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Abstract

This thesis focuses on adding collection axioms to satisfaction classes and

exploring the suitability of a formal deflationary truth predicate. Chapter

2 proves that every nonstandard, recursively saturated model of PA has a

satisfaction class in which all collection axioms are true. Chapter 3 explores

collection axioms for the language with the satisfaction predicate, LS, and

proves that these entail the theory of chapter 2. This chapter then demon-

strates a method of closing a model with a satisfaction class to produce a

new model with an induced satisfaction class, which it is conjectured will

not satisfy all Σ1 collection axioms in LS. In chapter 4 we conjecture that a

new formulation of Visser and Enayat’s construction of extensions of models

with a satisfaction classes [5] will provide elementary extensions. Using this

conjecture, we demonstrate new Tarski axioms provide satisfaction classes

with Σ1 collection axioms and that these axioms can be built into the the-

ory by reducing the language to one where formulas are stratified. Finally,

in chapter 5 we argue for a new definition of a deflationary truth predicate

and show that this entails there are no formalisations of a deflationary truth

predicate for the full nonstandard language of arithmetic.
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Chapter 1

Introduction

Truth is a topic that is of interest to both mathematics and philosophy. In

philosophy research attempts to understand what truth is. The aim is to say

what it means for a sentence to be true and to describe when a sentence is

true. In mathematics, research attempts to formalise conceptions of truth.

The mathematician aims to provide a formula that states when a sentence is

true or false and to explore the consequences of this formula. These aims are

interconnected and often inform one another; to formalise truth one needs

to at least partially understand truth and an understanding of truth can be

informed by a formalisation and its consequences. The aim of this thesis is

to provide new formalisations of truth for arithmetic and explore the conse-

quences of this, in particular its consequences for philosophical conceptions

of truth.
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1.1 Truth in Arithmetic

A natural place to attempt to formalise truth is arithmetic. Arithmetic is

very well understood and has the very natural first order formalisation of

Peano Arithmetic. This formal system consists of the the rules of predicate

logic, together with basic axioms of arithmetic and the axiom schema of

induction. Peano Arithmetic (PA) has been studied a great deal. It is there-

fore well comprehended by mathematicians and a variety of formal tools have

been developed to do this. Further, its language, the language of arithmetic,

is a language which can be formalised and expressed within PA itself. There-

fore Peano Arithmetic is sufficiently powerful to talk about its own sentences.

This means there is hope that truth can be formalised for this theory and

that its consequences can be formally studied and understood.

Tarski [20] was the first mathematician to make real progress with formal-

ising truth for arithmetic. He developed the formal syntax to define the truth

of atomic sentences and then provided axioms to define truth for sentences

built from connectives and quantifiers. He also proved one of the most impor-

tant theorems in the field, that truth cannot be defined within the language

it defines truth for. This has the two corollaries that there is no definition

of truth for arithmetic in the language of arithmetic and a truth predicate

cannot talk about the truth of all sentences involving the word ‘true’.

Tarski’s definition of truth can be applied to all finite sentences of arith-

metic by inductively applying the axioms to the sentence. This induction is

not done using the induction schema of PA, because this schema only applies

to formulas of arithmetic and by Tarski’s theorem the truth predicate cannot
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be defined in arithmetic. Whilst this is unproblematic for finite sentences,

these are not the only sentences that can be discussed by Peano Arithmetic.

The intended model of PA, it can be argued, is the structure of the nat-

ural numbers with the usual constants 0 and 1 and the usual interpretation

of + and ·. Because of this, this is often called the standard model. Peano

Arithmetic has many other models, both countable and uncountable, how-

ever, which contain so-called ‘nonstandard’ numbers, which are colloquially

infinitely large. PA interprets some of these numbers as expressing sentences

in the language of arithmetic, however these sentences have length which is

interpreted by us as infinitely large. Tarski’s axioms for truth are not able to

definite truth for these sentences, because the induction cannot be applied

infinitely many times.

For the theory of PA, a theory of truth that cannot define truth for all sen-

tences of arithmetic, even if we would not recognise most of these sentences

as real, is incomplete. Therefore, attempts have been made to provide new

definitions of truth for these nonstandard sentences. Krajewski [14] made

the natural adjustment to specify that the truth definition applies to all non-

standard sentences and ensures that all the Tarski axioms are satisfied. This

theory becomes rich with mathematical structure and has the unattractive

consequence that the truth of intuitively obvious nonstandard sentences may

not conform to expectation.

There have been several attempts to improve this theory to restrict these

unattractive consequences, the most common one being to add induction

axioms to the language with the truth predicate as well. This creates a

very strong mathematical theory that is interesting as it is able to prove the
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consistency of Peano Arithmetic, something that cannot be done within PA

by Gödel’s Second Incompleteness Theorem. This means that many models

of PA cannot use this as a definition of truth.

1.2 Philosophical Links

Philosophical analysis has established understanding of the concept of truth.

Truth is a property of sentences themselves, not of the content of the sentence.

Further, truth is understood as a general concept that applies to many differ-

ent types of sentence. For example, arithmetical truth has the same quality

as scientific truth or literary truth, even if the methods of discovering these

truths differ. One property of truth that is agreed is that for all proposi-

tions p, the sentence expressing p is true if and only if p. This is known

as the equivalence schema and is an important criterion for a mathematical

formalisation of truth.

One conception of truth, deflationism, goes beyond this statement and

says that the equivalence schema is all that is understood by truth and it has

no other properties. This is in contrast to a substantial theory of truth which

offers further properties of truth with ontological commitments. For example,

a theory of truth may state that if a sentence expressing a proposition p

is true, then p corresponds to an actual state of affairs. A deflationary

conception of truth proposes interesting consequences for a formalisation of

truth and appears to specify that a theory of truth must be provided for

models of arithmetic which model that PA is inconsistent. If truth could not

be formalised for these models, then it suggests that truth has properties not
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recognised by the deflationist.

1.3 Areas of Inquiry

It is therefore of both mathematical and philosophical interest to establish

formalisations of truth for nonstandard models of Peano Arithmetic and this

is what shall be explored within this thesis. We will work from the standard

theory of satisfaction classes, as posed by Krajewski and research alternative

adjustments to the theory. These adjustments will have interesting conse-

quences for the deflationary theory of truth and it is a secondary aim to

explore what these consequences will be.

Our avenue of approach to adjusting the theory of satisfaction classes

is to consider the axiom schema of collection, rather than induction. The

collection axioms are entailed by the induction axioms, but are strictly weaker

than them. They can be very weak in their consequences, but in certain

circumstances are also very useful. At the very least the collection axioms

added to satisfaction classes will create a theory of mathematical interest.

Within Chapter 2 we shall first demonstrate how a satisfaction class can

be built for any nonstandard recursively saturated model which makes all the

collection axioms true. We shall then, in Chapter 3, look at adding collection

axioms in the language with the satisfaction class and explore closures of

models and a satisfaction class to obtain models without full collection. In

Chapter 4 we will then explore obtaining end extensions of models with

a satisfaction class and the collection axioms that can be obtained there.

Finally, in Chapter 5 we explore what this means for a deflationary theory of
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truth and argue that a formalised deflationary theory of truth must consider

a restricted language of arithmetic.

Within this thesis we will use standard notation and theorems from mod-

els of arithmetic, as in the literature. For more details, the reader is referred

to Appendix A. The reader unfamiliar with the collection axioms is referred

to Appendix D for a thorough summary of the literature on these, as well

as new results linking collection to tall and short recursively saturated mod-

els. The reader unfamiliar with satisfaction classes is referred to Appendix E

for a thorough summary of these, as well as the original consideration of

satisfaction classes with a relational interpretation of negation. Finally, a

summary of deflationary theories of truth and one attempt in the literature

to formalise them is given in Appendix C.
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Chapter 2

Satisfying the Collection

Axioms

In this chapter we focus on ensuring that all the collection axioms are sat-

isfied, i.e. that S � Coll, in the sense of Notation E.2.5. We prove that

satisfaction classes of this type exist by working in a variant of M -Logic,

which is defined in Section E.3, which has an added rule which behaves in

the same manner as collection. To start with, we define this new form of logic,

which we shall call M -C-Logic, which is specific to a given model M � PA.

2.1 M-C-Logic

M -C-Logic, as a variant of M -Logic, is a formal system in the language

∗L A(M) and works with the same sequents of M -Logic. The difference

between these two systems is in the extra strength of M -C-Logic, which we

define below.
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Definition 2.1.1 (Provability). We say that `MC ∆, where ∆ is a sequent,

if there is a proof of the disjunction of all sentences of ∆ from the rules of

M-C-Logic. These are the structural and provability rules of M-Logic, with

the additional C-Rule. Let ∆ be a sequent, θ(x, y) be a ∗L A(M)-formula and

t a term. The C-Rule is:

15. (C-Rule) If `MC ∆,¬∀x<t∃y<sθ(x, y) for all terms s,

then `MC ∆,¬∀x<t∃yθ(x, y)

We see that the C-Rule in M -C-Logic behaves in the same way as we

expect collection axioms to. We prove this formally, using the provability

rules of M -C-Logic, below.

Lemma 2.1.2. ∀x<t∃yθ(x, y) `MC ∃z∀x<t∃y<zθ(x, y).

Proof. We have by Rule 4 and weakening that:

`MC ¬∀x<t∃yθ(x, y),∀x<t∃y<sθ(x, y),¬∀x<t∃y<sθ(x, y)

for all terms s. Thus, by M-Rule a and the C-Rule, we have that:

`MC ¬∀x<t∃yθ(x, y),∃z∀x<t∃y<zθ(x, y),¬∀x<t∃yθ(x, y).

Hence, using structural rules 2 and 3 we have that:

`MC ¬∀x<t∃yθ(x, y),∃z∀x<t∃y<zθ(x, y)

as desired.
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We shall give M -C-Logic the following semantic interpretation.

Definition 2.1.3. We say that a full satisfaction class S over M is a full

collection satisfaction class if (M,S) � S(p¬∀x<t∃y<sθ(x, y)q, a) for all s if

and only if (M,S) � S(p¬∀x<t∃yθ(x, y)q, a). We write �MC ∆ to mean that

every full collection satisfaction class S over M ,makes some δ ∈ ∆ true.

Therefore if M -C-Logic is sound, complete and consistent for a given

model M , then we know that M has a satisfaction class S which believes all

collection axioms are satisfied. We prove this below.

Lemma 2.1.4. If M � PA such that M-C-Logic is sound, complete and

consistent, then (M,S) � S(pCollθq, a) for all (potentially nonstandard) for-

mulae θ(x, y).

Proof. Suppose M � PA such that M -C-Logic is sound, complete and con-

sistent and θ(x, y) be a formula. From the semantic interpretation of M -

C-Logic, we know that �MC α(t), β(t) means that (M,S) � S(pα(t)q, a) or

S(pβ(t)q, a). We also know that Collθ is of the form α(t)→ β(t) where α(t)

is ∀x<t∃yθ(x, y) and β(t) is ∃z∀x<t∃y<zθ(x, y). We know by definition that

S(pα → βq, a) if and only if ¬S(pαq, a) ∨ S(pβq, a). By Lemma 2.1.2 we

know that `MC ¬α, β. Thus, we have that (M,S) � ¬S(pαq, a) ∨ S(pβq, a)

and we are done.

We can thus use M -C-Logic to build satisfaction classes which establish

truth for the collection axioms. We do this explicitly now in a similar manner

to the last chapter, by proving that, for models which are countable and

recursively saturated, M -C-Logic is both sound, complete and consistent.

We start off by showing that M -C-Logic is sound.
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Theorem 2.1.5 (Soundness). If `MC ∆ for any sequent ∆, then �MC ∆.

Proof. We saw in the proof of Theorem E.3.10 that M -Logic is sound. Thus,

we modify the proof of that theorem, by showing that the addition of the

C-Rule preserves soundness:

If the last derivation used the C-Rule to get `MC ∆,¬∀x<t∃yθ(x, y) from

`MC ∆,¬∀x<t∃y<sθ(x, y), then by our inductive hypothesis every full col-

lection satisfaction class overM makes some δ ∈ ∆ true or ¬∀x<t∃y<sθ(x, y)

true. In the latter case, we have by our additional condition for a col-

lection satisfaction class that the satisfaction class makes ¬∀x<t∃yθ(x, y)

true. Hence every full collection satisfaction class over M makes some δ ∈

∆ ∪ {¬∀x<t∃yθ(x, y)} true.

We now show that, for a countable model M , M -C-Logic is complete, by

constructing a suitable satisfaction class.

Theorem 2.1.6 (Completeness). Let M be countable. If �MC ∆ for any

sequent ∆, then `MC ∆.

Proof. We follow the proof of Theorem E.3.12 here and show that Γ 0MC ∅

implies that there is a full collection satisfaction class S over M making

each γ ∈ Γ false. To do this we again inductively construct an infinite set

Σ =
⋃
i∈N Σi where Σ0 = Γ and each Σi is defined at some stage by dovetailing

the following processes:

• Given Σi take a ∈ M and a formula φ(x). If Σi, φ(a) 0MC ∅, then we

let Σi+1 = Σi ∪ {φ(a)}, else take Σi+1 = Σi.

10



• Given Σi take a ∈ M and a formula φ(x). If Σi,¬φ(a) 0MC ∅, then

we let Σi+1 = Σi ∪ {¬φ(a)}, else take Σi+1 = Σi.

• Given Σi take a sentence σ. If Σi, σ 0MC ∅, then we let Σi+1 = Σi∪{σ},

else take Σi+1 = Σi ∪ {¬σ}.

• Given Σi take a, t ∈M and a formula θ(x, y). If we have that:

Σi,∀x<t∃y<aθ(x, y) 0MC ∅, then Σi+1 = Σi ∪ {∀x<t∃y<aθ(x, y)}.

Else, we take Σi+1 = Σi ∪ {¬∀x<t∃yθ(x, y)}.

We can perform this last step, since given any finite set Γ 0MC ∅ we have

that Γ,∀x<t∃y<aθ(x, y) 0MC ∅ for some a or that Γ `MC ¬∀x<t∃yθ(x, y).

This is from Γ,∀x<t∃y<aθ(x, y) `MC ∅ implies Γ `MC ¬∀x<t∃y<aθ(x, y),

by the syntax of M -C-Logic and thus by the C-Rule Γ `MC ¬∀x<t∃yθ(x, y).

We now again enumerate all ?LA-sentences, formulas and elements of M

to dovetail the above processes to construct Σ. We then know that Σ forms

a satisfaction class by completing the steps of the proof of Theorem E.3.12.

Finally, we know that Σ is a full collection satisfaction class by the C-Rule.

Thus, if Γ 0MC ∅, then Γ 2MC ∅.

We thus require only that M -C-Logic is consistent, for us to have a sat-

isfaction class that makes all collection axioms true. We prove this in the

following subsection.

2.1.1 Consistency of M-C-Logic

To prove the consistency of M -C-Logic, we first require the following lemma,

that models of collection and short recursive saturation satisfy collection over

11



an infinite disjunction of statements, Coll
∨

as defined in Definition D.2.9.

Lemma 2.1.7. If a model M � Coll and M is short recursively saturated,

then M � Coll
∨

.

Proof. We prove this by contrapositive. Suppose M is a short recursively

saturated model and that M � ¬∃z∀x<t∃y<z
∨
n∈N θn(x, y, ā). Thus, we

can rewrite this as:

M � ∀z∃x<t∀y<z
∧
n∈N

¬θn(x, y, ā).

This implies that M � ∀z
∧
n∈N ∃x<t

∧
i<n ∀y<z¬θi(x, y, ā). We can swap

the universal quantification and conjunction at the beginning of this sen-

tence, to get that M �
∧
n∈N ∀z∃x<t

∧
i<n ∀y<z¬θi(x, y, ā). Now, by the

contrapositive of Coll, we have that:

M �
∧
n∈N

∃x<t
∧
i<n

∀y¬θi(x, y, ā).

Now, using the fact that M is short recursively saturated we get that M �

∃x<t
∧
n∈N ∀y¬θn(x, y, ā). Thus, by swapping the universal quantifier and

the conjunction and by negation, we get that M � ¬∀x<t∃y
∨
n∈N θn(x, y, ā).

Therefore, by contrapositive, M � Coll
∨

.

We now prove the consistency of M -C-Logic, for a countable and recur-

sively saturated model M . First we show that M -C-Logic is entailed by

M -Logic with every instance of the collection axiom. Then we prove that

M -Logic with every instance of the collection axiom is consistent, by showing

that Diag(M) proves every instance of the collection axiom in FA-Logic.

12



We start by proving that M -C-Logic is no more powerful than M -Logic

with the collection axioms.

Lemma 2.1.8. If Σ `MC ∆ for any sequents Σ,∆, then for some collection

axioms Collθ1 ,Collθ2 , . . . we have Σ ∪ {Collθi : i = 1, 2, . . .} `M ∆.

Proof. We show that, for any formula θ, if Collθ `M ¬∀x<t∃y<sθ(x, y),

then Collθ `M ¬∀x<t∃yθ(x, y). In other words, we show that Collθ simu-

lates the C-Rule for the formula θ. We rewrite Collθ as ¬α ∨ β where α is

¬∀x<t∃yθ(x, y) and β is ∃z∀x<t∃y<zθ(x, y). We first use M-Rule a to get

that Collθ `M ¬∃z∀x<t∃y<zθ(x, y). We rewrite this using the syntax of

M -Logic to get that `M ¬(¬α ∨ β),¬β. We then use the weakening rule on

this to get that `M ¬(¬α ∨ β),¬β,¬α. We now use rule 4 twice to get that

`M β,¬β, α,¬α. Thus, by rules 8 and 9 we have that `M ¬(¬α ∨ β), β,¬α

which allows us to use the cut rule to get that `M ¬(¬α ∨ β),¬α, i.e. that

Collθ `M ¬∀x<t∃yθ(x, y).

This tells us that the C-Rule in M -C-Logic is replicated by the first order

collection schema and allows us an equivalent method of proof to show that

M -C-Logic is consistent. If `MC ∅, then by Theorem 2.1.8 we know that

Coll `M ∅. We will prove that this does not hold, and thus by contrapositive

M -C-Logic is consistent.

Lemma 2.1.9. Let M � PA be countable, recursively saturated and Collθ

be a collection axiom. If Diag(M),Collθ `FA ∆ for any sequent ∆, then

Diag(M) `FA ∆.

Proof Sketch. To prove this, we use the method of enumerating proofs of

FA-Logic as in the proof of Theorem E.4.5. We then show that Diag(M)
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can mimic the collection axioms, i.e. if Diag(M) `FA ∆,∀x<t∃yθ(x, y), then

Diag(M) `FA ∆,∃z∀x<t∃y<zθ(x, y). Therefore, to prove this, we suppose

that Diag(M) `FA ∆,∀x<t∃yθ(x, y). We rewrite this as:

∨
p

Diag(M) `pFA ∆,∀x<t∃yθ(x, y).

Suppose that ¬∀a<t
∨
p Diag(M) `pFA ∆,∃yθ(a, y). Then we have that

∃a<t
∧
p Diag(M) 0pFA ∆, ∃yθ(x, y). In other words there is some a ∈ M

such that Diag(M) 0FA ∆,∃yθ(a, y). However, it is an easy exercise to see

that this contradicts with Diag(M) `FA ∀x<t∃yθ(x, y) under the rules of

FA-Logic. Therefore, we have that:

∀a<t
∨
p

Diag(M) `pFA ∆,∃yθ(a, y).

Now suppose that ¬∀a<t∃c
∨
p Diag(M) `pFA ∆, θ(a, c). Then we have

that ∃a<t∀c
∧
p Diag(M) 0pFA ∆, θ(a, c). In other words for some a ∈M and

for all c ∈M we have that Diag(M) 0FA θ(a, c). This is again a contradiction

under our hypothesis and the rules of FA-Logic, so therefore we have that

∀a<t∃c
∨
p

Diag(M) `pFA ∆, θ(a, c).

By Lemma 2.1.7 if M is short recursively saturated, then it satisfies

Coll
∨

. All recursively saturated models are short recursively saturated,
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therefore, we can use Coll
∨

to get that

∃z∀a<t∃c<z
∨
p

Diag(M) `pFA ∆, θ(a, c).

Thus, we have that there is some proof in FA-Logic p which says given z ∈M ,

then for all a < t ∈ M there is c < z ∈ M which gives us that Diag(M)

`FA ∆, θ(a, c). Therefore, by FA-Rules 13 and 14 we have that:

Diag(M) `FA ∆,∃z∀x<t∃y<zθ(x, y).

With this lemma in place, we are finally able to prove the consistency of

M -C-Logic.

Theorem 2.1.10. For M � PA where M is countable, nonstandard and

recursively saturated we have that M-C-Logic is consistent.

Proof. If not, then we have that `MC ∅. However, this would mean that

Coll `M ∅ by Lemma 2.1.8. This in turn would entail that Diag(M) `FA ∅

by Lemma 2.1.9, which is a contradiction.

Thus, since M -C-Logic is complete, we know that we are able to build

satisfaction classes which make every collection axiom true. This appears to

have an interesting property, which differ to standard collection, which we

look at now.
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2.2 Satisfied Collection and Regular Collec-

tion

We know from Theorem D.1.10 that PA−+ I∆0 + Coll ` PA. We also saw

in Theorem E.5.16 that S � IND if and only if S � LNP. In the latter

theorem, we see that making induction axioms true in a satisfaction class

appears to change nothing of their behaviour. The intuition becomes that

if a full collection satisfaction class also has that S � I∆0, then S � IND.

Interestingly, this appears incorrect because the standard proof of Theorem

D.1.10 does not run through for satisfaction classes.

The reason for this is because it requires a meta-induction on Σn formulae,

where n ranges over nonstandard numbers also. We cannot do this within

a normal satisfaction class, since we have no full axioms of induction for

them, and an induction outside the model will not include these nonstandard

numbers. This leads to the following conjecture.

Conjecture 2.2.1. There are models M � PA with a full satisfaction class

S such that S � I∆0 + Coll and S 2 IND.

This is highly interesting and suggests that there might be a disconnect

between ensuring sentences are true in a satisfaction class and having sen-

tences as true from the perspective of the model. This prompts further

research in this area, to see whether this disconnect is real and, if so, how

widespread it is.

We can thus see that whilst we can ensure that all collection axioms are

satisfied in a satisfaction class, this may not give us many of the interesting
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and useful properties we see in Chapter D that these axioms usually entail.

Therefore, we now look for the stronger form of collection by adding the

collection axioms to our expanded language LS.
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Chapter 3

Collection in LS

In this chapter we explore adding the collection axioms to the language LS.

We shall explore the consequences of adding these axioms to our theory, and

then various methods of obtaining them.

3.1 Coll(S)

We begin this endeavour by defining the theory of satisfaction classes with

all collection axioms that we are now considering.

Definition 3.1.1 (Coll(S)). We denote by Coll(S) the theory PA + S is a

full satisfaction class and Collθ holds for all formulas θ in the language with

a satisfaction class LS.

This theory differs to the previous theory considered, where each collec-

tion axiom is satisfied, since it ensures that we can use the collection ax-

ioms on formulas which contain instances of the satisfaction predicate. This
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ensures that if a model with a satisfaction class entails Coll(S), then the

satisfaction class is a collection satisfaction class.

Theorem 3.1.2. If (M,S) � PA + S is a full satisfaction class +Coll(S),

then S is a full collection satisfaction class.

Proof. Suppose that (M,S) � S(p¬∀x<t∃y<sθ(x, y)q, a) for all s. Then,

we know by the Tarski Conditions that this holds if and only if (M,S) �

¬∀a<f∃b<gS(pθ(x, y)q,m) for all g and the suitable assignment m. This

holds if and only if (M,S) � ¬∀a<f∃bS(pθ(x, y)q,m) by Coll(S). There-

fore, this is if and only if (M,S) � S(p¬∀x<t∃yθ(x, y)q, a) by the Tarski

Conditions.

The next question to ask, given Coll(S) entails the previous theory, is

whether this is consistent, i.e. whether there are any models (M,S) �

Coll(S). This is the case, as is shown in Appendices D and E.

Theorem 3.1.3. If (M,S) � PA(S), then (M,S) � Coll(S).

Proof. Let (M,S) � PA(S). By Theorem D.1.4 we know that if a model

M � PA for some finite language L ⊇ LA, then M � Coll. Therefore, since

LS ⊇ LA and LS is finite, we have that (M,S) � Coll(S).

It should be noted that there are also many models with a satisfaction

class that do not satisfy Coll(S). Again, by using results from the previous

chapters, it is easy to see that this is the case. We know that there are models

of ∆0 − PA(S) which are not models of PA(S). Therefore, these models do

not satisfy Coll(S), else they would be models of PA(S) by Theorem D.1.10.

19



An interesting open question is whether there is an easier method of

constructing models with a satisfaction class that do not satisfy Coll(S) and

also do not satisfy ∆0 − PA(S).

Question 3.1.4. Is there a model M � PA with a satisfaction class S such

that (M,S) 2 Coll(S) and (M,S) 2 ∆0 − PA(S).

Another interesting open question is whether we can construct models of

Coll(S) which do not satisfy ∆0 − PA(S). This would be a desirable theory,

as it would hopefully, unlike ∆0 − PA(S), not prove the consistency of PA.

Question 3.1.5. Is there a model M � PA with a satisfaction class S such

that (M,S) � Coll(S) and (M,S) 2 ∆0 − PA(S).

3.2 Closure of (M,S)

One way to approach Question 3.1.4 is to consider closures of a model with

a satisfaction class. Classically, given M � PA + ¬con(PA), one can take

the model Σ1-clM(∅), as defined in Definition A.2.4. It is then the case that

Σ1-clM(∅) � I∆0 + ¬CollΣ1 [12, Chapter 10]. This is a method to obtain

models without full collection axioms and it is hoped that this method will

generalise to satisfaction classes.

We shall provide a construction of a closure of a model with a satisfaction

class that allows an induced satisfaction class to be defined on the closure.

To do this we consider a model (M,S) � PA + S is a full satisfaction class

over M and work in the language LA with the definable Skolem function

fSkolem.
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Definition 3.2.1. Let A ⊆ M . Then, clSkolem(A) = the smallest set B ⊇ A

which is closed under 0, the successor function, the pairing function and the

function fSkolem. Here, we define

fSkolem(θ(x, ȳ), a) =



the least x such that S � θ(x, b̄),

where b̄ is assigned to the variables

ȳ by a

if such an x exists

0 if no such x exists

This definition specifies that clSkolem(A) is closed under 0 and the successor

function to ensure that all natural numbers are contained within this domain.

The reason that it is also closed under the pairing function is so that new

numbers can be built, especially assignments, as required.

These criteria ensure that the closure, given S � LNP, is well behaved in a

classical sense. It is an easy exercise to see that clSkolem(A) = clM(clSkolem(A))

in the usual definition of closure. Therefore, by Theorem A.2.5 we have that

A ⊆ clSkolem(A) ≺M .

This closure is useful, in that it allows us to define a satisfaction class

over it. We define this below, and prove that it is indeed a satisfaction class

for clSkolem(A), where A ⊂M .

Definition 3.2.2. Let (M,S) � PA + S is a full satisfaction class over

M and work in the language LA with the definable Skolem function fSkolem.

Suppose that S � IND and let N denote clSkolem(A), where A ⊂ M. Define

Scl ⊆ N × N by (N,SN) � SN(pθq, a) if and only if (M,S) � S(pθq, a) and

we have that pθq, a ∈ N .
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Theorem 3.2.3. Let (M,S) � PA+S is a full satisfaction class over M and

work in the language LA with the definable Skolem function fSkolem. Suppose

that S � IND, A ⊂ M and N = clSkolem(A). Then Scl as defined above is a

satisfaction class over N .

Proof. To prove this we check that each Tarski condition holds for any for-

mula with Gödel-number in N . First, we note that since S � IND we have

by Theorem E.5.16 that S � LNP.

Clearly all atomic formulas θ(x), such that pθ(x)q ∈ N are uniquely

satisfied in N , so are true in Scl for a suitable assignment a ∈ N .

If (N,Scl) � Scl(pα(x)q, a) ∧ Scl(pβ(x)q, a), then we know that (M,S) �

S(pα(x) ∧ β(x)q, a). Since N ≺ M , and in particular N is a substructure,

we have that pα ∧ βq ∈ N . Therefore (N,Scl) � Scl(pα ∧ βq, a).

If (N,Scl) � Scl(pα ∧ βq, a), then we know that (M,S) � S(pα(x)q, a) ∧

S(pβ(x)q, a). Since N ≺ M , and in particular N is a substructure, we

have that pαq ∈ N and pβq ∈ N . Therefore, we conclude that (N,Scl) �

Scl(pα(x)q, a) ∧ Scl(pβ(x)q, a)

The case for Tarski Conditions 4) and 5) are proven similarly to the above.

Suppose (N,Scl) � ∃bScl(pθ(x)q, a[x/b]). Then, we have that (M,S) �

S(p∃xθ(x)q, a). Since N ≺ M , and in particular N is a substructure, we

have that p∃xθ(x)q ∈ N therefore (N,Scl) � Scl(p∃xθ(x)q, a).

