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Abstract
Today’s distributed programs are often written using either explicit message
passing or Remote Procedure Calls that are not natively integrated in the lan-
guage. It is difficult to establish the correctness of programs written this way
compared to programs written for a single computer.

We propose a generalisation of Remote Procedure Calls that are natively
integrated in a functional programming language meaning e.g. that they have
support for higher-orderRemote ProcedureCalls across node boundaries. There
are already several languages that provide this feature, but there is a lack of de-
tails on how they can be compiled correctly and efficiently, which is what this
thesis focusses on.

We present four different solutions, given as readily implementable ab-
stract machines. Two of them are based on interaction semantics — the Geo-
metry of Interaction and game semantics — and two of them are moderate
extensions of conventional abstract machines — the Krivine machine and the
SECD machine. To target general distributed systems our solutions addition-
ally support higher-order Remote Procedure Calls without sending actual code,
since this is not generally possible when running on heterogeneous systems in
a statically compiled setting.

We prove the correctness of the abstract machines with respect to their
single-node execution, and show their viability for use as the basis for com-
pilation by implementing prototype compilers based on them. In the case of
the machines based on conventional machines we additionally show that they
enable efficient programs and that single-node performance is not lost when
they are used.

Our intention is that these abstract machines can form the foundation for
future programming languages that use the idea of higher-order Remote Pro-
cedure Calls.
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Chapter 1

Overview
Writing a computer program in a high-level programming language means
that we are freed fromworrying about many of the laborious details associated
with low-level languages. We increase our programmer effectiveness as well
as the safety and the correctness of our programs. This is done by employing
features such as recursive procedures and control flow statements in place of
jumps, automatic garbage collection in place of manual memory management,
and static type systems in place of the language being untyped. That programs
written using high-level languages sometimes run slower than their low-level
counterparts has been an objection to using them from their conception [10],
but proponents of high-level programming languages commonly believe that
this is outweighed by the benefits of faster development times, extra safety, and
correctness.

An important feature of high-level programming languages is machine-in-
dependence, which is an idea said to originate from the early language For-
tran [11].1 A machine-independent language is one whose programs can be
recompiled to different targets without having to be rewritten, since they do
not rely on machine-specific details.

This thesis presents the idea of lifting the conventional idea of machine-
independent programming languages to architecture-independence in the con-
text of distributed computing. Distributed systems are everywhere, but the
programs that they run are often written using language features that reflect
the details of the target system in the source code, meaning that they are not
reusable — large parts of the programs may have to be rewritten if they are to
be ported to a different system. Furthermore, the programs are often written
using tools that are either not natively integrated in the language, or so low-
level and error-prone that they may be compared to programming with goto.

1The idea of machine-independence should, however, probably not be attributed to For-
tran’s creators, because initial version included machine-dependent features [10]. It is more
likely that it was Fortran’s popularity at the time that led to machine-independence: it cre-
ated an incentive for hardware vendors to implement versions of the language for their own
hardware.
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1.1 the problem
Mental burden Imagine that we are writing a distributed program in a make-
believe language with native support for message passing. In this language
we write processes as procedures that may use the pid ! message operation
(pronounced “bang!”) to send a message asynchronously (without blocking)
to the node with process identifier pid, and the message ← receive operation
to receive messages synchronously (blocking until a message is received) from
anyone.

Let’s say that we want to use this language to serve two functions, q1, q2 ∶
Q → R, from two different nodes in a network. We may think of the two func-
tions as performing queries in two databases. Being seasoned programmers,
we immediately seize the opportunity to avoid repetition, and write the follow-
ing code:

server f = repeat {
(fromPid, arg) ← receive
fromPid ! f arg
}

A server of a function f is a program that repeatedly receives a message con-
taining an argument arg, and a process identifier, fromPid. Each time this hap-
pens, the server passes the argument to the function f and sends the result back
to the network node identified by fromPid. Our two servers are now easily ex-
pressed by invoking our server procedure with either the argument q1 or q2:

server1 = server q1
server2 = server q2

If we want to invoke one of our servers from a remote location, it is amatter
of sending the right message to it:

server1Pid ! (myPid () , myArg)

Here we assume that server1 runs on the node identified by server1Pid, and that
myPid () returns the process identifier of the calling process.

So far our code looks elegant. But let us now look at what happens if we
want to add what may be called a higher-order node — one that invokes a node
whose identifier is given as an argument. A simple example of such a node
is a server that makes some queries to a given database and then returns a
processed result. Conceptually, we can think of the type of that server being
(Q → R) → P, i.e. a function that takes as its argument one of the aforemen-
tioned query functions q1 and q2.
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Since it is a server, we rightfully expect that its functionality fits into the
server mould that we have already written, but since it is a bit more complicated
it is probably a good idea to first spell out the new server in full detail:

server3 = repeat {
(fromPid, databasePid) ← receive
databasePid ! (myPid () , query)
result ← receive
databasePid ! (myPid () , anotherQuery)
anotherResult ← receive
fromPid ! process result anotherResult
}

f ∶ (Q → R) → P

client

server3

server2server1
q1 ∶ Q → R q2 ∶ Q → R

Wants a P

Our new server receives a message
containing fromPid, the identifier of
the caller, and databasePid, identify-
ing the database to call. It then in-
vokes the givendatabase server twice,
both times by sending amessage con-
taining its own process identifer and a query. When the two results have been
received, it passes them to an assumed process function, and sends the result
back to the caller using fromPid.

As expected, we can also rewrite server3 using the server function, which
means that we do not have to keep track of the process identifier of the caller:

server3’ = server {λdatabasePid.
databasePid ! (myPid () , query)
result ← receive
databasePid ! (myPid () , anotherQuery)
anotherResult ← receive
process result anotherResult
}

To actually use server3, we invoke it by sending our own and the target
node’s process identifiers, and then receiving the result:

server3Pid ! (myPid () , server1Pid)
p1 ← receive
server3Pid ! (myPid () , server2Pid)
p2 ← receive

Around this point, it becomes difficult for me to keep track of the process
identifiers. If your working memory is more capacious than mine, try writing
a server of even higher order — it helps to draw a picture.
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The above example should have convinced you that it can be tricky to write
distributed programs using message passing, even if they are relatively simple.
The difficulty stems from having to keep track of multiple network locations
that provide different functionalities and from passing around references to
these network locations — which is reminiscent of passing around code point-
ers to jump to. Using an abstraction like server helped, but note that this is
only possible if the program fits into that mould. The servers did not have to
keep track of more than three process identifiers at any given time and did not
preserve any internal state across invocations, which would have complicated
matters even further.

Obscuration of meaning Programs written using message passing can also ob-
scure the intended meaning of the program. As an example, consider the two
programs in Figure 1.1.

The second example uses a selective receive expression, which synchron-
ously receives amessage and picks the branch depending on the received value.
In the example, the third component of the received triple — which is one of
the constructors Request1 or Request2 — determines what branch to pick.

Both of these programs perform the same function, which we would write
simply as let f = λx. x * x in f 3 + f 4 if it was running on a single node, except
that the deployment of the two programs differs. The first program is distrib-
uted on two nodes whereas the second is distributed on three nodes. If you
did not know that the two programs performed the same function, would you
be able to easily tell? Perhaps, but not from a quick glance. Message passing
in this style is similar to programming with goto, because the control flow of
the system as a whole jumps back and forth between processes without much
structure. The structure that we have is what we can invent ourselves ad hoc,
by e.g. sending a different datum to invoke different functionalities (Request1
and Request2 in this case).

What about Remote Procedure Calls? To mitigate the issues with explicit mes-
sage passing,many systemsmake use of theRemote ProcedureCall (RPC) [17],
which is a mechanism for implementing inter-process communication. An
RPC is what its name suggests: a call to a procedure located on a remote node.
The idea is that an RPC looks and acts like an ordinary procedure call, and
performs the necessary message passing under the hood.

An important problem in distributed computing is to provide a user
with a nondistributed view of a distributed system.

Lamport and Lynch [91]
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squareServer =
(fromPid, x) ← receive
fromPid ! x * x

main =
squareServerPid ! (myPid () , 3)
x ← receive
squareServerPid ! (myPid () , 4)
y ← receive
x + y

squareServer =
(fromPid, x) ← receive
fromPid ! x * x

proxy =
receive
(fromPid, toPid, Request1) →

toPid ! (myPid () , 3)
x ← receive
fromPid ! x

(fromPid, toPid, Request2) →
toPid ! (myPid () , 4)
x ← receive
fromPid ! x

main =
proxyPid ! (myPid () , squareServerPid, Request1)
x ← receive
proxyPid ! (myPid () , squareServerPid, Request2)
y ← receive
x + y

Figure 1.1: Examples using message passing
Both of these programs perform the same function, which we would write simply as let f =
λx. x * x in f 3 + f 4 if it was running on a single node, except that the deployment of the two pro-
grams differs. The first program is distributed on two nodes whereas the second is distributed on three
nodes.
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Somemight say that RPCs are the solution to the above problem in the context
of programming languages. However, RPCs tend to be added to a language as
an afterthought, e.g. having support only for arguments of ground type, rather
than being tightly integrated into it. Even though a remote call looks like an or-
dinary function call, this means that it cannot be treated like one. Tanenbaum
and Van Renesse [128] observed this almost 30 years ago, but the solution —
more transparently integrating RPCs into the language — appears to be dis-
missed for efficiency reasons. It is time to revisit this issue, not least because
there has been substantial progress in the efficiency and capacity of computers
since then.

1.2 this thesis
Our proposed solution to the problemof Lamport andLynch [91]— to provide
the user with a nondistributed view of a distributed system— is to separate the
architecture-specific from the algorithmic parts of a program. In the context of
distributed computing, the architecture-specific parts of a program are the de-
tails of its run time deployment and process management. To be architecture-
independent, the program thus has to abstract from these features.

We propose the followingway towrite distributed programs to achieve this.
Instead of using explicit message passing, the programmer indicates the loca-
tion of definitions or subterms using location annotations, written _@_. The
first example from the previous section — the “higher-order” database queries
— can then be rewritten as follows:

q1 @ server1 = ...
q2 @ server2 = ...
f @ server3 = ...
main @ client = process (f q1) (f q2)

The difference between this program and one using Remote Procedure Calls
is that we are here free to use higher-order functions across node boundaries.
It is the job of the compiler and the runtime system to realise any deployment
that the programmer can conceive. This approach is also in obvious contrast
to languages and libraries that use message passing such as Message Passing
Interface (MPI) [65] and Erlang [8]. For full generality, we also want to do
this without sending actual code, in contrast to e.g. Remote Evaluation [126].
The reason is that this is sometimes necessary: not all code is meaningful on
all nodes, for example because of the location of a resource or because of plat-
form differences in a heterogeneous system. It should be noted that this does
not necessarily prevent us from sending code (or references to already existing
code) when this is desired, e.g. for efficiency.
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1.2.1 What this thesis is actually about
The above way of writing programs is not entirely new, but is similar to e.g.
para-functional programming [75] and Caliban [85]. The focus of this thesis
is on the core evaluation mechanism, in the form of abstract machines, that is
used to actually run programs with location annotations, which is something
that has not been investigated in full before (see Section 2.1 and Section 7.9
for relevant literature reviews). Our first requirement for this mechanism is
correctness with respect to the same program without annotations, i.e. that we
really are providing a nondistributed view of the system. In distributed com-
puting, this is also called network transparency [27]. The second requirement
is that we should enable the programs to be efficient. We cannot guarantee
that all programs are efficient: it is easy indeed to come up with examples that
can be expected to be slow-running (think e.g. of mapping a remotely located
function over a long list). Our performance requirements are instead that we
do not lose single-node performance when we are using our language without
annotations and that we do not put an excessive burden on the network when
we do.

Obviously, there are some architecture-specific remnants still in the code
above, namely the locations. This is convenient when describing semantics
and compilation, and it is furthermore not difficult to construct a language
where the configuration of the program is separated from the algorithm and
then straightforwardly translated into our language. Our expectation is that
location annotations are general enough that future researchers or engineers
can build programming languages based on this work.

Since the location annotations are similar to Remote Procedure Calls, this
thesis may more accurately be seen as the answer to the following question:

From a programming language perspective, how can we do higher-
order Remote Procedure Calls correctly, generally, and without sac-
rificing single-node performance?

1.2.2 What this thesis is not
Even though distributed systems are often used for the purpose of speeding
up computations by parallelising their evaluation, the goal of this dissertation
is not to achieve speedups through parallelisation. We want to increase the
expressiveness and automate some aspects of the programming of distributed
systems using more conventional languages, i.e. those not tailored for distrib-
uted computing. Distributed systems are also naturally concurrent, which is
something that we have to take into considerationwhenmodelling the systems.
Our proof of concept implementations do not generally include constructs for
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concurrency, but it should be stressed that our work does not preclude parallel
and concurrent execution — it is just not its focus.

1.3 contribution
Our original contributions to knowledge are in the following areas:

1.3.1 Conventional abstract machines
We present new extensions of two classic abstract machines — the Krivine
machine (Chapter 6) and the Stack-Environment-Control-Dump (SECD) ma-
chine (Chapter 7) — giving them the ability to run in distributed systems and
support for higher-order Remote Procedure Calls through the usage of loca-
tion annotations. We formally prove the soundness of the extensions, and in
the case of the SECD machine also the completeness, by exhibiting simulation
relations between the extensions and the original machines. The full formal-
isations can be found in the online appendix: http://epapers.bham.ac.uk/
1985/.

1.3.2 Implementations
For each of the distributing abstract machines presented in this thesis we have
also made an implementation, the source code of which is also in the online
appendix.

Our main implementation, Floskel (Section 7.2), is based on our exten-
sion of the SECD machine. It is a full-featured programming language imple-
mentation with support for both location annotations, i.e. code fragments that
are tied to a specific location, and ubiquitous functions, i.e. functions that can
freely be transmitted over the network. It additionally has support for algebraic
datatypes and pattern matching.

1.3.3 Interaction semantics
We present novel applications of interaction semantics to the compilation of
programming languages with higher-order Remote Procedure Calls targeting
distributed systems by presenting new abstract machines for the Geometry of
Interaction (Chapter 3) and game semantics (Chapter 4). These abstract ma-
chines serve as an intermediary between theory and implementation: they
allow us to show the soundness of the interpretations while corresponding
closely to conventional computers. They also have remarkable features like
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requiring no garbage collection. We illustrate their potential by implementing
prototype compilers based on them.

1.3.4 Fault-tolerance
We present a simple way to achieve fault-tolerance (Chapter 8) for abstract ma-
chines similar to those above, by layering a commit-and-rollback mechanism
on top of them.

1.4 previous publications
This dissertation is based on the following publications, which were — as in-
dicated — written in collaboration with several co-authors:

• Olle Fredriksson and Dan R. Ghica. “Seamless Distributed Comput-
ing from the Geometry of Interaction”. In: Trustworthy Global Com-
puting - 7th International Symposium, TGC 2012, Newcastle upon Tyne,
UK, September 7-8, 2012, Revised Selected Papers. Ed. by Catuscia Palam-
idessi and Mark Dermot Ryan. Vol. 8191. Lecture Notes in Computer
Science. Springer, 2012, pp. 34–48

• Olle Fredriksson and Dan R. Ghica. “Abstract Machines for Game Se-
mantics, Revisited”. In: 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013.
IEEE Computer Society, 2013, pp. 560–569

• Olle Fredriksson. “Distributed call-by-value machines”. In: CoRR abs/
1401.5097 (2014)

• Olle Fredriksson and Dan R. Ghica. “Krivine nets: a semantic found-
ation for distributed execution”. In: Proceedings of the 19th ACM SIG-
PLAN international conference on Functional programming, Gothenburg,
Sweden, September 1-3, 2014. Ed. by Johan Jeuring and Manuel M. T.
Chakravarty. ACM, 2014, pp. 349–361

• Olle Fredriksson, Dan R. Ghica, and Bertram Wheen. “Towards native
higher-order remote procedure calls”. In: Proceedings of the 26th Sym-
posium on Implementation and Application of Functional Languages, Bo-
ston, MA, USA, October 1-3, 2014. 2014
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Interaction semantics Conventional abstract machines
SIC machine Game nets DKrivine machine DCESHmachine Floskel

Location Chapter 3 Chapter 4 Chapter 6 Chapter 7 Section 7.2
Basis GOI Game semantics Krivine machine SECD machine DCESH machine

Evaluation CBN CBN CBN CBV CBV
Language PCF + @ PCF + @ + local

state + par
PCF + @ PCF + @ PCF + @ + algeb-

raic datatypes +
pattern match-
ing + ubiquitous
functions

Garbage collector Not required Not required Distributed Distributed Local

Table 1.1: Thesis overview

1.5 organisation
This dissertation describes the core evaluation mechanism that is required for
a language supporting seamless distribution. See Table 1.1 for an overview of
the features of the abstract machines and implementations that are presented
in this thesis. We give four alternative mechanisms, in the form of abstract
machines with support for native higher-order Remote Procedure Calls, and
a more realistic implementation called Floskel. For the machines we have also
implemented proof-of-concept compilers, and shown the machines’ correct-
ness with respect to single-node execution. The source language that the ma-
chines operate on is PCF, either call-by-name or call-by-value, with the addi-
tional t @ node operation and some language extensions. An important consid-
eration for implementations of distributingmachines is howgarbage collection
is carried out. Our first two solutions, those based on interaction semantics,
do not require garbage collection, whereas our extensions of conventional ma-
chines require distributed garbage collection. Our most full-fledged imple-
mentation gets by with local garbage collection by moving more data between
nodes.

The work is exploratory in nature; new solutions spring from the uncover-
ing of problems in earlier solutions. To make the narrative logical, the parts
are presented in the order they were written. This means that the solutions
that we deem to be the strongest are late in the thesis, but note that there is no
mutual dependence between the solutions presented in the thesis; a reader just
looking for a pre-canned solution can and might want to skip ahead.

Theonline appendix, available at http://epapers.bham.ac.uk/1985/, con-
tains the source code for each of the solutions.
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Chapter 2

Background
Synopsis This chapter introduces some of the prerequisite concepts that will
be used in the rest of this dissertation.

We introduce the related work that is presentable without the context of
our work (Section 2.1), we describe what an abstract machine is (Section 2.2)
and the use of abstract machines as a bridge between operational semantics
and implementations.

We give a short definition of distributed computing (Section 2.3).
We also introduce Agda (Section 2.4), an interactive proof assistant and

programming language based on intuitionistic type theory, which is used to
prove some of the theorems in this dissertation. We motivate its usage and
give a short description of its syntax. Agda gives us several powerful means for
abstraction. We will put this to use by factoring out the common functionality
of the abstractmachines that this dissertation gives. More precisely, we define a
parameterisedmodule of networks that can be instantiated with an underlying
abstract machine’s transition relation (Section 2.5).

2.1 related work
Programming languages and libraries for distributed and client-server com-
puting — which is a simpler form of distribution — are a vast area of research.
Relevant to us are functional programming languages for distributed execution,
and several surveys are available [131, 98].

The following sections are a categorisation of the existing work with com-
parisons to the goals of our work. Some of the more specialised related work is
however presented after we have presented our own work (in Section 4.4, Sec-
tion 3.5, and Section 7.9), enabling us to make more in-depth comparisons.

2.1.1 Explicit
Functional programming languages for distributed systems take different ap-
proaches in terms of process and communication management. Languages
such as Erlang [8], which are meant for system-level development offer a low-
level view of distribution in which both the process and communication are
managed explicitly; Erlang is similar to the language that we used for con-
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trasting effect in the introduction (Chapter 1). The Akka [5] toolkit, Cloud
Haskell [37], and the more low-level MPI [65] library (which has bindings for
a multitude of programming languages) use a conceptually similar program-
ming model based on message passing. Some languages in this category use
mechanisms imported from process calculi, such as Occam [102], Pict [135],
and Nomadic Pict [139, 125]. Nomadic Pict extends the calculus with con-
structs for location dependence making it more suitable for distributed com-
puting. Nomadic Pict and the distributed join calculus [42] both support a no-
tion of mobility for distributed agents (that is, the process you are sending to
may move), which enables expressing dynamic distributions of programs. The
work on Nomadic Pict describes how a higher-level language can be based on
a small set of constructs with the capability to do location-independent com-
munication in the presence of mobile agents. To achieve this, they use a com-
bination of a central server that keeps track of where every process is, and local
caching to eliminate some requests to the central server. The caching is remin-
iscent of using forward pointers, where amigrating process leaves a forwarding
pointer on its old node, which can then forward requests. Here, software agents
are explicitly sent across the network between running processes. By contrast,
in our methodology no code needs to be transmitted (though it can).

Programming languages do not need to be created from scratch to include
improved language support for communication. Session types have been used
to extend a variety of languages, including functional languages, with safer,
typed communication primitives [136] or to provide language-independent
frameworks for integrating distributed applications, such as Scribble [140].
There are some parallels to be drawn between this line of work and ours. For
instance, our way of compiling a single program to multiple nodes that we will
see in the coming chapters can be likened to the projection operator in multi-
party session types [72].

Glasgow Distributed Haskell [118] extends the existing parallelism con-
structs in Haskell for use in a distributed system. These constructs are at a
low level of abstraction, providing familiar constructs from parallel and con-
current programming such as locks and channels ported to the world of dis-
tributed programming.

Even though these languages have a low-level view of distribution, it does
not mean that it is not possible to build abstractions in them. We saw an ex-
ample of this in the introduction (Chapter 1), namely the server abstraction.
The Open Telecom Platform (OTP) [129] provides constructs similar in spirit
— but obviously more elaborate — for Erlang programs. This significantly
raises the level of abstraction, at least for programs that fit into the moulds.
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2.1.2 Implicit

Our approach is quite different compared to those based on explicit commu-
nication. Our aim is to make communication implicit, or seamless. In some
sense this is already widely used in programming practice, especially in the
context of client-server applications, in the form of RPCs [17] and related tech-
nologies such as Simple Object Access Protocol (SOAP). What we aim to do
is to integrate these approaches into the programming language so that from
a programmer perspective there is no distinction between a remote and local
call, even at higher order. A project close to our aim is Remote Evaluation
(REV) [126], which is another generalisation of RPC that enables the use of
higher-order functions across node boundaries. Themain differences between
REV and our work is that REV relies on sending unevaluated code.

Languages that use location annotations similar to ours have also been pro-
posed. Thefirst one is called para-functional programming [75], where the lan-
guage is a functional language with an additional e on e’ construct for express-
ing distribution. This is close to our location annotations, with the difference
that e’ is an expression in the language which evaluates to the process identifier
of the target node. The distribution is thus dynamic. In our work we want to
make it possible to run programs in heterogeneous systems where not all code
is meaningful at all nodes, which in general precludes this kind of dynamic dis-
tribution. It should be noted that our work on ubiquitous functions (presented
in Section 7.2; essentially function references that are safe to transmit between
nodes) could be extended in a straightforward manner to support this. Since
we already have the machinery in place to invoke ubiquitous functions on ar-
bitrary remote nodes, we are just a minor compiler update away from making
the node selection dynamic.

The Caliban language [85] offers more separation between the algorithmic
parts and those to do with the distribution of the language. The distribution
is specified programmatically also here, but required to be statically known
(through a process that can be likened to partial evaluation).

Related object oriented approaches are Emerald [83], Obliq [23], and the
recent RPyC [121]. Kanor [71] is another project that similarly aims to sim-
plify the development of distributed programs by providing a declarative lan-
guage for specifying communication patterns inside an imperative host lan-
guage (C++). Object orientation raises a slightly different set of challenges
than functional languages, especially to give a consistent view of objects that
may be mutated and migrate between nodes. A few interesting calling con-
ventions arise naturally in this setting: call-by-reference, where a remote ref-
erence is sent to the destination node, call-by-visit, where the argument ob-
ject is moved to the destination node and moved back to the source when the
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method call has finished, and call-by-move, where the object is moved to the
destination node when the call is performed but not moved back afterwards.
As objects can move around the network and keep references to each other
distributed garbage collection is an issue.

This wealth of prior work gives us strong evidence that our approach is
reasonable and viable. Our main innovation is not on the language side, but in
giving ways to compile languages that use similar distribution mechanisms in
a sound way by using abstract machines, which is something that has not been
done before.

Totoo, Deligiannis, and Loidl [130] present a comparison of the high-level
parallelism features of theHaskell, F#, and Scala programming languages. Even
though this work is about parallelism, it drives home a point that is also worth
mentioning here. The main takeaway is that the language with the highest
level of abstraction (Haskell using Glasgow Parallel Haskell [132]) actually per-
formed the best and was easier to parallelise than the others, using so called
skeletons, i.e. higher-order functions providing a parallel algorithm — in this
case parallel map. A concluding remark in the paper is that it is important
for languages to support primitive operations for parallel operations, as com-
pared to library implementations of them. In Haskell’s case, this is realised
through operations that talk to its runtime system, for instance to implement
light-weight threads, which would have been difficult to do in a library. These
results should also be taken into account when designing languages for distrib-
uted computing.

2.1.3 Distributed execution engines

Distributed execution engines are software frameworks that provide a high-
level programming model for data processing applications by protecting the
programmer from many of the difficulties associated with writing such pro-
grams, e.g. task scheduling, data transmission, and fault-tolerance. As such,
some execution engines fall into the implicit category above, but since they
are geared towards data processing they often impose constraints on the data
access and communication patterns of their allowed programs to increase per-
formance.

Awell-knownbut comparatively limited example isMapReduce [35], which
is a programming model for large-scale distriuted systems with several imple-
mentations. It allows the programmer to specify a map function, which is first
mapped over the data set, and a reduce operation, which combines the results
of themap. It can thus only solve problems on a form that is easily decomposed
into independent map and reduce tasks.
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Other examples include CIEL [109] and Dryad [79], which are execution
engines for distributed data-flow programs. Execution is performed by the
traversal of a directed acyclic graph of tasks written in an imperative program-
ming language, which can be dynamic and data-dependent. The distribution
is at the task level. In the case of CIEL, the traversal is lazy; it starts from the res-
ult and works through the graph to determine what tasks need to be run to get
the result. The evaluation is eager at the task level. The operational semantics
of both systems are presented informally in text-form, which can make it hard
to reason about the systems and their correctness. On the application side,
they both present impressive performance results, and make use of a central
server that takes care of fault-tolerance (through periodic heartbeat messages
and restarting of the affected parts of a computation), task allocation, and load
balancing.

2.1.4 Tierless computing

In the last ten years a number of tierless languages have appeared. Examples
include Hop [124], Links [29], Ocsigen [12], ML5 [137], and Ur/Web [24, 25].
These languages have some similarities with the implicit languages above, but
the emphasis here is not on network transparency, but on unified all-in-one
languages for web programming, which is typically limited to client-server
computing. Being unified and all-in-one means that the same language can
be used for both client and server, and (using embedded domain-specific lan-
guages) for type-safe database queries and HTML generation.

Another related approach for buildingweb applications is Swift [26], where
the focus is on automation and security; the program is automatically parti-
tioned into client (running Javascript) and server (running Java) such that se-
curity critical code only ever runs on the server.

2.2 abstract machines

Programming languages are typically implemented by compilation tomachine-
code or other suitably low-level target languages. Butwhenwewant to describe
how compilation is done it would be arduous to describe the translation all the
way to machine-code, especially for the person having to read that description.
Operational semantics such as small-step [116] or big-step [84] semantics can
be enough to define an interpreter for a language, but do not necessarily give
away the details required to write a compiler for the language, especially one
that generates efficient output programs.
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As an example, the small-step β-rule used in the reduction of lambda terms,

(λx .t) t′ Ð→β t[t′/x],

is too abstract for a compiler-writer to efficiently implement, since a naive
substitution requires a traversal of the whole syntax tree of the term, whereas
the reduction could be implemented in constant time by a seasoned compiler
writer. Something is lost in abstraction in the presentation of the β-rule. In
the Krivine machine [86], an abstract machine for call-by-name reduction of
lambda terms, this operation is instead done by adding the argument (and its
environment) to an environment,

((λx .t) t′, e , s)Ð→2 (t, e ⊎ {x ↦ (t′, e)}, s),

an operation that at least gives us a hint for how an efficient implementation
can be done. By using the De Bruijn index notation [20], where variables are
natural numbers that stand for their index into a sequential environment, we
can even implement that operation as a simple stack pushing operation:

((λ.t) t′, e , s)Ð→2 (t, (t′, e) ∶∶ e , s),

Like the Krivine machine, an abstract machine typically consists of a code
component — sometimes represented as an intermediate bytecode, and some-
times just a source language term — and one or more data components —
typically stacks and heaps [36].

The term abstractmachine has been used to refer to constructions at a spec-
trum of different levels of abstraction, as indicated by the following quote:

Some abstract machines are more abstract than others.

Diehl, Hartel, and Sestoft [36]1

In this dissertation, we will consider abstract machines as a kind of operational
semantics whose purpose is to describe compilation schemes at a level of ab-
straction somewhere between operational semantics that use substitution, and
the actual compiled program. Using an abstract machine to describe a pro-
gramming language implementation thus divides the compiler’s job in two
parts: compiling the source code to an abstract machine and compiling the
abstract machine to a concrete machine.

1 Dean Martin, the famous American singer, would probably have wished that the authors
of this quotation would send the pillow that they dream on so he could dream on it too.
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Abstract machines are typically deterministic, i.e. they can make at most
one transition from any state, and this is usually governed by their code com-
ponent. For the compiler writer, determinism means that a given transition se-
quence can be implemented as a sequence of machine instructions. Since this
thesis concerns languages for distributed and concurrent systems, we deviate
from this guideline whenmodelling the system as a whole, but single-threaded
execution will remain deterministic, which is enough for a compiler writer.

2.3 distributed computing
Definition 2.3.1 (Distributed system). A distributed system is a computer sys-
tem with a number of processing units, nodes, that communicate over a net-
work by sending messages to each other. Sending messages may be the only
means of communication between the nodes, meaning that they do not gener-
ally share an address space.

A distributed program is one running and making use of a distributed sys-
tem. Distributed computing is computing in distributed systems.

2.4 agda
The definitions and proofs in this dissertation are intricate and often consist of
many cases, so carrying them out manually is arduous and can be error-prone,
which is something that we noticed while working on the early chapters of this
thesis. Proof assistants can alleviate this burden by providing proof checking
and automation. They can also be helpful tools in producing proofs, providing
interactive environments in which to play with alternative definitions — even
wrong ones. Our tool of choice is Agda [111], which is both an interactive
proof assistant and a programming language. To eliminate another source of
error, we present the Agda code as is when this is possible.

Although the work is not about Agda per se, this presentation should be
beneficial also to you, the reader, since you can trust that the propositions do
not contain mistakes. It also means that we can present technical results with
a high degree of confidence while letting the focus be on the exposition rather
than tedious proof details. Since Agda builds on a constructive foundation, it
also means that a formalisation can act as a verified prototype implementation.

2.4.1 Syntax and notation for code
We assume a certain familiarity with the syntax of Agda, but since it is close to
that of several popular functional programming languages it should not cause
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much difficulty for the audience. If it does, there are several excellent guides
and tutorials available (e.g. [18]). We will use Set for the type of types. We will
use implicit parameters, written e.g. f ∶ {A ∶ Set} → ... which means that f
takes, as its first argument, a type A that does not need to be explicitly spelled
out when it can be inferred from the context. We will sometimes use the same
name for constructors of different types, and rely on context for disambigu-
ation. Constructors will be written in boldface and keywords without serifs.
We make liberal use of Agda’s ability to define mixfix operators. An example
is if0_then_else_ which a constructor that accepts arguments in the positions
of the underscores: if0 b then t else f. We will also explain some Agda idioms
when they are used.

2.5 network model
In this section we define two models for distributed communicating networks,
based either on synchronousmessage passing (blocking send) or on asynchron-
ousmessage passing (non-blocking send). Themodel (the Agdamodule called
Network2) is parameterised by the underlying transition relation of the ma-
chines:

_ ⊢ _Ð→ ⟨_⟩ _ ∶ Node→Machine→ Tagged Msg→Machine→ Set

The types Node, Machine, and Msg are additional parameters. Elements of Node
will act as node identifiers, and we assume that these enjoy decidable equality
— in MPI, a low-level library for message passing, they would correspond to
the so called integer “node ranks”. The type Machine is the type of the nodes’
configurations, and Msg the type of messages that the machines can send. The
presence of the Node argument means that the configuration of a node knows
about and may depend on its own identifier. The type constructor Tagged is
used to separate the different kinds of local transitions: a Tagged Msg can be
τ (i.e. a silent transition), send msg, or receive msg (for msg ∶ Msg).3 These
tagged messages are inspired by actions in process calculi such as the Calculus
of Communicating Systems (CCS) [104].

Both kinds of networks are modelled by two-level transition systems, sim-
ilar to the Distributed Eden Abstract Machine (DREAM) [19]. A global level
describes the transitions of the system as a whole, and a local level the trans-
itions of the nodes in the system. Synchronous communication is modelled by
rendezvous, i.e. that two nodes have to be ready to send and receive a message
at a single point in time. Asynchronous communication is modelled using

2Online appendix: krivine/formalisation directory, Network module.
3Online appendix: krivine/formalisation directory, Tagged module.
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i ⊢ nodes iÐ→ ⟨τ⟩m’ silent-step
nodes ÐÐ→Sync nodes[i↦ m’]

s ⊢ nodes sÐ→ ⟨send msg⟩ sender’
r ⊢ nodes’ rÐ→ ⟨receive msg⟩ receiver’ nodes’ = nodes[s↦ sender’] comm-step

nodes ÐÐ→Sync nodes’[r↦ receiver’]

data _ÐÐ→Sync _ (nodes ∶ SyncNetwork) ∶ SyncNetwork→ Set where
silent-step ∶ ∀ {i m’}→ (i ⊢ nodes iÐ→ ⟨τ⟩m’)→ nodes ÐÐ→Sync (nodes[i↦ m’])
comm-step ∶ ∀ {s r msg sender’ receiver’}→

let nodes’ = (nodes[s↦ sender’]) in
(s ⊢ nodes sÐ→ ⟨send msg⟩ sender’)→
(r ⊢ nodes’ rÐ→ ⟨receive msg⟩ receiver’)→
nodes ÐÐ→Sync (nodes’[r↦ receiver’])

Figure 2.1: Network transitions, synchronous
In a SyncNetwork messages are passed directly between machines. Network transitions are either a
silent-step when a node makes a τ transition, or comm-step when two nodes exchange information by
rendezvous. In comm-step a node s first takes a step sending a message, and afterwards a node r (which
can be the same as s) takes a step receiving the same message. We show the rules using conventional
syntax at the top and Agda syntax at the bottom.

a “message soup”, representing messages currently in transit, inspired by the
Chemical Abstract Machine (CHAM) [15].⁴ Formally, the two kinds of net-
works are:

SyncNetwork = Node→Machine
AsyncNetwork = (Node→Machine) × List Msg

This means that the asynchronous network is, in addition to a family of ma-
chines indexed by Node identifiers, a global multiset of messages List Msg —
the aforementioned message soup — in which sent messages are placed, and
from which received messages are retrieved.

The definitions of the networks’ transition relations are given in Figure 2.1
and Figure 2.2. We show the rules using both conventional syntax and Agda
syntax. In conventional mathematics we would define these relations as the
subsets of SyncNetwork × SyncNetwork (in the synchronous case) generated by
some given transition rules. In Agda we define the type of such a relation as
SyncNetwork → SyncNetwork → Set, where Set is the type of types. If we have a

⁴Note that the CHAM is not an abstract machine in our usage of the term (Section 2.2).
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i ⊢ nodes iÐ→ ⟨tmsg⟩m’ (msgin , msgout) = detag tmsg step
(nodes , msgsl ++ msgin ++ msgsr) ÐÐÐ→Async (nodes[i↦ m’] , msgsl ++ msgout ++ msgsr)

data _ÐÐ→Async _ ∶ AsyncNetwork→ AsyncNetwork→ Set where
step ∶ ∀ {nodes} msgsl msgsr {tmsg m’ i}→

let (msgin , msgout) = detag tmsg in
(i ⊢ nodes iÐ→ ⟨tmsg⟩m’)→
(nodes , msgsl ++ msgin ++ msgsr) ÐÐ→Async (nodes[i↦ m’] , msgsl ++ msgout ++ msgsr)

Figure 2.2: Network transitions, asynchronous
An AsyncNetwork has only one rule, step, because no synchronisation is needed. A machine on a node
can take a τ step or a communication step, case in which a message is placed or removed from the global
set of messages. Here we use the list append function, _++_, on the lists of messages, allowing sent and
received messages to be taken from any position in the message list. We show the rules using conventional
syntax at the top and Agda syntax at the bottom.

relation R of that type, two SyncNetworks a and b are taken to be R-related pre-
cisely when the type R a b is inhabited. Given this representation of relations,
it is convenient to define relations as inductive datatypes with a constructor
per transition rule.

In the synchronous SyncNetwork messages are passed directly between ma-
chines. Network transitions are either a silent-stepwhen a nodemakes a τ trans-
ition, or comm-step when two nodes exchange information by rendezvous. In
comm-step a node s first takes a step sending a message, and afterwards a node
r (which can be the same as s) takes a step receiving the same message.

The asynchronous AsyncNetwork has only one rule, step, because no syn-
chronisation is needed. A machine on a node can take a τ step or a commu-
nication step, case in which a message is placed or removed from the global
set of messages. Here we use the list append function, _++_, on the lists of
messages, allowing sent and received messages to be taken from any position
in the message list. The function detag is used to determine what messages a
node is sending and receiving, allowing one rule for all three cases, as at most
one of msgin and msgout in the rule is non-empty:

detag ∶ {A ∶ Set}→ Tagged A→ List A × List A
detag τ = [] , []
detag (send x) = [] , [ x ]
detag (receive x) = [ x ] , []
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To explain this function in more detail, we consider what happens in the three
cases: if the node takes a silent step, the list stays the same before and after; if
the node sends a message, it has to be there after; if the node receives a message,
the message has to be in the list before the transition. Note that the return
type of detag is larger than necessary; it could have returned a pair of Maybe As.
However, we would then have to convert the Maybes to Lists when using the
function in the transition rule.

Another helper function used in the definitions is _[_↦ _], which updates
the state of a node in the network. It is the usual function update, commonly
written as ( f ∣ x ↦ y), here relying on the assumption that the set of node
identifiers has decidable equality (_ ?=_). It is formally defined as:

_[_↦ _] ∶ {A ∶ Set}→ (Node→ A)→ Node→ A→ Node→ A
nodes[n↦ m] n’ with n’ ?= n
nodes[n↦ m] n’ ∣ yes _ = m
nodes[n↦ m] n’ ∣ no _ = nodes n’

In Agda, the with keyword introduces patterns additional to the arguments in
a function definition.

The following theorem shows that asynchronous networks subsume syn-
chronous networks, i.e. that we can always convert a synchronous trace to an
asynchronous one.

Theorem 2.5.1. If (a ÐÐ→Sync b) then (a , []) ÐÐÐ→Async
+ (b , []).

