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Abstract 

Modern crop varieties contain limited genetic diversity. Demand from an expanding human 

population requires crop yields to increase substantially, however, a low capacity for 

adaptation may leave crops susceptible to environmental change, threatening future food 

security. Crop wild relatives (CWR) are a valuable, but threatened, genetic resource 

containing more genetic diversity than their cultivated relatives that can be utilised by plant 

breeders to improve the resilience of new crop varieties. This thesis researches methodologies 

to facilitate systematic, active conservation of CWR and their genetic diversity within a 

national context using the UK and its devolved administrations as an exemplar. Methods 

involve the development of CWR inventories, gap analyses, assessment of CWR habitat 

preferences, a case study seeking to justify the establishment of the first UK CWR genetic 

reserve on The Lizard Peninsula, Cornwall and finally, exploration of the use of next-

generation sequencing as a tool for targeting collection of accessions to fill genetic gaps in 

genebanks. A key success of this research was the involvement of stakeholders, bridging the 

gap between research and practice. The methods used can now be applied to other countries 

and can be integrated into European and global conservation planning, contributing to 

improved future food security. 

  



 

 ii 

 

 

 

“It always seems impossible until it’s done” 

Nelson Mandela 
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1.1 What is food security? 

Food security is a state that ‘exists when all people, at all times, have physical and economic 

access to sufficient, safe and nutritious food to meet their dietary needs and food preferences 

for an active and healthy life’ (FAO, 2010). There are many strands to this definition, both 

societal and scientific, which pose fundamental challenges to the global community in 

achieving a state of food security for an increasing population (United Nations, 2011). These 

include challenges relating to food production and its resilience particularly in light of climate 

change, the global distribution of food supply to address poverty and hunger, and the 

mitigation of the impact of intensive agricultural systems on biodiversity and ecosystems 

(Government Office for Science, 2011). Though all three challenges are crucial to achieving 

food security, it is the former challenge of improving the resilience of food production that is 

the core concept underlying this thesis with particular regard to crop wild relative (CWR) 

conservation and use for crop improvement. 

The primary objective of the work presented in this thesis was to research methodologies to 

facilitate systematic, active conservation of CWR, and their genetic diversity, within a 

national context using the United Kingdom of Great Britain and Northern Ireland (UK) and its 

devolved administrations as an exemplar. CWR are a plant genetic resource (PGR) whose 

largely untapped pool of genetic diversity can be utilised by the plant breeding community to 

breed novel varieties, with improved biotic and abiotic stress tolerance, improved yield and 

reliance on fewer resource inputs, into modern crop varieties (Maxted and Kell, 2009; FAO, 

2010). Their potential, particularly in light of climate change, to contribute to food security is 

vast and consequently, their conservation and use should be a priority in all parts of the world. 
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1.2 The food production challenge 

Many of the food crops on which humans now depend were first domesticated approximately 

10,000 years ago when hunter-gatherers made the transition to farming communities 

(Vaughan et al., 2007). Over the last century there has been a much faster transition moving 

away from the farming of traditional, farmer selected, crop varieties to the farming of modern 

crop cultivars that are high-yielding; a change that reached its peak during the ‘Green 

Revolution’ in the 1970s (Tanksley and McCouch, 1997; Esquinas-Alcázar, 2005). The 

primary driver behind this shift in agricultural production systems was the need to meet the 

demands of a rapidly increasing human population, a challenge that is just as relevant now 

with the global population expected to reach nine billion people by 2050 (United Nations, 

2011).  

Both domestication from wild species and the shift from traditional to modern crop varieties 

have caused bottlenecks that have led to a loss of genetic diversity in modern crops, as 

illustrated in Fig. 1.1 (Tanksley and McCouch, 1997). This narrowing of the genetic base of 

crops has resulted in the farming of modern crop varieties that are genetically uniform, often 

grown over large areas in monocultures where yield and quality have been valued over 

genetic variability, making crop varieties more susceptible to environmental stresses (Henry, 

2014). Though breeding for agronomically beneficial traits has shown to have significantly 

increased crop yields in the past, it has led to a state of genetic vulnerability in the majority of 

crops with some extreme consequences (Godfray et al., 2010; FAO, 2010). For example, the 

breeding of hybrid corn in the USA by selecting for ‘T’ cytoplasmic male sterility, producing 

high yielding but uniform varieties with a narrow genetic base (Tatum, 1971). In the late 

1960s, it was found that all lines with ‘T’ cytoplasmic male sterility were susceptible to 

Southern corn leaf blight Helminthosporium maydis Nisikdo and Miyake and in 1970 a major 
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epidemic swept the USA with some regions experiencing losses of more than 50% of total 

yields (Tatum, 1971). The first report on the state of the world’s plant genetic resources for 

food and agriculture (PGRFA) defines genetic vulnerability as the ‘condition that results 

when a widely planted crop is uniformly susceptible to a pest, pathogen or environmental 

hazard as a result of its genetic constitution, thereby creating a potential for widespread crop 

losses’ (FAO, 1997). The variation in modern varieties can only be expanded by the 

utilisation of the wider diversity found in PGR (Tanksley and McCouch, 1997). 

Figure 1.1 Genetic bottlenecks experienced by crops, resulting from domestication and the 

breeding of modern crop varieties. Coloured squares illustrate allelic variation in wild 

populations lost through domestication and breeding (Source: Tanksley and McCouch, 1997). 

 

Pests, pathogens and environmental hazards are likely to become increasingly prevalent due 

to the impacts of climate change. The fifth assessment report from the Intergovernmental 

Panel on Climate Change (Stocker et al., 2013) shows that global mean surface temperatures 

have been rising since the late 19
th

 century. In the mid-to-high northern hemisphere, the last 

30 years have been the warmest of the last 800 years and data suggest, with a 95–100% 

probability, that human activities have contributed to over 50% of the increases recorded in 

global mean surface temperatures between 1951 and 2010 (Stocker et al., 2013). Future 

projections suggest that temperature increases will be a continuing trend to 2100 and beyond 
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(Stocker et al., 2013). Changes in patterns of precipitation have also been observed and future 

projections reveal that low latitudes are likely to experience less precipitation whereas high 

latitudes are likely experience increases (Stocker et al., 2013). Sea level rises, driven by 

warming oceans and the melting of ice sheets and glaciers from land masses, have occurred at 

an estimated rate of 3.2mm yr
-1

 between 1993 and 2010 and will continue to rise under future 

climate scenarios. In addition, more extreme weather patterns are predicted with increased 

frequency worldwide (Stocker et al., 2013). In Europe this is likely to manifest itself through 

heat waves, more frequent and intense precipitation and more frequent storms (Stocker et al., 

2013). 

All of these trends will require greater access to a wider pool of genetic diversity in food 

production systems to enable adaptation to novel conditions and resilience (FAO, 2015). 

Extreme temperatures are likely to have a detrimental effect on yield. This was demonstrated 

by Schlenker and Roberts (2009) in corn, soybean and cotton where even under the slowest 

warming climate scenario, yields are expected to reduce by between 30–46%. However, some 

studies have shown that projected temperature increases may actually contribute to increased 

crop yields, this has been demonstrated for sugar beet in England and potato yields in 

Scotland (Jaggard et al., 2007; Gregory and Marshall, 2012). Despite this potential benefit, 

modern crop varieties will also have to contend with a range of other abiotic stresses 

including water stress either through drought or flooding as a result of changing weather 

patterns, salinisation due to rising sea levels around coastal agricultural land, irrigation and 

forest clearance (Flowers and Flowers, 2005) and will need to have the capacity to survive 

extreme weather events. With the projected changes in temperature and weather patterns, the 

threat from pests and pathogens is also likely to increase. Evans et al. (2008) investigated the 

likely shift in distribution of the pathogen, phoma stem canker Leptosphaeria maculans 
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(Desm.) Ces. & de Not; a worldwide disease of Brassica crops, causing significant losses in 

yield. In the UK, the disease is most severe in the south with a much lower impact in northern 

areas; however over the next 20 years climate change models demonstrated that the range and 

severity of this disease will increase (Evans et al., 2008). The effects of globalisation, which 

increase the numbers of introductions of non-native pests and pathogens, jeopardise food 

security (Anderson et al., 2004). Dependence on finite resources, such as phosphorus in 

fertilizers, to improve crop yields also highlights the need for improved genetic diversity in 

crop varieties to create cultivars that use resource inputs more efficiently (Wissuwa et al., 

2015).  

The genetic vulnerability of modern crop cultivars, together with threats to agriculture 

through climate change, salinisation, globalisation and resource limitations puts food 

production in a precarious situation where future food security is uncertain. To compound 

this, Khoury et al. (2014) demonstrate that food supplies across the world are becoming 

increasingly homogenous, resulting in more people relying on fewer, genetically vulnerable, 

crop species and varieties. These issues are recognised in the majority of country reports 

collated for the second report of the state of the world’s PGRFA, where there are clear 

concerns over the uniformity of crop cultivars, and emphasis on the need for increased genetic 

diversity in agriculture to adapt to changing conditions and ensure food security for the future 

(FAO, 2010). 

1.3 Genetic resources: an ecosystem service 

The Millennium Ecosystem Assessment published in 2004, was intended to investigate how 

ecosystem change is impacting human well-being in a global context (MEA, 2004). Through 

this work, the concept of ‘ecosystem services’ was also introduced, identifying the ways in 
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which biodiversity and ecosystems benefit humankind. Ecosystem services were grouped into 

four classifications: supporting services (e.g. water and nutrient cycles), provisioning services 

(e.g. food and fuel), regulating services (e.g. pollination and pest/disease regulation) and 

cultural services (e.g. recreation) (MEA, 2004). Plant genetic resources were listed in the 

MEA (2004) as a provisioning ecosystem service. 

The Convention on Biological Diversity (CBD) defines genetic resources as ‘any material of 

plant, animal, microbial or other origin containing functional units of heredity, of actual or 

potential value’ (CBD, 1992). Put simply this encompasses any living taxon containing genes 

that are, or could potentially be, of use to humans. According to Jackson and Ford-Lloyd 

(1990), PGR consist of the ‘total genetic diversity of cultivated species and their wild 

relatives’ and they are likely to have an agricultural value. PGRFA are those particularly 

associated with food production and include modern crop cultivars, landraces, traditional 

varieties and CWR (Hawkes et al., 2000). Wild relatives of crop plants are likely to contain 

biotic and abiotic stress resistant or tolerant traits that can be used in plant breeding to widen 

the genetic diversity in modern crop cultivars (Redden, 2013). However, CWR are quite often 

overlooked in terms of their potential for use and value in food production and security (Ford-

Lloyd et al., 2011). 

1.4 Defining a CWR 

In a broad sense, a CWR can be defined as any plant belonging to the same genus as a crop 

(Maxted et al., 2006). Using this definition Kell et al. (2008) demonstrated that of the total 

flora in the region of Europe and the Mediterranean, approximately 80% of taxa could be 

considered as CWR. This high percentage shows that it is important to use a more selective 

definition of a CWR that considers the degree of relatedness between a crop and its wild 
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relatives. This helps directly infer their relative use as gene donors for crop improvement and 

also enables targeted conservation, where resources are limited, of priority species rather than 

all genera. 

In 1971, Harlan and de Wet devised the Gene Pool (GP) concept, which classifies crops and 

their related species into: GP1a containing the cultivated forms of the crop; GP1b the wild 

and weedy forms of the crop where there is no barrier to gene transfer into crops; GP2 which 

contains more distantly related species ‘from which gene transfer to the crop is possible but 

difficult using conventional breeding techniques’ (Maxted and Kell, 2009); and GP3 ‘which 

includes the species from which gene transfer to the crop is impossible, or if possible requires 

sophisticated techniques such as embryo rescue, somatic fusion or genetic engineering’ 

(Maxted and Kell, 2009) (Fig. 1.2). 

 

Figure 1.2 The Gene Pool concept showing that wild relatives toward the centre (GP1b and 

GP2) of the diagram are more closely related to the crop (GP1a) than those towards the edge 

(GP3) (Source: Harlan and de Wet, 1971). 
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Data regarding the ease of gene transfer between crops and CWR is primarily restricted to the 

most globally valuable crops, which are also the best studied e.g. wheat, potato, rice and 

maize (Maxted et al., 2006; Vincent et al., 2013). This meant the GP concept could not be 

applied for the majority of crops and therefore led to the publication of the Taxon Group (TG) 

concept in 2006, which can be used to define CWR through inference of their genetic 

relatedness to a crop using their classification (Maxted et al., 2006) as follows: 

TG1a  – crop 

TG1b – same species as crop 

TG2 – same series or section as crop 

TG3  – same subgenus as crop 

TG4 – same genus 

TG5  – same tribe but different genus to crop 

Combining these two concepts, a CWR can be defined as a taxon belonging to either GP1b or 

2 or belonging to TG1b to 4 of a particular crop (Maxted et al., 2006). 

1.5 The value of CWR and their utilisation 

The use of genes from CWR in crop improvement has been steadily increasing since the 

1940s (Hajjar and Hodgkin, 2007; Maxted and Kell, 2009). Maxted and Kell (2009) found 

that 2% of citations in the literature describing CWR use in plant breeding were published 

prior to 1970, whereas 38% had been published after 1999. The numbers of citations and 

examples of the use of CWR relating to 29 global priority crops are illustrated in Fig. 1.3, 

with results indicating that CWR have predominantly been used to improve staple crops such 
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as wheat, rice and barley (Maxted and Kell, 2009). This suggests a need to expand research 

into a wider range of crops and their associated CWR to draw further beneficial traits from 

their largely untapped gene pools. 

 

Figure 1.3 Total numbers of references that have reported the identification and transfer of 

beneficial traits from 185 CWR to 29 global priority crops, also showing the number of CWR 

taxa utilised per crop (Source: Maxted and Kell, 2009). 

 

Their increasing utilisation has prompted many studies to estimate the value of their 

contributions to improving crop varieties. Pimentel et al. (1997) calculated that CWR 

contribute $115 billion per year globally to increased crop yield. In America alone, it was 

calculated that CWR contribute more than US$350 million per year in terms of improvements 

in yield and quality (Prescott-Allen and Prescott-Allen, 1986). Furthermore, Phillips and 

Meilleur (1998) estimated that if endangered CWR were to be lost, approximately $10 billion 

annually in wholesale farm value would be also be lost as a result. A more recent valuation of 

the potential benefit of using CWR to breed improved commercial crop varieties has been 

carried out by Price Waterhouse Cooper in collaboration with Kew’s Millennium Seed Bank 

(MSB). They estimate that the potential value of using CWR to improve MSB’s 29 priority 
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crops, those listed in Annex I of the International Treaty on Plant Genetic Resources for Food 

and Agriculture (ITPGRFA) (FAO, 2001), will increase from $42 billion in 2013 to $120 

billion in 2021 (PwC, 2013). This valuation considers only 29 priority crops rather than CWR 

as a whole, suggesting that a full valuation of the potential of all globally important CWR to 

contribute to crop development would be much greater. Though the methods of estimation 

and valuation differ between studies, it is clear that CWR are a highly valuable genetic 

resource.  

The majority of examples of crop improvement using traits from CWR have focused on pest 

and disease resistance. Hajjar and Hodgkin (2007) found that of 100 traits bred from a range 

of 60 wild species into 13 crops, over 80% conferred pest and/or disease resistance. 

Furthermore, 56% of citations (relating to the use of CWR in 29 priority crops) reviewed by 

Maxted and Kell (2009) were related to pest or disease resistance traits. For example, a cross, 

and subsequent backcrosses, between wild wheat relative Aegilops peregrina (Hack.) Maire 

& Weiller and cultivated wheat Triticum aestivum L. was carried out by Marais et al. (2008). 

This led to the spontaneous translocation of a segment of a chromosome containing a gene 

(Lr59) conferring resistance to mixed leaf rust (Puccinia triticina Eriks.) in cultivated wheat. 

In another example, a dominant gene (Er3) was identified in the wild species Pisum fulvum 

Sm. that provides resistance to powdery mildew (Erysiphe pisi DC.), a disease that results in 

severe yield losses in cultivated pea Pisum sativum L. (Fondevilla et al., 2007). Successful 

hybridisation between these wild and cultivated pea species and the resulting production of 

plants resistant to powdery mildew demonstrated the potential of using P. fulvum in breeding 

programmes (Fondevilla et al., 2007). 

More recently, traits in CWR for abiotic stress tolerance have been more thoroughly 

investigated, with 13% of citations reviewed by Maxted and Kell (2009) relating to such 
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traits. Lakew et al. (2011) tested the drought tolerance of a range of introgressed lines of 

barley when exposed to nine environments with variable water availability. These breeding 

lines originated from a cross between wild Hordeum vulgare L. subsp. spontaneum (K. Koch) 

Thell. and cultivated barley Hordeum vulgare L., the former known to have a higher capacity 

to tolerate drought (Grando et al., 2001). The range of responses to the environments to which 

these barley lines were exposed led Lakew et al. (2011) to conclude that H. vulgare subsp. 

spontaneum is likely to be a good source of drought tolerance genes that can be further 

investigated and used in barley breeding programmes to produce varieties more resilient to 

predicted changes in climate. Another key example of a recent success in improving abiotic 

stress tolerance of a crop using traits from CWR is that of rice. In 2013 the International Rice 

Research Institute released details of a successful interspecific hybridisation between the 

CWR Oryza coarctata Roxb. and the cultivated rice variety IR56 of Oryza sativa L., using 

embryo rescue techniques. O. coarctata is able to tolerate twice the concentration of salt 

compared to cultivated varieties, and this cross will no doubt have a vast impact on improved 

yields of cultivated rice once a commercial variety has been developed and released (IRRI, 

2013). Taking this research further still, Garg et al. (2014) has sequenced the transcriptome of 

O. coarctata and identified 15,158 genes linked to salinity and submergence tolerance. This 

vast array of genes found in a single wild relative in relation to a single abiotic stress provides 

some idea of the range of useful genes and beneficial traits that are yet to be identified and 

characterised in CWR. Advances in biotechnology such as sequencing and embryo rescue 

techniques are having a significant impact on plant breeding, particularly in aiding the 

characterisation of CWR germplasm to find genes of interest and facilitating the use of more 

distantly related CWR, including those in the tertiary gene pool of a crop (e.g. Lens: Davies et 

al., 2007; Alliaceae: Chuda and Adamus, 2009; Cajanus: Mallikarjuna et al., 2011; 

Vaccinium: Ehlenfeldt and Ballington, 2012; Oryza: Garg et al., 2014). 
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Above are just a few examples of a vast literature on crop improvement using traits from 

CWR. Examples of other types of beneficial traits used from CWR include those for 

improved yield, improved quality, cytoplasmic male sterility, fertility restorers and husbandry 

improvement (Maxted and Kell, 2009). Ultimately, the value of CWR can be considered in 

terms of their potential economic contribution to the agricultural industry but also, and 

perhaps more importantly, the innate value of the pool of genetic diversity and potentially 

useful traits within CWR that could help to mitigate the impact of climate change or other 

unforeseen problems facing food production, and that will be lost if these genetic resources 

are not preserved for the future. 

1.6 Threats facing CWR 

1.6.1 The biodiversity crisis 

CWR are a component of biodiversity and differ from wild plants only in that they are related 

to one or more crop species. The CBD describes biodiversity as ‘the variability among living 

organisms from all sources...and the ecological complexes of which they are part; this 

includes diversity within species, between species and of ecosystems’ (CBD, 1992). To the 

present day this remains the favoured definition (Mace et al., 2012) as it highlights the three 

distinctive levels of diversity: genetics, species and ecosystems. Biodiversity is threatened at 

all three of these levels. The Millennium Ecosystem Assessment (MEA, 2004) found that the 

impact of humans on the environment has meant that the vast majority of ecosystems 

worldwide have been significantly changed requiring species adaptation and migration to 

ensure survival. Species diversity was shown to be in decline, with species extinction rates 

having increased by up to one thousand times the expected background rate (MEA, 2004). 

Considering only species of well-studied higher taxa, between 12% and 52% are threatened 
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according to the International Union for Conservation of Nature (IUCN) red list criteria 

(MEA, 2004; IUCN, 2012). Genetic diversity has also declined across the globe, particularly 

within domesticated species (MEA, 2004). An assessment of the factors driving these losses 

of biodiversity, such as habitat destruction, over-exploitation, invasive species and climate 

change, concluded that in the majority of cases the impact of these factors was either ongoing 

or increasing (MEA, 2004). These results are supported in a study by Butchart et al. (2010), 

which demonstrated that there has been no reduction in the rate of global biodiversity loss 

over the last four decades and that the CBD 2010 target ‘to achieve by 2010 a significant 

reduction of the current rate of biodiversity loss’ was missed (CBD, 2002). This is likely to be 

due to the increasing pressures being exerted on the environment due to the unsustainable rate 

of global human population growth (Loreau et al., 2006). Though the profile of biodiversity 

and its ongoing decline was raised following the United Nations Earth Summit conference in 

Rio de Janeiro in 1992, when the CBD was ratified, many years later biodiversity as a whole 

remains undervalued (Loreau et al., 2006). It is imperative that more is done to maintain 

biodiversity and improve conservation efforts. It is clear that although legislation for 

conservation exists, it is insufficient without action, crucially this must stem from improved 

communication between research and policy makers (Loreau et al., 2006; Butchart et al., 

2010). 

1.6.2 Focus on genetic diversity 

Genetic diversity has been studied to a lesser extent than species and ecosystem diversity 

(Hargreaves, 2011) but it is this level of biodiversity that is widely accepted as imperative for 

populations to persist (Frankel and Soulé, 1981; Gilpin and Soulé, 1986), and in the case of 

CWR it has the added value of providing traits to expand the limited genetic diversity in 

modern crop varieties. Natural selection is a non-random process whereby populations adapt 
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to cope with environmental change, resulting in a change in population allele frequencies and 

higher numbers of individuals able to tolerate the environmental change i.e. they have an 

increased evolutionary fitness (Bijlsma and Loeschcke, 2012). The capacity of a population to 

adapt is positively correlated with the amount of extant genetic variation and it follows that 

with limited genetic variation, natural selection will also be limited (Reed and Frankham, 

2003; Blows and Hoffmann, 2005). 

The processes of inbreeding and genetic drift (together known as ‘genetic erosion’) both act to 

reduce the genetic diversity of populations, the former due to breeding between related 

individuals and the latter due to the random loss of alleles in populations where not all 

individuals contribute equally to the next generation, both processes result in increased 

homozygosity (Charlesworth and Charlesworth, 1987; Bijlsma and Loeschcke, 2012). With 

low genetic diversity, individual and population fitness is reduced because there is less 

capacity for adaptation to changing environments, leading to a higher risk of extinction 

(Höglund, 2009). This is particularly concerning in light of the predicted effects of climate 

change (section 1.2). 

Habitat destruction and land use change are exacerbating this issue as both lead to 

increasingly fragmented and isolated habitats and populations, between which gene flow is 

limited (Bijlsma and Loeschcke, 2012). This results in small populations that are particularly 

susceptible to genetic erosion and therefore, extinction. The effects of genetic drift have been 

shown to have a larger effect as population sizes become smaller, resulting in a higher rate of 

allele loss, particularly of rare alleles (Bijlsma and Loeschcke, 2012). As stress 

resistant/tolerant genes often occur at low frequencies (McNair, 1997) this will greatly affect 

the capacity of populations to persist under changing environments and is a concern for 

maintaining valuable traits in CWR. In addition, Bijlsma et al. (2000) demonstrate that the 
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probability of extinction of a small population significantly increases due to a higher rate of 

inbreeding and is further increased when exposed to environmental stress. This suggests that 

environmental change, particularly the combined effects of climate change and habitat 

destruction, will have a strong and detrimental impact on the adaptive capacity of populations; 

the impact is also likely to be greater for outbreeding species (Bijlsma et al., 2000). As a 

result, active conservation of CWR to maintain sufficient population sizes and genetic 

variation is crucial to ensure their long-term persistence, their ongoing adaptation and their 

availability for use for crop improvement. An additional factor that may result in a higher 

susceptibility of CWR genetic diversity is the association of some populations with disturbed, 

early-successional plant communities (Grime, 1977; Maxted and Kell, 2009). These habitats 

are likely to be more susceptible to the impacts of anthropogenic change, experiencing higher 

levels of stress than perennial, mid to late-successional plant communities as they are not 

usually considered for inclusion in conservation designations (JNCC, 2013). 

1.7 How can CWR be systematically conserved? 

Despite recognition of the threats facing CWR and their importance in crop improvement, 

they remain undervalued and poorly conserved (Ford-Lloyd et al., 2011). Conservation 

priorities have most often fallen into two categories: conservation of rare/threatened species 

and conservation of crop varieties (Maxted and Kell, 2009). CWR fall between these two 

branches of conservation and so have often lacked necessary attention (Maxted, 2003). This 

has resulted in some piecemeal approaches to CWR conservation where more comprehensive 

and systematic conservation methodologies would be appropriate, such as the model 

presented by Maxted et al. (2007) in Fig. 1.4. The model illustrates the process required for 

the systematic conservation of the full diversity of CWR at a national level. The 



Chapter 1 Introduction 

 

 17 

methodological approaches to CWR conservation outlined in sections 1.7.1 to 1.7.5 below 

highlight how key aspects of this model can be achieved. 

 

Figure 1.4 Model for systematic conservation of national CWR diversity (Modified from: 

Maxted et al., 2007). 
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1.7.1 CWR checklists and inventories  

The development of a national checklist and inventory for CWR acts as a starting point and 

foundation for the establishment of appropriate national CWR conservation actions. A 

checklist is a full list of all of the CWR taxa and their authorities occurring within a defined 

geographic area (Maxted et al., 2013a). It reveals the breadth of CWR diversity across the 

geographic area and can be developed by, 1) identifying the genera of cultivated crops within 

the study area and 2) matching the genera to a list of the flora of the same area, a method used 

by Kell et al. (2015) in China and previously developed by Kell et al. (2005; 2008) to produce 

a CWR Catalogue for Europe and the Mediterranean. This catalogue is a valuable resource 

enabling European countries to extract national CWR checklists, despite this Iriondo et al. 

(2015) reports that only about 10 checklists are actively being worked on within Europe and 

globally this figure is no higher than 20. 

An inventory is a subset of the checklist, consisting of CWR taxa that are a priority for active 

conservation; inventories will also contain ancillary information about each taxon (Maxted et 

al., 2013a). It is highly unlikely that the resources and finance will be available to establish 

active conservation management and monitoring for all taxa in a checklist, so a process of 

prioritisation based on select criteria is necessary to create an inventory of priority CWR on 

which to focus conservation actions (Maxted et al., 1997a; Magos Brehm et al., 2010; Kell et 

al., 2015; Iriondo et al., 2015). The taxa listed in an inventory will be those included in 

downstream gap analyses. More and more inventories of priority CWR are now being 

developed, taking vital steps towards implementation of CWR conservation. These include, 

among others, a global inventory of priority CWR containing 1,667 taxa related to 173 global 

priority crops (Vincent et al., 2013), an inventory of CWR in the USA containing 821 taxa 

related to 63 major agricultural crops (Khoury et al., 2013) and a number of inventories from 
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European countries such as, Spain (Rubio Teso et al., 2013), Finland (Fitzgerald, 2013), Italy 

(Landucci et al., 2014) and Cyprus (Phillips et al., 2014) containing 580, 209, 129 and 178 

taxa respectively. 

A wide range of criteria can be used for prioritisation and these are outlined in detail in 

Maxted et al. (1997a) and Magos Brehm et al. (2010). Kell et al. (2015) highlight the three 

criteria that are the most relevant when determining priority CWR for conservation planning: 

1) socio-economic use of the related crop, 2) the threat status of the CWR and 3) the closeness 

of the genetic or taxonomic relationship between the crop and its wild relative, useful in 

determining the ease of use of the CWR (Ford-Lloyd et al., 2008; Maxted and Kell, 2009). 

These three criteria have all been used in the Spanish, Finnish, Italian and Cypriot inventories. 

Amongst other criteria including: native status of the CWR, distribution and endemicity, 

legislation and the centre of diversity of the CWR (Rubio Teso et al., 2013; Fitzgerald, 2013; 

Landucci et al., 2014; Phillips et al., 2014). Though the application of criteria differs 

markedly between studies, the most important outcome is that the final list of priority CWR 

must consist of taxa that the stakeholders in the geographical region of study are willing to 

conserve. 

1.7.2 Gap analysis 

The concept of gap analysis was first outlined by Margules (1989) as a means of evaluating 

the effectiveness of existing conservation efforts and identifying areas where certain aspects 

of biodiversity were either absent or under-represented. It was principally concerned with 

investigating habitat-based conservation but since then has increasingly been considered for 

studies concerning taxonomic and genetic diversity in PGR. Maxted et al. (2008a) proposed 

the following four-step methodology, specifically adapted to facilitate PGR gap analyses: 
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1. Circumscription of target taxon and target area 

2. Assessment of natural diversity (taxonomic diversity, genetic diversity, ecogeographic 

diversity, threat assessment) 

3. Assessment of current conservation strategies (in situ and ex situ) 

4. Reformulation of conservation strategies according to identified gaps in current 

conservation 

Since a study by Jones et al. (1997), which sought to identify gaps in genebank collections of 

wild forms of Phaseolus vulgaris L., the volume of gap analysis publications focused on 

conservation of PGR has significantly increased (in situ: Parra-Quijano et al., 2003, 2007; 

Rodrigues et al., 2004; Hijmans and Spooner, 2001 and ex situ: Jarvis et al., 2005; Ghamkhar 

et al., 2007; Grenier et al., 2001; see Parra-Quijano et al., 2012a for a full review). More 

recently Landucci et al. (2014) have conducted a gap analysis case study for two priority 

Brassica species occurring within Italy, B. incana Ten. and B. montana Pourr. Results 

showed that not all populations of these economically important CWR are sufficiently 

protected either in the wild or as back-up collections in genebanks. Khoury et al. (2015) 

published an ex situ gap analysis study of sweet potato Ipomoea batatas (L.) Lam. CWR in 

the Americas. Findings highlighted that 78.6% of the CWR analysed were a high priority for 

further collection of accessions to fill gaps in genebanks and that the species hotspots of 

central Mexico to Central America and the southeastern USA would be ideal locations for 

collecting missions. From these studies is it clear that gap analysis is an important tool for 

informing CWR conservation planning and can be easily applied to any geographic area and 

any group of CWR taxa. 
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1.7.3 Complementary in situ and ex situ conservation 

Conservation is principally carried out using either in situ or ex situ approaches. In situ 

conservation approaches can generally be defined as those which maintain target biological 

diversity within its natural habitat or, in terms of agricultural species, within the habitat where 

their distinctive traits and adaptations were developed (CBD, 1992). Approaches can include 

genetic reserves, on-farm conservation or home garden management (Maxted et al., 2008b). 

In contrast, ex situ conservation approaches are those that conserve biological diversity 

outside of their natural habitat (CBD, 1992), with the most common approach for plants being 

the storage of dried seed germplasm at sub-zero temperatures in genebanks such as the MSB, 

Royal Botanic Gardens, Kew. 

Previously, focus was most often directed at ex situ conservation approaches, but more 

recently the implementation of in situ conservation techniques has become more of a priority 

(Maxted et al., 2008b). Many advantages and disadvantages have been identified in relation to 

both approaches (Maxted et al., 1997b), perhaps the most crucial advantage being that in situ 

conservation maintains the dynamic biotic and abiotic interactions within their natural habitat 

enabling a taxon to respond and adapt to a changing environment. In contrast, ex situ 

conservation halts this completely so no further evolutionary development can take place, 

decoupling the plant from its natural habitat. This could limit the ability of the conserved 

material to survive if reintroduced to its natural habitat or to subsequently provide 

advantageous genes for crop improvement (Maxted et al., 1997b). Some species are intolerant 

of ex situ storage conditions and are termed ‘recalcitrant’, recalcitrant species however are 

easily conserved within an in situ environment or in ex situ field genebanks (Maxted et al., 

1997b). Furthermore, in situ conservation can also allow a large number of taxa to be 

conserved within one protected area, including a target taxon or range of target taxa and their 
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associated species, whereas ex situ conservation only allows the conservation of one taxon per 

accession without its associated species (Maxted et al., 1997b). 

Considering the advantages discussed above, there seems to be a strong case to support the 

use of in situ techniques but equally, ex situ techniques do also have their own advantages. 

Germplasm can be stored ex situ securely and long-term, whereas in situ taxa could be seen as 

insecure. In the event of sudden change such as a natural disaster or urban development, part 

or all of a conserved population could be put at risk of extinction; ex situ conservation can 

overcome this drawback (Maxted et al., 1997b). As previously stated by Maxted et al. 

(1997b), conservation of CWR can be considered as pointless without the ability to use the 

conserved material for crop improvement. Ex situ conservation can allow easier access to 

material for use in breeding whereas material can be much harder to access from in situ 

approaches due to restrictions concerning access to land and permission to collect material.  

It is clear that both approaches have their merits as well as certain drawbacks and as such it 

was emphasised in article 9 of the CBD (1992) that neither approach should be used 

independently of the other but each should complement the other. Greene et al. (2014) also 

agree that conservation strategies should integrate both approaches to achieve full 

conservation and use of CWR. This idea of complementary conservation enables continued 

evolutionary development of in situ populations, with ex situ accessions acting as an 

insurance against sudden loss of in situ populations, capturing a snapshot of alleles from 

populations that may otherwise be at risk of loss through genetic drift and providing a store of 

material that can be easily accessed for utilisation in plant breeding and crop improvement 

(Maxted et al., 1997b; Greene et al., 2014). However, PGR conservation efforts remain 

largely focused on ex situ approaches, with Maxted (2015) estimating that 99% of funding is 
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spent on ex situ conservation; this is far from being complementary in practice. The concept 

of complementary conservation is adopted in this thesis. 

1.7.4 Focus on genetic reserves 

Genetic reserves are protected areas where the primary aim is to conserve the maximum range 

of genetic diversity of a species in the reserve, both within and among populations; such 

reserves must provide active and long-term management (Maxted, et al., 1997c; Maxted and 

Kell, 2009). The call for CWR genetic reserves has been clearly set out in target 9.1 of the 

European Strategy for Plant Conservation (ESPC), which states the requirement for the: 

‘establishment of 25 European crop wild relative genetic reserves covering the major hotspots 

of species and genetic diversity’ (Planta Europa, 2008). It is widely recognised that genetic 

reserves should be established within existing protected areas and management plans 

amended to accommodate this (Maxted et al., 1997b; Heywood and Dulloo, 2006; Iriondo et 

al., 2008a; Hunter and Heywood, 2011). Maxted et al. (2008b), emphasise the potential 

benefits of basing CWR genetic conservation within existing protected areas as: 

1. Existing protected areas are already associated with a long-term conservation ethos so 

are unlikely to be affected by stochastic change in the environment or in their 

management 

2. It is relatively easy to amend current protected area management plans to incorporate 

genetic conservation of CWR, in some cases minimal amendments and just routine 

monitoring may be required 

3. Establishment of new protected areas is not necessary, avoiding the potential costs of 

acquiring land for this purpose 
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In addition, this approach of conserving CWR within existing protected areas means that there 

is no additional regulatory burden on land owners, and also that the reserves can be 

established without new legislation.  

Globally there already exists a number of CWR genetic reserves e.g. in Armenia, Turkey and 

Mexico (Maxted and Kell, 2009; Hunter and Heywood, 2011). In Europe some genetic 

studies have identified potential sites for their establishment such as for Brassica wild 

relatives in Italy (Branca et al., 2012) and Beta patula Aiton species in Madeira (Pinheiro de 

Carvalho et al., 2012; Frese et al., 2012) but few, if any, are thought to meet the minimum 

standards outlined in Iriondo et al. (2012). To meet the standards, a potential genetic reserve 

would have to have been selected based on systematic taxon prioritisation, a demographic 

survey and genetic diversity analysis. CWR within the reserve must be granted full, long-term 

protection through establishment of active management plans, ensuring there are no conflicts 

with the conservation of any other aspect of protected biodiversity, establishment of long-

term monitoring plans and development of a procedure to ensure CWR material is made 

available for utilisation e.g. through complementary ex situ conservation in genebanks 

(Iriondo et al., 2012). The establishment of CWR genetic reserves that meet these standards 

would result in a significant improvement in the current state of in situ conservation for CWR. 

Essentially though, genetic reserve approaches should also be complemented by conservation 

outside of protected areas where many CWR populations are thought to exist (Maxted and 

Kell, 2009), ensuring the full range of CWR genetic diversity is preserved. 

1.7.5 Genetic diversity analysis: molecular markers 

As stated in section 1.6.2, conservation of genetic variation within CWR is crucial to ensure 

long-term persistence and ongoing adaptation in changing environmental conditions, as well 

as the presence of traits for use in crop improvement. As a result it is important that 
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conservation efforts, both in situ and ex situ are informed by genetic diversity analyses 

(Schoen and Brown, 1993). Genetic diversity can be quantified using molecular markers, 

which reveal polymorphisms in DNA. Many molecular marker techniques have been 

developed over the past few decades. The ideal marker is one which is highly polymorphic, 

codominant (able to distinguish heterozygotes from homozygotes), abundant and distributed 

evenly throughout the genome whilst at the same time involving a simple, cost-effective 

technique that produces large amounts of high quality data, is easily reproducible and 

transferable across different laboratories (Vignal et al., 2002; Semagn et al., 2006). However, 

no single molecular marker has yet been developed that meets all of these criteria and so the 

most appropriate choice of marker depends on the aims of the specific study in question 

(Semagn et al., 2006).  

Restriction fragment length polymorphisms (RFLPs), hybridisation-based markers, were 

widely used in the late 1980s due to their high reproducibility and codominant nature, but 

they are now obsolete due to their cost and the labour intensive technique involved 

(Mammadov et al., 2012). Polymerase chain reaction (PCR) based methods, including 

random amplification of polymorphic DNA (RAPD), amplified fragment length 

polymorphism (AFLP) and microsatellites have since become widely used. RAPD have been 

used successfully in conservation planning (e.g. to investigate the geographic distribution of 

genetic diversity in lentil CWR (Ferguson et al., 1998). However due to the low 

reproducibility of RAPD marker results, AFLPs and microsatellites are now more commonly 

used (e.g. Hargreaves et al., 2010; Adugna et al., 2013; Richards et al., 2014; Marfil, et al., 

2015). AFLPs, first described by Vos et al. in 1995, combine the use of restriction enzymes 

and PCR. Though they are dominant in nature they are highly polymorphic, reproducible and 

distributed across the whole genome (Semagn et al., 2006). A significant additional benefit is 
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that they do not require any prior sequence information so they can be used to quantify 

genetic diversity in any species; this is particularly useful in CWR studies where few species 

have known sequence information (Schløtterer, 2004). Microsatellites are short repeated 

sequences of 2–8 base pairs (Semagn et al., 2006). Similarly to AFLPs they are highly 

polymorphic and yield reproducible results but have the added advantage of codominance 

(Vignal et al., 2002). However, they do require prior sequence information to develop primers 

for amplification and this is an expensive and time-consuming process (Vignal et al., 2002). 

As such they are likely to be most appropriate in genetic diversity studies of major global 

crops. 

Molecular markers known as single nucleotide polymorphisms (SNPs), the most abundant 

source of genetic variation in the genome, have been increasingly used over the last ten years 

(Mammadov et al., 2012; Ren et al., 2013). They are highly suitable for high-throughput 

automation, so can be used for studies involving sequencing (Mammadov et al., 2012). The 

cost of identifying SNPs through sequencing is decreasing and this suggests the use of this 

technology will soon become routinely affordable for population genetic studies to inform 

conservation planning (Schløtterer, 2004). SNPs can be identified in both coding and non-

coding DNA sequences making it possible to study both genome-wide genetic diversity and 

also to focus on adaptive genetic diversity, which is of particular value in CWR conservation. 

In terms of CWR conservation it is important that adaptive traits are conserved both to ensure 

their capacity to adapt to changing environments in situ, as well as to provide potentially 

useful traits for plant breeding. There is some debate as to whether genome-wide genetic 

diversity as revealed by molecular markers correlates with adaptive diversity. Reed and 

Frankham (2001) argue that there is no correlation, however there are also a number of 

studies suggesting a relationship (Schoen and Brown, 1993; Richardson et al., 2009; Johnson 
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et al., 2011). Despite this, Reed and Frankham (2003) did find a significant, positive (though 

moderate) correlation between molecular heterozygosity and measures of evolutionary fitness, 

which demonstrates that molecular markers can indicate a population’s fitness. Though 

adaptive diversity is most valuable in terms of CWR utilisation in plant breeding, the most 

pragmatic approach to their conservation is likely to be to preserve as much genetic diversity 

as possible. With more genetic diversity, populations have more capacity to adapt (Reed and 

Frankham, 2003; Blows and Hoffmann, 2005) so are more likely to persist under 

environmental stress. This also increases the likelihood of conserving adaptive variation. 

Equally, it is not possible to know the traits that may be brought under selection in future 

environmental conditions (Schoen and Brown, 1993) so the conservation of the maximum 

range of genetic diversity is a sensible approach. Though direct analysis of genetic diversity is 

always preferable, where such studies are not possible, the use of ecogeographic diversity as a 

proxy for genetic diversity can be used (Parra-Quijano et al., 2008). 

1.8 The United Kingdom 

1.8.1 Geography of the United Kingdom 

The UK is formed of the devolved administrations of England, Wales, Scotland and Northern 

Ireland. The former three administrations make up the island of Great Britain. The UK has a 

total area of 242,000km
2
, extending approximately 1,000km from the south coast of England 

to the north coast of Scotland (FAO, 2009). In mid-2013 the UK population was estimated to 

be 64.1 million, with England being home to 84% of the UK population and Scotland, Wales 

and Northern Ireland containing 8%, 5% and 3% respectively (ONS, 2014). The population is 

reported to have increased by more than 10 million people since 1964 (ONS, 2014). 
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The UK has a temperate climate where the temperature rarely exceeds highs of 32ºC or lows 

of -10ºC (FAO, 2009). Mean annual rainfall across the UK between 1981 and 2010 was 

recorded as 1,154mm, though in mountainous regions to the west and north it can exceed 

1,600mm whereas in central and eastern areas of the UK it can be less than 800mm (FAO, 

2009; Met Office, 2015). However, the impacts of climate change are likely to result in rising 

temperatures, particularly in the summer, less summer precipitation but more winter 

precipitation, rising sea levels and extreme weather events such as heat waves, flooding and 

drought occurring at greater frequencies (UKCP09, 2009). 

1.8.2 Biodiversity of the United Kingdom 

The UK National Ecosystem Assessment (UK NEA, 2011) identifies seven broad habitat 

types occurring within the UK. The most extensive of which is enclosed farmland covering 

40% of land area in the UK, half of which is arable land, particularly in the east of the 

country, with the rest primarily consisting of nutrient rich grassland in wetter western regions 

(UK NEA, 2011). Other habitat types include mountains, moorlands and heaths (18% of UK 

land area), semi-natural grasslands, woodlands (managed plantations and both ancient and 

semi-natural woodlands), freshwaters (including openwaters, wetlands, floodplains, reed 

beds, fenland, bogs and marshes), coastal margins (including dunes, machair, saltmarsh, 

shingle, sea cliffs and coastal lagoons) and urban areas (7% of UK land area and containing 

80% of the UK population) (UK NEA, 2011). Across all of these UK habitats (including 

marine), 30% of the ecosystem services they provide are reported as declining with others 

already in a degraded state (UK NEA, 2011). 

