
University of Birmingham

Formal Verification of Privacy

in Pervasive Systems

by

Loretta Ilaria Mancini

A thesis submitted to the University of Birmingham

for the degree of Doctor of Philosophy

School of Computer Science

College of Engineering and

Physical Sciences

University of Birmingham

May 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/33528409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bham.ac.uk
http://www.cs.bham.ac.uk/~lxm619
http://www.cs.bham.ac.uk
http://www.birmingham.ac.uk/university/colleges/eps/index.aspx
http://www.bham.ac.uk

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

ii

UNIVERSITY OF BIRMINGHAM

Abstract
College of Engineering and Physical Sciences

School of Computer Science

Doctor of Philosophy

Formal Verification of Privacy

in Pervasive Systems

by Loretta Ilaria Mancini

Supervisor: Dr. Eike Ritter

Co-Supervisor: Dr. Myrto Arapinis

http://www.bham.ac.uk
http://www.birmingham.ac.uk/university/colleges/eps/index.aspx
http://www.cs.bham.ac.uk
http://www.cs.bham.ac.uk/~exr
http://www.cs.bham.ac.uk/~arapinmd

iv

Pervasive systems aim to enhance a user’s everyday experience by sensing her

environment thanks to small electronic devices which can be easily carried in a

pocket. However, the use of these physically non intrusive sensing and context

aware devices can result very intrusive from a privacy perspective since they give

both third party attackers and curious service providers the means to monitor one’s

activities and hence violate her privacy. An example of pervasive device which

most of us is very familiar with is a mobile phone. Mobile telephony equipment

is daily carried by billions of subscribers everywhere they go. Avoiding linkability

of subscribers by third parties, and protecting the privacy of those subscribers is

one of the goals of mobile telecommunication protocols.

We use experimental and formal methods to model and analyse the security prop-

erties of mobile telephony protocols. As a result of our experimental and formal

analysis, we expose novel threats to the user privacy in mobile telephony systems.

These threats make it possible to trace and identify mobile telephony subscribers.

For some of the attacks we demonstrate the feasibility of a low cost implementa-

tion. We propose fixes to these privacy issues. Moreover, we successfully prove that

our privacy-friendly fixes satisfy the desired unlinkability and anonymity proper-

ties. We show how it is possible to model unlinkability and anonymity properties,

for automatic verification, in case of stateless protocols with no initialisation phase.

Moreover, we give a manual proof of unlinkability of a stateful protocol. This is

one of the few proofs of bisimilarity available in literature for a full sized protocol.

Finally, we develop the first extension of the ProVerif tool for the automatic

verification of equivalence-based properties of stateful protocols.

This work shows in practice, by applying formal methods to a real world case

study, how to formally verify privacy properties of pervasive systems and high-

lights the limitations of currently available formal tools. Moreover, we take the

first steps towards the development of an automatic verification tool for the ver-

ification of equivalence-based properties of stateful protocols. Further work in

this direction will eventually widen the class of security protocols and security

properties verifiable using automatic verification tools.

“To Mum, Dad, Betta, Rich and Morgan”

Acknowledgements

I would like to thank my supervisor Eike Ritter for reading boring reports, proofs

and bureaucratic documents and still being awake enough to give me advice and

spot all my lost in translation mistakes. My greatest gratitude goes to Myrto

Arapinis for being a superb example on how to do research, an invaluable motivator

and the first supporter of my work. Myrto always had helpful criticism and useful

suggestions and ideas all mixed up with a good dose of optimism, thank you!

A special thank you goes to Mark Ryan for closely following my progresses and

supporting my work with his great ability in quickly grasping concepts and finding

weaknesses and strengths of an article. I would also like to thank Jon Rowe for

his advice while being a member of my thesis group and Mark Lee for accepting

to take his place, for his useful comments on my work and for being great fun.

Thanks to the security group for being an invaluable source of useful comments

and lively discussions and for being a great audience for interactive talks. This

thesis would not have been written without the support of my friends and family.

In particular, I would like to mention my parents for their unconditional support,

my sister Elisabetta because life would not be the same if I could not share it with

her. Rich for being very patient with my moods. Morgan for his weird sense of

humour and contagious laugh, and Peter Oliveto for always being there for me. I

would like to conclude mentioning all the fantastic academic, administrative and

technical staff and the Ph.D. students of the school of computer science above all

the ones who like to procrastinate, em, discuss important matters in the common

room and have a pint or two in staff house.

vii

This research was primarily funded by the Engineering and Physical Sciences Re-

search Council (EPSRC), as part of the VPS: Verifying Interoperability Require-

ments in Pervasive Systems (EP/F033540/1).

Contents

Abstract iii

Acknowledgements vii

List of Figures xv

List of Tables xix

Mobile Telephony Acronyms xxi

1 Introduction 1

1.1 Motivation . 3

1.2 Privacy . 4

1.3 Security Protocols and Formal Methods 6

1.4 Contributions . 13

2 Background: Applied Pi-Calculus 17

2.1 Applied pi-calculus . 19

2.1.1 Syntax . 19

2.1.2 Operational Semantics . 23

2.2 Equivalence Relations . 27

2.3 Modelling Security Properties . 31

2.3.1 Privacy Related Properties 32

3 Background: Introduction to Mobile Telephony Systems 39

3.1 GSM/UMTS Architecture . 40

3.2 GSM/UMTS Security Features . 42

3.3 Tools for Experimental Analysis . 45

USRP . 45

GNU Radio . 45

Open BTS . 45

xi

Contents xii

Open BSC . 46

Osmocom-BB . 46

Femtocell . 46

HackRF . 46

BladeRF . 46

3.4 Previous Work on 2G/3G Security and Privacy 49

3.5 Our Work on 2G/3G Privacy Analysis 52

4 Analysis of Mobile Systems’ Identity Management 55

4.1 Identification Procedure . 57

4.1.1 Identification Procedure Attack 58

4.2 Paging Procedure . 58

4.3 TMSI Reallocation Procedure . 59

4.4 Subscriber Privacy Analysis . 61

4.4.1 IMSI Paging Attack . 62

4.4.2 Experimental Analysis . 62

4.4.2.1 Experimental Settings and Scenarios 63

4.4.2.2 Findings/Results 66

4.5 Discussion . 70

5 Analysis of Mobile Systems’ Protocols 71

5.1 Pseudonymity Issues in Mobile Telephony Systems 73

5.1.1 TMSI Reallocation Replay Attack 73

5.2 User linkability issues in 3G systems 74

5.2.1 3G Authentication and Key Agreement Protocol 74

5.2.2 3G AKA Protocol Linkability Attack 77

5.3 Implementation of some 3G Protocols Attacks 79

5.3.1 Femtocell architecture . 79

5.3.2 Attack Procedure . 80

IMSI-Paging Procedure Attack 81

AKA Protocol attack 82

6 Privacy Friendly Fixes 85

6.1 Public Key Infrastructure . 86

Protecting the IMSI Paging Procedure 87

Fixing the AKA Protocol 88

Protecting the Identification Procedure 90

Fixing the TMSI reallocation procedure 90

6.2 Discussion of the Proposed Fixes 91

7 Formal Verification of the Fixed Protocols 95

7.1 ProVerif Encoding . 96

Contents xiii

7.1.1 Strong Unlinkability . 97

7.1.2 Strong Anonymity . 99

7.2 Automatic Verification Results and Remarks 100

7.3 Unlinkability of the TMSI Reallocation Procedure 102

7.3.1 Model of the TMSI Reallocation 103

7.3.2 Proof of Unlinkability of the Fixed TMSI Reallocation . . . 105

7.3.3 Unlinkability Proof Sketch 107

7.4 Remarks . 116

8 Automatic Verification of Equivalences for Stateful Processes:
A StatVerif Extension 117

8.1 Related Work . 119

8.2 Our Contribution . 120

8.3 Background: StatVerif Process Language 120

8.3.1 Syntax and Informal Semantics 120

8.3.2 Operational Semantics . 123

8.3.3 Observational Equivalence 126

8.4 StatVerif Extension to Observational Equivalence 127

8.5 Clause Generation . 133

8.5.1 Clauses for the Protocol . 135

8.5.2 Clauses for the Attacker . 137

8.5.3 Clauses for the Mutability of Public States 141

8.5.4 Soundness . 142

8.6 Implementation and Examples . 148

8.7 Discussion and Future Work . 161

9 Conclusions 163

A ProVerif Code 167

B Proof of the Unlinkability of the TMSI Reallocation Procedure 175

B.1 Definitions and Notation . 176

B.2 Proof of Lemma 7.1 . 179

B.3 Proof of Lemma 7.2 . 195

C StatVerif Extension Related Proofs 203

C.1 Proof of Theorem 8.5 . 203

C.2 Proof of Corollary 8.6 . 204

C.3 Preliminary Lemmas . 208

C.4 Proof of Lemma 8.8 . 209

C.5 Proof of Lemma 8.9 . 214

Contents xiv

C.6 Results Preliminary to the Proof of Theorem 8.11 218

C.7 Proof of the Properties of the Type System 231

C.7.1 Substitution Lemma . 234

C.7.2 Type Propagation Lemma 241

C.7.3 Typability of the Adversary (C[]) 245

C.7.4 Typability of the Protocol (A0) 261

C.7.5 Typability of C[A0] . 278

C.7.6 Subject Reduction . 278

Bibliography 287

List of Figures

3.1 2G/3G Architecture . 41

4.1 2G/3G Identification Procedure. The network sends an identity re-
quest to the MS on a dedicated channel. The IMSI Req parameter
specifies that the requested identity is the long term identity, IMSI.
The identity IMSI of the mobile phone is sent in clear on the radio
path. 57

4.2 3G IMSI Paging Procedure: the paging request message is broad-
cast on a common radio channel and contains the identity of the
paged mobile station (in this case the IMSI) in cleartext. The
paging response message contains the mobile phone’s temporary
identity TMSI and is sent in clear on a dedicated channel estab-
lished between the MS and the network (i.e. messages exchanged
on this channel are meant to be originated by and or addressed to
this particular MS). 59

4.3 2G/3G TMSI Reallocation Procedure: the TMSI reallocation pro-
cedure is always initiated by the network. The new TMSI, TMSI1,
along with the current Location Area Identifier, newLAI, is sent in
an encrypted message to the mobile station in order to avoid users’
linkability. The TMSI reallocation procedure is always executed on
a dedicated channel . 60

4.4 Experimental Tools . 64

4.5 Osmocom-BB architecture . 64

4.6 Trace of a UK Vodafone SIM card obtaining a new TMSI (0xb42c2fdd)
on 22/03/12. The same TMSI is still in use on 25/03/12 after 3 days
from its allocation. 65

4.7 Trace of a UK Orange SIM card. The TMSI used at location
234/33/1381 (packet no. 668) is accepted at location 234/33/29
(packet no.678), while the 3GPP standard mandates a TMSI real-
location at each change of location. 68

xv

List of Figures xvi

4.8 Trace of a UK Lebara SIM card attached to the Vodafone net-
work while travelling on a train. The TMSI reallocation procedure
is executed by reusing a previously established key. The MS first
performs a location update (packet no. 4063), then the authenti-
cation procedure to establish a ciphering key (packets 4065, 4068),
followed by the TMSI reallocation procedure (packets 4079, 4081).
The following three TMSI reallocations (packets 9691, 9693, 71695,
71697, 92653, 92655) are executed without first performing the au-
thentication procedure and hence reusing the previously established
ciphering key. 69

5.1 TMSI Reallocation Procedure Attack: the attacker captures a le-
gitimate TMSI reallocation command message and replays it. If
the MS reply to the replayed message the attacker knows that it is
indeed the victim MS. 72

5.2 3G Authentication and Key Agreement (AKA): the authentication
procedure is always initiated by the network and is executed on a
dedicated channel. 75

5.3 AKA Protocol Linkability Attack 78

5.4 Experimental Attack Setup . 80

5.5 Linkability-Attack: Victim Found. 82

5.6 Linkability-Attack: Victim not Found. 83

6.1 IMSI Paging Procedure Fix. The IMSI paging request which is
sent on a common channel is encrypted with the unlinkability key
UK so to ide the long term identity IMSI. Each MS decrypts
the IMSI paging request and check if the IMSI contained in it
is its own. If so the MS checks the freshness of the freshness of
the request (SQNMS < SQNN), requests a dedicated channel and
sends the response RES to the network. Otherwise the MS discards
the message and aborts the procedure. 87

6.2 The fixed AKA protocol. The error messages are encrypted using
the network public key. 88

6.3 Identification Procedure Fix. The identity response is encrypted
with the public key of the network. The r denotes randomised
encryption. 90

6.4 TMSI Reallocation Procedure Fix: this fix uses the SQN to ensure
the freshness of the reallocation command. 91

8.1 StatVerif syntax . 122

8.2 StatVerif semantics . 125

8.3 Red Fun1, Red Fun2 andRed Comm reduction rules for StatVerif
for observational equivalence . 128

List of Figures xvii

8.4 Translation of the protocol: null, replication, parallel, restriction,
input, output and let . 138

8.5 Translation of the protocol: lock, unlock, read and assign 139

8.6 Translation of the instrumented protocol 143

8.7 Type system . 146

List of Tables

1.1 Automatic Verification Tools Comparison 12

7.1 ProVerif results of the on Fixed Procedures 101

7.2 ProVerif results on current 3GPP Procedures 101

7.3 Results of the Automatic Verification of the Fixed Procedures 102

xix

Mobile Telephony Acronyms

GSM Global System for Mobile Communication

UMTS Universal Mobile Telecommunications System

MS Mobile Station

BS Base Station

IMSI International Mobile Subscriber Identity

TMSI Temporary Mobile Subscriber Identity

SIM Subscriber Identity Module

SN Serving Network

HN Home Network

MNO Mobile Network Operator

xxi

1

Introduction

Pervasive or ubiquitous computing are terms used to describe a reality where

everyone is immersed in a system composed of various sensing and computing

devices able to communicate with each other to enhance the user’s experience

seamlessly throughout his daily life. They aim to offer services on locus without

the need to go to an office or service provider site and in a highly customizable and

environment aware fashion. The reality of pervasive computing is the reality we

live in and we have just started exploring, developing and enjoying its capabilities.

Home care systems, vehicular networks, smart grid and more in general smart

home systems, toll payment and wireless payment systems, personalised marketing

and personalised tourist information, urban sensing, are just some examples of

the pervasive systems continuously emerging thanks to a variety of environment

aware data collected and elaborated by ubiquitous interconnected devices and

sensors such as RFID tags, cameras, light sensors, smart cards, credit cards, loyalty

cards, mobile phones, accelerometers, GPS enabled devices etc. These devices are

generally small and easy to use and carry around; typically they do not prompt

the user when collecting and/or communicating personal data. Hence, the user

is often not aware of potential security and privacy threats deriving from the use

of these technologies, and has little or no control over the generation, sharing

1

Chapter 1. Introduction 2

and use of the data itself. Therefore, along with the benefits, the ubiquitous

presence of smart, context-aware sensing and computing devices brings with it

various concerns, mainly related to the security and privacy properties of such

systems.

Formal methods have proved to be effective in highlighting weaknesses of protocols,

enabling designers and programmers to patch them and strengthen their security

guarantees, as well as giving strong assurance on protocol properties by proving the

absence of attacks undermining the stated security properties. For example, con-

ference management [ABR12], electronic voting [CW12a, GRBR13, CS12], single-

sign-on [BBDM14, ACC+08a], cloud storage [BBDM13], TPM [DKRS11, BXR13],

RFID [CS10], and mobile telephony protocols [AMR+12] have been scrutinized us-

ing manual and automatic verification techniques. However, manual proof meth-

ods are lengthy and error prone, while automatic verification tools have to com-

promise in order to achieve decidability (at least for some subclass of processes)

by bounding the number of agents and sessions and/or restricting the considered

class of cryptographic functions. the

Although, many of the security properties of pervasive systems can be modelled

and analysed in terms of the classical concepts of confidentiality, authentication

and integrity, new definitions of properties are often required to capture the de-

sired characteristics of specific pervasive systems, in particular when addressing

privacy and its different aspects and shades. Some of the most recurring privacy

related properties can be described in terms of location privacy, anonymity and

unlinkability. However, some protocols require the definition of more specific prop-

erties, such as voter’s privacy and forward privacy. Furthermore, the more general

definititheons can have different shades and can be weaker or stronger to suit a

protocol’s requirements and the attacker capabilities.

Modelling and verifying these properties is a difficult task since the sources of

Chapter 1. Introduction 3

possible attacks are often hidden in implementation details or even in the proto-

col logic rather than in the cryptographic guarantees of the employed encryption

algorithm. Moreover, the modelling of the privacy-related properties often relies

on non standard definitions of equivalence and as a result some of the properties

are not supported by the currently available automatic verification tools. Hence,

modelling and verifying these novel properties is one of the challenges pushing for

further development of the currently available automatic tools and, of course, of

the theory supporting them.

1.1 Motivation

Every day we carry in our pockets a collection of devices giving us access to some

pervasive system. Electronic passports and identity documents, electronic health

cards, electronic keys, loyalty cards, tablets and smart phones not to mention more

specialized gadgets such as sports bracelets and smart watches. All these devices

store and/or collect personal and/or contextual information and communicate with

a provider infrastructure to deliver a variety of services. In this respect, we can

consider our pockets as part of a big pervasive system enhancing our day to day

experience. At the same time, we can consider our pockets as the most powerful

surveillance tool ever witnessed. In fact, the amount, quality and frequency of the

collected personal data is of a magnitude which would not be possible without the

support of modern electronic devices. Furthermore, all this personal information

is generally transmitted over-the-air and then stored and elaborated in the cloud

and hence far from the control of the user who is often not even aware of how and

when the information is collected nor the kind of data that can be computed from

it.

The personal nature of the data collected by ubiquitous devices makes security and

overall privacy a central topic for pervasive systems. Moreover, the level of privacy

Chapter 1. Introduction 4

offered by a pervasive system could determine the acceptance or otherwise by the

users of the system itself. For example in [Shi09] the author argues that users could

be not willing to join participatory sensing projects without an adequate assurance

regarding the provided level of privacy. The reaction of users to possible privacy

threats can be as strong as mounting a boycott campaign, as witnessed with the

introduction of RFID tags by Benetton [ben].

1.2 Privacy

It is difficult to be a privacy advocate without being addressed as a privacy freak

or someone who has something to hide and it is often needed to justify oneself.

I personally agree with D’Introna’s viewpoint, in [Int97]. He identifies privacy

as a very important characteristic for the definition of social relationships and

more crucially a fundamental property to enable autonomy and individuality since

knowing to be observed influences a person’s behaviour. Indeed, we adopt different

kind of behaviours depending on who is the observer. What we share and with

who defines, for example, on one hand private and more intimate relationships and

on the other work-related ones. Hence, privacy seems to be fundamental for the

definition of oneself. However, privacy is a relatively novel concept that appears for

the first time in a 1890 analysis in the Harward Law Review in relation to a case of

privacy invasion by the press [WB90] and there is no universally accepted definition

of privacy. In the context of pervasive systems privacy is a major concern [Cas05,

Rya11, Shi09, KFD10] because, as previously mentioned, the quality, quantity and

accuracy of collected personal data is of great magnitude. Furthermore, the user is

often unaware of generating the data and has little or no control over its generation,

exchange, transfer, and use. So, as Cas argues in [Cas05] pervasive systems could

be considered as surveillance systems threatening individual’s privacy and privacy

should be one of the main security properties of pervasive systems. In particular

lots of concern is about how the collected data is handled, if it is released or even

Chapter 1. Introduction 5

sold to third parties, where it is stored and for how long, and if it is aggregated

and processed to deduce correlated information.

As in the real world, in the electronic world as well, privacy is a difficult property

to define and we rather speak of privacy-related properties instead. These can be

general ones or application specific ones. Moreover, privacy is a complex property

to enforce and verify since it is multi-level and multi-protocol, i.e. it crosses more

than one layer, if not all layer of the protocol stack, and typically has to be enforced

by more than one protocol in order to be satisfied [AO05]. While some aspects of

privacy are more suited to be enforced by policies as for example the sale of private

information to third parties, others should be part of the verifiable properties

embedded in the design of a system. However, privacy seems to be often in conflict

with other system requirements as for example accountability, or in contrast with

the nature of the system itself as in the case of location based services. For these

reasons user’s privacy is often overlooked or enforced by complex mechanisms

which are difficult to verify by hand.

The most obvious privacy-related property is data confidentiality, however it is

generally not sufficient to ensure confidentiality in order to achieve privacy, for

example a user identifier could be public and his identity could be disclosed by

correlating his activity [NS09, NS06, BZj06]. Moreover multiple accesses to a

system from different locations by the same identifier could directly or indirectly

reveal a user’s position or his movement patterns. Hence, anonymity and unlinka-

bility of a user’s activity and access to a system are important aspects of a user’s

privacy. Location privacy is one of the privacy aspects which has been the subject

of many studies [BS03, Kru09, GHT05], overall from the computational point of

view [Kru09] and several techniques have been proposed to protect a user’s loca-

tion as for example obfuscation, pseudonymity and mix-zones [BS03]. Examples

of application specific privacy requirements are the ones arising in the field of elec-

tronic voting such as voter’s privacy, which concerns the impossibility of linking

a voter to his ballot from both third parties and authorities, coercion resistance,

Chapter 1. Introduction 6

i.e. the impossibility for a voter to prove how they voted and revocable anonymity

which is the possibility for an authorised entity to reveal the identity of a single

voter. Another interesting privacy-related property which can be for example de-

sirable for private information stored on portable devices is forward privacy which

requires that the secrecy of certain information holds even after the device has

been corrupted. For example, it may require that session keys are not retrievable

even in the event that the master keys were disclosed after the device was cor-

rupted. Formal definitions of anonymity and unlinkability are given in [ACRR10],

definitions of untraceability and forward privacy are given in [BCdH10] and a def-

inition of voter’s privacy is given in [KR05]. These definitions are all equivalence-

based and often pose challenges for the currently available automatic verification

tools because of the definition of the property itself, because of the structure of

the protocol or because of the algebraic properties of the involved cryptographic

primitives.

In this thesis we are concerned about the latter set of properties and about de-

veloping the theory to automatically verify the compliance of a system to the

relevant privacy related properties. In particular we focus on anonymity and user

unlinkability as defined in [ACRR10].

1.3 Security Protocols and Formal Methods

Security protocols aim to protect sensitive data in particular when communicating

over an unprotected connection, where there is little or no control over the flow

of information and the attacker can intercept, manipulate, replay, inject, replace,

substitute and compare messages as in the Dolev-Yao attacker model [DY81]. This

makes the design of security protocols a notoriously difficult task since it does not

only involve the protection of data through some sort of smart cryptography al-

gorithm but as well the ability of foreseeing how the flow of messages could be

Chapter 1. Introduction 7

used to retrieve, deduce and, get access to sensitive information. Details hid-

den in the protocol logic often allow to break a protocol security without even

breaking the underlying cryptography. A famous example is the attack to the

Needham-Schroeder protocol [NS78, Low96a] which allows an attacker to authen-

ticate instead of a legitimate user by performing a man-in-the-middle attack. A

more recent example is the traceability attack on the French e-passport which

allows one to trace an e-passport holder by performing a replay attack [CS10].

Hence, to declare a protocol secure one should check it against any possible ad-

versary and any possible interaction. Moreover, one would need to state what

being secure means for the protocol, i.e should specify the security properties the

protocol aims to achieve, and this would depend on the purpose of the protocol

and on the application requirements. Hence, to evaluate the security of a protocol

it is very important to rigorously define both the protocol itself and the desired

security properties.

Formal methods help establishing the security of protocols in three ways:

• rigorously modelling security protocols and the attacker model

• rigorously defining security properties

• evaluating the protocols against the desired properties

There are two different formal approaches to the problem of protocol security. The

computational approach is closer to the actual protocol implementation, represents

messages as bitstrings, cryptographic functions as polynomial time algorithms and

the adversary as any probabilistic polynomial time algorithm and can give strong

guarantees on the security of the cryptographic algorithms. However, proofs in this

setting can be very long, difficult, error prone and not very accessible to careful

scrutiny. Moreover they are not very well suited for automation.

In this thesis we will use symbolic methods instead. Symbolic methods abstract

from the details of the cryptographic algorithms. Messages are represented by

Chapter 1. Introduction 8

terms and cryptographic primitives are represented by function symbols which

can be applied to terms. The properties of cryptographic primitives are abstracted

by algebraic properties. In general, cryptographic primitives are assumed to be

perfect. Hence, the adversary can have any interaction with the protocol, injecting,

modifying, replaying, intercepting messages but cannot break cryptography. One

way of expressing security properties is in terms of reachability-based property, i.e

in terms of the possibility of executing the protocol in the adversarial environment

and reaching a state with specific characteristic, as for example a state where a

certain term is emitted on a public channel. Another way is in terms of equivalence-

based property, i.e. in terms of the indistinguishability between two protocols.

Usually, one is called the ideal protocol since it satisfies the required property

by construction, while the other is the real protocol. If the adversary cannot

distinguish the real protocol from the ideal one, we say that the real protocol

satisfies the required property.

As in the case of computational methods, in the symbolic world the security of

protocols can be established by means of long, tedious and error prone manual

proofs or by manually exhibiting a counter-example i.e. an attack. However, lots

of work focus on automating the proofs and/or search for counter-examples. In this

area there are still plenty of challenges and room for improvements and researchers

continuously aim to expand automatic verification to larger classes of protocols

and equational theories for both reachability and equivalence-based properties.

Some of the most famous formalisms in the field of symbolic methods are pro-

cess calculi, constraint systems and strand spaces. In this thesis we will use the

applied pi-calculus [AF01] which is a calculus to model cryptographic protocols

aiming to overcome the limitations of the spi-calculus [AG97] by offering flexi-

bility in the range of cryptographic primitives represented by function symbols

and equational theories and making the adversary knowledge explicit thanks to

the frame construct. Many results obtained using different formalisms such as

spi-calculus and constraint systems can be transposed into the applied pi-calculus.

Chapter 1. Introduction 9

We report some of the most relevant. The general problem of security is shown

to be undecidable even for a bounded number of sessions for both reachability-

based properties [DLMS99] and for equivalence-based properties [H02]. Adding

some restriction to the calculus and or to the equational theory does usually yield

decidability results.

One of the most common restriction is to consider only a finite number of sessions.

Automatic verifiers for bounded processes can be very useful to find protocol flaws,

however when they do not find any attack, no guarantees of the absence of attack

can be derived for a number of sessions greater than the one used to run the

verifier on the protocol. To obtain general security results an unbounded number

of sessions should be considered. Another common restriction to the calculus

consists in forbidding else branching, and the equational theory is often required

to be convergent.

For what concerns reachability based properties, NP-complete procedures which

consist into transforming constraint systems into solved form are given in [CLCZ10,

RT03]. Deducibility and static equivalence are shown to be decidable for subterm

convergent theories in [AC06] but the algorithm has not been implemented and

it is not parametric with respect to different equational theories. However, some

procedures for deducibility and static equivalence of bounded processes and con-

vergent equational theories have been implemented [BCD09, CDK09]. The YAPA

tool [BCD09] additionally supports blind signatures and homomorphic encryption

and it is sound and complete when it does not fail. Kiss [CDK09] is correct and

terminates on subterm convergent theories.

The AVISPA tool [ABB+05, Pro] is a common platform for a set of four security

protocol verifiers: On-the-fly Model-Checker (OFMC) [BMV03], Constraint-Logic-

based Attack Searcher (CL-AtSe), SAT-based Model-Checker (SATMC) [ACC14]

are reachability properties verifiers for bounded protocols, OFMC is correct and

complete and supports the specification of algebraic properties. While the Tree

Chapter 1. Introduction 10

Automata based on Automatic Approximations for the Analysis of Security Pro-

tocols (TA4SP) [BHKO04] supports unbounded processes, however when it finds

an attack it does not report an attack trace so it is difficult to assess if the attack is

a false attack due to the over-approximation. Moreover, TA4SP does not support

user-defined equational theories.

The Scyther tool [Cre08] supports the verification of reachability properties for

both bounded and unbounded number of sessions with no else branches and for

a fixed set of primitives. When Scyther finds an attack it provides attack traces.

Scyther is guaranteed to terminate for a maximum number of five sessions and it

does not give false attacks.

A decision algorithm for trace equivalence of bounded processes with no else

branching and a pre-defined signature consisting of pairing, symmetric and asym-

metric encryption is given in [CCLD10] along with a prototype implementation

for checking deducibility and static equivalence but not for deciding trace equiv-

alence for which it is required to implement a further procedure that generates a

pair of constraints for each possible interleaving. The AKiss tool implements two

procedures for bounded processes with no else branches and for convergent rewrite

systems with the finite variant property, one under-approximate trace equivalence

and can be used to prove protocols correct, the other over-approximate trace equiv-

alence and can be used to discard incorrect protocols. The tool can be used to

check observational equivalence of determinate processes since in this case obser-

vational equivalence coincides with the under approximation of trace equivalence.

The decidability of observational equivalence of simple processes with no replica-

tion and with no else branches for subterm convergent equational theories is shown

in [CD09]. The decision procedure relies on the decidability of the equivalence of

constraint systems given in [Bau05]. This procedure has not been implemented

so far. To the best of my knowledge the only tool able to automatically verify

Chapter 1. Introduction 11

both reachability-based [Bla09] and equivalence-based [BAF05] properties for un-

bounded processes with else branches and convergent theories is the ProVerif

tool [Bla01]. Blanchet, Abadi and Fournet [BAF05] introduce the concept of bi-

process, which is a pair of processes that differ only in the choice of some term.

ProVerif can prove observational equivalence of bi-processes. However, the pro-

cedure is sound but not complete, meaning that the tool can prove that a prop-

erty holds on the given protocol model but when it outputs an attack trace this

could be a false attack. Moreover the tool may not terminate. ProVerif has

many limitations [PR11], for example, it is not possible to fully model the alge-

braic properties of XOR or Diffie-Hellman exponentiation and it can only check

observational equivalence of processes with same structure but differing in some

terms. Some tools based on ProVerif have been developed aiming to overcome

its limitations. Küsters and Truderung develop methods to transform theories

using XOR and Diffi-Hellman exponentiation into theories accepted by ProVerif

and give prototype implementations [KT11, KT09]. Delaune et al. [DRS08] in-

troduce strong phases to model processes that synchronize at a certain point of

their evolution after which no other process can execute instructions of the part

of the protocol preceding the synchronization. Furthermore, they introduce a

data swap mechanism so to expand the class of equivalent processes verifiable by

ProVerif and hence better approximating observational equivalence. These ex-

tensions are implemented in the tool proswapper [KSR08]. A further step towards a

better approximation of observational equivalence is taken by Cheval and Blanchet

in [CB13]. They extend ProVerif to support rewrite rules with inequalities as

side conditions, in particular they can have an alternative definition of if then else

and avoid false attacks due to differences in the branching of the examined pairs

of protocols. This allows for example to verify that if a = a then P else P is

observationally equivalent to if a = b then P else P , while ProVerif would

exhibit a false attack even on this simple process. Another ProVerif extension,

Chapter 1. Introduction 12

KISS AKISS YAPA AVISPA AVISPA (SATMC, ProVerif Scyther
(TA4SL) OFMC, CL-AtSe) and extensions

User defined theories
√ √ √

x x (OFMC
√
)

√
x

Unboundedness x x x
√

x
√ √

Branching x x x
√ √ √

x
Attack traces x x x x

√ √ √

No false attacks
√ √ √

x x(OFMC
√
) x

√

Termination
√

x x x x
√

Reachability
√

x
√ √ √ √ √

Equivalence x
√

x x x
√

x

Table 1.1: Automatic Verification Tools Comparison

which is closely related to the work presented in this thesis, is the one devel-

oped by Arapinis et. al. in [ARR11]. They extend the ProVerif calculus so to

explicitly model protocols with persistent state and implement a tool that trans-

lates processes with state into Horn clauses so to be able to automatically verify

reachability-based properties by feeding the translation result to ProVerif. An

extension of the applied pi-calculus and related definitions and equivalences for

stateful processes is given in [ALRR14], interestingly they give a proof of the

coincidence of labelled bisimilarity and observational equivalence. The WebSpi

library [BBM12, BBDM13, BBDM14] allows the automatic and sistematic anal-

ysis of application level protocols using the ProVerif tool. WebSpi was used to

analyse single-sign-on protocols and web storage services and proved effective in

finding known and novel practical attacks.

In table 1.1, we summarize some of the characteristic of the mentioned tools.

Further details on the comparison between automatic verification tools can be

found in [DSHJ10, CLN09, LTV10, PR11]

The problem of privacy formalization is tackled by Arapinis et al.. They define

weak and strong untraceablity properties in applied pi calculus and illustrate them

using RFID tag related examples [ACRR09]. They later refine the given definitions

and in [ACRR10] they define strong and weak unlinkability and strong and weak

anonymity properties in applied pi calculus and apply them to a case study. They

show that unlinkability does not imply anonymity and give a concrete example

Chapter 1. Introduction 13

of this showing that the protocol used by the French RFID e-passport preserves

anonymity, but does not preserve unlinkability.

1.4 Contributions

Privacy in all its different forms is usually expressed from a symbolic methods point

of view in terms of some sort of equivalence. However, automatic support for the

verification of equivalence-based properties is not as developed as the one for the

verification of reachability properties. So privacy properties do often challenge the

currently available tools and theories.

In this work we contribute to the analysis of privacy-related properties by tak-

ing steps towards the automatic verification of equivalence based properties and

by showing how our techniques work on a real world case study, namely mobile

telephony systems. We show how some definitions of unlinkability and anonymity

as given in [ACRR10] can be adapted to be used for automatic verification using

the ProVerif tool. Using this technique we analyse a set of real world protocols

used in mobile telephony. We point out some privacy flaws in the mobile tele-

phony standard specifications and we confirm them on a real network thanks to a

prototype implementation. Moreover, we propose and automatically verify some

fixes of the flawed protocols. We will show that the technique we use to verify

anonymity and unlinkability suits protocols with no initialization phase but fails

when used in particular to automatically verify protocols with an initialization

phase and states. We manually analyse the unlinkability property of a real pro-

tocol with states used in mobile telephony to assign new pseudonyms to mobile

phones (called TMSI reallocation procedure). This analysis is complemented by

an experimental study of the protocol. Thanks to both experimental and for-

mal analysis we are able to expose some weaknesses of the use of pseudonyms in

mobile telephony systems. As part of this study, we present a formal proof of

Chapter 1. Introduction 14

the unlinkability of a straightforward fix of the pseudonym’s assignment protocol.

This manual proof is one of the few manual proofs of observational equivalence

in the literature [CW12b, KR05]. Finally, in an attempt to further the class of

automatically verifiable protocols using ProVerif we propose an extension of it

to support the automatic verification of equivalence based properties of protocols

with states. This extension is based on the theory developed for the StatVerif

tool. We will show some examples and point out the limitations of the current

version of the tool.

Structure The first two Chapters focus on the background knowledge the work

presented in this thesis is based on. In Chapter 2 we introduce the applied pi-

calculus, a well established calculus for the analysis of security protocols. Chap-

ter 3 presents mobile telephony systems and some of the tools available for the

analysis of the communication over the radio link. In Chapter 4 we present flaws

in the identity management of mobile telephony systems. More subtle attacks to

the privacy of mobile telephony users are presented in Chapter 5. In Chapter 6

we present some privacy friendly fixes of the flawed protocols and subsequently

we show how to automatically verify the fixed procedure in Chapter 7. Chapter 8

presents the work we undertook to extend ProVerif to the automatic verifica-

tion of observational equivalence based properties of stateful protocols. Finally, in

Chapter 9 we conclude with some final remarks and ideas for further work.

Publications The IMSI paging attack (Section 4.4.1), the AKA protocol attack

(Section 5.2.2), their prototype implementation (Section 5.3), their fixes (Sec-

tion 6) and formal verification (Section 7) were first published at the CCS12 con-

ference:

• Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan, Nico Golde,

Kevin Redon, and Ravishankar Borgaonkar. New privacy issues in mobile

Chapter 1. Introduction 15

telephony: Fix and verification. In Conference on Computer and Communi-

cations Security, CCS, pages 205–216. ACM, 2012

The pseudonyms management analysis (Section 4.4.2), the TMSI reallocation at-

tack (Section 5.1.1) and the formal proof of unlinkability (Section 7.3) were first

published at the NDSS14 conference

• Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, and Mark Ryan. Pri-

vacy through pseudonymity in mobile telephony systems. In Network and

Distributed System Security Symposium, NDSS, 2014

The prototype implementation of the IMSI paging and AKA protocol attack was

built by Nico Golde, Kevin Redon and Ravi Borgaonkar at the secT labs, Tech-

nische Universität, Berlin.

I personally contributed to the work presented in this Thesis by extracting the

protocols from the mobile telephony standard documents, modelling them for the

verification with the ProVeriftool and conducting the manual proofs of unlink-

ability of the fixed TMSI reallocation B and of soundness of our extension of

ProVerifto the automatic verification of equivalence of stateful protocols C.

2

Background: Applied

Pi-Calculus

In this Chapter we introduce the applied pi-calculus, a well established calcu-

lus to reason about security protocols. Furthermore, we give some definitions of

equivalence and show how these can be used to define security properties and in

particular how they are used in [ACRR10] to define privacy related properties such

as unlinkability and anonymity.

In contrast with the computational methods which concern the verification of the

cryptographic functions involved in security protocols, formal methods assume

perfect cryptography and model security protocols as sequences of interactions

between the agents involved in the protocol execution. Different formal methods

approaches use different abstractions to represent security protocols.

Logic based approaches represent protocols in terms of logic formulae and inference

rules. Process calculus-based approaches model protocol participants as processes

running in parallel and interacting through message exchange. Other symbolic

approaches represent protocols in terms of the sequences of messages describing

the protocol traces.

17

Chapter 2. Applied Pi-Calculus 18

Proving the security properties of the modelled protocols using manual proof tech-

niques can be a long and error prone process. However, automatic verification tools

have been developed to automate the proof process. López and Monroy [PM08]

identify three main approaches to automatic verification: belief logic, state explo-

ration (also known as model checking) and theorem proving.

Belief logic, introduced by Burrows et al. in [BAN90], is based on a set of assertions

such as “A believes B” and “A sees B” and deduction rules. These abstractions

allow capturing and inferring what agents can derive from the messages received

while executing a protocol.

Model checking approaches [ABB+05, BMV03, ACC14] deal with the verification

of protocols represented by the set of possible execution traces. Model checkers

explore all the possible execution paths of the protocol model, while checking at

each state if the required properties hold. If a property is not satisfied at a given

state, the model checker can produce a counter-example by following the trace

which led to that state. Model checking techniques work on bounded protocols

and are well suited to find weaknesses. However they suffer from the state explosion

problem since all possible protocol traces have to be checked against all possible

interactions with the adversary.

Theorem proving-based approaches are logic based approaches. They aim at pro-

ducing a proof that a property holds on the given representation of a protocol.

Blanchet’s ProVerif tool [Blab] belongs to this category. It uses prolog rules to

represent protocol’s messages and the attacker deduction capabilities. Abstrac-

tions are made to make the verification terminate on more processes. As a result

of these abstractions ProVerif can produce false attacks, though it does not pro-

duce false proofs, i.e. if there is an attack ProVerif will find it, or it may not

terminate. ProVerif accepts as input descriptions of protocols given in applied

pi-calculus which is the formal language we use to analyse security protocols. As

Chapter 2. Applied Pi-Calculus 19

we pointed out in Chapter 1, many automatic verification tools have been devel-

oped, however ProVerif is the only tool supporting the automatic verification

of both reachability and equivalence properties for unbounded protocols with else

branches and user defined equational theories.

In this thesis we will use the applied pi-calculus to model and reason about se-

curity protocols and their security properties. We adopt the ProVerif tool to

automatically verify privacy properties defined in terms of equivalence relations

and we further develop the theory behind ProVerif and StatVerif in order to

support the automatic verification of observational equivalence based properties

of stateful protocols.

2.1 Applied pi-calculus

The applied pi-calculus is a formal language for modelling concurrent processes

introduced by Abadi and Fournet [AF01] to ease the modelling of cryptographic

protocols. It extends the pi-calculus with a set of function names to model cryp-

tographic primitives; a set of variables and an equational theory to model an

attacker’s capabilities; and active substitutions to model an attacker’s knowledge.

In this Chapter we will introduce the applied pi-calculus and the formal defini-

tions of privacy properties we are interested in verifying, namely unlinkability and

anonymity.

2.1.1 Syntax

The messages exchanged during a protocol execution are modelled by terms. The

terms of the applied pi-calculus are built over an infinite set of names, an infinite

set of variables and a signature Σ, which is a finite set of function symbols each

Chapter 2. Applied Pi-Calculus 20

with an arity. A function symbol with arity 0 is a constant symbol. Terms are

defined by the following grammar:

L,M,N, T ::= Terms

a, b, c, . . . Name

x, y, z, . . . Variable

f(M1, . . . ,Ml) Function application

Where f ∈ Σ and l matches the arity of f . A term is ground if it does not

contain free variables. We use metavariables u, v, w to range over both names and

variables.

We rely on a sort system for terms. Terms can be of a base sort or a channel sort.

Base sorts include Integer, Nonce or Key or simply a universal base sort such as

Data. If τ is a sort then Channel(τ) is a sort for channels carrying terms of sort

τ . Variables can have any sort. For simplicity, function symbols take arguments

and produce results of base sort only. We assume that terms are well-sorted and

that substitutions preserve sorts.

The signature Σ is equipped with an equational theory E, which is a set of equiv-

alence relations on terms that is closed under substitutions of terms for variables,

application of function symbols and one-to-one renaming. We consider two terms

to be equal M = N , if the equality M = N holds with respect to the equational

theory E (E ⊢M = N).

Example 2.1. As an example, let’s consider the following signature Σ:

Σ = {senc/2, sdec/2, aenc/2, adec/2, verify/2, sign/2, pub/1, fst/1,
snd/1, pair/2, true/0}

And equational theory E:

sdec(y, senc(y, x)) = x

adec(y, aenc(pub(y), x)) = x

Chapter 2. Applied Pi-Calculus 21

verify(pub(y), sign(y, x)) = true

fst(pair(x, y)) = x

snd(pair(x, y)) = y

The first two equations model respectively the properties of symmetric and asym-

metric encryption. The third models a signature verification function. The last

two equations model first and second projections of a pair. Let M and N be two

terms:

M = fst(pair(a, b)) and N = adec(k, aenc(pub(k), a)).

We have that M = N modulo the equational theory E and write E ⊢M = N .

The grammar for processes of the applied pi-calculus is the following:

P,Q,R ::= Plain processes

0 Null process

P | Q Parallel composition

!P Replication

ν n.P Name restriction (“new”)

if M = N then P else Q Conditional

u(x).P Message input

u 〈N〉 .P Message output

The null process does nothing. The parallel composition of P and Q represents the

parallel execution of P and Q. The replication of a process P acts like the parallel

execution of infinite copies of P . The name restriction ν n.P creates a new name n

whose scope is restricted to the process P and then runs P . The conditional checks

the equality of two terms M and N and then behaves as P or Q accordingly. Note

that we check for equality modulo the considered equational theory, rather than

syntactic equality of terms. The message input u(x).P represents a process ready

to input from the channel u. The actual message received will be substituted to

x in P . The syntactic substitution of a term T for the variable x in the process

Chapter 2. Applied Pi-Calculus 22

P is indicated by P{T/x}. The message output u〈N〉.P describes a process ready

to send a term N on the channel u and then to run P .

Plain processes are extended with active substitutions. The grammar for extended

processes is the following:

A,B,C ::= Extended processes

P Plain process

A | B Parallel composition

ν n.A Name restriction

ν x.A Variable restriction

{M/x} Active substitution

An active substitution {M/x} offers the handle x to access the term M . If not

under restriction the handle x has a global scope and can be thought of as being

part of the environment or adversary knowledge. When restricted like in the

process ν x.({M/x} | P) it acts as a local declaration, like let x = Min P . We

assume substitutions are cycle-free. We use σ and τ to range over substitutions,

we write Tσ for the result of applying σ to the free variables of T .

Names and variables have scopes which are delimited by restriction and input.

The set of free names fn(A) of an extended process A is the set of all names a

which occur in A and are not under restriction ν a in A. The set of free variables

fv(A) of an extended process A is the set of all variables x which occur in A and

are not bound by an input u(x) or under restriction ν x in A. The set of bound

names bn(A) of an extended process A is the set of all names a which occur in

A and are under restriction ν a in A. The set of bound variables bv(A) of an

extended process A is the set of all variables x which occur in A and are bound

by an input u(x) or a restriction ν x in A. An extended process A is closed if all

the variables occurring in A are either bound or defined by an active substitution.

Chapter 2. Applied Pi-Calculus 23

A frame is an extended process built from 0 and active substitutions by parallel

composition and restriction. We use φ and ψ to range over frames. The domain

dom(φ) of a frame φ is the set of variables x which occur in φ and are not under

restriction. The frame φ(A) of an extended process A is obtained by replacing

every plain process in A with 0. The domain dom(A) of an extended process A is

the domain of φ(A). The frame of an extended process A can be seen as the static

knowledge that A exposes to its environment at a given point of its execution. In

fact, the frame of an extended process and hence the knowledge it exposes to the

environment can grow during the process execution.

Example 2.2. We can now model processes of the applied pi-calculus. As an

example let us consider the following process:

P = ν k.c(x).if x = hello then c 〈pub(k)〉 else 0

Which creates a new key k, waits for a message on the public channel c. If the

received message is hello, the process sends its public key on the channel c.

The frame of P is empty φ(P) = ∅. P has two free names fn(P) = {c, hello} and

a bound one bn(P) = {k}. Moreover, P has a bound variable bv(P) = {x} but no

free ones. Hence, dom(φ(A)) = dom(A) = ∅.

2.1.2 Operational Semantics

A context C[] is a process or an extended process with a hole. An evaluation

context is a context whose hole is not under a replication, a conditional, an input

or an output. We say that a context closes A when C[A] is closed, where C[A] is

the process obtained by filling C’s hole with A.

Chapter 2. Applied Pi-Calculus 24

Structural Equivalence. Structural equivalence ≡ is the smallest equivalence

relation on extended processes that is closed by α-conversion on both names and

variables, by application of evaluation context, and such that:

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P |!P
New-0 ν n.0 ≡ 0

New-C ν u.ν v.A ≡ ν v.ν u.A

New-ParA A | ν u.B ≡ ν u.(A | B) where u ∈ fv(A) ∪ fn(A)
Alias ν x.{M/x} ≡ 0

Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x} where M =E N

Intuitively, structural equivalence is an equivalence relation relating processes

which model the same thing but are syntactically different, as for example the

parallel execution of two processes A and B which can be modelled as A | B or

B | A. The rules for parallel composition and restriction are self-explanatory.

The Alias rule allows the introduction of an arbitrary active substitution, the

Subst rule describes how an active substitution is applied to a process it is in

contact with. The Rewrite rule allows rewriting of terms which are equivalent

with respect to the considered equational theory E.

Internal Reduction. Internal reduction is the smallest relation on extended

processes closed by structural equivalence and application of evaluation contexts

such that:

Chapter 2. Applied Pi-Calculus 25

Comm c〈M〉.P | c(x).Q→ P | Q{M/x}
Then if M =M then P else Q→ P

Else if M = N then P else Q→ Q

for ground terms M,N where M =E N

The rule Comm describes the synchronization of input and output actions on a

channel c. The result of the comparison between terms in the conditional rules

depends on the equational theory E. Intuitively, internal reductions capture the

internal behaviour of processes, that is the actions a process can execute without

interacting with the environment.

Labelled Reduction. The labelled reduction relation extends the internal re-

duction enabling interactions with the environment. The labelled reduction is a

ternary relation A
α→ A′ where the label α is of the form:

• c(M) where c is a channel name and M is a term that may contain names

and variables. This label corresponds to an input of M on the channel c.

• c〈u〉 where u is either a free channel name or a free variable of base sort.

This label corresponds to the output of u on the channel c.

• ν u.c〈u〉 where u is either a bound channel name or a bound variable of base

sort. This label corresponds to the output of either a bound channel name

or a bound variable u on the channel M .

The operational semantics is extended with the following labelled reductions:

Chapter 2. Applied Pi-Calculus 26

In c(x).P
c(M)−→ P{M/x}

Out-Atom c〈u〉.P c〈u〉−→ P

Open-Atom
A

c〈u〉−→ A′ u 6= c

ν u.A
ν u.c〈u〉−→ A′

Scope A
α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

Struct A ≡ B B
α−→ B′ B′ ≡ A′

A
α−→ A′

The rule In allows a process to input a term M which is then substituted for

the free variable x in the continuation P of the process. Out-Atom only allows

the output of channel names and variables of base sort; the output of a term M

can be obtained by reference, instantiating an active substitution ν x.{M/x} and

outputting the handle x. The rule Open-Atom allows the output of either a

restricted name or a restricted variable of base sort and hence extends its scope

to the environment.

We use the notation →∗ or ⇒ to indicate an arbitrary number of internal reduc-

tions. We write
α⇒ to denote an arbitrary number of internal reductions followed

by a labelled reduction and then an arbitrary number of internal reductions, i.e.
α⇒, equals ⇒ α→⇒

Example 2.3. We can now see how processes evolve and interact with the envi-

ronment. For example, let’s consider the following processes:

P = ν k.c(x).if x = hello then c 〈pub(k)〉 else 0 and

Q = c 〈hello〉 .c(y)

Chapter 2. Applied Pi-Calculus 27

When executed in parallel they can interact in the following way:

P |Q =

ν k.c(x).if x = hello then c 〈pub(k)〉 else 0 | c 〈hello〉 .c(y) (1)

≡ ν k.c(x).if x = hello then c 〈pub(k)〉 else 0 | ν x.(c 〈x〉 .c(y) | {hello/x}) (2)
ν x.c〈x〉→ ν k.c(x).if x = hello then c 〈pub(k)〉 else 0 | c(y) | {hello/x} (3)
c(hello)→ ν k.if hello = hello then c 〈pub(k)〉 else 0 | c(y) | {hello/x} (4)

→ ν k.c 〈pub(k)〉 | c(y) | {hello/x} (5)

≡ ν k.ν y(c 〈y〉 | {pub(k)/y}) | c(y) | {hello/x} (6)
ν y.c〈y〉→ ν k.{pub(k)/y} | c(y) | {hello/x} (7)
c(pub(k))→ ν k.{pub(k)/y} | {hello/x} (8)

We can observe how the structural equivalence rule Alias allows the introduction

of an active substitution (steps 1-2 and 5-6) and hence of a handle variable which

can be used to stand for a term. In fact, terms cannot be directly sent on channels.

The output of the newly introduced restricted variables is obtained by applying the

rule Open-Atom (steps 2-3 and 6-7). The rule Open-Atom frees the variables

and makes them available for input (steps 3-4 and 7-8). Notice how the frame

records the information exchanged by the processes.

2.2 Equivalence Relations

Syntax and semantics of the applied pi-calculus enable us to describe concurrent

processes and their behaviour. The context we introduced earlier represents an

attacker, i.e. any process which may follow or not the protocol rules and interact

with our “well behaving” processes. What we miss now is a way to define the se-

curity properties we want to verify. Security properties are often defined in terms

of equivalences between processes, i.e. as equivalences between an ideal process

which by definition satisfies the security property and the process modelling the

protocol to be verified against that property. A proof of the equivalence of the

Chapter 2. Applied Pi-Calculus 28

two processes is a proof that the examined protocol satisfies the desired security

property. Several kinds of equivalence relations can be defined. In this Section we

present the definition of observational equivalence, static equivalence, trace equiv-

alence and labelled bisimilarity, in Section 2.3.1 we will introduce a formalisation

of privacy related properties in applied pi-calculus.

Definition 2.1. Observational equivalence We write A ⇓ a if A can send a message

on the channel a, that is, if A→∗ C[a〈M〉.P] for some evaluation context C[] that

does not bind a. Observational equivalence (≈) is the largest symmetric relation R
between closed extended processes with the same domain such that ARB implies:

1. if A ⇓ a then B ⇓ a

2. if A→∗ A′ then B →∗ B′ and A′ RB′ for some B′

3. C[A]R C[B] for all closing evaluation context C[]

Intuitively, observational equivalence captures the idea that two processes are in-

distinguishable if their observable behaviour is the same. The observable behaviour

of a process is what an attacker (context) can observe and deduce using the equiv-

alence relations on terms when the process interacts with the environment i.e.

outputs on free channels. Note that the processes are required to be in the rela-

tion R for all closing contexts, this intuitively means for all possible instantiations

of the free variables. For example, let A = if sdec(k, x) = a then 0 else c 〈b〉
and B = c 〈b〉, A and B are not observationally equivalent for C = | {enc(k,a)}/x
since B ⇓ c and A does not. However, B is observationally equivalent to A′ =

ν k.if sdec(k, x) = a then 0 else c 〈b〉 since now for all closing evaluation contexts

sdec(k, x) 6= a and hence A′ ⇓ c iff. B ⇓ c.

Definition 2.2. Static equivalence. Two closed frames φ and ψ are statically

equivalent, denoted φ ≈s ψ, if dom(φ) = dom(ψ) and there exists a set of names

ñ and substitutions σ, τ such that φ ≡ ν ñ.σ and ψ ≡ ν ñ.τ and for all terms

Chapter 2. Applied Pi-Calculus 29

M,N such that ñ ∩ (fn(M) ∪ fn(N)) = ∅, we have Mσ =E Nσ holds if and

only if Mτ =E Nτ holds. We say that two closed extended processes A and B

are statically equivalent (A ≈s B), when their frames are statically equivalent,

denoted φ(A) ≈s φ(B).

Static equivalence captures the equivalence of two processes at a given stage of

their execution, taking into account their output so far. The idea is that if an

attacker cannot distinguish two terms applying the active substitutions generated

so far by the two processes when interacting with the environment then the two

processes are statically equivalent.

Example 2.4. As an example, let’s consider the following frames:

φ1 = ν k.{pub(k)/y} | {hello/x},
φ2 = ν k.({k/x} | {pub(k)/y}) and
φ3 = ν l.{pub(l)/y} | {hello/x}
We have that φ1 ≈s φ3 since they are structurally equivalent but φ1 ≈s/ φ2, since

φ2 satisfies y = pub(x) and φ1 does not.

Definition 2.3. Trace equivalence (∼). Let

trA = A0
α1⇒ A1

α2⇒ · · · αn−1⇒ An−1
αn⇒ An

And

trB = B0
α1⇒ B1

α2⇒ · · · αn−1⇒ Bn−1
αn⇒ Bn

be two traces. We say that trA and trB are trace equivalent, trA ∼ trB, if Ai ≈s Bi

for all i.

Two processes A and B are trace equivalent, if for every trace trA of A there

exists an equivalent trace trB of B and if for every trace trB of B there exists an

equivalent trace trA of A.

Trace equivalence relates processes which can mimic each other’s execution paths

but it does not enforce that internal decisions happen at the same point. A stronger

Chapter 2. Applied Pi-Calculus 30

equivalence relation, labelled bisimilarity, requires processes to be able to mimic

each other through the stages of their execution. While trace equivalence is weaker

and naturally captures the intuition of equivalence of processes it is more difficult

to verify than observational equivalence which is a stronger equivalence relation.

Definition 2.4. Labelled bisimilarity (≈l) is the largest symmetric relation R on

closed extended processes such that ARB implies:

1. A ≈s B

2. if A→ A′ then B →∗ B′ and A′RB′ for some B′

3. if A
α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩ fn(B) = ∅; then B →∗ α−→→∗

B′ and A′RB′ for some B′.

Abadi and Fournet present the following result [AF01]:

Theorem 2.5. Observational equivalence is labelled bisimilarity: ≈=≈l

Which is important from the verification point of view, because labelled bisimilar-

ity can be proved instead of observational equivalence avoiding to have to deal with

the universal quantification over evaluation contexts required by the observational

equivalence.

However, it turns out that for the theorem to hold it should further be required

that active substitutions can only be defined on terms which are not of channel sort

otherwise Bengtson et al. give a counter-example [BJPV11] to Theorem 2.5 can be

found. Indeed, if we consider A = ν c.(c〈a〉.d〈a〉 | {c/x}) and B = ν c.(0 | {c/x}),
we have that A and B are bisimilar because their frames are the same and both

have no transitions. However, A and B are not observationally equivalent because

the context C = x(y) can distinguish them since A | C ⇓d but B | C ⇓d/ . Proofs

of coincidence of labelled bisimilarity and observational equivalence are given by

Liu in [Liu11] and Arapinis et al. in [ALRR14].

Chapter 2. Applied Pi-Calculus 31

2.3 Modelling Security Properties

Security properties can be defined in different ways, which can be categorized

depending on the type of property:

• Reachability properties are properties that can be verified by checking every

single execution trace of a process. If every possible execution trace satisfies

the property condition we say that the property holds. Other kind of reach-

ability properties may require that a particular state can or not be reached.

An example of reachability property is weak secrecy. Weak secrecy requires

that for any adversarial context there is no execution trace leading to the se-

cret being revealed on a public channel. Formally, for all evaluation contexts

C, C[P] 9∗ C[c̄〈s〉.Q] where s is the secret and c is a public channel.

• Correspondence properties are properties that can be verified by checking

that for every execution trace the event e happens before the event e′. An ex-

ample of correspondence property is server authentication. Server authenti-

cation requires that for all execution traces if the event servicedelivered(xA, k),

which indicates that the service was delivered to the client xA using the ses-

sion key k, happens then the event servicerequested(A, xk), which indicates

that A requested a service during a session protected by the session key xk,

happened before on the same trace. Formally, we explicitly define the events

and their parameters in the model of the protocol. A simplified example is

Server ≡ ν k.c(xA).C[servicedelivered〈xA, k〉]
Client ≡ C ′[c〈A〉.servicerequested〈(A, xk)〉.P]
where we require servicedelivered(xA, k) ❀ servicerequested(A, xk) and

A = xA, k = xk. This property ensures to the client A that if it believes

to have ended a session with a server using a certain key k then that server

Chapter 2. Applied Pi-Calculus 32

started a session with the client A using the key k. Other examples of secu-

rity properties which can be defined as correspondence properties are client

authentication, mutual authentication and integrity.

• Equivalence properties are properties that can be verified by checking that

from an attacker point of view the real protocol looks the same as (i.e. is

indistinguishable from) an ideal one which satisfies the desired property by

construction. As an example a secrecy property could require the real system

where a secret s is encrypted and sent over a public channel to be indistin-

guishable (i.e. observationally equivalent) from an ideal system where the

secret is not sent at all (and hence satisfies the secrecy of s by construction).

Formally, we could require the following observational equivalence to hold

C[ν s.c 〈senc(k, s)〉 .P] ≈ C[ν r.c 〈r〉 .P]. Note that here we assume that senc

is a non deterministic symmetric encryption function and that in the ideal

process we send a random nonce r to model an ideal version of it. Other

examples of security properties which can be defined as equivalences are pri-

vacy in electronic voting, strong and weak unlinkability and strong and weak

anonymity.

2.3.1 Privacy Related Properties

In this section, we present the formalization of privacy related properties as given

by Arapinis et al. in [ACRR10], namely strong unlinkability, weak unlinkability

and strong and weak anonymity. For simplicity and because the strong properties

are the focus of this thesis, we omit the formal definitions of the weak properties, we

give an informal definition instead. Note that, the strong untraceability [ACRR09]

and the strong unlinkability [ACRR10] definitions coincide, though the definition

of strong unlinkability [ACRR10] is given in a more general way.

Chapter 2. Applied Pi-Calculus 33

Definition 2.6. Well-formed protocol. A p-party protocol is said to be well-

formed if it is a closed plain process P of the form:

P ≡ ν ñ.(!R1 | · · · |!Rp)

∀i ∈ {1, . . . , p} Ri ≡ ν id.ν m̃.initi.!(ν s.maini)

Where:

1. names and variables never appear both bound and free in P

2. each name and variable is bound at most once in P

3. for all i, initi and maini are any two sub-processes (possibly empty) such

that P is a closed plain process

Intuitively, each one of the Ri processes represent a participant of the protocol.

For example, server and client are two parties involved in most security protocols.

Example 2.5. Let’s consider the following system:

P
def
= ν k.(!S |!C)

Where the processes S and C share a key k and are defined as follows:

S
def
= initS .!mainS

C
def
= ν id.initC .!mainC

where initS and initC are empty processes and

mainS
def
= c 〈req〉 .c(x)

mainC
def
= ν id.c(y).if y = req then c 〈senc(k, id)〉

We can think of S as being a server which identifies the clients C prior to offering

some service. Server and clients share a secret key which is used to protect the

clients’ anonymity from external adversaries.

Chapter 2. Applied Pi-Calculus 34

Definition 2.7. Strong Unlinkability. Let Σ be a signature and E an equational

theory for this signature and let P be a well-formed protocol over Σ, as defined in

Definition 2.6. For all i ∈ {1, . . . , p}, we build the protocol PRi over Σ as follows:

PRi
△
= ν ñ.(!R1 | · · · |!Ri−1 |!R′′i |!Ri+1 | · · · |!Rp)

R′′i
△
= ν id.ν m̃.initi.maini

P preserves strong unlinkability of Ri if P ≈l P
Ri

Informally, strong unlinkability requires a system in which agents execute multiple

times to look the same as a system in which agents execute at most once. The weak

definition of unlinkability instead considers a system to preserve weak unlinkability

if an attacker cannot link two messages as being part of two different sessions

executed by the same principal, hence in this case the attacker can distinguish if

a principal has executed the protocol more than once but not when. The weak

unlinkability properties is given as a non standard trace equivalence property which

makes use of annotated traces and would require some preliminary definitions to

be set. Both strong and weak unlinkability are not currently fully supported by

the automated proof tool ProVerif. In particular, strong unlinkability require

careful modelling since the structure of the pair of processes to be verified (the

real and the ideal) is not symmetric. Weak unlinkability is defined in terms of a

non standard trace equivalence and it is not currently supported by ProVerif.

Example 2.6. Let’s consider the system introduced in Example 2.5:

P
def
= ν k.(!S |!C)

where

S
def
= !mainS

C
def
= ν id.!mainC

mainS
def
= c 〈req〉 .c(x)

mainC
def
= ν id.c(y).if y = req then c 〈senc(k, id)〉

Chapter 2. Applied Pi-Calculus 35

Server and clients share a secret key which is used to protect the clients’ anonymity

from external adversaries. However, note that the use of encryption is not ensur-

ing unlinkability, because multiple uses of the service by the same user can be linked

by an external observer. In fact, the system P can evolve to P1 as follows:

P
α

=⇒∗ ν k.(!S |!C | ν id1.(!mainC

| {senc(k,id1)/y1} | {senc(k,id1)/y2}) | {req/x1} | {req/x2}) = P1

where the client with identity id1 executes twice. The unlinkability property re-

quires the system P to be observationally equivalent to the system P ∗:

P ∗
def
= ν k.(!S |!C∗)

where:

S
def
= c 〈req〉 .c(x)

C∗
def
= ν id.mainC

In this case a client can never execute twice (since there is no replication before

mainC in the client process) hence the system P ∗ can evolve as follows:

P ∗
α

=⇒∗ ν k.(!S |!C∗

| ν id1.{senc(k,id1)/x} | ν id2{senc(k,id2)/y} | {req/z} | {req/v}) = P ∗1

We have that:

φ(P1) = ν id1.({senc(k,id1)/x} | {senc(k,id1)/y}) | {req/z} | {req/v}

and

φ(P ∗1) = ν id1.{senc(k,id1)/x} | ν id2{senc(k,id2)/y} | {req/z} | {req/v}

The two frames are not statically equivalent, since x = y holds in φ(P1) but not in

φ(P ∗1). Hence, P and P ∗ are not labelled bisimilar. However a formal proof would

Chapter 2. Applied Pi-Calculus 36

require a more involved argument, we here just notice that the only way for the

process P ∗ to produce the output of an encrypted id (senc(k, idi)) is by unrolling a

new client process having a new id and hence could only produce frames of the form

of φ(P ∗1). An attacker could distinguish the two systems, and could link executions

involving the same identity in the system P . This happens because we modelled

deterministic encryption and hence the encryption of the client’s id can be linked

to the same client across different sessions.

Let’s now consider a simple modification of the system P :

P = ν k.(!S |!C)

Where we introduce a secret random value r to be sent along with the clients iden-

tities (i.e. we model non deterministic encryption):

C = ν id.!(c(x).if x = req then ν r.c 〈senc(k, 〈r, id〉)〉)

The system P can evolve to P 1 as follows:

P
α

=⇒∗ ν k.(!S |!C | ν id1.(!c(x).if x = req then ν r.c 〈senc(k, 〈r, id〉)〉
| {senc(k,〈r1,id1〉)/x} | {senc(k,〈r2,id1〉)/y}) | {req/z} | {req/v}) = P 1

Where the client with identity id1 executes twice. The system P and P ∗ are labelled

bisimilar, hence P preserves strong unlinkability. Once again, a formal proof would

require a more involved argument, we here just notice that both systems can never

output the same encrypted term twice.

Definition 2.8. Strong Anonymity. Let Σ be a signature and E an equational

theory for this signature and let P be a well-formed protocol over Σ. P preserves

Chapter 2. Applied Pi-Calculus 37

strong anonymity if P ≈l PRi
, where PRi

is defined as follows:

PRi

def
= ν ñ.(!R1 | · · · |!Rp | Rw)

Rw
def
= ν id.ν m̃.initw.!(ν s.mainw)

initw
def
= initi{idw/id}

mainw
def
= maini{idw/id}

Where idw is a name not occurring in P .

Informally, strong anonymity requires a system where the user idw executes the

role Ri (represented by the protocol PRi
) to be undistinguishable from a system

where the user idw is not present at all (i.e. the protocol P which is the ideal

protocol from idw anonymity preservation point of view). The weak anonymity

property instead requires an attacker to not be able to distinguish which identity

initiated a transition, that is cannot link the use of services with the users’ identity

which used them, but may be able to distinguish the presence of different identities.

Weak anonymity is defined in terms of a non standard trace equivalence and it is

not currently supported by ProVerif.

3

Background: Introduction to

Mobile Telephony Systems

The ubiquitous presence of mobile communication devices and the continuous de-

velopment of mobile data applications, which result in high level of mobile devices’

activity and exchanged data, often transparent to the user, make UMTS a good

case study from the security and privacy point of view.

GSM (Global System for Mobile Communication) and UMTS (Universal Mobile

Telecommunications System) are the most widely used mobile telephony stan-

dards with billions of users worldwide. GSM was developed by ETSI (European

Telecommunications Standards Institute) in order to promote a common standard

for the European cellular telephony as a replacement for the multitude of first gen-

eration standards. UMTS is specified and maintained by the Third Generation

Partnership Project (3GPP), it was introduced in 1999 to offer a better support

for mobile data applications by increasing the data rate and lowering the costs of

mobile data communications. Furthermore, UMTS offers an improved security ar-

chitecture with respect to previous mobile communication systems such as GSM.

Both GSM and UMTS have been improved and extended several times. We will

39

Chapter 3. Mobile Telephony Systems 40

use the terms 2G and 3G to indicate the wider set of standards including GSM

and UMTS respectively. Most of protocols and issues presented in the following

chapters are common to both 2G and 3G systems, when this will not be the case,

it will be explicitly pointed out. In the rest of this thesis we will adopt a unified

terminology to address mobile telephony systems components, however 2G and 3G

standards may not use the same terminology even when addressing components

having the same functions/purposes.

In the following sections, we will introduce the 2G/3G network architecture and we

will describe in more details their security features. We will then summarize some

of the well-known weaknesses of mobile telephony systems, along with relevant

work on 2G/3G security.

3.1 GSM/UMTS Architecture

The 2G/3G network architecture, depicted in figure 3.1, integrates both GSM

and UMTS components. The user side of the network consists of Mobile Stations

(MS), this term is used in mobile telephony systems to indicate both the Mo-

bile Equipments (ME) such as mobile phones, and the so-called SIM, or USIM

card (Universal) Subscriber Identity Module in 2G, 3G systems respectively. The

(U)SIM card identifies the user as a legitimate subscriber within a mobile tele-

phony operator network. To access the services offered by a mobile operator, a MS

connects through radio communication technology to the UTRAN (UMTS Terres-

trial Radio Access Network) or GERAN (GSM/EDGE1 Radio Access Network)

network, that is a GSM access network. A mobile station directly communicates

with a BTS (Base Transceiver Station) or Node B which covers the area the MS

is located in. One or more Nodes B are connected to a Radio Network Controller

(RNC), and one or more BTS are connected to a Base Station Controller (BSC)

1EDGE (Enhanced Data rates for Global Evolution) is a standard part of the 2G set aiming
to provide faster bit rates for data application

Chapter 3. Mobile Telephony Systems 41

USIM

ME

MS

RNC

Node B

Node B

Node B

UTRAN

BTS

BTS

BSC

GERAN

VLR

SGSN

MSC

HLR AuC

GMSC

GGSN

Control Network

PSTN

PSDN

SIM

ME

MS

Figure 3.1: 2G/3G Architecture

defining a cell. A group of cells forms a Location Area. RNCs and BSCs manage

the radio resources and inter-cell handover. They are the interface between the

mobile station and the core network. The core network offers circuit-switch and

packet-switch services. The Mobile Switching Centre (MSC) and Gateway Mobile

Switching Centre (GMSC) offer inter and intra-network circuit-switching domain

services, respectively, and interface the 2G/3G systems with the traditional fixed

telephony network. The Serving GPRS2 Support Node (SGSN) and the Gateway

Serving GPRS Support Node (GGSN) offer, respectively, inter and intra-network

packet-switching domain services as well as connecting 2G/3G networks with the

internet. Within the core network the Home Location Register (HLR) stores per-

manent sensitive information of subscribers such as identities, service profiles, and

activity statuses. These informations are linked to the SIM and recorded when

stipulating a contract with the Mobile Network Operator (MNO). 2G/3G sys-

tems offer roaming capabilities between different mobile network operators, and

between the different technologies (provided that the mobile equipment supports

2GPRS (General Packet Radio Service) adds packet switch functionalities to GSM

Chapter 3. Mobile Telephony Systems 42

them), meaning that a mobile station can be connected to a visited network,

the Serving Network (SN), which might be different from the subscriber’s Home

Network (HN) and which could be using a different standard. Each subscriber

has a long term identifier IMSI (International Mobile Subscriber Identity) that

is stored in the (U)SIM and a temporary identifier TMSI (Temporary Mobile

Subscriber Identity), allocated by the serving network to protect the subscriber’s

identity privacy. The Visitor Location Register (VLR) stores temporary informa-

tions about subscribers visiting a given location area of the serving network and

maintains TMSI/IMSI associations. The network operator and each subscriber

share a unique long term secret key used for authentication purposes. This key is

stored in the (U)SIM. The Authentication Centre (AuC) is a protected database

storing associations between subscriber identities (IMSI) and long-term keys.

3.2 GSM/UMTS Security Features

In the rest of this thesis will usually consider a simplified network architecture

so to be able to abstract from the network complexity and concentrate on the

communication protocols taking place between a Mobile Station (MS) and the

Serving Network (SN). When referring to a Mobile Station we will mean both

a mobile phone and the (U)SIM contained in it and belonging to a legitimate

subscriber of a mobile telephony service offered by a legitimate provider. When

referring to a Serving Network we mean both the UTRAN/GERAN Base Station

that is directly communicating with the MS and the complex structure of databases

and servers connected with it and forming the 2G/3G core network. Each MS

has a unique identity associated with the physical device IMEI (International

Mobile Equipment Identity) and a unique identity associated with the (U)SIM

(implicitly linked to the subscriber of a contract with a MNO), that is called

International Mobile Subscriber Identity (IMSI). When a mobile station connects

to a network, a temporary identity (TMSI Temporary Mobile Subscriber Identity)

Chapter 3. Mobile Telephony Systems 43

is assigned to it and is used, instead of the IMSI to identify the MS. To avoid

mobile stations traceability, the 2G/3G standards require periodic updates of the

temporary identity to be performed.

The intended security features of 2G and 3G systems are slightly different, in fact

3G systems aim to overcome the weaknesses of 2G systems such as the lack of

mutual authentication and the use of weak ciphering algorithms.

2G systems aim to provide the following security features [3GP10e]:

• Subscriber identity confidentiality: the property that the IMSI is not

made available or disclosed to unauthorized individuals, entities or processes.

• Subscriber identity authentication: the corroboration by the mobile

network communicating with a mobile station that the subscriber identity

(IMSI or TMSI), sent by the mobile subscriber to identify itself, is indeed

the one claimed.

• User data confidentiality: the property that the user information ex-

changed on traffic channels is not made available or disclosed to unauthorized

individuals, entities or processes.

The 3G communication system aims to improve the security features offered to mo-

bile telephony subscribers, requiring for example mutual authentication between

the user and the network and specifying more precisely the provided user’s privacy

properties in terms of identity confidentiality or anonymity, location confidential-

ity and user untraceability or unlinkability. The security properties stated by the

3G standard are the following [3GP10d]:

• User Identity Confidentiality namely:

– user identity confidentiality : the property that the permanent user iden-

tity (IMSI) of a user to whom a service is delivered cannot be eaves-

dropped on the radio access link;

Chapter 3. Mobile Telephony Systems 44

– user location confidentiality : the property that the presence or the ar-

rival of a user in a certain area cannot be determined by eavesdropping

on the radio access link;

– user untraceability : the property that an intruder cannot deduce whether

different services are delivered to the same user by eavesdropping on the

radio access link.

• Entity Authentication namely:

– user authentication: the property that the serving network corroborates

the user identity of the user;

– network authentication: the property that the user corroborates that he

is connected to a serving network that is authorized by the user’s HN to

provide him services; this includes the guarantee that this authorization

is recent.

• Confidentiality namely:

– cipher algorithm agreement : the property that the MS and the SN can

securely negotiate the algorithm that they shall use subsequently;

– cipher key agreement : the property that the MS and the SN agree on

a cipher key that they may use subsequently;

– confidentiality of user/signalling data: the property that user/signalling

data cannot be overheard on the radio access interface;

Both 2G and 3G systems rely on an Authentication and Key Agreement (AKA)

protocol, on the use of encryption of the confidential data transmitted on the radio

channel and on the use of periodically changing temporary identities, in order

to achieve the above mentioned security properties. Moreover, 3G systems use

integrity protection of the sensitive data. Unlike the 2G authentication protocol,

the 3G AKA protocol allows MS and SN to establish not only a ciphering key but

also an integrity key, and achieves mutual authentication of MS and HN.