Here _+ takes the transitive closure of a relation. We prove this in Agda by
constructing a function mapping a Sync transition to an Async one by placing,
then removing, themessage in the global message pool (we construct elements
of _+ with a list-like notation):

Sync-to-Async+ ∶ ∀ {a b}→ (a ÐÐ→Sync b)→
(a , []) ÐÐ→Async

+ (b , [])
Sync-to-Async+ (silent-step s) = [ step [] [] s ]
Sync-to-Async+ (comm-step s₁ s₂) = step [] [] s₁ :: [ step [] [] s₂ ]

Going in the other direction is not possible in general, but for some specific
instances of the underlying transition relation it is, as we will see later.
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Chapter 3

Geometry of Interaction
One of the most profound discoveries in theoretical computer science is the
fact that logical and computational phenomena can be subsumed by relatively
simple communication protocols. This understanding came independently
from Girard’s work on the Geometry of Interaction (GOI) [61] and Milner’s
work on process calculi [106], and influenced the subsequent development
of game semantics (see [51] for a historical survey). Of the three, game se-
mantics proved to be particularly effective at producing precise mathematical
models for a large variety of programming languages, solving a long-standing
open problem concerning higher-order sequential computation, namely full
abstraction for Programming Computable Functions (PCF) [3, 77].

An appealing features of game semantics is that it has a dual denotational
and operational character. By denotational we mean that it is compositionally
defined on the syntax and by operational we mean that it can be effectively
presented and can form a basis for compilation [52]. This feature was appar-
ent from the earliest presentations of game semantics [78], although the oper-
ational aspects are less perspicuous than in interpretations based on process
calculi or GOI, which quickly found applications in compiler [100] or inter-
preter [14] development and optimisation.

Our interest in these interaction-based semantics is slightly different. The
support of higher-order Remote Procedure Calls (RPCs) in a programming
language can at first seem to require sending code between nodes. But, as
stated in the introduction, this is needlessly restrictive: to be as general as pos-
sible we also want to support such calls without transmitting code between
nodes. Interaction-based techniques have the potential to give uswhatwe need
to do that, because they tell us exactly how a program or subprogram may in-
teract — communicate — with its environment. By taking inspiration from
such techniques, we can expect to solve the problem in a correct and elegant
way.

This part of the thesis explores the idea of using interaction-based program-
ming language semantics as the basis for compilation targeting distributed sys-
tems. Since the communication between subterms is inherent in these models,
the remaining difficulty is to control the granularity of the communication net-
works. We present these systems in the form of new abstract machines that are
readily implementable in actual compilers, evident by our prototype compiler
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implementations. The first compiler (Chapter 3) works by compiling to token-
passing abstract machines based on the Geometry of Interaction [61]. The
second approach (Chapter 4) is based on game semantics, and has support for
parallelism and local state.

Synopsis We show how the paradigmatic, higher-order, functional, recursive
programming language PCF [117], extended with location annotations, can
be compiled to distributed systems using a technique directly inspired by the
Geometry of Interaction (GOI).

TheGOImodel reduces a program to a static network of elementary nodes.
Although this is suitable for e.g. hardware synthesis [53], where the elementary
nodes become elementary circuits and the network becomes the circuit inter-
connect, it is generally too fine-grained for distributed computing. We address
this technical challenge by introducing a new style of abstract machine with
elementary instructions for both control (jumps) and communication. These
machines can (almost) arbitrarily be combined by replacing communication
with jumps, which gives a high degree of control over the granularity of the
network.

Our compiler works in several stages. First it creates the fine-grained net-
work of elementary communicating abstract machines. Then, using node an-
notations (labels), it combines all machines which arise out of the compilation
of terms using the same label. The final step is to compile the abstractmachines
down to executable code using C for local execution and Message Passing In-
terface (MPI) for inter-machine communication.

3.1 pcf and its goi model

Girard’s Geometry of Interaction [61] is a model for linear logic [62] used for
the study of the dynamics of computation, seeing a proof in the logic as a proof
net, executed through the passing of a token along its edges. The initial aim of
GOI was to avoid the syntactic bureaucracy of proofs, but it is well-known that
it can be extended to also interpret programming languages and that it is useful
in compiling programs to low-level machine code [100]. Here we will use it as
an interpretation for terms in our language, but we will use the notion of a
proof net quite literally in that our programs will be compiled into networks
of distributed communicating nodes that operate on and send a token to each
other.

Our source language is call-by-name PCFwith natural numbers as the only
base type, extended with an annotation t@A, for specifying the location of a
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term’s evaluation:

t ∶∶= x ∣ λx . t ∣ tt ∣ if t then t else t ∣ n ∣ t ⊕ t ∣ Y t ∣ t@A.

We choose PCF because it is a semantically well-understood language which
lies at the foundation of practical programming languages such asHaskell. The
additional annotation is to be thought of as a compiler directive: the oper-
ational semantics that we use as our specification and the typing rules ignore
the location annotation and are otherwise standard [117]. The reason for ignor-
ing the location annotations at this stage is that our goal is to achieve network
transparency, i.e. that the location of a program’s subterms does not affect its
final result. The ⊕ operator stands for a primitive binary operation on natural
numbers, e.g. addition or multiplication.

We give an interpretation of terms in our language following the (stand-
ard) GOI interpretations of Hoshino [73] and Mackie [100], encoding terms
into linear logic proof nets. We use Girard’s call-by-name embedding [62] into
linear terms, where θ → θ′ is translated to the linear type !θ ⊸ θ′. The ! in
the translation represents the fact that the function may use its argument an
arbitrary number of times.

The term interpretation is not new — it is an adaptation of a standard tech-
nique— so we will present only what is necessary for our work, omitting some
of the theoretical background on the subject. We refer the interested reader to
the original work [61] for details.

Term interpretations are built by connecting graphical components that we
think of as the nodes in a network. Connected components can communicate
bidirectionally using data tokens, defined by the grammar:

Token ∋ e ∶∶= ● ∣ 0 ∣ S e ∣ inl e ∣ inr e ∣ (e , e).

Wefirst give a reading of these components as partialmaps betweendata tokens,
which will act as a specification for a new, lower-level abstract machine that we
will give in the next section.

The standard GOI components are given in Figure 3.1: d for dereliction
(!θ ⊸ θ), δ for comultiplication (!θ ⊸!!θ), and c for contraction (!θ ⊸!θ⊗!θ).
These components correspond to structural rules in linear logic. We do not
give an explicit component for weakening, instead letting weakened compon-
ents have their ports unconnected with the understanding that they will then
act like inert sinks. Components of exponential type will expect tuples where
the left component of the tuple is “routing information” that identifies the
caller. The structural rules thus become bookkeeping of routing information.

The components are bidirectional and their behaviour is given by a func-
tion mapping the values of a port at a given moment to their values at the next
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d p1p0

d((●, e), �) = (�, e)
d(�, e) = ((●, e), �)

p1p0 δ

δ(((e , e′), e′′), �) = (�, (e , (e′, e′′)))
δ(�, (e , (e′, e′′))) = (((e , e′), e′′), �)

p0 c
p1
p2

c((inl e , e′), �, �) = (�, (e , e′), �)
c((inr e , e′), �, �) = (�, �, (e , e′))

c(�, (e , e′), �) = ((inl e , e′), �, �)
c(�, �, (e , e′)) = ((inr e , e′), �, �)

Figure 3.1: Components for structural rules
Dereliction d (!θ ⊸ θ), comultiplication δ (!θ ⊸!!θ), and contrac-
tion c (!θ ⊸!θ⊗!θ).
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moment. We denote the value on a port which sends/receives no data as �.
Two well-formedness conditions of GOI nets are that at most one port is not
� (i.e. at most a single token is received at any moment) and � = (�, . . . , �) is
a fixed-point for any net (i.e. no spontaneous output is created). An equival-
ent formulation of components would be deterministic binary relations over
tuples of sets of ports and data tokens.

Let π1, π2 be the first and second projections. Components are connected
by functional composition (in both directions) on the shared port, represented
graphically as:

(t; t′)(e , �) = t′(π2 ○ t(e , �), �)
(t; t′)(�, e) = t(�, π1 ○ t′(�, e)).

p0
p1 p2 p3t t′

This operation generalises to composing components withmore than one port
on each side in an obvious way. We will also allow feedback (e.g. trace opera-
tions) by letting the component be undefined for any input that results in an
infinite loop.

Exponentials Tokens need to carry both data and ‘routing’ information, which
is easily performed just by using the token’s pairing constructor. Basic compon-
ents, however, should have no access to the routing information but act on data
only. The role of the exponential functor (!) is to remove this routing inform-
ation upon entering the enclosed component, pass the data to the component,
then restore the routing information. Diagrammatically this is represented as
a dotted box around a network, defined formally as:

!t((e , e′), �) = (�, (e , (π2 ○ t(e′, �)))
!t(�, (e , e′)) = ((e , (π1 ○ t(�, e)), �).

t
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Types as interfaces We interpret terms into networks of components. The in-
terface of a net is determined by the typing judgement of the term it interprets.
The N type corresponds to one port; the function type, θ → θ′, induces an
interface which is the disjoint union of those for θ and θ′. A typing environ-
ment Γ = x1 ∶ θ1, . . . xn ∶ θn induces an interface which is the disjoint union
of the interfaces for each θ i . The interface of a term with typing judgement
Γ, x ∶ θ ⊢ t ∶ θ′ is given by the environment on the left and its type on the right.
Diagrammatically this is:

Jx ∶ θ , Γ ⊢ t ∶ θ′K =
t θ′

x ∶ θ
Γ

In our graphical notation we will bundle several wires into one, for read-
ability, and lift the standard components to work on bundles of wires (i.e. all
types) by a pointwise lifting. Formally, the lifting is defined by structural re-
cursion on the given type.

Terms as networks As the variables in the context correspond to the linear !
type, the GOI interpretation requires the use of dereliction:

Jx ∶ θ , Γ ⊢ x ∶ θK =
dx

Abstraction and application When interpreting an abstraction, the variable
is added to the context of the inner term, just like in the typing rule, and ex-
posed in the interface of the final component. We only show the diagrammatic
definition, since the formalisation readily follows from it:

JΓ ⊢ λx . t ∶ θ → θ′K =
t

Γ

x

In the interpretation of application note the use of dereliction and exponen-
tiation in the way the argument t′ is connected to function t; this corresponds
to the linear decomposition of call-by-name evaluation. Also note the use of
contraction to explicitly share the identifiers in the context Γ.
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JΓ ⊢ t t′ ∶ θ′K =

t

δ

Γ c

t′

Constants The interpretation of a constant is a simple component that an-
swers with 0 when requested, i.e. 0(●) = 0. Diagrammatically,

JΓ ⊢ 0 ∶ NK =
p00

Successor A new component is needed for the interpretation of the successor
function. This handles the S operation directly on a natural number.

S (�, ●) = (●, �)
S (n, �) = (�, S n)

p0Sp1

To make it possible to use this component in our interpretation it needs to
be wrapped up in an abstraction and a dereliction to bring the argument to the
right linear type.

JΓ ⊢ S ∶ N→ NK =
Sd
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Conditionals Similarly to how addition was handled, conditionals are done
by constructing a new component and then wrapping it up as a function.

if(●, �, �, �) = (�, ●, �, �)
if(�, 0, �, �) = (�, �, ●, �)

if(�, S n, �, �) = (�, �, �, ●)
if(�, �, n, �) = (n, �, �, �)
if(�, �, �, n) = (n, �, �, �)

p0if
p1

p2

p3

For the final interpretation of conditionals in the language, we add derelic-
tions (since arguments are of exponential type):

J Γ ⊢ if ⋅ then ⋅ else ⋅ ∶ N→ N→ N→ N K =

if

d

d

d

Recursion Recursion is interpreted as a component that connects to itself, fol-
lowing Mackie [100].

JΓ ⊢ Y ∶ (θ → θ)→ θK =
31



δ

d

c

The abstract token machine interpretation given in this section is known
to be sound [73, 100].

Theorem 3.1.1 (GOI soundness). Let ⊢ t ∶ N be a closed PCF program at
ground type and JtK its GOI abstract-token machine representation. If t eval-
uates to n (t ⇓ n) then JtK(●) = n.

3.2 the sic machine
To be able to describe the inner workings of the components and see how they
can be compiled to executable distributed networks we construct an abstract
machine, the Stack-Interaction-Control (SIC) machine, which has a small in-
struction set tailor-made for that purpose. The SIC machine works similarly
to Mackie’s [100] but with the important distinction that it also allows send-
ing and receiving messages to and from other machines, to model networked
distribution.

The machine descriptions and configurations are specified in Figure 3.2.
The sets Label and Port are taken to be some countably infinite sets from which
we can draw elements to use as distinct identifiers for the internal labels and
external ports of the machines. We distinguish between the statics and the dy-
namics of SIC machines. The statics, or a machine description, consists of a
PortMap, mapping external ports to internal labels, and a LabelMap, mapping
internal labels to chunks of code. The dynamics, or a machine configuration,
additionally has a possibly running thread, Maybe (Code × Token) and a Stack
(that persists the thread). A fragment of code is a list of instructions that ends
in a branch or a send instruction. Note that there is no receive instruction; the
transition relation will always let an inactive machine receive messages, obvi-
ating the need for such an instruction. An initial configuration for a machine
description (P, L) is given by the function initial (P, L) = (nothing, [], P, L).

3.2.1 SIC semantics
The transition relation of the machines is given in Figure 3.3. The machine
instructions make it possible to manipulate the data token of an active (just)
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Label l ∈ Label
Port p ∈ Port

Instruction Instr ∋ i ∶∶= inl ∣ inr Tags
∣ fst ∣ snd Projections
∣ unfst ∣ unsnd Reverse projections
∣ swap ∣ push ∣ pop Stack operations
∣ zero ∣ suc Natural numbers

Code Code ∋ c ∶∶= i; c Sequencing
∣ jump l Jump to label l
∣ match l1 l2 Conditional jump
∣ if l1 l2 Conditional jump (nat)
∣ send p Send on port p

Message Msg ∆= Port × Token
Stack S ∈ Stack ∆= List Token

Port map P ∈ PortMap ∆= Port→ Label
Label map L ∈ LabelMap ∆= Label→ Code

Descr. ∆= PortMap × LabelMap
Config. M ∈ Config ∆=Maybe (Code × Token) Thread

× Stack
× PortMap
× LabelMap

Figure 3.2: SIC machine definition
The sets Label and Port are taken to be some countably infinite sets from which we can draw elements
to use as distinct identifiers for the internal labels and external ports of the machines. We distinguish
between the statics and the dynamics of SIC machines. The statics, or a machine description, consists
of a PortMap, mapping external ports to internal labels, and a LabelMap, mapping internal labels to
chunks of code. The dynamics, or a machine configuration, additionally has a possibly running thread,
Maybe (Code × Token) and a Stack (that persists the thread). A fragment of code is a list of instructions
that ends in a branch or a send instruction.
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(just ((inl; C), e), S , P, L) Ð→ (just (C , (inl e)), S , P, L)
(just ((inr; C), e), S , P, L) Ð→ (just (C , (inr e)), S , P, L)

(just ((fst; C), (e1, e2)), S , P, L) Ð→ (just (C , e1), e2 ∶∶ S , P, L)
(just ((snd; C), (e1, e2)), S , P, L) Ð→ (just (C , e2), e1 ∶∶ S , P, L)
(just ((unfst; C), e1), e2 ∶∶ S , P, L) Ð→ (just (C , (e1, e2)), S , P, L)
(just ((unsnd; C), e2), e1 ∶∶ S , P, L) Ð→ (just (C , (e1, e2)), S , P, L)
(just ((swap; C), e), e1 ∶∶ e2 ∶∶ S , P, L) Ð→ (just (C , e), e2 ∶∶ e1 ∶∶ S , P, L)

(just ((push; C), e), S , P, L) Ð→ (just (C , ●), e ∶∶ S , P, L)
(just ((pop; C), e1), e2 ∶∶ S , P, L) Ð→ (just (C , e1), S , P, L)
(just ((zero; C), e), S , P, L) Ð→ (just (C , 0), S , P, L)
(just ((suc; C), n), S , P, L) Ð→ (just (C , S n), S , P, L)
(just ((jump l), e), S , P, L) Ð→ (just (L(l), e), S , P, L)

(just ((match l1 l2), (inl e)), S , P, L) Ð→ (just (L(l1), e), S , P, L)
(just ((match l1 l2), (inr e)), S , P, L) Ð→ (just (L(l2), e), S , P, L)

(just ((if l1 l2), 0), S , P, L) Ð→ (just (L(l2), ●), S , P, L)
(just ((if l1 l2), S n), S , P, L) Ð→ (just (L(l1), ●), S , P, L)
(just ((send p), e), S , P, L)

send (p,e)
ÐÐÐÐÐ→ (nothing, S , P, L)

(nothing, S , P, L)
receive (p,e), p∈dom(P)
ÐÐÐÐÐÐÐÐÐÐÐ→ (just (L(P(p)), e), S , P, L)

Figure 3.3: SIC transition relation
Themachine instructions make it possible tomanipulate the data token of an active (just) machine, using
the stack for state and intermediate results. The last two rules handle sending and receiving messages.
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machine, using the stack for state and intermediate results. The last two rules
handle sending and receiving messages.

Example 3.2.1. The following code fragment can be used to construct a tuple
(1, 2) and send it on the port p:

C = zero; suc; push; zero; suc; suc; unsnd; send p

Executing the above code, we get the following trace:

(just (C , e), S , P, L)Ð→3

(just ((zero; suc; suc; unsnd; send p), ●), 1 ∶∶ S , P, L)Ð→3

(just ((unsnd; send p), 2), 1 ∶∶ S , P, L)Ð→

(just (send p, (1, 2)), S , P, L)
send (p,(1,2))
ÐÐÐÐÐÐ→

(nothing, S , P, L)

We now define a machine network by instantiating our general network
formalism (Section 2.5) with the SIC transition relation. We note that its type
does not quite fit since it is missing the initial node name, but this is easily
remedied by constructing a new relation based on SIC that just ignores this ad-
ditional component. An initial network configuration for a family of machine
descriptions, initial(N), is the pointwise lifting of the function on machine
descriptions of the same name.

We will use the notation M1, . . . ,Mk for an indexed family of k machine
configurations (or descriptions when dealing with statics).

To connect the port p0 of machine M to p1 of M′ we rename them in the
machine descriptions to the same port name p. A port must be connected to at
most one other port; in this case the resulting network is deterministic, as each
message can be received by at most one other machine. A port of a machine
which is not connected to a port of another machine is said to be a port of
the network. By inputs(M) (outputs(M)) we mean the inputs (outputs) of a
machine, whereas by inputs(N) (outputs(N)) we mean the inputs (outputs)
of a network. Similarly, by π(M) (π(N)) we mean the ports of a machine
(network).

Let active be a function on families of machines that returns the machines
in its argument that are in the just state.

Proposition 3.2.2. For any families of machine configurations N and N ′ and
lists ofmessagesM andM′, if (N ,M)Ð→ (N ′,M′), then ∣M′∣+∣active(N ′)∣ =
∣M∣ + ∣active(N)∣.
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The proofs of this proposition and other theorems from this chapter are
given in Appendix A so as to not break the flow of reading. In particular, this
proposition means that if we start out with one message and no active ma-
chines, there can be at most one active machine at any point in the network’s
execution — the execution is single-token.

3.2.2 Components as SIC code
In each instance of the components we initially take all ports px and labels lx to
be distinct. To emphasise the input/output role of a port we sometimes write
them as pix when serving as input and pox when serving as output. Themachine
descriptions for the different components are described by giving their port
mappings P and label mappings L as a tuple.

The following threemachines are stateless. They use the stack internally for
intermediate results, but ultimately return the stack to the initial empty state.

Dereliction, d, removes the first component of the token tuple when going
from left to right, and adds it when going in the other direction:

dereliction = ⟨ pi0 ↦ l0
pi1 ↦ l1

, l0 ↦ snd; pop; send po1
l1 ↦ push; unfst; send po0

⟩

Comultiplication, δ, reassociates the data token to go from ((e , e′), e′′) to
(e , (e′, e′′)) and back:

comult = ⟨ pi0 ↦ l0
pi1 ↦ l1

, l0 ↦ fst; snd; swap; unfst; unsnd; send po1
l1 ↦ snd; fst; swap; unsnd; unfst; send po0

⟩

Contraction, c, usesmatching on the first component of the token to choose
the port to send on when going from left to right.

contraction = ⟨
pi0 ↦ l0
pi1 ↦ l1
pi2 ↦ l2

,

l0 ↦ fst; match l3 l4
l1 ↦ fst; inl; unfst; send po0
l2 ↦ fst; inr; unfst; send po0
l3 ↦ unfst; send po1
l4 ↦ unfst; send po2

⟩

Dotted boxes with k inputs are defined as follows: Let P i
in = {pi0, . . . , pik−1},

P i
out = {pik , . . . , pi2k−1}, Let Po

in = {po0, . . . , pok−1}, Po
out = {pok , . . . , po2k−1}, and

Lout = {lk , . . . , l2k−1}. The box for these sets of ports and labels is then the
following (note that boxes use the stack for storing their state):

box = ⟨ pii ↦ li ∣ pii ∈ P i
in ∪ P i

out , li ↦ snd; send poi+k ∣ li ∈ Lin
li ↦ unsnd; send poi−k ∣ li ∈ Lout

⟩
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For the constant 0 component, the abstract machine is defined as follows:

constant = ⟨ pi0 ↦ l0 , l0 ↦ zero; send po0 ⟩

The successor machine first asks for its argument, then runs the successor
instruction on that.

suc = ⟨ pi0 ↦ l0
pi1 ↦ l1

, l0 ↦ send po1
l1 ↦ suc; send po0

⟩

The conditional uses the matching instruction if to choose the branch
depending on the natural number of the token.

if = ⟨

pi0 ↦ l0
pi1 ↦ l1
pi2 ↦ l2
pi3 ↦ l2

,

l0 ↦ send po1
l1 ↦ if ltrue lfalse
ltrue ↦ send po2
lfalse ↦ send po3
l2 ↦ send po0

⟩

Theorem 3.2.3 (Soundness). Let ⊢ t ∶ N be a closed PCF program of ground
type, JtK its GOI abstract-token machine representation and N its SIC-net im-
plementation. If t evaluates to n (t ⇓ n) then JtK(●) = n and (N , {(pi , ●)})Ð→∗
(N , {(po , n)}).

Proof outline The soundness of the SIC implementation of each of the com-
ponents above, i.e. that they give the same result as the GOI interpretation
wherever it is defined, can be verified by a straightforward symbolic execution
for each clause of the GOI component definitions. We can similarly show that
SIC network composition is sound with respect to GOI component compos-
ition defined above. We can then prove soundness by induction on the term
since the compilation is compositional.

3.3 combining machines
When writing distributed applications, the location at which a computation is
performed is vital. Traditional approaches usually make this clear, for instance
by their usage of explicit message passing. Using our current term interpret-
ation, thinking of each abstract machine as running on a different node in a
network, we get distributed programs in which the communication is handled
automatically, but wewill have one abstractmachine for each (very small) com-
ponent — the interpretation produces extremely fine-grained networks where
each node does very little work before passing the token along to another node.
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It is expected that the communication is one of the most performance crit-
ical parts in a distributed network, which is why it would be better if bigger
chunks of computations happened on the same node before the token was
passed along.

To make this possible, we devise a way to combine the descriptions of two
abstract machines in a deterministic network to get a larger abstract machine
with the same behaviour as the two original machines. Informally, the way
to combine two machines is to remove ports that are used internally between
the two machines (if any) and replace sends on those ports with jumps. The
algorithm for combining components M1 = (P1, L1) and M2 = (P2, L2) is de-
scribed more formally below.

We use ∆ for the symmetric difference of two sets. If f ∶ A → B is a
function we write as f ↾ A′ the restriction of f to the domain A′ ⊆ A and we
extend it in the obvious way to relations. We use the standard notation C[s/s′]
to denote the replacing of all occurrences of a string s by s′ in C. We write
C[s(x)/s′(x) ∣ x ∈ A] to denote the substitution of all strings of shape s(x) by
strings of shape s′(x) with x in a list A, defined inductively as

C[s(x)/s′(x) ∣ x ∈ []] = C
C[s(x)/s′(x) ∣ x ∈ a ∶∶ A] = (C[s(a)/s′(a)])[s(x)/s′(x) ∣ x ∈ A]

Thecombination of twomachines is defined by keeping the ports which are
not shared and by replacing in the code the send operations to shared ports by
jumps to labels given by the port mappings.

combine(M1,M2) = ⟨(P1 ∪ P2) ↾ (π(M1)∆ π(M2)),
(L1 ∪ L2)[send p/jump P(p) ∣ p ∈ π(M1) ∩ π(M2)]⟩.

There are two abuses of notation above. First, the union P1∪P2 above is on func-
tions taken as sets of pairs and it may not result in a proper function. However,
the restriction to π(M1)∆ π(M2) always produces a proper function. Second,
π(M1)∩π(M2) is a set and not a list. However, the result of this substitution is
independent of the order in which the elements of this set are taken from any
of its possible list representations.

We also lift the combination operations to families of machines, in the ob-
vious way:

combine(M1, . . . ,Mk) = combine(M1, combine(. . . ,Mk))

A family of machines is said to be combinable if combining any of its com-
ponents does not change the overall network behaviour:
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Definition 3.3.1. A deterministic family of machines N = M1, . . . ,Mk is com-
binable if whenever

(initial(N), [(p, e)])Ð→∗ (initial(N), [(p′, e′)])

for some p in inputs(N), p′ in outputs(N), then for any

Ncombined = combine(N1), . . . , combine(Nk′)

obtained from a partition N = N1, . . . ,Nk′ we have that

(initial(Ncombined), [(p, e)])Ð→∗ (initial(Ncombined), [(p′, e′)])

Note that this only says something about runs that do not leave anything in
the stacks (as evident by the transitions’ ending up in the initial state), which
is enough for our purposes.

The set of combinable machines is hard to define exactly, so we would just
like to find a sound characterisation of such machines which covers all the
basic components we use.

Definition 3.3.2. A machine description M = (P, L) is stack-neutral (or state-
less) if for all stacks S and S′, p in inputs(M), p′ in outputs(M), if

((nothing, S , P, L), [(p, e)])Ð→∗ ((nothing, S′, P, L), [(p′, e′)])

then S = S′.

Definition 3.3.3. Amachine network N of k machines described by port map-
pings Pi and label mappings Li is stack-neutral, if for all stacks Si and S′i , p in
inputs(N), p′ in outputs(N), if

({(nothing, Si , Pi , Li) ∣ i ∈ {1, . . . , k}}, [(p, e)])Ð→∗

({(nothing, S′i , Pi , Li) ∣ i ∈ {1, . . . , k}}, [(p′, e′)])

then all Si = S′i .

Note that this definition is more general than having a list of stack-neutral
machines, as a stack-neutral network’s machines may use the stack for state
after they have been exited as long as the stack is cleared before an output on a
network port.

Proposition 3.3.4. If twomachine networks N1 and N2 (of initially passivema-
chines) are stack-neutral, combinable and the composition N1,N2 is determin-
istic, then N1,N2 is stack-neutral and combinable.
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Recall the update notation from Section 2.5:

(M1, . . . ,Mk)[i ↦ M] ∆= M1, . . . ,Mi−1,M ,Mi+1,Mk

Lemma 3.3.5. Let

N = (T1, S1, P1, L1), . . . , (Tk , Sk , Pk , Lk)

N ′ = (T ′1 , S′1 , P′1 , L′1), . . . , (T ′k , S′k , P′k , L′k).

If
(N ,M)Ð→∗ (N ,M′)

then for any S

(N[i ↦ (Ti , Si ∶∶ S , Pi , Li)],M)Ð→∗ (N ′[i ↦ (T ′i , S′i ∶∶ S , P′i , L′i)],M′).

Proof. This is a simple fact about SIC machines — there are no instructions
that branch depending on how many elements there are on the stack.

For any SIC netN let box(N) beN with an additional boxmachineM with
input ports outputs(N) and output ports inputs(N), defined as in Section 3.2.2.

Proposition 3.3.6. If a machine network N is stack-neutral and combinable
then box(N) is stack-neutral and combinable.

From the above two results it follows by induction on the structure of the
generated nets that

Theorem 3.3.7. If Γ ⊢ t ∶ θ is a PCF term, JtK its GOI abstract-token ma-
chine representation and N the implementation of JtK as a SIC net then N is
combinable.

With the ability to combine components, we can now exploit the t@A an-
notations in the language. They make it possible to specify where a piece of
code should be located (A is a node identifier). When this construct is en-
countered in compilation, the components generated in compiling t are tagged
with A (without overwriting tags stemming from inside t).

Next, the components with the same tag are combined using the algorithm
above and their combined machine placed on the node identified by the tag.
This allows the programmer to arbitrarily choose where the compiled repres-
entation of a part of a term is placed. Soundness (Theorem 3.2.3) along with
the freedom to combine nets (Theorem 3.3.7) ensures that the resulting net-
work is a correct implementation of any (terminating) PCF program.
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3.4 compiling pcf
We developed an experimental compiler1 that compiles to C, using MPI for
communication, using SIC abstract machines as an intermediate formalism.
Each machine description in a network is mapped to a C source file, using a
function for each machine instruction and global variables for the data token
and the stack. An example of a predefined instruction is that for the swap
instruction:

inline void swap() {
Data d1 = pop_stack();
Data d2 = pop_stack();
push_stack(d1);
push_stack(d2);

}

An abstract machine’s label l corresponds to a C function void l()whose
definition is a list of calls to the predefined machine instruction functions.
In this representation, jumps are function calls. All predefined functions are
small and not used recursively so they can be efficiently inlined.

Each process in MPI has a unique identifier called its rank, and messages
can also be assigned a tag. A port in a SIC machine is uniquely determined by
its tag, but also has to be assigned a rank so that the message can be sent to the
correct node. This is resolved at compile time. The main loop for a machine
listening on ports corresponding to tags 0 and 1 looks like this:

while(1) {
int port = receive();
switch (port) {
case 0: l0(); break;
case 1: l1(); break;
default: break;

}
}

Here l0 and l1 are functions corresponding to the labels associated with
the ports. The predefined function receive calls MPI_Recv, which is an MPI
function that blocks until a message is received. A process in this state thus
corresponds to a machine in nothing state. Upon receiving a message, the re-
ceive function deserialises the message and assigns it to the global data token

1Online appendix: goi directory.
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variable before returning the message’s tag. The predefined function for the
send instruction now has to take two parameters: the destination node’s rank
and the port’s tag:

inline void send(int node, int port);

The function takes care of serialising the data token and sending it to the
correct node using MPI_Send.

When all machines have been compiled to C, these can in turn be com-
piled to executables and run on different machines in a network where they
use message passing for communication.

3.5 related work
Here we outline the work that is immediately related to the GOI interpretation;
work related in more general ways, such as using interaction semantics in gen-
eral or aiming to solve a problem similar to ours can be found in Section 2.1,
Section 4.4, and Section 7.9.

There are two contrasting views of the execution taking place in GOI net-
works, although independent of the original formalism [61]. The first one is
to reduce the networks themselves, i.e. to perform graph reduction in interac-
tion nets [88]. This line of work has for example provided insight into optimal
lambda reduction [63] where there are parallels to the work of Lamping [90]
on the same topic. The second one, that we also use, is to push a token through
a static network, which was pioneered by Mackie [100] who provides essential
inspiration for our work. While the graph reducing line of work is a fruit-
ful area of research it seems to be at odds against our method of compilation
which relies on the modification of a relatively static network at compile-time
to control granularity. Mackie [100] also shows that GOI is useful not only
for the study of semantics, but also as a methodology for compiling programs.
Another similar line of work and inspiration for our work is the Geometry of
Synthesis, that uses a GOI-like compilation of a call-by-name programming
language with recursion to target reconfigurable digital circuits [53, 58, 59, 60].

Hoshino [73], that we also borrow our graphical notation from, presents
another use of GOI for the semantics of programming languages, namely a
linear functional programming language.

Danos, Herbelin, andRegnier [31] give an abstractmachine forGOI, called
the InteractionAbstractMachine (IAM). Insight into the call-return symmetry
of the legal paths in GOI shows that this machine performs redundant work,
which they optimise by introducing the Jumping Abstract Machine (JAM), an
environment machine, that essentially forgoes work in the return direction
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by jumping [32]. The JAM has interesting connections with the Krivine ma-
chine [86] — they are isomorphic under certain embeddings of the linear cal-
culus into the lambda calculus — but the usage of environments seems to pro-
hibit using a distributed interpretation of nets (see Chapter 6 for how different
the formulation becomes for an environment machine). An additional optim-
isation was found by Fernández and Mackie [39]: whereas the JAM shows that
it is possible to avoid reverse computation, this work shows that it is possible to
avoid recomputing repeated subpaths, yielding a call-by-value interpretation.

Our main innovation compared to this previous work is the application of
GOI to distributed systems and the abstract machine with granularity control
via combinations.

Berry and Boudol [15] introduce the Chemical AbstractMachine (CHAM)
which provides an inspiration for the communication part of the SIC abstract
machine (Section 2.5). The paper does not provide any insight into the imple-
mentation of a system based on a CHAM, although that is outside of the scope
of their work which deals with reasoning about systems.

Banâtre, Coutant, and Métayer [13] does provide some insight on the im-
plementation of such a machine but relies either on broadcasting the multiset
on which it is performing its transformations to all nodes or on using shared
memory, which suggests that it is not suitable for distributed systems where
such an operation can be costly. This is why we use messages tagged with
ports in our machines, meaning that the messaging is point-to-point and can
be implemented efficiently using message passing.

Schöpp [123] shows that there is a relation between interaction-based com-
pilation methods and more conventional methods such as translations to con-
tinuation-passing style and defunctionalisation.

The Hume box calculus [66] has a semantics-preserving horizontal com-
bination operation that is conceptually similar to our combination operation,
but in the context of boxes in the Hume language [67], a language targeting
resource-bound systems.

3.6 conclusion

We have shown a programming language and compilation model for higher-
order RPCs, that provides freedom in choosing the location at which a compu-
tation takes place with implicitly handled communication. This was achieved
by basing the model on the Geometry of Interaction and constructing a way
to produce nodes that are more coarse-grained than the standard elementary
nodes, and showing that this is still correct.
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We defer benchmarking the compiler to Section 7.8, so that we can also
compare our implementation to the abstract machines that will be defined in
subsequent chapters. We will however make some remarks about the perform-
ance of the compiler here as a motivation for the next chapter. For single-node
computation of programs doing simple arithmetic, the compiler is between 30
and 200 times slower than a naive implementation of the Krivinemachine [86].
The source of this inefficiency is in part due to the embedding into linear logic,
which means that programs do work to share (using contraction) the variables
in the environment. For multi-node programs, the programs compiled using
GOI usemessages that sometimes grow big. This is because the tokens contain
what amounts to (part of) the computational context of the terms.

The GOI model that we use also seems to be difficult to parallelise, be-
cause of the boxes that use global state. Although we stated in the introduc-
tion, Chapter 1, that the focus of this work is not parallelism or concurrency,
it would still be preferable if we at least did not prohibit such features in the
compilation model.

The next chapter aims to overcome some of these problems by using a con-
ceptually similar compilation model based instead on game semantics.
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Chapter 4

Game semantics
Synopsis We define new abstract machines for game semantics which cor-
respond to networks of conventional computers, and can be used as an in-
termediate representation for compilation targeting distributed systems. This
is achieved in two steps. First we introduce the Heap and Register Abstract
Machine (HRAM), an abstraction of a conventional multi-threaded computer,
which can be structured into HRAM nets, an abstract point-to-point network
model. Game Abstract Machines (GAMs), are HRAMs with additional struc-
ture at the interface level, but no special operational capabilities. We show
that GAMs cannot be naively composed, but composition must be mediated
using appropriate HRAM combinators. We start from a formulation of game
semantics in the nominal model [48], which has two benefits. First, pointer
manipulation requires no encoding or decoding, as in integer-based repres-
entations, but exploits the HRAM ability to create locally fresh names. Second,
token size is constant as only names are passed around; the computational
history of a token is stored by the HRAM rather than passing it around (cf.
IAM [31] and theGOI compiler (Chapter 3)). HRAMs are also flexible enough
to allow the representation of game models for languages with state (non-inno-
cent games) or concurrency (non-alternating games). We illustrate the poten-
tial of this technique by implementing a distributing compiler for Idealised
Concurrent Algol (ICA), a higher-order programming language with shared
state concurrency [55], thus significantly extending our previous distributing
PCF compiler based on GOI (Chapter 3). We show that compilation is sound
and memory safe, i.e. no (distributed or local) garbage collection is necessary.

4.1 simple nets
In this sectionwe introduce a class of basic abstractmachines formanipulating
heap structures, which also have primitives for communication and control.
They represent a natural intermediate stage for compilation to machine lan-
guage, and will be used as such in Section 4.3. The machines can naturally be
organised into communication networkswhich give an abstract representation
of distributed systems. We find it formally convenient to work in a nominal
model in order to avoid the difficulties caused by concrete encoding of game
structures, especially justification pointers, as integers. We assume from the
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reader a certain familiarity with basic nominal concepts. The interested reader
is referred to the literature ([49] is a starting point).

4.1.1 Heap and Register Abstract Machines (HRAMs)
We fix a set of port names (A) and a set of pointer names (P) as disjoint sets
of atoms. Let L ∆= {O,P} be the set of polarities of a port. To maintain an
analogy with game semantics from the beginning, port names correspond to
game semantic moves and input/output polarities correspond to opponent/
proponent. A port structure is a tuple (l , a) ∈ Port ∆= L × A. An interface
A ∈ Pfin(Port) is a set of port structures such that all port names are unique,
i.e. ∀p = (l , a), p′ = (l ′, a′) ∈ A, if a = a′ then p = p′. Let the support of an
interface be sup(A) ∆= {a ∣ (l , a) ∈ A}, its set of port names.

The tensor of two interfaces is defined as

A⊗ B ∆= A∪ B, where sup(A) ∩ sup(B) = ∅.

The duals of interfaces, port structures, and polarities are defined as

A∗ ∆= {p∗ ∣ p ∈ A}

(l , a)∗ ∆= (l∗, a)

O∗ ∆= P

P∗ ∆= O.

An arrow interface is defined in terms of tensor and dual,

A⇒ B ∆= A∗ ⊗ B.

We introduce notation for opponent ports of an interface A(O) ∆= {(O, a) ∈
A}. The player ports of an interface A(P) is defined analogously. The set of all
interfaces is denoted by I . We say that two interfaces have the same shape if
they are equivariant, i.e. there is a permutation π ∶ A→ A such that

{π ⋅ p ∣ p ∈ A1} = A2,

and we write π ⊢ A1 =A A2, where π ⋅ (l , a) ∆= (l , π(a)) is the permutation
action of π. We may write only A1 =A A2 if π is obvious or unimportant.

Let the set of data D be ∅ ∈ 1, pointer names a ∈ P or integers n ∈ Z. Let
the set of instructions Instr be as below, where i , j, k ∈ N + 1 (which permits
ignoring results and allocating “null” data).
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• i ← new j, k allocates a new pointer in the heap and populates it with the
values stored in registers j and k, storing the pointer in register i.

