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Abstract 

The remarkable ability of human search inspires computer vision 

algorithms that have influenced our life (e.g., Itti, Koch, & Niebur, 1998).  The 

algorithms often automatically reach an optimal decision upon finishing analysing 

stimulus information.  This is not how human search works.  One missing puzzle 

psychophysical studies have yet to answer is how a search decision is reached.  

This thesis addressed this question, using descriptive models to examine 

response time (RT) distributions and cognitive process models to reveal the 

hidden information.  The thesis focused on those search paradigms, guided 

(Wolfe, 2007) by an attentional template (Duncan & Humphreys, 1989), because 

not until recent years, relevant techniques become more accessible to apply the 

pioneering approach of dual-modelling.  The thesis compared RT distributions 

and cognitive processes when observers were guided by different attentional 

templates to search for a target.  The first search paradigm was to discriminate 2 

from 5 (Study 1, Chapter 4).  Study 2 (Chapter 5) varied the working memory 

strengths in templates, and they were represented differently (null, abstract vs. 

concrete) in Study 3 (Chapter 6).  The findings suggest attentional templates 

selectively influence different parts of a search decision and RT distributions, 

depending on how a template is represented, whether it is strengthened or 

weakened by the conditions, and whether it is concrete or abstract. 
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Chapter 1 Top-down Guidance in the Cognitive Information 

Processing 

1.1 Visual Search 

Visual search describes the situation when an observer uses his/her visual 

system – the external ocular system and internal visuo-cognitive neural network 

– to look for some specific objects in the environment.  In addition to early 

perceptual processes, this behaviour recruits multiple cognitive processes, 

including attention, object recognition, working memory and cognitive control.  

Finding an item, such as a car or a door key may seem trivial.  Finding a hazard 

in a workplace, a dangerous item in a luggage check point, an adverse sign in an 

X-ray or MRI image or a missing airplane in an open sea, is however obviously 

critical to a person, a family, or perhaps hundreds and thousands of people.  This 

explains why understanding visual search is important and why it is crucial to 

understand its main driving mechanism, attention. 

Attention, though simple might it sounds, can refer ‘to several different 

processes, even in the context of visual search’ (Wolfe, 2007).  In an inefficient 

visual search where focused attention is required to identify an object, attention 

often refers to selective attention operating at the cognitive bottleneck of 

information processing.  This type of attention selects a subgroup of items 

seemingly in a serial fashion.  Particularly, selective attention may lead to the 

selection of an object (i.e., object recognition).  This differs from the attention 

processes examined in, for instance, an ‘attentional blink’ paradigm (Shapiro, 

1994), whereby search items are presented in a rapid temporary sequence and 

an item appearing right after an imperative target fails to be registered at a 
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conscious level (though see Koch & Tsuchiya, 2007, 2008; Lamme, 2003; 

arguing for treating attention and consciousness differently).  This failure to 

register items in the attentional blink paradigm can be attributed to a lack of 

attentional capacity, so attention, like the eyes, ‘blinks’.   

This thesis focuses on selective attention. This by no mean implies the 

other types of attention play a less important role in visual search.  On the 

contrary, they relate to at least two different, but relatively less explored 

questions, (1) whether attention necessarily leads to awareness and (2) how top-

down goals (& reentrant processes) increase attentional sensitivity.  It is too 

ambitious to address all types of attention that may relate to visual search.  The 

thesis chooses to focus on one cognitive process, working memory (WM), which, 

as recent evidence shows, may interweave with selective attention in visual 

search (see a review in Soto, Hodsoll, Rotshtein, & Humphreys, 2008).  The 

interaction of WM and selective attention determines importantly how an 

observer, after his/her attention is guided to a target/distractor, reaches a search 

decision.  This thesis proposes a new analytical framework, an integrated model 

of sequential-sampling and response time (RT) distributions, to examine how 

different WM representations, in terms of their strength and perceptual 

concreteness, influence search decisions (see an early review regarding search 

decision in J. Palmer, Verghese, & Pavel, 2000) and how these influences might 

reflect on different parts of an RT distribution.  

1.1.1 The Architecture of Information Processing 

Visual search can be conceptualised as a general manifestation of 

cognitive information processing.  This is for instance illustrated in Townsend and 
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Ashby’s (1983) general framework of memory-scanning and visual-search 

paradigms.  This framework unifies both paradigms as involving the operations 

of search and stimulus comparison.  Both paradigms involve retrieving 

information from transient memories and comparing this information against a list 

of items.  The difference lies in the temporal order of stimuli.  The memory-

scanning paradigm (Sternberg, 1966) presents a target after a search list, in 

which a visual target coming later is compared with an early search list stored in 

transient memory, whereas the latter paradigm does the reverse.  That is, a visual 

search list is compared with a memorised target.  A basic form of this model 

comprises of four processes: stimulus encoding, stimulus comparison, response 

selection, response execution (Figure 1-1).  The stage of stimulus comparison 

plays a critical role in a search decision and is the focus of the thesis. 

 

Figure 1-1. A unified discrete model of memory scanning and visual search 
paradigms. S and R stand for stimuli and responses, respectively.  For 
illustrative purpose, the diagram is presented with arrows pointing from a 
preceding stage to a succeeding stage.  This does not imply a cognitive system 
processes information sequentially.  The issue of processing architecture 
remains an open question, requiring more data to gain further insights.  The 
diagram is partly adapted from Townsend and Ashby (1983). 

1.1.2 The Issues of Cognitive Information Processing 

One long-time debate on cognitive information processing is how multiple 

stimuli or elementary features of a stimulus are processed1.  Are they subjected 

to simultaneous processes, are they just sampled one after another and serially 

                                                      
1 Another equally important issue of parallel vs. serial processing is how separate cognitive subsystems (or channels) 
operate. For example, one visual stimulus can possess multiple features, such as line orientation and contrast. The 
channel processes line orientation and that processes the contrast could operate simultaneously, sequentially and the 
mixture of the two.   
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fed into the cognitive system, or are there other more complex ways to process 

stimuli (Townsend & Ashby, 1983)?  The processing architecture question, such 

as parallel vs. serial, is interwoven with three other related issues – when does a 

cognitive system reach a decision, does a cognitive system process information 

with a limited or an unlimited capacity, and whether the processing of multiple 

stimuli is stochastically independent (Fific, Townsend, & Eidels, 2008)?   

The first question – whether multiple stimuli are processed serially or 

concurrently – refers to the processing architecture problem, because it involves 

the data structure (architecture) and how it may be handled (processing).  Take 

processing multiple elementary features as an example2.  A serial structure is a 

typical example of a simple processing architecture.  Take a conjunction visual 

search task as an example.  In this paradigm, a target is usually defined conjointly 

by 2 (or 3) elementary features, such as colour and orientation.  At the outset, the 

observer may be probed with the identity of a target, such as a black vertical bar 

(▮).  A target-present search display comprises of one target (same as the probe, 

▮) and a mixture of distractors (also called non-targets in literature), such as black 

horizontal (▬) and white vertical bars (▯).  To execute a correct response (e.g., 

pressing either target present or absent key), the observer needs to find the item 

in the search display that matches both colour and orientation with the probe. 

In a serial architecture, the observer may randomly decide first to 

investigate colour and find that using only colour information is insufficient to tell 

                                                      
2 The classic debate regarding to serial vs. parallel processing centred on serially or concurrently 
processing multiple display items, which is different from the feature example here.  
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what the target is with high confidence.  She may then go on to examine the 

orientation information and thereby gains enough confidence to make a 

response.  This type of architecture is shown in the upper part of Figure 1-2, 

illustrating which features are investigated one after another.  A second type of 

architecture is to sample simultaneously both colour and orientation information 

in two parallel processing channels, as shown in the lower part of Figure 1-2.  The 

results from both channels then merge to inform a search decision. 

 

Figure 1-2. The parallel and serial processing architecture. S and R represent 
stimulus inputs and response outputs, respectively.  Features (colour, 
orientation, etc.) matching happens at the stage of stimulus comparison.  The 
dots refer to other processes, such as stimulus encoding, response selection, 
motor responses, etc.  

The second question asks when and how a cognitive system may finish 

processing and reach a conclusion.  This is usually dubbed the stopping, quitting, 

or exiting rule.  This appears nonobvious in the aforementioned example, 

whereby the observer requires both the colour and the orientation information to 

make a correct response.  Suppose now both types of distractors are changed to 

white horizontal (▭) and vertical bars (▯; as in feature search paradigm). In this 

situation, it is possible for an observer to reach a correct decision, when she 

compares only the colour information.  The exiting strategy can be seemingly 

‘self-terminating’.  Take the hypothetical paradigm as an example.  If the cognitive 

system randomly samples colour feature first and compares it with the probe 
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colour, the system can soon enter the stimulus comparison stage and proceed to 

next stage of information processing (i.e., initialising a response).  An early exit 

can also happen in a parallel architecture.  Because the processing time may 

differ, a self-terminating cognitive system will finish the stimulus comparison 

when, for example, the colour processing channel finishes first and returns its 

result, indicating enough information to make a correct response.  Thus, the 

system quits the circuit, even though the orientation processing channel is still 

operating.  

Another exiting process often been contrasted to the self-terminating 

process is that a cognitive system exhausts all possible information.  This type of 

system exits only when all possibilities have been thoroughly examined.  When 

within a parallel architecture feature search task is conducted with an exhaustive 

process, the system will wait until the orientation information has been thoroughly 

investigated, even though the early output from the colour channel may be 

enough to inform a correct response.  The exhaustive process however might 

exist only in theory, because an exhaustive examination of search space is no 

guarantee of a correct decision.  A cognitive system may suffer from memory 

decay, imperfection of sensory information, the limitation of cognitive resources 

etc.  The exhaustive process might just be a specific example of self-termination 

process when a seemingly thorough examination of search space is required to 

reach a high confidence for decision-making.   Later in Section 1.5, I will discuss 

the decision threshold view that considers the exiting rule as an adjustment of a 

threshold associated with the decision confidence.          
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The third elementary question in the cognitive information processing is 

the capacity issue.  The capacity of a cognitive system refers to particularly how 

many stimuli or elementary features of a stimulus a system is able to handle3.  An 

elementary processing unit could be, for example, vertical bar (▯), the vertical line 

of the bar (⃓) or the turning corner of the bar (˩).  An early common finding 

supporting limited capacity is a positive (and negative) correlation of the response 

latency (and accuracy) with the number of elementary units.  The limited capacity 

implies that the system cannot process all stimuli at once.  This is frequently 

observed in an inefficient search task, such as conjunction search.   

Nonetheless, a cognitive system may appear to operate with unlimited 

capacity. This is what has been found in efficient search paradigms, such as 

feature search [e.g., looking for a target (▮) with a distinct feature dimension from 

all the other distractors (▭, ▯)].  In the case of efficient searches, response 

latencies and accuracies are seemingly independent of the number of stimuli.  

The capacity issue is associated with the processing architecture problem.  One 

reason is that the predicted processing times of a stimulus differ amongst the four 

systems: capacity limited serial, capacity unlimited serial, capacity limited 

parallel, and capacity unlimited parallel.  With an identical number of stimuli 

waiting to be processed, a serial system with an unlimited capacity will still 

prolong response latencies because a late processing stage has to wait until a 

                                                      
3 The capacity issue is usually understood in the context of the finest cognitive unit, as atoms in 
classic physics.  As physicists now realise Higgs boson, an even more elementary particle in the 
Standard Model of particle physics (Aad et al., 2012; Barate et al., 2000), experimental 
psychologists and neuroscientists are also continuously working on searching for a finer cognitive 
processing unit, such as a communication amongst multiple synapses (Kandel, Schwartz, & 
Jessell, 2000). At a macro-functional level, it is plausible to model a cognitive system with an 
elementary unit of one stimulus. 
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preceding stage is finished, even when processing an identical number of stimuli 

as a parallel system does.  A further issue associated with the interaction of the 

processing architecture and the system capacity is the unobservable operation 

of capacity reallocation (Townsend & Ashby, 1983).  An observer may speed up 

to an asymptotic level when she gets more experience at handling similar stimuli 

(i.e., the effect of priming and/or practice).  She may slow down also to a certain 

asymptotic level when she gets tired or bored at responding to a large number of 

monotonous stimuli (i.e., the effect of tiring/attentional lapse).  The priming effect 

may result from when an observer realises, with experience, that certain aspects 

of a stimulus are less critical and thus reallocates resources to other aspects of 

the stimulus.  The attentional lapse may result from when, after numerous trials, 

only a small amount of capacity is available to correctly process the stimuli.  Both 

effects likely are caused by reallocating resources, thereby leading to changes in 

the response performance.  

 

Figure 1-3. Serial processing architecture in a two-alternative forced choice 
(2AFC) paradigm. Adapted from Sternberg (1969). 

The last question concerns whether multiple processing channels 

influence one another (stochastic dependence) before concluding a final output, 

regardless of parallel or serial processing.  This question relates to how a 

psychophysicist designs an experiment to measure an observer’s response, 

which is frequently quantified as RTs, as a final output from the multiple preceding 
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processes.  In a typical experiment, the psychophysicist usually probes an 

unobservable cognitive process by measuring the duration from when an 

observer perceives an imperative stimulus to when she commits an observable 

response.  The duration may be contrasted, for example, between searching for 

a target in a one-item and in a two-item search display.  If the channel processing 

the additional item in the two-item display depend on that for the first item, a 

simple subtraction method is able to inform how long one may process the 

additional item and to imply that an additional channel is dedicated to this 

process.  The stochastic dependence accounts for that the second channel only 

starts to work until the first channel delivers its outputs to the second channel.  If 

those channels are stochastically dependent, one can apply Sternberg’s additive 

factor method (1969) to the data collected from a simple factorial design to 

determine whether an experimental factor influences a given stage of a presumed 

serial processing system.  This gives rise to the concept of selective influence 

(Dzhafarov, 2003; Dzhafarov & Gluhovsky, 2006).  That is, an experimental 

manipulation influences selectively one processing channel, but not others.  

Table 1-1. A summary of architecture issues of the cognitive information 
processing. 

 Mode 1  Mode 2 Other related operations 

Processing architecture Serial   vs. Parallel Hybrid 

Exiting rule Exhaustive vs. Self-

terminating 

Resource reallocation 

Capacity  Limited vs. Unlimited Supercapacity 

Processing 

independence 

Dependent  vs. Independent Selective influence, 

guidance 
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1.1.3 Early Theories of Information Processing in Visual Search 

Early theorists proposed that visual search composes of two fundamental 

stages:  preattentive and attentive processes (J. E. Hoffman, 1979; Neisser, 

1967).  The preattentive stage processes all perceptual inputs within a visual field 

simultaneously, and the attentive stage focuses attention to serially analyse the 

outputs from the preceding stage.  The latter was frequently conceptualised as a 

serial, self-terminating process (Treisman & Gelade, 1980).  The two-stage model 

was based on the common finding that feature search shows a near zero search 

slope in the function, 𝑓(𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑠𝑖𝑧𝑒) = 𝑅𝑇 , and conjunction search typically 

shows a roughly linear function (Quinlan & Humphreys, 1987; Sternberg, 1966, 

1975; Treisman & Gelade, 1980).  One explanation to the typical conjunction 

searches is that the more items a search display has, the more serial stages are 

needed before responding.  That is, adding one more conjunctive item will take 

up one more processing step, which linearly increases RTs.  The self-terminating 

rule is suggested from the evidence showing that the ratio of the search slopes, 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑏𝑠𝑒𝑛𝑡 𝑡𝑟𝑖𝑎𝑙𝑠

𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑟𝑖𝑎𝑙𝑠
 , is slightly higher than 2.  A large corpus of visual search data 

indicates that an observer spends about 20-30 ms to examine an item in a target 

(present) trial and about 40-60 ms in a blank (target absent) trial (Wolfe, 1998)4.  

This evidence is consistent with self-terminating rule, because observers seem 

to search, on average, half of the items in a target trial.  Not all items are examined 

                                                      
4 This is a meta-analysis finding mining from a large corpus of visual search experiments (1 million 
trials) conducted in Wolfe’s laboratory.  As Wolfe’s GS4 (2007a) used their carwash metaphor 
arguing adequately that the slope of RT × display size function is a measure of the rate of 
processing, instead of a per-item search time.      
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as the exhaustive terminating rule predicts, and some mechanisms determine an 

early exit.  The self-terminating rule becomes naturally one of the candidates. 

One prominent two-stage model is Feature Integration Theory (FIT) 

(Treisman, 1986; Treisman & Gelade, 1980; see also Bergen & Julesz, 1983; 

Julesz, 1984; Julesz & Bergen, 1983; who proposed the Texton Theory, another 

equally important and similar early model).  FIT claimed that the preattentive 

stage is composed of multiple parallel processors, the feature maps.  These maps 

compute the level of visual distinctiveness (saliency5) for all low-level features 

(e.g., red, yellow, blue colours, horizontal, vertical orientations, etc.) at each 

location of a visual field.  The saliencies are summed up (integrated) across 

parallel feature maps and form a master map that determines the final level of 

saliency at the preattentive stage.  The higher the saliency of a location, the 

earlier it catches the observer’s attention.  In this case, the highest salient item 

‘pops-out’ from a visual scene.  Put it in slightly different words, the saliency 

affects the observer’s bottom-up attention.  This suggests that, in feature 

searches, no matter how many items a search display contains all that is needed 

to find a target is a highly discriminable feature.  No feature binding is required.  

In contrast to the preattentive stage, the attentive stage recruits focus attention 

to analyse stimuli when binding multiple features (e.g., inefficient conjunction 

searches) and when detailed analyses are required with a low discriminability 

target (e.g., spatial configuration searches; one of this types is searching T 

                                                      
5 The term, saliency, was coined by Itti, Koch, & Niebur (1998).  
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amongst rotated Ls).  The simple idea of a two-stage process accounts for a 

number of early findings and thus rendered FIT an attractive hypothesis. 

The simplicity of early FIT served a very good working model stimulating 

further expansion to various visual search paradigms examining more 

complicated features.  The studies expanded the coverage of FIT beyond 

traditional visual features (i.e., colour & orientation) to others, such as item size 

and stereoscopic depth.  However, the early FIT did not readily account for those 

features.  Neither did it account for some conjunction searches that give flat RT 

× display size functions (Nakayama & Silverman, 1986a, 1986b; Wolfe, 1998a).  

Such cases suggest that the preattentive stage can process feature binding 

relations in a conjunctive search (though see Treisman & Sato, 1990, for an 

alternative account).  In addition to the conflicting findings, the early FIT did not 

take individual differences into account.  In conjunction searches for example, 

some observers search as efficiently as in feature search, some show moderate 

search slopes, and the others a steep slope (Wolfe, Cave, & Franzel, 1989).  FIT 

was revised to account for these by introducing several new processes such as 

inhibiting distractor features if they differed sufficiently from the features of target 

(Treisman & Sato, 1990).  Its main appeal of generality and simplicity no longer 

stands.  The revised FIT became cumbersome without a clear quantitative 

description or implementation.  

1.2 Guided Search 

To accommodate the conflicting data and to provide a thorough 

quantitative description, Cave and Wolfe (1990) proposed Guided Search (GS) 

model as a successor of the early FIT.  GS maintained the two-stage architecture 



- 13 - 

and introduced, most importantly, the idea of guidance.  It evolved from the early 

theories, including Treisman’s FIT (Treisman, 1986; Treisman & Gelade, 1980) 

and Julesz and Bergen’s Texton Theory (Bergen & Julesz, 1983; Julesz, 1984; 

Julesz & Bergen, 1983), with an algorithmic framework to implement a visual 

search simulation that demonstrated its ability to accommodate conflicting data.  

GS’s computational implementation however simplified many aspects of the 

search behaviour and thus left room for later ‘upgrades’.  The theory was 

upgraded to GS2 in 1994 (Wolfe, 1994), re-implementing an enhanced GS, to 

GS3 in 1996 (Wolfe & Gancarz, 1996), adding the implementation of eye 

movements and a saccade map, and to GS4 in 2007 (Wolfe, 2007).  In the latest 

form, the theory is starting to account for decision making (object recognition in 

Wolfe’s term) in search and response distributions.  This section briefly reviews 

the evolution of GS and concludes with a decision to choose GS4 as the working 

model to examine the role of decision-making and WM in visual search.  

1.2.1 Bottom-up Activation Map 

On the one hand, GS, similar to FIT, claimed that the preattentive process 

gathers low-level features simultaneously across all locations in a visual field and 

the attentive process analyses search items serially.  On the other, GS, 

contrasting to FIT and the account of single, multidimensional map (Duncan & 

Humphreys, 1989), defined feature maps ‘categorically’.  It treated different 

feature dimensions, (colour, orientation, motion, depth etc.), rather than different 

feature attributes, as FIT does, within a dimension (red & yellow within colour 

dimension; 15°, 30°, & 45° tiled lines with orientation dimension), as separate 

maps.  The feature maps give different activation values for each location in a 
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visual field, depending on feature saliencies.  For example, when a visual field 

contains a horizontal bar (▭) and numerous identical vertical bars (▯), the location 

with the horizontal bar will elicit a higher activation value than the rest of locations, 

because the horizontal bar is the only item with a unique orientation feature.  

Mathematically, the bottom-up activation values (abottom-up) are computed via an 

exponential function that takes the summed absolute differences of an item’s and 

its neighbours’ feature values (f), 𝑎𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝 = 𝑒
(
∑ |𝑓𝑖−𝑓𝑗|
𝑛
𝑗=0

𝑛−1
)

. The i indexes the 

investigated item, and j indexes all its neighbouring items (i ≠ j).  The resulting 

summed absolute difference is scaled by the total number of search items (in a 

visual field) minus 1 (n-1) (Wolfe, 1994).  The feature maps are weighted 

according to feature saliencies, and summed across, for example, colour, motion, 

orientation, and size maps, to form a single activation map.   

The activation map charts the saliency value on each location in a search 

display.  This was later revised in GS2 as a terrain map with hills, indicating high 

probability and valleys, indicating low probability locations (Cave & Wolfe, 1990; 

Wolfe, 1994). It influences the sequences of attentional deployment. The map 

guides the attentive process, under the influences of noise, to shift attention 

serially from one location to a next until it finds a location with an activation value 

surpassing a terminating threshold or until there is no location with an activation 

value surpassing a pre-set response threshold.  

Guidance is GS’s key argument that search decisions are made after the 

attentive stage.  This is in contrast to early FIT, which assumes that both stages 

are able to initiate a decision.  In FIT, when a target is identified by the preattentive 
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process, a search decision is initiated, bypassing the attentive process.  GS 

asserted that the preattentive stage feeds a noisy activation map to the attentive 

stage.  When the target possesses only a unique salient feature, this map gives 

the location with the target a high probability, so it unambiguously attracts the first 

few instances of attention.  The attentive stage, thus, is guided rapidly toward the 

target and afterwards initiates a response.  This allows GS to account for the 

‘standard’ (Wolfe, 1994), 2- (or 3-) feature conjunction search pattern.  In the 

conjunction search with a salient target, the target immediately attracts attention 

because preattentive guidance indicates the target as a high likelihood location.  

In a similar vein, in the conjunction search with a less discriminable target, 

attention is guided probabilistically and serially to examine about half of the items.  

Thus, in this type of conjunction search, RTs increase linearly with display size.  

As a consequence, the guidance argument accounts for the performance 

gradient of conjunction searches, from almost 0 to the roughly linear slope of the 

typical RT × display size function.   

Instead of representing each item only by a feature value and, GS2 went 

further, taking inter-item distance and density into account.  In this view, the 

bottom-up activation value for a stimulus is no longer merely an exponential 

function that takes the summed absolute differences.  Specifically, GS2 

computes the differences in feature space6 between an investigated item and its 

neighbours (not all distractors).  The differences are divided by the distance 

between the investigated item and its neighbours, so close neighbours result in 

                                                      
6 As explained previously, GS2, differing from GS, uses a 3-dimension (3-D) activation map. 
Individual feature dimension is represented by multiple categorical feature channels, such as red, 
yellow, green and blue in colour dimension.  
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stronger activation than far neighbours.  This is an implementation of the idea of 

local contrast (Figure 1-4).  The values represent how dissimilar an item is with 

regard to its neighbouring items.  This is akin to Duncan and Humphreys’s idea 

(1989) of the target-distractor and distractor-distractor similarity and naturally 

results in grouping of homogeneous distractors (Humphreys & Müller, 1993).  

Concisely speaking, the more similar target and distractors are and the less 

dissimilar distractors are, the harder search will be and vice versa.   

 

Figure 1-4. The display illustrates the idea of local contrast.  The only salient, 
but not unique, item is the vertical bar in the upper left corner.  Three other 
vertical bars are at the lower-right part of the display.  The figure is adapted 
from Wolfe (2007). 

1.2.2 Top-down Activation Map  

GS implemented top-down influences on search via another activation 

map, which contributes also to preattentive guidance.  Mathematically, the top-

down activation map was computed based on the equation, 𝑎𝑡𝑜𝑝−𝑑𝑜𝑤𝑛 = 𝑑|𝑓𝑖 − 𝑡| 

at all the locations in a visual field.  It reflects a feature dimension-weighted (d), 

which multiplied the absolute difference of the feature values between the 

investigated item (fi) and the target (t).  Note that in GS the top-down activation 

map computed similarities, instead of differences as the bottom-up activation 



- 17 - 

map does. Therefore, |𝑓𝑖 − 𝑡|  measures how close the feature value of the 

investigated item to the (pre-set) target, presuming that a memorised target 

representation elicits identical feature values as the visual stimuli in a display.  

The d determines the relative effectiveness of a target feature.  For example, 

looking for a coloured target is faster than looking for an orientation target (Egeth, 

Virzi, & Garbart, 1984), so the dcolour is usually larger than the dorientation.  An 

intuitive assumption based on the equation determining top-down effects in 

search, is that an observer creates, perhaps following the task instruction, a visual 

image identical to the one been presented in a search display.  This renders fi 

and t, if memory is perfect, sharing an equal hypothetical mathematical unit, so it 

makes sense to subtract them directly.   

As many recent studies have shown, and one of the studies reported in 

the thesis will demonstrate, there are a number of ways to set up a top-down 

search goal.  A conceptual, abstract top-down goal, for instance, influences 

differently from a visual preview (see Chapter 6).  GS, as well as many other 

models of computer vision, emphasised more on the bottom-up aspect of search 

and implemented a simplified ‘top-down’ (in strict sense, instruction-weighted 

bottom-up), activation map.  The thesis will show later how I incorporated Duncan 

and Humphreys’s (1989) attentional template idea and the decision-making 

model to address the question of search decision-making, an area that previous 

GS models left unexplained.  GS4 has started to propose its version of the drift-

diffusion model (DDM, Ratcliff, 1978)7, called the asynchronous diffusion model 

                                                      
7 DDM is one of the most prominent decision-making models introduced in psychological literature 
by Ratcliff (1978).  Later in Section 1.5, I will discuss a number of similar models and how they 
account for visual search, most importantly, RT distribution data. 
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(ADM) to address the search decision issue (Wolfe, 2007).  One aim of this thesis 

is to use a wide array of decision-making and hierarchical Bayesian models to 

address the issue of search decisions.  The thesis used this approach to examine 

a series of visual search paradigms designed to test the role of attention 

templates when the top-down goal is made clear.  

GS2, formulated still from a bottom-up perspective, changed the way it 

computes the top-down activation map.  Instead of using one arbitrary parameter 

(d) as GS does, it selectively boosts the effectiveness of specific categories in 

feature channels.  For example, the top-down activation map may boost the steep 

category in the orientation map.  The selection of which categories to boost is 

determined by two rules (Wolfe, 1994, pp. 207-208).  First, it defines channels as 

broad categories in a feature dimension.  For example, the orientation dimension 

contains ‘steep’, ‘shallow’, ‘left’, and ‘right’ categories (Wolfe, Yee, & Friedman-

Hill, 1992).  These categories are examined and given higher weights in the top-

down activation map, if they are found only in a target.  Second, the specific 

feature value belonging to the weighted target channel is compared with the 

corresponding channel averaged across distractors.  Thus, the channel with the 

greatest positive difference between the target and distractors is selected.  

1.2.3 Guided Search 3.0 and 4.0 

Aiming to expand from searching laboratory-based images to searching 

natural images as envisaged by Enoch (Enoch, 1959, 1960), GS3 incorporated 

the influences of eye movements and viewing eccentricity (Wolfe & Gancarz, 

1996).  The eccentricity effect reflects that visual search is faster for central than 

peripheral items (Carrasco, Evert, Chang, & Katz, 1995).  GS3 added a saccade 
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map to mimic the operation of the superior colliculus in overt eye movements in 

additional to effects on covert attentional shifts.  The saccade map used spatial 

blurring to over-represent the central portion of a visual field (i.e., multiple 

saccadic movements are around central visual field, because the over-

representation of this visual area).  

 

Figure 1-5. The structure of Guided Search 4.0. The oval circles indicate the 
sources of guidance and the arrow heads point at the guided processes (adapted 
from Wolfe, 2007). First arrow indicates the preattentive guidance that gathers 
information from the bottom-up and the top-down activation maps.  The second 
arrow indicates indirect guidance from scene properties, such as pre-knowledge 
about the type of a search scene and scene statistics. One example for the pre-
knowledge guidance is that the knowledge of a typical kitchen will guide (and 
hence facilitate) searching for a mug, a flying pan or a chopping board, but not a 
television or a desktop lamp (Wolfe, Võ, Evans, & Greene, 2011).  An example 
for the scene statistics guidance is that when searching for a friend in a beach, 
the attentive operation will be guided towards the areas of sea or beach, but not 
the area of sky, because statistically speaking one is less likely to engage in an 
activity, such skydiving, near a beach.  

GS4 (Wolfe, 2007) divorced the process of preattentive guidance from 

early vision and modified it as a separate control signal (Figure 1-5).  The control 

signal guides attention prior to the stage of selection based on a serial ranking of 

the activation values from the most to the least probable locations.  Each attended 

location is then passed through the selection, and checked for a match to the 

target representation (i.e., attentional template). 
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In addition to repositioning the preattentive process, GS4 started to take 

the object recognition (or in the terminology in this thesis, the matching of 

template-target/template-distractor) into account.  It borrowed Ratcliff’s well-

known DDM (Ratcliff, 1978) to account for the object recognition (OR; i.e., 

decision-making) process.  Suffice to say that the OR process starts to 

accumulate sensory information and initiates a decision when information is 

strong enough for identifying either a target or a distractor.  GS4 modified DDM 

as an asynchronous diffusion process, taking a hybrid approach.  The important 

difference is that GS4’s accumulators enter the diffusion process serially and 

accrue information in parallel.  As a consequence, an accumulator entering the 

process later than other early accumulators may leave earlier. 
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Figure 1-6. An illustration of the asynchronous diffusion model (Wolfe, 2007). 
The coloured lines represent separate diffusion processes (diffusors in Wolfe’s 
term) for each individual accumulator.  Each accumulator starts separately at a 
different time (i.e., asynchronously), as demonstrated with the blue accumulator 
starting after the green one, which enters the process after the red one.  Also 
illustrated is that the blue accumulator leaves the process earlier than the red 
accumulator (see the ‘Target threshold’ line), because it accrues information on 
average faster than the red accumulator.  The green accumulator leaves the 
process from the distractor threshold, indicating that an item is identified as a 
distractor.  The different distances between the initial amounts of evidence (Init. 
evidence) to the target and to the distractor thresholds illustrate that identifying 
a target requires different amounts of evidence from identifying a distractor.  

1.3 Attentional Template 

Less clear in the bottom-up search theories is how a top-down goal 

influences search.  Although this may not be an issue in feature (i.e., odd-one-

out) search due to its use of a salient target, it is a prerequisite for demanding 

searches, such as conjunction searches, where the target is less discriminable.  

The formation of a top-down goal is a critical part of a successful search, because 

its representation differs fundamentally from a physical stimulus.  Specifically, 
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there is a timing asynchrony of the perceptual input of a top-down goal and the 

physical target in a display.  The former is usually encoded during an observer is 

studying a task instruction, but the latter appears only when the observer starts 

to engage a search.  

The idea of an advanced internal representation, the dubbed attentional 

template (or originally attentional trace, used by Näätänen, 1985) was from 

Duncan and Humphreys’s visual selection (VS) theory (1989).  The attentional 

template is thought to be held as a perceptual description formed from the task 

instruction.  One crucial concept in VS theory is to ‘make contact’ with nonvisual 

properties in memory, and the selection operates in a way of competition for 

limited resources to enter visual short-term memory (VSTM).  It follows that the 

attentional template will result in a matched response, if a target item is selected 

into VSTM; otherwise, mismatched responses are made.  As to how a response 

is decided how the ‘make contract’ operates, VS did not specify and this is one 

of the focuses of the thesis.   

The other representation in VS theory is the search display, which is typical 

composed of several items, each a collection of visual features.  In VS theory, a 

search display is also a perceptual description, which is hierarchically organised 

as structural units (analogy to Kahneman & Treisman's, object files, 1984; and 

Marr & Nishihara's 3-D models, 1978).  It results from an early parallel, capacity-

unlimited operation that forms a preconscious perceptual organisation process.  

The VS hierarchy specifies how a visual input is perceived.  One example VS 

theory used is a word (a whole), constructed often by multiple letters (parts).  A 

part can be further viewed in finer scope, such as a horizontal line, a concave, or 
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a tiled line, so a perceptual description is formed by the hierarchical coding of 

structural units.   

A structural unit can be an entire search display, part of a display, an item 

in a display, or a colour attribute, such as red, within a search item.  The 

determination of a unit depends on how perceptual descriptions are grouped, by 

early parallel processes (this was dubbed perceptual grouping by Duncan & 

Humphreys, 1989).  Consider two visual principles – proximity and similarity – 

that contribute to perceptual grouping.  Firstly, the closer the perceptual 

descriptions, the more probable they are to be grouped together as a structural 

unit.  It can be illustrated readily by the word example where two letters within a 

word tends to be grouped together (probably also with other letters in an identical 

word) when compared with two letters in two separate words.  The second 

principle states that the elements with the same colour, motion, or even semantic 

meaning, tend to be grouped together.  For example, an observer tends to 

perceive dots moving toward more or less same direction as more homogeneous 

than those moving randomly. 

In summary, VS theory claims that both the search goal and the search 

display are perceptual descriptions encoded by a parallel, capacity-unlimited 

process.  The search goal is represented as an attentional template, possibly held 

in VSTM for the upcoming search display (Duncan, Humphreys, & Ward, 1997).  

The stimuli in the search display are grouped as a number of size-varied 

structural units, following principles such as inter-item proximity and perceptual 

similarity, similar to the ideas as what GS has formulated in its bottom-up 

activation equations that take item density and distances into account.  Those 
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structural units compete for subsequent operations by accessing the resource-

limited VSTM, a key point I will develop in the next section. 

1.3.1 Working Memory 

One key notion in VS theory is that, before a response (target selection or 

distractor rejection) is generated, a structural unit must make it into VSTM (i.e., 

visual working memory, VWM8).  VWM admits stimuli based on their ‘attentional 

weights’, which can be viewed similarly though not exactly the same as GS’s 

activation values.  The VWM idea sets VS theory apart from other bottom-up 

perspective theories, because it gives a clear role of top-down goal.  Visual 

selection is interpreted as a competing process for entering VWM, which only 

holds maximally around 4 units of representation at a time (Davis & Holmes, 

2005; Luck & Vogel, 1997; Sperling, 1967).   

Although both VS theory and GS4 use a similar idea – weights in the 

structural unit or values in the activation map (also see Bundesen, 1990 for a 

similar idea), to determine the importance (i.e., likelihood of been selected) of a 

processed unit, they differ in terms of processing architecture.  In contrast to 

GS4’s hybrid architecture, which holds that processed units enter the selective 

bottleneck sequentially like a car wash, VS theory follows Sperling’s parallel 

architecture, proposing that attentional resources are divided into varying 

proportions, each engaging in separate structural units.  The unit receiving more 

resources becomes more competitive and accesses VWM quicker and more 

easily than those that have few resources. 

                                                      
8 In this thesis, I treat VSTM as the same construct as VWM. It is, nevertheless, disputable in 
strict sense whether VSTM and VWM are identical.   
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On the basis of the WM competition idea, Olivers and colleagues (2011) 

proposed a WM ‘offloading’ hypothesis, stating that an attentional template might 

be partially removed from VWM when an experimental procedure called 

consistent mapping is used (Schneider & Shiffrin, 1977).  This procedure refers 

to, in a cueing-search paradigm, an identical target probe is presented before a 

search display and is reiterated in every trial as oppose to the varied-mapping 

procedure, where different probes are used.  The offloading account proposes 

the two slightly different procedures render a search template receives different 

cognitive resources and thereby how it interacts with search target and 

distractors.  Chapter 5 (Study 2) will examine this hypothesis.   

1.3.2 Which Architecture?  

The aim of this thesis is not to resolve the architecture question concerning 

attention, though it should be noted that there is mounting evidence, associated 

with the attentional operation in visual search, pointing to the dominant role of 

parallel architecture (Thornton & Gilden, 2007).  As explained earlier in sub-

section 1.1.2, together with the notion of resource reallocation, divided attention 

is also able to distribute limited resources to process all items in a visual field, 

and simultaneously check every one of them.  In this way, a parallel architecture 

can also account for most of the visual search findings based on mean RTs, 

accuracy and the function of RT × display size (Humphreys & Müller, 1993; 

Townsend, 1971, 1990; Townsend & Wenger, 2004).  For example, a recent work 

(Fific et al., 2008) found evidence favouring a parallel architecture with interacting 

(dependent) channels by comparing the contrasts of survivor functions, using the 

new analytic method based on RT distributional analyses.  However, rather than 
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concentrating on the architecture question, the thesis focuses on how a search 

decision relates to template representations and how these factors affect RT 

distributions. 

As a working hypothesis, the thesis starts with the hybrid GS4, which has 

both parallel and serial processing properties to examine specifically what 

happens during the stimulus comparison process.  The thesis focuses on 

paradigms designed to probe the influence of top-down guidance and the role of 

VWM in search.  It examines how WM affects a search decision, reflecting on the 

mean latencies, the accuracy and most importantly, the RT distributions.  

Importantly, GS4 is computationally delineated model that is testable, so 

refutable – particularly when distributional analyses are taken into account.  

1.3.3 Guided Search 4.1 

     

Figure 1-7. A further refinement of GS4.  The red rectangle highlights the main 
difference from GS4.  