Chapter 3. Mobile Telephony Systems 45

3.3 Tools for Experimental Analysis

In this section we give an overview of some open source tools (hardware and

software) available for the experimental analysis of mobile telephony systems or

more in general of radio communication systems.

USRP [Ett09] (Universal Radio Peripheral) is a family of relatively cheap hard-

ware platforms which allow to implement software supported radio devices, i.e.

radio communication devices that rely on software elaboration of the radio signal.

Generally, the USRP is controlled by software installed on a host computer. The

host communicates with the USRP board thanks to an Ethernet or USB connec-

tion. The schematic of the USRP board as well as the open source drivers are

freely available. The USRP can be used to work with different radio bandwidths

depending on the chosen transmitter/receiver board plugged into it. The soft-

ware most commonly used in combination with the USRP for the radio signal

manipulation is GNU Radio.

GNU Radio [gnu06] is an open source software development toolkit providing

radio signal processing packages to ease the development of software radio systems.

It can be used in combination with compatible hardware such as USRP boards or

in simulation mode.

Open BTS [Bur] is a software radio implementation of the base station side

of the GSM air interface and it uses a SIP softswitch or PBX (i.e. a software

switch to connect phone calls from one line to another) hence it combines the

GSM air interface with low-cost VoIP for call and message forwarding (and recep-

tion). It can be used to implement for example private GSM networks and can be

used in combination with USRP and GNU Radio to obtain an inexpensive fully

customizable open source GSM network infrastructure.

Chapter 3. Mobile Telephony Systems 46

Open BSC [WFS+] started as an open source implementation of a GSM Base

Station Controller (BSC) and evolved into the implementation of a software ”GSM

network in a box”. In fact, it is a software implementation of the main functional-

ities of many components of the GSM core network including BSC (Base Station

Controller), MSC (Mobile Switching Center), HLR (Home Location Register),

AuC (Authentication Center), VLR (Visitor Location Register), EIR (Equipment

Identity Register). OpenBSC supports some commercially available off-the-shelf

base stations.

Osmocom-BB [WMEoc] is an open source implementation of a mobile station

GSM protocol stack which can be used with compatible models of mobile phones.

Femtocell is a short range base station for indoor coverage. Commercially

available 3G femtocells have been hacked. The hacking of these devices allows

the analysis of 3G networks and the exposure of device and protocol vulnerabili-

ties [GRB12, Tom13].

HackRF [Gad] is an open source Software Defined Radio peripheral capable

of transmission and reception of radio signals. It enables test and development of

radio technologies.

BladeRF [blaa] is a Software Defined Radio (SDR) platform that enables

the development of fully customized RF devices from firmware to software. Its

transceiver covers a wide spectrum from FM to 4G LTE.

The software and hardware described above make the analysis and exploitation

of mobile telephony systems possible for a wider audience by lowering down the

costs and providing open source specifications, while so far the available hardware

Chapter 3. Mobile Telephony Systems 47

in terms of base stations and mobile stations was only the one whose design was

covered by industry secret.

A Software Defined Radio platform should not end at the hardware, which is why

there is such a strong emphasis on documentation and tutorials. Starting with

basic radio architecture and spanning into modulation techniques, high throughput

USB Linux kernel driver design, basic telecommunication coding schemes, and

MIMO, the platform aims to be the perfect tool for learning modern software

radio design.

The availability of programmable old GSM mobile phones and the osmocom-BB

software allows for example to:

• implement an over-the-air sniffer: to sniff GSM over the air signalling traf-

fic. A phone call sniffer could be implemented as well [NMb], but in this

case some hardware modification is required together with the use of some

software tool to crack the ciphering key used for the encryption of the phone

call;

• locate a mobile phone given a mobile phone number: this technique uses

silent SMS messages [NMb] or silent phone calls [KKHK12] to locate the

victim;

• retrieve the temporary identity TMSI of a given mobile phone: this can be

achieved by using the same technique as the locating attack;

• send legal and forged messages on the air: this can simply be obtained by

modifying the osmocom-BB software in order to create the desired messages.

This could be done for example, in order to analyse the mobile network

reaction to malformed or unexpected messages.

Apart from offering real mobile network operator’s functionalities OpenBSC allows

further to:

Chapter 3. Mobile Telephony Systems 48

• implement a GSM IMSI catcher to retrieve mobile phone IMSIs and locate

mobile phone users;

• send, replay, forge, manipulate messages;

• capture all the incoming and outgoing communications. Note that by using

openBSC, it is not possible to implement a full over the air sniffer, i.e. it is

not possible to capture the traffic of mobile phones not attached3 to it, this

is due to hardware constraints.

• induce mobile phone to attach and use no encryption for the sensitive traffic.

The USRP/openBTS combination allows to:

• implement a GSM over-the-air sniffer (in this case the hardware behaviour

is customizable);

• send, replay, forge, manipulate messages;

• implement a GSM IMSI catcher to retrieve mobile phone IMSIs and locate

mobile phone users [Pag10];

• induce mobile phone to attach and use no encryption for the sensitive traffic.

To the best of our knowledge there are no available open source implementations

of UMTS base stations or mobile phones, however the USRP board could be

programmed in a similar fashion as in the openBTS project to implement an open

source UMTS base station.

3a MS is attached when a dedicated channel has been assigned to it by the base station

Chapter 3. Mobile Telephony Systems 49

3.4 Previous Work on 2G/3G Security and Pri-

vacy

Most of the work on security of mobile telephony systems concerns secrecy, in-

tegrity and authentication properties [BSW00, NMb, ASS09]. There are only few

formal and experimental studies concerning the level of privacy provided to users

by mobile telephony systems.

2G Vulnerabilities.

The identification procedure, consisting in the request of the user identity by the

network followed by a cleartext reply containing the user identity, is acknowledged

in the standard as a breach of the user identity confidentiality [3GP10d, p. 19,

s. 6.2]. This procedure is exploited by the well-known “IMSI catcher” attack,

which is the best known attack to mobile telephony users’ privacy. It consists in

forcing a mobile phone to reveal its identity (IMSI) [Fox97, Str07] by triggering

the identification procedure from a fake operator base station (configured with the

corresponding mobile network and country code settings). Moreover, the 2G fake

base station can then force the attached mobile station to use no encryption for

data and signalling communication and hence it can capture ingoing and outgoing

plaintext traffic. Until fairly recently, implementing an IMSI catcher required

specialised software and equipment such as base stations. However, such devices

have become more and more affordable thanks to software emulation [Pag10].

Foo Kune et al. [KKHK12] present a study on the use of the paging procedure to

locate mobile telephony users. They perform a tracking attack relying on passive

sniffing of paging response messages triggered by placing silent phone calls (ob-

tained by hanging up before the receiving phone rings) to the victim phone. This

technique allows to reveal the presence of the victim in an area monitored by the

attacker. Munaut and Nohl [NMb] previously outlined a similar technique. They

performed a GSM sniffing attack, which allows to eavesdrop a GSM phone call

Chapter 3. Mobile Telephony Systems 50

by using a modification of the osmocom-BB [WMEoc] opensource implementation

of the GSM protocol stack and an old Motorola mobile phone. Differently from

Foo Kune et al., they used a silent SMS to trigger the paging responses needed to

locate the victim. Although these works take advantage of the fact that a TMSI

is allocated for a long time window, they do not analyse the security and privacy

provided by the TMSI reallocation procedure. Moreover, in order to perform the

attack, the adversary needs to know the mobile number of the victim.

Engel showed at the 25C3 conference [Eng] how network signalling messages, trig-

gered when sending/receiving SMS messages, can be used to localize mobile tele-

phony users. He suggests that network operators should use home routing, i.e.

forwarding through the home network, as a countermeasure to this SMS tracking

attack. This attack requires access to the intra-network communication infrastruc-

ture, which although possible may require subscription to a pay per query service.

In Chapters 4, 5, we will analyse the privacy of the more exposed over-the-air

communication which is available to any attacker with a radio enabled device.

We will not assume to have control over the less easily accessible intra-network

communication channel.

The gsmmap project [NMa, MM] uses a variant of the open source GSM protocol

stack developed within the osmocom-BB project to assess and visually render on

a map the level of security and privacy provided by network operators across the

world. In particular, their aim is to check if network operators are protecting

the users from well known attacks by adopting countermeasures such as the use

of A5/3 encryption, padding randomization, and full authentication for outgoing

calls and SMS to prevent impersonation and interception, and the use of regular

TMSI updates, and home routing to prevent Engel’s SMS tracking attack.

3G Weaknesses Resulting from 3G/2G-interoperability. 3G mobile sta-

tions are as well vulnerable to 2G IMSI catcher, in fact 3G systems are fully

interoperable with 2G systems, and 3G mobile stations can roam in 2G networks.

Chapter 3. Mobile Telephony Systems 51

A 3G mobile stations can be induced to attach to a 2G base station by broadcast-

ing a stronger signal with respect to the 3G one. To avoid this, 3G mobile stations

can be configured to use only 3G networks. To the best of our knowledge the

only implementation of a pure 3G IMSI catcher is the one presented in [GRB12]

and is realised using a modified femtocell. Previously proposed attacks on 3G

security exploit the vulnerabilities which are propagated from GSM to 3G when

providing interoperability between the two systems. Most of the reported attacks

of this kind take advantage of well-known weaknesses of the GSM authentication

and key agreement protocol, such as the lack of mutual authentication and the

use of weak encryption. These attacks allow an active attacker to violate the user

identity confidentiality, to eavesdrop on outbound communications [MW04] and

to masquerade as a legitimate subscriber obtaining services which will be billed

on the victim’s account [ASS09]. However, these attacks cannot be carried out on

pure 3G networks, because they rely on the lack of mutual authentication in GSM

and on the possibility of downgrading the communication from 3G to GSM.

3G specific. To the best of our knowledge, the only attack that does not rely on

GSM/3G interoperability has been presented by Zhang and Fang in [ZF05]. This

attack is a variant of the false base station attack and takes advantage of the fact

that the mobile station does not authenticate the serving network. It allows the

redirection of the victim’s outgoing traffic to a different network, for example a net-

work which uses a weaker encryption algorithm or one which charges higher rates

than the victim’s one. Zhang and Fang’s attack concerns impersonation, service

theft, data confidentiality and privacy. The attacks they propose assume an active

attacker controlling a rogue base station and a mobile phone in order to perform

man-in-the-middle attacks and redirection of the over-the-air communication.

Previous Formal Analysis of 3G protocols The 3G AKA protocol in its pure

form (i.e. with no GSM support) has been formally proved to meet some of the

specified security requirements [3GP01], such as authentication and confidential-

ity of data and voice communication. However, privacy related properties such

Chapter 3. Mobile Telephony Systems 52

as unlinkability and anonymity, which are the focus of our work, are not anal-

ysed in [3GP01]. The framework applied in [3GP01] cannot be used to specify

unlinkability and anonymity properties, let alone reason about them. The formal

framework we used allows us to precisely define and verify privacy related proper-

ties. Hence, we can discover privacy attacks on the modelled protocols and propose

solutions which we then formally prove to satisfy the desired privacy properties.

Other Work on 3G Privacy Enhancement A new framework for authenti-

cation has been proposed to provide subscriber privacy with respect to the net-

work [KO06]. In particular, the authors aim to achieve MSs anonymity with re-

spect to the serving network, and location privacy of mobile stations with respect

to the home network. To achieve this purposes, they propose a new mechanism

for the location update and a three way handshake protocol, to be used instead

of the currently used 3G AKA protocol. However, this work is not supported by

a formal model of the AKA protocol, nor does it provide a formal verification

of the properties enforced by the proposed protocols. Moreover, their attacker

model considers the network as not fully trusted, while in this thesis we are only

concerned with third party attackers controlling the radio link communications.

3.5 Our Work on 2G/3G Privacy Analysis

In Chapters 4, 5, and 6 we will investigate the privacy provided by 2G and 3G sys-

tem. In particular, in Chapter 4 we recall a well known privacy weakness of mobile

telephony which makes it possible to break user anonymity, and we reveal possible

privacy leakages produced by signalling procedures of the 2G/3G protocol stack.

Further, we perform some experiments to test the effectiveness of the changing

pseudonym mechanism used by mobile telephony systems. In Chapter 5, we show

two attacks to the user’s privacy. The first one is a replay attack to the TMSI real-

location procedure and affects both 2G and 3G systems, the second affects only 3G

Chapter 3. Mobile Telephony Systems 53

systems and takes advantage of the information leakage resulting from the error

messages produced by the execution of the AKA protocol. Finally, in Chapter 6

we provide privacy enhancing versions of the procedures analysed in Chapters 4

and 5 and we give guarantees on the achieved privacy properties thanks to formal

verification. For this purpose we will use both automatic and manual techniques

and point out advantages and disadvantages of both approaches.

4

Analysis of Mobile Systems’

Identity Management

In this chapter we describe some of the mobile systems protocols that are dealing

with the identity of mobile phone users and point out breaches of the user’s privacy,

which expose a subscriber’s identity and allow an attacker capable of sending and

receiving messages over-the-air to identify the presence of a target mobile phone

(MS) in a monitored area, or even track its movements across a set of monitored

areas. As we will see, the attacker does not need to know any keys, nor perform

any cryptographic operation. In fact, the vulnerabilities exposed in this chapter

take advantage of the poor management of the user identities, due to the fact

that at the time mobile telephony systems were designed, active attacks were

considered too costly and hence unlikely to be performed. In fact, mounting an

attack required very expensive equipment such as a base station. However as we

briefly discussed in Section 3.3, nowadays the development of open source devices

and software has lowered significantly these costs.

We assume that the attacker has unlimited access to the radio link between the

mobile station and the base stations but no access to the communication within the

55

Chapter 4. Analysis of Mobile Systems’ Identity Management 56

core network or between the base stations and the core network. More precisely,

we assume a ‘Dolev Yao’ attacker [DY81] who has full access only to the radio link,

where he can sniff, inject, replay, and modify1 formal analysis messages, but cannot

break the cryptography involved in the protocol, i.e. cannot encrypt/decrypt

without knowing the required encryption/decryption keys.

We only consider a simplified network architecture, since we are interested in third

party attackers having access only to the radio path and not to the wired network

infrastructure. This architecture involves simply the mobile stations and the net-

work. The network models both the UTRAN/GERAN Base Station that the MS

is directly communicating with and the complex structure of databases and servers

connected with it and forming the UMTS/GSM control network. In particular we

do not distinguish between serving network and home network. Hence we abstract

away from any communication within the network and model only communication

between mobile stations and the network. This abstraction allows us to hide de-

tails which are uninteresting for the purposes of our analysis and keep the models

used for verification small, but at the same time precisely model the interactions

over-the-air between MS and network, which are the subject of our analysis. In

the rest of this chapter we will present two procedures of the mobile telephony

protocol stack that involve the mobile station identity, namely the identification

procedure and the paging procedure and we will show how these procedures can

be used to violate a user’s privacy. Furthermore we will present the TMSI real-

location procedure that is the procedure implementing the pseudonym changing

mechanism adopted by mobile telephony systems in order to provide anonymity

and unlinkability. We will close this chapter by experimentally evaluating the

effectiveness of the pseudonym changing mechanism on real networks.

In describing the protocols we use Small Caps for constants and italic for vari-

able message parameters. The content of encrypted messages is enclosed in curly

1The attacker considered in our analysis is quite powerful. However, the attacks we propose
do not require all the characteristics of the DolevYao attacker in particular for example none of
the attacks require modification of the messages over-the-air

Chapter 4. Analysis of Mobile Systems’ Identity Management 57

MS
KIMSI , IMSI

Network
KIMSI , IMSI

Id Req, IMSI Req

Id Resp, IMSI

Figure 4.1: 2G/3G Identification Procedure. The network sends an identity
request to the MS on a dedicated channel. The IMSI Req parameter specifies
that the requested identity is the long term identity, IMSI. The identity IMSI

of the mobile phone is sent in clear on the radio path.

brackets {}.

4.1 Identification Procedure

The identification procedure [3GP10c] allows the network to request the credentials

of a mobile station. In particular, the network can request a mobile station’s IMSI,

that identify the user’s SIM card or better the user as a legitimate one having a

contract with the MNO, or a mobile station’s IMEI, that identify the specific

handset. The identification procedure is always initiated by the network. It is

typically used when a mobile station connects to a network for the first time.

Once the network identifies the MS, it can initiate a procedure to establish a

shared encryption key and then usually assigns a temporary identity, TMSI, to

the MS. The temporary identity is transmitted to the MS in an encrypted fashion

and is used instead of the IMSI in the following communications.

The identification procedure consists of two messages: the identity request message

and the identity response message. The parameter IMSI Req specifies that the

identity requested by the network is the IMSI. The identity response message is

sent in clear along with the requested identity. (see Figure 4.1).

Chapter 4. Analysis of Mobile Systems’ Identity Management 58

4.1.1 Identification Procedure Attack

The identification procedure is acknowledged in the 2G standard as breaching the

user identity confidentiality. The same procedure is used by 3G systems as well.

It allows a passive attacker to overhear an MS’s IMSI. Moreover, any attacker

controlling a tool able to act as a base station can trigger at any moment the

identification procedure and capture the identity response, and thus can trace

the presence of a particular subscriber in the range of the device. Moreover,

he can track the movements of the subscriber by installing tracking devices in

different areas. This attack to the subscribers’ privacy is known as IMSI catcher

attack [Fox97, Str07, Weh09]. Typically, the attacker would control a fake BS

that advertise to be a legitimate MNO’s base station so that its subscribers would

attach to it. Once a subscriber attaches, the fake BS just sends an identity request

and waits for the response.

4.2 Paging Procedure

The paging procedure defined in [3GP11b] is used to locate a mobile station in

order to deliver a service to it, for example an incoming call. The network sends

paging requests in all the most recently visited location areas in order to find

the mobile station. The paging request message is sent on a Common Control

Channel (CCCH) and contains the identity of one or more mobile stations. The

paging procedure is typically run after a TMSI is assigned to the mobile station by

the network, and hence the TMSI should be used to identify a MS in the paging

request. However, the IMSI can be used when the TMSI is not known by the

network.

Chapter 4. Analysis of Mobile Systems’ Identity Management 59

MS
KIMSI , IMSI ,TMSI

Network
KIMSI , IMSI

Pag Req, IMSI

Pag Res, TMSI

Figure 4.2: 3G IMSI Paging Procedure: the paging request message is broad-
cast on a common radio channel and contains the identity of the paged mobile
station (in this case the IMSI) in cleartext. The paging response message con-
tains the mobile phone’s temporary identity TMSI and is sent in clear on a
dedicated channel established between the MS and the network (i.e. messages
exchanged on this channel are meant to be originated by and or addressed to

this particular MS).

A mobile station receiving a paging request message establishes a dedicated chan-

nel to allow the delivery of the service and sends a paging response message con-

taining the most recently assigned TMSI (see Figure 4.2).

4.3 TMSI Reallocation Procedure

A mobile station (MS) is uniquely identified by means of its IMSI. To avoid over-

the-air attackers from identifying and linking a user’s transactions, a temporary

identity called TMSI is assigned by the network and is used to identify the mobile

station in protocol messages sent in clear over-the-air. The mobile station identity

(its TMSI, if available, or its IMSI) is always included in the first message sent

from the MS to the network after the establishment of a dedicated channel. This

allows the network to identify the MS before delivering a service to it. For exam-

ple, the identity is carried in location update requests, CM (Call Management)

requests, and paging responses. The use of TMSIs avoids the exposure of the long

term unique identity (IMSI) and hence provides third-party anonymity to mobile

telephony subscribers. The 3GPP standard specifies that a new TMSI should be

Chapter 4. Analysis of Mobile Systems’ Identity Management 60

MS
IMSI, TMSI0, CK

Network
IMSI, TMSI0, CK

L3 MSG, TMSI0

Management of means for ciphering: CK established

new TMSI1

{TMSI reall cmd, TMSI1, newLAI}rCK

{TMSI reall complete}r′CK

Deallocate TMSI0Deallocate TMSI0

Figure 4.3: 2G/3G TMSI Reallocation Procedure: the TMSI reallocation
procedure is always initiated by the network. The new TMSI, TMSI1, along
with the current Location Area Identifier, newLAI, is sent in an encrypted
message to the mobile station in order to avoid users’ linkability. The TMSI

reallocation procedure is always executed on a dedicated channel

assigned at least at each change of location area. Besides this constraint, the

choice of how often a new assignment is performed within a location area is left to

the network operators [3GP10c]. In order to prevent an adversary linking the old

TMSI with the new one, the assignment of a new TMSI is performed in ciphered

mode. The session key used to encrypt the new TMSI is established by executing

the AKA protocol.

The TMSI reallocation procedure assigns a new pseudonym (TMSI) to a mobile

station. The new TMSI is sent to the mobile station in an encrypted fashion.

Figure 4.3 depicts the TMSI reallocation procedure as defined in the 3GPP stan-

dard [3GP10c, 3GP10d]:

• The mobile station sends a first message on a dedicated channel. This mes-

sage contains the current MS’s temporary identity TMSI0;

Chapter 4. Analysis of Mobile Systems’ Identity Management 61

• upon receipt of this message, the network can identify the MS and estab-

lish means for ciphering of the subsequent communication on the dedicated

channel;

• the rest of the communication is then encrypted and consists of a TMSI

reallocation command message containing a new pseudonym TMSI1 chosen

by the network and the current location area newLAI (the area within which

TMSI1 is meaningful);

• this message is followed by a TMSI reallocation complete message which is

sent by the MS to acknowledge the completion of the reallocation procedure.

If the network does not receive the expected acknowledgment from the MS, it

maintains both TMSI0 and TMSI1 as valid pseudonyms for the the IMSI. The

network can perform a TMSI reallocation at any time whilst a dedicated channel

is established. The standard does not fully specify how often this procedure should

be performed. However, it mandates that it should at least be performed at each

change of location [3GP10c]. The standard defines two options for the management

of the means for ciphering (i.e. to establish the ciphering key CK):

(1) either a fresh ciphering key is established by executing the 2G or 3G authen-

tication procedure (see 3G AKA protocol Section 5.2.1 for more details);

(2) or a previously established ciphering key can be restored by means of the

security mode set-up procedure, which allows the MS and the network to

agree on a ciphering algorithm.

4.4 Subscriber Privacy Analysis

In this section we will report on the privacy weaknesses of the paging procedure

using IMSI and of the TMSI reallocation procedure. In particular, we will show

Chapter 4. Analysis of Mobile Systems’ Identity Management 62

how it is possible to use the paging procedure using IMSI to link the IMSI and

the TMSI currently used by a MS and hence to locate and trace a mobile tele-

phony users. Secondly, we will experimentally analyse the use of TMSIs in mobile

networks and highlight critical scenarios from the privacy point of view.

4.4.1 IMSI Paging Attack

The possibility of triggering a paging request for a specific IMSI allows an attacker

to check a specific area for the presence of mobile stations whose identity is known

to the attacker and to correlate IMSI and TMSI. The observation of the related

paging response allows the correlation of the victim’s IMSI with his current TMSI.

In practice, an attacker would need to confirm the link between the paged IMSI

and the related TMSI by replaying the attack several times.

4.4.2 Experimental Analysis

If a third party that eavesdrops on the radio link was able to identify wireless

messages as coming from a particular mobile phone, he would be able to track the

location of the mobile phone user in real-time. This could lead to stalking and

To ensure confidentiality of a newly assigned TMSI, it is transmitted encrypted

using a session key. Those session keys are established through an authentication

and key agreement procedure (both in GSM and 3G), but for efficiency reasons, a

previously established session key can be restored, to be used in several subsequent

sessions, by means of the security mode set-up procedure.

Our aim is to analyse what conditions are required in order for this arrangement

to guarantee user privacy as intended. In particular, two aspects appear to be

important:

Chapter 4. Analysis of Mobile Systems’ Identity Management 63

1. TMSI reallocation will protect user privacy only if TMSIs are re-allocated of-

ten enough, and at the right times (e.g., when users move between locations).

The 3GPP standard does not rigorously define the conditions under which

TMSI reallocation takes place, leaving the choice to the network operators.

This potentially leaves users open to privacy abuses.

2. The success of TMSI reallocation requires that a wireless eavesdropper can-

not link the new TMSI to the old one. Encrypting the TMSI in the allocation

message is necessary (but may not be sufficient) to ensure that. It turns out

that other factors, in particular the use of fresh session keys for each TMSI

reallocation, are also necessary to guarantee unlinkability of old and new

TMSIs. The 3GPP standard does not mandate this, again leaving user pri-

vacy subject to choices made by network operators.

We monitored over-the-air communications of idle and active MSs in order to un-

derstand how real networks implement user identity confidentiality through the

use of TMSIs, both in terms of frequency of reallocation, and ciphering keys used.

Our experiments confirm that the reuse of previously established keys is a com-

monly adopted policy. However, we show that in case the reuse of encryption keys

is adopted for the execution of the TMSI reallocation procedure, this enables a

linkability attack which makes it possible to link old and new TMSIs.

Our experiments were carried out using an old GSM Motorola C115 mobile phone

in France, UK, Greece, and Italy and using SIM cards from all the major UK,

Greek, and Italian network operators.2

4.4.2.1 Experimental Settings and Scenarios

The Motorola C115 has a TI Calypso baseband chipset which is supported by

the Osmocom-BB project [WMEoc]. The Osmocom-BB project includes an open

2More specifically, we used O2, T-Mobile, Vodafone, and Orange in the UK; Vodafone and
Wind in Greece; Bouygues and Orange in France; and Wind, Vodafone and TIM in Italy.

Chapter 4. Analysis of Mobile Systems’ Identity Management 64

Figure 4.4: Experimental Tools

Figure 4.5: Osmocom-BB architecture

source implementation of the GSM baseband and various other applications aiming

to implement a GSM mobile station. The radio communication functions are

implemented in the firmware which is flashed from a laptop into the mobile phone

through the Osmocon software, by means of a T191 unlock cable (Figure 4.4). The

firmware implements layer 1 of the GSM protocol stack, while layers 2 and 3 are

implemented in specialised applications running on the laptop and communicating

with the mobile phone through the T191 cable (Figure 4.5). In particular, we used

the ‘mobile’ application which implements layer 2 and 3 of the GSM protocol stack

to provide all the basic functions of a mobile phone (network registration, location

update, making and receiving calls, and sending and receiving SMSs). The mobile

phone activities are logged on a shell terminal and the radio communication is

encapsulated in UDP packets sent to a configurable IP address. This traffic can

be captured through the Wireshark network traffic analyser [Com]. Interactions

Chapter 4. Analysis of Mobile Systems’ Identity Management 65

with the mobile phone are enabled by a telnet command interface. This allows one

to manually select a network, start phone calls, send SMSs and service requests,

etc. We captured over-the-air messages using the ‘mobile’ application in different

Figure 4.6: Trace of a UK Vodafone SIM card obtaining a new TMSI
(0xb42c2fdd) on 22/03/12. The same TMSI is still in use on 25/03/12 after

3 days from its allocation.

settings: (1) mobile station in idle state and not moving; (2) mobile station in idle

state and moving across two urban areas; (3) mobile station involved in activities

such as receiving or starting phone calls, receiving or sending SMSs, and requesting

services as for example call diversions.

Since the 3GPP standard merely gives guidelines, real networks differ in the im-

plementation details of the TMSI reallocation. To understand if the different im-

plementations achieve the privacy guarantees they were intended for, we analysed

the traffic captured with the mobile application. In particular, we are interested

in finding out if the frequency of TMSI reallocation execution is high enough to

defeat passive and active tracking attacks, if the policy of changing TMSI at least

at each change of location is actually implemented so to obtain at least location

Chapter 4. Analysis of Mobile Systems’ Identity Management 66

dependent privacy, and if the frequency of execution of the TMSI reallocation pro-

cedure is related to the amount of activity of the MS (i.e., to how often the TMSI

is exposed to overhearing).

4.4.2.2 Findings/Results

The 3GPP standard relies on the use and frequent reallocation of TMSIs in order to

provide user’s untraceability. In particular, it mandates that the TMSI reallocation

should be performed whenever the MS moves between “location areas” (identified

by location area identifiers, LAIs). However, it is known that location areas often

extend over several square kilometres, and a subscriber’s movements are typically

confined within one or two location areas [GHB08, BDE09]. So location areas may

be too large to trigger TMSI reallocations in practice. We report on three different

scenarios showing that some of the actual implementations of the strategy for

changing pseudonyms to avoid tracking are not offering enough privacy guarantees

to the mobile telephony subscribers. Our observations and their consequences on

users’ privacy are discussed in this section3.

The TMSI reallocation procedure is rarely executed. Although in the

standard the privacy offered to mobile phone bearers is based on frequent updates

of TMSIs, our experiments show that the same TMSI can be allocated for several

hours and even days. Moreover, turning on and off the MS does not usually result

in a new TMSI being allocated. As an example Figure 4.6 shows that a TMSI

allocated on 22/03/2012 had not been updated by 25/03/2012, making the phone

trackable for a period of 3 days. This behaviour can be observed for the major UK,

Greek, French and Italian network operators. An attacker could take advantage

of the long life of a TMSI and monitor a few sub-areas using short range devices

in order to obtain a fine grained tracking of his victim within a same LAI.

3The traces that allowed us to draw the conclusions presented are made available for inspec-
tion [tra]

Chapter 4. Analysis of Mobile Systems’ Identity Management 67

We observed that the major UK network operators and the Vodafone and TIM

Italian operators rarely execute the TMSI reallocation even in presence of MS ac-

tivity, but the first message sent by a MS when requesting or receiving a service

contains its TMSI, hence exposes it to eavesdropping third parties. As mentioned

in Section 3.4, TMSI liveness makes it possible to locate mobile telephony users

without alerting them. The attack consists in paging the victim and hence pro-

voking a paging response. To reduce the set of answering TMSIs to the victim’s

one, the attacker must repeat the process several times because more than one

MS could be sending a paging response at the same time. This is possible only

if the TMSI is not reallocated even in case of activity exposing the TMSI (e.g.

receiving calls). The attack in [KKHK12] thus relies on the low frequency of TMSI

reallocations and demonstrates that changing pseudonyms, as mechanism to pro-

vide location privacy, is not effective without a policy for changing of pseudonyms

which takes into account the actual exposure of the pseudonym caused by the

mobile station activity.

A change of location area does not imply a change of TMSI although such

a change is mandated by the 3GPP standard. We observed this behaviour when

capturing the signalling messages of a mobile station moving by coach between

different cities in the UK, using the Orange and the O2 networks where we observed

the same pseudonym being accepted in different location areas with no further

execution of the TMSI reallocation procedure. Assuming an average speed of

70Km/h we observed that a new TMSI was assigned after about 45 min (about

53km) and a second one after about 60 min (about 70km) while we observed a

change of LAI every 5 min on average and hence a new TMSI should have been

allocated, on average, about every 3km. Figure 4.7 shows an example trace where

a TMSI used at location 234/33/1381 (packet no. 668) is accepted at a different

location 234/33/29 (packet no.678).

The fact that a TMSI was accepted in two neighbouring LAIs contradicts the spec-

ification that a TMSI reallocation should be performed at least at each change of

Chapter 4. Analysis of Mobile Systems’ Identity Management 68

Figure 4.7: Trace of a UK Orange SIM card. The TMSI used at location
234/33/1381 (packet no. 668) is accepted at location 234/33/29 (packet no.678),
while the 3GPP standard mandates a TMSI reallocation at each change of

location.

location. However, changing pseudonym when changing location area would pro-

vide location-dependent privacy to the user since it would prevent passive tracking

across different LAIs. The combination of the two behaviours reported so far (i.e.

keeping the same TMSI for a long period of time and not changing it when chang-

ing location area) enables the attacker to both track his victim within an area

and follow him across different areas without doing any extra effort other than

passively sniffing.

Previously established keys are restored and used to encrypt the TMSI

reallocation procedure. Our captures confirm that the reuse of previously

established keys is a policy adopted by real networks and that in particular is

used for the execution of the TMSI reallocation procedure. The experiments we

performed suggest that major UK and Italian network operators4 reuse previously

established keys instead of performing the authentication procedure before each

4UK: Vodafone and T-mobile; Italy: Vodafone.

Chapter 4. Analysis of Mobile Systems’ Identity Management 69

Figure 4.8: Trace of a UK Lebara SIM card attached to the Vodafone network
while travelling on a train. The TMSI reallocation procedure is executed by
reusing a previously established key. The MS first performs a location update
(packet no. 4063), then the authentication procedure to establish a ciphering
key (packets 4065, 4068), followed by the TMSI reallocation procedure (packets
4079, 4081). The following three TMSI reallocations (packets 9691, 9693, 71695,
71697, 92653, 92655) are executed without first performing the authentication

procedure and hence reusing the previously established ciphering key.

execution of the TMSI reallocation procedure. Figure 4.8 shows a trace from a UK

Lebara SIM card attached to the Vodafone network performing a location update

(packet no. 4063). Then the execution of the authentication procedure establishes

a new ciphering key (packets 4065, 4068) and consecutively the TMSI reallocation

procedure (packets 4079, 4081) is executed. The subsequent TMSI reallocations

(packets 9691, 9693, 71695, 71697, 92653, 92655) are executed without previously

performing the authentication procedure and hence we can deduce that they are

reusing the previously established ciphering key.

The reuse of a previously established ciphering key enables a replay attack. We

describe this attack in Section 5.1.1.

Chapter 4. Analysis of Mobile Systems’ Identity Management 70

4.5 Discussion

The experiments we conducted show how the adoption of pseudonyms is not a

sufficient condition to ensure the privacy of mobile telephony users and that real

network implementations leave plenty of room for tracking attacks. We suggest

network operators should adopt activity related policies in order to prevent active

tracking attacks. In general, the execution of the TMSI reallocation procedure

should be more frequent even when the MS is in idle state, so to prevent mere

passive tracking.

Using pseudonyms is a good mechanism to ensure the user’s privacy, provided

that there is enough possibility of mixing within the network, which is usually

the case in mobile telecommunication networks. However, the efficiency of the

pseudonym change strategy depends on many factors which the 3GPP standard

leaves as implementation choices.

We showed that the implementation choices made by real network operators do

not provide a satisfactory level of privacy and leave space for different kinds of

tracking attacks. Moreover, we showed that the loose standard specification can

produce implementations of the TMSI reallocation procedure which are subject to

a linkability attack.

Our experiments were conducted on the GSM network. However, the TMSI re-

allocation procedure is adopted in 3G+ networks as well. Further work and spe-

cialized equipment would be needed so to investigate the usage scenario of TMSIs

and TMSI reallocation in 3G+ networks.

5

Analysis of Mobile Systems’

Protocols

In the previous Chapter we showed how the paging procedure can be exploited to

perform a simple linkability attack and we presented an experimental analysis of

the identity management thanks to which we exposed the presence, in real mobile

networks, of critical behaviour from a privacy point of view. Most of these privacy

critical scenarios lead straightforwardly to breaches of the mobile telephony users’

privacy. In this Chapter, we will show two different attacks which are more subtle.

The attacks we found are both replay attacks and both allow to track the presence

of a user in a monitored area or across a set of monitored areas. The first attack

concerns the 3G authentication and key agreement protocol. The second attack is

a replay attack on the TMSI reallocation procedure which is enabled by the fact

that the reuse of previously established keys is allowed by the standard and, as

we showed in Section 4.4.2.2, is an adopted policy in practice as well. We close

this Chapter explaining how we checked the feasibility of the 3G AKA attack and

of the IMSI paging attack (Section 4.4.1) in practice on real 3G networks using a

hacked femtocell.

71

Chapter 5. Analysis of Mobile Systems’ Protocols 72

MS v
IMSI, TMSI0, CK

MitM
Network

IMSI, TMSI0, CK

L3 MSG, TMSI0

Management of means for ciphering

new TMSI1

{TMSI reall cmd, TMSI1, LAI}rCK

Store TMSI reallocation command

{TMSI reall complete}r′CK

Deallocate TMSI0Deallocate TMSI0

next session

L3 MSG, TMSI1

after k sessions

L3 MSG, TMSIk+1

Management of means for ciphering

Replay stored TMSI reall cmd

{TMSI reall cmd, TMSI1, LAI}rCK

{TMSI reall complete}r′′CK

Figure 5.1: TMSI Reallocation Procedure Attack: the attacker captures a
legitimate TMSI reallocation command message and replays it. If the MS reply
to the replayed message the attacker knows that it is indeed the victim MS.

Chapter 5. Analysis of Mobile Systems’ Protocols 73

5.1 Pseudonymity Issues in Mobile Telephony

Systems

In Chapter 4 we analysed the TMSI reallocation procedure from an experimental

point of view. In this section we demonstrate a replay attack on this procedure

which allows a third party to violate a user’s privacy in spite of the reallocation

protocol. This attack is enabled by the 3GPP standard policy allowing to restore

previously established keys. As shown in Chapter 4 this policy is adopted by real

mobile telephony operators.

In Chapter 6 we will formally analyse a simple fix of the TMSI reallocation proce-

dure. In particular, we will prove that the TMSI reallocation procedure provides

unlinkability in case a new ciphering session key is established before each ex-

ecution of the TMSI reallocation procedure and we will discuss other possible

countermeasures.

5.1.1 TMSI Reallocation Replay Attack

The reuse of a previously established ciphering key enables replay attacks such

as the one depicted in Figure 5.1. An attacker, controlling a radio device able to

sniff and inject messages over-the-air, first captures a TMSI reallocation command

(the second message in Figure 5.1). Later on, when the MS has possibly already

changed its pseudonym but not yet established new keys, the attacker can replay

the captured TMSI reallocation command (one message before last in Figure 5.1).

Since reuse of the session key CK is allowed, the victim’s MS successfully decrypts

the reallocation message and sends the TMSI reallocation complete message. This

allows the attacker to distinguish the victim’s MS from any other even though

in the meantime a different TMSI (TMSIk+1 in Figure 5.1) was assigned to the

Chapter 5. Analysis of Mobile Systems’ Protocols 74

victim’s MS. Indeed, any other MS would not successfully decrypt the message

and thus would not send any reply.

5.2 User linkability issues in 3G systems

5.2.1 3G Authentication and Key Agreement Protocol

The Authentication and Key Agreement (AKA) protocol achieves mutual authen-

tication between a MS and the network1, and establishes shared keys to be used

to secure the subsequent communications. The keys are not exchanged during

the protocol but computed locally by the MS and the SN. According to [3GP10d],

the authentication procedure is always initiated by the SN to the purpose of:

• Checking whether the identity provided by the MS is acceptable or not.

• Providing parameters enabling the MS to calculate a new UMTS ciphering

key.

• Providing parameters enabling the MS to calculate a new UMTS integrity

key.

• Allowing the MS to authenticate the home network.

Each MS with identity IMSI and the network share a different secret long-term

key, KIMSI , assigned to the subscriber by the mobile operator and stored in the

USIM. The secret key allows the MS and the network to compute shared cipher-

ing and integrity session keys to be used for encryption and integrity check of

communications.

1The AKA protocol is executed after a dedicated channel has been assigned to the MS.

Chapter 5. Analysis of Mobile Systems’ Protocols 75

MS
KIMSI , IMSI ,SQNMS

Network
KIMSI , IMSI ,SQNN

new RAND

AK ← f5KIMSI
(RAND)

MAC ← f1KIMSI
(SQNN ||RAND)

AUTN ← (SQNN ⊕ AK)||MAC

Auth Req, RAND, AUTN

AK ← f5KIMSI
(RAND)

XMSG||XMAC ← AUTN

XSQN ← XMSG ⊕ AK
MAC ← f1KIMSI

(XSQN ||RAND)
if MAC 6= XMAC

then RES ←Mac Fail
elseif XSQN < SQNMS

then RES ← Sync Fail, AUTS
else RES ← f2KIMSI

(RAND)

Auth Resp, RES

CK ← f3KIMSI
(RAND)

IK ← f4KIMSI
(RAND)

if RES = f2KIMSI
(RAND)

then CK ← f3KIMSI
(RAND)

IK ← f4KIMSI
(RAND)

else if RES = Sync Fail
then Resynch

elseif send auth failure report

to HN

Figure 5.2: 3G Authentication and Key Agreement (AKA): the authentication
procedure is always initiated by the network and is executed on a dedicated

channel.

A successful authentication procedure establishes a so-called security context which

identifies the set of keys to be used for secrecy and integrity purposes; a Key Set

Identifier (KSI) is used to retrieve the established security context through differ-

ent sessions. Once a security context is established it is considered valid until the

authentication procedure is next executed or the deletion of KSI is requested by

the network.

The 3G AKA protocol [3GP10d], depicted in Figure 5.2, consists of the exchange of

two messages: the authentication request and the authentication response. Before

Chapter 5. Analysis of Mobile Systems’ Protocols 76

sending an authentication request to the mobile station, the network computes the

authentication data: a fresh random challenge RAND , the authentication token

AUTN , the expected authentication response f2KIMSI
(RAND), the integrity key

IK, and the encryption key CK (see Figure 5.2). The functions f1, f2, f3, f4 and f5,

used to compute the authentication parameters, are keyed cryptographic functions

computed using the shared key KIMSI [3GP11c]. The authentication function f1

is used to calculate the message authentication code MAC ; f2 is used to produce

the authentication response parameter RES ; the key generation functions, f3, f4

and f5 are used to generate the ciphering key CK, the integrity key IK and the

anonymity key AK, respectively.

The network always initiates the protocol by sending the authentication challenge

RAND and the authentication token AUTN to the mobile station. AUTN con-

tains a MAC of the concatenation of the random number with a sequence number

SQNN generated by the network using an individual counter for each subscriber.

A new sequence number is generated either by increment of the counter or through

time based algorithms as defined in [3GP10d]. The sequence number SQNN allows

the mobile station to verify the freshness of the authentication request to defend

against replay attacks (see Figure 5.2).

The MS receives the authentication request, retrieves the sequence number SQNN

and then verifies the MAC (condition MAC = XMAC in Figure 5.2). This step

ensures that the MAC was generated by the network using the shared key KIMSI ,

and thus that the authentication request was intended for the mobile station with

identity IMSI . The mobile station stores the greatest sequence number used for

authentication, so far SQNMS. This value is used to check the freshness of the

authentication request (condition XSQN < SQNMS in Figure 5.2) to avoid replay

attacks.

Chapter 5. Analysis of Mobile Systems’ Protocols 77

The mobile station computes the ciphering key CK , the integrity key IK and

the authentication response RES and sends this response to the network.The net-

work authenticates the mobile station by verifying whether the received response

is equal to the expected one (RES = f2KIMSI
(RAND)). The authentication proce-

dure can fail on the MS side either because the MAC verification failed, or because

the received sequence number XSQN , is not in the correct range with respect to

the sequence number SQNMS stored in the mobile station. In the former case,

the mobile station sends an authentication failure message indicating MAC failure

(Mac Fail) as the failure cause. In the latter case, the authentication failure

message indicates synchronisation failure (Sync Fail) as the failure cause and

the AUTS parameter is sent to allow the network to resynchronize.

After successful authentication, the SN sends a security mode command mes-

sage to the MS, indicating which one of the allowed algorithms to use for ci-

phering and integrity checking of the following communications. If the network

receives a synchronisation failure then it will perform resynchronisation by send-

ing an Authentication Data Request with a synchronisation failure indication to

the HN/Auc in order to retrieve valid authentication vectors. This request con-

tain the RAND used during the AKA and the AUTS parameter sent by the MS

in the authentication failure message. If the network receives a MAC failure or

RES 6= f2KIMSI
(RAND) then it sends an Authentication Failure Report to the

HN indicating among other parameters IMSI, failure cause and RAND. The

network may trigger the identification procedure and re-attempt authentication.

5.2.2 3G AKA Protocol Linkability Attack

To detect the presence of a victim mobile station MSv, in one of his monitored

areas, an active attacker just needs to have previously intercepted one legitimate

authentication request message containing the pair (RAND ,AUTN) sent by the

Chapter 5. Analysis of Mobile Systems’ Protocols 78

MS
KIMSI , IMSI ,SQNMS

Attacker Network
KIMSI , IMSI ,SQNN

Auth Req, RAND , AUTN

Auth Resp, RES

save RAND,AUTN

Auth Req, RAND , AUTN

Auth Resp, RES ′

if RES ′ = Sync Fail
then MSv Found

Figure 5.3: AKA Protocol Linkability Attack

network toMSv. The captured authentication request can now be replayed by the

adversary each time he wants to check the presence ofMSv in a particular area. In

fact, thanks to the error messages, the adversary can distinguish any mobile station

from the one the authentication request was originally sent to. On reception of the

replayed authentication challenge and authentication token (RAND ,AUTN), the

victim mobile station MSv successfully verifies the MAC and sends a synchroni-

sation failure message. However, the MAC verification fails when executed by any

other mobile station, and as a result a MAC failure message is sent. The imple-

mentation of few false BSs would then allow an attacker to trace the movements

of a victim mobile station, resulting in a breach of the subscriber’s untraceability.

The proposed attack is shown in Figure 5.3. Note that this attack affects only

3G mobile systems, in fact 2G systems adopt a different authentication protocol

which does not provide mutual authentication (i.e. the mobile station does not

authenticate the network) and does not involve error and recovery procedures in

case the authentication of the network fails. Thus, the distinguishing attack on

the error messages cannot be performed in 2G networks.

Chapter 5. Analysis of Mobile Systems’ Protocols 79

5.3 Implementation of some 3G Protocols At-

tacks

In order to test the attacks presented in Chapter 4 and Section 5.2.2 in a de-

ployed telecommunication network, we used a commercially available femtocell.

Although, the particular femtocell hardware is tied to the network operator SFR,

the proposed attacks are not. Indeed, we tested the attacks using mobile phones

registered to different operators, hence just using SFR as serving network. The

authentication token AUTN is still provided by the victim’s Home network. So

by testing our attacks on T-Mobile, O2, SFR, and Vodafone victim MSs, we estab-

lish that all these tested networks are vulnerable to the attacks described above.

However, we want to stress here that our implementation has the only purpose

of showing the feasibility of our attacks and confirm that real cellular networks

follow the 3GPP standard specifications and thus are vulnerable to the proposed

attacks. The same attacks could be mounted by appropriately programming a

USRP [Ett09], which is a hardware device able to emit and receive radio signals.

In this case, one could obtain wider range attack devices in order to monitor larger

areas.

5.3.1 Femtocell architecture

A femtocell is a device that acts as a small base station to enhance 3G coverage and

connectivity, especially inside buildings with otherwise bad coverage. Its coverage

radius ranges from 10 to 50 meters. It connects mobile phones to the network of

the corresponding MNO (Mobile Network Operator) using an existing wired In-

ternet connection provided by the femtocell user, not the operator. 3G femtocells,

also called Home Node B (HNB) support most of the functionalities provided by a

typical 3G base station (Node B), e.g. physical layer (radio signalling) functions.

Chapter 5. Analysis of Mobile Systems’ Protocols 80

Figure 5.4: Experimental Attack Setup

In addition, the HNB establishes an authenticated secure tunnel over the Internet

with the network of the operator. Using this encrypted connection, the femtocell

forwards all radio signalling and user-generated traffic to the GANC (GAN Con-

troller), which is connected to the core network of the operator (refer to [3GP11a]

for more details of the femtocell architecture).

The communication between the femtocell and the GANC is based on the Generic

Access Network (GAN) protocol. The GAN protocol, was originally designed to

allow mobile communication over Wi-Fi access points. The protocol was standard-

ised by MNOs in 2004 [Kin10] and led to the GAN specification [3GP10a, 3GP10b]

in 2005. This specification has been adopted and extended to be used in femtocell

environments [ZdlR09] . The femtocell uses this protocol to forward communi-

cation from a mobile station via the GANC to the network or vice versa. The

MS does not need any special GAN support, it just connects to the femtocell in

the same way as it connects to a standard base station. The femtocell maps all

Layer-3 radio signalling to TCP/IP based GAN messages and passes them to the

GANC. Thus, it transparently encapsulates all traffic generated by the phone and

the network.

5.3.2 Attack Procedure

For the purpose of implementing our attacks (Chapter 4 and Section 5.2.2), we use

a compromised femtocell like the one described in [GRB12]. More specifically, we

reproduce the hacking performed in [GRB12] to gain root access of our femtocell

Chapter 5. Analysis of Mobile Systems’ Protocols 81

and redirect the traffic to a Man in the Middle (MitM) GAN proxy, positioned

between the femtocell and the GANC. We use this MitM GAN proxy as entry

point for message injection. In particular, using the MitM GAN proxy we can

inject messages into the connection between the MNO and the femtocell. The

femtocell forwards these messages to the mobile phone, making them appear as

legitimately delivered by the MNO. To perform the attacks, we intercept, modify

and inject 3G Layer-3 messages into the communication from the base station to

the mobile phone in both directions, GANC-to-femtocell and femtocell-to-GANC.

We redirect all the traffic between the femtocell and the GANC to our GAN proxy.

The GAN traffic is cleartext travelling over an IP Sec tunnel for which we own the

key material, thanks to the initial rooting/hacking of the femtocell. Additionally,

we developed a set of applications which allow us to intercept, manipulate or insert

selected messages, and distinguish different types of GAN messages. This allows

us, for example, to cache subscribers information used to perform the attacks.

In particular, we store the random challenge RAND , the authentication token

AUTN , the TMSI and the IMSI of our victim MS. This information is directly

extracted from the traffic that is passed through the MitM GAN proxy.

In the next two paragraphs we give some details about the implementation of our

attacks on the IMSI paging procedure and on the AKA protocol.

IMSI-Paging Procedure Attack To perform our IMSI paging attack, our

software crafts a paging message encoding the necessary paging headers and pa-

rameters and a mobile station identity, i.e. one of the previously stored victim

IMSIs. The crafted paging request is then sent by the GAN proxy to the femto-

cell. When the victim mobile phone receives the IMSI paging request, it readily

answers with a paging response containing the victim’s TMSI. Thus, by injecting

a paging request, we can check whether a phone belonging to a designated victim

is in the area covered by our device. In case of success, the phone generates the

Chapter 5. Analysis of Mobile Systems’ Protocols 82

Figure 5.5: Linkability-Attack: Victim Found.

paging response, while a failed attempt generates no message. In general, it is

possible that more than one phone replies to a paging request during the same

time slot. However, one can repeat this procedure multiple times and correlate

the timing and TMSI usage from the multiple replies as in [KKHK12].

AKA Protocol attack To perform our AKA attack we replay a given authenti-

cation message for a specific target for which the GAN proxy cached the legitimate

authentication data, i.e. RAND , AUTN . This data is sent unencrypted on the

radio link and could be captured with any equipment capable of sniffing it. As

soon as a dedicated channel is allocated to the MS, e.g. after being paged or when

initiating a phone call, our software crafts an authentication request Auth Req

using the previously cached RAND and AUTN , i.e. replays a previous request.

This request is encapsulated into a GAN message and sent to the femtocell. The

femtocell takes care of delivering the authentication request message on the dedi-

cated channel assigned to the MS, as illustrated in Figure 5.4. The phone performs

a validation of the authentication request and answers with the authentication re-

sponse. If the response to the replayed authentication is a Synchronisation Failure

Chapter 5. Analysis of Mobile Systems’ Protocols 83

Figure 5.6: Linkability-Attack: Victim not Found.

(Figure 5.5), then the MS on this dedicated channel is the victim’s phone, and the

victim is indeed in the femtocell area. Otherwise, if the response to the replayed

authentication is a MAC failure (Figure 5.6), the attacker can only deduce that

this phone is not the victim phone. The attacker then needs to replay the same

authentication message to possibly all the mobile stations in the monitored area.

If the attacker receives only MAC failures then he can deduce that the victim is

not in the monitored area.

The 3G AKA protocol is performed at each new session in the femtocell setting,

this makes the caching of the authentication parameters very easy. Though, we

do not have the tools to test if this applies when connecting to a typical Node

B, we tested the 3G/GSM interoperability scenario by using the Osmocom-BB

software and we observed that in this setting the execution of the AKA protocol

can be triggered by calling for example the victim mobile phone a given number

of times (by hanging up within a short time window this activity can be made non

detectable by the victim [KKHK12]). For instance, our experiments showed that

the execution of the AKA protocol on the UK Vodafone network can be triggered

by calling six times the victim mobile phone, and hanging up before it even rings.

Chapter 5. Analysis of Mobile Systems’ Protocols 84

To illustrate the use of our attacks, consider an employer interested in tracking

one of his employee’s accesses to a building. He would first use the femtocell to

sniff a valid authentication request. This could happen in a different area than the

monitored one. Then the employer would position the device near the entrance of

the building. Movements inside the building could be tracked as well by placing

additional devices to cover different areas of the building. Similarly, these attacks

could be used to collect large amount of data on users’ movements in defined areas

for profiling purposes, as an example of how mobile systems have already been

exploited in this direction is available in [pat]. If devices with wider area coverage

than a femtocell are used, the adversary should use triangulation to obtain finer

position data.

6

Privacy Friendly Fixes

In Chapters 3, 4, 5 we have seen some breaches to the 2G/3G user’s privacy. In

this Chapter we will propose some privacy friendly solutions and in Chapter 7 we

will show how it is possible to verify them using the ProVerif automatic protocol

verifier. We will highlight some of the limitations of ProVerif which make it

not possible to verify the TMSI reallocation procedure and its fix. Further, we

will provide the sketch proof of the unlinkability of the fixed version of the TMSI

reallocation procedure. In Chapter 8 we will present our work on an extension

of the ProVerif tool in order to deal with stateful processes and observational

equivalence based properties.

Despite the use of temporary identities to avoid linkability and to ensure anonymity

of 3G subscribers, active attackers can rely on the paging procedure to break both

anonymity and unlinkability. Moreover, the AKA protocol provides a way to

trace 3G subscribers without the need to identify them in any way. As described

in Chapter 5, these two attacks on privacy can be implemented using cheap devices

which are widely available. This shows that the analysed procedures are a real

threat for the users’ privacy, and countermeasures should be promptly taken to

provide an effectively privacy friendly mobile telephony system.

85

Chapter 6. Privacy Friendly Fixes 86

In this section we propose a set of countermeasures involving symmetric and pub-

lic key cryptography. The public key infrastructure we propose is easy to deploy

because we only require one public/private key pair per mobile network opera-

tor, and none for the mobile stations. More generally, the solutions we present

require only small changes to the current security architecture and to the cryp-

tographic functions currently used in 3G. Hence we believe our solutions may be

implemented in a cost-effective way, and thus could realistically be adopted by the

telecommunication operators.

In addition to the solutions proposed to fix the IMSI paging and the AKA proto-

col, in this section we give a privacy friendly version of the identification procedure

to fix the IMSI catcher attack. Indeed, the problem of privacy is a multilayer/-

multiprotocol problem [AO05] which requires all protocols at all layers to satisfy

the desired properties. Even though, the analysis from the user privacy point of

view of the entire set of 3G protocols cannot be tackled in a single thesis, we

cannot ignore the best known privacy issue of mobile telecommunication systems.

For this reason, we include a fixed version of the identification procedure in our

privacy friendly solutions.

6.1 Public Key Infrastructure

We propose the adoption of a public key infrastructure (PKI) providing each MNO

with a private/public key pair. The public key of a network provider can be stored

in the USIM. This public key makes it possible for a mobile station to encrypt

privacy related information such as the IMSI, and deliver them to the network in a

confidential manner. We do not require a public/private key pair to be assigned to

the mobile stations. The adoption of a PKI can also solve the problem exposed by

Zhang and Fang in [ZF05] concerning the lack of serving network authentication

in the current 3G infrastructure.

Chapter 6. Privacy Friendly Fixes 87

MS
KIMSI , IMSI , SQNMS

Network
KIMSI , IMSI , SQNN

new chall , rand
UK ← fKIMSI

(rand)

IMSI Pag Req, rand,

{Page, IMSI , chall , SQNN}UK

UK ← fKIMSI
(rand)

if SQNMS < SQNN

then RES ← IMSI PAG RES, chall
else Discard

RES

Figure 6.1: IMSI Paging Procedure Fix. The IMSI paging request which is
sent on a common channel is encrypted with the unlinkability key UK so to ide
the long term identity IMSI. Each MS decrypts the IMSI paging request and
check if the IMSI contained in it is its own. If so the MS checks the freshness of
the freshness of the request (SQNMS < SQNN), requests a dedicated channel
and sends the response RES to the network. Otherwise the MS discards the

message and aborts the procedure.

Protecting the IMSI Paging Procedure To protect the paging procedure,

we propose to encrypt the paging request using a shared session key UKIMSI ,

which we call unlinkability key. This key is generated by applying a new one-way

keyed function f to the long-term key KIMSI , and a random number rand contained

in the paging request. This key should be used for privacy preserving purposes

only. Furthermore, we require the encrypted request message to include a random

challenge chall and a sequence number SQN . The network stores the random

challenge and checks it against the one sent by the MS in the paging response

(Figure 6.1). The aim of the SQN is to ensure freshness of the paging request

and avoid replay attacks. The SQN should be handled in the same way as in the

AKA protocol. A MS receiving a legitimate IMSI paging request should discard

it if the SQN is not in the correct range. The use of this procedure should still

be kept minimal (preferring the paging with TMSI whenever possible) to avoid

burdening the signalling communication with cryptographic operations. In fact,

Chapter 6. Privacy Friendly Fixes 88

MS
KIMSI , IMSI, SQNMS , pbN

Network
KIMSI , IMSI, SQNN , pvN

new RAND
AK ← f5KIMSI

(RAND)
MAC ← f1KIMSI

(SQNN ||RAND)
AUTN ← (SQNN ⊕ AK)||MAC

Auth Req, RAND, AUTN

AK ← f5KIMSI
(RAND)

XMSG||XMAC ← AUTN
XSQN ← XMSG⊕AK
MAC ← f1KIMSI

(XSQN ||RAND)
if MAC 6= XMAC or XSQN < SQNMS

then new rand
UK ← fKIMSI

(rand)
RES ← Auth Fail,

{Fail, IMSI, rand, {synch, SQNMS}r
′

UK}rpbN
else RES ← f2KIMSI

(RAND)

Auth Resp, RES

CK ← f3KIMSI
(RAND)

IK ← f4KIMSI
(RAND)

if RES = f2KIMSI
(RAND)

then CK ← f3KIMSI
(RAND)

IK ← f4KIMSI
(RAND)

else if RES = Auth Fail, x
then Recover

Figure 6.2: The fixed AKA protocol. The error messages are encrypted using
the network public key.

each MS has to decrypt and check all the received encrypted IMSI paging to

determine if it is the recipient (Note that TMSI paging are still sent in cleartext).

To enable the IMSI paging by a serving network, the encrypted paging request

may be precomputed by the home network and IMSI paging vectors containing

the random, the encrypted paging and the challenge could be sent in bulk to the

serving network the MS is attached to, in this way the unlinkability key UKIMSI

only has to be shared between the MS and the home network.

Fixing the AKA Protocol The AKA protocol is a threat for the unlinkabil-

ity of 3G subscribers because the error messages sent in case of authentication

Chapter 6. Privacy Friendly Fixes 89

failure leak information about the identity of the subscriber. To avoid this infor-

mation leakage, the error messages sent in case of any type of failure should look

indistinguishable from an attacker’s point of view.

Moreover, the 3G standard stipulates [3GP10d] different procedures to recover

from each of the two kinds of failure, but this is a source of additional information

flow that can be used to launch our privacy attack. In the solution we propose

we solve this problem since error recovery can be performed within the network

without the need to trigger further procedures over-the-air. Indeed, all the param-

eters needed for error recovery are sent in the error message allowing the recovery

procedure to be carried within the network.

The fixed version of the AKA protocol (Figure 6.2) carries on as specified by

the standard. The network sends RAND , AUTN and waits for a response. The

response is RES = f2KIMSI
(RAND), as in the standard, in case the checks of

MAC and sequence number are successful. If either of these checks fails, an error

message is sent to the network. The failure message is now encrypted with the

public key of the network pbN , and contains a constant Fail, the IMSI, and

the current sequence number SQNMS of the MS. The IMSI sent encrypted in the

error message allows the network to check the identity of the MS without triggering

the identification procedure. The current sequence number of the mobile station

enables the network to perform resynchronisation with the Authentication Centre

(AuC, the server storing subscribers authentication data) of the operator of the

mobile station, if needed. SQNMS is sent encrypted with the unlinkability key (as

defined in the fixed paging procedure) in order to authenticate the error message

to the Network as coming from the MS with permanent identity IMSI . The

Network can deduce the cause of the failure from the IMSI and SQNMS contained

in the error message. Upon receipt of this authentication failure message the

action performed for error recovery purposes should be the same regardless of the

type of failure occurred. Indeed any difference in behaviour would be a source of

additional information flows.

Chapter 6. Privacy Friendly Fixes 90

MS
KIMSI , IMSI , pbN

Network
KIMSI , IMSI , pvN

Id Req, IMSI Req

Id Resp, {IMSI }rpbN

Figure 6.3: Identification Procedure Fix. The identity response is encrypted
with the public key of the network. The r denotes randomised encryption.

Protecting the Identification Procedure The identification procedure ex-

poses the IMSI of a MS (the IMSI is sent in cleartext upon request by the net-

work). Hence, it breaches both anonymity and unlinkability. According to the

standard, the use of the identification procedure should be limited as much as

possible, to avoid a passive attacker overhearing the IMSI. However, as discussed

in Chapter 3 the cost of devices allowing active attacks is constantly decreasing.

As a consequence, enhancing the protocol to protect the IMSI is vital to ensure

privacy.

The fixed version of the identification procedure (Figure 6.3) involves two mes-

sages: the first is sent by the network to ask for the IMSI, the second, the identity

response, is the randomised encryption of the IMSI of the mobile station using the

public counterpart (pbN) of the private key of the network operator (pvN).

Fixing the TMSI reallocation procedure The solution we propose to fix

the TMSI reallocation procedure does not require any change in the security ar-

chitecture of mobile telephony systems. We only require the standard to specify

that the reuse of the encryption key is not permitted when the key is used to

execute the TMSI reallocation procedure, i.e. the establishment of a new key be-

fore the execution of the TMSI reallocation procedure should be mandatory. This

would avoid the possibility of replay attacks to be mounted. However, frequent

executions of the authentication procedure could burden the radio communication

and slow down the delivery of mobile telephony services. Alternative solutions

Chapter 6. Privacy Friendly Fixes 91

MS
IMSI, oTMSI,CK,SQNMS

Network
IMSI, oTMSI,CK,SQNSN

L3 MSG, oTMSI

Management of means for ciphering:CK established

new nTMSI

{TMSI reall cmd, nTMSI, LAI, SQNSN}rCK

if SQNMS ≤ SQNSN

{TMSI reall complete}rCK

Deallocate oTMSIDeallocate oTMSI

Figure 6.4: TMSI Reallocation Procedure Fix: this fix uses the SQN to ensure
the freshness of the reallocation command.

are possible, as for example the introduction of a sequence number in the TMSI

reallocation command, similarly to the one used to avoid replay attacks against

the Authentication and Key Agreement protocol [3GP10d]. We illustrate this so-

lution in Figure 6.4. The network sends a sequence number SQNSN along with

the TMSI reallocation command. The MS checks if the received sequence number

is in the expected range (SQNMS ≤ SQNSN). If so it carries on with the real-

location of the TMSI. Otherwise the MS aborts the TMSI reallocation execution,

hence avoiding replay attacks.

6.2 Discussion of the Proposed Fixes

While the fix we propose for the identification procedure and the one we propose

for the TMSI reallocation are intuitive and straightforward, this is not the case for

the other two procedures. In particular, we take care of maintaining the style of

Chapter 6. Privacy Friendly Fixes 92

mobile telecommunication protocols and at the same time ensuring privacy. We

introduce the unlinkability key, a new session key generated for privacy purposes,

instead of using the long term key KIMSI (as in the 3G AKA), and make use

of the sequence number SQN for freshness purposes (this is needed to avoid user

linkability caused by replay attacks). We maintain the authentication flow of the

AKA and modify only the way error messages are dealt with by including error

recovery information inside the error message (this avoids the triggering by the

network of specific procedures in order to perform error recovery depending on the

occurred error).

Our proposed fixes use public-key cryptography; intuitively, there is no way to

avoid that, since if a mobile station’s TMSI is unknown to the serving network

(hence the need to perform the identification procedure) then there is no shared

key by which they can communicate privately. The additional costs associated

with deploying and using public-key cryptography are in fact small for the two

following reasons.

Firstly, only mobile telephony operators are required to have a public/private key

pair. Neither subscribers, nor mobile phone equipments nor USIMs need to have

their own public/private key pair. The operator’s public key could be stored in

the USIM of the mobile station, as it is already the case for the IMSI and the

long-term key KIMSI . The Home Network can act as a certifying authority for

the public key of the different Serving Networks (see below). Thus, the public key

infrastructure is similar to that used on the web, where corporations (not users)

have certified keys.

Secondly, the computationally expensive public-key encryption and decryption are

required only for the identification protocol and when the AKA-protocol fails. The

execution of the identification and the IMSI paging procedures should anyway be

kept minimal according to the currently deployed standard. Moreover, failures

Chapter 6. Privacy Friendly Fixes 93

during the execution of the AKA-protocol rarely occur according to our experi-

ments. Hence, the computational overhead of the public-key cryptography is not

significant. Moreover, it is possible to delegate the encryption and decryption to

the mobile equipment, instead of executing them on the USIM. This would not

weaken the security properties of the 3G procedure, since the mobile equipment in

the current architecture has already access to the IMSI, while the network public

key is publicly available information.

For roaming purposes, each Home Network (HN) can act as certifying authority

of the Serving Network (SN) for its own subscribers. The public key pbHN of the

HN could be stored in the USIM. At registration time with a SN, the MS would

declare its HN, and the SN would provide the MS with its public key pbSN ,

together with a certificate from the mobile station’s HN (signskHN(pbSN, idSN)).

Hence, a mobile station would only need to obtain a certified version of the SN’s

public key, and verify it using its own network provider public key. This would

provide, in an efficient way, the MS with the necessary public keys to execute our

fixed versions of the protocols.

The introduction of cryptographic operations on the mobile equipment side could

be a source of Denial of Service (DoS) attacks aiming to consume the battery load

of victim MSs. To mitigate the effect of such attacks, the mobile phone’s software

could rate limit the phone’s willingness to respond to authentication, IMSI paging

and identity request messages, so to guarantee a minimum battery life-time even

in case of attempted DoS attacks. We have calculated that responding to such

requests on average once per minute would consume an additional one tenth of

battery life.

7

Formal Verification of the

Fixed Protocols

Many deployed protocols have subsequently been found to be flawed [Low96b,

CJS+08, ACC+08b, BCFS10]. In this perspective and in order to increase the

confidence one can have in the solutions proposed in Chapter 6, we show how to

formally analyse our proposed fixes w.r.t. privacy. In particular in this Chap-

ter, we present the results of the automatic verification of the privacy-friendly

enhancement discussed in Chapter 6. We use the formalisation of privacy-related

properties as given by Arapinis et al. in [ACRR10], namely strong unlinkability

and strong anonymity and adapt them to obtain definitions suitable for automatic

verification using the ProVerif tool [Blab]. Specifically we automatically verify

the unlinkability and anonymity properties of our fixes of the procedures expos-

ing the IMSI (identification and paging) and of the 3G AKA protocol. Further,

we highlight in this Chapter the reasons that make the currently available tools

not adequate for the automatic verification of the TMSI reallocation procedure

and present a sketch of the manual proof of the unlinkability of the fixed TMSI

reallocation procedure. We report the full proof in Appendix B. In Chapter 8 we

will present an extension of the theory underlying the ProVerif and StatVerif

95

Chapter 7. Formal Verification of the Fixed Protocols 96

tools in order to automatically verify the TMSI reallocation procedure and more in

general to verify observational equivalence based properties of stateful protocols.

However, further work is required in this direction since this first implementation

is too conservative and still suffers from ProVerif overapproximation of fresh

names.

7.1 ProVerif Encoding

We use the automatic verification tool ProVerif [Blab] which takes in input pro-

cesses written in a sintax similar to the applied pi-calculus [AF01] one. In the rest

of this Chapter we use the ProVerif sintax to describe how we modelled the fixed

protocols. However, we omit the formal details [Bla09, BAF08] which are given

in Chapter 8 as part of the theory of our extension of ProVerif for observational

equivalence of stateful processes.

We here just briefly describe the let construct:

let M = D in P else Q

that represents a process which tries to rewrite D and matches the result with

M ; if this succeeds, then the variables in M are instantiated accordingly and P is

executed; otherwise Q is executed.

Example 7.1. Multiple mobile stations MS, with identity imsi, running along with

the serving network, SN, with which the share a long-term symmetric key sk, can

be modelled by the process:

S = new pvN; let pbN = pub(pvN) in

out(c, pbN);

!new sk; new imsi; !new sqn; (SN|MS).

Chapter 7. Formal Verification of the Fixed Protocols 97

In this and in the following examples pvN and pbN are network’s private and public

key respectively.

The privacy related properties we verify are expressed in terms of observational

equivalence. Intuitively, two processes P and Q are observationally equivalent

denoted by P ≈ Q, if any interaction of P with the adversary, can be matched

with an interaction of Q (and vice versa, i.e. all interactions of Q can be matched

by P) and the same input/output behaviour is observed.

The ProVerif tool can prove diff-equivalence, i.e. equivalence of a pair of processes

differing by some choice of terms, but having the same structure i.e. biprocesses.

The choice of terms is written choice[M, M′]. For example, to test if the processes

out(c, a) and out(c, b) are equivalent, one would check the following biprocess

using ProVerif: out(c, choice[a, b]). More specifically ProVerifchecks whether

a biprocess satisfies uniformity (see definition 8.4), a property which intuitively

requires the two processes component of the biprocess to evolve in parallel and ex-

hibit the same behaviour. Uniformity is proved to imply observational equivalence

(see Section 8.4 for more detail).

The encoding of the equivalence representing unlinkability is challenging since the

processes to be tested do not have the same structure hence it is not straightfor-

ward to see how to build the biprocess representing them. In the next two Sections

we show how we built the biprocess to test strong unlikability and the biprocess

to test strong anonymity respectively.

7.1.1 Strong Unlinkability

In our mobile phone scenario, the strong unlinkability property holds when the

situation where mobile stations access services multiple times looks the same as

the ideal situation where each mobile station accesses the services at most once,

i.e. where by construction unlinkability holds. Formally, we want the process S,

Chapter 7. Formal Verification of the Fixed Protocols 98

defined in Example 7.1, to be observationally equivalent to the system SUNLINK

defined as follows:

SUNLINK = new pvN; let pbN = pub(pvN) in

out(c, pbN);

!new sk; new imsi; new sqn; (SN|MS).

The absence of the replication before the new sqn construct means that in SUNLINK

each MS executes the protocol at most once. The above mentioned observational

equivalence can be verified with ProVerif, defining S and SUNLINK as the following

biprocess PVUNLINK, where sk1, sk2 are long term keys and imsi1, imsi2 are long

term identities:

PVUNLINK = new pvN ; let pbN = pub(pvN) in

out(c, pbN);

!new sk1; new imsi1;

!new sk2; new imsi2; new sqn;

let (sk, imsi)=choice[(sk1, imsi1),(sk2, imsi2)]

in (SN | MS).

We have that the left side of the choice represents a system where a mobile station

(with identity imsi1 and key sk1) may execute the protocol many times, while the

right side represents a system where mobile stations execute the protocol at most

once (the identity imsi2 and the key sk2 are always different and can be used

at most once for the execution of the protocol). Hence, we reduce the problem

of testing strong unlinkability to the diff-equivalence of a biprocess. ProVerif

proves that the strong unlinkability property is satisfied by our models of the

fixed identification, paging and AKA protocols as described in Chapter 6 (See

table 7.1).

Chapter 7. Formal Verification of the Fixed Protocols 99

7.1.2 Strong Anonymity

In our mobile phone scenario, strong anonymity requires a system in which a

mobile station MSV with publicly known identity IMSI V executes the protocol to

be indistinguishable from a system in which the MSV is not present at all. Such

a system obviously preserves IMSI V ’s anonymity. Formally, we want the system

S, defined as in Example 7.1 to be observationally equivalent to the system SV

defined as follows:

SV = new pvN ; let pbN = pub(pvN) in

out(c, pbN);

!new sk; new imsi; (!new sqn; (SN | MS))

| new sk; !new sqn; (SN | MSV).

In the system SV the mobile station MSV with publicly known identity imsiV can

run the protocol. The mentioned observational equivalence can be translated in

the following ProVerif biprocess PVANON , where imsiV , imsims are permanent

mobile station identities:

free imsiV .

PVANON = new pvN ; let pbN = pub(pvN) in

out(c, pbN);

(!new sk; new imsi;

(!new sqn; (MS | SN)))

| (new sk; new imsims;

let imsi=choice[imsiV , imsims] in

!new sqn; (SN | MS)).

The left side of the choice represents a system where the mobile station with public

identity imsiV can run the protocol. Our fixes of the identification procedure,

Chapter 7. Formal Verification of the Fixed Protocols 100

paging procedure and 3G AKA protocol as described in Chapter 6 are proved by

ProVerif to satisfy anonymity (See table 7.1).

7.2 Automatic Verification Results and Remarks

We run the ProVerif tool on the 2G/3G identification procedure, on the 2G/3G

IMSI paging procedure and on the 3G AKA protocol, in order to confirm that

the tool would have detected the breaches of the privacy properties present in the

3GPP standard procedures. Even though the coding of the protocols in ProVerif

is straightforward, the coding of the observational equivalences defining the pri-

vacy properties in term of bi-processes is not. In fact the biprocess structure is

symmetrical while the definition of anonymityand and unlinkability is not. We

showed in the previous Section how we obtained a symmetrical definition in terms

of bi-processes. Moreover, we had to take particular care in avoiding false attacks

that could be reported by the tool due to its abstractions. Indeed, we formally

define privacy properties through observational equivalence, however, ProVerif

adopts a stronger equivalence relation called diff-equivalence (≈diff). In particu-

lar, diff-equivalence can distinguish between the execution of different branches of

a conditional statement even in the following case:

if a = a then P else P ≈diff/ if a = b then P else P

and hence, although the above processes are observationally equivalent (P is ex-

ecuted regardless the result of the if statement evaluation), they do not satisfy

diff-equivalence. We are dealing with this issue in our code for the verification at

lines 4-5, 36, 73-74, 81, and 86-87 of the code in Appendix A. As expected, the

verification with the ProVerif tool fails to prove the anonymity of the IMSI pag-

ing procedure and the unlinkability of both IMSI paging and 3G AKA protocols

(see Table 7.2). In case of the IMSI paging procedure ProVerif exhibits actual

Chapter 7. Formal Verification of the Fixed Protocols 101

Properties Identification IMSI Paging 3G AKA
Unlinkability

√ √ √
Anonymity

√ √ √

NA Not Applicable
√

Proved to hold × Attack found

Table 7.1: ProVerif results of the on Fixed Procedures

Properties Identification IMSI Paging 3G AKA
Unlinkability × × ×
Anonymity × × √

NA Not Applicable
√

Proved to hold × Attack found

Table 7.2: ProVerif results on current 3GPP Procedures

attack traces. In the case of the 3G AKA protocol, the anonymity property is

proved to hold, while the unlinkability property verification fails. Although, the

trace provided by ProVerif is a false attack, it does give a hint of the real attack

by highlighting the test of the MAC received from the network as the source of the

problem. The modelling of unlinkability and anonymity into diff-equivalences we

showed in the previous Section can in general be adopted for protocols which do

not require an initialization phase preceding the main protocol procedure. Hence,

our method is not specific to the analysed protocols, and shows how to auto-

matically verify unlinkability and anonymity on a wide class of protocols. The

ProVerif code used for the automatic verification is available online [PVs] and in

part in Appendix A.