• i , j ← get k reads the tuple pointed at by the name in the register k and
stores it in registers i and j.

• update i , j writes the value stored in register j to the second component
of the value pointed to by the name in register i.

• free i releases the memory pointed to by the name in the register i and
resets the register.

• swap i , j swaps the values of registers i and j.

• i ← set j sets register i to value j.

Let code fragments C be C ∶∶= Instr; C ∣ ifzero N C C ∣ spark a ∣ end. The
port names occurring in the code fragment are sup ∈ C → Pfin(A), defined
in the obvious way (only the spark a instruction can contribute names). An
ifzero i instruction will branch according to the value stored in register i. A
spark a will either jump to a or send a message to a, depending on whether a
is a local port or not.

An engine is an interface together with a port map, E = (A, P) ∈ I ×
(sup(A(O)) → C) such that for each code fragment c ∈ cod P and each port
name a ∈ sup(c), (P, a) ∈ A, meaning that ports that are “sparked” must be
output ports of the interface A. The set of all engines is E .

Engines have threads and shared heap. All threads have a fixed number of
registers r, which is a global constant. For the language ICA we will need four
registers, but languages with more kinds of pointers in the game model, e.g.
control pointers [89], may need and use more registers.

A thread is a tuple t = (c, d) ∈ T = C ×Dr: a code fragment and an r-tuple
of data register values.

An engine configuration is a tuple k = (t, h) ∈ K = Pfin(T) × (P ⇀ P ×D):
a set of threads and a heap that maps pointer names to pairs of pointer names
and data items.

A pair consisting of an engine configuration and an engine will be written
using the notation k ∶ E ∈ K × E . Define the function initial ∈ E → K × E as
initial(E) ∆= (∅,∅) ∶ E for an engine E. This function pairs the engine up with
an engine configuration consisting of no threads and an empty heap.

HRAMs communicate using messages, each consisting of a port name and
a vector of data items of size rm: m = (x , d) ∈M = A ×Drm . The constant rm
specifies the size of the messages in the network, and has to fulfil rm ⩽ r. For
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a set X ⊆ A, defineMX = X × Drm , the subset ofM whose port names are
limited to those of X.

We specify the operational semantics of an engine E = (A, P) as a transition
relation − −Ð→

E ,χ
− ⊆ K× ({●}∪ (L×M))×K. Like the Tagged representation in

Section 2.5, the relation is either labelled with ●—a silent transition— or a po-
larised message — an observable transition. The messages will be constructed
simply from the first rm registers of a thread, meaning that on certain actions
part of the register contents become observable in the transition relation.

To aid readability, we use the following shorthands:

• n Ð→
E ,χ

n′ means n ●Ð→
E ,χ

n′ (silent transitions).

• n
(a,d)
ÐÐ→
E ,χ

n′ means n
(P,(a,d))
ÐÐÐÐ→

E ,χ
n′ (output transitions).

• n
(a,d)●

ÐÐÐ→
E ,χ

n′ means n
(O,(a,d))
ÐÐÐÐ→

E ,χ
n′ (input transitions).

We use the notation d for n-tuples of registers and then di for the (zero-
based) ith component of d, and d∅

∆= ∅. For updating a register, we use d[i ∶=
d] ∆= (d0,⋯, di−1, d , di+1,⋯, dn−1) and d[∅ ∶= d] ∆= d.

To construct messages from the register contents of a thread, we use the
functions msg ∈ Dr → Drm , which takes the first rm components of its input,
and regs ∈ Drm → Dr, which pads its input with ∅ at the end (i.e. regs(d) ∆=
(d0, . . . , drm−1,∅, . . .)).

The network connectivity is specified by the function χ, which will be de-
scribed in more detail in the next subsection. For a port name a, χ(a) can be
read as “the port that a is connected to”. The full operational rules for HRAMs
are given in Figure 4.1. The interesting rule is that for spark because it depends
on whether the port where the next computation is “sparked” is local or not.
If the port is local then spark makes a jump, and if the port is non-local then
it produces an output token and the current thread of execution is terminated,
similar to the IAM. Compared to the SICmachine, which had separate instruc-
tions for jumping and sending, this means that we do not have to modify the
code of the machines when combining them.

4.1.2 HRAM nets
A well-formed HRAM net S ∈ S is a set of engines, a function over port names
specifying what ports are connected, and an external interface, S = (E , χ,A),
where E ∈ E ,A ∈ I , and χ is a bijection between the net’s output and input port
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Figure 4.2: Example HRAM net
An HRAM net with two HRAMs (interfaces A,A′, two ports each),
each with two running threads (t i , t′i) with local registers (d i , d′i)
and shared heaps (h, h′). Two of the HRAM ports are connected
and two are part of the global interface B.

names. Specifically, χ has to be in sup(A(O)⊗A(P)
E
)→ sup(A(P)⊗A(O)

E
), where

AE = ⊗{A ∣ (A, P) ∈ E}.
Note that HRAM nets are not exactly the same as the networks defined in

Section 2.5, even though they are similar, which is why we cannot use the same
formalism here. The HRAM nets put a greater emphasis on composability by
explicitly including an interface (i.e. the type that governs what nets can be
composed), through which the net can communicate with an external envir-
onment. This makes it possible to reason about the semantics of open terms
compiled to nets.

Figure 4.2 shows a diagram of an HRAM net with two HRAMs (interfaces
A,A′, twoports each), eachwith two running threads (ti , t′i)with local registers
(di , d′i) and shared heaps (h, h′). Two of the HRAM ports are connected and
two are part of the global interface B.

The function χ gives the net connectivity. It being in sup(A(O) ⊗ A(P)
E
) →

sup(A(P)⊗A(O)
E
)means that it maps each input port name of the net’s interface

and output port name of the net’s engines to either an output port name of the
net’s interface or an input port name of one of its engines. Since it is a bijection,
each port name (and thus port) is connected to exactly one other port name,
so the abstract network model we are using is point-to-point.

For an engine e = (A, P), we define a singleton net with e as its sole engine
as singleton(e) = ({e}, χ,A′), where A′ is an interface such that χ ⊢ A =A A′
and χ is given by:

χ(a) ∆= π(a) if a ∈ sup(A(P))

χ(a) ∆= π−1(a) if a ∈ sup(A′(O))
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A net configuration is a set of tuples of engine configurations and engines
and a multiset of pending messages: n = (e ∶ E ,m) ∈ N = Pfin(K × E) ×
Msetfin(M). Define the function initial ∈ S → N as

initial(E , χ,A) ∆= ({initial(E) ∣ E ∈ E},∅),

a net configuration with only initial engines and no pending messages.
The operational semantics of a net S = (E , χ,A) is specified as a transition

relation − −Ð→ − ⊆ N × ({●} ∪ (L ×Msup(A))) ×N , the middle component for
communication with the environment. The semantics is given in the style of
the CHAM [15], where HRAMs are “molecules” and the pending messages of
the HRAM net is the “solution”. HRAM inputs (outputs) are to (from) the set
of pending messages. Silent transitions of any HRAM are silent transitions of
the net. The rules are given in Figure 4.3. The first three rules are the same as
those for the asynchronous networks given in Section 2.5, allowing HRAMs
to communicate within the net. The last two rules are new and let the net as
a whole make observable transitions. This means that we can reason about
the semantics of a net in terms of how it might communicate with an external
environment.

4.1.3 Semantics of HRAM nets
We define List A for a set A to be finite sequences of elements from A, and use
s∶∶s′ for concatenation. A trace for a net (E , χ,A) is a finite sequence ofmessages
with polarity: s ∈ List (L×Msup(A)). Write α ∈ L×Msup(A) for single polarised
messages. We use the same notational convention as before to identify inputs
(−●).

For a trace s = α1∶∶α2∶∶⋯∶∶αn, define
sÐ→ to be the following composition of

relations on net configurations: α1Ð→Ð→∗ α2Ð→Ð→∗ ⋯ αnÐ→, whereÐ→∗ is the reflexive
transitive closure ofÐ→, i.e. any number of silent steps are allowed in between
those that are observable.

Write tracesA for the set List (L×Msup(A)). The denotation JSK ⊆ tracesA of
a net S = (E , χ,A) is the set of traces of observable transitions reachable from
the initial net configuration initial(S) using the transition relation:

JSK ∆= {s ∈ tracesA ∣ ∃n.initial(S)
sÐ→ n}

The denotation of a net includes the empty trace and is prefix-closed by con-
struction.

As with interfaces, we are not interested in the actual port names occurring
in a trace, so we define equivariance for sets of traces. Let S1 ⊆ tracesA1 and
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e Ð→
E ,χ

e′

(e ∶ E ∪ e ∶ E ,m)Ð→ (e′ ∶ E ∪ e ∶ E ,m)

e mÐ→
E ,χ

e′

(e ∶ E ∪ e ∶ E ,m)Ð→ (e′ ∶ E ∪ e ∶ E , {m} ⊎m)

e m●Ð→
E ,χ

e′

(e ∶ E ∪ e ∶ E , {m} ⊎m)Ð→ (e′ ∶ E ∪ e ∶ E ,m)

(P, a) ∈ A

(e ∶ E , {(a, d)} ⊎m)
(a,d)
ÐÐ→ (e ∶ E ,m)

(O, a) ∈ A

(e ∶ E ,m)
(a,d)●

ÐÐÐ→ (e ∶ E , {(χ(a), d)} ⊎m)

Figure 4.3: Operational semantics of HRAM nets
The first three rules allow HRAMs to communicate within the net.
The last two rules let the net as a whole make observable transitions.
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S2 ⊆ tracesA2 for A1,A2 ∈ I . S1 =A S2 if and only if there is a permutation
π ∈ A→ A such that {π ⋅ s ∣ s ∈ S1} = S2, where π ⋅ є ∆= є and π ⋅ (s∶∶(l , (a, d))) ∆=
(π ⋅ s)∶∶(l , (π(x), d)).

Define the deletion operation s−Awhich removes from a trace all elements
(l , (x , d)) if x ∈ sup(A) and define the interleaving of sets of traces S1 ⊆ tracesA
and S2 ⊆ tracesB as S1 ⊗ S2

∆= {s ∣ s ∈ tracesA⊗B ∧ s−B ∈ S1 ∧ s−A ∈ S2}.
Define the composition of the sets of traces

S1 ⊆ tracesA⇒B and
S2 ⊆ tracesB′⇒C where π ⊢ B =A B′

as the usual synchronisation and hiding in trace semantics:

S1; S2
∆= {s−B ∣ s ∈ tracesA⊗B⊗C ∧ s−C ∈ S1 ∧ π ⋅ s∗B−A ∈ S2}

(where s∗B is s where the messages from B have reversed polarity.)
Two nets, f = (E f , χ f , I f ) and g = (E g , χg , Ig) are said to be structurally

equivalent if they are graph-isomorphic, i.e. π ⋅ E f = E g , π ⊢ I f =A Ig and
χg ○ π = π ○ χ f .

Theorem 4.1.1. If S1 and S2 are structurally equivalent nets, then JS1K =A JS2K.
Proof. A straightforward induction on the trace length, in both directions.

4.1.4 HRAM nets as a category
In this subsection we will show that HRAM nets form a symmetric compact-
closed category. This establishes that our definitions are sensible and that
HRAM nets are equal up to topological isomorphisms. This result also shows
that the structure of HRAM nets is very loose.

The category, called HRAMnet, is defined as follows:

• Objects are interfaces A ∈ Pfin(Port) identified up to equivariance.

• A morphism f ∶ A → B is a well-formed net on the form (E , χ,A ⇒
B), for some E and χ. We will identify morphisms that have the same
denotation, i.e. if J f K =A JgK then f = g (in the category).

• The identity morphism for an object A is

idA
∆= (∅, χ,A⇒ A′)
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for an A′ such that π ⊢ A =A A′ and

χ(a) ∆= π(a) if a ∈ sup(A∗(O))

χ(a) ∆= π−1(a) if a ∈ sup(A′(O)).

Note that A ⇒ A′ = A∗ ∪ A′. This means that the identity is pure con-
nectivity.

• Composition of two morphisms f = (E f , χ f ,A ⇒ B) ∶ A → B and
g = (E g , χg , B′⇒ C) ∶ B′ → C, such that π ⊢ B =A B′, is

f ; g = (E f ∪ E g , χ f ;g ,A⇒ C) ∶ A→ C

where

χ f ;g(a)
∆= χ f (a) if a ∈ sup(A∗(O) ⊗ I(P)f ) ∧ χ f (a) ∉ sup(B)

χ f ;g(a)
∆= χg(a) if a ∈ sup(C(O) ⊗ I(P)g ) ∧ χg(a) ∉ sup(B′)

χ f ;g(a)
∆= χg(π(χ f (a))) if a ∈ sup(A∗(O) ⊗ I(P)f ) ∧ χ f (a) ∈ sup(B)

χ f ;g(a)
∆= χ f (π−1(χg(a))) if a ∈ sup(C(O) ⊗ I(P)g ) ∧ χg(a) ∈ sup(B′)

and

I f
∆= ⊗{A ∣ (A, P) ∈ E f }

Ig
∆= ⊗{A ∣ (A, P) ∈ E g}.

Note We identify HRAMs with interfaces of the same shape in the category,
which means that our objects and morphisms are in reality unions of equivari-
ant sets, i.e. sets of interfaces whose elements are the same but with different
port name permutations. In defining the operations of our category we use rep-
resentatives for these sets, and require that the representatives are chosen such
that their sets of port names are disjoint (but same-shaped when the operation
calls for it). The composition operation may appear to be partial because of
this requirement, but we can always find equivariant representatives that fulfil
it.

It is possible to find other representations of interfaces that do not rely on
equivariance. For instance, an interface could simply be two natural numbers
— the number of input and output ports. Another possibility would be tomake
the tensor the disjoint union operator. Both of these would, however, lead to a
lot of bureaucracy relating to injection functions tomake sure that port connec-
tions are routed correctly. Our formulation, while seemingly complex, leads
to very little bureaucracy, and is easy to implement.
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Proposition 4.1.2. HRAMnet is a category.

The proofs of this proposition and other theorems from this chapter are of
a technical nature and are given in Appendix B so as to not break the flow of
reading.

We will now show that HRAMnet is a symmetric monoidal category:

• The tensor product of two objects A, B, A⊗ B has already been defined.
We define the tensor of two morphisms

f = (E f , χ f ,A⇒ B) and
g = (E g , χg ,C ⇒ D)

as
f ⊗ g = (E f ∪ E g , χ f ⊗ χg ,A⊗ C ⇒ B ⊗ D).

• The unit object is the empty interface, ∅.

• Since A⊗ (B ⊗ C) = A ∪ B ∪ C = (A⊗ B) ⊗ C we define the associator
αA,B,C

∆= idA⊗B⊗C with the obvious inverse.

• Similarly, since ∅ ⊗ A = ∅ ∪ A = A = A ∪ ∅ = A⊗ ∅, we define the left
unitor λA

∆= idA and the right unitor ρA
∆= idA.

• Since A⊗ B = A∪ B = B∪A = B⊗Awe define the braiding γA,B
∆= idA⊗B.

Proposition 4.1.3. HRAMnet is a symmetric monoidal category.

Next we show that HRAMnet is a compact-closed category:

• We have already defined the dual A∗ of an object A.

• Since ∅⇒ (A∗ ⊗ A′) = ∅∗ ∪ (A∗ ∪ A′) = A⇒ A′ we can define the unit
ηA

∆= idA and since A⊗ A′∗ ⇒ ∅ = (A ∪ A′∗)∗ ∪ ∅ = A∗ ∪ A′ = A⇒ A′

we can define the counit εA
∆= idA.

This leads us directly to the following result — what we set out to show:

Proposition 4.1.4. HRAMnet is a symmetric compact-closed category.

The following two theorems can be proved by induction on the trace length,
and provide a connection between theHRAMnet tensor and composition and
trace interleaving and composition.
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Theorem 4.1.5. If f ∶ A → B and g ∶ C → D are morphisms of HRAMnet
then J f ⊗ gK = J f K⊗ JgK.
Theorem 4.1.6. If f ∶ A → B and g ∶ B′ → C are morphisms of HRAMnet
such that π ⊢ B =A B′ then J f ; gK = J f K; JgK.

The following result explicates how communicating HRAMs can be com-
bined into a singlemachine, where the intercommunication is donewith jump-
ing rather than message passing, in a sound way:

Theorem 4.1.7. If E1 = (A1, P1) and E2 = (A2, P2) are engines such that S =
({E1, E2}, χ,A) is a net, then E12 = (A1⊗A2, P1∪P2) is an engine, S′ = ({E12}, χ,A)
is a net, and JSK ⊆ JS′K.

This corresponds to the combination construction of Chapter 3. Note that
it is simpler to define and prove the soundness of the operation in this setting.
There are two reasons for this. The first is that we do not have to modify the
code of the machines since the spark instruction has different transition rules
depending on whether a port is local or remote. The second is that HRAMs do
not have stacks, forwhich the order of computationmatters, which complicates
the proof. Heaps, on the other hand, are of course not as order sensitive.

We define a family of projectionHRAMnetsΠi ,A1⊗⋯⊗An ∶ A1⊗⋯⊗An → Ai

by first constructing a family of “sinks” !A ∶ A → I ∆= singleton((A ⇒ I, P))
where I = ∅ and P(a) = end for each a in its domain and then defining e.g.
Π1,A⊗B ∶ A⊗ B → A ∆= idA⊗!B.

4.2 game nets for ica
The structure of a HRAMnet token is determined by the number of registers
r and the message size rm, which are globally fixed. To implement machines
for (our variation of) game semantics we require four message components: a
port name, two pointer names, and a data fragment, meaning that rm = 3. We
choose r = 4, to get an additional register for temporary thread values to work
with. From this point on, messages in nets and traces will be restricted to this
form.

The message structure is intended to capture the structure of a move when
game semantics is expressed in the nominalmodel. The port name is themove,
the first name is the “point” whereas the second name is the “butt” of a justific-
ation arrow, and the data is the value of the move. This direct and abstract en-
coding of the justification pointer as names is quite different to that used in the
Pointer Abstract Machine (PAM) and in other GOI-based token machines. In
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Figure 4.4: Non-locality of names in HRAM composition
The token is received by S and propagated to the other S HRAM, this time with tokens
(p1 , p2). This trace of events (p0 , p1)∶∶(p1 , p2) corresponds to the existence of a jus-
tification pointer from the second action to the first in the game model. The essential
correctness invariant for a well-formed trace representing a game semantic play is that
each token consists of a known name and a fresh name (if locally created, or unknown
if externally created). However, the second S machine will respond with (p2 , p3) to
(p1 , p2), leading to a situation where C[−] receives a token formed from two unknown
tokens.

PAM the pointer is represented by a sequence of integers encoding the hered-
itary justification of the move, which is a snapshot of the computational causal
history of the move, just like in GOI-based machines. Such encodings have an
immediate negative consequence, as tokens can become impractically large in
complex computations, especially involving recursion. Large tokens entail not
only significant communication overheads but also the computational over-
heads of decoding their structure. A subtler negative consequence of such
an encoding is that it makes supporting the semantic structures required to
interpret state and concurrency needlessly complicated and inefficient. The
nominal representation is simple and compact, and efficiently exploits local
machine memory (heap) in a way that previous abstract machines, of a “func-
tional” nature, do not.

The price that we pay is a failure of compositionality, which we will illus-
trate shortly. The rest of the section will show how compositionality can be
restored without substantially changing the HRAM framework. If in HRAM
nets compositionality is “plug-and-play”, as apparent from its compact-closed
structure, GAM compositionmust be mediated by a family of operators which
are themselves HRAMs.

In this simple motivating example it is assumed that the reader is familiar
with game semantics, and several of the notions to be introduced formally in
the next subsections are anticipated. We trust that this will not be confusing.

Let S be a HRAM representing the game semantic model for the successor
operation S ∶ nat → nat. The HRAM net in Figure 4.4 represents a (failed)
attempt to construct an interpretation for the term x ∶ nat ⊢ S(S(x)) ∶ nat
in a context C[−nat] ∶ nat. This is the standard way of composing GOI-like
machines.
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The labels along the edges of theHRAMnet trace a token (a, p0, p1, d) sent
by the context C[−] in order to evaluate the term. We elide a and d, which are
irrelevant, to keep the diagram uncluttered. The token is received by S and
propagated to the other S HRAM, this time with tokens (p1, p2). This trace of
events (p0, p1)∶∶(p1, p2) corresponds to the existence of a justification pointer
from the second action to the first in the game model. The essential correct-
ness invariant for a well-formed trace representing a game semantic play is that
each token consists of a known name and a fresh name (if locally created, or un-
known if externally created). However, the second Smachinewill respondwith
(p2, p3) to (p1, p2), leading to a situation where C[−] receives a token formed
from two unknown tokens.

In game semantics, the composition of (p0, p1)∶∶(p1, p2) and (p1, p2)∶∶(p2, p3)
should lead to (p0, p1)∶∶(p1, p3), as justification pointers are “extended” so that
they never point into a move hidden through composition. This is precisely
what the composition operator, a specialisedHRAM,will be designed to achieve.

4.2.1 Game Abstract Machines and nets
Definition 4.2.1. We define a game interface (cf. arena) as a tuple

A = (A, qstA, iniA,⊢A)

where

• A ∈ I is an interface. For game interfaces A,B,C we will write A, B,C
and so on for their underlying interfaces.

• The set of ports is partitioned into a subset of question port names qstA
and answer port names, ansA, qstA ⊎ ansA = sup(A).

• The set of initial port names iniA is a subset of the O-labelled question
ports.

• The enabling relation ⊢A relates question port names to non-initial port
names such that if a ⊢A a′ for port names a ∈ qstA with (l , a) ∈ A and
a′ ∈ sup(A) ∖ iniA with (l ′, a′) ∈ A, then l ≠ l ′.

For notational consistency, write oppA
∆= sup(A(O)) and propA

∆= sup(A(P)).
Call the set of all game interfaces IG. Game interfaces are equivariant, π ⊢
A =A B, if and only if π ⊢ A =A B, {π(a) ∣ a ∈ qstA} = qstB, {π(a) ∣ a ∈
iniA} = iniB and {(π(a), π(a′)) ∣ a ⊢A a′} = ⊢B.
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Definition 4.2.2. For game interfaces (with disjoint sets of port names)A and
B, we define:

A⊗B
∆= (A⊗ B, qstA∪qstB, iniA∪iniB,⊢A ∪ ⊢B)

A⇒B
∆= (A⇒ B, qstA∪qstB, iniB,⊢A ∪ ⊢B ∪(iniB × iniA)).

A GAM net is a tuple G = (S ,A) ∈ S × IG consisting of a net and a game
interface such that S = (E , χ,A), i.e. the interface of the underlying net is the
same as that of the game interface. The denotational semantics of a GAM net
G = (S ,A) is just that of the underlying HRAM net: JGK ∆= JSK.

4.2.2 Game traces
To be able to use game semantics as the specification for game nets we define
the usual legality conditions on traces, following the formulation of nominal
games [48].

Definition 4.2.3. The bound and free pointers bp and fp ∈ traces→ P(P) are:

bp(є) ∆= ∅

bp(s∶∶(l , (a, p, p′, d))) ∆= bp(s) ∪ {p′}

fp(є) ∆= ∅

fp(s∶∶(l , (a, p, p′, d)) ∆= fp(s) ∪ ({p} ∖ bp(s))

The pointers of a trace are defined as ptrs(s) = bp(s) ∪ fp(s).

Definition 4.2.4. Define enabledA ∈ tracesA → P(sup(A) × P) inductively as
follows:

enabledA(є)
∆= ∅

enabledA(s∶∶(l , (a, p, p′, d)))
∆= enabledA(s) ∪ {(a′, p′) ∣ a ⊢A a′}

Definition 4.2.5. We define the following relations over traces:

• Write s′ ⩽ s if and only if there is a trace s1 such that s′∶∶s1 = s, i.e. s′ is a
prefix of s.

• Write s′ ⩽ s if and only if there are traces s1, s2 such that s1∶∶s′∶∶s2 = s, i.e.
s′ is a segment of s.

Definition 4.2.6. For an arenaA and a trace s ∈ tracesA, we define the following
legality conditions:
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• s has unique pointers when s′∶∶(l , (a, p, p′, d)) ⩽ s implies p′ ∉ ptrs(s′).

• s is correctly labelled when (l , (a, p, p′, d)) ⊆ s implies a ∈ sup(A(l)).

• s is justified when s′∶∶(l , (a, p, p′, d)) ⩽ s and a ∉ iniA implies (a, p) ∈
enabledA(s′).

• s is well-opened when s′∶∶(l , (a, p, p′, d)) ⩽ s and a ∈ iniA implies s′ = є.

• s is strictly scoped when (l , (a, p, p′, d))∶∶s′ ⊆ s with a ∈ ansA implies
p ∉ fp(s′).

• s is strictly nested when (l1, (a1, p, p′, d1))∶∶s′∶∶(l2, (a2, p′, p′′, d2))∶∶
s′′∶∶(l3, (a3, p′, p′′′, d3)) ⊆ s implies (l4, (a4, p′′,−, d4)) ⊆ s′′ for port names
a1, a2 ∈ qstA and a3, a4 ∈ ansA.

• s is alternating when (l1,m1)∶∶(l2,m2) ⊆ s implies l1 ≠ l2.

Definition 4.2.7. We say that a question message α = (l , (a, p, p′, d)) (a ∈
qstA) is pending in a trace s = s1∶∶α∶∶s2 if and only if there is no answer α′ =
(l ′, (a′, p′, p′′, d′)) ⊆ s2 (a′ ∈ ansA), i.e. the question has not been answered.

Write PA for the subset of tracesA consisting of the traces that have unique
pointers, are correctly labelled, justified, strictly scoped and strictly nested.

For a set of traces P, write Palt for the subset consisting of only alternat-
ing traces, and Pst (for single-threaded) for the subset consisting of only well-
opened traces.

Definition 4.2.8. If s ∈ traces and X ⊆ P, define the hereditarily justified trace
s ↾ X, where inductively (s′, X′) = s ↾ X:

є ↾ X ∆= (є, X)

s∶∶(l , (a, p, p′, d)) ↾ X ∆= (s′∶∶(l , (a, p, p′, d)), B ∪ {p′}) if p ∈ X′

s∶∶(l , (a, p, p′, d)) ↾ X ∆= (s′, B) if p ∉ X′

Write s ↾ X for s′ when s ↾ X = (s′, X′) when it is convenient.

4.2.3 Copycat
The quintessential game semantic behaviour is that of the copycat strategy, as
it appears in various guises in the representation of all structural morphisms
of any category of strategies. A copycat not only replicates the behaviour of
its opponent in terms of moves, but also in terms of justification structures.
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Figure 4.5: A typical play for copycat
The full lines represent justification pointers, and the dashed lines
“copycat links”, which we use to preserve the justification structure.

Because of this, the copycat strategy needs to be either history-sensitive (state-
ful) or the justification information needs to be carried along with the token.
We take the former approach, in contrast to IAM and other GOI-inspired ma-
chines. To use a metaphor, the GOI approach is to update a map containing
the route from the starting location as you go, and our approach is to leave a
trail of bread crumbs behind us.1

Consider the identity (or copycat) strategy on com ⇒ com, where com is
a two-move arena (one question, one answer). A typical play may look as in
Figure 4.5. The full lines represent justification pointers, and the trace (play) is
represented nominally as

(r4, p0, p1)∶∶(r2, p1, p2)∶∶(r1, p2, p3)∶∶(r3, p1, p4)∶∶(d3, p4)⋯

To preserve the justification structure, a copycat engine only needs to store
“copycat links”, which are shown as dashed lines in the diagram between ques-
tion moves. In this instance, for an input on r4, a heap value mapping a freshly
created p2 (the pointer to r2) to p1 (the pointer from r4) is added.

The reason for mapping p2 to p1 becomes clear when the engine later gets
an input on r1 with pointers p2 and p3. It can then replicate the move to r3, but
using p1 as a justifier. By following the p2 pointer in the heap it gets p1 so it
can produce (r3, p1, p4), where p4 is a fresh heap value mapping to p3. When
receiving an answer, i.e. a d move, the copycat link can be dereferenced and
then discarded from the heap.

1But unlike the fairy tale, there are no birds in our formalism.
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The following HRAM macro-instructions are useful in defining copycat
machines to, respectively, handle the pointers in an initial question, a non-
initial question and an answer:

cci ∆= swap 0, 1; 1← new 0, 3

ccq ∆= 1← new 1, 3; 0, 3← get 0

cca ∆= swap 0, 1; 0, 3← get1; free 1

For game interfaces A and A′ such that π ⊢ A =A A′, we define a generalised
copycat engine as CCC ,π,A = (A⇒ A′, P), where:

P ∆= {q2 ↦ C; spark q1 ∣ q2 ∈ iniA′ ∧ q1 = π−1(q2)}
∪ {q2 ↦ ccq; spark q1 ∣ q2 ∈ (oppA′ ∩ qstA′) ∖ iniA′ ∧ q1 = π−1(q2)}
∪ {a2 ↦ cca; spark a1 ∣ a2 ∈ oppA′ ∩ ansA′ ∧ a1 = π−1(a2)}
∪ {q1 ↦ ccq; spark q2 ∣ q1 ∈ oppA ∩ qstA ∧ q2 = π(q1)}
∪ {a1 ↦ cca; spark a2 ∣ a1 ∈ oppA ∩ ansA ∧ a2 = π(a1)}

This copycat engine is parameterised by an initial instruction C, which is run
when receiving an initial question. The engine for an ordinary copycat, i.e. the
identity of games, is CCcci,π,A. By slight abuse of notation, write CCA for the
singleton copycat game net (singleton(CCcci,π,A),A⇒ π ⋅A).

Following [48], we define a partial order ⩽ over polarities, L, asO ⩽ O,O ⩽
P,P ⩽ P and a preorder ≼ over traces from PA to be the least reflexive and
transitive relation such that if l1 ⩽ l2 then

s1∶∶(l1, (a1, p1, p′1, d1))∶∶(l2, (a2, p2, p′2, d2))∶∶s2
≼ s1∶∶(l2, (a2, p2, p′2, d2))∶∶(l1, (a1, p1, p′1, d1))∶∶s2,

where p′1 ≠ p2. A set of traces S ⊆ PA is saturated if and only if, for s, s′ ∈ PA,
s′ ≼ s and s ∈ S implies s′ ∈ S. If S ⊆ PA is a set of traces, let sat(S) be the
smallest saturated set of traces that contains S.

The usual definition of the copycat strategy (in the alternating and single-
threaded setting) as a set of traces is

ccst,altA,A′
∆= {s ∈ Pst,alt

A⇒A′ ∣ ∀s
′ ⩽even s. s′∗ ↾ A =AP s′ ↾ A′}

Definition 4.2.9. A set of traces S1 is P-closed with respect to a set of traces S2
if and only if s′ ∈ S1 ∩ S2 and s = s′∶∶(P, (a, p, p′, d)) ∈ S1 implies s ∈ S2.
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The intuition of P-closure is that if the trace s′ is “legal” according to S2,
then any outputs that can occur after s′ in S1 are also legal.

Definition 4.2.10. We say that a GAM net f implements a set of traces S if and
only if S ⊆ J f K and J f K is P-closed with respect to S.

This is the form of the statements of correctness for game nets that wewant;
it certifies that the net f can accommodate all traces in S and, furthermore, that
it only produces legal outputs when given valid inputs.

The main result of this section establishes the correctness of the GAM for
copycat.

Theorem 4.2.11. CCπ,A implements ccA,π⋅A.

Thefirst part of this theorem, but for single-threaded and alternating traces,
is proved in Lemma 4.2.17. The second part, but for single-threaded traces, is
point 2 of Lemma 4.2.22. Lemma 4.2.16 essentially lets us lift proofs on single-
threaded traces to multi-threaded traces, and Lemma 4.2.13 similarly lets us
lift the proofs to non-alternating traces.

Lemma 4.2.12. If n1 = (e ∶ E ,m) and n′1 = (e′ ∶ E ,m′) are net configurations
of a net f = (E , χ,A), and n1

(x)
Ð→ n′1 ((x) ∈ {●}∪ (L ×Msup(A)) then n2

(x)
Ð→ n′2

where n2 = (e ∶ E ,m ⊎ {m}) and n′2 = (e′ ∶ E ,m′ ⊎ {m}).

Lemma 4.2.13. If f is a net and s a trace, then

1. s = s1∶∶(l ,m1)∶∶(O,m)∶∶s2 ∈ J f K with witness initial( f ) sÐ→ n implies s′ =
s1∶∶(O,m)∶∶(l ,m1)∶∶s2 ∈ J f K with initial( f ) s′Ð→ n and

2. s = s1∶∶(P,m)∶∶(l ,m1)∶∶s2 ∈ J f K with witness initial( f ) sÐ→ n implies s′ =
s1∶∶(l ,m1)∶∶(P,m)∶∶s2 ∈ J f K with initial( f ) s′Ð→ n.

A special case of this lemma is that if G = ( f ,A) and, for a set of traces
S ⊆ PA, S ⊆ JGK holds, then sat(S) ⊆ JGK.
Lemma 4.2.14. If s, s′ ∈ PA and s′ ≼ s, then

1. enabled(s) = enabled(s′),

2. bp(s) = bp(s′), and

3. fp(s) = fp(s′).

Lemma 4.2.15. Let S ⊆ PA be a saturated set of traces. If s, s′ ∈ S are traces
such that s′ ≼ s and s∶∶α ∈ S, then s′∶∶α ∈ S.
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Lemma 4.2.16. For any game net f = (S ,A) and trace s ∈ PA, s ∈ J f K if and
only if ∀p ∈ fp(s).s ↾ {p} ∈ J f K.
Lemma 4.2.17. ccst,altA,π⋅A ⊆ JCCπ,AK.
Lemma 4.2.18. If s = s1∶∶o∶∶s2 ∈ ccA,A′ and p ⊈ s2, then s∶∶p ∈ ccA,A′ , where
o = (O, (a, p, p′, d)) and p = (P, (π̃A(a), π̃P(p), π̃P(p′), d)) (i.e. the “copy” of
o).

Definition 4.2.19. Define the multiset of messages that a net configuration n
is ready to immediately send as ready(n) ∆= {(P,m) ∣ ∃n′. n Ð→∗

(P,m)
ÐÐÐ→ n′}.

Definition 4.2.20. If s is a trace, h is a heap, A is a game interface, and πP is a
permutation over P, we say that h is a copycat heap for s over A if and only if:

For every pending P-question from A in s, i.e. (P, (a, p, p′, d)) ⊆ s (a ∈
qstA), h(p′) = (π̃P(p′),∅).

Lemma 4.2.21. If s ∈ cc is a trace such that initial(CC) sÐ→ n, then the following
holds:

1. If n Ð→∗ n′ then ready(n) = ready(n′).

2. If n Ð→∗
(P,m)
ÐÐÐ→ n′, then ready(n) = ready(n′) ∪ {(P,m)}.

Aswe are only interested inwhat is observable, the trace s is thus equivalent
to one where silent steps are only taken in one go by one thread right before
outputs.

Lemma 4.2.22. If s ∈ ccst is a trace such that initial(CC) sÐ→ n for an n =
({(t, h) ∶ E},m), then there exists a permutation πP over P such that the
following holds:

1. The heap h is a copycat heap for s over A⇒ A′.

2. The set of messages that n can immediately send, ready(n), is exactly the
set of messages p such that s = s1∶∶o∶∶s2 and p ⊈ s2 where the form of o
and p is o = (O, (a, p, p′, d)) and p = (P, (π̃A(a), π̃P(p), π̃P(p′), d))
(i.e. the “copy” of o).
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4.2.4 Composition
The definition of composition in Hyland-Ong games [77] is nearly indistin-
guishable fromour definition of trace composition, sowemight expectHRAM
net composition to correspond to it. That is, however, only superficially true:
the nominal setting that we are using [48] brings to light what happens to the
justification pointers in composition.

If A is an interface, s ∈ tracesA and X ⊆ sup(A), we define the reindexing
deletion operator s ⇂ X as follows, where (s′, ρ) = s ⇂ X inductively:

є ⇂ X ∆= (є, id)

s∶∶(l , (a, p, p′, d)) ⇂ X ∆= (s′∶∶(l , (a, ρ(p), p′, d)), ρ) if a ∉ X

s∶∶(l , (a, p, p′, d)) ⇂ X ∆= (s′, ρ ∪ {p′ ↦ ρ(p)}) if a ∈ X

We write s ⇂ X for s′ when s ⇂ X = (s′, ρ) in the following definition:

Definition 4.2.23. The game composition of the sets of traces S1 ⊆ tracesA⇒B
and S2 ⊆ tracesB′⇒C with π ⊢ B =A B′ is

S1;G S2
∆= {s ⇂ B ∣ s ∈ tracesA⊗B⊗C ∧ s ⇂ C ∈ S1 ∧ π ⋅ s∗B ⇂ A ∈ S2}

Clearly we have S1; S2 ≠ S1;G S2 for some sets of traces S1 and S2, which
reinforces the practical problem in the beginning of this section.

Composition is constructed from three copycat-like behaviours, as sketched
in Figure 4.6 for a typical play at some types A, B and C. As a trace in the nom-
inal model, this is:

(q6, p0, p1)∶∶(q4, p1, p2)∶∶(q3, p2, p3)∶∶
(q2, p1, p4)∶∶(q1, p4, p5)∶∶(q5, p1, p6)∶∶(a5, p6)∶∶

(a1, p5)∶∶(a2, p4)∶∶(a3, p3)∶∶(a4, p2)∶∶(a6, p1)

We see that this almost corresponds to three interleaved copycats as described
above; between A, B,C and A′, B′,C′. But there is a small difference: the move
q1, if it were to blindly follow the recipe of a copycat, would dereference the
pointer p4, yielding p3, and so incorrectly make the move q5 justified by q3,
whereas it really should be justified by q6 as in the diagram. This is precisely
the problem explained in the beginning of this section.

To make a pointer extension, when the B-initial move q3 is performed, it
should map p4 not only to p3, but also to the pointer that p2 points to, which is
p1 (the dotted line in the diagram). When the A-initial move q1 is performed,
it has access to both of these pointers that p4 maps to, and can correctly make
the q5 move by associating it with pointers p1 and a fresh p6.
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(A B) (B′ C) (A′ C′)
qO6

qP4
qO3

qP2
qO1

qP5
aO5

aP1
aO2

aP3
aO4

aP6

⇒ ⊗ ⇒ → ⇒

Figure 4.6: Composition from copycat
Composition is constructed from three copycat-like behaviours for a typical play at some
types A, B and C. It almost corresponds to three interleaved copycats; between A, B,C
and A′ , B′ ,C′. But there is a small difference: the move q1, if it were to blindly follow
the recipe of a copycat, would dereference the pointer p4, yielding p3, and so incorrectly
make the move q5 justified by q3, whereas it really should be justified by q6. The dotted
lines represent pointer extensions, which are used to alleviate this issue.
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Figure 4.7: Composing GAMs using the K HRAM
Composition is mediated by the operator K, which preserves the
locality of freshly generated names, exchanging non-local pointer
names with local pointer names and storing the mapping between
the two as copycat links, indicated diagrammatically by dashed
lines.