The thesis assumed an explicit source of guidance from a top-down 

template, represented in the VWM.  The template is a representation that 

influences the preattentive guidance by giving weights to modify the activation 

values in the saliency map and a representation that probabilistically determines 

whether a selective item is a target (i.e., feature comparison).  The thesis focuses 

on how different representations and operations of the attentional template 
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influences two crucial decision-making processes: (1) the decision rate and (2) 

the decision threshold.  At this early stage of investigating the decision aspect of 

visual search, I did not immediately model the asynchrony diffusion structure as 

GS4 envisions, although it undoubtedly is likely to underlie the true process of a 

search decision.  Instead I used the original structure of the DDM (Ratcliff, 1978), 

assuming that each accumulator represents one unobserved parallel process of 

decision-making and manifests what happened when an observer is searching 

for a target in a display.  That is, all possible features within the visual field are 

taken in at once and presumably, while in the stimulus comparison stage, a 

selected item (or group of items) is compared against an attentional template 

encoded earlier and residing in VWM.   

Thus, the thesis presumes the template matching process influences two 

visual search aspects.  Firstly, the template information correlates with 

investigated items and thereby generates correlational (response) values that 

influences the saliency map (Beutter, Eckstein, & Stone, 2003; Najemnik & 

Geisler, 2005).  This pre-attentive influences modify the sequence of attentional 

deployment (as well as eye saccades).  The second aspect of the attentional 

matching process influences the stimulus comparison.  This post-attentional 

comparison influences the rate of evidence accumulation.  Due to the simplified 

application of the decision-making model, the thesis did not specify how the 

evidence accumulation process operates and only assumes it occurs 

concurrently across all features as the time passes.   

One reason that I cautiously claim that the attentional template also affects 

the early preattentive stage is that there exists physiological evidence arguing for 
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the early modulation of top-down attention on neural structures, including the 

lateral geniculate nucleus of the thalamus, the striate and extrastriate cortices 

(Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999; J. Moran & 

Desimone, 1985; O’Connor, Fukui, Pinsk, & Kastner, 2002).  The early guidance 

due to a top-down memory representation likely influences search before the 

bottleneck stage, which possibly relevant more to the perceptual, rather than 

decision, processes.  This type of guidance is largely discussed in the literature 

applying signal detection theory (Green & Swets, 1966) and the Ideal Observer 

analysis (see a review in Geisler, 2011) when eye saccades are also recorded. 

Because the thesis focused only on manual responses without simultaneously 

recording eye saccades, the template influences on early guidance perhaps is 

better to leave for future modelling efforts and is outside the scope of the thesis. 

My version of visual search model branches out GS4 to incorporate the 

ideas of working memory and attentional templates, as sources of top-down 

guidance, which GS4 had not made explicit.  Because this is not developed by 

Wolfe and colleagues, the thesis dubs it GS4.1, signifying that it branches out 

from their main developmental tree and is a beta version9.  

1.3.4 SEarch via Recursive Rejection 

In addition to GS4.1, the thesis applied another hybrid search model, 

SEarch via Recursive Rejection (SERR) (Humphreys & Müller, 1993) to account 

for item grouping and distractor rejection (see also Heinke & Humphreys, 2004).  

SERR introduces two important search mechanisms: group segmentation and 

                                                      
9 In the tradition of software development, a beta version is denoted, after the decimal place, with 
an odd number, comparing to an even number that signifies a stable version of the software.   
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distractor tagging.  The former is an idea built on VS theory’s perceptual grouping.  

This mechanism accounts for a search strategy that segments a large display 

into several parallel processing groups, instead of analysing item-by-item.  The 

latter mechanism proposes that distractors, instead of completely being 

irrelevant, serve important functions.  This reflects especially in inefficient search, 

when observers usually conduct few, rather than just one, attentional sweeps to 

locate a target.  SERR hypothesises that distractors are tagged in those 

unsuccessful sweeps and the tagged distractors, which are represented in 

memory, facilitate search via serving as distractor templates (see a review in 

Watson, Humphreys, & Olivers, 2003).  This tagging process is recursive, 

because distractor templates are iteratively reused as long as search is ongoing. 

The tagging and recursive processes account for the distractor function, 

being a facilitator, rather than merely being given less saliency weight.  

Specifically, the tagging processing enhances the grouping effect for similar 

distractors by passing tagged features in, for instance, first search sweep to a 

next, when an observer has not identified the target in the first sweep.  The 

tagging goes on as long as the target has not identified or the observer has not 

made a guess.  The recursive tagging in turn helps offload the cognitive 

resources, thereby increasing the likelihood of finding a target. 

SERR plays an important role especially in this thesis, because the 

paradigms reported here presented relatively small search items in a confined 

visible region rendering high density of similar items appeared often when a 

display contains several of them.  Further, except the feature search paradigm in 

Chapter 4, all other paradigms were designed to require focus attention (i.e., 
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inefficient search).  SERR provides a good account for the search benefits that 

are difficult to be explained by purely guidance. 

1.4 Response Time Distribution 

The analysis of RT distributions, in addition to mean RTs, can permit 

further insights into different cognitive processes, a point originally raised as early 

as 1950s in works such as those of Christie and Luce (1956), Hohle (1967), and 

Sternberg (1969).  In essence, one early RT distribution account postulated that 

the RT is a functional output summing across a decision component that 

distributes exponentially and a residual component that distributes symmetrically 

(Hohle, 1965).  This postulation later developed into the well-known ex-Gaussian 

distribution that convolves mathematically the exponential and Gaussian 

components.  The ex-Gaussian function becomes popular mainly because of its 

capacity of accommodating positively skewed distributions, an observation 

commonly found in RT data before a representative values, such as mean, are 

averaged across several observers.  A usual practice for analysing RT data is to 

average multiple observations for different experimental conditions in an 

observer, and the averaged values in each condition are averaged again across 

several observers.  This practice presumes that the first-level averaged values 

catch the general shapes of RT distributions, thereby representing well the 

majority of RT data in a condition.  This assumption conflicts with the observation 

of the skewed RT distributions, which cast doubt on the data generated from the 

(individual-level) mean RTs, because they may not represent some observations 

when distributions are skewed.   
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Further doubt on mean RTs comes from their ambiguity when answering 

the architecture question.  Specifically, the finding of a display size effect and that 

of the slope ratio of target trial to blank trials calculated from mean RT in fact 

cannot determine how the cognitive architecture operates.  This has been 

repeatedly demonstrated by Townsend and colleagues, showing that both serial 

and parallel models are able to predict the data from mean RTs (Townsend, 1971, 

1990; see Townsend & Ashby, 1983 for a review; Townsend & Wenger, 2004). 

1.4.1 Descriptive Models 

The drawback of analysing only mean RTs appears to an alternative 

approach for analysing RT data, such as the distributional analyses (Lin, Heinke, 

& Humphreys, 2015; Loft, Bowden, Ball, & Brewer, 2014; Payne & Stine-Morrow, 

2014; Toeroek, Kolozsvari, Viragh, Honbolygo, & Csepe, 2014).  The ex-

Gaussian function, for example, breaks down a distribution into two 

mathematically and psychologically seemingly separable components: the 

Gaussian and exponential parts.  The latter accounts mathematically for that why 

an RT distribution skews towards the short latency side.  The former keeps the 

original symmetrical Gaussian part of a distribution.  Although the data do not 

necessarily collaborate the dichotomy of decision and residual components into 

the Gaussian and the exponential parts of an RT distribution (Gholson & Hohle, 

1968a, 1968b; see a recent review, Matzke & Wagenmakers, 2009), recent works 

show that the value of adopting an ex-Gaussian is that it provides a plausible 

model to describe positively skewed RT distributions (e.g., Matzke, Dolan, Logan, 

Brown, & Wagenmakers, 2013).  This is in contrast to assuming the Gaussian 

distribution as the underlying function that generates RTs.  The advance is crucial 
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because the Gaussian function may be only appropriate to account for the mean 

RTs across multiple observers, rather than the mean RTs across multiple 

observations within a condition in an observer (see Chapter 4 for the data 

supporting this point).   

The initial attempt to conceptualise RTs, using the ex-Gaussian 

framework, distinguished perception and decision components and the 

components involved in the organization and execution of the motor responses 

(Hohle, 1965).  For instance, Hohle’s  original interpretation of the exponential 

component was that it reflects perception and decision processes – opposite to 

McGill and Gibbon’s interpretation of a residual motor latency (1965).  The early 

conflicting interpretations and numerous succeeding works (Balota & Spieler, 

1999; see a recent review in Matzke & Wagenmakers, 2009; Rohrer & Wixted, 

1994) indicates that the mapping of ex-Gaussian components onto cognitive 

processes only results in paradigm-dependent interpretations.  That is, the 

separation of a Gaussian component and an exponential component is 

meaningful only at the mathematical, but not cognitive, level; the resultant 

interpretations of exponential and Gaussian components varied with tested 

factors and experimental designs.  As a consequence of the null finding, it is 

suggested that the ex-Gaussian model is most useful when been treated ‘as a 

descriptive first-order account of response latency’ (Heathcote, Popiel, & 

Mewhort, D. J., 1991).  This view is echoed later in Schwarz’s work (2001), where 

he used an ex-Wald function as a quantitative model, taking advantage of its 

Wald component to approximate a Wiener diffusion process, a link to the 

underlying cognitive processes.  This was demonstrated in Schwarz’s go/nogo 
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digit comparison experiment, in which observers pressed a button upon detecting 

a go digit (6 or 9) and withheld button-press upon detecting a nogo digit (5).  The 

results showed that (1) the a priori probabilities of the appearance of go digit (50% 

vs. 75%) selectively affected only the evidence criterion (a statistical Wald 

parameter), (2) the numerical distance (6 vs. 9, comparing to 5) selectively 

affected the drift rate (a second statistical Wald parameter), and (3) the 

exponential parameter, γ, appeared insensitive to the two aforementioned 

experimental factors (Schwarz, 2001).  

1.4.2 Non-Gaussian Distribution 

The modest success by using the ex-Wald function to describe RT 

distributions lends support to researchers exploring other insights from analysing 

RT distributions, by comparing different experimental manipulations.  Converging 

evidence supporting the descriptive approach of distributional analyses comes 

from Ashby and colleagues’ work (Ashby, Tein, & Balakrishnan, 1993).  They 

showed, in a Sternberg memory-scanning task, a number of distribution-level 

predictions, such as the variance RTs and the shape of RT distributions, are 

inconsistent with the serial and the unlimited capacity parallel models.  The 

descriptive approach to examining RT distributions by comparing different 

experimental conditions appears promising for understanding other cognitive 

processes, although not quite as much as the ambitious researchers originally 

envisioned (e.g., Hohle, 1965). 

The success of descriptive distributional analyses using different 

probability functions and higher distributional moments suggests that the 

advantage of adopting the ex-Gaussian (or ex-Wald) function does not lie in the 
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probability function per se, but in its capacity to accommodate empirical RT 

distributions.  The fact is that numerous other probability functions are capable of 

doing this (Dolan, van der Maas, & Molenaar, 2002; Feige et al., 2013; Heathcote, 

Brown, & Cousineau, 2004; E. M. Palmer, Horowitz, Torralba, & Wolfe, 2011; 

Rouder, Lu, Speckman, Sun, & Jiang, 2005).  In addition to the probability 

functions convolving with an exponential function, there are other generic 

functions, such as the 3-parameter Weibull function, gamma, log-normal, and 

Wald functions that are flexible enough to accommodate skewed distributions 

without convolving with an exponential function.  These other plausible probability 

functions allow researchers to describe and compare the shape of RT 

distributions across different experimental conditions, with a strategy differing 

from the convolving functions.  One of the strategies is to describe RT 

distributions using the location-scale form of the probability density10.  

1.4.3 The Application of Descriptive Distribution Models to Visual Search  

The descriptive approach using plausible probability functions to model RT 

distributions seems promising to tackle also the problems in visual search 

paradigms.  Specifically, the parallel, limited capacity model can produce linear 

function for the RT × display size relation, by dividing attention into multiple 

processing channels when search items increase.  The increment of each search 

item dilutes the limited resources, rendering multiple processing channels sharing 

increasingly few resources, so lengthening response latencies.   

                                                      
10 The location-scale form refers to, in the case of the Gaussian function, mean and variance.  
Further details specific to the probability functions adopted in this thesis will be explained in the 
later chapters.   
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One simple application of descriptive distributional analyses is to examine 

the spreads of RT distributions.  RT standard deviations in fact correlate with RT 

means linearly, as has been showed recently by a meta-analysis for 3 visual 

search experiments.  The finding was dubbed as ‘the linear law’ of RT 

(Wagenmakers & Brown, 2007).  A more complicated application involves 

contrasting an entire distribution (i.e., the probability density function) and further 

its derivatives across different experimental conditions and/or participants.  The 

distributional derivatives include, but are not limited to, the cumulative density 

function, the survivor function, the hazard function and different applications of 

these distributional functions based on specific experimental designs.  The 

survivor function, for example, has been used to examine the effect of target-

distractor similarity (VS theory originally called it interalternative similarities in 

Duncan & Humphreys, 1989) in a simple visual search paradigm (Fific et al., 

2008).  Fific and colleagues used the linguistic (Cyrillic) and nonlinguistic 

meaningless symbols in a simple two-item search task and found evidence 

favouring a parallel cognitive architecture with positive interacting channels 

against a serial architecture.  This was supported by the data showing different 

patterns of survivor interaction contrast function, which calculated the difference 

between differences of the survivor functions of the four factorial conditions in a 

2 by 2 factorial design experiment (Townsend & Nozawa, 1995) .     

In summary, the descriptive distributional analyses suggest a new 

approach to examining visual search, and the thesis will explore one possible 

distributional analysis method, the 3-parameter Weibull function, to analyse 

visual search data.   



- 36 - 

1.5 Decision-making Models 

One drawback of the descriptive distributional analyses is the difficulty in 

associating the patterns of distributions related to experimental manipulations 

that are designed to understand cognitive processes.  This was addressed in 

Schwarz’s work (2001).  He assumed the cognitive process in his go/nogo task 

is akin to the process of sensory evidence accumulation and this can be 

approximated by the ex-Wald function, which is a rough approximation of the 

process of sensory evidence accumulation.  A more direct approach is also 

possible.  This direct modelling approach has been studied extensively for simple 

choice reactions, generally, under the name of sequential sampling models (see 

a short review in Ratcliff & Smith, 2004).  In this section, the thesis discusses two 

classes of the model: random walk models and race models.  They have been 

applied successfully in a few recent papers (Matzke, Dolan, et al., 2013; Matzke 

& Wagenmakers, 2009) to complement and validate the interpretations based on 

descriptive distributional analyses.  My discussion focuses on the three sub-

classes of random walk model that I have applied on the visual search data 

presented in the thesis: the DDM (Ratcliff & Tuerlinckx, 2002), the EZ2 diffusion 

(Wagenmakers, van der Maas, Dolan, & Grasman, 2008), and the linear ballistic 

accumulator models (LBA; Brown & Heathcote, 2008).  Because there exist only 

few empirical works applying a similar approach to visual search (Purcell, Schall, 

Logan, & Palmeri, 2012; Ward & McClelland, 1989), I described firstly an early 

simplified random walk model and then its two specific implementations, the DDM 

and EZ2 and after that the LBA model.  
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1.5.1 Random Walk Models 

Random walk models account for a discrete time-series process that a 

variable takes a random step away from its previous value.  The value in each 

step can be sampled from a distribution.  In the original random work formulation, 

the distribution is assumed independently and identically distributed in value.  The 

random walk models are appropriate for choice RT data, because they account 

for RTs between different choices in a single framework.  For example, the noisy 

operator theory, a subclass of random walk model, accounts for a perceptual 

matching task as a comparison process (Krueger, 1978).  The matching task was 

to determine if a pair of stimuli is same or different on the basis of their perceptual 

features.  The noisy operator theory assumed a process that registers differences 

between two to-be-matched stimuli.  Because noise constantly perturbs the 

cognitive system, the identities of stimuli are not always perfect.  Hence, even 

identical stimuli sometimes elicit different neural responses depending on the 

noise level.  The matching process, explained by the noisy operator theory, is a 

decision-making process along discrete time steps while an operator checks and 

counts the numbers of matched features.  When the number of matches or 

mismatches is not enough to conclude same or different, a rechecking process 

then takes place.  This exemplifies the usefulness of the random work models to 

explain simultaneously the choice of a same or a different response and the 

choice latency.  

1.5.2 Drift Diffusion Model 

The first application of random walk models with an explicit expression of 

RT distributions was found in Ratcliff’s work (1978; see a recent review in Ratcliff 
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& McKoon, 2007; see also a neurobiological account of the model in Smith & 

Ratcliff, 2004).  The DDM was applied originally to explain the data on recognition 

memory (Ratcliff, 1978).  Since its first appearance in psychological literature, it 

has been used in a number of cognitive tasks, including typing (Heath & Willcox, 

1990), detection (Diederich, 1995; P. L. Smith, 1995), perceptual 

matching/discrimination (Ratcliff, 1981; Voss, Rothermund, & Brandtstädter, 

2008), lexical decision (Ratcliff, Gomez, & McKoon, 2004; Wagenmakers, 

Ratcliff, Gomez, & McKoon, 2008), semantic priming (Balota, Yap, Cortese, & 

Watson, 2008; Voss, Rothermund, Gast, & Wentura, 2013), and visual search 

(Ward & McClelland, 1989).  The wide and successful application lends support 

to the DDM for modelling cognitive performance, when it is crucial to consider 

simultaneously both accuracy and response latency.   

The DDM posits an instance (time step) of neural computation is to sample 

sensory information from the environment, which in the case of performing a 

visual search task, is the search display or GS4’s preattentive outputs.  The 

sensory information drives an evidence accumulator (i.e., the diffusor in Wolfe’s 

ADM) starting from an initial amount of sensory information (z; influenced by 

foreknowledge or by a task instruction) and moving towards either a matched (set 

at a value, a, on the y axis of sensory information) or a mismatched decision 

threshold, while the accumulator drifts randomly (up or down; see Figure 1-8).  In 

contrast to the multiple accumulators modelled by the LBA model11, the DDM 

presumes only one accumulator.  Depending on the stimulus type, the DDM 

accumulator is biased, moving towards one threshold, with an average drift rate, 

                                                      
11 I will discuss it in details in Section 1.5.4 
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v.  For example, in a target trial of a typical 2-feature conjunction search when an 

instruction has informed some target features (i.e., an attentional template has 

been set up), the accumulator tends to drift towards a target-present decision, 

because a presented target is usually given higher attentional weight than a 

nontarget; thereby the sensory evidence sampled from a target display favouring 

a present decision.  The rate of accumulator drift is theorised as the speed of 

information accumulation, implying the speed of reaching a decision.  The 

decision speed can be modelled as a random variable sampled from two 

Gaussian distributions, corresponding to matched and mismatched decisions, 

with the mean, v+ and v-, and a common intertrial variance η2.  The within-trial 

variance of drift rate, namely the scale factor or the drift constant, is usually fixed 

at a constant s2 , which some set it at 0.1 (Ratcliff, 1978; Van Zandt, Colonius, & 

Proctor, 2000), and others set it at 1 (Voss & Voss, 2008).  Likewise, the initial 

amount of sensory information (z) is modelled as a random variable sampled from 

a uniform distribution with an intertrial variance sz2.  In summary, the limiting forms 

of the first-passage time distribution for the DDM, respectively for the match and 

mismatch decisions, are described by the two equations (Feller, 1971, pp 359; 

Ratcliff, 1978):  

𝑔+(𝑡, 𝑧, 𝑎, 𝑣+) =
exp[(𝑎 − 𝑧)𝑣 − 0.5𝑣2𝑡]

√2𝜋𝑡3
∑ exp{−

[(1 + 2𝑛)(𝑎 − 𝑧)]2

2𝑡
}

∞

𝑛=−∞
[(1 + 2𝑛)(𝑎 − 𝑧)] Eq (1) 

 

𝑔−(𝑡, 𝑧, 𝑎, 𝑣−) =
exp[−𝑧𝑣 − 0.5𝑣2𝑡]

√2𝜋𝑡3
∑ exp [−

(2𝑛𝑎 + 𝑧)2

2𝑡
]

∞

𝑛=−∞
(2𝑛𝑎 + 𝑧) Eq (2) 

 

The distributions of the matched and mismatched decision times are 

described, respectively, by g+ and g- functions, each determined by a set of DDM 

parameters (z, a & v) and the decision time (t).  The measured, empirical RT is 
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then composed of the decision time plus the non-decision time (denoted t0 or 

sometimes ter), the time to encode sensory information and to execute motor 

responses.  The drift rate and the initial amount of information are separately 

modelled by a Gaussian and uniform distributions, as described before.  

 

Figure 1-8. Drift-diffusion model. Each arrow represents one instance of 
decision-making process.  Only the second arrow is illustrated with a random-

walk line (in red).  

The success of DDM comes with its constraints.  Firstly, in contrast to the 

noisy operator theory (Krueger, 1978), the time step of DDM is assumed to be 

very small.  In practice, this is achieved by setting a high precision of time step, 

such as one DDM implementation set its default time step to minus 3 power below 

the decimal place (Voss & Voss, 2007).  This implies a millisecond resolution and 
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thereby increases the burden of computation. Secondly, the DDM strictly 

accounts only for 2 alternative forced choice (2AFC) tasks.  As is clear in the 

DDM density functions [Eq (1) and Eq (2)] as well as Figure 1-8, the initial amount 

of information is modelled as a relative position to the positive boundary (a) and 

to the negative boundary (0), so does the term, a-z, in Eq (1) becomes z in Eq 

(2).  The third constraint is that the DDM is appropriate only for the situations in 

which a ‘single stage’ of decision making governs performance.  That is, it 

accounts only for the paradigms that observers are able to complete a response 

with one sweep of decision-making process (Ratcliff & McKoon, 2007).  

Empirically this implies the uncontaminated response times should be less than 

1 s (Ratcliff & Rouder, 1998).  One additional possible constraint on the DDM is 

that it fits accuracy data poorly in some cases (e.g., Van Zandt et al., 2000; but 

see Ratcliff & Smith, 2004), relative to the Poisson race/counter model 

(Townsend & Ashby, 1983).  As will be discussed in Chapter 5, I also found a 

similar model fitting pattern when the DDM was pitted against the LBA model, 

which is a subclass of the race model.    

1.5.3 EZ2 Diffusion Model 

EZ2 model is a closed form variant of the DDM (Grasman, Wagenmakers, 

& van der Maas, 2009).  It models only the averages of v, a and ter , presumes no 

intertrial variability and sets an unbiased z (i.e., z = a/2).  EZ, an early version of 

the estimation method, takes three observed quantities, RT means, RT variances 

from correct responses and accuracies as inputs.  Each of them are estimated 

from each condition/individual and serves as inputs to calculate analytically v, a 

and ter (Wagenmakers, Maas, & Grasman, 2007; Wagenmakers, van der Maas, 
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et al., 2008) 12 .  EZ2 relaxes the EZ assumption of unbiased z and uses a 

numerical algorithm to estimate the three EZ parameters.   

The simplification of the EZ2 method unavoidably sacrifices some merits 

of the DDM, such as its ability to describe the shape of distributions both for 

matched and mismatched decisions (Ratcliff, 2008; Wagenmakers, van der 

Maas, et al., 2008).  Even though these disadvantages suggest that EZ2 cannot 

fit empirical data (as goodness-of-fit criteria cannot be calculated), it serves as a 

useful approximation to understand the unobservable decision-making process 

when the per-condition observation is limited and accuracy is high (Ratcliff, 2008).  

I applied it on the first study (Chapter 4), which tested the benchmark visual 

search paradigms (Wolfe, Palmer, & Horowitz, 2010).  Below I discussed the LBA 

model, a race model (Townsend & Ashby, 1983) claiming to provide a process 

(substantive) model, instead of merely descriptive model, to account for the 

decision-making process.   

1.5.4 Linear Ballistic Accumulator Model 

The LBA model is adapted from Usher and McClelland’s (2001) leaky 

competing accumulator (LCA) model.  The LCA model describes multiple 

accumulators which gather moment-to-moment information for their respective 

decision types.  The decision process is modelled by a race amongst these 

accumulators towards a common decision threshold.  The decision type and 

latency is determined by the first accumulator attaining the common threshold.  

The LCA, similar to the DDM, samples the drift rate and initial amount of 

                                                      
12 This is in contrast to the full DDM, which uses numerical optimisation algorithms to approximate 
the parameters. 
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information from two probabilistic distributions.  It further models two nonlinear 

processes: one is a passive decay of accumulated information and the other is 

the choice competition process.  In contrast to the DDM, the LCA model accounts 

for the competition amongst accumulators (choices) explicitly, allowing individual 

accumulators influence on one another and subjecting the accumulated 

information to probabilistic leakage.   

The LBA model aims to present a parsimonious LCA account and to 

maintain good fits to both correct and error responses.  The model simplifies the 

within-trial and intertrial randomness from the information accumulation process.  

The early version of the ballistic model still retained nonlinear leakage and 

between-accumulator competition (Brown & Heathcote, 2005).  However, the 

LBA model argues that a further simplification, replacing linear independent 

accumulators with the nonlinear dependent accumulators, still accounts for all 

important empirical phenomena, such as the shape of the RT distribution, speed-

accuracy trade-offs, and more importantly the relative speed of correct vs. 

incorrect responses.  Although it simplifies a great deal of process details, the 

LBA model is able to make accurate predictions for both correct and incorrect 

responses where numerous previous models did not fit well to the proportion of 

incorrect responses and to RT distributions.  It has argued that one critical reason 

is, in contrast to the LBA model, the model with only one accumulator (e.g., 

Reeves, Santhi, and DeCaro’s random-ray model 2005), presumes a Gaussian 

distribution governs the drift rates.  A negative sample from the Gaussian 

distribution drives the accumulator moving towards the lower threshold, and 

resulting in an incorrect response.  This way to model the cognitive process, 
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namely the drift rate, results in predicted error RT distributions becoming 

negatively skewed, a contradiction against the empirical data (Luce, 1986).  The 

separate accumulators, allowing the properties of multiple responses distribute 

similarly, thus solve the pitfall of one-accumulator random walk models. 

1.6 Hierarchical Bayesian Model 

One major challenge of the distributional analyses is the necessity of 

collecting large number of observations.  This challenge confronts both the 

descriptive and the process approaches of distributional analyses.  A large 

number of observations are required to make distributional analyses effective, 

irrespective of whether it is a descriptive statistical model or a cognitive process 

model.  This is best illustrated by some incredible early endeavours, such as, 

Ashby and colleagues’ memory scanning work (1993), which collected about 

1,500 trials per participant per study set size and Ratcliff and Rouder’s model 

fitting work on the perceptual discrimination RTs (1998), which collected about 

1,000 per-participant trials (see Cousineau & Shiffrin, 2004 for perhaps the most 

extreme case for near 6000 trials).  The quantity of the observations is far beyond 

a typical psychophysical experiment would collect and difficult, although not 

impossible, to achieve. 

In addition to the model simplification efforts that may detour the 

overarching goal from simultaneously fitting the data, estimating processing 

parameters and describing the distributions, to describing the unobservable 

processes (e.g., Grasman et al., 2009), there exists another way to trim down the 

required number of observations.  The relevant techniques, developed during the 

last decade alongside the simulation-based algorithms (e.g., Monte Carlo 
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integration foresaw in the 1940s by two nuclear physicists, Metropolis & Ulam, 

1949) and intelligent probabilistic sampling methods (e.g., the NUTS sampler, 

Hoffman & Gelman, 2011; the Gibbs sampler, Gelfand & Smith, 1990), make 

feasible two powerful, statistical methods: hierarchical modelling and Bayesian 

inference (Bayes, 1970).   

1.6.1 Hierarchical Modelling 

The canonical form of the hierarchical model 13  is similar with the 

generalised linear model (Draper & Smith, 1998).  That is, a functional output 

(e.g., an RT) is fully determined by one or more regressors plus with a residual 

term modelled by a stochastic function, for example in matrix form: 

 𝒀 = 𝑿𝜷 + 𝝐 Eq (3) 
 

Y is a column vector, representing a collection of outputs (y1, y2, … yi), such as 

100 RTs collected from an observer’s button-pressing responses while viewing a 

feature search display, repeatedly for 100 times.  X is i × j matrix, with j 

representing the number of explanatory variables, such as the number of items 

in a display, different spatial frequency contrast, etc.  β is a j × 1 row vector, with 

j numbers of coefficient, accounting for the influence magnitudes of the 

explanatory variables.  In a typical ANOVA-design experiment assuming a 

Gaussian distribution underlying across-participant variability, the β term 

                                                      
13 Hierarchical models are sometimes called multilevel models. The term, ‘multilevel’ omits the 
information of a structural hierarchy amongst various levels of dependent variables. Take 
questionnaire data collected from pupils in a number of classes in several schools, across a wide 
range of geographical regions (4 hierarchies) as an example. The regions sit on the top hierarchy, 
followed by the schools, the classes and then the pupils.  During the development of this 
technique, it was called random-effect, or in a broader sense mixed-effect, model (Kirk, 1995; 
Pinheiro & Bates, 2000).  See an argument in page 245, Gelman and Hill (2006) why the term, 
random-effect/mixed-effect model, is confusing and should be avoided.         
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represents means for different level of an experimental factor.  The last term is a 

column vector with i elements, derived from a stochastic distribution.  In this 

canonical form, the stochastic component of a function output is solely 

determined by the residual term, 𝝐, which is a collection of all possible sources of 

variability that affect random variable (i.e., Y).  When using the Gaussian 

assumption, the 𝝐  term is the Gaussian variance parameter (Figure 1-9). 

The hierarchical framework relaxes the determinant β and the variability 𝝐 

terms, allowing them to be modelled by different stochastic functions, subjected 

to the nature of data.  For example, one can choose a probability function, such 

as ex-Gaussian, to fit RTs, because the empirical data indicate RT distributions 

skew towards the positive side, showing a long tail (Luce, 1986; Van Zandt, 

2000).  The three ex-Gaussian parameters can be mapped on different part of 

the distribution data, so they derives their own β matrices.  The hierarchical 

concept comes in when, for instance, the three ex-Gaussian parameters are also 

random variables presumably sampled from other probability distributions. Again 

depending on the nature of data and how complex  an analyst wishes, further 

hierarchies can then be built on top of the lower level functions.  For example, if 

an analyst believes the rate parameter of the exponential component in an ex-

Gaussian function selectively correlates with the spatial frequency of a visual 

display (which is often modelled by a Gaussian function), she/he can then 

considers the rate parameter as a random variable sampled from a Gaussian 

distribution.  In summary, the hierarchical framework allows an analyst to use any 

appropriate probability functions and to build model hierarchically to fit the data.  

In fact, this is akin to the above-mentioned cognitive process models, with the 
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building blocks arranged closely to one’s favourite cognitive processes (either 

one accumulator diffuses towards either a matched or a mismatched threshold 

or many accumulators race towards a common threshold). 
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Figure 1-9. An illustration of one-level Gaussian model, using the BUGS-styled directed acyclic graph.  The shaded oval 
represented the observed data.  The double-line arrows indicate parameters deterministically associates with another parameter.  
As the equation on the right of the beta suggests, the mu’s can be calculated analytically, using alpha, beta and the explanation 
variables.  In contrast, the single-line arrows indicate parameters stochastically associate with another parameter.  For example, 
RTs are sampled probabilistically from a Gaussian function with the mean, mu[i] and the precision (the inverse of the standard 
deviation) tau.  The line-shaded rectangle indicates multiple observations (i= 1, …, N) are collected, so the model samples 
estimates iteratively from the probabilistic function.            
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Figure 1-10. An illustration of one-level ex-Gaussian model. This figure illustrates an example to form a one-level ex-Gaussian 
model when one is willing to relax the Gaussian assumption and to replace it with the ex-Gaussian function. 
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1.6.2 Bayesian Inference  

A natural side-effect of the hierarchical structure is an increase of free 

parameters.  More free parameters to be estimated means more observations 

are needed.  Typically, an analyst calculates a mean value from 25-50 

observations per condition per participant.  This calculation presumes the 

underpinning distributions both in the population of participants and in the 

population of one participant’s responses are Gaussian distributions.  Because a 

Gaussian function is fully described by two parameters, mean and variance, the 

typical practice uses four free parameters in a condition: the mean and variance 

describing the across- participant Gaussian function and the mean and variance 

describing the within-participant Gaussian function.  A frequent practice to pursue 

high (statistical) power is to increase the number of participants, which raises the 

reliability for the across-participant Gaussian estimates; however, the within-

participant Gaussian estimates are presumed as direct observations. 
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Figure 1-11. An illustration of two-level Gaussian model.  This two-level model illustrates that using a hierarchical structure, one 
can also sample alpha and beta (the original deterministic parameters for the one-level Gaussian mean) from other probability 
functions.  For the simplicity reason, this illustration uses Gaussian functions in both hierarchies.  By using, for instance, a two-
level structure, one can simultaneously model within-participant and across-participant variabilities on the basis of data.  For 
example, one can use the ex-Gaussian function to fit the within-participant data and the Gaussian function to fit across-participant 
data.     
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The hierarchical framework permits an analyst to relax the direct 

observation assumption and account for the within-participant distribution. This 

suggests it is also crucial to consider the number of observations in each 

condition in a participant so as to estimate the parameters reliably.   

Although the hierarchical model permits more thorough analyses at each 

level of data structure, the within-participant parameters now require also enough 

observations.  To ease the burden of observation numbers, the Bayesian 

approach takes an entire different perspective on the parameter estimation, 

basically relying on the idea of the conditional probability.  

 𝑃(𝜃|𝐷𝑎𝑡𝑎) ∝ 𝑃(𝜃) × 𝑃(𝐷𝑎𝑡𝑎|𝜃) Eq (4) 
 

The left-hand side of the equation is a posterior probability function which 

is determined by a set of parameters (θ; e.g., mean and variance in the case of 

Gaussian function) and is conditioned on the available data [P(θ|Data)].  

According to Bayes rules, the posterior function can be derived from the right-

hand side of the equation, which shows the multiplication of a prior probability 

function [P(θ)] and the likelihood function of data [P(Data|θ)].  Eq (4) states that 

one’s belief (hence estimation) about the parameter set (θ) is conditioned on the 

observed data.  Importantly, this belief can be updated iteratively by reusing a 

posterior function (in nth step) as a new prior function in the (n+1)th step in light of 

new data.  The iteration thus helps gradually improve the precision of parameter 

estimation on the basis of an educated guess for first prior function and renewing 

the prior belief with accumulated data.  The advantage of iterative updating of the 
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posterior function only becomes clear with the help of modern computers which 

process a larger number of monotonous calculations with tremendous speed. 

1.6.3 Hierarchical Bayesian Model  

Although, the Bayesian inference suggests a promising solution to lighten 

the burden of the parameter estimation, only a handful of comparative studies pit 

the hierarchical Bayesian model (HBM; Rouder, Sun, Speckman, Lu, & Zhou, 

2003) against other methods for estimating RT distributions (Farrell & Ludwig, 

2008; Rouder et al., 2005), showing the advantage of HBM with small numbers 

(20 & 80) of simulated  observations.  It is unclear whether the results also apply 

to empirical data on visual search.  Therefore, I conducted a simulation study to 

explore how far I can trim down the number of observations per condition 

(Chapter 2). 

1.7 Thesis Outline 

1.7.1 The Aim of the Thesis 

The thesis aimed to investigate broadly the association of higher-order RT 

distributional cumulants with visual search findings, and specifically how these 

cumulants associate with search decisions underpinning the stages of stimulus 

comparison.  This strategy was hinted earliest by Sternberg in his classic work of 

additive-factor method (1969) as well as being suggested by many early 

mathematical psychologists (e.g., Ashby & Townsend, 1980).  They foresaw the 

pitfalls and suggested the potential values of examining higher-order cumulants 

of RT distributions.  This has been pioneered by those mathematical 

psychologists, such as Townsend (1971), Link (1975), Ratcliff (1978), and Luce 

(1986).  More recently, the estimation methods become more accessible, 
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because of the efforts made by many of the researchers (e.g., Brown & 

Heathcote, 2008; Grasman et al., 2009; Heathcote et al., 2004; Lacouture & 

Cousineau, 2008; Lee & Wagenmakers, 2013; Matzke, Love, et al., 2013; Rouder 

et al., 2005; Van Zandt, 2000; Voss & Voss, 2007; Wiecki, Sofer, & Frank, 2013).   

The thesis starts from Wolfe’s GS4 model and proposed one route to 

incorporate both correct RTs and more importantly, error RTs.  There are 

potentially several approaches to accomplish this.  Here I explored the dual-

modelling approach with the descriptive probability model complemented with the 

decision-making models.  The thesis, built on the stepping stones amassed by 

mathematical psychologists, made a small step forwards to explore the 

association between RT distributions and the decision-making process during 

search when a top-down goal is explicitly represented in VWM (Duncan & 

Humphreys, 1989). 

1.7.2 Thesis Plan 

The thesis begins with a simulation study testing whether the dual-

modelling method I developed is able to estimate RT distributional parameters 

with acceptable precision when per-condition trial numbers are limited.  Based on 

the results of the simulation studies, I then went on to reanalyse a benchmark 

visual search paradigm (Wolfe et al., 2010), using this new method.  I then 

conducted a replication study, with the aims being to first confirm that the model 

is able to provide an appropriate description for RT distributions and second, to 

reveal an effect due to a specific display layout that was used.  These were 

examined against a plausible, but simple, cognitive model, the EZ2 model 
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(Grasman et al., 2009), to understand how each distributional parameter might 

associate with the decision-making processes. 

After validating the descriptive model of the RT distribution with the 

benchmark paradigms in the first study, I next conducted a second study with 

three experiments to examine the association amongst the VWM strength of 

attentional template, RT distributions and search decision.  I designed a simple 

search paradigm with a within-block trial-by-trial updated template probe, 

comparing performance to that with a within-block trial-by-trial constant probe.  

The former manipulation was to re-strengthen the template representation in 

VWM, so it should exert a stronger influence from WM than the latter 

manipulation.  The first experiment was contrasted to a second and a third 

experiments, which followed closely the first and introduced two inter-stimulus 

intervals (ISI; 50 vs. 400 ms) randomly distributed within a block.  This rendered 

the appearance of a search display highly uncertainly temporally.  The third 

experiment simply doubled the per-condition trial in the second experiment, 

aiming firstly to replicate the second experiment and secondly to test how the 

large trial number might affect the ISI and the cue factors.  One important 

prediction in the second study is the manipulation of WM strength should 

selectively influence the decision threshold. 

The third study investigated a different aspect of template representation 

in VWM.  I designed an odd-one-out search paradigm in which a pre-search 

probe was used to fine-tune search performance.  In this paradigm, a 3-level 

probe was set in order to elicit different template representations/WM operations, 

with a fixation cross (a null representation), a symbol (U/l for upper- or lower-case 
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letter; a part representation) signifying part of a target’s features, and an exact 

replicate of the oncoming target image (a complete representation). The three 

levels of the template representation are assessed for their differences on the 

common average measures (mean RT and error rates) and on the descriptive 

and process model parameters.  One main prediction in the third study is the 

manipulation of the template perceptual quality should selectively influence the 

decision rate, with the complete perceptual representation leading to a higher drift 

rate, comparing to other template representations. 