Note that for verification purposes in our models of MS and SN we use randomised

symmetric encryption to conceal the sequence number SQN instead of using the

exclusive-or. Indeed, even if the theory allows to write a set of reduction rules to

model the xor function, the ProVerif tool cannot deal with its algebraic proper-

ties. The use of randomised encryption anyway would achieve stronger properties

with respect to the secrecy of the sequence number, we hence recommend the

adoption of this modification in the standard protocol.

Chapter 7. Formal Verification of the Fixed Protocols 102

Authentication, Secrecy, Integrity. The main purpose of the 3G AKA pro-

tocol is to provide mutual authentication and establish session keys to be used

for integrity protection and secrecy. Hence, our analysis would not be complete

without ensuring that our privacy preserving version of the 3G AKA protocol still

achieves the goals it was originally designed for. We verify mutual authentication

and integrity properties as injective correspondence properties. We prove using

ProVerif that the original properties of the 3G AKA protocol are preserved by

our fixes; the verification results are shown in Table 7.3.

Properties Identification Paging AKA
Secrecy

IMSI
√ √ √

KIMSI NA
√ √

CK, IK NA NA
√

confidential
informa-
tion

NA NA
√

Authentication NA NA
√

Integrity NA NA
√

NA Not Applicable
√

Proved to hold × Attack found

Table 7.3: Results of the Automatic Verification of the Fixed Procedures

7.3 Unlinkability of the TMSI Reallocation Pro-

cedure

In this Section, we model the TMSI reallocation procedure and formally prove its

unlinkability when fresh ciphering keys are established before each execution. We

point out some limitations of the currently available automatic verification tools

and develop one of the few manual proofs of labelled bisimilarity ofand a real

protocol available in literature. In our proof we combine manual and automatic

Chapter 7. Formal Verification of the Fixed Protocols 103

proof techniques to overcome the issues arising when trying to automatically verify

protocols using persistent states.

7.3.1 Model of the TMSI Reallocation

In this Section we present a formal model of the TMSI reallocation. We first

introduce the equations we use to define randomized symmetric encryption and

pairing.

Let Σ = {senc/3, sdec/2, pair/2, fst/1, snd/1}, and consider the equations:

sdec(k, senc(k, r,m)) = m, fst(pair(x, y)) = x, snd(pair(x, y)) = y.

The first equation allows to decrypt a randomized encryption of message m, given

the knowledge of the encryption key k. This is the usual rule to model randomized

symmetric encryption. The two last rules allow to decompose a pair and retrieve

its components.

Further, we introduce MS and SN modelling respectively a mobile station and a

serving network sharing a private channel dck. This private channel models the

fact that MS and SN can “securely” establish a shared session key by executing

the authentication procedure. The private channel d models a mobile station’s

memory (or state) recording the currently assigned TMSI. Input messages are

read from the dw channel and output messages are sent on the up channel. The

system of multi-sessions mobile stations executing the TMSI reallocation with a

Chapter 7. Formal Verification of the Fixed Protocols 104

multi-session serving network is represented by the process M

Init
def
= d 〈id〉

MS
def
= ν ck. ν mr. d(x). up〈x〉. dck〈ck〉. dw(y).

if fst(sdec(ck, y)) = TMSI Reall then

up〈senc(ck,mr,Complete)〉.
d〈snd(sdec(ck, y))〉

else 0

SN
def
= ν nid. ν sr. dw(z). dck(xck).

up〈senc(xck, sr, pair(TMSI Reall, nid))〉. dw(w)
M

def
= ν dck. (!(ν d. ν id. (Init |!MS)) |!SN)

The Init process initializes the MS memory by storing in it the initial pseudonym

id. The current pseudonym is stored in the memory d and is sent by the MS

with its first message. The MS then establishes a session key with the network,

modelled here by the communication of a new key ck over a private channel dck

(note that in this model a fresh session key is established before the execution of

each TMSI reallocation). The mobile station then receives a message and checks if

it is a legitimate TMSI reallocation command message encrypted by the network

using the agreed session key (if fst(sdec(ck, y)) = TMSI Reall). In this case

it sends a TMSI reallocation complete message (up〈senc(ck,mr, Complete)〉)
and updates its own memory with the new pseudonym received in the TMSI

Reallocation command (d〈snd(sdec(ck, y))〉). For simplicity, we do not model the

eventual updating of the location area.

Chapter 7. Formal Verification of the Fixed Protocols 105

7.3.2 Proof of Unlinkability of the Fixed TMSI Realloca-

tion

We recall that the definition of strong unlinkability given in [ACRR10] requires

an ideal system, where each agent can execute the protocol at most once (and

hence is unlinkable by construction) to be undistinguishable from a system, where

each agent can execute the protocol an unbounded number of times. Refer to

Section 7.1.1 for the formal definition.

The definition of strong unlinkability allows us to formally analyse the TMSI re-

allocation procedure and establish if it achieves the desired unlinkability property

when a new session key is established prior to each execution of the TMSI real-

location procedure. We showed in Chapter 5 that when this does not happen a

linkability attack can be mounted to trace mobile telephony users.

Let the Init,MS and SN processes be as defined in Section 7.3.1,pag. 103. We

define:

SSA
def
= ν d.ν id.(Init | MS)

MSA
def
= ν d.ν id.(Init |!MS)

The processes SSA and MSA are respectively a single-session and a multi-session

mobile station agent. Single-session mobile stations can only execute one session of

the TMSI reallocation procedure hence are unlinkable by construction and are part

of the ideal system, while the multi-session agents represent the mobile stations

of the real systems i.e. the ones we want to prove to be unlinkable, although they

can execute several sessions of the procedure.

Let S andM (the single-session and the multi-session system, respectively) be two

closed processes defined as follows:

Chapter 7. Formal Verification of the Fixed Protocols 106

S
def
= ν dck.(!SSA |!SN)

M
def
= ν dck.(!MSA |!SN)

The process S represents an unbounded number of mobile stations executing the

TMSI reallocation procedure at most once. The process M represents an un-

bounded number of mobile stations which can execute the TMSI reallocation pro-

cedure an unbounded number of times. We want to prove that M and S are

labelled bisimilar and hence that M satisfies unlinkability.

ProVerif is to date the only tool able to automatically verify observational equiv-

alence based properties for unbounded processes like the ones considered in this

work. However, the presence of the memory (state) for the storage of the currently

assigned identity makes the use of ProVerif to automatically analyse this proto-

col not feasible. In fact, ProVerif cannot prove the observational equivalence of

the following toy bi-process1, which models one process sending a fresh name on a

public channel and another reading a fresh name from its state (modelled by the

private channel d) and then sending it on a public channel:

free c.

let P = (!(new n; in(d, x); out(d, n);

out(c, choice[x, n]))).

process new d; (P | (new m; out(d, m)))

This happens because the abstractions ProVerif does for the sake of termination

allow the process using the private channel to never consume the input. Hence,

once a name is sent on the private channel d, that name can be read from it again

1A biprocess represents a pair of processes differing in the choice of some message, this choice
is modelled by the choice[m,n] construct. See [Bla01, BAF05] for more details about ProVerif.

Chapter 7. Formal Verification of the Fixed Protocols 107

and again, making the two processes not observationally equivalent. This is one of

the reasons that led to the development of StatVerif [ARR11], an extension of

ProVerif which deals with stateful processes. However, StatVerif is not suitable

in our case since it does not yet handle observational equivalence. For this reason

we carry out a manual analysis instead. In the next section we give a sketch of

the proof of the unlinkability of the TMSI reallocation procedure (Proposition 1)

when performed by establishing a fresh session key prior to each execution. The

full proof is given in Appendix B. Note that Abadi and Rogaway [AR00] showed

that for what they call type-0 security encryption schemes, i.e. repetition con-

cealing, which-key concealing, and message-length concealing encryption schemes

observational equivalence is computationally sound.

7.3.3 Unlinkability Proof Sketch

To be able to describe the relation R witnessing that S ≈l M we define partial

execution steps of the multi (resp. single)-session process components as specified

below. The process MMSk
i,j represents the ith mobile station executing the kth

step of its jth session of the TMSI reallocation protocol, while the process SMSk
i,j

represents the (i+ j)th mobile station executing the kth step of its unique session.

The process SN l
m represents the lth step of the mth session of the serving network.

The key point of the proof is to show that processes MMSk
i,j and SMSk

i,j simulate

each other. We now give an outline of how this simulation works, by explaining

how to match transitions in the multi-session and single-session processes.

1. Any transition within a session of some mobile station is a transition from

MMSk
i,j to MMSk′

i,j , with k′ > k. There is always a matching transition

within the single session of the corresponding mobile station from SMSk
i,j to

SMSk′

i,j , and vice versa.

Chapter 7. Formal Verification of the Fixed Protocols 108

2. The transitions for the serving network are the same in the multi-session and

the single-session process, hence they match trivially.

3. The start of a new session for the same mobile station is modelled by a

transition from MMS6
i,j | MS to MMS7

i,j | MMS0
i,j+1. The corresponding

transitions in the single-session process, which are SMS6
i,j to SMS7

i,j and

Init | MS to SMS0
i,j+1, model the use of an additional mobile station to

simulate this extra-session.

4. The use of an additional mobile station in the multiple session process is

modelled by a transition from Init|MS to MMS0
i+1,1. There is always a

matching transition from Init|MS to SMS0
i+1,1 in the single-session pro-

cess, and vice versa.

So far, this produces a perfect match between transitions for the multiple-session

process and the single-session processes in cases 1, 2 and 4. In case 3, we still

have to find a matching transition for the transition from Init |MS to SMS0
i,j+1

without SMS6
i,j being present. In this case we use the fact that SMS0

i,j+1 and

SMS0
i+1,1 are α-equivalent and use case 4 to find a matching transition in the

multi-session process. This point is the key part of the proof and shows that the

single-session system really models several sessions of the same mobile station by

using several mobile stations.

We now present this proof in more details. We start by defining matching pairs of

multi and single-session mobile stations for each evolution step k. Note that each

single session mobile station uses a different secret channel, modelling a memory

cell, di,j while each multi-session mobile station uses the same secret channel across

all the sessions di,1.

Chapter 7. Formal Verification of the Fixed Protocols 109

Let i, j ∈ N. We denote:

Initi,j
def
= di,j〈idi,j〉

MChki,j
def
= if fst(sdec(cki,j, yi,j)) = TMSI Reall then

up〈senc(cki,j, mri,j , Complete)〉.
di,1〈snd(sdec(cki,j, yi,j))〉

else 0

SChki,j
def
= if fst(sdec(cki,j, yi,j)) = TMSI Reall then

up〈senc(cki,j, mri,j , Complete)〉.
di,j〈snd(sdec(cki,j, yi,j))〉

else 0

MMS0
i,j

def
= di,1(xi,j).up〈xi,j〉.dck〈cki,j〉.dw(yi,j).MChki,j

SMS0
i,j

def
= di,j(xi,j).up〈xi,j〉.dck〈cki,j〉.dw(yi,j).SChki,j

MMS1
i,j

def
= up〈Mi,j〉.dck〈cki,j〉.dw(yi,j).MChki,j

SMS1
i,j

def
= up〈idi,j〉.dck〈cki,j〉.dw(yi,j).SChki,j

MMS2
i,j

def
= MXi,j | dck〈cki,j〉.dw(yi,j).MChki,j

SMS2
i,j

def
= SXi,j | dck〈cki,j〉.dw(yi,j).SChki,j

MMS3
i,j

def
= MXi,j | dw(yi,j).MChki,j

SMS3
i,j

def
= SXi,j | dw(yi,j).SChki,j

MMS4
i,j

def
= MXi,j |MChki,j{Ni,j/yi,j}

SMS4
i,j

def
= SXi,j | SChki,j{Ni,j/yi,j}

Chapter 7. Formal Verification of the Fixed Protocols 110

MMS5
i,j

def
= MXi,j | up〈senc(cki,j, mri,j , Complete)〉.

di,1〈snd(sdec(cki,j, Ni,j))〉
SMS5

i,j

def
= SXi,j | up〈senc(cki,j, mri,j , Complete)〉.

di,j〈snd(sdec(cki,j, Ni,j))〉
MMS6

i,j

def
= MXi,j |MKi,j | di,1〈snd(sdec(cki,j, Ni,j))〉

SMS6
i,j

def
= SXi,j | SKi,j | di,j〈snd(sdec(cki,j, Ni,j))〉

MMS7
i,j

def
= MXi,j |MKi,j | 0

SMS7
i,j

def
= SXi,j | SKi,j | di,j〈snd(sdec(cki,j, Ni,j))〉

MMS8
i,j

def
= MXi,j | 0

SMS8
i,j

def
= SXi,j | 0

MXi,j
def
= {Mi,j/xi,j

}
SXi,j

def
= {idi,j/xi,j

}

SKi,j,MKi,j
def
= {senc(cki,j , mri,j , Complete)/ki,j}

RMSi
def
= ν ck.ν mr.(di,1(x).up〈x〉.dck〈ck〉.dw(y).

if fst(sdec(ck, y)) = TMSI Reall then

up〈senc(ck, mr, Complete)〉.
di,1〈snd(sdec(ck, y))〉

else 0

Mi,j
def
=

idi,j if j = 1

nidi,j−1 otherwise

s̃si,j
def
= idi,1, di,1, cki,1, mri,1, . . . , idi,j, di,j, cki,j, mri,j

m̃si,j
def
= idi,1, di,1, cki,1, mri,1, . . . , cki,j, mri,j

Chapter 7. Formal Verification of the Fixed Protocols 111

Note that a full execution of the TMSI reallocation procedure by a multi (resp.

single)-session mobile station goes through the first 6 evolution steps. In par-

ticular, a new session of the TMSI reallocation protocol can be executed (by

the multi-session MS) only after the mobile station fully completed the previ-

ous session ending up at step k = 6 where the synchronization on the memory

channel d is enabled by the output of the newly allocated temporary identity

di,1〈snd(sdec(cki,j, Ni,j))〉. In case the if condition is not satisfied both the multi

and the single-session mobile stations end up in a deadlock state (k = 8). This sim-

plification is not fundamental for the unlinkability of the procedure to be satisfied.

However, it simplifies an already long and error prone manual proof.

SN0
i

def
= ν nidi.ν sri.dw(zi).dck(xcki).

up〈senc(xcki, sri, pair(TMSI Reall, nidi))〉.
dw(wi)

SN1
i

def
= ν nidi.ν sri.dck(xcki).

up〈senc(xcki, sri, pair(TMSI Reall, nidi))〉.
dw(wi)

SN2
i

def
= up〈senc(xcki, sri, pair(TMSI Reall, nidi))〉.

dw(wi)

SN3
i

def
= {senc(cki, sri, pair(TMSI Reall, nidi))/yi} | dw(wi)

SN4
i

def
= {senc(cki, sri, pair(TMSI Reall, nidi))/yi}

SNk
i,j

def
= SNk

l {cki,j/xckl, yi,j/yl,
wi,j/wl

, nidi,j/nidl ,
sri,j/srl}, k ≥ 2

ñidi,j
def
= nidi,1, sri,1, . . . nidi,j sri,j

Chapter 7. Formal Verification of the Fixed Protocols 112

MXi,j ,MKi,j , and SN
4
i (resp. SXi,j, SKi,j and SN

4
i) are the possible active sub-

stitutions resulting from one full execution of the TMSI reallocation procedure by

the jth session of the ith mobile station in the multi-session system (resp. by the

i+ jth mobile station in the single-session system). RMSi is the replicated part of

the multi-session mobile station agent. Note that we group the name restrictions

and we bring them in front of the process.

We define the grouped multi-session system component GMSi,j[] representing

the leftovers after the execution of j sessions of the ith mobile station and the

simulating grouped single-session system component GSSi,j[] representing the

leftovers after the execution of j single session mobile stations simulating the j

sessions of the ith mobile station of the multi-session system, as follows:

GMSi,j []
def
= ν m̃si,j.ν ñidi,l.(MMS7

i,1 | · · · |MMS7
i,j−1 | |!RMSi)

GSSi,j[]
def
= ν s̃si,j.ν ñidi,l.(SMS7

i,1 | · · · | SMS7
i,j−1 |)

where l ∈ {j − 1, j}

The grouped multi (resp. single)-session system components are the building

blocks of the bisimulation relation. They basically define how the grouped single-

session MSs can mimic the structure resulting by the evolution of a multi-session

mobile station. We define the symmetric relation between the single-session and

the multi-session system to be:

Chapter 7. Formal Verification of the Fixed Protocols 113

R def
= { (C, D), (D, C) : ∃ n, m ≥ 0,

A ≡ ν dck.(C1 | · · · | Cn | PSNm |!SSA |!SN),

B ≡ ν dck.(D1 | · · · | Dn | PSNm |!MSA |!SN),

where ∀i, 1 ≤ i ≤ n, ∃li, kli, li ≥ 0, 1 ≤ kli ≤ 8 such that

Ci = GSSi,li[SMS
kli
i,li

| SSNi,li] = ν s̃si,li .ν ñidi,j.(SMS7
i,1 | · · · |

SMS7
i,li−1 | SMS

kli
i,li

| SSNi,li)

Di = GMSi,li[MMS
kli
i,li

|MSNi,li] = ν m̃si,li.ν ñidi,j.(MMS7
i,1 | · · · |

MMS7
i,li−1 | MMS

kli
i,li

| MSNi,li |!RMSi)

SSNi,li =MSNi,li = SNh1
i,1 | · · · | SNhli−1

i,li−1 | Lhli , h1, . . . , hli−1 ≥ 2

Lhli =

0 if kli ∈ {1, 2}
SN

hli

i,li
otherwise

j =

li − 1 if Lhli = 0

li otherwise

PSNm = SN1
j1
| · · · | SN1

jm, for some j1, . . . , jm ∈ {0, 1}
}

We want to prove that R is a bisimulation. To ease this proof, we define a lemma

dealing with the bisimulation part of the proof and a lemma dealing with static

equivalence. Informally, Lemma 7.1 states that the actions of a system can be

mimicked by actions of the other system and vice versa. Formally:

Lemma 7.1. Let C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SA |!SN), D ≡ ν dck.(D1 |
· · · | Dn | PSNm |!SA |!SN) such that SA = SSA (resp. SA = MSA) and

(SA =MSA (resp. SA = SSA) and (C,D) ∈ R
if C

ℓ→ C ′ with fv(ℓ) ⊆ dom(C) and bn(ℓ) ∩ fn(D) = ∅ then D
ℓ→ D′ and

(C ′, D′) ∈ R for any ℓ ∈ {τ, α}.

Chapter 7. Formal Verification of the Fixed Protocols 114

The proof of Lemma 7.1 relies on the proof of two extra lemmas (Lemma 7.3

and Lemma 7.4 in the Appendix B.2) which informally state that if the single

(resp. multi)-session system can do a transition then either one of the grouped

single (resp. multi)-session system components (i.e. one of the Ci, respectively

Di) can do the transition, possibly synchronizing with one of the SN1
j components

of the PSNm process (i.e. the MS synchronizes with the SN. This step models the

establishment of means for ciphering of the TMSI reallocation protocol); or one

of the components under replication is unrolled and does the transition; or one of

the mobile stations starts a new session (in case of the multi-session system). The

formal statements and proofs of Lemma 7.1, 7.3, 7.4 are given in Appendix B.2.

To complete the proof of Proposition 1 we have to prove that the processes obtained

after each simulation step are statically equivalent. This is stated by Lemma 7.2.

Lemma 7.2. Let (C,D) ∈ R then C ≈s D

In order to ease this proof we define the following substitutions:

σid
i,j

def
= {idi,1/xi,1

, idi,2/xi,2
, . . . , idi,j/xi,j

}
σM
i,j

def
= {idi,1/xi,1

, Mi,2/xi,2
, . . . , Mi,j/xi,j

}
σK
i,j

def
= {senc(cki,1, mri,1, Complete)/ki,1 , . . . ,

senc(cki,j , mri,j , Complete)/ki,j}
σnid
i,j

def
= {senc(cki,1, sri,1, pair(TMSI Reall, nidi,1))/yi,1 , . . . ,

senc(cki,j , sri,j , pair(TMSI Reall, nidi,j))/yi,j}

Moreover, we prove in Lemma 7.5 that the structure of the frame of a single (resp.

multi)-session system is as follows:

Let (C,D) ∈ R, C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SSA |!SN), D ≡ ν dck.(D1 |
· · · | Dn | PSNm |!MSA |!SN) then ϕ(C) ≡ ν dck.(ϕ(C1) | · · · | ϕ(Cn)), ϕ(D) ≡

Chapter 7. Formal Verification of the Fixed Protocols 115

ν dck.(ϕ(D1) | · · · | ϕ(Dn)) where ∀i, li 1 ≤ i ≤ n, li ≥ 0,

ϕ(Ci) ≡ ϕ(GSSi,li[SMSki
i,li

| SSNi,li])

≡ ν s̃si,li.ν ñidi,jnid
.(σid

i,jid
| σK

i,jK
| σnid

i,jnid
)

ϕ(Di) ≡ ϕ(GMSi,li[MMSki
i,li

|MSNi,li])

≡ ν m̃si,li.ν ñidi,jnid
.(σM

i,jid
| σK

i,jK
| σnid

i,jnid
)

We then use the obtained frame structure to define a ProVerif bi-process that

generates the frame of the multi-session and single-session processes. This allows

us to automatically prove the static equivalence. Hence, the full proof combines

manual and automatic techniques. The full proofs of Lemma 7.5 and Lemma 7.2

are detailed in the Appendix B.3.

We can now easily prove that the TMSI reallocation procedure preserves unlinka-

bility if a new session key is established before each execution. This is formalised

in the following proposition.

Proposition 1. We show that S ≈l M .

Proof. We show that (M, S) ∈ R.

Let C = S and D = M , let n = 0, m = 0 then C ≡ ν dck.(!SSA |!SN) ≡ S and

D ≡ ν dck.(!MSA |!SN) ≡M and (S, M) ∈ R.

We show that R is a bi-simulation.

We show that ∀ (C,D) ∈ R, C ≈s D : trivially follows by Lemma 7.2.

We show that if C
τ→ C ′ then ∃ D′ such that D =⇒ D′ and (C ′, D′) ∈ R: trivially

follows by Lemma 7.1.

We show that if C
α→ C ′ and fv(α) ⊆ dom(C), bn(α) ∩ fn(D) = ∅ then ∃ D′

such that D =⇒ α→=⇒ D′ and (C ′, D′) ∈ R: trivially follows by Lemma 7.1

Chapter 7. Formal Verification of the Fixed Protocols 116

7.4 Remarks

Our analysis of the TMSI reallocation procedure only considers a simplified version

of the protocol and abstracts away the establishment of CK through the execution

of the key agreement protocol. Hence, we do not claim any guarantees provided

by this proof. However, our formal analysis of TMSI reallocation still allows to

establish that the TMSI reallocation procedure as we modeled it in this Chapter

is not subject to linkability attacks. This shows that the establishment of new

session key before the execution of the TMSI reallocation procedure could be used

as countermeasure to the attack we propose in Section 5.1.1.

We formally proved that if new session keys are established for each TMSI real-

location execution then unlinkability is preserved2. Our proof of unlinkability is

one of the few examples in the literature of a proof of labelled bisimilarity of a

real-sized protocol. Such manual proofs give useful insights on the way one could

automate them, and thus pave the way to automating labelled bisimilarity proofs.

In particular this proof shows how the bisimulation and the static equivalence part

of the proof can be dealt with separately and how to take advantage of automatic

verification tools to prove static equivalence of unbounded protocols.

2In our model no action is taken by either the network nor the MS in case of failure of
the reallocation procedure. This reflects our understanding of the procedure from the standard
specification. Hence, our proof does not give any guarantees in case further messages are sent
over-the-air as a result of a failure in executing the TMSI reallocation.

8

Automatic Verification of

Equivalences for Stateful

Processes:

A StatVerif Extension

Our aim in this Chapter is to extend the range of protocols and protocol proper-

ties verifiable using automatic verification tools. Recent studies [ARR11, DKRS11,

Gut12, Mod10, Her06] pointed out the lack of automatic support for the verifica-

tion of protocols with persistent states. Persistent states are useful when agents

need to maintain some information across consecutive sessions in order to take sen-

sible action according to the protocol specifications. Protocols which may require

the encoding of states or memory cells are for example:

• anonymous or pseudonymous based protocols, which involve the use of pe-

riodically changing identities, such as mobile phone protocols and vehicular

network protocols;

117

Chapter 8. StatVerif Extension 118

• protocols that involve secure hardware such as smart cards, Radio Fre-

quency Identification (RFID) tags, USB tokens and Trusted Platform Mod-

ules (TPMs);

• protocols involving databases such as electronic voting, file sharing, con-

ference management, web transactions, fair exchange and contract signing

protocols.

Persistent state can be encoded in applied pi-calculus using private channels. How-

ever, this encoding makes reasoning with stateful protocols more difficult and less

intuitive. In fact, one usually needs to input and output on the private channel

to model read and write of the state value, and because these operations are syn-

chronous an auxiliary process should be modelled to repeatedly input and output

on the channel so to make read and write of the state content always available and

avoid deadlocks. Moreover, the use of private channels to simulate state cells is

not adequate for automatic verification using the ProVerif tool since it introduces

false attacks. This is due to the fact that a value sent on a private channel (and

hence the one of a state) is always available even if a new value is subsequently

sent, i.e. older values of the state can be used even after the state is updated.

The wide application of stateful protocols together with the lack of automatic sup-

port for the verification of their security properties led to the development of the

StatVerif tool. The StatVerif tool is an automatic verifier for the verification

of reachability properties of stateful protocols. StatVerif does not handle equiv-

alence based properties. However, many interesting properties of stateful protocols

such as anonymity, unlinkability, and strong secrecy are equivalence-based proper-

ties. We aim to close this gap. For this reason we extend the automatic verification

tool StatVerif [ARR11] to the verification of observational equivalence based

properties. In fact, the StatVerif tool can only deal with reachability properties

of Stateful protocols.

Chapter 8. StatVerif Extension 119

8.1 Related Work

Guttman [Gut12] enriches the strand space model with multiset rewriting in order

to deal with protocol’s states. This technique is then used to verify a fair exchange

protocol, however there is no automatic support for it. Multiset rewriting is used

in combination with constraint solving by the tool tamarin [SMCB12] to auto-

matically support the verification of Authentication and Key Exchange (AKE)

protocols based on Diffie-Hellman. The underlying model makes tamarin suitable

for the verification of stateful protocols and it has been successfully used to verify

hardware password token protocols in interactive (i.e. with human intervention)

mode. In [Mod10] the IF (Intermediate Format) language of AVISPA (Automated

Validation of Internet Security Protocols and Applications) is extended in order to

explicitly deal with fresh data and databases, using the set-membership abstrac-

tion and resulting in the AIF language. The author implements an automatic

translation tool from AIF to Horn clauses. The Horn clauses can be generated

both in the ProVerif syntax and in the SPASS syntax, hence allowing the auto-

matic verification with the respective tools. They automatically verify reachability

properties of non-trivial stateful protocols. States are manually encoded into Horn

clauses in [DKRS11] to model TPM’s registers. The method used is strictly tied

to the TPM configuration registers scenario. The closest work to ours is the one

presented in [ARR11] where the StatVerif tool is developed. In this Chapter we

extend the StatVerif calculus, semantics and translation into Horn clauses in or-

der to deal with the verification of equivalence-based properties. For this purpose

we rely as well on the theory developed in [BAF05] for the automatic verification

of equivalence of bi-processes. We also take advantage of the theory for a stateful

applied pi-calculus as developed in [ALRR14]. The authors define observational

equivalence and labelled bisimilarity for stateful processes with and without public

cells. In particular, the definition of observational equivalence with public cells is

the one we use in this work.

Chapter 8. StatVerif Extension 120

8.2 Our Contribution

Firstly, we extend the StatVerif calculus to support the modelling of bi-processes

and equational theories. Secondly, we develop a translation of the StatVerif bi-

processes into Horn clauses. Finally, we implement StatVerif for observational

equivalence and test it on some examples.

8.3 Background: StatVerif Process Language

We first introduce the StatVerif process language as presented in [ARR11] to

model and automatically verify stateful processes. This language extends the

ProVerif process language presented in [BAF05]. It allows to model concurrent

processes which communicate by sending terms built over a signature including

names and variables. These terms model the messages that are exchanged during

the execution of a protocol.

8.3.1 Syntax and Informal Semantics

Figure 8.1 summarizes the syntax of the basic StatVerif calculus as presented

in [ARR11]. We assume an infinite set of names a, b, c, k, s, . . . , an infinite set of

variables x, y, z, . . . , and a signature E (a set of function symbols, with arities).

We distinguish function symbols in constructors f and destructors g. We write h

for a constructor or a destructor. Destructors represent primitives that can visibly

succeed or fail, while equations model primitives that always succeed even though

they may return junk terms in some cases. Terms M,N, . . . are built over vari-

ables, names, and constructor applications of the form f(M1, . . . ,Mn). Terms are

subject to an equational theory, we write Σ ⊢M = N for an equality modulo the

equational theory, and Σ ⊢M 6= N for an inequality modulo the equational theory.

Chapter 8. StatVerif Extension 121

(We writeM = N andM 6= N for syntactic equality and inequality, respectively.)

The equational theory is defined by a finite set of equations Σ ⊢ Mi = Ni, where

Mi and Ni are terms that contain only constructors and variables. The equational

theory is then obtained from this set of equations by reflexive, symmetric, and

transitive closure, closure by substitution, and closure by context application (if

Σ ⊢ M = N then Σ ⊢ M ′{M/x} = M ′{N/x}, where {M/x} is the substitution

that replaces x with M).

As implemented in ProVerif, destructors are partial, non-deterministic operations

that processes can apply on terms. The semantics of a destructor g is defined by

a finite set defΣ(g) of rewrite rules of the form g(M ′1, . . . ,M
′
n) → M ′ , where

M ′1, . . . ,M
′
n,M

′ are terms that contain only constructors and variables, the vari-

ables of M ′ are bound in M ′1, . . . ,M
′
n, and variables are subject to renaming. The

destructor application g(M1, . . . ,Mn) is defined if and only if there exists a substi-

tution σ and a rewrite rule g(M ′1, . . . ,M
′
n) →M ′ in defΣ(g) such that Mi = σM ′

i

for all i ∈ {1, . . . , n}, and g(M1, . . . ,Mn) → σM ′. In order to avoid distinguishing

constructors and destructors in the definition of term evaluation, we let defΣ(f) be

{f(x1, . . . , xn) → f(x1, . . . , xn)}. The definition of term evaluation is not present

in [ARR11], we define term evaluation as in [BAF05] (see Figure 8.2). Moreover,

as in [BAF05], the prefix eval is here introduced in order to indicate when terms

are evaluated. However, it can be ignored for the moment, since eval f and f

have the same semantics when f is a constructor, and destructors are used only

with eval.

Processes P,Q,R, . . . include the empty process 0 which does nothing; the input

process in(M,x);P which models the input of a term on a channel M , the term

is then substituted for x in the process P . The process out(M,N);P outputs

a term N on a channel M and then executes P . P | Q models the concurrent

execution of P and Q. The replication !P models the concurrent execution of

an unbounded number of copies of the process P . The name restriction new a;P

is used to model that a is a fresh random number or key. The let construct

Chapter 8. StatVerif Extension 122

M,N ::= terms
x, y, z variables
a, b, c, k, s names
f(M1, . . . ,Mn) constructor

D ::= term evaluation
M term
eval h(D1, . . . , Dn) evaluation

P,Q ::= processes
0 nil
out(M,N);P output
in(M,x);P input
P | Q parallel
!P replication
new a;P restriction
let x = D in P else Q destructor
[s 7→ M] state
read s1, . . . , sn as x1, . . . , xn;P read
s1, . . . , sn :=M1, . . . ,Mn;P assign
lock s1, . . . , sn;P lock
unlock s1, . . . , sn;P unlock

Figure 8.1: StatVerif syntax

let x = D in P else Q behaves as P where x is substituted by the evaluation

of the term D, if the evaluation of D succeeds, and behaves as Q otherwise. The

state declaration [s 7→ M] represents a cell s that has the initial value M . The

process read s1, . . . , sn as x1, . . . , xn;P binds the variables x1, . . . , xn to the values

stored in the cells s1, . . . , sn respectively and then continues as P . The assignment

s1, . . . , sn := M1, . . . ,Mn;P assigns the values M1, . . . ,Mn to the cells s1, . . . , sn

respectively and then continues as P . The process lock s1, . . . , sn;P locks the

state cells s1, . . . , sn for the exclusive access of P and unlock s1, . . . , sn;P releases

the lock on the state cells s1, . . . , sn, and continues as P . The full syntax of

StatVerif is subject to the additional restrictions requiring the state declaration

[s 7→ M] to occur only once for a given cell name s, and only within the scope

of new, a parallel. It may not be in the scope of an input, output, conditional,

Chapter 8. StatVerif Extension 123

let, assignment, lock, or unlock. Note that a process that executes a parallel or a

replication after locking one or more cells, but before unlocking them, will block

according to the semantics. Such a syntactic construction is therefore not useful.

The conditional if M = N then P else Q is not included in the syntax and

can be defined as let x = equals(M,N) in P else Q where x is a fresh variable

and equals is a binary destructor such that equals(x, x) → x. This destructor is

always included in Σ. The sets of free names and free variables in P are denoted

by fn(P) and fv(P) respectively, and are defined as usual. We write cells(P) to

denote the free cells in P . Note that cells(P) ⊆ fn(P). A process is closed if

it has no free variables. We identify processes up to renaming of bound names

and variables. As usual, new a binds a, in(M,x) and let x = D in P bind x,

moreover read s1, . . . , sn as x1, . . . , xn binds x1, . . . , xn. An evaluation context C

is a closed context built from [], C | P, P | C, and new a;C, and not containing

the state construct [s 7→ M].

Example 8.1. As an example of a simple stateful process we can model an RFID

tag. The state of the tag is its identity ”id” which is stored in a private cell. The

tag reads from the cell its identity and sends it to the reader when starting an

interaction.

new s; new id;

([s 7→ id] | lock s; read s as x; out(c, x); unlock s)

8.3.2 Operational Semantics

The StatVerif semantics is defined over ”stateful” processes. A StatVerif

stateful process is a tuple (E ,S,P), where E is a finite set of names called en-

vironment, the state S maps state cells to their values, and P is a finite multiset

of pairs of the form (P, λ) where P is a process and λ is the set of the indices of

cell names locked by P . In a stateful process (E ,S,P), a cell index appears in at

Chapter 8. StatVerif Extension 124

most one of the λs. We denote with locks(P) the set of indices of cells locked by

the processes in P, i.e. locks(P) = {i|i ∈ λ, (P, λ) ∈ P}. The environment E must

contain at least the free names of S and P.

Example 8.2. The stateful process

({a1, . . . , al} ∪ {fn(Pi)|1 ≤ i ≤ m} ∪ fn({si|1 ≤ i ≤ n}) ∪ {fn(Mi)|1 ≤ i ≤
n},S, {(P1, ∅), . . . , (Pm, ∅)})
intuitively corresponds to the process

new a1, . . . , al; ([s1 7→ M1] | · · · | [sn 7→ Mn] | P1 | · · · | Pm) where S(si) = Mi, i ∈
{1, . . . , n}.

The semantics of StatVerif is defined by a reduction relation → on stateful

processes, shown in Figure 8.2. It extends the semantics of [ARR11] to take

into account equational theories. Auxiliary rules define term evaluation ⇓Σ as

in [BAF05]. We write →∗ for the reflexive and transitive closure of →.

Notice that the reduction relation preserves the invariant that at most one of the

processes in P can have a given cell name locked. The cell name s is added to λ

by lock, and only one process (P, λ) ∈ P can satisfy s ∈ λ. If a process has locked

a cell, the other running processes cannot use the cell until the corresponding

unlock. s1, . . . , sn := M1, . . . ,Mn and read s1, . . . , sn as x1, . . . , xn update and

read the store S in the expected way.

A stateful context C is a stateful process with holes (E ,S ,P). Let A =

(Ea,Sa,Pa) be a closed stateful process, and C = (E ,S ,P) be a stateful con-

text such that bn(A) ∩ (bn(C) ∪ fn(S) ∪ fn(P)) = dom(S) ∩ dom(Sa) = ∅.
The application of the stateful context C to A is the stateful process C[A] =

(E ∪ Ea,S ∪ Sa,P ∪ Pa). An evaluation stateful context is a stateful context that

does not have its own cells C = (Ec , ,Pc) and Pc does not contain the state

construct.

Chapter 8. StatVerif Extension 125

term evaluation
M ⇓Σ M
eval h(D1, . . . ,Dn) ⇓Σ σN

if h(N1, . . . , Nn) → N ∈ defΣ(h), and
σ is such that ∀ i, Di ⇓Σ Mi and Σ ⊢ Mi = σNi

(E ,S,P ∪ {(0, λ)}) → (E ,S,P) (Red Nil)

(E ,S,P ∪ {(!P, ∅)}) → (E ,S,P ∪ {(P |!P, ∅)}) (Red Repl)

(E ,S,P ∪ {(P | Q, ∅)}) → (E ,S,P ∪ {(P, ∅), (Q, ∅)}) (Red Par)

(E ,S,P ∪ {(new a;P, λ)}) → (E ∪ {a′},S,P ∪ {(P{a′

/a}, λ)}) (Red New)
if a′ fresh

(E ,S,P∪
{(let x = D in P else Q, λ)}) → (E ,S,P ∪ {(P{M/x}, λ)}) (Red Fun1)

if ∃M such that D ⇓Σ M

(E ,S,P∪
{(let x = D in P else Q, λ)}) → (E ,S,P ∪ {(Q, λ)}) (Red Fun2)

if ∄M such that D ⇓Σ M

(E ,S,P∪
{(out(M,N);P, λ1),
(in(M ′, x);Q, λ2)})

→ (E ,S,P ∪ {(P, λ1), (Q{N/x}, λ2)}) (Red Comm)

if Σ ⊢ M = M ′

(E ,S,P ∪ {([s 7→ M], ∅)}) → (E ,S ∪ {s 7→ M},P) (Red State)
if s ∈ dom(E) and s /∈ dom(S)

(E ,S,P∪
{(lock si1 , . . . , sim ;P, λ)}) → (E ,S,P ∪ {(P, λ ∪ {i1, . . . , im})}) (Red Lock)

if ∀ (Q, λ′) ∈ P . {i1, . . . , im} ∩ λ′ = ∅

(E ,S,P∪
{(unlock si1 , . . . , sim ;P, λ)}) → (E ,S,P ∪ {(P, λ \ {i1, . . . , im})}) (Red Unlock)

(E ,S,P∪
{(read si1 , . . . , sim
as xi1 , . . . , xin ;P, λ)})

→ (E ,S,P∪ (Red Read)

{(P{S(si1)/xi1
, . . . , S(sim)/xim

, λ)})
if si1 , . . . , sim ∈ dom(S)
and ∀ (Q, λ′) ∈ P . {i1, . . . , im} ∩ λ′ = ∅

(E ,S,P∪
{(si1 , . . . , sim := Mi1 , . . . ,
Mim ;P, λ)})

→ (E ,S∪ (Red Assign)

{[sij 7→ Mij | 1 ≤ j ≤ m]},P ∪ {P, λ)})
if si1 , . . . , sim ∈ dom(S)
and ∀ (Q, λ′) ∈ P . {i1, . . . , im} ∩ λ′ = ∅

Figure 8.2: StatVerif semantics

Chapter 8. StatVerif Extension 126

8.3.3 Observational Equivalence

We introduce the definition of observational equivalence for stateful processes.

Definition 8.1. A stateful process A emits on M , denoted A ↓M , if and only

if A = C[(E ,S, {(out(M ′, N);R, λ)})] for some evaluation stateful context C =

(EC , ,PC) that does not bind any name in fn(M) and Σ ⊢M =M ′.

Definition 8.2. Observational equivalence (≈) is the largest symmetric relation

R on closed stateful processes such that A R B implies:

1. locks(A) = locks(B) and cells(A) = cells(B)

2. if A→∗ A′, A′ ↓M then B →∗ B′, B′ ↓M ;

3. if A→∗ A′ then B →∗ B′ and A′ R B′ for some B′;

4. C[A] R C[B] for all evaluation stateful contexts C.

This definition is similar to the observational equivalence definition given in [BAF05]

but introduces some constraints specific to stateful processes as proposed in [ALRR14].

In particular, we require the set of locked cells in the two processes to be the same,

as well we require the set of free cells in the two processes to be the same. In fact,

the presence of free cells gives the attacker the possibility to tell apart two processes

just by holding the lock on the free cell, as described in the following example.

Example 8.3. Let

A = (∅, {s 7→ 0}, {(c 〈b〉 , ∅)})
B = (∅, {s 7→ 0}, {(read s as x.c 〈b〉 , ∅)})

We have that A and B are not observationally equivalent in fact the attacker

represented by the evaluation context C = (, , {(0, {s})},) can lock the unlocked

Chapter 8. StatVerif Extension 127

public state cells. By holding the lock the adversary blocks the process B which will

never output on the channel c while A can execute the output of b on the channel

c. Hence C[A] ⇓c but C[B] ⇓/c.

8.4 StatVerif Extension to Observational Equiv-

alence

We extend the syntax of StatVerif with a construct that allows to represent pairs

of processes having the same structure but possibly differing by the terms and

term evaluations that they contain. Such a pair of processes is called a biprocess

and was first introduced in [BAF05]. As in [BAF05], the syntax of Figure 8.1

is enriched so that diff[M,M] is a term and diff[D,D] is a term evaluation.

Contexts may contain diff terms and diff term evaluations. We call plain terms,

processes and contexts, that do not contain diff. Given a biprocess P , the process

fst(P) is the process obtained by replacing all occurrences of diff[M,M ′] withM

and diff[D,D′] with D. Similarly, the process snd(P) is obtained by replacing

diff[M,M ′] with M ′ and diff[D,D′] with D′; fst(D), fst(M), snd(D), and

snd(M) are defined recursively. We extend the biprocess construct to stateful

processes. A stateful biprocess is a tuple (E ,S,P), where the environment E is a

finite set of names that contains at least the free names of S and P. The state

S maps state cells to their values, and values can be terms containing the diff

construct. P is a finite multiset of pairs of the form (P, λ) where P is a biprocess

and λ is the set of cell indices locked by P . As before, in a stateful process (E ,S,P),

a cell name appears in at most one of the λs. Given a stateful biprocess A, the

stateful process fst(A) is the stateful process obtained by replacing all occurrences

of diff[M,M ′] withM and diff[D,D′] withD in (P, λ) for all (P, λ) ∈ P and in Vi

for all si 7→ Vi ∈ S. Similarly, the stateful process snd(P) is obtained by replacing

diff[M,M ′] with M ′ and diff[D,D′] with D′ in (P, λ) for all (P, λ) ∈ P and in

Chapter 8. StatVerif Extension 128

(E ,S,P ∪ {(let x = D in P else Q, λ)}) →
(E ,S,P ∪ {(P{diff[M,M ′]/x}, λ)})
if ∃M,M ′ such that fst(D) ⇓Σ M and snd(D) ⇓Σ M ′ Red Fun1

(E ,S,P ∪ {(let x = D in P else Q, λ)}) →
(E ,S,P ∪ {(Q, λ)})
if ∄M,M ′ such that fst(D) ⇓Σ M and snd(D) ⇓Σ M ′ Red Fun2

(E ,S,P ∪ {(out(M,N);P, λ1), (in(M
′, x);Q, λ2)}) →

(E ,S,P ∪ {(P, λ1), (Q{N/x}, λ2)})
if Σ ⊢ fst(M) = fst(M ′) and Σ ⊢ snd(M) = snd(M ′) Red Comm

Figure 8.3: Red Fun1, Red Fun2 and Red Comm reduction rules for
StatVerif for observational equivalence

Vi for all si 7→ Vi ∈ S. The semantics of StatVerif for observational equivalence

is defined as before but ranges over stateful biprocess and the Red Fun1, Red

Fun2 and Comm reduction rules are now defined as in Figure 8.3.

Definition 8.3. Let A be a closed stateful biprocess. We say that A satisfies

observational equivalence when fst(A) ≈ snd(A).

Reductions for stateful biprocesses always imply reductions of the first and second

components i.e. if A→ B then fst(A) → fst(B) and snd(A) → snd(B), however

the converse is not always true. When the converse is true we say that the stateful

biprocess is uniform. As in [BAF05] we want to show that if a stateful biprocess

A is uniform then fst(A) ≈ snd(A). First, we extend the definition of uniform

biprocess given in [BAF05] to stateful biprocesses, then we prove that uniformity

implies observational equivalence (Theorem 8.5) and establish the necessary con-

dition for uniformity (and hence observational equivalence, Corollary 8.6).

Definition 8.4. We say that the stateful biprocess A is uniform when fst(A) →
B1 implies that A → B for some stateful biprocess B with fst(B) = B1, and

symmetrically for snd(A) → B2.

Example 8.4. Let

A = (∅, {s 7→ 0}, {(if a = diff[a, b]then Pelse P, ∅)}) and
B = (∅, {s 7→ 0}, {(P, ∅)}).
We have that A is not uniform because fst(A) → B and snd(A) → B but A9 B.

Chapter 8. StatVerif Extension 129

Theorem 8.5. Let A0 be a closed stateful biprocess. If for all plain evaluation

stateful contexts C and reductions C[A0] →∗ A, the stateful biprocess A is uniform,

then A0 satisfies observational equivalence.

A proof of theorem 8.5 is given in Appendix C

Corollary 8.6. Let A0 be a closed stateful biprocess. Suppose that, for all plain

evaluation stateful contexts C, all evaluation contexts C ′, and all reductions

C[A0] →∗ A,

1. if A = C ′[(E ,S,P ∪
{(out(N,M);P, ∅), (in(N ′, x);Q, ∅)})], then

Σ ⊢ fst(N) = fst(N ′) if and only if Σ ⊢ snd(N) = snd(N ′),

2. if A = C ′[(E ,S,P ∪ {(let x = D in P else Q, λ)})], then
there exists M1 such that fst(D) ⇓ M1 if and only if there exists M2 such

that snd(D) ⇓M2.

Then A0 satisfies observational equivalence.

A proof of Corollary 8.6 is given in Appendix C.2.

As in [BAF05], we consider an auxiliary rewriting system on terms, T , that defines

partial normal forms. The terms manipulated by T do not contain diff, but they

may contain variables. The rules of T do not contain names and do not have

a single variable on the left-hand side. We say that a term is irreducible by T

when none of the rewrite rules of T applies to it; we say that the set of terms

M is in normal form relatively to T and Σ, and write nfT,Σ(M), if and only if

all terms of M are irreducible by T and, for all subterms N1 and N2 of terms

of M, if Σ ⊢ N1 = N2 then N1 = N2. Intuitively, we allow for the possibility

that terms may have several irreducible forms requiring that M uses irreducible

forms consistently. This requirement implies, for instance, that if the rewrite

Chapter 8. StatVerif Extension 130

rule f(x, x) → x applies modulo the equational theory to a term f(N1, N2) then

N1 and N2 are identical and the rule f(x, x) → x also applies without invoking

the equational theory. We extend the definition of nfT,Σ() to sets of processes:

nfT,Σ(P) if and only if the set of terms that appear in processes in P is in normal

form.

We recall that as in [BAF05], for an equational theory (without equations) Σ′ of

a signature E ′, the evaluation on open terms is defined as a relation D ⇓′ (M,σ),

where σ collects instantiations of D obtained by unification:

M ⇓′ (M, ∅)

eval h(D1, . . . , Dn) ⇓′ (σuN, σuσ′)
if (D1, . . . , Dn) ⇓′ ((M1, . . . ,Mn), σ

′),

h(N1, . . . , Nn) → N is in defΣ′(h) and

σu is a most general unifier of (M1, N1), . . . , (Mn, Nn)

(D1, . . . , Dn) ⇓′ ((σnM1, . . . , σnMn−1,Mn), σnσ)

if (D1, . . . , Dn−1) ⇓′ ((M1, . . . ,Mn−1), σ) and

σDn ⇓′ (Mn, σn)

As in [BAF05], we let addeval(M1, . . . ,Mn) be the tuple of term evaluations

obtained by adding eval before each function symbol ofM1, . . . ,Mn. Using these

definitions, we describe when an equational theory Σ′ with rewrite rules models

another equational theory Σ with equations.

Definition 8.7. Let E and E ′ be signatures on the same function symbols. We

say that the equational theory, without equations, Σ′ of E ′ models the equational

theory Σ of E if and only if

1. The equational theory of E ′ is syntactic equality: Σ′ ⊢ M = N if and only

if M = N .

Chapter 8. StatVerif Extension 131

2. The constructors of E ′ are the constructors of E; their definition defΣ′(f)

contains the rule f(x1, . . . , xn) → f(x1, . . . , xn), plus perhaps other rules

such that there exists a rewriting system T on terms that satisfies the fol-

lowing properties:

S1. If M → N is in T , then Σ ⊢M = N .

S2. If nfT,Σ(M), then for any term M there exists M ′ such that Σ ⊢M =

M ′ and nfT,Σ(M∪ {M ′}).

S3. If f(N1, . . . , Nn) → N is in defΣ′(f), then Σ ⊢ f(N1, . . . , Nn) = N .

S4. If Σ ⊢ f(M1, . . . ,Mn) =M and

nfT,Σ({M1, . . . ,Mn,M}), then there exist σ and f(N1, . . . , Nn) → N in

defΣ′(f) such that M = σN and Mi = σNi for all i ∈ {1, . . . , n}.

3. The destructors of E ′ are the destructors of E, with a rule g(M ′1, . . . ,M
′n) →

M ′ in defΣ′(g) for each g(M1, . . . ,Mn) → M in defΣ(g) and each

addeval(M1, . . . ,Mn,M) ⇓′ ((M ′1, . . . ,M ′n,M ′), σ).

In the rest of this work, we assume that E ′ (without equations) models E. The

equational theory without equations Σ′ of the signature E ′ can be obtained using

one of the algorithms presented in [BAF05]. The equality modulo Σ is extended

to stateful biprocesses and term evaluations: Σ ⊢ A = A′ if and only if A can be

obtained from A′ by replacing some of its subterms M (not containing diff or

eval) with subterms equal modulo Σ and Σ ⊢ S(si) = S ′(si) ∀i ∈ {1, . . . , n} where
S and S ′ are the mappings from cells to their values in A and A′ respectively. We

define Σ ⊢ D = D′ similarly. Let P and P ′ be multisets of pairs (P, λ), we write

Σ ⊢ P = P ′ when Σ ⊢ P = Q where P = {P |(P, λ) ∈ P}, Q = {Q|(Q, λ) ∈ P ′}.
We define A →Σ,Σ′ A′ as A →Σ A′ except that the equational theory Σ′ is used

for reduction rules (Comm) and (Red Fun1), while the equational theory Σ is

still used for (Red Fun2).

Chapter 8. StatVerif Extension 132

An initial stateful biprocess A is a stateful biprocess of the form (E , ∅, {(new m̃;

([s1 7→M1] | · · · | [sn 7→ Mn] | P), ∅)}) such that: P has no state declarations in it;

each name and variable is bound at most once in P ; and each name and variable

in P is either bound or free but not both. The tuple m̃ contains cell names and

ordinary names. Note that any process with a bounded number of cell names can

be converted into one of the prescribed form.

We say that a stateful biprocess A is unevaluated when every term in A (a part

from cell names in lock, unlock, read, and assignment statements) is either

a variable or diff[a, a] for some name a. Hence, every function symbol in A

must be in a term evaluation and prefixed by eval. For any stateful biprocess

A, we can build an unevaluated stateful biprocess uneval(A) by introducing a

term evaluation for every non-trivial term and a diff for every name (with A ≈
uneval(A)).

The following Lemma states that the transitions of the original process are pre-

served by its unevaluated version.

Lemma 8.8. Let A0 be a closed, unevaluated stateful biprocess. If A0 →∗ ΣA
′
0,

Σ ⊢ A′0 = A′, and nfS,Σ(A
′), then A0 →∗ Σ′,ΣA

′. Conversely, if A0 →∗ Σ′,ΣA then

there exists A′0 such that Σ ⊢ A′0 = A′ and A0 →∗ ΣA
′
0.

Hence, as stated in the next Lemma, we can consider unevaluated processes to

check the conditions of Corollary 8.6.

Lemma 8.9. A closed stateful biprocess A0 satisfies the conditions of Corollary 8.6

if and only if, for all plain evaluation contexts C, all evaluation contexts C ′, and

all reductions uneval(C[A0]) →∗ A, we have:

1. if A = C ′[(Ea,Sa,Pa

∪{(out(N,M);Q, λ1), (in(N
′, x);R, λ2)})] and

fst(N) = fst(N ′), then Σ ⊢ snd(N) = snd(N ′)

Chapter 8. StatVerif Extension 133

2. if A = C ′[(Ea,Sa,Pa ∪ {(let x = D in Q else R, λ)})] and fst(D) ⇓Σ′ M1

for some M1, then snd(D) ⇓Σ M2 for some M2

as well as the symmetric properties where we swap fst and snd.

A proof of Lemma 8.8 and Lemma 8.9 is given in Appendix C.4 and C.5 respec-

tively.

Thanks to Lemma 8.9 we can concentrate on unevaluated biprocesses and check if

condition 1 and 2 are satisfied. If so the stateful biprocess satisfies observational

equivalence.

However, the ProVerif tool requires our stateful biprocesses to be translated into

Horn clauses in order to verify them. In the next section, we describe the trans-

lation procedure from unevaluated biprocesses into Horn clauses. The translation

into Horn clauses is such that if either condition 1 or condition 2 is not satisfied

then the fact bad is derivable. This means that our translation is sound and is

formalised by Theorem 8.11.

8.5 Clause Generation

In the following sections we describe how to translate an applied pi-calculus process

into a set of horn clauses which can be verified by the ProVerif tool, or better

an extension of it programmed to take into account stateful processes.

Given a closed initial stateful biprocess A0, StatVerif builds a set of Horn clauses.

In the clauses, terms are represented by patterns, with the following grammar:

Chapter 8. StatVerif Extension 134

p ::= patterns

x, y, z, i variable

f(p1, . . . , pn) constructor

a[p1, . . . , pn] name

g element of GVar

A fresh session identifier variable i is assigned to each replication of A0. A distinct

value for i will be used for each copy of the replicated process (this value is recorded

in the pattern sequence used to parametrise bound names). To each name a of

A0 we assign a pattern a[p1, . . . , pn] i.e. each name a is a function of the patterns

p1, . . . , pn. If a is bound by a restriction new a in A0 then p1, . . . , pn are the

patterns for the results of term evaluations, the session identifiers of replications,

the terms received as inputs and the terms read from states in the context that

encloses the restriction. If a is a free name the pattern of a is a[]. We assume

that each restriction new a in A0 has a different name a, distinct from any free

name of A0. Moreover, session identifiers enable us to distinguish names created

in different copies of processes. Hence, each name created in the process calculus

is represented by a different pattern in the verifier.

Patterns include an infinite set of constants GV ar. These constants are basically

universally quantified variables, and occur only in arguments of the predicate

nounif , defined in Definition 8.10 below. We write GV ar(M) for the term ob-

tained from M by replacing the variables of M with new constants in the set

GV ar. Clauses are built from the following predicates:

Chapter 8. StatVerif Extension 135

F ::= facts

att(s̃1, p, s̃2, p
′) attacker knowledge

msg(s̃1, p1, p2, s̃2, p
′
1, p
′
2) output message

p2 on p1 (resp. p2’ on p1’)

input(s̃1, p, s̃2, p
′) input on p (resp. p’)

nounif(p, p′) impossible unification

bad bad

The predicate att(s̃1, p, s̃2, p
′) means that the attacker may obtain p in fst(P) with

state s̃1 and p
′ in snd(P) in the state s̃2 by the same operations; msg(s̃1, p1, p2, s̃2,

p′1, p
′
2) means that message p2 can be sent on channel p1 in fst(P) in the state

s̃1 and that message p′2 can be sent on channel p′1 in snd(P) in the state s̃2 after

the same reductions; input(s̃1, p, s̃2, p
′) means that an input may be executed in

the state s̃1 on channel p in fst(P) and in the state s̃2 on channel p′ in snd(P);

nounif(p, p′) means that p and p′ cannot be unified modulo Σ by substituting ele-

ments of GV ar with patterns; finally, bad serves in detecting violations of observa-

tional equivalence: when bad is not derivable, we have observational equivalence.

The predicate nounif is defined as in [BAF05]:

Definition 8.10. Let p and p′ be closed patterns. The fact nounif(p, p′) holds

if and only if there is no closed substitution σ with domain GV ar such that

Σ ⊢ σp = σp′.

The nounif predicate is not implemented by clauses but by special simplification

steps in the ProVerif solver.

8.5.1 Clauses for the Protocol

The translation JP Kρω1ω2Hϕ1ϕ2λ of a biprocess P is a set of clauses, where:

Chapter 8. StatVerif Extension 136

• ρ is an environment, that is a function mapping names and variables of the

process language to pair of patterns of the clause language;

• ω1 and ω2 are sequences of patterns. They accumulates the set of variables

that have been input or read so far and the session identifiers respectively

for the components fst(Q) and snd(Q) of the biprocess Q being translated.

This set is used to parametrise the names created by new. The empty se-

quence is written ∅; the concatenation of a pattern p to the sequence ω is

written p :: ω.

• H is a sequence obtained by conjunction of facts;

• ϕ1 is a tuple of terms (M1, . . . ,Mn), not containing diff, representing the

last known values of the state cells in the component fst(Q) of the biprocess

Q being translated, similarly ϕ2 is a tuple of terms not containing diff,

(M ′1, . . . ,M
′
n) representing the last known values of the state cells in the

component snd(Q) of the biprocess Q being translated.

• We store in λ the set of the indices of the state cells locked by the currently

processed thread.

We write ϕ[k] for the k− th element of the tuple corresponding to the term stored

in the cell sk, and ϕ[k 7→M] for the assignment of the termM to the k−th element

of the tuple. We extend ρ to a substitution i.e. ρ(f(M1, . . . ,Mn)) = (f(p1, . . . , pn),

f(p′1, . . . , p
′
n)) where ρ(Mi) = (pi, p

′
i) for all i ∈ {1, . . . , n}. We denote by ρ1(M)

and ρ2(M) the left and the right components of the pair ρ(M), respectively.

We let ρ(diff[M,M ′]) = (ρ1(M), ρ2(M
′)) and

ρ1(ϕ1) = (ρ1(M1), . . . , ρ1(Mn)),

ρ2(ϕ2) = (ρ2(M1), . . . , ρ2(Mn))

Let A0 = (E , ∅, {(new m̃; ([s1 7→ M1] | · · · | [sn 7→ Mn] | P), ∅)}) be a closed initial

stateful biprocess and let ρ0 be the function {a → a[], si → si[]|a ∈ fn(P), 1 ≤
i ≤ n} and let

Chapter 8. StatVerif Extension 137

ϕ01 = (fst(M1), . . . , fst(Mn)),

ϕ02 = (snd(M1), . . . , snd(Mn)). The stateful biprocess above is translated into

the union of the following sets of clauses:

• clauses corresponding to the translation of the protocol

JP K ρ0 ∅ ∅ true ϕ01 ϕ02 ∅ where the function JKρHω1ω2ϕ1ϕ2λ is given in

Figure 8.4, 8.5;

• clauses encoding the capabilities of the attacker defined in Section 8.5.2;

• clauses encoding the mutability of public states defined in Section 8.5.3;

The StatVerif compiler that performs the translation maintains the variables

ρ,H, ω1, ω2, ϕ1ϕ2 and λ.

8.5.2 Clauses for the Attacker

The following clauses represent the capabilities of the attacker.

The attacker knows all the free names of A0, rule (Rinit), can generate fresh

names, rule (Rn).

For each a ∈ fn(A0),

att(ρ01(ϕ01), a[], ρ02(ϕ02), a[]); (Rinit)

For some b that does not occur in A0,

att(ρ01(ϕ01), b[x], ρ02(ϕ02), b[x]) (Rn)

Chapter 8. StatVerif Extension 138

J0Kρω1ω2Hϕ1ϕ2λ = ∅

J!QKρω1ω2Hϕ1ϕ2∅ = JQKρ(i :: ω1)(i :: ω2)Hϕ1ϕ2∅ i fresh variable

JQ1 | Q2Kρω1ω2Hϕ1ϕ2∅ = JQ1Kρω1ω2Hϕ1ϕ2∅ ∪ JQ2Kρω1ω2Hϕ1ϕ2∅

Jnew a;QKρω1ω2Hϕ1ϕ2λ = JQKρ ∪ {a 7→ (a[ω1], a[ω2])}ω1ω2Hϕ1ϕ2λ

Jin(M,x);QKρω1ω2Hϕ1ϕ2λ = {H → input(ρ1(ϕ
′
1), ρ1(fst(M)), ρ2(ϕ

′
2), ρ2(snd(M)))}

∪ JQKρ′(x′ :: ω1)(x
′′ :: ω2)H

′ϕ′
1ϕ

′
2λ

let {yk, y′k, y′′k |1 ≤ k ≤ n, k /∈ λ} be fresh variables
ϕ′
1 = ϕ1[k 7→ yk|1 ≤ k ≤ n, k /∈ λ]

ϕ′
2 = ϕ2[k 7→ yk|1 ≤ k ≤ n, k /∈ λ]

ρ′ = ρ ∪ {x 7→ (x′, x′′) | x′, x′′ fresh}
∪{yk 7→ (y′k, y

′′
k) | 1 ≤ k ≤ n}

H ′ = (H ∧msg(ρ1(ϕ
′
1), ρ1(fst(M)), x′,

ρ2(ϕ
′
2), ρ2(snd(M)), x′′))

Jout(M,N);QKρω1ω2Hϕ1ϕ2λ = {H → msg(ρ1(ϕ1), ρ1(fst(M)), ρ1(fst(N)),
ρ2(ϕ2), ρ2(snd(M)), ρ2(snd(N)))}

∪ JQKρω1ω2Hϕ1ϕ2λ

Jlet x = D
in Q1 else Q2Kρω1ω2Hϕ1ϕ2λ = {JQ1K(σρ ∪ {x 7→ (p, p′)})(p :: σω)(p′ :: σω′)(σH)

(σϕ1)(σϕ2)λ | (ρ1(fst(D)), ρ2(snd(D))) ⇓′ ((p, p′), σ)}
∪ JQ2Kρω1ω2H

′ϕ1ϕ2λ
H ′ = H ∧ ρ1(fails(fst(D))) ∧ ρ2(fails(snd(D)))

∪ {σH ∧ σρ2(fails(snd(D))) → bad|
ρ1(fst(D)) ⇓′ (p, σ)}

∪ {σH ∧ σρ1(fails(fst(D))) → bad|
ρ2(snd(D)) ⇓′ (p′, σ)}

where fails(D) =
∧

σ|D⇓′(p,σ) nounif(D,GV ar(σD))

Figure 8.4: Translation of the protocol: null, replication, parallel, restriction,
input, output and let

The attacker can read and write on channels that he knows:

msg(xs, y, z, xs′, y′, z′) ∧ att(xs, y, xs′, y′) →
att(xs, z, xs′, z′) (Rl)

att(xs, y, xs′, y′) ∧ att(xs, z, xs′, z′) →
msg(xs, y, z, xs′, y′, z′) (Rs)

att(xs, y, xs′, y′) → input(xs, y, xs′, y′) (Ri)

Chapter 8. StatVerif Extension 139

Jlock si1 , . . . , sim ;QKρω1ω2Hϕ1ϕ2λ = JQKρ′ω1ω2Hϕ′
1ϕ

′
2λ

′

let {yk, y′k, y′′k |1 ≤ k ≤ n, k /∈ λ} be fresh variables
ϕ′
1 = ϕ1[k 7→ yk|1 ≤ k ≤ n, k /∈ λ]

ϕ′
2 = ϕ2[k 7→ yk|1 ≤ k ≤ n, k /∈ λ]

ρ′ = ρ ∪ {yk 7→ (y′k, y
′′
k) | 1 ≤ k ≤ n, k /∈ λ}

λ′ = λ ∪ {i1, . . . , im}

Junlock si1 , . . . , sim ;QKρω1ω2Hϕ1ϕ2λ = JQKρ′ω1ω2Hϕ′
1ϕ

′
2λ

′

let {yk, y′k, y′′k |1 ≤ k ≤ n, k /∈ λ} be fresh variables
ϕ′
1 = ϕ1[k 7→ yk|1 ≤ k ≤ n, k /∈ λ]

ϕ′
2 = ϕ2[k 7→ yk|1 ≤ k ≤ n, k /∈ λ]

ρ′ = ρ ∪ {yk 7→ (y′k, y
′′
k) | 1 ≤ k ≤ n, k /∈ λ}

λ′ = λ \ {i1, . . . , im}

Jread si1 , . . . , sim as

x1, . . . , xm;QKρω1ω2Hϕ1ϕ2λ = JQKρ′(ρ1(ϕ
′
1[i1]) :: · · · :: ρ1(ϕ′

1[im]) :: ω1)
(ρ2(ϕ

′
2[i1]) :: · · · :: ρ2(ϕ′

2[im]) :: ω2)Hϕ′
1ϕ

′
2λ

let {yk, y′k, y′′k |1 ≤ k ≤ n, k /∈ λ} be fresh variables
ϕ′
1 = ϕ1[k 7→ yk|1 ≤ k ≤ n, k /∈ λ]

ϕ′
2 = ϕ2[k 7→ yk|1 ≤ k ≤ n, k /∈ λ]

ρ′ = ρ ∪ {xj 7→
(ρ1(ϕ

′
1[ij]), ρ2(ϕ

′
2[ij]))|1 ≤ j ≤ m}

∪{yk 7→ (y′k, y
′′
k) | 1 ≤ k ≤ n, k /∈ λ}

∪{vc 7→ (vc′, vc′′)} ∪ {vm 7→ (vm′, vm′′)
H ′ = H ∧msg(ρ1(ϕ

′
1), vc

′, vm′, ρ2(ϕ
′
2), vc

′′, vm′′)
vc, vc′, vc′′, vm, vm′, vm′′ fresh

Jsi1 , . . . , sim :=
M1, . . . ,Mm;QKρω1ω2Hϕ1ϕ2λ = {H ∧msg(ρ1(ϕ

′
1), vc

′, vm′, ρ2(ϕ
′
2), vc

′′, vm′′) →
msg(ρ1(ϕ

′′
1), vc

′, vm′, ρ2(ϕ
′′
2), vc

′′, vm′′)}
∪ {H ∧ att(ρ1(ϕ

′
1), vm

′, ρ2(ϕ
′
2), vm

′′) →
att(ρ1(ϕ

′′
1), vm

′, ρ2(ϕ
′′
2), vm

′′)}
∪ JQKρ′ω1ω2Hϕ′′

1ϕ
′′
2λ

let {yk, y′k, y′′k |1 ≤ k ≤ n, k /∈ λ} be fresh variables
ϕ′
1 = ϕ1[k 7→ yk|1 ≤ k ≤ n, k /∈ λ]

ϕ′
2 = ϕ2[k 7→ yk|1 ≤ k ≤ n, k /∈ λ]

ρ′ = ρ ∪ {yk 7→ (y′k, y
′′
k) | 1 ≤ k ≤ n, k /∈ λ}

∪{vc 7→ (vc′, vc′′)} ∪ {vm 7→ (vm′, vm′′)
ϕ′′
1 = ϕ′[ij 7→ fst(Mj)|1 ≤ j ≤ m]

ϕ′′
2 = ϕ′[ij 7→ snd(Mj)|1 ≤ j ≤ m]

vc, vc′, vc′′, vm, vm′, vm′′ fresh

Figure 8.5: Translation of the protocol: lock, unlock, read and assign

Chapter 8. StatVerif Extension 140

The attacker can listen on any channel he knows by rule (Rl) and can send all

the messages he knows on channels he knows by rule (Rs). If the attacker knows

y (resp. y′) then he can try to input on it and hence test if y (resp. y′) is a channel

used for output, rule (Ri).

The attacker can apply functions on terms he knows by rule (Rf).

For each function h, for each pair of rewrite rules

h(M1, . . . ,Mn) →M, h(M ′1, . . . ,M
′
n) →M ′

in defΣ′(h) (after renaming of variables),

att(xs,M1, xs
′,M ′1) ∧ · · · ∧ att(xs,Mn, xs

′,M ′n) →
att(xs,M, xs′,M ′) (Rf)

input(xs, y, xs′, y′) ∧msg(xs, y, z, xs′, w′, z′)
∧nounif(y′, w′) → bad

(Rcom)

For each destructor g,

for each rewrite rule g(M1, . . . ,Mn) →M ∈ defΣ′(g)

∧
g(M′

1,...,M
′
n)→M′∈def

Σ′ (g)
nounif((x′1, . . . , x

′
n),

GV ar((M ′1, . . . ,M
′
n)))

∧att(xs,M1, xs
′, x1) ∧ · · · ∧ att(xs,Mn, xs

′, xn) → bad

(Rt)

Moreover, we define the symmetric clauses (Rcom’) and (Rt’) obtained from

(Rcom) and (Rt) by swapping the first and second arguments of input and att

and the first and third arguments of msg. By clauses (Rcom) and (Rcom’) the

attacker can test when a communication can happen in one variant of the biprocess

Chapter 8. StatVerif Extension 141

but not on the other. This is a violation of condition 1 of Lemma 8.9. Hence,

clauses (Rt) and (Rt’) check whether the application of a destructor succeeds

in one of the variant of the biprocess but not on the other, and hence check that

condition 2 of lemma 8.9 (and its converse) is true.

8.5.3 Clauses for the Mutability of Public States

The following clauses take into account the mutability of public states, where n

be the number of cells in the process to be translated and si[], sj [] are patterns of

some public cell si, sj.

att((xs1, . . . , xsn), si[], (xs
′
1, . . . , xs

′
n), sj[]) →

att((xs1, . . . , xsn), xsi, (xs
′
1, . . . , xs

′
n), xs

′
j);

(Rm1)

att((xs1, . . . , xsn), si[], (xs
′
1, . . . , xs

′
n), sj[])∧

att((xs1, . . . , xsn), y, (xs
′
1, . . . , xs

′
n), z)∧

msg((xs1, . . . , xsn), xc
′, xm′,

(xs′1, . . . , xs
′
n), xc

′′, xm′′) →
msg((xs1, . . . , xsi−1, y, xsi+1, . . . , xsn), xc

′, xm′,

(xs′1, . . . , xs
′
i−1, z, xs

′
i+1, . . . , xsn), xc

′′, xm′′);

(Rm2)

att((xs1, . . . , xsn), si[], (xs
′
1, . . . , xs

′
n), sj[])∧

att((xs1, . . . , xsn), y, (xs
′
1, . . . , xs

′
n), z)∧

att((xs1, . . . , xsn), xm
′, (xs′1, . . . , xs

′
n), xm

′′) →
att((xs1, . . . , xsi−1, y, xsi+1, . . . , xsn), xm

′,

(xs′1, . . . , xs
′
i−1, z, xs

′
i+1, . . . , xsn), xm

′′);

(Rm3)

Chapter 8. StatVerif Extension 142

Rm1 states that the adversary can always read the value of a public cell. RuleRm2

(resp. Rm3) states that if the adversary knows a message was sent on a channel

(resp. knows a value) at a given state than he can propagate this knowledge to a

new state where he modifies the content of a public cell.

8.5.4 Soundness

The set of clauses corresponding to an initial stateful biprocess A0 is

CA0 = Juneval(P)Kρ0∅∅Hϕ01ϕ02∅
∪ {(Rinit), (Rn), . . . , (Rt),

(Rt’), (Rm1), (Rm2), (Rm3)}

The soundness of our translation is stated by the following theorem.

Theorem 8.11. If bad is not a logical consequence of CA0 then A0 satisfies obser-

vational equivalence.

Proof. To prove that if bad is not derivable from CA0 then the condition of Lemma 8.9

are satisfied, we use the technique developed in [AB05, Bla02], i.e. we use a type

system to express the invariant that correspond to the soundness of the clauses

and a subject reduction property to show that the invariant is indeed preserved.