Let A′, B′, and C′ be game interfaces such that πA ⊢ A =A A′, πB ⊢B =A
B′, πC ⊢ C =A C′, and

(A′⇒ A, PA) = CCexq,π−1
A
,A′

(B⇒ B′, PB) = CCexi,πB ,B

(C ⇒ C′, PC) = CCcci,πC ,C, where

exi ∆= 0, 3← get 0; 1← new 1, 0

exq ∆= ∅, 0← get 0; 1← new 1, 3

Then the game composition operator KA,B,C is:

KA,B,C
∆= ((A⇒ B)⊗ (B′⇒ C)⇒ (A′⇒ C′), PA ∪ PB ∪ PC).

Using the game composition operator K we can define GAM net composi-
tion usingHRAMnet compact closed combinators. Let f ∶ A⇒B, g ∶B⇒ C
be GAM nets. Then their composition is defined as

f ;GAM g ∆= Λ−1A (ΛA( f )⊗ ΛB(g));KA,B,C)),where

ΛA( f ∶ A→ B) ∆= (ηA; (idA∗ ⊗ f )) ∶ I → A∗ ⊗ B

Λ−1A ( f ∶ I → A∗ ⊗ B) ∆= ((idA ⊗ f ); (εA ⊗ idB)) ∶ A→ B.

Composition is represented diagrammatically as in Figure 4.7. Note the com-
parison with the naive composition from Figure 4.4. HRAMs f and g are
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not plugged in directly, although the interfaces match. Composition is me-
diated by the operator K, which preserves the locality of freshly generated
names, exchanging non-local pointer names with local pointer names and stor-
ing the mapping between the two as copycat links, indicated diagrammatically
by dashed lines in K.

Theorem 4.2.24. If f ∶ A→B and g ∶ B′ → C are game nets such that
πB ⊢B =A B′, f implements S f ⊆ PA⇒B, and g implements Sg ⊆ PB′⇒C, then
f ;GAM g implements (S f ;G Sg).

This follows from Lemma 4.2.26 and Lemma 4.2.27.

Definition 4.2.25. If s is a trace, h is a heap, A is a game interface, and πP is
a permutation over P, we say that h is an extended copycat heap for s over A if
and only if:

1. For every pendingP-questionnon-initial inA in s, i.e. (P, (a, p, p′, d)) ⊆
s (a ∈ qstA ∖ iniA), h(p′) = (π̃P(p′),∅).

2. For every pending P-question initial in A in s and its justifying move,
i.e. (O, (a1, p1, p, d1))∶∶s′∶∶(P, (a2, p, p2, d2)) ⊆ s (a2 ∈ iniA), h(p2) =
(π̃P(p2), π̃P(p1)).

Lemma 4.2.26. If f ∶ A→B and g ∶ B′ → C are game nets such that πB ⊢
B =A B′, f implements S f ⊆ PA⇒B, and g implements Sg ⊆ PB′⇒C, then
(S f ;G Sg)st,alt ⊆AP J f ;GAM gK = JΛ−1A (ΛA( f )⊗ ΛB′(g);KA,B,C)K.
Lemma 4.2.27. If f ∶ A→B and g ∶ B′ → C are game nets such that πB ⊢
B =A B′, f implements S f ⊆ PA⇒B, and g implements Sg ⊆ PB′⇒C, thenJ( f ;GAM g)K is P-closed with respect to (S f ;G Sg).

4.2.5 Diagonal

For game interfaces A1,A2,A3 and permutations πi j such that πi j ⊢ Ai =A A j
for i ≠ j ∈ {1, 2, 3}, we define the family of diagonal engines as:

δπ12 ,π13 ,A = (A1⇒ A2 ⊗ A3, P1 ⊗ P2 ⊗ P3)
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where, for i ∈ {2, 3},

P1
∆= {q1 ↦ ccq; ifzero 3 (spark q2) (spark q3)
∣ q1 ∈ oppA1

∩ qstA1
∧ q2 = π12(q1) ∧ q3 = π13(q1)}

∪ {a1 ↦ cca; ifzero 3 (spark a2) (spark a3)
∣ a1 ∈ oppA1

∩ ansA1 ∧ a2 = π12(a1) ∧ a3 = π13(a1)}

Pi
∆= {qi ↦ 3← set (i − 2); cci; spark q1 ∣ qi ∈ iniAi

∧ q1 = π−11i (qi)}
∪ {qi ↦ ccq; spark q1 ∣ qi ∈ (oppAi

∩ qstAi
) ∖ iniAi

∧ q1 = π−11i (qi)}
∪ {ai ↦ cca; spark a1 ∣ ai ∈ oppAi

∩ ansAi
∧ a1 = π−11i (ai)}.

The diagonal is almost identical to the copycat, except that an integer value of
0 or 1 is associated, in the heap, with the name of each message arriving on the
A2 and A3 interfaces (hence the set instructions, to be used for routing back
messages arriving on A1 using ifzero instructions). By abuse of notation, we
also write δ for the net singleton(δ).

Lemma 4.2.28. The δ net is the diagonal net, i.e. Jδπ12 ,π23 ,A; ΠiK = JCCπ i ,AK.
4.2.6 Fixpoint

We define a family of GAMs FixA with interfaces (A1 ⇒ A2) ⇒ A3 where
there exist permutations πi , j such that πi , j ⊢ Ai =A A j for i ≠ j ∈ {1, 2, 3}. The
fixpoint engine is defined as Fixπ12 ,π13 ,A = Λ−1A (δπ12 ,π13 ,A).

Let fixπ12 ,π13 ,A ∶ (A ⇒ π12 ⋅ A) ⇒ π13 ⋅ A be the game semantic strategy for
fixpoint in Hyland-Ong games [77, p. 364].

Theorem 4.2.29. Fixπ12 ,π13 ,A implements fixπ12 ,π13 ,A.

The proof of this is immediate considering the three cases of moves from
the definition of the game semantic strategy. It is interesting to note here that
we “force” a HRAM with interface A1 ⇒ A2 ⊗ A3 into a GAM with game in-
terface (A3 ⇒ A1) ⇒ A2, which has underlying interface (A3 ⇒ A1) ⇒ A2.
In the HRAMnet category, which is symmetric compact-closed, the two in-
terfaces are isomorphic (with A∗1 ⊗ A2 ⊗ A3), but as game interfaces they are
not. It is rather surprising that we can reuse our diagonal GAMs in such brutal
fashion: in the game interface for fixpoint there is a reversed enabling relation
between A3 and A1. The reason why this still leads to legal plays only is because
the onus of producing the justification pointers in the initial move for A3 lies
with the opponent, which cannot exploit the fact that the diagonal is “wired
illegally”. It only sees the fixpoint interface and must play accordingly. It is fair
to say that that fixpoint interface is more restrictive to the opponent than the
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diagonal interface, because the diagonal interface allows extra behaviours, e.g.
sending initial messages in A3, which are no longer legal.

4.2.7 Other ICA constants
A GAM net for an integer literal n can be defined using the following engine
(whose interface corresponds to the ICA exp type).

litn
∆= ({(O, q), (P, a)}, P), where

P ∆= {q ↦ swap 0, 1; 1← set ∅; 2← set n; spark a}

We see that upon getting an input question on port q, this engine will respond
with a legal answer containing n as its value (register 2).

The conditional at type exp can be defined using the following engine, with
the convention that {(O, qi), (P, ai)} = expi .

if ∆=(exp1⇒ exp2⇒ exp3⇒ exp4, P), where

P ∆= {q4 ↦ cci; spark q1,
a1 ↦ cca; swap 0, 1; cci; ifzero 2 (spark q3) (spark q2),
a2 ↦ cca; spark a4,
a3 ↦ cca; spark a4}

We can also define primitive operations, e.g. + ∶ exp⇒ exp⇒ exp, in a similar
manner. An interesting engine is that for newvar:

newvar ∆=((exp1 ⊗ (exp2⇒ com3)⇒ exp4)⇒ exp5, P)

P ∆= {q5 ↦ 3← set 0; cci; spark q4,
q1 ↦ ∅, 2← get 0; swap 0, 1; 1← set ∅; spark a1,
q3 ↦ swap 0, 1; 1← new 0, 1; spark q2,
a2 ↦ ∅, 3← get 0; update 3 2; cca; spark a3,
a4 ↦ cca; spark a5}

We see that we store the variable in the second component of the justification
pointer that justifies q4, so that it can be accessed in subsequent requests. A
slight problem is that moves in exp2 will actually not be justified by this pointer
which we remedy in the q3 case, by storing a pointer to the pointer with the
variable in the second component of the justifier of q2, which means that we
can access and update the variable in a2.

We can easily extend the HRAMs with new instructions to interpret paral-
lel execution and semaphores, but we omit them from the current presentation,
since parallelism is not our focus.
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4.3 seamless distributed compilation for ica

4.3.1 The language ICA
ICA is PCF extended with constants to facilitate local effects. Its ground types
are expressions and commands (exp, com), with the type of assignable vari-
ables desugared as var ∆= exp × (exp → com). Dereferencing and assignment
are desugared as the first and second projections from the type of assignable
variables. The local variable binder is new ∶ (var → com) → com. ICA also
has a type of split binary semaphores sem ∆= com × com, with the first and
second projections corresponding to set, get, respectively (see [55] for the full
definition, including the game semantic model).

In this section we give a compilation method for ICA into GAM nets. The
compilation is compositional on the syntax and uses the constructs of the pre-
vious section. ICA types are compiled into GAM interfaces which correspond
to their game semantic arenas in the obvious way. We will use A, B, . . . to refer
to an ICA type and to the GAM interface. Section 4.2 has already developed
all the infrastructure needed to interpret the constants of ICA (Section 4.2.7),
including fixpoint (Section 4.2.6). Given an ICA type judgment Γ ⊢ M ∶ A
with Γ a list of variable-type assignments xi ∶ Ai , M a term and A a type, a
GAM GM implementing it is defined compositionally on the syntax as follows:

GΓ⊢MM′∶A = δπ1 ,π2 ,Γ;GAM (GΓ⊢M∶A→B ⊗GΓ⊢M′∶B);GAM evalA,B
GΓ⊢λx∶A.M∶A→B = ΛA(GΓ,x∶A⊢M∶B)

Gx∶A,Γ⊢x∶A = ΠGA;CCA,π ,

Where evalA,B
∆= Λ−1B (CCA⇒B,π) for a suitably chosen port renaming π andwhere

ΠGA, ΠG1, and ΠG2 are HRAMs with signatures ΠGi = (A1 ⊗ A2 ⇒ A3, Pi)
such that they copycat between A3 and Ai and ignore A j≠i . The interpretation
of function application, which is themost complex, is shown diagrammatically
in Figure 4.8. The copycat connections are shown using dashed lines.

Theorem 4.3.1. If M is an ICA term, GM is the GAM implementing it and σM
its game semantic strategy then GM implements σM .

The correctness of compilation follows directly from the correctness of the
individual GAM nets and the correctness of GAM composition ;GAM .

4.3.2 Prototype implementation
Following the recipe in the previous section we can produce an implementa-
tion of any ICA term as a GAM net. GAMs are just special purpose HRAMs,
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Figure 4.8: GAM net for application
This net uses two composition GAMs, one eval, and one diagonal.

M′

M

Γ B

@

Figure 4.9: Optimised GAM net for application
The functionality of the two compositions, the diagonal, and the eval
GAMs from the naive implementation of application have been com-
bined and optimised into a single GAM, requiring only one pointer
renaming before reaching M.
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with no special operations. HRAMs, in turn, can easily be implemented on any
conventional computer with the usual store, control and communication facil-
ities. A GAM net is also just a special purpose HRAM net, which is a powerful
abstraction of communication processes, as it subsumes through the spark in-
struction communication between processes (threads) on the same physical
machine or located on distinct physical machines and communicating via a
point-to-point network. We have built a prototype compiler2 based on GAMs
by implementing them inC,managing processes using standardUNIX threads
and physical network distribution using MPI [65].

The actual distribution is achieved using light pragma-like code annota-
tions. In order to execute a program at node A but delegate one computation
to node B and another computation to node C we simply annotate an ICA
program with node names, e.g.:

{new x .x ∶= { f (x)}@B + {g(x)}@C; !x}@A

Note that this gives node B, via function f , read-write access to memory loc-
ation x which is located at node A. Accessing non-local resources is possible,
albeit possibly expensive.

Several facts make the compilation process quite remarkable:

• It is seamless (in the sense of [46]), allowing distributed compilation
where communication is never explicit but always realised through func-
tion calls.

• It is flexible, allowing any syntactic subterm to be located at any desig-
nated physical location, with no impact on the semantics of the program.
The access of non-local resources is always possible, albeit possibly at a
cost (latency, bandwidth, etc.).

• It does not require any form of garbage collection, even on local nodes,
although the language combines (ground) state, higher-order functions
and concurrency. This is because a pointer associated with a pointer is
not needed if and only if the question is answered; then it can be safely
deallocated.

The current implementation performs few optimisations, and the result-
ing code is inefficient. Looking at the implementation of application in Fig-
ure 4.8 it is quite clear that a message entering the GAM net via port A needs
to undergo four pointer renamings before reaching the GAM for M. This is
the cost we pay for compositionality. However, the particular configuration

2Online appendix: games directory.
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for application can be significantly simplified using standard peephole optim-
isation, and we can reach the much simpler, still correct implementation in
Figure 4.9. Here the functionality of the two compositions, the diagonal, and
the eval GAMs have been combined and optimised into a single GAM, requir-
ing only one pointer renaming before reaching M. Other optimisations can be
introduced to simplify GAM nets, in particular to obviate the need for the use
of composition GAMs K, for example by the observation that composition of
closed first-order terms (such as those used for most constants) can be done
directly.

4.4 related work
Section 3.5 outlined some pieces of work relevant to the GOI interpretation of
terms, which is quite closely related also to the games interpretation. In this sec-
tion we outline work related to the interpretation of programming languages
using interaction semantics (other than GOI). For a presentation of work that
aims to solve problems similar to ours, see Section 2.1.

4.4.1 Games
Our work is based on game semantics [77], which is a denotational semantics
for programming languages well-known for achieving full abstraction for PCF.
Varying the conditions on the allowed strategies — the interpretation of a pro-
gram — in the models allows achieving definability — the ability to construct
terms from elements in the model — results for many different language con-
structs. It is thus possible to pick a model that fits the language that you are
trying to model [30].

From the perspective of distributed computing, what is striking is the en-
coding of function application (much likeGOI), which becomes an interaction
between the two involved parties (i.e. function and argument), which sugges-
ted a way to automatically infer the needed communication of a program run-
ning in such a system from its encoding as a strategy.

To be able to sufficiently distinguish certain programs (of order higher than
two; it has been shown that they are not needed for second order programs,
whose semantics are regular [54]) a notion of justification pointers was intro-
duced, providing information aboutwhy amove is justified. The initial present-
ation used sequences of numbers to indicate the pointer structure [77], which
led to a certain amount of bureaucracy in formally defining the different oper-
ations on move sequences that are required in any presentation of games. Our
work is based on nominal games [48], which ameliorates the bureaucracy by
using names to represent the pointing structures of the sequences.
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4.4.2 Process calculi
The idea of reducing computation to interaction also appeared in the context
of process calculi [106, 107]. This was a development largely independent
of game semantics and GOI which happened around the same time. The π-
calculus, introduced by Milner, Parrow, and Walker [107], described in depth
by e.g. Sangiorgi and Walker [122], is a calculus for describing concurrent sys-
tems and their behaviour.

Pict [114] is a programming language for concurrent systems that aims
to be to π-calculus what Haskell or ML is to λ-calculus, meaning that it adds
some new features and syntactic sugar to make it more programmer-friendly.
Note that the methodology is different to our approach where we aim to make
communication implicit — here the communication is like in approaches us-
ing message passing. In his doctoral thesis, Turner [135, chapters 7-9] gives
an abstract machine for Pict and a proof that the reduction it does is a valid
reduction. Furthermore, its compilation into to the C programming language
is described. While this is an impressive feat that is even fairly performant
(within an order of magnitude of the equivalent ML program according to the
source), it is only for running the programs locally on one machine, and it does
not perform the reduction in parallel — only concurrently (or interleaved). It
is therefore inadequate for distributed systems in its current form.

Gardner, Laneve, and Wischik [50] makes the problem of using π-calculus
in a distributed setting clearer. Consider a term like P = x(y).y(z).Q, a pro-
cess that receives a channel y along x and then listens on y. The problem this
poses in a distributed system is that when another process wants to send on y,
it needs to knowwhere y is. It seems impossible to do this without either using
broadcasting or a central server keeping track of where every channel is. One
“solution” would be to disallow terms like this, but in this paper the problem
is solved by using linear forwarders, which act as proxies, forwarding messages
to the right location.

4.4.3 Hardware synthesis
Sutherland [127] describes the architecture of hardware circuits that run asyn-
chronously instead of themore typical clock-based, synchronous designs. This
is one of the ideas behind the Geometry of Synthesis series [53, 58, 59, 60]. The
set of problems that one might face in hardware are not necessarily the same
as the ones in distributed computing, but some of the ideas of event-driven
circuits carry over to distributed computing if we take the view that a circuit’s
component is a node in the distributed system and an event on a wire is a mes-
sage in the network. As a comparison, hardware components generally have

75



limited functionality whereas in distributed computing there is often few re-
strictions to what each node can do. In the Geometry of Synthesis it is shown
how to compile a general-purpose programming language into hardware cir-
cuits. The main idea is inspired by game semantics in that function applica-
tion is reduced to interaction between circuits (when the result of a function
is requested, the function can request its argument) and that the moves that a
circuit can play are known in advance (based on the type). Evaluation is based
on local reduction rules, which is suitable for compilation into circuits. These
papers shows that it is possible to compile general-purpose programming lan-
guages to targets that are traditionally programmed using domain-specific lan-
guages.

4.4.4 Algol-like languages
The Algol family are well-studied languages [120] with both functional and
imperative features, but with only local, ground-type state, which circumvents
implementation issues such as the funargs problem [138] and thus does not al-
ways require garbage collection. This compromise, sacrificing some expressiv-
ity for not having to do distributed garbage collection (for which, as concluded
by Abdullahi and Ringwood [2], there is no solution that is satisfactory in all
regards), is therefore suitable for distributed computing.

However, there are subtleties in mixing imperative, stateful constructs and
functional constructs in a call-by-name (or -reference) language. Reynolds
[119] (later improved by O’Hearn et al. [112]) calls this interference, which
can for instance be aliasing of procedure arguments: if f is a binary procedure
that mutates its arguments, calling it with the same argument, as in f (x , x)
can yield (perhaps) unexpected results. It might also be procedures running in
parallel with interfering side-effects. The solution presented is called Syntactic
Control of Interference, and as the name suggests, the potential for interference
is something that can be disallowed syntactically, by a type checker. Disallow-
ing interference goes in two ways: two terms are non-interfering if they do not
share any active identifiers ( f (x , x) is not permitted, as in affine linear logic).
Also, if two terms are passive (or pure), then they are non-interfering.

We use Idealised Concurrent Algol (ICA) [55] as our source language. Gh-
ica, Murawski, andOng [56] show away to achieve decidablemay-equivalence
in ICA, through a type system that keeps track of and puts bounds on concur-
rency. Ghica and Smith [58] later use it in their Geometry of Synthesis series
for compiling concurrent programs into static hardware and also show how it
can be translated to Syntactic Control of Interference, as already mentioned.

These developments, which deal with disallowing unsafe programs and
adding resource constraints to the programs through the type system could
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also be applied to distributed computing. Interference is as much of a prob-
lem there as in single-computer programs, and concurrency bounds could be
useful, if dealing with a system with constrained resources like a GPU (or even
interfacing with a hardware circuit on a Field-Programmable Gate Array).

4.5 conclusion
In this chapter we have seen how game semantics can be expressed opera-
tionally using abstract machines very similar to networked conventional com-
puters. We believe that many of the programming languages with a semantic
model expressed as Hyland-Ong-style pointer games [77] can be represented
using GAMs and then compiled to a variety of platforms such as MPI. How-
ever, if the language includes sum types — which seems to require answers
that justify questions [103] — we might not be able to get by without a garbage
collector as we have done here.

Like the GOI compiler, this compilationmodel provides freedom in choos-
ing the location at which a computation takes place. It additionally has support
for language features like local state and mutable references.

Benchmarks are given later, in Section 7.8, but we make some remarks
about the performance here. Even with the optimised implementation of ap-
plication shown in Figure 4.9, single-node programs compiled using the GAM
formalism are roughly 4 to 8 times slower than those compiled with a naive im-
plementation of the Krivine machine [86]. This is significantly better than the
performance of the GOI compiler, but still unsatisfactory. The performance
problems stem from the excessive heap pointer manipulation required in al-
most all HRAMs, and fromhaving to use contraction for variables not used lin-
early — just like in the GOI compiler. The heap pointer manipulation, which
perhaps does not look that bad on paper, may lead to CPU cache thrashing.
The good news is that the distributed programs communicate using messages
of fixed size — a significant improvement over our previous compiler.

4.6 discussion
In the introduction of this thesis (Chapter 1) we argued that distributed com-
puting would benefit from the existence of architecture-independent, seam-
less compilationmethods for conventional programming languages which can
allow the programmer to focus on solving algorithmic problems without be-
ing overwhelmed by the minutiae of driving complex computational systems.
More concretely, our proposition was to generalise RPCs to also handle higher-
order functions across node boundaries.
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This part of the dissertation has given two compilation schemes for higher-
order RPCs based on interaction semantics. They both achieve seamless dis-
tribution but have certain apparent unavoidable inefficiencies. The compiler
based on the Geometry of Interaction (Chapter 3) has a possibly insurmount-
able communication overhead, whereas the compiler based on game semantics
(Chapter 4) communicates efficiently but requires a very high computational
overhead on each node. These inefficiencies stem from their being inspired
by denotational semantics where efficiency of execution is not the top priority.
Another problem that basing them on denotational semantics gives rise to is
that they are exotic: it would be difficult to use them as the basis for adding
higher-order RPCs to an existing compiler since most of the compiler would
have to be changed. Exoticness can also mean that it is hard to adapt certain
conventional compiler optimisation techniques, which further exacerbates the
efficiency problem.
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Chapter 5

Source language
The following two chapters will use the same source language, which is presen-
ted below.1

We will be compiling the untyped applied lambda calculus, i.e. an untyped
Programming Computable Functions (PCF), in two different ways. We will
technically compile two different languages since one will implement call-by-
name and one call-by-value, but they will share the same syntax.

For the sake of a concrete yet simple presentation we assume that the only
data is natural numbers, and the constants are numeric literals, arithmetic op-
erators and if-then-else. Informally, the grammar of the language is

M ∶∶= x ∣ λx .M ∣ M M ∣ ifM thenM elseM ∣ n
∣M ⊕M ∣ M@A.

Formally, we define the data type of terms with the following constructors:

data Term ∶ Set where
λ_ ∶ Term→ Term
_$_ ∶ (t t’ ∶ Term)→ Term
var ∶ N→ Term
lit ∶ N→ Term
op ∶ (f ∶ N→ N→ N) (t t’ ∶ Term)→ Term
if0_then_else_ ∶ (b t f ∶ Term)→ Term
_@_ ∶ Term→ Node→ Term

Above, Set is the previously mentioned type of types — signifying that we are
defining a new type. The constructor for function application has an explicit
name (_$_), for clarity. We use the De Bruijn index notation [20] to repres-
ent variables, so abstraction (λ_) is a unary operator and each variable (var)
is a natural number. The value of the index denotes the number of binders
between the variable and its binder. Note that we do not make use of the by
now standard technique of representing lambda terms as an inductive family
of data types indexed by context (or number of free variables) [6] which can be
used to ensure that it is only possible to construct well-typed (or closed) terms.
This is partly because our source language is untyped, and partly because it

1Online appendix: krivine/formalisation directory, Lambda module.
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would needlessly complicate the presentation without making our life easier—
we would have to add additional indices to every function on terms. Instead,
we will permit the abstract machines to get stuck if something goes wrong (e.g.
when the types do notmatch at run time or when encountering a free variable),
noting that this would not happen in a typical implementation [105] since its
frontend would include a type-checker.

Example 5.0.1. The term (λx .λy.y + x) 3 4 is represented as

termExample ∶ Term
termExample = λ (λ (var 0 +’ var 1)) $ lit 3 $ lit 4

where _+’_ = op _+_

Numeric literals (lit) and conditionals (if0_then_else_) are obvious, noting
that the constructor for the latter is a mixfix operator. Binary arithmetic op-
erators (op) take three arguments: the function giving the operation and two
terms.

We also introduce syntactic support in the language (_@_, another infix
operator) for specifying the location for closed subterms. This is the same as
the location annotations that we saw Chapter 3 and Chapter 4 with the differ-
ence that it is here limited to closed subterms. Node assignment is a “compiler
pragma” and will have no bearing on observational properties of the program-
ming language. The requirement that node assignment is specified for closed
terms keeps the presentation as simple as possible. This apparent restriction
can easily be overcome using lambda lifting, i.e. by transforming every open
subterm t @ A to (λ fv t. t) @ A (fv t) at compile time.

5.1 semantics
We do not give an operational semantics for the language here; it is standard
and can be found elsewhere — see [116] for small-step and [84] for big-step
semantics. We rely instead on conventional abstract machines with already
established correctness results as our specification. For the correctness of the
Krivinemachine, we refer the reader to Krivine [86] who gives such a proof for
the lambda calculus fragment of our language. For the correctness of the exten-
sions required in the applied language, Leroy [97] treats strict evaluation and
Hannan andMiller [68] treat conditionals and primitive operations by giving a
derivation of the machine from a call-by-name big-step semantics. Danvy and
Millikin [33] present a similar derivation and correctness proof for the Stack-
Environment-Control-Dump (SECD) machine and several variations thereof.
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Chapter 6

TheKrivine machine
In this part of the thesis we present a solution to problems with the approaches
based on interaction semantics thatwe outlined in Section 4.6. Instead of build-
ing wholly new abstract machines we take conventional abstract machines and
make conservative extensions to them to support distributed execution. This
new approach combines the best of the two previous compilers: it communic-
ates efficiently by keeping the size of the messages within a small fixed bound
and it executes efficiently on each node. In fact, the compilation scheme de-
generates to that of the conventional abstract machines if the whole program
is deployed on a single node. An additional advantage that basing the work on
conventional machines offers is that, unlike the exotic Geometry of Interac-
tion (GOI) and games-based approaches, it is a standard approach to compiler
construction so that common optimisation techniques more readily apply to
it and so that it can interface trivially with legacy code which was compiled
to the abstract machine in question. We perform this act of making conser-
vative extensions to the quintessential abstract machines for call-by-name and
call-by-value: the Krivine machine [86] and the SECD machine [93]. By us-
ing the SECD machine we thus additionally extend our previous work also by
exploring the usage of the call-by-value calling convention. Note that, while
the call-by-value evaluation order subsumes call-by-name in the sense that we
can simulate call-by-name in a call-by-value language by using thunking, a dir-
ect implementation has the potential to be more efficient and instructive than
such a simulation. Our extensions are called the DKrivinemachine (presented
in this chapter) and the DCESHmachine (Chapter 7). Finally, wemodel a gen-
eral-purpose fault-tolerant environment for machines similar to the DKrivine
and the DCESH machine (Chapter 8) by adding a layer consisting of a trans-
actional machine that provides a simple commit-and-rollback mechanism for
underlying abstract machines that may unexpectedly fail.

Synopsis In this chapter we define a new approach to compilation to distrib-
uted architectures based on networks of abstract machines. Using it we can
implement a generalised and fully transparent form of Remote Procedure Call
that supports calling higher-order functions across node boundaries, without
sending actual code. Our starting point is the classic Krivine machine, which
implements reduction for untyped call-by-name PCF. We successively add the
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features that we need for distributed execution and show the correctness of
each addition. Our final system, theKrivine net, is shown to be a correct distrib-
uted implementation of the Krivinemachine, preserving both termination and
non-termination properties. We also implement a prototype compiler which
we later compare (Section 7.8) with our previous distributing compilers based
on Girard’s GOI (Chapter 3) and on game semantics (Chapter 4).

6.1 the machine

The Krivine machine [86] is the standard abstract machine for call-by-name.1
It has three components: code, environment, and stack. The stack and the en-
vironment contain thunks, which are closures representing unevaluated func-
tion arguments. The evaluations are delayed until the values are needed. For
the pure lambda calculus, the Krivine machine uses three instructions:

POPARG pop an argument from the stack and add it to the environment.

PUSHARG push a thunk for some code given as argument.

VAR look up the argument in the environment and start evaluation.

For the applied lambda calculus themachine becomesmore complex; arith-
metic operations are strict, so additional mechanisms are required to force the
evaluation of arguments.

In Agda, we define closures and environments by mutual induction:

mutual
Closure = Term × Env
data EnvEl ∶ Set where
clos ∶ Closure→ EnvEl

Env = List EnvEl

The constructor clos that takes a Closure into an environment element EnvEl is
needed for formal reasons, to prevent the Agda type-checker from reporting a
circular definition.

Stacks and configurations are:

1Online appendix: krivine/formalisation directory, Krivine module.
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data StackElem ∶ Set where
arg ∶ Closure → StackElem
if0 ∶ Closure → Closure→ StackElem
op₂ ∶ (N→ N→ N)→ Closure→ StackElem
op₁ ∶ (N→ N) → StackElem

Stack = List StackElem
Config = Term × Env × Stack

Stack elements represent the evaluation context, i.e. the current continuation.
The context for application, commonly written − t, is constructed using arg,
whereas if0, op₂, op₁ are used by the constants.

The signature of the Krivine machine is given as a data type, defining a
Relation on Configurations of the Krivine machine:

data _Ð→K_ ∶ Rel Config Config where

We define the relation type Rel A B to be A → B → Set, so two elements a and
b are R-related exactly when R a b is inhabited, given R ∶ Rel A B. Each rule,
i.e. each instruction of the machine, will thus correspond to a constructor. We
explain the definition of each rule.

POPARG ∶ {t ∶ Term} {e ∶ Env} {c ∶ Closure} {s ∶ Stack}→
(λ t , e , arg c :: s) Ð→K (t , clos c :: e , s)

POPARG handles abstractions λ t by moving the top of the stack arg c into the
first position of the environment e. The constructors arg, clos are needed for
type-checking and would be omitted in an informal presentation. The con-
structor arguments (t, e, c, s) are implicit, indicated syntactically in Agda by
curly braces.

PUSHARG ∶ {t t’ ∶ Term} {e ∶ Env} {s ∶ Stack}→
((t $ t’) , e , s) Ð→K (t , e , arg (t’ , e) :: s)

PUSHARG handles application t $ t’ by creating a new closure arg (t’, e) and
pushing it onto the stack, then carrying on with the execution of the function
body t.

VAR ∶ {n ∶ N} {e e’ ∶ Env} {t ∶ Term} {s ∶ Stack}→
lookup n e ≡ just (clos (t , e’))→
(var n , e , s) Ð→K (t , e’ , s)

The VAR rule looks up the variable n in the current environment e and, if suc-
cessful, retrieves the closure at that position (t, e’) and proceeds to execute from
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it, with the current stack. In Agda the ≡ operator denotes propositional equality,
which necessitates a proof, whereas = is used to introduce new definitions.

Because this is an applied lambda calculus we need additional operations
for conditionals and operators. Here we omit the types of the implicit argu-
ments since they can be inferred:

COND ∶ ∀ {b t f e s}→
(if0 b then t else f , e , s) Ð→K (b , e , if0 (t , e) (f , e) :: s)

COND-0 ∶ ∀ {e t e’ f s}→
(lit 0 , e , if0 (t , e’) f :: s) Ð→K (t , e’ , s)

COND-suc ∶ ∀ {n e t f e’ s}→
(lit (1 + n) , e , if0 t (f , e’) :: s) Ð→K (f , e’ , s)

OP ∶ ∀ {f t t’ e s}→
(op f t t’ , e , s) Ð→K (t , e , op₂ f (t’ , e) :: s)

OP₂ ∶ ∀ {n e f t e’ s}→
(lit n , e , op₂ f (t , e’) :: s) Ð→K (t , e’ , op₁ (f n) :: s)

OP₁ ∶ ∀ {n e f s}→
(lit n , e , op₁ f :: s) Ð→K (lit (f n) , [] , s)

Example 6.1.1. We can see the Krivine machine at work in Figure 6.1.2 It
shows the execution trace of the term in Example 5.0.1. For brevity it is written
informally, omitting the constructors op, var, arg, etc.

Finally, we include a (degenerate) instruction for remote execution:

REMOTE ∶ ∀ {t i e s}→ (t @ i , e , s) Ð→K (t , [] , s)

This instruction is included strictly so that the _@_ construct for node assign-
ment does not make the machine get stuck or trigger a run time error, but it
is effectively a no-op: it simply erases the environment e, since node assign-
ment is meant to be applied only to closed terms. In the following section we
will define the distributed Krivine machine, where the REMOTE instruction is
meaningful.

2Online appendix: krivine/formalisation directory, Trace module.
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((λ (λ _+_ 0 1) $ 3 $ 4) , [] , [])
Ð→⟨ PUSHARG ⟩
((λ (λ _+_ 0 1) $ 3) , [] , [ (4 , []) ])
Ð→⟨ PUSHARG ⟩
(λ (λ _+_ 0 1) , [] , [ (3 , []) , (4 , []) ])
Ð→⟨ POPARG ⟩
(λ _+_ 0 1 , [ (3 ,[]) ], [ (4 ,[]) ])
Ð→⟨ POPARG ⟩
(_+_ 0 1 , [ (4 , []) , (3 , []) ] , [])
Ð→⟨ OP ⟩
(0 , [ (4 , []) , (3 , []) ] , [op₂ _+_ (1 , [ (4 , []) , (3 , []) ]) ])
Ð→⟨ VAR refl ⟩
(4 , [] , [op₂ _+_ (1 , [ (4 , []) , (3 , []) ]) ])
Ð→⟨ OP₂ ⟩
(1 , [ (4 , []) , (3 , []) ] , [op₁ (_+_ 4) ])
Ð→⟨ VAR refl ⟩
(3 , [] , [op₁ (_+_ 4) ])
Ð→⟨ OP₁ ⟩
(7 , [] , [])

Figure 6.1: Example Krivine machine execution trace
The execution trace of the term (λx .λy.y + x) 3 4.
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6.2 krivine nets
We now extend the Krivine machine so that it supports an arbitrary pattern of
distribution by letting several instances of the extended machine run in a net-
work. We call these machines DKrivine machines and they form Krivine nets.3
TheDKrivinemachines extend the Krivinemachines conservatively by adding
new features. Each suchmachine is identified as a node in the network and has
a dedicated heap. A pointer into a heap may be tagged with a node identifier,
case in which it is a remote pointer, which can now be stored in the environ-
ment along with local closures. The stack may now have as a bottom element a
remote pointer indicating the existence of a remote stack extension, i.e. the fact
that the information which logically belongs to this stack is physically located
on a different node. Finally, the configuration of the Krivine machine is now
called a thread indicating that its execution can be dynamically started and hal-
ted. Internally, the heap structure is used for storing persistent data that needs
to outlive the run time of a thread. The new definitions are as follows:

RPtr = Ptr × Node
ContPtr = RPtr
data EnvElem ∶ Set where

local ∶ Closure→ EnvElem
remote ∶ ContPtr→ N→ EnvElem

Stack = List StackElem × Maybe (ContPtr × N × N)
ContHeap = Heap Stack
Thread = Term × Env × Stack
Machine = Maybe Thread × ContHeap

The definitions are straightforward, except for the remote environment ele-
ment and the definition of stacks which require explanation. A remote ContPtr
is a pointer to a continuation stack, and the constructor remote takes an addi-
tional natural number argument indicating the offset in that continuation stack
where the referred closure is stored. As stated, the stack now possibly includes
a remote stack extension. This extension is to be thought of as being located at
the bottom of the local stack, and consists of a ContPtr pointing into the heap
of a remote node holding the stack, and two natural numbers that form the
current node’s view of that stack. The second number is the offset into the re-
mote stack that the view starts from, and the first number stores how many
consecutive arguments there are on on it.

BecauseDKrivinemachines are networked they exchangemessages, which
fall into three categories, formalised as constructors for the Msg data type:

3Online appendix: krivine/formalisation directory, DKrivine module.
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REMOTE messages initiate remote evaluation, and are defined as:

REMOTE ∶ Term→ Node→ ContPtr→ N→Msg

The message consists of a Term, a destination Node identifier, a ContPtr to
the sender’s current continuation stack and a natural number indicating
how many arguments are on that stack.
The design decision to make a Term part of the message structure is for
simplicity of formalisation only. In the actual implementation only a
code pointer needs to be sent to the node, which already has the required
code available. The mechanism through which compiled code arrives at
each node is handled by a distributed program loader which is part of the
runtime system and, as such, beyond the scope of this work. It should
be obvious that distributed program loading is possible in principle here
when all code is static and available at compile time.

RETURN messages are sent when computation has terminated and reached a
literal, and the value must be returned to the node that has initiated the
computation. The definition is:

RETURN ∶ ContPtr→ N→ N→Msg

Themessage contains a ContPtr to the remote stack of themachine that is
receiving the message, the natural number calculated and another num-
ber indicating to the receiving machine how many arguments can now
be discarded from the stack, corresponding to the offset in the sending
node’s view of the stack.

VAR is a message used to access remotely located variables. It consists of a
remote ContPtr, an offset into the remote continuation stack, a local con-
tinuation stack and the number of arguments on it.

VAR ∶ ContPtr→ N→ ContPtr→ N→Msg

We need to send the continuation stack pointer of the calling node (like
in theREMOTE rule) because the remote variablemay refer to a function,
in which case the arguments are supplied by the calling node, or it may
be part of an operation on the calling node, in which case the resulting
number needs to be returned there once it has been calculated.

Deliberate in the design of the Krivine nets is the need tominimisemessage ex-
change. To achieve this, machines do not send remote “pop” messages for ma-
nipulating remote stack extensions, but perform this operation locally. When
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a node sends a pointer to a new continuation stack it also sends the number of
arguments that are on that stack, so that the receiving node can pop arguments
from its local view of that stack.

We can now start describing the transitions of the DKrivine machine. The
signature of the transition relation is:

data _ ⊢ _Ð→ DK⟨_⟩_ (i ∶ Node) ∶
Machine→ Tagged Msg→Machine→ Set

DKrivine transitions are parameterised by the current node identifier andmap
a Machine state and a Tagged Msg into a new Machine state. The tag (see also Sec-
tion 2.5) applied to themessage indicates whether themessage is sent, received
or absent (i.e. a τ transition):

data Tagged (Msg ∶ Set) ∶ Set where
τ ∶ Tagged Msg
send ∶ Msg→ Tagged Msg
receive ∶ Msg→ Tagged Msg

All the old rules are present, but now expressed in the presence of the con-
tinuation heap.