Overall the work presented in this thesis shows the value of taking a 

detailed mathematical analysis of visual search functions and how this analysis 

can give new insights particularly into the role and nature of the templates that 

guide search.  
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Chapter 2 Estimation of the Minimal Sample Size Using the HBM 

and Its Correlation with the DDM 

A recent surge of simulation studies is mainly driven by the advance in 

cognitive modelling, computational capability, and psychophysics searching for 

solutions to control noisy behavioural/neural responses.  Typical biological 

observations consist of large extent of noise, and an ideal observation, similar to 

those highly controlled experiments in physics, rarely occurs.  This problem   has 

challenged researchers since the inception of psychophysics, which aims at 

studying body and mind in a sound scientific method (Fechner, 1860).        

Simulation studies aim to mimic human behaviours in a highly controlled 

environment.  When confined to a few specific behavioural responses, simulation 

studies are able to achieve the aim of controlling simulated human responses in 

a predictable way.  This is because, rather than directly measuring from a human 

or animal observer, simulated responses and their noise signals are generated 

by prescribed cognitive mechanisms designed and fully controlled by 

researchers.  

So far simulation studies are mainly used, but not limited, to (1) comparing 

different parameter estimation methods (e.g., Farrell & Ludwig, 2008; and as I did 

in this chapter) (2) fitting empirical data with different cognitive models (e.g., to 

test model adequacy) (3) remedying problems in traditional analyses (e.g., 

unbalanced sample sizes & missing data) by imputing simulation data back to 

empirical data (Schafer, 2010), and (4) more recently, applying the mixture of the 
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latter two methods to mitigate some obstacles of parameter estimations (Turner 

& Sederberg, 2014; Turner, Sederberg, Brown, & Steyvers, 2013). 

Only a handful of simulation studies have shown the benefits of HBM over 

maximum likelihood estimation (MLE) method to estimate RT distributions 

(Farrell & Ludwig, 2008; Rouder et al., 2005, 2003).  However, few, if there is any, 

investigate visual search data and how they may correlate with decision-making 

parameters.  The chapter thus reported two simulation studies to address this 

issue. 

2.1 The Association of Decision and Distributional Parameters 

The second simulation study was to examine how the decision 

parameters estimated by EZ2 model correlate with the distributional 

parameters.  An account (Rouder et al., 2005) presumed that the three 

distributional parameters–the shift, shape and scale–reflect respectively the 

minimal response times, the central processing time, and the speed of response 

execution.  As one of the reviewers (see Chapter 4) indicated that this account 

is only preliminary and perhaps needed further investigation.  Furthermore, 

because the three Weibull parameters jointly determine the spatial contour of a 

distribution, and the shape parameter aims to describe the distributional shape, 

rather than exactly manifests the ‘shape’ of a distribution, the RT distributional 

shape may change due to various factors, that the shape parameter may not 

reflect.  The simulation study was to investigate this issue.   

2.1.1 Method  

This simulation conducted three case studies, investigating three 
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different scenarios.  Each of them doubled one distributional parameter and 

fixed the others.  Each case study simulated 200 RT observations, assuming 

that they were generated from 20 homogeneous observers.  The study 

controlled distributional parameters and used the Weibull functions to generate 

simulated data.  The data were then submitted to EZ2 model to estimate the 

condition-averaged drift rates, boundary separations and non-decision times.  

The estimations of the decision parameters were taken as observations to 

understand how they reacted to the change in each distributional parameter.  

2.1.2 Result 

The results indicated that firstly doubling the shift parameter resulted in a 

near two-fold increase in the non-decision time from 0.4 to 0.8 s. The increases 

in the drift rate (from 0.012 to. 0.013) and the decrease in the boundary 

separation (from 4.89 to 4.57) were minuscule.  Second, doubling the scale 

parameter resulted in a decrease in the drift rate from 0.013 to 0.009, an 

increase in boundary separation from 4.70 to 6.57, and a negligible 10-ms 

increase in the non-decision time (407 vs. 417 ms).  Finally, doubling the shape 

parameter resulted in an increase in the drift rate from 0.013 to 0.018 and a 

decrease in the boundary separation from 4.57 to 3.39.  The increase in the 

non-decision time (410 vs. 507) is small, although its increase was larger than 

that of doubling the scale parameter.  Figure 2-1 shows a comparison across 

the three case studies. 
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Figure 2-1. The figure shows the corresponding changes in the EZ2 parameter, 
when doubling the Weibull parameters.  ter, a and v stand for the non-decision 
time, the boundary separation and the drift rate, respectively. 

2.2 The Minimal Sample Size: HBM vs. MLE 

The second simulation study was to examine the estimation biases on 

three distributional parameters– mean, variance, and skewness–when various 

probability functions were fitted with different sample sizes per experimental 

condition and when the true distributions generating RTs were known. The 

study investigated minimal per-condition trials and aimed to answer whether a 

relatively small sample size (e.g., 100 trials) was sufficient to estimate 

distributional parameters reliably using the HBM.   

2.2.1 Method 

The simulation study used four R routines, rnorm, rexGAUS, rinvgauss, 
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and rweibull3 to generate the simulated data14.  The study examined four 

scenarios, respectively assuming that the true distribution followed a normal 

(rnorm), an ex-Gaussian (rexGAUS), a Wald (rinvgauss) or a Weibull function 

(rweibull3).  The true distributions adopted the parameter values listed in Table 

3 in Cousineau, Brown and Heathcote’s report (2004) to generate simulated 

data.  The true distributions generated twenty homogeneous participants, each 

contributing RT observations in 10 different sample sizes ranging from 20 to 

470 with a step size of 50.  The data were then submitted separately to the 

HBM and the MLE, estimating the three distributional parameters: shift, scale, 

and shape.  Because HBM and MLE are parametric methods, both assumed 

the data were random variables generated by a Weibull probability function 

when estimating the parameters.  The parameters – shift, scale, and shape – 

were then analytically converted to the mean, variance and skewness to 

evaluate the performance of the estimation methods. The estimates were then 

compared with the true values (Table 3 in Cousineau et al., 2004).  The mean of 

the differences and the standard error of the differences were termed bias and 

precision, respectively.  The two statistics were summarised in the following 3 

figures.   

                                                      
14 The R routines, rexGAUS, rinvgauss and rweibull3, are not included in the standard packages. 
To implement them, the user needs to install additional packages: gamlss, statmod, and FAdist. 
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2.2.2 Result  

 

Figure 2-2. This figure compares the average (across participants) of mean, 
variance and skewness to the true values that generated the simulated data. 
The mean and variance are on the units of seconds and square of seconds, 
respectively. The skewness was calculated by the equation, [𝑚3 =
(𝑅𝑇 − 𝑅𝑇𝑚𝑒𝑎𝑛)

3/𝑁] (Crawley, 2002). The reference dashed lines are drawn at 
the sample sizes, 120, 170, and 220. 

Figure 2-2 shows the bias for the estimation of means, variances and 

skewness for the four distributions.  Overall, no differences were observed 

between the two methods when estimating the means.  The only factor 

improving the estimation was the sample size, F(9, 1520) = 4.90, p = 1.69 × 10-

6.  As the figure showed, the more observations were in a condition, the less the 

estimation error (i.e., the lines become closer to the 0).  The bias dropped 

rapidly when the sample size surpassed 100, from 17 ms at 20 observations to 

7 ms at 120 observations, and it decreased at a slower rate when the sample 

size was well over 120 observations about 5 ms around the 0-difference line.  

The specification of the true distribution did not alter the bias when the sample 
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size exceeded 120, even though both estimation methods assumed an 

underlying Weibull function to account for the data.  Similar pattern was 

observed in the precision (Figure 2-3).   

 

Figure 2-3. The figure showed the average standard errors across participants 
for the mean, skewness and variance. 

In contrast to estimating the mean, the HBM demonstrated an advantage 

over the MLE when recovering the variances and skewness.  Except for the 

skewness bias score, large sample sizes improved the estimation.  The 

advantage of the HBM showed especially at the small sample sizes, although 

the disadvantage of MLE resolved gradually when the sample sizes exceeded 

120 (see the first dotted line in Figure 2-2 & Figure 2-3).  The misspecification of 

the underlying distribution resulted in different estimations for variance.  This 

showed only at the estimation error (bias) for the variance.  Both methods 

needed a sample size larger than 170 to resolve this problem.  That is, when 
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the sample sizes were 220, 270, 320, 370, 420 and 470, no difference at 

estimating variances was observed between the two methods.  The parameter 

recovery was better when the true distribution followed the Weibull function.  

The HBM showed a specific advantage at the precision for both estimating 

variance and skewness at the small sample size (Figure 2-3 & Figure 2-4).   

 

Figure 2-4. The estimation of skewness. The figure shows the difference 
between the HBM and MLE along different sample sizes.  

2.2.3 Summary  

By and large, the results suggested that (1) there was no difference 

between HBM and MLE when the sample size was larger than 120, (2) the 

HBM performed better than the MLE both at estimating variance and skewness 

when the sample size was small, (3) the HBM advantage was showed 

especially at the precision and (4) the specification of equally plausible 

probability functions was crucial only when it matched the true distribution that 
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generated the RT data. 

2.3 Why Use the Weibull Function? 

The Weibull function is one of the many plausible probability functions that 

can accommodate positively skewed RT distributions.  It was chosen as a main 

vehicle to describe RT distributions because its parametric characteristics enable 

an intuitive understanding for the shape of RT distributions.  Nevertheless, there 

are other alternatives.  These include, but not limited to, gamma, log-normal, and 

Wald functions.  With appropriate parameterisation, all are capable of 

accommodating skewed RT distributions with the same descriptive parameters.  

This section justified the reasons to use the Weibull function to fit RT data. 

First, the Weibull function summarises concisely the shape of RT 

distributions.  As illustrated in Section 2.1, changes in the distributional 

parameters – shift, scale and shape – associate with increases/decreases in 

different parts of RT distribution, and thereby affect the accumulation of RT 

densities.  These corresponding changes inform how an experimental factor may 

alter different parts of an RT distribution.  Selective influences in different 

distributional parameters thus suggest distinct changes in cognitive processes.  

Secondly, although the three-parameter gamma function fitted RTs better the 

Weibull function when both functions were estimated by the MLE method (E. M. 

Palmer et al., 2011), the gamma function did not converge when fitted with HBM.  

The gamma function showed signs of non-convergence and perhaps because of 

this, it fitted the data slightly worse than other plausible functions, supported by 
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the deviance information criteria (DIC)15.  Third, the other plausible functions – 

Wald and log normal – fitted similarly with the Weibull function to both ours and 

the benchmark paradigm (Wolfe et al., 2010), with only slightly better DICs than 

the Weibull function.  Because amongst the four 3-parameter functions, the 

Weibull function has been tested in literature extensively to fit visual search data 

(e.g., Cousineau et al., 2004).  Further all four functions fit similarly to the data 

when examined separately for the tasks, display sizes, target types, and data 

sets in the benchmark paradigms and my replication (Chapter 4).  As a result, the 

thesis chose the Weibull function as the main vehicle to describe RT distributions.  

To test whether the four plausible functions fit the positively skewed RT 

distributions adequately, their DICs are compared with the DIC of a Gaussian 

function fit (~ -3150).  The DIC is far worse than the four plausible functions.  See 

for Appendix C to see fitting the gamma function in HBM. 

                                                      
15 DIC is a goodness-of-fit index, used in Bayesian parameter estimations. 
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Figure 2-5. The figure compares the Bayesian DICs for the fitted 3-parameter probability functions across the data sets, search 
tasks, target types, and display sizes.  In general, the smaller the DICs, the better the fit.  L and W stands for my and Wolfe et 
al.’s (2010) data sets. F, C, and S stand for feature, conjunction, and spatial configuration searches.  Y axis is on log scale. 
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2.4 Discussion 

The results from the two simulation and function fit studies suggest (1) the 

HBM estimates distributional parameters with good precision when per-condition 

sample size is around 120, (2) the non-decision time associates with the Weibull 

shift parameter in a predictable way, but it is not clear how the scale and shape 

parameters may associate with the decision-making process and (3) the Weibull 

function is able to describe distributional shape appropriately in the HBM.  

Informed by the simulation studies, the psychophysical studies in the following 

chapters collected around 100 observations per condition (per participant), 

estimated RT distributions via the HBM Weibull function, and interpreted the 

influences of key experimental manipulations on the shapes of RT distributions, 

using the decision-making models. 
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Chapter 3 General Method 

This chapter summarised the common methods used in the following three 

chapters.  The differences specific to each study were documented separately in 

the Method sub-section in the respective chapter. 

3.1 Participants 

Table 3-1 presented the participant demographic data.  Study 1 (Chapter 

4) excluded one participant from the analysis because of chance-level responses.  

Study 2 (Chapter 5) conducted three experiments.  The second experiment in 

Study 2 excluded two participants because one participant performed 

inadvertently the varied cue condition twice and another dropped out without 

attending the second visit.  Thus, the second experiment in Study 2 analysed 19 

valid participants.  The third experiment recruited 26 volunteers.  Six of them 

dropped out before the second visit and one completed, relative to other 

participants, the experiment with less per-condition trials (70).  Thus, the third 

experiment analysed also 19 valid participants.  All volunteers took part in 

exchange of course credits or cash, reported normal or corrected-to-normal 

vision and signed a consent form before carrying out in the study.  The procedure 

was reviewed and granted permission to proceed by the Ethics Review 

Committee at the University of Birmingham. 
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Table 3-1. Participant demographic data. Exp: experiment; P: participant; S: study; F/M: 
female to male ratio; L/R: left hander to right hander ratio.  

  P number Age (years; Mean ± SE) F/M  L/R  

S1     40 18-22 (18.9 ± 1.01) 33/7 5/35 

S2  Exp 1 20 18-31 (23.27 ± 3.85)  18/2 5/15 

 Exp 2 22 18-32 (20.18 ± 3.33) 13/9 5/17 

 Exp 3 26 18-27 (20.42 ± 2.50) 14/12 0/26 

S3   10 19-20 (19.4 ± 0.52)   8/2 0/10 

 

3.1.1 Summary  

A clear association was observed between the non-decision time and the 

shift parameter when the other distributional parameters were kept constant.  As 

for the other two distributional parameters, the simulation study do not indicate a 

clear distinction for the scale and shape parameters with the decision-making 

process.  Specifically, an Increase in the scale parameter raised the boundary 

separation and slowed down the drift rate, suggesting a negative correlation 

between the scale parameter and RTs.  In contrast to the scale parameter, an 

increase in the shape parameter suggests it correlates positively with RTs, 

because of the decrease in the boundary separation and the increase in the drift 

rate, although the increase in the shape parameter appears also to increase the 

non-decision time.  

Overall, the current evidence supports a clear link between the shift and 

the non-decision time but seems to suggest that an overarching influences of the 

scale and shape parameters on the decision-making process.  Even though the 

detailed examination of the latter two parameters indicates that an increase in the 
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scale parameter affects more the decision components and less the non-decision 

component and that an increase in the shape parameter affects both, it is far from 

clear-cut to assert the scale or the shape parameter reflects a distinctive cognitive 

process. 

3.2 Apparatus and Stimuli 

In Study 1 and Study 2, the order and timing of the paradigms were 

controlled by PsyToolkit (Stoet, 2010), which is a GNU C library designed to 

implement cognitive paradigms.  The paradigms were carried out on a Linux PC, 

using a kernel specifically tweaked to a hard real-time system (Linux kernel 

2.6.31-11-rt).  A hard real time system will treat a designated computer 

programme as system critical, thereby responding immediately when the 

programme is called.  I designated cognitive paradigms as critical programmes 

when they were running.  In contrast to general operating systems, such as 

Windows 7 and Windows 8, the user is not allowed to tweak their kernel.  This 

type of operating systems prioritises system-related programmes, but not the 

programmes running cognitive paradigms.  In some situations, the programming 

running cognitive paradigms may be interrupted by, for example, system updates.  

This is not good news, because the programmes executing system updates 

mostly own a higher priority than those running cognitive paradigms.  Further the 

system-related programmes are controlled by IT staffs (maybe remotely by the 

staffs in software companies), suggesting that the time the programmes interrupt 

experiments is not completely random. 

The graphic card, NVidia GeForce 8500 GT, controlled visual displays in 

Study 1 and Study 2.  Study 3 used E-Prime 2.0 on a Windows 7 personal 
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computer, equipped with an NVidia GeForce GT430 graphic card to control the 

timing of stimulus presentation.  All participant responses were made using, a 

Cedrus RB-830 response pad.  All experiments presented stimuli on a Sony 

CPD-G420 CRT monitor set at the resolution of 1152 × 864 pixels and 100 Hz 

refresh rate, except the second experiment in Study 2, which presented stimuli 

on a Dell P991 CRT monitor at the 1024 × 768 resolution and 85-Hz refresh rate.  

Participants sat about 60 cm in front of the monitor in a well-lit cubicle and were 

asked to make speeded responses without compromising their accuracy.  

In Study 1 and Study 2, the visual stimuli were presented on a 2.526° 

invisible circle in black and grey (white in Study 2) colours onto a grey background 

(RGB, 190, 190, 190).  The visible area contained the entire screen, but the 

relevant stimuli were all drawn within the viewing area of 7.59° × 7.59°.  Study 1 

used the visual stimuli similar to the benchmark paradigm (Wolfe et al., 2010).  

Study 2 used 13 English uppercase letters, A, B, D, E, F, G, H, J, M, N, Q, R, & 

T, sized 0.63° × 0.63°.  In Study 3, the search items (A, B, D, E, F, G, H, M, N, 

R, & T) were scaled to 0.32° × 0.46° in black colour, presented on E-prime’s 

default grey colour background.  The search items were randomly allocated to 10 

possible locations on an invisible circle (see Figure 4-1 for an illustration). While 

viewing an imperative stimulus, participants indicated whether the target was 

present or absent (Study 1) or whether the target was on the left or the right side 

of the invisible circle (Study 2 and Study 3). 

3.3 Design 

To minimise one of the experimenter biases related to the analysis of null 

hypothesis significance testing (NHST; Kruschke, 2010),  the studies set a fixed 
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target sample size (20 participants in Study 1 and Study 2; 10 participants in 

Study 3) before collecting data.  The target sample size was determined based 

on commonly used sample sizes (approximately 5 to 20 participants) in visual 

search literature.  The data from participants who withdrew and completed only 

part of the tasks were not analysed; these participants were replaced with other 

individuals. 

3.4 Decision-making Models 

Three decision-making models will be applied in the thesis in separate 

chapters.  Chapter 4 applied the simplified decision-making model, EZ2 to 

estimate the decision parameters in the benchmark search parameter.  The EZ2 

model differs slightly from the other two decision-making models, applying in 

Chapter 5 (DDM and LBA) and Chapter 6 (the fast-dm version of DDM).  EZ2, 

because of the mathematical simplification, estimated the drift rate, non-decision 

time and boundary separation.  Specifically, the boundary separation merges the 

decision threshold and the initial bias (as estimated separately in DDM and LBA) 

as one parameter. Study 2 (Chapter 5) fited data with LBA and DDM and used 

the model selection procedure described in Donkin, Brown and Heathcote (2011) 

to balance the good fits and parsimonious factors to fit model.  Study 3 (Chapter 

6) allowed all experimental factors to depend on most DDM parameters, thereby 

fitting data with a saturation model.  
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Chapter 4 Modelling Visual Search Using Three-parameter 

Probability Functions in a Hierarchical Bayesian Framework 

4.1 Introduction 

Distributional analyses are becoming an increasingly popular method of 

analysing performance in cognitive tasks (e.g., Balota & Yap, 2011; Heathcote 

et al., 1991; Hockley & Corballis, 1982; Ratcliff & Murdock, 1976; Sui & 

Humphreys, 2013; Tse & Altarriba, 2012)16.  When compared with analyses 

based on mean performance, distributional analyses potentially allow a more 

detailed assessment of the underlying processes that lead to a final decision.  

In particular it has long been noted that RT data, before being averaged across 

multiple participants, frequently show a positively skewed, unimodal distribution 

(Luce, 1986; Van Zandt, 2000).  Distributional analyses begin to allow us to 

decompose such skewed data and to address the processes that contribute to 

different parts of the RT function.  One approach to this is through HBM, a 

method that blends Bayesian statistics and hierarchical modelling.  The latter 

uses separate regressors to assess variations across trial RTs collected from a 

participant by estimating regression coefficients, contrary to conventional 

single-level ANOVA models which directly use RT means as dependent 

variables.  The hierarchical modelling then carries on assessing the coefficient 

variations across participants at the second level, accounting for individual 

differences.  One direct advantage of the hierarchical method is that variation 

across trials can be described by a positively skewed distribution (or other 

                                                      
16  This chapter has been accepted for publication by the journal, Attention, Perception, & 
Psychophysics.  
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distributions, as analysts wish), in contrast to the Gaussian distribution implicitly 

adopted by a single-level ANOVA model (which works directly on the second 

level of the hierarchical method).  The flexibility to choose an underlying 

distribution liberates analysts from using statistics derived from the Gaussian 

distribution to represent each participant’s performance in an experimental 

condition, since a Gaussian assumption may not be appropriate given positively 

skewed RT distributions.   

Hierarchical modelling typically relies on point estimation, which itself 

depends on the critical assumption of independence of random sampling – 

making performance highly sensitive to the sample size.  Hierarchical modelling 

may perform less than optimally when, relative to the number of estimated 

parameters, trial numbers are too few to account for the parameter 

uncertainties at each hierarchical level (Gelman & Hill, 2006).  This is possible 

when a non-Gaussian distribution is used to estimate parameters for each 

participant separately in a hierarchical manner.  For example, a data set with 

ten participants, when using an ex-Gaussian distribution (fully described by 

three parameters), estimates simultaneously at least 30 (3 × 10) parameters, 

each of which should be derived from a distribution with an appropriate 

uncertainty description (i.e., parameters for variability).  This is assuming that 

only one experimental condition is tested.  It follows that small trial numbers 

within an experimental condition may result in biased uncertainty estimates, 

which render the effort of adapting hierarchical modelling in vain17.  Bayesian 

                                                      
17  The requirement for a reasonable large sample size relates to the increase of estimated 
parameter.  This also applies to other methods, when the number of estimated parameter 
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statistics is one of the solutions to the problem of point estimation inherent in 

the conventional approach.  Building on the nature of the hierarchical structure 

of parameter estimations, Bayesian statistics conceptualize each parameter at 

one level as an estimate from a prior distribution.  Based on Bayes’ theorem, 

the outputs of prior distributions can then be used to calculate posterior 

distributions, which are conceptualized as the underlying functions for the 

parameters in the next level.  By virtue of Monte Carlo methods, HBM is able to 

estimate appropriately the uncertainty at each level of the hierarchy, even when 

trial numbers are limited (Farrell & Ludwig, 2008; Rouder et al., 2005; Shiffrin, 

Lee, Kim, & Wagenmakers, 2008).  Note that Bayesian statistics here are used 

to link variations in the trial RTs within an observer with the variations at 

aggregated RTs between observers.  This differs from applying Bayesian 

statistics to account for how an observer identifies a search target by 

conceptualizing that her prior experiences (e.g., search history; modelled the 

RTs in Nth-1 trial as prior distributions) influence the current search performance 

(modelled the RTs in Nth trial as posterior distributions).   

HBM has been used previously in cognitive psychology to examine, for 

example, the symbolic distance effect – reflecting the influence of analogue 

distance on number processing (Rouder et al., 2005; other examples see, 

Matzke & Wagenmakers, 2009; Rouder, Lu, Morey, Sun, & Speckman, 2008;).  

In symbolic distance studies observers may be asked to decide if a randomly 

chosen number is greater or less than 5.  Observers tend to respond more 

                                                      
increases.  Hierarchical model helps to trim down sample sizes by constraining outliers, when 
estimating the same number of parameters.       
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slowly when the number is close to the boundary (5), compared to when the 

number is far from it.  One interpretation based on mean RTs is that an 

additional process of mental rechecking is required when numbers are close to 

5.  The result from HBM however suggests a further refinement for this 

interpretation by showing that the locus of effect resides in the scale (rate) of 

RT distributions.  A scale effect, interpreted together with other symbolic 

distance findings using a diffusion process or a random walk, implies broadly a 

change in drift rates or decision boundary, as opposed to a change in 

(cognitively) functional architecture, such as mental rechecking process 

(Rouder et al., 2005).   

4.1.1 Application to Visual Search 

The present study applied HBM and distributional analyses to account 

for the RT distributions generated as participants carried out visual search.  To 

do this, I compared participants’ performances under 3 search conditions 

varying in their task demands: a feature search task, a conjunction search task, 

and a spatial configuration search task.  A typical visual search paradigm 

requires an observer to look for a specific target.  The ‘template’ (Duncan & 

Humphreys, 1989) set-up for the target can act to guide attention to stimuli 

whose features match those of the expected target.  Depending on the relations 

between the target and the distractors, and also the relations between the 

distractors themselves (Duncan & Humphreys, 1989), performance is affected 

by several key factors, including the presence or absence of the target, and the 

similarity between the target and the distractor and the similarity between 

distractors (for a computational implementation of these effects based on 
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stimulus grouping see, Heinke & Backhaus, 2011; Heinke & Humphreys, 2003). 

The display size effect relates to how performance is affected by the 

number of distractors in the display.  Effects of display size are frequently 

observed in tasks where target-distractor similarity is high and distractor-

distractor similarity low (conjunction search being a prototypical example; 

Duncan & Humphreys, 1989).  In addition, the display size × RTs function 

shows a slope ratio of absent trials to present trials slightly greater than 2, 

which varies systematically with the types of search task, from efficient to 

inefficient (Wolfe, 1998b).  

To date these effects have mostly been studied by examining mean RTs 

across trials, with the variability across trials considered as uncorrelated 

random noise (though see, for example, Ward & McClelland, 1989, who used 

across-participant variation to examine how search might be terminated).  The 

assumption of across trial random noise unavoidably sacrifices the information 

carried by response distributions, which may help to clarify underlying 

mechanisms (e.g., the influence of top-down processing on search).  In contrast 

to this, hierarchical distributional analyses set out to use the variability at each 

possible level of analyses as well as the mean tendency across responses, and 

through this, they relax the assumption of an identical, independent Gaussian 

distribution underlying trial RTs.  This then permits trial RTs to be accounted for 

by a positively skewed function.  The reasons I adopt HBM (Rouder & Lu, 2005; 

Rouder et al., 2005, 2003) in the present study are: (1) it harnesses the strength 

of Bayesian statistics which take into account the evolution of the entire 

response distributions from trial RTs in one participant to aggregated RTs 



- 79 - 

across all participants, (2) it uses the dependencies between each level of 

response as crucial information for identifying possible differences between the 

experimental manipulations, (3) it takes into account the differences between 

individual performances, and (4) it allows the higher-level parameters to 

constraint the lower-level parameters, thereby preventing potential outliers from 

over-influencing the estimates.  Notably, the response variability across 

different trials is no longer assumed to constitute random noise but rather is 

treated as crucial information that must be modelled. 

My study examined the effectiveness of distributional analyses and the 

HBM approach for understanding performance in 3 benchmark visual search 

tasks, which were modified from Wolfe, Palmer and Horowitz’s paradigm (2010; 

a different set of analyses was reported also in Palmer et al, 2011; also see a 

computational model aiming at clarifying the mechanism of search termination 

in Moran, Zehetleitner, Müller, & Usher, 2013).  In their paradigm, an observer 

searched for an identical target throughout one task - either a red vertical bar in 

the feature and conjunction tasks or a white digital number 2 in the spatial 

configuration task.  The distractors, either a group of homogeneous green 

vertical bars or a mixture of green vertical and red horizontal bars, set the 

feature and configuration tasks apart.  In the feature task, the homogeneous 

distractors enabled the target’s colour to act as the guiding attribute (Wolfe & 

Horowitz, 2008) making search efficient.  In the conjunction task, and possibly 

also in the spatial configuration task, a further stage of processing might be 

required in order to find the target amongst the distractors as no simple feature 

then suffices.  All search items were randomly presented on an invisible 5 by 5 
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grid.  One of the crucial contributions derived from previous work using RT 

distributions is that observers set a threshold of search termination depending 

not only on prior knowledge but also on the outcome of prior search trials (see 

Lamy & Kristjánsson, 2013, for a review).  As a consequence, instead of always 

exhaustively searching every item in a display, an observer may adapt the 

termination threshold dynamically (Chun & Wolfe, 1996).  A second contribution 

has been to show that variations in the display size can have relatively little 

impact on the shape of the RT distribution (Palmer et al., 2011; Wolfe et al., 

2010) and effects on the shape of the distribution only emerge at the large 

display sizes (i.e., 18 items) when the task difficulty is high ( i.e., on target 

absent trials in the spatial configuration task; Palmer et al., 2011; though see  

Rouder, Yue, Speckman, Pratte, & Province, 2010, for a contrasting result).  

4.1.2 The 3-parameter Probability Functions 

My study adopted four three-parameter probability – lognormal, Wald, 

Weibull and gamma18 – functions (Johnson, Kotz, & Balakrishnan, 1994) to 

estimate RT distributions using the HBM.  Differing from the frequently used ex-

Gaussian function, the 3-parameter probability functions describe an RT 

distribution with the parameters, shift, scale and shape that characterise the 

pattern of a distribution.  An increase of scale parameters reduces the height of 

a distribution, thereby lengthening its tail.  This implies that some responses 

originally accumulated around the central part become slower, thereby being 

                                                      
18 The functions describe a distribution with the same set of parameters, shape, scale and shift.  
Because comparing to other functions the previous analysis (Palmer et al., 2011) reported a 
worse χ2 fit of Weibull function, I constructed the comparable 3-parameter HBM to test if other 
functions gain a substantial better fit using hierarchical Bayesian approach than the Weibull 
function. I thank Evan Palmer for this suggestion. 
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moved to the tail side.  An increase in the shape parameter, on the other hand, 

elevate the height of a distribution, implying some original very slow and fast 

responses become moderate.  Hence the increase of the shape parameter not 

only changes the kurtosis, skewness, and variation, but also likely moves the 

measures of the central location.  An increase in the shift parameter preserves 

the general pattern of a distribution.  That is, an identical curve is moved 

rightwards (see Figure 2-1 or an illustration).  

The study assumed that changes in RT distributions reflect unobservable 

cognitive processes ( a similar argument also made by Heathcote et al., 1991). 

The visual search processes that may change RT distributions include, but not 

exclusively, the clustering process of homogeneous distractors, the matching 

process of a search template with a target and distractors, and the process of 

response selection (see Duncan & Humphreys, 1989; Heinke & Humphreys, 

2003; Heinke & Backhaus, 2011; Palmer, 1995).  Some previous work (e.g., 

Rouder et al., 2005) suggests interpreting Weibull-based analyses as reflecting 

psychologically meaningful processes.  For example, the shift, scale and shape 

parameters of an RT distribution have been suggested to link respectively with 

the irreducible minimum response latency (Dzhafarov, 1992), the speed of 

processing, and high-level cognition (e.g., decision making).  This is similar to 

some reports applying distributional analyses on RT data, attempting to link 

distributional parameters with psychological processes directly (e.g., Gu, Gau, 

Tzang, & Hsu, 2013; Rohrer & Wixted, 1994).  Although it is ambitious to posit 

links between distribution parameters and underlying psychological processes, 

a better strategy is to take advantage of the descriptive nature of distributional 
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parameters (Schwarz, 2001), which permit a concise summary of how a 

distribution varies in response to a particular experimental manipulation.  The 

distributional parameters describe how an RT distribution changes in three 

different separable aspects (shift, scale & shape).  This enables researchers to 

examine RT data as an entirety, building on top of what can be provided by an 

analysis of mean RTs.  However, one potential pitfall is how the distributional 

parameters can be understood with regard to unobservable psychological 

mechanisms (e.g., the visual search processes I investigated here).  I explored 

a possible avenue to resolve this issue by applying a plausible computational 

model to understand the same set of RT data (a similar strategy was reported 

recently in Matzke, Dolan, et al., 2013; and suggested also in Rouder et al., 

2005). 

To understand how my distribution-based HBM correlates with 

underlying cognitive processes, I compared the HBM parameters with those 

estimated from EZ2 diffusion model (Grasman et al., 2009; Wagenmakers et 

al., 2007; Wagenmakers, van der Maas, et al., 2008) which is a closed-form 

and simplified variant of Ratcliff's diffusion model (1978).  The diffusion model 

conceptualizes decision-making in a 2AFC task as a process of sensory 

evidence accumulation.  The accumulation process is described through an 

analogy in which a particle oscillates randomly on a decision plane where the x 

axis represents the lapse of time and the y axis represents the amount of 

sensory evidence.  When the amount of the evidence surpasses either the 

positive or negative decision boundaries of the y axis, a decision is reached and 

the time the process takes is the decision RT.  The merits of the diffusion model 
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are that it directly estimates three main cognitively-interpretable processes – the 

drift rate, the boundary separation, and the non-decision component – three 

parameters that turn the random oscillation into a noisy deterministic process.  

The drift rate is associated with the speed to reach a decision threshold (Ratcliff 

& McKoon, 2007), which is determined by the correspondence between the 

stimuli (search items) and the memory set (search template).  In the case of 

template-based visual search, the drift rate correlates with the matching of the 

template to the search items; thus, it is conceivable that the shape of an RT 

distribution will correlate with the drift rate, if the processing of template 

matching influences an RT shape.  The boundary separation, on the other 

hand, may reflect how conservative a participant is.  Liberal observers may 

reach a conclusion earlier than conservative observers on the basis of the same 

amount of evidence if their decision criterion is set lower.  The non-decision 

component is a residual time, calculated by subtracting the decision time 

(estimated by the diffusion model) from the total (recorded) RT; this may 

reflects the time to encode stimuli (perceptual times) together with the time to 

produce a response output (motoric times) (Ratcliff & McKoon, 2007).   

The diffusion model has been used on various 2AFC paradigms and so 

far both psychophysics and neurophysiological studies indicate its usefulness to 

probe the two latent decision-making processes and the decision-unrelated 

times (e.g., Cavanagh et al., 2011; Towal, Mormann, & Koch, 2013).  The EZ2 

model is one of the simplification types (Grasman, Wagenmakers, & van der 

Maas, 2009; though see a review for more complicated statistical decision 

models of visual search in Smith & Sewell, 2013), which provides a coarse and 
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efficient estimation for the two important aspects of search decision: decision 

rate and decision criterion.  By dissecting the joint data of RT and accuracy into 

the part that is influenced by decision-related processes and that is influenced 

by the non-decision-related process, the EZ2 model is able to account for the 

changes in RT distributions in a psychologically meaningful way.  For instance, 

the factor that affects the non-decision process should reflect on the shift 

parameter that hardly changes the general pattern of an RT distribution, 

because its effect would be on all ranges of a distribution.  If most responses in 

a distribution are delayed equally, the shift parameter will also increase 

selectively.  On the other hand, the factor that delays the decision-related 

processes may consistently delay only the responses from the quick to the 

central band of a RT distribution, so it will result in an increase of the scale 

parameter.  That is, as Figure 2-1Figure 2- showed, a scale increase reduces 

the height of a distribution.  Alternatively, if a decision-related factor delays the 

quick to central band of a RT distribution, but speeds up the very slow band of 

responses, it will result in a shape increase.  

The diffusion model was used to complement the distributional analysis.  

The three model parameters – the evidence accumulation, the boundary 

separation, and the non-decision process – are operated at the stage of 

stimulus comparison in a search trial.  I used the EZ2 model to estimate the 

means across trials of the diffusion parameters in each condition.  The Weibull 

HBM on the other hand summarises the shapes of RT distributions in each 

condition.  The RT distributions thus are the aggregated outputs from the 

diffusion processes.  Therefore, the dual-modelling approach, at one end, 
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assumes one search response is driven by the diffusion process, and at the 

other, all the responses in one experimental condition aggregate to form an RT 

distribution, described by the Weibull parameters.  Even though the Weibull 

model takes only correct responses into account, the EZ2 estimations will still 

be able to account for the descriptive model, because the benchmark 

paradigms produce high accuracy responses.  

In summary, this study examined three questions related to the perceptual 

decision making during visual search.  The first question is whether the demands 

of search task affect the drift rate of sensory evidence accumulation related to 

decision speed and how this influence manifests in an RT distribution with regard 

to its shift and shape. The three benchmark search tasks here likely required 

various high-level cognitive processes, such as focusing attention to improve the 

quality of sensory evidence and binding multiple features to match a search 

template. Particularly, the spatial configuration search task has been showed 

highly inefficient (Bricolo, Gianesini, Fanini, Bundesen, & Chelazzi, 2002; Kwak, 

Dagenbach, & Egeth, 1991; Woodman & Luck, 2003). It is reasonable to expect 

this particular search task changes the shape of the RT distribution drastically. 

The second question examined whether the display size affects the shape of the 

RT distribution. As the stage model of information processing (Rouder et al., 

2005) presumes, the shape of an RT distribution is likely affected specifically by 

late-stage cognitive process. If the increase of search item in a display merely 

adds burden on early perceptual process, I should expect no influences from the 

display size on any decision parameters and thus the RT shape. The third 

question examined the hypothesis of group segmentation and recursive rejection 
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processes in search (Humphreys & Müller, 1993).  Specifically, segmentation and 

distractor rejection may involve both late-stage cognitive processes (binding 

multiple search items as a group), and early-stage perceptual processes 

(recursively encoding sensory information). This may in turn affect the decision 

and non-decision parameters and therefore, manifest as an interaction effect in 

the shape of the RT distributions. 

4.2 Method 

4.2.1 Design 

The study used a similar design to Wolfe et al. (2010) with a slight 

modification.  Specifically, I used a circular display layout with a viewing area of 

7.59° × 7.59°, which allocates 25 locations to hold search items.  Wolfe and 

colleagues (2010) used a viewing area of about 22.5° × 22.5° (also with 25 search 

locations) and each search item subtended around 3.5° to 4.1°.  Relative to Wolfe 

et al.'s study, my setting (i.e., using a similar number of search items presented 

in a smaller viewing area) rendered a high density of homogeneous distractors 

more likely when display sizes were large.  

 

Figure 4-1. A schematic representation of the tasks; in each there was a target 
present [black item (feature); black vertical (colour-form conjunction) and the 
number 2 (spatial configuration)]. 

The study investigated two factors, the display size (3, 6, 12, & 18 items) 

and whether the target was present or absent, using a repeated-measures, 
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within-participant design.  One group of participants (N = 20) took part in the 

feature and conjunction search tasks, and a second group took part in the 

spatial configuration search task (N = 20).   

In the feature search task, each observer looked for a dark square 

amongst varying numbers of grey squares (both were 0.69° × 0.69°).  In the 

conjunction search task, observers looked for a vertical, dark bar (0.33° × 0.96°) 

amongst two types of distractors, vertical grey bars (0.33° × 0.96°) and 

horizontal dark bars (0.96° × 0.33°).  In the spatial configuration search task, 

each observer looked for the digit 2 amongst digit 5s (both are 0.33° × 0.58°).  