We first define instrumented biprocesses in which we associate a pattern with each

name. Let A0 = (E , ∅, {(new m̃; ([s1 7→ M1] | · · · | [sn 7→Mn] | P), ∅)}) be a closed

initial stateful biprocess with pairwise distinct bound variables. The instrumented

stateful biprocess instr(A) is obtained by replacing all !Q ∈ P with !iQ where i

is a fresh variable, and all new a;Q,∈ P with new a : a0[x1, . . . , xn];Q where

a0 is a function symbol and it is not subject to α-conversion and x1, . . . , xn are

variables and session identifiers bound above new a in instr(A). We denote with

delete(A) the stateful biprocess obtained by erasing the instrumentation from an

Chapter 8. StatVerif Extension 143

J!iQKρHϕ1ϕ2∅ = JQK(ρ[i 7→ (i, i)])Hϕ1ϕ2∅
where i is a fresh variable

Jnew a : a[x1, . . . , xn];QKρHϕ1ϕ2λ = JQK(ρ[a 7→ (a[ρ1(x1), . . . , ρ1(xn)],
a[ρ2(x1), . . . , ρ2(xn)])]) Hϕ1ϕ2λ

Figure 8.6: Translation of the instrumented protocol

instrumented stateful biprocess A. Let Λ be a countable set of constant session

identifiers, intuitively Λ is the set of session identifiers not yet used in the reduction

of A. The semantics of the (Red Repl) rule for instrumented stateful biprocesses

is defined as follows:

Λ; (E ,S,P ∪ {(!iQ, ∅)}) →
Λ \ {l}; (E ,S,P ∪ {(!iQ | Q{l/i}, ∅)}) if l ∈ Λ

This rule takes one of the fresh session identifiers in Λ and uses it for the new

copy of Q. Note that i is a fresh variable. The other rules for the semantics of

instrumented stateful biprocesses are lifted from A→ A′ to Λ;A→ Λ;A′. Instru-

mented biprocesses include by construction the variables that were collected by

ω1 and ω2 in the definition of the translation JKρω1ω2Hϕ1ϕ2λ. Hence, the clauses

Juneval(P)Kρ0∅∅∅ϕ01ϕ02∅ can be computed from instr(uneval(P)) as follows:

Juneval(P)Kρ0∅∅∅ϕ01ϕ02∅ = Jinstr(uneval(P))Kρ0∅ϕ01ϕ02∅ where the transla-

tion function is defined as in Figure 8.6 for what concerns the translation of !iQ

and of new a : a[x1, . . . , xn];Q and is defined as in Figure 8.4, 8.5 but ignoring ω1,

and ω2 in the other cases.

Let C be a closed stateful context. For each reduction uneval(C[A0]) →∗Σ,Σ′ A

there is a reduction Λ0; instr(uneval(C[A0])) → Λ;A′ such that delete(A′) = A

and conversely. Let A′0 = instr(uneval(A0)) there exists an unevaluated evalua-

tion context C ′ such that diff occurs only in terms diff[a, a] for some name a in

C ′ and instr(uneval(C[A0])) = C ′[A′0]. Let CC′A′

0
be the set of clauses obtained

Chapter 8. StatVerif Extension 144

by adding to CA0 the clauses

att(xs, a[x1, . . . , xn], xs
′, a[x1, . . . , xn]) (Rn’)

such that either new a : a[x′1, . . . , x
′
n] occurs in C

′

or n = 0, a ∈ fn(C ′), a /∈ fn(A′0).

The fact bad is derivable from CC′A′

0
if and only if is derivable from CA0 since we

can replace all patterns a[. . .] of names created by the context C ′ with patterns

b[i], and as long as different names have different images then we can replace the

clause Rn’ with clause Rn. Hence the definition of CA0 is sufficient to represent

the facts derivable from Jinstr(uneval(C[A0]))K.

Let S = {s1 7→M1, . . . , sn 7→ Mn} we define the ordered representation of S to be

S̄ = (M1, . . . ,Mn), we denote with S̄1, S̄2 the first and the second projection of

the ordered representation of S, respectively, i.e.
S̄1 = (fst(M1), . . . , fst(Mn)), S̄2 = (snd(M1), . . . , snd(Mn)). We say that a states

R is a predecessor of the states S and we write R ≤ S if

• ∀ M,N,M ′, N ′ msg(ρ1(R̄1),M,N, ρ2(R̄2),M
′, N ′)

∈ FA ⇒ msg(ρ1(S̄1),M,N, ρ2(S̄2),M
′, N ′) ∈ FA where M,N,M ′, N ′ are

patterns;

• ∀ M,M ′ att(ρ1(R̄1),M, ρ2(R̄2),M
′) ∈ FA ⇒

att(ρ1(S̄1),M, ρ2(S̄2),M
′) ∈ FA where M,M ′ are patterns; and

• ∀ M,M ′ input(ρ1(R̄1),M, ρ2(R̄2),M
′) ∈ FA ⇒

input(ρ1(S̄1),M, ρ2(S̄2),M
′) ∈ FA where M,M ′ are patterns

We define a type system. Types are pairs of closed patterns, E is a function from

variables and names to patterns and it is extended to terms as a substitution, so

that termM has type E(M). We write (E,S, λ) ⊢ Q when Q is well typed with re-

spect to the environment E the states S and the set of locked cells λ. Let FC′A′

0
be

Chapter 8. StatVerif Extension 145

the set of closed facts derivable from CC′A′

0
. Let S0 = {s1 7→M1, . . . , sn 7→Mn} be

the initial state (i.e. the mapping between cells and their initial values), let E0 be

the environment such that fn(A0)∪fn(Att) = dom(E0), E0(b) = (b[x], b[x]) ∀ b ∈
fn(A0) ∪ fn(Att). The type system is defined by the rules given in Figure 8.7.

Let M1, . . . ,Mn be a sequence of terms and variable or constant session identifiers

as found in labels of restriction, we define Last(M1, . . . ,Mn) =Mi ifMi is the last

session identifier appearing in M1, . . . ,Mn, Last(M1, . . . ,Mn) = 0 if no session

identifier appears in M1, . . . ,Mn. We define Label(P) as follows:

Label((new a : a0[M1, . . . ,Mn]);P) = {(a0, Last(M1, . . . ,Mn))} ∪ Label(P),
Label(!iP) = 0,

Label(P) =
⋃

P ′subprocess of P Label(P
′) and

Label(P) =
⋃

(P ′,λ)∈P Label(P
′).

Let E be a mapping from names and variables to closed patterns, we define

Label(E) = {(a0, Last(M1, . . . ,Mn))|a 7→ a0[M1, . . . ,Mn] ∈ E}, Label(Λ) =

{(a, l)|l ∈ Λ}. We say that E ⊢ Λ; (E ,S,P) is well-labelled when the multisets

Label(E1) ∪ Label(Λ) ∪ Label(P) and Label(E2) ∪ Label(Λ) ∪ Label(P) contain

no duplicates (E1 and E2 are the left and right projection of E respectively).

E ⊢ Λ; (E ,S,P) when E ⊢ Λ; (E ,S,P) is well-labelled and for all (P, λ) ∈ P, P is

well-typed i.e. (E,S, λ) ⊢ P . Showing that Label(E1) and Label(E2) contain no

duplicates guarantees that different terms have different types. More precisely, if

E maps names to closed patterns a[. . .], E is extended to terms as a substitution,

and Label(E) contains no duplicates, then we have the following properties:

E1. E is an injection (if E(M) = E(N) then M = N) and also an injection

modulo Σ (if Σ ⊢ E(M) = E(N) then Σ ⊢M = N).

E2. Let N be a term not containing names; if E(M) is an instance of N , then

M is an instance of N ; if E(M) is an instance of N modulo Σ, then M is

an instance of N modulo Σ.

E3. If D ⇓Σ′ M , then E(D) ⇓Σ′ E(M). (This is proved by induction on D.)

Chapter 8. StatVerif Extension 146

(E,S, λ) ⊢ 0
Tnil

∀ l, (E[i 7→ (l, l)],S, ∅) ⊢ Q

(E,S, ∅) ⊢!iQ
Trepl

(E,S, ∅) ⊢ Q1 (E,S, ∅) ⊢ Q2

(E,S, ∅) ⊢ Q1 | Q2

Tpar

(E[a 7→ (a0[E1(M1), . . . , E1(Mn)], a0[E2(M1), . . . , E2(Mn)])],S, λ) ⊢ Q

(E,S, λ) ⊢ new a : a0[M1, . . . ,Mn];Q
Tnew

∀R (S ≤ R ∧ R = R[j 7→ S(j) | j ∈ λ] ∧
∀ p1, p2 msg(E1(R̄1), E1(fst(M)), p1, E2(R̄2), E2(snd(M)), p2) ∈ F

input(E1(R̄1), E1(fst(M)), E2(R̄2), E2(snd(M))) ∈ F)
(E[x 7→ (p1, p2)],R, λ) ⊢ Q

(E,S, λ) ⊢ in(M,x);Q
Tin

msg(E1(S̄1), E1(fst(M)), E1(fst(N)), E2(S̄2), E2(snd(M)), E2(snd(N))) ∈ F
(E,S, λ) ⊢ Q

(E,S, λ) ⊢ out(M,N);Q
Tout

(∀ p1, p2 E1(fst(D)) ⇓Σ′ p1 and E2(snd(D)) ⇓Σ′ p2
(E[x 7→ (p1, p2)],S, λ) ⊢ Q1)

(if ∄ p1, E1(fst(D)) ⇓Σ′ p1 and ∄ p2, E2(snd(D)) ⇓Σ′ p2 then (E,S, λ) ⊢ Q2)
(if ∃ p1, E1(fst(D)) ⇓Σ′ p1 and ∄ p2, E2(snd(D)) ⇓Σ′ p2 then bad ∈ F)
(if ∄ p1, E1(fst(D)) ⇓Σ′ p1 and ∃ p2, E2(snd(D)) ⇓Σ′ p2 then bad ∈ F)

(E,S, λ) ⊢ let x = D in Q1 else Q2
Tlet

∀R (S ≤ R ∧ R = R[j 7→ S(j) | j ∈ λ]
(E,R, λ ∪ {i1, . . . , im}) ⊢ Q

(E,S, λ) ⊢ lock si1 , . . . , sim ;Q
Tlock

∀R (S ≤ R ∧ R = R[j 7→ S(j) | j ∈ λ]
(E,R, λ \ {i1, . . . , im}) ⊢ Q

(E,S, λ) ⊢ unlock si1 , . . . , sim ;Q
Tunlock

∀R (S ≤ R ∧ R = R[j 7→ S(j) | j ∈ λ]
(E ∪ {xk 7→ (E1(fst(R[ik])), E2(snd(R[ik]))) | 1 ≤ k ≤ m},R, λ) ⊢ Q

(E,S, λ) ⊢ read si1 , . . . , sim as x1, . . . , xm;Q
Tread

∀R (S ≤ R,R = R[k 7→ S(k) | k ∈ λ]∧
R ≤ R′ = R[jk 7→ Mk], 1 ≤ k ≤ m),

(E,R[jk 7→ Mk], λ) ⊢ Q

(E,S, λ) ⊢ si1 , . . . , sim := M1, . . . ,Mm;Q
Tassign

Figure 8.7: Type system

Chapter 8. StatVerif Extension 147

E4. If Σ ⊢ D′ = E(D) andD′ ⇓Σ p
′ then there existsM such that Σ ⊢ p′ = E(M)

and D ⇓Σ M . (This is proved by induction on D, using E2).

Let E0 = a 7→ (a[], a[])|a ∈ fn(C ′[A′0]). Let S0 = {s1 7→ M1, . . . , sn 7→ Mn}. The
type system has the following properties:

1. Typability of the Adversary (this is stated in Lemma C.23 and proved in

Appendix C.7.3).

2. Typability of the Protocol (this is stated in Lemma C.24 and proved in

Appendix C.7.4).

3. Typability of the Protocol in the Adversarial context (this is stated in

Lemma C.25 and proved in Appendix C.7.5).

4. Type preservation with respect to substitutions of terms (this is stated in

Lemma C.21 and proved in Appendix C.7.1).

5. Type propagation throughout successor states (this is stated in Lemma C.22

and proved in Appendix C.7.2).

6. Subject reduction, i.e. type preservation under reduction (this is stated in

Lemma C.26 and proved in Appendix C.7.6).

Proof of the second hypothesis of Lemma 8.9. Let A0 = (E0,S0, {(P0, ∅)})
and C = (Ec, , {(C0, ∅)}) We show that if E0 ⊢ Λ0; (E0,S0, {(instr(uneval(C0 |
P0)), ∅)}) and bad /∈ FCA0 then the second hypothesis of Lemma 8.9 holds. Assume

that (E0 ∪ Ec,S0, {(uneval(C0), ∅)), (uneval(P0), ∅)}) →∗Σ′,Σ (E ,S,P ∪ {(C1, λ1)),

(let x = D in Q else Q′, λ2)}) and ∃M1 such that fst(D) ⇓Σ′ M1 then

Λ0; (E0 ∪ Ec,S0, {instr(uneval(C0 | P0)), ∅)}) →∗Σ′,Σ

Λ; (E ,S, {(C ′1, λ1), (let x = D in Q1 else Q′1, λ2)}) where delete(C ′1) = C1 and

delete(let x = D in Q1 else Q
′
1) = let x = D in Q else Q′.

By hypothesis E0 ⊢ Λ0; (E0,S0, {(instr(uneval(C0 | P0)), ∅)}) and by subject

Chapter 8. StatVerif Extension 148

reduction

E0 ⊢ Λ; (E ,S,P ∪ {(C ′1, λ1), (let x = D in Q1 else Q′1, λ2)}) hence (E0,S, λ2) ⊢
let x = D in Q1 else Q′1. Since fst(D) ⇓Σ′ M1, by property E3 we have that

E1(fst(D)) ⇓Σ′ E1(M1) since (E0,S, λ2) ⊢ let x = D in Q1 else Q′1 has been

derived by rule Tlet and bad /∈ FC′A0 we have that ∃p2 such that E2(snd(D)) ⇓Σ

p2 and by property E4 ∃M2 such that snd(D) ⇓Σ M2. Therefore the second

hypothesis of Lemma 8.9 holds.

Proof of the first hypothesis of Lemma 8.9. Assume that (E0 ∪ Ec,S0,

{(uneval(C0), ∅)}), (uneval(P0), ∅)}) →∗Σ′,Σ (E ,S,P ∪{C1, λ1)}), (out(M,N);Q |
in(M ′, x);Q′, λ2)}) and fst(M) = fst(M ′). As above, there exists E such that

(E,S, λ2) ⊢ out(M,N);Q1 | in(M ′, x);Q′1. Since (E,S, λ2) ⊢ out(M,N);Q1 |
in(M ′, x);Q′1 has been derived by type rules Tpar, Tout, Tin we have that

msg(E1(S̄1), E1(fst(M)), E1(fst(N)), E2(S̄2), E2(snd(M
′)), E2(snd(N))) ∈ FC′A0

and

input(E1(S̄1), E1(fst(M)), E2((̄S)2), E2(snd(M
′))) ∈ FC′A0 . Since fst(M) =

fst(M ′), E1(fst(M)) = E1(fst(M
′)). Since bad is not derivable from CC′A0 ,

nounif(E2(snd(M)), E2(snd(M
′))) does not hold, hence Σ ⊢ E2(snd(M)) =

E2(snd(M
′)). By property E1, E2 is injective modulo Σ and hence Σ ⊢ snd(M) =

snd(M ′).

The symmetric hypotheses of Lemma 8.9 follows by symmetry. To conclude the

proof of Theorem 8.11, we apply Lemma 8.9 and Corollary 8.6

8.6 Implementation and Examples

We extended the ProVerif tool in order to accept as input stateful protocols,

produce the horn clauses according to the translation described in Section 8.5 and

finally verify if the equivalence relation is satisfied. In this section, we present a

few examples of stateful protocols and equivalence based security properties and

Chapter 8. StatVerif Extension 149

we discuss the results we obtained when using our ProVerif extension to verify

them. Note that our tool is built onto the typed version of ProVerif and hence

the code we describe in this session has some type annotation which is not present

in the syntax introduced in Section 8.3.1.

We firstly checked our tool against a very simple example. We implement a very

simple RFID protocol where the RFID tag reads from the memory its own identity

and then sends it in clear over the air to the reader. We ask our tool to verify if this

protocol satisfies unlinkability of the tags. As expected, our tool finds a linkability

attack which can be found as well by encoding states using private channels and

running the ProVerif tool.

(* State initial value and state declaration *)

free init: bitstring [private].

cell s: bitstring := (init).

(* Public channel *)

channel c.

(* Simple pair of systems consisting in

- one system where RFID tags execute at most once and send

their identity

- one system where RFID tags execute more than once and each time

send their identity

*)

process

!new id1: bitstring;!(new id2:bitstring;

lock s;

s:= choice[id1,id2];

Chapter 8. StatVerif Extension 150

read s as x;

out(c, x);

unlock s)

We next ask the tool to verify the unlinkability of a simple unlinkable RFID pro-

tocol. In this protocol RFID tags send a random number and then send the hash

of their identity to the reader using the chosen random number to conceal it. Our

tool can verify that this protocol satisfies the unlinkability property. ProVerif

can verify the unlinkability of this protocol as well when using private channels to

encode states.

(* State initial value and state declaration *)

free init: bitstring [private].

cell s: bitstring := (init).

(* Public channel *)

channel c.

(* Hash functions *)

fun h(bitstring,bitstring): bitstring.

(* Simple RFID tag unlinkable biprocess consisting in

- one system where RFID tags execute at most once and send

their identity (id2)

- one system where RFID tags execute more than once and each

time send the hash with a random nonce of their identity (id1)

*)

process

!new id1: bitstring;

Chapter 8. StatVerif Extension 151

lock s; s:=id1; unlock s;

!(new id2: bitstring;

lock s;

read s as x;

new r: bitstring;

out(c, r);

out(c, (r, h(choice[x, id2],r)));

unlock s)

Another RFID protocol aimed at preserving tags’ unlinkability is the OSK proto-

col. In this case the tag reads its current identifier, x from the memory, uses the

function g() to hash it and sends it to the reader. The reader sends the hashed

value g(x) to the back-end database in order to check if the tag is a legitimate

one and identify it. Finally, the tag updates its identifier by hashing it using the

function h() and stores h(x) into the memory.

(* State initial value and state declaration *)

free init: bitstring [private].

cell s: bitstring := (init).

(* Public channel *)

channel c.

(* Hash functions *)

fun g(bitstring): bitstring.

fun h(bitstring): bitstring.

(* Simple pair of systems consisting in

Chapter 8. StatVerif Extension 152

- one system where an unbounded number of RFID tags execute the OSK

protocol at most once, each tag sends the hash g(id2) of its

identifying token (id2) and then updates the stored identifying token

with the hash h(id2)

- one system where an unbounded number of RFID tags execute the OSK

protocol more than once; each tag reads its currently stored

identifying token x from the memory s and sends the hash g(x) to the

reader finally it updates the identifying token with the hash of the

current identifying token h(x) *)

let Tag =

new id2:bitstring;

lock s;

read s as x;

out(c,g(choice[x,id2]));

s:= choice[h(x), h(id2)];

unlock s.

process

!(new id1: bitstring;

lock s;

s:=id1;

unlock s;

!(Tag))

Our tool fails to prove that this protocol satisfies unlinkability and reports a false

attack. The same attack is reported by ProVerif when using private channel to

model states. The false attack is caused by the abstraction used in ProVerif

to generate nonces. In particular, id1 and id2 are two nonces generated by the

Chapter 8. StatVerif Extension 153

translation into horn clauses with a different degree of freshness, in fact id2 is

parametrised by both replications while id1 is parametrised by only the first repli-

cation. The same problem arises when verifying our motivating example, the fixed

TMSI reallocation procedure.

(* Initialisation value *)

free init: bitstring [private].

(* Memory cells *)

cell s: bitstring := (init).

cell s1: bitstring := (init).

(* Symmetric encryption *)

fun senc(bitstring, bitstring, bitstring): bitstring.

fun sdec(bitstring, bitstring): bitstring.

equation forall xk: bitstring, xr:bitstring, xm: bitstring;

sdec(xk, senc(xk, xr, xm)) = xm.

(* Protocol specific constants *)

fun loc_up():bitstring.

fun tmsi_reall_cmd():bitstring.

fun tmsi_reall_compl():bitstring.

fun sn_lai():bitstring.

(* Public channel *)

channel c.

(* Mobile station process representing pair of mobile station

processes. The process using memory cell s executes the TMSI

reallocation protocol many times wile the process using memory

Chapter 8. StatVerif Extension 154

cell s1 represents multiple mobile stations executing the TMSI

reallocation protocol at most once.

Each MS reads its TMSI from the memory and then sends it over

the air and wait for a reply from the SN. If the reply is a TMSI

reallocation command then the MS decrypts the reallocation

message using the ciphering key ck, retrieves the new TMSI

and stores it in the memory to be used in the next session *)

let MS(ck:bitstring) =

new tmsi2: bitstring;

new mr:bitstring;

lock s;lock s1;

s1:=tmsi2;

read s as otmsi1;

read s1 as otmsi2;

out(c,(loc_up, choice[otmsi1,otmsi2]));

in(c,y:bitstring);

let (msgtype:bitstring, msg:bitstring)=sdec(ck,y) in

(if msgtype = tmsi_reall_cmd then

(let (newtmsi:bitstring,lai:bitstring)=msg in

s:= newtmsi;

s1:=newtmsi;

out(c, senc(ck, mr, tmsi_reall_compl));

unlock s;

unlock s1)).

(* Serving network process *)

let SN(ck:bitstring) =

Chapter 8. StatVerif Extension 155

in(c, z:bitstring);

new r:bitstring;

new ntmsi: bitstring;

out(c, senc(ck, r, (tmsi_reall_cmd,(ntmsi,sn_lai))));

in(c, w: bitstring).

process

!(new tmsi1:bitstring;

lock s;

s:=tmsi1;

unlock s;

!(new ck: bitstring;(MS(ck)|SN(ck))))

However, knowing the source of the problem we can encode this protocol keeping

in mind that we want our new names ntmsi and tmsi2 to have the same degree of

randomness, and we can obtain an encoding of the TMSI reallocation procedure

free from the false attack.

(* Initialisation value *)

free init: bitstring [private].

(* Memory cells *)

cell s: bitstring := (init).

(* Symmetric encryption *)

fun senc(bitstring, bitstring, bitstring): bitstring.

fun sdec(bitstring, bitstring): bitstring.

equation forall xk: bitstring, xr:bitstring, xm: bitstring;

sdec(xk, senc(xk, xr, xm)) = xm.

Chapter 8. StatVerif Extension 156

(* Protocol specific constants *)

fun loc_up():bitstring.

fun tmsi_reall_cmd():bitstring.

fun tmsi_reall_compl():bitstring.

fun sn_lai():bitstring.

(* Public channel *)

channel c.

(* Mobile station process representing pair of mobile station

processes.

Each MS reads its TMSI from the memory and then sends it over

the air and wait for a reply from the SN. If the reply is a TMSI

reallocation command then the MS decrypts the reallocation

message using the ciphering key ck, retrieves the new TMSI.

One process (the left one) is a multi session MS and stores the

new TMSI in the memory to be used in the next session,

the other MS process (the right one) is a single session MS and

stores a new id (tmsi2) in the memory this emulate a new MS *)

let MS(ck:bitstring) =

new mr:bitstring;

lock s;

new tmsi2: bitstring;

read s as otmsi;

out(c,(loc_up, otmsi));

in(c,y:bitstring);

let (msgtype:bitstring, msg:bitstring)=sdec(ck,y) in

(if msgtype = tmsi_reall_cmd then

Chapter 8. StatVerif Extension 157

(let (newtmsi:bitstring,lai:bitstring)=msg in

s:= choice[newtmsi,tmsi2];

out(c, senc(ck, mr, tmsi_reall_compl));

unlock s)).

(* Serving network process *)

let SN(ck:bitstring) =

new ntmsi: bitstring;

in(c, z:bitstring);

new r:bitstring;

out(c, senc(ck, r, (tmsi_reall_cmd,(ntmsi,sn_lai))));

in(c, w: bitstring).

process

!(new tmsi1:bitstring;

lock s;

s:=tmsi1;

unlock s;

!(new ck: bitstring;(MS(ck)|SN(ck))))

The same results can be obtained by encoding states using private channels. As

a last example we show how our tool can be used to model and verify the strong

secrecy property of a stateful protocol. We model the AKA protocol and we use

states to store the currently used ciphering key in order to be able to use it across

multiple session to encrypt the communication before a new one is established

through the AKA protocol.

(* Public communication channel *)

channel c.

Chapter 8. StatVerif Extension 158

(* State cells *)

free init: bitstring [private].

cell s: bitstring := (init).

(* Constant values *)

fun macFail(): bitstring.

fun syncFail(): bitstring.

fun reject(): bitstring.

fun auth_req(): bitstring.

fun ciph_cmd(): bitstring.

fun ksi(): bitstring.

fun true1(): bitstring.

fun false1(): bitstring.

(* UMTS AKA protocol specific mac and key generation functions *)

fun f1(bitstring, bitstring): bitstring.

fun f2(bitstring, bitstring): bitstring.

fun f3(bitstring, bitstring): bitstring.

fun f4(bitstring, bitstring): bitstring.

fun f5(bitstring, bitstring): bitstring.

(* Symmetric key encryption function *)

fun senc(bitstring, bitstring, bitstring): bitstring.

fun sdec(bitstring, bitstring): bitstring.

equation forall k: bitstring, m: bitstring, r: bitstring;

sdec(k, senc(k, r, m)) = m.

(* Mobile station process executing the AKA protocol *)

Chapter 8. StatVerif Extension 159

let AKA_MS(k: bitstring, osqn: bitstring, x:bitstring) =

new r_ms: bitstring;

let (xrand: bitstring, xautn: bitstring) = x in (

let (msg: bitstring, xmac: bitstring) = xautn in (

let ak: bitstring = f5(k, xrand) in (

let xsqn: bitstring = sdec(ak, msg) in (

let mac: bitstring = f1(k, (xrand, xsqn)) in (

if xmac = mac then (

if xsqn = osqn then (

let res: bitstring = f2(k, xrand) in (

let ck: bitstring = f3(k, xrand) in (

let ik: bitstring = f4(k, xrand) in (

s:=ck;

out(c, res);

in(c, xmsg: bitstring)))))

else (out(c, syncFail)))

else (out(c, macFail))))))).

(* Serving network process executing the AKA protocol *)

let AKA_SN(k: bitstring,osqn: bitstring) =

new rand: bitstring;

new r_sn: bitstring;

new s: bitstring;

new r: bitstring;

let mac: bitstring = f1(k, (rand, osqn)) in (

let res: bitstring = f2(k, rand) in (

let ck: bitstring = f3(k, rand) in (

let ik: bitstring = f4(k, rand) in (

let ak: bitstring = f5(k, rand) in (

Chapter 8. StatVerif Extension 160

let autn: bitstring = (senc(ak, r_sn, osqn), mac) in (

let av: bitstring = (rand, res, ck, ik, ak) in (

out(c, (auth_req, (rand, autn)));

in(c, xres: bitstring);

if xres = res then (

out(c, senc(ck, r, s))

)

else (

out(c, reject))))))))).

(* Mobile station process receiving a message from the SN.

If the message is an AKA request the MS executes the AKA

protocol, if the message is a ciphering mode command it

sends and encrypted message *)

let MS(k: bitstring,osqn: bitstring, secret:bitstring) =

new r:bitstring;

(lock s;

in(c, xmsg:bitstring);

let (msgtype:bitstring, msg:bitstring)= xmsg in

(if msgtype = ciph_cmd then

(

read s as ck;

out(c, senc(ck,r, secret))

)

else if msgtype = auth_req then AKA_MS(k,osqn,msg))).

(* Serving network process that either starts the AKA protocol

or sends a ciphering mode command *)

let SN(k: bitstring,osqn: bitstring) =

Chapter 8. StatVerif Extension 161

((AKA_SN(k,osqn)|out(c,(ciph_cmd, ksi)))).

process (!new k:bitstring;

new osqn:bitstring;

!((MS(k, osqn, choice[true1(),false1()])) | (SN(k,osqn))))

Our tool can prove that strong secrecy is preserved. The same result can be

obtained by using ProVerif and encoding states using private channels.

8.7 Discussion and Future Work

Our ProVerif extension is a first step towards the development of a tool to verify

stateful process. However, we adopted a very conservative approach which turned

out not to be more successful than ProVerif itself in the verification of observa-

tional equivalence based properties for stateful processes. Our tool suffers from

the problems caused by the abstraction of ProVerif and exhibit the same false

attacks, which are due to the nonce generation abstraction and the consequent

lack of freshness. For this reason we are exploring further possible translation into

Horn clauses and considering the introduction of explicit state sequentiality facts.

9

Conclusions

In this thesis, we contributed to the formal verification of privacy-related properties

using a process calculus, namely the applied pi-calculus, to reason about security

protocols. In particular, we focused on strong anonymity and strong unlinkability

as defined in [ACRR10]. Our contribution is both practical and theoretical, in fact

we applied our methods to real world protocols used in mobile telephony systems.

For what concerns our experimental analysis and real world case study, we showed

that:

• mobile telephony protocols are vulnerable to several privacy threats;

• these threats lead to attacks that can be mounted in practice at low cost;

• the efficiency of the pseudonym change strategy depends on many factors

which the 3GPP standard leaves as implementation choices;

• the implementation choices made by real network operators do not provide

a satisfying level of privacy and leave space for different kinds of tracking

attacks.

Currently, our demonstration of the attacks presented in Chapter 5 relies on par-

ticular hardware/software using closed source implementation of the 3G protocol

163

Chapter 9. Conclusions 164

stack and radio signalling functions. It would be interesting and beneficial for fur-

ther research in the area of mobile telephony systems to investigate the possibility

of implementing open source testing equipment, such as a 3G base station and

mobile phone, using low cost hardware, e.g. USRP, and the GNU radio software.

Further work is needed in order to confirm experimentally the replay attack pre-

sented in Section 5.1.1. This would allow to check if there are or not mechanisms

in place (not stated in the standard) to thwart this attack by preventing replayed

messages from being accepted by the Mobile Station. Also, a thorough and me-

thodical analysis of the level of privacy achieved by different privacy policies would

be of great interest. However, this would possibly require collecting further data

about user mobility, aggregation areas, population density, network coverage and

user base per geographical area. The impact of the adoption of the proposed

TMSI reallocation policies on the network performances should be studied and

related to the level of achieved user’s privacy in order to carefully balance these

equally important aspects of mobile telephony systems. The overall privacy of

mobile telephony systems and at each layer of the protocol stack requires further

investigation and would possibly offer interesting challenges for the development of

formal methods as well. In particular, the proliferation of location based services

makes the analysis of application layer privacy highly desirable from a user’s point

of view.

The analysis of our case study gave us the drive and motivation to further in-

vestigate the development of formal methods for the automatic verification of

privacy-related properties and for the automatic verification of equivalence-based

properties for stateful protocols. We used formal methods to:

• show that the privacy vulnerabilities that can be found in currently used

mobile telephony systems could have been detected at design time using

automatic verification tools such as ProVerif;

Chapter 9. Conclusions 165

• show that lightweight privacy friendly solutions can be developed and auto-

matically verified. In particular, we show how to build biprocesses for the

automatic verification of anonymity and unlinkability using the ProVerif

tool;

• present one of the few examples in the literature of a proof of labelled bisim-

ilarity of a real-sized protocol. Such manual proofs give useful insights on

the way one could automate them, and thus pave the way to automating

labelled bisimilarity proofs;

• extend the existing automated tools (ProVerif and StatVerif) to the ver-

ification of equivalence based properties of stateful protocols.

In Chapter 6, we propose solutions to thwart the privacy breaches we found in

some of the procedures used by currently deployed mobile telephony systems.

These solutions show that privacy friendly measures could be adopted by the next

generation of mobile telephony standards while keeping low the computational

and economical cost of implementing them. Formal analysis of the protocols un-

der development for the next generation of mobile telephony systems, should be

considered as future work and would give stronger guarantees on the security prop-

erties of the future mobile communication systems. StatVerif and our extension

for equivalence based properties ease the reasoning about the security of stateful

protocols. However, the tool we implemented inherits ProVerif limitations in

dealing with the generation of names. In future, we would like to explore alter-

native translations into Horn clauses and possibly modification of the resolution

algorithm in order to overcome these limitations and extend the verification of

equivalence-based properties to a larger class of stateful protocols. Furthermore,

we would like to investigate other privacy-related properties recurring in pervasive

systems. For example, a new primitive ”open” (described in [ALRR14]) could

be implemented in our ProVerif extension, so to take into account corrupted

memory cells and enable the modelling of forward privacy properties.

A

ProVerif Code

We report the most relevant parts of the ProVerif scripts used for the verification

of the fixed protocols. We omit the declaration of constants, any name which

is not under the scope of a new statement as public name and hence as part of

the adversary knowledge. Note that the identity of the victim mobile for the

anonymity property is public.

Fixed IMSI paging procedure in ProVerif.

1 let PAGING_MS = in(c, x);

2 let (msgtype, xrand, xblob) = x in (

3 if msgtype = pagingReq then (

4 let (xpage, ximsi, =sqn, xchall) =

5 sdec(f(k, xrand), xblob) in (

6 if xpage = page then (

7 if imsi = ximsi then (

8 out(c, (pagingResp, xchall))))))).

9 let PAGING_SN = new rand; new chall;

10 new r_sn1; new r_sn2;

11 let UK = f(k, rand) in (

167

Appendix A. ProVerif Code 168

12 out(c, (pagingReq, rand, senc(UK, r_sn2,

13 (page, imsi, sqn, chall))));

14 in(c, pres)).

Biprocess for unlinkability of IMSI paging.

15 process new pvN; let pbN = pub(pvN) in (

16 out(c, pbN);

17 (! (new sk1; new imsi1; new otmsi1;

18 (! (new sk2; new imsi2; new otmsi2; new sqn;

19 let imsi = choice[imsi1, imsi2] in (

20 let k = choice[sk1, sk2] in (

21 let otmsi = choice[otmsi1, otmsi2] in (

22 (PAGING_MS) | (PAGING_SN)))))))))

Biprocess for anonymity of IMSI paging.

23 process new pvN; let pbN = pub(pvN) in (

24 out(c, pbN);

25 ((! (new k; new imsi; new otmsi;

26 (! ((PAGING_MS) | (PAGING_SN)))))

27 | (new k; new id; new otmsi;

28 let imsi = choice[id, imsi_V] in

29 (! ((PAGING_MS) | (PAGING_SN)))))

Fixed AKA procedure in ProVerif.

30 let AKA_MS = new r_ms; in(c, x);

31 let (xrand, xautn) = x in (

32 let (msg, xmac) = xautn in (

Appendix A. ProVerif Code 169

33 let ak = f5(k, xrand) in (

34 let xsqn = sdec(ak, msg) in (

35 let mac = f1(k, (xrand, xsqn)) in (

36 if (xmac, xsqn) = (mac, osqn) then (

37 let res = f2(k, xrand) in (

38 let ck = f3(k, xrand) in (

39 let ik = f4(k, xrand) in (

40 out(c, res);

41 in(c, xmsg)))))

42 else (out(c, aenc(pbN, r_ms,

43 (Fail, imsi, osqn))))))))).

44 let AKA_SN =

45 new rand; new r_sn; new s; new r;

46 let mac = f1(k, (rand, osqn)) in (

47 let res = f2(k, rand) in (

48 let ck = f3(k, rand) in (

49 let ik = f4(k, rand) in (

50 let ak = f5(k, rand) in (

51 let autn = (senc(ak, r_sn, osqn), mac) in (

52 let av = (rand, res, ck, ik, ak) in (

53 out(c, (rand, autn));

54 in(c, xres);

55 if xres = res then (

56 out(c, senc(ck, r, s)))

57 else (out(c, reject))))))))).

Biprocess for unlinkability of AKA.

58 process new pvN; let pbN = pub(pvN) in (

59 out(c, pbN);

Appendix A. ProVerif Code 170

60 (! (new sk1; new imsi1;new otmsi1;

61 (! (new sk2; new imsi2; new osqn; new otmsi2;

62 let imsi = choice[imsi1, imsi2] in (

63 let k = choice[sk1, sk2] in (

64 let otmsi = choice[otmsi1,otmsi2] in (

65 (AKA_MS) | (AKA_SN)))))))))

Biprocess for anonymity of AKA.

66 process new pvN; let pbN = pub(pvN) in (

67 out(c, pbN);

68 ((! (new k; new imsi; new otmsi;

69 (!new osqn; ((AKA_MS) | (AKA_SN)))))

70 | (new k; new id; new otmsi;

71 let imsi = choice[id, imsi_V] in (

72 !new osqn; ((AKA_MS) | (AKA_SN))))))

Original AKA procedure in ProVerif. We check the MAC and the sequence

number (line 81) in the same conditional statement, so to avoid false attacks due to

the evaluation of the conditional. For the same reason we introduce the functions

err and geterr (lines 73-74) to determine the error message (lines 86-87) and

avoid the use of an if statement.

73 reduc geterr(err(x,z,y,y))=macFail;

74 geterr(err(x,x,y,z))=synchFail.

75 let AKA_MS = new r_ms; in(c, x);

76 let (xrand, xautn) = x in (

77 let (msg, xmac) = xautn in (

78 let ak = f5(k, xrand) in (

79 let xsqn = sdec(ak, msg) in (

Appendix A. ProVerif Code 171

80 let mac = f1(k, (xrand, xsqn)) in (

81 if (xmac, xsqn) = (mac,sqn) then (

82 let res = f2(k, xrand) in (

83 let ck = f3(k, xrand) in (

84 let ik = f4(k, xrand) in (

85 out(c, res); in(c, xmsg)))))

86 else (let err_msg =

87 geterr(err(mac, xmac, sqn, xsqn)) in

88 out(c, err_msg))))))).

The following code was used to verify secrecy authentication and integrity prop-

erties of the fixed AKA protocol.

query attacker: s. (*secrecy of communication following AKA*)

query attacker: k. (*secrecy of long term shared key*)

query attacker: f3(k, rand). (*secrecy of session ciphering key*)

query attacker: f4(k, rand). (*secrecy of session integrity key*)

query attacker: imsi. (*secrecy of long term identity*)

(* verify the mutual authentication property *)

query ev: completedC(x,y)==> evinj: startedS(x,y).

query ev: completedS(x,y)==> evinj: startedC(x,y).

(* For sanity *)

query ev: completedF(x,y)==> evinj: startedAKA(x,y).

(* For sanity *)

query ev: completedAKA(x,y)==> evinj: startedAKA(x,y).

(*verify integrity property *)

query ev: completedI(x)==> evinj: startedI(x).

Appendix A. ProVerif Code 172

(* public communication channel *)

free c.

(* constant values *)

fun Fail/0.

fun reject/0.

fun Sqn/0.

(* UMTS AKA protocol specific mac and key generation functions *)

fun f0/2.

fun f1/2.

fun f2/2.

fun f3/2.

fun f4/2.

fun f5/2.

fun f9/2.

(* symmetric key encryption function *)

fun senc/3.

fun sdec/2.

equation sdec(k, senc(k, r, m)) = m.

(* public key generation function *)

fun pub/1.

(* public key encryption function *)

fun aenc/3.

reduc adec(k, aenc(pub(k), r, m))= m.

Appendix A. ProVerif Code 173

let AKA_MS =

new r_ms;

in(c, x);

event startedC(k, osqn);

let (xrand, xautn) = x in (

let (msg, xmac) = xautn in (

let ak = f5(k, xrand) in (

let xsqn = sdec(ak, msg) in (

let mac = f1(k, (xrand, xsqn)) in (

if (xmac, xsqn) = (mac, osqn) then (

let res = f2(k, xrand) in (

let ck = f3(k, xrand) in (

let ik = f4(k, xrand) in (

out(c, res);

event completedAKA(xrand,xautn);

event completedC(k,xsqn);

in(c, (ymsg, xmsg));

if f9(ik, sdec(ck, ymsg)) <> xmsg

then 0

else event completedI(sdec(ck,ymsg))))))

else (

new rrand;

new r;

out(c, aenc(pbN, r_ms, (Fail, imsi, rrand,

senc(f0(k, rrand), r, (Sqn, osqn)))));

event completedF(xrand, xautn))))))).

let AKA_SN =

Appendix A. ProVerif Code 174

new rand;

new r_sn;

new s;

new r;

let mac = f1(k, (rand, osqn)) in (

let res = f2(k, rand) in (

let ck = f3(k, rand) in (

let ik = f4(k, rand) in (

let ak = f5(k, rand) in (

let autn = (senc(ak, r_sn, osqn), mac) in (

let av = (rand, res, ck, ik, ak) in (

event startedAKA(rand, autn);

event startedS(k, osqn);

out(c, (rand, autn));

in(c, xres);

if xres = res then (

event completedS(k, osqn);

event startedI(s);

out(c, (senc(ck, r, s), f9(ik, s)))

)

else (

out(c, reject))))))))).

let MS = (AKA_MS).

let SN = (AKA_SN).

process new pvN; let pbN = pub(pvN) in out(c, pbN);

(! (new k; new imsi; new otmsi;

(!new osqn; ((MS) | (SN)))))

B

Proof of the Unlinkability of

the TMSI Reallocation

Procedure

The following Appendices are devoted to the proof of Proposition 1 which estab-

lishes that using new session keys at each TMSI reallocation provides unlinkability

to MSs. In Appendix B.1 we introduce the necessary definitions and notations.

Appendix B.2 provides the proof of Lemma 7.1 which establishes the bisimulation

part of Proposition 1, while Appendix B.3 details the proof of Lemma 7.2 which

establishes the static part of Proposition 1.

In our quest to understand how proofs of labelled bisimilarity work, and which are

the key arguments on which they usually rely, we took the party to detail all the

cases even those that look mechanical. This is particularly true for the proof of

Lemma 7.1.

175

Appendix B. TMSI Reallocation Procedure Unlinkability 176

B.1 Definitions and Notation

The processes MS and SN model respectively a mobile station and a serving net-

work sharing a private channel dck (the latter models the fact that MS and SN

can “securely” establish a shared session key by executing the AKA protocol) are

defined as follows:

MS
def
= ν ck.ν mr.d(x).up〈x〉.dck〈ck〉.dw(y).

if fst(sdec(ck, y)) = TMSI Reall then

up〈senc(ck,mr, Complete)〉.d〈snd(sdec(ck, y))〉
else 0

SN
def
= ν nid.ν sr.dw(z).dck(xck).

up〈senc(xck, sr, pair(TMSI Reall, nid))〉.dw(w)

We also have the following processes, defined earlier:

Init
def
= d〈id〉

SSA
def
= ν d.ν id.(Init | MS)

MSA
def
= ν d.ν id.(Init |!MS)

Init is the memory initialization process, SSA andMSA are respectively a single-

session and a multi-session mobile station agent.

Let S and M be two closed processes defined as follows:

Appendix B. TMSI Reallocation Procedure Unlinkability 177

S
def
= ν dck.(!(ν d.ν id.(d〈id〉 |MS) |!SN))
def
= ν dck.(!SSA |!SN)

M
def
= ν dck.(!(ν d.ν id.(d〈id〉 |!MS) |!SN))
def
= ν dck.(!MSA |!SN)

The process S represents an unbounded number of mobile stations executing the

TMSI reallocation procedure at most once. The process M represents an un-

bounded number of mobile stations which can execute the TMSI reallocation pro-

cedure an unbounded number of times.

In the following, the process MMSk
i,j represents the ith mobile station ready to

execute the kth step of the jth session of the TMSI reallocation protocol and the

process SMSk
i,j represents the i+j

th single session mobile station ready to execute

the kth step of the TMSI reallocation procedure. They are defined as in Chapter 7.

We define the grouped multi-session system GMSi,j[] representing j sessions of

the ith mobile station and the simulating grouped single-session system GSSi,j[]

representing j single session mobile stations simulating the j sessions of the ith

mobile station of the multi-session system, as follows:

GMSi,j []
def
= ν m̃si,j.ν ñidi,l.(MMS7

i,1 | · · · | MMS7
i,j−1 | |!RMSi)

GSSi,j[]
def
= ν s̃si,j.ν ñidi,l.(SMS7

i,1 | · · · | SMS7
i,j−1 |)

l ∈ {j − 1, j}

We define a symmetric relation between the single session and the multiple session

system. Let

Appendix B. TMSI Reallocation Procedure Unlinkability 178

R def
= { (C, D), (D, C) : ∃ n, m ≥ 0,

A ≡ ν dck.(C1 | · · · | Cn | PSNm |!SSA |!SN),

B ≡ ν dck.(D1 | · · · | Dn | PSNm |!MSA |!SN),

where ∀i, 1 ≤ i ≤ n, ∃li, kli, li ≥ 0, 1 ≤ kli ≤ 8 such that

Ci = GSSi,li[SMS
kli
i,li

| SSNi,li] = ν s̃si,li .ν ñidi,j.(SMS7
i,1 | · · · |

SMS7
i,li−1 | SMS

kli
i,li

| SSNi,li)

Di = GMSi,li[MMS
kli
i,li

|MSNi,li] = ν m̃si,li.ν ñidi,j.(MMS7
i,1 | · · · |

MMS7
i,li−1 | MMS

kli
i,li

| MSNi,li |!RMSi)

SSNi,li =MSNi,li = SNh1
i,1 | · · · | SNhli−1

i,li−1 | Lhli , h1, . . . , hli−1 ≥ 2

Lhli =

0 if kli ∈ {1, 2}
SN

hli

i,li
otherwise

j =

li − 1 if Lhli = 0

li otherwise

PSNm = SN1
j1
| · · · | SN1

jm, for some j1, . . . , jm ∈ {0, 1}
}

and let SSNi,0 = MSNi,0 = GSSi,0[] = GMSi,0[] = SMSk
i,0 = MMSk

i,0 = 0.

Moreover, we define the set of S (resp. M) to be the set of single (resp. multi)-

session systems:

S def
= {C | (C,D) ∈ R ∧

C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SSA |!SN)}
M def

= {D | (C,D) ∈ R ∧
D ≡ ν dck.(D1 | · · · | Dn | PSNm |!MSA |!SN)}

Appendix B. TMSI Reallocation Procedure Unlinkability 179

B.2 Proof of Lemma 7.1

In order to prove Lemma 7.1 we first establish some auxiliary lemmas. Intuitively,

Lemma 7.3 and Lemma 7.4 states that if the single (respectively multi)-session

system can do a transition then either one of the grouped single (respectively

multi)-session system components did the transition (possibly synchronizing with

one of the SN1
j components of the PSNm process (i.e. the MS synchronizes with

the SN network, this steps model the establishment of means for ciphering of

the TMSI reallocation protocol) or one of the components under replication was

unrolled and did the transition. In particular, Lemma 7.3 deals with the possible

internal transitions of the single (resp. multi)-session system.

Lemma 7.3. Let C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SA |!SN) ∈ X where either

SA = SSA or SA = MSA and either X = S or X = M accordingly. We have

that if C
τ→ C ′ then C ′ ≡ ν dck.(C ′1 | · · · | C ′n′ | PSN ′m′ |!SA |!SN) ∈ X and

• either ∃i Ci
τ→ C ′i ∧ C ′j = Cj ∀j 6= i ∧ n′ = n ∧ PSN ′m′ = PSNm

• or ∃i Ci | PSNm
τ→ C ′i | PSN ′m′ ∧ C ′j = Cj ∀j 6= i ∧ n′ = n

• or n′ = n + 1 ∧ C ′j = C ′ ∀j 6= n + 1, C ′n+1 = GSSn+1,1[SMS1
n+1,1 | 0] if

X = S, C ′n+1 = GMSn+1,1[MMS1
n+1,1 | 0] if X = M and PSN ′m′ = PSNm

Proof. Let C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SA |!SN) ∈ X where SA = SSA

and X = S, by definition we have that Ci ≡ GSSi[SMSki
i,li

| SSNi,li], 1 ≤ i ≤
n, PSNm ≡ SN1

j1 | · · · | SN1
jm. If C ≡ C ′′

τ→ C ′′′ ≡ C ′ then we have that

!SN cannot do a silent transition, while !SSA can do a silent transition (case

labelled New MS), and Ci | PSNm can do a silent transition on the channel

dck if Ci ≡ GSSi,li[SMSki
i,li

| SSNi,li], ki = 2, m ≥ 1 (case labelled MS/SN

Appendix B. TMSI Reallocation Procedure Unlinkability 180

synch) and Ci can do a silent transition evaluating the conditional statement if

Ci ≡ GSSi,li[SMSki
i,li

| SSNi,li], ki = 4. Hence we have 3 cases:

(i) (New MS) SSA ≡ ν s̃sn+1,1.(Initn+1,1 | SMS0
n+1,1)

τ→ ν s̃sn+1,1.SMS1
n+1,1

≡ ν s̃sn+1,1.(SMS1
n+1,1 | 0) ≡ GSSn+1,1[SMS1

n+1,1 | 0] = C ′n + 1 then

C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SSA |!SN) ≡ ν dck.(C1 | · · · | Cn |
PSNm | SSA |!SSA |!SN) ≡ ν dck.(SSA | C1 | · · · | Cn | PSNm |!SSA |
!SN)

τ→ ν dck.(C ′n + 1 | C1 | · · · | Cn | PSNm |!SSA |!SN) ≡ ν dck.(C1 |
· · · | Cn | C ′n + 1 | PSNm |!SSA |!SN) = C ′

(ii) (MS/SN synch) Let 1 ≤ i ≤ n such that Ci ≡ GSSi,li[SMS2
i,li

| SSNi,li]

and let m ≥ 1, we have that Ci | PSNm ≡ GSSi,li[SMS2
i,li

| SSNi,li] |
SN1

j1
| · · · | SN1

jh
| · · · | SN1

jm ≡ ν s̃si,li.ν ñidi,li−1.(SMS7
i,1 | · · · | SMS7

i,li−1 |
SMS2

i,li
| SSNi,li−1) | SN1

j1
| · · · | SN1

jh
| · · · | SN1

jm ≡ ν s̃si,li .ν ñidi,li−1.

ν nidjh.ν srjh.(SMS7
i,1 | · · · | SMS7

i,li−1 | SMS2
i,li

| SN1
jh

| SSNi,li−1) | SN1
j1 |

· · · | SN1
jh−1 | SNjh+1 | · · · | SN1

jm

τ→ ν s̃si,li.ν ñidi,li−1.ν nidjh.ν srjh.(SMS7
i,1

| · · · | SMS7
i,li−1 | SMS3

i,li
| SSNi,li−1 | SN2

jh
{cki,li/xckjh}) | SN1

j1 | · · · |
SN1

jh−1 | SNjh+1 | · · · | SN1
jm ≡ ν s̃si,li.ν ñidi,li .(SMSk1

i,1 | · · · | SMS
kli−1

i,li−1 |
SMS3

i,li
| SSNi,li−1 | SN2

jh
{cki,li/xckjh ,

nidi,li /nidjh ,
sri,li /srjh ,

wi,li /wjh
}) | SN1

j1 |
· · · | SN1

jh−1 | SNjh+1 | · · · | SN1
jm ≡ GSSi,li[SMS3

i,li
| SSNi,li] | PSN ′m−1 =

C ′i, PSN
′
m−1 = SN1

j1
| · · · | SN1

jh−1
| SN1

jh+1
| · · · | SN1

jm then C ≡
ν dck.(C1 | · · · | Ci | · · · | Cn | PSNm |!SSA |!SN) ≡ ν dck.(C1 | · · · |
Ci | PSNm | · · · | Cn |!SSA |!SN) ≡ ν dck.(Ci | PSNm | C1 | · · · | Ci−1 |
Ci+1 | · · · | Cn |!SSA |!SN)

τ→ ν dck.(C ′i | PSNm−1 | C1 | · · · | Ci−1 | Ci+1 |
· · · | Cn |!SSA |!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn | PSNm−1 |!SSA |
!SN) = C ′

(iii) Let 1 ≤ i ≤ n such that Ci ≡ GSSi,li[SMS4
i,li

| SSNi,li] we have 2 cases:

Appendix B. TMSI Reallocation Procedure Unlinkability 181

– (Conditional-then) if fst(sdec(cki,li, yi,li)) =E TMSI Reall we have

that Ci
τ→ GSSi,li[SMS5

i,li
| SSNi,li] = C ′i, then C ≡ ν dck.(C1 | · · · |

Ci | · · · | Cn | PSNm |!SSA |!SN) ≡ ν dck.(Ci | C1 | · · · | Ci−1 | Ci+1 |
· · · | Cn | PSNm |!SSA |!SN)

τ→ ν dck.(C ′i | C1 | · · · | Ci−1 | Ci+1 | · · · |
Cn | PSNm |!SSA |!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn | PSNm |
!SSA |!SN) = C ′

– (Conditional-else) if fst(sdec(cki,li, yi,li)) 6=E TMSI Reallwe have

that Ci
τ→ GSSi,li[SMS8

i,li
| SSNi,li] = C ′i, then C ≡ ν dck.(C1 | · · · |

Ci | · · · | Cn | PSNm |!SSA |!SN) ≡ ν dck.(Ci | C1 | · · · | Ci−1 | Ci+1 |
· · · | Cn | PSNm |!SSA |!SN)

τ→ ν dck.(C ′i | C1 | · · · | Ci−1 | Ci+1 | · · · |
Cn | PSNm |!SSA |!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn | PSNm |
!SSA |!SN) = C ′

Let C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SA |!SN) ∈ X where SA = MSA and

X = M, by definition we have that Ci ≡ GMSi[MMSki
i,li

| MSNi,li], 1 ≤ i ≤
n, PSNm ≡ SN1

j1
| · · · | SN1

jm. If C ≡ C ′′
τ→ C ′′′ ≡ C ′ then we have that

!SN cannot do a silent transition, while !MSA can do a silent transition (case la-

belled New MS), and Ci | PSNm can do a silent transition on the channel dck if

Ci ≡ GMSi,li [MMSki
i,li

| MSNi,li], ki = 2, m ≥ 1 (case labelled MS/SN synch),

and Ci can do a silent transition either evaluating the conditional statement if

Ci ≡ GMSi,li [MMSki
i,li

| MSNi,li], ki = 4 or creating a new session (case labelled

New Session) if Ci ≡ GMSi,li [MMSki
i,li

| MSNi,li], k = 6. Hence we have 4 cases:

(i) (New MS) MSA ≡ ν m̃sn+1,1.(Initn+1,1 | MMS0
n+1,1)

τ→ ν m̃sn+1,1.

MMS1
n+1,1 ≡ ν m̃sn+1,1.(MMS1

n+1,1 | 0) ≡ GMSn+1,1[MMS1
n+1,1 | 0] =

C ′n + 1 then C ≡ ν dck.(C1 | · · · | Cn | PSNm |!MSA |!SN) ≡ ν dck.(C1 |
· · · | Cn | PSNm | MSA |!MSA |!SN) ≡ ν dck.(MSA | C1 | · · · | Cn |
PSNm |!MSA |!SN)

τ→ ν dck.(C ′n + 1 | C1 | · · · | Cn | PSNm |!MSA |

Appendix B. TMSI Reallocation Procedure Unlinkability 182

!SN) ≡ ν dck.(C1 | · · · | Cn | C ′n + 1 | PSNm |!MSA |!SN) = C ′

(ii) (MS/SN synch) Let 1 ≤ i ≤ n such that Ci ≡ GMSi,li [MMS2
i,li

|
MSNi,li] and let m ≥ 1, we have that Ci | PSNm ≡ GMSi,li [MMS2

i,li
|

MSNi,li] | SN1
j1

| · · · | SN1
jh

| · · · | SN1
jm ≡ ν m̃si,li.ν ñidi,li−1.(MMS7

i,1 |
· · · | MMS7

i,li−1 | MMS2
i,li

| MSNi,li−1 |!RMSi) | SN1
j1 | · · · | SN1

jh
|

· · · | SN1
jm ≡ ν m̃si,li.ν ñidi,li−1.ν nidjh.ν srjh.(MMS7

i,1 | · · · | MMS7
i,li−1 |

MMS2
i,li

| SN1
jh

| MSNi,li−1 |!RMSi) | SN1
j1 | · · · | SN1

jh−1 | SNjh+1 |
· · · | SN1

jm

τ→ ν m̃si,li.ν ñidi,li−1.ν nidjh.ν srjh.(MMS7
i,1 | · · · | MMS7

i,li−1 |
MMS3

i,li
| MSNi,li−1 | SN2

jh
{cki,li/xckjh} |!RMSi) | SN1

j1 | · · · | SN1
jh−1 |

SNjh+1 | · · · | SN1
jm ≡ ν m̃si,li.ν ñidi,li.(MMSk1

i,1 | · · · | MMS
kli−1

i,li−1 | MMS3
i,li
|

MSNi,li−1 | SN2
jh
{cki,li/xckjh ,

nidi,li /nidjh ,
sri,li /srjh ,

wi,li /wjh
} |!RMSi) | SN1

j1
|

· · · | SN1
jh−1 | SNjh+1 | · · · | SN1

jm ≡ GMSi,li [MMS3
i,li

| MSNi,li] |
PSN ′m−1 = C ′i, PSN

′
m−1 = SN1

j1
| · · · | SN1

jh−1
| SN1

jh+1
| · · · | SN1

jm

then C ≡ ν dck.(C1 | · · · | Ci | · · · | Cn | PSNm |!MSA |!SN) ≡ ν dck.(C1 |
· · · | Ci | PSNm | · · · | Cn |!MSA |!SN) ≡ ν dck.(Ci | PSNm | C1 | · · · |
Ci−1 | Ci+1 | · · · | Cn |!MSA |!SN)

τ→ ν dck.(C ′i | PSNm−1 | C1 | · · · | Ci−1 |
Ci+1 | · · · | Cn |!MSA |!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn | PSNm−1 |
!MSA |!SN) = C ′

(iii) Let 1 ≤ i ≤ n such that Ci ≡ GMSi,li [MMS4
i,li

|MSNi,li] we have 2 cases:

– (Conditional-then) if fst(sdec(cki,li, yi,li)) =E TMSI Reall we

have that Ci
τ→ GMSi,li [MMS5

i,li
|MSNi,li] = C ′i, then C ≡ ν dck.(C1 |

· · · | Ci | · · · | Cn | PSNm |!MSA |!SN) ≡ ν dck.(Ci | C1 | · · · | Ci−1 |
Ci+1 | · · · | Cn | PSNm |!MSA |!SN)

τ→ ν dck.(C ′i | C1 | · · · | Ci−1 |
Ci+1 | · · · | Cn | PSNm |!MSA |!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn |
PSNm |!MSA |!SN) = C ′

Appendix B. TMSI Reallocation Procedure Unlinkability 183

– (Conditional-else) if fst(sdec(cki,li, yi,li)) 6=E TMSI Reall we

have that Ci
τ→ GMSi,li [MMS8

i,li
|MSNi,li] = C ′i, then C ≡ ν dck.(C1 |

· · · | Ci | · · · | Cn | PSNm |!MSA |!SN) ≡ ν dck.(Ci | C1 | · · · | Ci−1 |
Ci+1 | · · · | Cn | PSNm |!MSA |!SN)

τ→ ν dck.(C ′i | C1 | · · · | Ci−1 |
Ci+1 | · · · | Cn | PSNm |!MSA |!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn |
PSNm |!MSA |!SN) = C ′

(ii) (New session) let 1 ≤ i ≤ n, k = 6 then Ci ≡ GMSi,li [SMS6
i,li

|
MSNi,li] ≡ ν m̃si,li.ñidi,li.(MMS7

i,1 | · · · | MMS7
i,li−1 | MMS6

i,li
| MSNi,li |

!RMSi) ≡ ν m̃si,li.m̃si,li.(MMS7
i,1 | · · · | MMS7

i,li−1 | MMS6
i,li

| MSNi,li |
ν cki,li+1ν mri,li+1.MMS0

i,li+1 |!RMSi)
τ→ ν m̃si,li+1.ñidi,li.

(MMS7
i,1 | · · · | MMS7

i,li−1 | MMS7
i,li

| MMS1
i,li+1 | MSNi,li |!RMSi) ≡

ν m̃si,li+1.ñidi,li.(MMS7
i,1 | · · · | MMS7

i,li
| MMS1

i,li+1 | MSNi,li | 0 |
!RMSi) ≡ GMSi,li+1[MMS1

i,li+1 | MSNi,li+1] = C ′i then C ≡ ν dck.(C1 |
· · · | Ci | · · · | Cn | PSNm |!MSA |!SN) ≡ ν dck.(C1 | · · · | Ci | · · · | Cn |
PSNm |!MSA |!SN) ≡ ν dck.(Ci | C1 | · · · | Ci−1 | Ci+1 | · · · | Cn | PSNm |
!MSA |!SN)

τ→ ν dck.(C ′i | C1 | · · · | Ci−1 | Ci+1 | · · · | Cn | PSNm |!MSA |
!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn | PSNm |!MSA |!SN) = C ′

Lemma 7.4 deals with the possible labelled transitions of the single (resp. multi)-

session system.

Appendix B. TMSI Reallocation Procedure Unlinkability 184

Lemma 7.4. Let C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SA |!SN) ∈ X where either

SA = SSA or SA = MSA and either X = S or X = M accordingly. We have

that if C
α→ C ′ with fv(α) ⊆ dom(C) then C ′ ≡ ν dck.(C ′1 | · · · | C ′n′ | PSN ′m′ |

!SA |!SN) ∈ X , and

• either ∃i Ci
α→ C ′i ∧ C ′j = Cj ∀j 6= i ∧ n′ = n ∧ PSN ′m′ = PSNm

• or C ′j = Cj ∀1 ≤ j ≤ n,∧n′ = n ∧ PSN ′m′ = PSNm | SN1
jm+1

, m′ = m+ 1

Proof. Let C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SA |!SN) ∈ X where SA = SSA

and X = S, by definition we have that Ci ≡ GSSi[SMSki
i,li

| SSNi,li], 1 ≤ i ≤
n, PSNm ≡ SN1

j1
| · · · | SN1

jm. If C ≡ C ′′
α→ C ′′′ ≡ C ′ then we have that

!SSA and PSNm cannot do an α-transition, while !SN can do an α-transition

(case labelled SN pre-synch α-transition), and Ci can do an α-transition if

Ci ≡ GSSi,li[SMSki
i,li

| SSNi,li], k ∈ {1, 3, 5} (cases labelled Active session MS

α-transition and SN post-synch α-transition). Hence we have 2 cases:

(i) let 1 ≤ i ≤ n, k ∈ {1, 3, 5} then Ci ≡ GSSi,li[SMSki
i,li

| SSNi,li] we have 2

cases:

– (Active session MS α-transition) if SMSki
i,li

does the α-transition

we have that Ci ≡ GSSi,li[SMSki
i,li

| SSNi,li]
α→ GSSi,li[SMSki+1

i,li
|

SSNi,li] = C ′i for all k ∈ {1, 3, 5}. Hence C ≡ ν dck.(C1 | · · · | Cn |
PSNm |!SSA |!SN) ≡ ν dck.(C1 | · · · | Ci | · · · | Cn | PSNm |!SSA |
!SN) ≡ ν dck.(Ci | C1 | · · · | Ci−1 | Ci+1 | · · · | Cn | PSNm |!SSA |
!SN)

α→ ν dck.(C ′i | C1 | · · · | Ci−1 | Ci+1 | · · · | Cn | PSNm |!SSA |
!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn | PSNm |!SSA |!SN) = C ′

Appendix B. TMSI Reallocation Procedure Unlinkability 185

– (SN post-synch α-transition) if SSNi,li does the α-transition, let

1 ≤ j ≤ li such that SN
hj

i,j 6= 0 and 2 ≤ hj ≤ 3 we have that SSNi,li ≡
SNh1

i,1 | · · · | SNhj

i,j | · · · | SNhli

i,li

α→ SNk1
i,1 | · · · | SNkj+1

i,j | · · · | SNhli

i,li
=

SSN ′i,li, hence Ci ≡ GSSi,li[SMSki
i,li

| SSNi,li] ≡ GSSki
i,li
[SMSki

i,li
|

SSNi,li]
α→ GSSi,li[SMSki

i,li
| SSN ′i,li] = C ′i. Then we have that C ≡

ν dck.(C1 | · · · | Cn | PSNm |!SSA |!SN) ≡ ν dck.(C1 | · · · | Ci | · · · |
Cn | PSNm |!SSA |!SN) ≡ ν dck.(Ci | C1 | · · · | Ci−1 | Ci+1 | · · · | Cn |
PSNm |!SSA |!SN)

α→ ν dck.(C ′i | C1 | · · · | Ci−1 | Ci+1 | · · · | Cn |
PSNm |!SSA |!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn | PSNm |!SSA |
!SN) = C ′

(ii) (SN pre-synch α-transition) !SN ≡ SN0
h |!SN α→ SN1

h |!SN let PSNm+1

= SN1
j1

| · · · | SN1
jm | SN1

h then we have that C ≡ ν dck.(C1 | · · · | Cn |
PSNm |!U |!SN) ≡ ν dck.(C1 | · · · | Cn | PSNm |!SSA | SN0

h |!SN) ≡
ν dck.(SN0

h | Ci | C1 | · · · | Cn | PSNm |!SSA |!SN)
α→ ν dck.(SN1

h | C1 |
· · · | Cn | PSNm |!SSA |!SN) ≡ ν dck.(C1 | · · · | Cn | PSNm+1 |!SSA |
!SN) = C ′

Let C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SA |!SN) ∈ X where SA = MSA and

X = M, by definition we have that Ci ≡ GMSi[MMSki
i,li

| MSNi,li], 1 ≤ i ≤
n, PSNm ≡ SN1

j1
| · · · | SN1

jm. If C ≡ C ′′
α→ C ′′′ ≡ C ′ then we have that

!MSA and PSNm cannot do an α-transition, while !SN can do an α-transition

(case labelled SN pre-synch α-transition), and Ci can do an α-transition if

Ci ≡ GMSi,li [MMSki
i,li

| MSNi,li], k ∈ {1, 3, 5} (cases labelled Active session

MS α-transition and SN post-synch α-transition). Hence we have 2 cases:

(i) let 1 ≤ i ≤ n, k ∈ {1, 3, 5} then Ci ≡ GMSi,li [MMSki
i,li

| MSNi,li] we have

2 cases:

Appendix B. TMSI Reallocation Procedure Unlinkability 186

– (Active session MS α-transition) ifMMSki
i,li

does the α-transition

we have that Ci ≡ GMSi,li [MMSki
i,li

| MSNi,li]
α→ GMSi,li [MMSki+1

i,li
|

MSNi,li] = C ′i for all k ∈ {1, 3, 5}. Hence C ≡ ν dck.(C1 | · · · | Cn |
PSNm |!MSA |!SN) ≡ ν dck.(C1 | · · · | Ci | · · · | Cn | PSNm |!MSA |
!SN) ≡ ν dck.(Ci | C1 | · · · | Ci−1 | Ci+1 | · · · | Cn | PSNm |!MSA |
!SN)

α→ ν dck.(C ′i | C1 | · · · | Ci−1 | Ci+1 | · · · | Cn | PSNm |!MSA |
!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn | PSNm |!MSA |!SN) = C ′

– (SN post-synch α-transition) if MSNi,li does the α-transition, let

1 ≤ j ≤ li such that SN
hj

i,j 6= 0 and 2 ≤ hj ≤ 3 we have that MSNi,li ≡
SNh1

i,1 | · · · | SNhj

i,j | · · · | SNhli

i,li

α→ SNk1
i,1 | · · · | SNkj+1

i,j | · · · | SNkli
i,li

=

MSN ′i,li , hence Ci ≡ GMSi,li [MMSki
i,li

| MSNi,li] ≡ GMSi,li[MMSki
i,li

|
MSNi,li]

α→ GMSi,li [MMSki
i,li

| MSN ′i,li] = C ′i. Then we have that

C ≡ ν dck.(C1 | · · · | Cn | PSNm |!MSA |!SN) ≡ ν dck.(C1 | · · · | Ci |
· · · | Cn | PSNm |!MSA |!SN) ≡ ν dck.(Ci | C1 | · · · | Ci−1 | Ci+1 | · · · |
Cn | PSNm |!MSA |!SN)

α→ ν dck.(C ′i | C1 | · · · | Ci−1 | Ci+1 | · · · |
Cn | PSNm |!MSA |!SN) ≡ ν dck.(C1 | · · · | C ′i | · · · | Cn | PSNm |
!MSA |!SN) = C ′

(ii) (SN pre-synch α-transition) !SN ≡ SN0
h |!SN α→ SN1

h |!SN let PSNm+1

= SN1
j1

| · · · | SN1
jm | SN1

h then we have that C ≡ ν dck.(C1 | · · · | Cn |
PSNm |!MSA |!SN) ≡ ν dck.(C1 | · · · | Cn | PSNm |!MSA | SN0

h |!SN) ≡
ν dck.(SN0

h | C1 | · · · | Cn | PSNm |!MSA |!SN)
α→ ν dck.(SN1

h | C1 | · · · |
Cn | PSNm |!MSA |!SN) ≡ ν dck.(C1 | · · · | Cn | PSNm+1 |!MSA |!SN) =

C ′

Intuitively, Lemma 7.1 states that if one of the components of the single-session

system can do a transition then the corresponding component of the multi-session

Appendix B. TMSI Reallocation Procedure Unlinkability 187

system can do it as well, and vice versa, if a component of the multi-session system

can do a transition then the mimicking component of the single-session system can

do it as well.

Lemma 7.1. Let C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SA |!SN), D ≡ ν dck.(D1 |
· · · | Dn | PSNm |!SA |!SN) such that SA = SSA (resp. SA = MSA) and

(SA =MSA (resp. SA = SSA) and (C,D) ∈ R
if C

ℓ→ C ′ with fv(ℓ) ⊆ dom(C) and bn(ℓ) ∩ fn(D) = ∅ then D
ℓ→ D′ and

(C ′, D′) ∈ R for any ℓ ∈ {τ, α}.

Proof. Let (C, D) ∈ R and let C ≡ ν dck.(C1 | · · · | Cn |!PSNm |!SSA |!SN) and

D ≡ ν dck.(D1 | · · · | Dn |!PSNm |!MSA |!SN).

If C
τ→ C ′ then by Lemma 7.3 we have that C ′ ≡ ν dck.(C ′1 | · · · | C ′n′ |!PSN ′m′ |

!SSA |!SN) and we have 3 cases:

• ∃i Ci
τ→ C ′i ∧ C ′j = Cj ∀j 6= i ∧ n′ = n ∧ PSN ′m′ = PSNm, hence Ci ≡

GSSi,li[SMS
kli
i,li

| SSNi,li] can do a silent transition this means that Ci is of

the form Ci ≡ GSSi,li[SMS4
i,li

| SSNi,li] i.e. we have two cases depending

on the evaluation of the conditional statement:

– (Conditional-then)

if Ci ≡ GSSi,li[SMS4
i,li

| SSNi,li]
τ→ GSSi,li[SMS5

i,li
| SSNi,li] = C ′i

then fst(sdec(cki,li, Ni,li)) =E TMSI Reall i.e.

Ni,li =E senc(cki,li, sri,li, pair(TMSI Reall, zi,li)). By definition of

R we have that Di ≡ GMSi,li [MMS4
i,li

|MSNi,li], MMS4
i,li

=MXi,li |
MChki,li{Ni,li/yi,li} and

MChki,li{Ni,li/yi,li} ≡ if fst(sdec(cki,li, Ni,li)) = TMSI Reall then

up〈senc(cki,li, mri,li,Complete)〉. di,1〈snd(sdec(cki,li, Ni,li))〉 else 0 ≡
if fst(sdec(cki,li, senc(cki,li, sri,li, pair(TMSI Reall, zi,li)))) =

TMSI Reall then up〈senc(cki,li, mri,li,Complete)〉.

Appendix B. TMSI Reallocation Procedure Unlinkability 188

di,1〈snd(sdec(cki,li, senc(cki,li, sri,li, pair(TMSI Reall, zi,li)))〉
else 0

τ→ up〈senc(cki,li, mri,li,Complete)〉.
di,1〈snd(sdec(cki,j, senc(cki,li, sri,li, pair(TMSI Reall, zi,li))))〉 hence
MMS4

i,li

τ→MMS5
i,li

and Di
τ→ GMSi,li [MMS5

i,li
|MSNi,li] = D′i then

let D′ = ν dck.(D1 | · · · | D′i | · · · | Dn | PSNm |!MSA |!SN) we

have that D ≡ ν dck.(D1 | · · · | Di | · · · | Dn | PSNm |!MSA |
!SN) ≡ ν dck.(Di | D1 | · · · | Di−1 | Di+1 | · · · | Dn | PSNm |!MSA |
!SN)

τ→ ν dck.(D′i | D1 | · · · | Di−1 | Di+1 | · · · | Dn | PSNm |!MSA |
!SN) ≡ ν dck.(D1 | · · · | D′i | · · · | Dn | PSNm |!MSA |!SN) = D′ and

(C ′, D′) ∈ R

– (Conditional-else)

if Ci ≡ GSSi,li[SMS4
i,li

| SSNi,li]
τ→ GSSi,li[SMS8

i,li
| SSNi,li] = C ′i

then fst(sdec(cki,li, Ni,li)) 6=E TMSI Reall i.e.

Ni,li 6=E senc(cki,li, sri,li, pair(TMSI Reall, zi,li)). By definition of

R we have that Di ≡ GMSi,li [MMS4
i,li

|MSNi,li], MMS4
i,li

=MXi,li |
MChki,li{Ni,li/yi,li} and MChki,li{Ni,li/yi,li} ≡ if fst(sdec(cki,li, Ni,li))

= TMSI Reall then up〈senc(cki,li, mri,li,Complete)〉.
di,1〈snd(sdec(cki,li, Ni,li))〉 else 0 ≡ if fst(sdec(cki,li, senc(cki,li, sri,li,

pair(TMSI Reall, zi,li)) = TMSI Reall then up〈senc(cki,li, mri,li,
Complete)〉. di,1〈snd(sdec(cki,li, senc(cki,li, sri,li,
pair(TMSI Reall, zi,li)))〉 else 0

τ→ 0 hence MMS4
i,li

τ→ MMS8
i,li

and Di
τ→ GMSi,li [MMS8

i,li
| MSNi,li] = D′i then let D′ = ν dck.(D1 |

· · · | D′i | · · · | Dn | PSNm |!MSA |!SN) we have that D ≡ ν dck.(D1 |
· · · | Di | · · · | Dn | PSNm |!MSA |!SN) ≡ ν dck.(Di | D1 | · · · | Di−1 |
Di+1 | · · · | Dn | PSNm |!MSA |!SN)

τ→ ν dck.(D′i | D1 | · · · | Di−1 |
Di+1 | · · · | Dn | PSNm |!MSA |!SN) ≡ ν dck.(D1 | · · · | D′i | · · · | Dn |
PSNm |!MSA |!SN) = D′ and (C ′, D′) ∈ R

• (MS/SN synch) ∃i Ci | PSNm
τ→ C ′i | PSN ′m′∧C ′j = Cj ∀j 6= i∧n′ = n the

only possible silent transition between Ci and PSNm is the communication

Appendix B. TMSI Reallocation Procedure Unlinkability 189

on the channel dck hence, Ci ≡ GSSi,li[SMS2
i,li

| SSNi,li] and PSN ′m′ ≡
SN1

j1
| · · · | SN1

jm, m ≥ 1 if Ci | PSNm
τ→ C ′i | PSN ′m′ we have that

C ′i ≡ GSSi,li[SMS3
i,li

| SSN ′i,li], SSN ′i,li ≡ SNh1
i,1 | · · · | SNhli−1

li−1 | SNhli

i,li
, and

ν nidi,li.SN
hli

i,li
≡ ν nidjh.ν srjh.SN

2
jh
{cki,li/xckjh ,

nidi,li/nidjh ,
sri,li/srjh ,

wi,li/wjh
} for some 1 ≤ h ≤ m such that SN1

jh
occurs in PSNm and PSN ′m′ ≡

SN1
j1 | · · · | SN1

jh−1
| SN1

jh+1
| · · · | SN1

jm. By definition of R we have

that Di ≡ GMSi,li [MMS2
i,li

| MSNi,li], MSNi,li ≡ SSNi,li. We have that

Di | PSNm ≡ ν m̃si,li .ν ñidi,li−1.(MMS7
i,1 | · · · | MMS7

i,li−1 | MMS2
i,li

|
MSNi,li |!RMSi | PSNm) ≡ ν m̃si,li.ν ñidi,li−1.(MMS7

i,1 | · · · | MMS7
i,li−1 |

MMS2
i,li

| SN1
jh

| MSNi,li |!RMSi | PSN ′m′)
τ→ ν m̃si,li .ν ñidi,li−1.ν nidjh.