POPARG ∶ ∀ {t e c s r ch}→
i ⊢ (just (λ t , e , arg c :: s , r) , ch) Ð→DK ⟨τ ⟩
(just (t , local c :: e , s , r) , ch)

Compared to the POPARG rule of the originalmachine, the only differences are
the tag on the configuration (just ...), which expresses the fact that theDKrivine
thread is running, and the continuation heap chwhich remains constant during
the application of this rule. The environment element constructor local now
emphasises that the variable is local. Because the transition involves only one
node it is τ, i.e. no messages are exchanged.

The other old transition rules are embedded into the DKrivine machine in
a similar way. They are all silent and the continuation heap ch stays unchanged:
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PUSHARG ∶ ∀ {t t’ e s r ch}→
i ⊢ (just ((t $ t’) , e , s , r) , ch) Ð→DK ⟨τ ⟩
(just (t , e , arg (t’ , e) :: s , r) , ch)

VAR ∶ ∀ {n e s r ch t e’}→
lookup n e ≡ just (local (t , e’))→
i ⊢ (just (var n , e , s , r) , ch) Ð→DK ⟨τ ⟩
(just (t , e’ , s , r) , ch)

COND ∶ ∀ {b t f e s r ch}→
i ⊢ (just (if0 b then t else f , e , s , r) , ch) Ð→DK ⟨τ ⟩
(just (b , e , if0 (t , e) (f , e) :: s , r) , ch)

COND-0 ∶ ∀ {e t e’ f s r ch}→
i ⊢ (just (lit 0 , e , if0 (t , e’) f :: s , r) , ch) Ð→DK ⟨τ ⟩
(just (t , e’ , s , r) , ch)

COND-suc ∶ ∀ {n e t e’ f s r ch}→
i ⊢ (just (lit (1 + n) , e , if0 t (f , e’) :: s , r) , ch) Ð→DK ⟨τ ⟩
(just (f , e’ , s , r) , ch)

OP ∶ ∀ {f t t’ e s r ch}→
i ⊢ (just (op f t t’ , e , s , r) , ch) Ð→DK ⟨τ ⟩
(just (t , e , op₂ f (t’ , e) :: s , r) , ch)

OP₂ ∶ ∀ {n e f t e’ s r ch}→
i ⊢ (just (lit n , e , op₂ f (t , e’) :: s , r) , ch) Ð→DK ⟨τ ⟩
(just (t , e’ , op₁ (f n) :: s , r) , ch)

OP₁ ∶ ∀ {n e f s r ch}→
i ⊢ (just (lit n , e , op₁ f :: s , r) , ch) Ð→DK ⟨τ ⟩
(just (lit (f n) , [] , s , r) , ch)

The REMOTE execution rule is now meaningful, and it has a send and a
receive version:

REMOTE-send ∶ ∀ {t i’ e s ch}→
let (ch’ , kp) = i ⊢ ch ⊳ s in
i ⊢ (just (t @ i’ , e , s) , ch)
Ð→DK ⟨send (REMOTE t i’ kp (num-args s))⟩
(nothing , ch’)

The operation i ⊢ ch ⊳ s signifies allocating at node i in heap ch a new pointer
pointing at stack s, and it returns a pair of the updated heap ch’ and the newly
allocated remote pointer kp. The remote execution directive t @ i’ is carried
out by sending a REMOTE message to i’ consisting of the (pointer to) code t,
the destination i’, the local continuation-stack pointer kp and the number of
arguments on it. After sending the remote execution message the thread halts,
i.e. its state is nothing.
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The function that calculates the number of arguments on the stack is quite
subtle and we give its expression below:

num-args ∶ Stack → N
num-args ([] , nothing) = 0
num-args ([] , just (_ , n , _)) = n
num-args (arg _ :: s , r) = 1 + num-args (s , r)
num-args (if0 _ _ :: _ , _) = 0
num-args (op₂ _ _ :: _ , _) = 0
num-args (op₁ _ :: _ , _) = 0

The function returns the number of arguments at the top of the stack, but it
takes into account the possibility that some arguments are local and some ar-
guments are remote. Recall that the remote pointer that we store at the bottom
of the stack, pointing to the remote stack extension, also has a natural num-
ber numargs expressing how many arguments are stored remotely. This is an
important optimisation because it makes it possible for this function to be eval-
uated locally, without querying the remote machine where the stack extension
is physically located.

The counterpart REMOTE-receive rule is:

REMOTE-receive ∶ ∀ {ch t kp numargs}→
i ⊢ (nothing , ch)
Ð→DK ⟨receive (REMOTE t i kp numargs)⟩
(just (t , [] , [] , just (kp , numargs , 0)) , ch)

The thread on node i is haltedwhen it receives theREMOTE executionmessage,
with the same contents as above. The code t becomes the currently executed
code in an empty environment — t is, as we explained before, closed — and
empty stack remotely extended by kp to the originating machine stack.

Additionally, some of the original rules now have send and receive counter-
parts to handle the situationwhen remote variables or continuations need to be
processed. Remarkably, it is possible to avoid sendingmessages when popping
a remote argument, and we can get by with the following new instruction:

POPARG-remote ∶ ∀ {t e kp args m ch}→
i ⊢ (just (λ t , e , [] , just (kp , 1 + args , m)) , ch)
Ð→DK ⟨τ ⟩
(just (t , remote kp m :: e , [] , just (kp , args , 1 + m)) , ch)

Note that this is a silent (τ) transition. A machine does not really “pop” the
arguments of a remote stack extension but changes its view of this remote stack.
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This avoids instituting a whole class of messages for stack management and it
also gives a more robust stack management framework in which stacks, along
with heaps and any other data structures involved, are only changed locally.

This rule is triggered when a POPARG action encounters a local empty
stack, which means that the remote stack extension needs to be used. Just like
in the case of a local POPARG, the environment is updated, but this time with
the remote pointer kp which has its offset set at m. The offset in the view of
the remote stack extension is updated (to 1+ m) to reflect the fact that another
argument has been “popped”.

It is not difficult to imagine a different, perhaps more obvious, way to per-
form this instruction’s functionality: simply sending a message to the remote
node holding the stack that we have a pointer to, instructing it to pop an ar-
gument. This would however mean that there would be a larger distribution
overhead for invoking a remote function even if it does not use its argument.
Since we here store how many arguments there are on the remote stack we can
safely create a remote closure with an index into the stack without having to
tell the remote node about it.

The rules that need genuine remote counterparts are VAR, for accessing
remote variables, and RETURN, for returning a literal from a remote computa-
tion.

VAR-send ∶ ∀ {n e s rkp index ch}→
lookup n e ≡ just (remote rkp index)→
let (ch’ , kp) = i ⊢ ch ⊳ s in
i ⊢ (just (var n , e , s) , ch)
Ð→DK ⟨send (VAR rkp index kp (num-args s))⟩
(nothing , ch’)

The VAR-send rule is triggered when the machine detects a remote pointer
in its environment e. Just like in the case of the REMOTE instruction, the cur-
rent continuation stack is saved in the continuation heap of the machine i, at
address kp. The machine then sends a VAR-tagged message onto the network,
with the structure discussed before, and halts, i.e. its thread is nothing. Note
that the left-hand-side of the transition triggered by theVAR-send rule is almost
the same as that of the local VAR rule.

Upon receiving aVARmessage, a (halted)machine executes theVAR-receive
instruction:
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VAR-receive ∶ ∀ {ch kp s n rkp m el}→
ch ! kp ≡ just s→
stack-index s n ≡ just el→
i ⊢ (nothing , ch)
Ð→DK ⟨receive (VAR (kp , i) n rkp m)⟩
(just (var 0 , el :: [] , [] , just (rkp , m , 0)) , ch)

The right-hand-side of the VAR-receive rule introduces a new variable var 0,
perhaps surprisingly. In order to avoid having special cases where the retrieved
variable index is itself either local or remote, we create the dummy variable
var 0 referring to the variable pointed-to by the received VAR message. This is
what the stack-index ∶ Stack → N → Maybe EnvElem function, invoked on the
stack that kp points to, achieves. If the stack element at index n in the stack is a
local argument, then it returns that closure as a local environment element. If
the element at index n refers to an argument on the remote stack extension, it
returns a corresponding remote environment element. Afterwards we can use
the existing local VAR or VAR-send rules depending on whether the variable is
local or remote also to this node.

RETURN-send ∶ ∀ {n e kp m ch}→
i ⊢ (just (lit n , e , [] , just (kp , 0 , m)) , ch)
Ð→DK ⟨send (RETURN kp n m)⟩
(nothing , ch)

RETURN-receive ∶ ∀ {ch kp s s’ n m}→
ch ! kp ≡ just s→ drop-stack s m ≡ just s’→
i ⊢ (nothing , ch)
Ð→DK ⟨receive (RETURN (kp , i) n m)⟩
(just (lit n , [] , s’) , ch)

Finally, the RETURN-send and RETURN-receive rules are triggered when
a machine has reached a literal and has a remote stack extension without any
arguments, implying that the remote stack is either empty (i.e. it is located
at the root node of the whole execution) or it has a continuation requiring a
natural number literal. In both cases we want to send the literal back to the
node where the stack is located. The one thing to notice is that the message
includes the number m to be used by the receiver to drop the correct number
of elements from the top of the stack. This is handled by the drop-stack function,
defined as follows:
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drop-stack ∶ Stack→ N→Maybe Stack
drop-stack (s , r) 0 = just (s , r)
drop-stack ([] , just (_ , 0 , _)) (1 + _) = nothing
drop-stack ([] , just (kp , 1 + n , m)) (1 + i) =

drop-stack ([] , just (kp , n , 1 + m)) i
drop-stack ([] , nothing) (1 + _) = nothing
drop-stack (arg _ :: s , r) (1 + i) = drop-stack (s , r) i
drop-stack (_ :: _ , _) (1 + _) = nothing

As in the case of num-args the function may change the local view of a re-
mote stack extension, without requiring further message exchanges between
nodes. If not enough arguments are on the stack the function returns nothing,
which should not happen during a normal execution since we take care to keep
the stack views consistent.

The definition of network transitions (Section 2.5) is parameterised by a
machine transition relationÐ→M, which is subsequently instantiated toÐ→DK,
and initialised by starting from a designated node i with code t and all other
constituents empty.

open import Network Node _ ?=_ _ ⊢ _Ð→ DK⟨_⟩_ public
initial-networkSync ∶ Term→ Node→ SyncNetwork
initial-networkSync t i =
let inactives = λ i→ (nothing , ∅)

active = (just (t , [] , [] , nothing) , ∅)
in inactives[i↦ active]

initial-networkAsync ∶ Term→ Node→ AsyncNetwork
initial-networkAsync c i = initial-networkSync c i , []

As mentioned in Section 2.5, it is immediate to show that a SyncNetwork
can be represented by themore expressive AsyncNetwork. The other direction is
not as trivial, and is formalised by the following lemma, stating that whenever
some DKrivine machines can make an Async transition with the global pool
of messages remaining the same (empty, for simplicity), the same transition
could be made in a SyncNetwork:

Lemma 6.2.1. If there is exactly one active node in a family of nodes nodes and
((nodes , []) ÐÐÐ→Async

+ (nodes’ , [])), then then nodes ÐÐ→Sync
+ nodes’.⁴

The lemma is stated as follows in Agda:

⁴Online appendix: krivine/formalisation directory, DKrivine.Properties module.
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Async+-to-Sync+ ∶ ∀ {nodes nodes’} i→
all nodes except i are inactive→
((nodes , []) ÐÐ→Async

+ (nodes’ , []))→
nodes ÐÐ→Sync

+ nodes’
Async+-to-Sync+ = Async+-to-Sync+-lemma refl refl

The proof is an immediate application of a more complex lemma which can be
found in the online appendix. In contrast to the Sync-to-Async+ embedding,⁵
this embedding is specific to DKrivine machines. More precisely, two prop-
erties of these machines make this possible. The first one is that the DKrivine
machines halt after eachmessage send and receive only from halting states. The
second one is that they are deterministic. Intuitively, it is fairly clear that the
two styles of communication are equivalent under these circumstances.

These two results about Krivine nets are interesting because they show
that we do not need to commit to a synchronous or asynchronous network of
DKrivinemachines since they are equivalent. Wemay therefore use whichever
is more convenient for correctness proofs in the knowledge that the properties
we prove transfer immediately to the other one.

6.2.1 Example
Let us briefly compare the execution of a rather simple term,

((λ f .λx . f x)@B)(λy.y) 0

on a single machine and on a distributed machine.⁶ The program is located on
(the default) node A, except for λ f .λx . f x which is on node B. This program is
similar to our introductory example in that it does a remote function call, and
additionally shows that higher-order remote function calls are also possible.

As we discussed earlier, the Krivine machine ignores the @ construct (the
REMOTE rule is a no-op), producing the execution tracePUSHARG; PUSHARG;
REMOTE; POPARG; POPARG; PUSHARG; VAR; POPARG; VAR; VAR, which
leaves the machine in state (lit 0 , [] , []).

The Krivine net of two nodes produces the following trace (informally, in-
dicating machine state only when interesting). Node A starts with PUSHARG;
PUSHARG; REMOTE-send, which produces the message

REMOTE (λ (λ (var 1 $ var 0))) B (ptr₁ , A) 2

where ptr₁ points to the stack ([ (λ var 0 , []) , (0 , []) ] , nothing).

⁵Online appendix: krivine/formalisation directory, Network module.
⁶Online appendix: krivine/formalisation directory, Trace module.
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NodeB receives themessage and executesREMOTE-receive; POPARG-remote;
POPARG-remote; PUSHARG; VAR-send, which produces the message

VAR (ptr₁ , A) 0 (ptr₂ , B) 1

where ptr₂ points to the stack

[ (var 0 , [remote (ptr₁ , A) 1 , remote (ptr₁ , A) 0 ]) ] , just ((ptr₁ , A) , 0 , 2)

Note that the two traces are essentially the same, except for the REMOTE
rule becoming meaningful. As we explained before, the POPARG-remote rule
only changes the local view of the remote stack extension and generates no
communication overhead. Also note that the stack at ptr₂ extends remotely to
the stack at ptr₁ and uses it in its own stored closures.

The rest of the dialogue is as follows:

Node A ∶ VAR-receive;VAR;POPARG-remote;VAR-send
Node B ∶ VAR-receive;VAR;VAR-send
Node A ∶ VAR-receive;VAR;RETURN-send
Node B ∶ RETURN-receive;RETURN-send
Node A ∶ RETURN-receive;RETURN-send
Node B ∶ RETURN-receive;RETURN-send
Node A ∶ RETURN-receive

Compared to the Krivine trace, the VAR instructions is here broken into a
send and receive version if the requested variable is remote. There is also the
additional VAR rule needed to avoid a case statement on whether a variable
is local or remote. The RETURN instructions are new, required to forward
computed values to the caller.

After the execution, the heaps of the two nodes are:

A ∶ {ptr₁↦ ([arg (λ var 0 , []); arg (lit 0 , []) ] , nothing) ,
ptr₃↦ ([] , just ((ptr₂ , B) , 0 , 1))}

B ∶ { ptr₂↦ ([arg (var 0 , [remote (ptr₁ , A) 1; remote (ptr₁ , A) 0 ]) ] ,
just ((ptr₁ , A) , 0 , 2)) ,

ptr₄↦ ([] , just ((ptr₃ , A) , 0 , 0))}

A graphical representation of the final heap is in Figure 6.2, with stack exten-
sion pointers in black and remote variables in grey.

Unlike theKrivinemachine, theKrivine netswill result in non-empty heaps
(garbage) in the individual DKrivine machines. We will discuss how to deal
with this in Section 9.3.
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ptr₃

ptr₁
arg (λ var 0 , [])
arg (lit 0 , [])
*
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ptr₄

ptr₂

*
arg (var 0 , *)

Heap A Heap B

Figure 6.2: Final heap
A graphical representation of the final heap of the example, with
stack extension pointers in black and remote variables in grey.

6.3 correctness
We prove the correctness of the DKrivine machine by exhibiting a simulation
between the conventional Krivine machine and a Krivine net.⁷ The simulation
is then used to prove the following Soundness theorems:⁸

Theorem 6.3.1. If cfg ↓K lit n and RSync cfg nodes, then nodes ↓Sync lit n.

Theorem 6.3.2. If cfg ↑K and RSync cfg nodes, then nodes ↑Sync.

These theorems correspond to the following Agda definitions:

termination-agreesSync ∶ ∀ cfg nodes n→ RSync cfg nodes→
cfg ↓K lit n→ nodes ↓Sync lit n

divergence-agreesSync ∶ ∀ cfg nodes→ RSync cfg nodes→
cfg ↑K → nodes ↑Sync

The termination theorem states that for any Krivine machine configuration cfg
and any Krivine net configuration nodes, if we have a simulation relation RSync
between them then for any literal n, if the Krivine machine starting from cfg
produces the literal n, then the Krivine net starting from configuration nodes
produces the same. Note that we are using Sync nets, because they are more
convenient and because Async nets can be reduced to Sync nets in the case of
Krivine nets, as discussed previously. The divergence theorem makes a sim-
ilar point about non-termination: from related states, if the Krivine machine
diverges then the Krivine net diverges.

⁷Online appendix: krivine/formalisation directory, DKrivine.Simulation module.
⁸Online appendix: krivine/formalisation directory, DKrivine.Soundness module.
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6.3.1 The simulation relation
The most important ingredient of the correctness proof is defining and exhib-
iting the appropriate simulation relation. At the top level, the relation between
the Krivine machine and Krivine net configurations is defined as follows:

RSync ∶ Rel Config SyncNetwork
RSync cfg nodes = ∃ λ i→

all nodes except i are inactive ×
RMachine (proj₂ ○ nodes) cfg (proj₁ (nodes i))

In Agda notation the existential statement ∃i .P(i) is written ∃ λ i → P i. The
predicate all_except_are_ is defined as

all f except x are P = ∀ x’→ x’ ≠ x→ P (f x’)

and inactive node holds exactly when the thread of node is nothing. A simulation
between machine and net configurations exists only when precisely one node
i is active in the net. The machine at that node (proj₁ (nodes i)) must be related
to the configuration of the Krivine machine through the following machine-
simulation relation:

RMachine ∶ Heaps→ Rel Config (Maybe Thread)
RMachine hs (t₁ , e₁ , s₁) (just (t₂ , e₂ , s₂)) =
RTerm t₁ t₂ × REnv hs e₁ e₂ × (∃ λ rank→ RStack rank hs s₁ s₂)

RMachine hs (t₁ , e₁ , s₁) nothing = �

The relation is indexed by the distributed heap of the Krivine net hs ∶ Heaps,
which is the Node-indexed family of all the individual heaps. This relation
RMachine simply distributes the relation further to terms using RTerm, environ-
ments using REnv and stacks using RStack. In order for this to be possible it is
required that the DKrivine machine is not halted (nothing ∶ Maybe Thread).

On terms, the relation RTerm is just propositional equality, while REnv and
RStack aremore subtle and require a non-trivial proof technique. RStack is similar
to a step-indexed relation [7] on stacks. It is defined by induction on a natural
number rank in order to ensure that the cascading remote stack extensions do
not have any cycles. Unlike a step-indexed relation, rank means that we do
exactly rank remote-pointer dereferencings in the process of relating two stacks,
and RStack requires that this number is known. REnvElem, used by REnv to relate
environment elements, is defined by induction on a rank for the same reason.

6.3.2 Relating environments
On environments, the definition of the relation is:
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REnv ∶ Heaps→ Rel Krivine.Env DKrivine.Env
REnv hs [] [] = ⊺
REnv hs [] (x₂ :: e₂) = �
REnv hs (x₁ :: e₁) [] = �
REnv hs (x₁ :: e₁) (x₂ :: e₂) =
(∃ λ rank→ REnvElem rank hs x₁ x₂) × REnv hs e₁ e₂

Empty environments are trivially related, but environments of different shapes
cannot be related. If both environments are non-empty then the definition
is inductive on the structure of the environment. Environment elements are
related by requiring that there exists a rank such that they are related by REnvElem:

REnvElem ∶ N→ Heaps→ Rel Krivine.EnvElem DKrivine.EnvElem
REnvElem 0 hs (clos c₁) (local c₂) = RClosure hs c₁ c₂
REnvElem (1 + rank) hs (clos c₁) (local c₂) = �
REnvElem 0 hs (clos c₁) (remote contptr index) = �
REnvElem (1 + rank) hs (clos c₁) (remote contptr index) =

stack-ext-pred hs contptr
(λ s₂→ ∃ λ ee₂→ stack-index s₂ index ≡ just ee₂

× REnvElem rank hs (clos c₁) ee₂)

Local closures of the DKrivine machine relate to closures of the Krivine
machine (RClosure) if their terms are equal and their environments are related
through REnv. Relating remote closures (remote contptr index) of the DKrivine
machine to the closures of the Krivine machine (clos c₁) is perhaps the most
subtle part of the definition. It uses the following helper function which en-
sures that, given a distributed heap hs ∶ Heaps, a remote pointer (ptr, loc) ∶
ContPtr and a predicate on distributed stacks DKrivine.Stack → Set, the pointer
points to a stack in the heap of node loc such that the predicate holds:

stack-ext-pred ∶ Heaps→ ContPtr→ (DKrivine.Stack→ Set)→ Set
stack-ext-pred hs (ptr , loc) P = ∃ λ s→ (hs loc ! ptr ≡ just s) × P s

The pointer dereferencing operation is hs loc ! ptr. The predicate which we
use in the definition of REnvElem is that there exists an element ee₂ in the envir-
onment of the DKrivine machine such that it REnvElem-relates to the Krivine
closure clos c₁ in one less step.

Note that the rank has to be 0 to relate local elements, and it has to be 1+ rank
to relate a remote element. The recursive call is done with the predecessor rank.
This makes sure that there are exactly rank pointers to follow to reach a local
closure if we have an element of REnvElem rank hs x₁ x₂. This means, in particular,
that there can be no circular sequences of pointers between the nodes of the
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system. When there are no circular sequences of pointers between the nodes
of the system it is enough to use distributed reference counting [16] — full-
blown distributed garbage collection is not a necessity.

6.3.3 Relating stacks
Relating stacks is somewhat similar.

RStack ∶ N→ Heaps→ Rel Krivine.Stack DKrivine.Stack
RStack rank hs (x₁ :: s₁) ([] , nothing) = �
RStack rank hs [] (x₂ :: s₂ , r) = �
RStack 0 hs [] ([] , nothing) = ⊺
RStack (1 + rank) hs [] ([] , nothing) = �
RStack rank hs (x₁ :: s₁) (x₂ :: s₂ , r) =
RStackElem hs x₁ x₂ × RStack rank hs s₁ (s₂ , r)

RStack 0 hs s₁ ([] , just (contptr , args , drop)) = �
RStack (1 + rank) hs s₁ ([] , just (contptr , args , drop)) =

stack-ext-pred hs contptr (λ s₂→
∃ λ ds₂→ drop-stack s₂ drop ≡ just ds₂

× num-args ds₂ ≡ args × RStack rank hs s₁ ds₂)

Empty stacks, with no remote extensions, are related if the rank is 0, whereas
empty and non-empty are not related. Two non-empty stacks are related if the
elements on top are related by REnvElem and the remaining stacks are related.
The relation is interesting when remote pointer extensions are involved. If
there is a remote stack extension but the step-index is 0 then it cannot be re-
lated to a Krivine stack. If there is a non-zero step-index then, using the same
helper function stack-ext-pred, we require that the substack ds₂ of s₂ obtained by
dropping the drop arguments required by the remote stack extension pointer
just (contptr , args , drop) is related to the Krivine stack s₁ using a smaller (by
one) index.

Finally, stack elements are related if they have the same head constructor,
and the constituents are related:

RStackElem ∶ Heaps→ Rel Krivine.StackElem DKrivine.StackElem
RStackElem hs (arg c₁) (arg c₂) = RClosure hs c₁ c₂
RStackElem hs (if0 c₁ c₁’) (if0 c₂ c₂’) = RClosure hs c₁ c₂ ×

RClosure hs c₁’ c₂’
RStackElem hs (op₂ f c₁) (op₂ g c₂) = f ≡ g ×

RClosure hs c₁ c₂
RStackElem hs (op₁ f) (op₁ g) = f ≡ g
RStackElem hs _ _ = �
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6.3.4 Proof outline

In order to prove themain property we need to first establish themonotonicity
of all the heap-indexed relations relative to heap inclusion: if two machine
configurations, environments, environment elements, or stacks are related in
a family of heaps hs they are also related in any larger family of heaps hs ⊆s hs’.
The _⊆s_ relation is a pointwise lifting of heap inclusion h ⊆ h’, which states that
any element in h is also in h’. The main property is the following:

Lemma 6.3.3. If hs ⊆s hs’ then RMachine hs cfg m implies RMachine hs’ cfg m.⁹

The properties are proved in a local Agda module parameterised by the
heap inclusion property, and therefore it does not need to be included in each
statement — it is a background assumption:

module HeapUpdate (hs hs’ ∶ Heaps) (inc ∶ hs ⊆s hs’) where
envelem ∶ ∀ rank el el’→ REnvElem rank hs el el’

→ REnvElem rank hs’ el el’
env ∶ ∀ e e’→ REnv hs e e’→ REnv hs’ e e’
stackelem ∶ ∀ el el’→ RStackElem hs el el’

→ RStackElem hs’ el el’
stack ∶ ∀ rank s s’→ RStack rank hs s s’

→ RStack rank hs’ s s’
machine ∶ ∀ cfg m→ RMachine hs cfg m

→ RMachine hs’ cfg m

The proofs are largely straightforward, inductive on the structure of the data
structure the lemma is concerned with. The key auxiliary property that makes
monotonicity of the relations true is the fact that any predicate which relies on
heap dereferencing is preserved:

s-ext-pred ∶ ∀ contptr {P Q}→ (∀ s→ P s→ Q s)→
stack-ext-pred hs contptr P→ stack-ext-pred hs’ contptr Q

For example, for environments, environment elements, and closures the proofs
are mutually recursive, inductive on their structures:

⁹Online appendix: krivine/formalisation directory, DKrivine.Simulation module.
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closure ∶ ∀ c c’→ RClosure hs c c’→ RClosure hs’ c c’
envelem ∶ ∀ rank el el’→ REnvElem rank hs el el’

→ REnvElem rank hs’ el el’
envelem 0 (clos c) (local c’) Rcc’ = closure c c’ Rcc’
envelem (1 + rank) (clos c) (local c’) Rcc’ = Rcc’
envelem 0 (clos c) (remote contptr index) Relel’ = Relel’
envelem (1 + rank) (clos c) (remote contptr index) Relel’ =

s-ext-pred contptr f Relel’
where

f ∶ ∀ s→
(∃ λ ee’→ stack-index s index ≡ just ee’

× REnvElem rank hs (clos c) ee’)→
∃ λ ee’→ stack-index s index ≡ just ee’
× REnvElem rank hs’ (clos c) ee’

f s (ee’ , si , Rcee’) = ee’ , si , envelem rank (clos c) ee’ Rcee’

env ∶ ∀ e e’→ REnv hs e e’→ REnv hs’ e e’
env [] [] Ree’ = Ree’
env [] (x :: e’) Ree’ = Ree’
env (x :: e) [] Ree’ = Ree’
env (x :: e) (x’ :: e’) ((rank , Rxx’) , Ree’) =
(rank , envelem rank x x’ Rxx’) , env e e’ Ree’

closure (t , e) (t’ , e’) (Rtt’ , Ree’) = Rtt’ , env e e’ Ree’

The soundness theorem termination-agreesSync stated at the beginning of this
section follows directly from two important lemmas, called simulationSync and
termination-return. The former is the main technical result of this work on dis-
tributing the Krivine machine (soundness is merely a corollary of it) and the
latter is used to handle the remaining non-trivial case of the soundness proof,
that of cascading RETURN statements at the end of an execution.

Theorem6.3.4. The relation RSync is a Simulation relation between theÐ→K and
ÐÐ→Sync

+ transition relations.1⁰

This theorem is proved by the following Agda definition:

simulationSync ∶ Simulation _Ð→K_ _ÐÐ→Sync
+_ RSync

A simulation relation is defined in the standard way, where Ð→ and Ð→’ are
transition relations that parameters of the enclosing module:11

1⁰Online appendix: krivine/formalisation directory, DKrivine.Simulation module.
11Online appendix: krivine/formalisation directory, Relation module.
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Simulation ∶ (_R_ ∶ Rel A B)→ Set
Simulation _R_ = ∀ a a’ b→ (aÐ→ a’) → a R b→

∃ λ b’ → (bÐ→’ b’) × a’ R b’

The proof of simulationSync is lengthy but largely routine. The non-trivial
cases are:

• RETURN actions of the DKrivine machines, which are handled by the
lemma simulation-return:

simulation-return ∶ ∀ n e s cfg’ e’ s’ i nodes srank conth→
let cfg = (lit n , e , s)

hs = proj₂ ○ nodes
in cfg Ð→K cfg’→

all nodes except i are inactive→
nodes i ≡ just (lit n , e’ , s’) , conth→
RStack srank hs s s’→ ∃ λ nodes’→

nodes ÐÐ→Sync
+ nodes’ × RSync cfg’ nodes’

• VAR remote actions of the DKrivine machine, which are handled by the
lemma simulation-var:

simulation-var ∶ ∀ t e s n e’ s’ nodes i conth el→
let hs = proj₂ ○ nodes in
(∃ λ rank→ REnvElem rank hs (clos (t , e)) el)→
(∃ λ rank→ RStack rank hs s s’)→
all nodes except i are inactive→
nodes i ≡ just (var n , e’ , s’) , conth→
lookup n e’ ≡ just el→
∃ λ nodes’→ (nodes ÐÐ→Sync

+ nodes’) × RSync (t , e , s) nodes’

What is interesting about these two lemmas, which establish the conditions
under which the simulation relation is preserved by transitions related to the
integer operations andVAR rules, is that it requires a different proof technique,
induction on the rank. This is because the distributed machine may need to
perform a cascade of returns (or variable accesses) between different nodes
before it reaches a configuration related to that of the Krivine machine, as we
saw in the example in Section 6.2.1.

The termination-return lemma mentioned earlier uses a similar proof tech-
nique (induction on the rank); its full statement is:
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termination-return ∶ ∀ n e’ s’ i nodes srank conth→
let hs = proj₂ ○ nodes

in all nodes except i are inactive→
nodes i ≡ just (lit n , e’ , s’) , conth→
RStack srank hs [] s’→ nodes ↓Sync lit n

The second part of the soundness proof is the agreement on divergence
between the Krivine machine and the Krivine net. This proof relies essentially
on the fact that a Krivine net transition is deterministic whenever only one
node is active and that the Krivine machine transition’s codomain is decidable
in the following sense:12

_is-deterministic-at_ ∶ {A B ∶ Set} (R ∶ Rel A B) (x ∶ A)→ Set
_R_ is-deterministic-at a = ∀ {b b’}→ a R b→ a R b’→ b ≡ b’
_is-decidable ∶ {A B ∶ Set} (_R_ ∶ Rel A B)→ Set
_R_ is-decidable = ∀ a→ Dec (∃ λ b→ a R b)

Theorem 6.3.5. If all nodes except one are inactive in a SyncNetwork nodes, then
_ÐÐ→Sync _ is-deterministic-at nodes, i.e. the next transition is deterministic.

Theorem 6.3.6. It is decidable whether a SyncNetwork can make a transition or
not.

In Agda, these theorems are stated as:

determinismSync ∶ ∀ nodes i→ all nodes except i are inactive→
_ÐÐ→Sync _ is-deterministic-at nodes

decidableK ∶ _Ð→K_ is-decidable

To conclude this section, we need to show that initial configurations are
related so that we have a starting point for the simulation. This is easy to do
since the environments and stacks are empty:

initial-relatedSync ∶ ∀ t root→ RSync (t , [] , []) (initial-networkSync t root)

12Online appendix: krivine/formalisation directory, DKrivine.Properties module.
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6.4 proof of concept implementation
We have implemented a prototype compiler for Krivine nets.13 Except for the
_@_ directive, compilation to Krivine nets is implemented by using the same
standard compilation scheme used to compile Krivine machines. The aim is
not efficiency as much as simplicity. Since the machine is deterministic, we
compile each constructor of the source language to a given code sequence.
Each argument to a function in the source language becomes a separate C func-
tion, such that its address can be taken. As an example, pushing an argument
is translated into a bytecode instruction PUSHARG (f) where f is the (statically
known) address of the function obtained from compiling the argument. Each
bytecode instruction of the Krivine machine is in turn translated into separ-
ate C functions, and message passing is implemented using Message Passing
Interface (MPI).

The runtime system of the DKrivine machine takes into account whether
pointers are local or remote and behaves accordingly. A remote pointer is rep-
resented as the following C struct:

struct RemotePtr {
void* ptr;
int location;

}

The environment uses tags to distinguish between local and remote pointers
just like the Agda definition.

The _@_directive is translated directly into a predefinedREMOTE bytecode
instruction, which constructs and sends a REMOTE message at run time. As
mentioned, we avoid sending code by grouping fragments of output code that
correspond to the same node, and compiling each group as a separate binary.
The fragment of code that corresponds to t inside a subterm t @ A is assigned,
at compile time, a global identifier that an invoking node can use to activate t
on node A, meaning that no actual code has to be sent at run time.

Themain loop of each node is set up to receivemessages and act depending
on their tag, conceptually like the following code skeleton:

while(1) {
Msg message = receive();
switch(message.tag) {

case REMOTE_MSG_TAG: ...
case RETURN_MSG_TAG: ...

13Online appendix: krivine/implementation directory.
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case VAR_MSG_TAG: ...
default: break;

}
}

The compiler is not certified or extracted from the proofs, so we choose an
implementation that is, as much as reasonably possible, “clearly correct.”

We defer the benchmarks of the compiler to Section 7.8, so that we can
also compare our implementation to the implementation of our last abstract
machine, which will be presented next (Chapter 7).

106



Chapter 7

The SECDmachine
We have seen how to construct a moderate extension of the Krivine machine
(Chapter 6) to allow the execution of distributed programs. A natural ques-
tion to ask at this point is whether this is also possible to do for other abstract
machines. In particular, it might be interesting to investigate machines that
implement the call-by-value evaluation strategy. That is what we will do in
this chapter.

Synopsis Wepresent another abstractmachine, calledDCESH, whichmodels
the execution of higher-order programs running in distributed architectures.
The machine is conceptually similar to the DKrivine machine, with the dif-
ference that it uses call-by-value and is based on a modernised version of the
SECD machine. It enriches this version of the SECD machine with the spe-
cialised communication features required for implementing the Remote Pro-
cedure Call (RPC) mechanism. The key correctness result is that the termina-
tion behaviour of the RPC is indistinguishable (bisimilar) to that of a local call.
The correctness proofs and the requisite definitions for DCESH and other re-
lated abstract machines are formalised using Agda. The most technically chal-
lenging part of the formalisation requires the use of the step-indexed relations
technique [7].

We use the DCESH as a target architecture for compiling a conventional
call-by-value functional language (”Floskel”)which canbe annotatedwith node
information. Benchmarks show that the single-node performance of Floskel
is comparable to that of OCaml, a semantically similar language, and that dis-
tribution overheads are not excessive.

7.1 technical outline
The presentation is divided into the following two main parts:

Compiler and runtime We describe the syntax and implementation of Floskel
(Section 7.2), a general-purpose functional language with native RPCs. Our
basis is a conventional compiler for such a language, and we show how it is
modified to support RPCs and, additionally, ubiquitous functions, i.e. func-
tions available on all nodes. Our benchmarks suggest that Floskel’s perform-
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ance is comparable to the state of the art OCaml compiler for single-node ex-
ecution.

Abstract machines The semantics of a core of Floskel has been formalised in
Agda (Section 7.3) in the form of an abstract machine that can be used to guide
an implementation. To achieve this we make gradual refinements to a ma-
chine, based on Landin’s SECD machine [93], that we call the CES machine.
First we add heaps for dynamically allocating closures, forming the CESH ma-
chine; we show that the execution of CES and CESH are bisimilar. We then
add communication primitives (synchronous and asynchronous) by instanti-
ating our previously defined general form of networks (Section 2.5) with two
different underlying abstract machines. We first illustrate the idea of subsum-
ing function calls by communication protocols by constructing a degenerate
distributed machine, DCESH1, that decomposes some machine instructions
into message passing, but only runs on one node. Execution on the fully dis-
tributed CESH machine, called DCESH, is shown to be bisimilar to the CESH
machine (and thus the CES machine) — our main theoretical result.

The formalisation is organised as follows, where the arrows denote depend-
ence, the lines with ∼ symbols bisimulations, and the parenthesised numerals
section numbers:

CES
(7.4)

CESH
(7.5)

DCESH
(7.7)

Heaps Networks
(2.5)

DCESH1

(7.6)

∼
(7.5.1)

∼
(7.7.1)

7.2 floskel: a location-aware language
This section describes the Floskel programming language and its compiler,
runtime, and performance.1

7.2.1 Syntax
At the core of the Floskel language is a call-by-value functional language with
user-definable algebraic data types and pattern matching. Floskel is semantic-
ally similar to languages in the ML [64] family, and syntactically similar to lan-

1Online appendix: floskel directory.
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guages such as Miranda [134] and Haskell [74]. The main thing that sets Flo-
skel’s syntax apart is that patternmatching clauses are givenwithout the leading
function name,2 to avoid repetition, and that type annotations are given after
a single colon, as in the following example:

map ∶ (a → b) → [a] → [b]
f [] = []
f (x::xs) = f x :: map f xs

Node annotations An ordinary function definition, like map, is a ubiquitous
function by default. This means that it is made available on all nodes in the sys-
tem, and a call to such a function is always done locally — a plain old function
call.

On the other hand, a function or subterm defined with a node annotation,
such as

query@Database ∶ Query → Response
x = ...,

is located and compiled only to the specified node (here Database). In the rest
of the program query can be used like any other function, but the compiler
and runtime system treat it differently. A call to query from a node other than
Database is a remote call.

Since the programmer can use located functions like any other functions,
and this is a functional language, it means that the language has, by necessity,
support for higher-order functions across node boundaries. For instance the
function

f@A ∶ (Query → Response) → X
q = ... use q ...

can be applied to query yielding f query ∶ X.
Node annotations can also be applied to subexpressions, as in the following

example:
sum [] = 0
(x::xs) = x + sum xs

xs@A = ...
ys@B = ...
result@C = (sum xs) @A + (sum ys) @B

2After having received feedback on how confusing this syntax is both from anonymous
reviewers and those reading a draft of this dissertation, I am inclined to think that deviating
from the “standard” syntax was a mistake, especially in a presentation that has little to do with
the syntax of pattern matching clauses. It does, however, give further proof that Wadler’s law
is true.
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Here we want to calculate the sum, on node C, of the elements of two lists
located on nodes A and B. If the lists are lengthy, it is better to calculate the
sums on A and B, and to then send the final sum to C, since this saves us having
to send the full lists over the network.