Before the search display was presented, a 500-ms fixation cross appeared at 

the centre of the screen, followed by a 200-ms blank duration.  A trial was 

terminated when the observer pressed the response key.   

4.2.2 HBM 

The framework of the HBM is based on Rouder and Lu’s R code (2005), 

which used a Markov Chain Monte Carlo (MCMC) algorithm to implement 

hierarchical data analysis assuming a three-parameter Weibull function. I 

modified Rouder and Lu’s code into an OpenBUGS-based R program by 

adapting Merkle and van Zandt’s (2005) WinBUGS code to run a Weibull 

hierarchical BUGS model (Lunn, Spiegelhalter, Thomas, & Best, 2009), which 

was linked with R codes by R2jags (Sturtz, Ligges, & Gelman, 2005) and Just 

Another Gibbs Sampler (JAGS) (Plummer, 2003)19.  

The Weibull function was used to model the individual RT observations, 

                                                      
19 The readers who are interested in the programming details could visit the authors’ GitHub at 
https://github.com/yxlin/HBM-Approach-Visual-Search 
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assuming that each of them was a random variable generated by the Weibull 

function.  The function comprises three parameters, the shape (i.e., β, describing 

the shape of a RT distribution), the scale (i.e., θ, describing the general 

enhancement of the magnitude and variability in a RT distribution), and the shift 

(i.e., ψ, describing the possible minimal response time of a RT distribution). The 

β parameter was then modelled by a γ distribution with two hyper-parameters, η1 

and η2, and the θ and ψ parameters were modelled by two uniform distributions. 

The former (θ) was initialized as an un-informative distribution, whereas the latter 

(ψ) was set to the range of zero to minimal RTs in the respective condition and 

participant, because the ψ parameter assumed a role as the non-decision 

component.  The hyper-parameters underlying the γ distributions were then 

modelled by other γ distributions with designated parameters, following Rouder 

and Lu (2005).  Likewise, I replaced the Weibull function with the 3-parameter 

gamma, lognormal, and Wald functions (Johnson et al., 1994), keeping similar 

prior parameter setting.  

In the HBM, correct RTs were modelled for each participant separately in 

each condition. The HBM ran 3 simultaneous iteration chains.  Each of them 

iterated 105000 times and sampled once every 4 iterations to alleviate possible 

auto-correlation problems.  The first 5000 samples were considered to be 

arbitrary and discarded (i.e., burn-in length). The same setting was applied both 

to my data and to Wolfe et al.’s data (2010) to help a direct comparison. 

4.2.3 EZ2 Diffusion Model 

The analyses also used Grasman, Wagenmakers and van der Mass’s 

(2009) EZ diffusion model, implemented in R’s EZ2 package, to estimate the drift 
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rate, boundary separation and non-decision component separately for each 

participant in each condition.  Following the assumption of the EZ diffusion model 

(Wagenmakers, van der Maas, et al., 2008), the across-trial variability associated 

with the drift rate, boundary separation and non-decision components was held 

constant.  Due to the high accuracy rate, the analyses applied the edge correction 

procedure 20  following Wagenmakers et al. (2008; see also other possible 

solutions in Macmillan & Creelman, 1991) for the conditions where an observer 

committed no error. Present or absent responses were modelled separately, 

using the Simplex algorithm (Nelder & Mead, 1965) to approach a converging 

estimation. The initial input values to the EZ2 model was set according to the 

paradigm and literature: (1) the paradigm permitted only two response options, 

either the target was present or absent and (2) the search slope for present-to-

absent ratio was slightly greater than 2 (Wolfe, 1998b). Accordingly, the initial 

values of the drift rates for present and absent responses, were respectively set 

at 0.5 and 0.25. The non-decision component and the boundary separation were 

arbitrarily, but reasonably, set at 0.05 and 0.09. The initial values are simply 

educated guesses provided for the algorithm approaches reasonable 

estimations.   

Both for the HBM and the diffusion model, the parameters were estimated 

as per-condition per-participant basis, so data from each participant contributed 

24 (3 × 2 × 4) data points for each parameter.  The analyses assessed the 

variability across individuals in visually-weighted regression lines, using a non-

                                                      
20 When an observer make no error response (i.e., 100% accuracy, Pc), the accuracy is replaced 
with a value that corresponds to one half of an error, following the formula, Pc = 1 – (1/2n).    
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parametric bootstrapping procedure, implemented by Schönbrodt (2012) for 

Hsiang’s visually-weighted regression (VWR) method (2013)21.  The VWR is a 

data visualisation technique that attempts to give a visually intuitive impression 

for what the data may inform.  It applies lowess to estimate regression functions 

and the bootstrap method to estimate confidence interval.  The principle to 

represent the confidence interval in VWR is to use the bootstrapped line density 

and its colour saturation to inform uncertainty intuitively.  That is, the denser the 

bootstrapped lines, and the more saturated its colour is, the more probable the 

data suggest. 

4.3 Result 

I report the data in four sections.  Firstly, I report standard search 

analyses, using mean measures of performance for individuals across trials.  

Next, I present the distributional analyses, using box-and-whisker plots, 

probability density plots with quantile-quantile subplots, and empirical 

cumulative density plots, to recover the RT distributions. The distributions from 

each condition were then compared.  Thirdly, the standard search analyses and 

the distributional analyses were then contrasted with previous findings reported 

by Wolfe et al. (2010) and by Palmer et al., (2011)22.  In the last section, I report 

the analyses, using the HBM and the EZ2 diffusion model. These include the 

data for the Weibull and the diffusion model parameters, presented separately, 

with visually-weighted non-parameter regression plots.  From this I go on to 

discuss the factors contributing to the RT shape, shift and scale parameters, 

                                                      
21  The technique was discussed and implemented in the blogsphere before it was formally 
published in the 2013 technical report. 
22 I thank Jeremy Wolfe and Evan Palmer for their permission. 
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based on how these parameters change across the different search conditions 

and contrast them with the decision parameters from the diffusion model.  

Chapter 2 presents a simulation study to examine if Weibull HBM estimates of 

distributional parameters are reliable with a small sample size and that 

Bayesian diagnostics verify the reliability of MCMC procedure. 

I focus on the data from target present trials because absent trials likely 

involve a different set of decision processes (one possibility is an adaptive 

termination rule, suggested by Chun & Wolfe, 1996; alternatively see a recent 

computational model in R. Moran et al., 2013).  A decision in an absent trial is 

reached, possibly based on, for example, a termination rule that an observer 

deems the collected sensory evidence is strong enough to refute the presence of 

a target. Although it is likely an observer, in a present trial, may also adopt an 

identical termination rule to infer the likelihood of the target presence, he/she 

would rely on the stronger sensory evidence extracted from a target than those 

from non-targets. This is likely when a target image is physically available in a 

present trial and target foreknowledge is set up in an attentional template.  Thus, 

the main aim of report is to examine the role of factors such as target-distractor 

grouping effect on the distribution of target present responses in search.  I 

nevertheless append also standard analyses for absent trials in all the figures. 

4.3.1 Mean RTs and Error Rates 

As is typically done for the aggregation RT analyses, I trimmed outliers by 

defining them as (1) incorrect responses or correct responses outside the range 

of 200 ms to 4000 ms for feature and conjunction searches and 200 ms to 8000 

ms for spatial the configuration search (though see, Heathcote et al., 1991, for 
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the downside of trimming RT data).  The trimming scheme was the same as in 

Wolfe et al. (2010). This outlier trimming resulted in a rejection rate of 9.2%, 12%, 

and 7.2%, of the responses respectively for the three tasks.  After excluding the 

outliers, the data were then averaged across the trials within each condition, 

resulting in 76 averaged observations for the feature and conjunction searches 

and 80 observations for the spatial configuration search. All outliers were defined 

as error responses. 

The mean RT were modulated by all experimental factors and their 

interaction, as indicated by the two-way ANOVA23, showing the display size 

effect, F(3, 165) = 176.11, η2p = .76, p = 1 × 10-13, the task effect, F(2, 55) = 

108.39, η2p = .80, p = 1 × 10-13, and the interaction effect, F(6, 165) = 68.63, η2p 

= .71, p = 1 × 10-13.  The spatial configuration search (RTmean = 913 ms) required 

reliably longer response times than the conjunction search task (mean difference 

= 327 ms, 95% CI, [244, 411] ms, p = 5.89 × 10-13), which in turn had longer mean 

RTs (586 ms) than the feature search task (428 ms; mean difference = 158 ms, 

95% CI, [74, 243] ms, p = 6.68 × 10-5).  Separate ANOVAs support the display 

size effect in all search tasks, [feature, F(3, 54) = 7.49, η2p = .29, p = 2.78 × 10-4; 

conjunction, F(3, 54) = 103.15, η2p = .85, p = 1 × 10-13; spatial configuration, F(3, 

57) = 113.80, η2p = .86, p = 1 × 10-13].   

The error rates showed a similar pattern as the mean RT with a display 

size, effect F(3, 165) = 38.09, η2p = .41, p = 1 × 10-13 , a task effect, F(2, 55) = 

                                                      
23  The three task levels were treated as a between-participant factor for straight-forward 
presentation, although the levels of feature and of conjunction search are within-participant factor.  
Even under this calculation (leaving more variation unexplained), the RTmean amongst three tasks 
still showed reliable differences.        
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5.75, η2p = .17, p = .005 and the interaction effect, F(6, 165) = 10.867, η2p = .283, 

p = 3.52 × 10-10.  This is consistent with there being no trade-off between the 

speed and accuracy of responses.  The spatial configuration search (error 

ratemean = 11 %) was more difficult than the conjunction search task (8 %), but 

the difference did not exceed significant level after Bonferroni correction (the 

difference of mean error rate = 3 %, 95% CI, [1.774, 8.134], p = .356). The 

conjunction search task in turn was more difficult than the feature search task 

(5%; the difference of mean error rate = 4 %, 95% CI, [-1.396, 8.628], p = .241). 

The only reliable difference of error rates was between the spatial configuration 

search and the feature search tasks (the difference of mean error rate = 7 %, 

95% CI,  [1.847, 11.755], p = .004)    

For the feature search, the effect of display size was not reliable, F(3, 54) 

= 1.52, η2p = .08, p = .22, while there was a reliable effect of display size for both 

the conjunction task, F(3, 54) = 6.08, η2p  = .25, p = .001, and the spatial 

configuration task, F(3, 57) = 41.43, η2p= .69, p = 1.24 × 10-13 (lower panel in 

Figure 4-3).  Post-hoc t tests indicated that in the conjunction search task 

participants committed more errors at display size 18 (13 %) than at display sizes 

12 (9 %; p = .028) and at 6 (7 %; p = .043, Bonferroni correction for multiple 

comparisons).  In the spatial configuration search, there were differences across 

all display size pairings, p = 5.90 × 10-5, 9.85 × 10-6, 3.58 × 10-4, 6.80 × 10-6, & 

1.21 × 10-5 (3 vs. 12, 3 vs. 18, 6 vs. 12, 6 vs. 18, & 12 vs. 18; Bonferroni correction 

for multiple comparisons), except for display sizes 3 and 6 (p = .16). 
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Figure 4-2. The box-and-whisker plots. The upper and lower panels show the means of RTs and error rates, respectively. The 
subplot in the upper-left panel shows a zoom-in view of the bar-plot of the feature search task (y axis ranging between 405 to 
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450 ms; x axis labelling four display sizes). The left and right panels present the analyses from the current and Wolfe et al.’s 
(2010) data sets, respectively. 
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4.3.2 Error Analysis 

To test if the shape changes in an RT distribution are due to an increase 

of miss errors (Wolfe et al., 2010), I also analysed two types of error, miss 

(participants pressed the absent key in target present trials) and false alarm 

(participants pressed the present key in target absent trials). 

The miss error rate showed a reliable display size effect, F(3, 165) = 38.08, 

η2p = .41, p = 1 × 10-13,a search task effect, F(2, 55) = 5.75, η2p = .17, p = .005 

and an interaction effect, F(6, 165) = 10.85, η2p = .28, p = 3.62 × 10-10.  Both the 

spatial configuration, F(3, 57) = 41.37, η2p = .69, p = 1.25 × 10-13, and the 

conjunction search task, F(3, 54) = 6.08, η2p = .25, p = .001, showed increasing 

miss errors as the display size increased, but not the feature search task, F(3, 

54) = 1.52, η2p = .08, p = .221.  The false alarm rate showed only a display size 

effect, F(3, 165) = 3.94, η2p = .07, p = .010.  The reliable effect of false alarm 

errors was observed in both feature, F(3, 54) = 2.81, η2p = .14, p = .048 and 

conjunction search, F(3, 54) = 2.96, η2p = .14, p = .04, but not in spatial 

configuration search, F(3, 57) = 1.14, η2p = .06, p = .34 (Figure 4-3).   
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Figure 4-3. Mean rates of miss and false alarm errors. The error bars show one 
standard error of the mean. The y axis shows percentage of errors. F, C and S 
stand for feature, conjunction and spatial configuration searches. 
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Figure 4-4. The trial-RT distributions. The subplots are the normalised quantile-quantile (Q-Q) plot for the corresponding density 
plots.  The y axis of the Q-Q plots compares trial RTs [y axis labelled, RT (ms)] with normalised z scores [x axis labelled, (Z-
score)].  The black dots in the Q-Q plots represent data points.  The more black dots deviate from the normal reference (grey 
diagonal) line, the stronger it suggests the data are drawn from a non-normal distribution.  The plot is re-scaled to make the 
small print easier to read.  P and A stand for present and absent trials, respectively.  
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Figure 4-5. The empirical cumulative RT density curves drawn based on the trial RTs. The areas within each envelope represent 
the differences between target present and target absent trials for each task. The two dashed lines show the positions of the 
50% and 95% cumulative densities. Long latencies (right border of envelopes) were consistently observed on target absent 
trials. The plot is re-scaled to make the small print easier to read.     
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4.3.3 Distributional Analysis 

Figure 4-4 shows the RT distributions and quantile-quantile plots. The 

distributions were constructed based on the trial RTs (43485 data points). Each 

density line represents the data from one participant. Evidently, the normality 

assumption was untenable across all the conditions.  All sub-plots showed that 

the data clearly deviated from the theoretical normal lines.   It is also apparent 

that individual differences play a more important role for the conjunction and 

spatial configuration tasks than for the feature task, judging by the diversity of the 

density lines in the two difficult search tasks. 

Figure 4-5 shows the empirical cumulative distributions, drawn based on 

trial RTs (43485 and 109036 data points in my and Wolfe et al.’s data sets, 

respectively).  The contrasting RTs  across the display sizes confirm 

Wagenmakers and Brown’s (2007) analysis that, in inefficient relative to efficient 

search tasks, the RT standard deviation, together with the RT mean, play crucial 

roles in describing visual search performance.  Specifically, the elongated 

cumulative distributions suggest that the more items are present, the more likely 

an observer will produce a response that falls in the right tail of the RT distribution.  

This observation again cautions against a reliance solely on using the 

measurement of the central location when investigating visual search 

performance.   

4.3.4 Contrasts with Prior Data 

The data here was compared with those of Wolfe et al.’s (2010) data.  The 

mean RTs and error rates indicated similar patterns across the studies.  The data 

for the trial RTs revealed skewed distribution in both studies.  Even though the 
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general pattern is similar, the two data sets showed some differences.  One 

difference is the variability.  The experiment in Wolfe et al. (2010) recruited less 

participants, and each of them contributed far more per-condition observations 

than the current study.  Although it is unclear if the strict experimental procedures, 

such as the real-time machine and high-precision respond pad, helped also for 

decreasing the variability in the current dataset, the distributional plots suggest 

that decreased variability may also contribute to the different, especially in the 

Weibull parameter, findings in the two studies.     
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Figure 4-6. The trial-RT distributions. The y axis of the Q-Q normalised plots compares trial RTs [y axis label, RT (ms)] with 
normalised z scores [x axis label, (Z-score)]. Data are from Wolfe et al (2010). The plot is re-scaled to make the small print 
easier to read.    
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4.3.5 The HBM Estimates 

In this section, I firstly presented each parameter separately for the 

respective ANOVA results, and I compared the data for the three search tasks at 

the different display sizes, modelled by the HBM.  Next, I conducted a non-

parametric bootstrap regression to assess the relationship between the display 

size and the difficulty of the search task.  The analysis focused on target-present 

trials.  I used the DIC to evaluate the function fit to the data.  In general, the small 

the DIC, the better fit (Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2013).  

Although the lognormal function showed the smallest DIC24, the DICs across the 

four fitted functions were close.  Although the lognormal and Wald functions 

showed the smaller DICs than the Weibull function, the DICs across the four fitted 

functions are close (Table 4-1Table 4-).  Moreover, the diagnostics of the gamma 

HBM suggest its posterior distributions did not converge.  Excluding the non-

converged gamma function, I reported arbitrarily the estimates from the Weibull 

HBM, given that prior work shows this provides a highly robust  account, not 

strongly moderated by noise in the data (see a specific pathology of the Weibull 

function in Rouder & Speckman, 2004, pp 424-425; and how HBM resolves this 

problem in Rouder et al., 2005, pp. 203). 

                                                      
24 DIC suggests which model may fit better, but is not a definitive theoretical index, as its usage 
depends on the context (e.g., how a model is constructed).  I used it as a convenient proxy to 
understand if Weibull function fits substantively different from the other comparable functions. 
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Table 4-1. The DICs of the 4 fitted functions. They are averaged across the absent and 
present trials, tasks and display sizes.  The smaller the DICs, the better the fit. 

 Lin, Heinke, & Humphreys (2015)  Wolfe, Palmer, & Horowitz (2010) 

Gamma 385,348,342 975,871,147 

Log normal 385,348,002 975,870,279 

Wald 385,348,026 975,870,358 

Weibull 385,348,139 975,871,078 

     

Figure 4-7.  The line plots for the Weibull parameters.  L and W stand for my and 
Wolfe et al.’s (2010) datasets.  The error ribbons were drawn based on the 
credible intervals estimated by the BUGS model.
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4.3.5.1 Shift  

The shift parameter were influenced by the task, F(2, 55) = 129.75,  p = 

1.0 × 10-13, η2p = .83, and the display size factors, F(3, 165) = 9.03,  p = 1.43× 10-

5, η2p  = .14 (two-way ANOVA).  The shift parameters increased gradually from 

the feature, and the conjunction search to the spatial configuration search (post-

hoc t test; 246, 342, vs. 436 ms; p = 2.37 × 10-10 & 2.83 × 10-10).  The shift plot in 

Figure 4-8 collaborated with the ANOVA results, showing that each task 

demonstrates very different magnitudes. The display size effect is due to the 

contrast between the largest and the smallest display size.  Comparing to other 

Weibull parameters, the gradient of display size change in the shift parameter is 

relatively small.    

4.3.5.2 Shape  

The shape parameter were influenced by the task factor, F(2, 55) = 23.50,  

p = 4.21 × 10-8, η2p  = .46, and the task × displays size interaction, F(6, 165) = 

3.45, p = .003, η2p = .11.  The display size influenced the shape parameter only 

marginally, F(3, 165) = 2.44,  p = .067, η2p  = .04.  The marginal display size effect 

was supported by separate ANOVAs, showing the display size influences on the 

conjunction search, F(3, 54) = 4.21,  p = .01, η2p  = .19 (1496, 1731, 1695 vs. 1702 

ms) and spatial configuration search, F(3, 57) = 4.45, p = .007, η2p = .19 (1573, 

1541, 1397 vs. 1529 ms).   

The shape plot in Figure 4-8 suggests that the search task differences 

appears to occur at large display sizes (i.e., 6, 12 and 18).  Secondly, there is a 
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U-shaped function for the spatial configuration task – both for the magnitude and 

variability of the shape parameter.  This U-shape pattern is not observed in Wolfe 

et al.’s (2010) data.  The emergent decreases in the mean shape parameter and 

the associated increase in the variability suggest there might be an emergent 

mechanism influencing search at the larger display sizes.  The SERR group 

segmentation account for the emergent observation will be discussed in the 

Discussion. 

4.3.5.3 Scale  

Similar to the shift parameter, the scale parameter is modulated by the 

two experimental factors [task, F(2, 55) = 161.70,  p = 1.0 × 10-13, η2p  = .86; 

display size, F(3, 165) = 39.75,  p = 1.0 × 10-13, η2p  = .420] and their interaction, 

F(6, 165) = 19.31, p =  1.0 × 10-13, η2p = .413.  The display size main effect 

reflects from the conjunction search, F(3, 54) = 10.00,  p = 2.42 × 10-5, η2p  = .36 

(206, 257, 301 & 334 ms) and the spatial configuration search, F(3, 57) = 33.47, 

p  = 1.42 × 10-12, η2p = .64 (302, 444, 607 & 760 ms).  The VWR plot showed 

the shape parameter is more variable than the other two parameters and this is 

especially the case for the feature search.    
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Figure 4-8. Visually-weighted regression (VWR) plots (Hsiang, 2012) for the three Weibull parameters. VWR performs 
regressions using display size as the continuous independent variable and Weibull parameters as the predicted variables 
separately for the three search tasks.  The white lines in the middle of each ribbon show the predicted regression lines. To show 
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differences across the conditions (display sizes and tasks), the uncertainty, which usually error bars aim to communicate, is 
estimated via bootstrapping nonparametric regression lines.  Here I used locally weighted smoothing (loess; Cleveland, Grosse, 
& Shyu, 1992). The density of lines and its colour saturation were drawn in a way to reflect the extent of uncertainty.  The denser 
and more saturated a ribbon is, the less between-participant variation it shows.    
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4.3.6 Diffusion Model 

The section I present the three diffusion model parameters, using an 

identical analysis protocol as in previous section.  Again, the analyses focused 

on target-present trials. 

4.3.6.1 Drift rate  

The drift rate was influenced by the task factor, F(2, 55) = 9.47,  p = 2.92 

× 10-4, η2p   = .26, but not the display size factor, nor their interaction.  Further 

tests a larger drift rate for the feature search (0.323) than that for the conjunction 

search (0.265; marginally significant, 95 % CI, [-0.12, .001], p = .057) and that for 

the spatial configuration search (0.220; 95 % CI, [0.04, 0.16], p = 1.81 × 10-4).  

No difference was found between the conjunction and spatial configuration 

searches. 

The drift rate in Figure 4-9 maintained at a stable rate across the display 

sizes in the feature and the conjunction searches.  On the other hand, the three 

tasks showed noticeably different drift rates.  There was a tendency also for the 

drift rate to rise at the large display size in the spatial configuration task, 

suggesting that there was an emergent factor, although the variability across 

observers suggested that this was not universally the case for all participants.  

This was not evident in absent trials25. This upward trend was also not present in 

the data of Wolfe et al. (2010).  

                                                      
25 See https://github.com/yxlin/HBM-Approach-Visual-Search for absent trial data. 
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4.3.6.2 Non-decision time  

The non-decision time differed reliably among the search task, F(2, 55) = 

5.64,  p = .006, η2p   = .170, which interacted with the display size factor, F(6, 165) 

= 4.16,  p = .001, η2p   = .131.  But no display size difference was observation in 

the non-decision time.  Post-hoc t tests showed that spatial configuration search 

(79 ms) was associated with a longer non-decision time than feature search, (57 

ms; 95 % CI, [4.53, 38.1], p = .008) and conjunction search (61 ms; 95 % CI, 

[0.71, 34.2], p = .038).  The interaction effect is due to a reliable display size 

influence on the spatial configuration task, F(3, 57) = 6.89,  p = 4.89 × 10-4, η2p  = 

.27 (60.59, 80.54, 89.50 vs. 84.23 ms), but not other tasks.  
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Figure 4-9. The VWR plot for the EZ2 diffusion model 
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4.3.6.3 Boundary separation  

Boundary separation, similar with the mean RT, accuracy rate and the 

Weibull scale parameter, showed reliable main and interaction effects [the task, 

F(2, 55) = 31.75,  p = 6.81 × 10-10, η2p   = .54; the display size,  F(3,165) = 7.6,  p 

= 8.61 × 10-5, η2p   = .12; the task × display size interaction, F(6, 165) = 4.76,  p =  

1.69 × 10-4, η2p   = .15].  The task main effect is due to that the observers 

responded to the feature search, using a more liberal criterion than the spatial 

configuration search (0.11 vs. 0.19, p = 1.01 × 10-9, 95% CI, [0.06, 0.11]).  

Although the response criterion for the conjunction search was in-between the 

above-mentioned two tasks, it differed reliably only from the spatial configuration 

condition (p = 1.49 × 10-6, 95% CI, [0.03, 0.09]).  

Table 4-2. Summary table for the significance of two-way ANOVAs for all tested 
parameters 

 Mean 

RT  

Error 

rate 

RT 

Shift 

RT 

shape 

RT 

scale 

Drift 

rate 

Non-

decision 

time 

Boundary 

separation 

Display 

Size 

V V V  V   V 

Task V V V V V V V V 

Interaction V V  V V  V V 

 

4.4 Discussion 

The study applied an integrated approach to modelling visual search data.  

It examined the data not only using standard aggregation approaches, but also 

using distributional approaches to extract cognitive-related parameters from the 

trial RTs.  This approach reveals the possible accounts of the three distributional 
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parameters – shift, shape and scale – associating them with non-decision time, 

drift rate and boundary separation estimated from the diffusion model.  This study 

goes further than most previous studies (Balota & Yap, 2011; Heathcote et al., 

1991; Sui & Humphreys, 2013; Tse & Altarriba, 2012) that have applied 

distributional analysis to RT data.  It used conventional distributional analyses to 

examine empirical RT distributions and the associated parameters were 

complemented with Bayesian-based hierarchical modelling to optimise 

estimates.  Moreover, the study examined those distributional parameters 

against a plausible computational model – the EZ2 model – to link the 

distributional parameters to underlying psychological processes.  The former 

statistical model associates the experimental factors with the changes in RT 

distributions and the latter EZ2 model associates the experimental factors with 

the EZ2 parameters, the drift rate and the response boundary.  A cross-

comparison of the EZ2 parameters and the RT distributions could suggest how 

the changes in the cognitive processes affects the RT distributions.    

Replicating many previous findings in the search literature the data show 

efficient search for feature targets and inefficient search when targets can only 

be distinguished from non-targets by conjoining multiple features (shape and 

color, or shape only, see Chelazzi, 1999; Chun & Wolfe, 2001, for a review).  The 

display size effect presented in the feature search (415, 426, 432 & 437 ms) 

suggests some limitations on selecting feature targets but the analyses based on 

mean RTs do not differentiate if the effect (η2p = .294) is due to post-selection 

reporting (Duncan, 1985; Riddoch & Humphreys, 1987) or an involvement of focal 

attention in feature search.  This question is addressed by examining the 
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estimates from the HBM together with the EZ2 model.  The lack of display size 

effects in the non-decision time suggest that the increasing trend in the mean 

RTs is unlikely due to a delay in the peripheral processes, such as motor or early 

perceptual times.  Neither drift rate showed a reliable effect in the display size at 

the feature search.  The only possible difference is an unreliable display size 

effect (p = .106) together with an increase of variation at the shape parameter in 

the condition of display size 18.  This result appears to favour the explanation of 

focal attention.  

Though previous results have indicated that search is often inefficient for 

conjunction and configuration-based stimuli, my findings indicated that spatial 

configuration search was particularly difficult (Bricolo et al., 2002; Kwak et al., 

1991; Woodman & Luck, 2003).  This could reflect either a reduction in the 

guidance of search from spatial configuration compared with simple orientation 

and colour information, or in the speed for identifying each item after it had been 

attended.  Interestingly, although when compared with the standard error of the 

conjunction search (9.68 ms), the configuration search generally showed a larger 

value across participants (24.54 ms), the standard errors within the configuration 

search decreased as the display sizes increased (35.17, 27.12, 15.38, vs. 20.49 

ms). This last result suggests high density homogeneous configurations of 

distractors rendered search less variable, a point I return to below (Bergen & 

Julesz, 1983; Chelazzi, 1999; Duncan & Humphreys, 1989; Heinke & Backhaus, 

2011; Heinke & Humphreys, 2003). 

4.4.1 RTs Between and Within Participants 

The analyses for the (between-participant) mean RTs do not always 
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accord with the analyses of (within-participant) trial RTs.  The analyses of the trial 

RTs reveal clear skewed RT distributions, suggesting that the data are distributed 

symmetrically when taking average across participants and skewed positively 

and distributed towards long latencies when examining at the within participants 

(Luce, 1986).   

In additional to the analyses of mean performance, the integration of 

hierarchical Bayesian and EZ2 model threw new light on search.  Following 

Rouder and colleagues (2005), HBM dissects an RT distribution into three 

parameters, shift, scale and shape. The shift parameter has been linked to 

residual RTs, the scale parameter linking with the response rate and the shape 

parameter with post-attentive response selection (Wolfe et al., 2011).  The EZ2 

model estimates directly three parameters: (1) the drift rate, reflecting the quality 

of the match between a memory template and a search display (the goodness-

of-match, in Ratcliff & Smith’s term, 2004), (2) the boundary separation reflecting 

the response criterion (Wagenmakers et al., 2007), and (3) the non-decision time 

reflecting the time an observer encodes stimuli and executes a motor response.  

This conceptualisation can help articulate the correlation between the descriptive 

parameters from the RT distribution and those estimated by the diffusion model.  

For example, the role of shift in a Weibull function is to set directly a minimal 

threshold for responses and rules out the possibility of negative responses.  This 

suggests an association between the RT shift and non-decision time parameters.  

4.4.2 Model-based Analysis 

 The EZ2 model and the HBM suggest that distributional parameters reflect 

different aspects of search processes.  The current data from the two models 
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inform some modification for the hypotheses posited by the stage model of 

information processing, which claims that different aspects of peripheral and 

central processing might associate with different Weibull parameters (Rouder et 

al, 2005).  Firstly, the shift parameter was associated with the speed of peripheral 

processes (i.e., irreducible minimum response latency, Dzhafarov, 1992).  

First, the shift parameter varied across the search tasks and the display 

size, a pattern that might attribute to non-decision time changes.  The different 

tasks require very different perceptual burdens, so does the increase in the 

display size.  These factors should reflect on the psychological processes 

influencing evenly all responses in a distribution, which the shift parameter 

measures (Chapter 2).  However, a direct comparison for the ANOVA result 

(Table 4-2) did not show a clear one-to-one mapping in the experimental factors 

with the non-decision time.  One possible reason for the ambiguous finding is that 

the EZ2 model, although enables rough estimates for the drift rate and the 

boundary separation, might give contaminated non-decision time.  That is, the 

current EZ2 estimate for the non-decision time might carry the influences also 

from some cognitive processes.  This possibility is suggested by the interaction 

effect.  As showed in the VWR plots, the shift parameter increases monotonously 

(Figure 4-8) with the task and the display size factors, but this is not observed in 

the non-decision time (Figure 4-9).  A second possible account is that the 

processes estimated by the non-decision time might reflect the perceptual 

operation been influenced by the decision-related processes.  For example, in 

the spatial configuration search, observers engage in the cognitive operation of 

rotating the mental image of 2/5 digit and matching the digits against the search 
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template.  If this cognitive operation might affect the non-decision processes, 

such as encoding the digits and perceptually grouping them together, the EZ2 

estimate for the non-decision time might include also the task factor related to 

higher cognitive operations.  In general, the current data support the view that the 

shift parameter reflects unambiguously the component in the factors that 

influences evenly all responses in a distribution, but whether the non-decision 

time also reflects the same process remind to be clarify.                  

To sum up, the current study do not support a direct association of the 

shift parameter with the speed of peripheral processes, assuming that the EZ2 

non-decision time parameter is a good estimate for the peripheral processes. 

Nevertheless, if the EZ2 non-decision time estimate is also contaminated by non-

peripheral processes, such as the perceptual grouping that rendering a drastic 

change at the display size 7, the shift parameter might still be a good candidate  

for estimating the peripheral processes.  A further modelling effort may help to 

clarify this point.  

 In contrast to the shift parameter, the shape parameter showed marginal 

effect of the display size, a reliable effect at the task, and an interaction 

between these factors.  The magnitude of this parameter increased 

monotonically with the display size for the feature and conjunction searchers 

but there was a U-shaped function for the spatial configuration search.  This last 

result is consistent with there being a contribution from an emergent property of 

the larger configuration displays, such as the presence of grouping between the 

multiple homogeneous distractors leading to a change in perceptual grouping 

(see also Levi, 2008, for a similar argument concerning visual crowding).  This 
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change in the shape parameter in the large configuration search display is in 

line with a sudden increase of the drift rate standard deviation 

(.080, .050, .054, .344).  This might be just a coincidental observation across 

the two separate models and is ready accountable by the SERR’s spatial 

grouping hypothesis.  It might also be a true visual search phenomenon been 

captured by my exploratory analysis, as the Rouder et al’s (2005) hypothesis 

predicted the association between the distributional shape and the higher 

cognitive processes.  Presuming the results from the memory recognition 

paradigm is applicable to the visual search paradigm and the matching process 

of a template to search items is a WM operation, the current study suggests the 

drift rate changes might be due to the matching process of template to a search 

item and to the group segmentation process.  Both processes underlie the 

change in the shape parameter.  

 In addition, I observed a general increase in the values of the shape 

parameter across the display sizes at absent trials in the spatial configuration 

task, F(3, 57) = 6.13, p = .001, η2p = .244 (1.73, 1.86, 2.05, & 1.96; 3, 6, 12, & 

18).  The target absent-induced shape change in the spatial configuration task 

was observed also in Palmer and colleagues’ analysis (2011).  However, their 

data showed no reliable shape change across display sizes for present trials (E. 

M. Palmer et al., 2011).  Following Wolfe et al.’s (2010) suggestion, Palmer and 

colleagues (2011) speculated that the display size effect for the shape 

parameter might result from the premature abandoning of search, a view that is 

supported by their data showing high rate of miss errors in the spatial 

configuration task (Wolfe et al., 2010).  The high rate of miss errors might reflect 
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when an observer prematurely decides to give an absent response on a target 

present trial.  This will in turn reduce the overall number of slow responses 

leading to an RT distribution with low skew.  This indicates that in the conditions 

with high miss errors, participants tended to set a low decision threshold for the 

target absent response.  The tendency might also appear in the absent trials, 

resulting in correct rejection by luck, a result leading to RT distributions in the 

absent trials with an increase in the shape parameter.  I, applying a more 

sensitive method under the constraint of limited trial numbers, show reliable 

display size effects on the RT shape in the present trials of the spatial 

configuration and the conjunction searches.  Together with the miss error data, 

my data do indicate that a link between the miss errors and the shape of the RT 

distribution is plausible.  In addition to the explanation of participants 

abandoning search prematurely (i.e., a dynamic changes of boundary 

separation), I propose another explanation that, relative to the feature search, 

the factor that changes the RT shape in the spatial configuration search is the 

goodness-of-match between the search template and the search items (thereby 

the change in the drift rate).  This implies the factors contributing a change at 

the rate of evidence accumulation will result in shape changes for the RT 

distributions.   

Taken together the data in the simulation study (Chapter 2), the data 

suggest that shape parameter does associate higher complex cognitive 

operations, because (1) the boundary separation is associated with the miss-

error account; (2) the increase in the drift rate is associated with the goodness-

of-match account; and (3) the emergent grouping effect is associated with the 
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view that an additional stage is inserted into a cognitive operation (Rouder et 

al., 2005).  The association of a myriad cognitive operations with the shape 

parameter suggests also that rather than reflecting a specific cognitive 

operation, the shape changes depend on the paradigms.        

Among the three Weibull parameters, the scale parameter showed the 

highest correlation with mean RTs (Pearson r = .78, p = 2.20 × 10-16), a result 

replicating Palmer et al.’s (2011) analysis.  The high correlation should not be 

surprising, considering that both the RT scale and the mean RTs capture the 

change in the central location of RT distributions.  The scale parameter estimates 

an overall enhancement (or reduction) of response latency as well as response 

variance, so do the mean and variance RTs (see a review in Wagenmakers & 

Brown, 2007).  Unlike the mean RTs, however, the scale parameter in my dataset 

was not sensitive to the display size in the feature search task.  A cross-

examination with the boundary separation in the diffusion model appears to 

indicate that the scale parameter might reflect the influence of response criteria, 

with only the inefficient tasks showing the display size effect.  This should not be 

taken as evidence indicating that the scale parameter is a direct index of the 

response criteria however; rather changes in the scale parameter are a 

consequence of altering the response criteria.  An observer with a conservative 

criterion, for example, might show a general change of response latency and 

variance (the more reluctant to make a decision, the more variable a response 

will be), so the scale parameter reflects this change.   

The scale-criterion account is however just one possibility, which is based 

on the similar ANONA finding (i.e., the significant effects for the two factors and 
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the interaction for the scale and the boundary separation).  Because the 

simulation study showed the scale parameter links to two EZ2 parameters.  The 

current study does not exclude the possibility that the scale effect is due to the 

change in the drift rate.  A further direct test is required to explore this possibility.      

4.4.3 Limitation 

The analytic approach I adopted assumes that individual RTs are 

generated by the 3-parameter probability functions.  The selection of the Weibull 

function is determined, on the one hand, by its probing three important aspects, 

the shift, scale and shape, of an RT distribution, differing from what the ex-

Gaussian function describes (mu, tau, & sigma).  On the other hand, I selected 

the Weibull function, because it permits a reliably converged posterior 

distribution, and has broad applications to memory and to visual search (Hsu & 

Chen, 2009; Logan, 1988) when being modeled in the hierarchical Bayesian 

framework (Farrell & Ludwig, 2008; Rouder et al., 2005).  

4.5 Conclusion 

In conclusion, my study shows how the HBM-based distributional analysis, 

complemented with the EZ2 diffusion model, can help to clarify visual search 

processes.  The data indicate that different effects of search difficulty contribute 

to performance, with the effects of the search condition being distinct from effects 

of display size in some cases (on the drift rate and shift parameters) but not in 

others (effects on non-decision factors and the separation of decision 

boundaries).  I have linked this dissociation to the involvement of distractor 

grouping and rejection (on the one hand) and serial selection of the target and 
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the setting of a response criterion (on the other).  The approach goes beyond 

what can be done using standard analyses based on mean RTs.  
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Chapter 5 Updating the Template Changes the Response 

Threshold  

5.1 Introduction 

Our ability to conduct efficient visual search for a target varies greatly 

according to the similarity relations between targets and distractors (Duncan & 

Humphreys, 1989). Search efficiency can vary from minimal or even decreasing 

RT functions as the display size of distractors increases (in ‘feature search’), to 

highly inefficient search when the target is defined by a conjunction of features 

or a spatial configuration of form elements. In some cases, though, conjunction 

targets can be searched efficiently – for example when the feature values defining 

the conjunction target and the distractors are sufficiently different – when the 

features are thought to ‘guide search’ (Quinlan & Humphreys, 1987). Here we 

consider the mechanisms by which top-down guidance of search to targets 

operates. 