Now suppose (N,Scl) � Scl(p∃xθ(x)q, a). Then, we have that (M,S) �

∃bS(pθ(x)q, a[x/b]). We know that, since S � LNP, there is a least b such

that S � θ(b). Therefore, b ∈ N and, since pθ(x)q ∈ N we have that

(N,Scl) � ∃bScl(pθ(x)q, a[x/b]).

The case for Tarski Condition 6) is proven similarly to the above.
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Therefore, we arrive at a closure of a model with a satisfaction class. This

gives rise to the following conjecture that the above closure method behaves

similarly to the classical result that Σ1-clM(∅) � I∆0 + ¬CollΣ1 .

Conjecture 3.2.4. Let (M,S) � PA + S is a full satisfaction class over

M , where S � IND. Let N denote clSkolem(N) and define Scl ⊆ N × N by

(N,Scl) � Scl(pθq, a) if and only if (M,S) � S(pθq, a). Then, (N,Scl) 2

CollΣ1(S).

With this conjecture on how to obtain models without collection in LS,

we now look at the far more interesting question as to how to obtain models

with the collection axioms for LS. We begin this approach, by considering

the techniques within the literature of Appendix D.

3.3 Results Which Follow From the Litera-

ture

In Appendix D we prove many interesting properties of the collection axioms

from the literature. These theorems hold in a finite language L , which is

an extension of LA, as this means all of the results are applicable in LS as

well. We now list, without proof, some of the more relevant results that are

entailed by this work.

Our first theorem comes from Theorem D.1.5 and proves a very general

result that ω1-like models satisfy collection.

Theorem 3.3.1. If (M,S) � PA + S is a full satisfaction class and M is

ω1-like, then (M,S) � Coll(S).
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This result is not as general as one might hope, however, as Smith proved

Theorem E.2.11 that not every uncountable model has a satisfaction class

and no rather classless models have a satisfaction class. However, this result

does tell us that there exist countable models of Coll(S) by the downward

Löwenheim-Skolem theorem.

We can, in fact, do better than first order collection, by using Theorem

D.3.2 to obtain models in which the second order collection axiom holds true

in LS.

Theorem 3.3.2. If κ is a regular cardinal, M is κ-like and (M,S) � PA+S

is a full satisfaction class, then (M,S) � Coll2(S).

This may at first look to be a very powerful theorem, but we proved in

Theorem D.3.6 that there is in fact only one countable model that does this,

the standard model, and we have seen that this model has no satisfaction

class. Further, we still have Smith’s theorem that no rather classless un-

countable models have satisfaction classes. Therefore, this theorem is not as

strong as it could be.

One last result we can obtain is that at least one model of Coll2(S) exists.

We arrive at this via the proof of Theorem D.3.8.

Theorem 3.3.3. There is a model of PA(S) which satisfies Coll2(S).

Thus, whilst these results provide us with full collection axioms in the

language LS for some uncountable models, they do not provide us with

the theory Coll(S) for countable models. We now further explore the link

between collection and end-extensions, to try and prove some results which

also hold for countable models.
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Chapter 4

Extensions of Models with

Satisfaction Classes

Appendix D details that models of collection can be obtained by generating

end-extensions of models. Thus, it seems natural that models of collection

axioms in LS could be obtained by generating an end-extension of models

with a satisfaction class. We explore this thought in this chapter.

4.1 Visser-Enayat Construction

In their paper New Constructions of Satisfaction Classes [5] Visser and

Enayat provide a method of generating an extension of a model with a par-

tial satisfaction class. We shall denote this theorem using the notation of

many-sorted logic.

Notation 4.1.1. We write (M,F, S) � PA + S is an F satisfaction class

to mean the two-sorted logical structure which has domains M = (M,+, ·, <
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, 0, 1, fθ, . . .) and F , relation S ⊆ F ×M and function p·q : F → M . We

have that M � PA and has all Skolem functions fθ for each θ ∈ F . Here F is

a set of ?LA formulas, all of which can be identified in M using the function

p·q, which is a suitable injective Gödel-numbering. Finally, we have that S is

a partial satisfaction class over M for all formulas in F , using assignments

coded in M .

We write (M,FM , SM) ⊆ (N,FN , SN) to mean that M ≺ N,FM ⊆ FN

and SM = SN where the relation SN is restricted to FM × M . We write

(M,FM , SM) ⊆e (N,FN , SN) to mean (M,FM , SM) ⊆ (N,FN , SN) and M ≺e

N .

We now state a slight generalisation of Visser and Enayat’s theorem on

construction of extensions of models with a satisfaction class using this many-

sorted notation and provide a new sketch proof of it within this setup.

Theorem 4.1.2. Suppose we have (M,FM , SM) � PA + SM is an FM sat-

isfaction class such that FM is closed under immediate predecessor. Given

a set of ?LA-formulas FN ⊇ FM such that we can injectively extend p·q so

that pFNq ⊆ M and FN is closed under immediate predecessor, there exists

N and SN such that (N,FN , SN) � PA + SN is an FN satisfaction class and

(M,FM , SM) ⊆ (N,FN , SN) [5, Lemma 3.1].

Proof Sketch. We build a theory T ⊇ Th(M,FM , SM) and prove that it is

consistent via compactness. We build T from each constant a ∈M , and add

each formula φ ∈ FM to T and each formula ψ ∈ FN to T . We then add the

sentence θ(ā) for each L Skolem
A sentence true of M , where ā ∈M , in particular

this ensures that we add all atomic sentences which hold in M . We then
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ensure S(θ, a) for all θ ∈ FM and a ∈ M such that (M,FM , SM) � SM(θ, a).

We then, conversely, add ¬S(θ, a) for all θ ∈ FM and a ∈ M such that

(M,FM , SM) � ¬SM(θ, a). We then establish that T makes all the Tarski

Conditions for S true. In other words, for all formulas θ ∈ FN we have that

T ` ∀aS(θ, a) if and only if the Tarski Condition holds for the equivalent

formulation of θ in terms of its immediate predecessor.

We now prove the consistency of T via the compactness theorem. Let Γ

be a finite set of sentences from T . We thus have that (M,FM , SM) � Γ by

identifying F with a suitable subset of FM and S with a suitable restriction

SM . This is clear to see for the case when a formula φ ∈ FM . If a formula

φ ∈ FN is mentioned in Γ, then since there are only finitely many such

formulas in Γ, we can identify it with some formula in FM\Γ so that the

requisite Tarski Conditions hold. We therefore have a model (N,F, S) � T .

We can now identify that M ≺ N since each a ∈M is in T and (N,F, S) �

Th(M,FM , SM). We then replace F by FN by removing any formulas ψ ∈ F

such that ψ /∈ FN . We get then, similarly to the above, that FM ⊆ FN . We

then replace S with SN by the partial satisfaction class obtained from S by

only considering formulas ψ ∈ FN .

Therefore, we have a model (N,FN , SN) ⊇ (M,FM , SM) as desired.

It seems highly possible that this method can be adapted so that our new

model N is an elementary end extension of M , rather than just an elementary

extension. This is a key conjecture for this thesis, which we state below. The

reason for the interest in this question is that it allows us to easily construct

models with some collection in LS.
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Conjecture 4.1.3. We can adapt Visser-Enayat’s Theorem to obtain an end

extension, rather than just an extension. In other words, given (M,FM , SM) �

PA + SM is an FM satisfaction class there exist N , FN and SN such that

(M,FM , SM) ⊆e (N,FN , SN).

We continue the rest of this work modulo an affirmative answer to this

question. We assume that, whether through an adaptation of the above

theorem or some other means, given (M,FM , SM) � PA + SM is an FM sat-

isfaction class we can construct (N,FN , SN) � PA +SN is an FN satisfaction

class such that (M,FM , SM) ⊆e (N,FN , SN).

Theorem 4.1.4. Suppose (N0, F0, S0) � PA + S0 is an F0 satisfaction class

and given (Ni, Fi, Si) we have that (Ni+1, Fi+1, Si+1) � PA + Si+1 is an Fi+1

satisfaction class such that (Ni, Fi, Si) ⊆e (Ni+1, Fi+1, Si+1), then (M,F, S) =⋃
i∈N(Ni, Fi, Si) � Coll∃1(S).

Proof. Let θ(x, y, S, ā) be an ∃1-LS-formula and M � ∀x<t∃yθ(x, y, S, ā).

Without loss of generality we can write the formula θ(x, y, S, ā) in the form

∃wφ(x, y, w, S, ā) where φ is a quantifier-free LS-formula. Thus, we have

that for some i ∈ N:

Ni � ∀x<t∃y, wφ(x, y, w, Si, ā).

Hence for any c ∈ Ni+1 we have that:

Ni+1 � ∀x<t∃〈y, w〉<cφ(x, y, w, Si+1, ā).

Thus, Ni+1 � ∃z∀x<t∃〈y, w〉<cφ(x, y, w, Si+1, ā) and therefore we conclude
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that M � ∃z∀x<t∃y<zθ(x, y, S, ā).

The reason that this proof is stated for ∃1 formulas is because this ensures

that, aside from the first existential quantifier which can be moved ‘outside’

the formula, the formula is quantifier free. Whilst it may be possible to

improve this result, there is difficulty in ensuring that there will always be a

suitable Si which satisfies any quantified subformula we could consider. In

LA this result can be improved, because we have that the class ∃1 is equal

to the class Σ1. This is known as the MRDP Theorem.

Theorem 4.1.5 (MRDP Theorem). Within LA the class ∃1 = Σ1 [12, Result

7.11].

If this theorem were to also hold in LS, then we could improve our the-

orem to have the strong conclusion that (M,F, S) � CollΣ1(S).

Question 4.1.6. Is there an analogue to the MRDP Theorem in the language

LS? In other words, is it the case that ∃1(S) = Σ1(S)?

4.2 Ciésliński’s Lemma

In the last section we saw a potential construction to give ∃1 collection in the

language LS and how this proof may be able to be improved to Σ1 collection.

We will now look at a different way to do this, using a method demonstrated

by Ciésliński which allows translation between ∆0 sentences in LS. Using

this method, which we call Ciésliński’s method, we shall provide a different

approach to give Σ1 collection in the language LS.
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Lemma 4.2.1 (Ćıesliński’s Lemma). Suppose (M,S) � ∆0 − PA(S). We

have that for all standard ∆0 formulas φ(x) in LS (M,S) � ∀c[φ(c) ↔

S(Fφ(c′), a)] where Fφ(x) : M → M is an arithmetically (in M) definable

LA sentence and c′ is the assignment mapping x→ c [4, Page 10].

We have seen however that ∆0 − PA(S) is a very strong base theory

to work with, and it would be useful to have a similar lemma available for

weaker base theories. We can do this, if we introduce the following two new

Tarski Conditions.

Definition 4.2.2. We introduce the following two new Tarski Conditions:

Tarski Condition 9) For all LA-formulas of the form
∧
i<t φi(x):

S(p
∧
i<t φi(x)q, a)↔ ∀i<tS(pφi(x)q, a).

Tarski Condition 10) For all LA-formulas of the form
∨
i<t φi(x):

S(p
∨
i<t φi(x)q, a)↔ ∃i<tS(pφi(x)q, a).

These Tarski conditions are intuitively acceptable ones to add and are

not consequences of the previous Tarski conditions as the following theorem

shows. It also tells us that they can be highly useful, as they deal with some

of the more problematic pathologous examples that some satisfaction classes

make true.

Theorem 4.2.3. If (M,S) � PA + S is a full satisfaction class +S satisfies

Tarski Conditions 9) and 10), then (M,S) � ¬S(p
∨
i<t(0 = 1)q, a) for any

t ∈M .

Proof. We know that (M,S) � ¬S(p0 = 1q, a), since 0 = 1 is an atomic for-

mula. Therefore, (M,S) � ¬∃i<tS(p0 = 1q, a) and thus by Tarski Condition

10) we have that (M,S) � ¬S(p
∨
i<t(0 = 1)q, a).
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Thus, this is a highly useful property for our model to posess. It is an

open question as to the exact consistency strength of this theory, although

we know from Ciésliński [4, Theorem 4] that this is at most the strength of

∆0 − PA(S).

Question 4.2.4. What relative consistency strength does the theory PA + S

is a full satisfaction class +S satisfies Tarski Conditions 9) and 10) have

over the theory PA + S is a full satisfaction class?

The main use of these Tarski Conditions are that they allow us to get

the result of Lemma 4.2.1 without, potentially, requiring the full strength of

∆0 − PA(S).

Lemma 4.2.5. Suppose (M,S) � PA + S is a full satisfaction class +S

satisfies Tarski Conditions 9) and 10). We have that for all standard ∆0

formulas φ(x) in LS (M,S) � ∀c[φ(c)↔ S(Fφ(c′), a)] where Fφ(x) : M →M

is an arithmetically (in M) definable LA sentence and c′ is the assignment

mapping x→ c.

Proof. We prove this via induction on the complexity (number of connectives)

of φ(x). We first deal with our base cases. If φ(x) is a standard LA formula,

then we define Fφ(c′) as subst(φ(x), clterm(c)). If φ(x) is S(pθq, x), then

Fφ(c′) is defined as subst(pθq, c′).

We now assume that the theorem holds for all formulas with complexity

strictly less than φ.

If φ is of the form ¬ψ, then we can take Fφ(c′) = p¬axFφ(c′)yq. Then,

(M,S) � φ(c) if and only if (M,S) � ¬ψ(c) which by inductive hypothesis
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holds if and only if (M,S) � ¬S(Fψ(c′), a), which by Tarski Condition 5)

holds if and only if (M,S) � S(Fφ(c′), a).

If φ is of the form α ∧ β, then we can take Fφ(c′) = p(axFα(m)ya ∧a

xFβ(c′)ya)q. Then, (M,S) � φ(c) if and only if (M,S) � α(c) ∧ β(c). This

holds by induction if and only if (M,S) � S(Fα(c′), a)∧S(Fβ(c′), a) which is

true if and only if (M,S) � S(Fφ(c′), a).

If φ is of the form α ∨ β, then we can take Fφ(c′) = p(axFα(m)ya ∨a

xFβ(c′)ya)q. Then, (M,S) � φ(c) if and only if (M,S) � α(c) ∨ β(c). This

holds by induction if and only if (M,S) � S(Fα(c′), a)∨S(Fβ(c′), a) which is

true if and only if (M,S) � S(Fφ(c′), a).

If φ is of the form ∀x<tθ(x), then we can take Fφ(c′) = p
∧a
b<txFθ(c

′[x/b]yq.

Then we have that (M,S) � φ(c) if and only if (M,S) � ∀x<tθ(x, c).

By induction, this holds if and only if (M,S) � ∀b<tS(Fθ(c
′[x/b], a). Now,

by Tarski Condition 9) we have that this is true if and only if (M,S) �

S(Fφ(c′), a).

If φ is of the form ∃x<tθ(x), then we can take Fφ(c′) = p
∨a
b<txFθ(c

′[x/b]yq.

Then we have that (M,S) � φ(c) if and only if (M,S) � ∃x<tθ(x, c). By

induction, this holds if and only if (M,S) � ∃b<tS(Fθ(c
′[x/b], a). Now, by

Tarski Condition 10) we have that this is true if and only if (M,S) �

S(Fφ(c′), a).

We are now able to use this result and Theorem 4.1.4 to produce models

of Σ1 collection in the language LS.

Theorem 4.2.6. Suppose (N0, F0, S0) � PA + S0 is an F0 satisfaction class

which satisfies Tarski Conditions 9) and 10). Further, suppose that given
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(Ni, Fi, Si) we have that (Ni+1, Fi+1, Si+1) � PA+Si+1 is an Fi+1 satisfaction

class which satisfies Tarski Conditions 9) and 10) such that (Ni, Fi, Si) ⊆e

(Ni+1, Fi+1, Si+1). Then, (M,F, S) =
⋃
i∈N(Ni, Fi, Si) � CollΣ1(S).

Proof. Let θ(x, y, S, ā) be a (standard) Σ1 sentence in the language LS such

that (M,F, S) � ∀x<t∃yθ(x, y, S, ā). Without loss of generality, we can

write θ(x, y, S, ā) in the form ∃wφ(x, y, w, S, ā) where φ(x, y, w, S, ā) is a ∆0

LS-sentence. Then using Lemma 4.2.5 we have that:

(M,F, S) � ∀x<t∃y∃wS(Fφ(ā′), α)

for a suitable assignment α. Thus, since ∃wS(fφ(ā′), α) is an ∃1 sentence of

LS we can use Theorem 4.1.4 to get that:

(M,F, S) � ∃z∀x<t∃y<z∃wS(Fφ(ā′), α).

Therefore, we can conclude again using Lemma 4.2.5 that:

(M,F, S) � ∃z∀x<t∃y<zθ(x, y, S, ā).

4.3 Modifying Visser-Enayat’s Theorem

We see that Tarski Conditions 9) and 10) are desirable properties and thus we

want to be able to produce satisfaction classes for a given model where these

hold. The natural approach would be to utilise the Visser-Enayat theorem,
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but we cannot build Tarski Conditions 9) and 10) into a satisfaction class

using the Visser-Enayat construction immediately. This is because if we

initially add formulas θ1, θ2, ..., θn to our satisfaction class and some formula

θj =
∧
i<a φi for some nonstandard a, then we need to add all of these

subformulas φi to our satisfaction class. In the case where each of these

formulas is a subformula of another, then this requires infinitely-many steps.

There are various different options to add these axioms to our satisfaction

class, we could weaken our Tarski Conditions 9) and 10), strengthen our

satisfaction class or restrict the types of formulas that we consider. We

shall now consider each of these options in turn to look at their benefits and

drawbacks.

4.3.1 Weakening Tarski Conditions 9) and 10)

Our issue in using the Visser-Enayat Lemma to construct satisfaction classes

where Tarski Conditions 9) and 10) hold is that a nonstandard-fold disjunc-

tion can entail the requirement of infinitely-many steps. Thus, if we only

consider disjunctions which contain only finitely many subformulae, there

are only finitely-many steps which need completion.

Definition 4.3.1. We instead consider the following two alternative Tarski

Conditions, for some fixed n ∈ N:

Tarski Condition 9)?n For all LA-formulas of the form
∧
i<t φi(x), where there

are at most n distinct formulas θi, we have that:

S(p
∧
i<t φi(x)q, a)↔ ∀i<tS(pφi(x)q, a).

Tarski Condition 10)?n For all LA-formulas of the form
∨
i<t φi(x), where there
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are at most n distinct formulas θi, we have that:

S(p
∨
i<t φi(x)q, a)↔ ∃i<tS(pφi(x)q, a).

By adding Tarski Conditions 9)?n and 10)?n we avoid the problem of having

to complete infinitely-many steps, since only n ∈ N formulas need consider-

ation.

Conjecture 4.3.2. We can construct satisfaction classes using the Visser-

Enayat method which satisfy Tarski Conditions 9)?n and 10)?n for each n ∈ N.

This weakening of Tarski Conditions 9) and 10) still allows us to deal

with the pathologous Examples E.5.1 and E.5.2, but does not provide the

full power of Tarski Conditions 9) and 10). In particular, it appears that in a

model satisfying these, the conclusion to Lemma 4.2.5 is not necessarily true

and thus they cannot be used to obtain CollΣ1(S).

4.3.2 Strengthening the Satisfaction Class

We can instead achieve the full power of Tarski Conditions 9) and 10) by

allowing the satisfaction class to decide the truth of nonstandard-many for-

mulas simultaneously. If this is the case, our construction no longer requires

infinitely many steps, as the nonstandard-many subformulas can all be added

simultaneously. We shall call a satisfaction class which can do this a codable

satisfaction class.

Definition 4.3.3. We call a satisfaction class codable if {φi : i < α} is an

M-finite set, φi are ?LA formulas for each i and ai are a set of assignments,

then ∃t∀i<α[(t)i 6= 0↔ S(pφiq, ai)].
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If a satisfaction class is codable, then it satisfies Tarski Conditions 9) and

10).

Lemma 4.3.4. A codable satisfaction class satisfies Tarski Conditions 9)

and 10).

Proof. Let (M,S) � PA + S is a full codable satisfaction class over M and

{φi : i < α} is an M -finite set of ?LA formulas. We show this for Tarski

Condition 9), the proof for condition 10) is similar.

First suppose that (M,S) � ∀i<αS(φi(x), a). Define the formula ψn(x) =∧
i<n φi(x). Let t be such that (M,S) � (t)n 6= 0↔ S(pψnq, a). Then we have

that (t)0 6= 0. We know that if (M,S) � (t)n 6= 0, then (M,S) � S(pψnq, a)

which entails that (M,S) � S(p
∧
i<n φi(x). Then, we have by Tarski condi-

tion 6) and 4) that (M,S) � S(p
∧
i<n+1 φi(x)q, a), so (M,S) � S(pψn+1q, a)

and therefore (M,S) � (t)n+1 6= 0. We can now perform induction on (t)n to

get that (M,S) � (t)α 6= 0 and therefore (M,S) � S(p
∧
i<alpha φi(x)q, a) as

desired.

Now suppose (M,S) � S(p
∧
i<α φi(x)q, a). By repeating the above steps,

we see that if (t)n = 0 for some n, then (t)α = 0. We know, however,

that (M,S) � S(pψα(x)q, a) and so (M,S) � tα 6= 0. Therefore (M,S) �

∀i<α[(t)i 6= 0] and thus we conclude (M,S) � ∀i<αS(pφi(x)q, a).

The strengthening of a satisfaction class to a codable satisfaction class

achieves what we desire, however it appears to be a strong property to add

to our satisfaction class with strong unintended consequences. It appears

that there will be a similar method to the above proof which shows that

(M,F, S) � ∆0−PA(S), in which case not only does a model with a codable
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satisfaction class prove con(PA), but also it already has Tarski Conditions

9) and 10) from ∆0 − PA(S).

Conjecture 4.3.5. The theory of PA + S is a full codable satisfaction class

has the same provability strength as ∆0 − PA(S).

Therefore, whilst this is a possible option, we shall instead restrict our

class of formulas to only a certain type, to try and reduce the strength of

this theory.

4.3.3 Formulas are Stratified

If we restrict our set of formulas F to only consider formulas of finite ‘depth’,

then when adding subformulas of a nonstandard disjunction it is only re-

quired to perform finitely-many steps. To explain what we mean by this

we first set up the following definition of the rank of a formula and what it

means for a formula to be stratified.

Definition 4.3.6. We define the rank of a formula θ in the following induc-

tive manner:

• rank(θ) = 0 if θ is atomic.

• rank(θ) = 1 + rank(α) if θ is of the form ¬α

• rank(θ) = 1 + rank(α(x)) if θ is of the form ∃xα(x)

• rank(θ) = 1 + rank(α(x)) if θ is of the form ∀xα(x)

• rank(θ) = 1 +max(rank(α), rank(β)) is of the form α ∧ β
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• rank(θ) = 1 +max(rank(α), rank(β)) is of the form α ∨ β

From this, we can define what it means for a formula to be stratified.

Definition 4.3.7. We defined a formula θ as stratified using the following

inductive definition:

• θ is stratified, if θ is atomic.

• θ is stratified, if θ is of the form ¬α and α is stratified.

• θ is stratified, if θ is of the form ∃xα(x) and α(x) is stratified.

• θ is stratified, if θ is of the form ∀xα(x) and α(x) is stratified.

• θ is stratified, if θ is of the form α ∧ β, α and β are stratified and

rank(α) = rank(β).

• θ is stratified, if θ is of the form α ∨ β, α and β are stratified and

rank(α) = rank(β).

Therefore, when we look at a stratified formula θ and form a tree of its

subformulas, we have that all paths from a leaf to the root have the same

(finite) length. Hence, if θ is a conjunction of subformulas, we have that all of

these subformulas have the same rank and thus are not subformulas of each

other. Therefore, if we restrict F to consider only stratified formulas, then we

have that Tarski Conditions 9) and 10) can be built into the Visser-Enayat

construction since we do not have infinitely many subformulas to consider in

one step.
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Theorem 4.3.8. Suppose we have (M,FM , SM) � PA + SM is an FM satis-

faction class such that FM is a set of stratified formulas closed under imme-

diate predecessor. Given a set of stratified ?LA-formulas FN ⊇ FM such that

we can injectively extend p·q so that pFNq ⊆M and FN is closed under im-

mediate predecessor, there exists N and SN such that (N,FN , SN) � PA+SN

is an FN satisfaction class +SN satisfies Tarski conditions 9) and 10) and

(M,FM , SM) ⊆ (N,FN , SN).

Proof Sketch. We complete the construction in the proof of Theorem 4.1.2,

and at the stage when we ensure the Tarski conditions are satisfied for the

formulas we also ensure that Tarski Conditions 9) and 10) are satisfied. We

can do this, since the formulas are all stratified and thus any nonstandard

conjunction of subformulas only requires finitely many steps to be performed.

The construction is then completed as in the proof of Theorem 4.1.2.

This gives us the following corollary that we can generate models of

CollΣ1(S) with no additional requirements other than we restrict our con-

sideration to stratified formulas.

Corollary 4.3.9. Suppose (N0, F0, S0) � PA + S0 is an F0 satisfaction class

+ S0 satisfies Tarski Conditions 9) and 10), where F0 is a set of stratified

formulas. Given (Ni, Fi, Si) � PA+Si is an Fi satisfaction class + Si satisfies

Tarski Conditions 9) and 10), where Fi is a set of stratified formulas, we have

that (Ni+1, Fi+1, Si+1) � PA+Si+1 is an Fi+1 satisfaction class + Si+1 satisfies

Tarski Conditions 9) and 10), where Fi+1 is a set of stratified formulas, such

that (Ni, Fi, Si) ⊆e (Ni+1, Fi+1, Si+1), then (M,F, S) =
⋃
i∈N(Ni, Fi, Si) �

CollΣ1(S).
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Whilst this achieves our aim, it may appear to restrict the amount of

formulas we can consider widely. Clearly there are many formulas of interest

which are not stratified. It is the case, however, that every formula can be

written in an equivalent stratified form.

Lemma 4.3.10. For any LA-formula θ, there exists a stratified LA-formula

Sθ such that (M,S) � θ ↔ Sθ.

Proof. We prove this via induction on the complexity (number of connectives)

of θ. If θ is complexity 0, then it is atomic and therefore balanced. We

now assume it holds for all formulas of complexity strictly lower than θ. If

our formula is ¬θ, then by our hypothesis θ is equivalent to some balanced

formula η and thus ¬θ is equivalent to the balanced formula ¬η. The case for

∃xθ(x) and ∀xθ(x) is similar. If our formula is α ∧ β, then by our inductive

hypothesis α is equivalent to a balanced formula φ and β is equivalent to a

balanced formula ψ. Suppose that rank(φ) = rank(ψ)+n, then we have that

the formula ((...((φ∧φ)∧ (φ∧φ))∧ ((φ∧φ)∧ (φ∧φ))...))∧ψ is balanced and

equivalent to α ∧ β, where there are 2n instances of φ. The case for α ∨ β is

proven similarly.

Thus, we can, indirectly, consider the truth of any formula and build a

satisfaction class which satisfies CollΣ1(S). However, it is not clear whether

this is a true partial satisfaction class or not and whether it satisfies Lachlan’s

theorem. If not, it could be the case that every model of PA, M , has satisfac-

tion class for stratified formulas. This is a highly interesting open question,

which has interesting ramifications for a deflationist theory of truth.
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Question 4.3.11. Does a structure (M,F, S) where M � PA and S is an

F -satisfaction class and F is a set of stratified formulas satisfy Lachlan’s

Thorem?

Question 4.3.12. Given M,F where M � PA and F is a set of stratified

formulas, does there exist S such that S is an F -satisfaction class?
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Chapter 5

Deflationary Truth and

Satisfaction Classes

In this chapter we provide a formalised definition of what it means for a truth

predicate to be deflationary and explore the consequences that this for has

the deflationist position.

Ketland, as seen in Section C.4, provides the following definition of a

deflationary truth predicate.

Definition 5.1 (Ketland). The truth theory T with predicate TrM is de-

flationary if for all models (M,TrM) � PA + T we have that (M,TrM) �

TrM(pσq)↔ σ for all sentences σ in the signature of M . Further, we require

that T is conservative over PA. [13, Pages 71–72]

Whilst this definition expresses that a sentence of the model is true if and

only if its meaning holds in the model, it perhaps does not fully adequately

capture the more vague notion that truth has no metaphysical nature beyond

the first property. There exist conservative theories T over PA such that we
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cannot always expand any model M � PA so that (M, ...) � T . Therefore,

whilst the theory T is conservative, it still appears to have a facet that is

inaccessible to M . Therefore, we shall adapt this definition to provide our

own definition with the more stringent requirement that every model M of

interest must have a unique expansion such that (M,TrM) � T . Instead, we

provide our own loose definition, to be clarified later, below.

Definition 5.2. The truth theory T with predicate TrM is deflationary if for

all models (M,TrM) � PA+T we have that (M,TrM) � TrM(pσq)↔ σ for all

sentences σ of consideration. Further, T is only deflationary if every model

M ∈ C where C is the considered class of models of PA has an expansion

such that (M,TrM) � T .

