heterogeneity in α (setting 3: σα=0.5) and worse still when there was large 

heterogeneity in α (setting 4: σα=1.0). Distributions of E/O across different levels of 

heterogeneity in α (settings 2 to 4) are shown for scenario 1 in Figure 6.6, but distributions 



270 
 

were similarly shaped for other scenarios. The estimated skewness for E/O was 1.32 and 

3.00 for scenario 1 in setting 3: σα=0.5 and setting 4: σα=1.0 respectively. 

 

Figure 6.6: Histograms for E/O with different levels of heterogeneity in α in scenario 1 
(settings 2 to 4). 

Heterogeneity in beta (settings 5 to 7) 

The distribution of E/O was skewed when there was heterogeneity in β (settings 5 to 7). For 

little heterogeneity in β (setting 5: σβ=0.005), only scenarios 1 to 3 were skewed, which were 

the scenarios with a weak predictor. This is likely to be because heterogeneity in β was small 

relative to the β value in scenarios 4 to 9 with moderate or strong predictors (Figure 6.7). 
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Figure 6.7: Histograms for E/O in all scenarios when there was little heterogeneity in β 
(setting 5: σβ=0.005). Note: different x-axes used. 

The distributions of E/O were extremely skewed for most scenarios when heterogeneity in β 

was moderate (setting 6: σβ=0.02) or large (setting 7: σβ=0.07, Figure 6.8). The distribution 

could be skewed in either direction but often appeared bounded close to one for scenarios 1 

to 3 and bounded at different values for scenarios 4 to 6. Therefore, the peak of the 

distribution was at this boundary value. 
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Figure 6.8: Histograms for E/O in all scenarios when heterogeneity in β was large 
(setting 7: σβ=0.07). Note different x-axes used. 

Transformations of E/O 

A log transformation applied to E/O improved the shape of distributions when heterogeneity 

in α was moderate (setting 3: σα=0.5) or large (setting 4: σα=1.0), resulting in distributions 

that were closer to approximate normal distributions (Figure 6.9). However, the distributions 

remained skewed for scenarios 3, 6 and 9 where the average number of events was high. 

The natural log transformation resulted in distributions closer to the normal distribution 

compared to the square root transformation. Using the square root transformation did not 

improve the distributions in scenarios 3, 6 or 9 compared to the natural log transformation 

(see Appendix Figure E4.4 for comparison of scales). 
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Figure 6.9: Histograms for log(E/O) in all scenarios when heterogeneity in α was large 
(setting 4: σα=1.0). Note different x axes used. 

Using the log transformation for E/O also improved the shape of the distributions for 

scenarios 7 to 9 when there was moderate heterogeneity in β (setting 6: σβ=0.02). The 

coefficient of skewness was between 0.20 and 0.67 for the log transformed E/O compared to 

skewness of between 0.26 and 1.31 for E/O (Table 6.9). However, the log transformation did 

not improve the distributions of E/O when heterogeneity in β was large (setting 7: σβ=0.07), 

which remained very skewed in most scenarios (Figure 6.10). The square root distribution 

did not improve the distribution of E/O in this setting either (Appendix Figure E4.5). 
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Table 6.9: Summary statistics and distribution skewness and kurtosis for E/O and log transformed E/O in two simulation 
settings for heterogeneity in β (setting 6 and 7). 

Simulation setting Scenario 
Mean Median Skewness Kurtosis 

E/O Log(E/O) E/O Log(E/O) E/O Log(E/O) E/O Log(E/O) 

Setting 6: 
moderate 
heterogeneity in β 
σβ=0.02 

1 0.9792 -0.0216 0.9908 -0.0093 -1.9947 -2.1878 8.2741 9.7516 
2 0.9570 -0.0469 0.9809 -0.0193 -2.1009 -2.6493 8.8671 13.6492 
3 1.0046 0.0046 1.0017 0.0017 3.1208 3.0277 18.7377 17.6496 
4 0.9993 -0.0040 1.0023 0.0023 -0.2750 -0.4568 2.4702 2.7713 
5 0.9955 -0.0230 1.0072 0.0072 -0.2989 -0.7601 2.4095 3.4054 
6 1.0032 0.0030 0.9993 -0.0007 1.1806 1.1100 5.0599 4.7260 
7 1.0202 0.0140 1.0008 0.0008 1.0375 0.6697 4.6344 3.5623 
8 1.0872 0.0353 1.0097 0.0097 1.3069 0.3971 5.2668 2.9890 
9 1.0001 -0.0002 0.9993 -0.0007 0.2612 0.1956 3.0482 2.9641 

Setting 7:  
large heterogeneity 
in β 
σβ=0.07 

1 0.8696 -0.1490 0.8921 -0.1142 -0.5345 -0.7286 2.1408 2.5326 
2 0.7278 -0.3833 0.7740 -0.2562 -0.4290 -0.9259 1.8868 2.9171 
3 1.0473 0.0449 1.0257 0.0253 1.5889 1.4389 5.6815 4.9001 
4 0.9291 -0.0882 0.9433 -0.0584 -0.3269 -0.5632 1.9389 2.2861 
5 0.8459 -0.2649 0.8691 -0.1403 -0.1972 -0.7716 1.7144 2.5913 
6 1.0353 0.0329 1.0127 0.0126 1.5319 1.3757 5.3263 4.5887 
7 1.1852 0.0993 1.0091 0.0091 1.3655 0.7872 3.9896 2.6973 
8 2.0058 0.2151 1.0374 0.0368 1.6434 0.4816 4.6254 2.1661 
9 1.0077 0.0054 0.9973 -0.0027 0.6711 0.5319 2.9416 2.6232 
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Figure 6.10: Histograms for log(E/O) in all scenarios when heterogeneity in β was 
large (setting 7: σβ=0.07). Note different x axes used. 

Between-study distribution for calibration slope 

The between-study distribution of the calibration slope was approximately normal in all 

scenarios and in all simulation settings for heterogeneity in α or β (settings 2 to 7). The SD of 

the distribution was larger when the average β was small (weak predictor in scenarios 1, 2 

and 3). Figure 6.11 shows the distributions of calibration slope in all scenarios when there 

was large heterogeneity in α (setting 4: σα=1.0). The shape of the calibration slope in Figure 

6.11 is representative of all settings for heterogeneity in α (settings 2 to 4). Heterogeneity in α 

did not affect the distribution of calibration slope so the distributions are almost identical to 

setting 1: no heterogeneity for α or β, which showed only sampling error. 
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Figure 6.11: Histograms for calibration slope in all scenarios when heterogeneity in α 
is large (setting 4: σα=1.0). 

As heterogeneity in β increases (settings 5 to 7), the SD of the distribution of calibration 

slope also increased (Table 6.10). Figure 6.12 shows that the width of the distributions of 

calibration slope were very large with SD=6.92 in scenarios 1 to 3 (weak predictor) when 

heterogeneity in β was large (setting 7: σβ=0.07). 
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Table 6.10: Means and standard deviations for calibration slope for different levels of 
heterogeneity in β (settings 5 to 7). 

Scenario 
Mean (SD) for calibration slope 

Setting 5: σβ=0.005 Setting 6: σβ=0.02 Setting 7: σβ=0.07 

1 0.9842 (0.4939) 0.9375 (1.9770) 0.7805 (6.9217) 
2 0.9831 (0.4939) 0.9357 (1.9767) 0.7793 (6.9237) 
3 0.9849 (0.4953) 0.9374 (1.9776) 0.7815 (6.9237) 
4 0.9965 (0.1097) 0.9860 (0.4392) 0.9515 (1.5383) 
5 0.9963 (0.1098) 0.9861 (0.4395) 0.9511 (1.5383) 
6 0.9965 (0.1101) 0.9860 (0.4396) 0.9515 (1.5382) 
7 0.9988 (0.0342) 0.9952 (0.1444) 0.9848 (0.4774) 
8 0.9988 (0.0342) 0.9955 (0.1362) 0.9849 (0.4770) 
9 0.9990 (0.0343) 0.9958 (0.1364) 0.9848 (0.4772) 

 

 

Figure 6.12: Histograms for calibration slope in all scenarios when heterogeneity in β 
is large (setting 7: σβ=0.07). 
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Between-study distribution for calibration-in-the-large 

Calibration-in-the-large was approximately normally distributed in all settings for 

heterogeneity in α (settings 2 to 4). The SD for the calibration-in-the-large distribution is 

approximately the same in different scenarios but increases as heterogeneity in α increases 

(Figure 6.13). 

 

Figure 6.13: Histograms for calibration-in-the-large across different levels of 
heterogeneity in α (settings 2 to 4) for scenario 1. 

The distribution of calibration-in-the-large was skewed (in either direction) when there was 

heterogeneity in β, but only when the heterogeneity was large relative to the value of β. 

Therefore, distributions for scenarios 1 to 3 (weak predictor) were skewed when there was 

little heterogeneity in β (setting 5: σβ=0.005), distributions for scenarios 1 to 6 were skewed 

when there was moderate heterogeneity in β (setting 6: σβ=0.02) and distributions for all 

scenarios were skewed when there was large heterogeneity in β (setting 7: σβ=0.07). The 

distributions of calibration-in-the-large when there is moderate heterogeneity in β (setting 6: 

σβ=0.02) are shown in Figure 6.14. The distributions appear to be bounded at different 

values for scenarios 1 to 6. 
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Figure 6.14: Histograms for calibration-in-the-large in all scenarios when 
heterogeneity in β is moderate (setting 6: σβ=0.02). Note different x axes used. 

6.3.3 Extensions 

Extension 1: Limiting the age range to between 18 and 100 years 

Limiting the range of values for age affected the performance statistics in different ways 

depending on the scenario. When the predictor was weak (scenarios 1 to 3), the distribution 

means and SDs were very similar to the original simulation setting 1 (no heterogeneity in α or 

β). The largest differences between limiting the age range and not limiting the age range, 

were seen in distributions when the predictor was strong (scenarios 7 to 9) where the width 

of the distributions increased or decreased for the performance statistics but distributions still 

appeared approximately normal. Figure 6.15 shows the histograms for all four performance 

statistics with restricted and unrestricted age ranges for scenario 7 as an example. 
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Figure 6.15: Histograms for performance statistics in scenario 7, with data generated 
using the original age distribution N(60, 17.62) and age restricted to between 18 and 
100 years. 
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Extension 2: Varying the distribution of age values across studies 

Examples of study-specific age distributions with varying mean and SD are shown in Figure 

6.16. Varying the mean and SD for the study-specific age distributions did not have any 

effect on measures of calibration (E/O, calibration slope or calibration-in-the-large) compared 

to distributions of performance statistics with restricted age range (between 18 and 100 years 

discussed in the previous section). For these calibration statistics, the distributions were very 

similar to the distributions of the statistics when the mean and SD of age were fixed for all 

studies (Figure 6.17). 

 

Figure 6.16: Examples of study-specific age distributions when the mean and SD of 
age were allowed to vary across studies but were still restricted between 18 and 100 
years. 
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Figure 6.17: Histograms for performance statistics comparing fixed mean and SD for 
age with random-effects on the mean and SD for age in scenario 7. 
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Unlike measures of calibration, the width of the between-study C-statistic distribution 

increased when the age distribution was allowed to vary across studies. This is plausible as 

the C-statistic directly relates to case mix variability. This was observed in all scenarios and 

distributions were more skewed for strong predictors in scenarios 7 and 8. The C-statistic 

distribution was only slightly skewed for scenarios with a weak or moderate predictor 

(scenarios 1 to 6) and the logit transformation improved the shape of the distribution in 

scenarios 7 and 8 (skewness and kurtosis in Table 6.11). Note that scenario 9 was defined to 

have a high number of events and a strong predictor, therefore with varying age distributions, 

computation problems were encountered and performance statistics could not be calculated 

for all studies. This scenario was excluded as it is likely that for some distributions of age in 

studies, all patients would have the event. 

Table 6.11: Summary statistics and distribution skewness and kurtosis for original 
and logit transformed C-statistic when age distributions vary across studies. 