ν srjh.(MMS7
i,1 | · · · | MMS7

i,li−1 | MMS3
i,li

| SN2
jh
{cki,li/xckjh} | MSNi,li |

!RMSi | PSN ′m′) ≡ ν m̃si,li.ν ñidi,li .(MMS7
i,1 | · · · | MMS7

i,li−1 | MMS3
i,li

|
SN2

jh
{cki,li/xckjh ,

nidi,li/nidjh ,
sri,li/srjh ,

wi,li/wjh
} |MSNi,li |!RMSi | PSN ′m′)

≡ GMSi,li [MMS3
i,li

| MSN ′i,li] | PSN ′m′ ≡ D′i | PSN ′m′ where MSN ′i,li ≡
SNh1

i,1 | · · · | SNhli−1

li−1 | SNhli

i,li
, ν nidi,li.ν sri,li .SN

hli

i,li
= ν nidjh.ν srjh.

SN2
jh
{cki,li/xckjh ,

nidi,li/nidjh ,
sri,li/srjh ,

wi,li/wjh
}. Let D′ = ν dck.(D1 | · · · |

D′i | · · · | Dn | PSN ′m′ |!MSA |!SN) we have that D ≡ ν dck.(D1 | · · · | Di |
· · · | Dn | PSNm |!MSA |!SN) ≡ ν dck.(Di | PSNm | D1 | · · · | Di−1 | Di+1 |
· · · | Dn |!MSA |!SN)

τ→ ν dck.(D′i | PSN ′m′ | D1 | · · · | Di−1 | Di+1 | · · · |
Dn |!MSA |!SN) ≡ ν dck.(D1 | · · · | D′i | · · · | Dn | PSN ′m′ |!MSA |!SN) =

D′ and (C ′, D′) ∈ R

• (New MS) n′ = n+1∧C ′j = C ′ ∀j 6= n+1, C ′n+1 = GSSn+1,1[SMS1
n+1,1 | 0]

and PSN ′m′ = PSNm. In this case the !SSA component is unrolled and a

new single session mobile station C ′n+1 synchronizes with the Init process.

if SSA = ν s̃sn+1,1.(Initn+1,1 | SMS0
n+1,1)

τ→ C ′n+1 ≡ ν s̃sn+1,1.SMS1
n+1,1 ≡

GSSn+1,1[SMS1
n+1,1 | SSNn+1,1], SSNn+1,1 ≡ 0. Let D′ = ν dck.(D1 | · · · |

Dn | D′n+1 | PSNm |!MSA |!SN) where D′n+1 = GMSn+1,1[MMS1
n+1,1 |

MSNn+1,1], MSNn+1,1 ≡ 0 then we have that D ≡ ν dck.(D1 | · · · | Dn |
PSNm |!MSA |!SN) ≡ ν dck.(D1 | · · · | Dn | PSNm | ν m̃sn+1,1.(Initn+1,1 |

Appendix B. TMSI Reallocation Procedure Unlinkability 190

MMS0
n+1,1) |!MSA |!SN) ≡ ν dck.(D1 | · · · | Dn | ν m̃sn+1,1.(Initn+1,1 |

MMS0
n+1,1) | PSNm |!MSA |!SN)

τ→ ν dck.(D1 | · · · | Dn | ν m̃sn+1,1.

(MMS1
n+1,1) | PSNm |!MSA |!SN) ≡ ν dck.(D1 | · · · | Dn | ν m̃sn+1,1.

(MMS1
n+1,1 | 0) | PSNm |!MSA |!SN) ≡ ν dck.(D1 | · · · | Dn | D′n+1 |

PSNm |!MSA |!SN) = D′ and (C ′, D′) ∈ R

Let (C, D) ∈ R and let C ≡ ν dck.(C1 | · · · | Cn |!PSNm |!MSA |!SN) and

D ≡ ν dck.(D1 | · · · | Dn |!PSNm |!SSA |!SN).

If C
τ→ C ′ by Lemma 7.3 we have that C ′ ≡ ν dck.(C ′1 | · · · | C ′n′ |!PSN ′m′ |!MSA |

!SN) and we have 3 cases:

• ∃i Ci
τ→ C ′i ∧ C ′j = Cj ∀j 6= i ∧ n′ = n ∧ PSN ′m′ = PSNm, hence Ci ≡

GMSi,li [MMS
kli
i,li

| MSNi,li] can do a silent transition this means that Ci is

either of the form Ci ≡ GMSi,li [MMS4
i,li

| MSNi,li] (i.e. we have two cases

depending on the evaluation of the conditional statement), or of the form

Ci ≡ GMSi,li [MMS6
i,li

| MSNi,li] (i.e a new session of the mobile station is

created). Hence we have 3 cases:

– (Conditional-then) if Ci ≡ GMSi,li [MMS4
i,li

|MSNi,li]
τ→ GMSi,li

[MMS5
i,li

|MSNi,li] = C ′i then fst(sdec(cki,li, Ni,li)) =E TMSI Reall

i.e. Ni,li =E senc(cki,li, sri,li, pair(TMSI Reall, zi,li)). By definition

of R we have that Di ≡ GSSi,li[SMS4
i,li

| SSNi,li], SMS4
i,li

= SXi,li |
SChki,li{Ni,li/yi,li} and SChki,li{

Ni,li/yi,li} ≡ if fst(sdec(cki,li, Ni,li)) =

TMSI Reall then up〈senc(cki,li, mri,li,Complete)〉. di,li〈snd(sdec
(cki,li, Ni,li))〉 else 0 ≡ if fst(sdec(cki,li, senc(cki,li, sri,li,

pair(TMSI Reall, zi,li)))) = TMSI Reall then up〈senc(cki,li,
mri,li ,Complete)〉.di,li〈snd(sdec(cki,li, senc(cki,li, sri,li,
pair(TMSI Reall, zi,li)))〉 else 0

τ→ up〈senc(cki,li, mri,li,Complete)〉.
di,li〈snd(sdec(cki,j, senc(cki,li, sri,li, pair(TMSI Reall, zi,li))))〉 hence
SMS4

i,li

τ→ SMS5
i,li

and Di
τ→ SMSi,li [SMS5

i,li
| SSNi,li] = D′i then let

Appendix B. TMSI Reallocation Procedure Unlinkability 191

D′ = ν dck.(D1 | · · · | D′i | · · · | Dn | PSNm |!SSA |!SN) we have that

D ≡ ν dck.(D1 | · · · | Di | · · · | Dn | PSNm |!SSA |!SN) ≡ ν dck.(Di |
D1 | · · · | Di−1 | Di+1 | · · · | Dn | PSNm |!SSA |!SN)

τ→ ν dck.(D′i |
D1 | · · · | Di−1 | Di+1 | · · · | Dn | PSNm |!SSA |!SN) ≡ ν dck.(D1 |
· · · | D′i | · · · | Dn | PSNm |!SSA |!SN) = D′ and (C ′, D′) ∈ R

– (Conditional-else) if Ci ≡ GMSi,li [MMS4
i,li

| MSNi,li]
τ→ GMSi,li

[MMS8
i,li

|MSNi,li] = C ′i then fst(sdec(cki,li, Ni,li)) 6=E TMSI Reall

i.e. Ni,li 6=E senc(cki,li, sri,li, pair(TMSI Reall, zi,li)). By definition

of R we have that Di ≡ GSSi,li[SMS4
i,li

| SSNi,li], SMS4
i,li

= SXi,li |
SChki,li{Ni,li/yi,li} and SChki,li{

Ni,li/yi,li} ≡ if fst(sdec(cki,li, Ni,li)) =

TMSI Reall then up〈senc(cki,li, mri,li,Complete)〉.
di,li〈snd(sdec(cki,li, Ni,li))〉 else 0 ≡ if fst(sdec(cki,li, senc(cki,li, sri,li,

pair(TMSI Reall, zi,li)) = TMSI Reall then up〈senc(cki,li, mri,li,
Complete)〉. di,li〈snd(sdec(cki,li, senc(cki,li, sri,li,
pair(TMSI Reall, zi,li)))〉 else 0

τ→ 0 hence SMS4
i,li

τ→ SMS8
i,li

and

Di
τ→ SMSi,li [SMS8

i,li
| SSNi,li] = D′i then let D′ = ν dck.(D1 | · · · |

D′i | · · · | Dn | PSNm |!SSA |!SN) we have that D ≡ ν dck.(D1 | · · · |
Di | · · · | Dn | PSNm |!SSA |!SN) ≡ ν dck.(Di | D1 | · · · | Di−1 |
Di+1 | · · · | Dn | PSNm |!SSA |!SN)

τ→ ν dck.(D′i | D1 | · · · | Di−1 |
Di+1 | · · · | Dn | PSNm |!SSA |!SN) ≡ ν dck.(D1 | · · · | D′i | · · · | Dn |
PSNm |!SSA |!SN) = D′ and (C ′, D′) ∈ R

– (New session) if Ci ≡ GMSi,li [MMS6
i,li

|MSNi,li]
τ→ D′i ≡ GMSi,li+1

[MMS1
i,li+1 | MSNi,li+1], MSNi,li+1 ≡ MSNi,li | 0 then by definition

of R we have that Di ≡ GSSi,li[SMS6
i,li

| SSNi,li] and Di |!SSA ≡
GSSi,li[SMS6

i,li
| SSNi,li] | ν di,li+1, idi,li+1, cki,li+1ν mri,li+1.(Initi,li+1 |

SMS0
i,li+1) |!SSA

τ→ GSSi,li[SMS6
i,li

| SSNi,li] | ν di,li+1, idi,li+1,

cki,li+1.ν mri,li+1.(SMS1
i,li+1) |!SSA ≡ ν s̃si,li.ν ñidi,li.(SMS7

i,1 | · · · |
SMS7

i,li
| SSNi,li) | ν di,li+1, idi,li+1, cki,li+1.ν mri,li+1.(SMS1

i,li+1) |
!SSA ≡ ν s̃si,li+1.ν ñidi,li .(SMS7

i,1 | · · · | SMS7
i,li

| SMS1
i,li+1 | SSNi,li |

Appendix B. TMSI Reallocation Procedure Unlinkability 192

0) |!SSA ≡ GSSi,li+1[SMS1
i,li+1 | SSNi,li+1] |!SSA = C ′i |!SSA Let

D′ = ν dck.(D1 | · · · | D′n′ | PSNm |!SSA |!SN), we have that D ≡
ν dck.(D1 | · · · | Di | · · · | Dn | PSNm |!SSA |!SN) ≡ ν dck.(SSA |
D1 | · · · | Dn | PSNm |!SSA |!SN)

τ→ ν dck.(D′n′ | D1 | · · · | Dn |
PSNm |!SSA |!SN) ≡ ν dck.(D1 | · · · | D′n′ | PSNm |!SSA |!SN) = D′

and (C ′, D′) ∈ R

• (MS/SN synch) ∃i Ci | PSNm
τ→ C ′i | PSN ′m′∧C ′j = Cj ∀j 6= i∧n′ = n the

only possible silent transition between Ci and PSNm is the communication

on the channel dck hence, Ci ≡ GMSi,li [MMS2
i,li

| MSNi,li] and PSNm− ≡
SN1

j1 | · · · | SN1
jm, m ≥ 1 if Ci | PSNm

τ→ C ′i | PSN ′m′ we have that

C ′i ≡ GMSi,li [MMS3
i,li

| MSN ′i,li], MSN ′i,li ≡ SNh1
i,1 | · · · | SNhli−1

li−1 | SNhli

i,li
,

and ν nidi,li.SN
hli

i,li
≡ ν nidjh.ν srjh.SN

2
jh
{cki,li/xckjh ,

nidi,li/nidjh ,
sri,li/srjh ,

wi,li/wjh
} for some 1 ≤ h ≤ m such that SN1

jh
occurs in PSNm and PSN ′m′ ≡

SN1
j1

| · · · | SN1
jh−1

| SN1
jh+1

| · · · | SN1
jm . By definition of R we have that

Di ≡ GSSi,li[SMS2
i,li

| SSNi,li], SSNi,li ≡ MSNi,li . We have that Di |
PSNm ≡ ν s̃si,li.ν ñidi,li−1.(SMS7

i,1 | · · · | SMS7
i,li−1 | SMS2

i,li
| SSNi,li |

PSNm) ≡ ν s̃si,li.ν ñidi,li−1.(SMS7
i,1 | · · · | SMS7

i,li−1 | SMS2
i,li

| SN1
jh

|
SSNi,li | PSN ′m′)

τ→ ν s̃si,li.ν ñidi,li−1.ν nidjh.ν srjh.(SMS7
i,1 | · · · | SMS7

i,li−1

| SMS3
i,li

| SN2
jh
{cki,li/xckjh} | SSNi,li | PSN ′m′) ≡ ν s̃si,li.ν ñidi,li.(SMS7

i,1 |
· · · | SMS7

i,li−1 | SMS3
i,li

| SN2
jh
{cki,li/xckjh ,

nidi,li/nidjh ,
sri,li/srjh ,

wi,li/wjh
} |

SSNi,li | PSN ′m′) ≡ GSSi,li[SMS3
i,li

| SSN ′i,li] | PSN ′m′ ≡ D′i | PSN ′m′

where SSN ′i,li ≡ SNh1
i,1 | · · · | SNhli−1

li−1 | SNhli

i,li
, ν nidi,li.ν sri,li.SN

hli

i,li
=

ν nidjh.ν srjh.SN
2
jh
{cki,li/xckjh ,

nidi,li/nidjh ,
sri,li/srjh ,

wi,li/wjh
}. Let D′ =

ν dck.(D1 | · · · | D′i | · · · | Dn | PSN ′m′ |!SSA |!SN) we have that D ≡
ν dck.(D1 | · · · | Di | · · · | Dn | PSNm |!SSA |!SN) ≡ ν dck.(Di | PSNm |
D1 | · · · | Di−1 | Di+1 | · · · | Dn |!SSA |!SN)

τ→ ν dck.(D′i | PSN ′m′ | D1 |
· · · | Di−1 | Di+1 | · · · | Dn |!SSA |!SN) ≡ ν dck.(D1 | · · · | D′i | · · · | Dn |
PSN ′m′ |!SSA |!SN) = D′ and (C ′, D′) ∈ R

Appendix B. TMSI Reallocation Procedure Unlinkability 193

• (New MS) n′ = n+1∧C ′j = C ′ ∀j 6= n+1, C ′n+1 = GMSn+1,1[MMS1
n+1,1 |

0] and PSN ′m′ = PSNm. In this case the !MSA component is unrolled and a

new single session mobile station C ′n+1 synchronizes with the Init process. if

MSA = ν m̃sn+1,1.(Initn+1,1 |MMS0
n+1,1)

τ→ C ′n+1 ≡ ν m̃sn+1,1.MMS1
n+1,1

≡ GMSn+1,1[MMS1
n+1,1 |MSNn+1,1], MSNn+1,1 ≡ 0. Let D′ = ν dck.(D1 |

· · · | Dn | D′n+1 | PSNm |!SSA |!SN) where D′n+1 = GSSn+1,1[SMS1
n+1,1 |

SSNn+1,1], SSNn+1,1 ≡ 0 then we have that D ≡ ν dck.(D1 | · · · | Dn |
PSNm |!SSA |!SN) ≡ ν dck.(D1 | · · · | Dn | PSNm | ν s̃sn+1,1.(Initn+1,1 |
SMS0

n+1,1) |!SSA |!SN) ≡ ν dck.(D1 | · · · | Dn | ν s̃sn+1,1.(Initn+1,1 |
SMS0

n+1,1) | PSNm |!SSA |!SN)
τ→ ν dck.(D1 | · · · | Dn | ν s̃sn+1,1.

(SMS1
n+1,1) | PSNm |!SSA |!SN) ≡ ν dck.(D1 | · · · | Dn | ν s̃sn+1,1.

(SMS1
n+1,1 | 0) | PSNm |!SSA |!SN) ≡ ν dck.(D1 | · · · | Dn | D′n+1 |

PSNm |!MSA |!SN) = D′ and (C ′, D′) ∈ R

Let (C, D) ∈ R and let C ≡ ν dck.(C1 | · · · | Cn |!PSNm |!SSA |!SN) and

D ≡ ν dck.(D1 | · · · | Dn |!PSNm |!MSA |!SN). If C
α→ C ′ then by Lemma 7.4

we have 2 cases:

• ∃i Ci
α→ C ′i ∧C ′j = Cj ∀j 6= i∧ n′ = n∧ PSN ′m′ = PSNm in this case one of

the Ci components does the transition. We have 2 cases:

– (Active session MS α-transition) if Ci = GSSi,li[SMSki
i,li

| SSNi,li]
α→ C ′i ≡ GSSi,li[SMSki+1

i,li
| SSNi,li], k 6= 2, 4 then we have 3 cases:

i) if ki = 1, SMSki
i,li

= SMS1
i,li

νxi,li
.up〈xi,li〉−−−−−−−−→ SMS2

i,li
= SMSki+1

i,li
,

then by definition of R we have that MMSki
i,li

=MMS1
i,li

νxi,li
.up〈xi,li

〉−−−−−−−−→ MMS2
i,li

=MMSki+1
i,li

, hence Di = GMSi,li [MMSki
i,li

|

MSNi,li]
νxi,li

.up〈xi,li〉−−−−−−−−→ GMSi,li [MMSki+1
i,li

|MSNi,li] = D′i

ii) if ki = 3, SMSki
i,li

= SMS3
i,li

dw(Ni,li
)−−−−−→ SMS4

i,li
= SMSki+1

i,li
, then

by definition of R we have that MMSki
i,li

= MMS3
i,li

dw(Ni,li
)−−−−−→

Appendix B. TMSI Reallocation Procedure Unlinkability 194

MMS4
i,li

= MMSki+1
i,li

hence GMSi,li [MMSki
i,li

| MSNi,li]
dw(Ni,li

)−−−−−→
GMSi,li [MMSki+1

i,li
| MSNi,li] = D′i

iii) if ki = 5, SMSki
i,li

= SMS5
i,li

νki,li .up〈ki,li 〉−−−−−−−−→ SXi,li | SKi,li | di,li〈snd(
sdec(cki,li, Ni,li))〉 = SMSki+1

i,li
. By definition of R we have that

MMSki
i,li

≡MMS6
i,li

νki,li .up〈ki,li 〉−−−−−−−−→MXi,li |MKi,li | di,1〈snd(
sdec(cki,li, Ni,li))〉 = MMSki+1

i,li
, hence Di ≡ GMSi,li [MMSki

i,li
|

MSNi,li]
νki,li .up〈ki,li 〉−−−−−−−−→ GMSi,li [MMSki+1

i,li
| MSNi,li] = D′i

Let D′ = ν dck.(D1 | · · · | D′i | · · · | Dn | PSNm |!MSA |!SN) where

D′i = GMSi,li[MMSki+1
i,li

| MSNi,li] as shown in the cases above, then

we have that D ≡ ν dck.(D1 | · · · | Di | · · · | Dn | PSNm |!MSA |
!SN) ≡ ν dck.(Di | D1 | · · · | Di−1 | Di+1 | · · · | Dn | PSNm |!MSA |
!SN)

α→ ν dck.(D′i | D1 | · · · | Di−1 | Di+1 | · · · | Dn | PSNm |!MSA |
!SN) ≡ ν dck.(D1 | · · · | D′i | · · · | Dn | PSNm |!MSA |!SN) = D′ and

(C ′, D′) ∈ R

– (SN post-synch α-transition) if Ci ≡ GSSi,li[SMSki
i,li

| SSNi,li]
α→

C ′i ≡ GSSi,li[SMSki
i,li

| SSN ′i,li] for some 1 ≤ j ≤ li such that SSNi,li ≡
SNh1

i,1 | · · · | SNhj

i,j | · · · | SNhli

i,li

α→ SNh1
i,1 | · · · | SNhj+1

i,j | · · · | SNhli

i,li
=

SSN ′i,li and hj ∈ {2, 3} then by definition of R we have that Di ≡
GMSi,li [MMSki

i,li
| MSNi,li] and MSNi,li ≡ SSNi,li

S

S N ′i,li = MSNi,li

then Di
α→ GMSi,li [MMSki

i,li
| MSN ′i,li] = D′i whereMSN ′i,li = SSN ′i,li.

Let D′ = ν dck.(D1 | · · · | D′i | · · · | Dn | PSNm |!MSA |!SN) then

we have that D ≡ ν dck.(D1 | · · · | Di | · · · | Dn | PSNm |!MSA |
!SN) ≡ ν dck.(Di | D1 | · · · | Di−1 | Di+1 | · · · | Dn | PSNm |!MSA |
!SN)

α→ ν dck.(D′i | D1 | · · · | Di−1 | Di+1 | · · · | Dn | PSNm |!MSA |
!SN) ≡ ν dck.(D1 | · · · | D′i | · · · | Dn | PSNm |!MSA |!SN) = D′ and

(C ′, D′) ∈ R

• (SN pre-synch α-transition) C ′j = Cj ∀ ∧ n′ = n ∧ PSN ′m′ = PSNm |
SN1

jm+1
, m′ = m + 1. In this case a new SN is unrolled and does the first

labelled transition before synchronizing with the MS. If !SN
α→ SN1

jm+1
|!SN

Appendix B. TMSI Reallocation Procedure Unlinkability 195

and C ′ ≡ ν dck.(C1 | · · · | Cn | PSNm+1 |!SSA |!SN), PSNm+1 ≡ PSNm |
SN1

jm+1
then let D′ ≡ ν dck.(D1 | · · · | Dn | PSNm+1 |!MSA |!SN), where

PSNm+1 ≡ PSNm | SN1
jm+1

, we have that D ≡ ν dck.(D1 | · · · | Dn |
PSNm |!SSA |!SN | SN0

jm+1
) ≡ ν dck.(SN0

jm+1
| D1 | · · · | Dn | PSNm |

!MSA |!SN)
dw(zjm+1

)
−−−−−−→ ν dck.(SN1

jm+1
| D1 | · · · | Dn | PSNm |!MSA |

!SN) ≡ ν dck.(D1 | · · · | Dn | PSNm | SN1
jm+1

|!MSA |!SN) = D′, and

(C ′, D′) ∈ R

Let (C, D) ∈ R and let C ≡ ν dck.(C1 | · · · | Cn | PSNm |!MSA |!SN) and

D ≡ ν dck.(D1 | · · · | Dn | PSNm |!SSA |!SN).

Analogous to the previous case

B.3 Proof of Lemma 7.2

In order to prove Lemma 7.2, we define the general structure of the frames pro-

duced by partial evolution of our processes through the following substitutions:

σid
i,j

def
= {idi,1/xi,1

,idi,2 /xi,2
, . . . , idi,j/xi,j

}
σM
i,j

def
= {idi,1/xi,1

, Mi,2/xi,2
. . . , Mi,j/xi,j

}
σK
i,j

def
= {senc(cki,1, mri,1, Complete)/ki,1, . . . ,

senc(cki,j , mri,j , Complete)/ki,j}
σnid
i,j

def
= {senc(cki,1, sri,1, pair(TMSI Reall, nidi,1))/yi,1 , . . . ,

senc(cki,j , sri,j , pair(TMSI Reall, nidi,j))/yi,j}

We define the general structure of the frame of one of the grouped single (resp.

multi)-session system components

Appendix B. TMSI Reallocation Procedure Unlinkability 196

σ(Ci)
def
= σid

i,jid
| σK

i,jK
| σnid

i,jnid

σ(Di)
def
= σM

i,jid
| σK

i,jK
| σnid

i,jnid

These frames represent the knowledge a grouped single (resp. multi)-session sys-

tem component releases to the environment after i + li − 1 mobile stations com-

pletely executed (resp. the ith MS completely executed li−1 sessions of) the TMSI

reallocation protocol while the lthi executed kli steps (resp. while the li session is

at the kli execution step).

In the following lemma we prove the correctness of the given frame structure.

Lemma 7.5. Let (C,D) ∈ R, C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SSA |!SN),

D ≡ ν dck.(D1 | · · · | Dn | PSNm |!MSA |!SN) then ϕ(C) ≡ ν dck.(ϕ(C1) |
· · · | ϕ(Cn)), ϕ(D) ≡ ν dck.(ϕ(D1) | · · · | ϕ(Dn)) and ∀i, li, 1 ≤ i ≤ n, li ≥ 1,

ϕ(Ci) ≡ ϕ(GSSi,li [SMSki
i,li

| SSNi,li])

≡ ν s̃si,li .ν ñidi,jnid
.σ(Ci) = ν s̃si,li .ν ñidi,jnid

.(σid
i,jid

| σK
i,jK

| σnid
i,jnid

)

ϕ(Di) ≡ ϕ(GMSi,li [MMSki
i,li

| MSNi,li])

≡ ν m̃si,li .ν ñidi,jnid
.σ(Di) = ν m̃si,li .ν ñidi,jnid

.(σM
i,jid

| σK
i,jK

| σnid
i,jnid

)

where jid =

li − 1 if ki ≤ 1

li otherwise
jK =

li − 1 if ki ≤ 5, ki = 8

li otherwise

jnid =

li − 1 if ki ≤ 2

li otherwise

Proof. By definition of PSNm, PSNm we have that ϕ(PSNm) ≡ ϕ(PSNm) ≡
0, ∀ m ≥ 0 and by definition of SSA, MSA and SN we have that ϕ(!SSA) ≡
ϕ(!MSA) ≡ ϕ(!SN) ≡ 0.

By definition of R we have that C ≡ ν dck.(C1 | · · · | Cn | PSNm |!SSA |

Appendix B. TMSI Reallocation Procedure Unlinkability 197

!SN), D ≡ ν dck.(D1 | · · · | Dn | PSNm |!MSA |!SN) and ϕ(C) ≡ ν dck.(ϕ(C1) |
· · · | ϕ(Cn)), ϕ(D) ≡ ν dck.(ϕ(D1) | · · · | ϕ(Dn)). We show by induction over li

that

ϕ(Ci) ≡ ν s̃si,li.ν ñidi,jnid
.(σid

i,jid
| σK

i,jK
| σnid

i,jnid
),

ϕ(Di) ≡ ν m̃si,li.ν ñidi,jnid
.(σM

i,jid
| σK

i,jK
| σnid

i,jnid
)

where Ci = GSSi,li[SMSki
i,li

| SSNi,li], Di = GMSi,li [MMSki
i,li

| MSNi,li] and

jid =

li − 1 if ki ≤ 1

li otherwise
jK =

li − 1 if ki ≤ 5, ki = 8

li otherwise

jnid =

li − 1 if ki ≤ 2

li otherwise

• li = 0). We prove the statements hold for li = 0. Let li = 0, by definition of

R, Ci ≡ GSSi,0[SMSki
i,0 | SSNi,0] ≡ 0, Di ≡ GMSi,0[MMSk1

i,0 | MSNi,0] ≡ 0

ϕ(Ci) ≡ 0 ≡ ϕ(Di)

• li = m + 1). We assume the statement holds for li = m, and show that it

holds for li = m+ 1 i.e.

ϕ(Ci) ≡ ϕ(GSSi,m+1[SMS
km+1

i,m+1 | SSNi,m+1]) ≡ ν s̃si,m+1.ν ñidi,j′
nid
.(σid

i,j′
id

|
σK
i,j′

K
+1 | σnid

i,j′
nid

+1), ϕ(Di) ≡ ϕ(GMSi,m+1[MMS
km+1

i,m+1 |MSNi,m+1]

≡ ν m̃si,m+1.ν ñidi,j′
nid
.(σM

i,j′
id
| σK

i,j′
K
| σnid

i,j′
nid

), where

j′id =

m if km+1 ≤ 1

m+ 1 otherwise
j′K =

m if km+1 ≤ 5, or km+1 = 8

m+ 1 otherwise

j′nid =

m if km+1 ≤ 2

m+ 1 otherwise

Let li = m+ 1, by definition of R, we have that Ci ≡ GSSi,m+1[SMS
km+1

i,m+1 |
SSNi,m+1], Di ≡ GMSi,m+1[MMS

km+1

i,m+1 | MSNi,m+1] where GSSi,m+1[] =

ν s̃si,m+1.ν ñidi,j′
nid
.(SMS7

i,1 | · · · | SMS7
i,m |) ≡ ν s̃si,m+1.ν ñidi,j′

nid
.(SMS7

i,1

| · · · | SMS7
i,m−1 | SMS7

i,m |) ≡ ν idi,m+1, di,m+1, cki,m+1.ν nidi,j′
nid
.(GSSi,m

Appendix B. TMSI Reallocation Procedure Unlinkability 198

[SMS7
i,m] | []) and

GMSi,m+1[] = ν m̃si,m+1.ν ñid1,j′
nid
.(MMS7

i,1 | · · · | MMS7
i,m | |!Ri) ≡

ν m̃si,m+1.ν ñid1,j′
nid
.(MMS7

i,1 | · · · | MMS7
i,m−1 | MMS7

i,m | |!Ri) ≡
ν cki,m+1.ν nidi,j′

nid
.(GMSi,m[MMS7

1,m |]) then ϕ(Ci) ≡
ϕ(GSSi,m+1[SMS

km+1

i,m+1 | SSNi,m+1]) ≡ ϕ(GSSi,m[SMS7
i,m | SSNi,m])

| ν idi,m+1, di,m+1, cki,m+1.ν nidi,m+1.ϕ(SMS
km+1

i,m+1 | SNhm+1

i,m+1) ≡ (by ind. hyp.

and since ϕ(MMS7
i,j) ≡ MXi,j | Ki,j∀i, j and since the conditional enables

the process SMS
kj
i,j to reach state 7 if and only if it receives

sdec(cki,j, pair(TMSI reall, nidi,j from the SNi,j we have that SSNi,m ≡
SNh1

i,1 | · · · | SNhm

i,m with h1, . . . , hm ≥ 3 hence ϕ(SSNi,m) ≡ σnid
i,m)

ν s̃si,m.ν ñidi,m.(σ
id
i,m | σk

i,m | σnid
i,m) | ν idi,m+1, di,m+1, cki,m+1, nidi,j′

nid
.

ϕ(SMS
km+1

i,m+1 | SNhm+1

i,m+1)) ≡ ν s̃si,m+1.ν ñidi,j′
nid
.(σid

i,m | σk
i,m | σnid

i,m |
ϕ(SMS

km+1

i,m+1 | SNhm+1

i,m+1)) and

ϕ(Di) ≡ ϕ(GMSi,m+1[MMS
km+1

i,m+1 | MSNi,m+1]) ≡ ϕ(GMSi,m[MMS7
i,m |

MSNi,m | ϕ(ν cki,m+1, nidi,j′
nid
.(MMS

km+1

1,m+1 | SNhm+1

1,m+1)]) ≡(since ϕ(MMS7
i,j)

≡MXi,j | Ki,j∀i, j since the conditional enables the process SMS
kj
i,j to reach

state 7 if and only if it receives sdec(cki,j, pair(TMSI reall, nidi,j from the

SNi,j we have that MSNi,m ≡ SNh1
i,1 | · · · | SNhm

i,m with h1, . . . , hm ≥ 3 hence

ϕ(MSNi,m) ≡ σnid
i,m and by ind. hyp. ϕ(GMSi,m[MMS7

i,m | MSNi,m]) ≡
ν m̃si,m.ν ñidi,m.(σ

M
i,m | σK

i,m | σnid
i,m)) ν m̃si,m.ν ñidi,m.(σ

M
i,m | σk

i,m | σnid
i,m |

ν cki,m+1, ν nidi,j′
nid
.ϕ(MMS

km+1

i,m+1 | SNhm+1

i,m+1)) ≡ ν m̃si,m+1.ν ñidi,j′
nid
.(σM

i,m |
σk
i,m | σnid

i,m | ϕ(MMS
km+1

i,m+1 | SNhm+1

i,m+1))

we have 6 cases:

1. km+1 = 1, SN
hm+1

i,m+1 = 0 then we have that ϕ(SMS1
i,m+1 | 0) ≡ 0, hence

ϕ(Ci) ≡ ν s̃si,m+1.ν ñidi,j′
nid
.

(σid
i,m | σK

i,m | σnid
i,m | 0) ≡ ν s̃si,m+1.ν ñidi,j′

nid
.(σid

i,j′
id

| σK
i,j′

K
| σnid

i,j′
nid

) and

ϕ(MMS1
i,m+1 | 0) ≡ 0, hence, ϕ(Di) ≡ ν m̃si,m+1.ν ñidi,j′

nid
.(σM

i,m | σK
i,m |

σnid
i,m | 0) ≡ ν m̃si,m+1.ν ñidi,j′

nid
.(σM

i,j′
id
| σK

i,j′
K
| σnid

i,j′
nid

)

Appendix B. TMSI Reallocation Procedure Unlinkability 199

2. km+1 = 2, SN
hm+1

i,m+1 = 0 then we have that

ϕ(SMS2
i,m+1 | 0) ≡ SXi,m+1, hence, ϕ(Ci) ≡ ν s̃si,m+1.ν ñidi,j′

nid
.(σid

i,m |
σK
i,m | σnid

i,m | {idi,m+1/xi,m+1
}) ≡ ν s̃si,m+1.ν ñidi,j′

nid
.(σid

i,m+1 | σK
i,m | σnid

i,m)

and

ϕ(MMS2
i,m+1 | 0) ≡MXi,m+1, hence, ϕ(Di) ≡ ν m̃si,m+1.ν ñidi,m.(σ

M
i,m

| σK
i,m | σnid

i,m | {Mi,m+1/xi,m+1
}) ≡ ν m̃si,m+1.ν ñidi,j′

nid
.(σM

i,m+1 | σK
i,m |

σnid
i,m), j

′
nid = m

3. km+1 ∈ {3, 4, 5, 8}, hm+1 = 2 then we have that

ϕ(SMS
km+1

i,m+1 | SNhm+1

i,m+1) ≡ {idi,m+1/xi,m+1
}}, hence ϕ(Ci) ≡ ν s̃si,m+1.

ν ñidi,j′
nid
.(σid

i,m | σK
i,m | σnid

i,m | {idi,m+1/xi,m+1
}) ≡ ν s̃si,m+1.ν ñidi,j′

nid
.(

σid
i,m+1 | σK

i,m | σnid
i,m) and

ϕ(MMS
km+1

i,m+1 | SNhm+1

i,m+1) ≡ {Mi,m+1/xi,m+1
}, hence ϕ(Di) ≡ ν m̃si,m+1.

ν ñidi,j′
nid
.(σM

i,m | σK
i,m | σnid

i,m) | {Mi,m+1/xi,m+1
}) ≡ ν m̃si,m+1.ν ñidi,j′

nid
.

(σM
i,m+1 | σK

i,m | σnid
i,m), j

′
nid = m+ 1

4. km+1 ∈ {3, 4, 5, 8}, hm+1 ∈ {3, 4} then we have that

ϕ(SMS
km+1

i,m+1 | SNhm+1

i,m+1) ≡
{idi,m+1/xi,m+1

} | {senc(cki,m+1,sri,m+1,pair(TMSI Reall,nidi,m+1))/yi,m+1
}, hence

ϕ(Ci) ≡ ν s̃si,m+1.ν ñidi,j′
nid
.(σid

i,m | σK
i,m | σnid

i,m | {idi,m+1/xi,m+1
} |

{senc(cki,m+1,sri,m+1,pair(TMSI Reall,nidi,m+1))/yi,m+1
}) ≡

ν s̃si,m+1.ν ñidi,j′
nid
.(σid

i,m+1 | σK
i,m | σnid

i,m+1) and ϕ(MMS
km+1

i,m+1 | SNhm+1

i,m+1) ≡
{Mi,m+1/xi,m+1

} | {senc(cki,m+1,sri,m+1,pair(TMSI Reall,nidi,m+1))/yi,m+1
}, hence

ϕ(Di) ≡ ν m̃si,m+1.ν ñidi,j′
nid
.(σM

i,m | σK
i,m | σnid

i,m | {Mi,m+1/xi,m+1
} |

{senc(cki,m+1,sri,m+1,pair(TMSI Reall,nidi,m+1))/yi,m+1
}) ≡ ν dck.ν m̃si,m+1.

ν ñidi,j′
nid
.(σM

i,m+1 | σK
i,m | σnid

i,m+1), j
′
nid = m+ 1

5. km+1 ∈ {6, 7}, hm+1 = 2 then we have that

ϕ(SMS
km+1

i,m+1 | SN2
i,m+1) ≡ {idi,m+1/xi,m+1

} | SKi,m+1), hence ϕ(Ci) ≡
ν s̃si,m+1.ν ñidi,j′

nid
.(σid

i,m | σK
i,m | σnid

i,m | {idi,m+1/xi,m+1
} | SKi,m+1) ≡

ν s̃si,m+1.ν ñidi,j′
nid
.(σid

i,m+1 | σK
i,m+1 | σnid

i,m) and

ϕ(MMS
km+1

i,m+1 | SN2
i,m+1) ≡ {Mi,m+1/xi,m+1

} | MKi,m+1, hence ϕ(Di) ≡

Appendix B. TMSI Reallocation Procedure Unlinkability 200

ν m̃si,m+1.ν ñidi,j′
nid
.(σM

i,m | σK
i,m | σnid

i,m | {Mi,m+1/xi,m+1
} | MKi,m+1) ≡

ν m̃si,m+1.ν ñidi,j′
nid
.(σM

i,m+1 | σK
i,m+1 | σnid

i,m), j
′
nid = m+ 1

6. km+1 ∈ {6, 7}, hm+1 ∈ {3, 4} then we have that

ϕ(SMS
km+1

i,m+1 | SNhm+1

i,m+1) ≡ {idi,m+1/xi,m+1
} | SKi,m+1 | ν nidi,m+1.

{senc(cki,m+1,sri,m+1,pair(TMSI Reall,nidi,m+1))/yi,m+1
}, hence ϕ(Ci) ≡

ν s̃si,m+1.ν ñidi,j′
nid
.(σid

i,m | σK
i,m | σnid

i,m | {idi,m+1/xi,m+1
} | SKi,m+1 |

ν nidi,m+1.{senc(cki,m+1,sri,m+1,pair(TMSI Reall,nidi,m+1))/yi,m+1
}) ≡ ν s̃si,m+1.

ν ñidi,j′
nid
.(σid

i,m+1 | σK
i,m+1 | σnid

i,m+1) and

ϕ(MMS
km+1

i,m+1 | SNhm+1

i,m+1) ≡ {Mi,m+1/xi,m+1
} |MKi,m+1 | ν nidi,m+1.

{senc(cki,m+1,sri,m+1,pair(TMSI Reall,nidi,m+1))/yi,m+1
}, hence

ϕ(Di) ≡ ν m̃si,m+1.ν ñidi,j′
nid
.(σM

i,m | σK
i,m | σnid

i,m | {Mi,m+1/xi,m+1
} |

MKi,m+1 | ν nidi,m+1.{senc(cki,m+1,sri,m+1,pair(TMSI Reall,nidi,m+1))/yi,m+1
}) ≡

ν m̃si,m+1. ν ñidi,j′
nid
.(σM

i,m+1 | σK
i,m+1 | σnid

i,m+1), j
′
nid = m+ 1

We can now prove Lemma 7.2

Lemma 7.2. Let (C,D) ∈ R then C ≈s D

Proof. by Lemma 7.5 we have that ∀ (C,D) ∈ R, ϕ(C) ≡ ν dck.(ϕ(C1) | · · · |
ϕ(Cn)), ϕ(D) ≡ ν dck.(ϕ(D1) | · · · | ϕ(Dn)). By lemma 7.5 we have that

∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ li, ϕ(Di) = ν m̃si,li.ν ñidi,jnid
.(σM

i,jid
| σK

i,jK
| σnid

i,jnid
) and

by definition σM
i,jid

= {idi,1/xi,1
, Mi,2/xi,2

. . . , Mi,jid/xi,jid
}. We show that ∀i, j, 1 ≤

i ≤ n, 1 ≤ j ≤ li Mi,j → nidi,j−1. By definition of the process D we have

that Mij =E snd(sdec(cki,j−1, Ni,j−1)). Hence Mij →∗ nidi,j−1 if Ni,j−1 =E

senc(cki,j−1, sri,j−1, (TMSI Reall, nidi,j−1)) and

Mij →∗ snd(sdec(cki,j−1, Ni,j−1 ↓)) otherwise. By contradiction let assume that

Appendix B. TMSI Reallocation Procedure Unlinkability 201

Mi,j 6=E nidi,j−1 then Ni,j−1 6=E senc(cki,j−1, sri,j−1, (TMSI Reall, nidi,j−1)) we

have 3 cases:

• Ni,j−1 6=E senc(Ti,j−1, Ui,j−1, Li,j−1) then

fst(sdec(cki,j−1, Ni,j−1)) 6=E TMSI Reall and the if check fails so Mi,j is

not outputted at all;

• Ni,j−1 =E senc(Ti,j−1, Ui,j−1, Li,j−1) and Ti,j−1 6=E cki,j−1 then

fst(

sdec(cki,j−1, Ni,j−1)) 6=E TMSI Reall and the if check fails so Mi,j is not

outputted at all;

• Ni,j−1 6=E senc(Ti,j−1, Ui,j−1, Li,j−1), Ti,j−1 =E cki,j−1 and Li,j−1 6=E nidi,j−1

since Ni,j−1 is input by the process and by Lemma 7.5

∀i, k{senc(Th,k ,Uh,k,Lh,k)/yh,k} we have that Ti,k = cki,j−1 if and only if h =

i, k = j − 1 we have that the message

Ni,j−1 =E senc(cki,j−1, sri,j−1, (TMSI Reall, Ni,j−1)) was constructed by

the adversary. This is absurd since cki,j−1 is restricted. Hence, ∀ i, j ∈ ϕ(D)

we have that Mi,j = nidi,j−1.

Let σMnid

i,j = {nidi,1/xi,2
} | · · · | {nidi,j−1/xi,j

} we have that ∀ i, 1 ≤ i ≤ n, ϕ(Di) =

ν m̃si,li .ν ñidi,jnid
.(σM

i,jid
| σK

i,jK
| σnid

i,jnid
) ≡ ν m̃si,li.ν ñidi,jnid

.({id1,1/x1,1} | σMnid

i,jid
|

σK
i,jK

| σnid
i,jnid

). Now that we have defined our frame independently from the process

input from its memory (or state) we can automatically verify statical equivalence

by using the ProVerif tool. We define the following bi-process which outputs the

same terms of our process and hence produces the frames ϕ(C) and ϕ(D):

free c.

free d.

fun senc/3.

Appendix B. TMSI Reallocation Procedure Unlinkability 202

reduc sdec(xk, senc(xk, xr, xm)) = xm.

let S = !new id; new nid; new ck; new sr; new mr;

out(c, choice[nid, id]) |

out(d, choice[senc(ck, sr, (tmsi_realloc, nid)),

senc(ck, sr, (tmsi_realloc, nid))]) |

out(c, senc(ck, mr, tmsi_complete)).

process S

ProVerif can prove the observational equivalence and consequently the statical

equivalence of the two frames.

C

StatVerif Extension Related

Proofs

C.1 Proof of Theorem 8.5

Theorem 8.5. Let A0 be a closed stateful biprocess. If, for all plain stateful

evaluation contexts C and reductions C[A0] →∗ A, the stateful biprocess A is

uniform, then A0 satisfies observational equivalence.

Proof. Let A0 be a closed stateful biprocess such that C[A0] →∗ B always yields

a uniform stateful biprocess B, and consider the relation

R = {(fst(B), snd(B))|C[A0] →∗ B}

In particular, we have fst(A0) R snd(A0), so we can show that A0 satisfies ob-

servational equivalence by establishing that the relation R = R ∪R−1 meets the

three conditions of Definition 8.3. By symmetry, we focus on R.

Assume fst(B) R snd(B).

203

Appendix C. StatVerif Extension Related Proofs 204

1. Assume fst(B) ↓M , and let

TM = ({c} , , {(in(M,x); out(c, c), ∅)}) for some fresh name c. We want

to test for the ability to send any message on M . We have that for any

plain stateful biprocess Pi = (Epi,Spi,Ppi), Pi ↓M if and only if TM [Pi] →
(Epi ∪ {c},Spi,P ′pi∪ {(out(c, c), ∅)}) for some P ′pi. In our case, we have that

TM [fst(B)] → (Eb ∪ {c}, fst(Sb),

fst(P ′b) ∪ {(out(c, c), ∅)}) = P1 for some fst(P ′b). Since C[A0] →∗ B we

have that TM [C[A0]] →∗ TM [B]. Let C ′[] = (Ec ∪ {c} ,Sc ,Pc ∪
{(in(M,x); out(c, c), ∅)}) = TM [C[]], we have that C ′[A0] →∗ TM [B] which

by hypothesis is uniform, hence TM [B] → B′ with fst(B′) = P1. Since c

does not occur in Q (c is fresh) we obtain that B′ = (Eb ∪ {c},Sb,P ′b ∪
{(out(c, c), ∅)}) for some P ′b, thus
TM [snd(B)] → snd(B′) = (Eb ∪ {c}, fst(Sb), snd(P ′b) ∪ {(out(c, c), ∅)}) and
snd(B) ↓M

2. if fst(B) → P1 then by uniformity we have that B → B′ and fst(B′) = P1

thus C[A0] →∗ B′ and by definition of R we have that fst(B′) R snd(B′)

and finally by definition of the semantics of stateful biprocess B → B′ implies

snd(B) → snd(B′)

3. Let C ′ be a plain stateful evaluation context. By definition of the semantics

of stateful biprocess C[A0] →∗ B always implies C ′[C[A0]] →∗ C ′[B] hence

C ′[fst(B)] = fst(C ′[B]) R snd(C ′[B]) = C ′[snd(B)]

C.2 Proof of Corollary 8.6

Corollary 8.6. Let A0 be a closed stateful biprocess. Suppose that, for all

plain stateful evaluation contexts C, all stateful evaluation contexts C ′ , and all

Appendix C. StatVerif Extension Related Proofs 205

reductions C[A0] →∗ A,

1. if A = C ′[(E ,S,P ∪
{(out(N,M);P, ∅), (in(N ′, x);Q, ∅)})], then
Σ ⊢ fst(N) = fst(N ′) if and only if Σ ⊢ snd(N) = snd(N ′),

2. if A = C ′[(E ,S,P ∪ {(let x = D in P else Q, λ)})], then there exists M1

such that fst(D) ⇓M1 if and only if there existsM2 such that snd(D) ⇓M2.

Then A0 satisfies observational equivalence.

Proof. We show that A is uniform, then we conclude by Theorem 8.5. We show

that, if fst(A) → A1 then there exists a stateful biprocess A′ such that A → A′

and fst(A′) = A1. The case for snd(A) → A2 is symmetric. By case analysis of

the derivation of fst(A) → A1, we first show that there exist C,B, and B1 such

that A = C[B], A1 = fst(C)[B1], and fst(B) → B1 using one of the reduction

rules every step in this derivation trivially commutes with fst. For each of these

rules, relying on a hypothesis of Corollary 8.6, we find B′ such that fst(B′) = B1

and B → B′ using the corresponding biprocess rule:

• (Red Nil): We have B = (E ,S,P∪{(0, λ)}) with B1 = (E , fst(S), fst(P)).

We take B′ = (E ,S,P) so that fst(B′) = B1 and B → B′.

• (Red Repl): We have B = (E ,S,P∪{(!R, ∅)}) andB1 = (E , fst(S), fst(P)

∪ {(fst(R) |!fst(R), ∅)}). We take B′ = (E ,S,P ∪ {(R |!R, ∅)}), so that

fst(B′) = B1 and B → B′.

• (Red Par): We have B = (E ,S,P ∪ {(R | R′, ∅)}) with B1 = (E , fst(S),
fst(P) ∪ {(fst(R), ∅), (fst(R′), ∅)}). We take B′ = (E ,S,P ∪ {(R, ∅),
(R′, ∅)}) so that fst(B′) = B1 and B → B′.

Appendix C. StatVerif Extension Related Proofs 206

• (Red New): We have B = (E ,S,P ∪ {(new a;R, λ)}) with a /∈ bn(fst(R))

(otherwise we rename a) B1 = (E ∪ {a′}, fst(S), fst(P)∪
{(fst(R){a′/a}, λ)}) where a′ is a fresh name. We take B′ = (E∪{a′},S,P∪
{(R{a′/a}, λ)}) so that fst(B′) = B1 and B → B′.

• (Red Fun1): We have B = (E ,S,P ∪
{(let x = D in R else R′, λ)}) with fst(D) ⇓M1 and B1 = (E , fst(S),
fst(P) ∪ {(fst(R){M1/x}, λ)}). By hypothesis 2, snd(D) ⇓ M2 for some

M2. Let B
′ = (E ,S,P ∪ {(R{diff[M1,M2]/x}, so that fst(B′) = B1 and

B → B′.

• (Red Fun2): We have B = (E ,S,P ∪
{(let x = D in R else R′, λ)}) with no M1 such that fst(D) ⇓ M1 and

B1 = (E , fst(S), fst(P) ∪
{(fst(R′), λ)}). By hypothesis 2, there is no M2 such that snd(D) ⇓ M2.

Let B′ = ((E ,S,P ∪ {(R, λ)}) we have B → B′.

• (Red Comm): We have B = (E ,S,P ∪ {(out(N,M);R, ∅),
(in(N, x);R′, ∅)}) with Σ ⊢ fst(N) = fst(N ′) and B1 = (E , fst(S), fst(P)

∪{(fst(R), ∅), (fst(R){fst(M)/x}, ∅)}). Let B′ = (E ,S,P ∪ {(R, ∅),
(R′{M/x}, ∅)}), we have fst(B′) = B1 and, by hypothesis 1, Σ ⊢ snd(N) =

snd(N ′), hence B → B′.

• (Red State): We have B = (E ,S,P ∪ {([s 7→ M], ∅)}) with B1 =

(E , fst(S)∪{s 7→ fst(M)}, fst(P)}). We take B′ = (E ,S ∪{s 7→M},P}),
so that fst(B′) = B1 and B → B′.

• (Red Lock): We have B = (E ,S,P ∪
{(lock si1 , . . . , sim;R, λ)}) with B1 = (E , fst(S), fst(P) ∪
{(fst(R), λ ∪ {i1, . . . , im})}) where ∀ (Q, λ′) ∈ fst(P). {i1, . . . , im} ∩ λ′ =
∅. Since by definition {λ′ | (Q, λ) ∈ P} = {λ′ | (Q, λ) ∈ fst(P)} (in

fact we do not allow to lock different cells in the two stateful biprocesses

Appendix C. StatVerif Extension Related Proofs 207

variant, i.e. lock diff[si, sj] is not allowed) we take B
′ = (E ,S,P∪{(R, λ∪

{i1, . . . , im})}), so that fst(B′) = B1 and B → B′.

• (Red Unlock): We have B = (E ,S,P ∪
{(unlock si1, . . . , sim ;R, λ)}) with B1 = (E , fst(S), fst(P) ∪
{(fst(R), λ \ {i1, . . . , im})}) where ∀ (Q, λ′) ∈ fst(P). {i1, . . . , im}∩λ′ = ∅.
We take B′ = (E ,S,P ∪ {(R, λ \ {i1, . . . , im})}), so that fst(B′) = B1 and

B → B′.

• (Red Read): We have B = (E ,S,P ∪
{(read si1 , . . . , sim as x1, . . . , xm;R, λ)}) with B1 = (E , fst(S), fst(P) ∪
{(fst(R){fst(S(si1))/x1, . . . ,

fst(S(sim))/xm
}, λ) }) if si1, . . . , sim ∈ S and

∀ (Q, λ′) ∈ fst(P). {i1, . . . , im} ∩ λ′ = ∅. Since by definition {λ′ | (Q, λ) ∈
P} = {λ′ | (Q, λ) ∈ fst(P)} (in fact we do not allow to lock different cells in

the two stateful biprocesses variant, i.e. lock diff[si, sj] is not allowed) we

can take B′ = (E ,S,P ∪ {(R{snd(S(si1))/x1, . . . ,
snd(S(sim))/xm

}, λ)}), so that

fst(B′) = B1 and B → B′.

• (Red Assign): We have

B = (E ,S,P ∪ {(si1, . . . , sim :=M1, . . . ,Mm;R, λ)})
with B1 = (E , fst(S)[si1 7→ fst(M1), . . . , sim 7→ fst(Mm)] fst(P) ∪
{(fst(R), λ)}) if si1 , . . . , sim ∈ S and ∀ (Q, λ′) ∈ fst(P). {i1, . . . , im} ∩λ′ =
∅. Since by definition {λ′ | (Q, λ) ∈ P} = {λ′ | (Q, λ) ∈ fst(P)} (in fact we

do not allow to lock different cells in the two stateful biprocess variant, i.e.

lock diff[si, sj] is not allowed) we can take

B′ = (E ,S[si1 7→M1, . . . , sim 7→Mm],P ∪ {(R, λ)}), so that fst(B′) = B1

and B → B′.

To conclude, we take the biprocess A = C[B] and the reduction B → B′.

Appendix C. StatVerif Extension Related Proofs 208

C.3 Preliminary Lemmas

We recall the following lemmas taken from [BAF05], they are preliminary to some

of the later proofs.

Lemma C.1. Let N be either a name or a variable. If Σ ⊢ M = N and

nfT,Σ({M}), thenM = N . For any set of terms M, if nfT,Σ(M), then nfT,Σ(M∪
{N}).

Lemma C.2. Let σ be a closed substitution. Let D be a plain term evaluation.

If σD ⇓Σ′ M , then there exist M ′, σ1, and σ
′
1 such that D ⇓′ (M ′, σ1),M = σ′1M

′,

and σ = σ′1σ1 except on fresh variables introduced in the computation of D ⇓′

(M ′, σ1). Let D1, . . . , Dn be plain term evaluations. If for all i ∈ {1, . . . , n},
σDi ⇓′Σ′ Mi, then there exist M ′1, . . . ,M

′
n, σ1, andσ

′
1 such that (D1, . . . , Dn) ⇓′

((M ′1, . . . ,M
′
n), σ1),Mi = σ′1M

′
i for all i ∈ {1, . . . , n}, and σ = σ′1σ1 except on fresh

variables introduced in the computation of (D1, . . . , Dn) ⇓′ ((M ′1, . . . ,M ′n), σ1).

Lemma C.3. If h(N1, . . . , Nn) → N ∈ defΣ(h),Σ ⊢ Mi = σNi for all i ∈
{1, . . . , n}, Σ ⊢M = σN , and nfS,Σ({M1, . . . ,Mn,M}), then there exist

h(N ′1, . . . , N
′
n) → N ′ ∈ defΣ′(h) and σ′ such that Mi = σ′N ′i for all i ∈ {1, . . . , n}

and M = σ′N ′.

Lemma C.4. Let D be a plain term evaluation. If D ⇓Σ M , Σ ⊢ M = M ′,

Σ ⊢ D = D′, and nfS,Σ({M ′, D′}), then D′ ⇓Σ M
′.

Lemma C.5. If h(N1, . . . , Nn) → N ∈ defΣ′(h) then there exists h(N ′1, . . . , N
′
n) →

N ′ ∈ defΣ(h) and σ such that Σ ⊢ Ni = σN ′i for all i ∈ {1, . . . , n} and Σ ⊢ N =

σN ′.

Lemma C.6. Let D be a plain term evaluation. If Σ ⊢ D′ = D and D′ ⇓Σ′ M ′

then D ⇓Σ M for some M ′ such that Σ ⊢M =M ′.

Lemma C.7. Let D be a plain term evaluation. If Σ ⊢ D′ = D and D′ ⇓Σ M ′

then D ⇓Σ M for some M such that Σ ⊢M =M ′.

Appendix C. StatVerif Extension Related Proofs 209

C.4 Proof of Lemma 8.8

Lemma 8.8. Let A0 be a closed, unevaluated stateful biprocess. If A0 →∗Σ A′0,Σ ⊢
B′0 = A′0, and nfT,Σ({B′0}), then A0 →Σ′,Σ B

′
0 by a reduction whose intermediate

stateful biprocesses B all satisfy nfT,Σ({B}).
Conversely, if A0 →∗Σ′,Σ B′0 then there exists A′0 such that Σ ⊢ B′0 = A′0 and

A0 →∗Σ A′0.

Proof. We write V C(P) when P is a closed stateful biprocess whose terms M are

either variables or terms of the form diff[M1,M2] where M1 and M2 are closed

terms that do not contain diff. (Function symbols prefixed by eval are not

constrained.) We have the following properties:

P1. if V C(P) and P →Σ P
′ then V C(P ′).

The proof is by induction on the derivation of P →Σ P ′. The only change

of terms is done by the substitution {M/x} in the rules (Red I/O), (Red

Fun 1) and (Red Read). This substitution replaces a variable with a

closed term M = diff[M1,M2], hence the result. (For (Red I/O) and

(Red Read), M is of the form diff[M1,M2] because of V C(P).)

P2. If V C(P{diff[M1,M2]/x}),Σ ⊢ P{diff[M1,M2]/x} = P ′′, and nfT,Σ(Q ∪ {P ′′}),
then by property S2 there exist P ′,M ′1, and M

′
2 such that Σ ⊢ P = P ′,Σ ⊢

M1 =M ′1,Σ ⊢M2 =M ′2, P
′′ = P ′{diff[M1,M2]/x}, and nfT,Σ(Q∪{P ′,M ′1,M ′2}).

Since A0 is closed and unevaluated, V C(A0). Therefore, by P1, if A0 →∗Σ A, then
V C(A). Moreover, the only process A such that Σ ⊢ A0 = A and nfT,Σ({A}) is
A0 by Lemma C.1.

Let us show that, if V C(A), A →Σ A′,Σ ⊢ B′ = A′, and nfT,Σ(Q ∪ {B′}), then
there exists B such that Σ ⊢ B = A, nfT,Σ(Q∪ {B}), and B →Σ′,Σ B

′. The proof

is by induction on the derivation of A→Σ A
′.

Appendix C. StatVerif Extension Related Proofs 210

Case (Red Comm): Since V C(A), we have A = (E ,S,P∪{(out(diff[M1,M2], N);

R, λ1), (in(diff[M
′
1,M

′
2], x);R

′, λ2)}) →Σ (E ,S,P∪{(R, λ1), (R′{N/x}, λ2)})
= A′ with Σ ⊢ M1 = M ′1 and Σ ⊢ M2 = M ′2. Since Σ ⊢ B′ = A′ and

nfT,Σ(Q ∪ {B′}), we have B′ = (E ,S ′,P ′ ∪ {(R1, λ1) | (R′1{N1/x}, λ2)}) for
some S ′,P ′, R1, R

′
1, N1 such that Σ ⊢ P = P ′,Σ ⊢ S ′(s1) = S(s1), . . . ,Σ ⊢

S ′(sn) = S(sn),Σ ⊢ R1 = R,Σ ⊢ R′1 = R′,Σ ⊢ N1 = N , and nfT,Σ(Q∪ {P ′ |
(P ′, λ) ∈ P ′}∪{S ′(s1), . . . ,S ′(sn), R1, R

′
1, N1}) by P2. By Property S2, there

exist M ′′1 and M ′′2 such that Σ ⊢ M ′′1 = M ′1 =M1,Σ ⊢ M ′′2 = M ′2 = M2, and

nfT,Σ(Q∪{P ′ | (P ′, λ) ∈ P ′}∪{S ′(s1), . . . ,S ′(sn), R1, R
′
1, N1,M

′′
1 ,M

′′
2 }). We

let B = (E ,S ′,P ′ ∪{(out(diff[M ′′1 ,M ′′2], N1);R1, λ1), (in(diff[M
′′
1 ,M

′′
2], x);

R′1)}). Then Σ ⊢ B = A. Moreover nfT,Σ(Q ∪ {B}) since nfT,Σ(Q ∪ {P ′ |
(P ′, λ) ∈ P ′} ∪ {S ′(s1), . . . ,S ′(sn), R1, R

′
1, N1,M

′′
1 ,M

′′
2 }), and B →Σ′,Σ B

′.

Case (Red Fun1): We have A = (E ,S,P ∪ {(let x = D in R else R′, λ)} →Σ

(E ,S,P ∪ {(R{diff [M,M ′]/x}, λ)}) = A′ with fst(D) ⇓Σ M and snd(D) ⇓Σ

M ′. Since Σ ⊢ B′ = A′ and nfT,Σ(Q ∪ {B′}), we have B′ = (E ,S ′,P ′ ∪
{(R1{diff [M1,M ′

1]/x}, λ)}) for some S ′,P ′, R1,M1,M
′
1 such that Σ ⊢ P =

P ′,Σ ⊢ S ′(s1) = S(s1), . . . ,Σ ⊢ S ′(sn) = S(sn),Σ ⊢ R1 = R,Σ ⊢ M1 =

M,Σ ⊢M ′1 =M ′, and nfT,Σ(Q∪{P ′ | (P ′, λ) ∈ P ′}∪{S ′(s1), . . . ,S ′(sn), R1,

M1,M
′
1}) by P2. By Property S2, there exist D1 and R

′
1 such that Σ ⊢ D1 =

D,Σ ⊢ R′1 = R, and nfT,Σ(Q∪{P ′ | (P ′, λ) ∈ P ′}∪{S ′(s1), . . . ,S ′(sn), D1, R1,

R′1,M1,M
′
1}). By Lemma C.4, fst(D1) ⇓Σ′ M1 and snd(D1) ⇓Σ′ M ′1. Let

B = (E ,S ′,P ′∪{(let x = D1 in R1 else R
′
1, λ)}. Then Σ ⊢ B = A, nfT,Σ(Q

∪ {B}), and B →Σ′,Σ B
′.

Case (Red Fun2): We have A = (E ,S,P∪{(let x = D inR else R′, λ)} →Σ A
′,

there exists no M such that fst(D) ⇓Σ M , and there exists no M ′ such that

snd(D) ⇓Σ M
′. We have Σ ⊢ B′ = A′ and nfT,Σ(Q∪{B′}). By Property S2,

there exist D1 and R1 such that Σ ⊢ D1 = D,Σ ⊢ R1 = R and nfT,Σ(Q ∪
{R1, D1, B

′}). Then, there exists no M such that fst(D1) ⇓Σ M , and there

exists no M ′ such that snd(D1) ⇓Σ M ′. (Otherwise, by Lemma C.7, there

Appendix C. StatVerif Extension Related Proofs 211

would exist M such that fst(D) ⇓Σ M , and M ′ such that snd(D) ⇓Σ M
′).

Let B = (E ,S ′,P ′ ∪ {(let x = D1 in R1 else Q′, λ)}). Then Σ ⊢ B =

A, nfT,Σ(Q∪ {B}), and B →Σ′,Σ B
′.

Case (Red Repl): We have A = (E ,S,P ∪ {(!R, ∅)}) →Σ (E ,S,P ∪ {(R |
!R, ∅)}) = A′. Since Σ ⊢ B′ = A′ and nfT,Σ(Q ∪ {B′}), we have B′ =

(E ,S ′,P ′ ∪ {(R1 |!R1, λ)}) for some S ′,P ′, R1 such that Σ ⊢ P = P ′,Σ ⊢
S ′(s1) = S(s1), . . . ,Σ ⊢ S ′(sn) = S(sn),Σ ⊢ R1 = R. Let B = (E ,S ′,P ′ ∪
{(!R1, λ)}). Then we have Σ ⊢ B = A, nfT,Σ(Q ∪ {B}), and B →Σ′,Σ B

′.

Case (Red Read): We have

A = (E,S,P ∪ {(read sj1, . . . , sjm as x1, . . . , xm;R, λ)}) →Σ (E ,S,P ∪
{(R{S(sj1)/x1, . . . ,

S(sjm) /xm
}, λ)}) = A′. Since Σ ⊢ B′ = A′ and nfT,Σ(Q ∪

{B′}), we have B′ = (E ,S ′,P ′ ∪ {(R1{M1/x1, . . . ,
Mm /xm

}, λ)}) for some

S ′,P ′, R1,M1, . . .Mm such that Σ ⊢ P = P ′,Σ ⊢ S ′(s1) = S(s1), . . . ,Σ ⊢
S ′(sn) = S(sn),Σ ⊢ R1 = R,Σ ⊢ M1 = S(sj1), . . . ,Σ ⊢ Mm = S(sjm), and
nfT,Σ(Q∪ {P ′ | (P ′, λ) ∈ P ′} ∪ {S ′(s1), . . . ,S ′(sn), R1,M1, . . . ,Mm}) by P2.

Let B = (E,S ′[jk 7→Mk | 1 ≤ k ≤ m],P ′∪{(read sj1 . . . , sjm as x1, . . . , xm;

R1, λ)}). Then Σ ⊢ B = A, nfT,Σ(Q∪ {B}), and B →Σ′,Σ B
′.

Case (Red Assign): We have A = (E,S,P ∪ {(sj1, . . . , sjm :=M1, . . . ,Mm;

R, λ)}) →Σ (E ,S[jk 7→Mk | 1 ≤ k ≤ m],P∪{(R, λ)}) = A′. Since Σ ⊢ B′ =
A′ and nfT,Σ(Q ∪ {B′}), we have B′ = (E ,S ′[jk 7→ M ′k | 1 ≤ k ≤ m],P ′ ∪
{(R1, λ)}) for some R1,M

′
1, . . .M

′
m such that Σ ⊢ P = P ′,Σ ⊢ S ′(s1) =

S(s1), . . . ,Σ ⊢ S ′(sn) = S(sn),Σ ⊢ R1 = R,Σ ⊢ M1 = M ′1, . . . ,Σ ⊢ Mm =

M ′m, and nfT,Σ(Q∪{P ′ | (P ′, λ) ∈ P ′}∪{S ′(s1), . . . ,S ′(sn), R1,M
′
1, . . . ,M

′
m}).

Let B = (E,S ′,P ′ ∪ {(sj1 . . . , sjm := M ′1, . . . ,M
′
m;R1, λ)}). Then Σ ⊢ B =

A, nfT,Σ(Q∪ {B}), and B →Σ′,Σ B
′.

Cases (Red Par),(Red New), (Red State), (Red Lock), and (Red Un-

lock): Easy by induction hypothesis.

Appendix C. StatVerif Extension Related Proofs 212

Therefore, if A0 →∗ A0,Σ ⊢ B′0 = A′0, and nfT,Σ({B′0}), then there exists B0

such that nfT,Σ({B0}),Σ ⊢ B0 = A0, and B0 →Σ′,Σ B′0 by a reduction whose

intermediate biprocesses B all satisfy nfT,Σ({B}), simply by applying several times

the results shown above. Since the only process A such that Σ ⊢ A0 = A and

nfT,Σ({A}) is A0, we have B0 = A0, so we conclude that if A0 →∗ A′0,Σ ⊢ B′0 = A′0,

and nfT,Σ({B′0}), then A0 →Σ′,Σ B
′
0 by a reduction whose intermediate biprocesses

B all satisfy nfT,Σ({B}).

For the converse, we show that, if Σ ⊢ B = A, then there exists B′ such that, if

V C(A), A→Σ′,Σ A
′ and Σ ⊢ B = A, then there exists B′ such that Σ ⊢ B′ = A′ ,

and B →Σ B
′. The proof is by induction on the derivation of A→Σ′,Σ A

′.

Case (Red Comm): Since V C(A), we have A = (E ,S,P∪{(out(diff[M1,M2], N);

R, λ), (in(diff[M1,M2], x;R
′, λ′)}) →Σ′,Σ (E ,S,P∪{R, λ), (R′{N/x}, λ′)}) =

A′. Since Σ ⊢ A = B, we have B = (E ,S ′,P ′∪{(out(diff[M ′1,M ′2], N ′);R1, λ),

(in(diff[M ′′1 ,M
′′
2], x;R

′
1, λ
′)}) with Σ ⊢ M1 = M ′1 = M ′′1 , Σ ⊢ M2 = M ′2 =

M ′′2 , Σ ⊢ N = N ′, Σ ⊢ R = R1, Σ ⊢ R′ = R′1. Then B →Σ B′ =

(E ,S ′,P ′ ∪ {(R1, λ), (R
′
1{N

′

/x}, λ′)}) with Σ ⊢ B′ = A′

Case (Red Fun1): We have A = (E ,S,P∪{(let x = D in R else R′, λ)}) →Σ′,Σ

(E ,S,P ∪ {(R{diff[M1,M2]/x}, λ)}) = A′ with fst(D) ⇓Σ M1 and snd(D) ⇓Σ

M2. Since Σ ⊢ A = B, we have B = (E ,S ′,P ′∪{(let x = D′ in R1 else R
′
1,

λ)}) with Σ ⊢ D = D′, Σ ⊢ R = R1, Σ ⊢ R′ = R′1. By Lemma C.6,

fst(D′) ⇓Σ M
′
1 with Σ ⊢ M1 = M ′1 and snd(D′) ⇓ M ′2 with Σ ⊢ M2 = M ′2.

Hence B →Σ B
′ = (E ,S ′,P ′ ∪ {(R1{diff [M ′

1,M
′

2]/x}, λ)}) with Σ ⊢ B = A.

Case (Red Fun2): We have A = (E ,S,P∪{(let x = D in R else R′, λ)}) →Σ′,Σ

(E ,S,P ∪ {(R′, λ)}) = A′ and there exists no M1 such that fst(D) ⇓Σ M1,

and there exists no M2 such that snd(D) ⇓Σ M2. Since Σ ⊢ A = B, we have

B = (E ,S ′,P ′ ∪ {(let x = D′ in R1 else R′1, λ)}) with Σ ⊢ D = D′, Σ ⊢
R = R1 and Σ ⊢ R′ = R′1. Then there exists noM ′1 such that fst(D′) ⇓Σ M

′
1,

Appendix C. StatVerif Extension Related Proofs 213

and there exists no M ′2 such that snd(D′) ⇓Σ M
′
2 (otherwise, by Lemma C.7,

there would exist M1 such that fst(D) ⇓Σ M1, and there exists no M2 such

that snd(D) ⇓Σ M2. Hence B →Σ B
′ and Σ ⊢ B′ = A′.

Case (Red Repl): We have A = (E ,S,P ∪ {(!R, ∅)}) →Σ′,Σ (E ,S,P ∪ {(R |
!R, ∅)}) = A′. Since Σ ⊢ A = B, we have B = (E ,S ′,P ′ ∪ {(!R1, ∅)}) with
Σ ⊢ R1 = R. Let B′ = (E ,S ′,P ′ ∪ {(R1 |!R1, ∅)}). So Σ ⊢ A′ = B′ and

B →Σ B
′.

Case (Red Read): We have

A = (E,S,P ∪ {(read sj1, . . . , sjm as x1, . . . , xm;R, λ)}) →Σ′,Σ (E ,S,P ∪
{(R{S(sj1)/x1, . . . ,

S(sjm) /xm
}, λ)}) = A′. Since Σ ⊢ B′ = A′, we have B =

(E,S ′,P ′ ∪ {(read sj1 , . . . , sjm as x1, . . . , xm;R1, λ)}) with Σ ⊢ R1 = R

and Σ ⊢ S ′(sj1) = S(sj1), . . . ,Σ ⊢ S(sjm) = S(sjm). Let B′ = (E ,S ′,P ′ ∪
{(R1{S′(sj1)/x1, . . . ,

S′(sjm) /xm
}, λ)}). So Σ ⊢ A′ = B′ and B →Σ B

′.

Case (Red Assign): We have A = (E,S,P ∪ {(sj1, . . . , sjm :=M1, . . . ,Mm;R,

λ)}) →Σ (E ,S[jk 7→ Mk | 1 ≤ k ≤ m],P ∪ {(R, λ)}) = A′. Since Σ ⊢
B = A, we have B = (E,S ′,P ′ ∪ {(sj1, . . . , sjm := M ′1, . . . ,M

′
m;R1, λ)})

with Σ ⊢ R1 = R, Σ ⊢ M ′1 = M1, . . . ,Σ ⊢ M ′m = Mm and Σ ⊢ S ′(sj1) =

S(sj1), . . . ,Σ ⊢ S(sjm) = S(sjm). Let B′ = (E ,S ′[jk 7→ M ′k | 1 ≤ k ≤
m],P ′ ∪ {(R1, λ)}). So Σ ⊢ A′ = B′ and B →Σ B

′.

Cases (Red Par), (Red New), (Red State), (Red Lock) and (Red Un-

lock): Easy by induction hypothesis.

We conclude that, if A0 →∗Σ′,Σ B
′
0 then there exists A′0 such that Σ ⊢ B′0 = A′0 and

A0 →∗Σ A′0, simply by applying several times the results shown above, with B = A

in the first application.

Appendix C. StatVerif Extension Related Proofs 214

C.5 Proof of Lemma 8.9

Following the proof method used in [BAF05] we first show that it is enough to

consider unevaluated processes as initial configurations (Lemma C.10), and then

prove Lemma 8.9 itself.

Let A R A′ if and only if A = (E ,S,P), A′ = (E ,S,P ′) and P ′ is obtained from P
by adding some lets on terms with constructors that occur in inputs or outputs (for

instance transforming out(M,N);P into let x =M in let y = N in out(x, y);P

where x and y are fresh variables), prefixing some constructors in lets with eval,

and replacing some terms M with diff[fst(M), snd(M)].

Similarly, we write P R P ′ if and only if P ′ is obtained from P by adding some

lets on terms with constructors that occur in inputs or outputs (for instance trans-

forming out(M,N);P into let x =M in let y = N in out(x, y);P where x and

y are fresh variables), prefixing some constructors in lets with eval, and replacing

some terms M with diff[fst(M), snd(M)].