In this definition we state that for a truth predicate to be deflationary it

must both satisfy the equivalence schema, that (M,TrM) � σ ↔ TrM(σ) for

all considered sentences σ and every model M ∈ C must have an expansion

to (M,TrM), for some class of models of PA, C . The equivalence schema

is clearly required for a truth predicate to be deflationary, but whether ev-

ery model requires an expansion to a truth predicate is less obvious. Some

property is required, to capture the notion that deflationary truth has no

metaphysical content, but this criterion differs to Ketland’s, in that he re-

quires only syntactic conservativity.

The reason for taking this semantic, rather than syntactic approach, is

that a deflationary truth predicate has a semantic interpretation. If we con-

sider truth predicates syntactically, as per Ketland, then given a theory T we

are building a new theory T ′ = T + a new predicate f + axioms for how f
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behaves. For the theory T ′ ` σ ↔ f(σ) to have any utility we require some

interpretation of what f is. Under this examination, without any semantic

interpretation of f , f appears like an alternative definition of the identity

function.

The semantic interpretation of f is that this corresponds to a notion

of truth. This notion of truth cannot be model-truth, since that is what

we are defining, and therefore must be meta-truth, as per the definitions of

model-truth and meta-truth in Section C.3. Thus, T ′ ` f(σ) has the intended

interpretation that Trm(T ` σ). From the soundness and completeness of first

order logic, however, this means that Trm(T � σ), in other words Trm(M � σ

for all M � T ). Applying the Tarski Axioms, or alternatively simple intuition

on the behaviour of truth, to this means that Trm(M � σ) for all M � T .

Therefore, under the intended interpretation, M � f(σ) for all M � T . It is

clear to see, therefore, that for f to behave as a desired truth-predicate, every

model must have an expansion to such an f . Therefore, we find Ketland’s

definition is lacking and syntactic conservativity is not enough.

It is important to note that, without the desire for truth to have no

metaphysical content, the above argument is not valid. For example, sup-

pose truth has the substantival facet of corresponding to formal consistency.

In which case, from Trm(T ` σ) we instead derive that Trm(M � σ for

all M � T + con(T ) + con(con(T )) + ...). The reason for this is because

the truth predicate corresponding to formal consistency states that anything

other models believe is false.

The conclusion to this is that the definition provided in Definition 5.2

gives at least necessary conditions for a truth predicate to be considered
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deflationary. Whether this definition is sufficient, however, is not quite so

obvious. It could be argued that every model not only requires an expansion

to a truth predicate, but to a unique truth predicate. An example of a

truth predicate which doesn’t satisfy this, is the notion of a satisfaction class

as provided in Definition E.2.3. If the sentences under consideration are

the standard LA sentences, then by Theorem E.2.6 every satisfaction class

satisfies the equivalence schema. By Theorem E.2.8, however, a countable

recursively saturated model of PA has 2ℵ0 different satisfaction classes.

The question is raised by a model having many distinct truth predicates

as to which one of these is the ‘correct’ truth predicate. Intuitively, there is

only one meta-truth predicate. Therefore, by analogy, there should only be

one model-truth predicate also. If a model has many such truth-predicates,

then choosing which one of these to use requires some judgement which is

not based on the theory, meaning truth has this additional nature and is not

deflationary. In the case with satisfaction classes, this argument is flawed

in that it assumes we need a judgement on which satisfaction class is the

truth predicate. One can take an arbitrary satisfaction class and if one is

only concerned with LA sentences, then any satisfaction class will suffice.

By analogy, if one is only interested in whether PA � ∀x∃y[y = x + 1], then

one considers an arbitrary model M � PA and does not make a judgement

on which model is the ‘correct’ model.

Therefore, we shall take Definition 5.2 as a suitable characterisation of a

deflationary truth predicate. Given this, examples of truth predicates which

aren’t deflationary are easy to find. By Lachlan’s theorem we know that

only recursively saturated models have a satisfaction class. Therefore, if
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the class of models under consideration includes models of PA which aren’t

recursively saturated, then a satisfaction class is not a deflationary truth

predicate. Further, the theory of ∆0 − PA(S) is strong enough to prove the

consistency of PA. Thus, if the class of models under consideration includes

any model M � ¬con(PA), then a truth predicate from this theory is also

not deflationary.

We therefore arrive at the question, as to how to choose between these

truth predicates. The answer to this, clearly depends on an answer to the

question of which sentences and which models to consider. It is an immediate

consequence of Tarski’s Theorem, Theorem E.1.10, that the language cannot

be the entirety of LTr, where this is the language of the theory with a truth

predicate. This is because we can define a sentence σ in this language such

that (M,Tr) � σ ↔ ¬Tr(pσq, a) which contradicts the equivalence schema.

As a minimum, the sentences under consideration should belong to the

language LA. It is in this language that we express and discuss the truths

of arithmetic and is the background language that we have worked within.

More controversial, is whether the sentences that we should work with are

all necessarily standard. In the real world it appears that we work with

only sentences of finite length and only speak about the truth and falsity of

these sentences. This, however, on closer examination is not the case. For

example, take n ∈ N, then the sentence Trm(N � ∀x<ṅ[x > 0]. is a natural

assertion. The sentence ∀x<ṅ[x > 0] is a standard sentence of LA, but can

be rewritten as the sentence 0 > 0∧ 1 > 0∧ ...∧ (ṅ− 1) > 0, which is also a

standard sentence of LA. Similarly, take a nonstandard model M � PA and

a nonstandard element a ∈M . Then the sentence Trm(M � ∀x<ȧ[x > 0]) is
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also one that we desire to assert. Similarly, the sentence ∀x<ȧ[x > 0] can be

written as the sentence 0 > 0∧1 > 0∧...∧(ȧ−1) > 0. This sentence, however,

is a nonstandard sentence of arithmetic, as it has nonstandard length. The

assertions:

Trm(N � 0 > 0 ∧ 1 > 0 ∧ ... ∧ (ṅ− 1) > 0) and

Trm(M � 0 > 0 ∧ 1 > 0 ∧ ... ∧ (ȧ− 1) > 0)

are entirely similar in structure and, assuming that we can talk about the

truth of nonstandard models, both are valid assertions. Given the assertion

Trm(M � 0 > 0 ∧ 1 > 0 ∧ ... ∧ (ȧ − 1) > 0) our truth predicate should,

therefore, be such that (M,TrM) � TrM(p0 > 0 ∧ 1 > 0 ∧ ... ∧ (ȧ− 1) > 0q).

This means that the formalised truth predicate must also be able to discuss

the truth of nonstandard sentences of arithmetic.

One objection to this, could be that the nonstandard sentence:

0 > 0 ∧ 1 > 0 ∧ ... ∧ (ȧ− 1) > 0

can be written as a standard LA sentence, so therefore to discuss the truth

of these sentences we do not need to allow nonstandard sentences. This

objection does not work, however. There are many nonstandard sentences

which cannot be translated into a standard sentence. For an example of this,

consider the sentence ∃x1∃x2...∃xa
∧

16i6=j6a xi 6= xj where a is a nonstandard

number. Therefore, at least some of the sentences under consideration shall

be nonstandard.
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This analysis relied on the assumption that we can talk about the truth

of nonstandard models. Given that normal arithmetic is usually only within

the standard model, why should this be the case? The theory PA is neutral

on whether a model is the standard model or a nonstandard model. Work-

ing solely from the theory PA, there is no way of drawing this distinction.

Therefore, if truth has no metaphysical content, there should be no way of

drawing this distinction using a deflationary model-truth predicate. Further,

the meta-truth predicate should apply to nonstandard models as well. In

the same way we can talk about the truth of sentences within N, R, graphs,

groups and many other mathematical structures, there is no reason not to

talk of truth within nonstandard models as well. Lastly, if one does want

to exclude nonstandard models, then this can be done by considering the

second order theory of induction with PA−, PA2 which has only one model,

the standard model. This theory, however, is not syntactically complete and

thus studying its consequences solely from syntactic derivability is not pos-

sible. Because of this, we instead have looked at the first order theory PA

which is both sound and complete.

Therefore, the class of models under consideration shall at least include

some nonstandard models of arithmetic. It might be tempting to restrict

the class of models to only those models which believe that PA is consistent.

This would allow the deflationist to regard the very strong theory PA(S) as

a formal deflationary theory of truth. Further support for this, comes from

the fact that we believe that PA is consistent. However, similarly to non-

standard models, the theory PA does not draw a distinction between models

of con(PA) and ¬con(PA) from Gödel’s Second Incompleteness Theorem.
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It may similarly be tempting to restrict the class of models to only those

models which are recursively saturated, so that the deflationist can regard

satisfaction classes as a formal deflationary theory of truth. This is a weaker

condition than the other two restrictions, since every model has an elemen-

tary extension which is recursively saturated by Theorem A.2.10. Again,

however, the theory PA has no formal distinction between models which are

recursively saturated and those which are not.

We propose that the models under consideration should be every model

of the theory. Colloquially, we talk of a sentence being true inside a certain

model, for any model of a theory. Indeed, as observed above, we use meta-

truth to write Trm(PA � σ). For the deflationist, this must translate to

Trm(M � σ for all M � PA), which translates to Trm(M � σ) for all M � PA.

This tells us that meta-truth applies to every model of PA and so for a truth

predicate to be deflationary, every model must have an expansion to one.

Finally, we arrive at the following definition of a deflationary truth pred-

icate.

Definition 5.3. The truth theory T with predicate TrM is deflationary if for

all models (M,TrM) � PA + T :

(M,TrM) � TrM(pσq)↔ σ

for all nonstandard sentences σ. Further, T is only deflationary if every

model M � PA has an expansion such that (M,TrM) � T .

This definition has some interesting consequences for the theories of sat-

isfaction classes in Section E.5. The theory of PA(S) is a desirable theory
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of model-truth, but entails the consistency of PA by Theorem E.5.5 and

thus, by our definition, is not a deflationary theory of truth. Similarly, since

∆0 − PA(S) entails the consistency of PA by Theorem E.5.7 this is also not

a deflationary theory of truth.

Full satisfaction classes similarly are not a deflationary theory of model

truth, since they entail that the model possessing one is recursively satu-

rated, by Lachlan’s Theorem, Theorem E.2.9. However, the theory of full

satisfaction classes also fails this test for another reason, it does not satisfy

the equivalence schema. As shown in Example E.5.1 there exist sentences

σ such that (M,S) � σ ∧ ¬S(pσq, a). Worse than failing the equivalence

schema, however, satisfaction classes also fail what I shall call the weak

equivalence schema. This is the schema that for all LA(M) sentences σ:

(M,S) � ¬[σ∧¬TrM(pσq)]. This schema is intuitively highly acceptable and

surely should hold for our theory of truth.

This leads to the conclusion that the theory of full satisfaction classes is

not a satisfactory theory of truth. As it fails the weak equivalence schema,

which it appears every theory of truth should satisfy. However, the theory

appears to contain the minimum conditions that an axiomatic theory of truth

can satisfy for all nonstard sentences of LA. The Tarski conditions mimic

intuition on deflationary model-truth and any formal theory of truth should

satisfy these. For example, suppose that (M,TrM) � ∀xTrM(pθ(x)q). This

holds if and only if Trm(M � ∀xθ(x)) which holds if and only if (M,TrM) �

TrM(p∀xθ(x)q). Since the theory of full satisfaction classes is strong, in that

it restricts the number of models we can talk about the truth of, and weak

in that it fails the equivalence schema, we arrive at the following theorem.
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Theorem 5.4. There does not exist a model-truth predicate TrM such that

(M,TrM) � σ ↔ TrM(pσq) for all ∗L A(M)-sentences σ such that all models

M � PA have an expansion to TrM .

This tells us that if meta-truth is deflationary, then it cannot be for-

malised for PA for all nonstandard sentences σ, under the given definition.

This appears to be very unappealing to the deflationist. However, I do not

believe that this is devastating to the deflationist. The deflationist could con-

sider truth for a weakened version of the language, for example the language

of stratified formulas as seen in Definition 4.3.7, where a satisfaction class

over these may not obey Lachlan’s Theorem. Further, for such languages,

satisfaction classes may be able to be conservatively strengthened, for exam-

ple Theorem 4.3.9 shows how Σ1 collection axioms for the language LS can

be obtained. This is speculative, but leads to the following open question

which is of great interest to the deflationist.

Question 5.5. Can the nonstandard language of LA be restricted in such

a way so that it loses no expressive content and so that there exists a defla-

tionary truth predicate for PA over all sentences of this restricted language?

This would rescue the deflationist from the plight of not having a defla-

tionary truth predicate for all nonstandard sentences of arithmetic. Further,

it would provide justification for choosing this deflationary truth predicate,

because it appears to be able to be strengthened considerably. In summary,

whilst a good deflationary truth predicate for Peano Arithmetic currently

has no known formalisations, it is possible that research into other languages,
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such as the stratified language, will generate one, which would be of great

value to the deflationist.
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Chapter 6

Conclusion

In this thesis we set out to provide new formalisations of truth for Peano

Arithmetic and to explore the mathematical and philosophical consequences

of this.

We chose to explore satisfaction classes as the base theory of truth to

work from. The reason for this is that satisfaction classes talk about the

truth and falseness of all standard and nonstandard sentences of arithmetic.

This is the natural base theory to work from when looking at the the truth

of nonstandard sentences, because it consists of only six conditions, all of

which are philosophically highly acceptable. The theory is therefore open to

modification, because it consists of so few conditions. Further, modification is

desirable, since satisfaction classes can ensure that intuitively false sentences

can be true and intuitively true sentences can be false.

In Chapter 2 we explored our first theory of truth for Peano Arithmetic,

that of satisfaction classes which believe all collection axioms are true. We

spent the bulk of this chapter proving that this theory is consistent for non-
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standard, recursively saturated models of Peano Arithmetic. Given that the

theory is consistent, it is a desirable theory of truth, since the collection

axioms are believed to be true and are useful axioms to have. This theory,

further, is conservative over the base theory of satisfaction classes, by the

consistency result. For this reason, we argue that this theory is a better

theory of truth, than the base theory, since it is closer towards our intuitive

notion of truth, whilst containing no additional unattractive consequences.

We then saw at the end, however, a hint that this theory behaves in un-

expected ways. Usually, the collection axioms together with induction for

∆0-formulas is enough to prove induction for all formulas, but the standard

proof of this does not work in the context of within satisfaction classes. It is

uncertain as to the extent of this observation, but we suggest that this is an

interesting area of research for further study.

Chapter 3 begins with an exploration of a stronger theory of collection

for satisfaction classes, the theory where all standard collection axioms are

true for formulas involving the satisfaction predicate. We show that this

theory is at least as powerful as the theory considered above and then note

that this theory is also consistent, since it is entailed by the theory of satis-

faction classes together with induction axioms for all formulas involving the

satisfaction predicate. We also note that there are theories of satisfaction

classes which do not have collection axioms for all formulas in the language

with the satisfaction predicate. The chapter then produces a definition of a

closure for models with a satisfaction class, to produce a submodel with an

induced satisfaction class. We conjecture that this method will provide mod-

els with a satisfaction class without all collection axioms for the satisfaction
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predicate, but this method is also hoped to be more generally useful in other

circumstances. We finally consider ways of arriving at this stronger theory

of collection for satisfaction classes using existing results in the literature

and see that they provide easy methods for uncountable models, but not for

countable models.

In Chapter 4 we generalise and rephrase Visser and Enayat’s construc-

tion of end extensions of models with a satisfaction classes to many-sorted

logics. We then work, modulo the conjecture that this can be modified to

provide elementary end extensions, and show that this allows us to construct

models with collection for ∃1-formulas in the language with the satisfaction

predicate. We then show that, with two additional Tarski axioms we can

simulate Ciésliński’s method and improve this to models with collection for

Σ1-formulas in the language with the satisfaction predicate. We then con-

sider three methods of building a satisfaction class with these additional

Tarski axioms. The first, weakening the axioms, does not provide their full

power whilst the second, building a satisfaction class which can consider

nonstandardly-many sentences at the same, appears to have the strength of

∆0-PA(S). Finally, we consider reducing the language to one where every

formula has a balanced tree of subformulas. Modulo the conjecture above,

satisfaction classes with collection axioms for Σ1-formulas in the language

with the satisfaction class can be built, but interestingly such satisfaction

classes may not satisfy Lachlan’s theorem.

These chapters provide a variety of different theories of satisfaction class

which, in conjunction with the theories within the literature in Subsection

E.5, gives rise to the following hierarchical picture.
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PA(S) = Coll(S) + I∆0 − (S)

Coll(S) I∆0 − (S)

Tarski Conditions 9) and 10)

CollΣ1(S)

S � Coll

Finally, in Chapter 5 we argue for a specific definition of what it means for

a truth predicate for Peano Arithmetic to be a deflationary truth predicate.

We arrive at this conclusion using philosophical argumentation and show

that this entails that there is no deflationary truth predicate, in the sense of

this definition, for Peano Arithmetic. We then argue, however, that it may

be possible for a deflationary truth predicate to exist for a reduced language

of arithmetic, perhaps the stratified language as considered in Chapter 4.

Within this thesis we have provided new formalisations of truth for Peano

Arithmetic, ones which are attractive and interesting, but also can be hard

to conservatively obtain. We have then reflected philosophically, and seen

that this has ramifications for a deflationary conception of truth and suggests

that it cannot be formalised for the full nonstandard language of arithmetic.
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Appendix A

Technical Background

A.1 Peano Arithmetic

We shall work predominantly in the language of arithmetic, LA. Some results

shall be stated in terms of a finite extension of this language, L . A particular

special case of this is LS which is the language LA ∪ {S}, where S is the

satisfaction relation. We shall also consider the languages ?LA and ∗L A(M),

which are defined by Robinson [17, Section 3]. The former allows sentences

of nonstandard length and the latter allows sentences of nonstandard length

including parameters from a model M .

All technical work shall be completed in the background theory of PA−,

also known as the theory of non-negative parts of discretely ordered rings.

For the details of this theory, the reader is referred to Chapter 2 of Models

of Peano Arithmetic [12]. The majority of results shall be stated within

the theory of first order Peano Arithmetic, PA, which is the theory of PA−

together with the axiom schema of induction. Sometimes, we shall work in
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a fragment of this theory, PA− + IΓ, for some class of formulas Γ, where

this denotes the theory of PA− together with induction for all formulas in Γ.

Working within PA gives us access to Skolem functions. For the full details

of these and PA, the reader is referred to Chapters 4 and 6 of Models of

Peano Arithmetic [12].

There are also second order variants of Peano Arithmetic. Often, what

is meant by this is a first order structure where certain sets of a model can

be formulated. In this work, in reference to second order logic, we willl only

consider ‘true’ second order logic, where we may quantify over all subsets of

the model.

A.1.1 Important Theorems

Theorem A.1.1 (MacDowell–Specker). If M � PA, then there exists N �

PA such that M ≺e N . [12, Theorem 8.1]

Theorem A.1.2 (Löwenheim–Skolem Theorems). If M is an infinite model

of a countable first order theory T , then for every infinite cardinal number κ

there exists N � T where |N | = κ such that:

• If κ < |M |, then N ≺e M

• If κ > |M |, then M ≺e N [12, Theorem 0.4 and 0.5]

Theorem A.1.3 (Tarski–Vaught Test). If M , N are L -structures such that

M ⊆ N , then M ≺ N if and only if for all ā ∈ M and all L -formulas

θ(x, ā) such that N � ∃xθ(x, ā) there exists y ∈M such that N � θ(y, ā) [12,

Theorem 0.6].
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Theorem A.1.4 (Gödel–Rosser Incompleteness Theorem). For any recur-

sive, consistent theory T ⊇ PA, there exists an LA-sentence σ such that

T 0 σ and T 0 ¬σ [12, Corollary 3.15].

Theorem A.1.5 (Gödel’s Second Incompleteness Theorem). For any recur-

sive theory T ⊇ PA, if T ` con(T ), then T is inconsistent [12, Exercise

3.11].

Theorem A.1.6 (Tennenbaum’s Theorem). There is no countable, nonstan-

dard model M � PA such that M is recursive [12, Theorem 11.11].

Theorem A.1.7 (Omitting Types). Let Σ be a consistent set of L -sentences

and suppose that pn is a set of L -formulas φ(x1, ..., xkn) for each n ∈ N. If for

each n ∈ N there is a formula ψ(x1, . . . , xkn) such that Σ∪{∃xψ(x1, . . . , xkn)}

is consistent and Σ ` ∀x[ψ(x1, . . . , xkn) → φ(x1, . . . , xkn)], then there is a

model M � Σ where M omits pn for each n ∈ N. This means that for all

constants c1, . . . , ckn there is a formula φ(x1, . . . , xkn) in p such that M �

¬φ(c1, ..., ckn) [11, Theorem 10.36].

A.1.2 Coding

In the theory PA, there exists the Gödel β Function which allows us to code

any finite sequence of numbers as a single number. In particular, given a

sequence (a0, a1, ..., an) we denote the number that codes this sequence by a

and have notationally that (a)i = β(a, i) = ai. The existence of this function

can be proven with the Chinese Remainder Theorem, the details of which

can be found in Chapter 3 of Models of Peano Arithmetic [12]. When coding

59



two numbers a single number we use the pairing function, which we denote

as 〈x, y〉 for all numbers x, y.

This allows us to code subsets of models using numbers as well. We do

this using the following definition.

Definition A.1.8 (Set coding). We say that a set S ⊆ M is coded in a

model M � PA− if there is some s ∈M such that S = {i ∈M : pi|s}, where

pi is the ith prime number in M . Alternatively, we can write this as i ∈ S if

and only if pi|s. We call such a set an M-finite set [12, Definition 3.10].

This gives rise to the following useful theorem.

Theorem A.1.9. A finite set S ⊆ N is coded in a model M if and only if S

is coded by a standard natural number s ∈ N.

We are able to code formulas of finitely many variables in a finite language

L using a Gödel-numbering. This is an injective mapping p·q : {θ(x̄) :

θ(x̄) is an LA − formula} → N. The details on the exact definition of a

Gödel-numbering are technical and can be found in Chapter 9 of Models of

Peano Arithmetic [12].

A.1.3 Classes of Sentences

We have various different classes of formulas for a finite language L ⊇ LA.

We provide definitions of these below.

Definition A.1.10 (∆0). The class ∆0 is the class of all formulas θ(x̄) such

that θ(x̄) contains no unbounded quantifiers [12, Definition 2.9].
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Definition A.1.11 (∃1 and ∀1). The class ∃1 is the class of all formulas

θ(x̄) such that θ(x̄) is of the form ∃ȳφ(ȳ, x̄) where φ(ȳ, x̄) is a quantifier-free

formula. The class ∀1 is the class of all formulas θ(x̄) such that θ(x̄) is of

the form ∀ȳφ(ȳ, x̄) where φ(ȳ, x̄) is a quantifier-free formula [12, Page 99].

Definition A.1.12 (Σn,Πn and ∆n). Let n > 1. By Σ0 and Π0 we mean

the class ∆0. The class Σn is the class of all formulas θ(x̄) such that θ(x̄)

is of the form ∃ȳφ(ȳ, x̄) where φ(ȳ, x̄) is a Πn−1 formula. The class Πn is

the class of all formulas θ(x̄) such that θ(x̄) is of the form ∀ȳφ(ȳ, x̄) where

φ(ȳ, x̄) is a Σn−1 formula. The class ∆n is the class of all formulas θ(x̄) in

LA such that θ(x̄) is equivalent to a formula that is Πn and also equivalent

to a formula that is Σn [12, Definition 7.1].

Definition A.1.13 (∆+
0 ,Σ

+
n and Π+

n ). The class ∆+
0 is ∆0. By Σ+

0 and Π+
0

we denote the class ∆+
0 . Let n > 1. The class Σ+

n is the closure of Π+
n−1 under

the connectives ∧,∨, bounded universal quantification and existential quan-

tification. The class Π+
n is the closure of Σ+

n−1 under the connectives ∧,∨,

bounded existential quantification and universal quantification [12, Exercise

7.2]

A.2 Model Theoretic Notions

We say that the standard model of Peano Arithmetic is the familiar struc-

ture of the natural numbers N with constants 0, 1 and relations +, · and <

interpreted in the usual way. PA also gives rise to nonstandard models of

arithmetic, which are any model M � PA such that M 6∼= N. The exis-
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tence of these models is an easy corollary of the compactness theorem or the

Löwenheim-Skolem theorems.

The following example provides a way of generating a new model of PA−

from a former model.

Example A.1. If M � PA− then there is a model M [X]+ � PA− such

that M ⊆e M [X]+. We form the model M [X]+ � PA− by constructing the

discretely ordered ring M [X] of M and then defining an order upon this ring,

where X > a for all a ∈ M . We then see that the non-negative part of this

ring M [X]+ is a model of PA− [12, Example 2.3].

A.2.1 Relations between Models

We have various relations that can hold between models, which we define

below.

Definition A.2.1 (Initial Segment and End-extension). Let M,N be models

of a finite language L . We write that M ⊆e N and say that M is an initial-

segment of N if M ⊆ N and for all x ∈ M and all y ∈ N we have that if

N � y < x, then y ∈M . If M ⊆e N , then we say that N is an end-extension

of M .

We regard N ⊆e M for all models M � PA− [12, Section 2.2].

Definition A.2.2 (Elementary). Let M,N be models of a finite language

L . We write that M ≺ N and say that N is an elementary extension of M

if M ⊆ N and for all L -formulas θ(x̄) and all ā ∈M we have that M � θ(ā)

if and only if N � θ(ā).
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Let Γ be a class of L -formulas. We say that N is a Γ-elementary exten-

sion of M , notationally M ≺Γ N if M ⊆ N and for all L -formulas θ(x̄) ∈ Γ

and ā ∈M we have that M � θ(ā) if and only if N � θ(ā).

We say that N is an elementary end extension of M , notationally M ≺e

N if M ⊆e N and M ≺ N [12, Definition 2.10].

We have the following theorem which relates end-extensions and elemen-

tarity.

Theorem A.2.3. If M � PA− and N � PA−, then M ⊆e N implies that

M ≺∆0 N [12, Theorem 2.11].

A useful way of generating elementary submodels, is to consider the clo-

sure of a model.

Definition A.2.4. Let M � PA. We define clM(A) = {x ∈ M : for some

ā ∈ A there is θ(x, ā) in LA such that M � ∃xθ(x, ā) ∧ ∀y<x¬θ(y, ā)}. If Γ

is a class of formulas, then we define Γ− clM(A) = {x ∈M : for some ā ∈ A

there is an LA-formula θ(x, ā) in Γ such that M � ∃xθ(x, ā)∧∀y<x¬θ(y, ā)}

[12, Section 6.3].

The standard closure of a model has the following useful theorem.

Theorem A.2.5. Let M � PA. Then A ⊆ clM(A) and clM(A) ≺ M [12,

Theorem 6.9].

A.2.2 Cardinalities of Models

We introduce the concept of a regular cardinal and what it means for model

to be κ-like, for some cardinal κ.
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Definition A.2.6 (Regular cardinal). We call a cardinal κ regular if for any

set X such that |X| = κ, then if X =
⋃
i∈I
Yi, then |I| = κ or |Yj| = κ for

some j ∈ I. A cardinal is singular if it is not regular.

Definition A.2.7 (κ-like model). Let κ be a cardinal. We call a model

M κ-like if, for all a ∈ M , we have that |{x ∈ M : x < a}| < κ and

|M | = κ[12, Exercise7.12].

We now demonstrate that the cardinal ω is regular and that the model

N is ω − like.

Example A.2.8. The cardinal ω = |N| is regular and the standard model N

is ω-like.

Proof. Suppose |X| = ω and write X as
⋃
i∈I
Yi. If both |I| < ω and |Yi| < ω

for every i ∈ I, then I is finite and every Yi is finite. We know the finite

union of finite sets is finite, and X is not finite. Thus |I| = ω or Yi = ω for

some i ∈ I.

Let a ∈ N. We have {x ∈ N : x < a} = {1, 2, ..., a−1} and hence is finite,

so has cardinality strictly smaller than ω.

Further examples of regular cardinals are ωn for each n ∈ ω.

A.2.3 Recursive Saturation

The notion of a model being recursively saturated is an important one, which

we define below.

Definition A.2.9. A model M in the signature of some finite language L is

recursively saturated if for any recursive set of (Gödel-numbers of) formulas
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{pθi(x, ā)q : i ∈ N}, where ā has finite length, it is the case that M �

∃x
∧
i<n θi(x, ā) for each n ∈ N, then M � ∃x

∧
n∈N θ(x, ā).

A sentence of the form ∃x
∧
i θi(x, ā) where n ∈ N is called a type [12,

Definition 11.6].

The following two theorems are key ones when looking at the theory of

recursively saturated models.

Theorem A.2.10. If M is a model in the signature of some finite language

L , then there exists a recursively saturated model N in the signature of L

such than M ≺ N [12, Proposition 11.8].