7.2.2 Compilation

The Floskel compiler3 currently targets C using the MPI library [65] for com-
munication, though other targets are possible since we do not make use of
any features that are unique to our target. Any compatible combination of
low-level language and message passing library would work. Most of the com-
piler’s pipeline is standard for a functional language implementation. It works
by applying a series of standard transformations to the source program until
reaching a level low enough to be straightforwardly translated to C. Since the
source language has pattern matching, it first compiles the pattern matching
to simple case trees [9]. Local definitions are then lifted to the top-level us-
ing lambda lifting [81], and lastly the program is closure converted [108] to
support partially applied functions.

Up until the lambda lifting, a node annotation is a constructor in the ab-
stract syntax tree of the language’s expressions. The lambda lifter lifts such
subexpressions to the top-level such that annotations are afterwards associ-
ated with definitions (and not expressions). This is for simplicity: it means
that there are fewer cases to consider when we make the annotations work.

Themain work specific to Floskel is done in the closure conversion and the
runtime system that the compiled programs make use of.

Closures For applications, the closure converter distinguishes between known
functions — those that are on the top-level and have a known arity, and un-
known functions — those that are provided e.g. as function arguments.

A known function f that is either ubiquitous or available on the same node
as the definition that is being compiled is compiled to an ordinary function call
if there are enough arguments. If there are not, and the function is ubiquitous
we have to construct a partial application closure, which contains a pointer to
the function and the arguments so far. The compiler maintains the invariant
that unknown functions are always in the form of a closure, whose general
layout is:

gptr gid arity payload…

3Online appendix: floskel directory.
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Since the function may require access to the payload of the closure, gptr is
a function of arity arity + 1: when applying a closure cl as above to arguments
x1 , ... , xarity, the call becomes gptr (cl , x1 , ... , xarity)meaning that the function
has access to the payload through cl. To construct the initial closure for a par-
tial application of a function f of arity arity with nargs arguments, we have to
conform to this rule, so we construct the closure ( f ′ptr , f ′id , n , y1 , ... , ynargs)
where n = arity - nargs and f ′ is a new ubiquitous top-level function defined
as follows:

f ′ cl x1 ... xn = case cl of
(_, _, _, y1 , ..., ynargs) → f (y1 , ... , ynargs , x1 , ... , xn)

A family of applyi functions handle, in a standard way, applications (of i
arguments) of unknown functions by inspecting the arity stored in the clos-
ure to decide whether to construct a new partial application closure with the
additional arguments or to apply the function.

The field fid is an integer identifier assigned to every function at compile
time and used as a system-wide identifier if the function is ubiquitous, or a
node-specific identifier if not. If there are k ubiquitous functions they are as-
signed the first k identifiers, and the nodes of the system may use identifiers
greater than k for their respective located functions. Determining if a function
is ubiquitous is thus a simple comparison: fid < k. Additionally, every node has
a table of functions that maps ubiquitous or local located function identifiers
to local function pointers, which is used by the deserialiser.

If we have a saturated call to a known remote function, we make a call to
the function rApplyarity, defined in the runtime system (to be described). If we
have a non-saturated call to a known remote or located function, we construct
the closure ( f ′ptr , f ′id , arity , y1 , ... , ynargs)where f ′ is a new ubiquitous top-level
function defined as follows:

f ′ cl x1 ... xn = case cl of
(_, _, _, y1 , ..., ynargs) →
if myNode ≡ fnode then

lookup ( fid) (y1 , ... , ynargs , x1 , ... , xn)
else

rApplyarity ( fnode , fid , y1 , ... , ynargs , x1 , ..., xn)

Here myNode is the identifier of the node the code is currently being run at.
If it is the same node as the node of f , we canmake an ordinary function call by
looking up the function corresponding to fid in the function table. Otherwise
we call the runtime system function rApplyarity.

In this way, we construct a closure for located functions that looks just
like the closure of an ubiquitous function, meaning that fewer special cases
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are needed in the runtime system — the normal applyi function works for all
closures.

7.2.3 Runtime
The runtime system defines a family of ubiquitous functions rApplyarity, that,
as we saw above, are used for remote procedure calls and to construct closures
for located functions. The function takes a function identifier, a node identifier,
and arity arguments. It serialises the arguments and sends them together with
the function identifier to the given node:

rApply fnode fid x1 ... xarity =
send ( fid , serialise (x1) , ..., serialise (xarity)) to fnode;
receive answer from fnode →
answer

When the node fnode receives this message, it looks the function up in its
function table, calls it with the deserialised arguments, and sends back the res-
ult:

receive ( fid , y1 , ... , yarity) from remoteNode →
let result = lookup ( fid) (deserialise (y1) , ..., deserialise (yarity))
in send result to remoteNode

Serialisation In a remote function call the arguments may be values from ar-
bitrary algebraic data types (like lists and trees), in addition to primitive types
and functions.

The serialisation of a primitive type is the identity function, while algebraic
data types require a traversal and flattening of the heap structure. We use tags
in the lower bits of a value’s field to differentiate between pointers and non-
pointers, which makes this flattening straightforward. The interesting part of
serialisation is how to handle closures, both in the case of ubiquitous and loc-
ated functions.

For closures around ubiquitous functions, we serialise the closure almost
as is, but use the function identifiers to resolve the function pointer on the
receiving node, as the pointer is not guaranteed to be the same on each node.

Tohandle located functions, themost straightforward implementation is to
use “mobilised” closures that work by exchanging the located function with a
ubiquitous function that calls rApply to perform the remote procedure call — a
sort of lambda-lifting for locations. This is what our implementation currently
does. Our formalisation will describe an optimised variant of this scheme,
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which instead saves the closure on the sending node and sends a pointer to
that. The optimised scheme means that we do not unnecessarily send closures
containing (potentially large) arguments that are going to end up on the node
they originated from anyway. The cost of this optimisation, however, is that
it requires us to keep track of heap-allocated pointers across node boundaries
using distributed garbage collection. The serialisation currently implemented
does not require such garbage collection — it only requires local collections —
but may be slow when dealing with large data. Our compiler uses, for simpli-
city of implementation, the Boehm-Demers-Weiser conservative garbage col-
lector [1] for local garbage collection.

In detail, to serialise a closure

fptr fid arity payload…

we put a placeholder, CL, in the place of fptr:

CL fid arity payload’ …

where payload′ represents the serialised payload and CL is a tag that can be
used to identify that this is a closure. To deserialise this on the receiving end,
we look up the function pointer associated with fid in the ubiquitous function
table and substitute that for CL.

7.2.4 Performance benchmarks
Single-node Beforewemeasure the performance of the implementation of the
native RPC, we analyse how the single-node performance is affected by the
distribution overhead even if it is not used— is it feasible for a general-purpose
language to be based on the DCESH?

Table 7.1 shows absolute and relative timings of a number of small bench-
marks using integers, lists, trees, recursion, and a small amount of output for
printing results. We compare the performance of Floskel programs compiled
with our compiler, and equivalent OCaml programs compiled using ocaml-
opt, a high-performance native-code compiler. Since our compiler targets C,
we further compile the generated files to native code using gcc -O2. We can
see that the running time of programs compiled with our compiler is between
two and six times greater than that of those compiled with ocamlopt. These
results should be viewed in the light of the fact that our compiler only does a
minimal amount of optimisation, whereas a considerable amount of time and
effort has been put into ocamlopt.

Moreover, our compiler only produces C code rather than assembly, which
is another potential source of inefficiencies.
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trees nqueens qsort primes tak fib
Floskel 91.2s 12.2s 9.45s 19.3s 16.5s 10.0s

ocamlopt 43.0s 3.10s 3.21s 6.67s 2.85s 1.68s
relative 2.12 3.94 2.94 2.9 5.77 5.95

Table 7.1: Floskel single-node performance
The running time of programs compiled with our compiler is
between two and six times greater than that of those compiled with
ocamlopt.

trees nqueens qsort primes tak fib
µs/remote call 618 382 4.77 13.4 6.94 6.87
B/remote call 1490 25.8 28.1 27.0 32.0 24.0

Table 7.2: Floskel distribution overheads
Thefirst row, µs/remote call, is obtained by running the same bench-
mark with and without node annotations, taking the delta-time of
those two, and then dividing by the number of remote invocations
in the distributed program. The second row measures the amount
of data transmitted per remote invocation, in bytes. We can see that
we can do between 1600 and 210000 remote invocations per second
on this set of benchmarks running on our machine.

Distribution overhead We measure the overhead of our implementation of
native remote procedure calls by running the same programs as for the single-
node benchmarks, but distributed to between two and nine nodes. The distri-
bution is done by adding node annotations inways that generate large amounts
of communication. We run the benchmarks on a single physical computer
with local virtual nodes, which means that the contributions of network laten-
cies are factored out. Thesemeasurements give the overhead of the other factors
related to remote calls, like serialisation and deserialisation. The results are
shown in Table 7.2. The first row, µs/remote call, is obtained by running the
same benchmark with and without node annotations, taking the delta-time of
those two, and then dividing by the number of remote invocations in the dis-
tributed program. The second row measures the amount of data transmitted
per remote invocation, in bytes.

It is expected that this benchmark depends largely on the kinds of invoca-
tions that are done, since it is more costly to serialise and send a long list or a
big closure than an integer. The benchmark hints at this; the program with the
biggest messages is the slowest.

An outlier is the nqueens benchmark, which does not do remote invoca-
tions with large arguments, but still has a high overhead per call. This is prob-
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ably because it intentionally uses many localised functions, meaning that its
distribution is extremely fine-grained.

The full distributed Floskel programs are given in the online appendix.⁴
The single-node versions are the same, only without the location specifiers,
and the OCaml versions are literal translations thereof.

7.3 abstract machine formalisation
Having introduced the programming language, its compiler, and its runtime
system, we now present the theoretical foundation for the correctness of the
compiler.⁵ We start with the standard abstract machine model of call-by-value
computation, which we refine, in several steps, into increasingly expressive
abstract machines with heap and networking capabilities, while showing that
correctness is preserved along the way, via bisimulation results. All defini-
tions and theorems are formalised using the proof assistant Agda, the syntax of
which we will follow. Note that we shall not formalise the whole of Floskel but
only a core language which coincides with Plotkin’s (untyped) call-by-value
PCF [117].

7.4 the ces machine
The starting point is a variation of Landin’s SECDmachine [93] calledModern
SECD [96]. Since this variation does not use a dump, we will call our imple-
mentation the CES machine.

The Modern SECD machine can be traced back to the CEK machine of
Felleisen [38] and to the SECD variation of Henderson [69]. Just like the CEK,
the Modern SECD machine places the continuations that originally resided in
the dump on the stack, which simplifies the machine configurations by obvi-
ating the need for a dump. But Modern SECD goes further; like Henderson’s
machine, it uses a bytecode for the control component. Although this means
that a compilation step is required before running a term, which might seem
like a complication, it means that we do not require as many different kinds of
continuations as the CEK machine. For example, the continuations related to
the evaluation of a function and its argument can now be encoded directly in
the control component just by juxtaposition of code.

A CES⁶ configuration (Config) is a tuple consisting of a fragment of code
(Code), an environment (Env), and a stack (Stack). Evaluation begins with an

⁴Online appendix: floskel/benchmarks directory.
⁵Online appendix: secd/formalisation directory.
⁶Online appendix: secd/formalisation directory, CES module.
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empty stack and environment, and then follows a stack discipline. Subterms
push their result on the stack so that their superterms can consume them.
When (and if) the evaluation terminates, the program’s result is the sole stack
element.

Themachine operates onbytecode anddoes not directly interpret the source
terms, so the terms need to be compiled before they can be executed.⁷ The
main work of compilation is done by the function compile’, which takes a term
t and a fragment of code c used as a postlude. The postlude parameter lets us
compile terms without using a costly bytecode append function; compile’ uses
a difference list [76] representation where append is a constant-time operation.
The bold upper-case names (CLOS, VAR, and so on) are the bytecode instruc-
tions, which are sequenced using _;_. Instructions can be seen to correspond
to the constructs of the source language, sequentialised.

compile’ ∶ Term→ Code→ Code
compile’ (λ t) c = CLOS (compile’ t RET) ; c
compile’ (t $ t’) c = compile’ t (compile’ t’ (APPL ; c))
compile’ (var x) c = VAR x ; c
compile’ (lit n) c = LIT n ; c
compile’ (op f t t’) c = compile’ t’ (compile’ t (OP f ; c))
compile’ (if0 b then t else f) c =

compile’ b (COND (compile’ t c) (compile’ f c))

Example 7.4.1. To compile a term t we supply END as a postlude: compile t =
compile’ t END. The term t = (λx. x) (λx y. x) is compiled as follows:

compile ((λ var 0) $ (λ (λ var 1))) = CLOS (VAR 0 ; RET) ;
CLOS (CLOS (VAR 1 ; RET) ; RET) ; APPL ; END

Environments (Env) are lists of values (List Value), which are either natural
numbers (nat n) or closures (clos cl). A closure (Closure) is a fragment of code
paired with an environment (Code × Env). Stacks (Stack) are lists of stack ele-
ments (List StackElem), which are either values (val v) or continuations (cont cl),
represented by closures.

Figure 7.1 shows the definition of the transition relation for configurations
of the CES machine. A note on the Agda syntax is that the instruction con-
structor names are overloaded as constructors for the relation; their usage is
disambiguated by context. Arguments in curly braces are implicit and can be
automatically inferred. Propositional equality is written _≡_.

⁷Online appendix: secd/formalisation directory, MachineCode module.
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Thestack discipline is clear in the definition of the transition relation. When
e.g. VAR is executed, the CES machine looks up the value of the variable in the
environment and pushes it on the stack. A somewhat subtle part of the relation
is the interplay between the APPL instruction and the RET instruction. When
performing an application, two values are required on the stack, one of which
has to be a closure. The machine enters the closure, adding the value to the
environment, and pushes a return continuation on the stack. The code inside
a closure is terminated by a RET instruction, so once the machine has finished
executing the closure (and thus produced a value on the stack), that value is
returned to the continuation. It is straightforward to prove, by cases on the
transitions, that the CES machine is deterministic, i.e. that there is at most one
transition from any given state.

Example 7.4.2. We trace the execution of Example 7.4.1 defined above, which
exemplifies how returning from an application works.⁸ Here we write a ÐÐ→CES
⟨ x ⟩ b meaning that the machine uses rule x to transition from a to b.

let c₁ = VAR 0 ; RET
c₂ = CLOS (VAR 1 ; RET) ; RET
cl₁ = val (clos (c₁ , [])); cl₂ = val (clos (c₂ , []))

in (CLOS c₁ ; CLOS c₂ ; APPL ; END , [] , [])
ÐÐ→CES ⟨ CLOS ⟩ (CLOS c₂ ; APPL ; END , [] , [ cl₁ ])
ÐÐ→CES ⟨ CLOS ⟩ (APPL ; END , [] , [ cl₂ , cl₁ ])
ÐÐ→CES ⟨ APPL ⟩ (VAR 0 ; RET , [ cl₂ ] , [ cont (END , []) ])
ÐÐ→CES ⟨ VAR refl ⟩ (RET , [ cl₂ ] , [ cl₂ , cont (END , []) ])
ÐÐ→CES ⟨ RET ⟩ (END , [] , [ cl₂ ])

The final result is therefore the second closure, cl₂.

The CESmachine terminates with a value v, written cfg ↓CES v if it, through
the reflexive transitive closure ofÐÐ→CES , reaches the end of its code fragment with
an empty environment, and v as its sole stack element. It terminates, written
cfg ↓CES if there exists a value v such that it terminates with the value v. It
diverges, written cfg ↑CES if it is possible to take another step from any config-
uration reachable from the reflexive transitive closure ofÐÐ→CES .⁹

We do not prove that the compilation of call-by-value PCF to the CES ma-
chine is correct here, as it is — as mentioned in Chapter 5 — a standard res-
ult [41, 33].

⁸Online appendix: secd/formalisation directory, Trace module.
⁹Online appendix: secd/formalisation directory, CES.Properties module.
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data _ÐÐ→CESH _ ∶ Rel Config Config where
...
CLOS ∶ ∀ {c’ c e s h}→ let (h’ , ptrcl) = h ⊳ (c’ , e) in
(CLOS c’ ; c , e , s , h) ÐÐ→CESH (c , e , val (clos ptrcl) :: s , h’)

APPL ∶ ∀ {c e v ptrcl c’ e’ s h}→ h ! ptrcl ≡ just (c’ , e’)→
(APPL ; c , e , val v :: val (clos ptrcl) :: s , h) ÐÐ→CESH (c’ , v :: e’ , cont (c , e) :: s , h)

Figure 7.2: The transition relation of the CESH machine (excerpt)
To build a closure, the machine allocates it in the heap, using the _⊳_ function, which, given a heap and
an element, gives back an updated heap and a pointer to the element. When performing an application,
the machine has a pointer to a closure, so it looks it up in the heap using the _!_ function, which, given
a heap and a pointer, gives back the element that the pointer points to (if it exists).

7.5 cesh: a heap machine
In a compiler implementation of the CES machine targeting a low-level lan-
guage, closures have to be dynamically allocated in a heap. However, the CES
machine does not make this dynamic allocation explicit. We will now make
it explicit by defining a new machine, called the CESH, which is a CES ma-
chine with an extra heap component in its configuration.1⁰ While heaps are
not strictly necessary for a presentation of the CES machine, they are of great
importance to us. Thedistributedmachine thatwewill later define needs heaps
for persistent storage of data, and the CESH machine forms an intermediate
step between that and the CES machine. A CESH configuration is defined as

Config = Code × Env × Stack × Heap Closure

where Heap is a type constructor for heaps parameterised by the type of its con-
tent.11 The only difference in the definition of the configuration constituents,
compared to the CES machine, is that a closure value (the clos constructor of
the Value type) does not contain an actual closure, but just a pointer (Ptr). The
stack is as in the CES machine.

Figure 7.2 shows those rules of the CESH machine that are significantly
different from theCES:CLOS andAPPL. To build a closure, the CESH allocates
it in the heap, using the _⊳_ function, which, given a heap and an element,
gives back an updated heap and a pointer to the element. When performing
an application, the machine has a pointer to a closure, so it looks it up in the

1⁰Online appendix: secd/formalisation directory, CESH module.
11Online appendix: secd/formalisation directory, Heap module.
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heap using the _!_ function, which, given a heap and a pointer, gives back the
element that the pointer points to (if it exists).

A CESH configuration cfg can terminate with a value v, written as cfg ↓CESH
v, terminate (cfg ↓CESH), or diverge (cfg ↑CESH).12 These are analogous to the
definitions for the CES machine, except that the CESH machine is allowed to
terminate with any heap:

cfg ↓CESH v = ∃ λ h→ cfg ÐÐ→CESH
∗ (END , [] , [ val v ] , h)

7.5.1 Correctness
To show that our definition of the machine is correct, we construct a bisim-
ulation between the CES and CESH, which given the similarity between the
two machines, is almost equality. The difference is dealing with closure values,
since the CESH stores pointers rather than closures. The relation for closure
values must be parameterised by the heap of the CESH configuration, where
the (dereferenced) value of the closure pointer is related to the CES closure.

In Agda, the relation is constructed separately for the different components
of themachine configurations.13 Since they run the same bytecode, the relation
for code is equality.

RCode ∶ Rel Code Code
RCode c₁ c₂ = c₁ ≡ c₂

For closures it is defined component-wise. Since we have used the same names
for some of the components of the CES and CESH machines, we qualify them,
using Agda’s qualified imports, by prepending CES. and CESH. to their names.
These componentsmay contain values, sowehave to parameterise the relations
by a closure heap (here ClosHeap = Heap CESH.Closure).

REnv ∶ ClosHeap→ Rel CES.Env CESH.Env
RClos ∶ ClosHeap→ Rel CES.Closure CESH.Closure
RClos h (c₁ , e₁) (c₂ , e₂) = RCode c₁ c₂ × REnv h e₁ e₂

Values are related only if they have the same head constructor and related con-
stituents: if the two values are number literals, they are related if they are equal;
a CES closure and a pointer are related only if the pointer leads to a CESH clos-
ure that is in turn related to the CES closure.

12Online appendix: secd/formalisation directory, CESH.Properties module.
13Online appendix: secd/formalisation directory, CESH.Simulation module.
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RVal ∶ ClosHeap→ Rel CES.Value CESH.Value
RVal h (nat n₁) (nat n₂) = n₁ ≡ n₂
RVal h (nat _) (clos _) = �
RVal h (clos _) (nat _) = �
RVal h (clos c₁) (clos ptr) = ∃ λ c₂→

h ! ptr ≡ just c₂ × RClos h c₁ c₂

Environments are related if they have the same list spine and their values are
pointwise related.

REnv h [] [] = ⊺
REnv h [] (x₂ :: e₂) = �
REnv h (x₁ :: e₁) [] = �
REnv h (x₁ :: e₁) (x₂ :: e₂) = RVal h x₁ x₂ × REnv h e₁ e₂

Note that we use ⊺ and � to represent true and false, represented in Agda by the
unit type and the uninhabited type. The relation on stacks is defined similarly,
using the relation on values and continuations. Finally, two configurations are
RCfg-related if their components are related. Here we pass the heap of the CESH
configuration as an argument to the environment and stack relations.

RCfg ∶ Rel CES.Config CESH.Config
RCfg (c₁ , e₁ , s₁) (c₂ , e₂ , s₂ , h₂) =

RCode c₁ c₂ × REnv h₂ e₁ e₂ × RStack h₂ s₁ s₂

In the formalisation we define heaps and their properties abstractly, rather
than using a specific heap implementation.1⁴ The first key property we require
is that dereferencing a pointer in a heap where that pointer was just allocated
with a value gives back the same value:

∀ h x→ let (h’ , ptr) = h ⊳ x in h’ ! ptr ≡ just x

Following the proof structure used for Krivine nets (Chapter 6), wewill require
a preorder ⊆ for subheaps. The intuitive reading for h ⊆ h’ is that h’ can be
used where h can, i.e. that h’ contains at least the allocations of h. The formal
definition is:

h ⊆ h’ = ∀ ptr {x}→ h ! ptr ≡ just x→
h’ ! ptr ≡ just x

1⁴Online appendix: secd/formalisation directory, Heap module.
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Thesecond key property that we require of a heap implementation is that al-
location does not overwrite any previously allocatedmemory cells (proj₁means
first projection):

∀ h x→ h ⊆ proj₁ (h ⊳ x)

Also like in Chapter 6, we prove the monotonicity of RCfg with respect to heap
inclusion, i.e.

Theorem 7.5.1. For any two heaps h and h’ such that h ⊆ h’, if RCfg cfg (c,e,s,h),
then RCfg cfg (c,e,s,h’).

Our first correctness result is the following:

Theorem 7.5.2. RCfg is a Simulation relation.1⁵

The proof is by cases on the CES transition, and, in each case, the CESH
machine can make analogous transitions. The property mentioned above is
then used to show that RCfg is preserved.

It is helpful to introduce the notion of a presimulation relation — a gener-
alisation of a simulation relation that does not require the target states of the
transitions to be related — defined as:1⁶

Presimulation _Ð→_ _Ð→’_ _R_ =
∀ a a’ b→ (aÐ→ a’)→ a R b→ ∃ λ b’→ (bÐ→’ b’)

Theorem 7.5.3. The inverse of RCfg is a Presimulation.1⁷

In general, the following holds:

Theorem 7.5.4. If R is a Simulation between relations Ð→ and Ð→’, R −¹ is a
Presimulation, andÐ→’ is deterministic at states b related to some a, then R −¹ is
a Simulation.1⁸

In Agda this is:

1⁵Online appendix: secd/formalisation directory, CESH.Simulation module.
1⁶Online appendix: secd/formalisation directory, Relation module.
1⁷Online appendix: secd/formalisation directory, CESH.Presimulation module.
1⁸Online appendix: secd/formalisation directory, Relation module.
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presimulation-to-simulation
∶ (_R_ ∶ Rel A B)
→ SimulationÐ→Ð→’ _R_
→ PresimulationÐ→’Ð→ (_R_ −¹)
→ (∀ a b→ a R b→Ð→’ is-deterministic-at b)
→ SimulationÐ→’Ð→ (_R_ −¹)

presimulation-to-simulation R sim presim det = sim−¹
where

sim−¹ ∶ SimulationÐ→’Ð→ (R −¹)
sim−¹ b b’ a bstep aRb
= let (a’ , astep) = presim b b’ a bstep aRb

(b” , bstep’ , a’Rb”) = sim a a’ b astep aRb
in a’ , astep , subst (λ b”→ R a’ b”)

(sym (det a b aRb bstep bstep’))
a’Rb”

HereÐ→ ∶ Rel A A andÐ→’ ∶ Rel B B are additional parameters, subst a function
that substitutes equal for equal in a term’s type using a propositional equality
(in this case obtained from the determinism det), and sym is the symmetry
property of propositional equality.

Theorem 7.5.5. RCfg is a Bisimulation.1⁹

This follows from presimulation-to-simulation, because we have already estab-
lished that the CESH is deterministic. The idea that the backward simulation
can be obtained cheaply in a deterministic setting is also used by Leroy [94],
who notes that the forward simulation is often easier to prove directly than the
backward simulation. Our experience confirms this.

A corollary of the above theorem is the following:

Corollary 7.5.6. If RCfg cfg₁ cfg₂ then cfg₁ ↓CES nat n ↔ cfg₂ ↓CESH nat n and
cfg₁ ↑CES ↔ cfg₂ ↑CESH.

To finalise the proof we note that there are configurations in RCfg. One such
example is the initial configuration for a fragment of code: For any c, we have
RCfg (c , [] , []) (c , [] , [] , ∅) (where ∅ is the empty heap).

7.6 dcesh1: a trivially distributed machine
In higher-order distributed programs containing location specifiers, we will
sometimes encounter situations where a function is not available locally. For

1⁹Online appendix: secd/formalisation directory, CESH.Bisimulation module.
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example, when evaluating the function f in the term (f @ A) (g @ B), we
may need to apply the remotely available function g. Our general idea is to do
this by decomposing some instructions into communication. In the example,
the function f may send a message requesting the evaluation of g, meaning
that the APPL instruction is split into a pair of instructions: APPL-send and
APPL-receive.

This section outlines an abstract machine, called DCESH1, which decom-
poses all application and return instructions into communication.2⁰ The ma-
chine is trivially distributed, because it runs as the sole node in a network, send-
ing messages only to itself. Although it is not used as an intermediate step for
the proofs, it is included because it illustrates this decomposition.

A configuration of the DCESH1 machine (Machine) is a tuple consisting of
a possibly running thread (Maybe Thread), a closure heap (Heap Closure), and
a “continuation heap” (Heap (Closure × Stack)). Since the language is sequen-
tial we have at most one thread running at once. The thread resembles a CES
configuration, Thread = Code × Env × Stack, but stacks are defined differently.
A stack is now a list of values paired with an optional pointer (into the con-
tinuation heap), Stack = List Val × Maybe ContPtr (ContPtr is a synonym for
Ptr). When performing an application, when CES would push a continuation
on the stack, the DCESH1 machine is going to stop the current thread and send
a message, which means that it has to save the continuation and the remainder
of the stack in the heap for them to persist the thread’s lifetime.

The optional pointer in Stack is an element at the bottom of the list of val-
ues. Comparing it to the definition of the CES machine, where stacks are lists
of either values or continuations (which are closures), we can picture their rela-
tion: Whereas the CESmachine stores the values and continuations in a single,
contiguous stack, theDCESH1 machine stores first a contiguous block of values
until reaching a continuation, at which point it stores a pointer to the continu-
ation closure and the rest of the stack.

The definition of closures, values, and environments are otherwise just like
in the CESH machine. The machine communicates with itself using two kinds
of messages, APPL and RET, corresponding to the instructions that we are re-
placing with communication.

Figure 7.3 defines the transition relation for the DCESH1 machine, written
m

tmsg
ÐÐ→ m’ for a tagged message tmsg and machine configurations m and

m’. Most transitions are the same as in the CESH machine, framed with the
additional heaps and the just meaning that the thread is running. We elide
them for brevity.

2⁰Online appendix: secd/formalisation directory, DCESH1 module.
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The interesting rules are the decomposed rules for application and return.
When an application is performed, an APPL message containing a pointer to
the closure to apply, the argument value and a pointer to a return continuation
(which is first allocated) is sent, and the thread is stopped (nothing). We call
such amachine inactive. Themachine can receive an applicationmessage if the
thread is not running. When that happens, the closure pointer is dereferenced
and entered, adding the received argument to the environment. The stack is
left empty apart from the continuation pointer of the received message. When
returning from a function application, the machine sends a return message
containing the continuation pointer and the value to return.

On the receiving end of that communication, it dereferences the continu-
ation pointer and enters it, putting the result value on top of the stack.

Example 7.6.1. We trace the execution of Example 7.4.1 in a synchronous net-
work of nodes indexed by the unit type. Heaps with pointer mappings are
written {ptr ↦ element}. The last list shown in each step is the message list of
the asynchronous network.

let hcl = {ptr₁↦ (c₁ , [])}
h’cl = {ptr₁↦ (c₁ , []) , ptr₂↦ (c₂ , [])}
hcnt = {ptrcnt ↦ ((END, []) , [] , nothing)}

in (just (CLOS c₁ ; CLOS c₂ ; APPL ; END , [] , [] , nothing) , ∅ , ∅) , []
Ð→⟨ step CLOS ⟩
(just (CLOS c₂ ; APPL ; END , [] , [ clos ptr₁ ] , nothing) , hcl , ∅) , []
Ð→⟨ step CLOS ⟩
(just (APPL ; END , [] , [ clos ptr₂ , clos ptr₁ ] , nothing) , h’cl , ∅) , []
Ð→⟨ step APPL-send ⟩
(nothing , h’cl , hcnt) , [ APPL ptr₁ (clos ptr₂) ptrcnt ]
Ð→⟨ step APPL-receive ⟩
(just (VAR 0 ; RET , [ clos ptr₂ ] , [] , just ptrcnt) , h’cl , hcnt) , []
Ð→⟨ step (VAR refl) ⟩
(just (RET , [ clos ptr₂ ] , [ clos ptr₂ ] , just ptrcnt) , h’cl , hcnt) , []
Ð→⟨ step RET-send ⟩
(nothing , h’cl , hcnt) , [ RET ptrcnt (clos ptr₂) ]
Ð→⟨ step RET-receive ⟩
(just (END , [] , [ clos ptr₂ ] , nothing) , h’cl , hcnt) , []

Comparing this to Example 7.4.2 we can see that an APPL-send followed by an
APPL-receive amounts to the same thing as the APPL rule in the CES machine,
and similarly for the RET instruction.
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7.7 dcesh: the distributed cesh machine
We have so far seen two refinements of the CES machine. We have seen CESH,
that adds heaps, and DCESH1, that decomposes instructions into communic-
ation in a degenerate network of only one node. Our final refinement is a dis-
tributed machine, DCESH, that supports multiple nodes.21 The main prob-
lem that we now face is that there is no centralised heap, but each node has
its own local heap. This means that, for supporting higher-order functions
across node boundaries, we have to somehow keep references to closures in the
heaps of other nodes. Another problem is efficiency; we would like a system
where we do not pay the higher price of communication for locally running
code. The main idea for solving these two problems is to use remote pointers,
RPtr = Ptr × Node, pointers paired with node identifiers signifying on what
node’s heap the pointer is located. This solves the heap problem because we
always know where a pointer comes from. It can also be used to solve the effi-
ciency problem sincewe can choosewhat instructions to run based onwhether
a pointer is local or remote. The correctness proof of the DCESH1 will show
that whenever a node holds a remote pointer, that pointer is valid on the re-
mote node, meaning that consistency is maintained. If it is local, we run the
rules of the CESH machine. If it is remote, we run the decomposed rules of
the DCESH1 machine.

The final extension to the bytecode will add support for location specifiers.
We add the instruction REMOTE c i for the compilation of the term construct
t @ i. The location specifiers, t @ i, are taken to mean that the term t should be
evaluated on node i. As previously mentioned, we require that the terms t in
all location specification subterms t @ i are closed. The REMOTE c i instruction
will be used to start running a code fragment c on node i in the network. We
also extend the compile’ function to handle the new term construct:

compile’ (t @ i) c = REMOTE (compile’ t RET) i ; c

Note that we reuse the RET instruction to return from a remote computation.
The definition of closures, values, environments and closure heaps are the

same as in the CESHmachine, but using RPtr instead of Ptr for closure pointers.
The stack combines the functionality of the CES machine, permitting local

continuations, with that of the DCESH1 machine, making it possible for a stack
to end with a continuation on another node. A stack element is a value or a
(local) continuation signified by the val and cont constructors. A stack (Stack)
is a list of stack elements, possibly ending with a (remote) pointer to a con-
tinuation, List StackElem × Maybe ContPtr (where ContPtr = RPtr). Threads

21Online appendix: secd/formalisation directory, DCESH module.
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and machines are defined like in the DCESH1 machine. The messages that
DCESH can send are those of the DCESH1 machine but using remote pointers
instead of plain pointers, plus a message for starting a remote computation,
REMOTE c i rptrcnt. Note that sending a REMOTEmessage amounts to sending
code in our formalisation, which is something that we would not like to do.
However, because no code is generated at run time, every machine can be pre-
loaded with all the bytecode it needs, and the message only needs to contain a
reference to a fragment of code.

Figure 7.4 defines the transition relation of the DCESH machine, written
i ⊢ m

tmsg
ÐÐ→ m’ for a node identifier i, a tagged message tmsg and machine

configurations m and m’. The parameter i is taken to be the identifier of the
node on which the transition is taking place. For local computations, we have
rules analogous to those of the CESH machine, so we omit them and show
only those for remote computations. The rules use the function i ⊢ h ⊳ x for
allocating a pointer to x in a heap h and then constructing a remote pointer
tagged with node identifier i from it. When starting a remote computation, the
machine allocates a continuation in the heap and sends a message containing
the code and continuation pointer to the remote node in question. Afterwards
the current thread is stopped.

REMOTE c’ B ; c
e
s
r

nothing

r

e
val v :: s

@ A @ B
nothing

just rptr
[]
[]
c’

e’
RET

just rptr

(c , e , (s , r))

*

c’ B rptr
REMOTE

val v’ :: []RET rptr v’

c

On the receiving end of such a communication, a new thread is started,
placing the continuation pointer at the bottom of the stack for the later return
to the caller node. To run the apply instruction when the function closure is
remote, i.e. its location is not equal to the current node, the machine sends a
message containing the closure pointer, argument value, and continuation, like
in the DCESH1 machine. On the other end of such a communication, the ma-
chine dereferences the pointer and enters the closure with the received value.
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The bottom remote continuation pointer is set to the received continuation
pointer. After either a remote invocation or a remote application, the machine
can return if it has produced a value on the stack and has a remote continuation
at the bottom of the stack. To do this, a message containing the continuation
pointer and the return value is sent to the location of the continuation pointer.
When receiving a returnmessage, the continuation pointer is dereferenced and
entered with the received value.

A network of abstract machines is obtained by instantiating the Network
module with the _⊢_ _Ð→_ relation. From here on SyncNetwork and AsyncNetwork
and their transition relations refer to the instantiated versions.

An initial network configuration, given a code fragment c and a node iden-
tifier i, is a network where only node i is active, ready to run the code fragment:

initial-networkSync ∶ Code→ Node→ SyncNetwork
initial-networkSync c i =
(λ i’→ (nothing , ∅ , ∅)) [ i ↦ (just (c , [] , [] , nothing) , ∅ , ∅) ]

An initial asynchronous network configuration is one where there are no mes-
sages in the message list: initial-networkAsync c i = initial-networkSync c i , [].

Unsurprisingly, if all nodes in a synchronous network except one are in-
active, then the next step is deterministic. Another key ancillary property of
DCESH networks is that synchronous or asynchronous networks for single
threaded computations behave essentially the same:22
Theorem 7.7.1. In a family of nodes nodes where all except one are inactive,
(nodes , []) ÐÐÐ→Async

+ (nodes’ , []) implies nodes ÐÐ→Sync
+ nodes’.

In Agda, this is:
ÐÐ→Async

+-to-ÐÐ→Sync
+ ∶ ∀ {nodes nodes’} i→ all nodes except i are inactive→

((nodes , []) ÐÐ→Async
+ (nodes’ , []))→ (nodes ÐÐ→Sync

+ nodes’)

This means that it is enough to deal with the simpler synchronous networks.
DCESH network nodes can terminate with a value v (nodes ↓Sync v), termin-

ate (nodes ↓Sync), or diverge (nodes ↑Sync).23 A network terminates with a value
v if it can step to a network where only one node is active, and that node has
reached the END instruction with the value v on top of its stack:

nodes ↓Sync v = ∃ λ nodes’→ nodes ÐÐ→Sync
∗ nodes’ ×

∃ λ i→ all nodes’ except i are inactive × ∃ λ heaps→
nodes’ i ≡ (just (END , [] , val v :: [] , nothing) , heaps)

The other definitions are analogous to those of the CES and CESH machines.

22Online appendix: secd/formalisation directory, DCESH.Properties module.
23Online appendix: secd/formalisation directory, DCESH.Properties module.
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7.7.1 Correctness

To prove the correctness of the machine, we will now establish a bisimulation
between the CESH and the DCESH machines.

To simplify this development, we extend the CESHmachine with a dummy
rule for the REMOTE c i instruction so that both machines run the same byte-
code. This rule is almost a no-op, but since we are assuming that the code we
run remotely is closed, the environment is emptied, and since the compiled
code c will end in a RET instruction a return continuation is pushed on the
stack.

(REMOTE c’ i ; c , e , s , h) ÐÐ→CESH (c’ , [] , cont (c , e) :: s , h)

The relation that we are about to define2⁴ is, as before, almost equality. But
since values may be pointers to closures, it must be parameterised by heaps. A
technical problem is that bothmachines use pointers, and theDCESHmachine
also uses remote pointers and has two heaps for each node. The relation must
therefore be parameterised by all the heaps in the system. The extra parameter
is a synonym for an indexed family of the closure and continuation heaps of
the whole network, Heaps = Node → DCESH.ClosHeap × DCESH.ContHeap. The
complexity of this relation justifies our use of mechanised reasoning.

The correctness proof itself is not routine. Simply following the recipe that
we used before does not work. In the old proof, there can be no circularity,
since that bisimulationwas constructed inductively on the structure of the CES
configuration. But now both systems, CESH and DCESH, have heaps where
there is a potential for circular references (e.g. a closure, residing in a heap,
whose environment contains a pointer to itself), preventing a direct proof via
structural induction. This is perhaps the most mathematically (and formally)
challenging point of the work on the DCESH. The solution lies in using the
technique of step-indexed relations, adapted to the context of bisimulation re-
lations [7]. We add an additional rank parameter that records how many times
pointers are allowed to be dereferenced.

The rank is used in defining the relation for closure pointers Rrptrcl . If the
rank is zero, the relation is trivially fulfilled. If the rank is non-zero then three
conditions must hold. First, the CESH pointer must point to a closure in the
CESH heap; second, the remote pointer of the DCESH network must point to
a closure in the heap of the location that the pointer refers to; third, the two
closures must be related.