The flora of the British Isles consists of approximately 4,800 taxa, including all vascular 

plants, (pteridopytes, gymnosperms and angiosperms), as well as native taxa, alien taxa and 

hybrids (Stace, 2010). Walker (2003) estimates that throughout the twentieth century, an 
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average of one wild vascular plant was lost every two years in each UK county. According to 

the Vascular Plant Red Data List for Great Britain, 345 taxa (20%), out of 1,756 native and 

archaeophyte taxa assessed, are threatened based on IUCN red list criteria (Cheffings and 

Farrell, 2005). Archaeophytes are taxa introduced to the UK prior to the year AD 1500 (Stace, 

2010). Hopkins and Maxted (2011) highlight the primary threats to CWR in the UK include 

changes in land use, the range of potential impacts of climate change and the impacts of non-

native species leading to novel pests, diseases and invasive species. Each devolved 

administration also has its own list of species of principal importance, i.e. requiring 

conservation action due to value, rarity and/or threat but not based on IUCN criteria. The 

English and Welsh species of principal importance are listed in sections S41 and 42 of the 

Natural Environment and Rural Communities act 2006 respectively (NERC, 2013; Wales 

Biodiversity Partnership, 2015). The English list consists of 943 species, 152 of which are 

vascular plants. The Welsh list contains 557 species of which 78 are vascular plants. In 

Scotland, 1,947 species are listed under section 2 of the Nature Conservation (Scotland) Act 

2004, 245 of which are vascular plants (Scottish Government, 2013a). Finally, Northern 

Ireland lists 414 species under section 3 of the Wildlife and Natural Environment Act 

(Northern Ireland) 2011 of which 78 are vascular plants (DOENI, 2011). All of these species 

lists include a handful of CWR each, suggesting that only a very small number of CWR taxa 

are considered in conservation planning in the UK but only in the context of being rare or 

threatened, this does not take into account the range of genetic diversity within each taxon or 

population, a key distinction between species and genetic conservation. A systematic 

approach to CWR conservation, including their genetic diversity, in the UK is required to 

protect these resources. 
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1.8.3 Policy context for UK CWR conservation 

The UK, as a contracting party to the CBD (CBD, 1992), has a responsibility to protect its 

biodiversity and natural capital. PGR, including CWR, are a key component of biodiversity 

and natural capital, providing important ecosystems services, and therefore the UK is 

responsible for protecting its CWR. There is also a range of global, European and national 

policy instruments that set targets for the conservation of genetic resources and specifically, 

CWR. Target 9 of the Global Strategy for Plant Conservation (GSPC) is aiming for ‘70 per 

cent of the genetic diversity of crops including their wild relatives and other socio-

economically valuable plant species conserved’ (CBD, 2010a). The CBD’s Strategic Plan for 

Biodiversity 2011–2020 sets five ‘Strategic Goals’ including Goal C, ‘to improve the status of 

biodiversity by safeguarding ecosystems, species and genetic diversity’ (CBD, 2010b). This 

includes Aichi Target 13 that states ‘by 2020, the genetic diversity of cultivated plants and 

farmed and domesticated animals and of wild relatives, including other socio-economically as 

well as culturally valuable species, is maintained, and strategies have been developed and 

implemented for minimising genetic erosion and safeguarding their genetic diversity’ (CBD, 

2010b). The UK is also a contracting party to the ITPGRFA (FAO, 2001). Article five of the 

ITPGRFA encourages both in situ conservation of PGRFA including in protected areas and ex 

situ collection. The Second Global Plan of Action for PGRFA was established to support the 

ITPGRFA, helping to deliver its objectives (FAO, 2011). It includes a range of priority 

activities covering in situ conservation and management, ex situ conservation, the use of 

PGRFA and the establishment of sustainable means to achieve this (FAO, 2011). 

At the European level, the ESPC (Planta Europa, 2008) expands Target 9 of the GSPC stating 

the need for the establishment of ‘25 European crop wild relative genetic reserves covering 

the major hotspots of species and genetic diversity’ (Planta Europa, 2008). In 2011 the EU 
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Biodiversity Strategy 2020 was published (European Union, 2011). Action 9 of the strategy 

outlines the need for better targeting of biodiversity conservation through Rural Development 

programmes, specifically mentioning the importance of involving farmers to help protect 

genetic resources. More generally, action 10 highlights the need to conserve Europe’s 

agricultural genetic diversity but there is no specific mention of CWR (European Union, 

2011). 

In the UK, most aspects of conservation policy are devolved. This has led to the publication 

of separate biodiversity strategies for each administration of the UK (England, Wales, 

Scotland and Northern Ireland). Though there are some differences between the strategies, the 

overall aims are to preserve biodiversity and national capital (Defra and JNCC, 2012); this 

encompasses all genetic resources, including CWR. In England, the Biodiversity Strategy 

2020 states the need to conserve ‘agricultural genetic diversity in cultivated plants, farmed 

animals and wild relatives’ (Defra, 2011). Outcome 19 of the Environment Strategy for Wales 

states the need to halt the loss of biodiversity by 2026 including genetic diversity within 

species (Welsh Assembly Government, 2006). The Scottish Biodiversity Strategy with a 

recent update ‘The 2020 challenge for Scotland’s biodiversity’ (Scottish Executive, 2004; 

Scottish Government, 2013b), acknowledges the need to preserve genetic diversity related to 

agricultural systems to ensure food security. The Northern Ireland Biodiversity Strategy looks 

to integrate conservation of biodiversity into policy development and a revised strategy is in 

development (DOENI, 2002; Defra and JNCC, 2012). A UK Biodiversity Framework 2012–

2020 also exists (Defra and JNCC, 2012), which aims to complement the individual 

administration strategies to help coordinate efforts to achieve the Aichi targets (CBD, 2010b). 

Its success will require communication and coordination between Defra, other government 

departments, Joint Nature Conservation Committee and devolved administrations etc. 



Chapter 1 Introduction 

 

 32 

1.9 Thesis aims 

It is clear that a comprehensive background of policy instruments exist at the global, 

European and national levels to encourage active and systematic conservation of CWR. 

Despite this, a lack of scientific knowledge regarding CWR and the best approaches to ensure 

the conservation of their full range of genetic diversity has restricted the implementation of 

CWR conservation in the majority of countries. The UK is no exception, where currently 

there is no provision for the conservation of CWR species or their genetic diversity. The 

overall aim of this thesis is to fill this knowledge gap by reviewing and planning CWR 

conservation in the UK. The following objectives were set to achieve this aim: 

1. Create inventories of priority CWR related to human food and animal forage and 

fodder crops for the UK and its devolved administrations. 

2. Perform in situ and ex situ gap analyses for priority CWR in the UK and devolved 

administrations and, based on the results, make recommendations as to how their 

conservation can be enhanced. 

3. Assess the habitat preferences of UK priority CWR to further inform conservation 

planning. 

4. Investigate the suitability of The Lizard Peninsula in Cornwall for the establishment of 

the first UK CWR genetic reserve. 

5. Demonstrate the use of next-generation sequencing (NGS) in revealing genetic gaps in 

CWR genebank collections to enable more targeted collection to fill these gaps. 

A major focus of this research was also to involve key stakeholders, encouraging their input 

in all aspects of the work in order to establish a strong link between research and practice. 
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Finally, the work completed in the UK and its devolved administrations is intended as an 

example that can be widely applied within and outside of Europe.  

1.10 Thesis outline 

To address each of the objectives outlined above and to achieve the overall aim of enhancing 

UK CWR conservation, this thesis is structured as follows: 

1. Enhancing the conservation of crop wild relatives in England, Wales, Scotland and the 

UK as a whole (Chapters 2–4 – Fielder et al., 2015; submitted b; submitted c 

respectively and Appendix 1: Wales – Fielder et al., submitted a).  

Maxted et al. (2007) presented a preliminary analysis of UK CWR diversity, which 

highlighted the need for a full analysis and crucially, the need for close collaboration 

with relevant stakeholders in the UK responsible for conservation planning. The 

research in Chapters 2–4 and Appendix 1 present the results of this full analysis, 

including the development of inventories of priority CWR, in situ and ex situ gap 

analyses and formulation of recommendations to improve UK CWR conservation. 

This was carried out with input from statutory conservation agencies (Natural 

England, Natural Resources Wales and Scottish Natural Heritage) and takes a broad, 

multi-species approach to CWR conservation planning.  

2. Distribution of crop wild relatives of conservation priority in the UK landscape 

(Chapter 5 – Jarvis et al., in press). 

The UK has an extremely well studied flora (Preston, 2002) but the habitat preferences 

of priority CWR in the UK are largely unknown. The Countryside Survey (CS), 

carried out across Great Britain (England, Wales and Scotland, excluding Northern 
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Ireland), provides an extremely detailed dataset of land cover, habitat classifications 

and species distributions for British vegetation (Carey et al., 2008). The CS was first 

carried out in 1978 and has since been repeated a further four times, the most recent 

survey taking place in 2007 (Carey et al., 2008). By extracting the 2007 CS data 

associated with the priority CWR listed in the UK inventory it was possible to identify 

habitat preferences for UK CWR in a series of 11,685 quadrats from 589 1km by 1km 

squares, a sample which is statistically representative of the wider UK countryside 

(Carey et al., 2008). With a more detailed understanding of habitat associations of 

CWR, in situ conservation actions can be more efficiently targeted in appropriate 

locations. 

3. A genetic assessment of crop wild relatives on The Lizard Peninsula, Cornwall and its 

suitability to become the first UK genetic reserve (Chapter 6 – Fielder et al., submitted 

d). 

The Lizard was identified in the English and UK analyses in Chapter 2 and 4 as a 

potentially suitable site for a CWR genetic reserve, having high numbers of priority 

CWR. For this reason and because The Lizard already has a range of protected area 

designations associated with long-term conservation and a varied ecogeography, this 

study aimed to conduct a genetic analysis, using AFLPs, of a sample of the CWR that 

occur there to justifying its suitability as the first CWR genetic reserve in the UK, 

selected based on genetic data. 

4. Next-generation sequencing: a powerful tool for targeting ex situ collection of crop 

wild relatives (Chapter 7). 
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Due to the under-representation of CWR accessions in genebanks, further collecting of 

germplasm is required. CWR collections should not only represent the range of taxa 

but should also cover the range of genetic diversity found in natural populations to 

maximise the diversity conserved and the range of traits available to plant breeders for 

crop improvement. Biotechnologies such as NGS can provide huge amounts of genetic 

information at ever-diminishing cost. In light of this, Chapter 7 aimed to demonstrate 

how NGS could be used routinely to identify SNP variation in existing CWR 

accessions to target CWR collecting missions to fill genetic gaps in genebanks e.g. the 

MSB, Royal Botanic Gardens, Kew. The model legume species Medicago truncatula 

Gaertn., which has a sequenced reference genome, was used in this study. Initial plans 

were to re-sequence only select genes of interest (rather than whole genome re-

sequencing) relating to stress response pathways. Limitations outlined in section 8.3 

highlight why this eventually became unfeasible. Though the setbacks experienced 

prevented the identification of SNPs and subsequent population genetic analysis, 

whole genome re-sequencing was successfully carried out resulting in a dataset ready 

for analysis. 
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CHAPTER 2.  

Enhancing the conservation of crop wild relatives in 

England 
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2.1 Abstract 

Humans require resilient, rapidly renewable and sustainable supplies of food and many other 

plant-derived supplies. However, the combined effects of climate change and population 

growth compromise the provision of these supplies particularly in respect to global food 

security. Crop wild relatives (CWR) contain higher genetic diversity than crops and harbour 

traits that can improve crop resilience and yield through plant breeding. However, in common 

with most countries, CWR are poorly conserved in England. There is currently no provision 

for long-term CWR conservation in situ, and comprehensive ex situ collection and storage of 

CWR is also lacking. However, there is a commitment to achieve their conservation in 

England’s Biodiversity Strategy and the UK has international commitments to do so as part of 

the Global Plant Conservation Strategy. Here, we identify a series of measures that could 

enhance the conservation of English CWR, thereby supporting the achievement of these 

national and international objectives. We provide an inventory of 148 priority English CWR, 

highlight hotspots of CWR diversity in sites including The Lizard Peninsula, the Dorset coast 

and Cambridgeshire and suggest appropriate sites for the establishment of a complementary 

network of genetic reserves. We also identify individual in situ and ex situ priorities for each 

English CWR. Based on these analyses, we make recommendations whose implementation 

could provide effective, long-term conservation of English CWR whilst facilitating their use 

in crop improvement. 
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2.2 Introduction 

The most recent report by the Intergovernmental Panel on Climate Change (IPCC) suggests 

that crop yields will decrease by up to 2% per decade due to the negative impacts of climate 

change; with more severe forecasts expected beyond 2050 (Porter et al., 2014). This worrying 

statistic is compounded by another equally concerning prediction that the rise in the human 

population over the next 90 years (United Nations, 2011) will require global food production 

to increase by up to 70% (World Bank, 2008; Godfray et al., 2010). In order to ensure future 

food security, not only will crop yields need to increase significantly but the crops themselves 

will need to become progressively more resilient to changing conditions. As a result, plant 

breeders are now looking to crop wild relatives (CWR) and, more specifically, the largely 

untapped gene pool of genetic diversity within them as the key to tackling these issues 

through conventional plant breeding (Maxted et al., 2006). 

CWR are the wild plants related to crops of socio-economic value, such as human food and 

animal forage and fodder crops as well as those used for medicinal, forestry, industrial and 

ornamental purposes etc. Though the conservation of CWR related to all plant-derived 

supplies is strongly encouraged, the focus of this paper is in the context of CWR related to 

human food and animal forage and fodder crops in order to address the pressing issue of food 

security. In contrast to their cultivated relatives, CWR ‘have not passed through the genetic 

bottleneck of domestication’ (Tanksley and McCouch, 1997; Maxted and Kell, 2009). As 

such, CWR harbour higher levels of genetic diversity and potentially contain a range of traits 

that could be used for crop improvement to increase the resilience and yield of modern crop 

varieties. The closeness of the relationship between a crop and its CWR can be defined in 

terms of the Gene Pool (GP) concept (Harlan and de Wet, 1971), where genes in CWR 



Chapter 2 Conserving English CWR 

 

 39 

belonging to the primary Gene Pool (GP1b) of a crop can easily be transferred to the crop 

(belonging to GP1a). CWR in the secondary gene pool (GP2) can be crossed with the crop 

with some success but CWR in the tertiary gene pool (GP3) require biotechnological 

approaches to facilitate gene transfer (Harlan and de Wet, 1971). However, gene pool studies 

are often lacking, particularly for less studied crops, and so the Taxon Group (TG) concept 

relying upon traditional taxonomic analyses of relatedness can be employed to define this 

relationship (Maxted et al., 2006). In this case, TG1a corresponds to the crop/GP1a, TG1b 

denotes CWR belonging to the same species as the crop, TG2 denotes CWR belonging to the 

same section as the crop, TG3 being those belonging to the same subgenus and finally TG4 

being those belonging to the same genus as the crop. Those CWR where gene transfer to a 

related crop is possible can contribute significantly to improving crop varieties, and their use 

in this way will become increasingly important (Tester and Langridge, 2010; Hopkins and 

Maxted, 2011). An extensive literature exists detailing examples of the use of CWR in crop 

improvement (Maxted and Kell, 2009). The introduction of Cercospora leaf spot and 

Rhizomania resistances from wild sea beet (Beta vulgaris L. subsp. maritima (L.) Arcang.) 

into cultivated sugar beet (Munerati, 1932; Lewellen et al., 1987), the transfer of corn leaf 

blight resistance from wild Tripsacum dactyloides (L.) L. into maize (Goodman et al., 1987) 

and more recently, the identification of the potential for wild barley (Hordeum vulgare L. 

subsp. spontaneum (K. Koch) Thell.) to improve the drought tolerance of cultivated barley 

(Lakew et al., 2011) are just a handful of examples of the use of CWR in plant breeding 

programmes for crop improvement. Recent estimates suggest that the potential for 

contribution of beneficial traits from CWR for 29 priority crops identified by the Millennium 

Seed Bank, Kew (including wheat, rice and potato) could alone amount to approximately 

$120 billion by 2021 (PwC, 2013). 
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Despite the recognition of their potential value in crop development, CWR are also highly 

threatened by factors which are impacting all wild plant species, such as the effects of habitat 

destruction, nutrient enrichment and climate change (Kell et al., 2012). In Britain it has been 

estimated that an average of one wild vascular plant was lost per county every two years 

throughout the twentieth century (Walker, 2003). This decline can be taken as a proxy for 

CWR decline, but worryingly CWR remain poorly conserved both in situ and ex situ globally 

and in the UK (Maxted, 2003; Maxted et al., 2008c; Hopkins and Maxted, 2011; Dias et al., 

2012). This has led to a call for improved conservation of genetic resources such as CWR 

(Scholten et al., 2008; Hopkins and Maxted, 2011), working towards safeguarding their 

populations and the range of genetic diversity contained within. 

The initial step required to improve CWR conservation is to identify which CWR taxa require 

improved protection. This can be achieved through the creation of a CWR checklist and 

inventory. A checklist simply consists of names of taxa and their authorities within the 

geographical region of study (Maxted et al., 2013a). It is likely to be unrealistic to conserve 

all CWR taxa in a checklist due to limitations of resources, time and money. Hence a 

prioritisation process is required, selecting appropriate criteria in order to create an inventory 

of CWR taxa. A CWR inventory consists of a prioritised list of CWR with ancillary 

information for each taxon (Maxted et al., 2013a). Production of CWR inventories is essential 

in development of conservation strategies, allowing a more focussed approach that targets 

taxa of highest priority in a given region of study (Lozano et al., 2012; Maxted et al., 2012). 

Early European CWR checklists (e.g. by Zeven and Zhukovsky (1975), containing 430 plant 

genetic resource (PGR) species; Heywood and Zohary (1995), containing 206 CWR species 

and subspecies) tended to focus solely on the primary gene pools of the globally most 

important cultivated crops (Maxted et al., 2007). More recently a Crop Wild Relative 



Chapter 2 Conserving English CWR 

 

 41 

Catalogue for Europe and the Mediterranean was created, an inclusive checklist of 25,687 

crop and CWR taxa occurring within Europe and the Mediterranean (Kell et al., 2005; Kell et 

al., 2008). As noted by Maxted et al. (2007), this checklist takes a more comprehensive view 

of CWR as it includes all European CWR taxa related to any socio-economically important 

crops, not just those used in food production. It also enables the extraction of CWR checklists 

for each European country via the Crop Wild Relative Information System, CWRIS (Kell et 

al., 2005). 

Increasing numbers of national inventories of priority CWR are now being developed to 

encourage CWR conservation worldwide. Recently, prioritised CWR inventories for 

Venezuela, Benin and the USA have been developed (Berlingeri and Crespo, 2012; Idohou et 

al., 2012; Khoury et al., 2013). In Europe, CWRIS has been used as a starting point for the 

creation of a national inventory of CWR for Portugal (Magos Brehm et al., 2008) as well as 

inventories for Finland, Spain, Italy and Cyprus (Fitzgerald, 2013; Rubio Teso et al., 2013; 

Panella et al., 2014; Phillips et al., 2014). Although all of these inventories have been 

developed in a similar manner there are key differences in the approaches taken, particularly 

in terms of the criteria used in prioritising CWR. The selection of appropriate criteria is 

largely dependent on the specific requirements of the geographical region of study, those 

undertaking the inventory and the available information on which to base the prioritisation. 

Once priority CWR have been identified for any geographical area of study it is then 

necessary to carry out a ‘gap analysis’. This is a process whereby the extent of current 

conservation efforts for priority taxa are examined and decisions made as to where further 

conservation efforts are necessary to ensure the long-term persistence of populations and the 

genetic diversity within them, using both in situ and ex situ approaches (Maxted et al., 

2008a). A number of gap analyses have now been successfully carried out for a range of 
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CWR taxa in diverse locations. This has led to the identification of conservation priorities for 

wild soybean (Glycine Willd.) relatives in Australia (González-Orozco et al., 2012), beans 

(Vigna Savi) in Africa (Maxted et al., 2004), beans (Phaseolus L.) throughout North, Central 

and South America (Ramírez-Villegas et al., 2010), and national conservation priorities for 

Finland, Spain, Italy and Cyprus (Fitzgerald, 2013; Rubio Teso et al., 2013; Panella et al., 

2014; Phillips et al., 2014). 

Despite significant progress being made across Europe, no conservation priorities for CWR in 

the UK have yet been identified. Approximately eight percent of European CWR occur within 

the UK (Kell et al., 2008). These include wild relatives of economically important crops such 

as sugar beet and Brassica crops (e.g. cabbage, broccoli and Brussels sprouts) which are of 

particular commercial interest and which highlight the international role that the UK can play 

in the conservation of CWR (Hopkins and Maxted, 2011). 

Previous CWR inventories for the UK have predominately consisted of short lists of minor 

crops with wild UK populations rather than the wild relatives themselves (MAFF, 1995; 

Franks, 1999; Maxted et al., 2007). Since then Defra (2011) have committed to conserving 

‘agricultural genetic diversity in cultivated plants, farmed animals and wild relatives’ as part 

of their Biodiversity 2020 strategy for England. This follows on from commitments to the 

Convention on Biological Diversity’s Global Strategy for Plant Conservation as well as target 

13 of the Strategic Plan for Biodiversity which states that ‘by 2020, the genetic diversity of 

cultivated plants and farmed and domesticated animals and of wild relatives, including other 

socio-economically as well as culturally valuable species, [will be] maintained, and strategies 

[will] have been developed and implemented for minimizing genetic erosion and safeguarding 

their genetic diversity’ (CBD, 1992; 2010a; 2010b). This is reiterated in the European 

Strategy for Plant Conservation (Planta Europa, 2008) and Europe’s own Biodiversity 2020 
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strategy (European Union, 2011). Such policy documents are now providing the impetus for 

national conservation organisations within the UK to move genetic conservation of CWR 

higher up their agenda. 

The objective of the current study was to support the achievement of these national and global 

commitments to conserve CWR in England. Conservation within the UK is managed 

separately within each of the devolved administrations of the UK, with some aspects 

coordinated by the Joint Nature Conservation Committee (JNCC). As such it was deemed 

appropriate to devise conservation priorities for England, Wales and Scotland separately with 

the involvement of the relevant statutory organisations in each country (Fielder et al., 

submitted a; submitted b). In this way it could be ensured that the priorities identified were 

supported in each respective country. The University of Birmingham and Natural England 

(NE) developed the conservation priorities identified in the current study for English CWR 

jointly. Targets for CWR conservation are here identified and recommendations made as to 

how systematic, active and long-term conservation can be achieved in England to secure these 

valuable resources. 

2.3 Materials and methods 

2.3.1 CWR checklist and inventory 

A checklist of English CWR was developed by matching a UK checklist of CWR (derived 

from CWRIS (Kell et al., 2005; Maxted et al., 2007) with a checklist of the English flora, 

extracted from the Vice County Census Catalogue (VCCC) (Stace et al., 2003). The 

taxonomy in the English CWR checklist was then standardised against the British flora 

(Stace, 1997). The final checklist contains 1,471 CWR taxa including those related to all 

socio-economic crops (e.g. human food, animal forage and fodder, medicinal, forestry, 
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industrial, ornamental). The CWR checklist includes native, archaeophyte, neophyte and 

casual taxa and represents 35% of the total English flora (again, including all native and 

introduced taxa). The checklist is available at the Plant Genetic Resources Diversity Gateway 

(http://pgrdiversity.bioversityinternational.org), and see Supplementary Table 2.1a. 

The usual approach to identifying conservation priorities for vascular plants (e.g. considering 

rarity, threat and rate of decline) is not appropriate in the case of CWR. For CWR the focus is 

shifted towards those taxa that are the most useful or valuable in terms of their potential 

contribution to developing improved crop varieties, and in this particular case, food security. 

As a result, it is criteria such as the economic value of the crop with which they are related 

and the closeness of the genetic or taxonomic relationship between CWR and crop that infer 

which CWR should be considered a priority for conservation. Prioritisation of the CWR 

checklist was based on five criteria listed below, the selection of which aimed at the 

identification and conservation of genetic resources most likely to support resilience in global 

food production. Criteria one and two were first applied to the CWR checklist to identify a 

pool of native and archaeophyte CWR that were most relevant to food security considerations. 

The remaining three criteria (criteria 3 to 5) were applied in turn to this CWR pool. A CWR 

was required to meet the conditions of just one of criteria 3 to 5 to be listed in the final 

inventory of priority CWR for England. 

1. Use of the related crop – CWR related to crops used as a human food source or for 

animal feed (forage/fodder) were prioritised due to their being the CWR most relevant 

to ensuring future food security. ‘Use’ data were extracted from GRIN Taxonomy for 

Plants (USDA, ARS, National Genetic Resources Program, 2015). 

http://pgrdiversity.bioversityinternational.org/
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2. Native status – Priority was assigned to taxa classified as native or archaeophyte in 

England. Data regarding native status was extracted from the VCCC (Stace et al., 

2003).  

3. Economic value of the related crop – A list of economically important human food 

crops was generated by extracting crop production quantity data (million tonnes) at the 

global, European and UK levels between 2007 and 2011 from FAOSTAT (2013), crop 

production value at producer price data between 2007 and 2011 (millions of euro) 

from Eurostat (2013) and crop production at market prices data (£ million) at the UK 

level between 2006 and 2010 from Defra (2010). Data representing a period of five 

years were extracted to reflect recent value and current trends in agriculture. However, 

when long-term trends were considered (period of 20 years), identical crop lists were 

obtained. Wild relatives of all crops with data relating to any of these statistics were 

prioritised. Equivalent economic values for forage and fodder crops were unavailable; 

a similar problem was experienced by Kell et al. (2012).  

4. Degree of relatedness to the crop – Using the Gene Pool and Taxon Group concepts 

described above, priority was assigned to taxa in GP1b and GP2 and TG1b, TG2 and 

TG3 of their related crop. Where sub-generic taxonomic classifications were not 

available, CWR were assigned to TG4. Taxa only occurring in GP1a or TG1a were 

not prioritised as they are the cultivated forms of the taxa for which wild populations 

were not recorded as present in England. Data were extracted from the Harlan and de 

Wet inventory of globally important CWR taxa (Vincent et al., 2013). It was 

commonly observed that a single CWR would be related to more than one crop. In 

these cases, the lowest GP/TG that it belonged to was selected, and prioritisation 

based on this number. 
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5. Recent change in population range – Priority was assigned to CWR whose population 

ranges have declined between two recent survey years (1987 and 2004) according to 

Change Factor (CF) data. CF data take into account the differing range sizes of each 

species and corrects the data to enable interspecific comparisons to be made 

(Braithwaite et al., 2006). Any CWR with a negative CF value (i.e. below the 

threshold of zero) indicated population decline and was prioritised. 

2.3.2 In situ gap analysis 

Occurrence data records for taxa in the final English inventory of priority CWR were 

extracted from the Botanical Society of Britain and Ireland (BSBI) distribution database 

(BSBI, 2013). These raw data were filtered to produce a ‘clean’ dataset of records. Records 

listed as ‘doubtful’ or ‘unconfirmed’ were excluded, as were any records dated older than 

1970. Records lacking both coordinates and location descriptions were removed from the 

dataset and all records that had a precision lower than tetrad level (2km
2
) were also excluded. 

The reliability of the final gap analysis results is directly related to the accuracy and quality of 

data input into the analysis (Maxted et al., 2008a; Ramírez-Villegas et al., 2010). The 

coordinates for all occurrences in the final dataset were recorded in decimal degrees for 

compatibility with mapping software. 

In situ gap analysis was undertaken using the mapping softwares ArcMap 10.0 and DIVA-

GIS 7.5.0 (ESRI, 2011; Hijmans et al., 2012). Country boundary files were obtained from 

DIVA-GIS (www.diva-gis.org). Using methods described by Hijmans et al. (2012) and 

Scheldeman and van Zonneveld (2010) the following GIS functions were carried out: 

http://www.diva-gis.org/
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 Taxon richness and observation richness – to determine hotspots of taxon diversity 

and to identify any sources of data bias, using the ‘point to grid’ function in DIVA-

GIS with a grid cell size of 0.1 degrees. 

 Complementarity analysis – using the ‘reserve selection’ function in DIVA-GIS to 

select potential sites for CWR genetic reserves. An iterative method was used where 

the first selected site contains the highest number of taxa, the second site was selected 

on the basis that it contained the next highest number of taxa excluding those 

contained in the first site etc. (Rebelo, 1994). A grid cell size of 0.1 degrees was used. 

Complementarity results were then further explored to determine which taxa are 

represented in five or more complementary grid squares. Conserving at least five 

geographically distinct populations of a taxon decreases the likelihood that it will be 

lost in the face of stochastic change or through human influence (Brown and Briggs, 

1991; Dulloo et al., 2008).  

 Identification of in situ conservation actions required for each priority CWR – to 

identify the extent to which CWR taxa are passively conserved in situ using spatial 

join tools in ArcMap 10.0. Boundary shape files for protected areas were obtained 

from NE (2014). These included: Sites of Special Scientific Interest (SSSI), Special 

Areas of Conservation (SAC), Areas of Outstanding Natural Beauty (AONB), 

National Nature Reserves (NNR), Local Nature Reserves (LNR), National Parks, 

Country Parks, Ramsar sites, Special Protection Areas (SPA) and Biosphere Reserves. 

Each CWR was then categorised into priority levels according to how well represented 

they are in protected areas. A protected area with at least five occurrences was 

considered an appropriate threshold above which CWR are well represented. This is 

likely to cover 90–95% of common alleles for any particular species in a protected 
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area (Brown and Briggs, 1991), ensuring a range of genetic diversity is conserved per 

species using a practical and achievable method. 

o Priority 1 – Poorly represented in protected areas (Less than five protected 

areas contain five or more occurrence records of the CWR) 

o Priority 2 – Poorly represented in SSSIs but well represented in other protected 

areas i.e. SACs, AONBs, NNRs, LNRs, National Parks, Country Parks, 

Ramsar sites, SPAs and Biosphere Reserves (Less than five SSSIs contain five 

or more occurrence records of the CWR but five or more other protected areas 

contain at least five occurrence records) 

o Priority 3 – Well represented in SSSIs (Five or more SSSIs contain at least five 

occurrence records of the CWR) 

For each priority level, recommendations were made for improved in situ conservation of the 

CWR (Supplementary Table 2.2a). CWR listed under Section 41 (S41) of the 2006 Natural 

Environment and Rural Communities (NERC) Act of rare and threatened species were also 

identified (NERC, 2013). 

2.3.3 Ex situ gap analysis 

Accession data for priority English CWR were obtained from the UK National Plant 

Inventory (UKNPI, 2013) and the Millennium Seed Bank, Kew. Data from these two sources 

were combined and any accessions lacking data for latitude and longitude fields were 

georeferenced where possible by comparing their written location description with both the 

UK Grid Reference Finder (http://www.gridreferencefinder.com) and the Gazetteer of British 

Place Names (http://www.gazetteer.org.uk). 

http://www.gridreferencefinder.com/
http://www.gazetteer.org.uk/
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In order to carry out an ex situ gap analysis, the following steps were carried out: 

 CWR were listed according to the number of ex situ accessions stored in genebanks. A 

minimum threshold was set at five stored accessions (Brown and Briggs, 1991; Dulloo 

et al., 2008), above which CWR are considered sufficiently represented in ex situ 

collections but below which further collection is required. A minimum of five 

accessions was deemed more practical and achievable in the field than other more 

ambitious thresholds e.g. Brown and Marshall’s recommendation to collect accessions 

from a minimum of 50 populations (Brown and Marshall, 1995). 

 For all taxa with accession data, the geographic coverage of the accessions and 

occurrences were compared for each taxon. Using the ‘circular area statistic’, a 

geographical representativeness score (GRS) was calculated for each taxon (GRS is 

the proportion of occurrence data covered by accession data for each taxon, expressed 

as a percentage) (Ramírez-Villegas, 2010). The lower the GRS value, the higher the 

taxon in terms of its level of priority for collection. A GRS of 30% or less is generally 

viewed as a threshold, below which further ex situ collection of the taxon is advisable 

(Ramírez-Villegas, 2010; Phillips et al., 2014).  

 Based on these two ex situ results, CWR were categorised into ex situ priority levels, 

1–6, according to the number of accessions stored ex situ per taxon and the GRS 

value. The highest priority being assigned to CWR for which there are currently no 

accessions. Conservation actions were recommended according to each priority level 

(Supplementary Table 2.2a). 
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o Priority 1 – No accessions 

o Priority 2 – Has accessions but none are georeferenced/location data restricted 

o Priority 3 – Fewer than five accessions and GRS lower than 30% 

o Priority 4 – Fewer than five accessions but GRS greater than 30% 

o Priority 5 – Greater than or equal to five accessions but GRS lower than 30% 

o Priority 6 – Greater than or equal to five accessions and GRS greater than 30% 

2.4 Results 

2.4.1 CWR inventory 

The English national inventory of priority CWR contains 148 taxa (126 species and 22 

subspecies), representing 10% of the taxa listed in the English CWR checklist. A summary of 

the inventory is displayed in Table 2.1 (and see full inventory at the Plant Genetic Resources 

Diversity Gateway, http://pgrdiversity.bioversityinternational.org, and Supplementary Table 

2.1b). Of the 148 priority CWR, 76% are related to food crops whilst the remaining 24% are 

related only to forage or fodder crops. The English inventory contains 13 plant families, with 

Poaceae, Brassicaceae and Fabaceae containing the most genera (16, 7 and 7 respectively). 

The three genera with the highest taxon richness are Trifolium L. (clovers, 18 taxa), Vicia L. 

(vetches, 12 taxa) and Chenopodium L. (goosefoots, 11 taxa). 

 

 

 

http://pgrdiversity.bioversityinternational.org/
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Table 2.1 Summary of inventory containing 148 priority CWR in England. 

Family Genera Species Infra-specific taxa Native status 

Apiaceae 3 2 4 N 

Asteraceae 2 4  A & N 

Brassicaceae 7 9 4 A & N 

Chenopodiaceae 3 13 1 A & N 

Corylaceae 1 1  N 

Ericaceae 1 5  N 

Fabaceae 7 38 5 A & N 

Geraniaceae 1 1  N 

Grossulariaceae 1 3  N 

Liliaceae 2 9  A & N 

Linaceae 1 2 1 N 

Poaceae 16 28 4 A & N 

Rosaceae 6 11 3 A & N 

Totals 51 126 22  

A = Archaeophyte, N = Native. 

 

Through the application of criteria for prioritisation of CWR, 34 food crops with native or 

archaeophyte CWR within England were of economic value based on agricultural statistics 

(Defra, 2010; Eurostat, 2013; FAOSTAT, 2013), including sugar beet, barley, onions, apples 

and various brassica crops. Crops of economic value according to production at market prices 

data from Defra (2010) are illustrated in Fig. 2.1. All of the native and archaeophyte CWR in 

England associated with these 34 economically valuable crops were listed in the English 

inventory of priority CWR (77 CWR in total). In terms of the genetic relationships between 

priority CWR and their associated crops, little over a quarter of taxa (26%) had available 

Gene Pool classifications. Within this, 16.89% were classified as GP1b and just 5.41% and 

4.05% in GP2 and GP3 respectively. The remaining taxa (74%) were classified using the 

Taxon Group concept.  
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Figure 2.1 Economic value of English crops. Mean value of production at market prices (£ 

million) in England between 2006 and 2010 (Defra, 2010) for socio-economic crops with 

native or archaeophyte CWR occurring within England. 

 

Almost half (43%) of English priority CWR had a negative CF showing that their populations 

have declined between surveys carried out between 1987 and 2004. The most extreme 

changes are in white clover (Trifolium repens L., -84), annual meadow-grass (Poa annua L., -

68) and wood vetch (Vicia sylvatica L., -52). In contrast only 28% were shown to be 

increasing and a further 28% had no available data. According to the newly published 

Vascular Plant Red List for England (Stroh et al., 2014), 14% of priority CWR taxa in 

England are threatened. Both upright goosefoot (Chenopodium urbicum L.) and alpine cat’s-
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tail (Phleum alpinum L.) are listed as being Critically Endangered with a further five taxa 

listed as Endangered and 14 listed as Vulnerable (Table 2.2). 

 

Table 2.2 Threatened taxa listed in the English CWR inventory. 

Taxon Red List Status Criterion 

Chenopodium urbicum L. CR A2c AOO trend 

Phleum alpinum L. CR D 

Chenopodium vulvaria L. EN A2c AOO trend 

Lactuca saligna L. EN B1ac(iv) + B2ac(iv) 

Chenopodium murale L. EN A2c AOO trend 

Pyrus cordata Desv. EN D 

Trifolium bocconei Savi EN A2ac AOO trend; D 

Asparagus prostratus Dumort. VU D1 

Apium inundatum (L.) Rchb.f. VU A2c AOO and EOO trend 

Cichorium intybus L. VU A2c AOO trend 

Trifolium fragiferum L. VU A2c AOO trend 

Trifolium ochroleucon Huds. VU A2c AOO trend 

Vicia lutea L. VU A2c AOO trend 

Vicia orobus DC. VU D1 

Allium sphaerocephalon L. VU D1; D2 

Chenopodium bonus-henricus L. VU A2c AOO trend 

Chenopodium glaucum L. VU A2c AOO trend 

Hordeum marinum Huds. VU A2c AOO trend 

Medicago minima (L.) Bartal. VU A2c AOO trend 

Trifolium strictum L. VU D2 

Vicia parviflora Cav. VU A2c AOO trend 

VU = Vulnerable; EN = Endangered; CR = Critically Endangered; A2c = reduction in 

population size based on trend in Area of Occupancy (AOO) or Extent of Occurrence (EOO); 

B1ac(iv) = EOO less than 5000km
2
 and highly fragmented or in no more than 5 locations and 

extreme fluctuations in number of locations; B2ac(iv) = AOO less than 500km
2
 and highly 

fragmented or in no more than 5 locations and extreme fluctuations in number of mature 

individuals; D = restricted population size (less than 50 mature individuals if CR and less than 

250 mature individuals if EN); D1 = Very restricted population of less than 1000 mature 

individuals; D2 = Very restricted population based on Area of Occurrence or number of 

locations). Data Source: (Stroh et al., 2014). 
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2.4.2 In situ gap analysis 

Pastinaca sativa L. subsp. sylvestris (Mill.) Rouy & E. G. Camus was the only priority CWR 

in England with no occurrence records of sufficient quality, despite being listed as native in 

the British flora (Stace, 2010). It is likely that records for this taxon have, until now, been 

treated as wild parsnip (Pastinaca sativa L.) for which there are many more occurrence 

records (3,763). Occurrences recorded only to species level may belong to other subspecies 

and varieties. For this reason, the inclusion of all P. sativa records could have introduced 

inaccuracies to the dataset. This highlights the importance of up-to-date and specific 

recording to the sub-specific level. In total, 679,521 occurrence data points relating to 147 

taxa were included in the in situ gap analysis. Small cranberry (Vaccinium microcarpum 

(Turcz. ex Rupr.)) and eastern parsnip (Pastinaca sativa L. subsp. urens (Req. ex Godr.) 

Čelak) were found to have the fewest occurrence records with just one each, (again, the latter 

is likely to have been recorded as P. sativa), whereas cock’s foot (Dactylis glomerata L.) was 

found to have the highest number of occurrence records (28,793). 

Taxon richness analysis of the 147 CWR taxa revealed a number of CWR hotspots throughout 

England, particularly focussed in the south and east of the country (Fig. 2.2a). These include 

sites in Cornwall, the Dorset coast, Somerset, Norfolk and Bedfordshire. However, some 

recording bias is apparent in Bedfordshire (Fig. 2.2b). A new flora was published for this 

county in 2011 (Boon and Outen, 2011), which could account for the recording bias detected 

in this area. 
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Figure 2.2 Richness analysis. a) Taxon richness. b) Observation richness. Both a) and b) include all 147 taxa with occurrence data points in 

the English CWR inventory and a grid square size of 0.1 degrees. 
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The complementarity analysis shows that a total of 15 grid squares (each measuring 0.1 

degrees square or approximately 11km
2
) are sufficient to contain at least one occurrence of all 

priority CWR taxa included in the analysis (Fig. 2.3). The highest priority grid square, 

containing the highest number of CWR (94), is located in Purbeck on the south coast of 

Dorset. The second and third priority grid squares are located on The Lizard Peninsula in 

Cornwall and in the south of Cambridgeshire respectively. The Lizard grid square contains 75 

CWR, 14 of which do not occur in the highest priority grid square. The grid square in 

Cambridgeshire contains a total of 80 CWR, 10 of which do not occur in either of the 

preceding grid squares (Dorset and The Lizard). Together, the top three priority grid squares 

cover over 80% of all English priority CWR. The percentage of additional CWR contributed 

by each grid square is illustrated in Fig. 2.4. Other priority grid squares were located across 

the full range of the country, from Cornwall through the midlands to Cumbria and 

Northumberland. All 15 grid squares overlap with a range of protected areas including SSSIs, 

AONBs and NNRs. However, these designations do not necessarily provide any protection or 

active conservation for CWR. In addition, it was found that 53% of priority CWR were 

recorded in at least five of the 15 complementarity grid squares.  
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Figure 2.3 Complementarity analysis. The locations of all 15 priority grid squares/candidate 

sites recommended for CWR genetic reserves.  
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Figure 2.4 Complementarity analysis. The percentage of additional priority CWR contained 

within each of the 15 priority grid squares/candidate sites recommended for CWR genetic 

reserves. 

 

In situ conservation actions required for each priority CWR were identified by assigning a 

priority level to each CWR. Results show that 34 CWR (23%) are poorly represented in 

protected areas in England (Priority 1) highlighting the need for enhanced conservation for 

these taxa. An additional 32 CWR (22%) are poorly represented in SSSIs but are well 

represented in other protected area designations (Priority 2). The remaining 82 CWR are well 

represented in SSSIs (Priority 3). Recommended actions for enhancing the conservation of 

each priority group of CWR are detailed in Supplementary Table 2.2a. A further six CWR are 

listed under section 41 of the NERC act of rare and threatened species. These are wild 

asparagus (Asparagus prostratus Dumort.), upright goosefoot (C. urbicum), stinking 

goosefoot (Chenopodium vulvaria L.), least lettuce (Lactuca saligna L.), plymouth pear 

(Pyrus cordata Desv.) and sea barley (Hordeum marinum). Actions required to conserve all 
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six of these taxa are outlined under the NERC act, however all actions are listed as ‘yet to 

start’ except for three associated with P. cordata which are ‘in progress’. 

2.4.3 Ex situ gap analysis 

Sixty-five priority CWR (44%) have no ex situ accessions stored within UK genebanks. These 

taxa were assigned the highest level of priority (Priority 1). Amongst the taxa with no 

accessions are upright goosefoot (C. urbicum) and alpine cat’s-tail (P. alpinum), both of 

which are listed as Critically Endangered in England. Of the 83 CWR with accessions, 

perennial rye-grass (Lolium perenne L.) had the most (202). A further 22 CWR also had more 

than the advised minimum of five accessions (Brown and Briggs, 1991; Dulloo et al., 2008) 

with next highest number of accessions belonging to plymouth pear (P. cordata) with 49. A 

total of 687 accessions exist for English priority CWR, 50% of which are stored at the 

Millennium Seed Bank, Kew. A total of 279 accessions are stored at the Genetic Resources 

Unit, IBERS at Aberystwyth University and a further 57 are stored at Warwick Genetic 

Resources Unit. Seven accessions lack holding institution data. The majority of accessions 

(92%) have fully georeferenced passport data. See Supplementary Table 2.3 for the number of 

accessions stored in ex situ collections per priority CWR. 

Geographical representativeness analysis revealed that only two taxa have a GRS score above 

the threshold of 30% (Ramírez-Villegas et al., 2010). These are two species with very 

restricted abundance and range in England, plymouth pear (P. cordata) and round-headed 

leek (Allium sphaerocephalon L.), suggesting that these are the only priority CWR for which 

ex situ collections are representative of their in situ range. The majority of taxa (69) had a 

GRS score below 5%. The relationship between the geographic coverage of in situ occurrence 

data and ex situ accession data is illustrated in Fig. 2.5. It is clear that forage CWR tend to 
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have higher numbers of accessions stored ex situ than food CWR, but also that for the 

majority of priority CWR taxa in England GRS percentages are extremely low. This indicates 

clear gaps in ex situ collections for priority CWR in England. 

 

Figure 2.5 Geographic coverage of accession data. Taxa falling above the line show those 

with a GRS score higher than the mean GRS across all taxa, the accessions for these taxa 

cover a larger proportion of the taxon’s native range in England. 

 

On combining the number of accessions and GRS results, it was found that only plymouth 

pear (P. cordata) is currently well represented in ex situ collections (i.e. assigned priority 

level 6). In addition, 22 CWR were listed in priority level 5 (having greater than five 

accessions but with a GRS lower than 30%). Over a third of CWR were listed as priority level 

3 (36%) with between one and four accessions and a GRS below 30%. The majority of CWR 

were assigned to priority level 1 (44%), with no accessions. See Supplementary Table 2.2 for 

a full list of assigned priority levels and recommended actions per priority level required to 

enhance ex situ collections. 
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2.5 Discussion 

2.5.1 Prioritisation to create a CWR inventory 

In England, conservation actions through Red Lists, site designations, species protection 

measures and other mechanisms have primarily been focussed upon nationally local and rare 

taxa. However this does not result in conservation of all CWR taxa and even less so the 

genetic diversity within them. For example, it has resulted in considerable efforts aimed at the 

conservation of wild asparagus (A. prostratus) (King et al., 2007; King and Edwards, 2007) 

but little attention paid to conservation of potentially more important germplasm in taxa such 

as sea beet (B. vulgaris subsp. maritima) and cabbage (Brassica oleracea L.). Assessment and 

specific conservation planning for all CWR (food, forage, fodder, forestry, medicinal, 

industrial etc.) is therefore an important adjunct to more traditional conservation assessments 

and actions if CWR and their genetic diversity are to be adequately conserved. The English 

inventory of 148 priority CWR was developed based on criteria selected through consultation 

with Natural England. It identifies priorities for CWR conservation with a focus on the 

genetic resources most likely to be valuable to global food security. In addition to the current 

study, further work should be carried out to ensure comprehensive conservation of all other 

valuable plant-derived supplies and their wild relatives. 