Scenario 
Mean Median Skewness Kurtosis 

C-
statistic 

Logit C-
statistic 

C-
statistic 

Logit C-
statistic 

C-
statistic 

Logit C-
statistic 

C-
statistic 

Logit C-
statistic 

1 0.5443 0.1776 0.5450 0.1804 -0.6439 -0.6359 3.6332 3.6144 
2 0.5444 0.1783 0.5456 0.1830 -0.7048 -0.6974 3.4317 3.4167 
3 0.5444 0.1780 0.5450 0.1805 -0.5158 -0.5088 3.1124 3.1001 
4 0.6858 0.7837 0.6898 0.7994 -0.8403 -0.7066 3.8160 3.5098 
5 0.6820 0.7659 0.6867 0.7848 -0.8249 -0.6895 3.8448 3.5190 
6 0.6879 0.7937 0.6916 0.8076 -0.8647 -0.7125 3.9810 3.6176 
7 0.9129 2.4064 0.9198 2.4398 -1.6267 -0.5105 7.5334 3.4738 
8 0.8991 2.2329 0.9062 2.2676 -1.7110 -0.7289 7.5627 3.7947 

 

Extension 3: Including an additional predictor and interaction 

When the additional predictor included in the data generating model was categorical and an 

interaction was included between age and the additional predictor, the performance of the 

‘true’ prediction model (defined in Table 6.4, excludes additional predictor and interaction 
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term) deteriorated as the strength of the interaction increased. However, the width of the 

between-study distribution of performance statistics was not affected, only the average 

performance. This was the case for all four performance statistics. 

When the additional predictor was continuous, for each of the calibration slope, calibration-in-

the-large and the C-statistic, the width of their between-study distribution increased slightly 

as the interaction effect increased (difference between the maximum and minimum values 

given in Table 6.12). The opposite effect was seen for E/O, where the difference between 

maximum and minimum values decreased slightly as the interaction effect increased. 

However, all the between-study distributions still appeared approximately normal and the 

variances remained very small, mostly representing sampling error in these distributions. 

Figure 6.18 shows distributions of all performance statistics in settings for missing 1 to 3 for 

scenario 4. 

Table 6.12: Range of values for performance statistics in scenarios 4 to 6 when an 
additional predictor and interaction effect were used to generate the data but not 
included in the prediction model. 

Performance statistic Scenario 
Difference between min and max values 

Small interaction 
effect 

Moderate 
interaction effect 

Large interaction 
effect 

E/O 4 0.0027 0.0021 0.0016 
5 0.0066 0.0025 0.0021 
6 0.0005 0.0003 0.0002 

Calibration slope 4 0.0362 0.0561 0.0851 
5 0.0263 0.0391 0.0512 
6 0.2005 0.3135 0.5154 

Calibration-in-the-large 4 0.0235 0.0400 0.0553 
5 0.0215 0.0225 0.0275 
6 0.1525 0.2081 0.3312 

C-statistic 4 0.0065 0.0078 0.0078 
5 0.0041 0.0045 0.0046 
6 0.0367 0.0441 0.0464 
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Figure 6.18: Distributions of all performance statistics for different missing 
(continuous) predictor settings (extension 3(i) to 3(iii)) for scenario 4. Note different x 
axes used. 

6.4 Discussion 

Between-study normality of the C-statistic and other performance statistics was assumed in 

the meta-analysis methods proposed in Chapter 5. This assumption of normality is especially 

important when deriving prediction intervals for the potential performance of the assumed 

prediction model in new populations or settings similar to those included in the meta-

analysis. Therefore, it was important to verify whether this normality assumption is valid and, 

if not, when it is likely to break down. 

The aim of this study was therefore to assess if the normality of true performance statistics is 

a reasonable assumption and if not, whether a simple transformation of the performance 
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statistic provides a more normally distributed scale for meta-analysis. Through simulation, 

the distribution of true performance statistics was observed in different settings in which 

heterogeneity was introduced either in the baseline risk (intercept), the predictor effect (beta), 

the distribution of predictor values, or by including an additional predictor and interaction 

effect (that are not included in the assumed prediction model). Key findings from the defined 

simulation settings are given in Box 6.2. 

Box 6.2: Key findings from simulation study looking at true between-study 
distributions of performance statistics. 

C-statistic: 

 The C-statistic distribution was most skewed when there was heterogeneity in the 

predictor effect (β) and when the distribution of the predictor values varied across 

studies (mean and SD for distribution of predictor were also sampled from normal 

distributions for each study), therefore varied across studies. However, the logit 

transformation greatly improved the shape of the C-statistic in these situations. 

Distributions were still slightly skewed for scenarios with a strong predictor (scenarios 

7 to 9) when heterogeneity in β was large, and thus large heterogeneity in predictor 

effects is undesirable. 

 Heterogeneity in the baseline risk (α) had very little effect on the C-statistic in that the 

distribution remained very narrow indicating mostly sampling error (as expected due it 

measuring discrimination which relates to the predictor effect). However when the 

heterogeneity in α was large and the predictor effect (β) was moderate to strong 

(scenarios 4 to 9), the distribution was slightly skewed. Neither log, logit nor arcsine 

transformations improved this. 
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Expected/observed number of events: 

 Heterogeneity in α increased the width of the E/O distribution but it remained 

approximately normal when heterogeneity in α was small. As heterogeneity in α 

increased, the distribution of E/O increasingly got more skewed. 

 E/O was skewed when heterogeneity in β was moderate to large. 

 Using the log transformation improved the E/O distribution (towards normality) when 

there was heterogeneity in α, except when the baseline risk was high (scenarios 3, 6 

and 9). The log transformation also improved the shape of the E/O distribution when 

heterogeneity in β was moderate but not when heterogeneity in β was large. 

 The width of the distribution was wider when the baseline risk was low (scenarios 2, 5 

and 8) as would be expected. E/O is a ratio with a small denominator when the 

baseline risk is low and could be misleading in such situations. 

Calibration slope: 

 Calibration slope was approximately normal in all settings considered. Heterogeneity 

in α or β only affected the mean value and SD but not the shape of the distribution. 

Calibration-in-the-large: 

 Calibration-in-the-large was approximately normal when there was heterogeneity in α, 

although the width of the distribution increased with increasing heterogeneity in α. 

 Calibration-in-the-large was skewed when heterogeneity in β was large relative to the 

size of β, again emphasizing that large heterogeneity in predictor effects is 

undesirable. 

 

Box 6.2 continued… 
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Heterogeneity in β, especially when large, resulted in skewed distributions for all 

performance statistics except the calibration slope. Large heterogeneity in β was an extreme 

setting, especially for scenarios with weak or moderate predictor effects such as in scenarios 

1 to 6. This level of heterogeneity in β is unlikely to occur in reality as a predictor is unlikely to 

be considered useful in a model if the effect could vary so much that it is not predictive of 

outcome in some studies (β=0) or could potentially be predictive in the opposite direction in 

some studies (predictive of non-events, β<0 when β>0 in other studies). Rather than a 

predictor effect that varies that much across studies, it is more likely that there are other 

unknown or unmeasured predictors that would explain differences in studies or populations 

but are not appropriately being accounted for in the prediction model. What this highlights is 

the need to have reliable data in which to estimate the predictor effects and also to ensure 

that the prediction model includes as many relevant predictors as possible, so that included 

predictors in the model (or at least their combination) gives little heterogeneity in their 

(combined) effect. 

An article published by van Klaveren et al. considered meta-analysis of C-statistics on the 

probability scale and log-odds (logit) scale and concluded that the probability scale was most 

appropriate for their data based on checking residuals.62 However, such residuals are an 

amalgamation of within-study sampling error and between-study error. The simulation study 

in this chapter used study sample sizes of 500000 in order to reduce within-study error to a 

tiny amount, in order to reduce this issue considerably. The simulations then found that the 

logit transformed C-statistic was more normally distributed than the C-statistic on the original 

scale in many settings, even when there was large heterogeneity in the predictor effect. The 

true prediction models considered in this chapter and the van Klaveren et al. article differ, as 

van Klaveren et al. used a Cox proportional hazards model, whereas this chapter considered 
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logistic models. However, the recommendation differs as this chapter recommends that the 

logit scale is preferable for meta-analysis of the C-statistic. 

Another simulation study by Austin and Steyerberg investigated the relationship between the 

C-statistic and a continuous explanatory variable. The authors showed that the C-statistic 

was dependent on both the log odds ratio and variance of the explanatory variable.203 The 

findings in this chapter support this as when the age distribution was fixed, the C-statistic 

increased as the predictor effect increased (relating to the log odds ratio). The distribution of 

the C-statistic was also wider when the age distribution varied across studies. Therefore it is 

likely that when the age distribution was narrower, the C-statistic was lower than when the 

age distribution was wider. 

Key recommendations for the scale on which to pool performance statistics in a meta-

analysis are given in Box 6.3. 
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Box 6.3: Recommendations for pooling performance statistics in a meta-analysis. 

The following scales should be used for modelling the between-study distribution when 

pooling performance statistics in a random-effects meta-analysis and subsequently deriving 

prediction intervals. 

 Use logit transformed C-statistics 

 Use log transformed ratio of expected/observed (E/O) number of events. 

 Use original scale for calibration slope 

 Use original scale for calibration-in-the-large 

But caution should still be taken in assuming normality on these scales in situations where 

the predictor effect (β) varies a lot across studies. This may indicate that important predictors 

have not been included in the prediction model, and the normality assumption between-

studies is likely to be less reliable (and therefore calculation of 95% prediction intervals 

following random effects meta-analysis may be unreliable under a normal assumption). 

 

6.4.1 Findings in relation to previous chapter 

In Chapter 5, the log transformation was used to pool E/O. This simulation study supports the 

use of the log transformation as log(E/O) was more normally distributed than E/O when there 

was heterogeneity in α or β and the log transformation performed better than the square root 

transformation. However, there were a few simulation settings in which the distribution of 

log(E/O) remained skewed, such as when the baseline risk was high and there was 

heterogeneity in α or when heterogeneity in β was large. These are extreme settings and 

therefore this is unlikely to be a problem in reality. Therefore using the log transformed E/O is 

considered the most suitable scale for meta-analysis. 
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In Chapter 5, C-statistics were pooled on the original scale whereas the simulation study 

showed the logit transformation to be more suitable in settings where there is heterogeneity 

in β or when the predictor distribution varies from study to study. It would be useful to check 

whether using the logit scale for pooling C-statistics in Chapter 5 would have any impact on 

the overall results and prediction intervals. Unfortunately, this was not possible to do as the 

performance statistics were provided by other authors and standard errors and correlations 

were not immediately available on the logit scale. Further research will look to update the 

meta-analysis of C-statistics from Chapter 5 accordingly to examine if and how conclusions 

(such as prediction intervals and choice of implementations strategies) change if the logit 

scale is used. 

6.4.2 Limitations and further research 

This chapter considered a logistic regression prediction model with a single predictor 

included and heterogeneity was introduced by assuming the study-specific intercept or 

predictor effect came from a normal distribution. This chapter highlights some important 

findings about which scale is suitable for pooling performance statistics using meta-analysis 

methods, however further research is required to further check the normality assumption for 

meta-analysis. For example, the calibration slope looks approximately normally distributed in 

all scenarios and under all settings for heterogeneity in either α or β. This may be because of 

the way in which heterogeneity was introduced as α or β was drawn from a normal 

distribution. Therefore further simulations in which the distributions of study-specific 

intercepts and predictor effects are sampled from a different distribution would be required to 

check if performance statistics remain normally distributed or if the shape of the distribution is 

related to the way in which heterogeneity was introduced. 
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In this chapter, a binary outcome was selected to keep the model simple for the simulation 

study, therefore only a logistic prediction model has been considered. It would be useful to 

extend this to a survival model to check if the findings are robust against a different model 

being used to develop the prediction model. It would therefore also be possible to check the 

distributions of additional performance statistics such as the D-statistic used in Chapter 5. 

6.5 Conclusions 

This simulation study has investigated the between-study distributions for performance 

statistics in a variety of settings in which different levels of heterogeneity in baseline risk or 

predictor effects have been considered. The normality assumption of the between-study 

distributions is made when pooling performance statistics in a meta-analysis and is important 

when predicting how well a model is likely to perform in a new population or setting. 