2⁴Online appendix: secd/formalisation directory, DCESH.Simulation-CESH module.
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Rrptrcl ∶ N→ CESH.ClosHeap→ Heaps→
Rel CESH.ClosPtr DCESH.ClosPtr

Rrptrcl 0 _ _ _ _ = ⊺
Rrptrcl (1 + rank) h hs ptr₁ (ptr₂ , loc) =
∃₂ λ cl₁ cl₂→ h ! ptr₁ ≡ just cl₁ ×

proj₁ (hs loc) ! ptr₂ ≡ just cl₂ ×
RClos rank h hs cl₁ cl₂

The relation for values is also as before, but with the extra parameters. The
relation for stack elements RStackElem is almost as before, but now requires that
the relation is true for any natural number rank, i.e. for any finite number of
pointer dereferencings.

RStackElem ∶ CESH.ClosHeap→ Heaps→
Rel CESH.StackElem DCESH.StackElem

RStackElem h hs (val v₁) (val v₂) =
∀ rank→ RVal rank h hs v₁ v₂

RStackElem h hs (val _) (cont _) = �
RStackElem h hs (cont _) (val _) = �
RStackElem h hs (cont cl₁) (cont cl₂) =
∀ rank→ RClos rank h hs cl₁ cl₂

The relation for stacks RStack now takes into account that the DCESH stacks
may end in a pointer representing a remote continuation, requiring that the
pointer points to something in the continuation heap of the location of the
pointer, which is related to the CESH stack element.

RStack ∶ CESH.ClosHeap→ Heaps→
Rel CESH.Stack DCESH.Stack

...
RStack h hs (cont₁ :: s₁) ([] , just (ptr , loc)) =
∃₂ λ cont₂ s₂→ proj₂ (hs loc) ! ptr ≡ just (cont₂ , s₂) ×

RStackElem h hs cont₁ (cont cont₂) ×
RStack h hs s₁ s₂

Finally, a CESH configuration and a DCESH thread are RThread-related if the
thread is running and the constituents are pointwise related.

RThread ∶ Heaps→ Rel Config (Maybe Thread)
RThread hs _ nothing = �
RThread hs (c₁ , e₁ , s₁ , h₁) (just (c₂ , e₂ , s₂)) =

RCode c₁ c₂ × (∀ rank→ REnv rank h₁ hs e₁ e₂) ×
RStack h₁ hs s₁ s₂
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Then a CESH configuration is related to a synchronous network RSync if the
network has exactly one running machine that is related to the configuration.

RSync ∶ Rel Config SyncNetwork
RSync cfg nodes = ∃ λ i→ all nodes except i are inactive ×

RThread (proj₂ ○ nodes) cfg (proj₁ (nodes i))
DCESHnetworkheaps are ordered pointwise (called ⊆s since it is the “plural”

of ⊆).
hs ⊆s hs’ = ∀ i→ let (hcl , hcnt) = hs i

(h’cl , h’cnt) = hs’ i
in hcl ⊆ h’cl × hcnt ⊆ h’cnt

For any CESH closure heaps h and h’ such that h ⊆ h’ and families of DCESH
heaps hs and hs’ such that hs ⊆s hs’ the following statements hold:
Lemma 7.7.2. If REnv n h hs e₁ e₂ then REnv n h’ hs’ e₁ e₂.
Lemma 7.7.3. If RStack h hs s₁ s₂ then RStack h’ hs’ s₁ s₂.
Theorem 7.7.4. RSync is a Simulation relation.2⁵

The proof proceeds by cases on the CESH transition. In each case, the
DCESH network can make analogous transitions. The lemmas above are then
used to show that RSync is preserved.
Theorem 7.7.5. The inverse of RSync is a Presimulation.2⁶

This leads to, using the presimulatation-to-simulation theorem, the main res-
ult:
Theorem 7.7.6. RSync is a Bisimulation.2⁷

As immediate corollaries under the assumption thatRSync cfg nodes, we have:

Corollary 7.7.7. cfg ↓CESH nat n if and only if nodes ↓Sync nat n.
Corollary 7.7.8. cfg ↑CESH if and only if nodes ↑Sync.

We also have that initial configurations are in RSync:

initial-relatedSync ∶ ∀ c i→ RSync (c , [] , [] , ∅)
(initial-networkSync c i)

These final results complete the picture for the DCESH machine. We have
established that we get the same final result regardless of whether we choose
to run a fragment of code using the CES, the CESH, or the DCESH machine.

2⁵Online appendix: secd/formalisation directory, DCESH.Simulation-CESH module.
2⁶Online appendix: secd/formalisation directory, DCESH.Presimulation-CESHmodule.
2⁷Online appendix: secd/formalisation directory, DCESH.Bisimulation-CESH module.
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7.8 comparison
We have already seen some benchmarks of our Floskel (Section 7.2.4) imple-
mentation, but it also useful to compare our work on extending conventional
abstract machines to the work using Geometry of Interaction (Chapter 3) or
game semantics (Chapter 4).

Aprincipled performance comparison between these four compilers, which
all implement seamless compilation, is difficult because it cannot be a like-for-
like comparison, but we will attempt to do so anyway. We summarise the dif-
ferences between the four implementations below.

The GOI compiler, DCESH, and DKrivine implement PCF, but not in the
same way. DKrivine and DCESH implement the type-free language and re-
cursion is dealt with using combinators in the source language, which is po-
tentially less efficient. On the other hand, the interaction-based compilers use
a specialised fixpoint constant but also require specialisedmachinery to handle
variable contraction. So there are several sources of inefficiencies in these com-
pilers.

The GAMC compiler implements a larger language: a typed applied call-
by-name lambda calculus with mutable references and concurrency. It is also
tidier than the approaches based on conventional abstract machines, in that it
explicitly deallocates memory when it is done with it and so does not require
garbage collection. These features do however require a significant amount
of overhead, some of which is already present in the DKrivine and DCESH
infrastructure but some of which will need to be added.

There are some features that make the comparison of the compilers some-
what meaningful. The first is that there is a small intersection of source pro-
grams that they can all compile. The second is that three of the compilers use
call-by-name. All four compilers are also written as straightforward represent-
ations of the semantic model of the language, with the same level of disregard
for optimisations and a similar level of concern for “obvious” correctness. All
four compilers target C and MPI, meaning that benchmarks can be run on the
same computer.

With these caveats in mind we will attempt a rough performance compar-
ison of the compilers in several ways. Since the intersection of supported pro-
grams is small, our benchmark cannot be very comprehensive, and is simply
three small programs operating on integers:
arith: Computing the sum of applying a complicated integer function to the

numbers in the sequence 0, . . . , 299.

fib: Computing the 10th Fibonacci number (using the exponential algorithm)
100 times and taking the sum.
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arith fib root
time avg. size max. size time avg. size max. size time avg. size max size

GOI 114% 107 172 4,017% 302 444 19,422% 717 1,312
GAMC 193% 20 24 1,481% 20 24 22,872% 20 24

DKrivine 140% 32 40 238% 32 40 890% 32 40
DCESH 133% 32 40 103% 32 40 100% 32 40

Table 7.3: Benchmarks for distribution overheads
TheDKrivine andDCESH compilers are not only faster for local execution, but also have a comparatively
small communication overhead. Each time entry in the table is relative to the same compiler’s local
execution time, whichmeans that DKrivine andDCESH are well ahead of the others in terms of absolute
execution time. It should be noted that DCESH sends much fewer messages than the others because of
its call-by-value evaluation strategy, which means that it gets low overheads also for these benchmarks.

root: Compute the (integer) root of a polynomial using 20 iterations of the
bisection method.

Krivine baseline. We take a naive implementation of the classic Krivine ma-
chine as a reference point and run the compilers in single-node mode. This
gives a rough measure of the overall overhead of the compiler before com-
munication costs even come into play. The benchmark programs are written
without caching intermediate results, which means that they perform many
needless re-computations when run in the call-by-name compilers. It is thus
to be expected that the call-by-value compiler, DCESH, does comparatively
better.

arith fib root
GOI 3,042% 2,832% 20,222%

GAMC 765% 395% 356%
DKrivine 131% 141% 233%
DCESH 2.6% 65% 100%

In the case of the interaction-based compilers the overheads are mainly due to
the implementation of contraction, and in the case of GAMC they are also due
to the large amount of heap allocation and deallocation.

Single node baseline. We measure each compiler using its own single-node
performance as a reference point and split the program in two nodes such that
a large communication overhead is introduced. We measure it both in terms
of relative execution time and in terms of average and maximum size of the
messages, in bytes. The overheads are only due to the processing required by
the node to send and receive the nodes and not due to network latencies —
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in order to factor those out we run all the (virtual) MPI nodes on the same
physical computer.

Thedata is shown inTable 7.3 andwe can see that theDKrivine andDCESH
compilers are not only faster for local execution, but also have a comparatively
small communication overhead. Each time entry in the table is relative to the
same compiler’s local execution time, whichmeans that DKrivine andDCESH
are well ahead of the others in terms of absolute execution time. It should be
noted that DCESH sends much fewer messages than the others because of its
call-by-value evaluation strategy, which means that it gets low overheads also
for these benchmarks.

All compilers except GOI use messages of a bound size, whereas GOI’s
messages grow, sometimes significantly, during execution. The high overhead
across the call-by-name compilers for the root benchmark is because that
benchmarkdoes a relatively small amount of local computations before it needs
to communicate. We suspect that the high overhead for GOI and GAMC in
many benchmarks is also due to the large amount of “bookkeeping”C code that
is required, even for simple terms. The way the C compiler optimiser works
plays an important role in the performance gap between single-node and dis-
tributed execution. When all the code is on the same node the functions are
aggressively inlined because they belong to the same binary output. When the
code is distributed this is no longer possible.

Although the more exotic interaction-based approaches can be effective at
creating correct and transparent distribution, it seems to be the case that their
single-node execution model is bound to be less efficient than that of conven-
tional abstract machines. We should also make the point that conventional
techniques have the advantage that existing compilers can be extended to ac-
commodate higher-order RPCs without extremely intrusive changes, and that
there already exists a breadth of research on for example optimisation and in-
clusion of foreign function interfaces, which is not the case for the interaction-
based techniques.

7.9 related work
In this section we will focus on work that is closely related to distributing ab-
stract machines like ours. See Section 2.1 for a more comprehensive survey of
related work.

The execution mechanism that the tierless language Links builds on, the
client/server calculus [28], is specialised to systems with two nodes, namely
client and server. The two nodes are not equal peers: the server is designed
to be stateless to be able to handle a large number of clients. The work on the
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client/server calculus also spawned work on a more general parallel abstract
machine, LSAM, that handles an arbitrary number of nodes [110]. A prede-
cessor to LSAM, called dML, uses a similar operational semantics but for a
richer language [113]. The main difference between these machines and ours
is that they are based on higher-level semantics for call-by-value lambda cal-
culi, that use explicit substitutions and are therefore less straightforward to use
as a basis for compilation. In contrast to our work, they also assume synchron-
ous communication models.

There are also extensions of the non-strict Spineless Tagless G-machine
(STG) [82] for distributed execution. One is GUM [133], which is an im-
plementation-oriented project to extend the support for parallel execution in
Haskell to distributed architectures. The focus is on providing a large amount
of automation and the work provides insight into how to mix local garbage
collection with distributed weighted reference counting, but has no formal ac-
counts of the execution mechanism.

The Eden project [99], an implementation of parallel Haskell for distrib-
uted systems, keeps most communication implicit and is thus closer to our
aims. A similarity to our work is that the specification of the language is tiered:
an operational semantics at the level of the language and an abstract machine
semantics for execution environment, the Distributed Eden Abstract Machine
(DREAM) [19]. Eden is not perfectly seamless: a small set of syntactic con-
structs are used to manage processes explicitly and communication is always
performed using head-strict lazy lists. There are significant technical differ-
ences between DREAM and the DCESH and Krivine nets since the DREAM
is a mechanism of distribution for the STG machine. In terms of emphasis,
Eden is an implementation-focussed project whereas we want to create a firm
theoretical foundation on which compilation to distributed platforms can be
carried out. Whereas (as far as we know) no soundness results exist for the
DREAM, we provide a fully formalised proof.

The DREAM, dML and the LSAM are, as far as we are aware, the only
abstract machines for general distributed systems which, like the DKrivine
and the DCESHmachines, combine conventional executionmechanisms with
communication primitives. Abstract machines have been proposed for com-
munication only [70], taking inspiration from the Chemical Abstract Machine
(CHAM) (which we also take inspiration from, to model the communication
network), but they only deal with half the problemwhen it comes to compiling
conventional languages.
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Chapter 8

Fault-tolerance via transactions
We formalise a generic transaction-based method for transparently handling
failure in abstract machines like DCESH and DKrivine, showing that fault-tol-
erance can — at least to an extent — be automated in seamlessly distributing
languages like ours.1 Node state is “backed up” (commit) at certain points in
the execution, and if an exceptional condition arises, the backup is restored
(roll-back).

This development is independent of the underlying transition relation, but
the proofs rely on sequentiality. We assume that we have two arbitrary types
Machine and Msg, as well as a transition relation over them:

_ _ÐÐÐ→
Machine

_ ∶ Machine→ Tagged Msg→Machine→ Set

We have no knowledge of exceptional states in Machine, since it is a parameter,
so we define another relation, _ _ÐÐÐ→

Crash
_, as a thin layer on top of _ _ÐÐÐÐ→

Machine
_. The

new definition is shown in Figure 8.1 and adds the exceptional state nothing by
extending the set of states of the relation toMaybe Machine. The falliblemachine
can make a normal-step transition from and to just ordinary Machine states, or
it can crashwhich leaves it in the exceptional state. This means that we tolerate
fail-stop faults as opposed to e.g. the more general Byzantine failures [92].

The additional assumptions for sequentiality are that we have a decidable
predicate, active ∶ Machine→ Set on machines, and the following functions:

inactive-receive-active ∶ ∀ {m m’ msg}→
(m

receive msg
ÐÐÐÐÐ→
Machine

m’)→ ¬ (active m) × active m’
active-silent-active ∶ ∀ {m m’}→
(m τÐÐÐ→

Machine
m’)→ active m × active m’

active-send-inactive ∶ ∀ {m m’ msg}→
(m

send msg
ÐÐÐÐ→
Machine

m’)→ active m × ¬ (active m’)

These functions express the property that if a machine is invoked, i.e. it
receives a message, then it must go from an inactive to an active state. If the
machine then takes a silent step, itmust remain active, andwhen it sends ames-
sage it must go back to being inactive. This gives us sequentiality; a machine
cannot fork new threads, and cannot be invoked several times in parallel.

1Online appendix: secd/formalisation directory, Backup module.
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data _ _ÐÐ→
Crash

_ ∶ Maybe Machine→ Tagged Msg→
Maybe Machine→ Set where

normal-step ∶ ∀ {tmsg m m’}→
(m

tmsg
ÐÐÐ→
Machine

m’)→ (just m
tmsg
ÐÐ→
Crash

just m’)
crash ∶ ∀ {m}→
(just m τÐÐ→

Crash
nothing)

Figure 8.1: The transition relation of a machine that may crash
The fallible machine can make a normal-step transition from and to
just ordinary Machine states, or it can crash which leaves it in the
exceptional state.

As the focus here is on obvious correctness and simplicity, we abstract from
the method of actually detecting faults in nodes, and assume that it can be
done (using e.g. a heartbeat network [4]). Similarly, we assume that we have a
means of creating and restoring a backup of a node in the system; how this is
done depends largely on the underlying system. We so define a machine with
a backup as Backup = Machine × Machine, where the second Machine denotes
the backup. Backups are therefore done by replicating themachine state in our
model. Using this definition, we define a backup strategy, given in Figure 8.2.
This strategy makes a backup just after sending and receiving messages. In
the case of the underlying machine crashing, it restores the backup. Note that
this is only one of many possible backup strategies. This one is particularly
nice from a correctness point-of-view, because it makes a backup after every
observable event, although it may not be the most performant.

We define binary relations for making transitions with some tagged mes-
sage, as follows:

_ÐÐÐ→
Machine

_ ∶ Machine→Machine→ Set
m₁ÐÐÐ→

Machine
m₂ = ∃ λ tmsg→ (m₁

tmsg
ÐÐÐ→
Machine

m₂)
_ÐÐÐ→

Backup
_ ∶ Backup→ Backup→ Set

b₁ ÐÐÐ→
Backup

b₂ = ∃ λ tmsg→ (b₁
tmsg
ÐÐÐ→
Backup

b₂)

Using these relationswe candefine the observable trace of a runof aMachine
(Backup), i.e. an element of the reflexive transitive closure of the above relations.
First we define IO, the subset of tagged messages that we can observe, namely
send and receive:

data IO (A ∶ Set) ∶ Set where
send receive ∶ A→ IO A
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data _ _ÐÐÐ→
Backup

_ ∶ Backup→ Tagged Msg→ Backup→ Set where
silent-step ∶ ∀ {m n m’}→
(just m τÐÐ→

Crash
just m’) → ((m , n) τÐÐÐ→

Backup
(m’ , n))

receive-step ∶ ∀ {m n m’ msg}→
(just m

receive msg
ÐÐÐÐÐ→

Crash
just m’)→ ((m , n)

receive msg
ÐÐÐÐÐ→

Backup
(m’ , m’))

send-step ∶ ∀ {m n m’ msg}→
(just m

send msg
ÐÐÐÐ→

Crash
just m’) → ((m , n)

send msg
ÐÐÐÐ→
Backup

(m’ , m’))
recover ∶ ∀ {m n}→
(just m τÐÐ→

Crash
nothing) → ((m , n) τÐÐÐ→

Backup
(n , n))

Figure 8.2: The transition relation of a crashing machine with backup
This strategy makes a backup just after sending and receiving mes-
sages. In the case of the underlying machine crashing, it restores the
backup. Backups are done by replicating the machine state.

The following function now gives us the observable trace, given an element
of ÐÐÐÐ→

Machine
∗ (which is defined using list-like notation) by ignoring any silent

steps.

J_KM ∶ ∀ {m₁ m₂}→ m₁ÐÐÐ→
Machine

∗ m₂→ List (IO Msg)J [] KM = []J ((τ , _) :: steps) KM = J steps KMJ ((send msg , _) :: steps) KM = send msg :: J steps KMJ ((receive msg , _) :: steps) KM = receive msg :: J steps KM
J_KB is defined analogously. Given this definition, we can trivially prove the

following soundness result:

Theorem 8.0.1. If we have a run m₁ ÐÐÐÐ→
Machine

∗ m₂ then there exists a run of
the Backup machine that starts and ends in the same state and has the same
observational behaviour.

Formally, this is expressed as:

soundness ∶ ∀ {m₁ m₂ b₁}
(mtrace ∶ m₁ÐÐÐ→

Machine
∗ m₂)→

∃₂ λ b₂ (btrace ∶ (m₁ , b₁)ÐÐÐ→
Backup

∗ (m₂ , b₂))→J btrace KB ≡ J mtrace KM
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This is proved by constructing a crash-free Backup run given the Machine
run. Obviously, the interesting question is whether we can take any crashing
run and get a corresponding Machine run.

The result that we want is the following:

Theorem 8.0.2. bs ∶ (b₁ , b₁)ÐÐÐ→
Backup

∗ (m₂ , b₂)

there is a run

ms ∶ b₁ÐÐÐ→
Machine

∗ m₂

with the same observational behaviour as bs.

The key to proving that is the following lemma:

fast-forward-to-crash ∶ ∀ {m₁ m₂ b₁ b₂ n}→
(s ∶ (m₁ , b₁)ÐÐÐ→

Backup
∗ (m₂ , b₂))→

thread-crashes s→ length s ≤ n→
∃ λ (s’ ∶ ((b₁ , b₁)ÐÐÐ→

Backup
∗ (m₂ , b₂)))→

(¬ thread-crashes s’) × (J s KB ≡ J s’ KB) × (length s’ ≤ n)

Here thread-crashes is a decidable property on backup runs, that ensures that,
if m₁ is active, then it crashes and does a recovery step at some point before
it performs an observable action. The proof of fast-forward-to-crash is done by
induction on the natural number n. Our key result above, expressed formally
as follows, can now be proved:

completeness ∶ ∀ {b₁ m₂ b₂}
(bs ∶ (b₁ , b₁)ÐÐÐ→

Backup
∗ (m₂ , b₂))→

∃ λ (ms ∶ b₁ÐÐÐ→
Machine

∗ m₂)→J bs KB ≡ J ms KM
The above result can be enhanced further by observing that if the probab-

ility of a machine crash is not 1 then the probability of the machine eventually
having a successful execution is 1. This means that the probability for the num-
ber n above to exist is also 1. This argument has not been formalised in Agda.2

2The amount of work that would be required to create libraries for real numbers and prob-
ability distributions is too high compared to the importance of this observation.
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Chapter 9

Conclusion
9.1 summary of contributions

Ourmost important practical contribution is a compiler for a full-fledged func-
tional language called Floskel (Section 7.2), which supports both located and
ubiquitous functions. This compiler is based on our extension of the SECD
machine.

On the theoretical side we have presented four novel abstract machines for
the execution of programs with support for higher-order Remote Procedure
Calls andmade prototype implementations for them. Themain feature of these
abstract machines is that function calls behave, from the point of view of the
programmer, in the same way whether they are local or remote.

The first two (Chapter 3 and Chapter 4) used a new application of interac-
tion semantics to the compilation of programming languages, and additionally
showed how we can construct abstract machines that are readily implement-
able and close to conventional machines for these semantics. These abstract
machines support a novel combination operation where the functionality of
components of the interpretation of a program can arbitrarily be combined
into one node, which gives programmers the freedom to control the granular-
ity of the programs to their liking. We have proved the correctness of these
machines by pen-and-paper soundness proofs, which show that they are a cor-
rect implementation of the interaction semantics.

The other two abstract machines (Chapter 6 and Chapter 7) are moderate
extensions of abstract machines that are conventionally used for compilation,
namely the Krivine machine and the SECD machine. The behaviour of these
machines is deliberately exactly that of the conventional machine in the case
when the programs run on a single node. They give us a principled compila-
tion model of the applied lambda calculus to abstract distributed architectures
for both call-by-name and call-by-value. Our main results here are rigorous,
fully formalised proofs of correctness of the new abstract machines done by
comparing them to the conventional counterparts, and proof-of-concept com-
pilers which allow us to compare these compilation schemes with our previous
implementations.

The full source code for the implementations and the Agda formalisations
can be found in the online appendix: http://epapers.bham.ac.uk/1985/.
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We have additionally showed a simple way of achieving fault-tolerance
(Chapter 8) that can be applied to any of the presented abstract machines, by
an additional layer on top of a machine that may fail.

9.1.1 Thesis evaluation

In Section 1.2.1 we stated that the focus of this thesis is on the core evaluation
mechanism, in the form of abstract machines, that is used to run programs
with location annotations, since this is something that has not been investig-
ated in full before (see Section 2.1 and Section 7.9 for relevant literature re-
views).

Our main requirements for this mechanism were regarding correctness
and runtime efficiency. First, we wanted correctness with respect to the same
program without annotations, i.e. that we are providing a nondistributed view
of the system. Second, we wanted to enable (but not necessarily guarantee)
the programs to be efficient. Our performance requirements to achieve this
were that we should not lose single-node performancewhen using our language
without annotations and thatwe donot put an excessive burden on the network
when we do.

The first requirement, correctness, is fulfilled by all four of the presented
abstract machines. For each of themwe have proved, in Agda or with pen-and-
paper, that a program with location annotations always yields the same result
as one without annotations. This means that we really do get a nondistributed
view of the system.

The abstract machines have different performance characteristics (see Sec-
tion 7.8 for a comparison). The first machine, based on GOI (Chapter 3), es-
sentially stores the computational context in the messages, which means that
it has potential to put a big burden on the network. The GAMC compiler
(Chapter 4) ameliorates this issue by storing the context locally on the nodes
and keeping references to these local pieces of context in the messages. Both
GOI and GAMC are remarkable because they do not require garbage collec-
tion, but they can still not compete with conventional compilation techniques
in single-node performance. This discovery was what led us into making dis-
tributing extensions of two of the abstract machines that are conventionally
used for compilation — the Krivine machine (Chapter 6) and the SECD ma-
chine (Chapter 7). These extensions are constructed such that they degenerate
into the original machines when they are run in single-node mode, meaning
that the single-node performance requirement is fulfilled by construction. Our
benchmarks (Section 7.8) confirm this. Like the GAMC, the conventionally
based machines use messages of constant size.
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Our most mature implementation, called Floskel (Section 7.2), trades not
requiring distributed garbage collection for potentially larger messages. Its
single-node performance is fast enough to come close to a state of the art com-
piler.

To summarise, our conventionally based machines are correct, have good
single-node performance, and use constant-size messages. They thus fulfil our
initial requirements. It is our hope that future compiler writers will make use
of our ideas to integrate Remote Procedure Calls (RPCs) that both act native
and perform well in future programming languages.

9.2 limitations
This dissertation shows how to implement seamlessly distributing program-
ming languages with location annotations in several different ways. It dives
deep into this topic in the sense that multiple solutions to achieve exactly that,
with different strengths and weaknesses, are presented and compared. How-
ever, there are many other problems in distributed computing that we do not
solve.

Our work does not make parallel or concurrent programming easier, but it
does not make it more difficult either — that is just not its focus. While distrib-
uted systems are often used for the purpose of speeding up computations by
parallelising them, distribution and parallelism are orthogonal issues. Distri-
bution deals with executing a program in a system with multiple nodes where
message passing may be the only form of communication available between
them (i.e. they do not generally share an address space), while parallelism
means running parts of the program in parallel, which is something that can
also happen in non-distributed systems. Our work does however not pre-
clude parallel and concurrent execution, evident by one of our implementa-
tions (Chapter 4) having a par construct.

The possible need for distributed garbage collection (which is also be dis-
cussed in Section 9.3) may prove to be a serious limitation for implementa-
tions based on our work. If full-blown distributed garbage collection is not
an option, there are several strategies that can be used. The first is to use
an interaction-based compilation technique (e.g. GOI (Chapter 3) or GAMC
(Chapter 4)) that does not require garbage collection. The second is to use
a technique that is guaranteed not to produce cyclic garbage (e.g. DKrivine
(Chapter 6)) such that distributed reference counting can be used. The third is
simply to not keep remote references to data; to serialise and send whole heap
structures when they are needed on remote nodes (e.g. Floskel (Section 7.2)).
The last option has larger communication overheads, but in cases where those

145



are an issue, data access can be indirected. It is also possible to provide syn-
tactic sugar for such indirections in the language.

Our formalisations only cover a core of the implementations; a certain
amount of extrapolation took place when we implemented the functionality
that the formalisations describe. The compilers are thus not extracted directly
from the proofs, but are written by hand following them. While such extrapol-
ations are not uncommon practice in research, they are a serious limitation.
But we should keep in mind that having formalised part of a system is better
than having formalised none of it.

Higher-order RPCs might not be flexible enough to use in all distributed
scenarios; more low-level or specialised language featuresmay be necessary for
certain types of applications. The popularity of low-level libraries likeMPI [65]
and specialised programming models like MapReduce [34] could be an indic-
ation that this is the case. However, RPC is also a widely used programming
model. Since our work can be seen as improved, natively integrated RPCs it
should be possible to use them wherever RPCs are used today.

A more philosophical discussion of our work is given in Section 9.4.

9.3 further work
Themain challenge of this research is, as described in the introductory chapter,
to create the underlying evaluation mechanism for programming languages
that are seamlessly distributed by the means of Remote Procedure Calls that
are transparently, correctly, and efficiently incorporated into the programming
language. To do this, there are a few main areas of research that are relevant,
each of which comes with different sets of issues that need to be addressed.
This section outlines the areas and possibilities for future research.

9.3.1 Parallelism and concurrency
Our abstract machines have the internal machinery required for parallel exe-
cution, but we restrict ourselves to sequential execution. In moving towards
parallelism there are several design (how to add parallelism?) and theoretical
(is compilation still correct?) challenges. Design-wise the threading mechan-
ism of our abstract machines is flexible enough, considering that the GAMC
compiler uses essentially the same mechanism as the others. An ingredient
that is lacking is a synchronisation primitive, but that is not a serious difficulty.
A theoretical challenge stems from the failure of the equivalence of synchron-
ous and asynchronous networks in the presence of multiple pending messages.
Futhermore, conventional abstract machines typically do not support parallel-
ism, meaning that we cannot continue to use them as our specification.
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9.3.2 Language
A language with static location annotations is too simple-minded formost real-
istic distributed programs. We need something more expressive.

In the examples we have seen that we still have to reflect some architecture-
specific details in the source code of the programs. Taking inspiration from
aspect-oriented programming [80] and orchestration languages [22] we pro-
pose that a configuration language, separate from the algorithmic language,
should be constructed. This configuration language would be used to specify
how the program should deal with issues of the distributed system not dir-
ectly related to the logic of the program, such as failure response and recovery,
dynamic load-balancing, etc. The node annotations could, instead of being
the direct specification of location, be used as pointcuts that the configuration
language can tie into. A configuration language would increase modularity, as
there would no longer be a need to change the logic of the program to re-target
an application to a different system. An additional benefit is that the correct-
ness of the program logic only needs to be verified for a local instance of the
program, since changing the configuration preserves its overall semantics.

Another question is how to do code and data migration in the language.
Whether code or data can or should be migrated to different nodes is a ques-
tion that can be answered from a safety or from an efficiency point of view. The
safety angle is very well covered by type systems such as ML5’s [137], which
prevent the unwanted export of local resources. Another possible use of such
a type system is the use of its location information to automatically infer and
decide suitable locations for parts of the program, or to warn when a program’s
employment is potentially not what the programmer wants. The efficiency
point of view can also be dealt with in a type theoretic way, as witnessed by
recent work in resource-sensitive type systems [21, 57]. The flexibility of Flo-
skel and the DCESH in terms of localising or remoting the calls (statically or
even dynamically) together with a resource oriented system can pave the way
towards a highly convenient automatic orchestration system in which a pro-
gram is automatically distributed among several nodes to achieve certain per-
formance objectives.

9.3.3 Fault-tolerance
The fault-tolerance model (Chapter 8) that we have shown makes faults invis-
ible, which will not work for all applications. The programmer needs to have
the choice to manually handle faults, because the handler can be application-
specific. As an example, a MapReduce run should always have the same res-
ult in the face of errors, so our model of fault-tolerance would work. But in a
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distributed transactional database, the way to handle inconsistencies will vary
depending on the application.

9.3.4 Implementation
In our current implementations we have largely ignored the finer issues of effi-
ciency. Our aim was to support in-principle efficient single-node compilation,
which happens when the machines execute trivially on a single node as a con-
ventional machine, and to reduce the communication overhead by sending
only small (bounded-size) messages which are necessary. For example, our
use of views of remote stack extensions in the DKrivine machine avoids the
need to send pop messages. In the future we would like to examine the possib-
ility of efficient compilation. In order to do this several immediate efficiency
issues must be addressed.

Remote pointers In theRPC literature [17] it is argued that emulating a shared
or virtual address space is infeasible since it requires each pointer to also
contain location information, and that it is questionable whether accept-
able efficiency can be achieved. These arguments certainly apply to our
work, where we do just this. However, if we use a tagged pointer repres-
entation [101] for closure pointers it means that we can use pointer tags
to distinguish between local and remote pointers without even having
to dereference them. With such tags we would pay a very low, if any,
performance penalty for the local pointers.

Garbage collection The execution of some of our machines creates garbage
in their heaps. Distributed garbage collection can be a serious problem,
but we have strong reasons to believe that it can often be avoided here,
because the heap structures that get created are quite simple. For ex-
ample, there are never circular linked structures in a Krivine net, oth-
erwise the relations would not be well founded. This means that a sim-
pler method, distributed reference counting [16], can be used. We also
know that efficient memory management is possible when compiling
call-by-name functional programming languages to distributed archi-
tectures. The Geometry of Interaction (GOI) compiler is purely stack-
based, while the Game Abstract Machine Compiler (GAMC) compiler
uses heaps but does explicit deallocations of locations that are no longer
needed. The Floskel implementation does not need distributed garbage
collection. The values which are the result of call-by-value evaluation
are always sent, along with any required closures, to the node where the
function using them as arguments is executed. With this approach local
garbage collection suffices. Note that this is similar to the approach that
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Links takes. If a large data structure needs to be held on a particular node
the programmer needs to be aware of this requirement and indirect the
access to it using located functions. However, if we wanted to automate
this process as well, and prevent some data frommigrating when it is too
large, the current approach could not cope, and distributed garbage col-
lection would be required. Mutable references or lazy evaluation would
likely also require it. Whether this can be done efficiently is a separate
topic of research (see e.g. [115, 2, 40]). An interesting question is if we
can syntactically infer when it is safe for a node to only use local garbage
collection, e.g. when the external interface of a node is of first order. This
would restrict the set of nodes that need to participate in distributed col-
lections.

Shortcut forwarding One of the most unpleasant features of the current Kriv-
ine net approach is the excessive forwarding of data, especially on remote
returns. A way to alleviate this issue is to not create indirections when
a node has a stack consisting only of a stack extension at the time of a
remote invocation, meaning that the remote node could return directly
to the current node’s invoker.

Fortunately, the DCESH machine does not suffer from the same prob-
lem, as evident by the stronger bisimulation result.

Runtime system The compiled programs need a runtime system with support
for automatically handling and managing the problems specific to a dis-
tributed computing like failure and restart. Todo this in a general enough
way and tie it into the configuration language described above is a great
challenge on its own. The runtime system may also need to perform
distributed garbage collection, as previously mentioned.

9.3.5 Formalisation
We have mentioned that Agda formalisations are given only for the abstract
machines and their properties, which are the new theoretical contributions
of this work. However, a full formalisation of the compiler stacks, remains
a long-term ambition. Our dream is the eventual development of an end-to-
end seamless distributing compiler for a higher-order imperative and parallel
functional programming language, along the lines of the CakeML [87] and
CompCert projects [95]. The formalisation of the correctness of the Krivine
net and the DCESH, relative to the conventional machines, is the first step in
this direction.
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9.4 discussion
A question worth asking is whether this transparent and integrated approach
to distributed computing is practical. There are two main possible objections:
Performance Some might say that higher-level languages have poorer per-

formance than system-oriented programming language, which makes
them impractical. This debate has been carrying on fruitlessly ever since
high-level languages were introduced. We believe that the full spectrum
of languages, frommachine code to themost abstract, areworth investig-
ating seriously. Seamless computing with higher-order Remote Proced-
ure Calls focusses on the latter, somewhat in the extreme, in the belief
that the principled study of heterogeneous (not just distributed, but also
for instance reconfigurable) compilation techniques will broaden and
deepen our understanding of programming languages in general. And,
if we are lucky and diligent, it may even yield a practical and very useful
programming paradigm.

Control Distributed computing raises certain specific obstacles in the way of
using higher-level languages seamlessly, and this leads to more cogent
arguments against their use. A distributed architecture is more volatile
than a single node because individual nodes may fail, communication
links may break and messages may get lost. Because of this, a remote
call may fail in ways that a local call may not. Is it reasonable to present
them to the programmer as if they are the same thing? We argue that
there is a significant class of applications where the answer is yes. If the
programmer’s objective is to develop algorithms rather than systems, it
does not seem right to burden themwith the often onerous task of failure
management in a distributed system. Another argument against higher-
level languages is that they may hide the details of the program’s data-
flow and not provide enough control to eliminate bottlenecks. To us it
seems that the right way to manage both failure and dataflow issues in
distributed algorithmic programming requires a separation of concerns.
Suitable runtime systems must present a more robust programming in-
terface; MapReduce [34] and Ciel [109] are examples of execution en-
gines with runtime systems that automatically handle configuration and
failure management aspects, the latter supporting dynamic dataflow de-
pendencies. If more fine-grained control is required, then separate de-
ployment and configuration policies which are transparent to the pro-
grammer should be employed. In general, we believe that the role and
the scope of orchestration languages [22] should be greatly expanded to
this end.
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RPC as a paradigm has been criticised for several other reasons: its exe-
cution model does not match the native call model, there is no good way of
dealing with failure, and it is inherently inefficient [128]. By taking an ab-
stract machine model in which RPCs behave exactly the same as local calls,
by showing how a generic transaction mechanism can handle failure, and by
implementing reasonably performant compilers we address all these problem
head-on. We believe that we provide enough evidence for general native RPCs
to be reconsidered in a more positive light.

In general, ourmain contribution is a theoretical firm starting point for the
principled study of compilation targeting distributed architectures. It is our
hope that future programming languages can use (extensions of) our abstract
machines to get support for Remote Procedure Calls that are not added as an
afterthought to the language, but act and feel native.
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Appendix A

Proofs of theorems fromChapter 3
Proof of Proposition 3.2.2. By cases on the machine network step relation and
construction of the Stack-Interaction-Control (SIC) machine’s step relation.

Case Silent : In this rule,M′ =M, so ∣M′∣ = ∣M∣. The SIC machine M that
takes a step goes from just to just since all SIC machine step rules that do
not send or receive messages are on that form, which also implies that
∣active(N)∣ = ∣active(N ′)∣.

Case Send : HereM′ =M⊎ [(p, e)] so ∣M′∣ = ∣M∣+ 1. The only SIC machine
rule that applies here is the send rule, which takes the machine M from
state just to nothing. So ∣active(N ′)∣ = ∣active(N)∣ − 1, and thus ∣M′∣ +
∣active(N ′)∣ = ∣M∣ + 1 + ∣active(N)∣ − 1 = ∣M∣ + ∣active(N)∣

Case Receive : In this case,M =M′ ⊎ [(p, e)] so ∣M′∣ = ∣M∣− 1. The only SIC
machine rule that applies is the receive rule, which takes the machine
M from state nothing to just, meaning that ∣active(N ′)∣ = ∣active(N)∣+ 1.
Thus ∣M′∣ + ∣active(N ′)∣ = ∣M∣ − 1 + ∣active(N)∣ + 1 = ∣M∣ + ∣active(N)∣.

Proof of Proposition 3.3.4. The first part is trivial. To show that the network
N1,N2 is combinable, we have to consider its partitions. In the case where no
subnetwork in the partition spans both N1 and N2, combinability follows from
lifting the combinability of N1 and N2. If a subnetwork does span both N1 and
N2, the interesting case is when there is communication between the part that
stems from N1, and the part that stems from N2. Note that when that happens,
it means that we have in the original N1 network (the N2 case is analogous):

(N1, [(p, d)])Ð→∗ (N1, [(p1, d1)])

where p is an input port and p1 is an output port ofN1 but an internal port of
N1,N2. By stack-neutrality of N1 this means that the stacks of all machines are
unchanged. The combination of the composition N1,N2 can simulate this be-
haviour, but will continue through the code that stems fromN2 when it reaches
the shared port. Since the stack is unchanged at this point, its behaviour is the
same as if it was not combined.
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Proof of Proposition 3.3.6. Stack-neutrality follows from stack-neutrality of N .
The box stores state in the form of a stack element upon entrance, but any ob-
servable output of the network will go through an output port of N , which in
turn will pop that stack element. Combinability follows from Lemma 3.3.5.
Since entering the box is done first, we add an element to the stack of the com-
bined machine containing the box, but those components will still have the
same behaviour since they cannot inspect the shape of the stack.