Lemma C.8. If A R B and A→Σ A
′ then there exists B′ such that A′ R B′ and

B →∗Σ B′.

Proof. Obvious, by induction on the derivation of A→ A′.

Lemma C.9. If Σ ⊢ A = B,B R R, and R →Σ R′ then there exists A′ and B′

such that Σ ⊢ A′ = B′, B′ R R′, and A→Σ A
′ or A = A′.

Proof. Obvious, by induction on the derivation of R → R′.

Lemma C.10. Let A0 be a closed stateful biprocess. The hypotheses of Corol-

lary 8.6 are true if and only if they are true with uneval(C[A0]) instead of C[A0].

Proof. We have C[A0]R uneval(C[A0]). We first show that if the hypotheses of

Corollary 8.6 are true for uneval(C[A0]), then they are true for C[A0].

Appendix C. StatVerif Extension Related Proofs 215

• If C[A0] →∗Σ C ′1[(∅, ∅, {(out(N1,M1);Q1 | in(N1, x);R1, λ)})], then by

Lemma C.8, we have uneval(C[A0]) →∗Σ A′ with C ′1[(∅, ∅, {(out(N1,M1);Q1 |
in(N1, x);R1, λ)})]RA′. Then we have A′ →∗Σ C ′[(∅, ∅, {(out(N,M);Q |
in(N ′, x);R, λ)})] with C ′1 R C ′, fst(N) = fst(N1), snd(N) = snd(N1),

fst(N ′) = fst(N ′1), snd(N
′) = snd(N ′1), fst(M) = fst(M1), snd(M) =

snd(M1), Q1 R Q, and R1 R R, by reducing the term evaluations of con-

structors that may occur above inputs and outputs in A. So uneval(C[A0])

→∗Σ C ′[(∅, ∅, {(out(N,M);Q | in(N ′, x);R, λ)})], with fst(N) = fst(N1),

snd(N) = snd(N1), fst(N
′) = fst(N ′1), and snd(N ′) = snd(N ′1). Hence, if

the first hypothesis of Corollary 8.6 is true with uneval(C[A0]), then it is

true with C[A0].

• If C[A0] →∗Σ C ′1[(∅, ∅, {(let y1 = D1 in Q1 else R1, λ)})], then by the

same reasoning as above, uneval(C[A0]) →∗Σ C ′[A] where (∅, ∅, {(let y1 =

D1 then Q1 else R1, λ)}) R A. Hence, we have A = (∅, ∅, {(let y1 =

D′1 then Q′1elseR
′
1, λ)}) where D′1 is obtained by prefixing some construc-

tors of D1 with eval and reorganizing diffs. We have fst(D1) ⇓Σ M1 if

and only if fst(D′1) ⇓Σ M1, if and only if snd(D′1) ⇓Σ M2 (by the second hy-

pothesis of Corollary 8.6 for uneval(C[A0])), if and only if snd(D1) ⇓Σ M2.

This yields the second hypothesis of Corollary 8.6 for C[A0].

We now show the converse: if the hypotheses of Corollary 8.6 are true for C[A0],

then they are true for uneval(C[A0]).

• Assume that uneval(C[A0]) →∗Σ C ′1[(∅, ∅, {(out(N1,M1);Q1 | in(N1, x);R1,

λ)})]. By Lemma C.9, C[A0] →∗Σ A with Σ ⊢ A = A′ and A′RC ′1[(∅, ∅, {(
out(N1,M1);Q1 | in(N1, x);R1, λ)})]. Then A = C ′[(∅, ∅, {(out(N,M);Q1 |
in(N ′, x);R, λ)})] with Σ ⊢ fst(N) = fst(N1),Σ ⊢ snd(N) = snd(N1),Σ ⊢
fst(N ′) = fst(N ′1),Σ ⊢ snd(N ′) = snd(N ′1),Σ ⊢ fst(M) = fst(M1), and

Σ ⊢ snd(M) = snd(M1). So, if the first hypothesis of Corollary 8.6 is true

with C[A0], then it is true with uneval(C[A0]).

Appendix C. StatVerif Extension Related Proofs 216

• Assume that uneval(C[A0]) →∗Σ C ′1[(∅, ∅, {(let y1 = D1 in Q1 else R1,

λ)})]. By Lemma C.9, C[A0] →∗Σ A with Σ ⊢ A = A′, and

A′ R C ′1[(∅, ∅, {(let y1 = D1 in Q1 else R1, λ)})]. We have two cases:

– Case 1: let y1 is introduced by R. Then R1 = 0 and D1 does not

contain destructors. Hence there exists M1 such that fst(D1) ⇓Σ M1

and there exists M2 such that snd(D1) ⇓Σ M2.

– Case 2: let y1 comes from A. Hence A = C ′[(∅, ∅, {(let y1 = D′1 then

Q′1 else R
′
1, λ)})] where D′1 is obtained by removing some eval prefixes

ofD1, reorganizing diffs, and replacing terms with equal terms modulo

Σ. We have fst(D1) ⇓Σ M1 for some M1 if and only if fst(D′1) ⇓Σ M1

for some M1, if and only if snd(D′1) ⇓Σ M2 for some M2 (by the second

hypothesis of Corollary 8.6 for C[A0]), if and only if snd(D1) ⇓Σ M2 for

some M2.

This yields the second hypothesis of Corollary 8.6 for uneval(C[A0]).

Lemma 8.9. Let A0 be a closed stateful biprocess. Suppose that, for all plain

evaluation stateful contexts C, all evaluation stateful contexts C ′, and all reductions

uneval(C[A0]) →∗Σ′,Σ A whose intermediate biprocesses A′ all satisfy nfT,Σ({A′}),

1. if A = C ′[(∅,S, {(out(N,M);Q | in(N ′, x);R, λ)})] and fst(N) = fst(N ′),

then Σ ⊢ snd(N) = snd(N ′),

2. if A = C ′[(∅,S, {(let x = D in Q else R, λ)})] and fst(D) ⇓Σ′ M1 for

some M1, then snd(D) ⇓Σ M2 for some M2,

as well as the symmetric properties where we swap fst and snd. Then A0 satisfies

the hypotheses of Corollary 8.6.

Conversely, if A0 satisfies the hypotheses of Corollary 8.6, then for all plain eval-

uation stateful contexts C, evaluation stateful contexts C ′ , and reductions

Appendix C. StatVerif Extension Related Proofs 217

uneval(C[A0]) →∗Σ′ A, we have properties 1 and 2 above, as well as the symmetric

properties where we swap fst and snd.

Proof. By Lemma C.10, we can work with uneval(C[A0]) instead of C[A0]. We

show the two hypotheses of Corollary 8.6.

• Assume that uneval(C[A0]) →∗Σ C ′[(∅,S, {(out(N,M);Q | in(N ′, x);R,
λ)})] and Σ ⊢ fst(N) = fst(N ′). By Property S2, there exists A′ such that

Σ ⊢ A′ = C ′[(∅,S, {(out(N,M);Q | in(N ′, x);R, λ)})] and nfT,Σ({A′}). By
Lemma 8.8, uneval(C[A0]) →∗Σ′,Σ A

′.Moreover, A′ = C ′′[(∅,S, {(
out(diff[N1, N2],M

′);Q1 | in(diff[N ′1, N ′2], x);R1, λ)})], where Σ ⊢ N1 =

fst(N),Σ ⊢ N2 = snd(N),Σ ⊢ N ′1 = fst(N ′), and Σ ⊢ N ′2 = snd(N ′).

Since nfT,Σ({A′}), N1 = N ′1. Hence, by hypothesis 1, Σ ⊢ N2 = N ′2. So

Σ ⊢ snd(N) = snd(N ′).

We obtain the case uneval(C[A0]) →∗Σ C ′[(∅,S, {(out(N,M);Q | in(N ′, x);
R, λ)})] and Σ ⊢ snd(N) = snd(N ′) by symmetry.

• Assume that uneval(C[A0]) →∗Σ C ′[(∅,S, {let y = D in Q else R,

λ)})] and there exists M1 such that fst(D) ⇓Σ M1. By Property S2, there

exist A′,M ′1, and D
′ such that Σ ⊢ A′ = C ′[(∅,S, {let y = D in Q else R,

λ)})],Σ ⊢ M1 = M ′1,Σ ⊢ D = D′, and nfT,Σ({A′,M ′1, D′}). Then A′ =

C ′′[(∅,S, {let y = D′ in Q′ else R′, λ)})].
By Lemma 8.8, uneval(C[A0]) →∗Σ′,Σ A′. By Lemma C.4, fst(D′) ⇓Σ M ′1.

By hypothesis 2, snd(D′) ⇓Σ M ′2. By Lemma C.7, since Σ ⊢ snd(D) =

snd(D′) and snd(D′) ⇓Σ M
′
2, we have snd(D) ⇓Σ M2.

We obtain the case uneval(C[A0]) →∗Σ C ′[(∅,S, {let y = D in Q else R,

λ)})] and there exists M2 such that snd(D) ⇓Σ M2 by symmetry.

Next, we prove the converse property.

Appendix C. StatVerif Extension Related Proofs 218

• Assume that uneval(C[A0]) →∗Σ′,Σ C
′[(∅,S, {(out(N,M);Q | in(N ′, x);R,

λ)})] and fst(N) = fst(N ′). By Lemma 8.8, we have uneval(C[A0]) →∗Σ
C ′1[(∅,S, {(out(N1,M1);Q1 | in(N ′1, x);R1, λ)})] with Σ ⊢ C ′[(∅,S, {(
out(N,M);Q | in(N ′, x);R, λ)})] = C ′1[(∅,S, {(out(N1,M1);Q1 | in(N ′1, x);
R1, λ)})] so Σ ⊢ N = N1 and Σ ⊢ N ′ = N ′1. Using the first hypothesis

of Corollary 8.6, since Σ ⊢ fst(N1) = fst(N ′1), we have Σ ⊢ snd(N1) =

snd(N ′1), hence Σ ⊢ snd(N) = snd(N ′).

We obtain the case uneval(C[A0]) →∗Σ′,Σ C
′[(∅,S, {(out(N,M);Q |

in(N ′, x);R, λ)})] and Σ ⊢ snd(N) = snd(N ′) by symmetry.

• Assume that uneval(C[A0]) →∗Σ′,Σ C
′[(∅,S, {let y = D in Q else R, λ)})]

and there existsM1 such that fst(D) ⇓Σ′ M1. As above, uneval(C[A0]) →∗Σ
C ′1[(∅,S, {let y = D1 inQ1 else R1, λ)})] with Σ ⊢ D1 = D. By Lemma C.6,

fst(D1) ⇓Σ M
′
1 for some M ′1. Using the second hypothesis of Corollary 8.6,

snd(D1) ⇓Σ M
′
2, hence by Lemma C.7, snd(D) ⇓Σ M2.

We obtain the case uneval(C[A0]) →∗Σ′,Σ C
′[(∅,S, {let y = D in Q else R,

λ)})] and there exists M2 such that snd(D) ⇓Σ′ M2 by symmetry.

C.6 Results Preliminary to the Proof of Theo-

rem 8.11

As in [BAF05] we use the following definitions to aid the proof of theorem 8.11

Let F be a set containing patterns, facts, sequences of patterns or facts, clauses,

environments that map variables and names to pairs of patterns, . . . , we say that

nfT,Σ(F) if and only if all patterns that appear in F are irreducible by T and for

all p1, p2 sub-patterns of elements of F , if Σ ⊢ p1 = p2 then p1 = p2.

Appendix C. StatVerif Extension Related Proofs 219

We say that nf ′T,Σ(F) if and only if nfT,Σ(F ′) where F ′ is obtained from F by

removing nounif facts. Let D be a derivation, we say that nf ′T,Σ(D) when nfT,Σ(F)

where F is the set of intermediately derived facts of D.

We say that F1∧· · ·∧Fn ∼ F ′1∧· · ·∧F ′n when, for all i ∈ {1, . . . , n}, either Fi = F ′i

or Fi and F
′
i are nounif facts and Σ ⊢ Fi = F ′i . We say that Σ ⊢ F1 ∧ · · · ∧ Fn ∼

F ′1 ∧ · · · ∧ F ′n when for all i ∈ {1, . . . , n},Σ ⊢ Fi = F ′i . This definition is naturally

extended to clauses. The special treatment of nounif facts in the definition of ∼
and in Lemma C.17 is necessary so that the following results hold. In particular,

Lemma C.15 would be wrong for Clauses (Rt) and (Rt’), which contain nounif

facts.

We also use the following lemmas which have been established in [BAF05]:

Lemma C.11. If h(N1, . . . , Nn) → N is in defΣ′(h),Σ ⊢ N ′′ = σN,Σ ⊢ N ′′i =

σNi for all i ∈ {1, . . . , n}, and
nfT,Σ({N ′′1 , . . . , N ′′n , N ′′}), then there exist a closed substitution σ′ and h(N ′1, . . . , N

′
n)

→ N ′ in defΣ′(h) such that N ′′ = σ′N ′ and N ′′i = σ′N ′i for all i ∈ {1, . . . , n}.

Lemma C.12. Let D be a plain term evaluation. If D ⇓′ (p, σ) and σ′ is a closed

substitution, then there exists p′ such that σ′σD ⇓Σ p
′ and Σ ⊢ p′ = σ′p.

Let D1, . . . , Dn be plain term evaluations. If (D1, . . . , Dn) ⇓′ ((p1, . . . , pn), σ)

and σ is a closed substitution then there exist p′1, . . . , p
′
n such that for all i ∈

{1, . . . , n}, σ′σDi ⇓Σ p
′
i and Σ ⊢ p′i = σ′pi.

Lemma C.13. Let D be a plain term evaluation such that the subterms M of

D are variables or names. If ρ(D) ⇓′ (p′, σ′), σ is a closed substitution, Σ ⊢
p = σp′,Σσ′0ρ

′ = σσ′ρ, and nfT,Σ({p, σ′0ρ′}), then there exist σ′′, p′′, σ′′0 such that

ρ′(D) ⇓′ (p′′, σ′′), σ′0 = σ′′0σ
′′ except on fresh variables introduced in the computation

of ρ′(D) ⇓′ (p′′, σ′′), and p = σ′′0p
′′.

Appendix C. StatVerif Extension Related Proofs 220

Let Di(i ∈ {1, . . . , n}) be plain term evaluations such that the subtermsM of Di are

variables or names. If (ρ(D1), . . . , ρ(Dn)) ⇓′ ((p′1, . . . , p′n), σ′), σ is a closed substi-

tution, Σ ⊢ pi = σp′i for all i ∈ {1, . . . , n},Σ ⊢ σ′0ρ′ = σσ′ρ, and nfT,Σ({p1, . . . , pn,
σ′0ρ

′}), then there exist σ′′, p′′1, . . . , p
′′
n, σ

′′
0 such that (ρ′(D1), . . . , ρ

′(Dn)) ⇓′ ((p′′1, . . . ,
p′′n), σ

′′), σ′0 = σ′′0σ
′′ except on fresh variables introduced in the computation of

(ρ′(D1), . . . , ρ
′(Dn)) ⇓′ ((p′′1, . . . , p′′n), σ′′), and pi = σ′′0p

′′
i for all i ∈ {1, . . . , n}.

Further, we extend some of the results presented in [BAF05] to our stateful bipro-

cesses and their translation in horn clauses.

Lemma C.14. Let A0 be a closed, unevaluated stateful process such that A0 =

(E0,S0, {(P0, λ0)}). If JP Kρω1ω2Hϕ1ϕ2λ is called during the generation of JP0Kρ0∅∅true
ϕ10ϕ20∅, σ is a closed substitution, Σ ⊢ ρ2 = σρ,Σ ⊢ ω2

1 = σω1,Σ ⊢ ω2
2 =

σω2,Σ ⊢ H2 ∼ σH,Σ ⊢ ϕ2
1 = ϕ1,Σ ⊢ ϕ2

2 = ϕ2, and nf
′
T,Σ({ρ2, ω2

1, ω
2
2, H2, ϕ

2
1, ϕ

2
2}),

then there exist σ1, ρ
1, H1, ω

1
1, ω

1
2, ϕ

1
1, ϕ

1
2, λ
′ such that ρ2 = σ1ρ

1, ω2
1 = σ1ω

1
1, ω

2
2 =

σ1ω
1
2, H2 ∼ σ1H1, ϕ

2
1 = σ1ϕ

1
1, ϕ

2
2 = σ1ϕ

1
2, and JP Kρ1ω

1
1ω

1
2H1ϕ

1
1ϕ

1
2λ
′ is called during

the generation of JP0Kρ0∅∅Hϕ10ϕ20∅.

Proof. The process P is a subprocess of P0. We proceed by induction on P :

we show the result for P0 itself, and we show that if the result is true for some

occurrence of P , then it is also true for the occurrences of the direct subprocesses

of P .

Case P0: We have ρ2 = ρ0, ω
2
1 = ω2

2 = ∅, ϕ2
1 = ϕ10 , ϕ

2
2 = ϕ20 , and H2 = true. Then

we obtain the result by letting σ1 be any substitution, ρ1 = ρ0, ω
1
1 = ω1

2 = ∅,
and H1 = true.

Case 0: Void, since it has no subprocesses.

Case P | Q: Obvious by induction hypothesis.

Case !P ′: Assume JP ′Kρω1ω2Hϕ1ϕ2λ is called. Then since the translation rule for

!P was applied ρ = ρ3, ω1 = i :: ω3
1, ω2 = i :: ω3

2, H = H3, ϕ1 = ϕ3
1, ϕ2 =

Appendix C. StatVerif Extension Related Proofs 221

ϕ3
2, λ = λ3, and J!P ′Kρ3ω3

1ω
3
2H3ϕ

3
1ϕ

3
2λ3 has been called. Let ρ2, ω2

1, ω
2
2, H2, ϕ

2
1,

ϕ2
2 such that Σ ⊢ ρ2 = σρ,Σ ⊢ ω2

1 = σω1,Σ ⊢ ω2
2 = σω2, H2 ∼ σH,Σ ⊢ ϕ2

1 =

σϕ1,Σ ⊢ ϕ2
2 = σϕ2 and nf ′T,Σ({ρ2, ω2

1, ω
2
2, H2, ϕ

2
1, ϕ

2
2}). Then ρ2 = ρ4, ω2

1 =

p :: ω4
1, ω

2
2 = p :: ω4

2, H2 = H4, ϕ
2
1 = ϕ4

1, ϕ
2
2 = ϕ4

2 where Σ ⊢ ρ4 = σρ3, Σ ⊢
ω4
1 = σω3

1,Σ ⊢ ω4
2 = σω3

2,Σ ⊢ H4 ∼ σH3 Σ ⊢ ϕ4
1 = σϕ3

1,Σ ⊢ ϕ4
2 = σϕ3

2, and

Σ ⊢ p = σi. By induction hypothesis, there exist σ1, ρ
5, ω5

1, ω
5
2, H5, ϕ

5
1, ϕ

5
2, λ
′

such that ρ4 = σ1ρ
5, ω4

1 = σ1ω
5
1, ω

4
2 = σ1ω

5
2, H4 ∼ σ1H5, ϕ

4
1 = σ1ϕ

5
1, ϕ

4
2 =

σ1ϕ
5
2 and J!P ′Kρ5ω5

1ω
5
2H5ϕ

5
1ϕ

5
2λ
′ has been called. Let λ′ = λ since i is a fresh

variable, we can define σ1i = p. Then JP ′Kρ5i :: ω5
1i :: ω

5
2H5ϕ

5
1ϕ

5
2λ
′ has been

called, ρ2 = σ1ρ
5, ω2

1 = σ1(i :: ω
5
1), ω

2
2 = σ1(i :: ω

5
2), ϕ

2
1 = σ1ϕ

5
1, ϕ

2
2 = σ1ϕ

5
2

and H2 ∼ σ1H5.

Case new a;P ′: Assume JP ′Kρω1ω2Hϕ1ϕ2λ is called. Then since the translation

rule for new a;P ′ was applied ρ = ρ3[a 7→ (a[ω1], a[ω2])] and Jnew a;P ′Kρ3ω1ω2

Hϕ1ϕ2λ has been called. Let ρ2, ω2
1, ω

2
2, H2, ϕ

2
1, ϕ

2
2 such that Σ ⊢ ρ2 =

σρ,Σ ⊢ ω2
1 = σω1,Σ ⊢ ω2

2 = ω2,Σ ⊢ H2 ∼ σH, ϕ2
1 = σϕ1, ϕ

2
2 = σϕ2 and

nf ′T,Σ({ρ2, ω2
1, ω

2
2, H2, ϕ

2
1, ϕ

2
2}). Then ρ2 = ρ4[a 7→ (a[ω2

1], a[ω
2
2])] where Σ ⊢

ρ4 = σρ3. By induction hypothesis, there exist σ1, ρ
5, ω1

1, ω
1
2, H1, ϕ

1
1, ϕ

1
2, λ
′

such that ρ4 = σ1ρ
5, ω2

1 = σ1ω
1
1, ω

2
2 = σ1ω

1
2, H2 ∼ σ1H1, ϕ

2
1 = σ1ϕ

1
1, ϕ

2
2 =

σ1ϕ
1
2 and Jnew a;P ′Kρ5ω1

1ω
1
2H1ϕ1

1ϕ
1
2λ
′ has been called. Let λ′ = λ then

JP ′K(ρ5[a 7→ (a[ω1
1], a[ω

2
1])])ω

1
1ω

2
1H1ϕ

1
1ϕ

1
2 has been called, ρ2 = σ1(ρ5[a 7→

(a[ω1
1], a[ω

2
1])]), ω

2
1 = σ1ω

1
1, ω

2
2 = σ1ω

1
2 , and H2 ∼ σ1H1.

Case out(M,N);P ′: Obvious by induction hypothesis.

Case in(M,x);P ′: Assume JP ′Kρω1ω2Hϕ1ϕ2λ is called. Then since the transla-

tion rule for in(M,x);P ′ was applied we have ρ = ρ3[x 7→ (x′, x′′)] ∪ {yk 7→
(y′k, y

′′
k) | yk, y′k, y′′k are fresh, 1 ≤ k ≤ n, k /∈ λ}, ω1 = x :: ω3

1, ω2 =

x :: ω3
2, H = H3 ∧msg(ρ31(ϕ1), ρ

3
1(fst(M)), x′, ρ32(ϕ2), ρ

3
1(snd(M)), x′′), ϕ1 =

ϕ3
1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ], ϕ2 = ϕ3

2[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ],

and Jin(M,x);P ′Kρ3ω3
1ω

3
2H3ϕ

3
1ϕ

3
2λ has been called. Let ρ2, ω2

1, ω
2
2, H2, ϕ

2
1, ϕ

2
2

Appendix C. StatVerif Extension Related Proofs 222

such that Σ ⊢ ρ2 = σρ,Σ ⊢ ω2
1 = σω1,Σ ⊢ ω2

2 = ω2,Σ ⊢ H2 ∼ σH, ϕ2
1 =

σϕ1, ϕ
2
2 = σϕ2 and nf

′
T,Σ({ρ2, ω2

1, ω
2
2, H2, ϕ

2
1, ϕ

2
2}). Then ρ2 = ρ4[x 7→ (p′, p′′),

yk 7→ (p′yk , p
′′
yk
) | 1 ≤ k ≤ n, k /∈ λ1], ω

2
1 = p′ :: ω4

1, ω
2
2 = p′′ :: ω4

2, H2 =

H4 ∧ msg(ρ41(ϕ1), ρ
4
1(fst(M)), p′, ρ42(ϕ2), ρ

4
2(snd(M)), p′′), ϕ2

1 = ϕ4
1, ϕ

2
2 = ϕ4

2

where Σ ⊢ ρ4 = σρ3,Σ ⊢ ω4
1 = σω3

1,Σ ⊢ ω4
2 = σω3

2,Σ ⊢ H4 ∼ σH3,Σ ⊢
ϕ4
1 = σϕ3

1,Σ ⊢ ϕ4
2 = σϕ3

2,Σ ⊢ p′ = σx, and Σ ⊢ p′′ = σx′′,Σ ⊢ p′yk =

σy′k,Σ ⊢ p′′yk = σy′′k , 1 ≤ k ≤ n, k /∈ λ1. (Since P0 is unevaluated, M is

either a variable y or diff[a, a] for some name a. Let u = y in the first case

and u = a in the second case. We have u ∈ dom(ρ3) = dom(ρ4). We have

nf ′T,Σ({ρ2, ω2
1, ω

2
2, H2}) so a fortiori nf ′T,Σ({ρ4, H2}), and the first and third

arguments of msg are equal to ρ41(fst(M)) = ρ41(u) and ρ
4
2(snd(M)) = ρ42(u)

modulo Σ respectively, so they are exactly ρ41(fst(M)) and ρ42(snd(M))).

By induction hypothesis, there exist σ1, ρ
5, ω5

1, ω
5
2, H5, ϕ

5
1, ϕ

5
2, λ
′ such that

ρ4 = σ1ρ
5, ω4

1 = σ1ω
5
1, ω

4
2 = σ1ω

5
2, H4 ∼ σ1H5, ϕ

4
1 = σ1ϕ

5
1, ϕ

4
2 = σϕ5

2, and

Jin(M,x);P ′Kρ5ω5
1ω

5
2H5ϕ

5
1ϕ

5
2λ
′ has been called. Since x′ and x′′ are fresh

variables, we can define σ1x
′ = p′ and σ1x

′′ = p′′ and since y′k, y
′′
k1 ≤ k ≤

n, k /∈ λ1 are fresh variables, we can define σ1y
′
k = p′yk , σ1y

′′
k = p′′yk1 ≤ k ≤

n, k /∈ λ1. Then JP ′K(ρ5[x 7→ (x′, x′′)] ∪ {yk 7→ (y′k, y
′′
k) | yk, y′k, y′′k are fresh,

1 ≤ k ≤ n, k /∈ λ})(x′ :: ω5
1)(x

′′ :: ω5
2)(H5 ∧msg(ρ51(ϕ1), ρ

5
1(fst(M)), x′,

ρ52(ϕ2), ρ
5
1(snd(M)), x′′), ϕ5

1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′]ϕ5
2[k 7→ yk | 1 ≤ k ≤

n, k /∈ λ′]λ′ has been called, and ρ2 = σ1(ρ
5[x 7→ (x′, x′′)] ∪ {yk 7→ (y′k, y

′′
k) |

yk, y
′
k, y
′′
k are fresh, 1 ≤ k ≤ n, k /∈ λ′}), ω2

1 = σ1(x
′ :: ω5

1), ω
2
2 = σ1(x

′′ ::

ω5
2), ϕ

2
1 = σ1ϕ

5
1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′], ϕ2

2 = σ1ϕ
5
2[k 7→ yk | 1 ≤ k ≤

n, k /∈ λ′], andH2 ∼ σ1(H5∧msg(ρ51(ϕ1), ρ
5
1(fst(M)), x′, ρ52(ϕ2), ρ

5
1(snd(M)),

x′′)).

Case let x = D in P ′ else Q: we have two cases

– Subprocess P ′: Assume JP ′Kρω1ω2Hϕ1ϕ2λ is called. Then we have ρ =

(σ1ρ
3)[x 7→ (p′1, p

′′
1)], ω1 = p′1 :: σ1ω

3
1, ω2 = p′′1 :: σ1ω

3
2, ϕ1 = σ1ϕ

3
1, ϕ2 =

σ1ϕ
3
2 and H = σ1H3 where Jlet x = D in P ′ else QKρ3ω3

1ω
3
2H3ϕ

3
1ϕ

3
2

Appendix C. StatVerif Extension Related Proofs 223

has been called and (ρ1(D), ρ2(D)) ⇓′ ((p′1, p′′1), σ1). Let ρ2, ω2
1, ω

2
2, H2,

ϕ2
1, ϕ

2
2 such that Σ ⊢ ρ2 = σρ,Σ ⊢ ω2

1 = σω1,Σ ⊢ ω2
2 = ω2,Σ ⊢

H2 ∼ σH, ϕ2
1 = σϕ1, ϕ

2
2 = σϕ2 and nf ′T,Σ({ρ2, ω2

1, ω
2
2, H2, ϕ

2
1, ϕ

2
2}).

Then ρ2 = ρ4[x 7→ (p′4, p
′′
4)], ω

2
1 = p′4 :: ω4

1, ω
2
2 = p′′4 :: ω4

2, H2 =

H4, ϕ
2
1 = ϕ4

1, ϕ
2
2 = ϕ4

2 with Σ ⊢ ρ4 = σσ1ρ
3,Σ ⊢ ω4

1 = σσ1ω
3
1,Σ ⊢

ω4
2 = σσ1ω

3
2,Σ ⊢ H4 ∼ σσ1H3,Σ ⊢ p′4 = σp′1,Σ ⊢ p′′4 = σp′′1,Σ ⊢

ϕ4
1 = σσ1ϕ

3
1,Σ ⊢ ϕ4

2 = σσ1ϕ
3
2, and nf ′T,Σ({ρ4, ω4

1, ω
4
2, H4, p

′
4, p
′′
4}). By

induction hypothesis, there exist σ0, ρ
5, ω5

1, ω
5
2, H5, ϕ

5
1, ϕ

5
2, λ
′ such that

ρ4 = σ0ρ5, ω
4
1 = σ0ω

5
1, ω

4
2 = σ0ω

5
2, H4 ∼ σ0H5, ϕ

4
1 = σ0ϕ

5
1, ϕ

4
2 = σ0ϕ

5
2,

and Jlet x = D in P ′ else QKρ5ω5
1ω

5
2H5ϕ

5
1ϕ

5
2λ
′ has been called. By

Lemma C.13, there exist σ2, p
′
2, p
′′
2, and σ3 such that (ρ51(D), ρ52(D)) ⇓′

((p′2, p
′′
2), σ2), σ0 = σ3σ2 except on fresh variables introduced in the

computation of (ρ51(D), ρ52(D)) ⇓′ ((p′2, p′′2), σ2), p′4 = σ3p
′
2, and p′′4 =

σ3p
′′
2. Moreover, by definition of Jlet x = D in P ′ else QK, we have

that JP ′K((σ2ρ
5)[x 7→ (p′2, p

′′
2)])(p

′
2 :: σ2ω

5
1)(p

′′
2 :: σ2ω

5
2)(σ2H5)σ2ϕ

5
1σ2ϕ

5
2λ
′

has been called, so we obtain the result by letting ρ1 = (σ2ρ
5)[x 7→

(p′2, p
′′
2)], ω

1
1 = (p′2 :: σ2ω

5
1), ω

1
2 = (p′′2 :: σ2ω

5
2), H1 = σ2H5, ϕ

1
1 = σ2ϕ

5
1, ϕ

1
2

= σ2ϕ
5
2: we have ρ2 = ρ4[x 7→ (p′4, p

′′
4)] = (σ0ρ

5)[x 7→ (σ3p
′
2, σ3p

′′
2)] =

σ3((σ2ρ
5)[x 7→ (p′2, p

′′
2)]) = σ3ρ1 , and similarly for ω2

1, ω
2
2, ϕ

2
1, ϕ

2
2, and

H2.

– Subprocess Q: Assume JQKρω1ω2Hϕ1ϕ2λ is called. Then H = H3 ∧
ρ1(fails(fst(D)))∧ρ2(fails(snd(D))) and Jlet x = D in P ′ else QK

ρω1ω2H3ϕ1ϕ2λ has been called. Let ρ2, ω2
1, ω

2
2, H2, ϕ

2
1, ϕ

2
2 such that Σ ⊢

ρ2 = σρ,Σ ⊢ ω2
1 = σω1,Σ ⊢ ω2

2 = σω2,Σ ⊢ H2 ∼ σH,Σ ⊢ ϕ2
1 =

σϕ1,Σ ⊢ ϕ2
2 = σϕ2, and nf ′T,Σ({ρ2, ω2

1, ω
2
2, H2, ϕ

2
1, ϕ

2
2}). Then H2 =

H4 ∧ H4nounif
where H4nounif

consists of nounif facts, Σ ⊢ H4nounif
∼

σρ1(fails(fst(D))) ∧ σρ2(fails(snd(D))), and Σ ⊢ H4 ∼ σH3. By

induction hypothesis, there exist σ1, ρ1, ω
1
1, ω

1
2, H5, ϕ

1
1, ϕ

1
2, λ
′ such that

ρ2 = σ1ρ
1, ω2

1 = σ1ω
1
1, ω

2
2 = σ1ω

1
2, H4 ∼ σ1H5, ϕ

2
1 = σ1ϕ

1
1, ϕ

2
2 = σ1ϕ

1
2,

Appendix C. StatVerif Extension Related Proofs 224

and Jlet x = D in P ′ else QKρ1ω
1
1ω

1
2H5ϕ

1
1ϕ

1
2λ
′ has been called. Then

JQKρ1ω
1
1ω

1
2(H5∧ρ1(fails(fst(D)))∧ρ2(fails(snd(D))) has been called,

which yields the desired result, knowing that H2 = H4 ∧ H4nounif
∼

σ1H5 ∧ σ1ρ
1
1(fails(fst(D))) ∧ σ1ρ

1
2(fails(snd(D))), since Σ ⊢ σ1ρ

1 =

ρ2 = σρ.

Case lock si1 , . . . , sim ;P
′: Assume JP ′Kρω1ω2Hϕ1ϕ2λ is called. Then since the

translation rule for lock si1 , . . . , sim;P
′ was applied we have ρ = ρ3 ∪{yk 7→

(y′k, y
′′
k) | yk, y′k, y′′k are fresh, 1 ≤ k ≤ n, k /∈ λ1}, ω1 = ω3

1, ω2 = ω3
2, H =

H3, ϕ1 = ϕ3
1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ1], ϕ2 = ϕ3

2[k 7→ yk | 1 ≤ k ≤
n, k /∈ λ1], λ = λ1 ∪ {i1, . . . , im}, and Jlock si1 , . . . , sim ;P

′Kρ3ω3
1ω

3
2H3ϕ

3
1ϕ

3
2λ1

has been called. Let ρ2, ω2
1, ω

2
2, H2, ϕ

2
1, ϕ

2
2 such that Σ ⊢ ρ2 = σρ,Σ ⊢ ω2

1 =

σω1,Σ ⊢ ω2
2 = ω2,Σ ⊢ H2 ∼ σH, ϕ2

1 = σϕ1, ϕ
2
2 = σϕ2 and nf ′T,Σ({ρ2, ω2

1, ω
2
2,

H2, ϕ
2
1, ϕ

2
2}). Then ρ2 = ρ4[yk 7→ (p′yk , p

′′
yk
) | 1 ≤ k ≤ n, k /∈ λ1], ω

2
1 =

ω4
1, ω

2
2 = ω4

2, H2 = H4, ϕ
2
1 = ϕ4

1, ϕ
2
2 = ϕ4

2 where Σ ⊢ ρ4 = σρ3,Σ ⊢ ω4
1 =

σω3
1,Σ ⊢ ω4

2 = σω3
2,Σ ⊢ H4 ∼ σH3,Σ ⊢ ϕ4

1 = σϕ3
1,Σ ⊢ ϕ4

2 = σϕ3
2,Σ ⊢ p′yk =

σy′k,Σ ⊢ p′′yk = σy′′k , 1 ≤ k ≤ n, k /∈ λ1. By induction hypothesis, there exist

σ1, ρ
5, ω5

1, ω
5
2, H5, ϕ

5
1, ϕ

5
2, λ
′ such that ρ4 = σ1ρ

5, ω4
1 = σ1ω

5
1, ω

4
2 = σ1ω

5
2, H4 ∼

σ1H5, ϕ
4
1 = σ1ϕ

5
1, ϕ

4
2 = σϕ5

2, and Jlock si1 , . . . , sim;P
′Kρ5ω5

1ω
5
2H5ϕ

5
1ϕ

5
2λ
′ has

been called. Since y′k, y
′′
k1 ≤ k ≤ n, k /∈ λ1 are fresh variables, we can define

σ1y
′
k = p′yk , σ1y

′′
k = p′′yk1 ≤ k ≤ n, k /∈ λ1. Then JP ′K(ρ5 ∪ {yk 7→ (y′k, y

′′
k) |

yk, y
′
k, y
′′
k are fresh, 1 ≤ k ≤ n, k /∈ λ′})(x′ :: ω5

1)(x
′′ :: ω5

2)H5ϕ
5
1[k 7→ yk |

1 ≤ k ≤ n, k /∈ λ′]ϕ5
2[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′]λ′ ∪ {i1, . . . , im} has been

called, and ρ2 = σ1(ρ
5 ∪ {yk 7→ (y′k, y

′′
k) | yk, y′k, y′′k are fresh, 1 ≤ k ≤ n, k /∈

λ}), ω2
1 = σ1ω

5
1, ω

2
2 = σ1ω

5
2, ϕ

2
1 = σ1ϕ

5
1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′], ϕ2

2 =

σ1ϕ
5
2[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′], and H2 ∼ σ1H5.

Case unlock si1 , . . . , sim;P
′: Assume JP ′Kρω1ω2Hϕ1ϕ2λ is called. Then since the

translation rule for lock si1 , . . . , sim;P
′ was applied we have ρ = ρ3 ∪{yk 7→

(y′k, y
′′
k) | yk, y′k, y′′k are fresh, 1 ≤ k ≤ n, k /∈ λ1}, ω1 = ω3

1, ω2 = ω3
2, H =

H3, ϕ1 = ϕ3
1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ1], ϕ2 = ϕ3

2[k 7→ yk | 1 ≤ k ≤

Appendix C. StatVerif Extension Related Proofs 225

n, k /∈ λ1], λ = λ1 ∩ {i1, . . . , im}, and Jlock si1 , . . . , sim ;P
′Kρ3ω3

1ω
3
2H3ϕ

3
1ϕ

3
2λ1

has been called. Let ρ2, ω2
1, ω

2
2, H2, ϕ

2
1, ϕ

2
2 such that Σ ⊢ ρ2 = σρ,Σ ⊢ ω2

1 =

σω1,Σ ⊢ ω2
2 = ω2,Σ ⊢ H2 ∼ σH, ϕ2

1 = σϕ1, ϕ
2
2 = σϕ2 and nf ′T,Σ({ρ2, ω2

1, ω
2
2,

H2, ϕ
2
1, ϕ

2
2}). Then ρ2 = ρ4[yk 7→ (p′yk , p

′′
yk
) | 1 ≤ k ≤ n, k /∈ λ1], ω

2
1 =

ω4
1, ω

2
2 = ω4

2, H2 = H4, ϕ
2
1 = ϕ4

1, ϕ
2
2 = ϕ4

2 where Σ ⊢ ρ4 = σρ3,Σ ⊢ ω4
1 =

σω3
1,Σ ⊢ ω4

2 = σω3
2,Σ ⊢ H4 ∼ σH3,Σ ⊢ ϕ4

1 = σϕ3
1,Σ ⊢ ϕ4

2 = σϕ3
2,Σ ⊢ p′yk =

σy′k,Σ ⊢ p′′yk = σy′′k , 1 ≤ k ≤ n, k /∈ λ1. By induction hypothesis, there exist

σ1, ρ
5, ω5

1, ω
5
2, H5, ϕ

5
1, ϕ

5
2, λ
′ such that ρ4 = σ1ρ

5, ω4
1 = σ1ω

5
1, ω

4
2 = σ1ω

5
2, H4 ∼

σ1H5, ϕ
4
1 = σ1ϕ

5
1, ϕ

4
2 = σϕ5

2, and Jlock si1 , . . . , sim;P
′Kρ5ω5

1ω
5
2H5ϕ

5
1ϕ

5
2λ
′ has

been called. Since y′k, y
′′
k1 ≤ k ≤ n, k /∈ λ1 are fresh variables, we can define

σ1y
′
k = p′yk , σ1y

′′
k = p′′yk1 ≤ k ≤ n, k /∈ λ1. Then JP ′K(ρ5 ∪ {yk 7→ (y′k, y

′′
k) |

yk, y
′
k, y
′′
k are fresh, 1 ≤ k ≤ n, k /∈ λ′})(x′ :: ω5

1)(x
′′ :: ω5

2)H5ϕ
5
1[k 7→ yk |

1 ≤ k ≤ n, k /∈ λ′]ϕ5
2[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′]λ′ ∩ {i1, . . . , im} has been

called, and ρ2 = σ1(ρ
5 ∪ {yk 7→ (y′k, y

′′
k) | yk, y′k, y′′k are fresh, 1 ≤ k ≤ n, k /∈

λ′}), ω2
1 = σ1ω

5
1, ω

2
2 = σ1ω

5
2, ϕ

2
1 = σ1ϕ

5
1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′], ϕ2

2 =

σ1ϕ
5
2[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′], and H2 ∼ σ1H5.

Case read si1 , . . . , sim as x1, . . . , xm;P
′:

Assume JP ′Kρω1ω2Hϕ1ϕ2λ is called.

Let yk, y
′
k, y
′′
k where 1 ≤ k ≤ n, k /∈ λ1, λ1 = λ and vc, vc′, vc′′, vm, vm′, vm′′

be fresh variables, since the translation rule for read si1 , . . . , sim as x1, . . . , xm;

P ′ was applied we have:

ρ = ρ3[xj 7→ (ρ31(ϕ1[ij]), ρ
3
2(ϕ2[ij])) | 1 ≤ j ≤ m] ∪ {yk 7→ (y′k, y

′′
k)} ∪ {vc 7→

(vc′, vc′′)} ∪ {vm 7→ (vm′, vm′′)},
ω1 = ρ31(ϕ1[i1]) :: · · · :: ρ31(ϕ1[im]) :: ω

3
1, ω2 = ρ32(ϕ2[i1]) :: · · · :: ρ32(ϕ2[im]) ::

ω3
2,

H = H3 ∧msg(ρ31(ϕ1), vc
′, vm′, ρ32(ϕ2), vc

′′, vm′′),

ϕ1 = ϕ3
1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ1], ϕ2 = ϕ3

2[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ1],

and

Jread si1, . . . , sim as x1, . . . , xm;P
′Kρ3ω3

1ω
3
2H3ϕ

3
1ϕ

3
2λ1 has been called.

Appendix C. StatVerif Extension Related Proofs 226

Let ρ2, ω2
1, ω

2
2, H2, ϕ

2
1, ϕ

2
2 such that

Σ ⊢ ρ2 = σρ,Σ ⊢ ω2
1 = σω1,Σ ⊢ ω2

2 = ω2,Σ ⊢ H2 ∼ σH, ϕ2
1 = σϕ1, ϕ

2
2 = σϕ2

and nf ′T,Σ({ρ2, ω2
1, ω

2
2, H2, ϕ

2
1, ϕ

2
2}).

Then ρ2 = ρ4[vc 7→ (p′vc, p
′′
vc), vm 7→ (p′vm, p

′′
vm), xj 7→ (ρ41(ϕ

4
1[ij]), ρ

4
2(ϕ

4
2[ij])),

yk 7→ (p′yk , p
′′
yk
) | 1 ≤ j ≤ m, 1 ≤ k ≤ n, k /∈ λ1],

ω2
1 = ρ41(ϕ

4
1[i1]) :: · · · :: ρ41(ϕ4

1[im]) :: ω
4
1, ω

2
2 = ρ42(ϕ

4
2[i1]) :: · · · :: ρ42(ϕ4

2[im]) ::

ω4
2,

H2 = H4 ∧msg(ρ41(ϕ4
1), p

′
vc, p

′
vm, ρ

4
2(ϕ

4
2), p

′′
vc, p

′′
vm), ϕ

2
1 = ϕ4

1, ϕ
2
2 = ϕ4

2 where

Σ ⊢ ρ4 = σρ3,Σ ⊢ ω4
1 = σω3

1,Σ ⊢ ω4
2 = σω3

2,Σ ⊢ H4 ∼ σH3,Σ ⊢ ϕ4
1 =

σϕ3
1,Σ ⊢ ϕ4

2 = σϕ3
2,Σ ⊢ p′vc = σvc′,Σ ⊢ p′′vc = σvc′′,Σ ⊢ p′vm = σvm′,Σ ⊢

p′′vm = σvm′′,Σ ⊢ p′yk = σy′k,Σ ⊢ p′′yk = σy′′k , 1 ≤ k ≤ n, k /∈ λ1.

By induction hypothesis, there exist σ1, ρ
5, ω5

1, ω
5
2, H5, ϕ

5
1, ϕ

5
2, λ
′ such that

ρ4 = σ1ρ
5, ω4

1 = σ1ω
5
1, ω

4
2 = σ1ω

5
2, H4 ∼ σ1H5, ϕ

4
1 = σ1ϕ

5
1, ϕ

4
2 = σϕ5

2, and

Jread si1, . . . , sim as x1, . . . , xm;P
′Kρ5ω5

1ω
5
2H5ϕ

5
1ϕ

5
2λ
′ has been called.

Let λ′ = λ1, since y
′
k, y
′′
k1 ≤ k ≤ n, k /∈ λ1 are fresh variables and vc′, vc′′, vm′,

vm′′ are fresh variables, we can define σ1y
′
k = p′yk , σ1y

′′
k = p′′yk1 ≤ k ≤ n, k /∈

λ1, σ1vc
′ = p′vc, σ1vc

′′ = p′′vc, σ1vm
′ = p′vm, σ1vm

′′ = p′′vm.

Let ϕ6
1 = ϕ5

1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′], ϕ6
2 = ϕ5

2[k 7→ yk | 1 ≤ k ≤ n, k /∈
λ′], then

JP ′K(ρ5[xj 7→ (ρ51(ϕ
6
1[ij]), ρ

5
2(ϕ

6
2[ij])) | 1 ≤ j ≤ m] ∪ {yk 7→ (y′k, y

′′
k)} ∪

{vc 7→ (vc′, vc′′)} ∪ {vm 7→ (vm′, vm′′)}) (ρ51(ϕ
6
1[i1]) :: · · · :: ρ51(ϕ6

1[im]) ::

ω5
1)(ρ

5
2(ϕ

6
2[i1]) :: · · · :: ρ52(ϕ6

2[im]) :: ω
5
2) (H5∧msg(ρ51(ϕ6

1), vc
′, vm′, ρ52(ϕ

6
2), vc

′′,

vm′′))ϕ6
1ϕ

6
2λ
′ has been called, and

ρ2 = σ1(ρ
5[xj 7→ (ρ51(ϕ

6
1[ij]), ρ

5
2(ϕ

6
2[ij])) | 1 ≤ j ≤ m] ∪ {yk 7→ (y′k, y

′′
k)} ∪

{vc 7→ (vc′, vc′′)}∪{vm 7→ (vm′, vm′′)}), ω2
1 = σ1(ρ

5
1(ϕ

6
1[i1]) :: · · · :: ρ51(ϕ6

1[im])

:: ω5
1), ω

2
2 = σ1(ρ

5
2(ϕ

6
2[i1]) :: · · · :: ρ52(ϕ6

2[im]) :: ω
5
2), ϕ

2
1 = σ1ϕ

5
1, ϕ

2
2 = σ1ϕ

5
2, and

H2 ∼ σ1(H5 ∧msg(ρ51(ϕ6
1), vc

′, vm′, ρ52(ϕ
6
2), vc

′′, vm′′)).

Case si1 , . . . , sim :=M1, . . . ,Mm;P
′:

Assume JP ′Kρω1ω2Hϕ1ϕ2λ is called.

Appendix C. StatVerif Extension Related Proofs 227

Let yk, y
′
k, y
′′
k where 1 ≤ k ≤ n, k /∈ λ1, λ1 = λ and vc, vc′, vc′′, vm, vm′, vm′′

be fresh variables, since the translation rule for si1, . . . , sim :=M1, . . . ,Mm;P
′

was applied we have:

ρ = ρ3 ∪ {yk 7→ (y′k, y
′′
k)} ∪ {vc 7→ (vc′, vc′′)} ∪ {vm 7→ (vm′, vm′′)},

ω1 = ω3
1, ω2 = ω3

2, H = H3

ϕ1 = ϕ3
1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ1], ϕ2 = ϕ3

2[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ1],

and Jsi1, . . . , sim :=M1, . . . ,Mm;P
′Kρ3ω3

1ω
3
2H3ϕ

3
1ϕ

3
2λ1 has been called.

Let ρ2, ω2
1, ω

2
2, H2, ϕ

2
1, ϕ

2
2 such that

Σ ⊢ ρ2 = σρ,Σ ⊢ ω2
1 = σω1,Σ ⊢ ω2

2 = ω2,Σ ⊢ H2 ∼ σH, ϕ2
1 = σϕ1, ϕ

2
2 = σϕ2

and nf ′T,Σ({ρ2, ω2
1, ω

2
2, H2, ϕ

2
1, ϕ

2
2}).

Then ρ2 = ρ4[vc 7→ (p′vc, p
′′
vc), vm 7→ (p′vm, p

′′
vm), yk 7→ (p′yk , p

′′
yk
) | 1 ≤ k ≤

n, k /∈ λ1], ω
2
1 = ω4

1, ω
2
2 = ω4

2, H2 = H4, ϕ
2
1 = ϕ4

1, ϕ
2
2 = ϕ4

2 where

Σ ⊢ ρ4 = σρ3,Σ ⊢ ω4
1 = σω3

1,Σ ⊢ ω4
2 = σω3

2,Σ ⊢ H4 ∼ σH3,Σ ⊢ ϕ4
1 =

σϕ3
1,Σ ⊢ ϕ4

2 = σϕ3
2,Σ ⊢ p′vc = σvc′,Σ ⊢ p′′vc = σvc′′,Σ ⊢ p′vm = σvm′,Σ ⊢

p′′vm = σvm′′,Σ ⊢ p′yk = σy′k,Σ ⊢ p′′yk = σy′′k , 1 ≤ k ≤ n, k /∈ λ1.

By induction hypothesis, there exist σ1, ρ
5, ω5

1, ω
5
2, H5, ϕ

5
1, ϕ

5
2, λ
′ such that

ρ4 = σ1ρ
5, ω4

1 = σ1ω
5
1, ω

4
2 = σ1ω

5
2, H4 ∼ σ1H5, ϕ

4
1 = σ1ϕ

5
1, ϕ

4
2 = σϕ5

2, and

Jsi1 , . . . , sim :=M1, . . . ,Mm;P
′Kρ5ω5

1ω
5
2H5ϕ

5
1ϕ

5
2λ
′ has been called.

Let λ′ = λ1, since y
′
k, y
′′
k1 ≤ k ≤ n, k /∈ λ1 are fresh variables and vc′, vc′′, vm′,

vm′′ are fresh variables, we can define σ1y
′
k = p′yk , σ1y

′′
k = p′′yk1 ≤ k ≤ n, k /∈

λ1, σ1vc
′ = p′vc, σ1vc

′′ = p′′vc, σ1vm
′ = p′vm, σ1vm

′′ = p′′vm.

Let ϕ6
1 = ϕ5

1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′], ϕ6
2 = ϕ5

2[k 7→ yk | 1 ≤ k ≤ n, k /∈
λ′], then

JP ′K(ρ5∪{yk 7→ (y′k, y
′′
k)}∪{vc 7→ (vc′, vc′′)}∪{vm 7→ (vm′, vm′′)}) ω5

1ω
5
2H5ϕ

6
1

ϕ6
2λ
′ has been called, and

ρ2 = σ1(ρ
5 ∪ {yk 7→ (y′k, y

′′
k)} ∪ {vc 7→ (vc′, vc′′)} ∪ {vm 7→ (vm′, vm′′)}),

ω2
1 = σ1ω

5
1, ω

2
2 = σ1ω

5
2, ϕ

2
1 = σ1ϕ

5
1, ϕ

2
2 = σ1ϕ

5
2, and H2 ∼ σ1H5.

Appendix C. StatVerif Extension Related Proofs 228

Lemma C.15. Let A0 = (E0,S0, {(P0, ∅)}) be a closed, unevaluated stateful bipro-

cess. For all clauses H → C ∈ CA0, for all closed substitutions σ, for all H2 → C2

such that Σ ⊢ H2 → C2 ∼ σ(H → C) and nf ′T,Σ({H2, C2}), there exist a closed

substitution σ1 and a clause H1 → C1 ∈ CA0 such that H2 ∼ σ1H1 and C2 = σ1C1.

Proof. The clauses of JP0Kρ0∅∅trueϕ01ϕ02∅ are generated from the following cases:

• H → C = H → input(ρ1(ϕ1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′]), ρ1(fst(M)), ρ2(

ϕ2[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′]), ρ2(snd(M))) where Jin(M,x);P Kρω1, ω2H

ϕ1ϕ2 has been called during the generation of JP0Kρ0∅∅trueϕ01ϕ02∅. Since

Σ ⊢ H2 → C2 ∼ σ(H → C) and nf ′T,Σ({H2, C2}), we have Σ ⊢ H2 ∼
σH,C2 = input(ρ1(ϕ

′
1), p

′
2, ρ2(ϕ

′
2), p

′′
2),Σ ⊢ p′2 = σρ1(fst(M)), and Σ ⊢ p′′2 =

σρ2(snd(M)). Since P0 is unevaluated, M is a variable y or diff[a, a] for

some name a. Let u = y in the first case and u = a in the second case. We

have u ∈ dom(ρ). We define ρ2 by ρ2(u) = diff[p′2, p
′′
2] and extend ρ2 to

dom(ρ) in such a way that Σ ⊢ ρ2 = σρ and nf ′T,Σ({H2, ρ
2}) by Property S2.

We also define ω2
1, ω

2
2, ϕ

2
1, ϕ

2
2 so that Σ ⊢ ω2

1 = σω1,Σ ⊢ ω2
2 = σω2,Σ ⊢

ϕ2
1 = σϕ1,Σ ⊢ ϕ2

2 = σϕ2, and nf ′T,Σ({H2, ρ
2, ω2

1, ω
2
2, ϕ

2
1, ϕ

2
2}) by Prop-

erty S2. By Lemma C.14, there exist σ1, ρ
1, ω1

1, ω
1
2, H1, ϕ

1
1, ϕ

1
2, λ
′ such that

ρ2 = σ1ρ
1, ω2

1 = σ1ω
1
1, ω

2
2 = σ1ω

1
2, H2 ∼ σ1H1, ϕ

2
1 = σ1ϕ

1
1, ϕ

2
2 = σ1ϕ

1
2, and

Jin(M,x);P Kρ1ω1
1ω

1
2H1ϕ

1
1ϕ

1
2λ
′ has been called. ThenH1 → input(ρ11(ϕ

1
1[k 7→

yk | 1 ≤ k ≤ n, k /∈ λ′]), ρ11(fst(M)), ρ12(ϕ
1
2[k 7→ yk | 1 ≤ k ≤ n, k /∈

λ′]), ρ12(snd(M))) is in JP0K]ρ0∅∅trueϕ01ϕ02∅, H2 ∼ σ1H1, C2 = input(ρ21(ϕ
2
1[k 7→

yk | 1 ≤ k ≤ n, k /∈ λ′]), p′2, ρ
2
2(ϕ

2
2[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′]), p′′2) =

input(ρ21(ϕ
2
1[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′]), ρ21(fst(M)), ρ22(ϕ

2
2[k 7→ yk | 1 ≤

k ≤ n, k /∈ λ′]), ρ22(snd(M))) = σ1input(ρ
1
1(ϕ

1
1[k 7→ yk | 1 ≤ k ≤ n, k /∈

λ′]), ρ11(fst(M)),

ρ12(ϕ
1
2[k 7→ yk | 1 ≤ k ≤ n, k /∈ λ′])ρ12(snd(M))).

• H → C = H → msg(ρ1(ϕ1), ρ1(fst(M), ρ1(fst(N), ρ2(ϕ2), ρ2(snd(M)),

ρ2(snd(N))) where Jout(M,N);P Kρω1ω2Hϕ1ϕ2λ has been called. This case

Appendix C. StatVerif Extension Related Proofs 229

is similar to the previous one. (The termsM andN are variables or diff[a, a]

for some name a.)

• H → C = σ′H ′ ∧ σ′ρ2(fails(snd(D))) → bad where

Jlet x = D then P else QKρω1ω2H
′ϕ1ϕ2λ has been called and ρ1(D) ⇓′

(p′, σ′). Since Σ ⊢ H2 → C2 ∼ σ(H → C) and nf ′T,Σ({H2, C2}), we have

H2 = H3 ∧ H3nounif
where Σ ⊢ H3 ∼ σσ′H ′ and H3nounif

consists of nounif

facts such that Σ ⊢ H3nounif
∼ σσ′ρ2(fails(snd(D))). By Property S2, there

exist ρ3, ω3
1, ω

3
2, ϕ

3
1, ϕ

3
2 such that Σ ⊢ ρ3 = σσ′ρ,Σ ⊢ ω3

1 = σσ′ω1,Σ ⊢ ω3
2 =

σσ′ω2,Σ ⊢ ϕ3
1 = σσ′ϕ1,Σ ⊢ ϕ3

2 = σσ′ϕ2, and nf
′
T,Σ({ρ3, ω3

1, ω
3
2, H3, ϕ

3
1, ϕ

3
2}).

By Lemma C.14, there exist σ1, ρ
1, ω1

1, ω
1
2, H1, ϕ

1
1, ϕ

1
2, λ
′ such that ρ3 = σ1ρ1, ω

3
1 =

σ1ω
1
1, ω

3
2 = σ1ω

1
2, H3 ∼ σ1H1, ϕ

3
1 = σ1ϕ

1
1, ϕ

3
2 = σ1ϕ

1
2, and

Jlet x = D in P else QKρ1ω1
1ω

1
2H1ϕ

1
1ϕ

1
2λ
′ has been called. By Property

S2, we can choose p such that Σ ⊢ p = σp′ and nfT,Σ({p, σ1ρ1}). By

Lemma C.13, there exist σ′1, p
′
1, and σ

′′
1 such that ρ11(D) ⇓′ (p′1, σ′1) and σ1 =

σ′′1σ
′
1 except on fresh variables introduced in the computation of ρ11(D) ⇓′

(p′1, σ
′
1). Then σ

′
1H1∧σ′1ρ12(fails(snd(D))) → bad is in JP0Kρ0∅∅trueϕ01ϕ02∅.

Moreover σ′′1(σ
′
1H1 ∧ σ′1ρ12(fails(snd(D)))) = σ1H1 ∧ σ1ρ12(fails(snd(D))) ∼

H3 ∧ H3nounif
∼ H2, since Σ ⊢ σ1ρ

1 = ρ3 = σσ′ρ, and σ′′1bad = bad = C, so

we have the desired result.

• H → C = σ′H ′ ∧ σ′ρ1(fails(fst(D))) → bad where

Jlet x = D in P else QKρω1ω2H
′ϕ1ϕ2λ has been called and ρ2(D) ⇓′ (p′, σ′).

This case is symmetric from the previous one.

For the other clauses:

• For Clause (Rinit), C2 = C,H2 = ∅, so we have the result by taking

H1 → C1 = H → C.

• For Clauses (Rn), (Rl), (Rs), (Ri), (Rcom), (Rcom’), (Rm1), (Rm2),

and (Rm3), H2 = σ′H and C2 = σ′C where for all x ∈ fv(H → C),Σ ⊢

Appendix C. StatVerif Extension Related Proofs 230

σ′x = σx, and nfT,Σ({σ′x | x ∈ fv(H → C)}). (Indeed, the function

symbols in H,C do not appear in equations of Σ.) So we obtain the result

by taking H1 → C1 = H → C and σ1 = σ′.

• For Clause (Rf), H = att(xs,M1, xs
′, N1) ∧ · · · ∧ att(xs,Mn, xs

′, Nn), C =

att(xs,M, xs′, N), h(M1, . . . ,Mn) → M ∈ defΣ′(h), h(N1, . . . , Nn) → N ∈
defΣ′(h), H2 = att(xs1,M

′′
1 , xs

′
1, N

′′
1) ∧ · · · ∧ att(xs1,M ′′n , xs′1, N ′′n),

C2 = att(xs1,M
′′, xs′1, N

′′) with Σ ⊢ M ′′ = σM,Σ ⊢ N ′′ = σN,Σ ⊢ M ′′i =

σMi,Σ ⊢ N ′′i = σNi for all i ∈ {1, . . . , n}, Σ ⊢ xs1 = σ′xs,Σ ⊢ xs′1 = σ′xs′

and nfT,Σ({M ′′, N ′′,M ′′1 , . . . ,M ′′n , N ′′1 , . . . , N ′′n , xs1, xs′1}). By Lemma C.11,

there exist σ1 and h(M ′1, . . . ,M
′
n) → M ′ ∈ defΣ′(h) such that M ′′ = σ1M

′

and for all i ∈ {1, . . . , n},M ′′i = σ1M
′
i . By Lemma C.11 again, there ex-

ist σ1 and h(N ′1, . . . , N
′
n) → N ∈ defΣ′(h) such that N ′′ = σ1N

′ and for

all i ∈ {1, . . . , n}, N ′′i = σ1Ni. (We can use the same substitution σ1 since

the first and second arguments of the predicate att do not share variables.)

Hence σ1att(xs1,M
′
i , xs

′
1, N

′
i) = att(xs1,M

′′
i , xs

′
1, N

′′
i) for all i ∈ {1, . . . , n}

and σ1att(xs1,M
′, xs′1, N

′) = att(xs1,M
′′, xs′1, N

′′). We take H1 → C1 =

att(xs1,M
′
1, xs

′
1, N

′
1) ∧ · · · ∧ att(xs1,M

′
n, xs

′
1, N

′
n) → att(xs1,M

′, xs′1, N
′),

which yields the desired result.

• For Clause (Rt), we have C2 = C = bad,H = Hnounif ∧att(xs,M1, xs
′, x1)∧

· · · ∧ att(xs,Mn, xs
′, xn), H2 = H2nounif

∧ att(xs1,M ′′1 , xs′1, x′′1) ∧ · · · ∧
att(xs1,M

′′
n , xs

′
1, x
′′
n) where Hnounif and H2nounif

consist of nounif facts,

Σ ⊢ H2nounif
= σHnounif , g(M1, . . . ,Mn) → M ∈ defΣ′(g),Σ ⊢ M ′′i =

σMi and Σ ⊢ N ′′i = σxi,Σ ⊢ xs1 = σxs,Σ ⊢ xs′1 = σxs′ for all i ∈
{1, . . . , n}, and nfT,Σ({M1, . . . ,Mn, N1, . . . , Nn}). By Lemma C.11, there

exist σ1 and g(M ′1, . . . ,M
′
n) → M ′ ∈ defΣ′(g) such that M ′′ = σ1M

′ and

for all i ∈ {1, . . . , n},M ′′i = σ1M
′
i . We extend σ1 by defining for all i ∈

{1, . . . , n}, σ1xi = N ′′i and σ1xs = xs1, σ1xs
′ = xs′1.

Hence σ1att(xs,M
′
i , xs

′, xi) = att(xs1,M
′′
i , xs

′
1, N

′′
i) for all i ∈ {1, . . . , n}

and Σ ⊢ H2nounif
= σHnounif = σ1Hnounif since for all i ∈ {1, . . . , n},Σ ⊢

Appendix C. StatVerif Extension Related Proofs 231

σ1xi = N ′′i = σxi and fv(Hnounif) = {x1, . . . , xn}. We take H1 → C1 =

Hnounif ∧ att(xs,M ′1, xs′, x1) ∧ · · · ∧ att(xs,Mn, xs
′, xn) → bad which yields

the result.

• The case of Clause (Rt’) is symmetric.

The following lemmas can be proved by induction and thanks to what established

by Lemma C.15. The full proof can be found in [BAF05].

Lemma C.16. Assume A0 is a closed, unevaluated stateful biprocess. If F is

derivable from CA0 ,Σ ⊢ F ′′ ∼ F , and nf ′T,Σ(F ∪ {F ′′}), then F ′′ is derivable from

CA0 by a derivation D such that nf ′T,Σ(F ∪ {D}).

Lemma C.17. If bad is derivable from CA0 then bad is derivable from CA0 by a

derivation such that nfS,Σ(F) where F is the set of intermediately derived facts in

this derivation, excluding nounif facts.

Lemma C.17 is a particular case of Lemma C.16 taking F = F ′′ = bad.

Lemma C.18. If σfails(D) is false then there exists a pattern p such that σD ⇓Σ

p.

This lemma can be established thanks to Lemma C.7 and Lemma C.12. The full

proof can be found in [BAF05].

C.7 Proof of the Properties of the Type System

Lemma C.19. Let M be a term, S be a state (a function from {s1, . . . , sn} to

terms), and E an environment (a function from names and variables to pairs of

patterns). If

Appendix C. StatVerif Extension Related Proofs 232

i) ∀ a ∈ fn(fst(M)), att(E1(S̄1), E1(a), E2(S̄2), y) ∈ FC′A0; and

ii) ∀ x ∈ fv(fst(M)), att(E1(S̄1), E1(x), E2(S̄2), y
′) ∈ FC′A0

then att(E1(S̄1), E1(fst(M)), E2(S̄2), y
′′) ∈ FC′A0.

Symmetrically, if

i) ∀ a ∈ fn(snd(M)), att(E1(S̄1), y, E2(S̄2), E2(a)) ∈ FC′A0; and

ii) ∀ x ∈ fv(snd(M)), att(E1(S̄1), y
′, E2(S̄2), E2(x)) ∈ FC′A0

then att(E1(S̄1), y
′′, E2(S̄2), E2(snd(M))y′′) ∈ FC′A0.

Proof. Let M be a term, we prove that if

i) ∀ a ∈ fn(fst(M)), att(E1(S̄1), E1(a), E2(S̄2), y) ∈ FC′A0; and

ii) ∀ x ∈ fv(fst(M)), att(E1(S̄1), E1(x), E2(S̄2), y
′) ∈ FC′A0

then att(E1(S̄1), E1(fst(M)), E2(S̄2), y
′′) ∈ FC′A0, by induction on the depth d of

M . The second part of Lemma C.19 holds by symmetry.

d=1) In this case M is either a name or a variable and by definition either M ∈
fn(M) or M ∈ fv(M) since fst(M) =M by hypothesis

att(E1(S̄1), E1(fst(M)), E2(S̄2), y) ∈ FC′A0

d > 1) We have 2 cases:

– either M = f(M1, . . . ,Mn) for some constructor f of arity n. In this

case, let i ∈ {1, . . . , n} by definition we have that fn(Mi) ⊆ fn(M) and

fn(fst(Mi)) ⊆ fn(fst(M)), fv(Mi) ⊆ fv(M) and fv(fst(Mi)) ⊆
fv(fst(M)) and by hypothesis ∀ a ∈ fn(fst(Mi)), att(E1(S̄1), E1(a),

E2(S̄2), yi) ∈ FC′A0; and ∀ x ∈ fv(fst(Mi)), att(E1(S̄1), E1(x), E2(S̄2),

Appendix C. StatVerif Extension Related Proofs 233

y′i) ∈ FC′A0 then by inductive hypothesis we have that ∀ i ∈ {1, . . . , n}
att(E1(S̄1), E1(fst(Mi)), E2(S̄2), y

′′
i) ∈ FC′A0 , let y′′ = f(y′′1 , . . . , y

′′
n)

since by definition of Σ′ we have that f(x1, . . . , xn) → f(x1, . . . , xn) ∈
defΣ′(f) for all constructors f , by clause Rf we have that att(E1(S̄1),

E1(f(fst(Mi), . . . , fst(Mn))), E2(S̄2), y
′′) ∈ FC′A0 and hence

att(E1(S̄1), E1(fst(f(Mi, . . . ,Mn))), E2(S̄2), y
′′) ∈ FC′A0

– or M = diff[M1,M2]. In this case by definition fn(M1) ⊆ fn(M) and

fv(M1) ⊆ fv(M) and by hypothesis ∀ a ∈ fn(M1), att(E1(S̄1), E1(a),

E2(S̄2), y1) ∈ FC′A0 ; and ∀ x ∈ fv(M1), att(E1(S̄1), E1(x), E2(S̄2), y
′
1) ∈

FC′A0 hence by inductive hypothesis att(E1(S̄1), E1(M1), E2(S̄2), y
′′
1) ∈

FC′A0

Lemma C.20. Let M be a term, S be a state (a function from {s1, . . . , sn} to

terms), and E an environment (a function from names and variables to pairs of

patterns). If

i) ∀ a ∈ fn(fst(M)), att(E1(S̄1), E1(a), E2(S̄2), y) ∈ FC′A0; and

ii) ∀ x ∈ fv(fst(M)), att(E1(S̄1), E1(x), E2(S̄2), y
′) ∈ FC′A0

iii) ∀ a ∈ fn(snd(M)), att(E1(S̄1), y
′′, E2(S̄2), E2(a)) ∈ FC′A0; and

iv) ∀ x ∈ fv(snd(M)), att(E1(S̄1), y
′′′, E2(S̄2), E2(x)) ∈ FC′A0

then att(E1(S̄1), E1(fst(M)), E2(S̄2), E2(snd(M))) ∈ FC′A0.

Proof. By Lemma C.19 and by resolution.

Appendix C. StatVerif Extension Related Proofs 234

C.7.1 Substitution Lemma

Lemma C.21. (Substitution lemma). Let E be an environment (a function from

names and variables to patterns), x a variable such that x /∈ dom(E), and M a

term. Let E ′ = E ∪ {x 7→ (E1(fst(M)), E2(snd(M)))}.

1. For all N,E(N{M/x}) = E ′(N);

2. For all S (from states to terms), Q, λ such that bn(Q) ∩ fn(M) = ∅; and
x /∈ bv(Q), if (E ′,S, λ) ⊢ Q then (E,S, λ) ⊢ Q{M/x}.

Proof. • We prove the first statement by induction on the depth d of N .

d = 1) . In this case, N is either a variable or a name. If N 6= x. Then we

have that

E(N{M/x}) def
= E(N)

def
= E ′(N).

If N = x, then we have

E(N{M/x}) def
= E(x{M/x}) def

= E(M)
def
= E ′(x)

def
= E ′(N).

d > 1) . We have 2 cases:

∗ if N = f(N1, . . . , Nk) for some constructor f of arity n and some

terms N1, . . . , Nk, we have that

E(N{M/x}) def
= E(f(N1{M/x}, . . . , Nk{M/x})) def

=

f(E(N1{M/x}), . . . , E(Nk{M/x})) = (by inductive hypothesis)

f(E ′(N1), . . . , E
′(Nk))

def
= E ′(f(N1, . . . , Nk))

def
= E ′(N)

∗ if N = diff[N1, N2] we have that

E(N{M/x}) def
= E(diff[N1{M/x}, N2{M/x}]) def

=

diff[E(N1{M/x}), E(N2{M/x})] = (by inductive hypothesis)

diff[E ′(N1), E
′(N2)]

def
= E ′(diff[N1, N2])

def
= E ′(N)

• We prove the second statement by induction on the depth d of Q.

Appendix C. StatVerif Extension Related Proofs 235

d = 0) . In this case Q = 0, thus Q{M/x} = Q = 0, and according to our

typing system

(E,S, λ) ⊢ 0
Tnil

d > 0) . We proceed by case analysis on the structure of Q.

Case Q = Q1 | Q2.

By hypothesis (E ′,S, λ) ⊢ Q1 | Q2, bn(Q1 | Q2) ∩ fn(M) = ∅ and

x /∈ bv(Q1 | Q2) then by rule Tpar we have that λ = ∅, (E ′,S, λ) ⊢
Q1, (E

′,S, λ) ⊢ Q2, bn(Q1) ∩ fn(M) = ∅ ∧ bn(Q2) ∩ fn(M) =

∅, x /∈ bv(Q1) ∧ x /∈ bv(Q2) thus by inductive hypothesis we have

that λ = ∅(E,S, λ) ⊢ Q1{M/x}, (E,S, λ) ⊢ Q2{M/x} and by rule

Tpar we have that (E,S, λ) ⊢ Q1{M/x} | Q2{M/x} (= Q{M/x})

Case Q =!iQ′.

By hypothesis (E ′,S, λ) ⊢!iQ′, bn(!iQ′) ∩ fn(M) = ∅ and x /∈
bv(!iQ′) then by rule Trepl and by definition of bn() and bv() we have

that λ = ∅, (E ′[i 7→ (l, l)], S, λ) ⊢ Q′, bn(Q′) ∩ fn(M) = ∅ and x /∈
bv(Q′) then by inductive hypothesis (E[i 7→ (l, l)], S, λ)Q′{M/x}
and by rule Trepl we have that (E, S, λ) ⊢!iQ′{M/x}

Case Q = new a : a0[M1, . . . ,Mn];Q
′.

By hypothesis (E ′,S, λ) ⊢ new a : a0[M1, . . . ,Mn];Q
′, bn(new a :

a0[M1, . . . ,Mn];Q
′)∩fn(M) = ∅ and x /∈ bv(new a : a0[M1, . . . ,Mn];

Q′) then by rule Tnew and by definition of bn() and bv() we have that

(E[a 7→ (a0[E1(M1), . . . , E1(Mn)], a0[E2(M1), . . . , E2(Mn)])],S, λ) ⊢
Q′, bn(Q′) ∩ fn(M) = ∅, x /∈ bv(Q′) then by inductive hypothesis

(E[a 7→ (a0[E1(M1), . . . , E1(Mn)], a0[E2(M1), . . . , E2(Mn)])],S, λ) ⊢
Q′{M/x} and by rule Tnew we have that

(E,S, λ) ⊢ new a : a0[M1, . . . ,Mn];Q
′{M/x} (= Q{M/x})

Case Q = in(N, y);Q′.

Note first that by hypothesis x /∈ bv(Q) and by definition y ∈
bv(Q), thus y 6= x.

Appendix C. StatVerif Extension Related Proofs 236

By hypothesis (E ′,S, λ) ⊢ in(N, y);Q′, bn(in(N, y);Q′)∩fn(M) =

∅ and x /∈ bv(in(N, y);Q′) then by rule Tin and by definition of bn()

and bv() we have that bn(Q′) ∩ fn(M) = ∅ and x /∈ bv(Q′) and

∧
(E ′[y 7→ (p1, p2)],R, λ) ⊢ Q′

∀p1,p2|

∃R|(S≤R ∧ R=R[j 7→S(j)| j∈λ]) ∧

msg(E′

1(R̄1),E′

1(fst(N)),p1,E′

2(R̄2),E′

2(snd(N)),p2)∈F ,

input(E′

1(R̄1),E′

1(fst(N)),E′

2(R̄2),E′

2(snd(N)))∈F

then by inductive hypothesis

∧
(E[y 7→ (p1, p2)],R, λ) ⊢ Q′{M/x}

∀p1,p2|

∃R|(S≤R ∧ R=R[j 7→S(j)| j∈λ]) ∧

msg(E′

1(R̄1),E′

1(fst(N)),p1,E′

2(R̄2),E′

2(snd(N)),p2)∈F

input(E′

1(R̄1),E′

1(fst(N)),E′

2(R̄2),E′

2(snd(N)))∈F

by the first part of this lemma

∧
(E[y 7→ (p1, p2)],R, λ) ⊢ Q′{M/x}

∀p1,p2|

∃R|(S≤R ∧ R=R[j 7→S(j)| j∈λ]) ∧

msg(E1(R̄1),E1(fst(N{M/x})),p1,E2(R̄2),E2(snd(N{M/x})),p2)∈F

input(E1(R̄1),E1(fst(N{M/x})),E2(R̄2),E2(snd(N{M/x})))∈F

then by rule Tin we have that (E,S, λ) ⊢ in(N{M/x}, y);Q′{M/x}
(= Q{M/x})

Case Q = out(N1, N2);Q
′.