Where between-study distributions were not approximately normally distributed, 

transformations were considered and recommendations for the scale on which to pool 

various performance statistics have been made. This chapter therefore adds important 

findings to the meta-analysis literature regarding clinical prediction models, and builds on the 

work from earlier chapters. The next chapter brings together the key findings from all the 

previous chapters, for a final, broader discussion on their implications and contributions. 
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CHAPTER 7: DISCUSSION 

7.1 Overview of thesis 

Prognosis is an important area of research as it aims to understand, explain and predict the 

risk of a future outcome in patients with a particular disease or condition. In particular, this 

thesis has focused on prognostic modelling which combines multiple prognostic factors to 

predict risk for patients and can be used to help inform clinicians when advising their patients 

on the likely course of their disease or condition.8 Knowing the predicted risk of the outcome 

(or conversely the probability of survival) for an individual can also help both the clinician and 

patient decide on an appropriate treatment plan, in order to optimise treatment benefit and 

reduce unnecessary treatment.8 Thus the core aim of prognosis research is to improve 

patient health outcomes, yet unfortunately many prognostic models do not make their way 

into clinical practice.3,204 Several papers over recent years have highlighted the need to 

improve the methodology and reporting of prognostic model studies,1,18,81 and the work 

presented in this thesis has contributed towards that goal. 

The overall aims of this thesis were to apply, develop and evaluate novel statistical methods 

for prognosis research. In particular, early chapters (Chapters 2 to 4) aimed to apply and 

evaluate the use of flexible parametric survival models as an alternative to Cox models when 

developing prognostic models using survival data. The last two chapters of this thesis 

(Chapters 5 and 6) focused on validation of prognostic models, by developing meta-analysis 

methods that extend the internal-external cross-validation approach by synthesising 

performance statistics across multiple ‘external’ validation studies. A short summary of the 

chapters is given below. 
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7.1.1 Summary of thesis chapters 

The chapters contained a mixture of clinical application and methodology development. 

Chapter 2 applied novel flexible parametric survival models to registry data from 

osteoarthritis patients that received a hip replacement. The clinical aim was to ascertain 

whether there were differences in mortality between patients receiving different procedure 

types. Previous literature in this field had concentrated mainly on revision rates but mortality 

should also be a crucial patient outcome of interest, and the work raised interesting findings 

(see below). This application also helped identify some of the statistical advantages of using 

flexible parametric models rather than Cox proportional hazards models for prognostic 

modelling, especially in regard to individualised, absolute risk prediction. Given the 

advantages observed in Chapter 2, a literature review of published prognostic models was 

conducted in Chapter 3, where the main aims were to establish (i) if and how the baseline 

hazard was being modelled; (ii) how absolute risk prediction was being presented; and (iii) 

how the developed models would enable absolute risk predictions for new patients. This 

review found that the Cox model was used to develop all models in the included articles, and 

thus there is a need to promote the use of novel methods that actually model the baseline 

hazard, such as the Royston-Parmar flexible parametric model. Chapter 4 therefore used the 

Royston-Parmar approach to develop a prognostic model for advanced pancreatic cancer 

using data from two randomised clinical trials. In doing so, several challenges were identified 

in the development of prognostic models, including general issues and issues relating to the 

use of clinical trials data specifically. 

The last two chapters then focused on methods relating to the validation of prognostic 

models and in particular the setting in which several studies are available for development 

and validation of a prognostic model. Performance statistics were provided by other authors 

on request, following their use of internal-external cross-validation in two clinical areas, DVT 
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and breast cancer.149,176 In Chapter 5, random-effects meta-analysis was proposed to provide 

a summary measure of each performance statistic across the multiple studies and also to 

provide an estimate of the between-study variance of each performance statistic. 

Implementation strategies suggested by Debray et al.149 for different intercepts in the 

validation study were compared in terms of average performance and heterogeneity in 

performance. Multivariate meta-analysis was also implemented in which two or more 

performance statistics are pooled in the same meta-analysis, utilising estimates of within-

study correlations between performance statistics. Emphasis was placed on using the results 

of the meta-analyses to predict model performance in a new but similar setting. This was 

done by calculating prediction intervals or, in the multivariate setting, joint prediction ellipses. 

Chapter 5 also proposed how the results of a multivariate meta-analysis (matrices of pooled 

estimates and variance-covariance matrices) can be used to calculate the predicted 

probability that a model will have adequate performance when used in practice, according to 

some pre-defined criteria. This allows model implementation strategies to be ranked, to help 

ascertain the best approach to take. 

The focus of Chapter 5 was on predicting performance of a model in a new study or setting, 

yet a fundamental assumption in predicting the performance in new studies is that the ‘true’ 

performance statistics are normally distributed across studies. Chapter 6 therefore aimed to 

verify if the normality assumption was reasonable for the true between-study distributions of 

performance statistics in a variety of settings, and examined the best scales to achieve this. 

7.1.2 Publications from this thesis 

The work in this thesis has led to a publication in the BMJ in 2012 on mortality rates in 

patients that received hip replacements (Chapter 2). Another article detailing the methods 

proposed in Chapter 5 (multivariate meta-analysis for pooling performance statistics following 
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the IECV approach) has also been accepted for publication in the Journal of Clinical 

Epidemiology in 2015. Further articles arising from Chapters 3, 4 and 6 will be drafted and 

submitted over the coming year. 

7.1.3 Areas of contribution to the field of prognosis research 

This thesis has contributed to both applied and methodology research. Applied research has 

been carried out in the following clinical research areas: 

 Total hip replacements or resurfacing 

Mortality rates and revision rates were compared between patients that had 

cemented and uncemented total hip replacements. This study found small but 

statistically significant differences in absolute patient survival and implant survival 

between the cemented and uncemented procedure groups after adjusting for other 

factors. Patient survival was slightly better for uncemented procedures and implant 

survival was slightly better for cemented procedures. Comparing both these 

procedures to Birmingham hip resurfacing in men aged under 55 years, showed that 

absolute survival probabilities over time were slightly higher in patients that had a 

BHR. However, differences between procedures were very small in terms of 

differences in absolute survival probabilities and residual confounding is likely to be 

present. Therefore further research was recommended to examine these mortality 

findings further, which has prompted further work by others.103 

 

 Advanced pancreatic cancer 

A prognostic model was developed for patients with advanced pancreatic cancer. 

Overall model performance was only assessed internally and showed good 

performance up to 6 months but calibration of the model got progressively worse at 
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later time points. Discrimination was also only moderate, and thus further work needs 

to include additional predictors in an updated model. Such work should incorporate 

the predictors identified in this chapter, and utilise the flexible parametric modelling 

approach that was shown to be useful over and above the Cox model. If external data 

becomes available, the performance of the developed model should be examined, 

possibly considering short term prognosis (up to 6 months) which may still be 

clinically useful as prognosis is generally quite poor in this group of patients. 

 

 Deep vein thrombosis and breast cancer 

Validation performance was summarised across multiple studies for two developed 

prediction models, a model for diagnosing DVT and a model for mortality risk 

prediction in patients with breast cancer. The meta-analysis findings revealed that 

both models performed best in the validation studies when the intercept/baseline 

hazard was re-estimated in the population in which the model will be applied. In other 

words, recalibration of the intercept/baseline hazard was recommended so that the 

model had more consistent performance in populations of interest. However, the DVT 

model was not suitable for use, firstly because it was developed to illustrate methods 

rather than being the ‘best’ clinical model and, discrimination of the model was not 

very good. Discrimination could potentially be improved by including additional 

predictors in the model. The breast cancer model shows promise for use, because 

discrimination was slightly better and calibration was good on average for all 

implementations strategies, but had the narrowest prediction interval (therefore most 

consistent calibration) when the baseline hazard was estimated in the population for 

which it was intended for use. Data from sources such as electronic hospital records 

may be available to estimate the intercept for a particular population in which the 

model is intended to be used (as in strategy 1), but this is unlikely to always be the 

case. Debray et al. explored different ways in which a relevant intercept could be 
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selected.149 For example, using the intercept from a study with a similar prevalence 

(strategy 3) or by comparing baseline characteristics to select an intercept from the 

study included in the IECV approach with the most similar population characteristics. 

It is important to compare the different implementation strategies, as the model may 

be implemented in different ways depending on the data available for the relevant 

population. 

There are also three main areas of contribution to prognosis research methodology from this 

thesis. These are: 

1) Application of flexible parametric survival models for developing prognostic models. 

2) Contributions towards developing prognostic models, especially with regard to the 

use of trials data. 

3) Novel methods for external validation of prognostic models. 

The key findings and recommendations were summarised in the discussion section of each 

chapter. However, the key methodology areas are now each discussed once more. 

7.2 Application of flexible parametric survival models for 

prognostic model development 

The literature review in Chapter 3 showed that 100% of the 31 articles included in the review 

used Cox proportional hazards models to develop their prediction model. A review of 

prognostic models in cancer also showed that Cox models were the most popular choice for 

survival data with 94% of studies using Cox models.83 Flexible parametric models were first 

published in 2001 by Royston and Parmar and use restricted cubic spline functions to flexibly 

model the baseline cumulative hazard function.32 They offer an alternative to the popular Cox 

proportional hazards models and standard parametric survival models such as the Weibull or 
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exponential models which are often not flexible enough to model hazard functions in ‘real’ 

data. 

The following sections summarise the findings of this thesis in terms of why Royston-Parmar 

flexible parametric models should be considered when developing a prognostic model for 

time-to-event data. These sections are very much related and therefore there is overlap 

between them. 

7.2.1 The advantages of modelling the baseline hazard 

Through application of flexible parametric models in hip replacement data and advanced 

pancreatic cancer, Chapters 2 and 4 highlighted several statistical advantages of modelling 

the baseline hazard. When the baseline cumulative hazard function is flexibly modelled using 

restricted cubic splines, the estimated hazard ratios from the model are almost identical to 

the hazard ratios that would be obtained from fitting a Cox model. Also, modelling the 

baseline hazard usually only requires a few degrees of freedom (generally between 2 and 5 

d.f. are recommended depending on the complexity of the function and the amount of data 

available).34 The main advantages of modelling the baseline hazard for prognosis are given 

in Box 7.1. In summary, modelling the baseline hazard is beneficial when developing 

prognostic models as it helps to understand the hazard profile of patients (by plotting the 

hazard function over time). It also facilitates absolute risk predictions at any time point for 

groups of patients as well as for individuals. 
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Box 7.1: Advantages of modelling the baseline hazard using flexible parametric 
models. 

 The baseline hazard function can be plotted over time. 

o This helps to understand the course of the disease or condition over time. For 

example, when the hazard of the outcome is highest and how it changes over 

time. 

o This helps to inform decisions such as combining treatment groups (if 

necessary). This can be done by comparing the baseline hazard functions of 

each category to check how reasonable combining them may be. 

 After fitting the prognostic model, population-averaged survival functions can be 

estimated and plotted. 

o This is done by averaging across all individuals using their individual predictor 

values in the model and possibly fixing the value of one predictor (e.g. 

treatment group). Survival functions are then averaged across all individual 

and these survival functions are therefore ‘adjusted’ for the other predictors 

(in contrast to Kaplan-Meier curves, which are unadjusted). 

o The difference between two survival functions (and 95% confidence intervals) 

can be calculated for selected time points. Therefore absolute survival 

differences can be reported in addition to relative measures such as hazard 

ratios. 

o This helps to identify if a predictor effect is clinically meaningful rather than 

using statistical significance alone. 

 Survival functions (survival probabilities over time) can be predicted for individual 

patients by using their individual predictor values in the model. 

 Time-dependent effects can be modelled by including an interaction between the 

time-dependent predictor and the baseline hazard function. 

o This essentially gives different baseline hazard functions for different values 

of the time-dependent predictor. 

o The baseline hazard function can be plotted for different values of the time-

dependent predictor, which can help to understand how they differ over time. 
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7.2.2 Absolute risk prediction over time 

Hazard ratios should be interpreted in relation to the baseline hazard as they could otherwise 

be misleading. For example, a large hazard ratio might reveal a small absolute effect when 

the baseline hazard is low. On the other hand, a hazard ratio close to one might reflect a 

large absolute effect if the baseline hazard is high. This was highlighted in Chapter 2 where 

the hazard ratio for cemented procedures relative to BHR in males under 55 years old was 

3.86, but the baseline hazard rate was very low so the absolute difference in average 

survival probabilities was very small at 0.018 at 6 years. 