5.1.1 Attentional Template 

Many models of visual search assume the involvement of an attentional 

template held in  WM (Bundesen, 1990; Desimone & Duncan, 1995; Duncan & 

Humphreys, 1989; Wolfe, 1994), which acts to direct search to task relevant 

(target) items.  There is good evidence that this memory representation for the 

target modulates visual selection. For example, Pashler (1987) instructed 

participants to search for either letter C or E (in Experiment 2) in a display, so 

participants anticipated both target letters but only one of them appeared in a 

search display. The distractors consisted of the salient letters X and N and the 
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confusable letters G (relative to C) and F (relative to E). . The former group of 

letters were salient, because they were less similar to the targets than the latter 

group of confusable letters (van der Heijden, Malhas, & van den Roovaart, 1984).  

In this experiment, Pashler observed a specific type of display size effect relative 

to the number of confusable distractors where a search display always contained 

6 items.  Importantly, the confusable distractors disrupted search even when it 

was similar to the target letter represented only in memory (i.e., been anticipated 

before search display, but not appear in it).  At this condition, the search 

performance was still affected in trials with target C/E when the confusable 

distractors were F/G (e.g., the distractors were the letter Gs and the target was 

an E).  Such data suggest that similarity to the memory template modulates 

search efficiency. Other studies showed further evidence suggesting that giving 

participants a memory template for the target is critical for generating efficient 

search.  Hodsoll and Humphreys (2001), for example, examined search for a 

large target amongst medium and small-sized distractors.  The large target 

‘popped out’ from the search display, but only when participants had an 

expectation for a large target in a trial.  In this instance, pop out was determined 

by the presence of a target template and not simply by bottom-up differences 

between the items.  There is also evidence that a template held in WM can direct 

search in an involuntary fashion. Soto et al. (2005) had participants hold an 

irrelevant item in WM for a later matching task whilst undertaking a different 

search task.  They found that the irrelevant item in WM still directed attention to 

a matched non-target item in a display – even when that item was always a 

distractor.  More recently there has been evidence that a secondary memory 
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representation (i.e., accessory memory items, AMIs) can modulate the effects of 

the search template in WM (see reviews in Olivers, Peters, Houtkamp, & 

Roelfsema, 2011; Soto et al., 2008).  However, the finding of the AMI influence 

is not entirely clear (Dowd, Kiyonaga, Egner, & Mitroff, 2015; Downing, 2000; 

Woodman & Luck, 2007; Woodman, Luck, & Schall, 2007).  

Olivers and colleagues (2011) have argued that one key factor that 

determines the different findings is the status of AMIs in WM.  Because in a dual-

search and memory recognition-task an observer engages or prepares to engage 

both tasks at once, ideally, she/he needs to maintain two active WM 

representations.  One is the search template relevant to the primary search task, 

and the other is the AMI, which should be held for the later memory task.  Olivers 

et al. argued that observers can only hold one strong WM representation at a 

time.  If this is the primary template for the search task, then search can be 

directed efficiently to the search target without interference from the other item in 

WM.  This can happen, for example, when the primary search target changes 

from trial-to-trial (Schneider & Shiffrin, 1977), so the search target is prioritised in 

WM. Similarly, when several search templates are held in WM, the AMI’s WM 

representation may degrade (Soto & Humphreys, 2008). Sometimes, the AMI 

may be prioritised for example when an identical search target is tested in one 

block of trials (Schneider & Shiffrin, 1977) or when it is no longer needs to be 

highly active in WM.  Under these circumstances, the AMI distractor may catch 

attention during search.  This was exactly what Olivers found in his Experiment 

6 (2009).  This experiment showed only in the consistent mapping condition, the 

AMI-related distractor prolonged search time with an 80-ms (mean) RT 
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difference.  By contrast, the varied mapping condition showed an opposite non-

significant difference (-27 ms).   

This finding nonetheless appears trivial, because the error rate data 

suggested (1) Olivers’s (2009) participants might trade speed with accuracy and 

(2) in his consistent mapping condition, the AMI-related condition showed fewer 

(insignificantly) errors than the AMI-unrelated condition.  A recent correlation 

study even suggested that the mixed results might be due to the two seemingly 

identical paradigms (Soto et al., 2005; Woodman & Luck, 2007) tap into two 

different - visual working memory and attentional control - cognitive abilities 

(Dowd et al., 2015).  Although both Olivers et al’s (2011) and Dowd et al.’s (2015) 

hypotheses are derived from credible data, their experiments did not lend strong 

supports for the arguments.  One important reason is that those studies tested 

only small number of trials per condition.  As explained in our previously Chapter 

4) and numerous works investigating RT distribution (see a review in Balota & 

Yap, 2011), the data of mean RT are sometimes biased and miss important 

information hidden in the distribution (P. L. Smith & Ratcliff, 2004).  Furthermore, 

a seemingly opposite finding demonstrating the AMI-related interference showed 

higher search slope only in the varying-mapping participants (Woodman et al., 

2007).  This, although in my opinion incomparable finding, contradicted Olivers’s 

data (2009).  He had argued the key factors resulting in the contradictory findings 

are the relatedness of the AMI to the search template and their activation states.  

In Woodman et al.’s varying mapping participants, the AMI interfered with search 

performance, because it was less similar with the search template.  Thus, when 

the WM load is high, the AMI pushed out the template (not yet fully activated) and 
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dominated the WM operation.  As opposed to this, in Olivers’s varying mapping 

condition, the AMI ceded the attentional control to the template, because they 

were related and due to the relatedness, both fully activated. 

Nevertheless, current interpretations do not address the key question 

about search decision, but only purposed hypotheses (Dowd et al., 2015; Olivers 

et al., 2011; Soto et al., 2008; Woodman & Luck, 2007).  Woodman et al.’s (2007) 

search slope data suggested the AMI interference in the varying-mapping 

participants associated with search efficiency, whereas Olivers’s mean RT data 

suggested the AMI interference in the consistent-mapping condition associated 

with search strategy.  As will be discussed later in Section 5.1.2, to decide 

whether a target is found, an observer collects sensory evidence with a decision 

rate (i.e., drift rate) and declares a target is found (e.g., by pressing a response 

button) when the amount of sensory evidence has reached a response criterion.  

The search slope data suggested changes in the drift rate (associated with 

efficiency), whereas Olivers’s mean RT (2009), together with the reversed error 

rate, data suggested changes in the drift rate and/or the response criterion. 

Olivers’s activation-state hypothesis (2009), though plausible, does not address 

whether changes in the activation state for a search template affects search 

efficiency or search strategy and which part of a search decision associates with 

the WM state of a template. 

In the present study we set out to test the activation hypothesis (Olivers, 

2009), using a search-alone paradigm to compare the consistent mapping and 

varying mapping conditions.  Specifically, I conducted three experiments to 

examine how the memory consolidation of an attentional template might affect 
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different aspects of a search decision when (1) the template is held constant 

versus when it is varied from trial to trial and when (2) the duration between the 

presence of an template probe and that of a search display is 50 ms versus 400 

ms.  To attain the aim of disentangle different aspects of a search decision, I go 

beyond previous work in the field by using mathematical modelling to 

characterise specific aspects of the search process.  This is achieved by using 

the decision-making models (e.g., the DDM, Ratcliff & McKoon, 2008), which 

incorporates response latency and accuracy jointly to account for two main 

aspects of  decision making: the decision (drift) rate and the decision (response) 

threshold.  The former suggests how fast a decision is reached as a function of 

sensory evidence and time.  The decision rate describes the instantaneous slope 

of the function.  That is, under the linearity assumption, the slope equals the 

amount of sensory evidence divided by time.  The more the evidence 

accumulates, the higher the probability that an observer reaches a reliable 

decision.  Thus, if search conditions generate differences in perceptual sensitivity 

and/or in the guidance of search to target features, there should be a 

corresponding change in the decision rate.  The decision threshold, on the other 

hand, measures the (internal) response criteria, with a response triggered when 

sufficient sensory evidence has been accumulated to exceed the threshold.  

Mathematical models of decision making have been developed to formally 

separate effects of decision rate and decision threshold on memory recognition 

(Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004) as well as been successfully 

applied to visual search (Purcell et al., 2012).  Here we used such models to 

examine how attentional templates modulate search. 
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I examined visual search under two main conditions: when the identity of 

the target was held constant across trials and when the identity of the target 

varied in each trial (in both cases the target identity was pre-cued, but in the 

constant condition the cue was always the same letter). Targets and distractors 

were randomly selected letters, making search relatively difficult and likely 

dependent on serial selection of items (Czerwinski, Lightfoot, & Shiffrin, 1992; 

Fecteau & Enns, 2005; Malinowski & Hübner, 2001; see a review about whether 

letter identities guide search in Wolfe & Horowitz, 2004).  I also varied the time 

from the cue to the search display (in Experiment 2 and 3), to examine the timing 

influence on consolidating a new search template in WM.  Experiment 2 was to 

assess how the consolidation process of a template modulated the parameters 

in a decision-making model, compared with the baseline condition, in which the 

target and cue were constant.  Experiment 3 increased the per-condition sample 

size, aiming to replicate the finding in Experiment 2.  Details of the modelling 

processes are described below. 

5.1.2 Linear Ballistic Accumulator 

The LBA model is a simplified decision-making model which uses choice 

RTs (Luce, 1986) to estimate the decision rate and the decision threshold.  It 

was adapted from a model describing multiple independent ‘leaky competing 

accumulators’, each starting from and racing towards respective initial points 

and response thresholds (Usher & McClelland, 2001).  When one of the 

accumulators surpasses its threshold, a decision is made.  Each accumulator 

underlies one decision type, for instance deciding a target is present or absent.  

Accumulators gather sensory evidence gradually along a temporary scale; 
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hence decision rates and times can be assessed. When an accumulator, 

inconsistent with a correct response, wins a race, an error response is 

committed.  Take an error response in a target present trial as an example.  

This will result from a target-absent accumulator reaching its threshold earlier 

than a target-present accumulator.  Accounting for choice RTs simultaneously in 

a single framework, the LBA model can assess the decision rate, threshold, and 

time, both for correct and incorrect responses. 

The LBA model is a further simplification from an early ballistic model of 

decision making (Brown & Heathcote, 2005).  The ballistic model eliminated the 

within-trial randomness from the model of leaky competing accumulators (Usher 

& McClelland, 2001) and assumed an across-trial constant decision rate.  The 

LBA model further eliminates the nonlinearity of the evidence accumulation 

process (Brown & Heathcote, 2008).  Although sacrificing the complexity of 

some models, the LBA can accommodate choice RT data collected from lexical 

decision and the brightness discrimination tasks (Ratcliff et al., 2004; Ratcliff & 

Rouder, 1998), providing excellent fits in both cases.  Therefore, the LBA model 

appears to provide a good fit for empirical data with minimal complexity. 

5.1.3 Response Time Distributions 

A further advantage of modelling choice RT in a decision-making 

framework is that it accounts for variations in entire RT distributions across the 

experimental factors.  In this study, I used quantile analysis, calculated from the 

empirical data and predicted by the two decision-making models. The quantile 

descriptive results were analysed together with the decision parameters 
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assessed by the LBA model and the DDM to understand the search decision 

processes associated with RT distributions. 

5.1.4 Study Aims 

The current study was to investigate three main questions related to the 

guided search.  First, it tested whether an automated template influences the 

search decision comparing with a non-automated template.  Second, it 

examined the effect of inter-stimulus interval (ISI) on the consolidation of WM 

template and third how the ISI effect influenced search efficiency as well as 

decision.  Particularly, the study tested whether a prolonged consolidation time 

(400 ms vs. 50 ms) prior search will strength a non-automated template, 

rendering it been converted into a similar memory status as an automated 

template.  To ameliorate the pitfall in previous studies and to account for the 

search decision, this study collected relatively large number of trials in each 

condition.  This strategy may make the data viable to be processed more 

reliably by decision-making models, so the search decision can be assessed.  

5.2 Method 

5.2.1 Design and Procedure 

5.2.1.1 Experiment 1 

The task started with a white fixation square centred on the screen for 500 

ms, followed by a 200-ms cue. The search display appeared after a 50-ms 

blank.  A trial was terminated when a participant made a response to indicate 

whether a target letter was located on the left or on the right side of the display, 

relative to the fixation square.  A message was then presented to inform the 
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participant if a correct response was made.  If an incorrect response was made, 

the target location was highlighted by a yellow square circled around it.  Each 

participant visited the lab twice to complete the fixed and varied cue conditions 

in two separate days in a counterbalanced sequence. Participants first 

completed an 8-trial warm-up block before commencing ten 48-trial testing 

blocks.  In the fixed cue condition, all participants always searched for an 

identical letter (H).  This target letter was pre-determined for all participants and 

kept constant in this condition.  In the varied cue condition, a letter was selected 

randomly from the 13-letter pool in each trial as the target letter.  This randomly 

selected letter was used as a cue prior a search display appeared.  A schematic 

screen sequence is shown in Figure 5-1. 

The experiment used a two-factor, display sizes (3, 5, 7 & 9) and (fixed vs. 

varied) cues, repeated-measures, within-participant design.  The fixed cue 

condition presented an identical probe letter in every trial, whereas, the varied 

cue condition randomly changed the probe letter in every trial.  Participants 

contributed 130 trials in each condition.  In total, one participant contributed 

1040 trials.  
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Figure 5-1. An illustration of the search paradigm. Experiment 2 tested one 
additional 2-level ISI factor. Except for doubling per-condition trial numbers, 
Experiment 3 replicated exactly Experiment 2.  The search goal is to decide 
whether a cued letter is on the left or the right side, relative to the fixation point. 

5.2.1.2 Experiment 2 and Experiment 3 

In Experiment 2, an additional factor was introduced to examine the timing 

influence of memory consolidation (50 vs. 400 ms) on visual search.  Two ISIs 

were randomly assigned to each trial within a block.  Participants were not 

informed the two variants of ISIs.  Experiment 2 and 3 tested only three display 

sizes (3, 7 & 9).  Participants performed respectively 100 and 200 trials per 

condition (cue × display size × ISI) in Experiment 2 (1200 in total) and in 

Experiment 3 (2400 in total) 

5.2.2 LBA Model and DDM  

The LBA model describes a two-choice search decision with two 

accumulators, corresponding to deciding a left/right target (internally), and to 

initiating a left/right button press response (externally).  Each accumulator 



- 134 - 

begins at a starting amount of evidence (i.e., ‘starting point’, A) and 

accumulates evidence at a speed which is described by a decision rate (i.e., 

‘drift rate’, v).  The first accumulator to reach a common response threshold (B) 

determines the overt response.  The decision time is then assessed by simple 

algebra, (𝐵 − 𝐴)/𝑣.  An RT reflects the decision time plus a residual time (i.e., 

the ‘non-decision time’, ter).  The latter non-decision time, broadly speaking, 

accounts for the early perceptual and late motoric processes (Brown & 

Heathcote, 2008) and is presumed to be independent of the decision-making 

process.  Accuracy is determined by the first accumulator corresponding to one 

of the answers for a trial.  For instance, if an accumulator for the left target 

reaches its response threshold first in a search display containing a right target, 

the measured RT reflects an error response. 

The measured RTs were cut at 0.2s and 2s and then fit with two specific 

versions of decision-making models, the DDM (Ratcliff & Tuerlinckx, 2002) and 

the LBA models (Heathcote & Love, 2012).  Both models were assessed via the 

MLE method (Myung, 2003) and used the same notation, ter and v, to refer to the 

parameters of mean non-decision time and of mean drift rate.  As is standard 

practice, the diffusion model uniformly distributed variability in non-decision time 

with width st.  The LBA model accumulates sensory evidence deterministically, 

with a drift rate that varies from trial-to-trial according to a normal distribution with 

mean v and standard deviation sv.  The diffusion model specifies these same two 

parameters (v & sv) with a normal distribution that gives rise to a random sample 

of drift rate for each trial.  Within each trial, evidence accumulates on average at 

the speed given by the drift rate sample, and a moment-to-moment random 
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variability.  This variability sets a standard deviation s, I conventionally fix at 0.1, 

which ensures model identifiability (this can also be fixed at 1, see Voss & Voss, 

2008). 

As the drift-diffusion and LBA models differ in their accumulator structure, 

they describe the parameters with different symbols.  The DDM represents the 

distance between the (positive & negative) thresholds, with parameter a.  The 

starting point for accumulation, sometimes denoted z, was estimated by its 

relative position between the thresholds, denoted Z = z/a.  Both models assume 

uniformly distributed variability in the accumulation starting point.  Thus, the 

implementation of a starting point in the DDM varies around z, with the variability, 

SZ.  In the case of the shorter of the distances from z to the threshold, SZ = min(z, 

a-z)/a.  The starting points of the LBA are uniformly distributed between zero and 

an upper bound denoted A.  The distance from A to the threshold is denoted as 

B (see Figure 1 in Donkin, Brown, & Heathcote, 2009 for a graphic comparison 

for the evidence accumulation structure between the two models). 
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Table 5-1. The top-level LBA and the drift-diffusion models.  See text in the next 
paragraph for the meanings of each mathematical symbol. 

 LBA model Drift-diffusion model 

Experiment 1 

{
 
 

 
 

𝐵 = 𝑙𝑅 × 𝑄
𝑣 = 𝑆 × 𝑄 × 𝑁 ×𝑀

𝑠𝑣 = 𝑀
𝐴 = 1
𝑡𝑒𝑟 = 𝑁
𝑝𝑐 = 1

 

{
 
 
 

 
 
 

𝑎 = 𝑄
𝑣 = 𝑆 × 𝑄 × 𝑁

𝑠𝑣 = 1
𝑍 = 𝑄
𝑆𝑍 = 1
𝑡𝑒𝑟 = 𝑁
𝑠𝑡 = 1
𝑝𝑐 = 1

 

Experiment 2 & 3 

{
 
 

 
 

𝐵 = 𝑙𝑅 × 𝑄 × 𝐼
𝑣 = 𝑆 × 𝑄 × 𝑁 ×𝑀

𝑠𝑣 = 𝑀
𝐴 = 1

𝑡𝑒𝑟 = 𝐼 × 𝑁
𝑝𝑐 = 1

 

{
 
 
 

 
 
 

𝑎 = 𝑄 × 𝐼
𝑣 = 𝑆 × 𝑄 × 𝑁

𝑠𝑣 = 1
𝑍 = 𝑄 × 𝐼
𝑆𝑍 = 1

𝑡𝑒𝑟 = 𝐼 × 𝑁
𝑠𝑡 = 1
𝑝𝑐 = 1

 

 

The drift-diffusion model was fit to all variants of the factor combinations, 

from the most to the least complex (where all parameters were equal across all 

conditions), resulting in 64 models to be analysed for each participant’s data.  The 

LBA model, likewise, resulted in 128 models per participant.  It did not consider 

variants in which the M factor (matching vs. mismatching accumulator) was 

dropped for the v parameter (without this, the model is forced to predict chance 

accuracy).  Model variants were fitted starting from the simplest, with the best fits 

of simpler models providing starting points for fitting more complex models 

(Donkin et al., 2011). 

For all three experiments, I began with a complex, top-level model to fit the 

data as specified in Table 5-1.  The decision threshold (B in the LBA and a in the 
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drift-diffusion models) varies with the cue factor (Q).  The LBA model, because 

of modelling two separate accumulators, fits also the latent response (lR) factor, 

which corresponds to the two accumulators.  lR acts like a two-level experimental 

factor.  The drift rate (v) varies with all possible factors: stimulus (target) location 

(S), cue (Q), display size (N), and a scaling factor reflecting the 

matching/mismatching of an accumulator with correct answer (M).  That is, when 

the left-sided target accumulator (lR-left) reaches the threshold first and a trial 

contains a right-sided target, the M factor will indicate a mismatched accumulator 

(hence its drift rate) is chosen; likewise, for the case of matched accumulator. 

The between-trial standard deviation of the drift rate (sv) varies only with the 

scaling factor (M), presuming constant variation across the two accumulators 

(Brown & Heathcote, 2005).  That is, the accumulators’ sv does not depend on 

other experimental factors, such Q, N or S. This is achieved in the DDM with an 

intercept.  The starting point of an accumulator (A), residual time (ter) and the 

contamination factor (pc), presumed to be invariant with the experimental factors 

(Q, N, & S) and the accumulator matches (M), were modelled as intercepts.  Due 

to the different accumulator structure in the DDM, its starting point (a) was 

modelled with the cue factor.  Note that for both models the ensemble of the 

parameters forms one probability/cumulative density function, so the equations 

were fitted as one function to the data). 

For Experiment 2 and 3 I added an ISI factor to a similar complex model.  

The ISI factor (I) was added on the decision threshold and the residual time, but 

not the drift rate.  This decision was based on an assumption that the long ISI 

increases the likelihood of response preparation and memory consolidation of 
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the target template, but not the quality of the match between a template and a 

search display (associated with the decision rate). A similar rationale was also 

applied to the DDM. 

The complex models were subjected to a model selection process.  The 

minus log-likelihoods of all possible models (different combinations of 

experimental factors) were calculated, using the MLE.  The most probable 

model was then acquired via the MLE, based on it accounting for the highest 

variation with minimal factors, with selection based on the lowest Akikie 

Information Criterion (AIC) and Bayesian Informative Criterion (BIC) values 

aggregated over participants.  This method of model selection provides a good 

trade-off between goodness-and-fit and model complexity, as measured by 

number of parameters.  The trade-off is measured differently by the two criteria 

(see Burnham & Anderson, 2004), with AIC tending to select more complex 

models than BIC. 

5.2.3 HBM 

In addition to applying the decision-making models, the study used a 

Weibull probability function to describe RT distributions.  Mathematically and 

theoretically, the approach, compared to using the Gaussian probability 

function, provides a more liberal and realistic perspective to describe RT 

distributions.  It also exploits the descriptive nature of a probability function, 

permitting an intuitive impression about how RT distributions changes 

associated with experimental manipulations.  See previous Chapter 2 and 

Chapter 4 for more details.    
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5.3 Result 

The result section presents the traditional analyses for the mean correct 

RTs and accuracy rate, which were followed by the analyses of model fitting and 

RT distributions. 

5.3.1 Traditional Analysis  

5.3.1.1 Experiment 1 

The data-trimming scheme resulted in a 2% rejection rate, removing those 

trials with RTs less than 0.2s and greater 2s RTs.  The RTs were then averaged 

across trials within a condition, resulting in 320 mean RTs (20 × 4 × 2 × 2; 

participants × display sizes × fixed/varied cues × left/right stimulus). The mean 

RTs then were subjected to ANOVAs, which reported the factors showing 

significant differences.  Only when the sphericity assumption was untenable did 

I report p values corrected with the Greenhouse-Geisser method.  The degrees 

of freedoms are reported as their original values before the correction.  

For the mean RTs, the three-way ANOVA showed reliable effects of display 

size, F(3, 57) = 183.7, η2p = .906, p = 3.23 × 10-12, (GG-corrected) and cue, F(1, 

19) = 8.27, η2p = .303, p = 9.67 × 10-3 (fixed vs. varied, 524 ms vs. 552 ms), and 

two interactions: cueing × display size, F(3, 57) = 5.19, η2p = .215, p = 3.05 × 10-

3 and a stimulus × display size interaction, F(3, 57) = 3.04, η2p = .138, p = 3.64 

×10-2.  The more items a search display contained (3, 5, 7, vs. 9), the slower 

participants responded (438, 502, 564, vs. 649 ms).  The cue × display size 

interaction was due to a stronger display size effect for the varied cue than the 

fixed cue condition.  The RT differences between the two cue levels were 12, 24, 

40, and 38 ms, going from the small to the large display sizes (Figure 5-2).  Post-
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hoc t tests indicated that the fixed cue resulted in quicker RTs than the varied cue 

at display sizes 5, 7 and 9, t(19) = 2.76, 3.23, 2.65, ps = .013, .004, 016, but not 

at display size 3, t(19) = 1.61, p = .125.  Participants responded slightly faster 

towards the right target – though the effect was marginal, t(19) = 1.96, p = .065 

(657 ms vs. 689 ms) in the varied cue condition when the display size was large 

(9). 

 

Figure 5-2. Mean correct RTs and percent accuracy in Experiments 1, 2 and 3.  
No display size 5 was tested in Experiments 2 and 3.  Error ribbons are drawn 
at ±1 SE.  

For the accuracy rate data, the ANOVA showed a reliable display size 

effect, F(3, 57) = 5.53, η2p = .225, p = .005 (3, 5, 7, vs. 9; .985, .984, .977, vs. .977) 

and a marginal cue effect, F(1, 19) = .355, η2p = .158, p = .07 (F vs. V; .983 

vs. .978).  Two marginal interactions were also observed:  display size × stimulus, 

F(3, 57) = 2.95, η2p = .134, p = .06 and the three-way interaction, F(3, 57) = 2.54, 

p = .073.  Participants tended to respond more accurately towards a right target, 

when the cue was unchanged. The average data showed no obvious speed-
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accuracy trade-off. 

5.3.1.2 Experiment 2 

Experiment 2 used a similar protocol to analyse the average data. The RTs 

were averaged across trials, resulting in 456 mean RTs (19 × 3 × 2 × 2 × 2; 

participants × display sizes × cue × ISIs × left/right stimulus).  

For the mean RTs, the ANOVA showed a reliable display size effect (3, 7 

vs. 9; 495, 678, vs. 777 ms), F(2, 36) = 148.12, η2p = .892, p = 1.65 × 10-10 (G-G 

correction), an effect of the ISI (short vs. long; 657 ms vs. 643 ms), F(1, 18) = 

15.23, η2p = .458, p = 1.04 × 10-3, and the cue (fixed vs. varied; 673 ms vs. 627 

ms), F(1, 18) = 10.42, η2p = .367, p = 4.67 × 10-3.  Participants responded 

marginally faster when the target letter was on the left side (639 ms) than on the 

right side [661 ms; F(1, 18) = 4.19, η2p = .189, p = 0.06]. There were two two-way 

interactions, for display size × cue, F(2, 36) = 5.92, η2p = .247, p = .01 (G-G 

correction) and display size × stimulus, F(2, 36) = 4.27, η2p = .192, p = .04 (G-G 

correction).  The former interaction again was due to the increasing differences 

between the fixed and varied cue conditions as the display size increased.  This 

time, however, a stronger effect of display size was observed in the fixed cue 

condition.  The interaction of display size × ISI only reached a marginal level, F(2, 

36) = 2.82, η2p = .135, p = .08  (Figure 5-2). 

Separate ANOVAs at each display size showed a reliable cue effect at all 

display sizes, F(1, 18) = 6.05, 10.78, 10.31; η2p = .251, .375, .364, ps = .02, .004, 

005. The RT differences between the fixed cue and varied cue conditions, 

respectively, at display sizes 3, 7 and 9, were 27, 47, and 62 ms. The ISI effect 

were observed at the display size 3 and 7, Fs(1, 18) = 29.57, 13.28; η2p  
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= .622, .427 ps = 3.64 × 10-5, .002.  When the display sizes were averaged 

across, separate ANOVAs at each percentile indicated significant cue × ISI effect 

[until 0.4 percentiles, Fs(1, 18) = 6.78, 11.02, 7.83, & 7.34, ps = 0.02, 0.004, 0.01, 

& 0.01, η2p  = 0.27, 0.38, 0.30, & 0.29].  A percentile-by-percentile comparison 

suggests the interaction is due to significant ISI differences only in the varied cue 

condition in the leading edge of the RT distribution. 

 

Figure 5-3. The percentile plot shows the small ISI effect in Experiment 2 is due 
to the RT differences at the early percentiles in the varied cue condition. Error 
bars were drawn at ±1 SE.  

For the accuracy data, the ANOVA showed reliable effects of display size, 

F(2, 36) = 5.84, η2p = .245, p = .015 (G-G correction), cue, F(1, 18) = 7.89, η2p 

= .305, p = .012 and stimulus, F(1, 18) = 16.46, η2p = .478, p = .0007.  Participants 

showed a tendency to respond better towards the right targets, comparing to the 

left targets (.984 vs. .975). 

There were two two-way interactions: stimulus × display size, F(2, 36) = 
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4.73, ,η2p = .208, p = .016,  and ISI × cue, F(1, 18) = 9.85, η2p = .354, p = .0057.  

The stimulus × display size interaction is due to a larger advantage when 

responding for a right target in a 7-item display (1.59% increase; 1.16% increase 

in the marginal effect in Experiment 1), comparing to other display sizes (in 

average 0.48% increase).  The ISI × display size interaction reached only 

marginal difference, F(2, 36) = 3.52, η2p  = .164, p = .052. 

The ISI × cue interaction stems from a reliable difference in the two cue 

conditions at the short ISI (fixed vs. varied; .985 vs. .975), but not at the long ISI 

(fixed vs. varied; .981 vs. .980). Accuracy was higher for the fixed target than for 

the varied target.  The effect was mainly due to significant accuracy differences 

at display size 9, F(1, 18) = 9.31, η2p = .341, p = .007 and at  display size 7, F(1, 

18) = 6.30, η2p = .259, p = .002 when the ISI was 50 ms.  

5.3.1.3 Experiment 3 

Experiment 3 replicated Experiment 2, thereby using an identical 

protocol to analyse the average data, with 480 mean RTs (20 × 3 × 2 × 2 × 2; 

participants × display sizes × cue × ISIs × left/right stimulus).  

For the mean RTs, the ANOVA showed a reliable display size effect (3, 7 

vs. 9; 447, 575, vs. 648 ms), F(2, 38) = 140.71, η2p  = .881, p = 1.01 × 10-10, an 

effect of the ISI (short vs. long; 562 ms vs. 552 ms), F(1, 19) = 7.66, η2p  = .287, 

p = 1.22 × 10-2. The cue factor is not significant (fixed vs. varied; 561 vs. 553) 

nor the interactions was found significant. 

For the accuracy data, the ANOVA showed reliable effects of display 

size, F(2, 38) = 13.84, η2p  = .42, p = 4.65 × 10-4. The cue factor showed only 

marginal effect, F(1, 19) = 4.04, η2p  = .175, p = .06 (fixed vs. varied; .971 
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vs. .966).  The stimulus × display size interaction replicated the finding in 

Experiment 2, F(2, 38) = 11.35, η2p  = .208, p = 5.77 × 10-4.  The ISI × cue only 

reached marginal level, F(1, 19) = 3.48, η2p  = .155, p = .08.  The marginal ISI × 

display size interaction found in Experiment 2 was not significant in Experiment 

3.  One three-way interaction, cue × ISI × display size, was found marginally 

significant, F(1, 19) = 3.10, η2p  = .14, p = .06.  This interaction is due to the 

display size dependent differences between the varied and fixed cue, which 

observed only in short ISI.  

As for the slope, when fitted using linear regression models, the search 

slopes across the three experiments did not differentiate fixed and varied cue 

condition (p > .3). 

Table 5-2. Summary table for search slope. The slopes were calculated based 
on simple linear regression model, using display sizes regressed on mean RT.  
Slope comparisons between the two cue conditions were conducted using a null 
model, presuming that two lines were parallel, comparing to an alternative model, 
presuming that the cue factor interacts with the display size factor. 

 Cue 50-ms ISI 400-ms ISI 

E1 F 32 ms/item NA 

 V 37 ms/item NA 

E2 F 49 ms/item 50 ms/item 

 V 44 ms/item 44 ms/item 

E3 F 35 ms/item 33 ms/item 

 V 32 ms/item 32 ms/item 

 

Overall, the participants in Experiment 1 (538 ms) responded quicker 

than those in Experiment 2 (650 ms), but relative to Experiment 1, the 
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participants in Experiment 3 slowed only slightly (557 ms).  Participants in 

Experiment 2 showed a reversed cue effect at mean RTs, though this effect did 

not suppress significant level in Experiment 3 when per-condition observation 

was doubled.   
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The accuracy advantage for the fixed condition consistently emerged 

across the three experiments, but reduced to non-significant difference in the 

condition of 400-ms ISI.  This suggests that a long ISI might allow one to 

consolidate the varied, trial-by-trial updated search template and to strengthen it 

to a similar level as a consistently-mapped template (i.e., fixed condition).  

Nevertheless, when considering with the data of accuracy rate, one may argue 

that the reverse pattern in the mean RT suggests that participants might trade 

speed with accuracy (or vice versa).  I suggest that this is a matter of adjusting 

decision threshold and decision rate (Forstmann et al., 2008).  In the following, I 

used the two decision-making models – LBA and DDM – to approach an optimal 

fit solution for the data and propose an account for how the WM strength of a 

search template relates to the decision parameters. 

5.3.2 Model Fitting 

All possible models with different combinations of factor levels were fitted 

with MLE and evaluated by their BIC, AIC and minus log likelihood values.  The 

detailed procedure of model selection was described in Donkin, Brown and 

Heathcote (2011).  These models differed in how the various experimental 

manipulations influenced the parameters.  The LBA model allowed for differences 

between accumulators corresponding to left vs. right responses in the parameters 

of the starting point (A) and decision threshold (B).  It fitted also a mathematical 

modelling factor, the latent response (lR), which captures response bias (e.g., a 

bias to respond left by having a lower B for the left accumulator).  The lR effects 
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on the A and B parameters in the LBA model are analogous, respectively, to the 

Z and SZ parameters in the diffusion model. 

The LBA model also varied the drift rates, depending on the match 

between a stimulus and an accumulator.  For example, the mean drift rate for a 

left stimulus could be higher for the left (matching) accumulator than the right 

(mismatching) accumulator. Changing parameter values across the matching 

factor (denoted M) allows the LBA model to capture the effect of the stimulus on 

accuracy depending on the difference between the matching drift rate and the 

mismatching drift rate.  In the diffusion model there is no corresponding factor, as 

the diffusion drift rate is analogous to the difference between matching and 

mismatching LBA drift rates.  The between-trial standard deviation of drift rate 

(sv) in the LBA was set at 1 for the mismatching accumulator, a minimal 

assumption that makes the model tractable (Donkin et al., 2009). 

Table 5-3 presents the different versions of the diffusion and LBA models 

by indicating the factors that affect each parameter.  Where a parameter might 

be influenced by more than one factor I fit all possible orders of interactions 

among the factors as well as the main effects. 

Table 5-3. The model selection table. The table shows model selection for the 
three experiments.  Q, S, N, and I refer to the cue, the stimulus, the display 
size, and the ISI factors, respectively.  The diffusion parameters, a, v, sv, Z, SZ, 
ter, and st stand for, respectively, the distance of boundary separation, the mean 
drift rate, the standard deviation of drift rate, the relative position of the starting 
point, the variability of the starting point, the non-decision time, and its standard 
deviation.  The contamination factor, pc, is not shown in the table, because it is 
presumed invariant with the experimental factors.  The response bias (lR for 
latent responses) and the accumulator parameter of match/mismatch (M) are 
specific to the LBA model.  k stands for the total number of model parameters 
per participant.  Dev. is the abbreviation for deviance, a goodness-of-fit 
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measure.  Dash signs (-) signify a common value was estimated for all 
conditions.
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 DDM  A v sv Z SZ ter st k Dev. AIC BIC 

Exp. 1 Top-level Q  S, Q, N  - Q - N - 27 -28993 -27913 -23625 

 AIC Q  Q, N - Q - N - 19 -28742 -27982 -24964 

 BIC Q N - - - - - 11 -28194 -27754 -26007 

Exp. 2 Top-level Q, I  S, Q, N - Q, I - I, N - 29 -18244 -17142 -12717 

 AIC Q, I  Q, N - Q - I, N - 21 -18032 -17234 -14030 

 BIC Q N - - - N - 12 -17310 -16854 -15023 

Exp. 3 Top-level Q, I  S, Q, N - Q, I - I, N - 29 -54701 -53541 -48455 

 AIC Q, I  S, Q, N - I - I, N - 27 -54627 -53547 -48812 

 BIC Q N - - - I, N - 15 -53820 -53220 -50589 

 LBA B v sv A  ter  k Dev. AIC BIC 

Exp. 1 Top-level lR, Q S, Q, N,M M -  N  39 -29292 -27732 -21538 

 AIC  lR, Q N, M M -  N  15 -28987 -28387 -26004 

 BIC  Q N, M M -  -  13 -28926 -28106 -26042 

Exp. 2 Top-level lR, Q, I S, Q, N,M M -  I, N  36 -19345 -17977 -12484 

 AIC  lR, Q, I N, M M -  N  18 -19104 -18420 -15674 

 BIC  lR, Q N, M M -  I  14 -18929 -18397 -16261 

Exp. 3 Top-level lR, Q, I S, Q, N,M M -  I, N  40 -57114 -55514 -48499 

 AIC  lR, Q, I Q, N, M M -  I, N  28 -56886 -55766 -50855 

 BIC  lR, Q N, M M -  I  14 -55586 -55026 -52570 
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The top-level26 models that I fit were parameterised to test two questions.  

First, did the cue factor affect the decision threshold, the drift rate or both?  In the 

diffusion model this implies that both the parameters, a and SZ, are a function of 

the Q factor.  Likewise, the B parameter in the LBA model is a function of the Q 

and lR factors.  Secondly, I asked whether the display size factor affects the mean 

drift rate, the mean non-decision time, or both.  In both models this implies the v 

and ter parameters are a function of the N factor.  I also assumed that the stimulus 

(S) factor affected only the mean drift rate (v).  In the LBA model I allowed the v 

and sv parameters to be a function of the match (M) factor that is unique to that 

model. 

5.3.2.1 Experiment 1 

Figure 5-4 shows the fit of the top-level models to the accuracy rate and 

the RT distribution for correct RTs.  The RT distribution is represented by the 10th, 

50th and 90th percentiles.  The figure reflects the deviance of fit reported in the 

‘Dev.’ column in Table 5-3.  The smaller a deviance value is, the better a model 

fit to the data.  In general, the LBA model fitted better than for the DDM in terms 

of the deviance; however, when one considers the BIC column for the top-level 

models, the DDM is superior to the LBA model.  One possible reason for the LBA 

advantage at the deviance is that, comparing to the DDM, the LBA adds two 

model factors (M and lR).  More about this point will be discussed in Section 5.4.6.  

Contrasting the model fits in Figure 5-4, the LBA model performed better than the 

DDM at fitting the error rate data.  That is, the line with the hollow circles (i.e., the 

prediction of the LBA model) traces closer along the error ribbons than the line 

                                                      
26 That is, the least constrained or most complex model. 
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with the hollow triangles (i.e., the prediction of the DDM; see a similar finding in 

Van Zandt, Colonius, & Proctor, 2000 for the perceptual matching task).  Both 

models provide a very good account of the RT distribution for correct responses, 

although the LBA model tended to underestimate the 90th percentiles, particularly 

for large display sizes. 

 

Figure 5-4. Experiment 1 top-level model fits for the correct RTs and error rates. 
N in the x axis stands for the display size.  The figure shows clearly the 
advantage of the LBA model over the DDM when accounting for the error rates 
when the per-condition trial number is limited (~200).  