Theorem A.2.11. M is not recursively saturated if and only if there is a

recursive set of (Gödel-numbers of) formulas {pθi(x, ā)q : i ∈ N} such that

the set {Bi : i ∈ N} forms a partition of M , where Bi = {x ∈ M : M �

θi(x, ā)} for each i ∈ N [12, Theorem 15.7].
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Appendix B

Literature Review

The aim of this thesis is to explore definitions of truth in models of arithmetic.

This has been widely discussed within the literature, with many different

starting approaches. A thorough analysis of all of these is beyond the scope

of this work, and so we shall narrow our approach by starting with Tarski’s

inductive definition of truth for models of arithmetic [20].

Through a series of technical manoeuvres Tarski is able to define truth for

atomic formulas in the language of arithmetic LA [20, Section 5]. Tarski then

introduces axioms which define how truth behaves with respect to connectives

and quantifiers [20, Section 5]. Whilst this defines truth for all standard

sentences of arithmetic, Tarski’s approach is lacking in two areas. Firstly,

the truth predicate can only be applied to sentences not containing the truth

predicate and secondly, it does not tell us the truth value of sentences of

nonstandard length. Tarski proves that this first weakness is a facet of all

suitable definitions of truth for arithmetic, and is known as Tarski’s Theorem

on the Undefinability of Truth [20, Theorem 1].
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Krajewski [14], using an idea from Robinson [17], takes up the second

weakness and uses Tarski’s axioms to define the arithmetic structures of

satisfaction classes. These are definitions of truth for nonstandard models

of arithmetic and he proves that if a countable model of arithmetic posesses

a satisfaction class, then it has 2ℵ0 satisfaction classes [14]. Lachlan then

investigates satisfaction classes proves that a model of arithmetic can have a

satisfaction class only if it is recursively saturated [15].

These theorems tell us that satisfaction classes carry ontological force

as a mathematical structure and that satisfaction classes are not sufficient

to provide one canonical definition of truth for models of arithmetic. As a

corollary to this, there are satisfaction classes which state intuitively-true

sentences are false, which we shall call pathological examples.

It could be argued that these consequences of satisfaction classes conflict

with the philosophical conception of truth known as deflationism. The de-

flationist conception of truth been proposed by Frege [6], Ayer [2] and Quine

[16], among others, but most clearly and recently by Horwich [8]. Horwich

proposes that a sentence is true if and only if the meaning of the sentence

holds and that truth has no metaphyiscal nature [8].

It is an interesting question as to whether these differing conceptions

of truth can be reconciled and, if not, which one is more suited to models

of arithmetic. Ketland [13] explores whether there is a conflict between

the Tarskian definition of truth and the deflationary conception of truth

with regards to arithmetic, and concludes that there is. Ketland’s methods,

however, are based on a stronger form of Tarskian truth [13, Pages 79-80]

than proposed by Tarski. There is therefore a gap in the literature to explore
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this question more formally.

Ciésliński [4] tackles the question of whether satisfaction classes can be

reconciled with the deflationary conception of truth, but stresses that patho-

logical examples must first be removed from satisfaction classes. He con-

cludes that strengthening satisfaction classes to avoid pathological examples

via closing them under propositional logic results in a theory which is equiv-

alent to all induction axioms holding for ∆0 formulas in the language of

satisfaction classes, ∆0−PA(S) [4, Theorem 4]. Therefore, Ciésliński argues

that proceeding in this way results in suitable satisfaction classes that are

not deflationary and poses the open question of whether we can find simi-

larly suitable satisfaction classes that align more closely with a deflationist

conception of truth [4, Page 5]. This is a key avenue of research that this

thesis shall endeavour to explore.

This question is explored by Kaye [12] who gives a presentation of sat-

isfaction classes in languages including functions. Kaye provides examples

of the pathologies which can exist within satisfaction classes [12, Page 251]

and explores approaches to removing them. He shows that the addition of

induction axioms to satisfaction classes is very powerful and that the theory

∆0 − PA(S) ` con(PA) [12, Page 247]. The literature is therefore lacking

in methods which remove pathologous examples from satisfaction classes,

without creating a very strong theory which conflicts with a deflationist con-

ception of truth.

Avenues to dealing with this issue can be found in Kaye [12] and Visser

and Enayat [5]. Kaye discusses the collection axiom schema and proves

many interesting theorems about them. In particular, the collection axiom
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schema is strictly weaker than the induction axiom schema and is often very

different to it [12, Chapter 7]. This opens up the approach of adding the

collection axiom schema to the theory of satisfaction classes, in the hope that

this produces a conservative theory that nevertheless removes pathologous

examples. Kaye, further, observes that the collection axioms are linked to

end-extensions of models [12, Section 7.2]. Visser and Enayat [5, Lemma

3.1] provide a new method of constructing satisfaction classes for models

of arithmetic that produces an extension of a model and satisfaction class.

It is therefore a suitable line of enquiry to see whether this approach can

be improved to produce an end extension and, if so, whether this provides

collection axioms for the satisfaction class.

This survey of the literature leads to the aim for this thesis to explore

the current theory of collection axioms and satisfaction classes in detail, in

order to facilitate an attempt at adding collection axioms to the theory of

satisfaction classes. It is hoped that this will provide a definition of truth

for models of arithmetic that is suitable in the sense that it does not contain

pathologous examples, whilst not being as strong as ∆0 − PA(S), as per

Ciésliński’s open question [4, Page 5]. The aim then proceeds to exploring

the question of the compatibility of a deflationist conception of truth and

satisfaction classes and the hope that progress can be made in light of this

new background theory.
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Appendix C

Deflationary Truth

C.1 Introduction

The deflationary theory of truth, which we shall often call deflationism, has

many different accounts all with one common assertion. Deflationism argues

that asserting a statement is true is equivalent to asserting the meaning of

the statement itself. For example saying that the sentence ‘grass is green’

is true is equivalent to saying that grass is green. For the deflationist, there

is nothing more to truth and to say that truth has a nature beyond this

is incorrect. Throughout this section, we shall use single-quotation marks ‘

and ’ around a sentence to denote an expression of that sentence in natural

language and hooked-quotation marks p and q around a sentence to denote

a numerical coding of a formal-language sentence. For now, this distinction

is not an important one, but more on this can be seen in Subsection E.1.1.
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C.2 Various Accounts of Deflationism

Deflationary theories of truth have been proposed in different guises by many

philosophers. We shall explore a few of these accounts of deflationary truth

below, picking out their similarities and also some of their differences, in

order to attempt to formalise what makes a theory of truth deflationary.

C.2.1 Frege

Frege argued for a deflationist account of truth and it is in his writings we

see the beginnings of the deflationist account of truth. He contends [6, Page

293] that “nothing is added to a thought by my ascribing to it the property

of truth.” For Frege, given a “thought” p, the thought ‘p is true’ contains no

extra information. This tells us that there is no content to ‘p is true’ other

than p.

Frege [6, Page 294] considers two counter-examples to this account of

truth and contends that these are not actually counter-examples. The first

he considers is that for the scientist the sentence ‘theory T is true’ adds to

the original proposition of the theory T , where at proposal the theory’s truth

is in doubt. He argues that in these types of sentences, thinking sentences, a

thought is apprehended without being asserted. A scientist’s explanation of

theory T is only apparent assertion, and in actual fact the thought has not

been judged as true or false, so has not been proposed.

Frege [6, Page 295] also considers poetical sentences, which contain com-

ponents over which truth does not extend. For example, the sentence ‘alas

my arm is bruised’ conveys more information than the sentence: ‘ ‘my arm
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is bruised’ is true’, however we cannot assert ‘it is true that ‘alas my arm is

bruised.’ ’ There appears to be an information gap in the sentences. For

Frege, this is not a counter-example to his deflationist theory of truth, since

the word ‘alas’ does not actually assert anything, it instead acts on the feel-

ings of the reader, and can not be expressed in any thought. Therefore, for

Frege, there is nothing more to truth than the assertion of a thought, and

the role it plays in our language is to highlight at which point a sentence

becomes a thought.

C.2.2 Ayer

Another historical deflationist account can be found in the writings of A. J.

Ayer. Arguing similar to Frege, Ayer writes [2, Page 28] that “it is evident

that in a sentence of the form ‘p is true’ or ‘it is true that p’ the reference to

truth never adds anything to the sense.” This is the same account as found

in Frege, where saying a thought is true containts nothing other than the

sense of the thought.

Ayer adds to this deflationist account of truth by writing [2, Pages 28–29]

that “truth and falsehood are not genuine concepts.” Here, Ayer states that

truth can be understood simply as assertion and does not have any other

qualities, unlike genuine concepts which assign a quality to an object. For

Ayer, there is no metaphysical nature to truth and it should not be considered

as a genuine property. Theories of truth are not an account of a special

concept, but instead are attempts to answer the empirical question as to

how to validate propositions. Here we see in Ayer the two main constituents
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of a deflationist account of truth, that ‘p’ is true if and only if p and that

truth has no special quality and this is all we understand by the concept of

truth.

C.2.3 Quine

Quine also expressed a deflationist account of truth. He argues that “by

calling the sentence [‘snow is white’] true, we call snow white. The truth

predicate is a device of disquotation” [16, Page 12]. Here Quine argues that

given an expression of a proposition, e.g. ‘snow is white’, assigning truth to

this allows us to remove the expression and just assert the proposition. This

is the same deflationist account of truth that can be found in Frege and Ayer,

that truth of sentences entails the truth of the meaning of the sentence.

One objection to the deflationist account of truth could be that if truth

has no nature, then it has no utility in our language. Quine argues against

this and writes that the reason for the truth predicate is in the affirmation

of infinitely-many sentences. He gives the example that the truth predicate

is required to affirm the statement “every sentence of the form ‘p or not p’

is true” [16, Page 12]. We have difficulty translating this without the word

true. Thus, Quine argues, that if we were to express this as “p or not p for

all things p of the sort that sentences are names of” [16, Page 11] then we

are using p in two different ways, as a variable representing sentence clauses

and representing substantive nouns. Hence, for Quine, the truth predicate’s

utility is in dealing with sentences such as this.
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C.2.4 Horwich

Horwich is a contemporary deflationist who again argues for equivalence of a

sentence being true if its meaning holds. He writes “for any declarative sen-

tence (4) p we are provided with an equivalent sentence (4*) the proposition

that p is true ... the truth predicate serves merely to restore the structure

of a sentence: it acts simply as a de-nominalizer.” [8, Pages 4-5]. This is a

familiar account which we see is common to all deflationary theories of truth.

Howrich also argues against the misconception that “truth has some hid-

den structure awaiting our discovery” [8, Page 2]. He argues, like Ayer,

that truth is not an ordinary property and writes, like Quine, the concept

of truth only exists to fulfil a need to refer to an infinite conjunction of sen-

tences. He argues that truth has no underlying nature and the deflationary

principle that truth is a de-nominaliser is the only explanation required for

truth. This principle captures everything we need to know about truth and

provides everything we need from an account of truth.

These two principles contain the essence of the deflationist account of

truth. They claim to provide a necessary condition for truth to satisfy, which

is also a sufficient one. Whilst there is a lot more to say about the deflationist

account of truth, this feature is specific enough for our interests.

C.2.5 Tarski

Tarski has provided a highly interesting conception of truth which provides

the foundation for satisfaction classes. We shall examine this conception in

Section E.1. It is an interesting question as to the extent to which Tarski was
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a deflationist about truth, and whether his account can be considered defla-

tionary or not. We shall consider this in Subsection E.1.5 after a thorough

account of his definition of truth.

C.3 Meta and In-Model Truth

We have seen various different deflationary accounts of truth, all of which

have one very important facet in common. They all agree that, for example,

‘snow is white’ is true if and only if snow is white and this is all we understand

by the nature of truth. More generally, for a sentence p, it is held that ‘p’

is true if and only if p. This definition of deflationary truth is known as

the equivalence schema. We can express this in our natural language in the

following way:

〈p〉 is true if and only if p.

where p is a proposition and 〈p〉 is the representation of that proposition.

We see that the equivalence schema describes truth in a very general way

which applies to everyday language. Given any reasonable sentence of En-

glish, this schema should give an account of truth for these sentences. These

sentences reasonably include all mathematical sentences as well. Applying

the deflationary account of truth to mathematical sentences we get an ac-

count of truth which says ‘2+2 = 4’ is true if and only if 2+2 = 4. We hence

have the equivalence schema that Trm(δ), that ‘δ’ is true, if and only if δ for

a sentence (of potentially natural language) δ. We shall call this account of

truth a meta-truth account and denote it by the truth predicate Trm.
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This is not the only way we can conceive of truth within mathematics.

We can instead look at truth from the perspective of inside a model. Rather

than generally specifying the truth of a sentence, we specify the truth of a

sentence from the perspective of a mathematical model. This truth defini-

tion, particular to a specific model, will change based on the model we are

considering. We shall call this account of truth a model-truth account and,

for a model M we shall denote it by the truth predicate TrM . We can apply

a deflationary account of truth to this model-truth notion as well. We thus

have, for all models M that M � TrM(σ) if and only if M � σ for all sentences

σ. We therefore have two different equivalence schemas to consider.

It is an interesting question as to the dependencies between the meta-

truth equivalence schema and the model-truth equivalence schema. The

meta-truth account as proposed is not sufficient for the truth of mathemati-

cal sentences involving quantified variables. For instance, it is true in N that

∀x[x > 0], but the same sentence is false in Z. Thus, it is infeasible to write

Trm(∀x[x > 0]). This problem of not qualifying mathematical sentences is

exacerbated further for the mathematical realist. For instance, we know that

N is consistent, not just in the sense of a model but actually consistent, and

therefore it could appear reasonable to write Trm(con(N)). We also have that

N � PA and therefore write Trm(N � PA). Given the previous two statements

one may be tempted to write Trm(con(PA)). However, from Gödel’s second

incompleteness theorem we know that there are models M � PA such that

M � ¬con(PA). Therefore, for some M , we have that M � TrM(¬con(PA)).

This tells us that we cannot simply ‘push’ meta-truth inside a model for

a model-truth and likewise cannot simply ‘pull’ a model-truth outside of a
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model to give us meta-truth and there is a disconnect between the two no-

tions. Therefore, we shall consider the meta-truth predicate only to apply to

sentences of the form M � σ where M is a model and σ is a sentence in the

signature of the model.

It is therefore, very desirable, after specifying this is how meta-truth

behaves, to want the equivalence that Trm(M � σ) if and only if M � TrM(σ).

We shall thus define a model-truth account as being a good account of truth

if it satisfies this property.

C.4 Deflationary Model-Truth

We now look more closely at a deflationary model-truth notion and the

model-theoretic consequences that it proposes with Ketland’s formal defi-

nition of deflationary truth. We shall do this here within the background

language of arithmetic, LA and the theory of first order Peano Arithmetic,

PA, but more general approaches can be taken. Ketland [13] provides the

following definition.

Definition C.1 (Ketland). The truth theory T with predicate TrM is defla-

tionary (in the sense of Ketland) if for all models (M,TrM) � PA + T :

(M,TrM) � TrM(pσq)↔ σ

for all sentences σ in the signature of M . Further, we require that T is

conservative over PA. [13, Pages 71–72]

This is a definition of what it means for a predicate, TrM to be deflation-
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ary, but does not provide us with an actual truth predicate. The natural

approach to providing a deflationary truth predicate is by giving the equiv-

alence schema as the list of axioms for the predicate. We follow Ketland

[13, Section 2] and define the deflationary account of truth known as the

disquotational theory (DT ) in this way.

Definition C.2. DT consists of the predicate TrM with the axiom schema:

for all LA sentences σ: TrM(pσq)↔ σ. [13, Page 75]

This theory DT is indeed a deflationary theory of truth, as the following

theorem shows. Clearly it satisfies the first part of the definition, for that is

how we defined DT but it is less obvious that this theory is conservative.

Theorem C.3. DT is a deflationary theory of truth for PA, in the sense

that every model of PA has an expansion which satisfies DT .

Proof. Let M � PA, we build an expansion (M,TrM) � PA + DT . We add

constants cσ for each LA-sentence σ to M and then take a Gödel-Numbering

so pσq = cσ for all LA-sentences σ. We then specify TrM(pσq) if and only

if M � σ. Clearly (M,TrM) � PA +DT . Since we took M � PA arbitrarily,

we thus have that any model has an expansion to DT . [13, Pages 76–77]

This theorem therefore shows that it is possible to provide a formal defi-

nition of what it means for a truth predicate to be deflationary and further

that under some definitions there are truth predicates that satisfy this.
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Appendix D

Collection Axioms

In this chapter we give a thorough account of the collection axioms. We define

what the first order collection schema is and specify which models satisfy

them. We then look at their numerous links to the first order induction

schema and prove various equivalences and conservativity results. We then

look at the first order collection schema and its relation to end extensions

of models. After this, we move onto the collection axioms over countably

many conjuncts and disjuncts and look at its relation to recursive saturation.

Finally, we look at the second order collection axiom, as a demonstration of

the surprising weakness of collection.

D.1 First Order Collection

D.1.1 Collection Axioms

We begin by defining the first order collection axioms. The natural language

interpretation of this for some formula θ is that if for all x lower than some
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bound, then there is some y such that θ(x, y, ā) holds, then there is some

bound on y. We define this formally below.

Definition D.1.1 (Collection Axioms). The collection axiom, Collθ, for each

formula θ of our language L is the sentence:

∀ā∀t[∀x<t∃yθ(x, y, ā)→ ∃z∀x<t∃y<zθ(x, y, ā)]

where ā represents a (possibly empty) tuple of variables [12, Definition 7.2].

Definition D.1.2 (Collection Schema). For a given language L we denote

{Collθ : θ is an L -formula} as Coll. Thus, we say that a model M satisfies

Coll,M � Coll, if for each formula θ of L ,M � Collθ.

We shall also consider collection restricted to certain formulae classes.

We define these as one might expect, below:

Definition D.1.3 (Coll(Σn) and Coll(Πn)). For our language L we de-

note {Collθ : θ is an L -formula in the set Σn} by Coll(Σn). Similarly, by

Coll(Πn), we denote {Collθ : θ is an L -formula in the set Πn}

We now explore the collection axioms in more detail, by looking at which

models satisfy these axioms.

D.1.2 Models of Collection

It is clear to see that the standard model N of PA satisfies Coll. This is

because, for a given t, we have finitely-many x which have some y such that

θ(x, y). Therefore, there are finitely-many y which do this, so we can bound
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these y (e.g. take z as the maximum of these y, +1). It is not obvious that

nonstandard models of PA should satisfy Coll, however. This is because for

nonstandard t we have infinitely-many x and so infinitely-many y which may

therefore be unbounded. It turns out that due to induction they are bounded

and we shall prove this below.

Theorem D.1.4. If M � PA, then M � Coll [12, Proposition 7.4].

Proof. We prove this via induction on t. First let θ be an L -formula and a

requisite tuple of constants ā be given.

First suppose t = 0 and M � ∀x<t∃yθ(x, y, ā). This is vacuously true,

since there are no x < 0. Therefore, it is similarly vacuously true that

M � ∃z∀x<t∃y<zθ(x, y, ā).

Now suppose inductively that:

M � ∀x<n∃yθ(x, y, ā)→ ∃z∀x<n∃y<zθ(x, y, ā).

Consider if M � ∀x<(n+1)∃yθ(x, y, ā). Then M � ∀x<n∃yθ(x, y, ā)

and M � ∃yθ(n, y, ā). Thus, by induction, ∃z∀x<n∃y<zθ(x, y, ā), denote

such a z by u. We now denote a y satisfying θ(n, y, ā) by v. Then, take

w = max(u, v + 1) and we have that M � ∀x<(n+1)∃y<wθ(x, y, ā). Thus,

M � ∃z∀x<(n+1)∃y<zθ(x, y, ā).

Whilst every model of PA is a model of collection, there are numerous

models of PA− which do not satisfy collection, as well as many that do.

It is interesting to explore some of these to see why collection appears and

why it fails. We now prove that every model of PA− that is ω1-like satisfies
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collection.

Theorem D.1.5. If M � PA− and M is ω1-like, then M � Coll [12, Exercise

7.12].

Proof. We prove this by contradiction. Suppose that M � ∀x<t∃yθ(x, y)

and that M � ¬∃z∀x<t∃y<zθ(x, y). Then we know that
⋃
x<t{y : θ(x, y)} is

cofinal in M . This tells us that M =
⋃
x<t{m < y : θ(x, y)}. Since M is ω1-

like, we know that this is a countable union of countable sets, so countable.

This is a contradiction, so thus M � Coll.

This argument generalises to other regular cardinals, which we prove when

we consider the second order collection axiom. For now, we begin by demon-

strating models of PA− that do not satisfy collection. Our first example is

that Z[X]+ does not satisfy collection.

Example D.1.6. Z[X]+ � PA− + ¬Coll [12, Exercise 7.12].

Proof. To generate Z[X]+ we take the integers, Z, and generate its ring of

polynomials Z[X]. We then define the order on it that p > q if and only if

p− q > 0, where a polynomial p = pnX
n + pn−1X

n−1 + ...+ p1X + p0 > 0 in

Z[X] if and only if pn > 0 in Z. Then, we take Z[X]+ = {p ∈ Z[X] : p > 0}

and it is easy to check that this structure satisfies PA−.

We now show that it doesn’t satisfy collection. Consider the definable

formula θ(x, y) which says that: “the largest non-zero degree of y is the coef-

ficient of the largest non-zero degree of x.” Then we know ∀x<X2∃yθ(x, y).

E.g. for x = 9X + 7 we can take y = X9. However, there is no poly-

nomial z such that ∀x<X2∃y<zθ(x, y). To see this suppose that such a
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z = znX
n+zn−1X

n−1+...+z1X+z0 exists. Then consider x = (n+1)X < X2.

This has corresponding y > Xn+1 and we see that hence y > z which is con-

tradicts that y < z.

We can generalise this example easily enough to show that any model

M � PA− has an end-extension M [X]+ � PA− + ¬Coll. Whilst we do not

prove this here, it is easily done using the above proof.

Theorem D.1.7. If M � PA−, then M [X]+ � PA− + ¬Coll.

These examples show us that whilst the collection axiom schema is true

in every model of PA, there are numerous models of PA− which do not

satisfy it. Given that Theorem D.1.4 required induction to be proven, it is

unsurprising that this is the case. The question of the link between collection

and induction is an interesting one to explore, which we focus on in the next

subsection.

D.1.3 Collection and Induction

The intuition that the collection schema and induction are related, as ex-

pressed above, is correct. We shall characterise this below, by proving that

PA is equivalent to I∆0 + Coll. We shall then see how this entails that Coll

requires some induction to prove even some of the simplest theorems of PA,

and for any Π2 sentence it is actually conservative over I∆0. It is this dual

nature of collection, of being very powerful with induction, but very weak on

its own, that we focus on.

Our first lemma shows that using Πn induction and Σn+2 collection, we

are able to build Σn+1 induction. It is this lemma that is at the heart of our
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main proof later on, that PA is equivalent to I∆0 + Coll.

Lemma D.1.8. IΠn + Coll(Σn+2) ` IΣn+1, where n > 0.

Proof. Let M � PA− and suppose M � IΠn + Coll(Σn+2). Take θ(x, ā) to

be a Σn+1 formula, where ā is a tuple of constants in M . Suppose further

that M � θ(0, ā) ∧ ∀x[θ(x, ā) → θ(x+1, ā)]. Thus we aim to show that

M � ∀xθ(x, ā).

Let t ∈M and, since θ(x, ā) is Σn+1, let ∃yφ(x, y, ā) be an equivalent formula,

where φ(x, y, ā) is a Πn formula. By the axioms of PA−, we know that:

M � ∀x<t+ 1(∃y[φ(x, y, ā) ∨ ∀z¬φ(x, z, ā)]).

This formula is Σn+2 since ∀z¬φ(x, z, ā) is a Πn+1 formula. Hence we can

apply collection to this sentence to get that, for some constant c:

M � ∀x<t+ 1(∃y<c[φ(x, y, ā) ∨ ∀z¬φ(x, z, ā)]).

Thus, we see that M � ∀x<t+ 1[∃yφ(x, y, ā)↔ ∃y<cφ(x, y, ā)]. Here, we see

that ∃y<cφ(x, y, ā) is equivalent to some Πn formula ψ(x, c, ā). Therefore, by

IΠn we have that:

M � ψ(0, c, ā) ∧ ∀x<t[ψ(x, c, ā)→ ψ(x+1, c, ā)].

Hence, by performing Πn induction on the formula (x>t∨ (x 6 t∧ψ(x, c, ā)

we get that M � ψ(t, c, ā). Therefore, M � ∃yφ(t, y, ā). Thus, we get that

M � θ(t, ā). Therefore, since t was chosen arbitrarily, we get M � ∀xθ(x, ā).

84



[12, Lemma 7.6]

We now require the following lemma, which tells us that Σn induction

implies Πn induction, which provides the other building block of our main

theorem in this section. It is actually the case that Σn and Πn induction are

equivalent [12, Lemma 7.7], but as the other direction is not needed for our

purpose, the proof is not given here.

Lemma D.1.9. IΣn ` IΠn.

Proof. Let M � PA− + IΣn and let φ(x, ā) be a Πn formula, where ā is a

tuple of constants in M . Suppose (?) that:

M � φ(0, ā) ∧ ∀x[φ(x, ā)→ φ(x+1, ā)].

We assume for contradiction that there exists some constant c ∈ M such

that M � ¬φ(c, ā). We now take ψ(x, c, ā) as the formula:

(x>c) ∨ ∃y[y+x=c ∧ ¬φ(y, ā)].

We see that since ¬φ(y, ā) is Σn we have that ψ(x, c, ā) is also a Σn formula.

Since M � ¬φ(c, ā) we know that c+0=c ∧ ¬φ(c, ā). Therefore we conclude

that M � ψ(0, c, ā). Now suppose that M � ψ(x, c, ā). Then x > 0, in

which case x+1 > 0, or for some b, [b + x = c and ¬φ(b, ā)]. In this case

(b−1)+(x+1) = c and by the contrapositive of (?) we have that ¬φ(b−1, ā).

Therefore, we know that:

M � ∀x[ψ(x, c, ā)→ ψ(x+ 1, c, ā)].
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Now since ψ(x, c, ā) is Σn, we apply induction to get that M � ∀xψ(x, c, ā).

Therefore, we have that M � ψ(c, c, ā), which allows us to conclude that

M � ∃y[y+c=c ∧ ¬φ(y, ā)]. Clearly, such a y, must be 0 and therefore

M � ¬φ(0, ā), which contradicts out earlier assumption. Therefore, no such

c can exist and M � ∀xφ(x, ā). [12, Lemma 7.7]

It is these two lemmas which allow us to prove one of our most surprising

theorems in this chapter, that PA is equivalent to I∆0 + Coll. One of the

main pieces of interest in this theorem is that it shows that collection, with

just a small amount of induction, can be very powerful.

Theorem D.1.10. The axioms of PA are equivalent to I∆0 + Coll [12, The-

orem 7.5].

Proof. We have seen in Theorem D.1.4 that PA ` Coll. Clearly, by definition

PA ` I∆0, so PA ` I∆0 + Coll.

Now consider I∆0 + Coll. By definition I∆0 = IΠ0 and by Lemma D.1.8 we

thus have I∆0 + Coll ` IΣ1. Now given IΣn we have by Lemma D.1.9 IΠn.

So, again applying Lemma D.1.8 IΣn + Coll ` IΣn+1. Thus, by induction,

I∆0 + Coll ` IΣn for all n. Therefore, I∆0 + Coll ` PA.

Whilst we have seen that PA− with collection only needs a little induction

to become very powerful, without this induction even some ‘simple’ theorems

of PA cannot be proven. The following example shows that PA−+Coll cannot

prove that every number x lies between two numbers, 2y and 2(y + 1).

Example D.1.11. PA− + Coll 0 ∀x∃y[2y 6 x ∧ x < 2(y + 1)] [10, Exercise

7.7]
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Proof. We consider the model Z[X]+ and first show that:

Z[X]+ 2 ∀x∃y[2y 6 x ∧ x < 2(y + 1)].

We denote [2y 6 x ∧ x < 2(y + 1)] by the formula θ(x, y).

To demonstrate the claim we show that Z[X]+ � ¬θ(X, y). Suppose

y ∈M such that Z[X]+ � θ(X, y). We write y as:

ynX
n + yn−1X

n−1 + ...+ y1X + y0

where yn > 0 and yi ∈ Z for all i ∈ {0, 1, ..., n}. If n = 2, then y > X,

so 2y = y + y > x + x > x, so θ(X, y) does not hold. If n = 0, then

2(y + 1) = 2(y0 + 1) < X, so θ(X, y) does not hold. Thus n = 1, so

y = y1X + y0 and 2y = 2y1X + 2y0 > X, since y1 > 0. Thus θ(X, y) does

not hold for any y ∈ Z[X]+.

We now build a chain of models M0,M1, , , , ,Mω1 where M0 = Z[X]+,

Mi+1 = Mi[Xi+1]+ and Mλ =
⋃

[i < λ]Mi for each limit ordinal λ. We

stop at the first uncountable model Mω1 which is ω1-like. Clearly Mi ⊆e Mλ

for each i < λ where λ is a limit ordinal by definition. We also have that

Mi ⊆e Mi[Xi+1]+. Let a ∈Mi and let y ∈Mi+1, so we have that:

y = ynX
n
i+1 + ...+ y1Xi+1 + y0 < a.