Reporting absolute risk (probability of experiencing the event) for patients is important for 

prognostic studies.18 Survival probabilities are more useful in understanding the likely 

prognosis for a disease and in making treatment decisions; hazard ratios are less meaningful 

in this context as they are relative measures. The literature review in Chapter 3 found that 

some authors used an estimate of baseline survival at a single time point to predict the 

survival probability at that time (Section 3.3.6). Alternatively, patients were categorised into 

risk groups based on a risk score (linear predictor). Survival probabilities for the risk groups 

could then be estimated using Kaplan-Meier estimates. Ideally, survival probabilities should 

not be limited to a single time point and should be calculated for individuals rather than 

categorising patients into risk groups. 

Modelling the baseline hazard function using flexible parametric models allows absolute risk 

to be easily predicted and plotted for individual patients and/or risk groups over time, 

therefore not restricted to a single or a few time points (illustrated in Section 4.7). The 

survival functions from flexible parametric models are also smooth functions unlike the step-

functions estimated using the non-parametric Kaplan-Meier method. 
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When Kaplan-Meier estimates are used to calculate survival probabilities for risk groups, only 

the patients within that risk group are used to estimate the survival probability for that risk 

group. This can result in large steps in survival probability when the number of patients in 

each risk group is small. Another benefit of using flexible parametric models is that all the 

data are used to estimate parameters in the prognostic model, and these model estimates 

are used to predict survival curves, therefore all of the data are being used to estimate each 

survival curve. 

7.2.3 Individual predictions 

A prognostic model is intended for predicting the probability of an outcome in individual 

patients. Therefore classifying patients into risk groups may not be the best approach. A 

patient’s prediction could lie close to the border between two risk groups. If this is the case, 

using the average survival probability of the risk group may severely over- or under-estimate 

their actual survival probability. This was shown in Chapter 4 for two patients with very 

different survival functions that would both fall within the same risk group (Section 4.7). 

Therefore, it is recommended that where possible, predictions should be made on an 

individual basis rather than using the average survival probability for a risk group. Of course 

this assumes that the model performs well in terms of discriminating between patients that 

have the event and those that do not, and that the model calibrates well for the setting in 

which it will be applied. The TRIPOD guidelines suggest that the full prediction model should 

be specified to allow individual prediction, including baseline survival at a given time point.59 

Using flexible parametric methods and providing the baseline survival over time would allow 

the user to select which time point is most relevant to them rather than restricting it to a time 

point selected by the author. 
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From a statistical point of view, it is also important to consider the uncertainty in any 

predictions made, which could be addressed by providing the range in which the survival 

probability is most likely to lie rather than giving the point estimate alone. 

7.2.4 Statistical versus clinical viewpoint  

This thesis has primarily focused on the statistical aspects of developing prognostic models 

but it is also important to consider the clinical viewpoint as this is where the models are 

intended for use. Clinicians may be sceptical about incorporating prognostic models into their 

decision making and management of patients, and so the translation of prognostic models 

into clinical practice is a pivotal area to now discuss. 

From a statistical viewpoint, a prognostic model that explicitly models the baseline hazard 

and therefore can be used to predict survival probability over time is better than the Cox 

model which does not explicitly model the baseline hazard and therefore requires other 

means of estimating the baseline cumulative hazard or baseline survival probability at a 

chosen time point. Perhaps from a clinical perspective, the ability to predict over time may 

not be necessary and a simple scoring algorithm to provide risk at a single time point is 

easier to use. However, providing a model that can predict at any time point allows the user 

to select the most relevant time point for their setting. 

From a clinical perspective, it may be desirable to have a model in which the associations 

(predictor effects) are clinically understandable and subsequent predictions are easily 

calculated. Prognostic information may not all be available immediately and may rather come 

in waves as more tests are run.205 It may not be clear how predictions from prognostic 

models can be used to help manage patients or perhaps clinicians are looking for a clinical 

decision rule rather than the prognostic model itself. In other words, they may want the model 
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with defined cut-points for risk in order to categorise patients into high/low risk groups. 

Patients that are high or low risk for the outcome may then be managed differently in terms 

of treatment plans. Statistically, this simplification of the model results in loss of information 

and, as discussed earlier, patients with a predicted risk close to the cut-point may not be 

dissimilar to patients in another risk group. Therefore, even if risk groups are required 

clinically, it is better to know the actual predicted risk for an individual, so that more exact 

individual decisions can be made. The use of cut-points is also context specific, and should 

come after presenting the full model. This would avoid problems with misclassification due to 

miscalibration in some settings. 

7.3 Using clinical trials data and other challenges in 

developing prognostic models 

The literature review in Chapter 3, like many other reviews detailing development and 

reporting of prediction models,11,83,85,144,145 highlighted issues in the methods used to develop 

the models as well as poor reporting of statistical methods in some studies. This included 

topics such as checking linearity of continuous variables, dichotomising continuous variables, 

variable selection methods and handling of missing data. Several articles have been 

published on the need to improve methods and reporting,1,11,18,82 and the recently published 

TRIPOD statement provides clear guidelines for reporting prediction model studies that 

should hopefully help improve the quality of reporting (and methods used) in future prediction 

studies.42,59 

In chapter 4, clinical trials data were used to develop a prognostic model for advanced 

pancreatic cancer. Several challenges were identified, some specific to using clinical trials 

data and other more general issues. Two clinical trials were included in model development 

but a trial variable was not included in the model as it would not be useful to future patients. 
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Also, as the two trials randomised patients to different doses of an experimental treatment, 

marimastat, this would not be very useful to future patients. Therefore the decision was made 

to combine treatments according to whether they received the standard treatment 

gemcitabine or not as this is likely to be more relevant, especially as marimastat was not 

shown to improve survival of patients in the original trials.154,155 The shape of the baseline 

hazard also supported this decision to combine treatment groups in this way. There has been 

debate about whether prognostic models should be developed using only the control arm of 

a trial.12,206 However, Moons et al. suggest combining treatment groups if the treatment is 

ineffective (relative risk=1), or if treatment is effective, using the data from all treatment 

groups and including the treatment variable as a predictor in the model.8 

In summary, many of these challenges are well known and have been published in a number 

of articles. However, developing a prognostic model can still be difficult and decisions need 

to be made on how to handle these difficulties. Although one example has been considered 

in depth in this thesis (Chapter 4), the experience may be very different using different 

clinical trials data. Also, although any one of the challenges may have a simple solution, 

dealing with them becomes much more complex when they occur in combination. For 

example in Chapter 4, multiple imputation was used to handle missing predictor data. This 

made variable selection more complex, while also trying to simultaneously model continuous 

variables appropriately, now using multiple imputed datasets. There was also a time-

dependent effect that added further complexity to the prognostic model. Box 7.1 lists some 

considerations when developing prognostic models. Many of these are general issues when 

fitting any model and have been reported by other authors, but it is worth mentioning them as 

they are crucial when developing prognostic models. This list is by no means exhaustive as 

different challenges are faced in each dataset. 
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Box 7.2: Recommendations for improving the development of a prognostic model, as 
identified from the literature review (Chapter 3) and development of a prognostic 
model using trials data (Chapter 4). 

 Handling missing data 

o If a variable contains a lot of missing values, consider whether it would be 

useful to include it in a model if the variable is not routinely recorded. 

o If a dataset contains missing values for several variables, consider whether 

the data are missing at random and if so, use multiple imputation with the 

number of imputed datasets equal to the percentage of observations with 

missing values for any variables considered in the modelling process. 

 Modelling continuous variables 

o Consider non-linear functions, e.g. simple transformations or fractional 

polynomials, but avoid categorising continuous variables where possible. 

 Baseline hazard function 

o If the aim is for prediction, the baseline hazard function should be modelled 

using a model such as the flexible parametric Royston-Parmar model. 

o Use AIC and BIC to guide choice of d.f. (usually between 2-5 d.f.) and plot 

baseline hazards using different d.f. against non-parametric estimate (using a 

smoother) to compare functions and select appropriate d.f. 

 Variable selection process 

o Include known prognostic variables regardless of statistical significance 

(including trial stratification factors if data come from clinical trials). 

o Backward elimination has been recommended as a better approach to 

forward selection. 

o Consider a variable selection method that allows for non-linear functions of 

continuous variables as part of the modelling process, such as MFP. 

o MFPMI can be used for variable selection using multiply imputed data. 
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o Trial specific: do not include a trial variable as not useful for prediction in 

future patients but check that trials are similar in terms of inclusion/exclusion 

criteria and baseline hazard function. 

o Trial specific: carefully consider whether a treatment variable is necessary in 

the model and how it should be included. Use the baseline hazard function to 

guide this if necessary. 

 Proportional hazards assumption 

o Check proportional hazards assumption for all variables considered for the 

multivariable model. 

o If not proportional, are the other predictor effects consistent if separate 

models are fitted for different values of the non-proportional variable? If so, 

consider a time-dependent effect which models an interaction between the 

baseline hazard function and the time-dependent variable. If the other 

predictor effects are not consistent, consider fitting separate models if the 

effective sample size is reasonable within each group, defined by different 

values for the time-dependent variable. 

 

7.4 Validating a prognostic model 

With so many models being developed, it may be difficult for clinicians to decide which 

models are worth implementing.205 PROGRESS also encourage researchers to share IPD in 

order to develop and validate better prognostic models.3 The authors also suggest a shift in 

focus to validating and updating existing models rather than constantly developing new 

models.3 Therefore, in addition to the previously mentioned model development 

Box 7.2 continued… 
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considerations, it is important that a prognostic model predicts well in data external to that in 

which the model was developed. Ideally, this should be done in several external settings. 

If IPD is to be shared and prognostic models are developed and validated using multiple 

studies, internal-external cross-validation can be used to evaluate model performance across 

multiple studies. The findings from Chapter 5 and 6 are summarised and discussed below. 

7.4.1 Using multiple studies to develop and validate a prognostic 

model 

When IPD from multiple studies is available, one option is to allocate some studies to a 

development set and reserve the others for external validation. However, it is more efficient 

to use all available data for model development, therefore increasing the power to identify 

important predictors, possible interactions and non-linear functions. The issue then is that 

there is no external data in which to evaluate model performance. The aim of external 

validation is to ensure that the model performs well in other related populations or settings, 

which is referred to as generalisability of the model. Internal-external cross-validation was 

proposed by Royston et al.69 for validating a prognostic model when multiple studies are 

available, which provides a useful way to validate a prognostic model by fitting the developed 

model multiple times, each time excluding one study and reserving it for validation. The β-

coefficients for the predictors in the model are re-estimated each time a study is excluded so 

that the validation study is external to model derivation, thereby assessing generalisability of 

the model performance across the different ‘external’ studies.69 Debray et al.149 extended this 

work by developing a framework that considers different implementation strategies (for the 

intercept) when validating the model in the excluded study. 
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Although not considered in this thesis, the internal-external cross-validation approach could 

also be adapted to incorporate a model development strategy phase, for when the set of 

included predictors and their functional form is not pre-specified (for example, backwards 

selection of predictors and possible non-linear functions might be used). The use of internal-

external cross-validation in this context would help evaluate the reproducibility of a model as 

derived from a particular development strategy. This may help identify the best strategy for 

use (e.g. shrinkage of predictor effects), by revealing (through the meta-analysis methods 

proposed) which strategy leads to consistently the best performance upon external 

validation. 

7.4.2 Meta-analysis to summarise validation performance of a 

model across studies 

Univariate random-effects meta-analysis was proposed to summarise validation performance 

statistics such as the C-statistic and calibration slope across studies individually. Model 

performance was evaluated considering different implementation strategies for the intercept 

or baseline hazard of the model when applied to the validation study, as proposed in the 

framework by Debray et al.149 In Chapter 5, model performance was summarised for two 

prediction models (DVT diagnosis and breast cancer prognosis). Random-effects meta-

analysis highlighted that the average value for a performance statistic is an incomplete 

summary measure and that estimating heterogeneity across the studies is important when 

evaluating model performance, as this indicates how much variability there is in performance 

in different settings. An ideal model would have good average performance and no 

heterogeneity across studies, therefore performing consistently well across studies. 

However, in reality a model may perform better in some settings than in others. Prediction 

intervals incorporate an estimate of the between-study variance therefore accounting for 

heterogeneity in the performance statistic across studies, and should therefore be 
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considered when evaluating how well a model is expected to perform (for a particular 

performance statistic) if it were to be applied in a new but similar setting. 