Identifying priority CWR based on meaningful criteria is the first step in planning for CWR 

conservation. Criteria selected to produce the English CWR inventory are similar to those 

selected in the development of CWR inventories in other countries. Three key criteria are 

most commonly cited: CWR native status, economic value of the related crop and degree of 

relatedness to an associated crop (Venezuela (Berlingeri and Crespo, 2012); USA (Khoury et 

al., 2013); Finland (Fitzgerald, 2013) and Spain (Rubio Teso et al., 2013)), the latter two in 
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particular showing the emphasis is frequently on criteria relevant to global food security. 

Other more distinct criteria have also been used. One such example can be seen in the CWR 

inventory for Cyprus where any CWR whose centre of diversity is within Cyprus, the Near 

East or the Middle East were prioritised, a decision taken through consultation with Cypriot 

stakeholders and focussing on conserving areas with the highest levels of CWR genetic 

diversity (Phillips et al., 2014). The selection of criteria can also be heavily influenced by 

available data. In England, the criterion ‘change in population range’ was included due the 

need to focus conservation efforts on CWR that are declining, and due to the availability of 

data looking at the change in distributions in plant species in Britain between two survey 

years (1987 and 2004) (Braithwaite et al., 2006). 

The selection and application of criteria for prioritisation of CWR is application specific and 

must be considered in terms of their degree of relevance to national and international 

conservation needs and priorities (Maxted et al., 1997a; Magos Brehm et al., 2010). The 

process should involve key national stakeholders and conservation organisations to ensure 

their support for any conclusions drawn from such analysis but should equally consider 

whether the process addresses international policy targets e.g. Aichi target 13 (CBD, 2010b). 

Though the use of different criteria can change the pool of CWR listed as priority, if the 

criteria selected are appropriate to the project objectives and respond to policy then the 

various approaches should not compromise the achievement of effective conservation of 

CWR. 

2.5.2 In situ gap analysis 

There are currently very few examples of active in situ conservation of CWR in the UK. Only 

six priority CWR in England (Supplementary Table 2.2b) are recognised as threatened and are 
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therefore listed on country or UK conservation priority lists (Cheffings et al., 2005; NERC, 

2013) and just two of these six species have long-term and active conservation plans (wild 

asparagus – A. prostratus and plymouth pear – P. cordata) (Jackson, 1995; King et al., 2007; 

King and Edwards, 2007). This shows there is a need for a concerted effort to enhance in situ 

conservation in England for CWR. 

The results of the complementarity analysis revealed 15 grid squares across England that 

together are sufficient to conserve all priority English CWR, though for this to be possible 

active conservation of CWR populations and genetic diversity would need to be established 

within each of these sites. Each complementarity square overlaps with at least one protected 

area and over half of English priority CWR are well represented in SSSI protected areas. A 

further 22% are well represented in other protected area designations. Though presence within 

protected areas may offer a level of passive protection (Maxted et al., 1997b; Maxted et al., 

2008b) it is important that there is specific monitoring and management for CWR to ensure 

their long-term survival. It may also be the case that the existing management of a protected 

area may conflict with the needs of the CWR, for example, on The Lizard Peninsula in 

Cornwall where there is concern over the impact of the level of cattle grazing in coastal sites 

on already threatened populations of wild asparagus (A. prostratus, Steve Townsend pers. 

comm.). This emphasises the need for incorporating active CWR conservation, ideally in the 

form of genetic reserves where conservation of genetic diversity is a priority, into existing 

protected area planning to enable CWR monitoring and appropriate management. Further 

analysis revealing the number of hectares of each protected area designation overlapping the 

15 grid squares identified here has been carried out in 2015 by Natural England (unpublished 

data) with a view to justifying the inclusion of CWR in the management plans of existing 

protected area designations.  This can be a highly effective method for achieving active CWR 
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conservation as it avoids the high start-up costs of acquiring land for a new reserve and it may 

only require minimal adjustments to existing management plans (Maxted and Kell, 2009). 

Standards for the establishment of CWR genetic reserves have been outlined by Iriondo et al. 

(2012). 

The complementarity analysis method used in the current study (Rebelo, 1994) is a valuable 

tool that gives a broad picture of which sites in a country or region are suitable for in situ 

CWR conservation. It is important to note that the priority grid square boundaries do not 

denote the recommended outline of CWR genetic reserves, rather they indicate broad-scale 

areas which will require more detailed investigation and ground-truthing in order to identify 

more specific, fine-scale locations appropriate for in situ conservation of CWR both inside 

and outside of protected areas (Fitzgerald, 2013). Part of this fine-scale selection of priority 

CWR populations and sites should consider the individual priority levels assigned to each 

CWR (Supplementary Table 2.2) but should also involve an assessment of the genetic 

diversity within target CWR (Frankel et al., 1995; Magos Brehm et al., 2012). With this data 

available, it ensures that conserved populations are representative of the range of genetic 

diversity that exists across a delineated area and that the selected populations are also 

complementary to one another. This is an ideal that has been achieved on The Lizard 

Peninsula in Cornwall where the range of genetic diversity in eight CWR was assessed and 

populations were identified as priority based on this data (Fielder et al., submitted d). 

Traditional conservation of rare and threatened plants generally takes place within designated 

protected areas. CWR however could also benefit from an approach that targets their 

conservation outside of protected areas. It is widely accepted that CWR tend to be associated 

with pre-climax communities and areas experiencing anthropogenic change (Maxted and 

Kell, 2009) and though such habitats are present within protected areas, habitats outside 



Chapter 2 Conserving English CWR 

 

 65 

protected areas are likely to experience more human-induced change. This in turn could be 

exposing CWR to a range of different selection pressures, which could lead to adaptation of 

novel and potentially beneficial traits that could be exploited in crop development. A recent 

study by Jarvis et al. (in press) has been able to provide strong evidence that UK CWR show 

preferences for linear landscape features such as field margins and road verges. Further, the 

current study revealed that 23% of priority English CWR are poorly represented within the 

existing protected area network. As such, it should be seen as a priority that alongside the 

establishment of genetic reserves for in situ conservation of CWR inside protected areas, there 

should be an additional focus on monitoring and management of CWR populations outside of 

protected areas. This approach would be most effective if undertaken with the approval and 

involvement of appropriate landowners and land managers.  

2.5.3 Ex situ gap analysis 

There are clear gaps in ex situ CWR collections with just over half of the English priority 

CWR having any stored accessions at all. Of the taxa with accessions, very few have more 

than one. Ideally, it is recommended that at least five different populations are stored ex situ 

in genebanks to ensure that the collections represent the range of genetic diversity found 

within and among populations in situ (Brown and Briggs, 1991). From the results of the 

current gap analysis it is clear that this is a target of which English collections are currently 

falling short with only 16% of English priority CWR having greater than five stored 

accessions. 

The GRS method for analysing the geographic coverage of ex situ accessions has been used 

successfully in previous studies (Maxted et al., 2008a; Ramírez-Villegas et al., 2010; Phillips 

et al., 2014), providing a broad picture of the representativeness of collections. In the case of 
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England, it is apparent that most collecting effort has so far been focussed on forages. There 

has been a particular focus on the collection of perennial rye-grass (L. perenne) accessions at 

IBERS, Wales where extensive research has been carried out on this species due to its high 

importance as forage in temperate areas (Skøt et al., 2007). Ramírez-Villegas et al. (2010) 

advise that a GRS result above a threshold of 30% suggests a CWR taxon is adequately 

conserved ex situ (though comparative genetic diversity studies are still required to validate 

this). Using GRS in combination with the total numbers of accessions per CWR provides a 

useful means of categorising CWR into priority levels to imply the urgency of further 

collecting.  

In previous GRS studies herbarium specimens have been used to infer the full species 

distribution across a country or continent, providing a useful comparison of in situ 

distributions and gene bank representativeness (Maxted et al., 2008a; Phillips et al., 2014). In 

contrast, the use of herbarium specimens was not necessary in England due to the volume of 

field occurrence data available, directly showing species distributions across the country. 

However, the comparison of these occurrence records to the relatively few ex situ accessions 

suggests that extensive collecting would be necessary to achieve the 30% threshold for all 

CWR in England. In such cases where there is such a discrepancy between the volumes of 

available in situ and ex situ data, it may be more appropriate to consider each taxon on a case-

by-case basis and to employ genetic or ecogeographic methodologies. In this way it would be 

possible to see more clearly whether further collecting is necessary.  

Ex situ collections should be considered as a backup of material, which should be 

representative of populations conserved in situ (Maxted and Kell, 2008). In addition, it is 

necessary that CWR accessions are stored in genebanks to enable plant breeders and other 

users to access this material for use in crop improvement. Therefore, it is a prerequisite that ex 
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situ collections represent the range of genetic diversity found within and among in situ CWR 

populations (Parra-Quijano et al., 2008). This can be achieved by proxy through collection of 

material from the full ecological and geographic range of each CWR, though direct analyses 

of genetic diversity using molecular markers will always be preferable and should be carried 

out where possible. The inclusion of genetic diversity and/or ecogeographic diversity data in 

genebank databases would take large steps towards improving the completeness of ex situ 

CWR collections (Rubio Teso et al., 2013). 

2.5.4 Recommendations for enhancing CWR conservation in England 

 The CWR inventory should be regularly reviewed (e.g. once every ten years) with the 

involvement of key stakeholders, providing the opportunity for: 1) national and 

international priorities to be reviewed according to policy, climate change and other 

factors such as pests and diseases, invasive species, pollution etc. 2) appropriate 

prioritisation criteria to be re-evaluated and 3) incorporation of more up-to-date data. 

Moreover, prioritisation of all other categories of CWR in England (not just those 

relating to human food or animal forage/fodder crops) should be undertaken. 

 The in situ gap analysis results presented here should be used as a guide for enhancing 

CWR conservation within England. It is encouraged that existing protected areas 

(including, but not limited to SSSIs, SACs and NNRs) fully integrate CWR 

conservation into species and habitat management plans. Where possible these 

protected areas should strive to meet the agreed standards for CWR genetic reserves 

(Iriondo et al., 2012), particularly where they overlap with the 15 complementarity 

squares. Work is already underway on The Lizard Peninsula, Cornwall and in 

Purbeck, Dorset to achieve this. 
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 CWR conservation should also be encouraged outside of protected areas. Relevant 

landowners and land managers should be given the opportunity to agree to the quality 

standards for CWR genetic reserves, with the aim of establishing long-term CWR 

conservation. Governmental incentives (e.g. through the Rural Development 

Programme) could be provided to encourage this. Appropriate management of farmed 

semi-natural habitats such as hedgerows, grasslands and coastlands, as well as low 

intensity management of field margins and buffer strips would benefit CWR (Hopkins 

and Maxted, 2011). 

 To maximise the level of genetic diversity conserved in situ for priority CWR, at least 

five populations representing their full geographic range in England should be 

conserved per CWR. Where possible direct genetic analyses of populations of all 

priority CWR (in all categories) is encouraged. Initial focus should be on CWR 

assigned to in situ priority level 1 (Supplementary Table 2.2). 

 Accurate records of the locations of all CWR throughout England are required, ideally 

along with assessments of population sizes and densities. All demographic data should 

be made available in an online database (e.g. NBN Gateway or BSBI distribution 

database). The data should be widely accessible and easy to update with new records. 

 Ex situ collections need to be representative of in situ genetic diversity within and 

among populations of all CWR categories. To address this, there should be a renewed 

effort to improve the completeness of ex situ collections of English CWR by ensuring 

a minimum of five accessions representative of the geographic range of each CWR are 

stored in genebanks. Where possible genetic analyses should also be undertaken to 

achieve this goal. Initial focus should be on CWR in ex situ priority level 1 
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(Supplementary Table 2.2). This threshold is not intended to be prescriptive but 

should be a seen as a minimum, above which the specific life histories of taxa are also 

considered to ensure the maximum range of diversity is conserved within the 

accessions maintained ex situ. 

 Existing accessions should also be assessed for regeneration ability and to ensure they 

are being maintained according to genebank ‘best practices’ to enable long-term 

viability and use. 

 The relationship between accessions held in long-term storage and population genetic 

changes over time should be explored and the appropriate intervals for updating ex 

situ collections determined per species to capture the genotypic evolution of in situ 

populations over time. 

 Accessions should have at least one duplicate stored in a geographically distant 

genebank to reduce the likelihood of material being lost in any unforeseen 

circumstances.  

 Genebanks should undertake greater promotion of the conserved CWR material 

available to researchers, pre-breeders and plant breeders for use in crop improvement, 

encouraging their use in the development of new crop varieties. 

2.6 Conclusion 

Conservation in England of the 148 CWR identified as priority in the context of food security 

is currently incomplete. This paper presents recommendations for enhancing their 

conservation based on both national and international priorities. The methodology described 

is applicable to all types of CWR (not only those with a role in improving food security) and 
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can be used to achieve comprehensive coverage of all wild relatives. Through the integration 

of CWR into existing protected area management plans and establishment of genetic reserves 

in CWR hotspots, in situ CWR conservation can be simply but effectively improved. 

Together with a representative back up of material stored in genebanks this will provide 

effective, long-term monitoring and management of English CWR whilst facilitating their use 

in crop improvement. In this way, active and long-term conservation of English CWR can be 

established, contributing to European and global efforts to underpin future food security. 
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3.1 Abstract 

The impact of climate change upon the agricultural industry is predicted to severely reduce 

crop yields, leading to a global state of food insecurity. This will be compounded by the 

necessity to feed a rapidly expanding human population. Crop wild relatives (CWR), with a 

wider gene pool than domesticated crops, may offer a means of mitigating this situation 

through the use of novel traits (e.g. stress tolerant or disease resistant traits) in crop 

improvement. The United Kingdom is a contracting party to international policy such as the 

Strategic Plan for Biodiversity of the Convention on Biological Diversity, which is committed 

to securing these valuable resources. However, as in the majority of countries around the 

world, there are as yet no long-term commitments to either in situ or ex situ conservation of 

CWR at UK or devolved level. This study has produced an inventory of 120 priority CWR 

within Scotland, has identified potential sites suitable for their in situ conservation (most 

notably a site to the west of Glasgow close to the Loch Lomond and Trossachs National Park) 

and has also prioritised these CWR in terms of the urgency for ex situ collection and storage 

in genebanks. Finally, recommendations have been made as to how active, long-term 

conservation of CWR in Scotland could be established to secure this resource in situ whilst 

ensuring accessibility of genetically diverse material in genebanks for use by plant breeders in 

crop improvement. 
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3.2 Introduction 

Global mean surface temperatures are predicted to increase by between 0.3°C and 4.8°C by 

2100 (Collins et al., 2013). Due to this and other effects of climate change, crop yields are 

predicted to decrease by an average of 2% per decade until 2050 with forecasts becoming 

more severe during the latter half of the century (Porter et al., 2014). Agricultural crops have 

limited genetic diversity having been through generations of breeding to obtain high yielding, 

uniform crop varieties (Tanksley and McCouch, 1997). This has left crops highly susceptible 

to biotic and abiotic stresses associated with climate change. This is an issue compounded by 

estimates that the human population is set to reach 9 billion people by 2050 (United Nations, 

2011). This presents the significant challenge of providing global food security for an 

increasing population by improving the resilience of agricultural systems in the face of 

climate change (Government Office for Science, 2011). 

Crop wild relatives (CWR) are wild plant species that are related to crops. They offer genetic 

resources that can be harnessed in crop breeding. The relationship between a crop and its wild 

relative can be defined using the Gene Pool (GP) Concept (Harlan and de Wet, 1971), which 

classifies CWR according to the ease of transfer of genes/traits from CWR to a crop (GP1a – 

cultivated crop varieties, GP1b – CWR which are easily crossable with crops in GP1a, GP2 – 

where is it possible to breed genes from CWR to crop though efforts are not always successful 

and GP3 – where more advanced biotechnologies are required to achieve successful trait 

transfer from CWR to crop). Similar classifications are possible based on the taxonomic 

relationships between CWR and crops and can be useful where experiments into genetic 

relationships are yet to take place. This classification is called the Taxon Group (TG) Concept 

(Maxted et al., 2006) where TG1a contains the cultivated crop variety, TG1b includes any 
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CWR of the same species as the crop, TG2 contains CWR in the same taxonomic section as 

the crop, TG3 includes those in the same subgenus and TG4 contains those in the same genus. 

Never having been through the process of domestication, CWR have a much wider gene pool 

and potentially contain traits that could be bred into existing crop varieties to improve their 

resilience to a range of stresses (Tanksley and McCouch, 1997). For example, traits from 

Hordeum bulbosum L. (a wild relative of barley) have been utilised as a source of resistance 

to many diseases including leaf rust, powdery mildew (Zhang et al., 2001) and scald 

(Pickering et al., 2006), all of which result in severe yield losses in susceptible cultivated 

barley varieties. It has been calculated that the potential value of breeding novel and 

beneficial traits from CWR into just 29 food crops identified by the Millennium Seed Bank, 

Kew could be approximately $120 billion by 2021 (PwC, 2013). 

Despite their clear economic value, CWR themselves, as with all wild plant species, are also 

threatened by a range of factors including habitat destruction and climate change (Kell et al., 

2012). In recognition of their potential value and the threats to which they are exposed, the 

conservation of CWR and of the range of genetic diversity within them is increasingly 

becoming a priority. As a result they are being included in global and regional conservation 

policy (Convention on Biological Diversity (CBD, 1992), Global Strategy for Plant 

Conservation (CBD, 2010a), Strategic Plan for Biodiversity (CBD, 2010b), International Seed 

Treaty (FAO, 2001), European Strategy for Plant Conservation (Planta Europa, 2008) and 

European Biodiversity 2020 Strategy (European Union, 2011). Priority CWR and 

recommended conservation actions for CWR are now starting to be identified in a range of 

countries in response to policy documents (e.g. Benin (Idohou et al., 2012); USA (Khoury et 

al., 2013); Finland (Fitzgerald, 2013); Spain (Rubio Teso et al., 2013); Italy (Panella et al., 

2014)). Within the UK however, active conservation of CWR has not yet been established. In 
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light of this, recent research effort has focussed on identifying priority CWR and finding 

effective means of establishing active conservation, both in situ and ex situ, for these plants in 

England and Wales (Fielder et al., 2015; submitted a). The current study addresses these same 

issues within the context of Scotland. These three studies are each part of one wider study that 

aims to encourage the implementation of active CWR conservation across the UK. 

The agricultural industry plays a vital role in the economy of Scotland. According to 

Scotland’s State of the Environment Report (Critchlow-Watton et al., 2014), 9% of 

Scotland’s agricultural land area is specifically used for crop production and is located 

primarily in the east of the country. Though this may seem a small percentage, the 

contribution of this land area to the economic output of agriculture in Scotland far exceeds 

this value, contributing 34%. The most commonly grown crops in Scotland are barley, wheat, 

oilseed rape, oats, potatoes and strawberries of which CWR of barley, oilseed rape, oats and 

strawberries are present within Scotland. No CWR of wheat or potatoes are present within 

Scotland as these crops originate from the Middle East and South America respectively 

(Vavilov, 1926). A total of 12% of UK cereal production originates from Scotland (CCRA, 

2012). A further 21% of agricultural land area is used as managed grassland supporting 

livestock through grazing (with the remaining agricultural land used for rough grazing) 

(Critchlow-Watton et al., 2014). This highlights the value not only of crops grown as a human 

food source but also of forage and fodder crops for livestock farming. 

The UK Climate Change Impact Programme (UKCP09, 2009) has outlined the expected long-

term effects of climate change across the UK. It is predicted that Scotland will experience 

increasingly hotter, drier summers and milder, wetter winters (UKCP09, 2009). This in turn is 

predicted to have some beneficial effects on agriculture, such as a longer growing season and 

the ability to grow a wider range of crops. However, a range of deleterious effects are also 
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likely, including but not limited to decreased yields due to drought in summer, the increased 

incidence of pests and diseases that are able to survive through milder winters and the spread 

of invasive species (Critchlow-Watton et al., 2014). Crops in Scotland could be further 

threatened due to their being cultivated in coastal locations, leaving them susceptible to rising 

sea levels (CCRA, 2012). In order to maintain or ideally increase crop yields over time it will 

be necessary for them to become more resilient and stress tolerant in response to the predicted 

changes in climate. This presents a strong case for the conservation of CWR in Scotland and 

the subsequent utilisation of their genetic diversity to breed new crop varieties able to 

withstand these changes. 

The UK is a contracting party to the Aichi targets under the CBD Strategic Plan (CBD, 

2010b), which explicitly state the need for the conservation of crops’ genetic diversity and of 

their wild relatives. The Scottish Biodiversity Strategy (Scottish Executive, 2004) and the 

recently published 2013 update, ‘The 2020 challenge for Scotland’s biodiversity’ (Scottish 

Government, 2013b) set out Scotland’s strategy for protecting biodiversity and harnessing 

nature to improve Scotland’s prosperity and welfare. It acknowledges genetic diversity as an 

important element of Scotland’s natural capital and recognises the contribution it can make 

towards maintaining the robustness of food production. While conservation of landraces 

(traditional crop varieties) is being undertaken through the Scottish Landrace Protection 

Scheme (Green et al., 2009), at present no conservation actions are being undertaken for 

conserving CWR in Scotland. 

The objective of the current study was to identify ways to enhance CWR conservation within 

Scotland. It first aimed to inventory Scotland’s CWR, identifying those present in the country 

and those of particular conservation priority, and then to perform a gap analysis investigating 

the extent of their current protection both in situ and ex situ. This process was carried out with 
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advice from Scottish Natural Heritage (SNH). Based on the results of the study it was possible 

to make recommendations for providing active management of CWR in Scotland, which 

ultimately would ensure the persistence of CWR populations, making them available as a 

resource for use in crop improvement. 

3.3 Materials and methods 

3.3.1 CWR checklist and inventory 

To produce a checklist of all CWR present within Scotland, a checklist of all CWR in the UK 

(extracted from the Crop Wild Relative Catalogue for Europe and the Mediterranean, Kell et 

al., 2005) was matched against a checklist of the Scottish flora derived from the Vice County 

Census Catalogue (VCCC, Stace et al., 2003). The taxonomy of the resulting Scottish CWR 

checklist was harmonised with the British flora (Stace, 1997). The checklist contained all 

native and introduced taxa as well as CWR related to crops of all socio-economic uses 

(including human food, animal forage and fodder, medicinal, forestry, industrial etc.), 

amounting to a total of 1,259 CWR taxa and representing 43% of the Scottish flora. The 

Scottish checklist is available at the Plant Genetic Resources Diversity Gateway 

(http://pgrdiversity.bioversityinternational.org) and Supplementary Table 3.1a. 

Unlike the traditional approach to prioritising vascular plants for conservation, which usually 

focuses on criteria relating to rarity and threat at the species level, the focus for prioritising 

CWR is on identifying those that can potentially contribute most to the improvement of crop 

varieties and in this case, food security. With this in mind, six criteria were selected through a 

consultation process with SNH for the prioritisation of the CWR checklist to produce an 

inventory containing priority CWR most likely to contribute to plant breeding. The six criteria 

were applied to the checklist in a step-wise process. First, criteria 1 and 2 were applied to 

http://pgrdiversity.bioversityinternational.org/
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identify a pool of CWR which were either natives or archaeophytes and which were related to 

human food or animal forage and fodder crops; these being the CWR most likely to have a 

role in increasing food security. The remaining criteria (3 to 6) were then applied in turn. Any 

CWR that met one of these criteria were included in the final Scottish inventory of priority 

CWR. The criteria were as follows: 

1. Use of the related crop – Data stating the socio-economic uses of crops were extracted 

from GRIN Taxonomy for Plants (USDA, ARS, National Genetic Resources Program, 

2015). Crops used as human food sources or for animal forage or fodder were 

identified and all CWR related to these crops were listed, due to their potential role in 

improving food security. 

2. Native status – Any CWR listed as native or an archaeophyte according to the VCCC 

(Stace et al., 2003) were identified from the list of CWR generated by criterion one. 

3. Economic value of the related crop – CWR belonging to the same genus or within the 

same Gene Pool as economically valuable crops were prioritised. Crops were 

categorised as economically valuable if they were listed in agricultural statistics 

(FAOSTAT, 2013 – production quantity in million tonnes at the global, European and 

UK levels; Eurostat, 2013 – crop production value at producer prices in millions of 

euros; Defra, 2010 – crop production at market prices in million pounds). This method 

identified human food crops of value but data concerning the value of forage and 

fodder crops could not be found. This lack of forage and fodder data is an issue also 

identified by Kell et al. (2012). 

4. Degree of relatedness to the crop – CWR categorised into GP1b, GP2, TG1b, TG2 or 

TG3 of a related crop, according to the Harlan and de Wet inventory of globally 
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important CWR (Vincent et al., 2013), were prioritised. Any taxa in GP1a or TG1a 

with no wild populations are cultivated varieties and therefore were not prioritised. If a 

CWR was related to more than one crop, the crop to which it is most closely related 

(i.e. with the highest GP/TG classification) was used as the basis for prioritisation. 

5. Red list threat assessment – CWR classified as threatened according to the Vascular 

Plant Red Data List for Great Britain (Cheffings and Farrell, 2005), the European Red 

List of Vascular Plants (Bilz et al., 2011) or the IUCN Red List of Threatened Species 

(IUCN, 2012) were prioritised. These included any CWR listed as Critically 

Endangered, Endangered, Vulnerable or Near Threatened. 

6. Other conservation designations – The number of conservation designations assigned 

to each CWR in addition to the three red data list threat assessments mentioned above 

were extracted from the Conservation Designations for UK Taxa database (JNCC, 

2011). CWR that did not meet any of criteria 3 to 5 but were listed as having one or 

more designations, excluding designations based on IUCN red list criteria, were 

prioritised. 

3.3.2 In situ gap analysis 

Data records indicating occurrences of each priority CWR in Scotland were extracted from 

the BSBI distribution database (BSBI, 2013). All confirmed records with full passport 

information, recorded from 1970 onwards and with a precision of tetrad level (2km by 2km 

square) and above were selected for the in situ gap analysis. The software ArcMap 10.0 and 

DIVA-GIS 7.5.0 (ESRI, 2011; Hijmans et al., 2012) were used to carry out the spatial 

analysis of CWR occurrence records. A shape file depicting Scotland and its counties was 

obtained by extracting Scotland from a shape file of the United Kingdom, downloaded from 
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DIVA-GIS (www.diva-gis.org). The following three analyses were performed according to 

methods described by Scheldeman and van Zonneveld (2010) and Hijmans et al. (2012): 

 Taxon richness and observation richness – CWR taxon hotspots and areas with high 

numbers of observation records were determined using DIVA-GIS. The richness 

analysis used a ‘point to grid’ function and a grid square size of 0.1 degrees. 

 Complementarity analysis – A series of grid squares (0.1 degrees in size) were 

selected from across Scotland that contained all of the priority Scottish CWR within as 

few grid squares as possible. These squares indicate sites with potential for the 

establishment of genetic reserves for CWR. The ‘reserve selection’ function in DIVA-

GIS was used to perform this analysis. It first selects the grid square with the most 

CWR and then selects each additional square in turn based on the number of 

additional CWR that can be covered by that square (i.e. the number of CWR not 

present in any of the preceding squares) (Rebelo, 1994). A minimum of five different 

populations of each CWR should be conserved in situ to ensure protected populations 

represent a range of genetic diversity and also that the likelihood of the taxon 

persisting is increased (Brown and Briggs, 1991; Dulloo et al., 2008). In light of this, 

the CWR present in five or more squares were identified. 

 Incidence of priority CWR within protected areas – a comparison of occurrence record 

locations and the boundaries of Scottish protected areas was performed using ‘spatial 

join’ tools in ArcMap 10.0. Boundary shape files were downloaded from the Scottish 

Natural Heritage website (http://gateway.snh.gov.uk/natural-spaces/index.jsp). The 

following protected areas were used in the analysis: Sites of Special Scientific Interest 

(SSSI), Special Areas of Conservation (SAC), National Scenic Areas (NSA), National 

http://www.diva-gis.org/
http://gateway.snh.gov.uk/natural-spaces/index.jsp
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Nature Reserves (NNR), Local Nature Reserves (LNR), National Parks (NP), Country 

Parks, Ramsar sites and Special Protection Areas (SPA). 

3.3.3 Ex situ gap analysis 

Similarly to Fielder et al. (2015), to investigate the completeness of ex situ collections for 

priority Scottish CWR, accession data were extracted from the UK National Plant Inventory 

(UKNPI, 2013) and were also provided by the Millennium Seed Bank, Kew. If any accessions 

required georeferencing, longitude and latitudes were obtained using the UK Grid Reference 

Finder (www.gridreferencefinder.com) and the Gazetteer of British Place names 

(www.gazetteer.org.uk). The ex situ gap analysis was then performed in three stages as 

described: 

 The total number of accessions stored per priority Scottish CWR was determined. 

CWR with five or more accessions, as a back up for populations protected in situ, 

were considered sufficiently collected whereas those with fewer require additional 

collecting effort (Brown and Briggs, 1991). 

 A geographical representativeness score (GRS) was calculated per priority CWR using 

the ‘circular area statistic’ (Ramírez-Villegas et al., 2010). GRS represents the 

percentage of occurrence data that is also stored ex situ for each CWR. For CWR with 

a GRS greater than or equal to 30%, ex situ collections adequately represent their in 

situ range, whereas those with a GRS lower than 30% require further collecting of 

accessions from across the taxon’s full range (Ramírez-Villegas et al., 2010; Phillips 

et al., 2014). 

http://www.gridreferencefinder.com/
http://www.gazetteer.org.uk/
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 A priority level was then assigned to each CWR based on the two preceding results 

(i.e. number of accessions and GRS). CWR with no accessions were categorised as 

being highest priority. Priority levels and associated conservation recommendations 

are given in full in Table 3.1. 

Table 3.1 Ex situ priority levels and recommended actions required to ensure gaps in ex situ 

collections are sufficiently filled. 

Priority 

Level 

Criteria Action required 

1 No accessions Highest priority for collection; Ensure 

minimum of five accessions are collected 

representing the full range of the CWR 

2 Has accessions but none are 

georeferenced or the location data is 

restricted 

High priority for collection; Georeference 

existing accessions; Further collection of 

accessions which are representative of 

CWR range required 

3 Fewer than five accessions and GRS 

lower than 30% 

Increase accessions to a minimum of 

five; ensure representative of range 

4 Fewer than five accessions but GRS 

greater than 30% 

Increase accessions to a minimum of 

five; confirm that current stored 

accessions are representative of CWR 

range 

5 Greater than or equal to five 

accessions but GRS lower than 30% 

Improve geographic representativeness of 

accessions through further targeted 

collection 

6 Greater than or equal to five 

accessions and GRS greater than 

30% 

Sufficiently represented in ex situ 

collections 

 

3.4 Results 

3.4.1 CWR inventory 

The Scottish national inventory of priority CWR contains 120 taxa (102 species and 18 

subspecies). This represents 9.53% of the 1,259 CWR taxa present in Scotland, as listed in the 

Scottish CWR checklist. A summary of the inventory is shown in Table 3.2 (the full inventory 
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is available at the Plant Genetic Resources Diversity Gateway 

(http://pgrdiversity.bioversityinternational.org), also see Supplementary Table 3.1b). The 

inventory contains 78 taxa that are related to crops used as a human food source and an 

additional 42 taxa, which are related only to forage and/or fodder crops. The 120 CWR taxa 

represent a total of 14 plant families, of which Poaceae, Brassicaceae and Fabaceae contain 

the most genera (17, 8 and 6 respectively). The genera with the highest taxon richness are 

Vicia L. (vetches, 11 taxa), Trifolium L. (clovers, 8 taxa) and Chenopodium L. (goosefoots, 8 

taxa). 

Table 3.2 Summary of inventory of 120 priority CWR in Scotland.  

Family No. of genera No. of species 
No. of infra-

specific taxa 
Native status 

Apiaceae 2 1 2 N 

Asteraceae 2 3  A & N 

Brassicaceae 8 8 4 A & N 

Chenopodiaceae 2 8 1 A & N 

Corylaceae 1 1  N 

Ericaceae 1 5  N 

Fabaceae 6 23 3 A & N 

Geraniaceae 1 3  A & N 

Grossulariaceae 1 2  N 

Liliaceae 2 5  A & N 

Linaceae 1 1 1 N 

Plantaginaceae 1 2  N 

Poaceae 17 30 4 A & N 

Rosaceae 5 10 3 A & N 

Totals 50 102 18  

A = Archaeophyte, N = Native. 

 

Agricultural statistics extracted from FAOSTAT (2013), Eurostat (2013) and Defra (2010) 

showed that a total of 34 food crops have either native or archaeophyte CWR within Scotland 

that are of economic value. According to Eurostat data (Fig. 3.1), barley and rape seed are the 

crops with the highest mean production value in Europe (producer price from 2007 to 2011) 

http://pgrdiversity.bioversityinternational.org/


Chapter 3 Conserving Scottish CWR 

 

 84 

with values of 8,520 and 6,587 million Euros respectively. Other listed crops of value include 

apples, peaches and pears as well as other brassica crops e.g. cauliflower. These statistics are 

similar to those for England (Defra, 2010) where barley and rape seed are also shown as 

having the highest production value (market prices from 2006 to 2010). Data at the global 

scale (FAOSTAT, 2013) also mirror this result, showing that barley and brassicas are again of 

high value (being among the five highest values for production quantity between 2007 and 

2011). A total of 63 CWR taxa were identified as economically valuable based on the crops 

identified by these agricultural statistics, and were listed in the Scottish inventory of priority 

CWR. 

 

Figure 3.1 European production values at producer price in millions of Euros between 2007 

and 2011 of crops with native or archaeophyte CWR occurring within Scotland (Data source: 

Eurostat, 2013). 
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Little under a quarter (24%) of priority CWR were classified using the Gene Pool concept, 

with 17% within GP1b and just four percent in GP2 and three percent in GP3. The remaining 

76% of taxa were classified using the Taxon Group concept, with the vast majority (35%) of 

taxa classified as TG4 (Fig. 3.2). 

 

Figure 3.2 Proportions of priority CWR classified in GP1b to 3 and TG1b to 4 in the Scottish 

CWR inventory, indicating their degree of relatedness to their associated crops. 

 

Of the 120 priority CWR taxa, 10.8% (13 taxa) are recorded as being threatened according to 

the Vascular Plant Red Data List for Great Britain (Cheffings and Farrell, 2005) and these 

taxa are listed in Table 3.3. Ten taxa are listed as Vulnerable, including Scottish small-reed 

Calamagrostis scotica (Druce) Druce, which is endemic to Scotland. Purple milk-vetch 

Astragalus danicus Retz. and stinking goosefoot Chenopodium vulvaria L. are listed as 

Endangered and upright goosefoot Chenopodium urbicum L. as Critically Endangered. In 
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addition, Scandinavian small-reed Calamagrostis purpurea (Trin.) Trin. is classified as Data 

Deficient. A further 17 CWR taxa were identified as priority based on their being assigned 

additional conservation designations (Table 3.4). Eight taxa are listed on the Biodiversity List 

for Scotland as species of principal importance for conservation. A further seven taxa are 

listed as being nationally rare or scare, occurring in fewer than 100 hectads (10km by 10km 

squares) across the UK. Scandinavian small-reed C. purpurea subsp. phragmitoides (Hartm.) 

and sea pea Lathyrus japonicus Willd. subsp. maritimus (L.) P.W. Ball are the only two taxa 

listed as both rare/scarce and are on the Scottish Biodiversity List.  

Table 3.3 Red list status and the threat criteria met for CWR in the Scottish inventory. 

CWR Red List Status Criterion 

Chenopodium urbicum L. CR A2c AOO and EOO trend 

Astragalus danicus Retz. EN A2c AOO trend 

Chenopodium vulvaria L. EN A2c AOO and EOO trend 

Allium oleraceum L. VU A2c EOO trend 

Astragalus alpinus L. VU D2 

Bromus secalinus L. VU A2c AOO trend 

Calamagrostis scotica (Druce) Druce VU D1+2 

Calamagrostis stricta (Timm) Koeler VU A2c AOO trend 

Chenopodium bonus-henricus L. VU A2c AOO trend 

Chenopodium glaucum L. VU A2c AOO and EOO trend 

Poa flexuosa Sm. VU D1 

Poa glauca Vahl. VU A2c AOO trend 

Vicia bithynica (L.) L. VU A2c EOO trend 

Calamagrostis purpurea (Trin.) Trin. DD N/A 

VU = Vulnerable; EN = Endangered; CR = Critically Endangered; DD = Data Deficient; 

AOO = Area of occupancy; EOO = extent of occurrence; A2c = reduction in population size 

based on trend in AOO or EOO; D1 = Restricted population of less than 1000 mature 

individuals; D2 = Restricted population based on AOO or number of locations (Data source: 

Cheffings and Farrell, 2005). 
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Table 3.4 CWR in the Scottish inventory with conservation designations. 

CWR Conservation designation 

Alopecurus borealis Trin. Rare and scarce species (not based on IUCN 

criteria) 

Alopecurus myosuroides Huds. Biodiversity Lists – Scotland 

Bromus hordaceus L. subsp. ferronii 

(Mabille) P.M. Sm. 

Rare and scarce species (not based on IUCN 

criteria) 

Bromus hordaceus L. subsp. thominei 

(Hardouin) Braun-Blanq. 

Rare and scarce species (not based on IUCN 

criteria) 

Calamagrostis epigejos (L.) Roth Biodiversity Lists – Northern Ireland 

Calamagrostis purpurea (Trin.) Trin. 

subsp. phragmitoides (Hartm.) 

Biodiversity Lists – Scotland; Rare and scarce 

species (not based on IUCN criteria) 

Crambe maritima L. Biodiversity Lists – Northern Ireland 

Erodium maritimum (L.) L'Hér. Biodiversity Lists – Scotland 

Erodium moschatum (L.) L'Hér. Biodiversity Lists – Scotland 

Festuca arenaria Osbeck Rare and scarce species (not based on IUCN 

criteria) 

Lathyrus japonicus Willd. subsp. 

maritimus (L.) P.W. Ball 

Biodiversity Lists – Scotland; Rare and scarce 

species (not based on IUCN criteria) 

Lepidium campestre (L.) W.T. Aiton Biodiversity Lists – Scotland 

Plantago media L. Biodiversity Lists – Scotland 

Poa alpina L. Rare and scarce species (not based on IUCN 

criteria) 

Poa bulbosa L. Rare and scarce species (not based on IUCN 

criteria) 

Rorippa islandica (Oeder ex Gunnerus) 

Borbás 

Rare and scarce species (not based on IUCN 

criteria) 

Trifolium micranthum Viv. Biodiversity Lists – Scotland 

(Data source: JNCC, 2011) 

 

3.4.2 In situ gap analysis 

After the exclusion of all occurrence records that did not meet the quality standards outlined 

in the method above, no occurrence records remained for eight of the 120 priority Scottish 

CWR. As a result the following taxa were unable to be included in the in situ gap analysis: 

garden asparagus Asparagus officinalis L., Scandinavian small-reed C. purpurea subsp. 

phragmitoides, upright goosefoot C. urbicum, stinking goosefoot C. vulvaria, wall barley 

Hordeum murinum L. subsp. murinum, sea pea L. japonicus subsp. maritimus, perennial flax 

Linum perenne L. subsp. anglicum (Mill.) Ockendon and white mustard Sinapis alba L. 
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subsp. alba. However, records did exist for the five subspecies when a search for data was 

performed at the species level (e.g. 23 records existed for C. purpurea rather than C. purpurea 

subsp. phragmitoides). In such cases, these records were not included in the analysis due to 

uncertainty as to which subspecies these data belonged. This left a total of 112 CWR taxa in 

the in situ gap analysis with 90,277 high quality occurrence data records within Scotland. 

Seven of the 112 taxa had only one occurrence record whereas sweet vernal-grass 

Anthoxanthum odoratum L. had the highest number of records (5,356).  

Taxon richness analysis of the 112 CWR revealed a number of hotspots throughout Scotland 

with a high concentration in central and eastern areas (Fig. 3.3a). A significant hotspot is 

located on the border between Renfrewshire and West Dunbartonshire to the west of the city 

of Glasgow and stretching into the Loch Lomond and Trossachs National Park. Another key 

hotspot lies around the Firth of Forth in the east, with other hotspots located in the county of 

Perthshire and Kinross and further north in Moray and the Highlands, overlapping with the 

Cairngorms National Park. An analysis of observation richness reveals two small localities 

that could be subject to bias with higher numbers of observations compared to the rest of the 

country (Fig. 3.3b). The first area is located in West Lothian, between the cities of Edinburgh 

and Glasgow, and the second area is located in Clackmannanshire. In contrast, there are areas 

of Scotland, particularly in the Highlands, that show much less recording has taken place. 
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Figure 3.3 Richness analysis for the 112 priority CWR in the Scottish inventory with occurrence data points using a grid square size of 0.1 

degrees. a) Taxon richness and b) Observation richness. 
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The complementarity analysis of the 112 CWR taxa for which there were high quality 

occurrence records shows that a total of 22 grid squares (each 0.1 degree squares or 

approximately 11km by 11km) are necessary to conserve 109 priority CWR taxa (the reserve 

selection tool in DIVA-GIS did not allocate any grid squares to cover the single occurrence 

records for fig-leaved goosefoot Chenopodium ficifolium Sm., sea carrot Daucus carota L. 

subsp. gummifer (Syme) Hook. f. or bulbous meadow-grass Poa bulbosa L.). This equates to 

91% of the priority CWR in the Scottish inventory. The 22 grid squares are primarily located 

in an arc from Glasgow in the west to Dundee on the east coast but also include sites in the far 

south west of Scotland, in the Outer Hebrides and the eastern reaches of the Highlands (Fig. 

3.4). The first three grid squares together conserve 61% of the 120 priority CWR taxa. Grid 

square one contains 55 taxa in total and is located to the west of the city of Glasgow. Grid 

square two contains 31 CWR, 11 of which do not occur in grid square one and is located 

within the city of Edinburgh. Grid square three contains 22 CWR, seven of which do not 

occur in either grid squares one or two and is located in the Highlands in close proximity to 

the counties of Moray and Aberdeenshire. The percentage of the 120 priority CWR 

represented in each grid square is shown in Fig. 3.5. Further analysis of the complementarity 

results showed that 50 out of the 120 priority CWR taxa have been recorded as present in five 

or more of the 22 complementarity squares, with white clover Trifolium repens L. present in 

the most (19 out of 22). However, this also shows that 70 CWR are recorded in fewer than 

five squares.  
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Figure 3.4 Complementarity analysis for the 112 priority CWR in the Scottish inventory with 

occurrence data points showing the 22 grid squares identified as suitable candidate sites for 

establishing in situ conservation (e.g. genetic reserves within existing protected areas and also 

protection outside of protected areas). 
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Figure 3.5 Percentage of additional CWR contained within each of the 22 priority grid 

squares (i.e. CWR that are not present in any of the preceding grid squares). 

 

Considering protected areas in Scotland, it was found that all 22 complementarity grid squares 

overlap with a range of different protected areas including SSSIs, SACs, NSAs, LNRs and 

NPs. Four of the squares overlap with the Cairngorms National Park. By comparison of 

occurrence records with locations of protected areas it was found that 105 (88%) of priority 

CWR had at least one occurrence record within a protected area. Furthermore, 85 of these 

CWR have records located within five or more protected areas. However, only 34% of all 

90,277 records in the in situ gap analysis are located within protected areas. 
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3.4.3 Ex situ gap analysis 

Only 40 accessions are stored in genebanks for the 120 priority CWR in Scotland, 23 of 

which are stored at the Genetic Resources Unit, IBERS at Aberystwyth University and the 

remaining 17 of which are stored at the Millennium Seed Bank, Kew. Furthermore, these 40 

accessions represent only 11 of the priority CWR and are primarily grasses (Table 3.5). 

Perennial rye-grass Lolium perenne L. has the most accessions (14), all of which are stored at 

IBERS, Wales. Of these 11 CWR only one has a GRS greater than the recommended 

threshold of 30% and this is Scottish small-reed C. scotica. This CWR is endemic to 

Scotland, despite this, it only has one stored accession but in proportion to its restricted range 

this equates to a high GRS.  

Table 3.5 Number of accessions and associated GRS percentage for all 11 priority Scottish 

CWR with accessions originating from Scotland. 