Then we know that yn = ... = y1 = 0, so y = y0 ∈ Mi. Thus we have

that Z[X]+ ⊆ Mω1 . We now show that Mω1 is ω1-like. To see that |Mω1| =

ω1, note that each Mi contains at least i elements by definition. Let a ∈
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Mω1 and consider Xa = {x ∈ Mω1 : x < a}. Then Xa is a (strict) end-

extension of Mω1 , so is countable, otherwise this contradicts that Mω1 is the

first uncountable model. Thus we have that Mω1 � Coll by Theorem D.1.5.

We know that the axioms of PA− are all of the ∀∃-form. These axioms are

preserved upwards in end-extensions by an easy exercise, so thus we have that

Mω1 � PA−. Similarly, as we know that Z[X]+ � ∀y[2y 6 X0 → X > 2(y+1)]

we know that this is also preserved upwards and hence:

Mω1 � ∀y[2y 6 X0 → X > 2(y + 1)].

Therefore, there is a model of PA− and collection which satisfies ¬θ(X0, y)

and our theorem is proven.

We are able to prove the sentence ∀x∃y[2y 6 x ∧ x < 2(y + 1)] using

only I∆0 induction and no collection. This gives an example that although

collection and induction are related, they are also useful for different tasks

and should not be viewed as too closely related.

Example D.1.12. PA− + I∆0 ` ∀x∃y[2y 6 x ∧ x < 2(y + 1)].

Proof. Let M � PA−+ I∆0 and let t ∈M , where t > 0. By θ(x, t) we denote

the formula:

∃y<t[2y 6 x ∧ x < 2(y + 1)] ∨ x > 2t.

Clearly we have that M � θ(0, t) since 0 < t and 2 · 0 = 0 6 0 and by the

axioms of PA− we have that 0 < 2(0+1) = 1. Now suppose that M � θ(x, t).

Therefore ∃y<t[2y 6 x∧x < 2(y+1)] or x > 2t. If there is some c ∈M such

that 2c 6 x ∧ x < 2(c + 1), then either 2c < x and x < 2(c + 1) or 2c = x
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and x < 2(c+ 1). In the first case, we have that:

2(c+ 1) 6 x+ 1 ∧ x+ 1 < 2(c+ 2).

In the second case we have that:

2c 6 x+ 1 ∧ x+ 1 < 2(c+ 1).

Alternatively, if x > 2t, then clearly x + 1 > 2t. Therefore M � θ(x + 1, t).

Hence, we can use ∆0 induction, to get thatM � ∀xθ(x, t). Since t was chosen

arbitrarily, we thus have that M � ∀t∀x∃y<t[2y 6 x∧x < 2(y+1)]∨x > 2t.

Therefore, we know:

M � ∀t∀x<2t∃y<t[2y 6 x ∧ x < 2(y + 1)] ∨ x > 2t.

This hence gives us that M � ∀x∃y[2y 6 x ∧ x < 2(y + 1)].

More surprisingly, for any Π2 sentence, we have that Coll(Σ1)+ I∆0 is

conservative over I∆0. This shows that to prove a large amount of sentences

of arithmetic collection over Σ1 sentences is unnecessary. Thus, we know

that in some circumstances the collection axioms are very weak.

Theorem D.1.13. If PA− + Coll(Σ1) + I∆0 ` σ where σ is a Π2 sentence,

then PA− + I∆0 ` σ [3, Page 260].

Proof. Without loss of generality we can write σ in the form ∀x∃yθ(x, y, ā)

for some formula θ(x, y, ā) where θ is ∆0. Suppose we have a model M � I∆0

where M 2 σ. Therefore, for some a ∈ M we know that M � ∀y¬θ(a, y).
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Without loss of generality suppose that M is countable (by the Löwenheim-

Skolem theorems - see A.1.2), recursively saturated (by A.2.10) and a > 2

(since otherwise consider a′ = a+2). We now consider the type p(x) := {x >

an : n ∈ N}. Since M is recursively saturated and p(x) is finitely realised, we

know that there is some b > an for each n ∈ N. Thus we consider the cut:

I = sup{an : n ∈ N} = {m ∈M : m < an for some n ∈ N}.

Clearly I ⊂e M and is closed under + and ·. Therefore I � PA− and

I � ∀y¬θ(a, y) since θ is ∆0 and a ∈ I and Π1 formulas are preserved

downwards. We can express induction for a ∆0 formula φ(x, ā) with the

sentence:

∀ā, t[φ(0, ā) ∧ ∀x<t(φ(x, ā)→ φ(x+ 1, ā))→ ∀x 6 bφ(x, ā)].

This sentence is Π1, so similarly is preserved and thus I � I∆0.

We now prove that I � Coll(Σ1). Let t ∈ I such that I � ∀x<t∃yφ(x, y, ā)

where φ(x, y, ā) is a Σ1 formula. Therefore, without loss of generality, we can

write it as ∃zψ(x, y, z, ā) for some ∆0 formula ψ(x, y, z, ā). Hence, we know

that I � ∀x<t∃y∃zψ(x, y, z, ā). Therefore, by pairing the y and z together,

we have that ∃y∃zψ(x, y, z, ā) is equivalent to ∃yζ(x, y, ā) where ζ is a ∆0

formula. Therefore, it is the case that:

I � ∀x<t∃yζ(x, y, ā).

Thus M � ∀x<t∃yζ(x, y, ā). We know that for all constantsl b ∈ M which
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are not in I, M � ∀x<t∃y<bζ(x, y, ā). Thus, by overspill, since M � I∆0,

we know for some b ∈ I that I � ∀x<t∃y<bζ(x, y, ā) and hence we have

equivalently that I � ∃z∀x<t∃y<zφ(x, y, ā). Therefore, I � Coll(Σn). This

tells us that, if M � PA− + I∆0 + ¬σ, then there is some I � PA− + I∆0 +

Coll(Σn) + ¬σ. Hence, by contrapositive, we achieve the desired result.

D.1.4 Collection and Largeness Properties

The collection axioms can also be proven to be equivalent to Keisler’s Axiom

5 for largeness properties in PA−. This equivalence is of great use in the

next section in proving the existence of an elementary end extension for any

model of PA− that satisfies Coll.

First we develop the useful shorthand of Qx which, informally, denotes

’there are unboundedly many x’.

Notation D.1.14 (Qx). For any L -formula θ(x, ā), where ā is a tuple of

constants, we write Qxθ(x, ā) to mean the sentence: ∀y∃x>yθ(x, ā).

We first prove the simple lemma below, that shows this ’quantifier’ is

implied by ∀ and implies ∃.

Lemma D.1.15. Let θ be an L -formula. We have that for any model

M � PA− it is the case that ∀xθ(x) implies Qxθ(x) and that Qxθ(x) im-

plies ∃xθ(x).

Proof. Suppose a model M � ∀xθ(x) and take m ∈M arbitrary. Then M �

∃x>mθ(x). Since this holds for all m ∈M we know that M � ∀m∃x>mθ(x).

Now suppose M � Qxθ(x). Then M � ∀y∃x>yθ(x) and in particular M �

∃xθ(x).
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The shorthand Qx is an example of a largeness property. The following

definition is an axiom of all largeness properties, as detailed in Models by

Games [7]. In this thesis we shall just be looking at the largeness property

Qx, so Keisler’s Axiom 5 has been stated in terms of this.

Definition D.1.16 (Keisler’s Axiom 5). For any L -formula θ(x, y, ā):

Qx∃yθ(x, y, ā)→ ∃yQxθ(x, y, ā) ∨Qy∃xθ(x, y, ā).

Here ā is a tuple of constants [7, Page 175].

Since all models that we shall be considering are models of PA− we are

able to simplify this axiom, as the following lemma shows.

Lemma D.1.17. In PA− for an L -formula θ(x, y, ā), Keisler’s Axiom 5

is equivalent to the sentence: Qx∃y<bθ(x, y, ā) → ∃y<bQxθ(x, y, ā). We

denote this sentence by Sθ [7, Lemma 6.1.6].

Proof. Suppose M � PA− and M � Keisler’s Axiom 5. Let θ(x, y, ā) be

an L -formula, where ā ∈ M and M � Qx∃y<bθ(x, y, ā). Then M �

Qx∃y[θ(x, y, ā) ∧ y<b]. Therefore, by Keisler’s Axiom 5, we know that:

M � ∃yQx[θ(x, y, ā) ∧ y<b] ∨Qy∃x[θ(x, y, ā) ∧ y<b].

The second disjunct is impossible to obtain, since if this occurred it would

imply that M � ∀z∃y>z∃x[θ(x, y, ā) ∧ y<b], which entails that:

M � ∃y>b∃x[θ(x, y, ā) ∧ y<b].
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This is a contradiction. Thus M � ∃yQx[θ(x, y, ā) ∧ y<b], and so we have

that:

M � ∃y<bQxθ(x, y, ā).

We now prove the converse direction. Suppose M � Sθ for all L -

formulae θ(x, y, ā) and M � Qx∃yθ(x, y, ā). If there is some b ∈ M such

that M � Qx∃y<bθ(x, y, ā), then by Sθ we have that M � ∃y<bQxθ(x, y, ā)

and thus M � ∃yQxθ(x, y, ā). Hence suppose this does not occur, and

M � ¬∃wQx∃y<wθ(x, y, ā). Therefore we have that:

M � ∀w∃z∀x>z∀y<w¬θ(x, y, ā).

We take such a z ∈ M and call it the constant c, then by rearranging,

derive that M � ∀w∀y<w∀x>c¬θ(x, y, ā). However, by substituting in c

and rearranging our original supposition, we also know that ∃y∃x>cθ(x, y, ā).

Therefore we know that M � ∀w∃y > w∃x>cθ(x, y, ā) and thus we derive

that M � Qy∃xθ(x, y, ā).

This leads us to one of the main results in this section. We show that, for

any L -formula θ, the sentences Sθ and Collθ are equivalent. To obtain this,

we first prove the stronger statement that for any n ∈ N, a model satisfies

Sθ for all Σn sentences if and only if Coll(Πn) is also satisfied in that model.

Lemma D.1.18. In PA− the sentence Sθ for all Σn formulae is equivalent

to Coll(Πn) [12, Exercise 7.3].

Proof. First suppose that a model M � PA− + Coll(Πn). Let θ(x, y, ā)

be a Σn formula, where ā is a tuple of constants in M . We suppose that
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M � Qx∃y<tθ(x, y, ā) and for contradiction also that M 2 ∃y<tQxθ(x, y, ā).

Then M � ∀y<t∃z∀x>z¬θ(x, y, ā). Since θ(x, y, ā) is a Σn formula we know

that ∀x>z¬θ(x, y, ā) is equivalent to a Πn formula. Thus, we can apply

Coll(Πn) to the above sentence and get that:

M � ∃w∀y<t∃z<w∀x>z¬θ(x, y, ā).

Hence there is some c ∈ M such that M � ∀y<t∀x>c¬θ(x, y, ā). How-

ever, we also know that M � Qx∃y<tθ(x, y, ā), which entails that M �

∃x>c∃y<tθ(x, y, ā). This is a contradiction, so therefore M � Sθ for all Σn

formulae.

We prove the converse by contrapositive. Suppose a model M � PA−+Sθ

for all Σn formulas θ. Consider a Πn formula θ(x, y, ā) where ā is a tuple

of constants in M and suppose M � ¬∃z∀x<t∃y<zθ(x, y, ā). Therefore,

M � ∀z∃x<t∀y<z¬θ(x, y). Applying Lemma D.1.15 we thus have that:

M � Qxz∃x<t∀y<z¬θ(x, y).

We can apply S∀y<z¬θ(x,y), since this is equivalent to a Σn formula, to get

that M � ∃x<tQxz∀y<z¬θ(x, y). By using the properties of negation this

tells us that M � ¬∀x<b∃w∀z>w∃y<zθ(x, y). Thus, we conclude that M �

¬∀x<t∃yθ(x, y). Hence, we have that M � Coll(Πn).

This allows us to show that any model of PA− considers Sθ and Collθ

equivalent for any L -formula θ.

Theorem D.1.19. For PA− we have that Coll is equivalent to Sθ, for all
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formulae θ.

Proof. First suppose that M � Coll. We know that any L -formula θ is Σn

for some n. We know that Coll(Πn) holds, so therefore by Lemma D.1.19,

SΣn holds and hence Sθ holds for any formula θ. Now suppose that M � Sθ

for all L -formula θ. A given L -formula θ is Πn for some n. We know that Sθ

holds for all Σn formulas, so by Lemma D.1.19 we have that Coll(Πn) holds,

so Collθ thus holds also. This is true for any formula, so M � Coll.

D.1.5 Collection and End Extensions

One of the many uses of the collection axioms is in their relation to end

extensions. Informally one can see how collection can be linked to elementary

end extensions. Supposing that some sentence of a model M does not satisfy

collection, i.e. the set of y considered is unbounded, then by building an

end extension onto this model, we see that some new element shall act as a

bound for these y and thus this sentence shall satisfy collection in the new

model. We shall first prove that only a little bit of elementarity in and end

extension guarantees some collection. Then, we shall prove that if our model

of PA− has a full elementary end extension, then it satisfies full collection.

Finally, we have that surprisingly, a converse to this nearly exists, and if a

countable model of PA− satisfies collection, then it has an elementary end

extension.

Lemma D.1.20. If M,N � PA− and M ≺e,Σn N , then M � Coll(Σn), for

each n > 0 [12, Exercise 7.14].

95



Proof. Suppose M ≺e,Σn N and further suppose that M � ∀x<t∃yθ(x, y)

where θ(x, y) is a Σn formula. Thus, suppose without loss of generality

that θ(x, y) is the formula ∃wφ(x, y, w) where φ(x, y, w) is Πn−1. Hence

M � ∀x<t∃y∃wφ(x, y, w). We can rewrite this equivalently as:

M � ∀x<t∃〈y, w〉ψ(x, 〈y, w〉)

where ψ(x, 〈y, w〉) is some Πn−1 formula that holds if and only if φ(x, y, w)

holds. Thus, by Σn elementarity we have, since t ∈M , that:

N � ∀x<t∃〈y, w〉ψ(x, 〈y, w〉).

Therefore, by taking a z ∈ N\M we have that:

N � ∃z∀x<t∃〈y, w〉<zψ(x, 〈y, w〉).

Thus, again by Σn elementarity, we have that:

M � ∃z∀x<t∃〈y, w〉<zψ(x, 〈y, w〉).

Now, we can repeat our first steps in reverse, to rewrite this as:

M � ∃z∀x<t∃y<zθ(x, y).

The following theorem is thus easily obtained by the above lemma and is
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highly interesting in its own right.

Theorem D.1.21. If a model M � PA− and there is some model N such

that M ≺e N , then M,N � Coll.

Proof. Every sentence of our language L is Σn for some n. If M ≺e N , then

M ≺e,Σn N for each n. Thus, by Lemma D.1.20 M � Coll(Σn) for each n.

Hence M � Coll. Therefore, since M ≺e N , we also have that N � Coll.

Surprisingly, a converse to the result above exists for countable models,

which is a useful alternative to the MacDowell-Specker theorem, Theorem

A.1.1. This result requires the theorem we proved in the previous section,

Theorem D.1.19.

Theorem D.1.22. If a countable model M � PA− and M � Coll, then there

exists a model N such that M ≺e N [10, Exercise 8.10].

Proof. Let L be the language of our model and take L + = L ∪M ∪ {∞}

which is L with a constant symbol ca for each a ∈M and a new constant∞.

Let T0 = Th(M,a)a∈M which is the elementary diagram of M , the set of all

true sentences of M using the constants from L ∪M . We build new theories

Tn successively and then take our final theory T =
⋃
n∈N Tn. We denote by τn

the conjunction of all sentences in Tn. We build our new theories inductively

with the induction hypothesis: H(n) = M � Qxτn(x, ā) where Qx is in the

sense of Notation D.1.14 above. We now enumerate all L + sentences σ(∞, ā)

and all pairs of L + formulae φ(∞, x) and elements a ∈M which can be done

since M is countable.
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Given a theory Tn and a sentence σ(∞, ā) we want to add either σ or ¬σ

to Tn to create Tn+1. We now show that this is possible and that:

M � Qx[θ(x, ā) ∧ τn(x, ā)] or M � Qx[¬θ(x, ā) ∧ τn(x, ā)].

SupposeM 2 Qx[θ(x, ā)∧τn(x, ā) andM 2 Qx[¬θ(x, ā)∧τn(x, ā). Then since

for all x ∈M either θ(x, ā) or ¬θ(x, ā) holds, we know that if M 2 Qxθ(x, ā)

then M � ∃y∀x>y¬θ(x, ā), so M � Qx¬θ(x, ā). Thus M 2 Qxτn(x, ā) which

contradicts our induction hypothesis.

Given a theory Tn and a pair φ(∞, x) and a ∈ M we want to add

∀y<a¬φ(∞, y) or, if we cannot, we add φ(∞, b)∧ b<a, where b is a constant

in M . To show this is possible, suppose M 2 Qx[∀y<a¬φ(x, y) ∧ τn(x)].

Thus, we know by our induction hypothesis that:

M � Qx∃y<a[φ(x, y) ∧ τN(x)].

Now, by Lemma D.1.19 we have that M � ∃y<aQx[φ(x, y) ∧ τn(x)]. Thus,

taking such a b ∈ M we get that M � Qx[φ(x, b) ∧ b<a ∧ τn(x)]. Thus, we

can consistently add φ(∞, b) ∧ b<a for some constant b ∈M .

We dovetail the above two processes together to construct our theory T

which is both consistent and complete. If T were inconsistent, then T ` ⊥

and thus Tn ` ⊥ for some n ∈ N. Therefore we know that M � Qx⊥ which

is false, since M is contradiction-free. We also have ensured that ∞ 6= m for

any m ∈M , since otherwise we have M � Qx(∞ = x) which is clearly false.
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We now, consider the types:

pa(x) = {x < a} ∪ {x 6= b : b < a}.

Suppose that T+∃x<aφ(∞, x) is consistent. Then by the construction above

we know that ∀x<a¬φ(∞, x) was not added to T . Thus there is some b ∈M

such that φ(∞, b) ∧ b < a was added. Thus T ` ∃x<a[φ(∞, x) ∧ x = b] and

hence we know that:

T 0 ∀x<a[φ(∞, x)→ x 6= b].

Therefore we know the type pa(x) is not isolated. We can now apply the

omitting types theorem, Theorem A.1.7, that there is some model N � T

where each pa(x) is omitted.

Thus we have that N �e M . This is because N � Th(M,a)a∈M , N

contains a new point ∞ /∈ M and N omits the types pa(x) so contains no

element not in M that is smaller than some element of M .

D.2 Collection and Recursive Saturation

D.2.1 L rec
ω1ω

To explore the link between the collection axioms and recursive saturation we

work in an infinite language called L rec
ω1ω

. The useful property of this language

is that we are allowed ω-many conjuncts and disjuncts in a sentence of L rec
ω1ω

.

Definition D.2.1. We define the language L rec
ω1ω

as an extension of LA in
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which sentences may contain ω-fold conjunctions and ω-fold disjunctions.

These sentences may only contain a finite number of quantifiers. Further,

we require that all formulas of L rec
ω1ω

are recursive and that only finitely many

variables may appear in a sentence of L rec
ω1ω

[9, Section 1.1]

D.2.2 Recursive Saturation and other Properties

We now give the definition of recursive saturation in L rec
ω1ω

below. For more

details on recursive saturation in general, see Section A.2.3.

Definition D.2.2. We call a model M recursively saturated in L rec
ω1ω

if for

any tuple of constants ā ∈ M any recursive family of LA formulas {θi : i ∈

N} we have that:

M �
∧
n∈N

∃x
∧
i<n

θi(x, ā)→ ∃x
∧
n∈N

θi(x, ā).

We now define two further properties of models of PA, in L rec
ω1ω

, below,

both of which are consequences of recursive saturation. The first property

we look at is short recursive saturation.

Definition D.2.3 (Short recursive saturation). Suppose that M is a model

for a signature with < and we have that < is a linear order on M with no

greatest element. Further, suppose that θn is a first order formula for each

n ∈ N. We say that M is short recursively saturated in L rec
ω1ω

if for any tuple

of constants ā ∈M and any constant t ∈M we have that:

M �
∧
n∈N

∃x<t
∧
i<n

θi(x, ā)→ ∃x<t
∧
n∈N

θi(x, ā) [12, Exercise11.6].
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It is easy to see that if a model is recursively saturated, then it is short

recursively saturated, but the converse does not hold in general. Short re-

cursive saturation has the following interesting property, that does not hold

for full recursive saturation, that it is preserved through elementary end ex-

tensions.

Lemma D.2.4. Suppose that M ≺e N . We have that M is short recursively

saturated if and only if N is short recursively saturated [12, Exercise 11.6].

Proof. First suppose that N is short recursively saturated and that:

M �
∧
n∈N

∃x<t
∧
i<n

θi(x, ā).

Then by elementarity N �
∧
n∈N ∃x<t

∧
i<n θi(x, ā). Hence using N ’s short

recursive saturation we have that N � ∃x<t
∧
n∈N θi(x, ā). Therefore, by el-

ementarity, M � ∃x<t
∧
n∈N θi(x, ā), so M is also short recursively saturated.

Now suppose that M is short recursively saturated. We prove this direction

via contrapositive, and supposeN � ¬∃x<t
∧
n∈N θi(x, ā). In the first case t ∈

M , so we know that M � ¬∃x<t
∧
n∈N θi(x, ā) by elementarity, and so by the

contrapositive of short recursive saturation: M � ¬
∧
n∈N ∃x<t

∧
i<n θi(x, ā).

Therefore, again by elementarity,

N � ¬
∧
n∈N

∃x<t
∧
i<n

θi(x, ā).

In the second case t ∈ N\M . Then we know by elementarity that M �

∀y¬∃x<y
∧
n∈N θi(x, ā). Therefore, by short recursive saturation in M we
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have that M � ∀y¬
∧
n∈N ∃x<y

∧
i<n θi(x, ā). Thus by elementarity:

N � ∀y¬
∧
n∈N

∃x<y
∧
i<n

θi(x, ā).

This tells us in particular N � ¬
∧
n∈N ∃x<t

∧
i<n θi(x, ā). Therefore N is

also short recursively saturated.

We now look at our second property, that of a model being tall.

Definition D.2.5 (Tall). Similarly to the above, suppose that M is a model

for a signature with < and we have that < is a linear order on M with no

greatest element. Further, suppose that θn is a first order formula for each

n ∈ N. We call M tall in L rec
ω1ω

if for any tuple of constants ā ∈M we have

that:

M �
∧
n∈N

∃x
∧
pθq<n

[∃yθ(y, ā)→ ∃y<xθ(y, ā)]→ ∃x
∧
pθq

[∃yθ(y, ā)→ ∃y<xθ(y, ā)]

[12, Exercise 11.6].

For all models that we shall be considering the antecedent is always true.

Thus, we can reduce the criterion to a model M being tall to:

∃x
∧
pθq

[∃yθ(y, ā)→ ∃y<xθ(y, ā)].

It is this notion of tall that we shall use throughout the rest of this section.

It is again easy to see that a recursively saturated model, satisfying the

required properties for tallness, is tall. For any n ∈ N we know that if there

exists an x such that for all formulae of Gödel-number less than n if ∃yθ(y),
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then ∃y<xθ(y). Hence, by recursive saturation, there is some x such that

this holds for all formulae.

Interestingly, for models in which all Skolem-terms are definable (such as

a model of PA) we can rephrase this in terms of Skolem functions. M is tall

if ∃x such that, for all Skolem-terms t, t(ā)<x.

It is unsurprising that the natural numbers are not tall, we prove this

below.

Example D.2.6. N is not tall.

Proof. Suppose that N is tall, ie:

N � ∃x
∧
pθq

[∃yθ(y, ā)→ ∃y<xθ(y, ā)].

Then we know that such an x is a natural number, so is uniquely defined

by a standard formula φ(x). Therefore ∃yφ(y) and by tallness we know that

∃y<xφ(y). Yet the only such possible y is x, telling us that x < x, which is

a contradiction. So N cannot be tall.

We have seen that both of these properties are consequences of recurisve

saturation, but we also have the following useful fact which gives us the

converse to this:

Fact D.2.7. For any model M � PA we have that M is tall and short

recursively saturated if and only if M is recursively saturated [12, Exercise

11.6].
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D.2.3 Collection, Short Recursive Saturation and Tall-

ness

To start, we need to provide definitions of the collection axioms which utilises

ω-many conjuncts or disjuncts. We then prove new results on dependencies

between these definitions and tall and short recursively saturated models.

Definition D.2.8. We define Coll
∧

, collection over ω-many conjuncts, as

the set of all statements:

∀x<t∃y
∧
n∈N

θn(x, y, ā)→ ∃z∀x<t∃y<z
∧
n∈N

θn(x, y, ā)

for all tuples of constants ā ∈ M , all t ∈ M and all first order formulae θn

which are recursive.

Definition D.2.9. We define Coll
∨

, collection over ω-many disjunctions

similarly. This is the set of all statements:

∀x<t∃y
∨
n∈N

θn(x, y, ā)→ ∃z∀x<t∃y<z
∨
n∈N

θn(x, y, ā)

for all tuples of constants ā ∈ M , all t ∈ M and all first order formulae θn

which are recursive.

There are numerous interesting interdependencies between Coll
∨

, short

recursive saturation and tallness, in particular a model satisfies Coll
∨

if and

only if it is short recursively saturated or tall. Whilst in this section we focus

on Coll
∨

, for this is the property that was of use in Chapter 2, we also have a

result concerning Coll
∧

and tallness. To start with we repeat Lemma 2.1.7,
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that every model which satisfies Coll and is short recursively saturated also

satisfies Coll
∨

.

Lemma D.2.10. If a model M � Coll and M is short recursively saturated,

then M � Coll
∨

.

Proof. We prove this by contrapositive. Suppose M is a short recursively

saturated model and that M � ¬∃z∀x<t∃y<z
∨
n∈N θn(x, y, ā). Thus, we

can rewrite this as:

M � ∀z∃x<t∀y<z
∧
n∈N

¬θn(x, y, ā).

This implies that M � ∀z
∧
n∈N ∃x<t

∧
i<n ∀y<z¬θi(x, y, ā). We can swap

the universal quantification and conjunction at the beginning of this sen-

tence, to get that M �
∧
n∈N ∀z∃x<t

∧
i<n ∀y<z¬θi(x, y, ā). Now, by the

contrapositive of Coll, we have that:

M �
∧
n∈N

∃x<t
∧
i<n

∀y¬θi(x, y, ā).

Now, using the fact that M is short recursively saturated we get that M �

∃x<t
∧
n∈N ∀y¬θn(x, y, ā). Thus, by swapping the universal quantifier and

the conjunction and by negation, we get that M � ∀x<t∃y
∧
n∈N θn(x, y, ā).

Therefore, by contrapositive, M � Coll
∨

.

The converse to this result does not hold, as the following example shows.

Example D.2.11. There is a model M � Coll
∨

which is not short recur-

sively saturated.
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Proof. Let M � PA such that M is not short recursively saturated. For an

example of this, we can consider M = clN(∅), where N � ¬con(PA). For

such a model we can let t be a nonstandard element, then we know that:

clN(∅) �
∧
n∈N

∃x<t
∧
pθq<n

[∃yθ(y) ∧ ∀u∀v(θ(u) ∧ θ(v)→ u=v)→ ¬θ(x)].

What this says is that there is some standard number which is not defined

by a standard formula of Gödel Number below any natural number. How-

ever, we do know that clN(∅) satisfies the negation of this sentence, since all

elements of clN(∅) are definable.

Given a suitable model M , such as the one above, we take M0 = M and

for every i > 0 given Mi we build an elementary end extension Mi+1 such

that if Mi � ∀x<t∃y
∨
n∈N θn(x, y, ā), where t and ā ∈ Mi, then Mi+1 �

∃z∀x<t∃y<z
∨
n∈N θn(x, y, ā). We know such end extensions exist from The-

orem D.1.22. Then by taking Mω =
⋃
i∈NMi we have that Mω � Coll

∨
.

Further, since M ≺e Mω we have by Lemma D.2.4 that Mω is also not short

recursively saturated.

This gives us the following interesting corollary, that any model satisfying

collection has an elementary end extension which satisfies Coll
∨

and which

is tall.

Corollary D.2.12. Every model M where M � PA+Coll has an elementary

end extension N such that N � Coll
∨

and N is tall.

Proof. Sketch We repeat the proof of the above, example, with the addition
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that when we build our end-extensions Mi we also build in the tallness cri-

terion. We then take N = Mω and we have the required elementary end

extension.

We thus know that there are models of Coll
∨

which are tall and not

short recursively saturated.

Interestingly, this is not the only dependency between models of Coll
∨

,

tallness and short recursive saturation. We now prove that if a model satisfies

Coll
∨

and is not tall, then it is short recursively saturated.