Comparing performance statistics for the different implementation strategies showed that it is 

best to re-estimate the intercept or baseline hazard in the setting in which the model will be 

used. Average model performance, considering the calibration slope for example, was not 

necessarily closest to the ideal value of one (perfect calibration) for this implementation 

strategy but calibration performance was far more consistent across studies, and thus far 

more likely to be acceptable upon application. A model could severely over-predict in some 

settings and under-predict in others, but still have good average performance. Such a model 

would not predict particularly well in many of the individual settings and this was seen for the 

DVT model when evaluating calibration-in-the large if the average intercept was used in the 

validation study (Figure 5.2), which had an extremely wide 95% prediction interval ranging 

from -1.24 to 1.24. Conversely, if a model has no heterogeneity (and thus a very narrow 

prediction interval), this is only adequate if the average performance is itself acceptable. 

Therefore, when selecting the best implementation strategy one needs to potentially 

compromise between the average performance and the amount of between-study 

heterogeneity. This can be summarised by predicted probabilities of a good performance 

(see below). 

7.4.3 Multivariate meta-analysis for predicting performance of a 

model in a new setting 

In addition to pooling performance statistics using univariate meta-analysis, multivariate 

meta-analysis was proposed to summarise two or more performance statistics using the 

additional information of within-study correlations between the performance statistics 

(obtained by bootstrapping). The utilisation of correlation can lead to slightly narrower 
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confidence intervals and prediction intervals but more importantly, better reflects how 

performance of a model should consider measures of both discrimination and calibration 

performance. A recent literature review of studies evaluating prediction models found that 

discrimination and calibration were not reported in 27% and 67% of included studies 

respectively,54 highlighting that calibration is often not reported. Therefore in Chapter 5, 

bivariate random-effects meta-analysis was used to jointly summarise the C-statistic and 

calibration slope of each prediction model. Based on the results of the bivariate meta-

analysis, a 95% prediction ellipse can be calculated and plotted to give a region in which the 

model performance in a new but similar setting is expected to lie for both calibration and 

discrimination performance. 

Altman et al. have suggested that it may be helpful to pre-specify criteria for acceptable 

model performance in terms of calibration and discrimination performance.20 Using this 

approach, Chapter 5 also illustrated how the predicted probability of a model performing to 

specified criteria can be calculated, assuming the results of the bivariate meta-analysis are 

correct. This is done by sampling from a bivariate t-distribution (using the results of the meta-

analysis as input for the matrix of mean values and the variance-covariance matrix) for the 

measures of calibration and discrimination, and calculating the proportion in which the criteria 

for both performance statistics are satisfied. In addition to the probability of ‘good’ overall 

performance this approach provides, it also allows models and/or implementation strategies 

to be ranked in terms of preference if the overall performance is acceptable. Of course, 

deciding which performance statistics to consider and what constitutes acceptable 

performance is unclear.20,207 

Caution should be taken in predicting model performance when the between-study 

correlation is poorly estimated (usually -1 or +1) as this will have an impact on the predicted 
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probability. In Chapter 5, between-study correlations were poorly estimated for the DVT 

example when the intercept was estimated in the validation study (implementation strategy 1) 

resulting in an estimated correlation of +1 which usually indicates that it has reached the end 

of its parameter space without converging.193 This can happen when the within-study 

variance is very large relative to the between-study variance.193 A sensitivity analysis in 

Chapter 5 assumed a between-study correlation of +0.5 rather than +1.0 when calculating 

predicted probabilities for the DVT model using the average intercept (strategy 2), meant a 

change in predicted probabilities of acceptable joint performance from 2.4% to 9.6%. Pooling 

several performance statistics together, for example in a trivariate meta-analysis, may 

improve estimation of the between-study correlation as additional information. When this was 

done for the DVT model, between-study correlations did converge but were still estimated 

very close to +1. This warrants further investigation as to whether this is likely to be genuine 

and therefore ensure any joint predictions using the meta-analysis results are valid. 

7.4.4 Assumption of normality for true between-study performance 

A key assumption in a random-effects meta-analysis is the assumption of normality. The 

meta-analysis model firstly assumes that the study-specific (within-study) performance 

statistic is normally distributed and secondly that the true (between-study) performance 

statistic is normally distributed. The first normality assumption is reasonable using the 

Central Limit Theorem as justification if sample sizes are relatively large. However, normality 

of the between-study performance statistics had not previously been tested reliably. 

Therefore, through simulation, Chapter 6 aimed to establish whether the true performance 

statistics were normally distributed in a variety of scenarios, or if transformations of the 

performance statistics considered should be used. In the simulation settings and scenarios 

considered in Chapter 6, the between-study distributions for calibration-in-the-large and the 

calibration slope were reasonably normally distributed. The expected/observed ratio (E/O) 
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was skewed as expected and the log transformation was a better scale for normality of the 

between-study distribution. The C-statistic was skewed in many simulation settings and a key 

finding of Chapter 6 is the recommendation of using the logit transformation for pooling C-

statistics, providing a different recommendation to that proposed by van Klaveren et al.62 

The simulation study also highlighted the problem with heterogeneous predictor effects. 

When heterogeneity in the predictor effect was large, many of the performance statistics 

were skewed and transformations did not produce approximately normal between-study 

distributions. In reality, the level of heterogeneity considered in some scenarios was extreme 

but caution should be taken if heterogeneity in predictor effects is suspected. Differences in 

the predictor effects could arise due to differences in populations, such as truly different 

patient populations, different definitions of either the outcome or predictors, or different 

distributions of predictors that are missed (not modelled).12 

To conclude this section, key findings and recommendations from Chapters 5 and 6 on 

internal-external cross-validation are summarised in Box 7.3 below. 

Box 7.3: Summary of key finding and recommendations for internal-external cross-
validation of a prognostic model using multiple studies. 

 Random-effects meta-analysis is recommended for summarising model performance 

statistics across multiple validation studies. 

o This provides a measure of the between-study variance in addition to the 

average for the performance statistic. 

o Ideal performance should have good average performance and little or no 

heterogeneity in performance across studies. 

o 95% prediction intervals can be derived for the expected model performance 

(of any performance statistic) in a new but similar study or setting. 
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 Bivariate and multivariate random-effects meta-analysis can be used to jointly 

summarise measures of calibration and discrimination (or other relevant performance 

statistics). 

o Utilises within-study correlations between performance statistics which can 

result in slightly narrower marginal confidence intervals and prediction 

intervals. 

o 95% prediction ellipses can be plotted that show the region of expected 

combinations of values of both calibration and discrimination performance of 

the model in a new but similar study or setting. 

o Predicted probabilities of the model performing to specified criteria can be 

estimated by sampling from a bivariate t-distribution, using the results of the 

bivariate meta-analysis to specify the mean and variance-covariance matrices 

for the bivariate t-distribution. 

o Predicted probabilities can be used to rank models or implementation 

strategies and select the one with the highest probability of ‘good’ joint 

performance. 

 Performance statistics should be pooled on a scale that can reasonably be assumed 

to be approximately normally distributed for the between-study distribution. The 

following scales or transformations are recommended, based on the findings of the 

simulation study in Chapter 6: 

o Original scale for calibration slope or calibration-in-the-large 

o Log transformation for expected/observed ratio 

o Logit transformation for the C-statistic 

 

Box 7.3 continued… 
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7.5 Further research 

Several areas of further work or updating previous work have been identified for several of 

the chapters and are discussed below. 

The literature review in Chapter 3 could be extended to assess if in the years since the 

review was done (2012), more researchers are modelling the baseline hazard or summarise 

how they are attempting to report absolute risk for survival models. The review was limited to 

six general medical journals and perhaps this is not representative of the models published in 

more specialist journals. However, a review of cancer prognostic models, which searched 

Pubmed for articles (published in 2005) and included high impact (specialist) cancer journals, 

also found that Cox models were fitted in the majority of included studies.83 One way to 

check if the baseline hazard is being modelled more in the time since the literature review in 

Chapter 3 was conducted, might be through citation searching, although new or different 

methods may be missed. There are a large number of prediction or prognostic model 

development studies being published, therefore it is necessary to narrow down the search in 

some way. 

Chapter 4 presented a prognostic model for advanced pancreatic cancer. This extended 

previous work by Stocken et al.,156,157 where issues such as how best to combine treatment 

groups, handling missing data and appropriately modelling non-linear functions for variables 

such as CA19-9 were carefully considered. The model has been internally validated but the 

next step would be to externally validate the model in independent data to assess how 

generalizable it is. Before doing so, shrinkage factors should be applied to the model 

parameters to adjust for over-optimism. 
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Chapters 4 and 5 considered more than one study when fitting Royston-Parmar models. This 

involved making assumptions about the shape of the baseline hazard function, generally that 

the shape of the baseline hazard function was the same in the studies, and proportional to 

each other. An area for further work could be on how to ensure that baseline hazard 

functions are comparable and can be combined, how similar they should be and what the 

potential effects of combining studies with different underlying shapes has on predictions. In 

particular, whether recalibration that includes a new baseline hazard shape is preferable. 

Chapter 6 assessed the normality assumption for four performance statistics (C-statistic, 

calibration slope, E/O and calibration-in-the-large) based on a ‘true’ logistic prediction model 

being validated across many studies through simulation. This could be extended to consider 

further performance statistics such as the D-statistic and consider a survival model as the 

prediction model. 

Further simulation studies are needed to evaluate the statistical properties of the meta-

analytic approach proposed for IECV in Chapter 5. A simulation study could help evaluate 

whether the approach produces unbiased estimates of predictive performance for 

performance statistics (e.g. C-statistic), appropriate coverage and prediction intervals. If the 

approach performs well, further work into developing a program would be advantageous in 

allowing other researchers to easily apply the proposed methods. The program would aim to 

automate the IECV approach, by excluding one study at a time, re-fitting the specified model, 

calculating appropriate performance statistics and summarising model performance using 

random-effects meta-analysis. It could also be extended to include multivariate meta-analysis 

which would require bootstrapping for within-study correlations and allow joint predictions. 

Further simulation studies could evaluate the use of multivariate meta-analysis to compare 



317 
 

competing existing models, and the use of multivariate meta-analysis to evaluate the added 

benefit of an additional predictor.  

The simulation study in Chapter 6 only considered the scale for the between-study 

distribution of performance statistics; further work could evaluate whether the same scale 

should be used for the within-study distribution. 

7.6 What is the future for prognosis research? 

While this thesis has explored specific areas relating to the development and validation of 

prognostic models, there are still many challenges that are left unaddressed. Over the last 

few years, many articles have been published in an attempt to highlight current weaknesses 

and areas that require methodology research.1-4 It is also essential to improve the 

transparency and reporting of prognostic and prediction studies, with Peat et al. encouraging 

transparency of prognosis research to avoid bias and improve conduct by proposing 

prognostic studies should be registered and protocols published, similar to RCTs.82 Guidance 

documents for reporting of studies have been published for many types of studies, such as 

STROBE for observational studies,208 STARD for diagnostic accuracy studies,209 and 

REMARK for tumour marker studies.210 More recently, the TRIPOD Statement was published 

for reporting of multivariable diagnostic and prognostic prediction models,42,59 as many 

aspects of developing or validating prediction models and prognostic models has been 

shown to be poor in literature reviews conducted over recent years.54,83,85,145 Use of 

guidelines can be slow on the uptake, but does slowly improve the quality of reporting 

studies as found for STARD.211 This is likely to be the same for TRIPOD and requires 

journals to encourage authors to use the published guidelines. 
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Many methodology articles including TRIPOD,42 Steyerberg et al.212 and Moons et al.58 

discuss development and validation of prognostic models and give clear advice on certain 

issues, for example, how to handle missing data, model continuous variables, select 

variables for inclusion etc.; however, there will still be challenges in developing prognostic 

models that are specific to the data being used and this can easily be complicated when 

multiple challenges arise. Flexible parametric models have received little attention in the area 

of prognosis research, yet offer advantages such as those identified in this thesis. Perhaps 

discussion of flexible parametric models in articles appealing for better conduct and reporting 

by recognised methodologists may encourage researchers to consider alternatives to the 

Cox model. 