The final AIC and BIC models shown in Table 5-3 were selected based on 

the lowest AIC and BIC values (aggregated over participants) amongst all the 

tested models (not shown in the tables).  The BIC-based model answers 

unanimously the two questions posed above.  That is, the cue factor selectively 

influences the decision threshold (B). To put it differently, updating a template (by 

cueing a new target on each trial) modulates the amount of information required 
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to initiate a decision, but not the response bias (lR) or the drift rate (v).  The LBA 

AIC model only adds response bias to the decision threshold, so does not change 

interpretation of the first question.  An identical interpretation is also acquired in 

the drift-diffusion BIC model (i.e., Q influences a and Z only). 

As regards the second question, the model fits show that the N factor affects 

only the mean drift rate but not the mean of the non-decision time.  However, the 

AIC model found that the display size effect accounted also for the mean of the 

non-decision time.  This influence, at best, was small.  In the top-level model, it 

explains only 11% (0.023s) of the increase in mean RT (0.211s) and the same is 

true for the LBA AIC model. 

 

Figure 5-5. BIC model fits to Experiment 1 data. 

As shown in Figure 5-5, the DDM drift rate accurately accommodated the 

display size effect on RT distributions and performed better than the LBA model 
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especially at the 90% percentile.  However, the good performance of the DDM 

for the RT distributions appears to be at the cost of the account of error rates. It 

underestimates the error rate data at the small display size and over-predicts it 

at the large display sizes.  Note that this failure of the diffusion model is not much 

improved in the top-level model, which, because of including more factors, should 

accommodate the data better than the less-complex BIC model.   

In summary, the observers in Experiment 1 responded quicker towards right 

than left targets and showed a substantial increase in the decision rate at the 

display 7.  Their decision threshold is lower for the fixed cue condition than for 

the varied cue condition.  
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Figure 5-6. Top model fits to Experiment 2 data. 
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5.3.2.2 Experiment 2 

Experiment 2 asked a further question of whether the ISI (I) factor 

influences the decision threshold (B) and the non-decision time (ter).  Likewise, 

for the DDM, whether the I factor affects a, Z and ter.  Model selection confirmed 

most of the effects in Experiment 1, except for a response bias effect (lR) 

accounting also for the decision threshold in the LBA BIC model.  The ISI effect 

was associated with the decision threshold in the AIC model, whereas in the BIC 

model, it was associated with the non-decision time (Table 5-3).  The deviance 

in Table 5-3 confirmed that the top-level model accounted for more variations 

than the BIC and the AIC models.  Because the BIC models strike a good balance 

between parsimonious number of factors and good fits and because the display 

size effect in ter in the AIC model was rather implausible, with non-decision time 

(ter) decreasing as N increased, I focus on interpreting the LBA BIC model. 

In contrast to Experiment 1, the cue effect shows an opposite relation 

between the two levels with F > V (0.92 vs. 0.83).  Because, relative to 

Experiment 1, the only experimental difference is the random ISI pattern, the 

speed-accuracy-tradeoff pattern seen in Figure 5-2 likely reflects an adjustment 

of decision threshold, attributable to the ISI factor.   

As in Experiment 1, the drift rate was affected strongly by the display size 

(N) and the matching factor (M).  The two factors interact and this interaction 

explains the small decrease in accuracy with N and the large increase in RT (see 

Figure 5-2).  The N × M interaction at the drift rate reflects also the displays size 

× stimulus interaction in the data of mean RT and accuracy rate.  Specifically, the 

observers reached a decision faster for a matched accumulator (i.e., a correct 
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response) than a mismatched accumulator (i.e., an incorrect response).  The 

tendency matches with the faster and less accurate responses towards left-target 

displays and with the slower and more accurate responses towards right-target 

displays.  
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Figure 5-7. BIC model fits to Experiment 2 data. 
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5.3.2.3 Experiment 3 

Experiment 3 aimed to test if the factors in Experiment 2 are reliable when 

per-condition trial numbers are increased. The deviances in Table 5-3 showed 

an identical pattern as previous experiments.  The top-level model accounted for 

more variations than the AIC model, which in turn accounts for more variations 

than the BIC model.  This pattern is observed in both LBA and diffusion Models.  

The BIC model uses the least number of parameters and predicts both the error 

rate data and RT distribution closer. 
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Figure 5-8. Top model fits to Experiment 3 data 
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The BIC model in essence replicates the BIC result in Experiment 2.  The 

AIC model is slightly different this time.  It shows that the cue factor becomes 

significant in decision rates (v) and that the ISI factor in non-decision time (ter).  

This likely results from the increase of per-condition trials, making small effects 

more reliable.  As before LBA fits better than DDM both in BIC and AIC models.  

The following we focused on the BIC ANOVA for the LBA fit. 
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Figure 5-9. BIC model fits to Experiment 3 data. 
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Experiment 3 showed very similar thresholds for the two cue levels F vs. V (0.55 

vs. 0.54).  The cue-effect dissipation likely reflects the influence of the increase 

in per-condition trials, rendering an increase in template strength and thereby the 

decision confidence.  The increases in the template strength and the decision 

confidence in turn result in the less pronounced threshold adjustment.  

5.3.3 Distributional Analysis 

In this section, the HB Weibull parameters were contrasted using 

ANOVAs.   

5.3.3.1 Experiment 1 

The two-way ANOVA showed a reliable display size effect for both the shift 

parameter, F(3, 57) = 4.42, η2p = .189, p = .007, and the scale parameter, F(3, 

57) = 35.24, η2p = .650, p = 5.15 ×10-13.  For the shape parameter, the ANOVA 

showed a reliable display size effect, F(3, 57) = 16.04, η2p  = .458, p = 1.12 ×10-

7, and a marginal cue effect, F(1, 19) = 3.35, η2p  = .150, p = .083. No interaction 

was observed. 
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Figure 5-10. The line plots for the Weibull parameters.  Note that the error ribbons 
were drawn based on the credible intervals estimated by the BUGS model.  

5.3.3.2 Experiment 2 

The two-way ANOVA for the shift parameter showed a reliable display size 

effect, F(2, 36) = 4.27, η2p = .192, p = .022 and a marginal display size ×cue 

interaction, F(2, 36) = 2.96, η2p = .141, p = .06.  For the shape parameter, the 

ANOVA showed reliable interactions of display size × cue, F(2, 36) = 7.94, η2p  

= .306, p = .001, and cue × ISI, F(1, 18) = 7.44, η2p  = .293, p = .014. A marginal 

cueing effect, F(1, 18) = 3.89, η2p  = .178, p = .06, was also observed. For the 

scale parameter, the ANOVA showed reliable effects of display size, F(2, 36) = 

85.30, η2p  = .826, p = 2.19 ×10-14, and cue, F(1, 18) = 7.02, η2p  = .281, p = .016. 

5.3.3.3 Experiment 3 

The two-way ANOVA for the shift parameter showed a reliable display size 

effect, F(2, 38) = 13.66, η2p = .418, p = 2.92 ×10-4 and an ISI effect, F(1, 19) = 
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14.307, η2p = .430, p = 1.26 ×10-3.  For the shape parameter, all main effects were 

reliable: the display size, F(2, 38) = 3.53, η2p = .157, p = 3.93 ×10-2, the cue, F(1, 

19) = 19.05, η2p = .501, p = 3.34 ×10-4 and the ISI factors, F(1, 19) = 28.48, η2p 

= .600, p = 3.77 ×10-5. The display size × ISI interaction was also reliable, F(2, 

38) = 3.769, η2p  = .165, p = 3.21 ×10-2. 
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Table 5-4. ANOVA summary for the mean RT, accuracy rate and the Weibull parameters.  N, Q, and I stand for display size, 
cue, and ISI factors, respectively.  • p < .09; * p < .05; ** p < .01; *** p < .005; **** p < .001. ; empty cells are either non-significant 
or not available. 

 Shift Shape Scale RT Accuracy rate 

 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 

N ** * **** ****  * **** **** **** **** **** **** *** * **** 

Q    • • ****  *  ** ***  • * • 

I   ***   ****   •  *** *    

N×Q  •   ***     *** *     

N×I     * *     •   .  

Q×I              ** • 

N×Q×I               • 
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5.4 Discussion 

The study investigated the visual search influences of the WM template 

updated in each individual trial, comparing to an identical template been iterated 

in every trial.  In contrast to most previous studies, I not only summarised data 

with central tendency measures, such as mean RTs, but also assessed search 

performance in a multifaceted fashion by jointly analysing the response 

accuracy and latency – allowing the RT distributions, decision thresholds and 

decision rates to be assessed.  The decision parameters were estimated using 

the drift–diffusion and the LBA models, both accounting for the non-decision 

times, decision rates and decision thresholds.  The result indicated that, 

depending on the duration between the offset of the cue and the onset of a 

search display, template updating does affect search performance.  This 

reflected less clearly at the mean RT, but was suggested in the accuracy of 

performance, an aspect of the data previous studies mostly had difficulties to 

discern.  Most importantly, via the decision-making models, the study clarified 

that template updating affects decision thresholds, but not decision rates. The 

direction of influence depends on the timing and certainty of a search display 

and the WM strength of an attentional template.  In the following, I discuss the 

role of the attentional templates, its association with the WM and search 

efficiency, how they affect the RT distributions and finally the differences of the 

two decision-making models. 

5.4.1 The Automated Template  

The results from Experiment 1 indicate that repeating the target probe 

trial-by-trial (Olivers, 2009) does reduce search time and error rates.  The 
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purpose of repeating the probe was to ‘offload’ a search template ‘partially [from 

the WM] to other systems’ (Olivers et al., 2011).  Instead of testing the 

competition of WM resources between an AMI and a search template in a dual 

(search and memory) paradigm (Olivers, 2009), here I tested the ‘offload’ idea 

in a search-only paradigm, comparing the consistent-mapping (fixed cue) to the 

varied-mapping conditions (varied cue).  The ‘offload’, following Olivers et 

al.(2011), refers to a process that a consolidated template is removed from WM 

or becomes weak in terms of WM strength.  I focused specifically on how the 

WM strength of a template affects search performance.  Specifically, I asked 

which part of a decision-making process associates with offloading a template.  

The results from the varied cue condition in Experiment 1 suggest that a 

successful guided search is viable even without an active WM template, 

presuming that the template no longer resides in the WM system.  The 

offloaded template appears to render search more efficient (Figure 5-2) than 

when a template is updated in every trial.  The offloading advantage however 

was observed only in Experiment 1 when the timing of search display 

appearance was highly predictable, a condition leading to a decrease in the 

decision threshold.  This result is consistent with the view of the activation-state 

hypothesis (Olivers, 2009).  The automated template, been achieved via 

repeating an identical target probe in every trial, lowers only the response 

threshold.  The null effect in the decision rate, on the other hand, suggests that 

the perceptual sensitivities of matching a target to a WM template are similar in 

the two cue conditions.  The explanation of similar perceptual sensitivities in an 

identical template and an updated template is likely only when an observer 
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needs not raise vigilance to prepare an upcoming a search display, which either 

appear immediately (50-ms ISI) or after a short while (400-ms ISI).  High 

certainty about a target’s identity (i.e., fixed cue condition) and a display’s timing 

(i.e., a single 50-ms ISI in Experiment 1) can cause an observer to adjust 

his/her response threshold when an identical template renders similar 

perceptual quality as an updated template.  That is, both forms of memory 

representation – an automated template and an active WM template – are 

capable of permitting a successful search with a similar decision rate when a 

search task is highly predictable.  As a consequence, the difference lies in the 

decision threshold, as shown in Experiment 1. 

However, when a 400-ms ISI was randomly inserted into a testing block 

originally containing only 50-ms ISI, the relation between the fixed and varied 

cue conditions was reversed, as shown in Experiment 2.  This reverse pattern is 

robust, as Experiment 3 replicated the pattern with more per-condition 

observations.  One explanation of the reversed relation is the certainty of a 

target’s appearance timing, thereby affecting an observer’s decision threshold.  

This is suggested by a significant ISI contribution on the decision threshold in 

the AIC model, although the BIC model indicates that the ISI factor contributes 

only to non-decision time. 

Two critical differences were introduced in Experiment 2 (& Experiment 

3), because of to the ISI factor.  Firstly, the timing of a search display 

appearance became uncertain.  Observers could not predict explicitly the when 

a display might appear neither automate implicitly their key-press actions with 

respect to the display time.  The uncertain timing likely results in increasing in 
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cautiousness.  Secondly, because Experiment 2 used two ISIs and allocated 

them randomly, observers might respond to several 50-ms (or 400-ms) ISI trials 

and encounter unexpectedly a 400-ms (or 50-ms) ISI trial, and vice versa.  

Apparently, the latter sequence (i.e., several 400-ms trial and then 50-ms trial) 

hinders search more than the former sequence.  Further, comparing to the per-

condition observation numbers in other studies (Olivers, 2009; Woodman et al., 

2007), Experiment 2 and Experiment 3 used relatively large number of trials, so 

the observers should experience both ISI sequences.  The mix of the two ISI 

sequences, as suggested by the model fitting, may result in an adjustment of 

response strategy (as AIC model suggested) and this associated with the cue 

factor.  Admittedly, the current data suggest also that the ISI factor affected also 

the non-decision time (see the discussion in Section 5.4.4).   

The fixed cue condition, if as the activation-state hypothesis (Olivers, 

2009) presumed, offloads a WM template to other systems.  The result 

associated with the fixed cue condition in Experiment 2 then implies either (1) 

that to reload an automated template back to the WM takes up additional time 

when a search display comes up unpredictably early (i.e., 50 ms) and this is a 

consequence of decision threshold (as well as non-decision time) adjustment or 

(2) that the uncertain ISI pattern causes an undecided state of WM template 

offloading.  The second possibility might result in an increase in the decision 

threshold when in some trials observers kept a dissipating WM template.   

The result in Experiment 3 further support for the argument of cue-

related threshold adjustment, because when an additional route (i.e., double 

trial number) to automate template is introduced, the accuracy rate in 50-ms ISI 
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condition becomes the only traditional statistics differentiating the fixed and 

varied cue condition.  This result supports Olivers’s (2009; also Olivers et al., 

2011) account that whether the template is automated plays a critical role in the 

search performance.  When observers become highly familiar with the task via 

performing a large number of trials, the advantage of the mean RT and drift rate 

for the varied cue condition disappears, but its accuracy disadvantage still 

exists in the 50-ms ISI condition.  Apparently, the automated template, though 

may not alter the drift rate, helps to maintain a strong decision confidence when 

a hard-to-predict upcoming search task is displayed immediately. This 

hypothesis however remains to be verified, because only the main effect of the 

ISI, rather than the cue × ISI interaction, contribution in the AIC model and top-

level model variations was observed.  

More concretely, I suggest that the varied cue condition enforced a 

process of template rehearsal in WM.  When given a long ISI, observers were 

given the opportunity to go over the template, thereby maintaining an accuracy 

rate as the fixed cue condition.  The observation of the similar accuracy rate in 

400-ms ISI but not in 50-ms ISI in Experiment 2 and 3 suggests that the 

template strength in the varied cue condition might reach similar level as that in 

the fixed cue condition.  This is in line with the BIC model, showing that Q factor 

contribute to the decision threshold, but not the drift rate variations. That is, 

although the varied cue manipulation rendered the target identity less certain, 

the long ISI strengthened the template and this resolved the accuracy rate, but 

not mean RT, difference.    

When the two uncertain factors - display timing and target identity – were 
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introduced, observers might become less confident to commit a response.  The 

data for accuracy suggest an increase in the response criterion, but cannot rule 

out a decrease in the decision rate.  This ambiguity is made clear by the drift-

diffusion and LBA models, showing in Experiment 2 the cue factor depends only 

on the decision threshold, with a lower threshold for the varied cue condition 

(0.83 & 0.54) than for the fixed cue condition (0.92 & 0.55).  This is consistent 

with the argument of an enhanced activation for the memory template in the 

varied cue condition (Olivers, 2009).  In other words, the enhanced WM 

template results in a decrease in the decision threshold.  However, this is in 

contrast to an insignificant difference of the decision threshold in Experiment 1 

(fixed cue = 0.701, varied cue = 0.727), when there was no temporal 

uncertainty and in Experiment 3 (fixed cue = 0.55, varied cue = 0.54), when 

there was a drastic increase in trial number.  A further evidence for the 

certainty-related threshold change is the general magnitude of the decision 

threshold.  The decision thresholds in Experiment 2 are generally higher than 

those in Experiment 1, which then are higher than those found in Experiment 3.  

The changes in decision thresholds across the three experiments and the null 

effect of decision rate support the interpretation of task certainty and decision 

threshold.   

In summary, comparing to updating a target probe in every trial, 

repeating a target probe does influence the decision threshold, reflecting on the 

patterns of mean latency and accuracy.  The random ISI patterns cause 

changes of cue effect in the decision threshold and manifest as a pattern of 

speed-accuracy trade-off in the average data.   
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5.4.2 Search Efficiency  

The display size effect, a common efficiency indicator, shows the 

frequent observed findings: a positive linear relation of the mean RTs and the 

display size.  So does slope data (within-participant comparison) replicate the 

previous finding (Woodman et al., 2007; between-participant comparison).  Both 

Woodman et al.’s and our data show that the fixed- and the varied-cue 

conditions result in similar search slopes when the data were fitted with ordinary 

linear regression.  Even though the cue factor influenced the overall slope little, 

Woodman and colleagues’ data indicated that the search slope was affected by 

the interaction of the cue and the WM load.  Specifically, the cue factor only 

modulated search slopes in the dual task paradigm only when the observers 

loaded WM with a memory representation for an upcoming (search) task. 

Because the current study did not implement a dual-task paradigm, it 

cannot directly verify the point that a concurrent WM load renders updating 

template become effectively to decrease search efficiency.  Our model fitting 

results do suggest two possibilities.  First possibility is that the BIC model 

suggests Woodman et al’s (2007) interaction finding might result from an 

increase in non-decision time, because the cue factor does not account for 

variation of the decision rate, and because the ISI factor, which relates to the 

memory consolidation, affects the non-decision time.  The AIC model in 

Experiment 3, on the other hand, suggests the cue factor might affect the 

decision rate while both the ISI and the display factor also affect the non-

decision time.  This specific result however is not observed in Experiment 2 

when the per-condition sample size is half of that in Experiment 3.  A clear 
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answer may require a direct test using the dual-task paradigm when both RT 

and accuracy data are jointly accounted for by the decision-making model. 

5.4.3 The Certainty of Search Display Appearance 

The reverse finding of the fixed versus varied cues raises a question as 

to why the 50-ms ISI in Experiment 2 (as well as in Experiment 3), a condition 

seemingly replicating the procedure in Experiment 1, showed a drastic 

difference between the two cue conditions.  Examining together with the 

accuracy data, the data in the left two columns in Figure 5-2 suggest there 

might be a pattern of speed-accuracy trade-off.  That is, the pattern in 

Experiment 1 replicates what Woodman et al (2007) had reported, but that in 

Experiment 2 (50-ms ISI) does not.  The only difference in term of design in 

Experiment 2 (& 3) was the randomly mixed 50- and 400-ms ISIs.   

The different design might trigger two different cognitive changes: (1) the 

readiness of response and (2) the WM strength of the search template.  In the 

400-ms ISI condition, observers were able to prepare the search template 

during the 400-ms interval, whereas in the 50-ms ISI condition, this readiness 

operation might only occur when a search display has already been in place.  

Thus, the additional mean RT observed in the 400-ms ISI condition reflects this 

operation.  In contrast, the observers in the fixed cue condition in Experiment 1 

were not affected by the short ISI, because they might have prepared (i.e., 

automated) a strong search template via exposing to it repetitively without 

suffering from memory decay.  Secondly, the observers might maintain a less 

consolidated WM template in the 50-ms ISI in the latter experiments than that in 

the first experiment.  To facilitate search effectively, the observers might spend 



- 174 - 

time to reload the fading template back to the WM (regain confidence), as the 

activation-state hypothesis predicted (Olivers, 2009).  In light of the model-fitting 

data, the second account seems more likely, because the cue factor contributes 

only to the threshold parameter (in the BIC model).  Nonetheless, the data do 

not clearly rule out the first readiness account, because the AIC model indicates 

that the ISI factor contributes also to the threshold parameter and because both 

the AIC and BIC models show the ISI factor associates with also the non-

decision time.  

The additional 400-ms ISI condition and the within-block randomization 

of two ISIs might cause (1) the reversed relation between the fixed and varied 

cue conditions in the mean RTs, and (2) the increase difference between the 

two cue levels at mean accuracy (at 50-ms ISI condition).  The latter 

observation was replicated in Experiment 3 when per-condition trials were 

doubled, but the first pattern became trivial, even the varied cue advantage in 

mean RT still descriptively exists.  Although one may argue this is due purely to 

the speed-accuracy trade-off, both decision-making models suggest the 

decision rate is unaffected by the ISI and cue factors.  Therefore, the decision 

rate is not traded, because of the cue factor, for increasing accuracy.  The 

average data, at best, suggest the increase difference in mean accuracy is due 

to an increase in response caution (between-experiment comparison), and the 

reverse relation might be caused by the mixture of ISIs.   

One explanation for the reversed cue relation at the mean RT is that 

because, in addition to the fading WM strength for a template, the uncertain 

appearance timing of a search display made observers become less reluctant 
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to commit a decision.  In Experiment 1, observers were exposed to one ISI and 

a fixed target probe throughout the entire task, so the task with regards to the 

display timing and to the target identity were highly predictable.  Thus it is 

reasonable to infer the search template had been automated.  As a 

consequence of the high certainty, observers might commit less cognitive 

resource, which is associated with a low response threshold.  Experiment 1 

showed the quality of an automated template was strong enough to ensure a 

successful search (i.e., null cue effect on the decision rate), so I observed a 

reduction of response latency and error rate.  A similar level of mean RT 

performance was observed also in Experiment 3, which supports the claim that 

an automated template permits an effective search in terms of the decision rate, 

because Experiment 3 used a larger number of per-condition trials.  However, 

the same automated template in Experiment 2 seemed no longer able to ensure 

a successful search, possibly because it might not strong enough (in terms of 

WM strength) to guide search when the search display became less 

unpredictable.  When observers were unsure when a search display was going 

to come up or when their strategy was set to respond to a particular ISI 

sequence, an automated, but fading WM template increased target uncertainty.  

This automated, weak WM template makes observers cautious about a 

decision.  On the contrary, an updated WM template helped observers maintain 

a WM template as long as its strength is strong enough for a successful search.  

This explanation is supported by the long ISI accuracy data when observers 

were given opportunity to rehearse the search template and thus kept it active 

in the WM. That is, the data of the similar accuracy rates in the two cue 
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conditions in the E1-50, E2-400 and E3-400 columns in Figure 5-2.       

5.4.4 Response Threshold and Perceptual Sensitivity 

The findings from the ISI factor support further the interpretation that the 

WM strength of a template influences the response threshold.  Although the 

accuracy data, together the mean RT, cannot rule out whether decision rates 

was also changed in Experiment 2, they suggest that the observers became 

more hesitant to respond at the short ISI. That is, the mean RTs of 400-ms ISI is 

consistently slightly lower than those of 50-ms ISI, except in display size 9, fixed 

cue condition.  

When Experiment 3 increased the trial number to 200, an unambiguous 

influence of the cue factor on the mean accuracy, but not mean RT, was 

revealed in 50-ISI condition.  Taken together with the data in 400-ms ISI, it is 

clear that the long ISI resolves the accuracy difference between the two cue 

conditions.  Note that the mean RT between the two cue conditions remains 

very similar.  Although it needs more evidence to understand how the ISI factor 

interacts with the changing strength of a WM template and how this interaction 

influences the decision threshold and/or non-decision time, both decision-

making models suggest a clear null effect of the cue and ISI factors on the 

decision rate.  

  Evidence from the quantile analyses suggest the cue × ISI interaction 

occurred on in first 4 RT percentiles (0 to 30%), and waned afterwards (Figure 

5-3).  This pattern favours a difference in the early perceptual or late motoric 

processes, reflecting in the non-decision time difference (60 ms vs. 77 ms; 400-

ms ISI vs. 50-ms ISI) and an ISI factor contribution in the BIC model.  
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Nevertheless, further investigation is needed to understand why the AIC model 

suggests that the ISI factor contributes also to the variation of decision 

threshold. 

5.4.5 The RT Distribution and Decision Parameters  

One substantial shape change in the distribution is the one associated 

with the display size increase, a consistent observation found also in other 

visual search paradigms (Cousineau & Shiffrin, 2004; Palmer et al., 2011; 

Chapter 4).  Because we did not design this study to examine the question of 

cognitive architecture (serial vs. parallel and/or termination rules) of visual 

search, we make no claim if the display-size related shape changes of the RT 

distributions support either parallel or serial search, instead we suggest one 

underlying reason leading to the shape changes is the different decision rates.  

This is in line with our previous simulation study, suggesting that the change of 

the decision rate might reflect also on the scale and the shift parameters 

(Chapter 4).  The more items a search display contains, the lower the average 

decision rate and the wider an RT distribution spreads (Cousineau & Shiffrin, 

2004).   

The shape changes associated with the cue factor were less apparent, 

however.  Two clear cue factor-related shape changes are observed in the tail 

and peak of a distribution.  The tail became thickened and peaks became 

shortened across the four display sizes when comparing fixed cue to varied cue 

conditions in Experiment 1 and reversed in Experiment 2 (Figure 5-10).   

In summary, in the guided search paradigm, the response threshold 

change might be associated with a shape change in the RT distribution at the 
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micro level, and the variation change in the decision rate might be associated 

with a shape change in the RT distribution at the macro level.  I showed here 

how the dual-modelling approach, together with an appropriate experimental 

design and a strict timing control, can provide evidence to link the three levels 

of data (mean RT/accuracy, RT distributions, decision parameters) to the 

cognitive process in the WM.  The underlying reasons leading to the different 

RT distributions and reverse relation between the two cue conditions may be 

the unpredictable display timing and/or the intertwined ISI pattern.  Further 

studies are needed to clarify how ISI may influence the cognitive process of 

template updating/offloading.  

5.4.6 LBA vs. DDM  

The LBA model and the DDM were contrasted in the two experiments.  

Both models fit RT data closely, although the LBA model performed worse than 

the DDM in the slow responses (90% percentile) when the display size was 9.  

For the error rate, the LBA model showed better fits in the two experiments than 

the DDM, a result also found in Van Zandt and colleagues’ (2000) perceptual 

matching task (but see Ratcliff & Smith, 2004; Ratcliff, Van Zandt, & McKoon, 

1999).  As already been explained in detail in Van Zandt et al. (2000), our result 

does not argue against the DDM as being generally worse model to 

accommodate error rates than the LBA model, but it does suggest that the DDM 

may perform worse under our specific conditions.  One key difference between 

the class of race models (LBA) and that of random walk models (DDM), thereby 

their difference associated with accommodating the error data, is how they 

parameterise the cognitive process.  The race models are designed to 
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accommodate multiple choices using several accumulators, whereas the random 

walk models restrict the process of evidence accumulation in a single 

accumulator to accommodate only two choices.  This leads to two consequences.  

Firstly, the mechanisms to determine an error response and its RT differ; thus 

affecting how they fit error RTs.  The random walk models associate an error 

response with a correct one, whereas the race models determine whether a 

response is correct or not on the basis of a matching factor (M in our modelling 

nomenclature).  Second, due to multiple accumulators, the race model applies 

more parameters to fit data.  In the case of LBA, it allows the matching factor 

associated with v and sv, and lR factor with B.  Naturally, the more parameters, 

the higher freedom for it to fit data.  These mathematical differences contribute 

to the fitting difference.   

Compared with Van Zandt et al.’s (2000) paradigm, our data showed 

most substantial deviance of fit to error rates between the two models are in 

display sizes 7 and 9.  This cross-study comparison suggests that the 

experimental reason of worse fits may not be what Van Zandt et al (2000) 

hypothesised that the simultaneous presentation of the elements of a letter pair, 

because I did not observe homogenous worse fits across all display sizes, but 

considerable advantage of the LBA fit only in display sizes 7 and 9.  I suspect 

this is because multiple occurrences of the comparison between a WM template 

and a display item (or a grouped unit).  Single accumulator models perform 

optimally when errors are rare and a decision can be reached within the first 

sweep (1 s) of a visual scan (Ratcliff & Rouder, 1998).  In the current study, the 

former was observed but the latter may only be possible in small displays (3 or 
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5).  This model design may not fit well to the paradigm involving in multiple 

occurrences of the parallel process, for example the 7- and 9-item search 

display in my paradigm.  This search paradigm likely involved some degrees of 

parallel processing of the display and serial selection for multiple items in a trial 

(Cousineau & Shiffrin, 2004; Dosher, Han, & Lu, 2010).  As Cousineau and 

Shiffrin’s (2004) distributional analyses showed, given highly trained observers 

and huge number of response trials, a search process may become an 

informed serial search (see Cousineau & Shiffrin’s data for clear multi-mode RT 

distributions).  The characteristic of serial, multiple parallel processes may 

render multiple accumulator models accommodate better for the error rate data.  

5.5 Conclusion  

This study addressed the questions relating to search decision-making.  

The results suggest informed searches depend on the WM strength of an 

attentional template (consistent vs. varying mapping) and its association with 

the timing (ISI) and certainty of a search display (ISI patterns).  The data 

indicate that the decision rate in visual search correlates highly with the display 

size, and this correlation changes the shape of an RT distribution.  Most 

importantly, the study showed the decision threshold depends not only on how 

a template is set up, but also depends on the certainty of an upcoming search 

display.   This study provides evidence, showing the effectiveness of harnessing 

the RT distributions and the decision-making models to account for the WM 

mechanism for the search template.  The results provide evidence suggesting 

that how to set-up a search template affect decision threshold.  Further studies 

are needed to clarify how the factors that influence the decision threshold 
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associate with the direction of changes for the threshold (e.g., see Section 7.2 

for a discussion). 
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Chapter 6 Visual Templates Improve Decision Rate  

6.1 Introduction 

Broadly speaking, visual search is mainly modulated by external stimuli 

and internal goals.  The former, stimulus-driven information is often theorised as 

visual saliency, a measure reflecting the perceptual distinctiveness of a 

stimulus.  Take the attentional capture theory (Theeuwes, 1992, 2010) as an 

example.  It hypothesises that the visual saliency captures the initial attentional 

allocation reflecting differential activation values on the saliency map (Itti & 

Koch, 2000; Li, 2002; Treisman & Sato, 1990).  The activation values on the 

map reflect the distinctiveness of a stimulus in different features dimensions, 

such as colour, motion, line orientation, and luminance.  The search path driven 

by the attention forms in a display from the highest peak saliency to a next.  The 

notion is captured well by GS4’s bottom-up activation map, which demonstrates 

computationally how visual search may operate on the basis of attentional shifts 

following the sequence of activation value on the saliency map (Wolfe, 2007).  

In addition to the stimulus factor, a search goal may adjust the activation 

values on the saliency map when an a prior search template is set up (Found & 

Müller, 1996; Weidner, Pollmann, Müller, & Cramon, 2002; Wolfe, 1994).  

Compared to when observers are instructed to search for an outstanding item, 

they tend to pay additional attention to a set of specific features when they are 

informed with target features/descriptions.  Mostly, the target descriptions 

facilitates search (Bravo & Farid, 2012; Hodsoll & Humphreys, 2005; Maxfield & 

Zelinsky, 2012; Schmidt & Zelinsky, 2009; Yang & Zelinsky, 2009), but not 

always (Bravo & Farid, 2014).  Generally, goal-driven information seems to 
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operate differently on visual search from stimulus-driven information.   

6.1.1 Attentional Template 

The information held about a search target has been referred to as the 

‘attentional template’, and it is assumed, in most search models,  (Bundesen, 

1990; Desimone & Duncan, 1995; Duncan & Humphreys, 1989; Wolfe, 1994) 

as a WM representation.  A WM template takes around 200 to 400 ms to set up, 

so it could facilitate optimal guidance (Knapp & Abrams, 2012; Vickery, King, & 

Jiang, 2005; Wilschut, Theeuwes, & Olivers, 2013, 2014; Wolfe, Horowitz, 

Kenner, Hyle, & Vasan, 2004).  Although the template set-up time depends on 

various factors, observers go through two main steps to form an effective 

template: (1) encoding/memorising and (2) setting/maintaining a template in 

WM.  Apparently, the former step could be isolated from the latter step, which 

might independently influence search performance (Wilschut et al., 2013, 

2014).  In Wilschut and colleagues’ paradigm, observers studied a first pre-

search cue, two coloured disks, for 1.5 s, knowing that one of which (but not 

sure which one) indicated the relevant colour group a target belonged to.  After 

the first pre-search cue disappeared, a second pre-search cue flashed for 50 

ms at the one of the locations of the coloured disks.  The second cue informed 

the observers which coloured disk was relevant.  As a result, this paradigm was 

able to separate the stage of template encoding (cue 1) from that of setting-up 

(cue 2), suggesting that merely setting up a template affected search efficiency.  

Because a WM template was used during search to match and to verify the 

target, the observation of an independent template set-up process suggests 

that the WM template might only start to guides search when the encoding is 
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finished or at least sufficiently consolidated.   

6.1.2 The Properties of Templates  

If the memory matching process does play a critical role in guided 

search, the descriptions coded in the template should affect the extent of 

guidance; thereby how the template is represented in WM.  The nature of the 

template has been examined in a series of experiments by Anderson and 

colleagues (2010).  They compared the templates for the colour-defined and for 

the orientation-defined targets.  Their data showed that, relative to being set up 

via an orientation cue, a template set up via a colour cue resulted in a stronger 

effect on RTs.  The colour dominant role of the template was also found when 

the colour was target-related, comparing to when it was unrelated (Ansorge & 

Becker, 2014).   In addition to colour being a strong primitive feature that easily 

captures attention (Motter & Belky, 1998), these findings suggest that there is 

colour-based guidance associated with the WM template.   

6.1.3 Top-down Role of Templates  

Not only do the physical features carried by templates influence search 

efficiency, so do templates’ semantic properties.  The template set up only at a 

conceptual level, such as using a verbal cue, influenced search performance 

(e.g., Castelhano, Pollatsek, & Cave, 2008).  As another example, Hodsoll and 

Humphreys (2005) used a verbal cue to inform observers the target features 

and found that search time were reduced when the cue described a typical 

member in the category the target belonged to (categorical template, CT), 

compared to when the cue described an atypical member.  The CT benefit 

however diminished when observers previewed a visual image of a typical 



- 185 - 

member, compared with when an atypical member was previewed.  It appears 

that the categorical template set up by describing target category works 

differently from that set up by previewing an image.  On the other hand, the CT 

benefit is not limited to describing one type of feature, as a similar effect was 

observed too when the category is defined by orientation (J. P. Hodsoll & 

Humphreys, 2005).  Moreover, the CT benefit apparently is evidenced at 

different search stages.  It reduces search time, increases the numbers of initial 

saccades towards a target, and decreases the numbers of distractor fixations  

(Schmidt & Zelinsky, 2009; see also Arita, Carlisle, & Woodman, 2012, for 

cueing distractor colour can enable a template set-up at a conceptual level, by 

guiding attention away from distractors).  

One consistent finding in this series of studies is that no matter how 

detailed and elaborate a verbal description is, a visual preview often provides 

stronger guidance.  A visual preview ostensibly carries complete target 

information, whereas a categorical or verbal cue describes only incomplete 

information.  Although a clear mechanism remains to be clarified, the preview 

advantage in guidance from a visual cue seems to reflect a search optimisation 

that other types of template are difficult to attain.  The preview advantage has 

also been demonstrated in a large number of cueing paradigms.  So far, these 

paradigms have not identified a condition wherein a verbal or categorical cue 

permits equivalent guidance as a visual preview (Bravo & Farid, 2012; Knapp & 

Abrams, 2012; Meyers & Rhoades, 1978; Schmidt & Zelinsky, 2009; Vickery et 

al., 2005; Wilschut et al., 2013, 2014; Wolfe et al., 2004; Yang & Zelinsky, 

2009).  Apparently, the sub-optimal guidance provided by the verbal cue cannot 
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be attributed to an insufficient time to form/encode a template (Wolfe et al., 

2004), because the verbal cue disadvantage remains even with a prolonged 

time window for viewing the description (up to 6 sec; see the RT data in 

Experiment 2 in Knapp & Abrams, 2012).    

However, some recent studies suggest that the template set up via a 

visual preview does not always generate a search advantage.  For example, 

Anderson, Heinke and Humphreys (2010) identified a condition that a template 

set up by a visual preview showed only equivalent guidance to a verbal cue 

(Bravo & Farid, 2014; Maxfield & Zelinsky, 2012; Soto & Humphreys, 2007).  

This result is perplexing because, on the one hand the contrast between 

orientation and colour features in templates in Anderson et al.’s data (2010) 

showed that the feature differences exerted strong differential effects on search; 

on the other hand, the contrast between concrete (visual) and abstract (verbal) 

features did not. 

Following the SERR model (Humphreys & Müller, 1993) and their group-

segmentation account (Heinke & Humphreys, 2003), Anderson and colleagues 

(2010) interpreted the findings that colour exerts a goal-driven and a stimulus-

driven effects on the group segmentation.  They argued that the differences in 

search time should result from increased search efficiency due to the colour-

induced group segmentation, rather than to a change in a response selection.  

This argument was supported by the data collected using a ‘compound’ search 

task (Duncan, 1985) wherein an observer looked for a colour or orientation pre-

cued target (either a coloured vertical or horizontal bar) which carried also a 

symbol (a plus sign, ‘+’ or a cross sign, ‘×’), serving as a response indicator 
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(responding to colour or orientation).  Because they found a reliable search 

advantage for the colour over orientation cue in the compound task, which the 

response selection bore no direct relation to target identification, they argued 

that the colour advantage is a result from its strong effect on the template 

description, rendering effective group segmentation, rather than facilitating 

response selection.   

6.1.4 Response Selection and Attentional Guidance  

Anderson and colleagues’ study (2010) demonstrated a condition in 

which visual cues might not provide strong guidance and the condition in which 

verbal cues might be capable of guiding search as efficiently as visual cues.  In 

addition to the strong verbal-cue finding, another recent study has shown that, 

compared to when search was based solely on stimulus saliency, observers 

could not benefit from knowing target descriptions and showed deteriorated RTs 

(Bravo & Farid, 2014).  This finding however is inconsistent with large number 

of template-based search literature demonstrating a pre-cueing advantage.  

One explanation is the additional task, response selection, embedded in the 

search task, as in Anderson et al.’s compound task (2010).  It is possible that 

this additional task contributes to the reduced advantage for visual cues over 

verbal descriptions.  As the authors inferred, the additional task differentiated 

the stage of attentional guidance from the stage of response selection.  A 

similar argument has also been put forward in the target detection paradigm, 

observing that the foreknowledge of target form and target location could 

reduce RTs (Bruhn & Bundesen, 2012).  These effect became insignificant 

when a response selection task was separated from target identification 
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(Theeuwes, 1989).  It appears that attentional guidance is a process separable 

from response selection, and thus the response threshold bears no direct 

relation to the factors altering guidance (see also eye tracking evidence that 

separated guidance from target verification in Maxfield & Zelinsky, 2012).  The 

cognitive process of response selection may associate with a late target 

verification step, instead of the attentional guidance (Bravo & Farid, 2014).  