Lemma D.2.13. Suppose M � PA + Coll
∨

and M is not tall, then M is

short recursively saturated.

Proof. Since M satisfies PA we know it has definable Skolem terms We enu-

merate these terms t1(ā), t2(ā), ... and suppose without loss of generality that

ti(ā) < ti+1(ā) by taking t′i+1(ā) = max{ti(ā) + 1, ti+1(ā)}. Since M is not

tall, we know that M = limn∈N tn(ā). Now suppose for contradiction that

M is not short recursively saturated, i.e. there exist formulas θn such that

M �
∧
n∈N ∃x<t

∧
i<n θi(x, ā) and M � ∀x<t

∨
n∈N ¬θn(x, ā). Then, for every

x < t, there must be a least such θ(x, ā) that is not satisifed. Formally, we

can write this as:

M � ∀x<t∃y
∨
n∈N

[tn(ā) 6 y ∧ y < tn+1(ā) ∧
∧
i<n

θi(x, ā) ∧ ¬θn(x, ā)].

However, we know that:

M 2 ∃z∀x<t∃y<z
∨
n∈N

[tn(ā) 6 y ∧ y < tn+1(ā) ∧
∧
i<n

θi(x, ā) ∧ ¬θn(x, ā)].
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This is because if such a z existed, then for all tn(ā) < z we have that

M � ∀x<t
∨
i<n ¬θi(x, ā). This contradicts our earlier supposition that M �

∃x<t
∧
i<n θi(x, ā). Therefore, we have an instance where M fails Coll

∨
and

therefore we have a contradiction and M must be short recursively saturated.

We now prove that if M is tall, then M � Coll
∨

.

Lemma D.2.14. If M � PA is tall, then M � Coll
∨

.

Proof. Suppose that M � ∀x<t∃y
∨
n∈N θn(x, y, ā) and that M is tall. Then

there is some w such that all Skolem terms tn(ā) < z. Therefore, we have

that M � ∀x<t∃y<z
∨
n∈N θn(x, y, ā) and so M � Coll

∨
.

This allows us to show that M � Coll
∨

if and only if it is tall or short

recursively saturated by combining the previous lemmas.

Theorem D.2.15. For any model M � PA we have that M � Coll
∨

if and

only if M is short recursively saturated or M is tall.

Proof. Lemma 2.1.7 and lemma D.2.14 prove one direction of the theorem.

For the other direction, if M � Coll
∨

, then if M is tall we are done, else M

is not tall and we are done by lemma D.2.13.

There is also an interesting connection between tallness and models of

Coll
∧

. We prove below that all nonstandard models which satisfy Coll
∧

are tall.

Lemma D.2.16. If a model M � PA + Coll
∧

and M 6∼= N, then M is tall.
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Proof. We prove this using conditional proof. First suppose that t is a non-

standard number. We know that:

M � ∀x<t∃y
∧
pθq∈N

[(n = x ∧ ∃vθ(v))→ ∃v6yθ(v)].

This means that any formula with Gödel Number x, if the formula is standard

and is satisfied, then there is some number larger than one of the constants

that satisfies it. Thus, by Coll
∧

we know:

M � ∃z∀x<t∃y<z
∧
pθq∈N

[(n = x ∧ ∃vθ(v))→ ∃v6yθ(v)].

In other words, for any standard formula which is satisfied, z is larger than

one of the numbers which satisfies that formula. Thus M is tall.

It is an open question as to what other results and interdependencies

exist between the properties of: Coll
∧

, Coll
∨

, tallness and short recursive

saturation. It would, in particular, be interesting to explore whether a con-

verse to Lemma D.2.16 exists and what connections exist between Coll
∧

and short recursive saturation.

Question D.2.17. Are there any further connections between Coll
∧

, Coll
∨

,

tallness and short recursive saturation?

D.3 Second Order Collection

We shall now look at the second order variant of the collection schema. This

axiom runs over, not just formulas, but also all subsets of a model. This is
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a highly interesting axiom as although only one countable model satisfies it,

it is also a weak axiom in some instances, despite being second order.

D.3.1 The Second Order Collection Axiom

We start by defining what the second order collection axiom is.

Definition D.3.1 (Second Order Collection). The second order collection

axiom (Coll2) is the sentence:

∀X∀t[∀x<t∃y(〈x, y〉 ∈ X)→ ∃z∀x<t∃y<z(〈x, y〉 ∈ X)]

where X ranges over all subsets of the model M we are considering [10,

Exercise 8.9].

Again, like first the first order collection schema, it is easy to intuit that

N satisfies the second order collection axiom. To see this consider again that

for a given set X we know that {x ∈ N : x < t and ∃y〈x, y〉 ∈ X} is finite.

Therefore there are finitely many y which will satisfy all the x in the above

set, and so we can bound these y by some natural number larger than the

maximum y. We shall see later that N is in fact the only countable set which

does satisfy Coll2.

D.3.2 Cardinals and Second Order Collection

In this subsection we will prove some interesting results about which models

satisfy PA− and Coll2. Our first theorem in this section is that, surprisingly,
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any model of PA− which is κ-like for a regular cardinal κ satisfies the second

order collection axiom.

Theorem D.3.2. Let κ be a regular cardinal and M � PA− where M is

κ-like. Then M � Coll2 [10, Exercise 8.9].

Proof. Let X ⊆ M and t ∈ M . Suppose, that M � ∀x<t∃y〈x, y〉 ∈ X and,

for contradiction, that hence:

M � ∀z∃x<t∀y<z〈x, y〉 /∈ X (?).

For each x < t ∈ M we fix a y ∈ M such that 〈x, y〉 ∈ X. Hence for

all z ∈ M there is x < t such that y > z (from ?). Then we have that

M =
⋃
{{z ∈ M : z 6 y} x < t}. However this is a contradiction, as

{z : z 6 y} < κ and {x < t} < κ since M is κ-like. Thus M � Coll2.

The converse to this theorem is also true, as we shall prove below.

Theorem D.3.3. If M � PA−+Coll2 and |M | = κ where κ is cardinal, then

M is κ-like [10, Exercise 8.9].

Proof. SupposeM � PA−+Coll2, |M | = κ and suppose for contradiction that

M is not κ-like. So there is some a ∈ M such that |{x ∈ M : x < a}| = κ.

Thus, we have a bijection f : {x ∈ M : x < a} → M . We define the set

X = {〈x, y〉 : x < a and y = f(x)}. Then we know M � ∀x<a∃y〈x, y〉 ∈ X

and have that M = {f(x) : x < a}. Thus, by second order collection we have

that M � ∃z∀x<a∃y<z〈x, y〉 ∈ X. Therefore, we have that M = {f(x) <

z : x < a}. This tells us that z /∈ M which is a contradiction, so thus M

must be κ-like.
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Interestingly, this is not the case for singular cardinals. It turns that no

model of cardinality κ, where κ is singular, satisfies second order collection.

To prove this we first prove the following lemma about κ-like models.

Lemma D.3.4. If M � PA−, κ is a cardinal and M is κ-like, then for all

cardinals c < κ there is some m ∈M such that |{x ∈M : y 6 m}| > c.

Proof. Suppose that for some cardinal c we have that |{x ∈M : x 6 m}| < c

for all m ∈ M . We then take some set S ⊆ M of cardinality c. Therefore,

by our supposition we know that S is cofinal in M . Thus, we have that M =⋃
s∈S{x ∈ M : x < s}. Hence, M has cardinality c which is a contradiction

unless c = κ.

This lemma allows us to prove that all models which have a cardinality

of a singular cardinal cannot satisfy second order collection.

Theorem D.3.5. If M � PA−, κ is a singular cardinal and |M | = κ, then

M 2 Coll2 [10, Exercise 8.9].

Proof. Suppose firstly that M � PA− is κ-like, for if it isn’t, then by the

contrapositive to Theorem D.3.3 it cannot satisfy second order collection

and we are done. Now suppose that κ =
∑

16i<λ µi, where λ < κ and µi < κ

for all i. Suppose without loss of generality that if i < j, then mui < muj.

By the previous lemma, for each i < λ, we can take xi ∈M such that |{a ∈

M : a 6 xi}| > µi. We then take t ∈ M such that |{a ∈ M : a 6 t}| > λ.

Thus, we have that {xi : i < κ} is cofinal in M , but that {a ∈ M : a 6 t}

is not. We can take a function f : {a ∈ M : a 6 t} → {xi : i < λ}. If we

now consider X = {〈x, y〉 : x 6 t and y = f(x)}, then we have that M �
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∀x<t∃y〈x, y〉 ∈ X. However, we know that M 2 ∃z∀x<t∃y<z〈x, y〉 ∈ X,

since im(f) is cofinal in M , but dom(f) is not.

Our next major result on second order collection is the following surpris-

ing theorem. We have that no nonstandard countable model of PA− satisfies

Coll2 and thus, as N � Coll2, then only the standard countable model does

so.

Theorem D.3.6. There is exactly one countable model M � PA− such that

M � Coll2 [10, Exercise 8.9].

Proof. By Example A.2.8 we know that N is ω-like and ω is a regular cardinal.

It follows from Theorem D.3.2 that N � Coll2. It hence remains to show that

there are no nonstandard countable models that satisfy Coll2.

Suppose for contradiction that M � PA−, M � Coll2, M is countable

and M 6∼= N. We choose an (actually) infinite sequence (a0, a1, a2, ...) where

ai < ai+1 for all i ∈ N and a0 > N. This ensures that for every x ∈M there

is some i ∈ N such that ai > x. Now let S ⊆ N. We now define the set

XS = {〈x, y〉 : for some i ∈ N, y > ai and ¬(pi|x⇔ i ∈ S)}.

We shall use this to prove that M codes all sets S ⊆ N giving us a contra-

diction.

Suppose that S is not coded in M . Then, by Theorem A.1.2, S is not

coded by any x ∈ M where x < a0. So for every x < a0 there is some i ∈ N

such that ¬(pi|x ⇔ i ∈ S). Hence for all such x < a0 there is y ∈ M where

〈x, y〉 ∈ XS. In other words: M � ∀x<a0∃y〈x, y〉 ∈ XS. Thus, by Coll2 we
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have that:

M � ∃z∀x<a0∃y<z〈x, y〉 ∈ XS.

Without loss of generality take z = an for some n ∈ N (this is because if

an−1 < z < an, then the statement holds for z = an also). Hence for every

x ∈ M such that x < a0 there is y < an such that 〈x, y〉 ∈ XS. Expanding

this, we get that for every x ∈M such that x < a0 there is y < an such that,

for some i ∈ N, y > ai and ¬(pi|x⇔ i ∈ S). Therefore, since ai < y < an we

must have that i ∈ {0, 1, 2, ..., n−1}. Hence, this tells us that for every x ∈M

with x < a0 there is some i ∈ {0, 1, 2, ..., n − 1} such that ¬(pi|x ⇔ i ∈ S).

Thus we have that there is no x ∈ M such that x codes {i ∈ N : i < n and

i ∈ S}. However this is a contradiction with Theorem A.1.9, as this set is

clearly finite.

Therefore we have that M codes all sets S ⊆ N . However there are 2ω

such subsets, and by hypothesis M is countable. This is a contradiction, so

M cannot exist and the only countable model which satisfies the theorem is

N.

D.3.3 Weakness of Coll2

Given that only one countable model satisfies the axiom, we might form the

opinion that this axiom is very strong. Surprisingly, in some cases, the axiom

is instead rather weak. We now prove that for the class of Π1-sentences of LA

that if PA− can prove any such sentence using Coll2, then it can also prove

it without Coll2. Thus, surprisingly, second order collection is conservative

over Π1 sentences.
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Theorem D.3.7. If PA− + Coll2 ` σ where σ ∈ Π1, then PA− ` σ.

Proof. Suppose that PA− + Coll2 ` σ where σ ∈ Π1 and suppose that M �

PA−. We build an end extension M1 of M and then repeat this process on a

model Mi to build an end extension of it Mi+1. We take the union of these

at each ordinal and arrive at Mω1 as the union of the previous models which

is the first uncountable model. We have stated that ω1 is regular. We know

Mω1 is ω1-like, since it is the first uncountable model arrived at. Hence by

Theorem D.3.2 we know that Mω1 � Coll2. Therefore Mω1 � σ and thus,

since σ is Π1 we have that M � σ. Therefore, by completeness, PA− ` σ.

The proof of this example also shows that it is easy to build models which

satisfy second order collection. We prove this explicitly below. This provides

a further example of how second order collection can also be weak, as it can

have a large amount of models.

Theorem D.3.8. For all theories T where T ⊇ PA there is a model of T

which satisfies second order collection.

Proof. Let T ⊇ PA be a theory. Thus T has a model M0, which without

loss of generality is countable by the Löwenheim-Skolem Theorems. Since

M0 � PA we know by the MacDowell-Specker Theorem, Theorem A.1.1, that

M0 has an elementary end extension M1. For each model Mi, where i > 1 we

build an elementary end extension Mi+1. We can do this since Mi �e Mi−1

and Mi−1 � PA. At each limit ordinal λ we build Mλ =
⋃
i<λMi. In this

way we construct a chain of models, and we stop once we reach Mω1 which is

the first uncountable model. We know Mω1 is ω1-like, since Mω1 =
⋃
i<ω1

Mi,

so otherwise we have that Mi is uncountable for some i < ω1 which is a
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contradiction. Thus, since ω1 is regular, we know that Mω1 � Coll2 by

Theorem D.3.2. Thus, since Mω1 �e M0 we know that Mω1 � T and we are

done.
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Appendix E

Satisfaction Classes

In this chapter we examine the theory of satisfaction classes. We begin with

an exploration of Tarski’s definition of truth for arithmetic and then show

how this is developed to define satisfaction classes. We then provide two of

the key theorems within this area, as well as the formal tools to prove them.

Finally, we explore modifications of the theory of satisfaction classes within

the literature, as well as two suggestions of our own.

E.1 Tarski and Truth

Whilst truth is an intuitive concept, a full logical description of truth is a

difficult philosophical project. One of the main approaches to doing this, and

the one which bases truth in mathematics and satisfaction classes, is Tarski’s

work. In this section we shall give an overview of his work and in its main

features. These main features, to be explored in the following subsections,

are:

117



a) An expression is true if and only if its meaning holds.

b) Through an assignment of variables we can talk about the truth of for-

mulas.

c) The truth of a connected sentence can be understood by the truth of the

connectives.

d) Truth is not a definable concept.

Throughout this section we shall use Tr as a new predicate of the language

LA ∪ {Tr} where we intend to write Tr(X) to mean X is true.

E.1.1 Truth of Sentences in Terms of Meaning

In this subsection we look at feature a), that we understand the truth of an

expression based on whether its meaning is the case or not. The canonical

example of this is: ‘snow is white’ is true if and only if snow is white. Sym-

bolically, for a sentence S, we write Tr(pSq) ⇐⇒ S. This is intuitively

attractive, if S holds, then we want to be able to say that the expression

stating S is true. Similarly, if an expression stating S is true, then we want

S to hold.

Whilst this is obvious in English, this hides a deep idea about truth. In

English we use snow is white in two separate ways. We use it to represent the

concept of the whiteness of snow and to represent the proposition ‘snow is

white’. From Tarski [20, Section 1] we have that when talking about truth we

talk about propositions, rather than concepts, but the truth of a proposition

is analysed in terms of the attached concept.
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For an example suppose we write D(l) to write the proposition that lead

is dense. We do not have that the concept that lead is dense is true. However,

because lead is dense holds, we write that D(l) is true. Thus, when analysing

the truth of arithmetical statements in our language L we talk of the truth

of the Gödel Number of these sentences. We hence write that a model M

with a truth predicate Tr satisfies:

(M,Tr) � Tr(pσq) if and only if M � σ.

A simple example is that we write (N, T r) � Tr(p0 6 1q) because N � 0 6 1.

This is a subtle point, which we shall often pass over for ease of commu-

nication, but is a powerful idea.

E.1.2 Truth of Formulas

Whilst in the above section we have an analysis for the truth of sentences,

this leads to difficulties in analysing the truth of formulas. To say that

(M,Tr) � Tr(p1 + 1 = 2q), we require a constant symbol for 2 in our

language LTr ⊇ LA. Whilst this is relatively innocuous in this case, to talk

about the truth of formulas involving any (potentially nonstandard) number

a, for example (M,Tr) � Tr(pa = 0∨ a > 0q), we require a constant symbol

for every single number, and our language is no longer finite. This is a direct

consequence of the insights from the previous subsection, that truth is a

predicate of Gödel Numbers of sentences, rather than the meaning of those

sentences.

There are two ways of getting around this problem, each with their own
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advantages and disadvantages. The first option is to perform a syntactic op-

eration on formulas which substitutes free variables in a formula by canonical

terms, sentences which define a unique number in the model.

By clterm(a) we denote the PA-definable canonical term of a, which

we now define below. We use _ to denote the concatenation symbol and

introduce the notation xgy which is the formula taking a Gödel-number g and

mapping it to the corresponding formula θ(x̄) of LA, such that pθ(x̄)q = g.

We then define the canonical term of a number a ∈ M in the following

manner:

Definition E.1.1.

clterm(0) = p0q

clterm(n+ 1) = p(_xclterm(n)y_)q, for n > 0 [12, Exercise9.11].

With canonical terms in place, we can use the PA-definable formula

subs(pθq, x, a) = pψq to write that ψ is obtained from the (potentially non-

standard) formula θ(x) by replacing every free occurrence of the variable x

by the the canonical term of a, clterm(a) as can be seen in Exercise 9.5 of

Models of Peano ARithmetic [12]. We then get that:

M � θ(a) if and only if (M,Tr) � Tr(subs(pθq, x, a)).

We can then expand this method to work for formulas with more than one

free variable. The formula subs can be defined in various ways, by specifying

the axioms that it must satisfy. Whilst this is do-able in PA the disadvantage
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of this method is that it does not work in all theories.

The other option, and the one that we shall take, is to define truth over

formulas and a corresponding coding of an assignment of free variables to

elements of the model. Our assignment is a function f : S → M where S is

a finite set of variables from LA. We then code this function with the help

of the β-function by a ∈M such that (a)i = f(xi). We make Tr a two-place

predicate and we write that a model M with Tr satisfies:

(M,Tr) � Tr(pθ(x̄)q, a) if and only if M � θ(c̄),

where c̄ ∈M is such that c̄ is mapped to by the function coded by a.

This is not easy to setup and requires a lot of technical working. The

details of this procedure can be found in Chapter 9 of Models of Peano

Arithmetic [12].

With Tr defined in such a way as to make this work, truth about (atomic)

formulas can now be expressed with only finitely many constant symbols. For

example, we can now write for M � PA that (M,Tr) � Tr(p1 + 1 = xq, b),

where b codes the assignment of x to 2, since M � 1 + 1 = 2.

With this system in place we now need to clarify how we define truth for

sentences using our new two-place truth predicate we can do this very easily.

Definition E.1.2. We have for any LA-sentence σ which is free from con-

nectives that (M,Tr) � Tr(pσq, a) if and only if M � σ for any assignment

a.

With this analysis in place we have offered a truth definition of atomic
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formulas and sentences, but a definition for formulas involving logical con-

nectives and quantifiers is still missing. We now look at this in the next

subsection.

E.1.3 Truth of Connected Sentences

With a definition of truth for the (Gödel Number of) atomic formulas in

place, we are able to define truth for non-atomic formulas as well, by an

inductive definition over the connectives. To do this, we describe some new

notation for representing a new assignment based on a previous one.

Notation E.1.3. Suppose we have a formula θ(x, ȳ) and an assignment a

that maps the free variables x, ȳ to corresponding canonical terms of numbers.

We then write a[x/b] to denote the assignment that maps the free variables ȳ

to the constants a and maps the free variable x to b.

We take TrAt as our truth predicate for atomic formulas and use the

LA-definable predicate At(θ(x̄)) to represent that θ(x̄) is an atomic formula.

We then define truth for all formulas using the following definition.

Definition E.1.4 (Tarski’s Definition of Truth). We expand our language

from LA to LTr = LA ∪ {Tr} where Tr is a new two-place predicate. We

have the following axioms that govern the behaviour of Tr. For all LA-

formulas θ(x̄), α(x̄) and β(x̄) we have:

Axiom 1: At(θ(x̄))→ [TrAt(pθ(x̄)q, a)↔ Tr(pθ(x̄)q, a)].

Axiom 2: Tr(pα(x̄)q, a) ∧ Tr(pβ(x̄)q, a)↔ Tr(pα(x) ∧ β(x)q, a).

Axiom 3: Tr(pα(x̄)q, a) ∨ Tr(pβ(x̄)q, a)↔ Tr(pα(x) ∨ β(x)q, a).
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Axiom 4: Tr(p¬θ(x̄)q, a)↔ ¬Tr(pθ(x̄)q, a).

Axiom 5: Tr(p∃xθ(x, ȳ)q, a)↔ ∃bTr(pθ(x, ȳ)q, a[x/b]).

Axiom 6: Tr(p∀xθ(x, ȳ)q, a)↔ ∀bTr(pθ(x, ȳ)q, a[x/b]) [20, Definition22].

Whilst no axiom is given, this also gives us the tools to understand the

truth of a sentence involving a conditional arrow. For completeness, we

explain this below, where we understand Tr(pα(x̄)q, a) → Tr(pβ(x̄)q, a) to

mean ¬Tr(pα(x̄)q, a) ∨ Tr(pβ(x̄)q, a).

Lemma E.1.5. Suppose M � PA and Tr is a truth predicate for M as above.

Then for all LA-formulas α(x̄) and β(x̄):

(M,Tr) � Tr(pα(x̄)q, a)→ Tr(pβ(x̄)q, a)↔ Tr(pα(x̄)→ β(x̄)q, a).

Proof. Suppose firstly that (M,Tr) � Tr(pα(x̄)q, a)→ Tr(pβ(x̄)q, a). Then

we have that:

(M,Tr) � ¬Tr(pα(x̄)q, a) ∨ Tr(pβ(x̄)q, a).

Therefore, by the Tarski Axioms 3 and 4 we have that (M,Tr) � Tr(p¬α(x̄)∨

β(x̄)q, a) and hence we can rewrite this as:

(M,Tr) � Tr(pα(x̄)→ β(x̄)q, a).

Now suppose that (M,Tr) � Tr(pα(x̄)→ β(x̄)q, a). Then by the laws of

logic (M,Tr) � Tr(p¬α(x̄)∨β(x̄)q, a). Thus, by applying the Tarski Axioms
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3 and 4 we get that:

(M,Tr) � ¬Tr(pα(x̄)q, a) ∨ Tr(pβ(x̄)q, a)

and thus, by definition, (M,Tr) � Tr(pα(x̄)q, a)→ Tr(pβ(x̄)q, a).

We thus have a definition from Tarski that defines truth for all standard

LA-formulas and sentences. The following example shows how this works in

practice.

Example E.1.6. Suppose that (M,Tr) � PA+ Axioms 1-6 for Tr. Then

(M,Tr) � Tr(p∃x(2 + x = 5) ∧ ¬∀y(y < 0)q, a) for any assignment a.

Proof. We know (M,Tr) � At(2 + x = 5) and, for any assignment a, that:

(M,Tr) � TrAt(p2 + x = 5q, a[x/3]),

since M � 2 + 3 = 5. Therefore, by Tarski Axiom 1, we know:

(M,Tr) � Tr(p2 + x = 5q, a[x/3]).

Therefore (M,Tr) � ∃b[Tr(p2 + x = 5q, a[x/b])]. We now can now apply

Tarski Axiom 5 to get that (M,Tr) � Tr(p∃x[2 + x = 5]q, a).

Similarly, we know (M,Tr) � At(y < 0) and for any assignment a, that

(M,Tr) � ¬TrAt(py < 0q, a). So therefore, by Tarski Axiom 1, we have

that:

(M,Tr) � ¬Tr(py < 0q, a).
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Suppose now for some assignment a, that (M,Tr) � ∀bTr(py < 0q, a[y/b]).

This immediately contradicts with our last derivation, so thus:

(M,Tr) � ¬∀bTr(py < 0q, a[y/b]).

We can now apply the Tarski Axioms 6 and 4 to get that:

(M,Tr) � Tr(p¬∀y[y < 0]q, a).

Therefore, we have that:

(M,Tr) � Tr(p∃x[2 + x = 5]q, a) ∧ Tr(p¬∀y[y < 0]q, a).

Finally, we can now apply Tarski Axiom 2 to get that:

(M,Tr) � Tr(p∃x(2 + x = 5) ∧ ¬∀y(y < 0)q, a)

and we see that this holds for all assignments a.

This theorem from Tarski shows that we did not pick the above sentence

specially, and in fact Tarski’s definition of truth is satisfactory for our original

aim.

Theorem E.1.7. For all standard LA-formula θ(x̄) there is a suitable as-

signment a such that (M,Tr) � Tr(pθ(x̄)q, a) ↔ θ(c̄) [20, Section 5, Theo-

rem 2].

For a proof of this theorem we refer the reader to Tarski’s Concept of
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Truth in Formalised Languages [20].

E.1.4 Undefinability of Truth

We have hence seen that from Tarski’s definition of truth we can define what

it means for a standard formula to be true or false. We have set this definition

up to be an extension of the language LA. The natural question that arises,

given this extension, is whether we really need to extend our language. Is

it possible to define a formula in LA which satisfies the Tarski axioms? It

is a well-known theorem that some models of PA contain an element which

can define truth for standard sentences of LA. We prove this theorem now

below.

Theorem E.1.8. There exists models M � PA which contain an element

a ∈ M such that M � (a)pσq = 1 if and only if M � σ for all standard LA-

sentences σ. In other words, a codes a sequence such that the (Gödel-number

of the) ‘σth’ position of a is 1 if and only if the sentence σ is true in M .

Proof. Let M � PA such that M is recursively saturated. We enumerate all

standard LA-sentences as σ1, σ2, σ3, . . . and consider the type {φi(x) : i ∈ N}.

We take φi(x) to be the formula:

σi ↔ (x)pσiq = 1.

We know that all models M � PA satisfy M � ∃x
∧
i<n φi(x) for any n ∈ N.

To see this fix n and take a ∈M that codes a finite sequence of length:

l = max{pσiq : i < n}.
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We further specify that (a)i = 0 for i 6 l, unless M � σi, in which case

(a)pσiq = 1. We are able to do this using the Gödel-beta lemma, see Section

A.1.2. We thus have that M � ∃x
∧
i<n φi(x) for all n ∈ N, so since M is

recursively saturated:

M � ∃x
∧
n∈N

φn(x).

Given this result, one may be tempted to answer our question in the

affirmative, that it is possible to define truth in LA. Tarksi proved that this

is in fact not the case, and truth cannot be defined for LA within LA. To

prove this theorem, we first state and prove a slightly stronger version of the

Diagonal Lemma, by adapting the proof found in Models of Peano Arithmetic

[12, Lemma 3.13].

Lemma E.1.9 (Diagonal Lemma). Let T ⊇ PA be a theory in the language

LA and θ(x, z̄) be an LA-formula. Then there is an LA-formula G(z̄) such

that T ` ∀z̄[G(z̄)↔ θ(pG(z̄)q, z̄)].

Proof. We begin by considering the function:

diag(n, z̄) =



p∀y(y = n→ σ(y, z̄)q if n = pσ(x, z̄)q is the Gödel-

number of an LA-formula

0 otherwise

We then define the formula δ(x, y, z̄) which holds if and only if:

T ` diag(x, z̄) = y.
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We then define ψ(x, z̄) as holding if and only if ∀t[δ(x, t, z̄) → θ(x, z̄)]. We

now take n = pψ(x, z̄)q. Then, we have our formula:

G(z̄) is ∀y[y = n→ ψ(y, z̄)].

Therefore, we see that T ` ∀z̄[G(z̄)↔ ψ(n, z̄)]. Thus, we have that:

T ` ∀z̄[G(z̄)↔ ∀t(δ(n, t, z̄)→ θ(t, z̄).

Hence:

T ` ∀z̄[∀t(δ(n, t, z̄)↔ t = pG(z̄)q)].

Finally, we therefore have that T ` ∀z̄[G(z̄)↔ θ(pG(z̄)q, z̄)].

With this Diagonal Lemma in place it is easy to prove Tarski’s Theorem

on the undefinability of truth.

Theorem E.1.10 (Tarski’s Theorem). Suppose M � PA and ā ∈M . There

is no θ(x, ā) definable in LA ∪{ā} such that for all standard sentences σ(ā):

M � θ(pσq, ā)↔ σ [20, 5, Theorem 1].

Proof. Suppose ā ∈ M and θ(x, ā) is an LA ∪ {ā}-formula as above. Then

we know by the Diagonal Lemma that there is an LA ∪ {ā}-sentence G(ā)

such that:

(M, ā) � G(ā)↔ ¬θ(pG(ā)q, ā).

Thus, if (M, ā) � G(ā), then by the definition of θ(x, ā) we have that (M, ā) �

¬G(ā) which is a contradiction. But if (M, ā) � ¬G(ā), then by θ(x, ā) we
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have that (M, ā) � G(ā) which is similarly a contradiction. So no such

formula θ(x, ā) can exist.