PROGRESS encourage a shift in focus to externally validating and updating prognostic 

models rather than developing a new model each time more data are collected in a particular 

clinical area.3 If the research community responds to the plea for data sharing (of IPD) and 

transparency, better models can be developed across a wider range of settings, hopefully 

resulting in models that are more generalizable to different settings. It is also important to 

consider how applicable a model is to different settings (generalisability), whether the model 

can be improved, for example recalibrated or including additional predictors, or whether 

different models should be applied in different settings. This remains a challenge but 

potentially by sharing data in a collaborative effort, these questions could be evaluated more 

reliably if many studies are available for external validation. Developing a ‘good’ prediction 

model should be an iterative process as models can be improved with additional data and 

new promising prognostic factors. If done in this way, it may help clinicians keep track of 

prognostic research in their clinical field and encourage use of prognostic models in clinical 

practice. 



319 
 

Croft et al. discuss the idea of a shift in framework from diagnosis to prognosis for managing 

patients and evaluating clinical research.213 Potential reasons for this are that diagnosis is not 

always useful if it does not lead to better patient outcomes; also, generally the idea 

underpinning diagnosis and treatment is patient prognosis. Another reason is that for many 

conditions, diagnosis may not really be as simple as having the disease or not and it could 

be thought of on more of a continuous scale without the need for a dichotomy. Such 

diagnostic information could rather be incorporated in prognostic models for predicting 

patient outcome.213 

Another area of progression for prognosis research may be to incorporate longitudinal data 

into the survival model using joint modelling,214,215 thereby incorporating the trajectory of 

biomarkers which change over time and potentially improve predictions for patient prognosis. 

In terms of validation of prognostic models, it is still unclear what constitutes ‘good’ 

performance. However, researchers such as Vickers and Cronin state that calibration and 

discrimination do not really tell us if a model is any good and instead suggest a move 

towards decision analytics.207 Assuming treatment decisions are based on classification of 

patients to high or low risk groups (using a decision threshold), decision curve analysis can 

be used to calculate net benefit and harm of the model over a range of thresholds. This may 

warrant further consideration but may not be applicable in all settings as prognostic models 

may be used to aid decision making by providing a predicted probability rather than 

assuming it will always result in a decision rule. However, such methods warrant further 

investigation and may have use in comparing models or assessing the incremental value of 

additional predictors. Consideration of meta-analysis methods in this regard may be 

important. 
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7.7 Conclusions 

Prognosis research and in particular prognostic modelling is still a challenging area that 

requires more methodology research to improve the models being developed and validated. 

The aim is to provide useful models that will be implemented in clinical practice, and 

ultimately, improve patient outcomes and their wellbeing. Though many issues remain, this 

thesis has contributed toward improvements in the prognostic modelling field through 

application and methodological development. In particular, the use of flexible parametric 

modelling and meta-analysis methods will hopefully improve the development, evaluation 

and uptake of robust prognostic models in the coming years. 

  



321 
 

APPENDICES 

Appendix A 

Appendix A1: Log-log plots for the proportional hazards 

assumption 

 

Figure A1.1: Log-log plots for mortality as the outcome. 
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Figure A1.2: Log-log plots for revision as the outcome. 
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Appendix A2: Kaplan-Meier (unadjusted) survival curves 

 

Figure A2.1: Kaplan-Meier curves for mortality as the outcome. 
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Figure A2.2: Kaplan-Meier curves for revision as the outcome. 



325 
 

Appendix A3: Sensitivity to approach 

Excluding patients with missing information for surgical approach resulted in a loss of 15247 

observations. Table A3.1 shows that the hazard ratios change slightly compared to the 

original model and approach is highly significant in the model (Wald test p<0.001). However, 

there is still a significant difference in mortality between cemented and uncemented 

procedures and although the predicted population-averaged survival probabilities for the 

procedure types change, the difference in mean predicted survival is still very similar even at 

8 years of follow-up with a difference in mean survival probabilities 0.0142 compared to 

0.0131 in the primary analysis of mortality (Figure A3.1). 

Table A3.1: Sensitivity to approach analysis results including model estimates from 
original model and model including approach. 

 Hazard ratio (95% confidence interval) 
Variable Original model Model inc. approach 
Uncemented procedure 1 1 
Cemented procedure 1.111 (1.069 to 1.155) 1.144 (1.098 to 1.191) 
Age (years) 1.090 (1.088 to 1.092) 1.089 (1.087 to 1.092) 
ASA grade 1 1 1 
ASA grade 2 1.192 (1.133 to 1.255) 1.174 (1.106 to 1.246) 
ASA grade 3 2.152 (2.033 to 2.279) 2.112 (1.979 to 2.255) 
ASA grade 4 3.518 (3.092 to 4.004) 3.577 (3.120 to 4.101) 
ASA grade 5 2.938 (1.702 to 5.071) 2.781 (1.610 to 4.804) 
Female 1 1 
Male 1.537 (1.488 to 1.587) 1.557 (1.503 to 1.613) 
Non-complex 1 1 
Complex 1.395 (1.332 to 1.462) 1.466 (1.285 to 1.672) 
Anterior approach - 1 
Antero-lateral approach - 1.220 (0.928 to 1.603) 
Hardinge approach - 0.810 (0.615 to 1.066) 
Lateral (inc. harding) approach - 1.238 (0.944 to 1.623) 
Other approach - 0.935 (0.696 to 1.257) 
Posterior approach - 1.006 (0.767 to 1.318) 
Trochanteric osteotomy approach - 0.630 (0.373 to 1.064) 
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Figure A3.1: Adjusted survival curve for procedure type and mortality as the outcome, 
from the model including approach (95% CIs given by dashed lines). 
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Appendix A4: Inclusion of Birmingham Hip Resurfacing: male only 

analyses 

The following analyses used the males from the original dataset with the addition of males 

that received the Birmingham Hip Resurfacing (BHR) procedure. There is again an 

imbalance between the three groups as can be seen from the baseline characteristics in 

Table A4.1. The BHR males are younger with a mean age of 55.9 years and have a higher 

proportion of males in ASA grade 1 (47.9%) and ASA grade 2 (48.9%), indicating younger 

and healthier patients receiving this procedure. 

Table A4.1: Summary of baseline characteristics, outcome and follow-up by procedure 
type in males only. 

  
BHR 

(n=8352) 
Cemented 
(n=53409) 

Uncemented 
(n=50529) 

Baseline characteristics    
Age, years Mean (SD) 55.92 (8.58) 72.26 (8.61) 66.22 (9.94) 

Median 56.58 72.89 66.67 
IQR 50.35 – 61.93 67.15 – 78.08 60.27 – 73.14 
Range 19.03 – 84.99 18.1 – 101.69 17.13 – 98.76 

ASA grade, n (%) 1 3999 (47.88) 8246 (15.44) 10761 (21.30) 
2 4087 (48.93) 35838 (67.10) 33594 (66.48) 
3 256 (3.07) 8947 (16.75) 5918 (11.71) 
4 8 (0.10) 360 (0.67) 246 (0.49) 
5 2 (0.02) 18 (0.03) 10 (0.02) 

Complexity Non-
complex 

8262 (98.92) 48743 (91.26) 50176 (99.30) 

Complex 90 (1.08) 4666 (8.74) 353 (0.70) 

Both sides, n (%) No 8297 (99.34) 53319 (99.83) 50304 (99.55) 
Yes 55 (0.66) 90 (0.17) 225 (0.45) 

Follow-up     
Endpoint, n (%) Death 93 (1.11) 4821 (9.03) 1872 (3.70) 

Revision 159 (1.90) 645 (1.21) 830 (1.64) 
Unrevised 8100 (96.98) 47943 (89.77) 47827 (94.65) 

Length of follow-
up, person-years 

Total 27961 183101 134702 
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Mortality 

The length of follow-up is shorter for BHRs than for cemented or uncemented procedures. 

Therefore, to avoid extrapolating results for BHRs, follow-up length in the analyses was 

restricted to 6 years. This means that any patient that had not had an event by 6 years was 

censored at this time. 

After adjustment for age, ASA grade and complexity, there is a significant difference between 

BHR and both cemented and uncemented procedures (both p<0.001) in males. The mortality 

rate is significantly higher for cemented and uncemented procedures when compared to 

BHR with hazard ratios of 1.67 (95% CI: 1.35 to 2.06) and 1.47 (95% CI: 1.19 to 1.82) 

respectively (Table A4.2). 

Table A4.2: Multivariable model estimates including BHR for mortality as the outcome 
in males only. 

Variable Hazard ratio 95% Confidence interval P-value 

BHR procedure 1.000 - - 
Cemented procedure 1.667 1.349 to 2.061 <0.001 
Uncemented procedure 1.473 1.192 to 1.821 <0.001 
Age (years) 1.089 1.086 to 1.093 <0.001 
ASA grade 1 1.000 - - 
ASA grade 2 1.163 1.076 to 1.257 <0.001 
ASA grade 3 2.169 1.990 to 2.364 <0.001 
ASA grade 4 3.687 3.064 to 4.437 <0.001 
ASA grade 5 0.546 0.077 to 3.880 0.546 
Non-complex 1.000 - - 
Complex 1.274 1.179 to 1.377 <0.001 

 

The population-averaged survival curves are shown in Figure A4.1. After adjusting for 

confounding, the mean predicted probability of survival for BHR in males is lower than the 

unadjusted survival curves but remains higher than cemented and uncemented with a 
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probability of 0.921 (95% CI: 0.906 to 0.936) at 6 years, compared to 0.877 (95% CI: 0.873 

to 0.881) and 0.888 (95% CI: 0.883 to 0.893) for cemented and uncemented respectively. 

 

Figure A4.1: Population-averaged survival curves for procedure type including BHR in 
males for mortality as the outcome (95% CIs given by dashed lines). 

Revision 

After adjustment for age and ASA grade, the hazard of revision is 35% lower (95% CI: 22% 

to 46%) for the cemented group compared to BHR. No significant difference is seen between 

BHR and uncemented procedures with a hazard ratio of 1.04 (95% CI: 0.87 to 1.25), as 

shown in Table A4.3 below. Age was included in the model, given its importance in previous 

models and borderline significant p-value of 0.129. 
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Table A4.3: Multivariable model estimates including BHR in males for revision as the 
outcome. 

Variable Hazard ratio 95% Confidence interval P-value 

BHR procedure 1.000 - - 
Cemented procedure 0.645 0.530 to 0.784 <0.001 
Uncemented procedure 1.044 0.872 to 1.249 0.639 
Age (years) 0.996 0.990 to 1.001 0.129 
ASA grade 1 1.000 - - 
ASA grade 2 1.109 0.977 to 1.257 0.109 
ASA grade 3 1.255 1.051 to 1.498 0.012 
ASA grade 4 0.551 0.205 to 1.480 0.237 
ASA grade 5* - - - 

*Not estimable 

The adjusted survival curves in Figure A4.2 show very little difference in the probability of no 

revision between uncemented and BHR procedures at any time point and the greatest 

probability of no revision is observed for the cemented group. However, the absolute mean 

probability of no revision is high for all three procedure groups. At 6 years of follow-up, the 

mean probability of no revision is 0.981 (95% CI: 0.980 to 0.983) for cemented, 0.970 (95% 

CI: 0.968 to 0.972) for uncemented and 0.971 (95% CI: 0.966 to 0.976) for BHRs. 
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Figure A4.2: Adjusted survival curve for procedure type including BHR in males where 
the outcome is revision. 
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Appendix A5: Article published in the BMJ 

  
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0). 
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Appendix B 

Appendix B1: Literature review protocol 

General Information 

 Author Names 

 Journal of publication 

 Year of publication 

 What clinical / disease area was the model developed for? 

 What is the starting point for follow-up? 

 What is the outcome or event of interest? 

 What is the primary aim of the article? 

 What is the study design (e.g. cohort, case-control, trial)? 

 Was the data collected to answer the study question (prospective), or was existing 

data used to answer the study question (retrospective use of existing data)? If 

existing data were used, what was the aim of the original study that the data were 

collected for? 

 How large is the study (sample size)? Full dataset size and size of data used for 

modelling (if reduced, e.g. subset analysis, due to missing data etc.). 

 How many events were there? 

 How many candidate predictors were there? 

 What is the length of follow-up (e.g. min, max, median follow-up, depending on what 

is reported)? 

Model Development 

 What modelling techniques were used to obtain the prognostic model: parametric, 

semi-parametric or non-parametric? 
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 Were time-dependent covariates considered in the survival analysis? 