By hypothesis (E ′,S, λ) ⊢ out(N1, N2);Q
′, bn(out(N1, N2);Q

′) ∩
fn(M) = ∅, and x /∈ bv(out(N1, N2);Q

′) then by rule Tout and by

definition of bn() and bv() we have that

msg(E ′1(S̄1), E
′
1(fst(N1)), E

′
1(fst(N2)), E

′
2(S̄2), E

′
2(snd(N1)),

E ′2(snd(N2))) ∈ FC′A0 , (E
′,S, λ) ⊢ Q′, bn(Q′) ∩ fn(M) = ∅, and

x /∈ bv(Q′) then by inductive hypothesis

msg(E ′1(S̄1), E
′
1(fst(N1)), E

′
1(fst(N2)), E

′
2(S̄2), E

′
2(snd(N1)),

E ′2(snd(N2))) ∈ FC′A0 ∧ (E,S, λ) ⊢ Q′{M/x} then by the first part

Appendix C. StatVerif Extension Related Proofs 237

of this lemma (Lemma C.21)

msg(E1(S̄1), E1(fst(N1{M/x})), E1(fst(N2{M/x})), E2(S̄2),

E2(snd(N1{M/x})), E2(snd(N2{M/x}))) ∈ FC′A0 ∧ (E ′,S, λ) ⊢
Q′{M/x} and by rule Tout we have that

(E,S, λ) ⊢ out(N1{M/x}, N2{M/x});Q′{M/x}(= Q{M/x})

Case Q = let y = D in Q1 else Q2.

Note first that since by hypothesis x /∈ bv(Q) and by definition

y ∈ bv(Q), then y 6= x.

By hypothesis (E ′,S, λ) ⊢ let y = D in Q1 else Q2,

bn(let y = D in Q1 else Q2) ∩ fn(M) = ∅ and

x /∈ bv(let y = D in Q1 else Q2) then by rule Tlet and by defini-

tion of bn() and bv() we have that

(∀ p1, p2 E ′1(fst(D)) ⇓Σ′ p1 and

E ′2(snd(D)) ⇓Σ′ p2(E
′[y 7→ (p1, p2)],S, λ) ⊢ Q1)

(if ∄ p1, E ′1(fst(D)) ⇓Σ′ p1 and ∄ p2, E ′2(snd(D)) ⇓Σ′ p2 then

(E ′,S, λ) ⊢ Q2)

(if ∃ p1, E ′1(fst(D)) ⇓Σ′ p1 and ∄ p2, E
′
2(snd(D)) ⇓Σ′ p2 then

bad ∈ FC′A0)

(if ∄ p1, E ′1(fst(D)) ⇓Σ′ p1 and ∃ p2, E ′2(snd(D)) ⇓Σ′ p2 then

bad ∈ FC′A0)

and bn(Q1) ∩ fn(M) = ∅, bn(Q2) ∩ fn(M) = ∅, and
x /∈ bv(Q1), x /∈ bv(Q2) then by inductive hypothesis

(∀ p1, p2 E ′1(fst(D)) ⇓Σ′ p1 and

E ′2(snd(D)) ⇓Σ′ p2(E[y 7→ (p1, p2)],S, λ) ⊢ Q1{M/x})
(if ∄ p1, E ′1(fst(D)) ⇓Σ′ p1 and ∄ p2, E ′2(snd(D)) ⇓Σ′ p2 then

(E,S, λ) ⊢ Q2{M/x})
(if ∃ p1, E ′1(fst(D)) ⇓Σ′ p1 and ∄ p2, E ′2(snd(D)) ⇓Σ′ p2 then

bad ∈ FC′A0)

(if ∄ p1, E ′1(fst(D)) ⇓Σ′ p1 and ∃ p2, E ′2(snd(D)) ⇓Σ′ p2 then

bad ∈ FC′A0)

Appendix C. StatVerif Extension Related Proofs 238

then by the first part of this lemma (Lemma C.21)

(∀ p1, p2 E1(fst(D{M/x})) ⇓Σ′ p1 and

E2(snd(D{M/x})) ⇓Σ′ p2(E[y 7→ (p1, p2)],S, λ) ⊢ Q1{M/x})
(if ∄ p1, E1(fst(D{M/x})) ⇓Σ′ p1 and

∄ p2, E2(snd(D{M/x})) ⇓Σ′ p2 then (E,S, λ) ⊢ Q2{M/x})
(if ∃ p1, E1(fst(D{M/x})) ⇓Σ′ p1 and

∄ p2, E2(snd(D{M/x})) ⇓Σ′ p2 then bad ∈ FC′A0)

(if ∄ p1, E1(fst(D{M/x})) ⇓Σ′ p1 and

∃ p2, E2(snd(D{M/x})) ⇓Σ′ p2 then bad ∈ FC′A0)

Finally, by rule Tlet we have that

(E,S, λ) ⊢
let y = D{M/x} in Q1{M/x} else Q2{M/x} (= Q{M/x})

Case Q = lock sj1, . . . , sjm;Q
′.

By hypothesis (E,S, λ) ⊢ lock sj1, . . . , sjm;Q
′, bn(lock sj1 , . . . , sjm;

Q′) ∩ fn(M) = ∅ and

x /∈ bv(lock sj1, . . . , sjm;Q
′) then by rule Tlock and by definition of

bn() and bv() we have that

∧
(E ′,R, λ ∪ {j1, . . . , jm}) ⊢ Q′

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

and bn(Q′) ∩ fn(M) = ∅, x /∈ bv(Q′) then by inductive hypothesis

we have that

∧
(E,R, λ ∪ {j1, . . . , jm}) ⊢ Q′{M/x}

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

then by rule Tlock we have that

(E,S, λ) ⊢ lock sj1, . . . , sjm;Q
′{M/x} (= Q{M/x})

Case Q = unlock sj1 , . . . , sjm;Q
′.

By hypothesis (E,S, λ) ⊢ lock sj1, . . . , sjm;Q
′,

Appendix C. StatVerif Extension Related Proofs 239

bn(unlock sj1, . . . , sjm;Q
′) ∩ fn(M) = ∅ and

x /∈ bv(unlock sj1, . . . , sjm;Q
′) then by rule Tunlock and by definition

of bn() and bv() we have that

∧
(E ′,R, λ \ {j1, . . . , jm}) ⊢ Q′

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

and bn(Q′) ∩ fn(M) = ∅, x /∈ bv(Q′) then by inductive hypothesis

we have that

∧
(E,R, λ \ {j1, . . . , jm}) ⊢ Q′{M/x}

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

then by rule Tunlock we have that

(E,S, λ) ⊢ unlock sj1 , . . . , sjm;Q
′{M/x} (= Q{M/x})

Case Q = sj1 , . . . , sjm := N1, . . . , Nm;Q
′.

By hypothesis (E,S, λ) ⊢ sj1, . . . , sjm := N1, . . . , Nm;Q
′,

bn(sj1 , . . . , sjm := N1, . . . , Nm;Q
′) ∩ fn(M) = ∅

and x /∈ bv(sj1, . . . , sjm := N1, . . . , Nm;Q
′) then by rule Tassign and

by definition of bn() and bv() we have that

∧ R ≤ R[jk 7→ E ′(Nk) | 1 ≤ k ≤ m]

(E ′,R[jk 7→ E ′(Nk) | 1 ≤ k ≤ m], λ) ⊢ Q′

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

and bn(Q′)∩fn(M) = ∅ and x /∈ bv(Q′) then by inductive hypoth-

esis

∧ R ≤ R[jk 7→ E ′(Nk) | 1 ≤ k ≤ m]

(E,R[jk 7→ E ′(Nk) | 1 ≤ k ≤ m], λ) ⊢ Q′{M/x}

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

Appendix C. StatVerif Extension Related Proofs 240

by the first part of this lemma (Lemma C.21)

∧ R ≤ R[jk 7→ E(Nk{M/x}) | 1 ≤ k ≤ m]

(E,R[jk 7→ E(Nk{M/x}) | 1 ≤ k ≤ m], λ) ⊢ Q′{M/x}

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

Finally, by rule Tassign we have that

(E,S, λ) ⊢ sj1, . . . , sjm := N1{M/x}, . . . , Nm{M/x};Q′{M/x} (=

Q{M/x})

Case Q = read sj1, . . . , sjm as y1, . . . , ym;Q
′.

Note first that by hypothesis x /∈ bv(Q) and by definition y1, . . . , ym ∈
bv(Q), thus x /∈ {y1, . . . , ym}.
By hypothesis (E,S, λ) ⊢ read sj1, . . . , sjm as y1, . . . , ym;Q

′,

bn(read sj1, . . . , sjm as y1, . . . , ym;Q
′) ∩ fn(M) = ∅

and x /∈ bv(read sj1, . . . , sjm as x1, . . . , xm;Q
′) then by rule Tread

and by definition of bn() and bv() we have that

∧
(E ′ ∪ {yk 7→ (E ′1(R1[jk]), E

′
2(R2[jk]))},R, λ) ⊢ Q′

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

and bn(Q′)∩fn(M) = ∅ and x /∈ bv(Q′) then by inductive hypoth-

esis

∧
(E ∪ {yk 7→ (E1(R1[jk]), E2(R2[jk]))},R, λ) ⊢ Q′{M/x}

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

and, by rule Tread we have that

(E,S, λ) ⊢ read sj1, . . . , sjm as y1, . . . , ym;Q
′ (= Q{M/x})

Appendix C. StatVerif Extension Related Proofs 241

C.7.2 Type Propagation Lemma

Lemma C.22. Let Q, be an instrumented unevaluated stateful biprocess, E an

environment (from names and variables to pairs of patterns), S and T states

(from cell names to terms), and λ a sequence of cell indices, such that S ≤ T and

T = T [j 7→ S(j) | j ∈ λ]

(E,S, λ) ⊢ Q⇒ (E, T , λ)Q

.

Proof. We prove this by induction on the depth d of the proof of (E,S, λ) ⊢ Q.

d = 0) In this case, Q = 0, and according to our type rule Tnil, (E, T , λ) ⊢ Q.

d > 0) We proceed by case analysis on the structure of Q.

Case Q = Q1 | Q2.

By hypothesis (E,S, λ) ⊢ Q1 | Q2 by rule Tpar (E,S, λ) ⊢ Q1 ∧
(E,S, λ) ⊢ Q2 ∧ λ = ∅ then by inductive hypothesis (E, T , λ) ⊢ Q1 ∧
(E, T , λ) ⊢ Q2∧λ = ∅ then by rule Tpar we have that (E, T , λ) ⊢ Q1 | Q2

Case Q =!iQ′.

By hypothesis (E,S, λ) ⊢ Q′ by rule Trepl (E[i 7→ (l, l)],S, λ) ⊢ Q′∧λ =

∅ then by inductive hypothesis (E[i 7→ (i, i)], T , λ) ⊢ Q′ ∧ λ = ∅ then

by rule Trepl we have that (E, T , λ) ⊢ Q′

Case Q = new a : a0[M1, . . . ,Mn];Q
′.

By hypothesis (E,S, λ) ⊢ new a : a0[M1, . . . ,Mn];Q
′ by rule Tnew we

have that

(E[a 7→ (a0[E1(M1), . . . , E1(Mn)], a0[E2(M1), . . . , E2(Mn)])],S, λ) ⊢ Q′

and by inductive hypothesis

Appendix C. StatVerif Extension Related Proofs 242

(E[a 7→ (a0[E1(M1), . . . , E1(Mn)], a0[E2(M1), . . . , E2(Mn)])], T , λ) ⊢ Q′

then by rule Tnew we have that (E, T , λ) ⊢ new a : a0[M1, . . . ,Mn];Q
′

Case Q = in(N, x);Q′.

By hypothesis (E,S, λ) ⊢ in(N, x);Q′ then by rule Tin we have that

∧
(E[x 7→ (p1, p2)],R, λ) ⊢ Q′

∀p1,p2|

R (S≤R ∧ R=R[j 7→S(j)| j∈λ] ∧

msg(E1(R̄1),E1(fst(N)),p1,E2(R̄2),E2(snd(N)),p2)∈FC′A0

input(E1(R̄1),E1(fst(N)),E2(R̄2),E2(snd(N)))∈FC′A0

then by transitivity of ≤ and since T = T [j 7→ Sj | j ∈ λ] we have that

∧
(E[x 7→ (p1, p2)],R, λ) ⊢ Q′

∀p1,p2|

R (T ≤R ∧ R=R[j 7→T (j)| j∈λ] ∧

msg(E1(R̄1),E1(fst(N)),p1,E2(R̄2),E2(snd(N)),p2)∈FC′A0

input(E1(R̄1),E1(fst(N)),E2(R̄2),E2(snd(N)))∈FC′A0

then by rule Tin we have that (E, T , λ) ⊢ in(N, x);Q′ (= Q)

Case Q = out(N1, N2);Q
′.

By hypothesis (E,S, λ) ⊢ out(N1, N2);Q
′, then by rule Tout we have

that

msg(E1(S̄1), E1(fst(N1)), E1(fst(N2)), E2(S̄2), E2(snd(N1)),

E2(snd(N2))) ∈ FC′A0, (E,S, λ) ⊢ Q′, then by inductive hypothesis

msg(E1(S̄1), E1(fst(N1)), E1(fst(N2)), E2(S̄2), E2(snd(N1)),

E2(snd(N2))) ∈ FC′A0 ∧ (E, T , λ) ⊢ Q′ and since S ≤ T we have that

msg(E1(T̄1), E1(fst(N1)), E1(fst(N2)), E2(T̄2), E2(snd(N1)),

E2(snd(N2))) ∈ FC′A0 ∧ (E, T , λ) ⊢ Q′ and by rule Tout we have that

(E, T , λ) ⊢ out(N1, N2);Q
′ (= Q)

Case Q = let x = D in Q1 else Q2.

By hypothesis (E,S, λ) ⊢ let x = D in Q1 else Q2, then by rule Tlet

we have that

Appendix C. StatVerif Extension Related Proofs 243

(∀ p1, p2 E1(fst(D)) ⇓Σ′ p1 and

E2(snd(D)) ⇓Σ′ p2(E[x 7→ (p1, p2)],S, λ) ⊢ Q1)

(if ∄ p1, E1(fst(D)) ⇓Σ′ p1 and

∄ p2, E2(snd(D)) ⇓Σ′ p2 then (E,S, λ) ⊢ Q2)

(if ∃ p1, E1(fst(D)) ⇓Σ′ p1 and

∄ p2, E2(snd(D)) ⇓Σ′ p2 then bad ∈ FC′A0)

(if ∄ p1, E1(fst(D)) ⇓Σ′ p1 and

∃ p2, E2(snd(D)) ⇓Σ′ p2 then bad ∈ FC′A0)

then by inductive hypothesis

(∀ p1, p2 E1(fst(D)) ⇓Σ′ p1 and

E ′2(snd(D)) ⇓Σ′ p2(E[x 7→ (p1, p2)], T , λ) ⊢ Q1)

(if ∄ p1, E1(fst(D)) ⇓Σ′ p1 and

∄ p2, E2(snd(D)) ⇓Σ′ p2 then (E, T , λ) ⊢ Q2)

(if ∃ p1, E1(fst(D)) ⇓Σ′ p1 and

∄ p2, E2(snd(D)) ⇓Σ′ p2 then bad ∈ FC′A0)

(if ∄ p1, E1(fst(D)) ⇓Σ′ p1 and

∃ p2, E2(snd(D)) ⇓Σ′ p2 then bad ∈ FC′A0)

and by rule Tlet we have that (E, T , λ) ⊢ let x = D in Q1 else Q2 (=

Q)

Case Q = lock sj1, . . . , sjm;Q
′.

By hypothesis (E,S, λ) ⊢ lock sj1, . . . , sjm;Q
′, then by rule Tlock we

have that

∧
(E,R, λ ∪ {j1, . . . , jm}) ⊢ Q′

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

then by transitivity of ≤ and since T = T [j 7→ Sj | j ∈ λ] we have that

∧
(E,R, λ ∪ {j1, . . . , jm}) ⊢ Q′

R|

R≤T ∧

R=R[j 7→T (j)| j∈λ]

Appendix C. StatVerif Extension Related Proofs 244

then by rule Tlock we have that (E, T , λ) ⊢ lock sj1, . . . , sjm;Q
′ (= Q)

Case Q = unlock sj1, . . . , sjm;Q
′.

By hypothesis (E,S, λ) ⊢ unlock sj1, . . . , sjm;Q
′, then by rule Tunlock

we have that

∧
(E,R, λ \ {j1, . . . , jm}) ⊢ Q′

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

then by transitivity of ≤ and since T = T [j 7→ Sj | j ∈ λ] we have that

∧
(E,R, λ \ {j1, . . . , jm}) ⊢ Q′

R|

R≤T ∧

R=R[j 7→T (j)| j∈λ]

then by rule Tunlock we have that (E, T , λ) ⊢ unlock sj1 , . . . , sjm;Q
′ (=

Q)

Case Q = sj1, . . . , sjm := N1, . . . , Nm;Q
′.

By hypothesis (E,S, λ) ⊢ sj1, . . . , sjm := N1, . . . , Nm;Q
′, then by rule

Tassign we have that

∧ R ≤ R[jk 7→ E(Nk) | 1 ≤ k ≤ m]

(E,R[jk 7→ E(Nk) | 1 ≤ k ≤ m], λ) ⊢ Q′

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

then by transitivity of ≤ and since T = T [j 7→ Sj | j ∈ λ] we have that

∧ R ≤ R[jk 7→ E(Nk) | 1 ≤ k ≤ m]

(E,R[jk 7→ E(Nk) | 1 ≤ k ≤ m], λ) ⊢ Q′

R|

R≤T ∧

R=R[j 7→T (j)| j∈λ]

by rule Tassign we have that

(E, T , λ) ⊢ sj1, . . . , sjm := N1, . . . , Nm;Q
′ (= Q)

Appendix C. StatVerif Extension Related Proofs 245

Case Q = read sj1, . . . , sjm as y1, . . . , ym;Q
′.

By hypothesis (E,S, λ) ⊢ read sj1 , . . . , sjm as y1, . . . , ym;Q
′, then by

rule Tread we have that

∧
(E ∪ {yk 7→ (E1(R1[jk]), E2(R2[jk]))},R, λ) ⊢ Q′

R|

R≤S∧

R=R[j 7→S(j)| j∈λ]

then by transitivity of ≤ and since T = T [j 7→ Sj | j ∈ λ] we have that

∧
(E ∪ {yk 7→ (E1(R1[jk]), E2(R2[jk]))},R, λ) ⊢ Q′

R|

R≤T ∧

R=R[j 7→T (j)| j∈λ]

and, by rule Tread we have that

(E, T , λ) ⊢ read sj1, . . . , sjm as y1, . . . , ym;Q
′ (= Q)

C.7.3 Typability of the Adversary (C[])

Let E0 = a 7→ (a[], a[])|a ∈ fn(C ′[A′0]). Let S0 = {s1 7→M1, . . . , sn 7→Mn}

Lemma C.23. Typability of the adversary: Let P ′ be a subprocess of C ′. Let E

be an environment (from names and variables to pairs of patterns) such that for all

a ∈ fn(P ′), att(E1(S̄01), E1(a), E2(S̄02), E2(a)) ∈ FC′A0 and for all x ∈ fv(P ′),

att(E1(S̄01), E1(x), E2(S̄02), E2(x)) ∈ FCA′

0
. Let S be a state (from cell names to

terms) and λ a set of cell indices. We show that (E,S0, ∅) ⊢ P ′ by induction on

P ′, similarly to [ARR11].

Proof. We first prove by induction on the depth d of P ′ that, if

Appendix C. StatVerif Extension Related Proofs 246

i E0 ⊆ E and

ii S0 ≤ S and

iii (bn(P ′) ∪ bv(P ′)) ∩ dom(E) = ∅ and

iv ∀ a ∈ fn(P ′), att(E1(S̄1), E1(a), E2(S̄2), E2(a)) ∈ FC′A0 and

v ∀ x ∈ fv(P ′), att(E1(S̄1), E1(x), E2(S̄2), E2(x)) ∈ FCA′

0
and

vi ∀ i ∈ 1, . . . , n, i ∈ λ if and only if P ′ is in the scope of a lock . . . si . . . in C
′

then

(E,S, λ) ⊢ P ′

Base case (d = 0). In that case P ′ = 0 and according to our typing system

(E,S, λ) ⊢ 0(= P ′)
Tnil

Inductive case (d > 0). We proceed by case analysis on the structure of P ′.

• Case P ′ = Q1 | Q2. First note that no parallel composition can occur in the

scope of a lock, so λ = ∅.

(i) By hypothesis, E0 ⊆ E.

(ii) By hypothesis, S0 ≤ S.

(iii) By definition of P ′ we have that bn(Q1) ∪ bv(Q1) ⊆ bn(P ′) ∪ bv(P ′),

and bn(Q2) ∪ bv(Q2) ⊆ bn(P ′) ∪ bv(P ′) then (by hyp) we have that

(bn(Q1) ∪ bv(Q1)) ∩ dom(E) ⊆ (bn(P ′) ∪ bv(P ′)) ∩ dom(E) = ∅ and

(bn(Q2) ∪ bv(Q2)) ∩ dom(E) ⊆ (bn(P ′) ∪ bv(P ′)) ∩ dom(E) = ∅

Appendix C. StatVerif Extension Related Proofs 247

(iv) By definition of P ′ we have that fn(Q1) ⊆ fn(P ′) and fn(Q2) ⊆ fn(P ′)

then (by hyp.) ∀ a ∈ fn(Q1) we have that att(E1(S̄1), E(a), E2(S̄2),

E(a)) ∈ FC′A0 and ∀ a ∈ fn(Q2) att(E1(S̄1), E(a), E2(S̄2), E(a)) ∈
FC′A0

(v) By definition of P ′ we have that fv(Q1) ⊆ fv(P ′) and fv(Q2) ⊆ fv(P ′)

then (by hyp.) ∀ x ∈ fv(Q1) we have that att(E1(S̄1), E(x), E2(S̄2),

E(x)) ∈ FC′A0 and ∀ x ∈ fv(Q2) att(E1(S̄1), E(x), E2(S̄2), E(x)) ∈
FC′A0

(vi) P ′ is in the scope of a lock . . . si . . . if and only if Q1 and Q2 are too,

so Q1, λ and Q2, satisfy condition (vi) by hypothesis.

Thus (Q1, E,S, λ) and (Q2, E,S, λ) satisfy conditions (i) − (vi), so we can

apply our inductive hypothesis (E,S, λ) ⊢ Q1 and (E,S, λ) ⊢ Q2 and, ac-

cording to our typing system

(E,S, λ) ⊢ Q1 (E,S, λ) ⊢ Q2

(E,S, λ) ⊢ (Q1 | Q2) = P ′
Tpar

• Case P ′ =!iQ. First note that no parallel composition can occur in the scope

of a lock, so λ = ∅.

(i) By hypothesis, E0 ⊆ E. Let E ∪ {i 7→ (l, l)} = E ′ we have that

E0 ⊆ E ⊆ E ′

(ii) By hypothesis, S0 ≤ S.

(iii) By definition of P ′ we have that bn(Q)∪ bv(Q) = bn(P ′)∪ bv(P ′), then
(by hyp) we have that (bn(Q)∪ bv(Q))∩ dom(E) ⊆ (bn(P ′)∪ bv(P ′))∩
dom(E) = ∅

(iv) By definition of P ′ we have that fn(Q) = fn(P ′) then (by hyp.)

∀ a ∈ fn(Q) we have that

att(E1(S̄1), E(a), E2(S̄2), E(a)) ∈ FC′A0 since E(a) = E ′(a) andE(S̄) =

Appendix C. StatVerif Extension Related Proofs 248

E ′(S̄) we have that

att(E ′1(S̄1), E
′(a), E ′2(S̄2), E

′(a)) ∈ FC′A0

(v) By definition of P ′ we have that fv(Q) = fv(P ′) then (by hyp.)

∀ x ∈ fv(Q) we have that

att(E1(S̄1), E(x), E2(S̄2), E(x)) ∈ FC′A0 since E(x) = E ′(x) and E(S̄) =
E ′(S̄) we have that

att(E ′1(S̄1), E
′(x), E ′2(S̄2), E

′(x)) ∈ FC′A0

(vi) P ′ is in the scope of a lock . . . si . . . if and only if Q is too, so Q, λ

satisfies condition (vi) by hypothesis.

Thus (Q,E ′,S, λ) satisfies conditions (i)− (vi), and we can apply our induc-

tive hypothesis (E ′,S, λ) ⊢ Q and according to our typing system

∀ l (E ′,S, λ) ⊢ Q
(E,S, λ) ⊢ (!iQ) = P ′

Trepl

• Case P ′ = new a : a0[M1, . . . ,Mn];Q. By hypothesis on C
′, bn(C ′)∩bn(A0) =

∅, thus a /∈ bn(P ′). Let E ′ = E ∪ {a 7→ (a[E1(fst(M1)), . . . , E1(fst(Mn))],

a[E2(snd(M1)), . . . , E2(snd(Mn))])}.

(i) By hypothesis, E0 ⊆ E. We have that E0 ⊆ E ⊆ E ′

(ii) By hypothesis, S0 ≤ S.

(iii) By definition of P ′ we have that bn(Q)∪ bv(Q) ⊆ bn(P ′)∪ bv(P ′), then
(by hyp) we have that (bn(Q)∪ bv(Q))∩ dom(E) ⊆ (bn(P ′)∪ bv(P ′))∩
dom(E) = ∅

(iv) Let b ∈ fn(Q). Then either b 6= a or b = a.

If b 6= a then b ∈ fn(P ′) and by hypothesis att(E1(S̄1), E1(b), E2(S̄2),

E2(b)) ∈ FC′A0 .

If b = a then by rule (Rf) we have that att(xs, a[E1(M1), . . . , E1(Mn)],

xs′, a[E2(M1), . . . , E2(Mn)]) ∈ FC′A0 for all xs, xs′ hence att(E ′1(S̄1),

Appendix C. StatVerif Extension Related Proofs 249

a[E1(fst(M1)), . . . , E1(fst(Mn))], E
′
2(S̄2), a[E2(snd(M1)), . . . ,

E2(snd(Mn))]) ∈ FC′A0

(v) Let x ∈ fv(Q) then x ∈ fv(P ′) and by hypothesis att(E1(S̄1), E1(x),

E2(S̄2), E2(x)) ∈ FC′A0 , since E(x) = E ′(x) we have that att(E ′1(S̄1),

E ′1(x), E
′
2(S̄2), E

′
2(x)) ∈ FC′A0

(vi) P ′ is in the scope of a lock . . . si . . . if and only if Q is too, so

Q, λ satisfies condition (vi) by hypothesis.

Thus (Q,E ′,S, λ) satisfies conditions (i)− (vi), and we can apply our induc-

tive hypothesis (E ′,S, λ) ⊢ Q and according to our typing system

(E ′,S, λ) ⊢ Q
(E,S, λ) ⊢ (new a : a0[M1, . . . ,Mn];Q) = P ′

Tnew

• Case P ′ = in(M,x);Q. Let R be a state such that S ≤ R and R =

R[j 7→ S(j) | j ∈ λ], let N be a term such that E(N) = (p1, p2) and

msg(E1(R1), E1(fst(M)), p1, E2(R2), E2(snd(M)), p2) ∈ FC′A0 , E
′ = E ∪

{x 7→ (p1, p2)}.

(i) By hypothesis, E0 ⊆ E ⊆ (E ∪ {x 7→ (p1, p2)}) = E ′. Moreover,

bv(P ′) ∩ dom(E) = ∅, x /∈ dom(E). Thus E ′ is indeed an environment,

i.e. a function from variables and names to pairs of patterns.

(ii) By hypothesis, S0 ≤ S ≤ R.

(iii) By definition of P ′ we have that bn(Q)∪ bv(Q) ⊆ bn(P ′)∪ bv(P ′), then
we have that (bn(Q)∪bv(Q))∩dom(E) ⊆ (bn(P ′)∪bv(P ′))∩dom(E) = ∅

(iv) Let a ∈ fn(Q) by definition a ∈ fn(P ′) and by hypothesis att(E1(S̄1),

E1(a), E2(S̄2), E2(a)) ∈ FC′A0. Since E(a) = E ′(a) and E(S̄) = E ′(S̄)
then att(E ′1(S̄1), E

′
1(a), E

′
2(S̄2), E

′
2(a)) ∈ FC′A0 . S ≤ R thus att(E ′1(R̄1),

E ′1(a), E
′
2(R̄2), E

′
2(a)) ∈ FC′A0

(v) Let y ∈ fv(Q) then either y ∈ fv(P ′) or y = x.

If y ∈ fv(P ′) then att(E1(S̄1), E1(y), E2(S̄2), E2(y)) ∈ FC′A0 .

Appendix C. StatVerif Extension Related Proofs 250

Since E(y) = E ′(y) and E(S̄) = E ′(S̄) we have that

att(E ′1(S̄1), E
′
1(x), E

′
2(S̄2), E

′
2(x)) ∈ FC′A0 . S ≤ R thus att(E ′1(R̄1),

E ′1(y), E
′
2(R̄2), E

′
2(y)) ∈ FC′A0 .

If y = x we have that ∀ u ∈ fn(M)∪ fv(M) att(E1(S̄1), E1(u), E2(S̄2),

E2(u)) ∈ FC′A0 and by Lemma C.20 att(E1(S̄1), E1(fst(M)), E2(S̄2),

E2(snd(M))) ∈ FC′A0 . Since S ≤ R we have that

att(E1(R̄1), E1(fst(M)), E2(R̄2), E2(snd(M))) ∈ FC′A0 and by rule Rl

att(E1(R̄1), E1(fst(N)), E2(R̄2), E2(snd(N))) ∈ FC′A0 . Since E ′(y) =

(p1, p2) and E(R̄) = E ′(R̄) we have

att(E ′1(R̄1), p1, E
′
2(R̄1), p2) ∈ FC′A0 .

(vi) P ′ is in the scope of a lock . . . si . . . if and only if Q is too, so Q, λ

satisfies condition (vi) by hypothesis.

Thus (Q,E ′,R, λ) satisfies conditions (i) − (vi), and we can apply our in-

ductive hypothesis (E ′,R, λ) ⊢ Q. Since att(E1(R̄1), E1(fst(M)), E2(R̄2),

E2(snd(M))) ∈ FC′A0 by rule Ri we have that

input(E1(R̄1), E1(fst(M)), E2(R̄2), E2(snd(M))) ∈ FC′A0 and according to

our typing system

∀R (S ≤ R ∧ R = R[j 7→ S(j) | j ∈ λ] ∧
∀ N : E(N) = (p1, p2),

msg(R̄1, E1(fst(M)), p1, R̄2, E2(snd(M)), p2) ∈ F
input(R̄1, E1(fst(M)), R̄2, E2(snd(M))) ∈ F)

(E′,R, λ) ⊢ Q

(E,S, λ) ⊢ (in(M,x);Q) = P ′
Tin

• Case P ′ = [s 7→ M]. This case cannot occur because by hypothesis no

[s 7→M] occurs in C ′.

• Case P ′ = out(M,N);Q.

(i) By hypothesis, E0 ⊆ E.

Appendix C. StatVerif Extension Related Proofs 251

(ii) By hypothesis, S0 ≤ S.

(iii) By definition of P ′ we have that bn(Q)∪ bv(Q) ⊆ bn(P ′)∪ bv(P ′), then
we have that (bn(Q)∪bv(Q))∩dom(E) ⊆ (bn(P ′)∪bv(P ′))∩dom(E) = ∅

(iv) Let a ∈ fn(Q) By definition fn(Q) ⊆ fn(P ′) a ∈ fn(P ′) and by

hypothesis ∀ a ∈ fn(Q),

att(E1(S̄1), E1(a), E2(S̄2), E2(a)) ∈ FC′A0.

(v) Let x ∈ fv(Q) By definition fv(Q) ⊆ fv(P ′) hence x ∈ fv(P ′) and by

hypothesis ∀ x ∈ fv(Q),

att(E1(S̄1), E1(x), E2(S̄2), E2(x)) ∈ FC′A0 .

(vi) P ′ is in the scope of a lock . . . si . . . if and only if Q is too, so Q, λ

satisfies condition (vi) by hypothesis.

Thus (Q,E,S, λ) satisfies conditions (i)− (vi), and we can apply our induc-

tive hypothesis (E,S, λ) ⊢ Q. Moreover, by hypothesis

– ∀ a ∈ fn(M) ∪ fn(N), att(E1(S̄1), E1(a), E2(S̄2), E2(a)) ∈ FC′A0 be-

cause fn(M) ∪ fn(N) ⊆ fn(P ′); and

– ∀ x ∈ fv(M) ∪ fv(N), att(E1(S̄1), E1(x), E2(S̄2), E2(x)) ∈ FC′A0 be-

cause fv(M) ∪ fv(N) ⊆ fv(P ′); and

Thus according to Lemma C.20 it is the case that att(E1(S̄1), E1(fst(M)),

E2(S̄2),

E2(snd(M))) ∈ FC′A0 and att(E1(S̄1), E1(fst(N)), E2(S̄2), E2(snd(N))) ∈
FC′A0 and because by (Rs) att(xs, xc, xs′, xc′)∧
attacker(xs, xm, xs′, xm′) → msg(xs, xc, xm, xs′, xc′, xm′) ∈ FC′A0 we have

by resolution that

msg(E1(S̄1), E1(fst(M)), E1(fst(N)), E2(S̄2), E2(snd(M)), E2(snd(N))) ∈

Appendix C. StatVerif Extension Related Proofs 252

FC′A0. Thus, according to our typing system

msg(E1(S̄1), E1(fst(M)), E1(fst(N)),

E2(S̄2), E2(snd(M)), E2(snd(N))) ∈ FC′A0

(E,S, λ) ⊢ Q
(E,S, λ) ⊢ (out(M,N);Q) = P ′

Tout

• Case P ′ = lock sj1, . . . , sjm;Q. Let R be a state such that S ≤ R and

R = R[k 7→ S(k)|k ∈ λ]. Let λ′ = λ ∪ {j1, . . . , jm}.

(i) By hypothesis, E0 ⊆ E.

(ii) By hypothesis, S0 ≤ S ≤ R.

(iii) By definition of P ′ we have that bn(Q)∪ bv(Q) = bn(P ′)∪ bv(P ′), then
we have that (bn(Q)∪bv(Q))∩dom(E) = (bn(P ′)∪bv(P ′))∩dom(E) = ∅

(iv) Let a ∈ fn(Q) By definition fn(Q) ⊆ fn(P ′) and a ∈ fn(P ′) and by

hypothesis ∀ a ∈ fn(Q),

att(E1(S̄1), E1(a), E2(S̄2), E2(a)) ∈ FC′A0 since S ≤ R we have that

att(E1(R̄1), E1(a), E2(R̄2), E2(a)) ∈ FC′A0 .

(v) Let x ∈ fv(Q) By definition fv(Q) ⊆ fv(P ′) hence x ∈ fv(P ′) and by

hypothesis ∀ x ∈ fv(Q),

att(E1(S̄1), E1(x), E2(S̄2), E2(x)) ∈ FC′A0 since S ≤ R we have that

att(E1(R̄1), E1(x), E2(R̄2), E2(x)) ∈ FC′A0 .

(vi) P ′ is in the scope of a lock . . . si . . . if and only if Q is too, and P ′ is

in the scope of a lock . . . si . . . with i /∈ {j1, . . . , jm} if and only if Q

is too. So Q, λ′ satisfies condition (vi) by hypothesis.

Appendix C. StatVerif Extension Related Proofs 253

Thus (Q,E,R, λ′) satisfies conditions (i) − (vi), and we can apply our in-

ductive hypothesis (E,R, λ′) ⊢ Q. Thus, according to our typing system

∀R (S ≤ R ∧ R = R[j 7→ S(j) | j ∈ λ]

(E,R, λ ∪ {i1, . . . , im}) ⊢ Q)
(E,S, λ) ⊢ (lock sj1, . . . , sjm;Q) = P ′

Tlock

• Case P ′ = unlock sj1 , . . . , sjm;Q. Let R be a state such that S ≤ R and

R = R[k 7→ S(k)|k ∈ λ]. Let λ′ = λ \ {j1, . . . , jm}.

(i) By hypothesis, E0 ⊆ E.

(ii) By hypothesis, S0 ≤ S ≤ R.

(iii) By definition of P ′ we have that bn(Q)∪ bv(Q) = bn(P ′)∪ bv(P ′), then
we have that (bn(Q)∪bv(Q))∩dom(E) = (bn(P ′)∪bv(P ′))∩dom(E) = ∅

(iv) Let a ∈ fn(Q) By definition fn(Q) ⊆ fn(P ′) and a ∈ fn(P ′) and by

hypothesis ∀ a ∈ fn(Q),

att(E1(S̄1), E1(a), E2(S̄2), E2(a)) ∈ FC′A0 since S ≤ R we have that

att(E1(R̄1), E1(a), E2(R̄2), E2(a)) ∈ FC′A0 .

(v) Let x ∈ fv(Q) By definition fv(Q) ⊆ fv(P ′) hence x ∈ fv(P ′) and by

hypothesis ∀ x ∈ fv(Q),

att(E1(S̄1), E1(x), E2(S̄2), E2(x)) ∈ FC′A0 since S ≤ R we have that

att(E1(R̄1), E1(x), E2(R̄2), E2(x)) ∈ FC′A0 .

(vi) P ′ is in the scope of a lock . . . si . . . if and only if Q is too, and P ′ is

in the scope of a lock . . . si . . . with i /∈ {j1, . . . , jm} if and only if Q

is too. So Q, λ′ satisfies condition (vi) by hypothesis.

Appendix C. StatVerif Extension Related Proofs 254

Thus (Q,E,R, λ′) satisfies conditions (i) − (vi), and we can apply our in-

ductive hypothesis (E,R, λ′) ⊢ Q. Thus, according to our typing system

∀R (S ≤ R ∧ R = R[j 7→ S(j) | j ∈ λ]

(E,R, λ \ {i1, . . . , im}) ⊢ Q)
(E,S, λ) ⊢ (unlock sj1 , . . . , sjm;Q) = P ′

Tunlock

• Case P ′ = read sj1, . . . , sjm as x1, . . . , xm;Q. Let R be a state such that

S ≤ R and R = R[k 7→ S(k)|k ∈ λ]. Let E ′ = E ∪ {xk 7→ (E1(fst(R[jk]),

E2(snd(R[jk])))|1 ≤ k ≤ m}.

(i) By hypothesis, E0 ⊆ E ⊆ E ′. Moreover, bv(P ′) ∩ dom(E) = ∅, x /∈
dom(E). Thus E is indeed an environment, i.e. a function from vari-

ables and names to patterns.

(ii) By hypothesis, S0 ≤ S ≤ R.

(iii) By definition of P ′ we have that bn(Q)∪ bv(Q) ⊆ bn(P ′)∪ bv(P ′), then
we have that (bn(Q)∪bv(Q))∩dom(E) ⊆ (bn(P ′)∪bv(P ′))∩dom(E) = ∅

(iv) Let a ∈ fn(Q) by definition a ∈ fn(P ′) and by hypothesis att(E1(S̄1),

E1(a), E2(S̄2), E2(a)) ∈ FC′A0. Since E(a) = E ′(a) and E(S̄) = E ′(S̄)
we have that att(E ′1(S̄1), E

′
1(a), E

′
2(S̄2), E

′
2(a)) ∈ FC′A0. S ≤ R thus

att(E ′1(R̄1), E
′
1(a), E

′
2(R̄2), E

′
2(a)) ∈ FC′A0

(v) Let y ∈ fv(Q) then either y ∈ fv(P ′) or y ∈ {x1, . . . , xm}.
If y ∈ fv(P ′) then att(E1(S̄1), E1(y), E2(S̄2), E2(y)) ∈ FC′A0. Since

E(y) = E ′(y) and E(S̄) = E ′(S̄) we have that

att(E ′1(S̄1), E
′
1(x), E

′
2(S̄2), E

′
2(x)) ∈ FC′A0 . S ≤ R thus att(E ′1(R̄1),

E ′1(y), E
′
2(R̄2), E

′
2(y)) ∈ FC′A0 .

If y = xk for some k ∈ {1, . . . , m} by hypothesis cells(C ′) ⊆ fn(A0),

thus by definition of E0 we have that cells(C ′) ⊆ dom(E0) and by

construction of FC′A0 we have that ∀ i ∈ {1, . . . , n}
Ci = msg((xs1, . . . , xsn), xc, xm, (xs

′
1, . . . , xs

′
n), xc

′, xm′) ∧

Appendix C. StatVerif Extension Related Proofs 255

att((xs1, . . . , xsn), E01(si), (xs
′
1, . . . , xs

′
n), E01(si)) →

att((xs1, . . . , xsn), xsi, (xs
′
1, . . . , xs

′
n), xs

′
i) ∈ CC′A0 .

By definition {sj1, . . . , sjm} ∈ fn(P ′) and by hypothesis att(E1(S̄1),

E1(sjk , E2(S̄2), E2(sjk)) ∈ FC′A0 . Since E0(sjk) = E(sjk) we have

that att(E01(S̄1), E01(sjk), E02(S̄2), E02(sjk)) ∈ FC′A0 . Since S ≤ R
we have that att(E01(R̄1), E01(sjk), E02(R̄2), E02(sjk)) ∈ FC′A0 . Since

Cjk ∈ CC′A0 we have that

att(E01(R̄1), E1(R̄1jk
), E02(R̄2), E2(R̄2jk

)) ∈ FC′A0 , R̄jk = R̄[jk] thus

att(E01(R̄1), E1(R̄1[jk]), E02(R̄2), E2(R̄2[jk])) ∈ FC′A0 . Finally, since

E ′(y) = E ′(R[jk]) we have that

att(E01(R̄1), E
′
1(y), E02(R̄2), E

′
2(y)) ∈ FC′A0

(vi) P ′ is in the scope of a lock . . . si . . . if and only if Q is too. So Q, λ

satisfies condition (vi) by hypothesis.

Thus (Q,E ′,R, λ) satisfies conditions (i) − (vi), and we can apply our in-

ductive hypothesis (E,R, λ) ⊢ Q. Thus, according to our typing system

∀R (S ≤ R ∧ R = R[j 7→ S(j) | j ∈ λ]

(E ∪ {xk 7→ (E1(fst(R[ik])), E2(snd(R[ik]))) | 1 ≤ k ≤ m},
R, λ) ⊢ Q)

(E,S, λ) ⊢ (read si1 , . . . , sim as x1, . . . , xm;Q) = P ′
Tread

• Case P ′ = sj1, . . . , sjm :=M1, . . . ,Mm;Q. Let R be a state such that S ≤ R
and R = R[k 7→ S(k)|k ∈ λ]. Let R′ = R[jk 7→ Mk | 1 ≤ k ≤ m]. We first

show that R ≤ R′. By hypothesis cells(C ′) ⊆ fn(A0). Thus by construction

of E0, cells(C ′) ⊆ dom(E0), and by construction of CA0 for all i ∈ {1, . . . , n}
Ci1 = msg((xs1, . . . , xsn), xc, xm, (xs

′
1, . . . , xs

′
n), xc

′, xm′) ∧
att((xs1, . . . , xsn), E01(si), (xs

′
1, . . . , xs

′
n), E01(s

′
i)) ∧

att((xs1, . . . , xsn), ysi, (xs
′
1, . . . , xs

′
n), ys

′
i) →

msg((xs1, . . . , ysi, . . . , xsn), xc, xm, (xs
′
1, . . . , ys

′
i, . . . , xs

′
n), xc

′, xm′) ∈ CA0

Appendix C. StatVerif Extension Related Proofs 256

Ci2 = att((xs1, . . . , xsn), xm, (xs
′
1, . . . , xs

′
n), xm

′) ∧
att((xs1, . . . , xsn), E01(si)(xs

′
1, . . . , xs

′
n), E02(s

′
i)) ∧

att((xs1, . . . , xsn), ysi, (xs
′
1, . . . , xs

′
n), ys

′
i) →

att((xs1, . . . , ysi, . . . , xsn), xm, (xs
′
1, . . . , ys

′
i, . . . , xs

′
n), xm

′) ∈ CA0 .

By definition sj1, . . . , sjm ∈ fn(Q) and by hypothesis
∧

1≤k≤m att(E1(S̄1), E1(sjk), E2(S̄2), E2(sjk)) ∈ FC′A0 since

S ≤ R we have
∧

1≤k≤m att(E1(R̄1), E1(sjk), E2(R̄2), E2(sjk)) ∈ FC′A0 .

E0(sjk) = E(sjk) then
∧

1≤k≤m att(E1(R̄1), E01(sjk), E2(R̄2), E02(sjk)) ∈ FC′A0.

By hypothesis ∀ u ∈ fn(Mk) ∪ fv(Mk)
∧

1≤k≤m att(E1(S̄1), E1(u), E2(S̄2), E2(u)) ∈ FC′A0 then by Lemma C.20
∧

1≤k≤m att(E1(S̄1), E1(fst(Mk)), E2(S̄2), E2(snd(Mk))) ∈ FC′A0 , since S ≤
R we have that
∧

1≤k≤m att(E1(R̄1), E1(fst(Mk)), E2(R̄2), E2(snd(Mk))) ∈ FC′A0. Finally,

we can infer that

∀ K,L msg(E1(R̄1), E1(fst(K)), E1(fst(L)), E2(R̄2), E2(snd(K)),

E2(snd(L))) ∈ FC′A0 ⇒
msg(E1(R̄′1), E1(fst(K)), E1(fst(L)), E2(R̄′2), E2(snd(K)), E2(snd(L))) ∈
FC′A0 and

∀ K att(E1(R̄1), E1(fst(K)), E2(R̄2), E2(snd(K))) ∈ FC′A0 ⇒
att(E1(R̄′1), E1(fst(K)), E2(R̄′2), E2(snd(K))) hence by definition R̄ ≤ R̄′

(i) By hypothesis, E0 ⊆ E

(ii) By hypothesis, S0 ≤ S ≤ R ≤ R′.

(iii) By definition of P ′ we have that bn(Q)∪ bv(Q) = bn(P ′)∪ bv(P ′), then
we have that (bn(Q)∪bv(Q))∩dom(E) = (bn(P ′)∪bv(P ′))∩dom(E) = ∅

(iv) Let a ∈ fn(Q) By definition fn(Q) ⊆ fn(P ′) and a ∈ fn(P ′) and by

hypothesis ∀ a ∈ fn(Q),

att(E1(S̄1), E1(a), E2(S̄2), E2(a)) ∈ FC′A0 since S ≤ R we have that

Appendix C. StatVerif Extension Related Proofs 257

att(E1(R̄1), E1(a), E2(R̄2), E2(a)) ∈ FC′A0 and since R ≤ R′ we have

that att(E1(R̄′1), E1(a), E2(R̄′2), E2(a)) ∈ FC′A0 .

(v) Let x ∈ fv(Q) By definition fv(Q) ⊆ fv(P ′) hence x ∈ fv(P ′) and by

hypothesis ∀ x ∈ fv(Q),

att(E1(S̄1), E1(x), E2(S̄2), E2(x)) ∈ FC′A0 since S ≤ R we have that

att(E1(R̄1), E1(x), E2(R̄2), E2(x)) ∈ FC′A0 and since R ≤ R′ we have

that att(E1(R̄′1), E1(x), E2(R̄′2), E2(x)) ∈ FC′A0.

(vi) P ′ is in the scope of a lock . . . si . . . if and only if Q is too. So Q, λ

satisfies condition (vi) by hypothesis.

Thus (Q,E,R′, λ) satisfies conditions (i) − (vi), and we can apply our in-

ductive hypothesis (E,R′, λ) ⊢ Q. Thus, according to our typing system

∀R (S ≤ R,R = R[k 7→ S(k) | k ∈ λ]∧
R ≤ R′ = R[jk 7→ Mk], 1 ≤ k ≤ m),

(E,R[jk 7→ Mk], λ) ⊢ Q
(E,S, λ) ⊢ (si1, . . . , sim :=M1, . . . ,Mm;Q) = P ′

Tassign

• Case P ′ = let x = D in Q1 else Q2. Let E
′ = E ∪ {x 7→ (p1, p2)}.

(i) By hypothesis, E0 ⊆ E ⊆ E ′

(ii) By hypothesis, S0 ≤ S ≤ R.

(iii) By definition of P ′ we have that bn(Q1) ∪ bv(Q1) ⊆ bn(P ′) ∪ bv(P ′)

and bn(Q2) ∪ bv(Q2) ⊆ bn(P ′) ∪ bv(P ′), then we have that (bn(Q1) ∪
bv(Q1)) ∩ dom(E) ⊆ (bn(P ′) ∪ bv(P ′)) ∩ dom(E) = ∅ and (bn(Q2) ∪
bv(Q2)) ∩ dom(E) ⊆ (bn(P ′) ∪ bv(P ′)) ∩ dom(E) = ∅

(iv) By definition fn(Q1) ⊆ fn(P ′) and by hypothesis ∀ a ∈ fn(Q1),

att(E1(S̄1), E1(a), E2(S̄2), E2(a)) ∈ FC′A0. By definition fn(Q2) ⊆
fn(P ′) and by hypothesis ∀ a ∈ fn(Q2), att(E1(S̄1), E1(a), E2(S̄2),

E2(a)) ∈ FC′A0.

Appendix C. StatVerif Extension Related Proofs 258

(v) By definition fv(Q1) ⊆ fv(P ′) ∪ {x}. Let y ∈ fv(Q1) then either

y ∈ fv(P ′) or y = x.

Case y ∈ fv(P ′): by hypothesis att(E1(S̄1), E1(y), E2(S̄2), E2(y)) ∈
FC′A0 since E(y) = E ′(y) and E(S) = E ′(S) we have att(E ′1(S̄1), E

′
1(y),

E ′2(S̄2), E
′
2(y)) ∈ FC′A0 and since S ≤ R we have that

att(E ′1(R̄1), E
′
1(y), E

′
2(R̄2), E

′
2(y)) ∈ FC′A0

Case y = x: let p1, p2 such that E1(fst(D)) ⇓Σ′ p1 and E2(snd(D)) ⇓Σ′

p2 since by hypothesis ∀ u ∈ fn(D) ∪ fv(D),

att(E1(S̄1), E1(u), E2(S̄2), E2(u)) ∈ FC′A0 and fn(p1)∪fv(p1) ⊆ fn(D)∪
fv(D), fn(p2)∪ fv(p2) ⊆ fn(D)∪ fv(D) by Lemma C.20 we have that

att(E1(S̄1), p1, E2(S̄2), p2) ∈ FC′A0 . Since S ≤ R we have att(E1(R̄1), p1,

E2(R̄2), p2) ∈ FC′A0 and finally since E ′(y) = (p1, p2) we have

att(E ′1(R̄1), E
′
1(y), E2(R̄2), E

′
2(y)) ∈ FC′A0

By definition fv(Q2) ⊆ fv(Q) ⇒ ∀ x ∈ fv(Q2),

att(E1(S̄1), E1(x), E2(S̄2), E2(x)) ∈ FC′A0

(vi) P ′ is in the scope of a lock . . . si . . . if and only if Q1 and Q2 are too.

So Q1, λ and Q2, λ satisfy condition (vi) by hypothesis.

Thus (Q1, E
′,R, λ) and (Q2, E,S, λ) satisfy conditions (i)−(vi), and we can

apply our inductive hypothesis (E ′,R, λ) ⊢ Q1, (E,S, λ) ⊢ Q2.

In order to show the desired property, we have to show that if for all a ∈
fn(D), att(E1(S̄1), E1(a), E2(S̄2), E2(a)) ∈ FC′A0 and for all x ∈ fv(D),

att(E1(S̄1), E1(x), E2(S̄2), E2(x)) ∈ FC′A0, then we have:

(a) if E1(fst(D)) ⇓Σ′ p1 and ∄p2, E2(snd(D)) ⇓Σ′ p2, then bad ∈ FC′A0 ;

symmetrically, if E2(snd(D)) ⇓Σ′ p2 and ∄p1, E1(fst(D)) ⇓Σ′ p1, then

bad ∈ FC′A0.

The proof is by induction on D.

– Case D = diff[a, a]: we have E1(fst(D)) = E1(a) ⇓Σ′ E1(a) and

E2(snd(D)) = E2(a) ⇓Σ′ E2(a), so Property (a) holds.

Appendix C. StatVerif Extension Related Proofs 259

– Case D = x: This case is similar to that for D = diff[a, a].

– Case D = eval h(D1, . . . , Dn): we prove the first part of Property (a).

The second part of Property (a) follows by symmetry. Since E1(D) ⇓Σ′

p1, there exist h(N1, . . . , Nn) → N ∈ defΣ′(h), p1, p1,1, . . . , p1,n, and

σ such that E1(fst(Di)) ⇓Σ′ p1,i for all i ∈ {1, . . . , n}, p1 = σN ,

and p1,i = σNi for all i ∈ {1, . . . , n}. Since there exists no p2 such

that E2(snd(D)) ⇓Σ p2, either for some i ∈ {1, . . . , n} there exists

no p2,i such that E2(snd(Di)) ⇓Σ p2,i (and bad ∈ FC′A0 by induc-

tion hypothesis), or for all i ∈ {1, . . . , n} there exists p2,i such that

E2(snd(Di)) ⇓Σ p2,i, and there exist no h(N ′1, . . . , N
′
n) → N ′ ∈ defΣ(h)

and σ such that for all i ∈ {1, . . . , n}, Σ ⊢ p2,i = σN ′i . Hence, h must

be a destructor.

By Property S2, there exists an environment E ′ such that Σ ⊢ E ′(a) =
E(a) for all a ∈ fn(D), Σ ⊢ E ′(x) = E(x) for all x ∈ fv(D), and

nfS,Σ(E
′). By Lemma C.16, att(E ′1(S1), E

′
1(a), E

′
2(S2), E

′
2(a)) ∈ FC′A0

for all a ∈ fn(D) and att(E ′1(S1), E
′
1(x), E

′
2(S2), E

′
2(x)) ∈ FC′A0 for

all x ∈ fv(D). We have nfS,Σ(E
′(Di)) and Σ ⊢ E ′2(snd(Di)) =

E2(snd(Di)).

By Property S2, there exist p′2,1, . . . , p
′
2,n such that Σp′2,i = p2,i for all i ∈

{1, . . . , n} and nfS,Σ(E
′, p′2,1, . . . , p

′
2,n). By a variant of LemmaC.4 for

patterns instead of terms, E ′2(snd(Di)) ⇓Σ′ p′2,i for all i ∈ {1, . . . , n}. By
a variant of Lemma C.7 for patterns instead of terms, E ′1(fst(Di)) ⇓Σ

p′1,i for some p′1,i such that Σ ⊢ p′1,i = p1,i. By Property S2, there exist

p′′1,1, . . . , p
′′
1,n, p

′′
1 such that Σ ⊢ p′′1,i = p1,i for all i ∈ {1, . . . , n}, Σ ⊢

p′′1 = p1, and nfS,Σ(E
′, p′2,1, . . . , p

′
2,n, p

′′
1,1, . . . , p

′′
1,n, p

′′
1). By a variant of

Lemma C.4 for patterns instead of terms, E1(fst(Di)) ⇓Σ′ p′′1,i for all i ∈
{1, . . . , n}. By Property (v), we obtain att(E ′1(S1), p

′′
1,i, E

′
2(S2), p

′
2,i) ∈

FC′A0 for all i ∈ {1, . . . , n}. Since Σ ⊢ p′2,i = p2,i, there exist no σ

and h(N ′1, . . . , N
′
n) → N ′ ∈ defΣ(h) such that for all i ∈ {1, . . . , n},

Appendix C. StatVerif Extension Related Proofs 260

Σ ⊢ p′2,i = σN ′i . By Lemma C.5, there exist no σ and h(N ′1, . . . , N
′
n) →

N ′ ∈ defΣ′(h) such that for all i ∈ {1, . . . , n}, Σ ⊢ p′2,i = σN ′i , that is,

we have

∧

h(N ′

1,...,N
′
n)→N ′∈defΣ′ (h)

nounif((p′2,1, . . . , p
′
2,n), GV ar(N

′
1, . . . , N

′
n))

Since Σ ⊢ p′′1,i = p1,i, Σ ⊢ p′′1 = p1, and nfS,Σ(p
′′
1,1, . . . , p

′′
1,n, p

′′
1), by

Lemma C.5 and a variant of Lemma C.3 for patterns instead of terms,

there exist h(N1, . . . , Nn) → N in defΣ′(h) and σ such that p′′1,i = σNi

for all i ∈ {1, . . . , n} and p1 = σN . Hence, by Clause (Rt), bad ∈
FC′A0 .

(∀ p1, p2 E1(fst(D)) ⇓Σ′ p1 and E2(snd(D)) ⇓Σ′ p2

(E[x 7→ (p1, p2)],S, λ) ⊢ Q1)

(if ∄ p1, E1(fst(D)) ⇓Σ′ p1 and ∄ p2, E2(snd(D)) ⇓Σ′ p2 then

(E,S, λ) ⊢ Q2)

(if ∃ p1, E1(fst(D)) ⇓Σ′ p1 and ∄ p2, E2(snd(D)) ⇓Σ′ p2 then

bad ∈ F)

(if ∄ p1, E1(fst(D)) ⇓Σ′ p1 and ∃ p2, E2(snd(D)) ⇓Σ′ p2 then

bad ∈ F)

(E,S, λ) ⊢ (let x = D in Q1 else Q2) = P ′
Tlet

To conclude the proof we need to show that C ′, E0, S0, and ∅ satisfy conditions

(i)- (vi).

(i) By definition E0 ⊆ E0.

(ii) By definition S0 ≤ S0.

Appendix C. StatVerif Extension Related Proofs 261

(iii) By hypotheses, dom(E0) = fn(A0) ∪ fn(C ′) ∪ cells(A0) and (bn(C ′) ∪
bv(C ′))∩(fn(A0)∪fn(P)∪cells(P)) = ∅, thus (bn(C ′)∪bv(C ′))∩dom(E0) =

∅.

(iv) By construction, we have that ∀a ∈ fn(C ′) E0(a) = (a[x], a[x]), and

att(E01(S01), a[x], E02(S02), a[x]) ∈ CA0 . Thus ∀a ∈ fn(A),

att(E01(S01), E01(a), E02(S02), E02(a)) ∈ FC′A0 .

(v) C ′ is an Init-adversary, so it is a closed process, and fv(C ′) = ∅.

(vi) C ′ is by definition under no lock in C ′, thus by definition C ′, ∅ satisfy con-

dition (vi)

We can then apply the preliminary result we just established to conclude that

(E0, S0, ∅) ⊢ C ′.

C.7.4 Typability of the Protocol (A0)

Let E0 = a 7→ (a[], a[])|a ∈ fn(C ′[A′0]). Let S0 = {s1 7→M1, . . . , sn 7→Mn}

Lemma C.24. Typability of the protocol: We show that (E0,S0, ∅) ⊢ P , simi-

larly to [ARR11].

Proof. Let Q be a subprocess of P and σ, ρ,H, ϕ, and λ. We first prove by induc-

tion on the size of Q, that if

(i) ρ binds all the free names and variables of Q,H , and ϕ;

(ii) (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅;

(iii) σ is a closed substitution;

Appendix C. StatVerif Extension Related Proofs 262

(iv) i ∈ λ if and only if Q is in the scope of lock . . .si . . . in P ;

(v) CA0 ⊇ ‖Q‖ρω1ω2Hϕ1ϕ2λ;

(vi) ∀ C ∈ H , σC can be derived from CA0 .

then (ρσ, ϕσ, λ) ⊢ Q.

Base case (|Q| = 0). In this case Q = 0, and thus according to the rule Tnil of

our type system we have that

(ρσ, ϕσ, λ) ⊢ 0(= Q)
Tnil

Inductive case (|Q| > 0). We proceed by case analysis on the structure of Q.

• Case Q = Q1 | Q2. In this case, λ = ∅ because no parallel compo-

sition can occur under a lock. We will show that (Q1, σ, ρ,H, ϕ, λ) and

(Q2, σ, ρ,H, ϕ, λ) satisfy conditions (i)-(vi)

(i) By definition, fv(Q1)∪fv(Q2) = fv(Q) and fn(Q1)∪fn(Q2) = fn(Q).

Thus if ρ binds the free names and variables of Q, it also binds the free

names and variables of Q1 and Q2.

(ii) By definition bn(Q1)∪ bv(Q1) ⊆ bn(Q) ∪ bv(Q) and bn(Q2)∪ bv(Q2) ⊆
bn(Q)∪bv(Q) then by hypothesis (bn(Q1)∪bv(Q1))∩dom(ρ) ⊆ (bn(Q)∪
bv(Q))∩dom(ρ) = ∅ and (bn(Q2)∪bv(Q2))∩dom(ρ) ⊆ (bn(Q)∪bv(Q))∩
dom(ρ) = ∅

(iii) By hypothesis σ is a closed substitution.

(iv) By definition Q is under a lock . . .si . . . in P if and only if Q1 and

Q2 are also in the scope of a lock . . .si . . . in P , thus condition (iv) is

satisfied by hypothesis.

(v) By hypothesis CA0 ⊇ ‖Q1 | Q2‖ρHϕ1ϕ2λ
def
= ‖Q1‖ρHϕ1ϕ2λ ∪ ‖Q2‖ρH

ϕ1ϕ2λ

Appendix C. StatVerif Extension Related Proofs 263

(vi) Let C ∈ H . By hypothesis, we know that σC is derivable from CA0 .

We can thus apply our induction hypothesis to infer that (ρσ, ϕσ, λ) ⊢ Q1

and (ρσ, ϕσ, λ) ⊢ Q2. Hence according to our type system

(ρσ, ϕσ, λ) ⊢ Q1 (ρσ, ϕσ, λ) ⊢ Q2

(ρσ, ϕσ, λ) ⊢ (Q1 | Q2) = Q
Tpar

• Case Q =!iQ′. In this case, λ = ∅ because no replication can occur under a

lock. We will show that (Q′, σ, ρ[i 7→ (l, l)], H, ϕ, λ) satisfy conditions (i)-(vi)

(i) By definition, fv(Q′) = fv(Q) and fn(Q′) = fn(Q). Thus if ρ binds

the free names and variables of Q, it also binds the free names and

variables of Q′.

(ii) By definition we have that bn(Q′) ∪ bv(Q′) = bn(Q) ∪ bv(Q) and by

hypothesis (bn(Q′)∪ bv(Q′))∩ dom(ρ) = (bn(Q)∪ bv(Q))∩ dom(ρ) = ∅

(iii) By hypothesis σ is a closed substitution.

(iv) By definition Q is under a lock . . .si . . . in P if and only if Q′ is also

under a lock . . .si . . . in P , thus condition (iv) is satisfied by hypothesis.

(v) By hypothesis CA0 ⊇ ‖!iQ′‖ρHϕ1ϕ2λ = ‖Q′‖ρ[i 7→ (l, l)]Hϕ1ϕ2λ

(vi) Let C ∈ H . By hypothesis, we know that σC is derivable from CA0 .

We can thus apply the induction hypothesis to infer that

(ρ[i 7→ (l, l)]σ, ϕσ, λ) ⊢ Q′ and hence according to our type system

∀ l (ρ[i 7→ (l, l)]σ, ϕσ, λ) ⊢ Q′
(ρσ, ϕσ, λ) ⊢ (!iQ′) = Q

Trepl

• Case Q = new a : a0[M1, . . . ,Mn];Q
′. Note that Q being a sub-process of P

implies that a ∈ bn(P). Let ρ′ = ρ ∪ {a 7→ (a[ρ1(fst(M1)), . . . ,

ρ1(fst(Mn))], a[ρ2(snd(M1)), . . . , ρ2(snd(Mn))])}. We first show that

(Q′, σρ′, H, ϕ, λ) satisfy conditions (i)-(vi)

Appendix C. StatVerif Extension Related Proofs 264

(i) By definition we have that fv(Q′)∪ fn(Q′)∪ fn(M1)∪ · · · ∪ fn(Mn)∪
fv(M1) ∪ · · · ∪ fv(Mn) ∪ fn(H) ∪ fv(H) ∪ fn(ϕ) ∪ fv(ϕ) = fv(Q) ∪
fn(Q)∪{a}∪fn(M1)∪· · ·∪fn(Mn)∪fv(M1)∪· · ·∪fv(Mn)∪fn(H)∪
fv(H) ∪ fn(ϕ) ∪ fv(ϕ). By hypothesis fv(Q′) ∪ fn(Q′) ∪ ∪fn(M1) ∪
· · · ∪ fn(Mn) ∪ fv(M1) ∪ · · · ∪ fv(Mn) ∪ fn(H) ∪ fv(H) ∪ fn(ϕ) ∪
fv(ϕ) ⊆ dom(ρ) ∪ {a}. Since dom(ρ′) = dom(ρ) ∪ {a} we have that

fv(Q′) ∪ fn(Q′)∪∪fn(M1) ∪ · · · ∪ fn(Mn) ∪ fv(M1)∪ · · · ∪ fv(Mn) ∪
fn(H) ∪ fv(H) ∪ fn(ϕ) ∪ fv(ϕ) ⊆ dom(ρ′)

(ii) By definition (bn(Q′) ∪ bv(Q′)) ⊂ (bn(Q) ∪ bv(Q)) and by hypothesis

(bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅. Hence, (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) ⊂
(bn(Q)∪ bv(Q))∩ dom(ρ) = ∅, since a /∈ bn(Q′) we have that (bn(Q′)∪
bv(Q′)) ∩ dom(ρ) = ∅

(iii) By hypothesis, σ is a closed substitution.

(iv) By definition Q is under a lock . . .si . . . in P if and only if Q′ is under

a lock . . . si . . . , so condition (iv) is satisfied by hypothesis.

(v) CA0 ⊇ ‖new a : a0[M1, . . . ,Mn];Q
′‖ρHϕ1ϕ2λ

def
=

‖Q′‖(ρ ∪ {a 7→ (a[ρ1(fst(M1)), . . . , ρ1(fst(Mn))],

a[ρ2(snd(M1)), . . . , ρ2(snd(Mn))])})Hϕ1ϕ2λ since

ρ′ = ρ ∪ {a 7→ (a[ρ1(fst(M1)), . . . , ρ1(fst(Mn))],

a[ρ2(snd(M1)), . . . , ρ2(snd(Mn))])} we have that CA0 ⊇ ‖Q′‖ρ′Hϕ1ϕ2λ

(vi) Let C ∈ H . By hypothesis sigmaC is derivable from CA0 .

We can thus apply the induction hypothesis to infer that (ρ′σ, ϕσ, λ) ⊢ Q′ and
since a /∈ dom(σ) we have that (ρσ∪{a 7→ (a[ρ1(fst(M1)), . . . , ρ1(fst(Mn))],

a[ρ2(snd(M1)), . . . , ρ2(snd(Mn))])}, ϕσ, λ) ⊢ Q′ and then according to our

typing system

(ρσ ∪ {a 7→ (a[ρ1(fst(M1)), . . . , ρ1(fst(Mn))],

a[ρ2(snd(M1)), . . . , ρ2(snd(Mn))])}, ϕσ, λ) ⊢ Q′

(ρσ, ϕσ, λ) ⊢ (new a : a0[M1, . . . ,Mn];Q
′) = Q

Tnew

Appendix C. StatVerif Extension Related Proofs 265

• Case Q = out(M,N));Q′.

(i) By definition fn(Q′) ⊆ fn(Q) and fv(Q′) ⊆ fv(Q) and by hypothesis

ρ binds the free names and variables of Q, hence it also binds the free

names and variables of Q′.

(ii) By definition bn(Q′)∪bv(Q′) ⊆ bn(Q)∪bv(Q) and by hypothesis(bn(Q′)∪
bv(Q′)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

(iii) By hypothesis, σ is a closed substitution.

(iv) By definition Q is under a lock . . .si . . . in P if and only if Q′ is under

a lock . . .si . . . in P . Thus Q′, λ satisfy condition (iv) because by

hypothesis Q, λ satisfy it.

(v) CA0 ⊇ ‖out(M,N);Q′‖ρHϕ1ϕ2λ ⊇ ‖Q′‖ρHϕ1ϕ2λ

(vi) Let C ∈ H . By hypothesis, we know that σC is derivable from CA0 .

We can thus apply the induction hypothesis to infer that (ρσ, ϕσ, λ) ⊢ Q′.

Moreover, by definition of our translation we have that ‖Q‖ρHϕ1ϕ2λ =

{H → msg(ρ1(ϕ1), ρ1(fst(M)), ρ1(fst(N)), ρ2(ϕ2), ρ2(snd(M)),

ρ2(snd(N)))} ∪ ‖Q′‖ρHϕ1ϕ2λ with H and σ satisfying condition (vi), i.e.

Hσ is derivable from CA0 . So by resolution we can derive msg(ρ1(ϕ1)σ,

ρ1(fst(M))σ, ρ1(fst(N))σ, ρ2(ϕ2)σ, ρ2(snd(M))σ, ρ2(snd(N))σ) and since

fn(Q) ⊆ dom(ρ) we have that msg(ρ1(ϕ1)σ, ρ1(fst(M))σ, ρ1(fst(N))σ,

ρ2(ϕ2)σ, ρ2(snd(M))σ, ρ2(snd(N))σ) = msg(ρ1σ(ϕ1), ρ1σ(fst(M)),

ρ1σ(fst(N)), ρ2σ(ϕ2), ρ2σ(snd(M)), ρ2σ(snd(N))). Finally, according to our

typing system

msg(ρ1σ(ϕ1), ρ1σ(fst(M)), ρ1σ(fst(N)),

ρ2σ(ϕ2), ρ2σ(snd(M)), ρ2σ(snd(N))) ∈ FC′A0

(ρσ, ϕσ, λ) ⊢ Q′

(ρσ, ϕσ, λ) ⊢ (out(M,N);Q′) = Q
Tout

Appendix C. StatVerif Extension Related Proofs 266

Case Q = in(M,x);Q′. Let ψ be a state such that ϕσ ≤ ψ and

ψ = ψ[j 7→ ϕσ(j)|j ∈ λ]. Let p1, p2 be a pattern such that

msg(ρ1(ψ1)), (ρ1σ)(K), p1, ρ2(ψ2)), (ρ2σ)(K), p2) ∈ CA0 . Let ρ′ = ρ ∪ {x 7→
(x′, x′′)} ∪ {vsj 7→ (vs′j, vs

′′
j)|j /∈ λ}, σ′ = σ ∪ {x′ 7→ p1, x

′′ 7→ p2} ∪ {vs′j 7→
ρ1(ψ1(j)), vs

′′
j 7→ ρ2(ψ2(j))|j /∈ λ}, ϕ′ = ϕ[j 7→ vsj|j /∈ λ], H ′ = H ∧

msg(ρ1(ϕ1), ρ1(fst(M)), x′, ρ2(ϕ2), ρ2(snd(M)), x′′), for

vs1, . . . , vsn, vs
′
1, . . . , vs

′
n, vs

′′
1, . . . , vs

′′
n fresh. We show that (Q′, σ′, ρ′, H, ϕ′, λ)

satisfy conditions (i)-(vi).

(i) By definition fv(Q′) ∪ fn(Q) ∪ fv(H ′) ∪ fn(H ′) ∪ fv(ϕ′) ∪ fn(ϕ′) ⊆
fv(Q)∪{x}∪fn(Q)∪fv(H)∪fn(H)∪fv(ϕ)∪fn(ϕ)∪{vsj|j ∈ λ} then
by hypothesis fv(Q′) ∪ fn(Q′) ∪ fv(H ′) ∪ fn(H ′) ∪ fv(ϕ′) ∪ fn(ϕ′) ⊆
dom(ρ)∪{x}∪{vsj |j ∈ λ} since dom(ρ)∪{x}∪{vsj |j ∈ λ} ⊆ dom(ρ′)

we have that fv(Q′) ∪ fn(Q′) ∪ fv(H ′) ∪ fn(H ′) ∪ fv(ϕ′) ∪ fn(ϕ′) ⊆
dom(ρ′), hence ρ′ binds the free names and variables of Q′, H ′, ϕ′

(ii) By definition bn(Q′) ∪ bv(Q′) ⊆ bn(Q) ∪ bv(Q) then by hypothesis

(bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅ since

x ∈ bv(Q′) and vs1, . . . , vsn are fresh, we have that (bn(Q′)∪ bv(Q′)) ∩
dom(ρ′) = ∅.

(iii) By hypothesis p1, p2, ψ(1), . . . , ψ(n) are ground then {x 7→ (p1, p2)} ∪
{vs′j 7→ ρ1(ψ2(j)), vs

′′
j 7→ ρ1(ψ2(j))|j /∈ λ} is closed and since σ is

closed σ ∪ {x 7→ (p1, p2)} ∪ {vs′j 7→ ρ1(ψ2(j)), vs
′′
j 7→ ρ1(ψ2(j))|j /∈ λ}

is closed, and since σ′ = σ ∪ {x 7→ (p1, p2)} ∪ {vs′j 7→ ρ1(ψ2(j)), vs
′′
j 7→

ρ1(ψ2(j))|j /∈ λ} we have that σ′ is closed.

(iv) By definition Q′ is under a lock . . .si . . . in P if and only if Q is under

a lock . . .si . . . , so condition (iv) is satisfied by hypothesis.