Tarski’s Theorem hence tells us that the Tr in Tarski’s definition of truth

is a new predicate and cannot be defined by any LA formula. We hence

distinguish notationally between the two languages by: LA and LTr, where

LTr = LA ∪ {Tr} is the language with a truth predicate Tr.

E.1.5 Tarski and Deflationary Truth

It is interesting to consider to what extent Tarski’s account of truth is a

deflationary account of truth. There are two ways to approach this, one can

discuss whether Tarski’s philosophical approach to truth is a deflationist con-

ception of truth or whether Tarski’s logical treatment of truth, as explicated

above, is a deflationist one in the sense of Definition 5.2. The philosophical

approach has been widely discussed in the literature and the reader is re-

ferred to Schantz’s Was Tarski a Deflationist? [18] for an analysis of this.

We shall focus on the latter question of whether Tarski’s logical treatment of

truth is deflationist in the sense of Definition 5.2, i.e. whether it satisfies the

equivalence schema for all considered sentences and whether every considered

model of PA has an expansion to this truth predicate.

Ketland comes to the conclusion that Tarski’s definition of truth is not

a deflationist account. He demonstrates [13, Page 81] that this theory is

not conservative over PA, and thus not deflationist in either our sense or

his own as per Definition C.1. However, these findings are based on taking

the background theory in which induction runs over formulas containing the
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predicate Tr. We will not consider this yet.

Instead, we find that Tarski’s definition can be deflationist. We began

Tarski’s account by explicating Tarski’s aim that (M,Tr) � Tr(pσq) if and

only if M � σ. In Theorem E.1.7 we saw that Tarski’s definition of truth

satisfies this for all standard sentences of LA. Further, Tarski proves [20,

Section 5, Theorem 3] that every model has an expansion to his truth pred-

icate Tr. Therefore, if one considers standard sentences of the language of

arithmetic, Tarski’s definition of truth is certainly a deflationist account in

the sense of our definition.

We would like to consider, however, sentences of arithmetic of nonstan-

dard length, in the language ?LA. These sentences can be built from a

nonstandard number of connectives and are, from the perspective of a non-

standard model of PA, as important as standard sentences. Were Tr capable

of being defined by an LA-formula then this would be easy, as we could use

induction on formulas involving Tr. However, from Tarski’s theorem we can-

not do this. In the following section we shall define truth for nonstandard

sentences of arithmetic using satisfaction classes. These are mathematical

structures which establish that the Tarski conditions hold for nonstandard

sentences as well and have some highly interesting properties.

E.2 Satisfaction Classes

The theory of satisfaction classes has been developed to define truth for

nonstandard sentences. Tarksi developed a definition of truth that works for

all standard sentences, but this does not tell us anything about nonstandard
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sentences. This leads to an interesting and rich theory with many open

problems.

Throughout this chapter we now consider models M � PA where M is

nonstandard. Whilst Tarski’s axioms for truth offer a definition of truth

for standard sentences of M , they do not provide one for nonstandard sen-

tences of M . There are nonstandard elements t ∈ M such that M �

xty “is a formula θ(x̄)”. This formula is nonstandard, so contains ω-many

connectives, so applying Tarski’s definition of truth does not tell us the truth

of this formula with the required assignment. For example, the sentence∧
x<t x = x for nonstandard t ∈ M is intuitively true, but applying Tarski’s

definition requires us to evaluate a nonstandard number of conjuncts, which

we cannot induct over.

To evaluate the truth of these nonstandard formulas of M we use the

notion of a satisfaction class. These structures, based on the Tarski axioms,

are a natural way of strengthening the axioms to be applicable to sentences

of nonstandard length. To do this, we first need to introduce the following

notation, which determines whether a nonstandard number t ∈ M is the

Gödel-number of a formula as understood by a nonstandard model M .

Notation E.2.1. We write M � form(t) if and only if t is the Gödel number

of a formula in the sense of M . We write M � term(t) if and only if t is the

Gödel number of a canonical term in M . We write M � val(t) = x if and

only if M � clterm(x) = t.

The following lemma tells us that we are free to introduce this notation.

Lemma E.2.2. The formulas form(x), term(x) and val(x) can all be defined
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in PA [12, Section 9.2].

With this formula in place we are now in place to define satisfaction

classes.

Definition E.2.3 (Full Satisfaction Class). We expand our language from

LA to LS = LA ∪ {S}. A satisfaction class is a two-place predicate S over

M such that (M,S) � S(pθq, a) only if M � form(pθq). If M � form(pθq)

and a ∈M , then (M,S) � S(pθq, a) if and only if (M,S) satisfies one of the

following conditions:

Tarski Condition 1) ∃t, s[term(t) ∧ term(s) ∧ pθq = p(t = s)q ∧ val(t, a) =

val(s, a)].

Tarski Condition 2) ∃t, s[term(t) ∧ term(s) ∧ pθq = p(t < s)q ∧ val(t, a) <

val(s, a)].

Tarski Condition 3) ∃α, β[form(α) ∧ form(β) ∧ pθq = p(xαy ∧ xβy)q ∧

(S(α, a) ∧ S(β, a))].

Tarski Condition 4) ∃α, β[form(α) ∧ form(β) ∧ pθq = p(xαy ∨ xβy)q ∧

(S(α, a) ∨ S(β, a))].

Tarski Condition 5) ∃ψ[form(ψ) ∧ pθq = p¬xψyq ∧ ¬S(ψ, a).

Tarski Condition 6) ∃i, ψ[form(ψ) ∧ pθq = p∃xxψyq ∧ ∃bS(ψ, a[x/b]).

Tarski Condition 7) ∃i, ψ[form(ψ) ∧ pθq = p∀xxψyq ∧ ∀bS(ψ, a[x/b]).

[12, Definition 15.1]
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A satisfaction class, therefore, behaves like the Tarskian truth predicate,

with the requirement that it ranges over sentences of ∗L A(M) and not just

LA.

This is not the only type of satisfaction class we can consider, although

it shall be the main one that we do so. We can also consider a partial

satisfaction class, that is defined only on some formulas.

Definition E.2.4 (Partial Satisfaction Class). A Γ-satisfaction class, where

Γ ⊆ {θ(x̄) : M � form(θ(x̄))}, is a satisfaction class for all formulas in Γ.

If we introduce the predicate Γ(x) such that M � Γ(x) if and only if x ∈ Γ,

then we can write this more formally as: SΓ is a Γ-satisfaction class for M

if SΓ is a two-place predicate over M such that M � SΓ(x, a) if and only

if M � Γ(x). If x ∈ Γ and a ∈ M , then (M,SΓ) � SΓ(x, a) if and only if

(M,SΓ) satisfies one of the Tarski Conditions 1-7.

A partial satisfaction class S for M is a Γ-satisfaction class for some Γ

which is a subset of L formulas [12, Definition 15.1].

We define the connective → for satisfaction classes in the same manner

as we did for the Tarskian truth predicate. We say that S(α, a)→ S(β, a)↔

¬S(α, a)∨S(β, a). It is a simple exercise to follow the proof of Lemma E.1.5

to show this holds if and only if S(α→ β, a).

These definitions are very general and thus lead to three interesting ques-

tions:

1. Does every model have a satisfaction class?

2. Of those models which do, are the satisfaction classes unique?
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3. Is there a procedure to develop a satisfaction class for a model?

We shall answer the first two questions in this section and the third in

later sections. First, we shall develop the notation which will be used to deal

with satisfaction classes.

Notation E.2.5. We write (M,S) to denote an LS-structure such that M �

PA and S is a full satisfaction class over M . We shall sometimes write S � σ

to denote that (M,S) � S(σ).

Before answering these three questions, we should first test whether a

satisfaction class is fit for purpose. We prove below, as satisfaction classes

follows Tarski’s definition, that a satisfaction class defines truth for all stan-

dard formulas.

Theorem E.2.6. For all standard LA-formulas θ(x̄) and constants c ∈ M

we have that there is a ∈M such that (M,S) � S(pθ(x̄)q, a)↔ θ(c̄).

Proof Sketch. Since θ(x̄) is standard we know it contains only an actually

finite number of connectives. Thus, we can repeatedly apply the Tarski Con-

ditions 1-7 on the subformulae of θ(x̄) to get that for a suitable assignment

a ∈ M we have that (M,S) � S(pθ(x̄)q, a). If (M,S) � S(pθ(x̄)q, a), then

we can repeatedly use the Tarski Conditions 1-7, since θ(x̄) has a finite num-

ber of connectives, to get that that the satisfaction class makes all atomic

subformulas of θ(x̄) true and hence by definition these atomic subformulas

hold in M when given the constant c̄. Thus, (M,S) � θ(c̄).

This leads to the corollary, by Tarski’s Theorem, there is no LA formula

which defines a satisfaction class S.
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Corollary E.2.7. There is no LA formula which captures S.

Proof. If there were an LA formula θ(z̄) such that for all formulas φ(x̄) and

assignments a, (M,S) � S(pφ(x̄)q, a) ↔ θ(pφ(x̄)q, a, z̄), then by Theorem

E.2.6 we have that (M,Tr) � Tr(pφ(x̄)q, a) ↔ θ(pφ(x̄)q, a, z̄) which by

Tarski’s Theorem (Theorem E.1.10) is a contradiction.

Whilst we have seen that satisfaction classes make every true standard

formula true, this property does not hold for sentences of nonstandard length.

Thus satisfaction classes can make intuitively true sentences false and intu-

itively false sentences true. The informal reason for this is because a sat-

isfaction class can only consider a natural number of connectives and thus

approximates a sentence to be true or false based on the finite part of the

sentence that it can see. We prove an example of this in Example E.5.1.

That there are discrepancies between our intuitions of truth and what

some satisfaction classes say are true leads to an answer to our second ques-

tion. The intuition arises that one model can have many satisfaction classes,

some of which contradict each other for truth on nonstandard sentences. In

fact, it is the case that a countable model has 2ℵ0 satisfaction classes. We

prove this theorem below.

Theorem E.2.8. A countable model M has 2ℵ0 satisfaction classes [14].

Proof. We can consider a satisfaction class as an infinite path through an

infinite binary tree, where each node is σ or ¬σ for an LA-sentence σ. Dia-

grammatically, we can picture this as:
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S

σ1

σ2

. . .

¬σ2

. . .

¬σ1

σ2

. . .

¬σ2

. . .

We see that the maximum number of satisfaction classes a countable

model can contain is clearly 2ℵ0 since there are only countably many LA-

sentences in a countable model and thus 2ℵ0-many infinite paths.

To see that this maximum is achieved, suppose for contradiction that Sf

is a finite initial segment of a path S in the tree and there is no σ in LA

such that PA + Sf + σ and PA + Sf +¬σ are consistent. Thus we have that

the theory PA + Sf is complete. Therefore PA + Sf is decidable, for given

a sentence σ in LA we can search the proofs of PA + Sf for a proof of σ

or a proof of ¬σ. Therefore PA + Sf has recursive models. We know from

Tennenbaun (Theorem A.1.6) that the only recursive model of PA is N, so

therefore PA + Sf has only one model N and Sf is a definition of truth for

N. This can be defined in LA, as Sf is finite, which contradicts Tarski’s

Theorem.

This theorem is highly interesting, as it tells us that a satisfaction class

does not provide the definition of truth for a model, but merely a definition

of truth. Thus, we have answered question 2 in the negative, that satisfaction

classes are not unique.

We now state and prove Lachlan’s Theorem, which tells us that not all
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models have a satisfaction class. In particular, Lachlan’s theorem tells us

that a model M has a satisfaction class only if it is recursively saturated.

Thus, this theorem provides an answer to question 1, and not all models

have a satisfaction class. We provide a sketch of the proof here, the full

details of the proof can be found in Models of Peano Arithmetic [12, Pages

242-246].

Theorem E.2.9 (Lachlan’s). If M � PA has a full satisfaction class S, then

M is recursively saturated.

Proof Sketch. Suppose that M has a full satisfaction class S and, for con-

tradiction, that M is not recursively saturated. Then there is a recursive

sequence of standard LA formulas θ0(x̄), θ1(x̄), . . . , θn(x̄), . . ., where n ∈ N,

such that the sets Bi = {x̄ ∈M : M � θi(x̄)} form a partition of M .

We now consider the sets Ci = {x ∈ M : M � S(γi, x)} for each i ∈ M .

We define γ [12, Page 244] in such a way so that we have the following

informal definition of the sets Ci:

C0 = ∅

Ci+1 =


B1 : if Ci = ∅

Bj+1 : if j is the least j ∈ N such that Bj ∩ Ci 6= ∅

∅ : if no such j exists

This definition tells us that we have Ci = Bi for all i ∈ N, since all the sets

Bi are disjoint from each other. Clearly Ci 6= ∅ for i > 0 since the sets Bi

form a partition of M . We thus have that for all i ∈ M that Ci = Bj for
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some j ∈ N. We further have that for nonstandard i ∈ M , Ci = Bj implies

that Ci−1 = Bj−1 since we know j is the least natural number such that

Ci−1 ∪ Bj−1 6= ∅ and all the sets Bn are disjoint, so we are forced by the

definition that Ci−1 = Bj−1. Now take some nonstandard a ∈ M . We know

that Ca = Bj for some j ∈ N. However, we now get that Ca−j+1 = B1 by the

above remarks which is a contradiction, since we know a− j + 1 > 0. Thus

we cannot define the sets Ci and M has no satisfaction class which would

allow us to do this [12, Pages 242-246].

Whilst Lachlan’s theorem tells us that if a model has a satisfaction class

it is recursively saturated, it does not provide the strongest condition for

uncountable models. Smith’s theorem does this, but to phrase this correctly

we require the following definition on classes.

Definition E.2.10. A class is a set C ⊆M such that for all m ∈M the set

{c ∈ C : c < m} is definable in M . A model is rather classless if it has no

proper classes [19, Definition 2.9 and 2.14].

We now have Smith’s theorem, which says that no rather classless model

has a satisfaction class. The proof of this can be found in Nonstandard Syntax

& Semantics & Satisfaction Classes in Models of Arithmetic [19, Page 169].

Theorem E.2.11 (Smith’s Theorem). If M � PA has a full satisfaction

class S, then (M,S) has an LS-definable proper class [19, Theorem 3.11].

With an answer to questions 1 and 2 provided, we can now explore the

answer to question 3. It turns out for countable, recursively saturated models

we can find satisfaction classes. This is known as Kotlarski, Krayewski and

Lachlan’s (KKL’s) Theorem.
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E.3 M-Logic

Whilst we have proven Lachlan’s theorem, to prove KKL’s theorem, which is

almost a converse to Lachlan’s theorem, we require two new systems of logic.

We define the first of these in this section, M -Logic. M -Logic is of interest

as it is a logic of sentences in a specific model M and has axioms chosen

that can prove the sentences that hold in M . We then have the associated

interpretation of M -Logic, that of a structure satisfying the Tarski axioms.

Before exploring these axioms, it is worth noting that by expanding these

axioms we are able to increase the strength of M -Logic and thus build struc-

tures which satisfy more than the Tarski axioms. In this way, we can build

satisfaction classes which we satisfy certain sentences. Thus, the system pre-

sented below can be considered as a base theory of M -Logic, and we have

various M -Logics which are defined from these. We explore this idea in more

detail in Section 2.1.

We begin by exploring this base theory, defining its syntax and semantics,

and proving it is sound and complete. For the rest of this section, we fix a

nonstandard model, M , of Peano Arithmetic.

E.3.1 Syntax of M-Logic

We shall first define the mechanisms of M -Logic through its language and

provability rules.

Definition E.3.1 (∗L A(M)). Fix a model M � PA. The language we work
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in for M-Logic is the language:

∗L A(M) = {x ∈M : M � x“is the Gödel Number of a sentence of L ”}.

It is useful to note that we can define all numbers m ∈ M in ∗L A(M).

To do this we take the canonical term of these numbers, as per Definition

E.1.1.

With our language in place, we now define the parameters of M -Logic.

Definition E.3.2 (Sequents). A sequent ∆ is a finite set of (Gödel Numbers

of) sentences of ∗L A(M). If a sequent contains only one sentence σ, then

rather than writing this sequent as {σ}, for convenience, we just write σ. If

∆ is a sequent, then ¬∆ is the set of (Gödel Numbers of) the negation of the

sentences in ∆ [12, Definition 15.8].

Interestingly, this means that as M -Logic is defined over sentences, we

need no free variabes. With this background in place we now define prov-

ability for M -Logic.

Definition E.3.3 (Provability). We say Γ `M ∆, where Γ and ∆ are se-

quents if the conjunction of all sentences of Γ implies the disjunction of all

sentences of ∆ by the structural and provability rules of M-Logic. We write

∅ `M ∆, or just `M ∆, to mean there is a proof of the disjunction of all

sentences of ∆ from the rules of M-Logic. For simplicity, we write `M ∆∪E

as `M ∆, E [12, Definition 15.10].

This also tells us that there is a symmetry between Γ `M ∆ and `M

∆,¬Γ.
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Lemma E.3.4. Γ `M ∆ if and only if `M ∆,¬Γ.

Proof. Suppose Γ `M ∆. Thus, either `M ∆ or some sentence in Γ is not

implied by M -Logic, i.e. `M ¬Γ. Therefore, `M ∆,¬Γ.

We now need to set up these rules of M -Logic. We set them up in two

sections, the first of these are the following structural rules which tell us that

the sequents behave like sets. The first says we can add identical sentences,

the second says we can remove identical sentences and the third says we can

rearrange sentences at will.

Definition E.3.5 (Structural rules). For any sequent ∆ and any sentences

σ and τ in ∗L A(M):

1. If `M ∆, σ, then `M ∆, σ, σ

2. If `M ∆, σ, σ, then `M ∆, σ

3. If `M ∆, σ, τ , then `M ,∆, τ, σ [12, Page 248]

We now define the provability rules of M -Logic.

Definition E.3.6 (Provability rules). Let ∆, E be sequents, σ and τ be

∗L A(M)-sentences and θ(x) be a ?LA-formula.The provability rules of M-

Logic are:

4. We have that `M σ,¬σ

5. If t and s are terms, then:

(a) If M � val(t) = val(s), then `M t = s

(b) If M � val(t) 6= val(s), then `M t 6= s
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(c) If M � val(t) < val(s), then `M t < s

(d) If M � val(t) > val(s), then `M ¬(t < s)

6. (Weakening) If `M ∆, then `M ∆, σ

7. (Cut) If `M ∆, E and `M ∆,¬E, then `M ∆

8. If `M ∆, then `M ¬¬∆

9. (a) If `M ∆, σ or `M ∆, τ , then `M ∆, σ ∨ τ

(b) If `M ∆,¬σ and `M ∆,¬τ , then `M ∆,¬(σ ∨ τ)

10. (a) If `M ∆, σ and `M ∆, τ , then `M ∆, σ ∧ τ

(b) If `M ∆,¬σ or `M ∆¬τ , then `M ∆,¬(σ ∧ τ)

11. For all terms t, s, r :

(a) (Reflexivity of =) `M t = t

(b) (LEM for =) `M t = s,¬(t = s)

(c) (Transitivity of =) `M ¬(t = s),¬(s = r), t = r

12. Let t1, t2, . . . , tn and s1, s2, . . . , sn be terms, then:

`M ¬t1 = s1,¬t2 = s2, . . . ,¬tn = sn,¬θ(t1, t2, . . . , tn), θ(s1, s2, . . . , sn)

13. (M-Rule a)

(a) If `M ∆, θ(t), then `M ∆,∃xθ(x)

(b) If `M ∆,¬θ(t) for all terms t ∈M , then `M ∆,¬∃xθ(x)
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14. (M-Rule b)

(a) If `M ∆, θ(t) for all t ∈M , then `M ∆,∀xθ(x)

(b) If `M ∆,¬θ(t), then `M ∆,¬∀xθ(x) [12, Definition 15.10]

We see hence that proofs in M -Logic correspond to trees that are infinite

in both width and depth. We have proofs of infinite width from the M-Rules

and this entails proofs of infinite depth. If in a subtree of infinite width there

is an ordering of the paths whereby their lengths are strictly increasing, then

the whole subtree will have infinite depth.

E.3.2 Semantics of M-Logic

With the rules of M -Logic in place we are able to define the semantics as-

sociated with M -Logic and what it means for M -Logic to be consistent,

sound and complete. In particular, the interpretation of M -Logic is that it

is consistent only if there is a full satisfaction class over M .

Definition E.3.7 (Semantics). We have that �M ∆, the disjunction of ∆ is

semantically valid in M-Logic, if every full satisfaction class over M makes

some sentence δ ∈ ∆ true [12, Definition 15.9].

Definition E.3.8 (Consistent). We say that M-Logic is semantically con-

sistent if there is some full satisfaction class S over M . We say M-Logic is

syntactically consistent if 0M ∅, or sometimes just as 0M . This is because if

`M ∅, then by weakening we have that M-Logic can prove any sentence [12,

Definition 15.13].
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E.3.3 M-Logic is Sound and Complete

We can prove that M -Logic is sound and complete, we begin by defining

what it means for M -Logic to be sound, and then proving this.

Definition E.3.9 (Sound). M-Logic is sound if whenever `M ∆ and S is a

full satisfaction class over M , then S makes at least one δ ∈ ∆ true.

Theorem E.3.10. For every model M , M-Logic is sound [12, Proposition

15.11].

Proof. We perform induction on the length of derivation of a proof of M -

Logic. We hence consider each rule in turn and suppose that it was the last

step in the derivation.

Rule 1. If our last step was to derive `M ∆, σ, σ, from `M ∆, σ, then by our

inductive hypothesis we know that every satisfaction class over M

makes either σ or some sentence δ ∈ ∆ true. Thus every satisfaction

class over M makes some sentence δ ∈ ∆ true, σ true or σ true by

triviality.

Rule 2. If our last step was that `M ∆, σ, σ implies `M ∆, σ, then by induc-

tive hypothesis we have that every satisfaction class over M makes

some δ ∈ ∆ true, σ true or σ true. Thus, every satisfaction class

over M makes some δ ∈ ∆ true or σ true.

Rule 3. If we derived `M ∆, τ, σ from `M ,∆, σ, τ . then by induction every

satisfaction class over M makes some δ ∈ ∆ true, σ true or τ true

and thus we are done.
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Rule 4. If our last step was `M ∆, σ,¬σ from `M ∆, then by induction every

satisfaction class over M makes some δ ∈ ∆ true, and by definition a

full satisfaction class makes σ or ¬σ true, so every satisfaction class

makes some δ ∈ ∆ ∪ {σ,¬σ} true.

Rule 5. If we last derived `M t = s, then we know M � val(t) = val(s).

Thus, since a satisfaction class satisfies the Tarski Axiom 1, it makes

the sentence t = s true. It is a simple exercise to show this holds for

the other cases of Rule 5 as well.

Rule 6. If we last derived `M ∆, σ from `M ∆, then we know by induction

that every satisfaction class over M makes some δ ∈ ∆ true, so every

satisfaction class trivially makes some δ ∈ ∆ or σ true.

Rule 7. If our last step was to derive `M ∆ from `M ∆, E and `M ∆,¬E,

then we know every saitsfaction class makes some δ ∈ ∆ ∪ E true

and every satisfaction class makes some δ ∈ ∆∪¬E true. We know

that no satisfaction class can make both σ and ¬σ true by Tarski

Condition 5, so every satisfaction class makes some δ ∈ ∆ true.

Rule 8. If we last derived `M ¬¬∆ from `M ∆ then we know via induction

that every satisfaction class makes some δ ∈ ∆ true. We thus have

that every satisfaction class makes ¬¬δ true for some δ ∈ ∆, by

applying the Tarski Condition 5 twice. Therefore every satisfaction

class makes some δ ∈ ¬¬∆ true.

Rule 9. (a) If we last derived `M ∆, σ∨τ from `M ∆, σ or `M ∆, τ , then we

know every satisfaction class over M makes some δ ∈ ∆ ∪ {σ}
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true or makes some δ ∈ ∪{τ} true. Thus every satisfaction

class over M makes some δ ∈ ∆ true or σ or τ true. Thus,

we have that M makes some δ ∈ ∆ ∪ {σ ∨ τ} true by Tarski

Condition 4.

(b) If our last step was to derive `M ∆,¬(σ∨τ) from `M ∆,¬σ and

`M ∆,¬τ , then by induction we know that every satisfaction

class makes some δ ∈ ∆ ∪ {¬σ} true and some δ ∈ ∆ ∪ {¬τ}

true. If every satisfaction class over M makes σ∨τ true, then by

Tarski Condition 4 every satisfaction class over M makes σ true

or τ true, so we hence have that every satisfaction class over M

makes some δ ∈ ∆ true. Therefore, by Tarski Condition 5, we

have that every satisfaction class makes some δ ∈ ∆∪{¬(σ∨τ)}

true.

Rule 10. (a) If we last derived `M ∆, σ∧ τ from `M ∆, σ and `M ∆, τ , then

we know every satisfaction class overM makes some δ ∈ ∆∪{σ}

true and makes some δ ∈ ∪{τ} true. Thus every satisfaction

class over M makes some δ ∈ ∆ true or, σ true and τ true.

Thus, we have that M makes some δ ∈ ∆ ∪ {σ ∧ τ} true by

Tarski Condition 3.

(b) If our last step was to derive `M ∆,¬(σ∧ τ) from `M ∆,¬σ or

`M ∆,¬τ , then by induction we know that every satisfaction

class makes some δ ∈ ∆ ∪ {¬σ} true or some δ ∈ ∆ ∪ {¬τ}

true. If every satisfaction class over M makes σ ∧ τ true, then

by Tarski Condition 3 every satisfaction class over M makes
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σ true and τ true, so we hence have that every satisfaction

class over M makes some δ ∈ ∆ true. Therefore, by Tarski

Condition 5, we have that every satisfaction class makes some

δ ∈ ∆ ∪ {¬(σ ∧ τ)} true.

Rule 11. (a) If we have derived `M ∆, t = t from `M ∆, then by Tarski

Condition 1 since val(t) = val(t) we have that every satisfaction

class over M makes some δ ∈ ∆, t = t true.

(b) If we last derived `M ,∆¬t = s, s = t from `M ∆, then since

val(t) = val(s) or ¬(val(t) = val(s)) we have by Tarski condi-

tions 1 and 5 that every satisfaction class over M makes some

δ ∈ ∆, t = s,¬(s = t) true.

(c) Suppose that we last derived `M ∆, neg(t = s),¬(s = r), t = r

from `M ∆. We know that t 6= s, s 6= r or t = r, since if t = s

and s = r, then t = r by transitivity. Thus, by Tarski Condition

1) and our inductive hypothesis we know that every satisfaction

class over M makes some δ ∈ ∆ ∪ {¬(t = s),¬(s = r), t = r}

true.

Rule 12. Suppose that our last step was to derive `M ∆,¬t1 = s1,¬t2 =

s2, . . . ,¬tn = sn,¬θ(t1, t2, . . . , tn), θ(s1, s2, . . . , sn) from `M ∆. We

know that if ti = si for all i and θ(t1, t2, . . . , tn), then θ(s1, s2, . . . , sn),

so by Tarski Conditions 1) and 5) and our inductive hypothesis we

have that every full satisfaction class over M makes some δ ∈ ∆ ∪

{¬(t1 = s1), . . . ,¬(tn = sn), θ(t1, . . . , tn),¬θ(s1, . . . , sn).

147



Rule 13. (a) If we last derived `M ∆,∃xθ(x) from `M ∆, θ(t), then we know

that every full satisfaction class over M makes some δ ∈ ∆

true or makes θ(t) true for some term t. Therefore, every full

satisfaction class over M makes some δ ∈ ∆ true or makes

∃xθ(x) true by Tarski Condition 6.

(b) If our last step was `M ∆,¬∃xθ(x) from `M ∆,¬θ(t) for all

terms t. Then by our inductive assumption and Tarski Condi-

tions 5) and 6) we have that every full satisfaction class over

M makes some δ ∈ ∆ ∪ {¬∃xθ(x)} true.

Rule 14. (a) If we last derived `M ∆,∀xθ(x) from `M ∆, θ(t) for all t, then

we know that every full satisfaction class over M makes some

δ ∈ ∆ true or makes θ(t) true for all terms t. Therefore, every

full satisfaction class over M makes some δ ∈ ∆ true or makes

∀xθ(x) true by Tarski Condition 7.

(b) If our last step was `M ∆,¬∀xθ(x) from `M ∆,¬θ(t). then

by our inductive assumption and Tarski Conditions 5) and 7)

we have that every full satisfaction class over M makes some

δ ∈ ∆ ∪ {¬∀xθ(x)} true.

We now define what it means for M -Logic to be complete and prove this.

Definition E.3.11 (Complete). M-Logic is complete if every full satisfaction

class makes some δ true, then `M δ.

Theorem E.3.12. For every countable model M , M-Logic is complete.
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Proof. We prove this by contrapositive. Suppose that Γ 0M ∅. We aim to

show that this entails Γ 2M ∅,

If Γ 0M ∅, then for all LA-sentences σ, it is not the case that both σ and

¬σ are in Γ, since Γ `M σ,¬σ by Rule 4) and if this were the case, then by

applying the cut rule, Rule 8) and the cut rule again we have that Γ `M ∅,

which is not the case.