 Were continuous variables modelled linearly, non-linearly or categorised? If 

categorised, how were the cut-points decided? If modelled linearly, were the variables 

transformed? If modelled non-linearly, how were they modelled? 

 What process was used to select variables for inclusion in the model? (E.g. automatic 

selection process, selection based on univariable results) 

 If multiple studies (datasets) were available, how have they been used? Have they 

been combined to fit the prognostic model or were some used for model development 

and others used for validation? 

 Was missing data a problem and if it was, how was missing data handled?  

Baseline Hazard 

 Has the baseline hazard been modelled explicitly? If so, what method was used to 

model the baseline (cumulative) hazard function? 

Reporting of Results 

 How have the model results been reported? Detail the following: 

i. Are the full fitted model parameter estimates reported? If not, what is given 

from the fitted model? 

ii. Do they report the baseline hazard function? 

iii. Are the ‘beta’ estimates reported on their original scale (i.e. log hazard ratios), 

or reported transformed (e.g. hazard ratios), or both? 

iv. How is absolute risk summarised (e.g. is probability of survival at time t given 

for all patients (Kaplan-Meier curve), is it given for individuals with particular 

covariate values, or perhaps a risk scoring system is presented, etc.)? 

v. How is the model intended to be used in clinical practice? 



335 
 

Validation 

 Was the model validated before publication? If so: 

i. What validation was performed i.e. internal, external or temporal? Include brief 

description on how this was done. 

ii. What validation techniques were used and what validation statistics were 

presented? 

iii. Was the baseline hazard function (alpha term) compared in the validation data 

to the development data? 

iv. If no validation or internal validation was performed, is there any discussion on 

how the estimated baseline hazard can be used toward different patient 

populations or how the authors suggest dealing with changes in baseline 

hazard? 

v. Were absolute risk probabilities computed in the validation data and 

compared to the predicted ones? If so, how was this done? 
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Appendix B2: Literature review exclusions 

Table B2.1: Articles excluded from current literature review with reason for exclusion. 

First Author, year Reason for exclusion 

Not modelling a rate over time (33 articles excluded) 
 Smits, 2007 Logistic regression 
 van der Steeg, 2007 Logistic regression 
 Cornelis, 2009 Logistic regression 
 Billings, 2006 Logistic regression 
 Aylin, 2007 Logistic regression 
 Frank, 2008 Logistic regression 
 Perel, 2008 Logistic regression 
 Lee, 2006 Logistic regression 
 Robbins, 2007 Logistic regression 
 Wijeysundera, 2007 Logistic regression 
 Green, 2008 Logistic regression 
 Burroughs, 2006 Logistic regression 
 Johnston, 2007 Logistic regression 
 Carlin, 2008 Logistic regression 
 Puhan, 2009 Logistic regression 
 Lyssenko, 2008 Logistic regression 
 Peacock, 2008 Logistic regression 
 Lopman, 2006 Logistic regression 
 Maitland, 2006 Logistic regression 
 Hughes, 2007 Logistic regression 
 Steyerberg, 2008 Logistic regression 
 Whitely, 2009 Logistic regression 
 Tyson, 2008 Logistic regression 
 Meigs, 2008 Logistic regression & GEEs 
 Potti, 2006 Binary classification-tree analysis & logistic regression 
 Dehghan, 2008 Linear regression 
 Lyness, 2006 Linear mixed-effects models, proportional-odds regression 
 Freemantle, 2009 Poisson mixed models (for live births not time to event) 
 Reis, 2009 Naive Bayesian classifiers (for event at any time) 
 Tamborlane, 2008 ANCOVA 
 Chaves, 2006 Time series analysis & forecasting 
 Drake, 2006 Stochastic epidemic models & forecasting 
 Kelen, 2006 Disposition classification system 

Validation only study (5 articles excluded) 
 Parmigiani, 2007 No model development 
 Collins, 2009 No model development 
 Nigrovic, 2007 No model development 
 Morrison, 2006 No model development 
 Lapidus, 2009 No model development 

Time-to-event data not right censored 
 Parikh, 2008 Interval censoring 
 Kahn, 2009 Interval censoring 
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Appendix B3: Kalbfleisch & Prentice estimator 

The Kalbfleisch & Prentice estimator is an extension of the Kaplan-Meier estimator and will 

give the same survival function estimates as Kaplan-Meier when there are no covariates in 

the model. However, when covariates are included in the model, this estimator can be used 

to estimate the baseline survival function (or adjusted survival curves) as a step-function. 

The maximum likelihood estimate of the baseline survival function is 

 S෡0ሺtሻ=ෑαෝi

i|ti≤t

 
 

where ti represents each unique failure time. The αi = 1-λi where λi is the hazard at time ti.
22 

By differentiating the log of the partial likelihood function for the Cox model and rearranging 

for αi, the following equation can be solved for the maximum likelihood estimate of αi if there 

are no ties at time ti. 

 

αෝi= ൥1-
exp(X(i)β෡)

∑ exp	(Xjβ෡)j∈R(ti)
൩

exp(-X(i)β෡)

 

 

where X(i) denotes the covariate values for the subject that failed at time ti and R(ti) is the set 

of all individuals that have not had the event or been censored just prior to time t(i). If there is 

more than one failure at time ti (i.e. tied observations), then this would have to be solved 

iteratively.  
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Appendix C 

Appendix C1: Previously published results 

 

Figure C1.1: Kaplan-Meier survival curves for risk groups 1-4 from Stocken model for 
advanced pancreatic cancer. Reprinted by permission from Macmillan Publishers Ltd 
on behalf of Cancer Research UK: British Journal of Cancer, Stocken et al.156 
Copyright 2008. 
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Appendix C2: Proportional hazards assumption 

 
Figure C2.1: Log-log plots for demographic and cancer variables with death as the 
outcome. 
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Figure C2.2: Log-log plots for cancer variables and laboratory variables with death as 
the outcome. 
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Figure C2.3: Log-log plots for laboratory variables with death as the outcome. 
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Appendix D 

Appendix D1: R-code used to calculate joint probabilities for 

performance statistics 

# load library 
library("mnormt") 
 
# set seed 
set.seed(86454) 
 
######################################################################## 
#   Function using the number of samples (N) as input                  # 
#   mu = mean vector, Sigma = var‐cov matrix,                          # 
#   df = degrees of freedom and validation criteria=a,b & c            # 
######################################################################## 
 
#Function for joint probability of satisfying validation criteria for DVT model 
f_jointprob1<‐function(N,mu,Sigma,df,a,b,c){ 
   
  #Draw random samples from bivariate t‐distribution  
  Nsamples<‐rmt(N,mu,Sigma,df) 
   
  #Define first column from the random samples  
  col1<‐Nsamples[,1] 
 
  #Define second column from the random samples  
  col2<‐Nsamples[,2] 
   
  #Set count to zero so that we can count the number of samples for which  
   the validation criteria are satisfied 
  count<‐0 
   
  #For each row from 1 to N: 
  for(i in 1:N){ 
     
    #Check the entries of both columns satisfy the validation criteria  
    if(col1[i]>=a  & col1[i]<=b & col2[i]>=c){ 
       
      #If criteria are satisfied, add 1 to count 
      count<‐count+1 
    } 
  } 
   
  #Return proportion of samples meeting criteria as output 
  return=count/N 
} 
 
#Function  for  joint  probability  of  satisfying  validation  criteria  for  Breast 
Cancer model 
f_jointprob2<‐function(N,mu,Sigma,df,d,e,f){ 
   
  #Draw random samples from bivariate t‐distribution  
  Nsamples2<‐rmt(N,mu,Sigma,df) 
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  #Define first column from the random samples  
  col1<‐Nsamples2[,1] 
   
  #Define second column from the random samples  
  col2<‐Nsamples2[,2] 
   
  #Set count to zero so that we can count the number of samples for which  
   the validation criteria are satisfied 
  count<‐0 
   
  #For each row from 1 to N: 
  for(i in 1:N){ 
     
    #Check the entries of both columns satisfy the validation criteria  
    if(col1[i]>=d  & col2[i]<=e & col2[i]>=f){ 
       
      #If criteria are satisfied, add 1 to count 
      count<‐count+1 
    } 
  } 
   
  #Return proportion of samples meeting criteria as output 
  return=count/N 
} 
 
######################################################################## 
#   Input for samples ‐ DVT model, Strategy 1                          # 
######################################################################## 
N<‐500000 
mu <‐ c(0.9750971,0.6866886) 
Sigma <‐ matrix(c(0.02911928,0.00325565, 0.00325565,0.00037329), 2, 2) 
df <‐ 10 
a<‐0.9 
b<‐1.1 
c<‐0.7 
 
############### 
#   Output    # 
############### 
proportion_met1<‐f_jointprob1(N,mu,Sigma,df,a,b,c) 
 
######################################################################## 
#   Input for samples ‐ DVT model, Strategy 2                          # 
######################################################################## 
N<‐500000 
mu2 <‐ c(0.9751832,0.6863293) 
Sigma2 <‐ matrix(c(0.03012634,0.00337928, 0.00337928,0.00038859), 2, 2) 
df <‐ 10 
a<‐0.9 
b<‐1.1 
c<‐0.7 
 
############### 
#   Output    # 
############### 
proportion_met2<‐f_jointprob1(N,mu2,Sigma2,df,a,b,c) 
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######################################################################## 
#   Input for samples ‐ DVT model, Strategy 3                          # 
######################################################################## 
N<‐500000 
mu3 <‐ c(0.9716777,0.6859794) 
Sigma3 <‐ matrix(c(0.0295297,0.00331324, 0.00331324,0.00038108), 2, 2) 
df <‐ 10 
a<‐0.9 
b<‐1.1 
c<‐0.7 
 
############### 
#   Output    # 
############### 
proportion_met3<‐f_jointprob1(N,mu3,Sigma3,df,a,b,c) 
 
######################################################################## 
#   Input for samples ‐ Breast Cancer model, C‐stat & D‐stat           # 
######################################################################## 
N<‐500000 
mu4 <‐ c(0.71044666,0.3268395) 
Sigma4 <‐ matrix(c(0.00050658,‐0.00027979,‐0.00027979,0.02601139), 2, 2) 
df <‐ 6 
d<‐0.7 
e<‐99999 
f<‐0.3 
 
############### 
#   Output    # 
###############  
proportion_met4<‐f_jointprob2(N,mu4,Sigma4,df,d,e,f) 
 
######################################################################### 
#   Input for samples ‐ Breast Cancer model, C‐stat & calib (new)       # 
######################################################################### 
N<‐500000 
mu5 <‐ c(0.711926,1.001583) 
Sigma5 <‐ matrix(c(0.00054073,0.00070951,0.00070951,0.00109693), 2, 2) 
df <‐ 6 
d<‐0.7 
e<‐1.1 
f<‐0.9 
 
############### 
#   Output    # 
############### 
proportion_met5<‐f_jointprob2(N,mu5,Sigma5,df,d,e,f) 
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######################################################################## 
#   Input for samples ‐ Breast Cancer model, C‐stat & calib (average)  # 
######################################################################## 
N<‐500000 
mu6 <‐ c(0.7104769,0.9940746) 
Sigma6 <‐ matrix(c(0.00056394,0.0001089,0.0001089,0.05578766), 2, 2) 
df <‐ 6 
d<‐0.7 
e<‐1.1 
f<‐0.9 
 
############### 
#   Output    # 
############### 
proportion_met6<‐f_jointprob2(N,mu6,Sigma6,df,d,e,f) 
 
######################################################################## 
#   Input for samples ‐ Breast Cancer model, C‐stat & calib (closest)  # 
######################################################################## 
N<‐500000 
mu7 <‐ c(0.7094562,0.9573295 ) 
Sigma7 <‐ matrix(c(0.00063688,‐0.00226936,‐0.00226936,0.1100915), 2, 2) 
df <‐ 6 
d<‐0.7 
e<‐1.1 
f<‐0.9 
 
############### 
#   Output    # 
############### 
proportion_met7<‐f_jointprob2(N,mu7,Sigma7,df,d,e,f) 
 
######################################################################## 
#   Input for samples ‐ Breast Cancer model, D‐stat & calib (new)      # 
######################################################################## 
N<‐500000 
mu8 <‐ c(0.3199665,0.9985328) 
Sigma8 <‐ matrix(c(0.02378233,‐0.00139718,‐0.00139718,0.00041476), 2, 2) 
df <‐ 6 
d<‐0.3 
e<‐1.1 
f<‐0.9 
 
############### 
#   Output    # 
############### 
proportion_met8<‐f_jointprob2(N,mu8,Sigma8,df,d,e,f) 
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######################################################################## 
#   Input for samples ‐ Breast Cancer model, D‐stat & calib (average)  # 
######################################################################## 
N<‐500000 
mu9 <‐ c(0.3345175,0.9945885) 
Sigma9 <‐ matrix(c(0.02826252,0.03439829,0.03439829,0.05663072), 2, 2) 
df <‐ 6 
d<‐0.3 
e<‐1.1 
f<‐0.9 
 
############### 
#   Output    # 
############### 
proportion_met9<‐f_jointprob2(N,mu9,Sigma9,df,d,e,f) 
 
######################################################################## 
#   Input for samples ‐ Breast Cancer model, D‐stat & calib (closest)  # 
######################################################################## 
N<‐500000 
mu10 <‐ c(0.3369767,0.9619958) 
Sigma10 <‐ matrix(c(0.02864098,0.03283924,0.03283924,0.10922132), 2, 2) 
df <‐ 6 
d<‐0.3 
e<‐1.1 
f<‐0.9 
 
############### 
#   Output    # 
############### 
proportion_met10<‐f_jointprob2(N,mu10,Sigma10,df,d,e,f) 
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Appendix D2: Sensitivity analysis for breast cancer data 

Table D2.1: Bivariate random-effects meta-analysis results of calibration and 
discrimination performance for the breast cancer model including and excluding 
Sweden, for implementation strategy 2 (average baseline hazard). 