166



Appendix B

Proofs of theorems fromChapter 4
Proof of Proposition 4.1.2.

• Composition is well-defined, i.e. it preserves well-formedness.
Let f = (E f , χ f ,A⇒ B) ∶ A → B and g = (E g , χg , B′ ⇒ C) ∶ B′ → C
be morphisms such that π ⊢ B =A B′, and their composition f ; g =
(E f ∪ E g , χ,A⇒ C) ∶ A→ C be as in the definition of composition. To
prove that this is well-formed, we need to show that

χ ∈ sup((A⇒ C)(O) ⊗ I(P)f g )→ sup((A⇒ C)(P) ⊗ I(O)f g ) =

sup(A∗(O) ⊗ C(O) ⊗ I(P)f ⊗ I(P)g )→ sup(A∗(P) ⊗ C(O) ⊗ I(O)f ⊗ I(O)g )

where I f g = ⊗{A ∣ (A, P) ∈ E f ∪ E g}, and that it is a bijection.
We are given that

χ f ∈ sup(A∗(O) ⊗ B(O) ⊗ I(P)f )→ sup(A∗(P) ⊗ B(P) ⊗ I(O)f )

χg ∈ sup(B′∗
(O) ⊗ C(O) ⊗ I(P)g )→ sup(B′∗(P) ⊗ C(P) ⊗ I(O)g )

π ∈ sup(B)→ sup(B′)

are bijections.
It is relatively easy to see that the domains specified in the clauses of
the definition of χ are mutually disjoint sets and that their union is the
domain that we are after.
Since χ is defined in clauses each of which defined using either χ f or χg
and/or π (which are bijections with disjoint domains and codomains),
it is enough to show that the set of port names that χ f is applied to in
clause 1 and 4 are disjoint, and similarly for χg in clause 2 and 3:

– In clause 4, we have χg(a) ∈ sup(B′), and so π−1(χg(a)) ∈ sup(B),
which is disjoint from sup(A∗(O) ⊗ I(P)f ) in clause 1.

– In clause 3, we have χ f (a) ∈ sup(B), and so π(χ f (a)) ∈ sup(B′),
which is disjoint from sup(C(O) ⊗ I(P)g ) in clause 2.
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• Composition is associative.
Let

f = (E f , χ f ,A⇒ B) ∶ A→ B,
g = (E g , χg , B′⇒ C) ∶ B′ → C, and
h = (Eh , χh ,C′⇒ D) ∶ C′ → D

be nets such that π1 ⊢ B =A B′ and π2 ⊢ C =A C′. Then we have:

( f ; g); h = (E f ∪ E g ∪ Eh , χ( f ;g);h ,A⇒ D)

and
f ; (g; h) = (E f ∪ E g ∪ Eh , χ f ;(g;h),A⇒ D)

according to the definition of composition. We need to show that

χ( f ;g);h = χ f ;(g;h),

which implies that ( f ; g); h = f ; (g; h).
We do this by expanding the definitions, simplified using the following
auxiliary function:

connect(c,A)(a) ∆= a if a ∉ sup(A)

connect(c,A)(a) ∆= c(a) if a ∈ sup(A)

f ; g = (E f ∪ E g , χ f ;g ,A⇒ C) and g; h = (E g ∪ Eh , χg;h , B′⇒ D) where

χ f ;g(a)
∆= connect(χg ○ π1, B)(χ f (a)) if a ∈ sup(A∗(O) ⊗ I(P)f )

χ f ;g(a)
∆= connect(χ f ○ π−11 , B′)(χg(a)) if a ∈ sup(C(O) ⊗ I(P)g )

χg;h(a)
∆= connect(χh ○ π2,C)(χg(a)) if a ∈ sup(B′∗

(O) ⊗ I(P)g )

χg;h(a)
∆= connect(χg ○ π−12 ,C′)(χh(a)) if a ∈ sup(D(O) ⊗ I(P)h )

Now χ( f ;g);h and χ f ;(g;h) are defined as follows:

χ( f ;g);h(a)
∆= connect(χh ○ π2,C)(χ f ;g(a)) if a ∈ sup(A∗(O) ⊗ I(P)f ;g )

χ( f ;g);h(a)
∆= connect(χ f ;g ○ π−12 ,C′)(χh(a)) if a ∈ sup(D(O) ⊗ I(P)h )

χ f ;(g;h)(a)
∆= connect(χg;h ○ π1, B)(χ f (a)) if a ∈ sup(A∗(O) ⊗ I(P)f )

χ f ;(g;h)(a)
∆= connect(χ f ○ π−11 , B′)(χg;h(a)) if a ∈ sup(D(O) ⊗ I(P)g;h )
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One way to see that these two bijective functions are equal is to view
them as case trees, and consider every case. There are 13 such cases to
consider, out of which three are not possible.
We show three cases:

1. If a ∈ sup(A∗(O)⊗ I(P)f ), χ f (a) ∉ sup(B), and χ f (a) ∉ sup(C), then

χ( f ;g);h(a)
=connect(χh ○ π2,C)(χ f ;g(a))
=connect(χh ○ π2,C)(χ f (a))
=χ f (a)

and

χ f ;(g;h)(a)
=connect(χg;h ○ π1, B)(χ f (a))
=χ f (a)

and thus equal.
2. Consider the case where a ∈ sup(A∗(O) ⊗ I(P)f ), χ f (a) ∉ sup(B),

and χ f (a) ∈ sup(C). This case is not possible, since sup(C) is not
a subset of the codomain of χ f (a), which is sup(A∗(P)⊗B(P)⊗I(O)f ).

3. If a ∈ sup(D(O) ⊗ I(P)h ), χh(a) ∈ sup(C′), π−12 (χh(a)) ∈ sup(C(O) ⊗
I(P)g ), and χg(π−12 (χh(a))) ∈ sup(B′), then

χ( f ;g);h(a)
=connect(χ f ;g ○ π−12 ,C′)(χh(a))
=χ f ;g(π−12 (χh(a)))
=connect(χ f ○ π−11 , B′)(χg(π−12 (χh(a))))
=χ f (π−11 (χg(π−12 (χh(a)))))

and

χ f ;(g;h)(a)
=connect(χ f ○ π−11 , B′)(χg;h(a))
=connect(χ f ○ π−11 , B′)(connect(χg ○ π−12 ,C′)(χh(a)))
=connect(χ f ○ π−11 , B′)(χg(π−12 (χh(a))))
=χ f (π−11 (χg(π−12 (χh(a)))))

and thus equal.
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The other cases are done similarly.

• idA is well-formed. For any interface A,

idA
∆= (∅, χ,A⇒ A′)

for an A′ such that π ⊢ A =A A′ and

χ(a) ∆= π(a) if a ∈ sup(A∗(O))

χ(a) ∆= π−1(a) if a ∈ sup(A′(O).)

according to the definition.

We need to show that χ is a bijection:

χ ∈ sup((A⇒ A′)(O))→ sup((A⇒ A′)(P))
= sup(A∗(O) ∪ A′(O))→ sup(A∗(P) ∪ A′(P))

This is true since π is a bijection in sup(A)→ sup(A′).

• idA is an identity. For any morphism f ∶ A → B we observe that idA; f
is structurally equivalent to f , so by Theorem 4.1.1, JidA; f K =A J f K.
The case for f ; idB is similar.

Proof of Proposition 4.1.3.

• The tensor product is well-defined, i.e. for two morphisms f , g, f ⊗ g is
a well-formed net. This is easy to see since f and g are well-formed.

• The tensor product is a bifunctor:

– idA⊗ idB = (∅, χ1 ⊗ χ2,A⊗ B⇒ A′ ⊗ B′) = idA⊗B by the definition
of idA⊗B.

– ( f ; g) ⊗ (h; i) = f ⊗ h; g ⊗ i by the definition of composition and
tensor on morphisms.

• The coherence conditions of the natural isomorphisms are trivial since
the isomorphisms amount to identities.

Proof of Theorem 4.1.7. We show that for any trace s, s ∈ JSK implies s ∈ JS′K
by induction on the length of the trace.
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• Hypothesis. If s ∈ JSK and thus initial(S) sÐ→ ({(t1, h1) ∶ E1, (t2, h2) ∶
E2},m) for some sets of threads t1 and t2, heaps h1 and h2, and amultiset
of messages m, then initial(S′) sÐ→ ({(t1 ∪ t2 ∪ tp, h1 ∪ h2) ∶ E12},mp)
where tp is a set of threads and mp is a multiset of messages such that:

1. each t ∈ tp is on the form t = (spark a, d)with χ(a) ∈ sup(A1⊗A2),
and

2. m = mp ⊎ {(χ(a),msg(d)) ∣ (spark a, d) ∈ tp}.

Intuitively, the net where E1 and E2 have been combined into one engine
will not have pending messages (in m) for communications between E1
and E2, but it can match the behaviour of such messages by threads that
are just about to spark.

• Base case. Since any net can take zero steps, the case when s = є is trivial.

• Inductive step. If s = s′∶∶α and the hypothesis holds for s′, then we have

initial(S) s′Ð→ ({(t1, h1) ∶ E1, (t2, h2) ∶ E2},m)
Ð→∗ αÐ→ ({(t′1, h′1) ∶ E1, (t

′
2, h′2) ∶ E2},m′)

initial(S′) s′Ð→ ({(t1 ∪ t2 ∪ tp, h1 ∪ h2) ∶ E12},mp)

with tp and m′ as in the hypothesis. We first show that S′ can match the
silent steps that S performs, by induction on the number of steps, using
the same induction hypothesis as above:

– Base case. Trivial.
– Inductive step. Assume that we have

initial(S) s′Ð→Ð→∗ ({(t1, h1) ∶ E1, (t2, h2) ∶ E2},m)

initial(S′) s′Ð→Ð→∗ ({(t1 ∪ t2 ∪ tp, h1 ∪ h2) ∶ E12},mp)

Such that the induction hypothesis holds. We need to show that
any step

({(t1, h1) ∶ E1, (t2, h2) ∶ E2},m)Ð→
({(t′1, h′1) ∶ E1, (t

′
2, h′2) ∶ E2},m′)

can be matched by (any number of) silent steps of the S′ configur-
ation, such that the induction hypothesis still holds.
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* A thread of S performs a silent step. This is trivial, since the
threads of the engine configuration of S′ includes all threads
of the configurations of S, and its heap is the union of those of
S.

* A thread of S does an internal engine send step. Since t1 ∪
t2 ∪ tp includes all threads of the S configuration, and for the
port name a in question χ(a) ∈ A1 ∪ A2 = A1 ⊗ A2, this can
be matched by the configuration of S′ such that the induction
hypothesis still holds.

* A thread S does an external engine send. Thismeans that there
is a thread t ∈ t1 ∪ t2 on the form t = (spark a, d), which after
the step will be removed, adding the message (χ(a),msg(d))
to its multiset of messages, i.e. m′ = m ⊎ {(χ(a),msg(d))}.
If χ(a) ∈ A1∪A2, then the configuration S′ can take zero steps,
and thus include t in the set of threads ready to spark. The
induction hypothesis still holds, since

m′ = m ⊎ {(χ(a),msg(d))}
= mp ⊎ {(χ(a),msg(d)) ∣ (spark a, d) ∈ tp}

⊎ {(χ(a),msg(d))}
= mp ⊎ {(χ(a),msg(d)) ∣ (spark a, d) ∈ tp ∪ {t}}.

If χ(a) ∈ I, then the configuration of S′ can match the step of
S, removing the thread t from also its set of threads. It is easy
to see that the induction hypothesis holds also in this case.

* An engine of S receives a message. Thenm = {(a, d)}⊎m′ for
a message such that the port (O, a) ∈ A1 ∪A2 = A1⊗A2. Then
(a, d) is in mp or in {(χ(a),msg(d)) ∣ (spark a, d) ∈ tp}. If
it is the former, E12 can receive the message and start a thread
equal to that started in the configuration of S. If it is the latter,
there is a thread t = (spark χ−1(a), d

′
) ∈ tp with d = msg(d

′
)

that can first take a send m step, adding it to the multiset of
pending messages of the configuration of S′, and then it can
be received as in S.

Next we show that the α step can be matched: Assume that we have

initial(S) s′Ð→Ð→∗ ({(t1, h1) ∶ E1, (t2, h2) ∶ E2},m)

initial(S′) s′Ð→Ð→∗ ({(t1 ∪ t2 ∪ tp, h1 ∪ h2) ∶ E12},mp)
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Such that the induction hypothesis holds. We need to show that for any
α, a step

({(t1, h1) ∶ E1, (t2, h2) ∶ E2},m)
αÐ→ ({(t′1, h′1) ∶ E1, (t

′
2, h′2) ∶ E2},m′)

can be matched by the S′ configuration, such that the induction hypo-
thesis still holds. We have two cases:

– The configuration of S performs a send step. That is m = {m}⊎m′
for an m = (a, d) such that (P, a) ∈ A. Since sup(A) is disjoint
from sup(A1 ∪ A2), the message is also in mp, so the configuration
of S′ can match the step.

– The configuration of S performs a receive step. This case is easy, as
S and S′ have the same interface A.

Proof of Lemma 4.2.28. We show that s ∈ Jδπ12 ,π23 ; Π1K implies s ∈ JCCπ12 ,A1 ,A2K
and the converse (the Π2 case is analogous), by induction on the trace length.
There is a simple relationship between the heap structures of the respective net
configurations — they have the same structure but the diagonal stores addi-
tional integers for identifying what “side” a move comes from.

Proof of Lemma 4.2.12. By cases on (x):

• If (x) = ●, then e ∶ E = {e ∶ E} ∪ e0 ∶ E0, e
(y)
Ð→
E ,χ

e′ for some (y),
e′ ∶ E = {e′ ∶ E} ∪ e′0 ∶ E0. We have three cases for (y):

– If (y) = ●, then e Ð→
E ,χ

e′ and m′ = m. Then we also have n2 = ({e ∶
E} ∪ e0 ∶ E0,m ⊎ {m})Ð→ ({e′ ∶ E} ∪ e′0 ∶ E0,m ⊎ {m}) = n′2.

– If (y) = (P,m′), then e m′Ð→
E ,χ

e′ and m′ = {m′} ∪ m. Then we
also have n2 = ({e ∶ E} ∪ e0 ∶ E0,m ⊎ {m}) Ð→ ({e′ ∶ E} ∪
e′0 ∶ E0, {m′} ⊎m ⊎ {m}) = n′2.

– If (y) = (O,m′), then e m′Ð→
E ,χ

e′ and m = {m′} ⊎ m′. Then we
also have n2 = ({e ∶ E} ∪ e0 ∶ E0, {m′} ⊎ m′ ⊎ {m}) Ð→ ({e′ ∶
E} ∪ e′0 ∶ E0,m′ ⊎ {m}) = n′2.

• If (x) = (P,m′), then e′ ∶ E = e ∶ E and m = {m′} ⊎m′. Then we also
have n2 = (e ∶ E , {m′} ⊎m′ ⊎ {m})

m′Ð→ (e ∶ E ,m′ ⊎ {m}) = n′2.

• If (x) = (O,m′), where m′ = (a, p, p′, d) then e′ ∶ E = e ∶ E and m′ =
{(χ(a), p, p′, d)} ⊎ m. Then we also have n2 = (e ∶ E ,m ⊎ {m})

m′Ð→
(e ∶ E , {(χ(a), p, p′, d)} ⊎m ⊎ {m}) = n′2.
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Proof of Lemma 4.2.13.

1. s = s1∶∶(l ,m1)∶∶(O,m)∶∶s2 ∈ J f K means that

initial( f ) s1Ð→
(x)
Ð→

∗
n1
(l ,m1)ÐÐÐ→ n2

(y)
Ð→

∗ (O,m)
ÐÐÐ→ n3

(z)
Ð→

∗ s2Ð→ n4

for net configurations n1, n2, n3, n4. For clarity, we take (x), (y), (z) to
be “names” for the silent transitions. We show that there exist n′2 and
(y′) such that

initial( f ) s1Ð→
(x)
Ð→

∗
n1
(O,m)
ÐÐÐ→

(l ,m1)ÐÐÐ→ n′2
(y′)
ÐÐ→

∗
n3
(z)
Ð→ s2Ð→ n

by induction on the length of
(y)
Ð→

∗
:

• Base case. If
(y)
Ð→

∗
is the identity relation, then assume

n1
(l ,m1)ÐÐÐ→ n2

(O,m)
ÐÐÐ→ n3

Let n1 = (e1 ∶ E ,m1), n2 = (e2 ∶ E ,m2),m = (a, p, p′, d), andm′ =
(χ(a), p, p′, d). Then n3 = (e2 ∶ E , {m′}⊎m2) by the definition of
Ð→. Since we have (O, a) ∈ I, we also have n1

(O,m)
ÐÐÐ→ (e1 ∶ E , {m′}⊎

m1). Also, since n1
(l ,m1)ÐÐÐ→ n2 we have (e1 ∶ E , {m′}⊎m2)

(l ,m1)ÐÐÐ→ n3
by Lemma 4.2.12. Composing the relations, we get

n1
(O,m)
ÐÐÐ→

(l ,m1)ÐÐÐ→ n3

which completes the base case.

• Inductive step. If
(y)
Ð→

∗
=
(y0)ÐÐ→

∗ ●Ð→ such that for any n′3

n1
(l ,m1)ÐÐÐ→ n2

(y0)ÐÐ→
∗ (O,m)
ÐÐÐ→ n′3

implies that there exist n′2 and (y′0) with

n1
(O,m)
ÐÐÐ→

(l ,m1)ÐÐÐ→ n′2
(y′0)ÐÐ→

∗
n′3

then assume

n1
(l ,m1)ÐÐÐ→ n2

(y0)ÐÐ→
∗
ny0

●Ð→ ny
(O,m)
ÐÐÐ→ n3

Let ny0 = (ey0 ∶ E ,my0), ny = (ey ∶ E ,my), m = (a, p, p′, d),
and m′ = (χ(a), p, p′, d). Then n3 = (ey ∶ E , {m′} ⊎ my) by the

174



definition of Ð→. Since we have (O, a) ∈ I, we also have ny0
(O,m)
ÐÐÐ→

(ey0 ∶ E , {m′} ⊎my0). Also, since ny0
●Ð→ ny by Lemma 4.2.12 we

have (ey0 ∶ E , {m′}⊎my0)
●Ð→ n3. Composing the relations, we get

n1
(l ,m1)ÐÐÐ→ n2

(y0)ÐÐ→
∗
ny0

(O,m)
ÐÐÐ→ (ey0 ∶ E , {m′} ⊎my0)

●Ð→ n3

Applying the hypothesis, we finally get

n1
(O,m)
ÐÐÐ→

(l ,m1)ÐÐÐ→ n′2
(y′0)ÐÐ→

∗ ●Ð→ n3

which completes the first part of the proof.

2. s = s1∶∶(P,m)∶∶(l ,m1)∶∶s2 ∈ J f K means that

initial( f ) s1Ð→
(x)
Ð→

∗
n1
(P,m)
ÐÐÐ→ n2

(y)
Ð→

∗ (l ,m1)ÐÐÐ→ n3
(z)
Ð→

∗ s2Ð→ n4

for net configurations n1, n2, n3, n4 and (x), (y), (z) names for the silent
transitions. We show that there exist (y′) and n′2 such that

initial( f ) s1Ð→
(x)
Ð→

∗
n1
(y′)
ÐÐ→

∗
n′2
(l ,m1)ÐÐÐ→

(P,m)
ÐÐÐ→ n3

(z)
Ð→

∗ s2Ð→ n

by induction on the length of
(y)
Ð→

∗
:

• Base case. If
(y)
Ð→

∗
is the identity relation, then assume

n1
(P,m)
ÐÐÐ→ n2

(l ,m1)ÐÐÐ→ n3

Let n2 = (e2 ∶ E ,m2), n3 = (e3 ∶ E ,m3), m = (a, p, p′, d)Then
n1 = (e2 ∶ E , {m} ⊎ m2) by the definition of Ð→. Since (P, a) ∈ I,
(e3 ∶ E , {m} ⊎ m3)

(P,m)
ÐÐÐ→ n3. Also, since n2

(l ,m1)ÐÐÐ→ n3 we have
n1

(l ,m1)ÐÐÐ→ (e3 ∶ E , {m} ⊎ m3) by Lemma 4.2.12. Composing the
relations, we get

n1
(l ,m1)ÐÐÐ→

(P,m)
ÐÐÐ→ n3

which completes the base case.

• Inductive step. If
(y)
Ð→

∗
= ●Ð→

(y0)ÐÐ→
∗
such that for any n′1

n′1
(P,m)
ÐÐÐ→

(y0)ÐÐ→
∗
n2
(l ,m1)ÐÐÐ→ n3
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implies that there exist n′2 and (y′0) with

n′1
(y′0)ÐÐ→

∗
n′2
(l ,m1)ÐÐÐ→

(P,m)
ÐÐÐ→ n3

then assume

n1
(P,m)
ÐÐÐ→ nm

●Ð→ ny
(y0)ÐÐ→

∗
n2
(l ,m1)ÐÐÐ→ n3

Let nm = (em ∶ E ,mm), ny = (ey ∶ E ,my), and m = (a, p, p′, d).
Then n1 = (em ∶ E , {m} ⊎ mm) by the definition of Ð→. Since we
have (P, a) ∈ I, we have (ey ∶ E , {m} ⊎my)

(P,m)
ÐÐÐ→ ny. Also, since

nm
●Ð→ ny we have n1

●Ð→ (ey ∶ E , {m} ⊎ my) by Lemma 4.2.12.
Composing the relations, we get

n1
●Ð→ (ey ∶ E , {m} ⊎my)

(P,m)
ÐÐÐ→ ny

(y0)ÐÐ→
∗
n2
(l ,m1)ÐÐÐ→ n3

Applying the hypothesis, we finally get

n1
●Ð→
(y′0)ÐÐ→

∗
n′2
(l ,m1)ÐÐÐ→

(P,m)
ÐÐÐ→ n3

which completes the proof.

Proof of Lemma 4.2.14. Induction on ≼. The base case is trivial. Consider the
case where s = s1∶∶α2∶∶α1∶∶s2 and s′ = s1∶∶α1∶∶α2∶∶s2. Let α1 = (l , (a1, p1, p′1, d1)) and
α2 = (l , (a2, p2, p′2, d2)).

1. Induction on the length of s2. In the base case, we have (by associativity
and commutatitivity of ∪): enabled(s1∶∶α2∶∶α1) = enabled(s1) ∪ {(a, p′2) ∣
a2 ⊢A a} ∪ {(a, p′1) ∣ a1 ⊢A a} = enabled(s1) ∪ {(a, p′1) ∣ a1 ⊢A a} ∪
{(a, p′2) ∣ a2 ⊢A a}.

2. Induction on the length of s2 as in 1.

3. Induction on the length of s2. In the base case, we have (since by the def.
of ≼, p1 ≠ p′2 and p2 ≠ p′1):

fp(s1∶∶α2∶∶α1) =
fp(s1∶∶α2) ∪ ({p1} ∖ bp(s1∶∶α2)) =

fp(s1) ∪ ({p2} ∖ bp(s1)) ∪ ({p1} ∖ (bp(s1) ∪ {p′2})) =
fp(s1) ∪ ({p2} ∖ (bp(s1) ∪ {p′1})) ∪ ({p1} ∖ bp(s1)) =
fp(s1) ∪ ({p1} ∖ bp(s1)) ∪ ({p2} ∖ (bp(s1) ∪ {p′1})) =

fp(s1∶∶α1) ∪ ({p2} ∖ bp(s1∶∶α1)) =
fp(s1∶∶α1∶∶α2)
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Proof of Lemma 4.2.15. Induction on ≼. The base case is trivial. We show the
case of a single swapping. If s′ ≼ s, we have s = s1∶∶α2∶∶α1∶∶s2 and s′ = s1∶∶α1∶∶α2∶∶s2
for some s1, s2, α1, α2. Obviously, s′∶∶α ≼ s∶∶α.

We have to show that if s∶∶α ∈ PA, then s′∶∶α ∈ PA, i.e. that s′∶∶α fulfils the
legality conditions imposed by PA:

• It is easy to see that s′∶∶α has unique pointers and is correctly labelled.

• s′∶∶α is justified since enabled(s) = enabled(s′) by Lemma 4.2.14.

• To see that s′∶∶α strictly scoped, consider the (“worst”) case when

(l , (a, p, p′, d))∶∶s3∶∶α ⊆ s′∶∶α and a ∈ ansA

(i.e. we pick the segment that goes right up to the end of the trace). We
consider the different possibilities of the position of this answermessage:

– If (l , (a, p, p′, d)) ⊆ s1, let s′4 = (l , (a, p, p′, d))∶∶s′1∶∶α1∶∶α2∶∶s2∶∶α ⊆
s′∶∶α and s4 = (l , (a, p, p′, d))∶∶s′1∶∶α2∶∶α1∶∶s2∶∶α. We also know that
p ∉ fp(s4) as s∶∶α ∈ PA. Now, since s′4 ≼ s4, we have fp(s4) = fp(s′4)
by Lemma 4.2.14 and thus also p ∉ fp(s′4).

– If (l , (a, p, p′, d)) = α2. We know that p ∉ fp(s2∶∶α) by s∶∶α ∈ PA.
Since s′ ∈ PA we have p ∉ fp(α1) and can so conclude that p ∉
fp(α1∶∶s2∶∶α).

– If (l , (a, p, p′, d)) = α1 or (l , (a, p, p′, d)) ⊆ s2, p ∉ fp(s2∶∶α) fol-
lows immediately from s ∈ PA.

– If (l , (a, p, p′, d)) = α, p ∉ fp(є) = ∅ is trivially true.

• To see that s′∶∶α is strictly nested, assume

(l1, (a1, p, p′, d1))∶∶s1∶∶(l2, (a2, p′, p′′, d2))∶∶s2∶∶(l3, (a3, p′, p′′′, d3)) ⊆ s′∶∶α

for port names a1, a2 ∈ qstA and a3 ∈ ansA. We have to show that this
implies (l4, (a4, p′′,−, d4)) ⊆ s2, for a port name a4 ∈ ansA. We proceed
by considering the possible positions of the last message in the segment:

– If (l3, (a3, p′, p′′′, d3)) ⊆ s′, then the proof is immediate, by s′ ∈ PA
being strictly nested.

– If (l3, (a3, p′, p′′′, d3)) = α we use the fact that s∶∶α ∈ PA is strictly
nested. We assume that the implication (using the same names)
as above holds but instead for s∶∶α, and show that any swappings
that can have occurred in s′ that reorder the a1, a2, a4 moves would
render s′ illegal:
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* If a2 was moved before a1, then s′ would not be justified.
* If a4 was moved before a2, then s′ would not be justified.

As the order is preserved, this shows that the swappings must be
done in a way such that the implication holds for s′∶∶α.

Proof of Lemma 4.2.17. For convenience, let ( f ,A⇒ A′) = CCπ,A,A′ , S1 = ccst,altA,A′

and S2 = J f K. We show that s ∈ S1 implies s ∈ S2, by induction on the length of
s:

• Hypothesis. If s has even length, then initial( f ) sÐ→ ({(∅, h) ∶ E},∅)
and h is exactly (nothing more than) a copycat heap for s over A⇒ A′.
In other words, there are no threads running and no pending messages
and the heap is precisely specified.

• Base case. Immediate.

• Inductive step. At any point in the execution of the configuration of f , an
O-labelled message can be received, so that case is rather uninteresting.
Since the trace s is alternating, we consider two messages in each step:
Assume s = s′∶∶(O, (a1, p1, p′1, d1))∶∶(P, (a2, p2, p′2, d2)) ∈ S1 and that s′ ∈
S2. From the definition of cc we know that a2 = π̃A(a1), p2 = π̃P(p1),
p′2 = π̃P(p2), and d1 = d2.

We are given that initial( f ) sÐ→
′
({(∅, h) ∶ E},∅) as in the hypothesis.

We have five cases for the port name a1. We show the first three, as the
others are similar. In each case our single engine will receive a message
and start a thread:

– If a1 ∈ iniA′ , then (since s is justified) p2 = p′1 and (by the definition
of π′A) a2 = π−1A (a1). The engine runs the first clause of the copycat
definition, and chooses to create the pointer p2 and then performs
a send operation. We thus get:

initial( f ) sÐ→ ({(∅, h ∪ {p′2 ↦ p′1})},∅)

It can easily be verified that the hypothesis holds for this new state.
– If a1 ∈ (oppA′ ∩ qstA′) ∖ iniA′ , then a2 = π−1A (a1). Since s is justified

and strictly nested, there is a message (P, (a3, p3, p1, d3)) ⊆ s′ that
is pending.
By the hypothesis there is a message (O, (π′A(a3), p4, p′4, d4)) ⊆ s′
with h(p1) = p′4, which means that the ccq instruction can be run,
yielding the following:

initial( f ) sÐ→ ({(∅, h ∪ {p′2 ↦ p′1})},∅)
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The hypothesis can easily be verified also in this new state.
– If a1 ∈ oppA′ ∩ ansA′ , then a2 = π−1A (a1). Since s is justified and

strictly nested, there is a prefix s1∶∶(P, (a3, p3, p1, d3)) ⩽ s′ whose
last message is a pending question. By the hypothesis s1 is then on
the form s1 = s2∶∶(O, (π′A(a3), π̃P(p3), π̃P(p1), d4)) with h = h′ ∪
{p1 ↦ π̃P(p1)}, which means that the cca instruction can be run,
yielding the following:

initial( f ) sÐ→ ({(∅, h′)},∅)

Thehypothesis is still true; the a3 question is no longer pending and
its pointer is removed from the heap (notice that p2 = π̃P(p1)).

Proof of Lemma 4.2.18. By induction on ≼.

• Base case. This means that s = s1∶∶o∶∶s2 ∈ ccaltA,A′ . But since p ⊈ s2 and by
the definition of the alternating copycat, s2 = є. It is easy to check that
s∶∶p ∈ ccaltA,A′ and that it is legal.

• Inductive step. Assume s ≼ s′ for an s′ ∈ PA⇒A′ such that s′∶∶p ∈ ccA,A′ . By
Lemma 4.2.15, s∶∶p ∈ ccA,A′ .

Proof of Lemma 4.2.21.

1. For convenience, we give the composition of silent steps a name, n
(x)
Ð→

∗

n′. We proceed by induction on the length of (x):

• Base case. Immediate.

• Inductive step. If n Ð→
(x′)
ÐÐ→

∗
n′, we analyse the first silent step,

which means that a thread t of the engine in the net takes a step:
– In the cases where an instruction that does not change or de-

pend on the heap is run, the step cannot affect ready(n).
– In the case where the instruction is in {cci, ccq, exi, exq}, we

note that the heap is not changed, but merely extended with
a fresh mapping which can not have appeared earlier in the
trace.

– If the instruction is cca, since the trace s is strictly nested by
assumption, the input message that this message stems from
occurs in a position in the trace where it would later be illegal
to mention the deallocated pointer again.

2. Immediate.
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Proof of Lemma 4.2.22. Induction on the length of s. The base case is immedi-
ate.

We need to show that if the theorem holds for a trace s, then it also holds
for s∶∶α. We thus assume that there exists a permutation πP such that the hypo-
thesis holds for s and that initial(CC) sÐ→ n Ð→∗ αÐ→ n′.

1. If α = (P, (π̃A(a), π̃P(p), π̃P(p′), d)) then by (2) there must be a mes-
sage o = (O, (a, p, p′, d)) such that s = s1∶∶o∶∶s2 and α ∈ ready(n). Since
we “chose” πP such that p can only be gotten from the thread spawned
by o, we can proceed by cases as we did Lemma 4.2.17 to see that the
heap structure is correct in each case.

2. • If α = (P, (π̃A(a), π̃P(p), π̃P(p′), d)) then by (2) there must be
a message o = (O, (a, p, p′, d)) such that s = s1∶∶o∶∶s2 and α ∈
ready(n). By Lemma 4.2.21, ready(n) = ready(n′) ∪ {α}. We can
easily verify that (2) holds for n′.

• If α = (O, (a, p1, p′1, d)), then we can proceed as in Lemma 4.2.17
to see that a message p = (P, (π̃A(a), p2, p′2, d)) ∈ ready(n′). We
then simply construct our extended permutation such that the hy-
pothesis holds.

Proof of Lemma 4.2.26. Weshow that s′ ∈ (S f ;G Sg)st,alt implies that there exists
a πP such that πA,C ⋅ πP ⋅ s′ ∈ J f ;GAM gK = JΛ−1A (ΛA( f ) ⊗ ΛB′(g);KA,B,C)K =JΛA( f )K⊗ JΛB′(g)K; JKA,B,CK. Recall the definition of game composition:

S f ;G Sg
∆= {s ⇂ B ∣ s ∈ tracesA⊗B⊗C ∧ s ⇂ C ∈ S f ∧ πB ⋅ s∗B ⇂ A ∈ Sg}

We proceed by induction on the length of such an s:

• Hypothesis. There exists an sK such that initial(KA,B,C)
sKÐ→ n where

n = ({(∅, h) ∶ E},∅) and h is exactly (nothing more than) the union
of a copycat heap for sK overA′⇒ A, a copycat heap for sK over C⇒ C′

and an extended copycat heap for sK over B⇒B′.
Let

s f
∆= s ⇂ C

sg
∆= πB ⋅ s∗B ⇂ A

s f ;g
∆= s ⇂ B

sK f
∆= sK−A′, B′,C ,C′, the part of sK relating to f

sKg
∆= sK−A,A′, B,C′, the part of sK relating to g

sK f ;g
∆= sK−A, B, B′,C, the part of sK relating to the whole game net.
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We require that sK fulfils s∗K f = s f , s∗Kg = sg , and sK f ;g = πA,C ⋅πP ⋅s f ;g . Note
that sK f ;g is the trace of f ;GAM g, by the definition of trace composition.

• Base case. Immediate.

• Inductive step. Assume s = s′∶∶α and that the hypothesis holds for s′ and
some π′P and s′K . We proceed by cases on the α message:

– If α = (O, (a, p, p′, d)), we have three cases:
* If a ∈ sup(A), intuitively this means that we are getting a mes-

sage from outside the K engine, and need to propagate it via
K to f . We construct sK and πP, such that

sK = s′K ∶∶(O, (πA(a), π̃P(p), π̃P(p′), d))∶∶α∗

by further subcases on a (πP will be determined by steps of the
K configuration):

· a ∈ iniA cannot be the case because an initial message in
Amust be justified by an initial (O-message) in C, and so
must be a P-message.

· If a ∈ (qstA ∖ iniA) ∪ ansA, this means that s′ ⇂ C∶∶α =
(s′∶∶α) ⇂ C as the message must be justified by a mes-
sage from A. As f is O-closed s ⇂ C ∈ JΛA( f )K. This
trace can be stepped to by n′ just like how it was done in
Lemma 4.2.17. We can verify that the parts of the hypo-
thesis not in that theorem hold — in particular for this
case we have sK f = s′K f ∶∶α∗, so indeed s∗K f = s f as required.

* a ∈ sup(B):
Intuitively this means that g is sending a message to f , which
has to go through K. We construct sK and πP, such that sK =
s′K ∶∶(O, (a, π̃P(p), π̃P(p′), d))∶∶πB ⋅ α∗, by further subcases on
a (πP will be determined by steps of the K configuration):

· If a ∈ iniB, there must be a pending P-message from C
justifying α in s′, i.e. (P, (a0, p0, π̃P(p), d0)) ⊆ s′ and then
by Definition 4.2.20 h(π̃P(p)) = (p,∅) (as π̃P is its own
inverse). This means that (running the exi instruction)
we get:

n′
(O,(πB(a),π̃P(p),π̃P(p′),d))ÐÐÐÐÐÐÐÐÐÐÐÐÐ→Ð→∗ α∗Ð→

({(∅, h ∪ {p′ ↦ (π̃P(p′), p)}) ∶ E},∅) =n
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Now πB⋅α∗ is a newpendingP-question in the trace that is
initial inB⇒B′, but our newheapmapping fulfils clause
(2) of Definition 4.2.25 as required.

· If a ∈ (qstB∖iniB)∪ansB, this is similar to theA case (note
that the extended copycat only differs from the ordinary
copycat for initial messages).

* If a ∈ sup(C).
Intuitively this means that we are getting a message from out-
side the K engine, and need to propagate it via K to g. We
construct sK and πP, such that:

sK = s′K ∶∶(O, (πC(a), π̃P(p), π̃P(p′), d))∶∶α∗

In this case, the code that we will run is just that of CC, so we
can proceed like in Lemma 4.2.17, easily verifying our addi-
tional assumptions.

– If α = (P, (a, p, p′, d)), we have three cases:
* If a ∈ sup(A), intuitively thismeans thatwe get amessage from

f and need to propagate it via K to the outside. By further
subcases on a, we construct sK and πP, such that:

sK = s′K ∶∶α∗∶∶(P, (πA(a), π̃P(p), π̃P(p′), d))

Thepointer permutation πP will be determined by steps of the
K configuration.

· If a ∈ iniA, then α must be justified in s′ by a pending and
initial P-question from B by the definition of A ⇒ B
which must in turn be justified by a pending and initial
O-question from C by the definition of B⇒ C. In s′K , we
have (since s′K f ;g = πA,C ⋅ πP ⋅ s′f ;g)

s′K = s1∶∶(O, (aC′ , p0, pC′ , dC′))∶∶s2∶∶(P, (aB, pC′ , p, dC′))∶∶s3

Thismeans that clause (2) inDefinition 4.2.25 applies, such
that h(p) = (π̃P(p), π̃P(p0)) and that (running the exq
instruction) we get:

n′ α∗Ð→Ð→∗
(P,(πA(a),π̃P(p),π̃P(p′),d))ÐÐÐÐÐÐÐÐÐÐÐÐÐ→

({(∅, h ∪ {π̃P(p′)↦ (p′, d)}) ∶ E},∅) =n

Clause (1) of Definition 4.2.25 applies to these new mes-
sages and trivially holds.
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· When a ∈ (qstA ∖ iniA) ∪ ansA, the code that we will run
is just that of CC, so we can proceed like in Lemma 4.2.17,
also verifying our additional assumptions.

* If a ∈ sup(B), intuitively this means that f is sending a mes-
sage to g, which has to go through K.

· a ∈ iniB cannot be the case for a P-message.
· When a ∈ (qstB ∖ iniB) ∪ ansB, the code that we will run
is just that of CC, so we can proceed like in Lemma 4.2.17,
also verifying our additional assumptions.

* If a ∈ sup(C), intuitively this means that we get a message
from g and need to propagate it via K to the outside.

· a ∈ iniC cannot be the case for a P-message.
· When a ∈ (qstC ∖ iniC) ∪ ansC, the code that we will run
is just that of CC, so we can proceed like in Lemma 4.2.17,
also verifying our additional assumptions.

Proof of Lemma 4.2.27. Similar to Lemma 4.2.22 and Lemma 4.2.26. We first
identify the set ready(n) with “uncopied” messages of a K net configuration
n and show that these are legal according to the game composition. Then it
follows by induction that, assuming a heap as in Lemma 4.2.26, the ready(n)
set is precisely those messages.
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