Given Γ we can extend Γ to contain either any ?LA-sentence σ or ¬σ.

This is because if Γ, σ `M ∅, then Γ `M ¬σ, so we can consistently add

¬σ to Γ, if we cannot add σ. Similarly, given an ?LA-formula φ(x), we can

either add φ(a) for some constant a ∈ M or add ¬φ(a) for all constants a

which entails that we can add ¬∃xφ(x) to Γ. This is since if Γ, φ(a) `M ∅,

for all constants a, then Γ `M ¬φ(a) for all a, so we can add ¬φ(a) for all

constants a. This then tells us, by the M-Rule a), Γ `M ¬∃xφ(x), so we can

consistently add this to Γ.

We thus enumerate all ?LA-sentences and formulas, using the countability

of M , and inductively construct a Σ ⊇ Γ, by letting Σ0 = Γ and dovetailing

the following processes together:

• Given Σi take a ∈ M and a formula φ(x). If Σi, φ(a) 0M ∅, then we

let Σi+1 = Σi ∪ {φ(a)}, else take Σi+1 = Σi.

• Given Σi take a ∈ M and a formula φ(x). If Σi,¬φ(a) 0M ∅, then we

let Σi+1 = Σi ∪ {¬φ(a)}, else take Σi+1 = Σi.

• Given Σi take a sentence σ. If Σi, σ 0M ∅, then we let Σi+1 = Σi∪{σ},

else take Σi+1 = Σi ∪ {¬σ}.
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We have that our final set Σ =
⋃
i∈N Σi satisfies the following four prop-

erties:

1. All finite sets ∆ ⊆ Σ have the property that Σn 0M ∅.

2. For all ?LA-sentences σ either σ ∈ Σ or ¬σ ∈ Σ.

3. If for a ?LA-formula φ(x) we have that φ(a) ∈ Σ for all a ∈ M , then

Σn `M ∀xφ(x) for some finite Σn ⊆ Σ.

4. If for a ?LA-formula φ(x) we have that ¬φ(a) ∈ Σ for all a ∈M , then

Σn `M ¬∃xφ(x) for some finite Σn ⊆ Σ.

Σ satisfies property 1 because if ∆ ⊆ Σ is finite, then ∆ ⊆ Σn for some

n and thus, since Σn 0M ∅ we have by repeated use of the weakening rule

that ∆ 0M ∅.

Σ satisfies property 2, since each ?LA-sentence σ is σi for some i, and so

by our inductive construction Σ contains either σ or ¬σ.

Σ satisfies property 3, since if φ(a) ∈ Σ for all a ∈M , then at some stage

in our construction it is inconsistent to add ¬φ(a) to Σn for all a ∈M . Thus,

Σn `M φ(a) for all a ∈M and by the M-Rule b Σn `M ∀xφ(x).

Similarly, Σ satisfies property 4, since if ¬φ(a) ∈ Σ for all a ∈M , then at

some stage in our construction it is inconsistent to add φ(a) to Σn for all a ∈

M . Thus, Σn `M ¬φ(a) for all a ∈M and by the M-Rule a Σn `M ¬∃xφ(x).

We now prove that Σ gives a full satisfaction class S over M . Clearly, if

some finite ∆ ⊆ Σ is such that ∆ `M σ, then σ ∈ Σ. This, combined with the

M-Rules, proves that Σ satisfies Tarski Condition 1) and 2). We also know

from this that Σ satisfies Tarski Condition 3) and 4) by provability rules 9)
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and 10). We have that Σ satisfies Tarski Condition 5) by our property 2.

Finally, Σ satisfies Tarski Conditions 6) and 7) via properties 3 and 4.

Thus there is a full satisfaction class Σ over M which makes each γ ∈ Γ

false, and M -Logic is complete. [12, Proposition 15.14]

Thus we have that if M -Logic is consistent for a countable model M ,

then M -Logic has a model and this model corresponds to a full satisfaction

class over M . However, to prove that M -Logic is consistent we work in an

adaptation of M -Logic, called FA-Logic.

E.4 FA-Logic

FA-Logic (Finite Approximation Logic) is an adaptation of M -Logic, that

includes formulas and quantifiers. Thus, FA-Logic is defined over ∗L A(M)

formulas, rather than sentences. We introduce FA-Logic because it can ap-

proximate M -Logic, and thus allows us to prove the consistency of M -Logic,

and hence KKL’s Theorem that some models have a full satisfaction class.

We start off by defining the syntax for FA-Logic.

E.4.1 Provability in FA-Logic

The provability rules for FA-Logic are the same as those for M -Logic, with

the exception that the M-Rules are replaced by rules involving formulas.

Definition E.4.1. The rules of FA-Logic are the structural and provability

rules of M-Logic, without both M-Rules. They are replaced by:

13. (a) If for a term t, if `FA ∆, θ(t), then `FA ∆,∃xθ(x).
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(b) If for a variable v, `FA ∆,¬θ(v), then `FA ∆,¬∃xθ(x).

14. (a) If for a variable v, `FA ∆, θ(v), then `FA ∆,∀xθ(x).

(b) If for a term t, `FA ∆¬θ(t), then `FA ∆,¬∀xθ(x) [12, Definition

15.15].

Definition E.4.2 (Provability). For any sequent of formulas from ∗L A(M)

we say that `FA ∆ if there is a proof of the disjunction of ∆ by the rules of

FA-Logic. We use the same conventions as M-Logic are say ∆ `FA E means

that `FA E,¬∆ (the conjunction of ∆ implies the disjunction of E).

Thus, whereas a proof in M -Logic can be an infinite tree, we have that

all proofs in FA-Logic are finite trees of ∗L A(M)-formulas.

With the syntax of FA-Logic in place we are now able to explore its use

in proving the consistency of M -Logic for certain models, which is KKL’s

Theorem.

E.4.2 KKL’s Theorem

Kotlarski, Krayewski and Lachlan’s Theorem is a major result in the theory

of satisfaction classes and says that every countable, recursively saturated

nonstandard model has a satisfaction class. We shall outline the proof of

this below. To start with, we define the set of true sentences of a model M

below as Diag(M).

Definition E.4.3. The standard full diagram of a model M is denoted by

Diag(M) and is {θ(ā) : M � θ(ā) and θ(x̄) is an LA(M)-formula} [12,

Definition 15.16].
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From this definition we can think of Diag(M) as the set of all true sen-

tences of our model M � PA. Hence we know that this is consistent and we

can use this to derive that FA-Logic is consistent.

Theorem E.4.4. If M 6= N, then Diag(M) 0FA 0 = 1.

Proof Sketch. If this were not the case, then there would be finite proof of

∗L A(M)-formulas showing that 0 = 1. Thus, the proof is bounded above in

complexity by Σn for some n ∈ N. We can then use a weakened Tarski truth

predicate TrΣn which is conservative in PA to show that each of the sentences

and deductions in the proof are true in M for this truth predicate. However,

we have ¬TrΣn(0 = 1, a) which is a contradiction. [12, Page 252]

We now demonstrate that FA-Logic can simulate M -Logic. In particular

that it is able to simulate the M-Rules 13 and 14. We can then combine

these two theorems to show that M -Logic is thus consistent.

Theorem E.4.5. If M 6= N and M is recursively saturated, then for any

sequent ∆ and ∗L A(M)-formula θ we have that:

a) If Diag(M) `FA ∆,¬θ(a) for all a ∈M , then Diag(M) `FA ∆,¬∃xθ(x).

b) If Diag(M) `FA ∆, θ(a) for all a ∈M , then Diag(M) `FA ∆,∀xθ(x) [12,

Lemma 15.18]

Proof Sketch. Here we shall provide a sketch of case a). The proof for the

case b) is similar and the full details for the proof of this case can be found

in Chapter 15 of Models of Peano Arithmetic [12, Pages 253-256].
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The idea of this proof is that since proofs in FA-Logic are finite we can

verify if a proof in FA-Logic is a valid proof and write, in LA, `pFA Γ to

say that p is a correct proof in FA-Logic of Γ. Since there are countably

many such proofs we can recursively enumerate them and translate Diag(M)

`FA ∆,¬θ(a) for all a ∈M into the language L rec
ω1ω

as:

∀a ∈M
∨
p

Diag(M) `pFA ∆,¬φ(a).

We can then use recursive saturation to get that there are hence finitely many

proofs p1, . . . , pn such that:

∀a ∈M
∨

pi∈{p1,...,pn}

Diag(M) `piFA ∆,¬φ(a).

Now, we can use the rules of FA-Logic to show that
∨
pi∈{p1,...,pn}Diag(M) `piFA

∆,¬∃xφ(x) and working backwards we prove that Diag(M) `FA ∆,¬∃xθ(x).

This appeal to recursive saturation is not quite right, since we are ranging

over infinitely many elements of M . To get around this issue we use the

notion of a proof template as defined in Models of Peano Arithmetic [12,

Definition 15.19]. Informally, a proof template is a (standard) finite object

which is the structure of an FA-Logic proof with gaps for elements of M to

be inserted into. We then no longer range over all elements of M , since the

proof templates contain no reference to these numbers.

These two theorems allow us to prove KKL’s theorem, that any countable

recursively saturated nonstandard model has a full satisfaction class.

Theorem E.4.6 (KKL’s Theorem). Let M � PA be countable, nonstan-
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dard and recursively saturated. Then M has a full satisfaction class S [12,

Theorem 15.21].

Proof. If M -Logic were inconsistent, then `M 0 = 1, and thus, by Theorem

E.4.5 since FA-Logic can mimic M -Logic, we have that Diag(M) `FA 0 = 1.

However, by Theorem E.4.4 we know that this is not the case. Therefore

M -Logic is consistent and since M is countable we know that hence by com-

pleteness M has a full satisfaction class S.

This surprising theorem tells us that we can find a definition of truth for

nearly any countable model of PA. This is because we know that any model

m � PA has an elementary end extension which is recursively saturated, i.e.

there exists N �e M where N is recursively saturated. This is highly useful,

but is not as strong a result as it could be.

E.5 Strengthening Satisfaction

We have seen previously that every countable recursively saturated nonstan-

dard model M � PA has a full satisfaction class (Theorem E.2.9), however we

have also seen that if a countable model has a satisfaction class, then it has

2ℵ0 such satisfaction classes (Theorem E.2.8). In other words, we have many

different definitions of truth for these models, which disagree on the truth of

various nonstandard sentences. This leads to a rich and interesting theory,

but means that we have many satisfaction classes for a model M which set

some intuitively true sentence as false, or, some intuitively false sentence as

true.
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E.5.1 Pathologies

There are various nonstandard sentences which we believe we know the truth

of. Examples are easy to think of, a canonical one being the sentence:

1 = 1 ∧ (1 = 1 ∧ (1 = 1 ∧ (1 = 1 ∧ (· · · ∧ (1 = 1) · · · ))))

which has a nonstandard number of disjuncts. We will write this sentence

as
∧
a 1 = 1, where a is the nonstandard number of disjuncts. This sentence

is intuitively true, as 1 = 1, no matter how many times we examine it. The

similarly notated sentence
∨
a 0 = 1 is also intuitively false. One facet of

satisfaction classes as a definition of truth is that they can interpret the sen-

tence above as true, and various intuitively true sentences, such as
∧
a 1 = 1

as false. We shall examine some examples of this below in more detail.

Theorem E.5.1. Let M � PA be countable, recursively saturated and M 6=

N. Then M has a satisfaction class S such that for some nonstandard t ∈M :

(M,S) � S(p
∨
t 0 = 1q, a).

Proof Sketch. Let M � PA be as above (countable, nonstandard and recur-

sively saturated). To prove that there is a satisfaction class S over M making∨
t 0 = 1 true we show that the sentence is M -consistent. This is sufficient

by the soundness and consistency theorems. We have that
∨
t 0 = 1 `M ∅ if

and only if `M ¬
∨
t 0 = 1 by Lemma E.3.4. However, proving this sentence

in M-Logic requires us to show `M ¬(0 = 1) and `M ¬
∨
t−1 0 = 1. Proving

the latter half of this, again requires `M ¬
∨
t−2 0 = 1. At no stage are we

able to prove the latter half of this nonstandard disjunction. Therefore, since
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we cannot prove `M ¬
∨
t 0 = 1 we also cannot prove

∨
t 0 = 1 `M ∅.

Satisfaction classes can also take sentences which are intuitively true and

in a similar manner believe that these sentences are false. We consider an

example of this below.

Theorem E.5.2. Let M � PA be countable, recursively saturated and M 6=

N. Then M has a satisfaction class S such that for some nonstandard t ∈M :

(M,S) 2 S(p
∧
t 1 = 1q, a).

Proof Sketch. We prove this similarly to the above. We know that (M,S) 2

S(p
∧
t 1 = 1q, a) if and only if (M,S) � ¬S(p

∧
t 1 = 1q, a), which by Tarski

Condition 5 holds if and only if (M,S) � S(p¬
∧
t 1 = 1q, a). We now show

that, given some set Σ which is consistent in M-Logic, Σ ∪ {
∧
t 1 = 1} is

inconsistent in M-Logic. This entails that
∧
t 1 = 1 is not always M-consistent

so there are satisfaction classes which don’t contain this sentence. Using a

similar argument as in the proof to Theorem E.5.1 we have that {¬
∧
t 1 = 1}

is consistent in M-Logic, but adding the sentence
∧
t 1 = 1 to this set is clearly

inconsistent in M-Logic via the cut rule.

Again, whilst a satisfaction class can believe this sentence is false, it is

intuitively true, as 1 = 1 should always hold. Thus one of the key areas

of study for satisfaction classes are ways of strengthening them to reduce

pathologies such as these.

There are numerous methods of strengthening satisfaction classes, in-

cluding adding axioms to the language including satisfaction classes, adding

further Tarski conditions and specifying that certain sentences are true in a

satisfaction class.
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E.5.2 Adding Axioms to LS

In this section we look at the option of adding further axioms to satisfac-

tion classes. This area has been highly discussed in the literature and has

produced some important theorems which we shall discuss here.

The first theory that we shall consider is that of PA(S) which is that of

PA where S is a satisfaction class and all the induction axioms hold for S.

Definition E.5.3 (PA(S)). We denote by PA(S) the axiom schema PA +

S is a full satisfaction class for the model considered + the axiom schema of

induction in the language LS [12, Exercise 15.9].

This theory, PA(S) is very strong and is able to remove all the pathologous

examples, such as those considered above. We prove an example of this below.

Example E.5.4. PA(S) ` ¬S(p
∨
t 0 = 1q, a)

Proof. Let (M,S) � PA(S). We prove that for all t ∈ M it is the case

that (M,S) � ¬S(p
∨
t 0 = 1q, a). Clearly (M,S) � ¬S(0 = 1). If (M,S) �

¬S(p
∨
c 0 = 1q, a), then (M,S) � ¬S(p

∨
c+1 0 = 1q, a) by Tarski Condition

4. Thus, by induction in LS we are done.

Whilst this does remove pathological examples, the problem with this a

base theory is that it is very strong and rules out various interesting models

that we would like to consider. As an example of its strength, we prove below

that it entails the consistency of PA.

Theorem E.5.5. It is the case that PA(S) ` con(PA).
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Proof Sketch. We let (M,S) � PA(S) and then suppose for contradiction

that (M,S) � ¬con(PA). Using induction on x in LS we can prove the

formula:

∀p<x∀α<x[“xpy proves xαy in PA”→ ∀aS(θ, a)].

Then, we have that (M,S) � ∃p[“xpy proves ¬(0 = 1) in PA”], so therefore

(M,S) � S(p0 = 1q, a) and (M,S) � S(p¬(0 = 1)q, a) which is a contradic-

tion. [12, Page 247]

Given the result above, that PA(S) proves the consistency of PA, we

thus would like to weaken the theory whilst still removing the pathological

examples we have looked at. One attempt is to restrict the induction in LS

only to certain classes of formulas, given that full induction is not needed to

remove these pathological examples. It turns out, however, that this theory

is still highly strong. We now look at the theory ∆0 − PA(S) which has

induction only for ∆0 formulas in LS.

Definition E.5.6 (∆0−PA(S)). We denote by ∆0−PA(S) the axiom schema

PA, that S is a full satisfaction class for the model considered and the axiom

schema of induction for all ∆0 formulas of LS.

Whilst this theory is weaker than PA(S) it is still very strong and also

entails the consistency of PA as stated by Ciésliński [4, Page 8].

Theorem E.5.7. It is the case that ∆0 − PA(S) ` con(PA). [4, Page 8]

The theory ∆0−PA(S) is one which is obtained quite naturally in an effort

to remove pathologies from satisfaction classes. When considering the patho-

logical examples above, one notices that 0 = 1 ∨ (0 = 1 ∨ (· · · ∨ (0 = 1)))
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is semantically equivalent to the sentence 0 = 1. Similarly, the sentence

1 = 1 ∧ (1 = 1 ∧ (· · · ∧ (1 = 1))) is semantically equivalent to the sentence

1 = 1. We know that a satisfaction class can deal with the truth of these stan-

dard sentences. Therefore, if a satisfaction class recognises this equivalence,

then these pathological examples would be removed. Ciésliński [4] closes

satisfaction classes under proof in propositional logic to remove pathological

examples like this. We call this theory PA + PL(S).

Definition E.5.8 (PA+PL(S)). The theory PA+PL(S) is PA+S is a full

satisfaction class +∀α[“xαy is provable in propositional logic from satisfied

sentences” → ∀aS(α, a)] [4, Page 9]

This theory is strong enough to remove the pathological examples we have

hence considered above. We prove an example of this below.

Lemma E.5.9. For all a, t ∈M , PA + PL(S) ` ¬S(p
∨
t 0 = 1q, a)

Proof. Let (M,S) � PA + PL(S). We know that (M,S) � S(¬(0 = 1), a).

We can prove in propositional logic that ¬(0 = 1) ↔
∨
t ¬(0 = 1), therefore

by Tarski Condition 5 we have that (M,S) � ¬S(p
∨
t 0 = 1q, a).

Thus we have another successful method of removing at least some patho-

logical examples from the theory of satisfaction classes. However, this theory

is also highly strong and is actually equivalent to the theory of ∆0 −PA(S).

Theorem E.5.10. The theory PA +PL(S) is equivalent to the theory ∆0−

PA(S)

Proof Idea. In the theory PA+PL(S) given any ∆0 formula θ(a, S) in the lan-

guage LS we are able to translate it to an equivalent formulation S(Fθ(x), a)
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where xFθ(x)y is a formula in the language LA. In other words, we are able

to ‘move’ the instances of satisfaction ‘outside’ the formula. From this, if

∃xθ(x, S), then we can use propositional logic to show there is some assign-

ment b : x→ c such that S(Fθ(x), b) and for all assignments b′ : x→ c′ where

c′ < c are such that ¬S(Fθ(x), b
′). In other words, there is a least c such that

θ(c, S) and the least number principle holds ∆0 formulas of LS, which is

equivalent to induction in LS [4, Theorem 4].

We shall explore the proof method and make these ideas more rigorous

in Section 4.2. For the complete proof of this theorem the reader is referred

to Deflationary Truth and Pathologies [4, Pages 9–11].

We see that whilst there are numerous different axiom schemas which remove

pathological cases from satisfaction classes, these theories are very strong.

We thus consider some weaker approaches with original considerations.

E.5.3 Adding Additional Tarski Conditions

An alternative method to restricting the pathologous examples in the theory

of satisfaction classes is to add additional Tarski conditions that a satisfaction

class must satisfy. In this section we consider an alternative way of consid-

ering ¬ in first order logic and how this affects the theory of satisfaction

classes.

E.5.3.1 The f¬ Tarski Axiom

Rather than defining ¬ in the standard way, we can instead consider it as a

function which, for clarity, we shall denote f¬. By introducing a function in
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this way, we are able to add a new Tarski condition that satisfaction classes

must satisfy that appears not to be a consequence of the previous axioms.

We first set out how this new definition of negation, f¬, behaves.

Definition E.5.11 (f¬). We define the function f¬ over all sentences of our

language L . We suppose for simplicity, without loss of generality, that L

is purely relational. For each relation R in L we add a new relation symbol

��R. We also add a new symbol 6=. Let σ be an L -sentence, then:

• If σ is of the form t = s, then f¬(σ) is t 6= s.

• If σ is of the form t 6= s, then f¬(σ) is t = s.

• If σ is of the form R(u, v, . . .), then f¬(σ) is ��R(u, v, . . .).

• If σ is of the form ��R(u, v, . . .), then f¬(σ) is R(u, v, . . .).

• If σ is of the form α ∧ β, then f¬(σ) is f¬(α) ∨ f¬(β).

• If σ is of the form α ∨ β, then f¬(σ) is f¬(α) ∧ f¬(β).

• If σ is of the form ∃xθ(x), then f¬(σ) = ∀xf¬(θ(x)).

• If σ is of the form ∀xθ(x), then f¬(σ) = ∃xf¬(θ(x)) [1, Page 871].

It is an easy exercise to verify that f¬ behaves in the way we expect ¬

to behave. We can now consider a new axiom for satisfaction classes, which

says that S(σ) if and only if ¬S(f¬(σ)).

Definition E.5.12 (f¬ Tarski Axiom). We define the f¬ Tarksi Condition

to be the sentence:
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8) For all LA-formulas θ : S(pθq, a)↔ ¬S(pf¬(θ)q, a)

This is an intuitively attractive axiom to have and is not a consequence

of the other Tarski axioms.

Theorem E.5.13. Consider a model M � PA which is countable and re-

cursively saturated. Then M has a full satisfaction class S satisfying Tarski

Conditions 1)-7) and there is a sentence of LA, σ, such that (M,S) � S(σ)

and (M,S) � S(f¬(σ)).

Proof Sketch. By Theorem E.5.1 that the sentence (0 = 1∨(0 = 1∨(· · ·∨(0 =

1) · · · ))) with a nonstandard number of disjuncts is consistent in M-Logic. By

the soundness theorem it suffices to show that the set {
∨
t 0 = 1,

∧
t 0 6= 1} is

consistent in M-Logic. This is the case, since after finitely many provability

rules of M-Logic we shall not reach `M σ,¬σ since not all of the disjuncts in

the first sentence will be ‘seen’ by M-Logic, so M-Logic cannot tell that the

two statements are contradictory.

This additional Tarski condition is an easy and seemingly acceptable way

of strengthening the theory of satisfaction classes. It is an open question as

to the relative strength of this theory.

Question E.5.14. What is the provability strength of the theory of satisfac-

tion classes with the additional f¬ Tarski condition?

There is one further method of attempting to remove pathological exam-

ples from the theory of satisfaction classes, which is seemingly the weakest

idea. This approach ensures that certain sentences of a satisfaction class are

always satisfied.
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E.5.4 Specifying Certain Sentences as True

Some satisfaction classes will tell us that all sentences that we would like to

be true, of a certain type, are true. When constructing a satisfaction class

through the completeness of M-Logic, we are able to adapt the construction

to ensure that certain sentences are always added to the construction. This

method is described for collection in Section 2, but for now we shall explore

some general results on what effect this has. To start, we provide some

general notation .

Notation E.5.15. Let M be a model such that M � PA and S be a satis-

faction class over M . For a set of LA formulas Γ = {γ1, γ2, . . .} we write

S � Γ to mean that (M,S) � S(γi) for each γi ∈ Γ.

A natural set of sentences to ensure that a satisfaction class makes true are

all the induction axioms. We shall denote this by S � IND. It is interesting

to look at whether this behaves in a similar manner to induction without

satisfaction. It is a standard theorem of the induction axioms that they are

equivalent to the least number principle (LNP). We prove below, following

the proof of induction impliying LNP in PA [12, Page 51], that this holds

for satisfaction classes as well and making the least number principle true is

equivalent to making induction true.

Theorem E.5.16. Let (M,S) � PA with a full satisfaction S. We have that

S � IND if and only if S � LNP.

Proof. Firstly, suppose that S � IND and θ(x) is an LA-formula. We require

that: (M,S) � S(p∃xθ(x) → ∃x[θ(x) ∧ ∀y<x¬θ(y)]q, a) which rephrases
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to (M,S) � ¬S(p∃xθ(x), a) ∨ S(∃x[θ(x) ∧ ∀y<x¬θ(y)]q, a). Suppose that

(M,S) � ¬S(p∃x[θ(x) ∧ ∀y<x¬θ(y)]q, a). Then, we have that:

(M,S) � S(p∀x[¬θ(x) ∨ ∃y<xθ(y)]q, a).

Therefore, (M,S) � S(p∀x[θ(x) → ∃y<xθ(y)]q, a). Thus, by contraposi-

tive, we have that (M,S) � S(p∀x[∀y<x¬θ(y) → ¬θ(x)]q, a). We define

the formula φ(x) by ∀z[z<x → ¬θ(z)]. Clearly (M,S) � S(pφ(0)q, a) and

from the above we see that (M,S) � S(p∀x[φ(x) → φ(x + 1)]q, a). There-

fore, since S � IND we have that (M,S) � S(p∀xφ(x)q, a), which entails

that (M,S) � S(p∀x¬θ(x)q, a) which by Tarski condition 5) tells us that

(M,S) � ¬S(p∃xθ(x)q, a).

Now suppose that S � LNP and that (M,S) � S(pθ(0) ∧ ∀x[θ(x) →

θ(x + 1)]q, a) for any ?LA-formula θ(x). Suppose for contradiction that

(M,S) � S(p∃x[¬θ(x)]q, a). Then, since S � LNP we have that (M,S) �

S(p∀y<xθ(y)q, a[x/c]) for some constant c ∈M such that:

(M,S) � S(p¬θ(x)q, a[x/c]).

This tells us that c > 0 and that (M,S) � S(pθ(x)q, a[x/c−1]) and so there-

fore by our original hypothesis (M,S) � S(pθ(x)q, a[x/c]) which contradicts

Tarski condition 5).

In building a satisfaction class S which satisfies all induction axioms we

are able to remove any pathological induction axioms. However, unlike the

thoery of satisfaction classes including induction in LS this is not as strong
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and does not give us any induction on formulas involving the satisfaction

predicate and other formulas and connectives as well. It is an open question

as to how much induction this approach provides and how comparatively

strong our theory is.

Question E.5.17. How strong is the theory of S is a full satisfaction class

where S � IND?

We see here we have three different general strategies to improving the

theory of satisfaction classes to remove pathological examples. We can add

further axioms to LS, add further Tarski conditions and specify certain LA

sentences as always satisfied.
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Appendix F

Open Questions and

Conjectures

Conjecture 2.2.1. There are models M � PA with a full satisfaction class

S such that S � I∆0 + Coll and S 2 IND.

Question 3.1.4. Is there a model M � PA with a satisfaction class S such

that (M,S) 2 Coll(S) and (M,S) 2 ∆0 − PA(S).

Question 3.1.5. Is there a model M � PA with a satisfaction class S such

that (M,S) � Coll(S) and (M,S) 2 ∆0 − PA(S).

Conjecture 3.2.4. Let (M,S) � PA + S is a full satisfaction class over

M , where S � IND. Let N denote clNSkolem(∅) and define SN ⊆ N × N by

(N,SN) � SN(pθq, a) if and only if (M,S) � S(pθq, a). Then, (N,SN) 2

CollΣ1(S).

Conjecture 4.1.3. We can adapt Visser-Enayat’s Theorem to obtain an end

extension, rather than just an extension. In other words, given (M,FM , SM) �
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PA + SM is an FM satisfaction class there exist N , FN and SN such that

(M,FM , SM) ⊆e (N,FN , SN).

Question 4.1.6. Is there an analogue to the MRDP Theorem in the language

LS? In other words, is it the case that ∃1(S) = Σ1(S)?

Question 4.2.4. What relative consistency strength does the theory PA + S

is a full satisfaction class +S satisfies Tarski Conditions 9) and 10) have

over the theory PA + S is a full satisfaction class?

Conjecture 4.3.2. We can construct satisfaction classes using the Visser-

Enayat method which satisfy Tarski Conditions 9)?n and 10)?n for each n ∈ N.

Conjecture 4.3.5. The theory of PA + S is a full codable satisfaction class

has the same provability strength as ∆0 − PA(S).

Question 4.3.11. Does a structure (M,F, S) where M � PA and S is an

F -satisfaction class and F is a set of stratified formulas satisfy Lachlan’s

Thorem?

Question 4.3.12. Given M,F where M � PA and F is a set of stratified

formulas, does there exist S such that S is an F -satisfaction class?

Question 5.5. Can the nonstandard language of LA be restricted in such a

way so that it loses no expressive content and so that there exists a deflation-

ary truth predicate for PA over all sentences of this restricted language?

Question D.2.17. Are there any further connections between Coll
∧

, Coll
∨

,

tallness and short recursive saturation?
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Question E.5.14. What is the provability strength of the theory of satisfac-

tion classes with the additional f¬ Tarski condition?

Question E.5.17. How strong is the theory of S is a full satisfaction class

where S � IND?
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