CWR Accessions GRS (%) 

Lolium perenne L. 14 1.13 

Trifolium repens L. 8 0.30 

Astragalus alpinus L. 3 24.24 

Rorippa islandica (Oeder ex Gunnerus) Borbás 3 12.50 

Vaccinium uliginosum L. 3 1.19 

Dactylis glomerata L. 2 0.12 

Poa glauca Vahl. 2 4.17 

Vaccinium vitis-idaea L. 2 0.27 

Calamagrostis scotica (Druce) Druce 1 50.00 

Lathyrus sylvestris L. 1 11.43 

Poa pratensis L. 1 0.09 

 

The number of accessions and GRS percentages were combined to categorise the 120 CWR 

into priority levels inferring urgency for further collection and storage of accessions 

(Supplementary Table 3.2). It is clear that none of the Scottish priority CWR are currently 

well represented in ex situ collections as no taxa were assigned the lowest priority (level 6). 
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All priority CWR lacking accessions (109) were assigned the highest priority (level 1) where 

urgent collection of accessions is necessary. The lowest priority CWR were perennial rye-

grass L. perenne and white clover T. repens both with greater than five accessions but a GRS 

below 30% (level 4). C. scotica was the only taxon with a GRS greater than 30% however, 

with only one accession this taxon would benefit from further collecting to represent its range 

of genetic diversity. The remaining eight CWR were assigned a priority level of 3 (i.e. they 

have fewer than five accessions stored ex situ and a GRS value which is below 30%) and 

further collection of seed representative of the range of each taxon is recommended. 

3.5 Discussion 

Traditional conservation practices have focussed on protecting rare or threatened species. 

However, this approach to conservation is not adequate to ensure the full protection of all 

CWR. To comprehensively conserve CWR there must be a focus on conserving the range of 

genetic diversity within species rather than just ensuring the survival of the species as a 

whole. The potential value to the agricultural industry of traits that may be present in CWR 

(PwC, 2013), not just within those that are rare, justifies the inclusion of these resources in 

appropriate conservation planning as an adjunct to traditional approaches. Efforts to conserve 

CWR should look to identify those requiring protection and where their conservation is 

currently lacking and should then ensure active monitoring and management across each 

species’ range (Maxted et al., 2008a). 

Prioritisation of Scottish CWR was based on criteria selected jointly by The University of 

Birmingham and Scottish Natural Heritage. Many inventories of priority CWR have now 

been developed both within Europe (e.g. Finland – Fitzgerald, 2013; Spain – Rubio Teso et 

al., 2013; Italy – Panella et al., 2014; Cyprus – Phillips et al., 2014; Czech Republic – Taylor 
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et al., in prep) and globally (e.g. Venezuela – Berlingeri and Crespo, 2012; Benin – Idohou et 

al., 2012; USA – Khoury et al., 2013). Although the ultimate goal of each country to ensure 

CWR are effectively conserved is the same, no two countries have yet used exactly the same 

prioritisation method. A wide range of different criteria can be used for prioritisation 

including: native status, economic value, distribution, legislation and threat (Maxted et al., 

1997a; Magos Brehm et al., 2010). Differences also exist between criteria selected for 

prioritising English, Welsh and Scottish CWR. For example, in Scotland and England 

conservation recommendations for food, forage and fodder CWR were the focus (Fielder et 

al., 2015) however in Wales, tree species were also selected due to the concern of 

representatives in Natural Resources Wales for the threats the forestry industry is now facing, 

particularly in terms of the emergence of new pests and diseases (Fielder et al., submitted a). 

The process of selecting criteria should be an objective and inclusive process whereby the 

criteria most appropriate to addressing global policy targets are selected, but equally there 

should be opportunity for input from national stakeholders in selecting nationally relevant 

criteria as well. In this way stakeholder support can be gained for the conservation of any 

priority CWR identified through this process, increasing the likelihood that CWR 

conservation will be established and maintained in the long-term. 

There is a lack of active CWR conservation in Scotland. This is a situation echoed in England 

and Wales where CWR conservation is largely limited to efforts to maintain wild asparagus 

populations (King and Edwards, 2007; King et al., 2007). Despite the presence of a number of 

red listed CWR in Scotland and further CWR listed on the Biodiversity List of Scotland, as 

yet there is no conservation effort for these species in the context of their being CWR. For 

example the Scottish small-reed C. scotica is the only endemic priority CWR in the Scottish 

inventory. With only one population present in the Highlands and being classified as 
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Vulnerable in the Vascular Plant Red Data List for Great Britain (Cheffings and Farrell, 2005) 

it is important that this population is managed appropriately to preserve its full geographical 

distribution and ultimately its full range of genetic diversity. 

Hotspot and complementarity analyses are valuable and widely used tools for determining 

areas with high numbers of CWR taxa and more specifically, areas that together could form a 

genetic reserve network sufficient to conserve priority CWR (Hijmans et al., 2012; Rubio 

Teso et al., 2013 inter alios). This approach enables a national and multi-taxon view of CWR 

conservation rather than focussing on each individual taxon in turn. This is particularly 

appropriate for widespread CWR, such as red currant Ribes rubrum L. and red clover 

Trifolium pratense L., as they are unlikely to be granted the same level of attention as rare and 

threatened species. The Scottish hotspot analysis suggests that the lowlands in central and 

Eastern Scotland are richer in CWR than the mountainous north and west. A trend supported 

by Jarvis et al. (in press) who demonstrated that CWR (particularly those most closely related 

to forage and fodder crops) tended to be associated with agricultural habitats and landscape 

features. Some association of CWR with coastal regions in the east is also evident, 

particularly around the Firth of Forth. Some CWR in the UK are known to be associated with 

coastal habitats (Preston et al., 2002) and as such, the predicted rise in sea level around 

Scotland (of between 0.12 to 0.18m by 2050; CCRA, 2012) may threaten CWR such as sea 

kale Crambe maritima L., sea pea Lathyrus japonicus subsp. maritimus. 

The network of selected grid squares (or potential in situ conservation sites for CWR) 

identified by the complementarity analysis shows the same association with central and 

eastern areas of Scotland and together these locations are sufficient to cover the majority of 

Scotland’s priority CWR. This analysis allows efficient conservation planning by focussing in 

on the fewest areas necessary to cover the most priority CWR. As discussed by Fielder et al. 
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(2015) and Fitzgerald (2013) the complementarity squares do not denote exact boundaries of 

suggested genetic reserves but rather they indicate general locations that should be further 

investigated for their suitability for in situ CWR conservation, whether inside or outside of 

existing protected areas. Findings by Jarvis et al. (in press), who carried out the first 

assessment of habitat preferences for UK CWR, will help to focus CWR conservation further 

by locating suitable habitats (particularly linear landscape features) within complementarity 

squares.  

According to the 2020 challenge for Scotland’s biodiversity, 18% of Scotland’s land area falls 

within the boundaries of a nature conservation site (Scottish Government, 2013b). The current 

study found that approximately one third of priority CWR occurrence records are located 

within these nature conservation sites. It should be noted that despite the incidence of CWR 

within protected areas there can be no guarantee of the provision of active and appropriate 

management of CWR in these locations (Hunter and Heywood, 2011). To achieve this will 

require the inclusion of CWR monitoring and management into existing conservation 

planning, this may often require only minimal changes to current practices but should address 

and meet all of the expected standards for CWR genetic reserves. Sites should be determined 

having been through a scientific process that identifies CWR present and carries out both 

demographic surveys and genetic diversity studies enabling the design of reserves capturing 

the maximum range of CWR genetic diversity (Iriondo et al. 2012; Fielder et al., submitted 

d). Establishment of CWR conservation outside of protected areas is a novel challenge that 

would require commitments from landowners and land managers to monitor and manage 

CWR and to resolve any conflicts in land management to ensure CWR and their genetic 

diversity is protected. Furthermore, there would be a requirement for funding mechanisms to 

be put in place to support land managers to preserve CWR. This may be possible through the 
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inclusion of an option for the preservation of agrobiodiversity as part of the Scotland Rural 

Development Programme, which delivers Pillar II of the EU Common Agricultural Policy 

(SRDP, 2015). 

Ex situ collections of CWR from Scotland are severely lacking. The Millennium Seed Bank, 

Kew aims to collect and store accessions for all native plants in the UK (Stephanie Miles, 

pers. comm.). In the context of traditional plant conservation, if an accession for a particular 

species has been collected from one UK administration (e.g. England or Wales) there may be 

no urgency to collect further material from Scotland. In the context of CWR this is not true. 

Due to the need to conserve a large range of genetic diversity in CWR, collections should 

span the range of their distribution to incorporate ecogeographic extremes or, where genetic 

diversity analyses have been carried out, collections should directly reflect this. To reach this 

objective, Brown and Briggs (1991) suggest that a minimum of five accessions should be 

stored ex situ per taxon as a back up of populations protected in situ. Due to Scotland’s 

distinctive landscape and climate (Critchlow-Watton et al., 2014), CWR there are likely to 

contain genetic diversity not found elsewhere in the UK. This provides a strong argument for 

ensuring priority Scottish CWR are well represented in genebanks. The priority level assigned 

to each CWR in the Scottish inventory reveals the taxa in most urgent need of collection and 

enables a more focussed approach to be taken. 

3.5.1 Recommendations for enhancing CWR conservation in Scotland 

 The CWR identified as priority in the Scottish inventory should be reviewed at regular 

intervals. A time scale of 10-year intervals may be appropriate. The review process 

should consider relevant policy, national stakeholder opinion and should address 
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existing and novel threats to CWR and their genetic diversity. The review process is 

also an opportunity to include more up-to-date prioritisation data. 

 Work towards establishing active in situ CWR conservation by focussing on those 

present in the network of complementarity squares and the suitable habitats within 

them. Initial efforts should be concentrated on the square containing the most CWR 

(the site west of Glasgow). 

 Include CWR monitoring and management in existing conservation planning for 

protected areas, ensuring the standards for CWR genetic reserves are met to secure a 

long-term commitment to the protection of the species and their genetic diversity. 

 Investigate the potential for conservation outside of protected areas in habitats less 

likely to be a priority within nature conservation sites, e.g. field margins and road 

verges (Jarvis et al., in press). 

 Aim to conserve a minimum of five in situ populations of each CWR and to carry out 

genetic diversity analyses where feasible to ensure that the populations are 

representative of the range of genetic diversity within CWR in Scotland. 

 Continue to obtain occurrence records from the field that are of high quality (specific 

location data) and record associated population data where possible. Ensure data 

continues to be widely accessible. 

 Collect a minimum of five accessions per priority CWR and store them ex situ. CWR 

assigned to priority level one should be considered in most urgent need of collection. 

 The relationship between accessions held in long-term storage and population genetic 

changes over time should be explored and the appropriate intervals for updating ex 
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situ collections determined per species to capture the genotypic evolution of in situ 

populations over time. 

 Maintain all accessions in UK genebanks with duplicates stored in a separate 

genebank where possible. 

 Genebanks should undertake greater promotion of the conserved CWR material 

available to researchers, pre-breeders and plant breeders for use in crop improvement, 

encouraging their use in the development of new crop varieties. 

3.6 Conclusion 

Conservation of priority CWR in Scotland is incomplete due to a lack of active in situ and ex 

situ conservation efforts for these taxa. The inclusion of CWR monitoring and management 

into existing conservation planning in established protected areas (and also into appropriate 

sites outside of protected areas) would vastly improve CWR protection in situ. A renewed 

effort to collect accessions from all priority CWR would also vastly improve the 

completeness of ex situ collections from Scotland. Using a complementary in situ and ex situ 

approach, CWR in Scotland can be maintained in their natural habitats enabling on going 

adaptation to a changing climate. At the same time, storage of this material and the genetic 

diversity within can ensure it is available for use in crop development. These efforts would 

contribute to the UK’s global and European commitments to conserve agricultural diversity 

and associated wild relatives (CBD, 1992; 2010a; 2010b; FAO, 2001; Planta Europa, 2008; 

European Union, 2011), and enhance the resilience of food production. 
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4.1 Abstract 

Crop wild relatives (CWR) harbour a wider range of genetic diversity than is found within 

modern crop cultivars. Beneficial traits identified within CWR can be bred into crops to 

improve their resilience in the face of climate change, aiding global efforts to improve future 

food security. Despite the UK’s commitments to improve the conservation of agricultural 

genetic diversity outlined in international policy documents such as the Aichi targets of the 

CBD Strategic Plan for Biodiversity, there are currently no active, long term measures in 

place in the UK to conserve these valuable resources. Here a UK inventory of 223 priority 

CWR is presented. In situ gap analysis of these CWR reveals that although they are well 

represented in the current protected area network, this only amounts to potential for passive 

conservation. Potential sites for the establishment of active in situ CWR conservation are 

presented. Ex situ gap analysis identifies large gaps in the completeness of current collections 

of UK CWR that will need to be filled. Finally, recommendations are outlined, the 

implementation of which would provide active in situ conservation of UK CWR with a 

complete and complementary back up of ex situ accessions available for use in crop 

improvement. The recommendations presented in the current study would be most effective if 

integrated with approaches outlined in a wider study of CWR conservation in each of the 

devolved administrations in the UK (England, Scotland and Wales). By establishing active 

and long term conservation of CWR at both devolved and UK level, these resources and their 

associated genetic diversity can be secured and utilised. 
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4.2 Introduction 

The transition from farming landraces and traditional crop varieties to the farming of modern 

crop cultivars has resulted in a significant loss of agricultural genetic diversity (Tanksley and 

McCouch, 1997; van de Wouw et al., 2010). This has led to concerns over the capacity of 

these modern crops to withstand and adapt to predicted changes in climate (HLPE, 2012). 

Susceptibility to climate change, together with a rising demand for high yielding crops in light 

of a rapidly increasing human population (United Nations, 2013), threatens future food 

security. One key approach in improving this outlook is to introduce beneficial traits from the 

wider gene pool of the wild relatives of crop plants, to improve their resilience to change. 

Crop wild relatives (CWR) are wild plants related to crops and that contain a wider range of 

genetic diversity, as they have not been through any process of domestication (Maxted et al., 

2006). CWR differ from other wild plants only in that they are related to one or more crop 

species. The closeness of this relationship determines the ease by which the CWR and crop 

can be crossed, and genes or traits transferred from wild relative to cultivar through plant 

breeding (Harlan and de Wet, 1971). CWR can be classified using the Gene Pool (GP) 

concept proposed by Harlan and de Wet (1971) where the crop is categorised as GP1a, its 

closest wild relatives (where there is no barrier to gene transfer) are classified as GP1b, CWR 

where gene transfer to the crop is possible but more challenging are classified as GP2 and 

CWR where more advanced biotechnology is required for successful gene transfer are 

assigned to GP3. Gene pool classifications exist for many globally important crops (Vincent 

et al., 2013). However, for other crops these crossing experiments often have not been carried 

out. For these cases, Maxted et al. (2006) propose the Taxon Group (TG) concept where 

CWR are classified based on their taxonomic relationship to a crop. TG1a includes the crop 
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itself, TG1b includes CWR of the same species as the crop, TG2 includes CWR within the 

same section of a genus as the crop, TG3 includes CWR in the same subgenus as the crop and 

TG4 includes any CWR otherwise in the same genus as the crop. 

There is an extensive literature on the use of CWR in crop development. One example can be 

seen in the successful transfer of resistance to the fungal disease ‘powdery mildew’ from wild 

Abyssinian cabbage Brassica carinata A. Braun into cultivated brassica crops such as 

broccoli and cabbage (Tonguç and Griffiths, 2004). Another example is the use of wild oat 

Avena sterilis L. as a source of over 40 genes conveying resistance to crown rust disease 

enabling the development of resistant oat (Avena sativa L.) cultivars (Hoffman et al., 2006). 

The transfer of beneficial traits such as disease resistance and stress tolerance can have a 

significant economic impact on agriculture. One estimate by Price Waterhouse Cooper 

suggests that the development of improved cultivars of 29 key food crops through the transfer 

of novel traits from their CWR could be valued at approximately $120 billion by the year 

2021 (PwC, 2013). 

CWR, as with all wild plants, are vulnerable to climate change (Jarvis et al., 2008) and are 

poorly conserved both in situ and ex situ (Maxted, 2003; Dias et al., 2012). In response to 

this, the conservation of these valuable taxa and the genetic diversity within them should be a 

priority. This will facilitate their use in crop improvement, responding to a need for varieties 

with increased resilience to conditions predicted under a changing climate as well as 

addressing factors such as globalisation leading to increased spread of disease (Anderson et 

al., 2004), depletion of finite phosphate resources (Wissuwa et al., 2015) and salinisation of 

agricultural systems (Flowers and Flowers, 2005). International and regional policy 

documents are calling for improved conservation of agricultural genetic diversity, including 

CWR (Convention on Biological Diversity – CBD, 1992; Strategic Plan for Biodiversity – 
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CBD, 2010b; Biodiversity 2020 strategy – European Union, 2011). In recent years, this has 

encouraged the publication of national CWR conservation strategies where the current state of 

CWR conservation is assessed and recommendations for its improvement outlined (E.g. 

Finland – Fitzgerald, 2013; Spain – Rubio Teso et al., 2013; Italy – Panella et al., 2014; 

Cyprus – Phillips et al., 2014). 

The UK contains approximately eight percent of Europe’s CWR (Kell et al., 2008), including 

wild plants related to human food crops, animal forage and fodder crops as well as forestry 

species, medicinal and ornamental commercial plants. As a contracting party to the CBD 

Strategic Plan for Biodiversity (CBD, 2010b) the UK is committed to establishing active 

conservation for agricultural genetic diversity. This is stated in Aichi Target 13: ‘By 2020, the 

genetic diversity of cultivated plants and farmed and domesticated animals and of wild 

relatives, including other socio-economically as well as culturally valuable species, is 

maintained, and strategies have been developed and implemented for minimizing genetic 

erosion and safeguarding their genetic diversity’ (CBD, 2010b). Currently though, no active 

conservation is being undertaken for CWR in the UK. A preliminary analysis of UK CWR 

diversity was published by Maxted et al. (2007), which raised awareness of the need for a full 

analysis and recognised the necessity for closer collaboration with the appropriate statutory 

agencies of the UK. The UK is formed of the devolved administrations of England, Wales, 

Scotland and Northern Ireland. Most UK conservation policy is devolved with each 

administration having its own biodiversity strategy with commitments to conserve genetic 

diversity (Defra, 2011; Welsh Assembly Government, 2006; Scottish Government, 2013b; 

DOENI, 2002). Inventories of priority CWR and recommendations for their active and 

systematic conservation have been developed individually for England, Wales and Scotland 
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(Fielder et al., 2015; submitted a; submitted b) with input from Natural England (NE), Natural 

Resources Wales (NRW) and Scottish Natural Heritage (SNH) respectively. 

The objective of the current study was to further the work completed for each administration 

in enhancing CWR conservation with input from NE, NRW and SNH. This study presents an 

inventory of priority CWR at the national (whole UK) level, assesses their current level of 

conservation across the country and finally provides recommendations as to how to improve 

the completeness of both in situ and ex situ CWR conservation in the UK. This study is not 

intended to supersede recommendations made at the administration level but rather as an 

adjunct to them to further improve the completeness of UK CWR conservation. This 

integrated bottom-up approach to conservation ensures CWR of value to an individual 

administration are conserved using locally available policy instruments, together with those of 

national importance. Facilitation of national CWR conservation will then contribute to 

European and global CWR initiatives. The focus of the current study is on food security but it 

should be noted that conservation of other use groups of wild relatives should not be 

overlooked and could form the basis of further studies of UK genetic resources. 

4.3 Materials and methods 

4.3.1 CWR checklist and inventory 

A checklist of all CWR occurring within the UK was extracted from the Crop Wild Relative 

Catalogue for Europe and the Mediterranean (Kell et al., 2005) and the taxonomy harmonised 

with the British flora (Stace, 2010). The checklist contains a total of 2,109 CWR taxa (both 

native and introduced) related to agricultural, horticultural, forestry, ornamental, medicinal 

and aromatic crops (Supplementary Table 4.1a). According to Stace (2010) there are 

approximately 4,800 plant taxa in the British Isles, therefore approximately 44% of the British 
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flora can be defined as CWR. It is likely to be impractical to effectively conserve over two 

thousand plant taxa, including many which are only casual, i.e. introduced but not yet 

naturalised (Stace, 2010 defines a naturalised plant as one that has been introduced, has 

established and is self-perpetuating. Plants naturalised prior to 1500 AD are known as 

archaeophytes whereas plants naturalised after 1500 AD are known as neophytes). As a result, 

a process of prioritisation of the checklist was necessary to create an inventory of priority 

CWR containing only those that are in more urgent need of active conservation. 

The criteria selected for prioritisation were those that would identify the CWR that are likely 

to contribute most to the development of improved food and forage crop varieties. This 

contrasts with traditional approaches to plant conservation where the focus is primarily on 

rare or threatened species. Criteria were selected jointly by NE, NRW, SNH and the 

University of Birmingham and were applied to the checklist in turn. Criteria one and two were 

first applied to identify a subset of CWR containing only taxa that are native, archaeophyte 

and neophyte, i.e. no casuals (introduced and not yet naturalised), related to human food or 

animal forage and fodder crops. Subsequently, any of these CWR meeting the remaining 

criteria (3–6) were prioritised and listed in the UK inventory of priority CWR. Prioritisation 

criteria seek to balance agricultural value of the related crop with requirement for 

conservation due to decline and are as follows: 

1. Use of the related crop – identification of all CWR related to crops used for human 

food or animal forage and fodder according to GRIN Taxonomy for Plants (USDA, 

ARS, National Genetic Resources Program, 2015). 

2. Native status – identification of all native, archaeophyte and neophyte CWR and 

exclusion of casuals (Stace, 2010). 
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3. Economic value of the related crop – identification of economically valuable crops 

according to global, European and UK production quantities (FAOSTAT, 2013), crop 

production value at producers prices (Eurostat, 2013) and crop production at market 

prices (Defra, 2010). Any crop assigned a value by any of these sources above was 

considered economically valuable. Any CWR within the same genus or gene pool as 

these economically valuable crops were prioritised. 

4. Degree of relatedness to the crop – prioritisation of CWR within GP1b, GP2 or TG1b 

to 3 of their related crop according to Vincent et al. (2013). CWR related to more than 

one crop were prioritised based on the crop to which they were most closely related. 

5. Threat assessment – prioritisation of any threatened (vulnerable, (VU); endangered, 

(EN); or critically endangered, (CR)), near threatened (NT), data deficient (DD) or 

extinct in the wild (EW) CWR in the IUCN Red List of Threatened Species (IUCN, 

2012), European Red List of Vascular Plants (Bilz et al., 2011) or the Vascular Plant 

Red Data List for Great Britain (Cheffings and Farrell, 2005). 

6. Other conservation designations – prioritisation of CWR with any conservation 

designations other than a red listing category according to the Conservation 

Designations for UK Taxa database (JNCC, 2011). 

4.3.2 In situ gap analysis 

UK occurrence data was extracted from the BSBI distribution database (BSBI, 2013). 

Records were filtered to produce a dataset with only confirmed records from 1970 onwards 

(so sites are likely to still be current), with a precision equal to or greater than 2km by 2km. 

Records with no passport data (information detailing accurate geographic locations and 

taxonomic classifications of the occurrence records) or which were clearly inaccurate (e.g. 
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occurring in the sea) were excluded. Spatial analyses were carried out using ArcMap 10.0 and 

DIVA-GIS 7.5.0 (ESRI, 2011 and Hijmans et al., 2012). A UK boundary shapefile was 

obtained from DIVA-GIS (www.diva-gis.org). The following three in situ analyses were 

carried out according to methods outlined in Scheldeman and van Zonneveld (2010) and 

Hijmans et al. (2012): 

1. Richness analysis – Identification of CWR taxon hotspots and areas of high recording 

effort in DIVA-GIS using the ‘point to grid’ tool to count the numbers of taxa/records 

within each 0.2 by 0.2 degree grid square across the UK. 

2. Complementarity analysis – Selection of the optimal number and distribution of grid 

squares (0.2 by 0.2 degrees) across the UK required to conserve all priority UK CWR, 

using the ‘reserve selection’ tool in DIVA-GIS. This tool first selects the grid square 

with the highest number of CWR taxa and then selects a second grid square containing 

the next highest number of taxa, excluding those already covered by the first square. 

This process of grid square selection is iterated until all CWR taxa are represented in 

at least one grid square, according to the method described by Rebelo (1994). Brown 

and Briggs (1991) and Dulloo et al. (2008) suggest a minimum of five distinct 

populations should be conserved to improve the chances of persistence and range of 

genetic diversity protected for each plant taxon. As a result, the number of grid 

squares in which each priority CWR occurs was also then identified. 

3. Incidence of priority CWR within protected areas – Investigation into the extent of 

potential passive protection already received by UK priority CWR using ‘spatial join’ 

tools in ArcMap 10.0 to find the numbers of occurrence records within and outside of 

UK protected areas. Protected area boundaries included: Sites of Special Scientific 

http://www.diva-gis.org/
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Interest (SSSI), Areas of Special Scientific Interest (ASSI), Special Areas of 

Conservation (SAC), Areas of Outstanding Natural Beauty (AONB), National Scenic 

Areas (NSA), National Nature Reserves (NNR), Local Nature Reserves (LNR), 

National Parks (NP), Country Parks, Ramsar sites and Special Protection Areas (SPA) 

and were obtained from: NE (2014), NRW (2012), SNH (2012) and DOENI (2012). 

4.3.3 Ex situ gap analysis 

UK genebank accession data were obtained from the UK National Plant Inventory (UKNPI, 

2013) and the Millennium Seed Bank, Royal Botanic Gardens, Kew. Accessions lacking 

longitude and latitude coordinates were georeferenced using the UK Grid Reference Finder 

(www.gridreferencefinder.com) and the Gazetteer of British place names 

(www.gazetteer.org.uk). The following three ex situ analyses were carried out: 

 
1. Count of accessions per priority UK CWR. Taxa with fewer than the minimum 

accepted level of five accessions require further collecting to reach this threshold 

(Brown and Briggs, 1991; Dulloo et al., 2008). 

2. Calculation of a geographical representativeness score (GRS) for each priority CWR 

using the ‘circular area statistic’ (Ramírez-Villegas et al., 2010). A GRS indicates the 

proportion of the geographic range of occurrence data represented in genebanks and a 

score greater than 30% is considered adequate ex situ representation (Ramírez-

Villegas et al., 2010; Phillips et al., 2014). 

3. By combining these first two ex situ analyses, priority level were assigned to each 

priority CWR and recommendations made as to the actions to be taken to improve the 

completeness of ex situ accessions for UK CWR. Levels are as follows: 

http://www.gridreferencefinder.com/
http://www.gazetteer.org.uk/
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o Priority 1 – No accessions 

o Priority 2 – Has accessions but none are georeferenced/location data restricted 

o Priority 3 – Fewer than five accessions and GRS lower than 30% 

o Priority 4 – Fewer than five accessions but GRS greater than 30% 

o Priority 5 – Greater than or equal to five accessions but GRS lower than 30% 

o Priority 6 – Greater than or equal to five accessions and GRS greater than 30% 

4.4 Results 

4.4.1 CWR inventory 

The UK national inventory of priority food and forage/fodder CWR contains 223 taxa (192 

species and 31 infra specific taxa) (Supplementary Table 4.1b). This represents 10.57% of all 

UK taxa in the national CWR checklist. The inventory includes 163 taxa related to human 

food crops (of which 80 taxa are also related to forage and fodder crops); a further 60 taxa are 

related only to forage and fodder crops. Seventeen plant families are represented in the 

inventory (Table 4.1). The family Poaceae contains the most genera (20) including Avena 

(oats) and Hordeum (barley). The family containing the most taxa is Fabaceae, which 

includes species within the genera: Lathyrus (vetchlings), Medicago (medics), Trifolium 

(clovers) and Vicia (vetches). A total of 142 of the inventory taxa are classified as native, 23 

as archaeophytes and the remaining 58 are neophytes. Two CWR endemics are present in the 

UK, Scottish small-reed Calamagrostis scotica Druce (located at one site in the highlands of 

Scotland) and perennial flax Linum perenne L. subsp. anglicum (Mill.) Ockendon (occurring 

largely in the east of the UK). 
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Table 4.1 Summary of inventory of 223 priority CWR in UK. 

Family No. of genera No. of species No. of infra-specific taxa Native status 

Alliaceae 1 10 3 N; Neo 

Amaranthaceae 3 13 1 N; A; Neo 

Apiaceae 3 2 4 N 

Asparagaceae 1 2  N; Neo 

Asteraceae 2 5  N; A; Neo 

Betulaceae 1 2  N; Neo 

Brassicaceae 8 10 5 N; A; Neo 

Ericaceae 1 6  N; Neo 

Fabaceae 8 59 8 N; A; Neo 

Fagaceae 1 1  Neo 

Geraniaceae 1 3  N; A 

Grossulariaceae 1 8  N; Neo 

Juglandaceae 1 1  Neo 

Linaceae 1 2 1 N 

Moraceae 2 2  Neo 

Poaceae 20 39 9 N; A; Neo 

Rosaceae 6 27  N; Neo 

Totals 61 192 31  

N = Native, A = Archaeophyte, Neo = Neophyte. 

 

Through prioritisation of the UK CWR checklist, 123 food and forage/fodder taxa were 

identified as related to economically valuable crops according to agricultural statistics (Defra, 

2010; FAOSTAT, 2013; Eurostat, 2013). Prioritised CWR were related to crops including 

sugar beet, brassicas, carrots, onions, peaches, lettuces, asparagus and raspberries among 

others. In terms of the closeness of the relationships between crops and their wild relatives, 

one third of CWR were within GP1b or TG1b. Twenty six percent of CWR were classified 

using the GP concept and 74% using the TG concept (Fig. 4.1). According to the Vascular 

Plant Red Data List for Great Britain (Cheffings and Farrell, 2005), 26 food, forage or fodder 

CWR in the UK are threatened (Table 4.2). Upright goosefoot, Chenopodium urbicum L., is 

listed as Critically Endangered and a further four species are listed as Endangered (wild 

asparagus Asparagus prostratus Dumort., purple milk-vetch Astragalus danicus Retz., 

stinking goosefoot Chenopodium vulvaria L. and least lettuce Lactuca saligna L. The 
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remaining 21 threatened taxa are listed as Vulnerable. In addition, interrupted brome Bromus 

interruptus (Hack.) Druce is Extinct in the wild. Portugal laurel Prunus lusitanica is listed as 

Vulnerable in the European Red List (Bilz et al., 2011) but has not been evaluated in Great 

Britain, as it is not native. A further 26 taxa were prioritised based on their having at least one 

additional conservation designation (Supplementary Table 4.2), for example, sea pea Lathyrus 

japonicus Willd. subsp. maritimus (Mill.) Ockendon is listed as Nationally Scarce and is also 

listed on the Scottish Biodiversity List of priority taxa (JNCC, 2011). 

 

Figure 4.1 Percentages of each Gene Pool and Taxon Group classification assigned to CWR 

in the UK inventory showing the degree of relatedness to their associated crops. 
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Table 4.2 Red list status and the threat criteria met for CWR in the UK inventory. 

CWR Red list category Criterion 

Bromus interruptus (Hack.) Druce    EW  

Chenopodium urbicum L.    CR A2c 

Asparagus prostratus Dumort.  EN C2a(i) 

Astragalus danicus Retz.  EN A2c 

Chenopodium vulvaria L.    EN A2c 

Lactuca saligna L.  EN A2c 

Allium oleraceum L.    VU A2c 

Allium sphaerocephalon L.    VU D2 

Apium repens (Jacq.) Lag.    VU D2 

Astragalus alpinus L.    VU D2 

Calamagrostis scotica Druce    VU D1+2 

Calamagrostis stricta (Timm) Koeler VU A2c 

Chenopodium bonus-henricus L.    VU A2c 

Chenopodium glaucum L.    VU A2c 

Chenopodium murale L.    VU A2c 

Hordeum marinum Huds.    VU A2c 

Koeleria vallesiana (Honck.) Gaudin VU D2 

Lathyrus aphaca L.    VU A2c 

Medicago minima (L.) L.    VU A2c 

Poa flexuosa Sm.    VU D1 

Poa glauca Vahl VU A2c 

Pyrus cordata Desv.   VU D1 

Trifolium bocconei Savi    VU D2 

Trifolium incarnatum L. subsp. molinerii 

(Hornem.) Syme 

VU D2 

Trifolium strictum L.    VU D2 

Vicia bithynica (L.) L.    VU A2c 

Vicia parviflora Cav.    VU A2c 

Calamagrostis purpurea (Trin.) Trin. subsp. 

phragmitoides (Hartm.) Tzvelev. 

DD  

Festuca rubra L. subsp. scotica S. Cunn. Ex Al-

Bermani 

DD  

VU = Vulnerable; EN = Endangered; CR = Critically Endangered; EW = Extinct in the Wild; 

DD = Data Deficient; A2c = reduction in population size based on trend in Area of 

Occupancy or Extent of Occurrence; C2a(i) = Limited population size with continuing 

decline; D1 = Very restricted population of less than 1000 mature individuals; D2 = Very 

restricted population based on Area of Occurrence or number of locations (Data source: 

Cheffings and Farrell, 2005). 

  



Chapter 4 Conserving UK CWR 

 

 115 

4.4.2 In situ gap analysis 

A total of 803,755 occurrence records were obtained from the BSBI distribution database 

(BSBI, 2013), representing 213 of the 223 CWR taxa in the UK inventory. Ten taxa had no 

confirmed, fully georeferenced records dated from 1970 onwards at a precision of 2km by 

2km or better; these taxa are listed in Table 4.3. The majority of records (752,821) belong to 

native or archaeophyte taxa and a further 49,804 records represent the neophyte taxa. The 

taxon with the highest number of records is cock’s foot Dactylis glomerata L. with 35,592. 

Table 4.3 List of CWR with no occurrence records reaching the appropriate quality standards 

for inclusion in gap analysis. 

CWR 

Allium ampeloprasum var. bulbiferum Lathyrus japonicus subsp. maritimus 

Calamagrostis purpurea subsp. phragmitoides Medicago littoralis 

Festuca arenaria subsp. arenaria Pastinaca sativa subsp. sylvestris 

Festuca arenaria subsp. oraria Prunus incisa 

Festuca rubra subsp. scotica Trisetum flavescens subsp. purpurascens 

 

Taxon richness analysis showed that the areas of the UK richer in priority food, forage and 

fodder CWR are the south and the east, particularly the counties of Cornwall, Somerset, 

Dorset, Hampshire, Kent and the region of East Anglia, all with grid squares containing 

greater than 100 priority CWR (Fig. 4.2a). There are also grid squares containing over 100 

CWR around Aberystwyth in Wales and in West Yorkshire in England. A single grid square 

in Scotland (around Edinburgh) contains greater than 75 priority CWR. Analysis of 

observation richness reveals that the locations with the highest numbers of records are 

Bedfordshire with over 15,500 records within two grid squares and Somerset with 9,000–

10,500 records within one grid square in the county (Fig. 4.2b). 
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Figure 4.2 Richness analysis of the 213 CWR with occurrence records from the UK inventory. a) Taxon richness and b) Observation 

richness. Analysis uses a grid square size of 0.2 degrees.  
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A total of 27 grid squares across the UK were identified as an appropriate complementary 

network for the in situ conservation of priority food and forage/fodder CWR (Fig. 4.3). The 

network incorporates 211 out of the 223 priority CWR in the UK inventory (taxa with 

insufficient records could not be included). The top priority grid square containing the most 

priority CWR is in Purbeck, Dorset on the south coast of the UK with 124 taxa. The next 

priority site, in Cambridgeshire, had 17 CWR taxa that were not present in the previous site 

(with 107 CWR taxa in total). The next eight sites (making up the top ten) in order of highest 

priority to lowest are as follows with the number of additional taxa present in each square 

indicated and the total number of CWR present shown in brackets: Ceredigion in Wales 

11(106), Bedfordshire in England 9(114), Aberdeenshire in Scotland 8(24), The Lizard 

Peninsula in England 7(104), Norfolk in England 4(103), Loch Lomond in Scotland 4(66), 

Somerset in England 3(104) and East London in England 3(106). Sites 14 to 27 each add just 

one additional taxon (i.e. a taxon not found in any of the preceding grid squares) to the 

network of grid squares (Fig. 4.4). Despite having no clear taxon hotspots, eight of the 

complementarity squares are within Scotland; a further two are within Wales. Three grid 

squares are in the north of England with the rest located in the south and east of the country. 

Out of the 211 taxa represented in the grid square network, 61.61% are found within five or 

more of the grid squares. Red clover Trifolium pratense L. is the only CWR found in all 27 

grid squares.  
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Figure 4.3 Network of 27 grid squares covering 211 of UK priority CWR identified using 

complementarity analysis. Grid squares identified may be suitable sites for establishing active 

in situ conservation.  
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Figure 4.4 Percentage of additional CWR in each of the 27 complementarity grid squares (i.e. 

CWR not present in any of the preceding grid squares). 

 

All 27 complementarity squares overlap with at least three protected areas and all include at 

least one SSSI. In terms of CWR occurrences, 31.05% of records are within protected areas in 

the UK. Only four of the 213 CWR with occurrence data have no records within protected 

areas, these are: wild black gooseberry Ribes divaricatum Douglas, buffalo currant Ribes 

odoratum H.L. Wendl., starry clover Trifolium stellatum L. and Hungarian vetch Vicia 

pannonica Crantz., all of which are neophyte taxa. Furthermore, 192 (90.14%) CWR have 

five or more occurrence records within protected areas, which indicates a reasonable 

representation of genetic diversity (Brown and Schoen, 1992; Neel and Cummings, 2003). 

However, the appropriate number of populations conserved will vary depending upon the 

breeding system of the species (Iriondo et al., 2008b). 
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4.4.3 Ex situ gap analysis 

A total of 1,034 accessions were found to be stored in genebanks for UK priority CWR. These 

records represent 146 CWR of the 223 CWR in the UK inventory. Just 16% of the 223 

priority taxa have five or more accessions stored in genebanks, though two of these taxa have 

greater than 50 stored accessions and these are perennial rye grass Lolium perenne L. (338 

accessions) and white clover Trifolium repens L. (65 accessions). Both are important UK 

forage species that are wild and cultivated in the UK, and new cultivars are occasionally 

selections of wild material. All of these 1,034 accessions are stored either in the Millennium 

Seed Bank, Warwick Genetic Resources Unit or the Institute of Biological, Environmental 

and Rural Sciences (IBERS) at Aberystwyth University in Wales. Of the 77 taxa without any 

stored accessions, the majority (53) are introduced taxa (archaeophytes and neophytes). In 

terms of GRS percentages, only three CWR reach the threshold of 30% showing their 

accessions are a good representation of the in situ distribution of these species, these are 

Plymouth pear Pyrus cordata Desv., Scottish small-reed C. scotica and starry clover T. 

stellatum. 

The number of accessions and GRS values for each CWR were combined to assign a priority 

level for ex situ collecting to each CWR (Supplementary Table 4.3). Only one taxon was 

assigned the lowest priority level (6), being well represented in ex situ collections, and this 

was Plymouth pear P. cordata. The majority of taxa were assigned level three due to their 

having fewer than five accessions and a GRS below 30%. Seven taxa were assigned to 

priority level two, having stored accessions but no associated geo-reference data to determine 

their origin. Finally the 77 taxa with no accessions were assigned the top priority level of one, 

being most in need of collection of accessions (Supplementary Table 4.4). 
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4.5 Discussion 

The importance of establishing conservation planning for CWR at the national level is 

increasingly being recognised (Maxted et al., 2015a) and a number of European countries 

including Spain, Finland and Italy have undertaken research to improve CWR conservation 

within their respective countries (Rubio Teso et al., 2013; Fitzgerald, 2013; Panella et al., 

2014). Maxted et al. (2015a) are calling for the introduction of in situ conservation of CWR 

with complementary ex situ back up at the national level with integration into European 

conservation planning for CWR. Due to the likelihood that national priorities will not always 

overlap with wider regional priorities there is a need for conservation at both national and 

regional levels with integration between the two approaches. In terms of conservation 

planning, the UK presents an interesting case due to its division into the administrations of 

England, Wales, Scotland and Northern Ireland, each with its own conservation agency. The 

devolved nature of the UK administration adds a ‘sub-national’ level to the national/European 

model of CWR conservation. However, wider national (whole UK) priorities may differ from 

sub-national priorities and so an integrated approach is practical in this case. Support for this 

bottom-up approach is reflected in the collective agreement of NE, NRW and SNH on a 

single method for prioritising and assessing UK CWR conservation that would address 

national priorities, augmenting the efforts already undertaken at sub-national level (Fielder et 

al., 2015; submitted a; submitted b). 

CWR are a part of ‘biodiversity’, defined by the CBD (1992) as ‘the variability among living 

organisms from all sources including, inter alia, terrestrial, marine and other aquatic 

ecosystems and the ecological complexes of which they are part; this includes diversity within 

species, between species and of ecosystems’. In this sense, the conservation agency for each 
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administration with responsibility for biodiversity conservation also has responsibility for its 

CWR. However, at both UK and devolved administration levels, no active conservation 

measures aimed at the preservation of CWR and their genetic diversity currently exist, despite 

European and global commitments to secure these resources (CBD, 1992; 2010b; Planta 

Europa, 2008; European Union, 2011). Here, and separately in England, Wales and Scotland, 

the initial steps towards active conservation have been achieved through identification of 

CWR with potential for contributing to food security, assessment of their current level of 

protection and the outlining of recommendations for their integration into existing 

conservation planning. The main difference in the approaches taken at sub-national and 

national levels was seen in the application of criteria for CWR prioritisation rather than in the 

in situ or ex situ gap analysis methods. 

The biggest difference in the prioritisation process between devolved administrations and the 

UK was the inclusion of neophytes in the UK CWR inventory. The decision to include 

introduced taxa in CWR priority lists is one with divided opinion in the literature. The 

Portuguese CWR inventory, one of the earlier national inventories, includes introduced taxa 

based on the argument that plant breeders require beneficial traits for crop improvement 

regardless of the origin of the material (Magos Brehm et al., 2008). It is also possible that the 

likelihood of fixation of new mutations under exposure to novel environmental conditions, 

may lead to the development of beneficial traits in introduced taxa. In contrast, the inventories 

from Spain, Finland, Italy and Cyprus all exclude introduced taxa with arguments largely 

surrounding the issue that it is easier to garner support from national governments for 

conservation of CWR that are part of the native flora, that introduced species are likely to 

have less diversity due to initial establishment of only a few individuals and that the 

conservation of any introduced CWR which are also invasive (i.e. causing economic or 
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environmental harm (CBD, 1992)) should be avoided (Rubio Teso et al., 2013; Fitzgerald, 

2013; Panella et al., 2014; Phillips et al., 2014). In the devolved administrations, neophyte 

CWR were excluded from the inventories primarily due a need to prioritise in light of limited 

resources. However, at the whole UK level neophytes have been included in the national 

inventory with the aim to establish conservation for nationally valuable neophytes, which 

would otherwise be missed at the devolved level. However, conservation of any invasive 

species should use ex situ approaches rather than in situ. There is no single correct approach 

to this issue, or the selection of prioritisation criteria in a broader sense, but rather decisions 

should be made with input from stakeholders to maximise their support and therefore the 

likelihood of establishing active conservation of CWR. 

Approximately 27.5% of the land area of the UK is designated within protected areas (Defra, 

2013). This is much higher than the 12.2% of global land area falling within protected areas 

(Chape et al., 2005) and a relatively high incidence of CWR within UK protected areas is 

apparent (over 90% of priority taxa represented in five or more protected areas). Despite 

representation in protected areas, these are only examples of potential passive conservation 

with no direct management or monitoring of CWR populations to ensure their persistence. It 

should be noted that passive conservation of CWR is the incidental occurrence of a CWR 

within a protected area, with no specific management in place to protect CWR populations, 

but where the existing management of the site is not detrimental to CWR populations (Maxted 

et al., 1997b). Incidence within protected areas may not always result in passive protection 

i.e. where priority habitat or species management conflicts with the needs of a CWR 

population. The implementation of active management for CWR will always be preferable 

and may be more easily established in sites already offering some level of passive protection. 

Complementarity grid squares propose a potential network of sites where multiple CWR can 
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be actively conserved, aiding the planning and targeting of management at specific sites. 