Specifically, after the attention is guided to the most distinctive item in a display, 

the item is then matched against the template, either a visual image or verbal 

description, to evaluate how likely this item is the target.  If the likelihood 

exceeds a decision threshold, a response is initiated after a decision is made. 

Accordingly, a compound search task may measure RTs reflecting the 

matching, verification, and decision-making, but not response selection.  The 

RT differences in the compound task thus reflect mainly the advantage of visual 

preview guidance, rather than the difference in response selection.  

The current study examined the influences of different template 

representations on different parts of information-processing, including guidance, 

memory matching, target verification, decision-making and response selection. 

In contrast to many previous works, the study evaluated an entire RT 

distribution via the DDM (Ratcliff, 1978) and the HBM (see Chapter 4). 

Particularly, the study examined the changes of the DDM decision parameters 

and the shapes of RT distributions when observes were probed with three types 

of template: no template, a verbal cue, and a visual preview.  The study 

assumed (1) the guidance and memory matching affect mainly the perceptual 

quality of stimuli, which is associated with the decision rate, (2) the target 
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verification affects the decision criterion, and (3) the response selection affects 

mainly the non-decision times.  The first hypothesis was tested by comparing 

three different template probes.  The latter two hypotheses were tested by 

comparing search items in a display (??).   

The hypotheses regarding to RT distributions follow the view of the stage 

model of information-processing (Rouder et al., 2005), which divides human 

performance broadly as central process and peripheral process.  The central 

process associates with the cognitive computations, such as attentional 

guidance and target-template matching, whereas the peripheral process 

controls the computation for taking early perceptual inputs and the computation 

for executing late motor responses.  On the basis of the stage model, the study 

assumes that the changes in  attentional guidance and the quality of target-

template matching will alter the shape of RT distributions and that the change in 

the performance related to analysing early perception and to executing late 

motor response will alter RT distributions little.        

6.1.5 Study Aims 

This study aimed to examine whether the template set up by a visual 

preview reduces search times and errors, relative to the template set up by a 

verbal cue and to search without a template.  A further question is how a visual 

preview enables efficient search with respect to its influences on the decision 

rate, decision threshold and non-decision times.  In addition to the search task, 

a detection task was embedded in the odd-one-out search paradigm.  The 

detection task serves as a control condition, because all pre-search cues were 

in fact redundant in the sense that a successful response could be made 
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without knowing the target identity/description.   

Specifically, the study investigated questions in two key domains. First, 

the study investigated questions related to attentional template and its 

influences on perceptual decision-making.  These questions were: (1) Does a 

visual template improve search efficiency? (2) If so, does a visual template 

enhance attentional guidance, reduce response threshold, and/or merely 

reduce non-decision times? (3) Does a verbal template exert an equivalent 

effect as a visual template in any aspects of search and decision processes? 

(4) If not, does a verbal template improve the processes and in what way it 

affects search differently relative to a visual template? (5) Does a redundant cue 

improve target detection? 

Second, the study addressed questions related to RT distributions.  

These questions were: (1) If a visual or a verbal template does improve search, 

as might be shown in ANOVA analyses, or more specifically be revealed in the 

distributional parameters? (2) Does the linear relation between display size and 

mean RTs manifest as a change in the shape of RT distributions that can be 

summarised by the three Weibull parameters? (3) If a redundant cue improves 

target detection, does the effect alters the shape of RT distributions? 

6.2 Method 

6.2.1 Design and Procedure 

The experiment used a two-way repeated-measures, within-participant 

ANOVA design. The first factor was display size (6 levels: 1, 3, 5, 6, & 7, vs. 9), 

and second was the cue (3 levels: null, verbal, vs. visual).  A trial began with a 

central fixation cross lasting for 500 ms, and then a 100-ms pre-search cue 
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informed participants about the target.  Immediately after a 1-s inter-stimulus 

interval, participants searched for a target letter in a search display. The 

numbers of search items were randomly chosen for each trial.  The display 

lasted only for 100 ms.  A trial was terminated 3 seconds after the onset of the 

search array.  In this paradigm, a response resulted in either a hit or a miss.  All 

participants were asked to give speeded responses without compromising their 

accuracy.  Participants visited the lab three times in different sessions and 

received an identical instruction, except for the nature of the pre-search cue. 

The cue was either uninformative (the null cue: a fixation cross), a verbal cue 

(an l for lowercase or a U for uppercase), or a target preview (the visual 

condition).  In the null cue condition, participants were told to find a letter that 

stood out from the others because it was in a different case.  No further 

information was given.  Because the target was always a lowercase (or an 

uppercase) letter in an all-uppercase (or all-lowercase) distractor array, 

participants were able to identify the target without prior knowledge.  Comparing 

to the paradigms used in previous chapters, one critical difference in the current 

paradigm is that the target is always an ‘oddball’ in a display.  Regardless of the 

template conditions, a search display is randomly drawn from an identical 

stimulus pool in every trial.  Even though in all three conditions the observers 

were told to use pre-search cues as much as they can to help the search, the 

likelihood for them to rely on stimulus saliency to find a target increase  when 

display size increase.   

Each session was divided into 14 blocks. Participants had chances to rest 

when finishing a block.  Each condition (6 × 3) contained 112 trials. In total, one 
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participant contributed 2016 responses.  Although relatively speaking, this is not 

a very large sample size (e.g., 500 per-condition trials were collected in Wolfe, 

Palmer, & Horowitz, 2010), it is approximately ten times, comparing to the per-

condition trials used in prior similar studies (e.g., Knapp & Abrams, 2012). Each 

trial was separated by a 1.5-sec inter-trial interval.  

 

Figure 6-1. An illustration of the paradigm. The images have been re-scaled for 
the illustration purpose. The exact size of the stimuli allowed only a clear view 
when a participant sat around 60 cm in frontal of the monitor. The search 
display was selected so that in this example all cue conditons indicate the same 
target, R. The actual paradigm randomly selected search items in each display.  

6.2.2 DDM  

The decision parameters were calculated using the joint data of RTs and 

response accuracy as inputs to the fast-dm-29 computer programme (Voss & 

Voss, 2007, 2008), an implementation of the DDM. The fast-dm-29 estimates 

the three decision parameters, drift rate, decision threshold, and non-decision 

times and respectively their standard deviations.  The programmes fitted the 

data, using a top-level (saturated) model separately for each participant and 

condition.     

I set the initial point at .5 (i.e., no prior bias towards either positive or 
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negative boundary), because the likelihood of an identical target appearing in 

two consecutive trials was low (3.2% mean repeat rate, within-block). Further, 

because the two alternative responses in my paradigm were to indicate whether 

a target was on the right or left side of the central fixation, it is reasonable to 

assume the initial point was in the middle of the matched and mismatched 

boundaries.  The sample size (112 trials) in this study was well above the 

suggested lower limit in a recent comparative study for different 

implementations of the DDM (80 trials; van Ravenzwaaij & Oberauer, 2009).  

6.3 Results 

This section was divided into three subsections.  First subsection reported 

the general search efficiency across the experimental conditions, analysing the 

RT means, response accuracy and the least-square search slopes.  Second 

subsection reported the DDM parameters.  The last subsection analysed the RT 

distributions using the percentile plots and the Weibull parameters.  

6.3.1 Mean RT and Accuracy 

ANOVAs were performed on correct RTs between 0.2 to 2 s (0.8% 

rejection rate) and accuracy.  A total of 180 summary observations for median 

RTs and accuracy were obtained (10 × 6 × 3; participants × display sizes × cues).  

Because there should be no process involving distractor selection/rejection in 

display size 1, the analysis of the display size 1 was dubbed the detection task 

and reported separately from the search conditions. 

The detection task showed reliable cue effects both for the RT medain, 

F(2, 18) = 6.10, η2p = .30, p = .009 and the accuracy rate, F(2, 18) = 3.89, η2p 

= .40, p = .04.  Compared with being probed by a fixation cross (the null cue; 390 
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ms, 98 %; p = .008) and being probed by a target description (the verbal cue; 413 

ms, 99 %; p = .012), the observers detected the target quicker when previewing 

a visual image (the visual cue; 341 ms, 99 %).  The cue effect at the accuracy 

rate is due to the difference between the visual and the null cue, t(9) = 2.59, p 

= .03. 

The result in the detection task suggested the target preview improved 

performance.  Individual analyse showed this performance improvement did not 

occur homogeneously across all observers.  Three of them showed no reliable 

difference between the visual and null cues.   

The search tasks replicated the RT-display size linear function findings in 

Chapter 4 and Chapter 5, F(4, 36) = 30.76, η2p = .77, p = 3.61 × 10-11.  In particular, 

the fewer items a search array presented (3, 5, 6, 7, &. 9), the quicker the 

observers responded (541, 570, 597, 627, & 634 ms, the last pair, 7 vs. 9, did not 

exceed the .05 significant level).  The search tasks indicated also a cue, F(2, 18) 

= 9.07, η2p = .50, p = 0.002, and a cue × display size interaction, F(8, 72) = 5.62, 

η2p = .38, p = 1.54 × 10-5 influences.  The cue effect was due to the differences 

between the visual (467 ms) and the other two cue conditions [verbal, 634 ms, 

t(9) = 3.62, p = .006; null, 679 ms, t(9) = 4.65, p = .001].  The interaction was due 

to a decreasing differences between the null and verbal cues when the display 

sizes were larger than 5 (Figure 6-2)  
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Figure 6-2. Search slope, correct mean RTs and error rates. The right panel 
drew the error ribbons based on ± 1 standard error corrected for within-
participant variation (Morey, 2008). The left panel showed search slopes 
estimated by the least-square linear regression and drew the error ribbons, 
using the 95% confidence intervals. 

The accuracy rate showed a similar pattern as the RT means. The few 

items a search array contained, the higher the accuracy participants achieved, 

F(4, 36) = 21.12, η2p = .70, p = 4.91 × 10-9.  This manifested as a decreasing 

trend in accuracy when the display sizes increased (from display size 3 to 9, 

respectively, 91%, 91%, 85%, 82%, & 79%.  The cue factor also affected the 

response accuracy, F(2, 18) = 35.84, η2p = .80, p = 5.29 × 10-7 (from the for the 

null, verbal to visual cues, 78%, 86%, & 93%).  The two factors interacted, F(8, 

72) = 3.30, η2p = .27, p = 0.003.  The above-chance accuracy in the null cue 

condition supports that the observers were able to find the target relying on the 

oddball strategy.  

Averaged across the display sizes, post-hoc t tests indicated reliable 
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differences between the three cues: the verbal cue vs. null cues, t(9) = 3.29, p 

= .009; the visual vs. null cues, t(9) = 8.18, p = 1.86 × 10-5; the visual vs. the 

verbal cue, t(9) = 7.46, p = 3.65 × 10-5.  Note no difference was found between 

the verbal and null cues in the data of RT mean.  

Further t tests at each display size showed reliable differences across 

most pairs of the cue conditions, ps < .05, except between the verbal and null 

cues in display size 5, t(9) = 1.45, p = .18, and display size 7, t(9) = 2.07, p = .07; 

between the visual and verbal cues at display size 7, t(9) = 0.31, p = .76.  

A traditional way to estimate search efficiency is by assessing search 

slopes for the mean RT × display size function.  Excluding the data of display size 

1, the search slopes respectively were 7.99, 21.07 and 21.66 ms/item for the null, 

verbal and visual cues.  The 95% confidence ribbons in Figure 6-2 give a quick 

assessment for statistical significance.  

6.3.2 Decision Parameters  

The visual-cue advantage for detecting a target appeared from the drift-

rate difference, F(2, 18) = 6.13, η2p = .41, p = .009, because no cue effect was 

found either at the decision threshold or at the non-decision time.  The visual cue 

resulted in a larger drift rate than the null cue [6.57 vs. 5.3; t(9) = 3.71, p = .005] 

and the verbal cue [5.46; t(9) = 2.71, p= .024].  This result seems to suggest a 

target previewing but not a target description, increased the decision rate.  

6.3.2.1 Drift Rate and Non-decision Time 

Both the drift rate and non-decision time were influenced by the display 

size, [F(4, 36) = 29.29,  p = 7.10 × 10-11, η2p = .77; F(4, 36) = 26.44,  p = 2.78 × 

10-10, η2p = .75], and the cue factors, [F(2, 18) = 64.05,  p = 6.54 × 10-9, η2p = .88; 
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F(2, 18) = 9.77,  p = .001, η2p = .521], as well as their interaction, [F(8, 72) = 11.20,  

p = 3.80 × 10-10; F(8, 72) = 2.94,  p = .007, η2p = .25]  The interaction was due to 

the decrease in the cue effect when the display sizes increased.    

On average, the drift rate was larger in the visual cue condition than the 

verbal [3.96 vs. 2.07; t(9) = 7.58, p = 3.38 × 10-5] and the null cue condition [1.54; 

t(9) = 19.88, p = 9.58 × 10-9].  No difference was observed between the verbal 

and null cue conditions [t(9) =  1.94, p = .085].  Further t tests at each display size 

showed the visual cue drifted faster than the other two conditions at all display 

sizes (ps < .05), except comparing with the verbal cue condition at display size 7.  

The verbal cue condition drifted faster than the null condition at display sizes, 3, 

t(9) = 2.33, p = .045, and at display size 7, t(9) = 2.61, p =.03.  This result 

suggested that both the effects of display size and cue influenced the drift rate 

and the display size seemed to modulate how the visual and verbal cues affect 

the drift rate.    

 With regard to the non-decision time, again on average the visual cue 

condition showed less non-decision time than the other conditions (ps < .01).  

Also no difference was found between the verbal and null cue conditions.  

Separate t tests at each display sizes showed that the visual cue requires less 

non-decision time than the other two conditions at all display sizes (ps < .06), 

except when comparing with the verbal cue at display size 6. The only difference 

between the verbal and null conditions is at display size 5, t(9) = 2.35, p = .04.  

Overall, the non-decision time showed a very similar reversed pattern as the drift 

rate (Figure 6-3). 
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6.3.2.2 Decision Threshold 

 In contrast to the other two decision parameters, the decision threshold 

showed only a reliable effect at the display size, F(4, 36) = 4.17,  p = .01, η2p = 

0.32.  The effect on the decision threshold was due to the null cue condition, F(4, 

36) = 5.67, p = .001, η2p = 0.39, showing a decreasing trend as the display sizes 

increased (1.28, 1.17, 1.11, 1.12, & 1.01).  The decreasing threshold suggests 

that when the local contrast was increased and the observers were set to find an 

odd target, they adjusted the decision threshold, instead of the drift rate. This 

result suggests an increasing number of display size facilitates attentional 

capture when the observers were guided only by the location contrast.  The lack 

of display size effect in the verbal and visual cue conditions suggest that when 

the observers were guided mainly by a WM template, either via a visual preview 

or a verbal description, the display size does not affect the decision threshold  

 

Figure 6-3. Diffusion model parameters. The error ribbons was drawn based on 
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± 1 standard error corrected for within-participant variation (Morey, 2008).  Note 
the decrease in the decision threshold in the empty triangle (i.e., null cue) when 
the display size increases. The unit of the non-decision time is second. 

6.3.3 Distributional Analyses 

This section reported the percentile analyses respectively for error and 

correct RT distributions to compare the effects of the display size and cue 

factors from fast to slow RTs.  Because the observers gave relatively less error, 

than correct, responses and the per-condition sample size was small, some 

error percentiles were estimated based on few than 10 observations (18.67%).  

Following the percentile analyses, the correct RT distributions were compared 

across different experimental conditions, using the Weibull parameters 

estimated by the Weibull HBM (Chapter 4). 

6.3.3.1 Percentile Analyses 

This percentile analyses clarified where in an RT distribution the cue and 

display size factors exerted influences.  Only .1, .3, .5, .7 and .9 percentiles were 

presented in Figure 6-5.  The procedure to summarise each mean percentile 

across individual trial was the same as mean RTs.  In other words, .5 percentile 

in correct RT analysis is the median (correct) RT.  

The detection task showed reliable visual cue advantages in all 

percentiles, compared with the verbal and null cue conditions.  Interestingly, the 

null cue condition showed faster RTs than the verbal cue condition from .5 to .9 

percentiles, a result suggesting that the top-down guidance from a verbal 

template is ineffective and that the bottom-up guidance from increasing local 

contrast became effective when at the tail side of the RT distributions.      
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Figure 6-4. The RT-difference plot for display size 1.  The figure showed RT differences along 8 percentiles from .1 to .9.  The 
shaded areas indicate 95% confidence intervals. When a shaded area covers 0 difference (the dashed line), it suggests no 
reliable difference between the two cue conditions. The confidence intervals and statistics were calculated based on a robust 
procedure (Wilcox, Erceg-Hurn, Clark, & Carlson, 2014).  
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The correct RT distributions in the search tasks showed three important 

results.  First, the visual cue condition showed unambiguously faster RTs across 

all display sizes in all percentiles than the other cue conditions (ps < 0.05; Figure 

6-5).  The slopes of the visual cue condition increased from .1 to .9 percentiles.  

The increase in the slopes suggests that the display size factor influenced 

differently on each percentile, from .1 percentile with a weak effect to .9 percentile 

with a strong effect.  The differences between the visual cue condition and the 

others also showed an increasing trend along the RT distributions. 

In contrast to the result in the detection task, the search tasks appeared 

to suggest that the verbal cue condition might be able to reduce RTs, because it 

showed consistently faster RTs than the null cue condition along the distributions, 

even though mostly the differences did not exceed .05 significant criterion.  

Specifically, amongst the insignificant differences, the verbal cue condition in 

display size 3 showed significant faster RTs than the null condition after .5 

percentile.  One way to interpretation this result is that the verbal description did 

guide search, but when the display size exceeded 3, the increase in the local 

contrast and the oddball strategy in the null cue condition exert a stronger effect 

on RTs than the template guidance due to the verbal description.  I will return this 

point in the Discussion. 

Third, the null cue condition showed an upward trend in search slopes, a 

tendency occurred only in the leading edge of the distributions (.1 & .3 

percentiles) and diminished after .5 percentile.  This result suggests the local 

contrast may work most effectively in slow RTs (.7 & .9 percentiles).   
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This observation in the slow RTs specific to the null cue condition suggests 

the effect of local contrast could be suppressed in an inefficient search task when 

the observers explicitly engage the verbal template to search.  That is, the local 

contrast became effective only when the observers were explicitly looking for an 

odd target.  The effect of local contrast appeared less effective when the 

observers set up a search template, because no obvious diminishing upward 

trend was observed in the visual and verbal cue conditions.  The only observation 

suggesting that the increase in search items reduced RTs was in the visual cue 

condition when the display size increased from 7 to 9 in .7 and .9 percentiles. 

The error RT distributions showed similarly a clear visual cue advantage 

over the other two.  Compared to the quick percentiles (.1, & .3), the cue effect 

became stronger in the slow percentiles (.7 & .9), although the clear advantage 

of the visual cue showed only from .5 percentile.  In large display sizes (7 & 9) 

specifically, the increase in variations resulted in insufficient observations.  The 

null and verbal cue conditions did not show any clear differences, nor did the null 

cue show the decrease in search slopes from quick to slow percentiles.  The 

verbal cue still showed increase in search slopes, suggesting the display size 

effect became gradually stronger from quick to slow responses, even in error 

RTs.  
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Figure 6-5. Percentile plots. The figure compared the differences of correct and error RT distributions in the three cue conditions 
along the 5 display sizes. The shaded areas drew ± 1 standard error corrected for within-participant variation (Morey, 2008).    
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6.3.3.2 Distribution Parameters  

The detection task showed a reliable cue effect only in the shift parameter, 

F(2, 18) = 4.1, η2p = .31, p = .03.  This was due to due to a significant difference 

between the verbal and visual cues [303 ms vs. 266 ms; t(9) = 3.00, p = .02].  The 

null cue condition (290 ms) showed no reliable difference, compared to the other 

two conditions (Figure 6-6). 

6.3.3.2.1 RT Shift 

The shift parameter showed only a reliable cue effect, F(2, 18) = 7.39, η2p 

= .45, p = .01, which was due to the difference between the visual and null cues, 

t(9) = 2.87, p = .02 and between the visual and verbal cues, t(9) = 4.97, p = .001.  

Table 6-1. The Weibull parameters in the search tasks averaged across display 
sizes in the three cue conditions. 

Condition Shift (ms) Shape Scale (ms) 
Null 347 1.77 377 

Visual 281 1.74 216 
Verbal 345 1.60 311 

 

6.3.3.2.2 RT Scale and Shape 

The scale and shape parameters show a similar ANOVA pattern, with a 

reliable display size effect [scale, F(4, 36) = 5.50, η2p = .38, p = .002; shape, 

F(4, 36) = 6.76, η2p  = .43, p = .0004], a cue effect [scale, F(2, 18) = 14.14, η2p 

= .61, p = .0002; shape, F(2, 18) = 5.09, η2p  = .36, p = .02], and an interaction 

effect, [scale, F(8, 72) = 2.35, η2p = .21, p = .03; shape, F(8, 72) = 1.84, η2p 

= .17, p = .08]. 

Post-hoc t tests indicated, when the scales were averaged across the 

display sizes, the visual cue condition showed a smaller value than the null, t(9) 
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= 4.81, p = .001 and verbal cue conditions, t(9) = 3.22, p = .01.  Only marginal 

difference was found between the null and verbal cue conditions, t(9) = 2.02, p 

= .08.  Further t tests showed reliable larger scale value in the visual cue 

condition than the others in all display sizes (ps < .05), except that in display 

sizes 7 and 9, compared with the verbal cue condition.  The difference between 

the verbal and null cue condition was only observed in display size 3, t(9) = 

2.38, p = .04.  

Post-hoc t tests in the shape parameter found reliable verbal-null cue 

differences at the display sizes, 5, t(9) = 2.51, p = .03, and 6, t(9) = 4.24, p = .002. 

The visual-null difference was found only at display size 5, t(9) = 2.31, p = .046. 

And the display size 3 showed a reliable difference between the verbal and visual 

cues, t(9) = 3.22, p = .01.  
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Figure 6-6. The line plots for Weibull parameters. The error ribbons were drawn based on Bayesian 95% credible intervals. 
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Table 6-2. The ANOVA summary for the mean RT, accuracy rate, the Weibull parameters, the DDM parameters.  • p < .09; * p 
< .05; ** p < .01; *** p < .005; **** p < .001. ; empty cells signify non-significant. 

   Mean RT  Acc. rate Shift Scale Shape Drift rate Non-decision time Decision threshold 

Detection Cue  * * *   **   

Search Display Size  **** ****  *** **** **** **** ** 

 Cue  *** **** ** **** * **** ***  

 Interaction  **** ***  * • **** **  
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6.4 Discussion 

The study examined three classes of dependent variables, the 

conventional measures (RT means, accuracy, & search slopes), the decision 

parameters, and the distributional parameters, when the observers were set in 

three distinct mental operations, search for an odd letter, a upper-/lower-case 

letter, and a previewed letter, and were searching for three types of display 

sizes: a one-item display, a small display and a large display.   

The data suggested clear influences of the display size and cue factors 

on the shape of RT distributions.  The distributional changes due to the display 

size factor can be understood in light of the decision rate, the decision 

threshold, and the non-decision time.  In the current cue-oddball paradigm, the 

display size factor affects the three main decision parameters as well as two 

Weibull parameters.  This implies the display size factor modulates both early 

perceptual and late cognitive processes.  On the other hand, the cue factor 

selectively showed no influence on the decision threshold.  The condition of the 

displays size 1 further supports the point that the cue altered the decision rate. 

The preview cue increased the decision rate, whereas the verbal cue did the 

opposite.  In contrast to the cue-threshold association found in Chapter 5, the 

finding in the current study suggests the cue factor can also affect the decision 

rate, suggesting that it is how the template operates in WM affects the decision 

parameters.  In the following, I discussed the implications of different 

representations of WM template on search efficiency and how they affect 

search decision and thereby change RT distributions.   
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6.4.1 Search Efficiency  

The analyses of RT means27 replicated several previous findings (Knapp 

& Abrams, 2012; Vickery et al., 2005; Wolfe et al., 2004).  Firstly, performance 

correlated positively with the display sizes and showed the visual template 

reduces search time more than the verbal and null templates (Knapp & Abrams, 

2012; Vickery et al., 2005; Wolfe et al., 2004).  The search slope however 

indicates the most efficient condition in this study was the null template, 

following by a verbal and then a visual templates.  Both the visual and verbal 

cue conditions showed lower intercepts than the null cue condition, suggesting 

that a WM template, either a target preview or a verbal description, reduces 

base processing time.   

Although the result of search slope appears to suggest the observers 

search more efficiently when relying only on stimulus features than when using 

both the stimulus features and a WM template, the superior efficiency in the null 

condition might be just an epiphenomenon of an increase in the local contrast.  

Together with the drift rate data, it is clearly that the null cue advantage not only 

resulted from the increase in its local contrast, but also from the decrease in 

search efficiency due to large display sizes in the other conditions (Figure 6-3).  

The increase in the display size appears to affect the null cue condition little, 

even though all three conditions drew search displays from an identical stimulus 

pool.  This result suggests the instruction, setting observers in a mental 

operation for looking for an odd item, plays a critical role.  This stands in 

contrast to looking for an uppercase letter such as in a ‘U’ cue trial or to looking 

                                                      
27 Here I refer to a broad sense of the central location measure of a distribution. 
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for a letter R in an ‘R’ cue trial.  In the latter conditions, the effect of an increase 

in the local contrast due to a small increase in displays sizes (e.g., from 5 to 6) 

did not noticeably improve search efficiency possibly because the instruction 

set observers’ mental operation to analyse and compare stimulus features 

against a template.  In the null cue condition, however, a small increase in 

search items improved drastically search efficiency and countered the burden 

for searching more items.  This is possibly due to the instruction set observers’ 

to rely only on the local contrast, so the display size factor also worked in an 

opposite way.  This result, complemented by the drift rate data, demonstrates 

clear evidence that the search slope suggests two distinct interpretations when 

the observers were set on different mental operations: relying on a pre-set 

template or on stimulus features.  

The positive correlation between RT and display size is a robust finding 

in visual search when mean or median performance is analysed (see a review 

in Wagenmakers & Brown, 2007).  One interpretation for this correlation is the 

selective recursive rejection process (the SERR model, Humphreys & Müller, 

1993), which argues attention samples a subset of items when searching 

through a large display that exceeds the capacity of one parallel processing 

(i.e., the group segmentation account, Heinke & Backhaus, 2011; Heinke & 

Humphreys, 2003, 2004).  The visual features extracted from a sample are then 

to match against the features in a pre-set WM template.  A selected subset of 

items is rejected as non-targets, if the amount of sensory evidence assessed is 

insufficient to reach the decision threshold.  Hence, the parallel process of 

attention sequentially shifts from one subset to a next and matches it against 
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the WM template.  The small display sizes (3 & 5) likely reflected only the 

segmentation process, and the large display sizes (6, 7, & 9) reflected both the 

processes of recursive rejection and group segmentation.  This interpretation is 

consistent with a reduction of per-item search time when display items 

increased.  The reduction gradually abates and reaches an asymptotic level.   

This asymptotic relationship is in contrast to previous linear findings 

(e.g., Vickery et al., 2005), wherein tested only few display sizes.  Those 

paradigms allocated search items in a sparse display rendering the 

segmentation process less likely and the linear relationship inconsequential.  

The result of mean RTs here instead correlate with the display sizes 

asymptotically (see a plausible non-linear explanation using a neural-network 

model in Mavritsaki, Heinke, Allen, Deco, & Humphreys, 2011).  Specifically, the 

differences between consecutive display size (5-3, 6-5, 7-6, & 9-7), when 

averaged across the cue conditions, showed a decreasing trend (27.38, 29.08, 

25.07, & 16.23 ms; see also Figure 6-2).  This follows the prediction of the 

SERR model (cf. the item density hypothesis in Bergen & Julesz, 1983; the 

visual crowding hypothesis in Levi, 2008; & re-entrant process hypothesis, Di 

Lollo, Enns, & Rensink, 2000).  Because the current paradigm allocated search 

items in a small viewing area that all displayed items can fall within a visual 

field, the number of items in one group segmentation increases when the item 

density increases and it becomes more likely that search items within the same 

area have similar features (Duncan & Humphreys, 1989).  Thus, the increase in 

item density recruits the segmentation process and this reduces the detrimental 

effects of large display sizes.  These processes seem to interact particularly 
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with the WM operation relying on a pre-set template, because the study 

observes a clear reduction of the detrimental effect due to increases in search 

items (i.e., from 7 to 9) only in the visual template condition (Figure 6-2). 

Nevertheless, this hypothesis is only a tentative account inferred based on the 

data in this study and previous study (Chapter 4), so requires more evidence to 

be consolidated.  

The current data also suggest that some extent of pre-attentive 

guidance, as supported by the intercept data (Figure 6-2).  The intercept data 

suggest the visual template resulted in less baseline time than the verbal 

template, following by the null cue condition.  If this were only observed in the 

visual cue condition, the interpretation of perceptual priming might account for 

all the effects.  The data of the verbal template, which carries only conceptual 

features (see also Wolfe et al, 2004; and Anderson, Heinke, & Humphreys, 

2010 for prior data) suggest the perceptual priming , although exert strong 

effect, may not explain all the reduction in the baseline time.  The data of the 

non-decision time and the RT shift support this point.  

6.4.2 Search Decision  

The detection task indicated the visual cue condition resulted in a quicker 

decision rate than the null cue condition, which showed an almost identical 

decision rate as the verbal cue (Figure 6-3).  The finding of visual cue 

advantage suggests there might be a perceptual priming effect due to 

previewing the target, a possible cognitive mechanism causes the drastic 

increase in the decision rate.  However the void finding from the cue factor in 

the decision threshold poses questions as to what factors might lead to the 
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accuracy difference.   

In the detection task, because there was no distractors, a visual preview 

is impossible to improve accuracy by tagging distractors and rejecting them 

latter.  That is, the recursive rejection process is unlikely and it is impossible to 

adjust the decision threshold by tagging distractors.  On the other hand, the 

abstract foreknowledge of the target appears to benefit little for response 

accuracy.  One explanation is the extent of cognitive processing.  In the 

detection task, observers attained a correct response simply by noticing 

whether either left or right side on the grey viewing area darkened (Figure 6-1).  

A reasonable strategy to make sped responses is to process the cue and 

stimulus as minimal as possible.  Because all display sizes were randomly 

mixed in a block, observers had to take note of the cue, but might discard to 

further process it as soon as they noticed a display contained only one item.  

This strategy suggests that a simple visual preview may improve only 

perceptual quality and may not be harnessed by higher cognition.  This shallow 

preview process can still increase response accuracy without altering the 

decision threshold.  The selective influence on the Weibull shift parameter 

appears to support the shallow processing account.  Nevertheless, a clear 

mechanism as to how the preview process might benefit preattentive guidance 

and how the early guidance might increase accuracy is not directly addressed 

in the study.  This remains to be explored. 

In the search task, indicated an increase in the decision rate is mainly 

due to the attentional guidance from the visual and verbal cues.  Because when 

they are compared with the null cue condition with no obvious WM operation, 
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the cued conditions involved to explicitly set up a template.  The WM operation 

in the cued conditions reduced search baseline time, guided attention towards a 

probable target, as suggested by the search intercept data.  One may argue 

that the data of search intercept and the drift rate were due to a strong priming 

effect, as a result of the target preview.  However, the account cannot explain 

the data in the verbal cue condition.  Further, the increase in the decision rate 

cannot entirely be attributed to the priming, because (1) the effect at the search 

task (η2p = .877) was far stronger than that of the detection task (η2p = .405), (2) 

the marginal effect across the display sizes (the post-hoc t findings at display 

sizes 3 and 7, when comparing the verbal to the null cue conditions), suggest a 

verbal template did guide search and (3) the interaction effect suggests that the 

cue alters the search, not merely detecting a target. 

The DDM data suggest that template guidance does not affect response 

selection, reflected by the decision threshold.  This decision parameter did not 

vary across the cue conditions.  This is consistent with Anderson, Heinke, and 

Humphreys’s (2010) ‘compound’ task finding, where there was an equivalent 

effect of the visual and verbal templates (also in Soto & Humphreys, 2007).  

The decision criterion data here suggest that this is because in the compound 

task setting, RTs mainly reflected not the process of attentional guidance, but 

from the response selection at a stage of target verification (Maxfield & Zelinsky, 

2012).  For this reason, the previous studies showed equivalent RTs when 

using the compound task to examine response selection.  

The finding of the display size influence on the decision threshold is 

consistent with the argument that more-than-one visual scan occurred in the 
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current paradigm.  Intuitively, this decision parameter should not associate with 

the display size, which may only set different levels of perceptual burden and 

thus should correlate positively with the non-decision times, as the linear 

assumption of analyses of RT-display size functions.  In contrast to this, the 

study found that the decision threshold correlated negatively with the display 

sizes.  The values of the decision threshold gradually decreased from 1.19, 

1.20, 1.12, 1.08, to 1.04 when the display sizes increased from 3 to 9 (Pearson 

r = -.18, p = .02).  This is predicted by the SERR model.  As explained earlier, 

my paradigm renders the segmentation process more likely to contribute to 

performance when the display size increases.  Because the amount of sensory 

information grows in one attentional parallel process when more items are in a 

search unit, the decision threshold may decrease with each perceptual sample. 

The non-decision times, as expected, correlated with the display size 

positively (Pearson r = .41, p < .001).  On the other hand, the cue factor showed 

only a visual cue benefit, but not any advantage from the verbal cue.  This is in 

contrast to the finding measuring the time eyes move towards a target (Maxfield 

& Zelinsky, 2012).  In Maxfield and Zelinsky’s study, the data of the time to 

saccade to a target changed as a function of a cueing categorical hierarchy, 

from subordinate to superordinate cues with the visual (pictorial) cue showing 

the strongest effect.  I did not, however, observe this dependence of the 

information hierarchy of template on the non-decision times.  It is possible that 

the time to saccade to a target (Maxfield & Zelinsky, 2012) reflects largely the 

process of attentional guidance.  The guidance is mostly accounted for by the 

drift rate, as it showed in my study a marginal significance between the verbal 
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and null cue conditions.  Nevertheless, at the two moderate display size (5) the 

verbal cue showed a reduced non-decision time, compared with the null cue 

condition.  One interpretation for the insignificance between the two cue 

conditions is the strategy difference.  In the small displays, the observers might 

just detect a darkened light flash, so the fixation cross required less non-

decision time than encoding an l or U for template setup.  In the large displays, 

the observer applied the oddball strategy and this might result in a different 

perception encoding strategy, thereby, reducing non-decision time relative to the 

verbal cue condition.      

6.4.3 RT Distributions 

6.4.3.1 Detection Task  

Only in the tail side of the distribution (.5 to .9), the observers responded 

slower when probed by a verbal cue than when by a fixation cross (Figure 6-4).  

Figure 6-4 shows the disadvantage of processing a verbal cue, even though it 

was not critical for detecting a target in display size 1, increases gradually 

towards long-latency RTs.  The redundant process suggests two possible 

modes of target detection.  First is a process of target detection without 

processing the verbal cue, suggested by the equal RTs in the early percentiles.  

Second mode is to simultaneously detect a target and process a redundant 

verbal cue.  This mode is manifested in the late percentiles.  The dual-mode 

account is plausible because the detection task was randomly mixed within the 

search task.  To maintain good performance, the observers prepared to respond 

to, detection or search, task.  Even though the observers were aware of that the 

target can be identified without referring to the pre-search cue, the processing 
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mode was likely determined probabilistically.   

6.4.3.2 Search Task  

The visual cue condition confirms the results of mean RTs, showing an 

overwhelming RT advantage over the other cue conditions across all quantiles 

and display sizes.  The benefit of visual cue is due both to the target preview 

and the attentional guidance.   The suggestion of attentional guidance is 

supported by two pieces of evidence.  Firstly, because the verbal cue condition 

exerted no priming effect and carried only additional (redundant) conceptual 

information related to a target, an RT advantage due to the verbal cue suggests 

attentional guidance.  This is shown in Figure 6-4.  The same robust test as 

used in Figure 6-5 suggests the observers responded reliably faster when 

probed by a verbal cue condition than by a fixation in display size 3, 5, and 7, 

across all percentiles.  Secondly, when no search is required (i.e., display size 

1), the verbal cue condition resulted in slower RTs in the tail side of 

distributions.  This result suggests simply processing a redundant verbal slowed 

down RTs when the observers engaged only in target detection.  The verbal cue 

influence on the tail part of RT distributions also suggests that the process of 

conceptual information may cause only late processing stage.  

6.4.4 Distributional Parameters  

The detection task indicates that the different attentional templates 

changed only the shift parameter, suggesting the priming effect due to the 

visual cue effectively moves an entire distribution leftwards without significantly 

altering the shape and the scale of the distribution.  This observation is 

inconsistent with Rouder and colleagues’ stage model hypothesis (2005), which 
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assumes that the shift parameter correlates with the non-decision time.  The 

data here indicate that without cross-examining with the decision parameters, 

one may infer that the perceptual priming due to the target preview alters only 

the shift parameter, and thus supports the stage model account.  However, the 

effect from perceptual priming increases mostly the drift rate, rather than just 

reducing motoric times (Figure 6-3).  This result suggests either the perceptual 

priming influences also higher cognitive processes, or the shift parameter 

reflects more than just the motoric time.  Either way, the current data suggests 

further modification of the stage model.  As suggested previously (Chapter 4), 

the geometric characteristics of the RT distribution provide a useful window to 

understand, but may not directly reflect, cognitive processes.  

The effect of attentional guidance on entire RT distributions is visualised 

in Figure 6-3, plotted as a trellis graph of RT density curves.  Figure 6-3 drew 

three reference lines at 0.3, 0.5, 0.7 and 1 seconds, enabling a visual 

comparison across the display sizes and cueing conditions.  First important 

observation from the figure is that compared to the visual cue condition, the 

distributions move towards long latency less when the display size increases.  

This is especially clear in the null cue condition.  The density curves are almost 

overlapped in the long latency part.  Secondly, in the visual cue condition, the 

range between the reference lines of 0.5 and 1 seconds covers the RTs beyond 

the mean (in all display sizes).  In contrast, in the verbal and null cue conditions, 

the same range covers RTs around the mean, although the verbal cue condition 

shows a clear leftwards shift when the display size decrease. 