Sensitivity 
analysis 

Validation 
statistic 

Pooled estimate 
(95% CI) 

95% prediction 
interval 

I2 % 
Estimate 

of τ 

Joint 
probability of 

‘good’ 
performance 

in a new 
population* 

IECV 
including 

all 
countries 

Calibration 
slope 

0.994  
(0.836 to 1.153) 

0.416 to 1.572 98 0.221 
0.21 

C-statistic 
0.710  

(0.688 to 0.733) 
0.660 to 0.769 52 0.021 

IECV 
excluding 
Sweden 

Calibration 
slope 

0.999 (0.883 to 
1.114) 

0.594 to 1.404 95 0.146 
0.32 

C-statistic 
0.712 (0.688 to 

0.735) 
0.650 to 0.773 52 0.021 

* Good performance defined by a C-statistic≥0.7 and a calibration slope between 0.9 and 1.1. 
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Appendix D3: Trivariate random-effects meta-analysis 

Table D3.1: Trivariate random-effects meta-analysis results for the DVT model performance statistics, using different 
implementation strategies for the intercept. 

 Performance statistic 
Pooled 

estimate (SE) 

95% confidence 
interval for pooled 

estimate 

Marginal 95% 
prediction interval for 

pooled estimate 

I2 % (approx. 
95% CI for I2) 

τ estimate 
(approx. 95% CI 

for τ) 

Strategy 1: Intercept 
estimated in 
validation study 

Calibration-in-the-large -0.130 (0.028) -0.185 to -0.075 -0.195 to -0.065 1 
0.008 

(0.000 to 0.054) 

Calibration slope 0.975 (0.062) 0.854 to 1.097 0.597 to 1.353 57 
0.158 

(0.059 to 0.258) 

Log(expected/observed) 0.086 (0.019) 0.047 to 0.124 0.041 to 0.128 0 
0.0009 

(0.000 to 0.034) 

C-statistic 0.687 (0.009) 0.670 to 0.704 0.645 to 0.729 34 
0.017 

(0.004 to 0.031) 

Strategy 2: Average 
intercept taken from 
derived random-
intercept model 

Calibration-in-the-large -0.004 (0.158) -0.313 to 0.305 -1.240 to 1.232 97 
0.532 

(0.301 to 0.763) 

Calibration slope 0.980 (0.065) 0.853 to 1.107 0.585 to 1.357 59 
0.165 

(0.063 to 0.268) 

Log(expected/observed) 0.022 (0.116) -0.206 to 0.250 -0.887 to 0.931 97 
0.390 

(0.220 to 0.560) 

C-statistic 0.687 (0.009) 0.669 to 0.705 0.640 to 0.734 37  
0.019 

(0.004 to 0.033) 

Strategy 3: Intercept 
from a study 
included in 
derivation set with a 
similar prevalence 

Calibration-in-the-large 0.047 (0.085) -0.120 to 0.214 -0.584 to 0.678 89  
0.270 

(0.136 to 0.404) 

Calibration slope 0.976 (0.064) 0.851 to 1.102 0.578 to 1.375 59  
0.167 

(0.061 to 0.272) 

Log(expected/observed) -0.029 (0.062) -0.150 to 0.093 -0.485 to 0.427 89  
0.195 

(0.094 to 0.295) 

C-statistic 0.687 (0.009) 0.669 to 0.705 0.640 to 0.734 38 
0.019 

(0.004 to 0.034) 
* A trivariate meta-analysis was fitted to calibration-in-the-large, calibration slope and C-statistic, and then again for log(Expected/Observed), calibration 
slope, and C-statistic. Perfect negative correlation between calibration-in-the-large and expected/observed within studies prevents all four statistics 
being analysed together (due to collinearity). Results were practically the same for calibration slope and C-statistic, regardless of the trivariate model 
fitted. 
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Appendix E 

Appendix E1: Sample size and number of studies 

The first stage was to agree upon the number of studies and the number of individuals within 

studies to be used in all simulations. The histograms of C-statistics calculated using different 

sample sizes (rows) and numbers of studies (columns) are shown below in Figure E1.1. The 

size of the samples has a greater impact on the variability of the estimated C-statistic than 

the number of studies used. Based on the observed graphs in Figure E1.1, 500000 

individuals was selected as appropriate. The distribution is narrower compared to 100000 

individuals, and increasing the sample size to 1000000 individuals only results in a slightly 

narrower distribution but would increase computation time considerably. 

The number of studies was chosen to be 1000. Based on the histograms, 500 would 

probably be adequate, however the main aim of this chapter is to evaluate the shape of the 

true distributions for performance statistics, therefore 1000 studies was considered more 

appropriate to better show the true distributional shape. 
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Figure E1.1: Distribution of C-statistic using different number of studies and different number of individuals within each study. 
Note: columns show different number of studies and rows show different number of individuals within each study. 
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Appendix E2: Example Stata code for simulation study 

An example of a Stata do-file used to generate data and calculate the performance statistics. 
Below is the do-file for scenario 1 (base case) with large heterogeneity in alpha. 

 

********************************************************************************* 
*   Scenario 1: Large heterogeneity in alpha   * 
********************************************************************************* 
*Set working directory 
cd "U:\PhD\Simulation study\Sim results\Alpha heterogeneity" 
 
*Set up postfile to save performance statistics after each study has been generated 
tempname perf 
tempfile perf_stats 
postfile `perf' pop alpha beta prevalence exp obs eo cstat cslope citl using 
`perf_stats', replace 
 
*Set local macros for no. of studies, no. of individuals in each study, predictor 
values, alpha & beta 
local i=0 
local p=1000 
local size=500000 
local beta_mu=0.010 
local beta_sd=0 
local alpha_mu=-1.274 
local alpha_sd=1 
local x1_mu=0 
local x1_sd=17.6 
 
*Loop for each study 
qui forvalues pop=1/`p' { 
 noi _dots `pop' 0 
 local ++i 
 local alpha=rnormal(`alpha_mu',`alpha_sd') 
 local beta=rnormal(`beta_mu',`beta_sd') 
  
 *Generate data for each population 
 clear 
 set obs `size' 
 gen alpha=`alpha' 
 gen beta=`beta' 
 gen x1=round(rnormal(`x1_mu',`x1_sd')) 
 gen lp=`alpha'+`beta'*x1 
 gen p=exp(lp)/(1+exp(lp)) 
 gen outcome=uniform()<=p 
 
 *Prevalence 
 summ outcome 
 local prevalence=r(mean)  
  
 *Fit true model (fixed alpha and beta) 
 logistic outcome x1, coef iterate(0) from(`beta_mu' `alpha_mu', copy) 
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 *Calculate performance statistics for each population 
 *Expected/observed 
 predict xb, xb 
 predict prob, pr 
 summ prob 
 local exp=r(mean) 
 summ outcome 
 local obs=r(mean) 
 local eo=`exp'/`obs' 
 
 *C-statistic 
 lroc, nograph 
 local cstat=r(area) 
  
 *Calibration slope 
 logistic outcome xb 
 local cslope=_b[xb] 
 
 *Calibration-in-the-large 
 logistic outcome, offset(xb) 
 local citl=_b[_cons] 
  
 *Save performance statistics for each study to postfile 
 post `perf' (`pop') (`alpha') (`beta') (`prevalence') (`exp') (`obs') (`eo') 
(`cstat') (`cslope') (`citl') 
} 
 
postclose `perf' 
use `perf_stats', clear 
save "results 2-1-3 scenario 1 alpha het 1_0", replace 
 
*Look at distributions of performance statistics including transformations 
use "results 2-1-3 scenario 1 alpha het 1_0", clear 
foreach var in eo cstat cslope { 
 gen log_`var'=log(`var') 
 gen logit_`var'=logit(`var') 
} 
gen asin_cstat=asin(cstat) 
gen sqrt_eo=sqrt(eo) 
 
*Set up postfile for summary statistics 
tempname summary 
tempfile summ_stats 
postfile `summary' str15 var n mean sd median lci uci min max skewness kurtosis /// 
 using `summ_stats', replace 
foreach var in eo log_eo sqrt_eo cstat log_cstat logit_cstat asin_cstat ///
 cslope log_cslope citl { 
 local varname="`var'" 
 *Histogram and normal probability plots 
 hist `var', name(hist2_1_3_`var'_1_0, replace) normal lcolor(ebg) 
fcolor(navy) 
 graph save "hist2-1-3_`var'_1_0", replace 
 pnorm `var', name(pnorm2_1_3_`var'_1_0, replace) color(blue) 
 graph save "pnorm2-1-3_`var'_1_0", replace 
 
 *Summary statistics 
 summ `var', detail 
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 local no=r(N) 
 local mean=r(mean) 
 local sd=r(sd) 
 local med=r(p50) 
 local min=r(min) 
 local max=r(max) 
 local skew=r(skewness) 
 local kurt=r(kurtosis) 
  
 centile `var', centile(2.5 50 97.5) 
 local lci=r(c_1) 
 local uci=r(c_3) 
 
 *Save summary statistics to postfile 
 post `summary' ("`varname'") (`no') (`mean') (`sd') (`med') (`lci') (`uci') 
(`min') (`max') (`skew') (`kurt')  
} 
 
postclose `summary' 
preserve 
 use `summ_stats', clear 
 save "results summ 2-1-3 scenario 1 alpha het 1_0", replace 
restore 
window manage close graph _all 
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Appendix E3: Including an additional predictor and interaction 

 

 

Figure E3.1: Probability of event with and without inclusion of an additional 
continuous predictor and interaction term for different strength interactions in 
scenarios 4 to 6. 
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Figure E3.2: Probability of event with and without inclusion of an additional 
categorical predictor and interaction term for different strength interactions in 
scenarios 4 to 6. 
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Appendix E4: Histograms for distribution of performance statistics 

 

Figure E4.1: Histograms for natural log of C-statistic in all scenarios when 
heterogeneity in β was large (setting 7: σβ=0.07). 
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Figure E4.2: Histograms for C-statistic on original scale and using logit and arcsine 
transformations for scenario 7 when heterogeneity in β was large (setting 7: σβ=0.07). 

 

Figure E4.3: Histograms for C-statistic on original scale and using logit and arcsine 
transformations for scenario 4 when heterogeneity in α was large (setting 4: σα=1.0). 
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Figure E4.4: Histograms for E/O on original scale and using natural log and square 
root transformations for scenarios 3, 6 and 9 when heterogeneity in α was large 
(setting 4: σα=1.0). 
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Figure E4.5: Histograms for E/O on original scale and using log and square root 
transformations for scenarios 1, 2 and 3 (weak predictor) when heterogeneity in β was 
large (setting 7: σβ=0.07). 
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