Assessment of the genetic diversity of CWR within protected areas overlapping with these 

complementarity squares is necessary to assess their suitability as CWR genetic reserves 

(Iriondo et al., 2012). Though many CWR occur within protected areas, just over two thirds 

of the occurrences of priority CWR still fall outside of these designations. For comprehensive 

CWR conservation across the UK, an approach that targets in situ conservation both within 

and outside of protected areas is likely to be most effective. Many complementarity sites 

identified in England are also identified in the UK level analysis, particularly the sites in 

Purbeck, Cambridgeshire, on The Lizard Peninsula and in Somerset. There are fewer sites in 

Wales and Scotland that are also identified in the UK, though sites around Cardiff in Wales 

and Loch Lomond and the Cairngorms National Park in Scotland are present in both 

administration and UK analyses. The Gower Peninsula, the top priority complementarity site 

in Wales (Fielder et al., submitted a), is not identified in the UK gap analysis. The importance 

of the Gower Peninsula site for CWR conservation in Wales is clear and reinforces the need 

for a bottom-up approach to UK CWR conservation with the priorities of each administration 

addressed as well as those of national importance. Furthermore, the number of 

complementarity sites in common between the UK and devolved administrations suggests that 

CWR conservation can easily be incorporated into these sites without the need to establish a 

completely novel and independent UK network of CWR conservation sites. 

Ex situ collections for priority CWR are more complete at the UK level than in each of the 

devolved administrations. This is likely to be because collection efforts by the Millennium 

Seed Bank, Kew have focused on acquiring at least one accession from each native plant 

within the UK, with 94% of native, orthodox taxa (whose seed can be dried and frozen for 

long-term storage and remain viable (Hong et al., 1998)) now collected and stored (Stephanie 
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Miles, pers. comm.). These efforts are targeted at the UK level and have not included the 

collection of introduced taxa. With respect to CWR it will be important that collections 

include archaeophyte and neophyte taxa as well as native taxa as they may also contain novel, 

adaptive and useful traits for use in crop development (Magos Brehm et al., 2008). It is not 

known which adaptive traits will be of use in the future so the collection of a range of 

accessions per CWR taxon representing its ecogeographic breadth is also advisable to ensure 

as much genetic variation within taxa is conserved as is practical (Crossa and Vencovsky, 

2011). 

4.5.1 Recommendations for enhancing CWR conservation in the UK 

Recommendations have been outlined for the establishment of CWR conservation in England, 

Wales and Scotland (Fielder et al., 2015; submitted a; submitted b). However, as yet there is 

no scheme in place to translate this into implementation of active CWR management and 

monitoring; this should be a priority for each devolved administration. Once this foundation is 

in place, the recommendations below would take steps towards integration of sub-national 

and national conservation planning for CWR: 

 Conservation of UK priority CWR should be incorporated into existing protected 

areas where possible. Priority CWR would benefit from being recognised and formally 

listed as ‘features of special interest/importance’ in each specific protected area and 

should be included in management plans to achieve long-term and active conservation. 

A minimum of five populations actively conserved per taxon (provided this many 

populations occur) is likely to be achievable, though discretion should be used in all 

cases. For example, a higher number of conserved populations may be appropriate for 

inbreeding taxa as more variation is found among populations of inbreeding taxa than 
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those that are outbreeding (Brown and Marshall, 1995; Hamrick and Godt, 1989 and 

1996; Hoban and Schlarbaum, 2014). As a first step, the conservation of UK priority 

CWR in protected areas recognised as having CWR of priority within a devolved 

administration would be appropriate e.g. the NNR on The Lizard in Cornwall. 

Nationally important CWR not represented in sub-national inventories should be 

identified and incorporated into conservation planning within the appropriate devolved 

administrations. This would result in a single in situ network of CWR conservation 

with sites of either sub-national importance or national importance or those recognised 

at both of these levels. 

 In situ conservation planning should adhere to accepted minimum standards for the 

establishment of genetic reserves (Iriondo et al., 2012). This involves the selection of 

appropriate sites based on sound demographic surveying and genetic analysis, 

commitments to long-term conservation, the presence of CWR populations large 

enough to be viable in the long-term, recognition of the genetic reserve by appropriate 

authorities and formulation of clear conservation objectives and management and 

monitoring plans.  

 Continue to survey the in situ distributions of priority CWR and store these records in 

an accessible and long-term database e.g. the BSBI distribution database (BSBI, 

2013). It is critically important that up-to-date and specific recording to the sub-

specific level becomes standard practice across the whole UK, as this will directly 

influence the reliability of the dataset for subsequent analyses. More recent and high 

quality occurrence records for the taxa listed in Table 4.3 are particularly encouraged.  



Chapter 4 Conserving UK CWR 

 

 127 

 Gaps in ex situ collections of UK CWR should be filled. The collection of accessions 

should initially focus on taxa with no accessions (priority 1), including introduced taxa 

(Supplementary Table 4.4). Ultimately it should aim to collect a minimum of five 

accessions that represent the ecogeographic breadth of the taxon for all priority CWR, 

unless the taxon is a UK endemic in which case it should be increased as appropriate. 

Accessions should be representative of the taxon’s full distribution (Hoban and 

Schlarbaum, 2014). Collection would ideally be informed by genetic diversity analysis 

and accessions collected would back up in situ populations associated with long-term 

active conservation. Duplication of collection efforts for the UK and in the devolved 

administrations should be avoided but equally insuring the collection of UK priority 

CWR that are not in the sub-national inventories is advised. 

 Safety backups of accessions should be stored in separate genebanks to protect against 

sudden loss of material in any one location. 

 The relationship between accessions held in long-term storage and population genetic 

changes over time should be explored and the appropriate intervals for updating ex 

situ collections determined per species to capture the genotypic evolution of in situ 

populations over time. 

 Genebanks should undertake greater promotion of the conserved CWR material 

available to researchers, pre-breeders and plant breeders for use in crop improvement, 

encouraging their use in the development of new crop varieties and for use by any 

other appropriate parties/organisations and purposes (e.g. for long-term conservation, 

education and scientific research). 
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 Regular review of the inventory of priority CWR for the UK at a suggested interval of 

ten years is recommended, concurrent with reviews of the inventories for the devolved 

administrations. Future iterations of the inventory should be expanded to include other 

use categories of CWR. Reviews should first consider international policy but should 

also address national priorities. 

 There should be a push to gain support for CWR conservation from the European 

Union through the Rural Development Programmes in each Member State delivered 

through the Common Agricultural Policy. It is important that there is wider 

recognition of the value of CWR and their role as a key component of ecosystem 

services. 

 Assessment of climate change vulnerability of UK CWR is advisable. Such an 

assessment would provide valuable predictions as to the likely impact of climate 

change on CWR abundance and distributions over time and can be used to inform 

management approaches. 

 Although this paper has focused on CWR for food security, it should be noted that all 

other categories of CWR (e.g. with uses in the medicinal, forestry, ornamental 

industries), wild harvested plants, landraces and heritage varieties are also lacking in 

conservation planning and further efforts will be required to achieve full conservation 

of all UK plant genetic resources.  
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4.6 Conclusion 

The UK is in a unique situation as it has one of the most comprehensively studied floras in the 

world. Despite this, active conservation of its CWR is currently lacking. To account for the 

devolved approach to conservation in the UK, CWR inventories have been produced and gap 

analyses carried out separately for England, Scotland and Wales. It is hoped that the bottom-

up approach undertaken will encourage appropriate organisations to incorporate CWR into 

conservation planning. It is equally important that CWR are assessed in terms of their national 

value and that conservation planning also takes this into account. The current study identifies 

nationally valuable CWR, key sites for in situ conservation and gaps in ex situ collections. 

Through the integration of these sub-national and national approaches, comprehensive, active 

and long-term management and monitoring of UK CWR could be achieved with 

complementary back-up of accessions in genebanks preserving the UK’s national genetic 

resources, facilitating scientific research and education as well as providing a point of access 

for plant breeders to utilise the material to develop crop varieties with improved resilience to 

a changing climate. The methods used here can be easily applied to inform conservation 

planning for CWR in any country. The approach also demonstrates how conservation 

planning can be integrated within countries that have a level of devolution to sub-national 

administrations. 
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5.1 Abstract 

Many crop species suffer from a lack of genetic diversity, which reduces the ability of 

cultivars to withstand new pests or environmental stresses. The wild relatives of crop plants 

are an important source of genetic variation and can be used to introduce new traits into 

existing crops. Identification and conservation of crop wild relatives (CWR) is an important 

step to safeguard future food security. Recent efforts have identified geographical hotspots of 

CWR diversity in several countries but, as yet, there have been no surveys to identify the 

habitats and landscape features within these areas that might be most suitable for conservation 

efforts. Here, we use a UK-wide vegetation survey covering a range of both habitats and 

landscape features (e.g. fields, hedgerows, waterways and roadsides) to identify the habitats 

and features with the highest diversity of CWR identified as priority taxa for conservation. 

Priority CWR were most abundant in grassland habitats, although this was most striking in 

CWR related to forage and fodder crops. CWR related to food crops were most common in 

cropped and weedy areas, fertile grassland and lowland woodland. Within habitats, CWR 

diversity was significantly associated with linear features including hedgerows, roadsides, 

field boundaries and field margins. Our findings indicate that CWR of conservation interest 

are often associated with disturbed habitats and landscape features that are not considered as 

priorities under site-based conservation measures. We suggest that efforts to maintain linear 

features in hotspots of CWR diversity would be most effective at conserving the UK’s CWR 

resource. 

  



Chapter 5 CWR habitat preferences 

 

 132 

5.2 Introduction 

Crop wild relatives (CWR) are wild plant species that are close relations of domesticated 

plants (Harlan and de Wet, 1971; Maxted et al., 2006). Concerns about the lack of genetic 

diversity in many crop species have led to an increased interest in utilising the wider pool of 

genetic variation present in closely related plants to improve food security in the face of 

threats such as pests and disease. Food security is likely to be increasingly at risk in the longer 

term as climate change is predicted to reduce crop yields by an estimated 2% per decade, with 

the forecast set to worsen beyond 2050 (Porter et al., 2014). 

CWR host genetic diversity that could be used to tackle these issues through the introduction 

of traits such as pest and disease resistance, stress tolerance and increased yield to improve 

crops. The introduction of traits from wild relatives to cultivated plants has already led to a 

vast literature describing new varieties with improved characteristics (Maxted and Kell, 

2009). For example, sugar beet (Beta vulgaris subsp. vulgaris) varieties with resistance to 

Cercospora leaf spot and Rhizomania have been developed with traits introduced from the 

wild relative, sea beet (Beta vulgaris subsp. maritima) (Munerati, 1932; Lewellen et al., 1987; 

Biancardi et al., 2002; Grimmer et al., 2007). More recently sea beet accessions with abiotic 

stress tolerant traits have been identified and are being considered for use in breeding 

programmes (Stevanato et al., 2013). Other examples of wild relative use in crop 

improvement include the transfer of mustard aphid resistance from wild Brassica fruticulosa 

Cirillo into cultivated B. rapa L. (Chandra et al., 2004), the transfer of powdery mildew 

resistance from wild B. carinata A. Braun into cultivated B. oleracea L. (Tonguç and 

Griffiths, 2004) and the transfer of potato leafroll virus resistance from the wild Mexican 

species Solanum verrucosum Schtdl. to cultivated potato (Carrasco et al., 2000). 



Chapter 5 CWR habitat preferences 

 

 133 

Until recently little was known about the global distribution and abundance of CWR. The 

creation of the Harlan and de Wet Inventory of CWR in 2013 (Vincent et al., 2013) marked a 

significant advance in our understanding of the number of global priority CWR taxa (1,667 

CWR taxa with potential or proven use for crop improvement related to 173 crops of global 

importance) and their distributions. The inventory identified several global hotspots including 

a high concentration of CWR taxa around the Fertile Crescent, an area noted as both a 

historical centre of crop domestication and parts of which are subject to ongoing conflict. 

Thus efforts to establish active and systematic in situ and ex situ CWR conservation have 

been driven by the realisation that a lack of genetic diversity in crop plants is becoming a 

significant problem and that many CWR occur in areas where conservation is difficult to 

achieve.  

Although the United Kingdom does not have the CWR diversity of the Fertile Crescent it 

does host a wide range of CWR taxa, many of which are related to crops of economic value 

such as the food crops brassicas, barley and sugar beet as well as forage and fodder crops 

including grasses, clovers and vetches. Current in situ CWR conservation in the UK is 

focused on a few very rare and threatened species. For example, Pyrus cordata is listed as 

Endangered in the English Red Data Book and has its own species recovery programme 

(Jackson, 1995; Stroh et al., 2014) while Asparagus prostratus, which is Endangered 

according to the Vascular plant Red Data List for Great Britain, has undergone hand 

pollination and re-introduction to increase population sizes in the most vulnerable of sites 

(Cheffings and Farrell, 2005; King and Edwards, 2007; King et al., 2007). There are currently 

no habitat based conservation measures targeted towards active CWR conservation, though 

approximately 35% of priority English CWR do gain some level of passive protection through 

presence within protected areas (Fielder et al., 2015). Active conservation measures are, 
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however, being developed on The Lizard Peninsula in Cornwall, based on genetic analyses of 

multiple CWR taxa, with a view to establishing this location as the first UK CWR genetic 

reserve (Fielder et al., submitted d). Though ideally conservation strategies targeting CWR 

populations would consider genetic diversity (Frankel et al., 1995; Magos Brehm et al., 

2012), such analyses are not always possible due to high costs. A more pragmatic approach is 

to support habitat based conservation measures as a tool for establishing targeted and active 

management of CWR populations in key locations.  

Designation of sites or habitats of conservation interest for CWR has been hampered by the 

absence of an inventory of priority CWR and by a lack of knowledge regarding the habitats 

with the highest concentrations of CWR (Maxted, 2003). There is evidence to suggest that 

some CWR, such as wild oat (Avena fatua) and wall barley (Hordeum murinum), are more 

often associated with disturbed early-successional communities rather than perennial-

dominated mid to late-successional communities (Grime, 1977; Maxted and Kell, 2009; 

Hopkins and Maxted, 2011). These disturbed habitats tend to have high levels of 

anthropogenic influence and as such, are not normally considered for conservation 

designation (JNCC, 2013). The abundance of CWR may also vary within habitats. Linear 

features such as road verges, field boundaries and streamsides are often relatively highly 

disturbed but act as important refuges for species not favoured in the modern intensively 

managed countryside (Smart et al., 2002, 2006a) and could be important for CWR diversity. 

Whilst the margins of arable fields have attracted interest and agri-environment support as a 

refuge for rare arable weeds, food plants for lowland farmland birds and nectar plants for 

pollinating insects (Marshall and Moonen, 2002), their role in supporting CWR has never 

been examined and, as yet, there has been no formal analysis of the preferences of UK CWR 

for different habitats and landscape locations. 
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Recent research effort has produced inventories listing CWR of priority conservation interest 

for the UK as a whole and also in separate inventories for England, Wales and Scotland 

(Fielder et al. 2015; submitted a; submitted b; submitted c). This has led to more complete 

geographic analyses of hotspots of CWR abundance within each country. Here, we seek to 

extend this work by utilising the UK CWR inventory to assess the habitats and landscape 

features with the highest diversity of UK CWR. Identification of habitats and features with 

the highest number of CWR will inform conservation efforts for this valuable resource in the 

UK.  

In the current study, the following hypotheses were addressed: 

1. CWR are more likely to be located in disturbed habitats and areas with high 

anthropogenic influences than more stable communities, due to their often weedy 

growth habits (Jain, 1975; Maxted et al., 1997c). 

2. Combining the fact that CWR would be expected to be adapted to agricultural 

disturbance but not preferred by intensive cultivation we would expect CWR to be 

more likely to be found in linear features, particularly arable field margins. 

3. If forage and fodder species are primarily grasses then it would be expected that either 

high or low productivity grasslands would be their preferred habitats. Since high 

productivity grasslands are more species poor we would expect lower productivity 

grasslands to be richer. 

4. CWR that are more closely related to their associated crop are predicted to show more 

similar habitat preferences and so be more likely to be associated with agricultural 

habitat and landscape features.  



Chapter 5 CWR habitat preferences 

 

 136 

5.3 Methods 

5.3.1 Data collection 

Data on the distribution of CWR in the landscape of Great Britain were taken from vegetation 

surveys conducted as part of the Countryside Survey (CS) of 2007 (Carey et al., 2008). The 

detailed survey methodology of the Countryside Survey makes it an ideal resource for 

identifying habitat and landscape distribution patterns. The dataset consists of 11,685 quadrats 

from a stratified random sample of 589 1km squares across Great Britain (i.e. UK excluding 

Northern Ireland). Priority CWR in each quadrat were identified according to the UK and 

regional priority inventories (Fielder et al., 2015; submitted a; submitted b; submitted c). The 

priority inventories contain CWR taxa that are considered to be most in need of conservation 

and differ between the regions due to differences in regional conservation priorities and 

species pools; for example, only the Welsh inventory considers CWR related to forestry crops 

(Supplementary Table 5.1). The UK priority list is not simply a product of the corresponding 

regional inventories as different conservation priorities were defined at each scale and criteria 

used to assign priority to CWR in each region were selected by the relevant stakeholders in 

each case. The UK priority CWR were then based on a new selection of criteria and were 

agreed between all regional stakeholders. Criteria used in the UK were: the use of the related 

crop, the native status of the CWR, the degree of relatedness of the CWR to the crop, the 

economic value of the related crop, the threat assessment of the CWR and the presence of any 

additional designations (Fielder et al., submitted c). Only native or archaeophyte priority 

CWR were included in this analysis because non-native taxa may show different habitat 

preferences or, having recently arrived, may not yet have fully occupied preferred niche 

space. For each quadrat the proportion of taxa defined as priority CWR was calculated, thus 
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accounting for variation in total species richness between quadrats due to quadrat size. 

Nomenclature for CWR follows Stace (2010). 

5.3.2 Landscape drivers 

Habitat types were defined using the aggregate classes from the Countryside Vegetation 

System (Bunce et al., 1999). Eight classes (crops and weeds, tall grass and herbs, fertile 

grassland, infertile grassland, lowland woodland, upland woodland, moorland grass mosaic, 

heath and bog) were identified. The habitat classes are defined by separation along two axes 

representing fertility and disturbance e.g. crops and weeds are both highly fertile and highly 

disturbed whereas lowland woodland can be relatively fertile but has low disturbance. Within 

habitats, some CS quadrats were targeted on linear landscape features such as hedgerows, 

field margins, the banks of watercourses and road verges (Table 5.1). Fields, unenclosed land 

and other areas of habitat were sampled by other randomly located quadrat types (U and X). 

Quadrats designed to sample unusual or interesting habitats (Y quadrats) were excluded from 

the analysis as these were not sampled randomly. Other variables that might influence the 

proportion of CWR were also considered including the proportion of arable and urban areas in 

the surrounding 1km square (Table 5.2), which reflect potential associations of CWR with 

agricultural activities or human activity. Road area in the surrounding 1km was similarly 

included to reflect the potential influence of transport routes and road verges on CWR 

occurrence. The proportional cover of woody and annual plants and bare ground were chosen 

to reflect the successional stage and disturbance regime associated with the vegetation in each 

quadrat; CWR are often ruderal plants and might be expected to occur where the cover of 

annuals and bare ground is higher (Maxted and Kell, 2009). Finally, the Easting and Northing 

of the sites were included to account for any geographic variation in CWR abundance not 

explained by the other variables. 
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Table 5.1 Location of Countryside Survey quadrats in the landscape and quadrat 

characteristics (adapted from Carey et al., 2008). 

Quadrat 

type 

Associated landscape feature Quadrat  

size 

Number of quadrats per 

1km survey square 

A Arable fields 100m
2
 5 

B Adjacent to field boundaries  

(hedges, walls or fences) 

10m
2
 5 

H Hedgerows 10m
2
 2 

M Arable field margins 4m
2 

Up to 15 

R/V Next to roads 11m
2
 5 

S/W Next to watercourses 12m
2
 5 

U Unenclosed land 4m
2
 Up to 10 

X Randomly located 200m
2
 5 

 

Table 5.2 Explanatory variables included in models of landscape drivers of CWR occurrence. 

Variable Description Range 

Habitat type Aggregate vegetation class (Bunce et 

al., 1999) 

N/A – see text 

Quadrat type Landscape feature in which quadrat 

occurred 

N/A – see Table 5.1 

Proportion arable area Proportion of 1km square covered by 

arable land parcels 

0–0.95 

Proportion urban area Proportion of 1km square covered by 

urban land parcels 

0–0.91 

Road area Total area covered by roads in 1km 

square 

0–20 

Proportion woody cover Proportion of total cover due to woody 

plants in quadrat 

0–1 

Proportion annual cover Proportion of total cover due to annual 

plants in quadrat 

0–1 

Proportion bare ground Proportion of bare ground in quadrat 0–1 

Easting
1 

Longitudinal position of 1km square
 

072243–650966 

Northing
1 

Latitudinal position of 1km square 037121–1217913 
1
British National Grid coordinate system  
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5.3.3 Statistical analysis 

The relationships between the landscape drivers and CWR diversity were assessed with 

binomial mixed models with a logit link. The proportion of priority CWR taxa per quadrat 

was the response variable in all models and all terms in Table 5.2 were included as fixed 

terms. Continuous variables were standardised and centred prior to analysis. Collinearity 

between continuous predictors was tested for using variance inflation factors (VIFs) (Zuur et 

al., 2009) and found to be low (all VIFs below 2) so all predictors were retained. Interaction 

terms between fixed effects were not included due to the high number of factor levels 

assessed. Due to the design of the survey the quadrats are nested within 1km squares and 

therefore the 1km square was included as a random intercept term to account for any 

unexplained between-square variation in the proportion of CWR.  

A total of twelve models were constructed with the same fixed and random effect structures 

but varying response variables. Firstly, to assess the variables related to the overall 

distribution of CWR, a model was constructed with the proportion of all CWR from the UK 

inventory as the response variable. Four additional models were constructed to assess whether 

different types of CWR from the UK inventory were affected by different drivers. In this 

study, CWR were divided into those related to food crops and those related to forage and 

fodder crops. Forage/fodder CWR were defined as those related to crops used for fodder or 

forage for animal feed. Food CWR included plants related to crops used as vegetables, oil/fat 

producers, nuts, pseudocereals, pulses, fruits, flavourings, cereals, seeds or sugar (USDA, 

ARS, National Genetic Resources Program, 2015). Due to the different species present in 

each group (e.g. forage/fodder CWR comprise mostly grasses and forbs while food CWR are 

more variable including tree and shrub taxa) different patterns of occurrence in the landscape 

might be expected. The proportions of food or forage/fodder CWR from the UK inventory in 
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each quadrat were calculated as response variables. Several CWR taxa are related to both 

food and forage/fodder crops and were included in both models.  

CWR can also be grouped based on the degree of relatedness to their domesticated relatives. 

Relatedness can be defined by the ability to successfully cross taxa (the Gene Pool Concept, 

Harlan and de Wet, 1971) or, if crossing information is not available, by phylogenetic 

distance (the Taxon Group Concept, Maxted et al., 2006). CWR with the ability to cross 

easily with their related crop, or that are in the same species, are classed as Taxon Group (TG) 

or Gene Pool (GP) 1b (where TG or GP 1a are the cultivated varieties of a species). Taxa that 

are in the same genus as the crop, or that have limited ability to cross are placed in TG 2 to 4 

or GP 2 and 3. Some CWR are related to multiple crop taxa and in such cases the most closely 

related species was used to define the GP or TG. The proportions of CWR taxa from the UK 

inventory in GP and TG 1 or 2 to 4 in each quadrat were used as response variables in the 

next two models.  

There was some evidence that forage/fodder CWR in the dataset were more likely to be in TG 

or GP 1b, so four more models were constructed to assess whether differences in drivers 

associated with relatedness were maintained within each usage group. In each case the 

response variable was the proportion of taxa each usage/relatedness combination from the UK 

priority inventory. 

Finally, to investigate regional differences in the drivers of CWR occurrence, three models 

were specified using the proportion of CWR derived from the English, Scottish and Welsh 

priority inventories respectively. For regional analyses only quadrats from that region were 

included in the model. 
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Parameters for all twelve models were estimated using Markov chain Monte Carlo sampling 

implemented in the R package MCMCglmm (Hadfield, 2010). Uninformative inverse Wishart 

prior distributions were used for the fixed effects. An uninformative parameter expanded 

(Cauchy) prior was used for the random effect to help convergence and estimation of the 

random effect variance. The prior on residual variation was fixed at 1. Models were run for 

30,000 iterations with a 5,000 iteration burn in period and a thinning interval of 10 iterations. 

Three separate models were run to assess chain convergence visually and using the Gelman-

Rubin statistic (Gelman et al., 2004). All analysis was conducted in R v.3.0.3 (R Core Team, 

2014). 

5.4 Results 

Of the 211 native and archaeophyte taxa present across the four (UK and national) priority 

inventories of CWR, 129 were recorded in the 2007 Countryside Survey (Supplementary 

Table 5.1). The most commonly recorded species were Holcus lanatus, a fodder CWR, and 

Rubus fruticosus agg. (bramble), closely related to cultivated blackberry and raspberry. 

Gelman-Rubin statistics for all chains in all models were between 1 and 1.01 after 30,000 

iterations and were considered to be sufficiently converged. In each model, parameter 

estimates for the habitat and landscape feature levels are differences (contrasts) from the 

proportion of CWR expected in crops and weeds (the reference habitat type) and randomly 

located quadrats (the reference feature type).  

The proportion of priority CWR across all UK quadrats showed significant differences in 

associations with habitats and landscape features (Fig. 5.1). Model coefficients for the model 

with the proportion of all CWR from the UK Inventory as the response are shown in Fig. 5.2a 

and Table 5.3. CWR were more likely to occur in grasslands than highly disturbed habitats 
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(the baseline level of crops and weeds) but less likely to occur in heath and bog. Woodland 

areas and moorland grass mosaics had similar numbers of CWR taxa to cropped and weedy 

habitats. Priority CWR were more common in several landscape features compared to 

randomly selected quadrats. Arable field margins, hedgerows, field boundaries (including 

fences and walls) and road verges were all preferred localities for CWR taxa. By contrast, 

quadrats situated next to waterways had fewer priority CWR than randomly located quadrats. 

Of the covariates included, negative associations were seen with the cover of woody and 

annual plants and bare ground in the quadrat. Overall, priority CWR were more frequent in 

the south and east of the UK.  
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Figure 5.1 Boxplots of the proportion of CWR from the UK priority CWR inventory by a) 

habitat and b) quadrat type. Lines represent the median values, boxes are 25 and 75% 

percentiles and whiskers represent the most extreme data point within 1.5 times the 

interquartile range. The unshaded boxes indicate the factors used as reference levels in the 

models. Letters represent differences between groups defined by non-overlapping 95% 

credible intervals (see Table 5.3 for coefficients). 
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Figure 5.2 Parameter estimates for modelled effects of variables on the proportion of CWR in a quadrat. Panel a) shows parameter 

estimates for all CWR types from the UK Inventory, panels b) and c) separate CWR by both usage (fodder/forage vs food) and relatedness 

(TG/GP1b vs TG/GP2–4). Points are the mean of the posterior distribution and lines indicate the 95% credible interval.  
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Table 5.3 Parameter estimates and 95% credible intervals (in brackets) for each parameter in models of CWR occurrence either ungrouped 

(All CWR) or grouped by usage or relatedness. Parameters where 95% intervals do not overlap zero are highlighted in bold. Factors show 

contrasts from the reference (baseline) levels: crops and weeds (Habitats) and randomly located quadrats (Landscape features). 

Parameter All CWR Food CWR Fodder CWR TG/GP 1 CWR TG/GP 2-4 CWR 

Intercept -1.84 (-1.99, -1.68) -2.5 (-2.69, -2.32) -2.33 (-2.49, -2.17) -2.81 (-2.99, -2.63) -3.09 (-3.29, -2.89) 

Habitats 

Tall grass and herb 0.42 (0.26, 0.57) -0.44 (-0.62, -0.26) 0.49 (0.33, 0.65) 1.15 (0.98, 1.33) -0.8 (-1, -0.61) 

Fertile grassland 0.76 (0.61, 0.92) -0.06 (-0.25, 0.13) 0.94 (0.78, 1.1) 1.45 (1.27, 1.63) -0.59 (-0.79, -0.38) 

Infertile grassland 0.71 (0.55, 0.87) -0.25 (-0.45, -0.05) 0.89 (0.72, 1.06) 1.34 (1.16, 1.53) -0.35 (-0.56, -0.14) 

Lowland woodland 0.02 (-0.15, 0.20) -0.02 (-0.23, 0.19) -0.5 (-0.69, -0.32) 0.8 (0.6, 1) -0.94 (-1.17, -0.71) 

Upland woodland -0.04 (-0.23, 0.14) -0.69 (-0.9, -0.46) -0.05 (-0.24, 0.14) 0.62 (0.42, 0.82) -0.78 (-1.03, -0.53) 

Moorland grass mosaic -0.08 (-0.26, 0.09) -0.75 (-0.97, -0.53) -0.05 (-0.23, 0.13) 0.4 (0.21, 0.6) -0.4 (-0.65, -0.16) 

Heath and bog -1.36 (-1.56, -1.17) -0.96 (-1.19, -0.72) -2.15 (-2.37, -1.94) -1.79 (-2.01, -1.56) -0.36 (-0.62, -0.11) 

Landscape features 

Arable fields 0.06 (-0.09, 0.20) 0.05 (-0.12, 0.22) 0.06 (-0.09, 0.21) -0.02 (-0.18, 0.14) 0.32 (0.13, 0.5) 

Field boundaries 0.28 (0.2, 0.36) -0.03 (-0.13, 0.07) 0.35 (0.27, 0.44) 0.27 (0.19, 0.36) 0.3 (0.18, 0.41) 

Hedgerows 0.35 (0.23, 0.48) -0.07 (-0.21, 0.08) 0.62 (0.49, 0.75) 0.37 (0.24, 0.5) 0.44 (0.26, 0.61) 

Arable field margins 0.56 (0.32, 0.81) 0.11 (-0.23, 0.43) 0.6 (0.35, 0.84) 0.48 (0.23, 0.74) 0.57 (0.22, 0.91) 

Roads and verges 0.16 (0.09, 0.23) 0.12 (0.03, 0.22) 0.16 (0.09, 0.24) 0.09 (0.01, 0.16) 0.46 (0.35, 0.57) 

Waterways -0.26 (-0.34, -0.19) -0.4 (-0.49, -0.3) -0.27 (-0.35, -0.19) -0.2 (-0.27, -0.12) -0.4 (-0.51, -0.29) 

Unenclosed -0.02 (-0.11, 0.08) -0.11 (-0.23, 0.02) -0.1 (-0.21, 0) -0.11 (-0.22, -0.01) 0.14 (0.01, 0.27) 

Covariates 

Arable area -0.03 (-0.06, 0.01) -0.1 (-0.15, -0.05) 0 (-0.04, 0.04) -0.02 (-0.06, 0.01) 0 (-0.07, 0.06) 

Urban area 0.01 (-0.02, 0.04) 0.02 (-0.02, 0.06) 0.01 (-0.01, 0.04) 0.03 (0, 0.05) -0.04 (-0.09, 0.01) 

Road area 0.01 (-0.02, 0.03) 0 (-0.04, 0.04) 0.01 (-0.02, 0.04) 0.02 (-0.01, 0.05) -0.03 (-0.08, 0.02) 

Woody cover -0.08 (-0.13, -0.02) 0.35 (0.28, 0.41) -0.42 (-0.48, -0.36) -0.21 (-0.27, -0.15) 0.19 (0.11, 0.26) 

Annual cover -0.10 (-0.13, -0.07) 0.02 (-0.02, 0.05) -0.1 (-0.13, -0.07) -0.15 (-0.18, -0.11) 0.03 (-0.01, 0.07) 
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Parameter All CWR Food CWR Fodder CWR TG/GP 1 CWR TG/GP 2-4 CWR 

Bare cover -0.12 (-0.15, -0.09) -0.04 (-0.08, -0.01) -0.16 (-0.19, -0.12) -0.13 (-0.16, -0.1) -0.05 (-0.1, -0.01) 

Easting 0.07 (0.03, 0.10) 0.07 (0.02, 0.11) 0.03 (0, 0.06) -0.02 (-0.05, 0.01) 0.24 (0.18, 0.3) 

Northing -0.08 (-0.11, -0.05) -0.2 (-0.24, -0.16) 0 (-0.03, 0.03) -0.03 (-0.06, 0) -0.18 (-0.24, -0.13) 
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CWR related to food and forage/fodder plants had different patterns of occurrence in the 

landscape (Table 5.3). Forage/fodder CWR were most common in grasslands whilst food 

CWR occurred most often in disturbed areas, fertile grassland and lowland woodland. 

Forage/fodder CWR dominated the preference for particular landscape features observed for 

all CWR, with food CWR occurring at similar frequencies in most landscape features, being 

slightly more frequent in roadsides and less frequent next to waterways. Food CWR were 

more likely to occur in quadrats with high cover of woody plants and quadrats in the south 

and east of the UK whilst forage/fodder CWR had a strongly negative association with cover 

of woody plants. 

Overall, CWR in taxon or gene pool groups 2–4 were found most often in the baseline crops 

and weeds habitat type while more closely related CWR were more likely to be found in 

grassland or woodland habitats (Table 5.3). CWR differing in relatedness did not differ 

greatly in associations with landscape features, although there was a larger association with 

roads and verges for TG/GP 2–4 taxa and unenclosed land had proportionally more TG/GP 2–

4 and fewer TG/GP 1b taxa. Because the usage of the related crop and relatedness were found 

to be confounded (forage/fodder CWR were more likely to be closely related to their 

cultivated relative; mean gene pool/taxon group for forage/fodder CWR = 2.11, food CWR = 

2.67, t1,97 = 2.13, P = 0.04), distribution patterns of CWR in different relatedness groups were 

also assessed within each usage group (Supplementary Table 5.2, Table 5.4).  
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Table 5.4 Parameter estimates and 95% credible intervals for each parameter in each model of CWR occurrence grouped by relatedness 

within each usage group as shown in Fig. 5.2b,c. Parameters where 95% intervals do not overlap zero are highlighted in bold. Factors show 

contrasts from the reference (baseline) levels: crops and weeds (Habitats) and randomly located quadrats (Landscape features). 

 Forage/fodder CWR Food CWR 

Parameter TG/GP 1b TG/GP 2-4 TG/GP 1b TG/GP 2-4 

Intercept -2.94 (-3.12,-2.77) -3.88 (-4.1,-3.66) -3.86 (-4.12,-3.62) -3.04 (-3.25,-2.82) 

Habitats 

Tall grass and herb 0.97 (0.79,1.14) -0.66 (-0.88,-0.45) 0.12 (-0.11,0.36) -0.98 (-1.19,-0.76) 

Fertile grassland 1.4 (1.22,1.58) -0.35 (-0.58,-0.13) -0.81 (-1.07,-0.55) 0.12 (-0.08,0.34) 

Infertile grassland 1.28 (1.1,1.47) -0.05 (-0.28,0.18) -0.34 (-0.6,-0.08) -0.24 (-0.46,-0.01) 

Lowland woodland 0.01 (-0.2,0.21) -1.49 (-1.77,-1.21) 0.51 (0.26,0.78) -0.74 (-0.98,-0.48) 

Upland woodland 0.4 (0.19,0.61) -0.93 (-1.22,-0.64) -0.02 (-0.3,0.26) -1.3 (-1.58,-1.02) 

Moorland grass mosaic 0.4 (0.2,0.6) -0.92 (-1.19,-0.65) -1.89 (-2.23,-1.56) -0.53 (-0.78,-0.27) 

Heath and bog -1.8 (-2.03,-1.56) -2.19 (-2.54,-1.84) -3 (-3.51,-2.5) -0.67 (-0.93,-0.39) 

Landscape features 

Arable fields 0.01 (-0.15,0.17) 0.25 (0.04,0.45) 0.17 (-0.05,0.4) -0.03 (-0.24,0.18) 

Field boundaries 0.3 (0.22,0.39) 0.45 (0.32,0.59) 0.12 (-0.02,0.26) -0.06 (-0.17,0.06) 

Hedgerows 0.56 (0.42,0.7) 0.71 (0.49,0.94) 0.05 (-0.13,0.23) 0.03 (-0.16,0.22) 

Arable field margins 0.47 (0.22,0.73) 0.74 (0.39,1.1) -0.07 (-0.61,0.42) 0.17 (-0.2,0.54) 

Roads and verges 0.07 (-0.01,0.14) 0.57 (0.46,0.69) 0.17 (0.03,0.3) 0.15 (0.05,0.25) 

Waterways -0.28 (-0.35,-0.19) -0.16 (-0.29,-0.02) 0 (-0.14,0.14) -0.67 (-0.78,-0.55) 

Unenclosed -0.12 (-0.23,-0.02) 0.1 (-0.09,0.28) -0.35 (-0.62,-0.09) -0.1 (-0.24,0.03) 

Covariates 

Arable area -0.01 (-0.05,0.03) 0.06 (0,0.13) 0.05 (-0.01,0.12) -0.18 (-0.24,-0.11) 

Urban area 0.02 (-0.01,0.05) 0 (-0.06,0.05) 0.1 (0.05,0.14) -0.04 (-0.09,0.01) 

Road area 0.01 (-0.01,0.04) 0.02 (-0.03,0.07) 0.05 (0,0.1) -0.04 (-0.09,0.01) 

Woody cover -0.42 (-0.48,-0.35) -0.24 (-0.34,-0.13) 0.44 (0.35,0.52) 0.15 (0.07,0.23) 
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 Forage/fodder CWR Food CWR 

Parameter TG/GP 1b TG/GP 2-4 TG/GP 1b TG/GP 2-4 

Annual cover -0.14 (-0.17,-0.11) 0.04 (-0.01,0.08) -0.02 (-0.06,0.03) 0.04 (0,0.08) 

Bare cover -0.15 (-0.18,-0.12) -0.11 (-0.16,-0.06) 0.05 (0,0.1) -0.11 (-0.16,-0.06) 

Easting 0 (-0.04,0.03) 0.18 (0.11,0.24) -0.08 (-0.15,-0.02) 0.13 (0.07,0.18) 

Northing 0.01 (-0.02,0.04) -0.05 (-0.1,0.01) -0.33 (-0.39,-0.27) -0.13 (-0.18,-0.08) 
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Differentiating CWR based on both characteristics showed that closely related (TG/GP 1b) 

forage/fodder CWR dominated the overall CWR response, being much more common in all 

types of grasslands than the other groups (Fig. 5.2b, Table 5.4). Less closely related 

forage/fodder CWR (TG/GP 2–4), dominated by Festuca rubra agg., had similar habitat 

preferences to food CWR, being most frequent in disturbed and infertile grassland habitats, 

but shared landscape preferences with the closely related forage/fodder CWR, showing high 

frequencies in linear landscape features. Variation in habitat preferences were seen within 

food CWR with taxon/gene pool group 1b CWR being most common in lowland woodland 

and least common in heaths and bogs (Fig. 5.2c, Table 5.4). Less closely related food CWR 

were most common in disturbed habitats and fertile grassland. Both groups of food CWR 

showed a preference for roads and verges. 

Although there were some differences in patterns between the different regions of the UK 

(Supplementary Figure 5.1), the uncertainty surrounding parameter estimates was much 

higher for the Welsh and Scottish CWR due to the smaller sample sizes and therefore 

although there was some variation in posterior means there was significant overlap in 

posterior distributions for most parameters.  

5.5 Discussion 

Despite the growing importance of conserving the diversity of CWR as a means of securing 

future agricultural production the analysis presented here is the first systematic analysis of the 

ecological preferences of priority CWR for a country, made possible through national interest 

in CWR conservation and the extensive dataset developed through the Countryside Survey in 

Great Britain. Understanding the habitats and landscape features with the greatest diversity of 
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CWR is important for informing in situ conservation strategies for crop genetic diversity to 

facilitate targeted management and monitoring in the most appropriate locations. 

The first hypothesis that CWR would be most diverse in disturbed habitats with high 

anthropogenic influences was only partly supported by our data. Overall CWR were most 

common in fertile and infertile grasslands, the former of which is likely to be subject to 

human influence and disturbance through fertilisation and grazing. However, the habitat with 

the highest disturbance (the baseline crops and weeds habitat) had similar frequencies of 

CWR to woodlands and moorlands suggesting no overall preference for disturbed habitat 

types. The high proportion of CWR in grasslands was driven by the high proportion of forage 

and fodder CWR in the dataset, supporting the third hypothesis that forage and fodder CWR 

would be most likely to be found in grasslands. In particular, this pattern was driven by the 

more closely related forage and fodder CWR (those in taxon/gene pool group 1b). This group 

is dominated by several of the most common grass species in the UK including Holcus 

lanatus and Lolium perenne, which are commonly found in both fertile and infertile 

grasslands; fertile grasslands are likely to be managed to promote their occurrence. These 

taxa, and the dominant forage and fodder CWR in taxon/gene pool groups 2–4, also drive the 

overall association of CWR with linear landscape features, being more likely to be found in 

field boundaries, field margins, hedgerows and alongside roads than in randomly located 

quadrats. In particular, those forage and fodder CWR which are less tolerant of grazing e.g. 

Arrhenatherum elatius (Dostálek and Frantík, 2012) were commonly found in linear features 

(Supplementary Table 5.3). The second hypothesis that CWR would be more frequent in 

linear features than the surrounding habitat is therefore supported, and it appears that arable 

field margins have particularly high proportions of CWR related to forage and fodder crops.  
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The importance of linear features as refuge features for plant species in Britain has been 

previously linked to the relatively lower impact of heightened macronutrient availability and 

extremes of disturbance, which is frequently either intense or absent, that typify intensively 

farmed landscapes in the temperate zone (Smart et al., 2002, 2006a). These twin pressures 

non-randomly filter species based on their traits. Thus ‘winners’ tend to be tall woody species 

or fast growing forbs and grasses while ‘losers’ are more likely to be shorter, slower-growing 

forbs (Tamis et al., 2005; Smart et al., 2006b; Walker et al., 2009). Where linear features are 

subject to intermittent or frequent removal of biomass and lack of direct fertilizer application, 

conditions mimic lower intensity agriculture. Thus the many CWR species that are favoured 

by modern management regimes can coexist alongside CWR species less adapted to intensive 

farming regimes, resulting in higher proportions of CWR on linear features. Low occurrence 

of CWR on watersides compared to randomly located plots was a feature of both food and 

forage and fodder CWR. This suggests that few CWR are tolerant of either high soil moisture 

or of the late to mid-successional conditions increasingly prevalent on lowland stream and 

riversides in Britain (Carey et al., 2008).  

Food CWR were positively associated with road verges and negatively associated with 

waterways, although the effects were relatively small. Food CWR may show fewer strong 

patterns of occurrence with landscape features due to both the lower proportions recorded and 

the wider range of functional types within the group, which includes grasses, herbaceous 

plants and trees. The cultivated relatives of food CWR are generally grown in either arable 

fields or orchards. These habitats are likely to be classed as crops and weeds, although some 

orchards more closely resemble lowland woodland. Food CWR did have high abundance in 

both the baseline crops and weeds habitat type and in lowland woodland, suggesting that the 

distribution of CWR mirrored the habitats in which their cultivated relatives were grown, 
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however fertile grasslands also had high numbers of food CWR. When food CWR were 

separated by relatedness it was apparent that the association with lowland woodland was 

driven by more closely related food CWR, while less closely related CWR were more 

common in fertile grassland and crops and weeds. Common closely related food CWR 

included the fruit and nut relatives Rubus fruticosus agg. and Corylus avellana, both of which 

are late successional woody taxa common in lowland wooded areas. The most common of the 

more distantly related food CWR (in taxon/gene pool groups 2–4) was Trifolium repens. 

Although Trifolium species are grown primarily as forage/fodder crops in the UK and are 

therefore strongly associated with fertile grasslands, they can also be used as food crops and 

therefore their relatives are classed as both food and forage and fodder CWR. Therefore, for 

food CWR, there was limited support for the fourth hypothesis that more closely related CWR 

would be more likely to share habitat preferences with their related crops. There was more 

support for this hypothesis in forage and fodder crops as closely related forage and fodder 

CWR were much more likely to be associated with fertile grasslands than less closely related 

forage and fodder CWR.  

Overall, the proportion of CWR found was slightly higher in the south and in the east of the 

UK, a pattern also evident in the analysis of the UK geographic distribution of CWR taxa 

(Fielder et al., submitted c). Many archaeophyte CWR, non-native taxa introduced before AD 

1500, are likely to have their biogeographic origins in Mediterranean, eastern European or 

Asian biomes (Vincent et al., 2013). This is may have led to the patterns observed in the UK 

with CWR being slightly less prevalent in the climatically harsher north of the country, 

though further analysis would be required to fully investigate this. There were few regional 

differences in patterns of CWR occurrence despite the variation in both available species 

pools and conservation priorities between regions. There was an indication that woody cover 
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had a more negative effect in England and westerly areas were more impoverished in 

Scotland but for most parameters credible intervals overlapped, partly a reflection of the 

smaller amount of data used in each model. 