The scale parameter showed a similar pattern with the mean RTs, 
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replicating previous findings (Palmer, Horowitz, Torralba, & Wolfe, 2011;Chapter 

4) and prediction (Wagenmakers & Brown, 2007).  This similarity between the 

two parameters is not unexpected.  As can be seen in the Figure 6-6, the 

density curves in visual search paradigms reflect most evidently the changes of 

scale parameter when the experimental factors that may lead to inefficient 

search are contrasted.  The two traditional Gaussian parameters, RT means 

and RT standard deviations follow the scale changes closely.  Each of them 

informs part of what the scale parameter reflects.  

The shape parameter aims to reflect how the general pattern of an RT 

distribution changes.  This parameter indicates that when averaged across the 

display sizes, the distributional shapes are similar between the visual (1.74) and 

null cue (1.77) conditions, but different between the null and verbal cue (1.60) 

conditions.  The equivalence of shape parameter between the visual and null cue 

conditions possibly is because the drastic change in the scale parameters (216 

vs. 377 ms).  As illustrated earlier, when the scale parameter increases, the 

density curve becomes thickened in the tail and shortened in the middle.  This 

leads to a very different visual impression in the two conditions, even their shape 

parameters are similar (their scale parameters differ reliably).  The shape 

parameters do show a difference between the verbal and null cue conditions 

when their scale parameters are similar, suggesting that the attentional guidance 

due to a verbal cue may change the distributional shape.  

In summary, the distributional shapes can be altered by the mechanisms 

associated with the display size and cue factors.  This is supported by the 

observation that the three distributional parameters showed significant changes 
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due to the two experimental factors and their interaction.  The selective 

influence on RT shift due to the cue factor is consistent with the argument that 

to a target preview enhances performance because of perceptual priming.  

Varying the information gradient of an attentional template, the study compared 

the mean RTs, accuracy, the decision and distributional parameter when the 

target foreknowledge was either absent, conceptual, or visual.  The study, to the 

extent of my knowledge, provides the first empirical evidence accounting for the 

association amongst the attentional guidance, the attentional template and the 

decision-making processing in visual search by analysing the joint data of RTs 

and response accuracy.  By using the attentional template paradigm, the 

current study found that visual templates guide and improve search efficiency 

by accelerating decision rate and reducing non-decision time, but not by 

changing response threshold.  The result suggests it is instructive to categorise 

the different information carried by an attentional template.  

6.5 Conclusion  

This study used the HBM to describe RT distributions and the DDM to 

assess attentional guidance from the visual and verbal templates.  The findings 

suggest that the attentional template exerts differential guidance, depending on 

whether how WM-related attentional guidance is operated.  The evidence of 

guidance was found in the improvement of the drift rate when a visual or a verbal 

cue or was used to set up a template, compared to a null cue.  The improvement 

of the drift rate suggests that the decision time is reduced due to focus attention 

is drawn towards a target quick and/or stronger, so the rate of information 

accumulation increase.  Importantly, the different templates and induced 
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guidance alter the decision rates and non-decision times, but not the decision 

threshold.  This evidence further supports the guidance account, instead of the 

explanation of changes of response selection/threshold.  This study also showed 

the template guidance manifests in RT distributions as the changes in the scale 

and shape parameters.  Both parameters alter drastically the RT density curves.  

The findings derived from dual-model analyses uncover hitherto the unknown 

aspects in search. 
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Chapter 7 Concluding Remarks 

Psychophysical findings are directly relevant to our daily lives (Li, 2002; 

Shi & Yang, 2007).  Work on visual search, for example, informs devices such as 

mobile phones, helping them to recognise and track eyes and faces.  The 

knowledge brought out by previous works indicate that early search (Neisser, 

1967; Treisman & Sato, 1990; Wolfe, 2007) and possibly attentional selection 

simultaneously takes in a large constellation of visual features in a visual field 

(Humphreys & Müller, 1993).  The amount of parallel information an observer 

captures (Theeuwes, 2010) is under the constraint of acuity within a single eye 

fixation (Dosher et al., 2010), although parallel search might not always operate 

across all search tasks (Thornton & Gilden, 2007). 

The missing puzzle regarding to how a search decision is reached is only 

starting to be tackled with the recognition that the psychophysical data – error 

and correct RT distributions – might hide a great deal of information that previous 

analytic methods had not noticed.  Analysing both RT distributions efficiently in a 

joint framework is a formidable task.  This is best illustrated by Ratcliff and 

Murdock’s early works (1978, 1979; Ratcliff & Murdock, 1976b) on memory 

retrieval and group reaction time distributions.  One of the challenges is to collect 

a vast number of observations (120,000 in total in the two studies).  This is more 

than one-tenth of the 10-year effort on visual search work (1 million observations) 

that makes determined the ‘a-bit-greater-than-2’ slope ratio of target-absent to 

target-present search (Wolfe, 1998b).  The sheer number of observations 

requires not only adequate experimental designs to keep participants motivated, 

but also an experimenter’s perseverance, let alone the ingenious analytic 
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methods – such as the drift-diffusion models and the Vincentising procedure 

(Ratcliff, 1979; Vincent, 1912).  These two methods were implemented when 

high-performance computing cluster was scarce.  Thanks to the advances of 

computation power and algorithms, such as the Gibbs sampler, and the 

OpenBUGS Bayesian language (Lunn et al., 2009), we are now capable of using 

hierarchical Bayesian models to reduce the number of observations and 

meanwhile to retain reliable parameter estimations for RT distributions.  Although 

it still requires more empirical data to make certain whether the hierarchical 

Bayesian method can apply generally on other probability functions (Ratcliff, 

2014) or even process models, such as the DDM or Poisson race/counter model 

(Vandekerckhove, Tuerlinckx, & Lee, 2011; Wiecki et al., 2013), this thesis has 

demonstrated that the Bayesian modelling approach does improve the parameter 

estimation greatly when using Weibull function (Farrell & Ludwig, 2008; Rouder 

et al., 2005) and it can make a significant contribution to understanding human 

search processes.  Below I summarise the significant contributions the thesis 

makes and discuss possible avenues to expand the current work to explore the 

neural correlates of search decisions.  

7.1 Scientific Contributions  

7.1.1 A New Descriptive Method to Fit RT Distributions  

In contrast to the ex-Gaussian and other 3-parameter probability functions, 

the Weibull function, even though it outperforms the Gaussian function, appeared 

not to be an ideal candidate for fitting RT distributions with maximum likelihood 

method and chi-square goodness-of-fit (Chapter 4; E. M. Palmer et al., 2011).  

This drawback of the Weibull function is due to the shape invariance tendency.  
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When the Weibull shape parameter has high values, increasing the other 

parameters have little effect on the distributions (Rouder & Speckman, 2004).  

This Weibull pathology can be resolved with the HBM, which improves parameter 

estimation even with small sample sizes (Rouder et al., 2005).  The problem of 

chi-square goodness-of-fit also starts to be tackled by, for example, Voss, Voss 

and Lerche (2014) whose fast-dm programme (version 30) now allows users to 

fit the DDM with Kolmogorov-Simirnov, chi-square, or maximum likelihood 

routines.  Thus, users can fit the DDM with flexible optimisation routines tweaked 

to their specific data types.   

Along this line of methodological development on distributional analyses, 

this thesis contributed a particular Weibull HBM routine to fit RT distributions.  

This routine is built on the general-purpose, open-source programming language, 

R (R Core Team & others, 2012) linking with the Bayesian language, OpenBUGS 

(Lunn et al., 2009), so it frees future users to modify it to suit their data without 

hindrance.  This design is intentional.  When similar programmes were built using 

particular commercial tools or highly technical programming languages, they 

have tended to fade away (Dawson, 1988) or to become confined to one lab (e.g., 

the DDM in the early years).  The Weibull HBM routine presented here can fit RT 

data generally (collected from other cognitive paradigms), and be modified to fit 

with other probability functions that are readily available in OpenBUGS (Lunn et 

al., 2013).     

In addition to the methodological contribution, the thesis has contributed 

original data and codes of analyses in the public domain, so future replication 

efforts or meta-analyses can build not only on what has been found here, but also 
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on the original data, applying a similar hierarchical technique to gain further 

insights via analysing accumulated data (Curran & Hussong, 2009).  This is 

particularly crucial in cognitive neuroscience, in which a tradition of open and 

accumulating data in a public database, such as done in biology (Benson et al., 

2012), has yet to be established (Grethe et al., 2001; Van Horn & Gazzaniga, 

2013). 

7.1.2 Scientific Findings on Search Decisions 

The three studies reported in the thesis examined the role of attentional 

template on search decisions and how it is represented in VWM might affect 

different parts of a decision-making process.  The findings are clear: the memory 

strength, the memory representation of a template, the WM operations as well as 

search display size selectively influence different parts of decision-making and 

can be probed via examining RT distributions.   

This point was illustrated in Study 1 (Chapter 4) in which, relative to feature 

search, inefficient searches conjoining multiple features affected the drift rate and 

interacted with the display size when group segmentation might emerge.  The 

shape of RT distributions revealed this particular search operation, manifesting 

significant changes in the shift and scale parameters.  A critical step in the 

increase of display sizes underlies an emergent change of segmentation process 

when the search was to work out the difference between two mirrored numbers 

(2 & 5).  This emergent effect, observed in some individuals, likely reflects an 

increase in the numbers of item in a search unit that can be processed in parallel.  

The change in the segmentation size reflects in the drift rate and the shift 

parameter.  
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Study 2 (Chapter 5) showed the strength of template representation in WM 

selectively influenced the decision thresholds, but not the drift rate.  The direction 

of the influence depended on whether the timing of a search display is 

predictable.  When it was unpredictable and too short for an observer to be 

prepared, a strengthened, as opposed to an automatic, template reduced RTs 

via lowering the decision threshold.   A further finding in Study 2 showed a race 

(LBA) model might fit error distributions better than the DDM.   

Study 3 (Chapter 6) found that a visual, as opposed to an abstract, template 

selectively increased the drift rate.  Study 3 found also that, although the increase 

in display sizes and thereby in local contrast in an odd-one-out search (the null 

cue condition) played roles in determining search performance, it was also 

affected by the top-down goal of searching for an odd target.  When contrasted 

those in Study 1 and Study 2, the finding in Study 3 further suggests that the 

factors that influence RT distributional shapes can affect different parts of a 

search decision, with the template strength in WM affecting the decision threshold 

and with the forms and the mental operations of WM representations affecting 

the decision rate.      

One important simplification in the thesis is that the decision-making models 

assumed a search display results in a rapid perceptual experience driving an 

underlying diffusion/race process, determining a decision.  There are general 

visual attention theories proposing a simpler mathematical, but more complicated 

cognitive, formulation to account for attentional selection, object categorization 

and thereby decision choices in one framework (Theory of Visual Attention, TVA, 

Bundesen, 1990; Neural TVA, Bundesen, Habekost, & Kyllingsbæk, 2005).  In 
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this cognitive formulation, a race is amongst multiple attentional selections 

entering VWM.  The selection process is to choose different elements/grouped 

elements in a search display into VWM (in Bundesen’s terms, ‘select element x 

to category i’).  The VWM can represent various, but limited number of categories 

(i.e., attentional templates).  Each category races independently with a rate 

depending on three parameters: pertinence (perceptual priority of a certain 

category i), perceptual decision bias (towards the category) and the strength of 

the sensory evidence related to the category. In a one-equation form, the 

mathematical formulation of TVA can be expressed as (Bundesen, 1990): 

 
𝜈(𝑥, 𝑖) = 𝜂(𝑥, 𝑖)𝛽𝑖 ×

∑ 𝜂(𝑥, 𝑖)𝜋𝑖𝑖∈𝑅

∑ 𝑤𝑧𝑧∈𝑆
 

Eq (5) 
 

                                              

The πi represents the pertinence parameter favouring category i, which 

times the parameter of the strength of the sensory evidence, η(x, i) to determine 

the attentional weight of the category. The strength parameter indicates how 

strong the sensory evidence an element x carries leading to a selection into 

category i.  The denominator is summed across all elements (zS) in a visual 

field and the nominator across all categories (iR) that may relate x’s features to 

category i.  This part of the equation determines the overall attentional weight of 

element, x.  The weight then multiplies the parameter of perceptual decision bias, 

βi, and another strength parameter to inform the decision (race) rate, ν(x,i).  The 

rate refers to how fast a VWM category reaches a decision type.  A final decision 

is determined by a first VWM category, amongst many others, winning the race. 
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Take a typical conjunction search as an example to illustrate TVA.  Upon 

being informed a target’s identify, an observer set up a VWM category, for 

example, a memory representation for a vertical dark bar.  The correlation 

between the VWM category and other display items produces the attentional 

weights.  The more the features of a display item overlaps with the VWM 

category, the higher the correlation (pertinence parameter).  Also, the more 

prominent the features, the higher the sensory strength (strength parameter).  For 

example, dark horizontal bars receive higher values than white vertical bar, 

because colour is a prominent feature.  An unspecified (strength) threshold 

determines how many display items are selected into VWM category.  The 

perceptual bias parameter may be influenced by for example one’s tendency to 

respond to high contrast (while bars; bias paramter).  Therefore, the decision rate 

is a multiplication of (1) the perceptual bias, (2) the sensory strength values 

correlated with the VWM category, and (3) the weighted sensory strength values 

correlated with the VWM category.  

A common feature between this cognitive formulation and the models used 

in the thesis is the (drift) rate parameter, but how it is determined and what 

cognitive process it represents are different.  The decision-making models (or 

denoted sometimes the evidence accumulation models) in this thesis simplified 

one perceptual experience as a sweep of sampling sensory evidence leading to 

a perceptual decision, so it may accommodate a very general class of cognitive 

tasks that involve only simple perceptual decision-making.  However, the models 

only approximated the cognitive complexities that other cognitive oriented models 

designed to accommodate.  The examples include the leakage (i.e., neuronal 
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lateral inhibition) in the LCA model (Usher & McClelland, 2001), recursive 

(attentional) selection and (distractor) rejection in the SERR (Humphreys & 

Müller, 1993), feature/element selection and WM categorisation in the TVA/NTVA 

(Bundesen, 1990; Bundesen et al., 2005), and the asynchronous entering of 

diffusors in the ADM (Wolfe, 2007).  The general decision-making models fit the 

data well in highly simplified paradigms, but may not be enough if the models are 

to apply on real-world search tasks, such as an algorithm in a robot-assisted 

search mission.  Real-world search scenes are highly complex and a successful 

model is measured by success rates.  Simply attaining good fits of data may be 

only a first step.  

7.2 Outlook 

7.2.1 Neural Correlates of Search Decisions 

One less explored area in the application of the accumulator model (e.g., 

DDM, LCA, LBA, NTVA etc.)28 is whether the brain does work as the models 

envisage (see a review in Purcell et al., 2010).  One neural account is that visual 

cortices encode sensory evidence, for instance, as a form of neuronal firing rates 

or synchronous firing frequencies across a network of cerebral cortices.  When 

the quantity or strength of the neural signals exceeds a certain threshold (which 

favouring one of the decisional choices), it then triggers the premotor/ motor 

cortex to initiate a motor response (either eye saccades or manual movement).  

This type of neural hypothesis of accumulator model (e.g., NTVA) raises the 

question of how the process of evidence accumulation is neurally represented, 

                                                      
28 Broadly speaking, race and diffusion models all belong to the accumulator model.   
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and how an above-threshold pre-motor neural signal triggers the motor cortex.  

These questions, and the relevant techniques to address them, are just starting 

to be unfolded (Purcell et al., 2012; Ratcliff, Philiastides, & Sajda, 2009; Turner, 

Forstmann, et al., 2013). 

 Specific to visual search, a recent study recorded activity from two 

macaque monkeys in the frontal eye field (FEF), the superior colliculus (SC) and 

the lateral intraparietal (LIP) cortex, when the animals were performing a T/L 

conjunction search in which they had to make a saccade to the target (Purcell et 

al., 2012).  The firing rates of neuronal population in the FEF were contrasted to 

the behavioural data accounted for by the accumulator model.  Purcell and 

colleagues (2012) recorded two populations of FEF neurons: the movement-

related and the visually responsive neurons.  The former neuronal population 

converged at a threshold of fixed firing rate immediately before the chosen 

saccade (suggesting an overt decision) regardless of the display size and RT.  

This observation suggested that, at least in a small population of movement-

related neurons in FEF, there exists a neural mechanism for a decision threshold.  

The neural evidence on the decision rate comes from the firing rates of visually 

responsive neurons, which decreased with target-distractor similarity (Duncan & 

Humphreys, 1989).  That is, the visual saliency and local contrast elicited by, for 

example one target amongst numerous homogeneous distractors, positively 

correlated with firing rates and this correlation was observed selectively only in 

the visually responsive, instead of movement-related, neurons in FEF.  This study 

is striking, because it suggests that the brain may works as the way the 

accumulator model envisages and that why it is so successful to account for a 
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wide range of experimental paradigms (Brown & Heathcote, 2008; Pleskac & 

Busemeyer, 2010; Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff & Starns, 

2009; Roe, Busemeyer, & Townsend, 2001; Usher & McClelland, 2001; 

Wagenmakers, 2009). 

7.2.2 Integration vs. Summation 

The inspiring finding from the above single-unit recording study 

demonstrates there might be a dissociation in the neural representations for the 

decision threshold and the decision rate.  However, the data cannot explain how 

the process of sensory information accumulation (Bogacz, Brown, Moehlis, 

Holmes, & Cohen, 2006) and that of the decision threshold switch are 

represented.  One recent debate is whether the process of accumulating 

evidence is represented by summing sensory information to a pre-existed 

informative function or by integrating sensory information to an un-informative 

function (consistent with Bayesian inference).  The former view presumes for 

different cognitive tasks there exist different ideal response functions.  For 

example, a fisherman knows how to conduct a search effectively for finding a 

shoal of fish, a mental operation that might be represented as pre-existed 

informative distribution.  On the basis of the informative distribution, the process 

of information accumulation is to sample sensory evidence that fits into this pre-

existed distribution.  In a new environment conducting an identical task, the 

fisherman might have presumed what an ideal searching strategy is and applied 

this strategy (represented as an informative distribution), which at the outset is 

uncertain.  The fisherman samples evidence to reaffirm that the pre-existed 

function does work (Berkes, Orbán, Lengyel, & Fiser, 2011).  Accordingly, s/he 



- 232 - 

might adjust the decision rate and threshold, because the pre-existed function is 

getting evidence to confirm its effectively and predictability.   

In the latter Bayesian view, by contrast, the fisherman is presumed to be 

completely naïve towards the task, representing the mental operation as an un-

informative function.  The evidence sampling process is to integrate the new data 

into this prior distribution, which then become a different distribution in light of the 

new data.  As a consequence, each new piece of data is integrated into a 

previous prior function, which then becomes a posterior distribution.  The 

posterior distribution then becomes a new prior distribution for next step of 

accumulating process.  This process goes on until the first prior distribution 

evolves into a distribution that might lend the fisherman strong confidence to 

claim ‘fishes found’. 

Critically, even though being very successful in predicting a large number 

of behavioural data, the conventional (simple) accumulator model appears to 

account only for part of the neural activities.  In the search paradigm of speed-

accuracy-trade-off (SAT), the activities in the FEF movement neurons suggested, 

contrary to the predicted direction, a higher threshold in the speed-stressed 

condition than that in the accuracy-stressed condition (Heitz & Schall, 2012).  The 

question regarding to whether the simple accumulator models are adequate to fit 

neural data or whether a better account of the accumulation process is required, 

remain to be explored.  Some proposed that the inconsistent finding prompts a 

requirement for adding new mechanisms (Heitz & Schall, 2013), but other 

constrained the cognitive model with the neural data, arguing that the existing 

model might still applicable (Cassey, Heathcote, & Brown, 2014).   Further human 
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neurophysiological data have suggested that when car/face images were 

subjected to various degrees of blurring, two ERP components correlate 

selectively with decision times and non-decision times (Ratcliff et al., 2009).  The 

pioneering work demonstrates one way of investigating human 

neurophysiological data within the decision-making framework.  However, neither 

the ERP study can provide a clear account to answer how the neural signals 

(EEG recoding from the scalp) associate with the direction of decision threshold 

(see also the finding related to this question in Chapter 5).  It remains unclear 

how a mathematical model can link neural data to behavioural data (but see 

Turner, Forstmann, et al., 2013) and why the saccadic/single-unit recording data 

sometimes suggested reversed direction of decision thresholds in the SAT 

search paradigm (Heitz & Schall, 2012). 

7.3 General Conclusion  

The thesis harnessed both correct and error RT distributions to address the 

questions related to search decisions when an attentional template is explicitly 

represented in VWM.  The results are overall consistent with psychological 

theories such as the biased competition theory of selective attention (Desimone 

& Duncan, 1995; Duncan et al., 1997).  That is, at least at the level of decision 

choices (present vs. absent or left vs. right), the results showed good fits to the 

data and provided reasonable accounts when modelling two alternative choices, 

either by one or two accumulator(s), competing for  a perceptual decision, which 

depend on WM strength and representations.  The questions related to mutual 

(neuronal) inhibition or leaky of neuronal/sensory evidence during the 

competition process remain to be explored.   
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The notion of competition was implemented in the DDM as an accumulator 

drifts to either alternative (2AFC) or two accumulators race towards a common 

threshold (LBA).  Instead of directly contrasting two or multiple competing WM 

representations (designed in paradigms), the thesis asked how an attentional 

template might affect selective attention when the template strength and the 

template status were changed.  The findings indicate that depending on how an 

observer operates WM, different template representations affect contrasting 

parts of a decision-making process and they manifest as different shapes of RT 

distributions, reflecting in different distributional parameters.  A future direction 

may be further to explicitly model other important neural competition 

mechanisms, such as mutual inhibition of interneurons and signal leakage in a 

neuron.  These biologically inspired modelling will ultimately lead to a complete 

account of accumulator model and provide intelligent applications that directly 

influence our life about how to make an optimal search decision. 
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Appendix A The Ethics Approval Letter for the 

Psychophysical Experiments 
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Appendix B Software Developed in the Project  

Section B.1 is the source code, programmed in R, for estimating Weibull 

distributional parameters for the feature search data.  The main function of this 

programme is to read in raw data and to reformat them be processed by BUGS 

model.  Similar programmes with small tweaks were used in the data collected 

from other similar searches paradigms.  The programme can be modified to fit 

other types of data or even applied with other probability functions. 

Section B.2 is the source code of the BUGS model.  In the case of this 

project, it is a hierarchical Weibull model, designed to fit RTs at the first level.  

The hyperparameters (higher hierarchical levels) are modelled with other 

probability functions.  I implemented pseudo-Poisson trick to model the 3-

parameter (shift) Weibull function, because the available Weibull function in the 

latest OpenBUGS (version 3.2.3 rev 1012) appears to contain (programming) 

bugs and other 3-parameter, for example gamma, functions have not 

implemented in OpenBUGS.  Specifically, one bug is its inconsistent variable 

naming, as I found out in its source codes, using BlackBox Component Builder 

(version 1.6 built on 11.10.2013). 

Section B.3 is the source code of PsyToolkit (Stoet, 2010) for the feature 

search task.  The stimulus table is omitted due to its large volume.  The table was 

generated by another R programme, separately for each participant run. 

B.1 Data formatting Source Code  

# Disclaimer------------------------------------------ 

# Author: Yishin Lin 
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# Last modified Date: 21 May, 2013 

# Description: Run HBM 

# Load data and functions----------------------------- 

# Gelman and Hill's (2007) random imputation function 

load('./data/myData/featureT.RData') 

source("./functions/random.imp.R") 

 

# Set up sequences of each factor---------------------- 

size.seq <- sort(unique(featureT$size)) 

target.seq <- sort(unique(featureT$target)) 

# I should have 19 (out of 20 participants)  

# valid participants  

NSubj <- length(unique(featureT$subj)) 

 

# Start the for loop----------------------------------- 

for(i in seq(along = size.seq)){ 

  subdata1 <- subset(featureT, size == size.seq[i]) 

  if (nrow(subdata1)  == 0) next 

  for(j in seq(along = target.seq)){ 

    subdata2 <- subset(subdata1, target %in% target.seq[j] ) 

    if (nrow(subdata2)  == 0) next 

     

    # Processing the data now--------------------------  

    library(plyr) 

    dataPerSubj <- ddply(subdata2, .(subj), summarise, 

                         N = length(rt.sec),  

                         MeanRT = mean(rt.sec), 
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                         MinRT = min(rt.sec)) 

    minrt  <- dataPerSubj$MinRT 

     

    dataPerSubj.ordered <- dataPerSubj[order(dataPerSubj$N, 

                                             decreasing=TRUE),] 

    dataPerSubj.ordered$subj.o <- dataPerSubj.ordered$subj 

    dataPerSubj.ordered$subj <- 1:nrow(dataPerSubj.ordered) 

    minrt <- dataPerSubj.ordered$MinRT 

     

    rtSample <- NULL 

    for(sIdx in dataPerSubj.ordered$subj.o) { 

      tmpContainer <- subset(subdata2, subj == sIdx,  

                             select = 'rt.sec')[,1] 

       

      if(!is.null(rtSample) && ncol(rtSample) >  

           length(tmpContainer)) 

        { 

        tmp <- ncol(rtSample) - length(tmpContainer) 

        tmpContainerNA <- append(tmpContainer, rep(NA, tmp)) 

        tmpContainer <- random.imp(tmpContainerNA) 

        } 

      rtSample <- rbind(rtSample, tmpContainer) 

    } 

     

    # Store data as a list --------------------------------- 

    dataList <- list(NSubj = NSubj, 

                     NTrials = ncol(rtSample), 
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                     y = structure(.Data = rtSample,  

                                   .Dim = dim(rtSample)),  

                     minrt = minrt) 

     

    # Save data files as JAG format ------------------ 

    library(BRugs) 

    fileNameRoot <- paste('data', size.seq[i], target.seq[j],  

                          sep='') 

    BRugsName <- paste('./data/myData/BayesDataF/',  

                       fileNameRoot, 'BRugs.txt', sep='') 

    bugsData(dataList, fileName = BRugsName) 

    detach(package:BRugs) 

     

    library(R2jags) 

    JAGSName <- paste('./data/myData/BayesDataF/',  

                      fileNameRoot, 'JAGS.txt', sep='') 

    bugs2jags(BRugsName, JAGSName) 

     

    # Set initial prior values------------------------------ 

    # for each participant, set prior beta=0.9;  lambda=12,  

    # theta (scale) = lambda^(-1/beta);  

    # psi = min(each particpant) - min in the group 

   thetaInit <-  runif(NSubj, .3, 4)   

   betaInit <- runif(NSubj, 0.9, 2) 

   psiInit <- dataPerSubj.ordered$Min -   

      min(dataPerSubj.ordered$Min) 
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# Initialization ---------------------------------------------- 

# Rouder et al.'s (2005) initial values 

# "to simulate analysis of real data, these should be  

# reasonable, but far from true values" 

#****************************************************** 

  initList <- function(){ 

    list(beta = betaInit, 

         psi = psiInit, 

         theta = thetaInit,  

        eta1 = .1 , eta2 = .1,  

        xi1 = .1, xi2 = .1) 

  } 

 

# Define parameters to monitor ---------------------------------- 

parameters <- c('beta', 'psi', 'theta') 

nb <-  5000; nbt <-  10 

nc <- 3; nct <- 1 

ni <-  105000; nit <-  1000  

nt <- 4; ntt <- 1 

 

# RUN THE CHAINS (Create, initialize, and adapt the model:) 

# Test run ------------------------------------------------------ 

# jagsfitT <- jags(data=JAGSName,  

# model.file='./BayesRuns/model.txt',  

# inits=initList, parameters.to.save=parameters,  

# n.iter=nit, n.chain = nct, n.burnin = nbt,  

# n.thin = ntt) 
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# Run ------------------------------------------------------ 

jagsfit <- jags(data=JAGSName,  

                model.file='./BayesRuns/model.txt',  

                inits=initList, parameters.to.save=parameters,  

                n.iter=ni, n.chain = nc, n.burnin = nb,  

                n.thin = nt) 

 

pathWithNameRoot <- paste('./data/myData/BayesDataF/',  

                          fileNameRoot, sep="") 

imageName <- paste(pathWithNameRoot, '.RData', sep="") 

save.image(file=imageName) 

   }  

} 

B.2 Model Source Code  

data { 

for (i in 1:NSubj) { 

for (j in 1:NTrials){ 

zeros[i,j] <- 0 

} 

zero[i] <- 0 

} 

} 

 

model { 

C <- 100000   # a big constant to certain phi is non-negative 

# Likelihood 
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for (i in 1:NSubj){ 

for (j in 1:NTrials){ 

 

#--------------------------# 

# Weibull density       # 

#--------------------------# 

term1[i,j] <- beta[i]*log(theta[i]) + pow(y[i,j] - psi[i],beta[i])/pow(theta[i],beta[i]) 

term2[i,j] <- log(beta[i]) + (beta[i]-1)*log(y[i,j] - psi[i]) 

 

# zeros trick 

phi[i,j] <- term1[i,j] - term2[i,j] + C 

zeros[i,j] ~ dpois(phi[i,j]) 

} 

 

#--------------------------------# 

# beta prior (shape)          # 

#--------------------------------# 

# to ensure the posterior moments exist for the beta[i] 

is.censored[i] ~ dinterval(beta[i], 0.01)    

beta[i] ~ dgamma(eta1,eta2)   # I(0.01,), BUGS's old way to truncate   

 

#--------------------------------# 

# theta prior (scale)          # 

#--------------------------------# 

theta[i] ~ dunif(.01, 10000)  # modify from dflat() 

 

#------------------------------# 
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# pow(theta[i], beta[i])   # 

#-------------------------------# 

phip[i] <- (xi1 + 1)*log(pow(theta[i],beta[i])) + xi2/pow(theta[i],beta[i]) + loggam(xi1) 
- xi1*log(xi2) 

zero[i] ~ dpois(phip[i]) 

 

# Quote from Rouder et al.(2003, Psychometrika, p593) 

# ..., the hierarchical priors in β and θ^β yield shrinkage in all three 

# parameters.  It is not clear that a hierarchical prior on  

# psi (shift) would yield any additional gain. 

psi[i] ~ dunif(0,minrt[i]) 

} 

 

#----------------------# 

# Hyper-prior        # 

#----------------------# 

# Priors as recommended by Rouder et al (2003). 

# how the shape and scale vary across individuals within the population 

# hyperpriors on xi1,..,eta2. In Rouder et al's original code 

eta1 ~ dgamma(2,0.02)   # c1 = 2, d1 = .02  

eta2 ~ dgamma(2,0.04)   # c2 = 2, d2 = .04 

xi1 ~ dgamma(2,0.1)     # a1 = 2, b1 = .1 

xi2 ~ dgamma(2,2.85)    # a2 = 2, b2 = 2.85 

} 

 

B.3 Paradigm Source Code  

# This programme is modified from Stoet's (2011) visual search task  
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# 1152x864 is SONY's resolution with 100 Hz RF. 

# Author: Yi-Shin Lin 

options        

 escape         

 centerzero        

 bitmapdir bitmapssearch      

 resolution 1152 864                         

 parallelport out 2 3 4 5 6 7 8 9 # allow set parallel port to send out high voltage  

 vsync_off                         

 cedrus       

                                   

bitmaps      

 instruction   

 prcFullsetCompleted   

 takeABreak     

 lastOne 

 finish3Sections 

 finish5Sections 

 finish7Sections 

 finish9Sections 

 target 

 distractor1 

 distractor2 

 empty 

 fixpoint 

 frame 

 tooearly 
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 toolate 

 

table feature # This table is created in search.R and searchTabFun.R 

# Table has been omitted. To compile this programme, you need to insert a  

# new stimulus table 

 

task search 

     table feature 

     c-begin 

  set_pin(LP_PIN02); 

  psy_show_centered_bitmap(fixpoint, 0, 0, 1);  // image1 

        psy_delay(500); 

  set_pin(LP_PIN03); 

  psy_show_centered_bitmap(empty, 0, -30, 1);   // image2 

  /* the cue bitmap stays on the screen for 200 ms.*/ 

       psy_delay(200);                   

  psy_delay(feature[tablerow].c4);      // The duration of cue-
offset to target-onset is @4, defined at isiSet in R file. 

     c-end 

     cedrus clear        # clean any cedrus guess press before presenting the target set  

     draw off     

  show bitmap @4 @5 @6   # 3; target; [bitmapname] (xpos 
ypos)(width height) 

  show bitmap @7 @8 @9   # 4 

  show bitmap @10 @11 @12  # 5 

  show bitmap @13 @14 @15  # 6 

  show bitmap @16 @17 @18  # 7 

  show bitmap @19 @20 @21  # 8 
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  show bitmap @22 @23 @24  # 9 

  show bitmap @25 @26 @27  # 10 

  show bitmap @28 @29 @30  # 11 

  show bitmap @31 @32 @33  # 12 

  show bitmap @34 @35 @36  # 13   

  show bitmap @37 @38 @39  # 14 

  show bitmap @40 @41 @42  # 15 

  show bitmap @43 @44 @45  # 16 

  show bitmap @46 @47 @48  # 17 

  show bitmap @49 @50 @51  # 18 

  show bitmap @52 @53 @54  # 19 

  show bitmap @55 @56 @57  # 20 

  show bitmap @58 @59 @60  # 21 

  show bitmap @61 @62 @63  # 22 

  c-begin 

     set_pin(LP_PIN04); 

   c-end 

  draw on 

  c-begin 

  /*  Record RT, using Cedrus RB-830. If longer than 4 seconds, terminate the trial. */ 

  keystatus = psy_cedrus_readkey(feature[tablerow].c2, 4000); 

  set_pin(LP_PIN05); 

  /*---------------------------------------------------------------------------*/  

  psy_clear_screen(); 

  /* Reset all parallel pin back to 0 voltage. This defines the trial finish event */ 

  clear_pin(LP_PIN02 | LP_PIN03 | LP_PIN04 | LP_PIN05 | LP_PIN06 | LP_PIN07 | 
LP_PIN08 | LP_PIN09); 

  psy_delay(800);   
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  /*   c1-counter(); c2-target present(present-1/absent-2); c3-setsize;  

       keystatus.key records which cedrus key (7 or 1) was pressed;  

       keystatus.status records correct, incorrect, too early or timeout;  

       keystatus.externaltime1 (EXTRT) record RT from the Cedrus key pad  

  */ 

  fprintf(datafile, "%s %d %d %d %d %d %d \n", blockname, 

   feature[tablerow].c1, feature[tablerow].c2, 

   feature[tablerow].c3, keystatus.key + 1, keystatus.status, 

   keystatus.externaltime1); 

  c-end 

   

#---------------------------------------------------------------------- 

# blocks 

# --------------------------------------------------------------------- 

 

block prc    

  pager instruction      

  delay 1500                     

  tasklist        

    search 8 fixed     

  end 

  system R CMD BATCH dataDump.r 

 

message prcFullsetCompleted 

 

block feature1    

  delay 1500                     
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  tasklist        

    search 80 fixed    

  end 

  system R CMD BATCH dataDump.r 

 

message takeABreak 

 

block feature2    

  delay 1500 

  tasklist  

    search 80 fixed  

  end 

  system R CMD BATCH dataDump.r 

 

message takeABreak 

 

block feature3    

  delay 1500 

  tasklist  

    search 80 fixed  

  end 

  system R CMD BATCH dataDump.r 

 

message finish3Sections 

 

block feature4      

  delay 1500 
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  tasklist  

    search 80 fixed  

  end 

  system R CMD BATCH dataDump.r 

   

message takeABreak 

 

block feature5     

  delay 1500 

  tasklist  

    search 80 fixed  

  end 

 

message finish5Sections 

 

block feature6    

  delay 1500 

  tasklist  

    search 80 fixed  

  end 

  system R CMD BATCH dataDump.r 

   

message takeABreak 

 

block feature7    

  delay 1500 

  tasklist  
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    search 80 fixed  

  end 

  system R CMD BATCH dataDump.r 

 

message finish7Sections 

 

block feature8     

  delay 1500 

  tasklist  

    search 80 fixed  

  end 

  system R CMD BATCH dataDump.r 

 

message takeABreak 

 

block feature9     

  delay 1500 

  tasklist  

    search 80 fixed  

  end 

  system R CMD BATCH dataDump.r 

 

message lastOne 

 

block feature10     

  delay 1500 

  tasklist  
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    search 80 fixed  

  end 

  system R CMD BATCH dataDump.r 

  bitmap_from_file ./bitmapssearch/completed.png 

  wait_for_key 
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Appendix C Fitting Other Three-parameter Functions  

This appdneix illustrates one way to fit a three-parameter probability 

function other than the Weibull function, using the BUGS model code in the 

thesis.  This illustration tests whether the Weibull function fit better than the 

gamma function.  I built a 3-parameter gamma function in the HBM framework.  

Because a typical gamma function contains two parameters and there is no a 

pre-built 3-parameter gamma function in Bayesian inference Using Gibbs 

Sampling (BUGS) programme, I used Johnson, Kotz, and Balakrishnan’s (1994, 

pp 337, eq. 17.1) equation to implement the gamma function directly.  The BUGS 

code is to change the Weibull density function to (see Appendix B.2 for the 

complete BUGS source code): 

#--------------------------# 

# Gamma density               # 

#--------------------------# 

term1[i,j] <- beta[i]*log(theta[i]) + (y[i,j] - psi[i])/theta[i] + 

loggam(beta[i]) 

term2[i,j] <- (beta[i]-1)*log(y[i,j] - psi[i]) 

Similar to the way in implementing other functions, I assessed the 

parameters via a minus log-likelihood and used the pseudo-Poisson (zero) trick 

(Spiegelhalter, Thomas, Best, & Lunn, 2007).  This implementation resulted in 

unstable, non-converged estimations.  Take the shape parameter as an example.  

When estimating the parameters in a participant’s present trial responses in the 

spatial configuration search (display size 6), the estimation yielded three different 

posterior distributions and the trace plots from the three chains unstably oscillated 
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around different ranges (Figure C-1 to Figure C-3) 29 .  In addition, the 

autocorrelation plots indicated a problem and this did not abate with increasing 

iterations.  The diagnostic plots showed that the gamma function does not 

converge when fitted in the HBM framework.  

                                                      
29 See Chapter 4 for the details of this study. 
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Figure C-1. The trace plots show non-converged parameter estimation using gamma function. Right panel plotted three 
simulation chains separately. 
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Figure C-2. The HBM gamma fit suggests three possible posterior density distributions.  The result suggests that there are 
three underlying distributions that are able to generate the modelled dataset.  Left panel plotted three simulation chains 
separately.   
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Figure C-3. The autocorrelation plots show correlated estimations even after long iterations, using the gamma function. 
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In summary, the non-converged gamma fit could be due to that (1) it is not 

suitable for HBM in this context, and/or (2) the gamma function indeed fits worse 

than Weibull function (as the DIC suggests).  When fitting the gamma function in 

HBM, I set a high number of iteration (i.e., 105000) and reasonable thinning 

length, but this setting still cannot resolve the non-converged problem.   
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