Most crops were originally domesticated from wild and weedy plant species (Maxted and 

Kell, 2009). Many of the patterns of occurrence in CWR found in the current study can be 

explained in this context. Weedy or ruderal plants are usually stress intolerant and found in 

early successional habitats with high levels of persistent disturbance and potentially high 

productivity (Grime, 1977). As a consequence, CWR are unlikely to occur in stressful or late 

successional environments and are more likely to be typical of disturbed and productive 

habitats. Tree species generally used to cultivate fruits and nuts, are an exception to this rule. 

The wild relatives of these taxa are more commonly associated with stress tolerance and are 

found in mid- to late successional environments (Grime, 1977), although the pressures to 

obtain maximum yield means that species with highly stress-resistant traits were less likely to 

be domesticated. 

The main caveat to our analysis is that it was not possible to assess the habitat and landscape 

of the rarest CWR as many of these taxa were not recorded in the Countryside Survey. Of 

those priority CWR taxa listed in the Great Britain Threatened Plants list (Cheffings and 

Farrell, 2005) only seven were recorded in the 2007 Countryside Survey with a total of only 

19 records. Our results, therefore, cannot necessarily be generalised to these rarer taxa and 

should instead be considered to reflect the habitat preferences of the more common CWR 

species. Several of the common taxa, while listed in the priority inventory on the basis of their 

relatedness to and economic importance of cultivated relatives, are unlikely to ever be 

considered for conservation, as they are highly prevalent in the UK countryside. To assess the 

conservation needs of the rarer taxa, targeted surveys are required in combination with the 
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broad scale analysis conducted here. In addition, the Countryside Survey does not effectively 

sample coastal areas, partly because the total area of coastal habitat in the UK is small. Many 

CWR of conservation importance have a coastal distribution (Preston et al., 2002) and 

therefore the ability of the Countryside Survey to record these species was limited by the 

small number of coastal locations surveyed. 

Geographical analyses have already been carried out within the UK (Fielder et al., 2015; 

submitted a; submitted b; submitted c) to identify both hotspots of CWR diversity and 

minimum areas which are sufficient to contain all priority CWR. Within these outlined areas 

we can identify protected areas and establish conservation measures within them. The 

analysis conducted here means that we can also prioritise specific habitats and features within 

hotspots (whether within or outside of protected areas) allowing much more specific targeting 

of in situ CWR conservation. In particular, the results of this analysis suggest maintaining 

linear features such as field margins and road verges would be particularly useful. The 

continuation of prescriptions to maintain arable field margins in agri-environment schemes is 

therefore predicted to be important for CWR conservation. It will also be important to identify 

the distribution of genetic variation within CWR taxa, something that is not addressed here 

but which has been studied in detail on The Lizard Peninsula in Cornwall (Fielder et al., 

submitted d). Genetic diversity of key CWR found on The Lizard and across the rest of the 

southwest of the UK was found to be geographically structured which suggests that UK 

conservation efforts for CWR will need to be widespread. 
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5.6 Conclusion 

This study presents the first analysis of the habitat and landscape feature preferences of 

multiple CWR taxa. This is possible within the UK due to the abundance of vascular plant 

survey data and the recent identification of CWR of highest priority for conservation. The 

results emphasise the importance of diverse approaches to conservation of CWR. Traditional 

conservation within protected areas alone may not be sufficient to conserve the full range of 

genetic diversity in CWR and should be complemented by conservation outside of protected 

areas, particularly in sites associated with linear features. Conservation outside of protected 

areas however, will present novel challenges for establishing long-term monitoring and active 

management and will require involvement and commitments from landowners. Nevertheless, 

if CWR (and the genetic diversity within) are to be comprehensively conserved across the 

country in order to meet the UK’s commitments to the Convention on Biological Diversity 

(CBD, 1992; 2010a; 2010b) and the International Treaty for Plant Genetic Resources for Food 

and Agriculture (FAO, 2001), these challenges must be addressed. Since agri-environment 

schemes are likely to be a significant pan-European mechanism for delivering CBD 

commitments, it would be both desirable and relatively straightforward to evaluate whether 

existing UK scheme options will indirectly foster favourable conditions for CWR in their 

preferred habitats and locations. 
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6.1 Abstract 

Crop wild relatives (CWR) are a largely untapped resource with vast potential for use in crop 

improvement, contributing to meeting ever-increasing food production demands in the face of 

crop pests, diseases and climate change. Little systematic or active conservation exists in the 

UK for these valuable taxa despite increasing acknowledgement of their significant economic 

value in global, European and national policy. A genetic diversity study using AFLPs was 

performed on eight CWR on The Lizard, Cornwall to investigate the site’s suitability for 

establishment of the first UK CWR genetic reserve. Results revealed that the CWR on The 

Lizard hold as much genetic diversity as populations from other southwest UK sites despite 

representing a much smaller geographic area. Further, this diversity was largely distinct from 

southwest populations, indicating The Lizard as a suitable location for in situ conservation of 

UK CWR diversity, while also revealing that The Lizard is not, on its own, sufficient to 

conserve the genetic diversity of all CWR in the southwest, highlighting the need for a 

network of complementary UK genetic reserves. We present the first systematic genetic 

analysis of multiple CWR, with evidence to support establishment of a national multi-CWR 

genetic reserve with active and long-term management informed by genetic diversity data. It 

represents a model that can now be applied globally. 
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6.2 Introduction 

The world’s human population is predicted to reach 10.1 billion within the next ninety years 

(United Nations, 2011). To accommodate this ever-increasing population, food production 

needs to increase by 70% (World Bank, 2008; Godfray et al., 2010). At the same time, 

climate change is predicted to reduce crop yield by 2% per decade with more severe yield 

declines forecast beyond 2050 (Porter et al., 2014). This dramatically increases the call for 

higher yielding, but also more resilient, crops to supply rapidly increasing demand; hence the 

utilisation of plant genetic resources such as crop wild relatives (CWR) for crop improvement 

will become ever more important (Hopkins and Maxted, 2011).  

CWR are wild plants, which due to their close genetic and taxonomic relationship to a crop 

offer a largely untapped pool of genetic diversity, holding the potential to improve crop 

varieties and their resilience through plant breeding (Maxted et al., 2006). Factors driving 

biodiversity loss at national and global levels (habitat destruction, changes to management 

practice, and, in the longer term, climate change) also threaten CWR (Maxted and Kell, 

2009). 

Despite increasing threat to CWR and their importance in crop improvement they have rarely 

been considered a conservation priority and are poorly conserved both in situ (Maxted, 2003) 

and ex situ (Dias et al., 2012) as a result. CWR conservation is, however, becoming a higher 

priority in global, regional and national policy. The Convention on Biological Diversity 

(CBD), which includes the Global Strategy for Plant Conservation and Strategic Plan for 

Biodiversity (CBD, 1992; 2010a; 2010b), and the International Treaty on Plant Genetic 

Resources for Food and Agriculture (ITPGRFA) (FAO, 2001) emphasise the importance of 

systematic conservation strategies, particularly in situ conservation of genetic diversity 
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complemented by ex situ back up. The Harlan and de Wet CWR inventory (Vincent et al., 

2013) takes the first systematic step towards achieving this goal. 

In Europe, the European Strategy for Plant Conservation (ESPC) (Planta Europa, 2008) has 

identified the need to establish reserves that hold genetic conservation of CWR as high 

priority. Little systematic, active conservation exists within the UK, but CWR conservation is 

now a national priority, being identified as a priority action in the Biodiversity 2020 strategy 

for England (Defra, 2011). 

CWR conservation efforts should include information on genetic diversity to maximise intra-

specific diversity and the potentially useful gene variants conserved (Schoen and Brown, 

1993), a key concept behind the establishment of CWR genetic reserves. In Europe some 

genetic studies have identified potential sites for genetic reserve establishment such as for 

Brassica wild relatives in Italy (Branca et al., 2012) and Beta patula Aiton in Madeira 

(Pinheiro de Carvalho et al., 2012) but few target multiple CWR or meet the standards 

outlined in Iriondo et al. (2012). Currently no CWR genetic reserves exist in the UK. 

In a recent study of CWR distributions across England it was found that The Lizard is a 

hotspot of CWR taxon diversity, with only Purbeck, Dorset containing a higher number of 

CWR (Fielder et al., 2015). Furthermore, The Lizard is a site that potentially harbours high 

levels of genetic diversity due to its varied ecogeography and underlying geology; The Lizard 

has the largest outcrop of serpentine rock in England (approximately 50km
2
), which gives rise 

to ultra-basic soils rich in magnesium and low in calcium, uncommon in Britain (Andrews, 

1998). There also exists complex microclimatic variation related to topography and maritime 

exposure. 
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The Lizard is already a key site in England for conservation. The peninsula in its entirety is 

designated as an Area of Outstanding Natural Beauty (AONB), the site is a Special Area of 

Conservation (SAC) for a variety of habitats including dry Atlantic coastal heaths and 

vegetative cliffs of the Atlantic coast (The Lizard, 2013). It also hosts eight Sites of Special 

Scientific Interest (SSSI) protected under the Wildlife and Countryside Act, 1981 (The 

Lizard, 2013). Approximately two thousand hectares of The Lizard are designated as a 

National Nature Reserve (NNR) managed by Natural England and other areas are owned and 

managed by the National Trust and Cornwall Wildlife Trust (The Lizard, 2013). 

The extent of conservation management already in place and the potential for the 

ecogeographic characteristics of the area to give rise to interesting genetic variation, make 

The Lizard a suitable candidate for a CWR genetic reserve. The objective of our study was to 

undergo a direct assessment of genetic diversity in multiple CWR on The Lizard to 

investigate its suitability as an appropriate location for the first UK CWR genetic reserve and 

to produce a baseline of genetic data for future monitoring. 

To achieve this, the following two questions were addressed: 

1. What is the level of genetic diversity on The Lizard both within and among 

populations for eight CWR? 

2. How different is the genetic diversity on The Lizard for these CWR compared with 

that elsewhere in the southwest of the UK? 

Finally, an assessment of the evidence is made against the standards proposed for genetic 

reserves (Iriondo et al., 2012) to determine whether The Lizard could qualify as a CWR 

genetic reserve (Supplementary Table 6.1). 
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6.3 Materials and methods 

6.3.1 Study species 

Eight CWR occurring on The Lizard were selected (Allium schoenoprasum L., Allium 

ursinum L., Asparagus prostratus Dumort., Beta vulgaris L. subsp. maritima (L.) Arcang., 

Daucus carota L. subsp. gummifer (Syme) Hook. f., Raphanus raphanistrum L. subsp. 

maritimus (Sm.) Thell., Trifolium occidentale Coombe and Trifolium repens L.). These were 

selected due to i) potential economic value (each is related to a crop of high economic 

importance in the UK and used as either human food or animal forage/fodder), ii) their being 

contrasting taxa covering both inbreeders/outbreeders as well as widespread/restricted range 

taxa (Table 6.1) and iii) being present throughout the study site with known locations 

(Hopkins, 1983; Osborne, 2010). 

6.3.2 Data collection 

During spring 2012 and 2013 sampling was carried out for the eight CWR. Leaf material and 

associated demographic data were collected from up to seven sites per taxon on The Lizard 

(Fig. 6.1) and up to a further seven sites from southwest UK within Cornwall, Devon, Dorset, 

Somerset, Gloucestershire and Glamorgan (Supplementary Table 6.2). Sites represented the 

geographical ranges of these taxa in the southwest of the UK (see Table 6.1 for description of 

UK ranges). Sampling was carried out within the restrictions of available time and resources. 

For each taxon it was ensured that all sites were a minimum of 1km apart to limit the 

likelihood of gene flow between sites (although two sites of A. prostratus were approximately 

720m apart due to its limited distribution and accessibility of sites). 
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Table 6.1 Summary of the life histories of each of the eight study CWR species sampled on The Lizard Peninsula. 

 
Taxon  

(Common name) 

Related crop  

(Crop use) 

Life History 

Life Form Geographic Range (within UK) Breeding 

System 

Allium schoenoprasum 

(Wild chives) 

Chives 

(Human food) 

Perennial 

Herbaceous 

Local, in SW and N England and S 

Wales 

Mixed – 

animal  

Allium ursinum 

(Ramsons) 

Garlic 

(Human food) 

Perennial 

Herbaceous 

Frequent, locally abundant over most of 

British Isles 

Mixed – 

animal  

Asparagus prostratus 

(Wild asparagus) 

Asparagus 

(Human food) 

Perennial 

Herbaceous 

Very local in SW England and S Wales Outcrossing – 

animal 

Beta vulgaris subsp. 

maritima 

(Sea beet) 

Sugar beet 

(Human food) 

Perennial 

Herbaceous 

Frequent, on coasts of British Isles 

except N & C Scotland 

Outcrossing – 

wind 

Daucus carota subsp. 

gummifer 

(Sea carrot) 

Carrot 

(Human food) 

Biennial 

Herbaceous 

Frequent, S and W Britain Outcrossing – 

animal 

Raphanus raphanistrum 

subsp. maritimus 

(Sea radish) 

Radish 

(Human food) 

Biennial to 

Perennial 

Herbaceous 

Frequent, coast of British Isles, N to 

Outer Hebrides but absent from most of 

E Britain and N Scotland 

Outcrossing – 

animal 

Trifolium occidentale 

(Western clover) 

White clover 

(Animal forage and 

fodder) 

Perennial 

Herbaceous 

Local, SW England, Glamorgan, 

Anglesey 

Mixed – 

animal 

Trifolium repens 

(White clover) 

White clover 

(Animal forage and 

fodder) 

Perennial 

Herbaceous 

Abundant throughout British Isles Outcrossing – 

animal 
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Figure 6.1 The Lizard Peninsula, showing the 52 collection sites for eight CWR. Inset: 

southwest survey area (large box) and The Lizard survey area (small box). 

 

For each taxon, 20 leaf samples (100mg fresh weight per sample) were collected from 

different plants across the full range of each site. Samples were immediately stored in airtight 

plastic bags containing drying indicator silica gel (Chase and Hills, 1991). A total of 1,860 

samples were collected and analysed using amplified fragment length polymorphism (AFLP) 

molecular markers. 

6.3.3 AFLP method 

Molecular work was undertaken at the Institute of Biology, Ecology and Rural Science 

(IBERS), University of Aberystwyth, Wales. Genomic DNA was extracted using the DNeasy 
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96 Plant Kit (Qiagen, 2012). The AFLP method was completed according to IBERS’ standard 

protocol (Skøt et al., 2005), based on Vos et al. (1995). 

6.3.4 Genotyping 

AFLP profiles generated from the ABI 3730x1 capillary sequencer were visualised and the 

peaks automatically scored as present (1) or absent (0) in GENEMAPPER 4.0 (Applied 

Biosystems). Peak scorings were then verified manually, allowing correction of misclassified 

peaks (Bonin et al., 2004). Sample profiles that could not be scored unambiguously were 

excluded from subsequent analysis. The number of sample profiles analysed is shown in 

Table 6.2. 

6.3.5 Error rate 

Steps taken to reduce technical and human errors included the automation of laboratory work, 

the aid of highly skilled laboratory staff at IBERS and the inclusion of a pre-selective 

amplification step in the protocol to reduce mismatched amplification products (Vos et al., 

1995). Genotyping errors were reduced in line with Bonin et al. (2004) and Bonin et al. 

(2007) including the analysis of replicates of between five and ten percent of samples. 

For each taxon, error rates were calculated per locus (ratio of the total number of mismatches 

between samples and replicates to the number of replicated individuals) and for the whole 

dataset (the number of mismatches per sample divided by the number of peaks per sample, 

expressed as a percentage) (Bonin et al., 2004; Pompanon et al., 2005). Error rates per locus 

were below 0.1 (in line with Bonin et al., 2004 recommendations), except for A. prostratus, 

which was 0.1667. Loci contributing high levels of error to the dataset were removed. The 

total number of loci analysed per taxon is shown in Table 6.2. 
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Table 6.2 Numbers of Lizard and southwest UK sites surveyed, samples collected, AFLP profiles scored for presence/absence of peaks, 

primer pairs used, total numbers of marker loci identified and number of polymorphic loci included in analysis. 

CWR Lizard 

sites 

Southwest 

sites 

Samples 

collected 

AFLP profiles 

scored 

Primer pair 1 

(EcoRI/MseI) 

Primer pair 2 

(EcoRI/MseI) 

Total 

loci 

Polymorphic 

loci 

Allium schoenoprasum 7 1 160 159 ACG/CTG AGC/CGC 220 79 

Allium ursinum 7 7 280 267 ACG/CTG AGC/CGC 205 50 

Asparagus prostratus 3 0 60 59 AGC/CGC ATG/CAG 126 54 

Beta vulgaris subsp. 

maritima 

7 6 260 259 ATC/CAC ATC/CAG 281 127 

Daucus carota subsp. 

gummifer 

7 7 280 278 ACT/CTT ATC/CAC 268 105 

Raphanus 

raphanistrum subsp. 

maritimus 

7 6 260 257 ATC/CAC ATG/CAG 312 133 

Trifolium occidentale 7 7 280 279 ATC/CAC ATG/CAG 355 46 

Trifolium repens 7 7 280 272 AGC/CGC ATC/CAC 365 80 
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6.3.6 Statistical analysis 

For each taxon, the two primer pair binary matrices generated by GENEMAPPER 4.0 were 

combined and run through AFLP-SURV 1.0 (Vekemans et al., 2002) to determine genetic 

diversity and population structure (Lynch & Milligan, 1994). AFLP markers are dominant, 

hence allele frequencies were calculated using AFLP-SURV’S Bayesian method with non-

uniform prior distribution of allele frequencies (Zhivotovsky, 1999). Caution should be taken 

when interpreting results from polyploid taxa as this method of estimating allele frequencies 

assumes a maximum of two alleles per locus. Where this assumption is not met, it can lead to 

over-estimation of allele frequencies and under-estimation of genetic variation within 

populations (Lynch & Milligan, 1994). In this study both A. prostratus and T. repens are 

tetraploid and do not meet this assumption. Despite this, Hargreaves et al. (2010) argue that 

because T. repens is an allotetraploid showing disomic inheritance (Caradus, 1995; Weidema, 

1996), any such effects should not prevent the analysis of AFLP data using AFLP-SURV. The 

remaining six taxa in the study are diploid and therefore meet this assumption (Stace, 2010). 

Another underlying assumption of AFLP-SURV is that populations do not deviate from Hardy-

Weinberg genotypic proportions (Wright’s inbreeding coefficient (FIS) = 0). This assumption 

was made for all taxa with the exception of A. ursinum for which an FIS of 0.5 was used due 

to evidence of both sexual and vegetative reproduction as well as self-compatibility (Oborny 

et al., 2011; Herden et al., 2012). A posteriori AMOVA analyses support this assumption. To 

test the significance of differentiation among populations (FST), 1,000 permutations were 

performed. Using AFLP-SURV the following descriptive statistics were calculated: proportion 

of polymorphic loci at the five percent confidence level expressed as a percentage (PLP), 

expected heterozygosity (HE), mean expected heterozygosity within populations (HW) and 

Wright’s fixation index (FST) (Lynch & Milligan, 1994). 
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Principal coordinate analysis (PCoA) was performed in GENALEX 6.501 (Peakall and 

Smouse, 2006; Peakall and Smouse, 2012). PCoA plots based on pairwise genetic distance 

were generated to illustrate the patterns of variation between individuals, PCoA plots based 

on Nei’s genetic distances revealed distances between whole populations. 

GENALEX 6.501 was also used to perform an analysis of molecular variance (AMOVA) for 

each taxon (Excoffier et al., 1992). AMOVA determines the partitioning of genetic variation 

within and among populations of a particular taxon (Excoffier et al., 1992; Michalakis and 

Excoffier, 1996), allowing conclusions to be drawn regarding the breeding system of a taxon. 

The significance of AMOVA results was calculated using 999 random permutations of the 

dataset. 

Finally, a Mantel test for matrix correspondence was undertaken (Mantel, 1967) using 999 

permutations to determine whether there was a relationship between geographic and genetic 

distances for each taxon. This test computes a correlation coefficient by comparison of two 

distance matrices, one showing the logarithmic transformation of geographic distances 

between populations based on coordinate data and one showing pair-wise FST between 

populations transformed to FST/(1-FST) according to Rousset (1997). 

6.4 Results 

6.4.1 What is the level of genetic diversity on The Lizard both within and among populations 

for eight CWR? 

Levels of genetic diversity within populations on The Lizard show clear differences between 

taxa (Table 6.3). The highest genetic diversity is in the obligate outcrosser A. prostratus (HW 

= 0.323, S.E. = 0.008) whilst the taxon with the lowest is T. occidentale (HW = 0.063, S.E. = 
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0.005), which is self-compatible and also undergoes vegetative spread (Coombe, 1961; British 

Flora, 2014) although AMOVA suggests it is primarily outbreeding with 72% of variation 

partitioned within populations (PhiPT = 0.278; P = 0.001). 

Table 6.3 Mean within-population expected heterozygosity (HW) and standard error (S.E) for 

eight CWR on The Lizard and southwest UK. 

 Lizard Southwest 

Taxon HW S.E.(HW) HW S.E.(HW) 

Allium schoenoprasum 0.191 0.008 0.165 0.022 

Allium ursinum 0.086 0.005 0.128 0.020 

Asparagus prostratus 0.323 0.008 N/A N/A 

Beta vulgaris subsp. maritima 0.146 0.009 0.162 0.007 

Daucus carota subsp. gummifer 0.101 0.002 0.098 0.006 

Raphanus raphanistrum subsp. maritimus 0.086 0.006 0.115 0.022 

Trifolium occidentale 0.063 0.005 0.061 0.011 

Trifolium repens 0.134 0.007 0.132 0.007 

 

Differentiation among populations, calculated as Wright’s F-statistic (FST) for each taxon, 

also shows clear differences between taxa. Population differentiation is considerably higher 

for A. ursinum (FST = 0.505, S.E. = 0.197) than any other taxon, whereas D. carota subsp. 

gummifer and T. repens show low levels of differentiation among populations (FST = 0.025, 

S.E. = 0.184; FST = 0.024, S.E. = 0.233 respectively). The remaining taxa show intermediate 

levels of differentiation among populations. AMOVA results support these findings with most 

genetic variation observed in A. ursinum partitioned among populations (60%) rather than 

within (40%) (PhiPT = 0.597; P = 0.001), typical of an inbreeding taxon. In contrast, for all 

other taxa, most genetic variation was partitioned within populations, confirming these as 

outbreeding taxa. 

PCoA analyses uncovered patterns and geographic partitioning of genetic diversity found on 

The Lizard (Figs. 6.2 and 6.3). For A. schoenoprasum, both individual sample and population 

PCoA analyses separate coastal populations Asch06 and Asch05 on the west coast of The 
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Lizard from the four inland populations (Asch01, 02, 03 and 07), located in protected 

heathland Goonhilly Downs, and one other coastal population Asch04 (Figs. 6.2a and 6.3a). 

A. ursinum shows two populations, A.urs01 and A.urs02 on the Helford Estuary, are 

genetically distinct from the remaining five A. ursinum populations sampled on The Lizard 

(Figs. 6.2b and 6.3b). The three A. prostratus populations sampled are distinct from each 

other (Figs. 6.2c and 6.3c). B. vulgaris subsp. maritima individuals and populations from The 

Lizard show no clear distinction with the exception of Beta02 (Figs. 6.2d and 6.3d). R. 

raphanistrum subsp. maritimus reveals some structure in genetic diversity across The Lizard 

with populations Raph03 and Raph07 clustering separately from populations further south 

(Raph01, 02 and 06) and those further north (Raph04 and 05) (Fig. 6.2f). The clustering of 

Raph04 and 05 is also observed in Fig. 6.3f, separated by coordinate two (18.43% variation). 

No clear pattern in genetic diversity is apparent among populations of D. carota subsp. 

gummifer, T. occidentale or T. repens (Figs. 6.2e,g,h and 6.3e,g,h). However, a pattern is 

revealed within populations of T. repens where individuals cluster into two separate groups 

(Fig. 6.2h); further study is necessary to fully understand this pattern.   
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Figure 6.2 PCoA plots of all sampled individuals from The Lizard of the eight CWR studied. 

a) Allium schoenoprasum; b) Allium ursinum; c) Asparagus prostratus; d) Beta vulgaris 

subsp. maritima; e) Daucus carota subsp. gummifer; f) Raphanus raphanistrum subsp. 

maritimus; g) Trifolium occidentale; h) Trifolium repens. 
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Figure 6.3 PCoA plots of all sampled populations of the eight CWR studied. a) Allium 

schoenoprasum; b) Allium ursinum; c) Asparagus prostratus; d) Beta vulgaris subsp. 

maritima; e) Daucus carota subsp. gummifer; f) Raphanus raphanistrum subsp. maritimus; g) 

Trifolium occidentale; h) Trifolium repens. Populations with black data points are collected 

from The Lizard, populations with unfilled data points are those collected from outside The 

Lizard within the southwest of the UK.  
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6.4.2 How different is the genetic diversity on The Lizard for these CWR compared with that 

elsewhere in the southwest of the UK? 

As with populations from The Lizard, the level of genetic diversity within populations in 

southwest UK differs between taxa (Table 6.3). HW ranges from 0.061 (S.E. = 0.011) in T. 

occidentale to 0.165 (S.E. = 0.022) in A. schoenoprasum. No significant differences were 

found between HW values for The Lizard and the southwest for any of the taxa.  

PCoA analysis of populations indicates that for most taxa The Lizard populations are 

genetically distinct from those in the southwest (Fig. 6.3). The only taxon for which this is not 

the case is R. raphanistrum subsp. maritimus. 

Mantel tests for each taxon provided further support for the distinction observed between 

CWR at Lizard and southwest sites. Significant isolation by distance was found for A. 

schoenoprasum (P = 0.003), D. carota subsp. gummifer (P = 0.001), T. occidentale (P = 

0.043) and T. repens (P = 0.043) (Fig. 6.4). 

See summary of full results in Table 6.4, including management recommendations for The 

Lizard CWR populations. 
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Figure 6.4 Mantel tests, performed with 999 permuations, showing significant relationships between genetic and geographic distance for 

(a) Allium schoenoprasum; (b) Daucus carota subsp. gummifer; (c) Trifolium occidentale; (d) Trifolium repens. 
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Table 6.4 Summary of genetic data and associated management implications for The Lizard populations for all eight study taxa. Within 

population variation is based on AMOVA test results across all southwest and Lizard populations; the Mantel test is also based on all 

southwest and Lizard populations and significant correlation coefficients are indicated by * (P ≤ 0.05),  ** (P ≤ 0.01) or *** (P ≤ 0.001). 

Taxon  

(Common name) 

Genetic Statistics 

Management Implications for Lizard Populations 
HW FST Within pop. 

var. (%) 

Mantel 

correlation 

coefficient (r) 

Allium 

schoenoprasum 

(Wild chives) 

0.191 0.116 78 0.918**  Quite high diversity on Lizard 

 Average differentiation among populations 

 Strongly outbreeding 

 Designate a few larger areas to conserve range of genetic 

diversity 

 Due to isolation by distance, ensure conserved sites represent 

range of geographical locations 

 Continue current management (pony/cattle grazing and 

controlled burning of heath) 

 Monitor regularly (once every 5 years initially and then once 

every 15 years) to ensure population sizes are maintained 

Allium ursinum 

(Ramsons) 

0.086 0.505 40 0.153  Quite low diversity on Lizard 

 Very high differentiation among populations 

 Clonal and sexual reproduction occurs 

 Designate several small areas to conserve range of genetic 

diversity 

 Little management intervention occurs in these woodland 

habitats, some path maintenance and tree safety management 

 No change in management currently necessary 

 Monitor regularly (once every 5 years initially and then once 
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every 15 years) to ensure population sizes are maintained 

Asparagus 

prostratus 

(Wild asparagus) 

0.323 0.099 83 -0.910  Very high genetic diversity 

 Average differentiation among populations 

 Lizard contains the majority of the UK populations of this 

taxon 

 All known populations on The Lizard are actively monitored 

and managed 

 Continuation of routine monitoring and management is 

recommended 

 Management consists primarily of cattle grazing in NNR 

sites, with some short periods (ca. 3 weeks per year) of pony 

grazing around Terrick Colt, a site managed by the National 

Trust) 

 There are some concerns regarding overgrazing of some 

Asparagus sites and as such, regular monitoring of 

population sizes is highly encouraged 

 In other areas of The Lizard it is known that the hottentot fig, 

an invasive species, threatens some populations. Regular 

clearance of this species from known Asparagus sites already 

occurs and should continue 

Beta vulgaris 

subsp. maritima 

(Sea beet) 

0.146 0.080 81 0.280  Quite high diversity on Lizard 

 Average differentiation among populations 

 Designate a few large populations to conserve the range of 

genetic diversity 

 Populations tend to be large 

 Regular monitoring of populations is recommended (once 

every 5 years initially and then once every 15 years) to 
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ensure maintenance of population sizes 

 Little active management appears to be necessary for this 

taxon but current management at each site should be 

maintained e.g. clearance of hottentot fig at Lizard Point 

 Sea beet population at Coverack has highest genetic 

diversity, agreement should be made between land owner and 

conservation organisations to enable monitoring of 

population size over time 

Daucus carota 

subsp. gummifer 

(Sea carrot) 

0.101 0.025 83 0.728***  Average diversity on Lizard 

 Very little differentiation among populations 

 Designate a small number of large populations to conserve 

the range of genetic diversity 

 Due to isolation by distance, ensure conserved sites represent 

extremes of range on The Lizard 

 Populations are large and continuous but regular monitoring 

of populations is recommended (once every 3 years initially 

and then once every 8 years) to ensure maintenance of 

population sizes 

 Continue current management (sites generally grazed by 

cattle or ponies and occasional scrub clearance carried out 

around areas with rocky outcrops) 

Raphanus 

raphanistrum 

subsp. maritimus 

(Sea radish) 

0.086 0.221 68 0.204  Quite low diversity on Lizard 

 High differentiation among populations 

 Designate a few large sites to conserve range of genetic 

diversity 

 Little management intervention appears necessary as only 

annual coast path maintenance/hedge strimming occurs at the 
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majority of sites 

 Highest genetic diversity and largest population is at Pistil 

Meadow which has not been managed for ca. 4 years 

 Population monitoring at regular intervals (once every 3 

years initially and then once every 8 years) is recommended 

to ensure current low levels of management are appropriate 

for maintenance of population sizes 

Trifolium 

occidentale 

(Western clover) 

0.063 0.085 72 0.346*  Low diversity on Lizard 

 Little differentiation among populations 

 Vegetative spread occurs 

 Designate a minimum of two large areas to conserve range of 

genetic diversity 

 Due to isolation by distance, ensure conserved sites represent 

geographic extremes 

 Continue current management (primarily cattle grazing in 

either Nov to Feb or May to Oct with periodic resting of 

land) 

 Monitoring of population sizes across its range every 3 years 

is recommended initially to prevent loss of genetic diversity 

and to ensure overgrazing does not occur (once populations 

are known to be stable, monitor once every 15 years) 

 If management practices are changed at any time, the effect 

on population size should be very carefully monitored 
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Trifolium repens 

(White clover) 

0.134 0.024 93 0.288*  Average diversity on Lizard 

 Very little differentiation among populations 

 Taxon largely ubiquitous 

 No management necessary at present 

 Should be occasionally monitored (once every 15 years) to 

ensure no decrease in population sizes 
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6.5 Discussion 

Estimates of genetic diversity and differentiation reflect the life histories of each taxon. This 

closely follows patterns observed by Hamrick and Godt (1989; 1996) where life history traits, 

including life form, breeding system and geographic range, influenced plant genetic diversity. 

The influence of life history traits on genetic diversity can inform conservation management 

plans. For example, the inbreeder A. ursinum has heavy seeds which spread just 2.5m or less 

over a 20-year period (Ernst, 1979), greatly limiting dispersal and therefore gene flow 

between populations. In light of this, A. ursinum will require several sites to be conserved 

across its range due to high differentiation among populations. In contrast, to conserve the full 

range of genetic diversity in widespread, outcrossing plants such as D. carota subsp. 

gummifer and T. repens, fewer sites need to be conserved due to high levels of gene flow 

resulting in little differentiation between populations. 

Taking A. schoenoprasum as an example, when planning conservation management for this 

species on The Lizard it will be important that representative populations from both coastal 

and inland sites are targeted for active conservation monitoring and management, due to the 

population structure observed in PCoA analyses. In practical terms, as populations of all eight 

taxa appear to be thriving on The Lizard, it is recommended that current site management 

regimes are maintained but that formal routine monitoring of population sizes, and ideally 

genetic diversity, is introduced. The patterns of genetic diversity revealed in this study are a 

baseline for monitoring (Marfil et al., 2015), and will enable identification of negative trends 

and appropriate adjustment of management plans in response. Such plans can target 

conservation efforts in a time and resource efficient manner whilst ensuring the full range of 
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genetic diversity in target taxa is protected in the long-term (see Table 6.4 for management 

implications for The Lizard). 

HW results indicate that a similar level of genetic diversity exists between populations on The 

Lizard and those from the southwest, despite sites on The Lizard representing a much smaller 

geographic area and having populations which are much closer in proximity to one another 

than those sampled across the southwest. This suggests that genetic diversity found on The 

Lizard for these CWR is close to the maximum diversity found across the southwest. 

Moreover, the genetic diversity found on The Lizard is largely distinct from diversity found 

elsewhere in the southwest. For taxa where distinction between different sites is found, site 

selection for conservation will depend on geographic separation between sites to ensure the 

maximum range of diversity within the taxon can be conserved. In contrast, where no obvious 

distinction is found, site selection can be made independently of geographic distance between 

sites. 

Four of the eight CWR studied displayed a statistically significant correlation between 

geographic and genetic distance. For taxa showing isolation by distance it suggests that when 

selecting appropriate sites for conservation at any level (i.e. populations within a single 

genetic reserve, genetic reserves within a network across a country or even globally), genetic 

diversity conserved will be maximised if sites are selected from extremes of their range. This 

indicates the need for a complementary network of UK genetic reserves, to effectively 

conserve the full range of CWR diversity. 

To further evaluate the levels of distinction in genetic diversity between The Lizard and other 

locations, the results of other studies in the literature can be considered. However for some 
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taxa, few, if any, studies of genetic diversity in wild populations exist, and fewer still within 

the UK.  

High levels of heterozygosity and polymorphism, based on isozymes, were previously found 

in a population of A. prostratus in Port Eynon, South Wales (Kay and John, 1995). This 

corroborates the findings of this study where both HE and PLP values in the three Lizard 

populations are also high (Asp01: HE = 0.316, PLP = 92.6%; Asp02: HE = 0.339, PLP = 87%; 

Asp03: HE = 0.314, PLP = 75.9%). These high levels of diversity are likely to decline due to 

the deleterious effects of small population sizes (Kay and John, 1995) highlighting the 

importance of conservation of this taxon across The Lizard and the rest of its narrow UK 

range.  

B. vulgaris subsp. maritima has been the focus of a number of genetic diversity studies. 

Cureton et al. (2006) and Richards et al. (2014) studied genetic diversity within and among 

wild populations of sea beet around Poole harbour, Dorset and along the Atlantic coast of 

France respectively using microsatellites. Their results show a much higher HE than the 

results obtained for The Lizard and southwest UK populations. However, microsatellites are 

hyper-variable, and there is clear evidence that comparisons of genetic diversity parameters 

based on different molecular markers should be made with caution (Levsen et al., 2008). 

Consequently, the lower level of genetic diversity in B. vulgaris subsp. maritima in the 

current study by no means implies that the taxon is unimportant when considering 

conservation planning within the UK. 

The most reliable comparison of genetic diversity between studies can be made for T. repens 

(Hargreaves et al., 2010). The results presented by Hargreaves et al. (2010) show a mean HE 

of 0.108 across all populations sampled within England. This value is significantly lower than 
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that from The Lizard (HE = 0.134, P ≤0.01) suggesting that Lizard populations are more 

genetically diverse. Populations in both studies display high homogeneity with little 

differentiation between populations. This comparison suggests that Lizard populations with 

their higher levels of genetic diversity than the rest of the UK, would be an appropriate target 

for conservation of white clover genetic diversity. The Lizard could also be considered as 

complementary to the island of St. Kilda in Scotland, a site recommended by Hargreaves et 

al. (2010) for white clover conservation due to its unique genetic diversity in comparison with 

the rest of the UK. 

Establishment of complementary CWR genetic reserves using the method presented here 

targets genome-wide genetic diversity within and among populations, aiming to conserve the 

maximum possible range of genetic diversity found within CWR, allowing for the likelihood 

of adaptive traits being conserved. This approach differs from the traditional approach to 

conservation, which targets species or habitat conservation and aims only to maintain species 

or habitat conservation per se. Genetic reserve based conservation aims to maximise the range 

of genetic diversity conserved, providing the foundation for long-term species or habitat 

survival (Dulloo et al., 2008). Consequently, even in locations already under conservation 

management, additional measures for CWR should be established, as existing protections do 

not consider genetic diversity and may even be detrimental to CWR populations if they 

conflict with the requirements of other protected species.  

AFLPs are commonly used to guide conservation planning (Watson-Jones et al., 2006; 

Hargreaves et al., 2010; Greene et al., 2014; Marfil et al., 2015). It should be recognised that 

the genome-wide genetic diversity revealed may or may not correlate with adaptive genetic 

diversity, with evidence both supporting (Schoen and Brown 1993; Richardson et al., 2009; 

Johnson et al., 2011) and disputing (Reed and Frankham, 2001; McKay and Latta, 2002) this 
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relationship, but the strongest argument in favour being that there are many examples of 

AFLP markers being associated/linked with adaptive trait Quantitative Trait Loci. Though the 

presence of agriculturally valuable traits cannot be guaranteed to be present on The Lizard, in 

light of the high concentration of CWR, the diverse ecogeography and the existing 

commitments to protection of biodiversity in this location alongside the results of this study, it 

is recommended that additional measures are put in place across The Lizard to conserve 

CWR. 

6.6 Conclusion 

This study presents the first systematic genetic analysis of multiple CWR within a potential 

genetic reserve, which will meet the required set of standards set out by Iriondo et al. (2012) 

(Supplementary Table 6.1). 

A high level of genetic diversity within CWR on The Lizard is revealed, which is also largely 

distinct from other UK sites. This, together with the high number of CWR present within this 

area (93 taxa), provides strong support for establishing this site as the first UK CWR genetic 

reserve with active conservation monitoring and management of all CWR present 

complemented by ex situ back up of populations. Doing so would directly respond to 

ITPGRFA, target 9 of the GSPC, Aichi target 13 of the CBD Strategic Plan, action 10 of the 

Biodiversity Strategy 2020, target 9 of the ESPC and one of Defra’s Biodiversity 2020 

strategy priority actions (FAO, 2001; 2010a; 2010b; European Union, 2011; Planta Europa, 

2008; Defra, 2011). In addition, the varied habitats, microclimates and topography of the 

peninsula mean that taxa may be better able to redistribute themselves within the area as 

climate changes. 
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Recommendations for conservation management of each of the studied CWR largely consist 

of maintaining current management regimes but now with regular monitoring of population 

sizes and possibly genetic diversity at defined intervals should population sizes drop 

significantly. Complementary ex situ collecting of conserved in situ populations is also 

recommended. In this way it will be possible to detect changes in population size or health at 

an early stage, providing an opportunity to review site management to ensure maintenance of 

CWR and genetic diversity in the long-term. 

In a time when future food security looks ever more precarious in the face of climate change 

it is essential that plant genetic resources across the world are identified and systematically 

conserved. There should be a focus upon improving in situ conservation efforts with 

complementary ex situ back up to facilitate their continued evolution through ongoing 

adaptation to changing environments (Ford-Lloyd et al., 2014) and the long-term availability 

and accessibility of genetically diverse material for crop improvement. The establishment of 

national networks of CWR genetic reserves, the selection of which is based on genetic 

diversity data and which meet the required standards, would be a significant step towards 

achieving this fundamental goal. 
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CHAPTER 7.  

Next-generation sequencing:  

a powerful tool for targeting  

ex situ collection of crop wild relatives  
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7.1 Introduction 

CWR are poorly represented in ex situ collections (Dias et al., 2012; Maxted et al., 2008c). It 

was recently calculated that approximately 50% of all ex situ accessions worldwide represent 

only ten crop species, indicating a high degree of bias towards the collection of cultivated 

germplasm from crops of high economic importance rather than their more genetically diverse 

wild relatives (Kilian and Graner, 2012). Other estimates suggest that 94% of CWR species 

within Europe are not stored ex situ at all, emphasising that vast gaps exist in current 

collections (Maxted and Kell, 2009). Worryingly, it was reported that international collection 

efforts have been in decline since 1995, though conversely national collection efforts were 

reported to be increasing along with an awareness of the specific importance of collecting 

CWR germplasm (FAO, 2010). 

In order to contribute to improved future food security it is crucial that complementary in situ 

and ex situ conservation approaches for CWR are established systematically (Maxted et al., 

1997b; Greene, 2014). Genetically diverse CWR populations will need to be conserved in situ 

to maintain evolutionary processes that will not only enable their long-term survival but will 

also prevent the loss, through genetic erosion, of potentially useful adaptations that can be 

used in crop improvement. However it is equally important that genetically diverse CWR 

material is stored ex situ as an insurance against the loss of in situ populations, as well as 

ensuring these potentially useful adaptations and traits can be characterised and made 

available to plant breeders (Maxted et al., 1997b). Moreover, it is likely that ex situ 

conservation will become increasingly important if the predicted changes in climate progress 

at a faster rate than plant populations are able to adapt (FAO, 2010). Therefore, it is necessary 

to fill the gaps in the ex situ conservation of CWR through further collection and storage of 
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material. Any additional collection in the field though should not be random but should be 

specifically targeted to ensure the maximum range of genetic diversity can be collected and 

maintained within genebanks, for both conservation and use.  

To achieve this, collection gaps must be identified. Castañeda-Álvarez et al. (2015) highlight 

that for this to be possible, collecting missions for CWR should be informed by molecular 

genetic analyses, through calculation of measures of genetic diversity and distance within and 

among accessions already conserved within genebanks. Camadro (2012) supports this by 

affirming that the structure of population genetic diversity of CWR must be analysed to be 

able to collect representative samples for conservation and use. This was demonstrated by 

Shan et al. (2005) who uncovered the patterns of genetic variation in global genebank 

collections of chickpea wild relatives in the genus Cicer using AFLPs. Cicer accessions 

originating from southeastern Turkey and Palestine were found to have the highest levels of 

genetic diversity. Shan et al. (2005) conclude that, based on their results, further collection 

should take place in the sites with the highest genetic diversity and surrounding areas. Equally 

though, they suggest collection should also focus on sites that may have lower genetic 

diversity but which are located in areas with a distinct ecogeography. A similar study was 

conducted by Ferguson et al. (1998) on lentil wild relatives using RAPD markers to 

investigate genetic diversity and distance between populations to find areas of high diversity 

and areas of unique diversity. By applying molecular genetic analyses such as these to other 

CWR collections it is likely to enhance the genetic diversity captured in genebanks. 

Moreover, the use of modern sequencing techniques to discover single nucleotide 

polymorphism (SNP) diversity will enable faster, more direct, high-throughput analyses of 

genomic variation across genebank accessions, and where appropriate within adaptive genes 

rather than non-transcribed regions of the genome. 
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SNPs are simply defined as single changes in the base sequence of DNA. For a base position 

to be confirmed as an SNP it is generally accepted that the least common allele should occur 

with a frequency equal to or greater than 1% (Vignal et al., 2002). SNPs are generally bi-

allelic due to both their relatively low mutation rate, making the probability of multiple 

changes at any one locus unlikely, and a bias towards transition mutations (purine to purine or 

pyrimidine to pyrimidine) rather than transversion mutations (purine to pyrimidine and vice 

versa) (Vignal et al., 2002). This can be seen as a disadvantage when compared to the 

polymorphic nature of markers such as microsatellites, however the fact that SNPs are 

universal markers, the most abundant source of genetic variation in the genome and also 

suited to next-generation sequencing (NGS) technologies (Ren et al., 2013), this small 

drawback is more than overcome making them highly suited to genetic diversity studies. 

First generation sequencing technology, automated Sanger sequencing (Metzker, 2010), has 

been employed very successfully over the years, including for the completion of the first 

human genome sequence (IHGC, 2004). However it has now been surpassed by other newer 

technologies. NGS has become a widely used technique due to its ability to process millions 

of sequence reads in parallel, a feat which was beyond previous Sanger sequencers (Mardis, 

2008). Not only can it generate this huge volume of data in a much shorter space of time but 

also it is much less expensive than previous sequencing techniques (Mardis, 2008; Metzker, 

2010). As the costs of NGS continue to rapidly decrease (Wetterstrand, 2015), so the potential 

for more routine use in conservation planning is increasing. 

Many NGS sequencing technologies are commercially available. The leading sequencing 

platforms include those from Roche (e.g. 454 GS FLX Titanium), Illumina/Solexa (e.g. 

HiSeq) and Life Technologies/Applied Biosystems (e.g. SOLiD). All of these platforms rely 

on different sequencing chemistries (pyrosequencing, reversible termination and sequencing 
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by ligation respectively) and therefore differ in equipment and reagent costs, read lengths, run 

times and amount of data generated per run (Moorthie et al., 2011). The Roche 454 platform 

is known to generate the longest reads out of the three most common platforms, with average 

read lengths of 330bp reported by Metzker (2010) and up to 700bp according to Liu et al. 

(2012). These long read lengths have the benefit of improving the mapping of repetitive 

sequences (Metzker, 2010). The SOLiD platform typically gives the shortest read lengths of 

85bp whereas Illumina platforms yield read lengths of 100bp (Liu et al., 2012). Roche 

platforms also benefit from having the shortest run times of less than 24 hours whereas 

Illumina runs on the HiSeq 2000 platform take four days on a single-end run and nine days on 

a paired-end run (Metzker, 2010). The more recent Illumina HiSeq 2500 platform yields 

higher amounts of data but takes 11 days to complete a paired-end run (Illumina, 2015a). The 

SOLiD platform runs take even longer at seven days (single-end run) to 14 days (paired-end 

run) (Liu et al., 2012). Roche platforms are also particularly suited to studies using targeted 

enrichment methods (Metzker, 2010). Targeted enrichment allows the sequencing of specific 

regions of a genome, avoiding the costs of whole genome sequencing and allowing more 

detailed analysis of the regions of interest (Moorthie et al., 2011). However, Illumina is 

currently the most widely used sequencing platform due to it yielding the highest data output 

(up to 1TB) compared to other platforms (Illumina, 2015a). The low costs of Illumina 

sequencing reagents (HiSeq 2000: $0.07 per million bases) compared to other platforms, 

particularly Roche (which has very high reagent costs of $10 per million bases for the GS 

FLX Titanium platform), and the ability of Illumina sequencers to carry out both de novo 

sequencing and re-sequencing make this platform a cost-efficient and versatile choice (Liu et 

al., 2012). 



Chapter 7 Targeted CWR collection 

 

 191 

NGS technologies are increasingly being discussed in terms of their potential use in plant 

breeding for crop improvement. Currently the emphasis seems to be on the use of NGS in 

screening current germplasm (both crop and PGR accessions) stored in genebanks to identify 

beneficial traits, either through mining for identification of individual alleles or through 

mapping of quantitative trait loci (Kilian and Graner, 2012; Pérez-de-Castro et al., 2012). 

This approach of characterising stored germplasm using high throughput technology will be 

invaluable in increasing the volume and quality of information about genebank collections 

that is available to breeders. This in turn will allow targeted development of new crop 

varieties with increased yields and resilience to biotic and abiotic stresses.  

In contrast, the objective of the current study was to demonstrate the use of NGS in 

ascertaining whether or not the existing germplasm is likely to be representative of the range 

of CWR genetic diversity found in natural populations, with a particular focus on adaptive 

genetic diversity. Where collections are representative, there is no need for further collection. 

Where gaps are identified in germplasm collections the genetic diversity information revealed 

by NGS can be used to target further collecting of germplasm. In this way, the range of 

diversity and therefore the range of potentially beneficial traits stored in genebanks can be 

optimised.  

Over the last 15 years Medicago truncatula Gaertn. (Fabaceae family) has become a well-

established model legume species (Branca et al., 2011; Ben et al., 2012). It has many qualities 

that make it an excellent model; its genome has been sequenced, it is diploid (2n = 16), self-

fertile, has a small genome (500–550 million base pairs) and a short generation time (Young 

et al., 2009; Young et al., 2011; Zhou et al., 2011). It is also a CWR of the economically 

valuable forage crop, alfalfa (M. sativa L. subsp. sativa). M. truncatula has not yet been 

classified within the Gene Pool concept of M. sativa subsp. sativa (Vincent et al., 2013), 
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suggesting that crossing experiments have yet to be carried out. Despite this, it is already 

recognised as having potential for conferring disease resistance in alfalfa and can itself be 

used as a forage crop (USDA, ARS, National Genetic Resources Program, 2015). For the 

reasons outlined above, M. truncatula was selected for use in this study to demonstrate the 

use of NGS in targeting collection of germplasm. 

To achieve the study’s objective, an initial approach was selected which used Roche 454 

sequencing platform along with Roche Nimblegen’s Sequence Capture technology (Roche 

NimbleGen, 2011), a method of targeted enrichment, to isolate and sequence genomic DNA 

from M. truncatula genes involved in stress response pathways. This approach would enable 

the assessment of SNP variation in adaptive genes linked to environmental stress, particularly 

relevant to the field of conservation genetics and CWR conservation in light of climate 

change and other threats to species genetic diversity. A total of 70 M. truncatula genes 

involved in stress response pathways (e.g. water, salt, temperature and oxidative stress) were 

selected for the study (Supplementary Table 7.1), primarily through searches of nucleotide 

sequence similarity between genes of known function in the sequenced genome of 

Arabidopsis thaliana (L.) Heynh. using NCBI’s Basic Local Alignment Search Tool 

(BLAST) (Altschul et al., 1990; Lamesch et al., 2011). Other genes were identified from a 

study of SNP diversity in drought stress associated genes in Trifolium pratense L. and a study 

of brown plant hopper resistance in rice Oryza sativa L. (Hargreaves, 2011; Ab-Ghaffar, 

2012). Using the Sequence Capture method, a further aim was to investigate whether it would 

be possible to capture these same 70 genes from accessions of other, closely related, legume 

species and successfully sequence them. These species were: Trifolium repens L., T. pratense 

L., Vicia johannis Tamamsch, V. narbonensis L., Lens culinaris Medik. and Lathyrus annuus 

L. If it had been possible to isolate sequences from related species and map them in relation to 
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the M. truncatula reference genome, this could overcome limitations relating to the lack of 

sequenced wild plant reference genomes, and particularly CWR reference genomes, which are 

restricting the use of NGS in plant conservation studies (Michael and VanBuren, 2015). 

Unfortunately, due to a range of financial and resource limitations outlined in more detail in 

section 8.3 the approach using Roche 454 sequencing, Sequence Capture and legume species 

related to M. truncatula ultimately was not pursued and an alternative method of whole 

genome re-sequencing using the Illumina HiSeq sequencing platform was carried out as 

outlined in full in section 7.2 below. To meet the study objective using the Illumina 

sequencing platform, the project required the following four stages. Ultimately however, time 

limitations due to the issues experienced using the initial Roche sequencing method meant 

that only the first stage was achieved. 

1. Carry out whole genome re-sequencing of 13 M. truncatula accessions using the 

Illumina HiSeq 2500. 

2. Identify SNP variation within genes relating to stress response pathways 

(Supplementary Table 7.1). 

3. Determine the levels of genetic diversity and patterns of genetic distance within and 

among accessions, based on SNP variation identified in stress response genes. 

4. Make recommendations as to where gaps currently exist in M. truncatula genebank 

collections and where further collecting is likely to improve the genetic diversity 

conserved. This can be achieved by identifying accessions with high levels or 

distinctive genetic diversity and comparing these results to the ecogeographic regions 

from which they originate. This will help inform where further collecting would be 

most likely to yield additional and complementary genetic diversity.  
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7.2 Materials and methods 

7.2.1 Study species 

Twenty seed accessions of M. truncatula were provided by the International Center for 

Agricultural Research in the Dry Areas (ICARDA), Syria. Four seeds per accession were 

planted in a greenhouse at the University of Birmingham and 53% germinated. Leaf material 

from each plant was removed and snap frozen in liquid nitrogen for long-term storage at 

minus 20°C. At least two plants grew successfully for thirteen of the accessions and these 

were selected for the study (Table 7.1). Fig. 7.1 illustrates the countries within the native 

range of M. truncatula with collection sites of the 11 accessions of wild origin indicated (the 

two wild accessions lacking coordinate data are mapped to the centre of their country of 

origin). 

Table 7.1 Accessions and number of plants sequenced with associated passport data. 

Accession ID Country of origin Longitude Latitude Type Number of 

plants 

53087 Turkey 27.1833 39 Wild 4 

53787 Czech Republic NULL NULL Wild 4 

54082 Malta NULL NULL Cultivated 3 

54084 Australia NULL NULL Cultivated 3 

53156 Morocco -3.25 34.9667 Wild 2 

53247 Libya 13.6333 32.4333 Wild 2 

53366 Jordan 35.6 31.6167 Wild 2 

53954 Lebanon 36.0167 33.8667 Wild 2 

54081 Hungary NULL NULL Wild 2 

55085 Syria 36.9069 34.8722 Wild 2 

57157 Italy 13.75 37.2167 Wild 2 

58156 Portugal -8.38333 37.7333 Wild 2 

132528 Azerbaijan 49.7281 40.2889 Wild 2 

Longitude and latitude displayed in decimal degrees; ‘NULL’ indicates no coordinates are 

available.  
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Figure 7.1 The native range of M. truncatula according to USDA, ARS, National Genetic 

Resources Program (2015) and the collection locations of all 11 wild accessions.  

 

7.2.2 DNA extraction 

DNA extractions from the leaf material of all 32 M. truncatula plants (hereafter referred to as 

samples) were carried out using the QIAGEN DNeasy
®
 Plant Mini Kit (Qiagen, 2012). The 

standard protocol was performed on 100mg of each sample with two minor adjustments for 

optimisation. Firstly, the RNase incubation time was extended from 10 minutes to 30 minutes 

and an extra dry spin was included prior to elution of the DNA, to remove contaminants. All 

samples were then placed in a SpeedVac vacuum concentrator for approximately one hour 

until the volume of each sample was reduced by half (from 200µl to 100µl). Samples were 
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then quantified using a NanoDrop spectrophotometer to determine the amount of DNA 

yielded and its purity. Purity readings (260/280 ratio) fell within the range of 1.50 and 2.00 

indicating the samples were sufficiently free from residual contaminants such as phenol 

(Nanodrop, 2012). The protocol yielded between 408.96ng to 4967.42ng of DNA, sufficient 

to continue to the library preparation step. Nanodrop readings were found to be more reliable 

at higher DNA concentrations. 

7.2.3 Genomic DNA library preparation 

Thirty-two libraries (one per sample) were produced according to the standard low sample 

protocol of the Illumina TruSeq
®
 DNA PCR-Free method (Illumina, 2013). The protocol 

involves fragmentation of genomic DNA using Covaris shearing, end repair, DNA fragment 

size selection (550 base pair insert size), adenylation of 3’ ends of the DNA insert and ligation 

of adaptors to enable hybridisation to a flow cell during sequencing. Adaptors each included a 

unique index sequence to facilitate multiplexing of sample libraries. Two multiplexed pools, 

each containing 16 sample libraries, were produced (Table 7.2). Library preparation was 

carried out at the Center for Genomics and Bioinformatics, Indiana University, Indiana, USA. 
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Table 7.2 Unique Illumina PCR-Free DNA index sequences ligated to each sample in the two 

library pools. 

Pool Sample name Index set Illumina PCR-Free 

DNA index 

Illumina PCR-Free 

DNA index sequence 

1 53087 1 A 2 CGATGT 

1 53087 2 A 4 TGACCA 

1 53087 3 A 5 ACAGTG 

1 53087 4 A 6 GCCAAT 

1 53787 1 A 7 CAGATC 

1 53787 2 A 12 CTTGTA 

1 53787 3 A 13 AGTCAA 

1 53787 4 A 14 AGTTCC 

1 54082 1 A 15 ATGTCA 

1 54082 2 A 16 CCGTCC 

1 54082 3 A 18 GTCCGC 

1 54084 1 A 19 GTGAAA 

1 54084 2 B 22 CGTACG 

1 54084 3 B 23 GAGTGG 

1 53156 1 B 25 ACTGAT 

1 53156 2 B 27 ATTCCT 

2 53247 3 B 1 ATCACG 

2 53247 2 B 3 TTAGGC 

2 53366 1 B 8 ACTTGA 

2 53366 2 B 9 GATCAG 

2 53954 1 B 10 TAGCTT 

2 53954 2 B 11 GGCTAC 

2 54081 1 B 20 GTGGCC 

2 54081 2 B 21 GTTTCG 

2 55085 1 B 22 CGTACG 

2 55085 2 B 23 GAGTGG 

2 57157 1 B 25 ACTGAT 

2 57157 2 B 27 ATTCCT 

2 58156 1 A 2 CGATGT 

2 58156 2 A 4 TGACCA 

2 132528 1 A 5 ACAGTG 

2 132528 2 A 6 GCCAAT 
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Library pool quantification using qPCR was then carried out at the University of Birmingham 

according to the KAPA Biosystems standard protocol for Illumina sequencing platforms 

(KAPA, 2011). Accurate quantification of libraries is essential as overestimation of library 

concentrations can result in low cluster density on the sequencing flow cell, and 

underestimation can result in over clustering. In each case, sub-optimal sequencing results are 

obtained (KAPA, 2011). The concentrations of library pools 1 and 2 were 1.865nM and 

1.8nM respectively. 

7.2.4 Cluster generation 

Denaturation of DNA in library pool 1 was carried out by taking 12.5µl of pool 1, adding 

12.5µl of 0.1M NaOH and leaving at room temperature for five minutes. A volume of 25µl of 

Tris-HCl + 0.1% Tween 20 was then added as a buffer, resulting in a concentration of 450pM. 

A volume of 1075µl of hybridisation buffer (HT1) was then added to dilute the denatured 

library pool to a concentration of 20pM. A further 300µl of HT1 was then added to reach a 

final concentration of 12pM (a concentration selected to produce optimal cluster density). The 

same process was followed to denature and dilute library pool 2. A volume of 120μl of each 

12pM pool was then loaded onto a HiSeq flow cell. Four flow cell lanes were loaded with 

pool 1 and a further four lanes were loaded with pool 2. Oligonucleotides complementary to 

the adaptor sequences ligated to the sample DNA are present on the flow cell, allowing 

isothermal bridge amplification of DNA fragments using the automated Illumina cBot 

(Illumina, 2012). This produces clonal clusters of single molecule DNA templates, which are 

attached to the flow cell with sequencing primers hybridised to the free ends of the templates, 

ready for sequencing. 
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7.2.5 Whole genome re-sequencing 

After successful cluster generation, the HiSeq flow cell was then transferred from the cBot to 

the Illumina HiSeq 2500 sequencer. A TruSeq
®
 v3 run was carried out according to the 

Illumina protocol (Illumina, 2014). The process uses ‘Sequencing by Synthesis’, where DNA 

is synthesised from the sequencing primers, which were annealed to the DNA templates in the 

cBot. Each incorporated base emits a fluorescent signal that is detected by the HiSeq 2500 

and the specific basecall at each position is determined (Illumina, 2015b). A total of 209 

cycles were carried out to produce pair end reads (100 cycles for read 1, nine cycles for index 

reads and 100 cycles for read 2). Paired end reads enable more accurate alignments to a 

reference genome (Illumina, 2015b). A depth of coverage of approximately 15x was achieved 

per sample. 

7.2.6 Mapping reads to reference genome 

The 100bp paired end sequence reads generated as outputs from the Truseq
®
 run were 

demultiplexed using index reads. Reads were then mapped to the M. truncatula reference 

genome v4.0 (Tang et al., 2014) using the Burrows-Wheeler alignment tool (BWA, 2013). 

The BWA-MEM (maximal exact matches) algorithm was used in paired end mode and is 

suitable for aligning Illumina reads from 70bp to 1Mbp in length (BWA, 2013). Alignments 

were then sorted and indexed using SAMtools v1.1 (Li et al., 2009). 
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7.3 Results and discussion 

Using the methods described above, whole genome re-sequencing was successfully carried 

out to produce 32 sequenced genomes (13 accessions) of M. truncatula. The data are in the 

required format to enable downstream analyses, including SNP identification in genes linked 

to stress responses (Supplementary Table 7.1). Population genetic analyses based on SNP 

variation in stress associated genes will achieve the objective set out in section 7.1, to 

demonstrate the application of NGS in targeting the collection of CWR germplasm to fill gaps 

in genebank collections. As sequencing costs continue to drop this method could be adopted 

by genebanks to ensure the range of natural adaptive genetic diversity in wild CWR 

populations is conserved ex situ. Investment in sequencing genebank accessions would mean 

that these data are also available to be used in the characterisation of germplasm and could be 

used as a baseline for monitoring genetic diversity through the process of seed regeneration 

(van Treuren and van Hintum, 2014). All of these are valuable applications that would help 

towards ensuring the long-term availability of genetically diverse germplasm for utilisation by 

plant breeders.  

The cost of sequencing has reduced substantially since the $3 billion spent to sequence the 

human genome (approximately $1 per base pair), with the advent of NGS responsible for a 

particularly steep drop in cost from 2007 onwards (IHGC, 2004; Wetterstrand, 2015). In the 

current study the cost of re-sequencing a single genome of M. truncatula, inclusive of DNA 

extraction and library preparation costs, was approximately $615, equating to less than $1.25 

per million base pairs. This demonstrates how much more affordable this technology is 

becoming and its potential to be used more widely within the field of PGR conservation and 

use. Ultimately, this method was significantly cheaper than it would have been using the 
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Sequence Capture methodology to sequence only the regions of interest. Moorthie et al. 

(2011) also recognise that overall, the sequencing of whole genomes is a more cost-effective 

approach than targeted enrichment methods, though additional costs of data analysis must 

also be considered when planning NGS research (Sboner et al., 2011). 

The first plant genome to be sequenced was that of A. thaliana in 2000 (The Arabidopsis 

Genome Initiative, 2000). Since then more than one hundred plant genomes have been 

sequenced, 63% of which are crop plants and the remaining 37% of which consist of model 

and non-model plants and crop wild relatives (Michael and VanBuren, 2015). There is a need 

for more plant genomes, particularly CWR, to be sequenced to facilitate detailed genetic 

analyses of crops gene pools to target germplasm collection appropriately to fill gaps in the 

genetic diversity conserved (van Treuren et al., 2012). McCouch (2013) also suggests that all 

plant samples available in genebanks under the ITPGRFA should be sequenced in order to 

‘mine biodiversity for food security’ to produce new, more resilient crop varieties. However, 

in contrast to the small diploid genomes of plants such as A. thaliana and M. truncatula, the 

challenges presented by large genomes, occurrence of polyploidy, extensive repetitive 

sequences and structural variation can make resolving complex plant genomes highly 

problematic due to the short reads generated using NGS (Michael and VanBuren, 2015). 

Third generation sequencing, which is now becoming commercially available, has the ability 

to produce longer sequence reads, with higher throughput, at faster speeds with higher 

accuracy than NGS platforms (Thudi et al., 2012). For example, Pacific Biosciences are using 

SMRT technology that enables the sequencing of one DNA strand by a single DNA 

polymerase (Thudi et al., 2012). This process can sequence 1–3 nucleotides every second and 

produces reads of up to 10,000 base pairs in length (McCarthy, 2010). Technologies such as 



Chapter 7 Targeted CWR collection 

 

 202 

this will take significant steps towards the sequencing of the most complex plant genomes, 

making this data available for use in CWR conservation and crop improvement. 

Ultimately, it is not possible to collect all of the genetic diversity present in wild populations 

and to store this ex situ, due to limited resources (Hoban and Schlarbaum, 2014). Equally, it is 

not possible to know how representative germplasm collections truly are of the genetic 

diversity found in the wild (van Treuren et al., 2012). Despite this, genetic diversity data can 

be used to target the collection of populations with high or unique genetic diversity. 

Furthermore, to combine this information with ecogeographic data could further improve the 

representativeness of CWR collections and Ecogeographic Land Characterisation (ELC) maps 

are a tool that could facilitate this. Maps such as these categorise the landscape of a 

geographic area based on select ecogeographic variables that shape the distribution of a 

species (Parra-Quijano et al., 2008). Knowledge of ELC categories and the extent of genetic 

diversity of accessions from within and among categories would enable genebank managers 

to make more informed decisions regarding where further collection would be most likely to 

yield high or unique genetic diversity. The recent release of CAPFITOGEN tools make the 

production of ELC maps relatively simple (Parra-Quijano et al., 2014), allowing this method 

to be used effectively alongside genetic diversity data to significantly improve the 

completeness of CWR genebank collections. 
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7.4 Conclusion 

A lack of technical and bioinformatics expertise was a major limitation in this project. Despite 

this, sequence data for 32 whole genomes of M. truncatula from the ICARDA genebank in 

Syria have been successfully produced. This is a substantial dataset that can now be used in a 

population genetics study using SNP variation in genes linked to stress responses to reveal the 

extent and pattern of genetic diversity already maintained in this collection. Together with the 

use of ELC maps, the genetic diversity data generated can be used to find gaps in this ex situ 

collection to help target further collecting missions. NGS, and now third generation 

sequencing, are capable of producing huge volumes of data making them powerful tools for 

use in population genetics studies to inform conservation planning. The sequencing method 

used in this project and the intended subsequent analysis can be applied to any CWR with a 

sequenced genome. The cost of sequencing will only continue to decrease, making this 

technique evermore accessible to genebanks. It will significantly improve the completeness of 

ex situ collections and ultimately the range of genetic diversity available to plant breeders to 

produce novel, resilient crop varieties that are more likely to withstand environmental change. 



Chapter 8 Discussion 

 

 204 

CHAPTER 8.  

General Discussion 
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8.1 Overview 

The UK is a contracting party to the Convention on Biological Diversity (CBD, 1992) and the 

ITPGRFA (FAO, 2001), with a responsibility to achieve targets set out by these, as well as 

the GSPC and Strategic Plan for Biodiversity 2011–2020, to actively conserve PGR including 

CWR and their genetic diversity through complementary in situ and ex situ measures (CBD, 

2010a; 2010b). Further policy instruments, the EU Biodiversity Strategy 2020 (European 

Union, 2011) and ESPC (Planta Europa, 2008), reiterate these targets in a European context. 

Each of the devolved administrations of the UK have their own biodiversity strategy (Defra, 

2011; Welsh Assembly Government, 2006; Scottish Government, 2013b; DOENI, 2002), all 

of which aim to preserve biodiversity and protect our natural capital, including agricultural 

genetic diversity and CWR. Despite UK and devolved administration commitments and 

responsibilities to respond to these policy instruments it has not been possible until now to 

implement any CWR conservation measures due to a lack of scientific knowledge to inform 

conservation decision-making. The research presented in this thesis fills this knowledge gap 

by identifying priority CWR for food security across the UK, revealing gaps in their current 

conservation both in situ and ex situ and making recommendations to relevant stakeholders to 

facilitate the establishment of systematic CWR conservation for the UK and devolved 

administrations. The methodologies developed and used in this thesis were selected to cover 

the fundamental concept that to achieve effective, active and long-term CWR conservation 

there is a need for rigorous conservation planning. Any approach taken must incorporate 

complementary in situ (both within and outside of protected areas) and ex situ conservation 

planning, informed by the range and pattern of genetic diversity found within target taxa 

(Maxted et al., 1997b; Greene et al., 2014). Chapters 2–4 and Appendix 1 (Fielder et al., 

2015; submitted a; submitted b; submitted c) took a broad, holistic approach considering 
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appropriate conservation actions required for all priority food, forage and fodder CWR across 

the administrations of England, Wales and Scotland and also nationally across the whole UK. 

Chapter 5 (Jarvis et al., in press) addressed how in situ CWR conservation can be further 

targeted in appropriate locations by demonstrating the habitat preferences of CWR across the 

UK, these results can be incorporated into national and administration level conservation 

planning. Though all of these chapters highlight the need for conservation of the genetic 

diversity within CWR and make recommendations with this in mind, Chapters 6 (Fielder et 

al., submitted d) and 7 both aimed to directly investigate the range of genetic diversity within 

CWR. The former focused on the application of genetic diversity analyses in justifying the 

establishment of in situ genetic reserves and the latter focused on its ex situ application in 

assessing the genetic diversity stored in genebanks to enable better decision making and 

targeted collection. On completion of this research there remains a requirement for the 

implementation of the recommendations made to meet global, European and national targets. 

However, the recommendations have been developed through consultation with the 

conservation organisations for each of the devolved administrations of the UK and this has 

resulted in policy discussions that are leading to implementation. Fundamentally, 

implementation must result in the systematic, long-term conservation of the range of genetic 

diversity in UK CWR but also must link this with the use of this genetically diverse material 

in crop improvement. 

8.2 From research to practice 

In the field of conservation research and particularly research concerning food security, it is 

crucial that there is a bridge between academic studies and the relevant stakeholders 

ultimately responsible for creating change in practice. Meilleur and Hodgkin (2004) suggest 
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that links between recommendations for conservation of CWR and the establishment of their 

protection and management are weak. Without strengthening this bridge between research and 

policy, conservation decision making and management practices, active conservation and use, 

CWR are likely to remain poorly conserved and at risk of genetic erosion due to factors 

including climate change, habitat destruction and land management. This in turn will limit the 

availability of genetically diverse material to use in crop improvement initiatives and 

ultimately will compromise our future food security. 

The main results obtained through gap analyses in Chapters 2–4 and Appendix 1 (Fielder et 

al., 2015; submitted a; submitted b; submitted c) are presented in Table 8.1. They highlight 

key areas where research has revealed a need for on-the-ground conservation action. For 

example, it would be expedient to focus on the 11–15% of threatened CWR in each 

administration and the UK to ensure the persistence of key population sizes and their existing 

range of genetic diversity. Furthermore, complementarity results demonstrate that a network 

of as few as 15 sites (or potential CWR genetic reserves) is required to conserve the majority 

of English priority CWR, nine and 11 sites for common and rare priority CWR respectively in 

Wales, 22 sites to conserve priority CWR in Scotland and up to 27 sites would be required for 

priority CWR in the UK inventory. These networks would be sufficient to contain at least five 

distinct in situ populations for 38% of priority CWR in Wales and up to 61% in the UK as a 

whole. Many of the sites recommended in the devolved administration overlap with those of 

national UK priority including Purbeck, The Lizard Peninsula, sites in Cambridgeshire, 

Somerset in England, around Cardiff in Wales and in the Cairngorms National Park in 

Scotland. Considering this, efforts to establish networks of CWR genetic reserves in each 

administration should integrate with UK-wide efforts to produce one in situ network of sites, 

which are either of sub-national importance, national importance or both. Prior to this project 
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no protected areas in the UK met the minimum standards necessary for CWR genetic 

conservation (Iriondo et al., 2012). There was a need, where priority CWR populations occur 

within existing protected areas, for management plans to be adjusted to incorporate CWR and 

long-term monitoring to be established, this is now happening on The Lizard and is also 

underway on the Isle of Purbeck.  

Equally though, to achieve the recommended minimum of five conserved populations for all 

CWR (Brown and Briggs, 1991; Dulloo et al., 2008), active management of CWR in habitats 

outside of protected areas will also need to be established. Rare CWR are unlikely to be 

present in greater than five complementarity sites overall due to their restricted ranges so 

conservation representing their full distributions should be the focus in these cases. Results 

from Chapter 5 (Jarvis et al., in press), concerning the habitat preferences of priority CWR in 

the UK, can be combined with the broad results from each administration and the UK to 

inform CWR management and monitoring by target in situ conservation more effectively in 

the habitats where CWR are most likely to be found. Finally, ex situ gap analyses were able to 

highlight where further collection of CWR accessions is required. Results indicate that CWR 

in Scotland are severely under-collected but also that only 16% of priority CWR in England 

and the UK reach the advised minimum of five or more genebank accessions and as few as 

7% and 2% reach this threshold in Wales and Scotland respectively. Some of the gaps in ex 

situ collections can be attributed to the collection priorities of the MSB, Royal Botanic 

Gardens, Kew. Their focus has been to collect all UK native, orthodox (able to be dried and 

stored without damage), seed-bearing species and they now hold close to 94% of these 

species (S. Miles pers. comm.). However, this does not include archaeophyte or neophyte 

taxa, which in the case of CWR are also valuable for the potential genetic diversity contained 

within them.  
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Table 8.1 Summary of key results for the UK and devolved administrations from Chapters 2–

4 and Appendix 1 (Fielder et al., 2015; submitted a; submitted b; submitted c). 

 England Wales Scotland United 

Kingdom 

Priority CWR 148 122 120 223 

Percent priority CWR 

threatened  

14 15 11 12 

Suggested complementarity 

sites 

15 9 (C) 

11 (R) 

22 27 

Percent CWR in five or more 

complementarity sites 

53 38 (C) 

0 (R) 

42 61 

Number of ex situ conserved 

accessions for priority CWR 

687 238 40 1034 

Percent CWR with five or more 

accessions 

16 7 2 16 

Percent CWR with no 

accessions 

44 76 91 35 

(C) = Common CWR; (R) = Rare CWR. 

 

The key recommendations made in the preceding chapters, relevant to stakeholders and policy 

makers, that need to be addressed for CWR conservation in the UK include:  

1. The establishment of an integrated in situ network of CWR genetic reserves of sub-

national, national or dual importance, that incorporate the full range of the genetic 

diversity of priority CWR. Recommended sites include Purbeck and The Lizard 

Peninsula in England, The Gower Peninsula in Wales and a site overlapping with the 

Loch Lomond and Trossachs National Park in Scotland. The added value of carrying 

out separate gap analyses for common and rare CWR in Wales could also be explored 

in England, Scotland and the whole UK to further validate the sites selected; 

2. The protection of CWR populations outside of protected areas, particularly in habitats 

shown to be associated with higher incidence of CWR (e.g. field boundaries, 

hedgerows and road verges). This could be achieved through incorporation of CWR 
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conservation into the Common Agricultural Policy’s Rural Development programme 

via government Countryside Stewardship schemes;  

3. The establishment of The Lizard as the first CWR genetic reserve in the UK as a 

priority, closely followed by the Isle of Purbeck, which has the highest UK 

concentration of CWR taxonomic diversity and;  

4. The collection of genetically diverse CWR material to fill ex situ gaps in genebanks, 

including archaeophyte and neophyte taxa. 

The research carried out in Chapters 6 (Fielder et al., submitted d) and 7 both present 

methodologies that can easily be replicated to assess the genetic diversity within and among 

populations in situ or accessions ex situ. Gaining an understanding of the range and patterns 

of genetic diversity in the wild and within existing genebank collections is crucial so that 

CWR with high or distinctive genetic diversity can be maintained in situ, enabling ongoing 

adaptation to changing environmental conditions (Ford-Lloyd et al., 2014), and ex situ, 

enabling the establishment of a complete back up of diverse material in genebanks available 

for germplasm screening. Using the model developed and described in this thesis, genetic 

diversity data can be integrated into conservation planning. This again highlights the need for 

communication and collaboration between research and practice. Bridging this gap will 

maximise the genetic diversity conserved across all CWR and will increase the likelihood that 

agriculturally valuable traits will be preserved and made available for use in crop 

improvement. 

Across the UK and within the devolved administrations of England, Wales and Scotland, 

representatives of each conservation agency (NE, NRW and SNH) were consulted throughout 

the undertaking of the research presented in this thesis. Their input was invaluable in ensuring 
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the results and ultimately the recommendations made in the UK, in each administration and in 

the case study of The Lizard as a potential CWR genetic reserve, were relevant and attainable. 

Their involvement also provides a promising future, that the impetus from this work will be 

taken forward and that the conservation of CWR in the UK will be systematic and 

comprehensive. This is best demonstrated in a summary of the actions that are already 

underway, or have been proposed, by representatives from each administration’s conservation 

agency. 

Within England the following actions have been completed or are underway: 

 The results of The Lizard genetic analysis have been disseminated to National Nature 

Reserve managers from The Lizard and the southwest of the UK. 

 Though Defra does not currently wish to formally create any new national protected 

area designations (e.g. statutory CWR genetic reserves), options are currently being 

explored to incorporate CWR management into existing protected areas as ‘informal 

genetic reserves’, a proxy for formal recognition. For example, CWR could be listed 

as special interest features within SSSI designations or incorporated into NNR 

management plans, which are reviewed every five years; the latter is likely to be the 

quickest and simplest option. 

 This has already been achieved on The Lizard where CWR have already been 

included in the NNR management plan. The Lizard NNR managers are close to 

meeting the minimum genetic reserve standards proposed by Iriondo et al. (2012). To 

achieve the minimum standards, The Lizard still requires an agreed framework for the 

reporting of ongoing monitoring (for The Lizard and England, the lead authority 

should logically be NE, and NE should report to Defra for all national and 
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international reporting purposes) and funding to enable start-up activities such as seed 

collection of priority populations to be stored at the MSB, Kew (Supplementary Table 

6.1). If CWR are listed as special interest features in existing protected areas then 

ongoing costs should become part of national priority biodiversity conservation 

activities. 

 Options to enable conservation outside of protected areas are also being explored, 

including CWR conservation in the Rural Development Programme for England 

through agri-environmental schemes such as the new Countryside Stewardship. 

 The results of The Lizard genetic analysis were also disseminated to local stakeholders 

in Purbeck, Dorset; another potential site for a CWR genetic reserve to complement 

The Lizard. Stakeholders included representatives from Natural England, The 

National Trust, Dorset County Council and The Farming and Wildlife Advisory 

Group for the southwest and all were interested in taking CWR conservation forward. 

 Spatial data depicting all 15 complementarity site boundaries across England were 

requested by NE and subsequent analysis has been carried out to map the overlap of 

existing statutory protected areas with all complementarity sites to identify the most 

appropriate designations to incorporate CWR management and monitoring. 

Less progress has been made so far in other administrations but some initial steps forward 

have been taken. Within Wales, spatial data depicting all common and rare complementarity 

sites were requested by NRW to pass on to the relevant staff for each corresponding statutory 

site in Wales. Options to disseminate the work carried out in Wales to the Welsh Government 

are being explored. In Scotland, SNH have suggested that this research should now be 
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disseminated to the Scottish Government and a wider audience within SNH to provide the 

momentum to move CWR conservation further up the agenda. 

8.3 Limitations 

Despite the key involvement of conservation organisations in this research, a lack of funding 

and resources to fully support the implementation of the recommendations made throughout 

this thesis is a significant limitation. It will be necessary to gain recognition and support at the 

governmental level to secure a nationwide and long-term commitment to improving CWR 

conservation across the UK. This process has begun as a result of this project and will 

continue to be a priority action for the UK Plant Genetic Resources Group – the scientific 

committee with responsibility for advising government on PGR issues.  

The results achieved in any gap analysis study will be highly dependent on the pool of taxa 

chosen for the analysis and the availability of CWR occurrence record data. This is reflected 

in the results of the conservation planning work carried out for the UK by Maxted et al. 

(2007) in comparison with the results presented in Chapter 4 (Fielder et al., submitted c). For 

example, the 2007 complementarity analysis demonstrated that 17 sites would be sufficient to 

contain two thirds of UK priority CWR, whereas the current study requires 27 to contain close 

to 100% of the current CWR inventory and only two sites to reach two thirds. In fact, to 

conserve 100% of 2007 priority CWR for the UK, as many as 69 sites would have been 

required. The key differences between the method used in 2007 and that used in Chapter 4 are 

the differing species lists due to different prioritisation methods and the use of lower 

resolution occurrence data (10km by 10km CWR data points) in the former; a minimum of 

2km by 2km CWR data points were used in Chapter 4. In addition, the current study involved 

devolved administration conservation organisations. Maxted et al. (2007) warn that without 
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the inclusion of CWR in the remit of conservation planning, any analysis will only have been 

an academic exercise. Though the results of the two studies differ substantially, the 

involvement of conservation agencies in deciding the methodology in the current study has 

ensured the results are supported and this has already meant that this is more than just an 

academic exercise. 

In addition, though the work carried out to enhance CWR conservation across the UK was 

supported by NE (England), NRW (Wales) and SNH (Scotland) it did not involve 

representatives from the Department of the Environment in Northern Ireland. This was 

because no staff were available to advise on the methodology and prioritisation criteria. This 

meant that a separate Northern Ireland CWR conservation project could not be undertaken, 

however CWR within Northern Ireland were included in the full UK analysis. Though no 

specific sites from Northern Ireland were identified as important in a national UK context for 

in situ conservation of CWR, it is likely that there are CWR of specific value to that 

administration that would benefit from stakeholder involvement to support the 

implementation of measures to safeguard CWR genetic diversity. 

In the genetic work carried out using AFLP markers on The Lizard a total of eight CWR taxa 

were sampled of the 93 CWR recorded on the peninsula. Due to time and financial limitations 

it was not possible to sample more taxa than this without reducing the number of samples per 

population below 20. Bonin et al. (2007) highlight that though some AFLP studies suggest 30 

individuals per population is appropriate to give reliable results (Krauss, 2000), most studies 

fall below this optimum, likely due to resource limitations. As a result, it would not have been 

appropriate to reduce the number of individual samples collected per population. Therefore, 

the taxa selected included a range of different life histories to ensure the results were a 

representative sample of wider CWR genetic diversity on The Lizard. Equally, the same 
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resource limitations prevented the sampling of more populations across the southwest or even 

extending the study to cover the whole UK. However, the results were sufficient to identify 

patterns of genetic diversity in all eight CWR and were able to demonstrate the value of CWR 

on The Lizard site in the context of the southwest of the UK.  

The limitation which undoubtedly has had the greatest impact on the work presented here 

concerns the issues experienced in the use of novel NGS sequencing techniques for improved 

targeting of CWR collection. While the use of targeted resequencing techniques, such as 

Roche’s Sequence Capture technology introduced in Chapter 7, provide a means of 

sequencing genomic regions of interest at greater depth of coverage and lower overall costs 

compared to whole genome resequencing (Metzker, 2010), this technique ultimately proved 

unsuccessful. Although the costs associated with sequencing projects are plummeting, a 

limitation remains in the requirement for sufficient expertise to successfully carry out 

technical laboratory work. The continued failure to produce results through targeted 

resequencing led to rising project costs as reagents had to be replaced to troubleshoot and 

repeat protocols. Subsequently, whole genome resequencing became the more financially 

viable and time efficient option, and has produced a dataset ready for analysis. Further 

limiting factors in the use of NGS in this project to produce the desired results included, the 

requirement of expertise in bioinformatics analysis, the provision of hardware capable of 

processing large datasets and ultimately a lack of time to overcome these obstacles. 

8.4 Wider implications – Europe and beyond 

All in situ conservation efforts ultimately must be implemented at the national level (Maxted 

et al., 2013b) and the research completed here seeks to secure CWR at this scale. The UK is a 

contracting party to the CBD, it’s GSPC and Strategic Plan, as well as the ITPGRFA (CBD, 
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1992; 2010a; 2010b; FAO, 2001) and so has a strong commitment to delivering biodiversity 

conservation that includes the protection of CWR and their genetic diversity. 

Across Europe, a concept has been presented that integrates the in situ conservation of CWR 

genetic diversity at the national level with the European/regional level (Maxted et al., 2013b). 

The concept proposes a bottom-up approach where CWR are secured at the national level and 

nationally important populations of European value are identified for inclusion in a European 

in situ conservation network. This works in tandem with a top-down approach whereby 

populations of European value, not necessarily matching national priorities, are identified and 

their protection is also established (Maxted et al., 2013b). The process undertaken in the UK 

takes the bottom-up approach and therefore will be easily integrated with a European top-

down approach when this is established. Maxted et al. (2015b) also emphasise the need for a 

global level to be added to this concept and they highlight that a consultation process and 

technical workshop entitled ‘Toward establishment of a global network for in situ 

conservation and on-farm management of PGRFA’ (FAO, 2014) was held in 2012 where this 

was discussed and encouraged. The point being that to conserve CWR diversity and maximise 

its potential use there is a need to fully integrate CWR conservation at national, regional and 

global levels. 

Though the UK is not located in areas of the world with the richest and most genetically 

diverse CWR (Vavilov, 1926), it is still home to a range of valuable CWR including relatives 

of brassica, sugar beet, barley and many forage and fodder crops. It is also an example of one 

of best-studied floras in world (Preston, 2002). The detailed study of UK CWR and their 

conservation presented in this thesis is a useful case study of how GIS and genetic diversity 

methodologies can be integrated and used in CWR conservation planning along with the 
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crucial involvement of stakeholders. It is anticipated that the basic approaches taken here can 

be effectively implemented within any country across the world. 

8.5 Future research 

1. Following on from establishing conservation of CWR taxonomic and genetic diversity 

across the UK, an assessment of climate change vulnerability of CWR will be 

essential to ensure their appropriate conservation management for long-term 

persistence. Such analysis may involve: a. taxon specific ecological niche modelling 

(Phillips et al., 2006) to define the current fundamental and realised niches 

(Hutchinson, 1957) of target CWR, b. a comparison of a taxon’s current niche with 

future climate scenario models to predict the longevity of potential genetic reserve 

sites (e.g. The Lizard Peninsula), the likely shift and extent of suitable niche 

environments available as the climate changes (Hijmans and Graham, 2006) and the 

probability that suitable conditions will remain within the boundaries of sites managed 

for CWR, and c. consideration of the taxon’s life history and range of genetic diversity 

to understand its capacity to adapt to novel environmental conditions or to migrate to 

environments matching the conditions within its current niche (Pearson, 2006). Vitt et 

al. (2010) highlight that plant species with short generation times, long-distance seed 

dispersal mechanisms and high genetic variability are more likely to adapt or migrate 

successfully as the climate changes. In contrast, species with long generation times, 

short-distance dispersal mechanisms and limited genetic diversity will have a much 

higher risk of extinction, especially in increasingly fragmented landscapes (Hannah, 

2008; Loss et al., 2011). CWR highly vulnerable to climate change in the UK, 

identified through ecological niche modelling, should be carefully managed. They 
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should clearly be sampled and representative diversity held ex situ but also in extreme 

cases where local extinction is likely, assisted migration may be considered 

appropriate (Vitt et al., 2010). However, this conservation technique is controversial, 

generating much debate (see Hewitt et al., 2011 for detailed review) and would 

require careful monitoring of translocated populations and implementation on a 

species by species basis (Loss et al., 2011). 

2. Ecogeographical land characterisation (ELC) maps are a recently developed but 

valuable tool for revealing patterns in ecogeographic variables (climatic, edaphic and 

bioclimatic) that shape the distributions of plant species across a landscape (Parra-

Quijano et al., 2008). Their use has already been demonstrated in improving the 

ecogeographic (and by proxy, genetic) diversity in genebank collections and the 

selection of appropriate locations for CWR genetic reserves (Parra-Quijano et al., 

2012b,c). Most suited to studies of individual species or groups of closely related 

species, due to the need to select ecogeographic variables that are likely to determine 

their patterns of adaptation (Parra-Quijano et al., 2012b), ELC maps were not suited to 

the approaches taken within the UK as part of the research presented in this thesis. 

This was due to the analysis including multiple, distantly related taxa and the need for 

fine resolution coastal environmental data overlapping with the coastal distributions of 

many UK CWR (Preston, 2002), which is unavailable in the existing ELC mapping 

tools (Parra-Quijano et al., 2014). However, ELC maps could provide a further insight 

into the ecogeographic representativeness of the proposed genetic reserve networks for 

selected individual CWR of particular value or those which are most threatened, to 

further validate the reserve locations. As discussed in Chapter 7, ELC maps could also 

be valuable when used in conjunction with genetic diversity data to improve the 
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targeting of collection of genebank accessions. The recent release of CAPFITOGEN 

tools make the development of ELC maps relatively simple and accessible to all users 

(Parra-Quijano et al., 2014), overcoming limitations relating to lack of appropriate 

expertise. 

3. The innate use of a CWR is within its genetic diversity. As costs of sequencing 

continue to fall it would be foolish not to take advantage of this technology to increase 

our understanding of genetic diversity to aid their conservation and the discovery of 

useful traits. McCouch (2013) suggests that all non-duplicate plant samples available 

in genebanks under the ITPGRFA should be sequenced so this information can be 

combined with passport and phenotypic data in an internationally accessible database 

to improve conservation and utilisation of CWR. The 3000 rice genomes project 

(CAAS, IRRI and BGI (2014) has successfully sequenced 3000 rice accessions 

(landraces), demonstrating that this approach is highly possible and can be applied to 

CWR genebank collections with relative ease.  

4. To complement genetic diversity studies of CWR it would also be advisable to further 

investigate the extent to which phenotypic plasticity and stress-induced recombination 

can facilitate survival of populations under changing environmental conditions. 

Species or individuals able to vary phenotypic traits may have the capacity to buffer 

the effects of environmental change, increasing their chance of survival, without the 

need to undergo genetic adaptation (Gratani, 2014). Phenotypic plasticity may 

however only be a short-term solution and genetic adaptation may ultimately be 

required for long-term species persistence (Richter et al., 2012). Chromosomal 

recombination has also been demonstrated to increase under stressful environmental 

conditions, this is particularly apparent in studies by Lebel et al. (1993) and Zhong 
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and Priest (2011), therefore increasing the capacity for genetic adaptation under 

changing environmental conditions. These are expanding areas of research that 

deserve further consideration in relation to species survival, adaptability and 

conservation planning (Forsman, 2014). 

5. Further research concerning how CWR can be actively conserved outside of protected 

areas is necessary. Incorporation of CWR into governmental schemes such as rural 

development programmes alongside long-term monitoring of CWR populations would 

enable the evaluation of the efficacy of this approach. 

8.6 Conclusion 

The United Kingdom may not hold the same range of genetic diversity in CWR as centres of 

diversity such as the Fertile Crescent in the Middle East (Vavilov, 1926; Vincent et al., 2013), 

however it is still home to a range of economically valuable taxa that are under-conserved in 

situ and under-represented in genebanks. Additionally, the UK has made international 

commitments to secure its plant genetic resources through the CBD GSPC and Strategic Plan 

and the ITPGRFA (CBD, 1992; 2010a; 2010b; FAO, 2001). 

The research presented in this thesis highlights how CWR conservation can be enhanced 

throughout the UK using a combination of GIS and genetic diversity methodologies to 

improve both in situ conservation (in genetic reserves, outside of protected areas and in 

appropriate habitats) and ex situ conservation (through more targeted collection of accessions) 

of CWR. The involvement of relevant stakeholders has proven a key success of this work and 

emphasises the value of communication between researchers, conservation organisations, 

governmental departments, germplasm users, etc., which crucially has started to bridge the 
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gap between research and practice; a fundamental principle required to achieve effective 

conservation and use of CWR. 

The approaches taken here are highly repeatable and so could be replicated within other 

countries in Europe and beyond to further enhance CWR conservation. Equally, it is 

important that a bottom-up approach is adopted where national CWR conservation efforts 

such as this, feed into European efforts that ultimately feed into global CWR conservation 

programmes. Full integration at all levels is essential to secure these genetic resources and the 

genetic diversity contained within them in all parts of their range. 

Only through a comprehensive, integrated and long-term approach to CWR conservation, and 

their use, can we take positive steps towards feeding an increasing population under evermore 

challenging climatic conditions, through the development of novel, more resilient crop 

varieties. Charles Godfray provides a timely warning that ‘if we fail on food, we fail on 

everything’ (Godfray, 2011). This emphasises the need for a significant change in the 

attitudes of society as a whole in understanding our environment, and the interactions and 

impact we have upon it. Nevertheless, in recent years we have seen the release of instrumental 

policy documents, increasing national, European and global commitments to improved CWR 

conservation, the rising profile of the value of CWR and the increasing availability and 

accessibility of tools and methodologies to facilitate CWR conservation and their use. 

Together, all of these advancements suggest that while we should not be complacent, we can 

be optimistic about the future and our food security. 
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A1.1 Abstract 

To feed the world’s human population in the face of threats such as climate change, pests and 

diseases and habitat destruction, crops will need to be bred which are more resilient and 

higher yielding. Crop wild relatives (CWR) offer a solution to this as they contain higher 

levels of genetic diversity and contain beneficial traits, which can be used in crop 

improvement. CWR however, are also threatened and are generally poorly conserved; this is 

also true within Wales. Here, appropriate conservation for CWR in Wales is outlined to 

ensure the active and long-term maintenance of populations in situ and accessions ex situ. To 

achieve this, an inventory of 122 priority Welsh CWR was developed, hotspots of CWR taxon 

diversity were identified and a network of complementary genetic reserves were proposed. 

The Gower Peninsula was identified as the most taxon rich area of Wales for both common 

and rare/scarce CWR. Extensive gaps in ex situ collections were also identified for which 

further collecting is necessary. Implementation of the recommendations made will provide 

systematic and long-term conservation of CWR in Wales and will ensure this resource is 

available for use in crop improvement. 

  



Appendix 1 Conserving Welsh CWR 

 

 251 

A1.2 Introduction 

The need to conserve crop wild relatives (CWR) and the genetic diversity within them is 

increasingly highlighted in global and European policy documents (Convention on Biological 

Diversity (CBD), Global Strategy for Plant Conservation (GSPC), Strategic Plan for 

Biodiversity (CBD, 1992; 2010a; 2010b), European Strategy for Plant Conservation (ESPC) 

(Planta Europa, 2008) and EU Biodiversity 2020 strategy (European Union, 2011)), this is 

due to their potential as a resource for tackling the issue of future food security. 

It is predicted that the human population will reach approximately nine billion people by the 

year 2050 (United Nations, 2011). This will require food production to increase significantly 

on limited land whilst confronting the increasing threats from a changing climate 

(Government Office for Science, 2011). This is compounded by the fact that crops are often 

bred for uniformity and so have limited genetic diversity, which in turn limits their capacity 

for adaptation (Jain, 1988). Meeting this challenge will require the development of crops 

which produce higher yields and are also much more resilient to biotic and abiotic stresses. 

CWR are wild plants related to socio-economic crops (Maxted et al., 2006). Having never 

been through the process of domestication they are likely to contain much higher levels of 

genetic diversity, and therefore novel traits, in comparison with crops themselves (Hopkins 

and Maxted, 2011). The use of these novel traits in plant breeding would take positive steps 

towards meeting the food security challenge. CWR however, are themselves threatened. Like 

all wild plants, they are likely to be susceptible to drivers of change, most notably: habitat 

degradation and loss, novel pests and diseases and climate change (Maxted and Kell, 2009). 

Until recently, little was being done to conserve CWR either in situ or ex situ (Maxted, 2003; 

Maxted et al., 2008c; Dias et al., 2012) but with recent policy developments their 
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conservation is being placed higher and higher on international, regional and national 

agendas. 

In response to policy, many conservation strategies have now been developed in a range of 

different countries worldwide (Finland: Fitzgerald, 2013; Spain: Rubio Teso et al., 2013; 

Cyprus: Phillips et al., 2014; Italy: Panella et al., 2014; Czech Republic: Taylor et al., in prep; 

for Vigna in Africa: Maxted et al., 2004; Phaseolus in the Americas: Ramírez-Villegas et al., 

2010 and for wild soybean in Australia: Gonzalez-Orozco et al., 2012). These national 

strategies identify CWR taxa that are a priority for conservation (listed in a CWR inventory, 

Maxted et al., 2013a), and they then work to identify gaps in current CWR conservation using 

a complementary in situ and ex situ approach (Maxted et al., 2008a). This in turn enables the 

development of an overall strategy, which outlines recommendations for management of 

priority CWR for active and long-term conservation and use. 

CWR conservation planning is now also being developed within the UK. Conservation is 

managed separately in each of the devolved administrations in the UK and as a result it was 

deemed most appropriate to carry out separate assessments of current CWR conservation for 

England (Fielder et al., 2015), Scotland (Fielder et al., submitted b) and Wales. This 

facilitates working directly with conservation organisations in each country to ensure there is 

support for the strategy and any recommendations made. 

In Wales, conservation is based around the framework of the Environment Strategy for Wales 

(Welsh Assembly Government, 2006). The strategy sets out 39 outcomes, focussing on issues 

such as mitigation of climate change, sustainable use of resources and maintaining 

biodiversity, which it hopes to have achieved by 2026. Outcome 19 states that by 2026 ‘the 

loss of biodiversity [will have] been halted and we [will be able to] see a definite recovery in 
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the number, range and genetic diversity of the species’. In the absence of outcomes 

specifically addressing agricultural genetic diversity, CWR conservation should fall under the 

umbrella of outcome 19, which highlights the need to halt loss of genetic diversity. However, 

in a recent review of the strategy’s progress (Welsh Assembly Government, 2011) it was 

acknowledged that this outcome has not yet been achieved and it is apparent that CWR are 

not yet actively conserved in Wales. 

Over the next few decades, the UK Climate Change Impact Programme (UKCIP) predicts that 

Wales is likely to experience increasing annual mean temperatures (increasing by 2–2.5˚C by 

2050), hotter, dryer summers and more winter rainfall (UKCP09, 2009; Welsh Assembly 

Government, 2010). These changes in Wales are likely to lead to increased incidences of 

flooding as well as periods of drought in the summer, habitat and species losses and increased 

risks from new pests and diseases (UKCP09, 2009). Although the impacts of climate change 

are likely to be more severe in other regions of the world (Welsh Assembly Government, 

2010), the impacts projected for Wales provide a strong argument for establishing active 

CWR conservation to secure this vital source of genetic variation for crop improvement to 

maintain and increase food production and its resilience. 

There are a number of organisations working to achieve active plant conservation in Wales. 

Plant Link Cymru (PLINC) acts as a forum for these organisations to communicate and 

collaborate (Plantlife, 2014). One particular focus of PLINC is to regularly review progress 

towards achieving the GSPC targets (CBD, 2010a). Target nine of the GSPC states that ‘70 

per cent of the genetic diversity of crops including their wild relatives and other socio-

economically valuable plant species [will be] conserved’ by 2020. So far in Wales, however, 

genetic diversity conservation has been focused on landraces, and conservation of CWR 
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genetic diversity has not yet been addressed in a systematic manner across the country 

(Plantlife, 2012).  

The aim of the current study was to assess the current state of Welsh CWR conservation 

through the identification of priority CWR and gaps in their current conservation, both in situ 

and ex situ. Based on these results recommendations were then made, suggesting positive 

steps to be taken in Wales to establish systematic and active CWR conservation that will 

preserve their genetic diversity and ensure this resource is available in the long-term for use in 

crop improvement. 

A1.3 Materials and methods 

A1.3.1 CWR checklist and inventory 

A checklist of the Welsh flora was extracted from the Vice County Census Catalogue 

(VCCC) (Stace et al., 2003) and a checklist of all UK CWR was extracted from the Crop 

Wild Relative Information System (CWRIS) (Kell et al., 2005). These two lists were matched 

against one another to produce a final checklist of all CWR occurring within Wales. The 

taxonomy of the checklist was then harmonised with the British Flora (Stace et al., 1997). The 

final list contains 1,251 CWR taxa (see Supplementary Table A1.1a). 

To prioritise the checklist, five criteria were selected through a process of consultation with 

Natural Resources Wales (NRW). This ensured that the resulting CWR inventory would 

contain taxa relevant to current conservation priorities in Wales. The five criteria are listed 

below: 

1. Use of the related crop – Using GRIN Taxonomy for Plants (USDA, ARS, National 

Genetic Resources Program, 2015), the uses of crops related to Welsh CWR were 
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identified. Wild relatives associated with crops grown for human food or animal 

forage and fodder were prioritised. Trees grown in the forestry industry were also 

identified using GRIN Taxonomy and their associated wild taxa were also prioritised.  

2. Native status – Native and archaeophyte taxa in Wales were prioritised based on 

native status data from the VCCC (Stace et al., 2003). 

3. Economic value of the related crop – The economic value of human food crops was 

determined using agricultural statistics, taken as a five year mean, extracted from 

FAOSTAT (2013) between 2007 and 2011, Eurostat (2013) between 2007 and 2011 

and Defra (2010) between 2006 and 2010. These were crop production quantity data 

(million tonnes) at the global, European and UK levels, crop production value at 

producer price data (millions of euros) and crop production at market prices data (£ 

million) at the UK level respectively. The wild relatives of all crops listed in these 

statistics were prioritised. As was also found by Kell et al. (2012), comparable 

statistics for forage and fodder crops were not available. Economic values of forestry 

taxa were extracted from the National Inventory of Woodland and Trees – Wales 

(NIWT, 2002). Native tree species listed in NIWT (2002) were prioritised. 

4. Degree of relatedness to the crop – Using the Gene Pool (GP) and Taxon Group (TG) 

concepts (Harlan and de Wet, 1971; Maxted et al., 2006). CWR in GP1b are easily 

crossable with their related crop, CWR in GP2 are crossable but with lower success 

rates and CWR in GP3 require advanced techniques to facilitate crosses between 

CWR and their associated crop. Where GP classifications for CWR are lacking the TG 

concept is used. CWR in TG1b are most closely related to their associated crop 

(within the same species), CWR in TG2 are in the same taxonomic section as the crop, 
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TG3 indicates the same subgenus and TG4 indicates the same genus. Data for food 

and forage/fodder crops were extracted from the Harlan and de Wet inventory of 

globally important CWR (Vincent et al., 2013). CWR within GP1b and 2 and Taxon 

Groups 1b, 2 and 3 of their related crops were prioritised. Taxa for which taxonomic 

classifications below genus level were unavailable were assigned to TG4. In addition, 

taxa in GP1a or TG1a were not prioritised as they are recognised as being cultivated 

taxa, which have no wild populations in Wales. Where CWR were associated with 

more than one crop gene pool, the highest GP/TG classification was used as the basis 

for prioritisation. Forestry taxa were not prioritised using this criterion as they are 

commercially grown rather than having been through a domestication process and so 

do not have wild relatives. 

5. Threat Assessment – Data were extracted at the global, regional and national levels 

from the IUCN Red List of Threatened Species (IUCN, 2012), European Red List of 

Vascular Plants (Bilz et al., 2011) and the Vascular Plant Red Data List for Great 

Britain (Cheffings and Farrell, 2005). Any taxa categorised as Critically Endangered, 

Endangered, Vulnerable or Near Threatened in any of the three assessments were 

prioritised. Data were also extracted from the Vascular Plant Red Data List for Wales 

(Dines, 2008) and all threatened taxa identified. 

A1.3.2 In situ gap analysis 

Occurrence data for all priority Welsh CWR were obtained from five separate sources: the 

BSBI distribution database (BSBI, 2013) and the four Welsh local record centres (South East 

Wales Biodiversity Records Centre (SEWBReC), West Wales Biodiversity Information 

Centre (WWBIC), Biodiversity Information Service for Powys and Brecon Beacons National 
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Park (BIS) and North Wales Environmental Information Service (Cofnod)). Data were then 

collated and checked to ensure all records were unique. 

NRW were then consulted as to how this raw data should be filtered to develop a final dataset 

containing reliable occurrence records. Records without sufficient passport data to determine 

location were removed from the dataset (i.e. those lacking coordinates and a location 

description). Records with a precision equal to or lower than 2km
2
 (tetrad) were also removed 

from the dataset. Only records listed as having been ‘confirmed’ were selected for the 

analysis. Only records made from 1970 onwards were considered recent enough to be able to 

assume the record was still valid. Finally, it was suggested by NRW that two separate in situ 

gap analyses for Welsh CWR should be carried out, one for common CWR (occurring in 

greater than 100 hectads across Great Britain) and another for rare/scarce CWR (occurring in 

100 or fewer hectads across Great Britain) based on categories used in the production of Rare 

Plant Registers (JNCC, 2014). 

Two Geographical Information System (GIS) software packages, DIVA-GIS 7.5.0 (Hijmans 

et al., 2012) and ArcMap 10.0 (ESRI, 2011), were used to carry out the in situ gap analyses 

for common and rare/scarce Welsh CWR. The country boundary file for the UK was 

downloaded from DIVA-GIS (www.diva-gis.org) and the Welsh boundary extracted. 

Methods described in Scheldeman and van Zonneveld (2010) and Hijmans et al. (2012) were 

followed in order to carry out the four in situ techniques listed below: 

 Taxon and observation richness – allowing identification of taxon hotspots and 

regions of recording bias. This was carried out twice, once for common CWR and 

once for rare/scarce CWR. Both richness measures were obtained using the ‘point to 

grid’ function in DIVA-GIS with a grid cell size of 0.05 degrees. 

http://www.diva-gis.org/
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 Comparison of occurrence data with protected areas – a measure of in situ passive 

conservation of CWR was made through the use of spatial join tools in ArcMap 10.0. 

Boundary shape files for statutory protected areas were obtained from the Countryside 

Council for Wales website (www.ccgc.gov.uk). 

 Complementarity analysis – two separate complementarity analyses were carried out 

for common and rare/scarce CWR with an aim to identify complementary sites across 

Wales, which could be appropriate for establishing CWR genetic reserves. This 

method follows that proposed by Rebelo (1994), using an iterative method of grid cell 

selection to select a network of sites containing as many different taxa in as few grid 

cells as possible. A grid cell size of 0.05 was used. 

 Minimum five populations – results of the complementarity analyses were further 

explored to identify which taxa were represented in five or more grid cells. Active in 

situ conservation of at least five populations from a range of geographic locations is a 

minimum requirement as it increases the chances of a taxon’s survival in the event of 

stochastic and/or anthropogenic change (Brown and Briggs, 1991; Dulloo et al., 

2008). 

A1.3.3 Ex situ gap analysis 

The UK National Plant Inventory (UKNPI, 2013) and the Millennium Seed Bank, Kew 

provided ex situ accession data relating to all Welsh priority CWR taxa. This was used as the 

basis of the ex situ gap analysis. Data from both sources were combined and filtered to ensure 

only accurately georeferenced records were included. The final dataset was used to carry out 

the following: 

http://www.ccgc.gov.uk/
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 The numbers of ex situ accessions per priority CWR originating from within Wales 

were identified. As a back up of the five populations recommended to be conserved in 

situ, a threshold of five accessions was also set. Priority CWR with five or more 

accessions are considered sufficiently conserved ex situ. Accessions below this 

threshold will require further collecting. 

 Taxa with accessions collected from within Wales underwent an analysis of 

geographical representativeness, where geographic coverage of accessions was 

compared with geographical coverage of occurrence records. This produced a 

geographical representativeness score (GRS) for each taxon, using the ‘circular area 

statistic’ as described by (Ramírez-Villegas et al., 2010). Taxa for which GRS values 

were lower than the threshold of 30% were considered in need of further collecting 

(Ramírez-Villegas et al., 2010; Phillips et al., 2014). 

 These two results were combined to classify each priority CWR into one of the levels 

in Table A1.1, each of which corresponds to the urgency for further collecting. 
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Table A1.1 Ex situ priority levels and recommended actions required to ensure gaps in ex situ 

collections are sufficiently filled (Source: Fielder et al., submitted b). 

Priority 

Level 

Criteria Action required 

1 No accessions Highest priority for collection; Ensure 

minimum of five accessions are collected 

representing the full range of the CWR 

2 Has accessions but none are 

georeferenced or the location data is 

restricted 

High priority for collection; Georeference 

existing accessions; Further collection of 

accessions which are representative of 

CWR range required 

3 Fewer than five accessions and GRS 

lower than 30% 

Increase accessions to a minimum of 

five; ensure representative of range 

4 Fewer than five accessions but GRS 

greater than 30% 

Increase accessions to a minimum of 

five; confirm that current stored 

accessions are representative of CWR 

range 

5 Greater than or equal to five 

accessions but GRS lower than 30% 

Improve geographic representativeness of 

accessions through further targeted 

collection 

6 Greater than or equal to five 

accessions and GRS greater than 

30% 

Sufficiently represented in ex situ 

collections 

 

A1.4 Results 

A1.4.1 CWR inventory 

The Welsh national inventory of priority CWR contains 122 taxa (105 species and 17 

subspecies, see Table A1.2 for a summary of results and Supplementary Table A1.1b or the 

Plant Genetic Resources Diversity Gateway, http://pgrdiversity.bioversityinternational.org, 

for the full inventory). Of these 122 taxa, 24 (19.7%) are recorded as being rare or scarce due 

to their occurrence in fewer than 100 hectads across Great Britain. Approximately two thirds 

(80 taxa) of the inventory are related to crops used for the production of human food. The 

remaining third consists of CWR related to forage/fodder crops and forestry species (23 and 

19 taxa respectively). Of the 20 families represented in the inventory, Poaceae, Brassicaceae 

http://pgrdiversity.bioversityinternational.org/
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and Rosaceae contain the most genera with 16, 6 and 6 respectively. The three genera with the 

highest taxon richness are Trifolium (clovers, 11 taxa), Vicia (vetches, 10 taxa) and 

Chenopodium (goosefoots, 8 taxa). 

Table A1.2 Summary of inventory of 122 priority CWR in Wales. 

A = Archaeophyte, N = Native. 

 

Thirty-four food crops with native or archaeophyte CWR in Wales are of economic value 

according to agricultural statistics. At the global scale, mean production quantities of crops 

(between 2007 and 2011) with wild relatives in Wales were identified (FAOSTAT, 2013). 

Sugar beet was shown to have the highest production quantity of 239.6 million tonnes. Other 

crops with high production quantities included barley, onions and apples (Fig. A1.1). Mean 

production values at producer prices at the European scale (Eurostat, 2013) illustrated that 

Family No. of genera No. of species No. of infra-specific 

taxa 

Native status 

Aceraceae 1 1  N 

Apiaceae 3 1 4 N 

Asteraceae 2 2  A 

Betulaceae 1 1 2 N 

Brassicaceae 6 6 4 A & N 

Chenopodiaceae 2 8 1 A & N 

Corylaceae 1 1  N 

Ericaceae 1 3  N 

Fabaceae 5 24 2 A & N 

Fagaceae 2 3  N 

Geraniaceae 1 1  N 

Grossulariaceae 1 1  N 

Liliaceae 2 7  A & N 

Linaceae 1 2  N 

Oleaceae 1 1  N 

Plantaginaceae 1 1  N 

Poaceae 16 22 1 A & N 

Rosaceae 6 16 2 A & N 

Salicaceae 1 1 1 N 

Ulmaceae 1 3  N 

Totals 55 105 17  
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barley had the highest economic value (8,520 million Euros) with rapeseed, apples and sugar 

beet also showing high values (above 3,000 million Euros). Mean value of production 

statistics (at market prices) extracted from Defra (2010) support these results, indicating 

barley and rapeseed have the highest values in England. Economically valuable forestry 

species (listed in the NIWT, 2002) included oak, ash, birch and beech trees. The 76 taxa 

related to these 34 crops and trees of economic value were listed within the Welsh inventory 

of priority CWR. 

 

Figure A1.1 Global mean production quantity (million tonnes) between 2007 and 2011 for 

socio-economic crops with native or archaeophyte CWR occurring within Wales (Data 

source: FAOSTAT, 2013). 
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Only 25% of priority Welsh CWR were classified using the Gene Pool concept, with 18% 

falling within GP 1b, 3% in GP 2 and 4% in GP 3 (Fig. A1.2). This suggests only a quarter of 

CWR in Wales have undergone crossing experiments to determine the closeness of their 

genetic relationship to their associated crop/s. Fifty-nine percent of taxa were assigned a 

Taxon Group (classification of relatedness to a crop based on taxonomic hierarchy in the 

absence of genetic crossing experiments), with the majority falling within TG1b. The 19 

forestry species do not have Gene Pool or Taxon Group classifications because cultivated 

trees tend to be selected ecotypes from wild populations (Hunter and Heywood, 2011) rather 

than wild species that have undergone generations of change through domestication. 

 

 

Figure A1.2 Percentage of taxa classified in Gene Pools 1b to 3 (GP1 to 3), Taxon Groups 1b 

to 4 (TG1b to 4) and taxa with no classification in the Welsh national inventory of priority 

CWR, showing the degree of relatedness of CWR to their associated crops. 
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Of the 122 priority CWR taxa in the Welsh inventory, 14.8% (18 taxa) are threatened 

according to the Vascular Plant Red Data List for Great Britain (Cheffings and Farrell, 2005) 

and the Vascular Red Data List for Wales (Dines, 2008). Taxa classified as Vulnerable, 

Endangered or Critically Endangered in either the Welsh or British red lists are listed in Table 

A1.3. Ley’s whitebeam Sorbus leyana Wilmott is the only taxon to be listed as Critically 

Endangered in both the Welsh and British red lists. Other Critically Endangered taxa include 

wild asparagus Asparagus prostratus Dumort., true service-tree Sorbus domestica L., round-

leaved whitebeam Sorbus eminens E.F. Warb. and upright clover Trifolium strictum L. A total 

of nine CWR taxa were found to have a higher threat classification in Wales than Britain as a 

whole and seven CWR taxa had a lower threat classification in Wales. 

Table A1.3 Threatened taxa listed in the Welsh CWR inventory. 

LC = Least Concern, NT = Near Threatened, VU = Vulnerable, EN = Endangered, CR = 

Critically Endangered (Data Source: Cheffings and Farrell, 2005; Dines, 2008).  

Taxon Great Britain Red List Wales Red List 

Sorbus leyana Wilmott CR CR 

Sorbus domestica L. CR EN 

Asparagus prostratus Dumort. EN CR 

Sorbus eminens E.F. Warb. EN CR 

Trifolium strictum L. VU CR 

Sorbus leptophylla E.F. Warb. EN EN 

Vicia bithynica (L.) L. VU EN 

Chenopodium murale L. VU EN 

Allium oleraceum L. VU VU 

Chenopodium glaucum L. VU VU 

Sorbus minima (Ley) Hedl. VU VU 

Bromus secalinus L. VU NT 

Lathyrus palustris L. NT VU 

Hordeum marinum Huds. VU LC 

Poa glauca Vahl VU LC 

Chenopodium bonus-henricus L. VU LC 

Allium ampeloprasum L. LC VU 

Sinapis arvensis L. LC VU 
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A1.4.2 In situ gap analysis 

Two separate in situ gap analyses were carried out for priority CWR identified in the Welsh 

national inventory. The first contained the 98 taxa classified as common throughout Great 

Britain and the second contained the 24 taxa classified as rare or scarce. No records of high 

enough quality existed for the two subspecies eastern parsnip Pastinaca sativa L. subsp. urens 

(Req. ex Godr.) Čelak. or wild parsnip P. sativa subsp. sylvestris (Mill.) Rouy & E. G. Camus 

and so they were not able to be included in the analysis. Both subspecies were classified as 

rare/scarce, leaving a total of 22 taxa in the rare/scarce in situ gap analysis. A total of 191,664 

occurrence records were included in the analysis (190,771 occurrence records for common 

CWR and 893 occurrence records for rare and scarce CWR). 

Taxon richness analysis of the 98 common CWR reveals hotspots along the south coast of 

Wales (particularly the Gower peninsula, areas surrounding Cardiff and the lower Wye 

Valley), north Wales (the northern reaches of Denbighshire and Flintshire) and a number of 

small localities along the west coast in the county of Ceredigion between Aberystwyth and 

Cardigan (Fig. A1.3a). In comparison with the number of observations made across Wales, 

higher recording effort is apparent in two grid squares around the Cardiff area and in one grid 

square around Chepstow (in the Wye Valley) in comparison with the rest of the country (Fig. 

A1.3b). The presence of the National Museum Wales in Cardiff may account for the higher 

numbers of observations in those specific grid squares. 
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Figure A1.3 Richness analysis for the 98 common taxa with occurrence data points in the Welsh national CWR inventory using a grid 

square size of 0.05 degrees. a) Taxon richness and b) Observation richness. 
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Taxon richness analysis of the 22 rare and scarce CWR also reveals the Gower Peninsula as a 

key hotspot (Fig. A1.4a). In addition, a site in the south east of the county of Powys (Brecon 

Beacons) and coastal areas surrounding Newport in the south of Wales are also highlighted as 

hotspots, the former having a high number of Sorbus species. The grid square with the highest 

number of records is located in the Brecon Beacons, south Powys (Fig. A1.4b), which 

overlaps with the taxon hotspot in Fig. A1.4a. One grid square covering Flat Holm Island, 

part of the county of Cardiff, has the second highest number of occurrence records (Fig. 

A1.4b). 
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Figure A1.4 Richness analysis for the 22 rare taxa with occurrence data points in the Welsh national CWR inventory using a grid square 

size of 0.05 degrees. a) Taxon richness and b) Observation richness. 
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Analysis of the location of occurrence records reveals that over one third (37.65%) of all 

common, rare and scarce occurrence records fall within statutory Welsh protected areas. All 

common taxa, except for one, have at least two records within protected areas. Wall barley 

Hordeum murinum L. subsp. murinum is the exception with only three records, none of which 

fall within a protected area (one is located on the west coast, south of Aberystwyth and the 

remaining two are close to the Severn bridge in the south east of Wales). However, further 

records for this taxon recorded to species level exist but were not included in the analysis due 

to uncertainty over which subspecies they belonged to. It was found that all rare/scarce CWR 

have at least one occurrence record within protected areas. Interestingly, six rare/scarce taxa 

have no records outside of a protected area (wild asparagus A. prostratus, glaucous meadow-

grass Poa glauca Vahl, white mustard Sinapis alba L. subsp. alba, thin-leaved whitebeam S. 

leptophylla E.F. Warb, Ley’s whitebeam S. leyana, lesser whitebeam S. minima (Ley) Hedl.). 

The complementarity analysis carried out for common CWR showed that a total of nine grid 

squares would be sufficient to contain all 98 common taxa (Fig. A1.5a). The highest priority 

grid square is located in the county of Cardiff with 79 taxa being recorded at this site. 

However, there are a particularly high number of occurrence records taken in this location so 

it is possible that the results are biased to some degree toward this grid square (Fig. A1.3b), it 

was treated with discretion as a result and will require ground-truthing. Grid squares two, 

three and four collectively contain 87.76% of all common priority CWR and so are 

considered the highest priority. Grid square two is located on the Gower Peninsula with a total 

of 77 CWR taxa. A further 49 taxa are within grid square three, located in north Ceredigion, 

seven of which are not found in square two. A total of thirty-three taxa are then contained 

within grid square four in west Powys, two of which are not present in grid squares two and 

three.
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Figure A1.5 Complementarity analyses for a) 98 common Welsh priority CWR showing the locations of all nine priority grid 

squares/candidate sites for CWR genetic reserves and b) 22 rare and scarce Welsh priority CWR showing the locations of all 11 priority 

grid squares/candidate sites for CWR genetic reserves. 
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The complementarity analysis carried out for rare CWR taxa showed that a total of 11 grid 

squares would be sufficient to contain all 22 rare and scarce taxa included in the gap analysis 

(Fig. A1.5b). The top three priority sites each contain four taxa and there is no overlap 

between them (i.e. the four taxa recorded in square one are different to those in square two 

etc.). These three sites are located in southeast Powys, the Gower Peninsula and in coastal 

areas by Newport in south Wales respectively. Though the top priority site is potentially 

associated with recording bias (Fig. A1.4b), this is likely to be because all four taxa are 

Sorbus species, the majority of which are threatened (Table A1.3). Only two grid squares 

were common to both analyses. These were the sites on the Gower Peninsula and in west 

Powys. In addition, it was found that only 37.8% of common taxa were found in five or more 

grid squares. Of the rare taxa, only one was located in more than one grid square and this was 

sea clover Trifolium squamosum L. though it was still only in a total of two squares. 

A1.4.3 Ex situ gap analysis 

A total of 238 accessions collected from within Wales were found to exist in UK genebanks. 

Of the 122 priority Welsh CWR it was found that only 29 taxa had any stored accessions, 

leaving 93 taxa without any ex situ material collected from within Wales and therefore 

classified as priority level 1 (Supplementary Table A1.2). Furthermore, it was found that over 

half of these accessions (52.1%) were of perennial rye grass Lolium perenne L., with cock’s 

foot Dactylis glomerata L. having the next highest number of accessions (17). A total of nine 

taxa had five or more separate stored accessions, only two of which are considered rare or 

scarce (wild asparagus A. prostratus and thin-leaved whitebeam S. leptophylla.) GRS results 

indicate that ex situ collections for only four taxa have a geographical representativeness 

value above the recommended threshold of 30% and all of these are classified as rare or 

scarce (round-leaved whitebeam S. eminens, thin-leaved whitebeam S. leptophylla, upright 
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clover T. strictum and Bithynian vetch Vicia bithynica (L.) L.). Combining these results, only 

thin-leaved whitebeam S. leptophylla is classified as sufficiently represented in ex situ 

collections (priority level 6), seven CWR belong to priority level 5 with five or more 

accessions but a GRS below 30%. The remaining CWR have fewer than five accessions, 

except for wild asparagus A. prostratus that has five but is in priority level 2 due to the 

geographical location of those accessions being restricted. Overall, it can be seen that very 

few taxa have ex situ collections that are representative of their in situ distribution and the 

majority require further collection efforts. See Supplementary Table A1.2 for a full list of the 

number of accessions stored per priority Welsh taxon, GRS values and their priority levels for 

further collecting. 

A1.5 Discussion 

A1.5.1 Prioritisation to create a CWR inventory 

The selection of appropriate criteria for prioritisation to produce an inventory is application 

specific. This is reiterated in the assessment of England CWR conservation where Fielder et 

al. (2015) stress the importance of involving relevant stakeholders in this development 

process to ensure national support for any conservation recommendations made as well as 

ensuring that international targets are also considered. The Welsh priority CWR inventory 

was developed with input from NRW to achieve this. 

Though there are similarities between the Welsh inventory of priority CWR and the English 

equivalent (Fielder et al., 2015), including the consultation with conservation organisations 

and the use criteria such as economic value and degree of relatedness to a crop, there are also 

some key differences. The Welsh inventory has fewer priority CWR taxa than the English 

inventory (122 and 148 taxa respectively), despite the Welsh inventory not only including 



Appendix 1 Conserving Welsh CWR 

 

 273 

CWR related to food and forage/fodder crops but also forestry taxa as well. This is likely to 

be due to Wales having a smaller total flora, which was reflected in the total number of CWR 

identified in Wales and listed in the CWR checklist (1,251 in Wales and 1,471 in England). 

The decision to include forestry taxa in the Welsh inventory was taken early on through 

discussion with NRW. It was considered necessary to include trees due to their increasing 

threat from pest and diseases such as the recent Chalara ash dieback outbreak (Forestry 

Commission, 2014) and also due to their economic importance for timber production (NRW, 

2014). The English inventory does not include forestry taxa, however Fielder et al. (2015) 

highlight that future work should also consider conservation of other categories of CWR 

including forestry species, medicinal plants, plants with industrial application etc. 

Red list threat assessments were used in the prioritisation process to create the Welsh CWR 

inventory (Cheffings and Farrell, 2005; Dine, 2008; Bilz et al., 2011; IUCN, 2012). IUCN red 

list data has been widely used as a criterion in many conservation strategies as it provides a 

thorough analysis of multiple aspects of threat e.g. population size and geographic range 

(Venezuela: Berlingeri and Crespo, 2012; Benin: Idohou et al., 2012; Finland: Fitzgerald, 

2013; Spain: Rubio Teso et al., 2013; Italy: Panella et al., 2014). Red lists, however, do not 

yet consider how these threats impact the genetic diversity within species. In the case of 

CWR, threat to genetic diversity should be a major consideration as it is the diversity within 

species that is the key to developing improved crop varieties. 

A1.5.2 In situ gap analysis 

To carry out the in situ gap analysis of priority CWR, NRW advised that common CWR 

should be analysed separately from rare/scarce CWR. This was to ensure that the analysis was 

more transparent, creating a clearer picture of conservation priorities for each of these groups. 
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This is an idea that is supported by Hopkins and Maxted (2011) who suggest that not only 

should rare taxa be targeted for systematic conservation but that common taxa may prove to 

contain areas of rich genetic diversity due to their abundance and geographic partitioning. For 

common CWR, specific and targeted areas within a taxon’s range should be a priority for 

conservation whereas for rare/scarce taxa it will be more appropriate to conserve their whole 

range. There is an added value in carrying out these two analyses separately rather than 

combining all species into the same gap analysis, this is because sites identified as important 

both for common and rare species can be further prioritised over sites that may only contain 

common species. 

The inclusion of occurrence data from all four Welsh Local Record Centres (LRC) in addition 

to the data obtained from the BSBI distribution database (BSBI, 2013), greatly improved the 

robustness of the in situ analysis. Similar volumes of data were obtained from each LRC, 

ensuring that each region within Wales was well represented. Only two areas appeared to 

have fewer occurrence records and these were locations within Pembrokeshire in the 

southwest and Denbighshire in the northeast, however it is thought that this may not be due to 

a lack of records but a lack of records at the resolution of tetrad (2km
2
) or better, or that 

county recorders hold more data but that not all of it is yet available through LRCs and the 

BSBI distribution database. 

Taxon hotspot analyses revealed the south of Wales to be richer in CWR than the north. This 

is a pattern reflected in the English gap analysis and also in an analysis of CWR locations in 

the UK Countryside Survey (Fielder et al., 2015; Jarvis et al., in press). However, even in 

areas with high concentrations of CWR, few examples of their active conservation exist 

within Wales. The Welsh Rare Plants Project, run jointly between the National Museum 

Wales and the National Botanic Garden of Wales seeks to actively conserve approximately 20 
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rare plants, four of which are CWR (National Botanic Garden of Wales, 2014). As a result, 

some active conservation does exist for wild asparagus A. prostratus, thin-leaved whitebeam 

S. leptophylla, Ley’s whitebeam S. leyana and lesser whitebeam S. minima (Kay and John, 

1995, Rich et al., 2005; King et al., 2007) but there are no examples of systematic and multi-

species approaches to CWR conservation across the country. 

The complementarity analysis is the first stage in identifying appropriate broad-scale 

locations for implementing CWR conservation, with the aim of forming a network of 

complementary genetic reserves (Fitzgerald, 2013). In Wales, locations were identified for 

both common and rare/scarce taxa separately with only two grid cells showing overlap 

between the two analyses (Gower Peninsula and west Powys). With remote analyses such as 

the GIS methods used in the current study, it is very important to ground-truth the results to 

ensure the plants in question are in the locations indicated by the analysis (Fitzgerald, 2013). 

In the case of Wales, it is likely that more taxa will be present in each grid square than 

indicated in the analysis, particularly in grid cells containing rare taxa where it is likely that 

the common taxa will also be present. 

Similarly to England, the majority of CWR occurrence records in Wales were located outside 

protected areas (Fielder et al., 2015). Though a network of genetic reserves across the country 

would make significant progress towards active and systematic conservation of CWR it would 

not, on its own, be sufficient to ensure the full range of priority CWR are suitably conserved. 

Many CWR are considered weedy taxa, which are often associated with disturbed, early-

successional habitats (Maxted and Kell, 2009) and so would usually fall outside the 

boundaries of a typical protected area; these habitat preferences are further supported by 

Jarvis et al. (in press), who found that CWR across the UK are often associated with linear 

landscape features, including field margins and road verges. As such, active conservation and 



Appendix 1 Conserving Welsh CWR 

 

 276 

management of CWR outside of protected areas should be encouraged perhaps through 

provision of incentives for stakeholders and landowners. 

A1.5.3 Ex situ gap analysis 

CWR in Europe are poorly represented in genebanks (Dias et al., 2012). Analysis of ex situ 

accessions of priority CWR has revealed a similar picture in Wales. Less than a quarter of 

Welsh priority CWR have any stored accessions whereas in England, this figure stands at just 

over 50% (Fielder et al., 2015). It is likely that plant collection efforts have so far focussed on 

collecting one or two accessions from across the UK as a whole, rather than ensuring the 

conservation of the range of genetic diversity within each devolved administration. Now that 

these gaps have been identified in Wales it is possible for a more targeted and systematic 

approach to be taken in collecting accessions. This will also help towards reducing the bias 

towards accessions of perennial rye grass L. perenne in current collections. 

GRS analysis revealed further gaps in ex situ collections. Many CWR are lacking accessions 

but very few of those with accessions have their full geographic range represented ex situ. 

Only four taxa had a GRS score above 30% (the recommended threshold for geographic 

representativeness (Ramírez-Villegas et al., 2010; Phillips et al., 2014). These four CWR are 

all listed as either Critically Endangered or Endangered in the Vascular Plant Red Data List 

for Wales (Dines, 2008). This finding is likely to be due to their highly restricted geographical 

ranges, which will mean that one accession would already represent a large proportion of their 

total distribution in the wild. Though this makes it difficult to make strong conclusions from 

the GRS analysis, it does give a broad picture of the representativeness of ex situ collections. 

A more robust method for analysing the representativeness of ex situ collections would be to 

use genetic data. Though such techniques are more expensive and time consuming than the 
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approach taken in Wales, they are becoming increasingly affordable and will in time become 

a viable option for analyses such as these. Until this becomes routinely affordable it is 

possible to consider ecogeography as a proxy for genetic diversity, using climatic, edaphic 

and geophysical variables to define unique ‘adaptive scenarios’ across a geographic region 

(Parra-Quijano et al., 2014). This approach is best suited to analysis of a specific taxon or 

group of related taxa (Parra-Quijano et al., 2014) and so was not appropriate for the current 

analysis of 122 CWR. Within more fine-scale analyses this would be a valuable technique. 

A1.5.4 Recommendations for enhancing CWR conservation in Wales 

 The Welsh inventory of priority CWR should be reviewed and updated at regular 

intervals (e.g. once every 10 years). This will allow conservation organisations to 

continue to tailor the list of priority CWR in the face of climate change and changing 

national and international priorities. The process of reviewing and updating the 

inventory should always include conservation organisations and stakeholders such as 

NRW to ensure active conservation of CWR is maintained. 

 The data available for prioritisation should be continuously improved. For example, 

there is a need for economic value data for forage and fodder crops, more data on crop 

gene pool concepts for a broader range of taxa and a method to assess threats to 

genetic diversity. 

 A network of complementary genetic reserves conserving the ranges of taxonomic and 

genetic diversity within CWR should be established. Steps should be taken to 

investigate the suitability of the Gower Peninsula as the first CWR genetic reserve in 

Wales, it having the highest number of both common and rare/scarce CWR. The 

remaining locations for both common and rare CWR should then also be investigated 
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and ground-truthed. All CWR genetic reserves should be established in a manner that 

meets the required standards (Iriondo et al., 2012). 

 Active conservation of CWR outside of protected areas should be encouraged. A 

dialogue between organisations (e.g. Welsh government, NRW) and landowners will 

be necessary, along with appropriate incentives. A link could be made between CWR 

conservation and the Wales Rural Development Programme 2014–2020 (Welsh 

Government, 2014). 

 Genetic diversity studies should be carried out for priority CWR to determine the level 

and partitioning of genetic diversity in these taxa across Wales. In this way, a more 

informed selection of sites suitable for genetic reserves and for management outside of 

protected areas could be made. Where this is not possible, ecogeographic analyses 

could be carried out (Parra-Quijano et al., 2012b).  

 A minimum of five populations per priority CWR should be conserved in situ (Brown 

and Briggs, 1991; Dulloo et al., 2008). For taxa whose range is too limited to achieve 

this, an effort to ensure conservation of the maximum range of genetic diversity is 

advised. This threshold should be adjusted appropriately according to the life histories 

of the CWR under consideration. 

 Communication between the different conservation organisations (and departments 

within organisations) is vital for the coordination of conservation activities for CWR 

and genetic resources in general. This could be achieved through the PLINC Wales 

group (Plantlife, 2014). 
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 CWR occurrence records should be continuously updated. Current records maintained 

by the four LRC and the BSBI distribution database (BSBI, 2013) provide an 

extensive and detailed dataset. It is important that this is maintained and that new 

records are transferred from county recorders to LRCs and the BSBI distribution 

database. Records should be as precise as possible, using at least six figure grid 

references and recording to subspecies level where possible.  

 Collection efforts should focus on achieving a minimum of five geographically 

distinct accessions per priority CWR, where possible (Brown and Briggs, 1991; 

Dulloo et al., 2008). This should be adjusted appropriately according to geographic 

range and life histories of target CWR. Initial collection efforts should focus on the 93 

CWR in priority level 1 with no accessions stored in genebanks (Supplementary Table 

A1.2).  

 Genetic analyses of current collections should be undertaken to determine any overlap 

between stored accessions and to identify instances where further collecting would 

provide additional genetic diversity for the collection. Where genetic analyses are not 

a viable option, ecogeographic analyses should be undertaken as a proxy using 

methods described by Parra-Quijano et al. (2014). 

 To ensure collections capture the genotypic evolution of in situ populations over time, 

the relationship between accessions held in long-term storage and population genetic 

changes over time should be explored. 

 Duplicates of all accessions should be stored in other genebanks as a safety back up 

and existing accessions should be maintained according to genebank ‘best practices’. 
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 Agreements between landowners (within and outside of protected areas) and 

genebanks should be formulated to protect the rights of the former from whose land 

the accessions have been collected. Agreements should specify any restrictions on the 

use of the CWR material. 

A1.6 Conclusion 

The current study presents the first inventory of Welsh priority CWR and an assessment of 

their conservation in Wales. It has been developed with input and support from NRW to 

ensure that the results are relevant to current conservation priorities in Wales and that it 

responds to international policy. The results highlight the importance of establishing a 

network of in situ conservation in the form of both genetic reserves and conservation outside 

of protected areas with appropriate management. This should be complemented by a 

comprehensive ex situ back up of material which should be accessible to plant breeders for 

use in crop improvement. With this in mind, long-term active conservation and also improved 

use of CWR will be achievable, contributing to widespread efforts to improve future food 

security in line with European and global policy. 