(v) CA0 ⊇ ‖∈Mx;Q′‖ρHϕ1ϕ2λ
def
= ‖Q′‖(ρ ∪ {x → (x′, x′′)} ∪ {vsj →

(vs′j , vs
′′
j)|j ∈ λ})(H ∧msg(ρ1(ϕ′1), ρ1(fst(M)), x′,

ρ2(ϕ
′
2), ρ2(snd(M)), x′))ϕ′λ = ‖Q′‖ρ′H ′ϕ′λ ∪

{input(ρ1(ϕ′1), ρ1(fst(M)), ρ2(ϕ
′
2), ρ2(snd(M)))}

Appendix C. StatVerif Extension Related Proofs 267

(vi) Let msg(xs′,M ′, N ′, xs′′,M ′′, N ′′) ∈ H ′. Then either

msg(xs′,M ′, N ′, xs′′,M ′′, N ′′) ∈ H or msg(xs′,M ′, N ′, xs′′,M ′′, N ′′) =

msg(ρ1(ϕ
′
1), ρ1(fst(M)), x′, ρ2(ϕ

′
2), ρ2(snd(M)), x′′).

If msg(xs′,M ′, N ′, xs′′,M ′′, N ′′) ∈ H by hypothesis

msg(xs′σ,M ′σ,N ′σ, xs′′σ,M ′′σ,N ′′σ,) is derivable from CA0 since x′ /∈
fn(xs′) ∪ fn(M ′) ∪ fn(N ′), x′′ /∈ fn(xs′′) ∪ fn(M ′′) ∪ fn(N ′′) and

vs1, . . . , vsn are fresh, we have that

msg(xs′σ′,M ′σ′, N ′σ′, xs′′σ′,M ′′σ′, N ′′σ′) is derivable from CA0 .

If msg(xs′,M ′, N ′, xs′′,M ′′, N ′′) = msg(ρ1(ϕ
′
1), ρ1(fst(M)), x′, ρ2(ϕ

′
2),

ρ2(snd(M)), x′′) by hypothesis

msg(ρ1(ψ1), ρ1(fst(M))σ, p1, ρ2(ψ2), ρ2(snd(M))σ, p2) is derivable from

CA0 since x′ /∈ fn(ρ1(fst(M))),

x′′ /∈ fn(ρ2(snd(M))) and vs1, . . . , vsn are fresh, we have that

msg(ρ1(ψ1), ρ1(fst(M))σ, p1, ρ2(ψ2), ρ2(snd(M))σ, p2) is derivable from

CA0 . Since σ
′(x′) = p1, σ

′(x′′) = p2 we have that

msg(ρ1(ψ1), ρ1(fst(M))σ, x′σ′, ρ2(ψ2), ρ2(snd(M))σ, x′′σ′) is derivable

from CA0 .

ψ = ϕ′σ′ hence msg(ρ1(ϕ
′
1σ
′), ρ1(fst(M))σ, x′σ′,

ρ2(ϕ
′
2σ
′), ρ2(snd(M))σ, x′′σ′) is derivable from CA0 . Finally, since

msg(xs′,M ′, N ′, xs′′,M ′′, N ′′) = msg(ρ1(ϕ
′
1), ρ1(fst(M)), x′, ρ2(ϕ

′
2),

ρ2(snd(M)), x′′) we have that

msg(xs′σ′,M ′σ′, N ′σ′, xs′′σ′,M ′′σ′, N ′′σ′) is derivable from CA0 . Hence

∀C ∈ H , σC is derivable from CA0 .

We can thus apply the induction hypothesis to infer that (ρ′σ′, ϕ′σ′, λ) ⊢
Q′ since ψ = ϕ′σ′, (ρ′σ′, ψ, λ) ⊢ Q′. ρ′σ′ = ρσ′ ∪ {x 7→ (p1, p2)} hence

(ρσ′ ∪ {x 7→ (p1, p2)}, ϕ′σ′, λ) ⊢ Q′ and since x /∈ ρ we have (ρσ ∪ {x 7→

Appendix C. StatVerif Extension Related Proofs 268

(p1, p2)}, ϕ′σ′, λ) ⊢ Q′. Thus according to our typing system

∀ψ (ϕσ ≤ ψ ∧ ψ = ψ[j 7→ ϕ(j)σ | j ∈ λ] ∧
∀ N : ρσ(N) = (p1, p2),

msg(ρ1(ψ̄1), ρ1σ(fst(M)), p1, ρ2(ψ̄2), ρ2σ(snd(M)), p2) ∈ F
input(ρ1(ψ̄1), ρ1σ(fst(M)), ρ2(ψ̄2), ρ2σ(snd(M))) ∈ F)

(ρσ ∪ {x 7→ (p1, p2)}, ψ, λ) ⊢ Q′

(ρσ, ϕσ, λ) ⊢ (in(M,x);Q′) = Q
Tin

• Case Q = lock sj1, . . . , sjm;Q
′. Let ψ such that ϕσ ≤ ψ and ψ = ψ[j 7→

ϕσ(j)|j ∈ λ]. Let ρ′ = ρ ∪ {vsj 7→ (vs′j , vs
′′
j)|j /∈ λ}, σ′ = σ ∪ {vs′j 7→

ρ1(ψ(j)1), vs
′′
j 7→ ρ2(ψ(j)2)|j /∈ λ}, ϕ′ = ϕ[j 7→ vsj|j /∈ λ], λ′ = λ ∪

{j1, . . . , jm}, for some vs1, . . . , vsn, vs
′
1, . . . , vs

′
n, vs

′′
1, . . . , vs

′′
n fresh. We will

show that (Q′, σ′, ρ′, H, ϕ′, λ′) satisfy conditions (i)-(vi).

(i) By definition fn(Q′) ∪ fv(Q′) ∪ fn(H) ∪ fv(H) ∪ fn(ϕ′) ∪ fv(ϕ′) ⊆
fn(Q) ∪ fv(Q) ∪ fn(H) ∪ fv(H) ∪ fn(ϕ) ∪ fv(ϕ) ∪ {vsj|j /∈ λ} By

hypothesis fn(Q′)∪fv(Q′)∪fn(H)∪fv(H)∪fn(ϕ′)∪fv(ϕ′) ⊆ dom(ρ)∪
{vsj |j /∈ λ} since ρ′ = dom(ρ) ∪ {vsj 7→ (vs′j, vs

′′
j)|j /∈ λ} we have

fn(Q′) ∪ fv(Q′) ⊆ dom(ρ′).

(ii) By definition bn(Q′) ∪ bv(Q′) = bn(Q) ∪ bv(Q) and by hypothesis

(bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) = (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅ since

vs1, . . . , vsn /∈ bv(Q′) we have that (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ′) = ∅

(iii) by hypothesis ψ(1), . . . , ψ(n) are ground and by definition {vs′j 7→
ρ1(ψ(j)1), vs

′′
j 7→ ρ2(ψ(j)2)|j /∈ λ} is closed. Since σ is closed, we

have that σ∪{vs′j 7→ ρ1(ψ(j)1), vs
′′
j 7→ ρ2(ψ(j)2)|j /∈ λ} is closed. Thus

σ′ = σ ∪ {vs′j 7→ ρ1(ψ(j)1), vs
′′
j 7→ ρ2(ψ(j)2)|j /∈ λ} is closed.

(iv) By definition Q is under a lock . . .si . . . if and only if either si ∈
{sj1 , . . . , sjm} or Q is under a lock . . .si . . . , so condition (iv) is satisfied

by construction of λ.

Appendix C. StatVerif Extension Related Proofs 269

(v) CA0 ⊇ ‖lock sj1, . . . , sjm;Q′‖ρHϕ1ϕ2λ
def
= ‖Q′‖(ρ ∪ {vsj 7→ (vs′j, vs

′′
j)|

j /∈ λ})H(ϕ1[j 7→ vsj|j /∈ λ])(ϕ2[j 7→ vsj|j /∈ λ])(λ ∪ {j1, . . . , jm}) def
=

‖Q′‖ρ′Hϕ′1ϕ′2λ′

(vi) Let msg(xs,M,N, xs′,M ′, N ′) ∈ H . By hypothesis msg(xsσ,Mσ,Nσ,

xs′σ,M ′σ,N ′σ) is derivable from CA0 since vs1, . . . , vsn, vs
′
1, . . . , vs

′
n,

vs′′1, . . . , vs
′′
n /∈ fv(xs)∪fv(M)∪fv(N)∪fv(xs′)∪fv(M ′)∪fv(N ′) we

have that msg(xsσ′,Mσ′, Nσ′, xs′σ′,M ′σ′, N ′σ′) is derivable from CA0 .

Hence ∀C ∈ H , σC is derivable from CA0 .

We can thus apply our induction hypothesis to infer that (ρ′σ′, ϕ′σ′, λ′) ⊢ Q′

and by definition (ρσ ∪ {vsj 7→ (ρ1(ψ(j)1),

ρ2(ψ(j)2))|j /∈ λ}, ψ, λ ∪ {j1, . . . , jm}) ⊢ Q′. Lemma C.21 (ρσ, ψ, λ∪
{j1, . . . , jm}) ⊢ Q′{vs′j 7→ ρ1(ψ(j)1), vs

′′
j 7→ ρ2(ψ(j)2)|j /∈ λ}, since

vs′1, . . . , vs
′
n, vs

′′
1, . . . , vs

′′
n /∈ fv(Q′) we have that (ρσ, ψ, λ∪{j1, . . . , jm}) ⊢ Q′

But then according to our typing system

∀ψ (ϕσ ≤ ψ ∧ ψ = ψ[j 7→ ϕσ(j) | j ∈ λ]

(ρσ, ψ, λ ∪ {i1, . . . , im}) ⊢ Q′)
(ρσ, ϕσ, λ) ⊢ (lock sj1, . . . , sjm;Q

′) = Q
Tlock

• Case Q = unlock sj1 , . . . , sjm;Q
′. Let ψ such that ϕσ ≤ ψ and ψ =

ψ[j 7→ ϕσ(j)|j ∈ λ]. Let ρ′ = ρ ∪ {vsj 7→ (vs′j, vs
′′
j)|j /∈ λ}, σ′ = σ ∪

{vs′j 7→ ρ1(ψ(j)1), vs
′′
j 7→ ρ2(ψ(j)2)|j /∈ λ}, ϕ′ = ϕ[j 7→ diff [vs′j, vs

′′
j]|j /∈

λ], λ′ = λ \ {j1, . . . , jm}, for some vs1, . . . , vsn fresh. We will show that

(Q′, σ′, ρ′, H, ϕ′, λ′) satisfy conditions (i)-(vi).

(i) By definition fn(Q′) ∪ fv(Q′) ∪ fn(H) ∪ fv(H) ∪ fn(ϕ′) ∪ fv(ϕ′) ⊆
fn(Q) ∪ fv(Q) ∪ fn(H) ∪ fv(H) ∪ fn(ϕ) ∪ fv(ϕ) ∪ {vsj|j /∈ λ} and

by hypothesis fn(Q′) ∪ fv(Q′) ∪ fn(H) ∪ fv(H) ∪ fn(ϕ′) ∪ fv(ϕ′) ⊆
dom(ρ) ∪ {vsj|j /∈ λ} since ρ = dom(ρ) ∪ {vsj 7→ vsj|j ∈ λ} we have

that fn(Q′) ∪ fv(Q′) ⊆ dom(ρ′)

Appendix C. StatVerif Extension Related Proofs 270

(ii) By definition bn(Q′)∪ bv(Q′) = bn(Q) ∪ bv(Q) by hypothesis (bn(Q′)∪
bv(Q′)) ∩ dom(ρ) = (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅ since vs1, . . . , vsn /∈
bv(Q′) we have that (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ′) = ∅

(iii) ψ(1), . . . , ψ(n) are ground and by definition {vs′j 7→ ρ1(ψ(j)1), vs
′′
j 7→

ρ2(ψ(j)2)|j /∈ λ} is closed and since σ is closed σ ∪ {vs′j 7→ ρ1(ψ(j)1),

vs′′j 7→ ρ2(ψ(j)2)|j /∈ λ} is closed then σ′ = σ∪{vs′j 7→ ρ1(ψ(j)1), vs
′′
j 7→

ρ2(ψ(j)2)|j /∈ λ} is closed

(iv) By definition Q is not under a lock . . .si . . . if and only if either si ∈
{sj1 , . . . , sjm} or Q is not under a lock . . .si . . . , so condition (iv) is

satisfied by construction of λ

(v) CA0 ⊆ ‖unlock sj1 , . . . , sjm;Q′‖ρHϕ1ϕ2λ
def
= ‖Q′‖(ρ∪{vsj 7→ (vs′j, vs

′′
j)|

j /∈ λ})H(ϕ1[j 7→ vsj|j /∈ λ)(ϕ2[j 7→ vsj|j /∈ λ)(λ \ {j1, . . . , jm}) def
=

‖Q′‖ρ′Hϕ′λ′

(vi) Let msg(xs,M,N, xs′,M ′, N ′) ∈ H . By hypothesis msg(xsσ,Mσ,Nσ,

xs′σ,M ′σ,N ′σ) is derivable from CA0 since vs1, . . . , vsn, vs
′
1, . . . , vs

′
n,

vs′′1, . . . , vs
′′
n /∈ fv(xs)∪fv(M)∪fv(N)∪fv(xs′)∪fv(M ′)∪fv(N ′) we

have that

msg(xsσ′,Mσ′, Nσ′, xs′σ′,M ′σ′, N ′σ′) is derivable from CA0 .

Hence ∀C ∈ H , σC is derivable from CA0 .

We can thus apply our induction hypothesis to infer that (ρ′σ′, ϕ′σ′, λ′) ⊢ Q′

and by definition (ρσ ∪ {vsj 7→ (vs′j , vs
′′
j)|j /∈ λ}, ψ, λ \ {j1, . . . , jm}) ⊢ Q′

and by Lemma C.21 (ρσ, ψ, λ \ {j1, . . . , jm}) ⊢ Q′{vs′j 7→ ρ1(ψ1(j)), vs
′′
j 7→

ρ2(ψ2(j))|j /∈ λ} since {vs1, . . . , vsn, vs′1, . . . , vs′n, vs′′1, . . . , vs′′n} /∈ fv(Q′) we

have (ρσ, ψ, λ \ {j1, . . . , jm}) ⊢ Q′. But then according to our typing system

∀ψ (ϕσ ≤ ψ ∧ ψ = ψ[j 7→ ϕσ(j) | j ∈ λ]

(ρσ, ψ, λ \ {i1, . . . , im}) ⊢ Q′)
(ρσ, ϕσ, λ) ⊢ (unlock sj1, . . . , sjm;Q

′) = Q
Tunlock

Appendix C. StatVerif Extension Related Proofs 271

• Case Q = sj1, . . . , sjm := M1, . . . ,Mm;Q
′. Let ψ such that ϕσ ≤ ψ and

ψ = ψ[j 7→ ϕσ(j)|j ∈ λ]. Let ρ′ = ρ ∪ {vsj 7→ (vs′j, vs
′′
j)|j /∈ λ}, σ′ = σ ∪

{vs′j 7→ ρ1(ψ(j)1), vs
′′
j 7→ ρ2(ψ(j)2)|j /∈ λ}, ϕ′ = ϕ[j 7→ vsj|j /∈ λ], and ϕ′′ =

ϕ′[jk 7→ Mk|1 ≤ k ≤ m], for some vs1, . . . , vsn, vs
′
1, . . . , vs

′
n, vs

′′
1, . . . , vs

′′
n

fresh. We will show that (Q′, σ′, ρ′, H, ϕ′, λ) satisfy conditions (i)-(vi). We

have that ϕσ = ψ ≤ ψ[jk 7→ σ(Mk)|1 ≤ k ≤ m] = ϕ′′σ′. By definition of

our translation ‖sj1, . . . , sjm :=M1, . . . ,Mm;Q
′‖ρHϕλ = ‖Q′‖(ρ ∪ {vsj 7→

(vs′j, vs
′′
j)|j /∈ λ}Hϕ′′λ ∪{H ∧msg(ρ1(ϕ′1), wc, wm, ρ2(ϕ′2), wc′, wm′) →

msg(ρ1(ϕ
′′
1), wc, wm, ρ2(ϕ

′′
2), wc

′, wm′)}(= C1)∪
{H ∧ att(ρ1(ϕ′1), wm, ρ2(ϕ′2), wm′) → att(ρ1(ϕ

′
1), wm, ρ2(ϕ

′
2), wm

′)}(= C2)
for some wc, wm,wc′, wm′ fresh.

Let msg(ρ1(ψ1),M,N, ρ2(ψ2),M
′, N ′) ∈ FA0. By hypothesis Hσ is derivable

from CA0 and msg(ρ1(ψ1),M,N, ρ2(ψ2),M
′, N ′) ∈ FA0 since vs1, . . . , vsn,

vs′1, . . . , vs
′
n, vs

′′
1, . . . , vs

′′
n are fresh Hσ′ is derivable from CA0 ∧msg(ρ1(ψ1),

M,N, ρ2(ψ2),M
′, N ′) ∈ FA0 and since ψ = ϕ′σ′ we have Hσ′ is derivable

from CA0 ∧msg(ϕ′1σ′,M,N, ϕ′2,M
′, N ′) ∈ FP . C1 ∈ CA0 thus msg(ϕ′′1σ

′,M,

N, ϕ′′2σ
′M ′, N ′) ∈ FA0 since ψ[jk 7→ σ(Mk)|1 ≤ k ≤ m] = ϕ′′σ′ we have that

msg(ρ1(ψ1[jk 7→ σ(fst(Mk))|1 ≤ k ≤ m]),M,N, ρ2(ψ2[jk 7→ σ(snd(Mk))|1 ≤
k ≤ m])M ′, N ′) ∈ FA0

Let att(ρ1(ψ1),M, ρ2(ψ2),M
′) ∈ FA0. By hypothesis Hσ is derivable from

CA0 ∧ att(ρ1(ψ1),M, ρ2(ψ2),M
′) ∈ FA0 since vs1, . . . , vsn, vs

′
1, . . . , vs

′
n,

vs′′1, . . . , vs
′′
n are fresh Hσ is derivable from CA0∧att(ρ1(ψ1),M, ρ2(ψ2),M

′) ∈
FA0 and ψ = ϕ′σ′ we have that CA0 ∧ att(ρ1(ϕ′1σ′),M, ρ2(ϕ

′
2σ
′),M ′) ∈ FA0.

C2 ∈ CA0 hence att(ρ1(ϕ
′′
1σ
′),M, ρ2(ϕ

′′
2σ
′),M ′) ∈ FA0 and since ψ[jk 7→

σ(Mk)|1 ≤ k ≤ m] = ϕ′′σ′ we have that att(ρ1(ψ1[jk 7→ σ(fst(Mk)]),M,

ρ2(ψ2[jk 7→ σ(snd(Mk)]),M
′) ∈ FA0.

Thus ϕ′σ′ = ψ ≤ ψ[jk 7→ Mk|1 ≤ k ≤ m] = ϕ′′σ′

We will show that (Q′, σ′, ρ′, H, ϕ′, λ) satisfy conditions (i)-(vi).

Appendix C. StatVerif Extension Related Proofs 272

(i) fv(Q′)∪ fn(Q)∪ fv(H)∪ fn(H)∪ fv(ϕ′)∪ fn(ϕ′) ⊆ fv(Q)∪ fn(Q)∪
fv(H)∪fn(H)∪fv(ϕ)∪fn(ϕ)∪{vsj |j /∈ λ} and by hypothesis fv(Q′)∪
fn(Q′)∪∪fv(H)∪fn(H)∪fv(ϕ′)∪fn(ϕ′) ⊆ dom(ρ)∪{vsj|j /∈ λ} since
ρ′ = ρ∪{vsj 7→ (vs′j, vs

′′
j |j /∈ λ} we have that fv(Q′)∪fn(Q′) ⊆ dom(ρ′)

(ii) By definition bn(Q′)∪ bv(Q′) = bn(Q) ∪ bv(Q) by hypothesis (bn(Q′)∪
bv(Q′)) ∩ dom(ρ) = (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅ since vs1, . . . , vsm

are fresh we have that (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ′) = ∅

(iii) By hypothesis ψ(1), . . . , ψ(n) are ground and by definition {vs′j 7→
ψ1(j), vs

′′
j 7→ ψ2(j)|j /∈ λ} is closed. Since σ is closed σ ∪ {vs′j 7→

ψ1(j), vs
′′
j 7→ ψ2(j)|j /∈ λ} is closed, thus σ′ = σ ∪ {vs′j 7→ ψ1(j), vs

′′
j 7→

ψ2(j)|j /∈ λ} is closed

(iv) By definition Q is under a lock . . .si . . . in P if and only if Q′ is under

a lock . . .si . . . in P , so condition (iv) is satisfied by hypothesis.

(v) By hypothesis CP ⊇ ‖sj1, . . . , sjm :=M1, . . . ,Mm;Q
′‖ρHϕλ def

=

‖Q′‖ρ′Hϕ′′λ

(vi) Let msg(xs,M ′, N ′, xs′,M ′′, N ′′) ∈ H . By hypothesis

msg(xsσ,M ′σ,N ′σ, xs′σ,M ′′σ,N ′′σ) is derivable from CA0 , and because

vs1, . . . vsn are fresh, i.e. not in fn(xs) ∪ fn(M ′) ∪ fn(N ′) ∪ fn(xs′) ∪
fn(M ′′)∪fn(N ′′),msg(xsσ′,M ′σ′, N ′σ′) = msg(xsσ,M ′σ,N ′σ) is deriv-

able from CA0 .

We can thus apply our inductive hypothesis to infer that (ρ′σ′, ϕ′′σ′, λ) ⊢ Q′

since ρ′σ′ = ρσ ∪ {vs′j 7→ ψ1(j), vs
′′
j 7→ ψ2(j)|j /∈ λ} and ϕ′′σ′ = ψ[jk 7→

diff [(ρ1σ)(fst(Mk)), (ρ2σ)(snd(Mk))]|1 ≤ k ≤ m] we have (ρσ ∪ {vs′j 7→
ψ1(j), vs

′′
j 7→ ψ2(j)|j /∈ λ}, ψ[jk 7→ diff [(ρ1σ)(fst(Mk)), (ρ2σ)(snd(Mk))]|1 ≤

k ≤ m], λ) ⊢ Q′. By Lemma C.21 we have that (ρσ, ψ[jk 7→ diff [(ρ1σ)

(fst(Mk)), (ρ2σ)(snd(Mk))]|1 ≤ k ≤ m], λ) ⊢ Q′{vs′j 7→ ψ1(j), vs
′′
j 7→

ψ2(j)|j /∈ λ} and since vs′1, . . . vs
′
n, vs

′′
1, . . . vs

′′
n /∈ fv(Q′) ⊆ dom(ρ) we have

(ρσ, ψ[jk 7→ diff [(ρ1σ)(fst(Mk)), (ρ2σ)(snd(Mk))]|1 ≤ k ≤ m], λ) ⊢ Q′.

Appendix C. StatVerif Extension Related Proofs 273

But then according to our typing system

∀ψ (ρσ ≤ ψ, ψ = ψ[k 7→ ρσ(k) | k ∈ λ]∧
ψ ≤ ψ′ = ψ[jk 7→ Mk], 1 ≤ k ≤ m),

(ρσ, ψ[jk 7→Mk], λ) ⊢ Q′

(ρσ, ϕσ, λ) ⊢ (si1 , . . . , sim :=M1, . . . ,Mm;Q
′) = Q

Tassign

• Case Q = read sj1, . . . , sjm as x1, . . . , xm;Q
′. Let ψ be a state such that

ϕσ ≤ ψ and ψ = ψ[j 7→ ϕσ(j)|j ∈ λ]. Let ρ′ = ρ ∪ {vc 7→ (vc′, vc′′), vm 7→
(vm′, vm′′)}∪{xk 7→ (ρ1(ϕ1[jk]), ρ2(ϕ2[jk]))}∪{vsj 7→ (vs′j , vs

′′
j)|j /∈ λ}, σ′ =

σ ∪ {vs′j 7→ ρ1(ψ(j)1), vs
′′
j 7→ ρ2(ψ(j)2)|j /∈ λ}, ϕ′ = ϕ[j 7→ vsj|j /∈ λ], and

H ′ = H ∧msg(ρ1(ϕ1), vc
′, vm′, ρ2(ϕ2), vc

′′, vm′′) for some vc, vm, vc′, vm′,

vc′′, vm′′, vs1, . . . , vsn, vs
′
1, . . . , vs

′
n, vs

′′
1, . . . , vs

′′
n fresh. We show that

(Q′, σ′, ρ′, H ′, ϕ′, λ) satisfy conditions (i)-(vi).

(i) By definition fv(Q′) ∪ fn(Q′) ∪ fv(H ′) ∪ fn(H ′) ∪ fv(ϕ′) ∪ fn(ϕ′) ⊆
fv(Q) ∪ {x1, . . . , xm} ∪ fn(Q) ∪ fv(H) ∪ fn(H) ∪ {vc, vm} ∪ fv(ϕ) ∪
fn(ϕ){vsj|j /∈ λ} and by hypothesis fv(Q′)∪fn(Q′)∪fv(H ′)∪fn(H ′)∪
fv(ϕ′)fn(ϕ′) ⊆ dom(ρ) ∪ {x1, . . . , xm} ∪ {vc, vm, vc′, vm′, vc′′, vm′′} ∪
{vsj , vs′j, vs′′j |j /∈ λ} since dom(ρ′) = dom(ρ) ∪ {x1, . . . , xm} ∪ {vc, vm,
vc′, vm′, vc′′, vm′′} ∪ {vsj, vs′j, vs′′j |j /∈ λ} we have fv(Q′) ∪ fn(Q′) ∪
fv(H ′) ∪ fn(H ′) ∪ fv(ϕ′) ∪ fn(ϕ′) ⊆ dom(ρ′)

(ii) By definition bn(Q′) ∪ bv(Q′) ⊆ bn(Q) ∪ bv(Q) and by hypothesis

(bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅ since

{x1, . . . , xm} ∈ bv(Q′) and vc, vm, vc′, vm′, vc′′, vm′′, vs1, . . . , vsn,

vs′1, . . . , vs
′
n, vs

′′
1, . . . , vs

′′
n are fresh, we have that (bn(Q′) ∪ bv(Q′)) ∩

dom(ρ′) = ∅

(iii) By hypothesis ψ(1), . . . , ψ(n) are ground and by definition {vsjψ(j)|j /∈
λ} ∪ {vc 7→ (vc′, vc′′), vm 7→ (vm′, vm′′)} is closed. Since σ is closed

σ∪{vsjψ(j)|j /∈ λ}∪{vc 7→ (vc′, vc′′), vm 7→ (vm′, vm′′)} is closed, and

Appendix C. StatVerif Extension Related Proofs 274

hence σ′ = σ ∪ {vsjψ(j)|j /∈ λ} ∪ {vc 7→ (vc′, vc′′), vm 7→ (vm′, vm′′)}
is closed.

(iv) By definition Q is under a lock . . .si . . . in P if and only if Q′ is under

a lock . . . si . . . , so condition (iv) is satisfied by hypothesis.

(v) By hypothesis CA0 ⊇ ‖read sj1 , . . . , sjm as x1, . . . , xm;Q
′‖ρHϕλ def

=

‖Q′‖(ρ∪ {xj 7→ (ρ1ϕ
′
1[jk], ρ2ϕ

′
2[jk])|1 ≤ k ≤ m} ∪ {vsj 7→ (vs′j, vs

′′
j)|j /∈

λ})(H ∧message(ϕ′1, vc′, vm′, ϕ′2, vc′′, vm′′))ϕ′λ
def
= ‖Q′‖ρ′H ′ϕ′λ

(vi) Let msg(xs,M,N, xs′,M ′, N ′) ∈ H ′. Then either

msg(xs,M,N, xs′,M ′, N ′) ∈ H or msg(xs,M,N, xs′,M ′, N ′) =

msg(ρ1(ϕ
′
1), vc

′, vm′, ρ2(ϕ
′
2), vc

′′, vm′′).

If msg(xs,M,N, xs′,M ′, N ′) ∈ H by hypothesis msg(xsσ,Mσ,Nσ,

xs′σ,M ′σ,N ′σ) is derivable from CA0 since x1, . . . , xm /∈ fn(xs′) ∪
fn(xs′′) ∪ fn(M) ∪ fn(M ′) ∪ fn(N) ∪ fn(N ′) and vc, vm, vc′, vm′,
vc′′, vm′′, vs1, . . . , vsn, vs

′
1, . . . , vs

′
n, vs

′′
1, . . . , vs

′′
n are fresh, we have that

msg(xsσ′,Mσ′, Nσ′, xs′σ′,M ′σ′, N ′σ′) is derivable from CA0 .

If msg(xs,M,N, xs′,M ′, N ′) = msg(ρ1(ϕ
′
1), vc

′, vm′, ρ2(ϕ
′
2), vc

′′, vm′′).

By hypothesis ∀a, a′ /∈ bn(A0) ∪ bv(A0) att(ρ1(ϕ1σ), a, ρ2(ϕ2σ), a
′) is

derivable from CA0 , hence att(ρ1(ϕ1σ), vc
′, ρ2(ϕ2σ), vc

′′),

att(ρ1(ϕ1σ), vm
′, ρ2(ϕ2σ), vm

′′) are derivable from CA0 . By definition

of CA0 , msg(ρ1(ϕ1σ), vc
′, vm′, ρ2(ϕ2σ), vc

′′, vm′′) is derivable from CA0 ,

since ϕσ ≤ ψ msg(ρ1(ψ1), vc
′, vm′, ρ2(ψ2), vc

′′, vm′′) is derivable from

CA0 . ψ = ϕ′σ′ thus msg(ρ1(ϕ
′
1σ
′), vc′, vm′, ρ2(ϕ

′
2σ
′),

vc′′, vm′′) is derivable from CA0 and since msg(xs,M,N, xs′,M ′, N ′) =

msg(ρ1(ϕ
′
1), vc

′, vm′, ρ2(ϕ
′
2), vc

′′, vm′′) we have that

msg(xsσ′,Mσ′, Nσ′, xs′σ′,M ′σ′, N ′σ′) is derivable from CA0 , and ∀C ∈
H we have that σC is derivable from CA0 .

We can thus apply our induction hypothesis to infer that (ρ′σ′, ϕ′σ′, λ) ⊢ Q′.
Since {x1, . . . , xm} ∩ dom(ρ) = ∅ and vc, vm, vc′, vm′, vc′′, vm′′, vs1, . . . , vsn,

vs′1, . . . , vs
′
n, vs

′′
1, . . . , vs

′′
n are fresh and by Lemma C.21 (ρσ ∪ {xk 7→

Appendix C. StatVerif Extension Related Proofs 275

(ρ1(ϕ
′
1σ
′(jk)), ρ2(ϕ

′
2σ
′(jk)))|1 ≤ k ≤ m}, ϕ′σ′, λ) ⊢ Q′. Since ψ = ϕ′σ′ we

have (ρσ∪{xk 7→ (ρ1(ψ1(jk)), ρ2(ψ2(jk)))|1 ≤ k ≤ m}, ψ, λ) Thus according
to our typing system

∀ψ (ϕσ ≤ ψ ∧ ψ = ψ[j 7→ ϕσ(j) | j ∈ λ]),

(ρσ ∪ {xk 7→ (ρ1(ψ1(jk)), ρ2(ψ2(jk))) | 1 ≤ k ≤ m}, ψ, λ) ⊢ Q′)
(ρσ, ϕσ, λ) ⊢ (read si1, . . . , sim as x1, . . . , xm;Q

′) = Q
Tread

• Case Q = let x = D in Q1 else Q2. Let p1, p2 be patterns such that

σρ1(fst(D)) ⇓Σ′ p1 and σρ1(fst(D)) ⇓Σ′ p2 Let ρ′ = ρσ ∪ {x 7→ (p1, p2)},
H ′ = Hσ, ϕ′ = ϕσ,H ′′ = H ∧ ρ1(fails(fst(D))) ∧ ρ2(fails(snd(D))) where

fails(D) =
∧

σ|D⇓′(p,σ) nounif(D,GV ar(σD)) We show that (Q1, σ, ρ
′, H ′, ϕ′, λ)

and (Q2, σ, ρ,H
′′, ϕ, λ) satisfy conditions (i)-(vi).

(i) by definition fn(Q1) ∪ fv(Q1) ∪ fn(H ′) ∪ fv(H ′) ∪ fn(ϕ′) ∪ fv(ϕ′) ⊆
fn(Q)∪fv(Q)∪{x}∪fn(Hσ)∪fv(Hσ)∪fn(ϕσ)∪fv(ϕσ) and fn(Q1)∪
fv(Q1) ∪ fn(H ′) ∪ fv(H ′) ∪ fn(ϕ′) ∪ fv(ϕ′) ⊆ fn(Q) ∪ fv(Q) ∪ {x} ∪
fn(H) ∪ fv(H) ∪ fn(ϕ) ∪ fv(ϕ) ∪ fn(D) ∪ fv(D) and by definition

fn(Q1)∪fv(Q1)∪fn(H ′)∪fv(H ′)∪fn(ϕ′)∪fv(ϕ′) ⊆ fn(Q)∪fv(Q)∪
{x}∪fn(H)∪fv(H)∪fn(ϕ)∪fv(ϕ). By hypothesis fn(Q1)∪fv(Q1) ⊆
dom(ρ) ∪ {x} = dom(ρ′) hence ρ binds the free names and variables of

Q1, H
′, ϕ′.

By definition fn(Q2) ∪ fv(Q2) ⊆ fn(Q) ∪ fv(Q) and by hypothesis

fn(Q2) ∪ fv(Q2) ⊆ dom(ρ) then ρ binds the free names and variables

of Q2, H
′′, ϕ

(ii) By definition bn(Q1)∪bv(Q1) ⊆ bn(Q)∪bv(Q) and (bn(Q1)∪bv(Q1))∩
dom(ρ) ⊆ (bn(Q)∪ bv(Q))∩ dom(ρ) = ∅ since x /∈ bv(Q1) we have that

(bn(Q1) ∪ bv(Q1)) ∩ dom(ρ′) = ∅.
By definition bn(Q2)∪ bv(Q2) ⊆ bn(Q)∪ bv(Q) and (bn(Q2)∪ bv(Q2))∩
dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

Appendix C. StatVerif Extension Related Proofs 276

(iii) By hypothesis σ is closed.

(iv) By definition Q is under a lock . . .si . . . in P if and only if Q1 and Q2

are under a lock . . .si . . . , so condition (iv) is satisfied by hypothesis.

(v) By hypothesis CA0 ⊇ ‖let x = D in Q1 else Q2‖ρHϕ1ϕ2λ
def
=

{‖Q1‖ρσ ∪ {x 7→ (p1, p2)}Hσϕ1σϕ2σλ |
(ρ1(fst(D)), ρ2(fst(D))) ⇓′ ((p, p′), σ)} ∪ ‖Q2‖ρH ′′ϕ1ϕ2λ ∪ {σH
∧σρ2(fails(snd(D))) → bad|ρ1(fst(D)) ⇓′ (p, σ)} ∪ {σH
∧σρ1(fails(fst(D))) → bad|ρ2(snd(D)) ⇓′ (p′, σ)} where fails(D) =

∧

σ|D⇓′(p,σ) nounif(D,GV ar(σD))

(vi) Let msg(xs1,M1, N1, xs2,M2, N2) ∈ H ′. Since H ′ = Hσ we have that

msg(xs1,M1, N1, xs2,M2, N2) ∈ Hσ and by definitionmsg(xs′1,M
′
1, N

′
1,

xs′2,M
′
2, N

′
2) ∈ H ∧ xs1 = xs′1σ ∧ M1 = M ′1σ ∧ N1 = N ′1σ ∧ xs2 =

xs′2σ∧M2 =M ′2σ∧N2 = N ′2σ by hypothesis msg(xs1σ,M1σ,N1σ, xs2σ,

M2σ,N2σ) is derivable from CA0 .

Let msg(xs1,M1, N1, xs2,M2, N2) ∈ H . By hypothesis,

msg(xs1σ,M1σ,N1σ, xs2σ,M2σ,N2σ) ∈ H ′ is derivable from CA0 .

If ∄p1 such that σρ1(fst(D)) ⇓Σ p1 and ∄p2 such that σρ2(snd(D)) ⇓Σ

p2 by Lemma C.18 σρ1(fails(fst(D)) and σρ2(fails(snd(D)) are true

so σ(H ∧ ρ1(fails(fst(D)) ∧ σρ2(fails(snd(D))) can be derived from

CA0

We can now apply our induction hypothesis to infer that (ρ′, ϕ′, λ) ⊢ Q1 and

(ρ, ϕ, λ) ⊢ Q2. Since (ρ
′, ϕ′, λ) ⊢ Q1 by definition (ρσ∪{x 7→ (p1, p2)}, ϕσ, λ)

⊢ Q1 If ∃p1 such that σρ1(fst(D)) ⇓Σ′ p1 and ∄p2 such that σρ2(snd(D)) ⇓Σ

p2, then bad ∈ FA0. By a variant of Lemma C.2 for patterns instead

of terms, ∃p′1, σ′ and σ′′ such that ρ1(fst(D)) ⇓′ (p′1, σ′), p1 = σ′′p′1, and

σ = σ′′σ′ except on the fresh variables introduced in the computation of

ρ1(fst(D)) ⇓′ (p′1, σ′). There exists no p2 such that σ′′σ′ρ2(snd(D)) ⇓Σ p2,

so by Lemma C.18, σ′′σ′ρ2(fails(snd(D))) holds, hence σ′′(σ′H∧

Appendix C. StatVerif Extension Related Proofs 277

σ′ρ2(fails(snd(D)))) can be derived from CA0 .

If ∃p2 such that σρ2(snd(D)) ⇓Σ′ p2 and ∄p1 such that σρ1(fst(D)) ⇓Σ p1,

then bad ∈ FA0. This property follows from the previous one by symmetry.

Hence according to our typing system:

(∀ p1, p2 ρ1(fst(D)) ⇓Σ′ p1 and ρ2(snd(D)) ⇓Σ′ p2

(ρ[x 7→ (p1, p2)], ϕ′, λ) ⊢ Q1)

(if ∄ p1, ρ1(fst(D)) ⇓Σ′ p1 and ∄ p2, ρ2(snd(D)) ⇓Σ′ p2 then

(ρ, ϕ, λ) ⊢ Q2)

(if ∃ p1, ρ1(fst(D)) ⇓Σ′ p1 and ∄ p2, ρ2(snd(D)) ⇓Σ′ p2 then

bad ∈ FA0)

(if ∄ p1, ρ1(fst(D)) ⇓Σ′ p1 and ∃ p2, ρ2(snd(D)) ⇓Σ′ p2 then

bad ∈ FA0)

(ρ, ϕ, λ) ⊢ let x = D in Q1 else Q2
Tlet

To conclude the proof of Lemma C.24 we then need to show that ρ = E0, σ such

that dom(σ) = ∅, H = true, ϕ = S0 and λ = ∅ satisfy conditions (i)-(vii).

(i) Since by hypotheses fv(P) = ∅ and fn(P) ⊆ dom(E0) by construction, ρ

binds the free names and variables of P,H and ϕ.

(ii) By definition (bn(P) ∪ bv(P)) ∩ dom(ρ) = ∅.

(iii) By definition σ is a closed substitution.

(iv) P is not under any lock in P , thus ∅ satisfies condition (iv).

(v) By definition CA0 ⊇ ‖P ′‖ρHϕ1ϕ2λ.

(vi) By definition Hσ = true, and thus Hσ can trivially be derived from CA0 .

Thus, P, ρ, σ,H, ϕ, λ satisfy the conditions of our induction result according to

which (E0, S0, λ) ⊢ P .

Appendix C. StatVerif Extension Related Proofs 278

C.7.5 Typability of C[A0]

Let A0 = (E0,S0, {(P0, ∅)}) be an initial biprocess configuration.

Lemma C.25. Typability of C[A0] We show that E0 ⊢ Λ0; (E0,S0, {(C ′ | P0, ∅)})

Proof. In order to prove that E0 ⊢ Λ0; (E0,S0, {(P0, ∅)}) we show that (E0,S0, ∅) ⊢
P0 by induction on C ′. If C ′ = the result follows from the typability of the

protocol, Lemma C.24. If C ′ = new a : a[];C ′′ the result follows by induction

hypothesis and the type rule Tnew. If C ′ = C ′′ | Q the result follows from the

typability of the adversary and rule Tpar.

C.7.6 Subject Reduction

Lemma C.26. (Subject reduction): Let Λ; (E ,S,P) be an instrumented biprocess

configuration such that no [s 7→ M] occurs in P, names and variables are bound at

most once in P, and cells(P) ⊆ {s1, . . . , sn}. Let E be a mapping from names and

variables to pair of patterns. If E ⊢ Λ; (E ,S,P) and Λ; (E ,S,P) → Λ′; (E ′,S ′,Q),

then E ′ ⊢ Λ′; (E ′,S ′,Q).

Proof. We prove by induction on the derivation rule R applied for the transition

Λ; (E ,S,P) → Λ′; (E ′,S ′,Q) that if E ⊢ Λ; (E ,S,P) and Λ; (E ,S,P ∪{(P, λ)}) →
Λ′; (E ′,S ′,Q′∪{(Q, λ′)}) then (E ′,S ′, λ′) ⊢ Q, and E ′ ⊢ Λ′; (E ′,S ′,Q′∪{(Q, λ′)}).

• Case R = Red Nil. In this case, Λ′ = Λ, E = E ′,S = S ′,P = P ′ ∪{(0, λ)},
and Q = P ′. By hypothesis E ⊢ Λ; (E ,S,Q) since E = E ′,S = S ′,Λ′ = Λ,

we have that E ⊢ Λ′; (E ′,S ′,Q).

• Case R = Red Repl. In this case, Λ′ = Λ \ {l}, E ′ = E ,S ′ = S,P =

P ′ ∪ {(!iP, ∅)}, and Q = P ′ ∪ {(!iP | P{l/i}, ∅)}. Let (Q′, λ′′) ∈ Q, then

Appendix C. StatVerif Extension Related Proofs 279

either (Q′, λ′′) ∈ P ′ or (Q′, λ′′) = (!iP | P{l/i}, ∅)
If (Q′, λ′′) ∈ P ′ since by hypothesis E ⊢ Λ; (E ,S,P ′) and E = E ′,S = S ′,
we have that E ⊢ Λ; (E ′,S ′,Q) Let E ′ = E ∪ {i 7→ (l, l)} since i does not

appear in Q′, E ′ ⊢ Λ′; (E ′,S ′,Q).

If (Q′, λ′′) = (!iP | P{l/i}, ∅) by hypothesis (E,S, ∅) ⊢!iP since S ′ =

S, we have (E,S ′, ∅) ⊢ P . Let E ′ = E ∪ {i 7→ (l, l)} by rule Trepl,

(E ′,S, ∅) ⊢ P since S ′ = S, we have (E ′,S ′, ∅) ⊢ P . By Lemma C.21 we

have that (E,S ′, ∅) ⊢ P{l/i} and by rule Tpar we have that (E,S ′, ∅) ⊢ (!iP |
P{l/i}, ∅). By hypothesis Label(E1)∪Label(Λ)∪Label(P) and Label(E2)∪
Label(Λ) ∪ Label(P) contain no duplicates. By definition Label(!iP) = ∅
hence Label(E1)∪Label(Λ)∪Label(P) = Label(E1)∪Label(Λ)∪Label(P ′)∪
Label(!iP) = Label(E1) ∪ Label(Λ) ∪ Label(P ′) and Label(E2) ∪ Label(Λ) ∪
Label(P) = Label(E2) ∪ Label(Λ) ∪ Label(P ′) ∪ Label(!iP) = Label(E2) ∪
Label(Λ) ∪ Label(P ′) contain no duplicates. Since Label(P) ∩ Label(E1) ∪
Label(Λ) ∪ Label(P ′) = Label(P) ∩ Label(E2) ∪ Label(Λ) ∪ Label(P ′) = ∅
we have that Label(E1) ∪ Label(Λ) ∪ Label(P ′ ∪ {(P, ∅)}) and Label(E2) ∪
Label(Λ)∪Label(P ′ ∪{(P, ∅)}) contain no duplicates. Label(Λ′) ⊆ Label(Λ)

hence Label(E1)∪Label(Λ′)∪Label(P ′∪{(P, ∅)}) and Label(E2)∪Label(Λ′)∪
Label(P ′∪{(P, ∅)}) contain no duplicates. Since Q = P ′∪{(!iP | P{l/i}, ∅)}
we have that E ⊢ Λ′; (E ′,S ′,Q)

• Case R = Red Par. In this case, Λ′ = Λ, E ′ = E ,S ′ = S,P = P ′ ∪
(P1|P2, ∅), and Q = P ′ ∪ {(P1, ∅), (P2, ∅)}. Let (Q′, λ′′) ∈ Q, then either

(Q′, λ′′) ∈ P ′ or (Q′, λ′′) ∈ {(P1, ∅), (P2, ∅)}.
If (Q′, λ′′) ∈ P ′. By hypothesis E ⊢ Λ; (E ,S,P ′) since Λ′ = Λ, E ′ = E ,S ′ = S
we have that E ⊢ Λ′; (E ′,S ′,P ′).
If (Q′, λ′′) = (P1, ∅) by rule Tpar we have that (E ,S, ∅) ⊢ P1 since E ′ = E ,S ′ =
S we have that (E ′,S ′, ∅) ⊢ P1 If (Q

′, λ′′) = (P2, ∅) by rule Tpar we have that

(E ,S, ∅) ⊢ P2 since E ′ = E ,S ′ = S we have that (E ′,S ′, ∅) ⊢ P2. By hypoth-

esis Label(E1) ∪ Label(Λ) ∪ Label(P) and Label(E2) ∪ Label(Λ) ∪ Label(P)

Appendix C. StatVerif Extension Related Proofs 280

contain no duplicates. Since Λ′ = Λ we have Label(E1)∪Label(Λ′)∪Label(P)

and Label(E2)∪Label(Λ)∪Label(P) contain no duplicates. P = P ′∪{(P1 |
P2, ∅)} hence Label(E1) ∪ Label(Λ′) ∪ Label(P ′) ∪ Label({(P1 | P2, ∅)}) and
Label(E2)∪Label(Λ)∪Label(P)∪Label({(P1 | P2, ∅)}) contain no duplicates.

By definition Label({(P1 | P2, ∅)}) = Label({(P1, ∅)}) ∪ Label({(P2, ∅)})
hence Label(E1)∪Label(Λ′)∪Label(P ′)∪Label({(P1, ∅)})∪Label({(P2, ∅)})
and Label(E2) ∪ Label(Λ) ∪ Label(P) ∪ Label({(P1, ∅)}) ∪ Label({(P2, ∅)})
contain no duplicates. Hence E ⊢ Λ′; (E ′,S ′,Q)

• Case R = Red New. In this case, Λ′ = Λ, E ′ = E ∪ {a0[M1, . . . ,Mn]},
S ′ = S,P = P ′ ∪ {(new a : a0[M1, . . . ,Mn];Q, λ)}, and Q = P ′∪
{(Q{a0[M1,...,Mn]/a}, λ)}. Let (Q′, λ′′) ∈ Q, then either (Q′, λ′′) ∈ P ′ or
(Q′, λ′′) = (Q{a0[M1,...,Mn]/a}, λ).
If (Q′, λ′′) ∈ P ′. By hypothesis E ⊢ Λ; (E ,S,P ′) since Λ′ = Λ,S ′ = S and

a0[M1, . . . ,Mn] is fresh, in fact by hypothesis Label(P) does not contain du-

plicates, we have that E ⊢ Λ′; (E ′,S ′,P ′).
If (Q′, λ′′) = (Q{a0[M1,...,Mn]/a}, λ) Let E ′ = E[a 7→ (a0[E1(fst(M1)), . . . ,

E1(fst(Mn))], a0[E2(snd(M1)), . . . , E2(snd(Mn))])] then by rule Tnew,

(E ′,S, λ) ⊢ Q and by Lemma C.21 (E,S, λ) ⊢ Q{a0[M1,...,Mn]/a} since S ′ = S
we have that (E,S ′, λ) ⊢ Q{a0[M1,...,Mn]/a}. By hypothesis Label(E1) ∪
Label(Λ) ∪ Label(P) and Label(E2) ∪ Label(Λ) ∪ Label(P) contain no du-

plicates. Since Λ′ = Λ we have Label(E1) ∪ Label(Λ′) ∪ Label(P) and

Label(E2) ∪ Label(Λ′) ∪ Label(P) contain no duplicates.

By definition Label(P) = Label(P ′) ∪ Label(new a : a0[M1, . . . ,Mn];Q) =

Label(P ′) ∪ {(a0, last(M1, . . . ,Mn)} ∪ Label(Q) ⊇ Label(P ′) ∪ Label(Q) =

Label(Q) we have that Label(E1) ∪ Label(Λ) ∪ Label(Q) and Label(E2) ∪
Label(Λ) ∪ Label(Q) contain no duplicates. Hence E ⊢ Λ′; (E ′,S ′,Q)

• Case R = Red Fun1. In this case, Λ′ = Λ, E ′ = E ,S ′ = S,P = P ′ ∪
{let x = D in Q1 else Q2}, and Q = P ′ ∪ {(Q1{diff[M,M ′]/x}, λ)} and

fst(D) ⇓σ M, snd(D) ⇓σ M
′. Let (Q′, λ′′) ∈ Q, then either (Q′, λ′′) ∈ P ′ or

Appendix C. StatVerif Extension Related Proofs 281

(Q′, λ′′) = (Q1{diff[M,M ′]/x}, λ).
If (Q′, λ′′) ∈ P ′. By hypothesis E ⊢ Λ; (E ,S,P ′) since Λ′ = Λ,S ′ = S, E ′ = E
we have E ⊢ Λ′; (E ′,S ′,P ′).
If (Q′, λ′′) = (Q1{diff[M,M ′]/x}, λ) then by rule Tlet,

(E,S, λ) ⊢ Q1{diff[M,M ′]/x} and since S ′ = S, E ′ = E we have that

(E ′,S ′, λ) ⊢ Q1{diff[M,M ′]/x}. By hypothesis Label(E1)∪Label(Λ)∪Label(P)

and Label(E2) ∪ Label(Λ) ∪ Label(P) contain no duplicates. Since Λ′ = Λ

we have Label(E1) ∪ Label(Λ′) ∪ Label(P) and Label(E2) ∪ Label(Λ′) ∪
Label(P) contain no duplicates. By definition Label(P) = Label(P ′) ∪
Label(let x = D in Q1 else Q2) = Label(P ′) ∪ Label(Q1) ∪ Label(Q2) ⊇
Label(P ′) ∪ Label(Q1{diff[M,M ′]/x}) = Label(Q) we have that Label(E1) ∪
Label(Λ)∪Label(Q) and Label(E2)∪Label(Λ)∪Label(Q) contain no dupli-

cates. Hence E ⊢ Λ′; (E ′,S ′,Q)

• Case R = Red Fun2. In this case, Λ′ = Λ, E ′ = E ,S ′ = S,P = P ′ ∪
{let x = D in Q1 else Q2}, and Q = P ′∪{(Q2, λ)} and ∄M,M ′ such that

fst(D) ⇓σ M, snd(D) ⇓σ M
′. Let (Q′, λ′′) ∈ Q, then either (Q′, λ′′) ∈ P ′ or

(Q′, λ′′) = (Q2, λ).

If (Q′, λ′′) ∈ P ′. By hypothesis E ⊢ Λ; (E ,S,P ′) since Λ′ = Λ,S ′ = S, E ′ = E
we have E ⊢ Λ′; (E ′,S ′,P ′).
If (Q′, λ′′) = (Q2, λ) then by rule Tlet, (E,S, λ) ⊢ Q2 and since S ′ = S, E ′ =
E we have that (E ′,S ′, λ) ⊢ Q2. By hypothesis Label(E1) ∪ Label(Λ) ∪
Label(P) and Label(E2)∪Label(Λ)∪Label(P) contain no duplicates. Since

Λ′ = Λ we have Label(E1)∪Label(Λ′)∪Label(P) and Label(E2)∪Label(Λ′)∪
Label(P) contain no duplicates. By definition Label(P) = Label(P ′) ∪
Label(let x = D in Q1 else Q2) = Label(P ′) ∪ Label(Q1) ∪ Label(Q2) ⊇
Label(P ′) ∪ Label(Q2) = Label(Q) we have that Label(E1) ∪ Label(Λ) ∪
Label(Q) and Label(E2)∪Label(Λ)∪Label(Q) contain no duplicates. Hence

E ⊢ Λ′; (E ′,S ′,Q)

Appendix C. StatVerif Extension Related Proofs 282

• Case R = Red Comm. In this case, Λ′ = Λ, E ′ = E ,S ′ = S,P =

P ′ ∪ {(out(M,N);Q1, λ1), (in(M
′, x);Q2, λ2)}, and Q = P ′ ∪ {(Q1, λ1),

(Q2{N/x}, λ2)} and Σ ⊢ fst(M) = fst(M ′),Σ ⊢ snd(M) = snd(M ′). Let

(Q′, λ′′) ∈ Q, then either (Q′, λ′′) ∈ P ′ or (Q′, λ′′) ∈ {(Q1, λ1), (Q2{N/x}, λ2)}.
If (Q′, λ′′) ∈ P ′. By hypothesis E ⊢ Λ; (E ,S,P ′) since Λ′ = Λ,S ′ = S, E ′ = E
we have E ⊢ Λ′; (E ′,S ′,P ′).
If (Q′, λ′′) = (Q1, λ1) then by rule Tout, (E,S, λ) ⊢ Q1 and since S ′ = S we

have that (E,S ′, λ) ⊢ Q1.

If (Q′, λ′′) = (Q2{N/x}, λ2) let E ′ = E[x 7→ (E1(fst(N)), E2(snd(N)))] then

by rule Tin, (E
′,S, λ2) ⊢ Q2 and since S ′ = S we have that (E ′,S ′, λ2) ⊢ Q2

by Lemma C.21 we have that (E,S ′, λ2) ⊢ Q2{N/x}.
By hypothesis Label(E1)∪Label(Λ)∪Label(P) and Label(E2)∪Label(Λ)∪
Label(P) contain no duplicates. Since Λ′ = Λ we have Label(E1)∪Label(Λ′)
∪Label(P) and Label(E2)∪Label(Λ′)∪Label(P) contain no duplicates. By

definition Label(P) = Label(P ′) ∪ Label((out(M,N);Q1, λ1), (in(M
′, x);

Q2, λ2)) = Label(P ′) ∪ Label((out(M,N);Q1, λ1)) ∪ Label((in(M ′, x);Q2,

λ2)) ⊇ Label(P ′) ∪ Label((Q1, λ1), (Q2{N/x}, λ2)) = Label(Q) we have that

Label(E1)∪Label(Λ)∪Label(Q) and Label(E2)∪Label(Λ)∪Label(Q) contain

no duplicates. Hence E ⊢ Λ′; (E ′,S ′,Q)

• Case R = Red State. This case cannot happen since [s 7→ M] does not

occur in P

• Case R = Red Lock. In this case, Λ′ = Λ, E ′ = E ,S ′ = S,P = P ′ ∪
{(lock si1, . . . , sim ;Q, λ)}, and Q = P ′ ∪ {(Q, λ′)}, λ′ = λ ∪ {si1 , . . . , sim}.
Let (Q′, λ′′) ∈ Q, then either (Q′, λ′′) ∈ P ′ or (Q′, λ′′) ∈ {(Q, λ′)}.
If (Q′, λ′′) ∈ P ′. By hypothesis E ⊢ Λ; (E ,S,P ′) since Λ′ = Λ,S ′ = S, E ′ = E
we have E ⊢ Λ′; (E ′,S ′,P ′).
If (Q′, λ′′) = (Q, λ′) then by rule Tlock, (E,S, λ′) ⊢ Q and since S ′ = S, E ′ =
E we have that (E ′,S ′, λ′) ⊢ Q1.

By hypothesis Label(E1)∪Label(Λ)∪Label(P) and Label(E2)∪Label(Λ)∪

Appendix C. StatVerif Extension Related Proofs 283

Label(P) contain no duplicates. Since Λ′ = Λwe have Label(E1)∪Label(Λ′)∪
Label(P) and Label(E2)∪Label(Λ′)∪Label(P) contain no duplicates. By def-

inition Label(P) = Label(P ′)∪Label((lock si1, . . . , sim ;Q, λ)) = Label(P ′)∪
Label((lock si1, . . . , sim , λ))∪Label((Q, λ′)) ⊇ Label(P ′) ∪Label((Q, λ′)) =
Label(Q) we have that Label(E1) ∪ Label(Λ) ∪ Label(Q) and Label(E2) ∪
Label(Λ) ∪ Label(Q) contain no duplicates. Hence E ⊢ Λ′; (E ′,S ′,Q)

• Case R = Red Unlock. In this case, Λ′ = Λ, E ′ = E ,S ′ = S,P = P ′ ∪
{(unlock si1 , . . . , sim;Q, λ)}, and Q = P ′ ∪ {(Q, λ′)}, λ′ = λ \ {si1 , . . . , sim}.
Let (Q′, λ′′) ∈ Q, then either (Q′, λ′′) ∈ P ′ or (Q′, λ′′) ∈ {(Q, λ′)}.
If (Q′, λ′′) ∈ P ′. By hypothesis E ⊢ Λ; (E ,S,P ′) since Λ′ = Λ,S ′ = S, E ′ = E
we have E ⊢ Λ′; (E ′,S ′,P ′).
If (Q′, λ′′) = (Q, λ′) then by rule Tunlock, (E,S, λ′) ⊢ Q and since S ′ =
S, E ′ = E we have that (E ′,S ′, λ′) ⊢ Q.
By hypothesis Label(E1)∪Label(Λ)∪Label(P) and Label(E2)∪Label(Λ)∪
Label(P) contain no duplicates. Since Λ′ = Λwe have Label(E1)∪Label(Λ′)∪
Label(P) and Label(E2)∪Label(Λ′)∪Label(P) contain no duplicates. By def-

inition Label(P) = Label(P ′)∪Label((lock si1, . . . , sim ;Q, λ)) = Label(P ′)∪
Label((lock si1, . . . , sim , λ))∪Label((Q, λ′)) ⊇ Label(P ′) ∪Label((Q, λ′)) =
Label(Q) we have that Label(E1) ∪ Label(Λ) ∪ Label(Q) and Label(E2) ∪
Label(Λ) ∪ Label(Q) contain no duplicates. Hence E ⊢ Λ′; (E ′,S ′,Q)

• Case R = Red Read. In this case, Λ′ = Λ, E ′ = E ,S ′ = S,P = P ′ ∪
{(read si1 , . . . , sim as x1, . . . , xm;Q, λ)}, and Q = P ′ ∪ {(Q{S(si1)/x1, . . . ,

S(sim)/xm
}, λ)}. Let (Q′, λ′′) ∈ Q, then either (Q′, λ′′) ∈ P ′ or (Q′, λ′′) =

(Q{S(si1)/x1, . . . ,

S(sim)/xm
}, λ).

If (Q′, λ′′) ∈ P ′. By hypothesis E ⊢ Λ; (E ,S,P ′) since Λ′ = Λ,S ′ = S, E ′ = E
we have E ⊢ Λ′; (E ′,S ′,P ′).
If (Q′, λ′′) = (Q{S(si1)/x1 , . . . ,

S(sim) /xm
}, λ). Let E ′ = E[x1 7→

(E1(S1(si1)), E2(S2(si1))), . . . , xm 7→ (E1(S1(sim)),

Appendix C. StatVerif Extension Related Proofs 284

E2(S2(sim)))] then by rule Tread, (E
′,S, λ) ⊢ Q and since S ′ = S we have that

(E ′,S ′, λ) ⊢ Q and by Lemma C.21 we have that (E,S ′, λ) ⊢ Q{S(si1)/x1, . . . ,

S(sim)/xm
}.

By hypothesis Label(E1)∪Label(Λ)∪Label(P) and Label(E2)∪Label(Λ)∪
Label(P) contain no duplicates. Since Λ′ = Λwe have Label(E1)∪Label(Λ′)∪
Label(P) and Label(E2)∪Label(Λ′)∪Label(P) contain no duplicates. By def-

inition Label(P) = Label(P ′)∪Label((read si1 , . . . , sim as x1, . . . , xm;Q, λ))

= Label(P ′) ∪ Label((read si1 , . . . , sim as x1, . . . , xm, λ)) ∪ Label((
Q{S(si1)/x1, . . . ,

S(sim) /xm
}, λ)) ⊇ Label(P ′) ∪ Label((Q{S(si1)/x1, . . . ,

S(sim)/xm
}, λ)) = Label(Q) we have that Label(E1) ∪ Label(Λ) ∪ Label(Q)

and Label(E2) ∪ Label(Λ) ∪ Label(Q) contain no duplicates. Hence E ⊢
Λ′; (E ′,S ′,Q)

• Case R = Red Assign. In this case, Λ′ = Λ, E ′ = E ,S ′ = S[si1 7→
M1, . . . , sim 7→ Mm],P = P ′ ∪ {(si1, . . . , sim := M1, . . . ,Mm;Q, λ)}, and

Q = P ′ ∪ {(Q, λ)}. Let (Q′, λ′′) ∈ Q, then either (Q′, λ′′) ∈ P ′ or (Q′, λ′′) =
(Q, λ).

If (Q′, λ′′) ∈ P ′. By hypothesis E ⊢ Λ; (E ,S,P ′) since Λ′ = Λ, E ′ = E we have

E ⊢ Λ′; (E ′,S,P ′) since by ruleRed Assign ∀(Q′, λ′) ∈ P ′, λ′∩{i1, . . . im} =

∅ we have that E ⊢ Λ′; (E ′,S ′,P ′).
If (Q′, λ′′) = (Q, λ) then by rule Tassign, (E,S ′, λ) ⊢ Q.
By hypothesis Label(E1)∪Label(Λ)∪Label(P) and Label(E2)∪Label(Λ)∪
Label(P) contain no duplicates. Since Λ′ = Λwe have Label(E1)∪Label(Λ′)∪
Label(P) and Label(E2)∪Label(Λ′)∪Label(P) contain no duplicates. By def-

inition Label(P) = Label(P ′) ∪ Label((si1 , . . . , sim := M1, . . . ,Mm;Q, λ)) =

Label(P ′) ∪ Label((si1 , . . . , sim :=M1, . . . ,Mm, λ)) ∪ Label((Q, λ)) ⊇
Label(P ′) ∪ Label((Q, λ)) = Label(Q) we have that Label(E1) ∪ Label(Λ) ∪
Label(Q) and Label(E2)∪Label(Λ)∪Label(Q) contain no duplicates. Hence

E ⊢ Λ′; (E ′,S ′,Q)

Appendix C. StatVerif Extension Related Proofs 285

Bibliography

[3GP01] 3GPP. Technical specification group services and system aspects; 3G

security; formal analysis of the 3G authentication protocol (release 4),

TS 33.902. Technical Specification TR 33.902, V4.0.0, 3rd Generation

Partnership Project, 2001.

[3GP10a] 3GPP. Generic Access Network (GAN); Mobile GAN interface layer

3 specification, TS 44.318. Technical Specification TS 44.318 v9.2.0,

3rd Generation Partnership Project, 2010.

[3GP10b] 3GPP. Generic Access Network (GAN); Stage 2, TS 43.318. Technical

Specification TS 43.318 v9.0.0, 3rd Generation Partnership Project,

2010.

[3GP10c] 3GPP. Technical specification group core network and terminals; mo-

bile radio interface layer 3 specification; core network protocols; stage

3 (release 9), TS 24.008. Technical Report TS 24.008 V9.4.0, 3rd

Generation Partnership Project, 2010.

[3GP10d] 3GPP. Technical specification group services and system aspects; 3G

security; security architecture (release 9), TS 33.102. Technical Spec-

ification TS 33.102 V9.3.0, 3rd Generation Partnership Project, 2010.

[3GP10e] 3GPP. Technical specification group services and system aspects;

security aspects (release 4), TS 42.009. Technical Specification TS

42.009 V4.3.0, 3rd Generation Partnership Project, 2010.

287

Bibliography 288

[3GP11a] 3GPP. Security of Home Node B (HNB) / Home evolved Node B

(HeNB), TS 33.302. Technical Specification TS 33.302 v11.2.0, 3rd

Generation Partnership Project, 2011.

[3GP11b] 3GPP. Technical specification group radio access network; radio re-

source control (RRC); protocol specification (release 10), TS 25.331.

Technical Report TS 25.331, V10.5.0, 3rd Generation Partnership

Project, 2011.

[3GP11c] 3GPP. Technical specification group services and system aspects;

3G security; cryptographic algorithm requirements (release 10), TS

33.105. Technical Specification TS 33.105 V10.0.0, 3rd Generation

Partnership Project, 2011.

[AB05] Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with

secrecy types and logic programs. Journal of the ACM, 52(1):102–146,

January 2005.

[ABB+05] Alessandro Armando, David Basin, Yohan Boichut, Yannick Cheva-

lier, Luca Compagna, Jorge Cuellar, P. Hankes Drielsma, P. C. Heám,

O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb,

M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.

The avispa tool for the automated validation of internet security pro-

tocols and applications. In International Conference on Computer

Aided Verification, CAV’05, pages 281–285, Berlin, Heidelberg, 2005.

Springer-Verlag.

[ABR12] Myrto Arapinis, Sergiu Bursuc, and Mark Ryan. Privacy supporting

cloud computing: Confichair, a case study. In Pierpaolo Degano and

JoshuaD. Guttman, editors, Principles of Security and Trust, POST,

volume 7215 of Lecture Notes in Computer Science, pages 89–108.

Springer Berlin Heidelberg, 2012.

Bibliography 289

[AC06] Mart́ın Abadi and Véronique Cortier. Deciding knowledge in security

protocols under equational theories. Theoretical Computer Science,

367(1-2):2–32, 2006.

[ACC+08a] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuel-

lar, and Llanos Tobarra. Formal analysis of saml 2.0 web browser sin-

gle sign-on: Breaking the saml-based single sign-on for google apps. In

ACM Workshop on Formal Methods in Security Engineering, FMSE

’08, pages 1–10, New York, NY, USA, 2008. ACM.

[ACC+08b] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge

Cuéllar, and M. Llanos Tobarra. Formal analysis of SAML 2.0 web

browser single sign-on: breaking the SAML-based single sign-on for

google apps. In ACM Workshop on Formal Methods in Security En-

gineering, FMSE, 2008.

[ACC14] Alessandro Armando, Roberto Carbone, and Luca Compagna. Satmc:

a sat-based model checker for security-critical systems. In Interna-

tional Conference on Tools and Algorithms for the Construction and

Analysis of Systems, TACAS, pages 31–45. Springer, 2014.

[ACRR09] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Untrace-

ability in the applied pi calculus. In International Workshop on RFID

Security and Cryptography, 2009.

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan.

Analysing unlinkability and anonymity using the applied pi calculus.

In Computer Security Foundations Symposium, CSF, CSF, 2010.

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and

secure communication. In ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL, 2001.

Bibliography 290

[AG97] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic

protocols: The spi calculus. In Conference on Computer and Com-

munications Security, CCS, CCS, pages 36–47, New York, NY, USA,

April 1997. ACM.

[ALRR14] Myrto Arapinis, Jia Liu, Eike Ritter, and Mark D. Ryan. Stateful

applied pi calculus. In Martn Abadi and Steve Kremer, editors, Prin-

ciples of Security and Trust, POST, volume 8414 of Lecture Notes in

Computer Science, pages 22–41. Springer Berlin Heidelberg, 2014.

[AMR+12] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan, Nico

Golde, Kevin Redon, and Ravishankar Borgaonkar. New privacy is-

sues in mobile telephony: Fix and verification. In Conference on

Computer and Communications Security, CCS, pages 205–216. ACM,

2012.

[AMRR14] Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, and Mark Ryan.

Privacy through pseudonymity in mobile telephony systems. In Net-

work and Distributed System Security Symposium, NDSS, 2014.

[AO05] Gildas Avoine and Philippe Oechslin. RFID Traceability: A Multi-

layer Problem. In Financial Cryptography, FC, 2005.

[AR00] Martin Abadi and Phillip Rogaway. Reconciling two views of cryp-

tography. In Jan van Leeuwen, Osamu Watanabe, Masami Hagiya,

PeterD. Mosses, and Takayasu Ito, editors, Theoretical Computer Sci-

ence: Exploring New Frontiers of Theoretical Informatics, volume

1872 of Lecture Notes in Computer Science, pages 3–22. Springer

Berlin Heidelberg, 2000.

[ARR11] Myrto Arapinis, Eike Ritter, and Mark Ryan. Statverif: Verification

of stateful processes. In Computer Security Foundations Symposium,

CSF, CSF, 2011.

Bibliography 291

[ASS09] Zahra Ahmadian, Somayeh Salimi, and Ahmad Salahi. New attacks

on UMTS network access. In Conference on Wireless Telecommuni-

cations Symposium, WTS’09, 2009.

[BAF05] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated Veri-

fication of Selected Equivalences for Security Protocols. In Symposium

on Logic in Computer Science, LICS, 2005.

[BAF08] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated ver-

ification of selected equivalences for security protocols. Journal of

Logic and Algebraic Programming, 75(1):3–51, 2008.

[BAN90] Michael Burrows, Mart́ın Abadi, and Roger M. Needham. A logic of

authentication. ACM Transactions on Computer System, 8(1):18–36,

1990.

[Bau05] Mathieu Baudet. Deciding security of protocols against off-line guess-

ing attacks. In Conference on Computer and Communications Secu-

rity, CCS, CCS, 2005.

[BBDM13] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud,

and Sergio Maffeis. Keys to the cloud: Formal analysis and concrete

attacks on encrypted web storage. In Principles of Security and Trust,

POST, POST, pages 126–146, 2013.

[BBDM14] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud,

and Sergio Maffeis. Discovering concrete attacks on website authoriza-

tion by formal analysis. Journal of Computer Security, 22(4):601–657,

2014.

[BBM12] Chetan Bansal, Karthikeyan Bhargavan, and Sergio Maffeis. Discov-

ering concrete attacks on website authorization by formal analysis. In

Computer Security Foundations Symposium, CSF, CSF, pages 247–

262, 2012.

Bibliography 292

[BCD09] Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune. Yapa:

A generic tool for computing intruder knowledge. In Ralf Treinen, ed-

itor, Rewriting Techniques and Applications, volume 5595 of Lecture

Notes in Computer Science, pages 148–163. Springer Berlin Heidel-

berg, 2009.

[BCdH10] Mayla Brusò, Konstantinos Chatzikokolakis, and Jerry den Hartog.

Formal verification of privacy for rfid systems. In Computer Security

Foundations Symposium, CSF, CSF, pages 75–88, 2010.

[BCFS10] Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and Graham

Steel. Attacking and fixing PKCS#11 security tokens. In Conference

on Computer and Communications Security, CCS, CCS, 2010.

[BDE09] Murat A. Bayir, Murat Demirbas, and Nathan Eagle. Discovering

spatiotemporal mobility profiles of cellphone users. In World of Wire-

less, Mobile and Multimedia Networks Workshops, 2009. WoWMoM

2009, pages 1–9, june 2009.

[ben] Benetton Boycott Campaign. http://www.boycottbenetton.com/.

[BHKO04] Yohan Boichut, Pierre-Cyrille Héam, Olga Kouchnarenko, and

F. Oehl. Improvements on the Genet and Klay technique to auto-

matically verify security protocols. In International Workshop on Au-

tomated Verification of Infinite-State Systems (AVIS’2004), joint to

ETAPS’04, pages 1–11, Barcelona, Spain, April 2004.

[BJPV11] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and BjÃ Vic-

tor. Psi-calculi: a framework for mobile processes with nominal data

and logic. arXiv preprint arXiv:1101.3262, 2011.

[blaa] BladeRF. http://nuand.com/.

[Blab] Bruno Blanchet. Proverif: Cryptographic protocol verifier in the for-

mal model. http://www.proverif.ens.fr/.

http://www.boycottbenetton.com/
http://nuand.com/
http://www.proverif.ens.fr/

Bibliography 293

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based on

prolog rules. In Computer Security Foundations Symposium, CSF,

CSFW, 2001.

[Bla02] Bruno Blanchet. From secrecy to authenticity in security protocols. In

International Symposium on Static Analysis, SAS ’02, pages 342–359,

London, UK, UK, 2002. Springer-Verlag.

[Bla09] Bruno Blanchet. Automatic verification of correspondences for se-

curity protocols. Journal of Computer Security, 17(4):363–434, July

2009.

[BMV03] David Basin, Sebastian Mdersheim, and Luca Vigan. An on-the-fly

model-checker for security protocol analysis. In Einar Snekkenes and

Dieter Gollmann, editors, European Symposium on Research in Com-

puter Security, ESORICS, volume 2808 of Lecture Notes in Computer

Science, pages 253–270. Springer Berlin Heidelberg, 2003.

[BS03] Alastair R. Beresford and Frank Stajano. Location privacy in per-

vasive computing. IEEE Pervasive Computing, 2(1):46–55, January

2003.

[BSW00] Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanal-

ysis of a5/1 on a pc. In International Workshop on Fast Software

Encryption, page 118, 2000.

[Bur] Burgess, David A. and Samra, Harvind and et al. OpenBTS. http://

openbts.sourceforge.net/.

[BXR13] Ian Batten, Shiwei Xu, and Mark Ryan. Dynamic measurement and

protected execution: model and analysis. In International Symposium

on Trustworthy Global Computing, TGC, August 2013. to appear.

[BZj06] Michael Barbaro and Tom Zeller jr. A face is exposed for aol searcher

no. 4417749. The New York Times, 2006.

http://openbts.sourceforge.net/
http://openbts.sourceforge.net/

Bibliography 294

[Cas05] Johann. Cas. Privacy in pervasive computing environments - a contra-

diction in terms? Technology and Society Magazine, IEEE, 24(1):24–

33, Spring 2005.

[CB13] Vincent Cheval and Bruno Blanchet. Proving more observational

equivalences with proverif. In David Basin and John Mitchell, editors,

Principles of Security and Trust, POST, Lecture Notes in Computer

Science, pages 226–246, Roma, Italy, March 2013. Springer.

[CCLD10] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. Au-

tomating security analysis: Symbolic equivalence of constraint sys-

tems. In International Joint Conference on Automated Reasoning,

IJCAR, 2010.

[CD09] Véronique Cortier and Stéphanie Delaune. A method for proving

observational equivalence. In Computer Security Foundations Sympo-

sium, CSF, CSF, 2009.

[CDK09] Ştefan Ciobâcă, Stéphanie Delaune, and Steve Kremer. Computing

knowledge in security protocols under convergent equational theories.

In Renate Schmidt, editor, International Conference on Automated

Deduction (CADE’09), Lecture Notes in Artificial Intelligence, pages

355–370, Montreal, Canada, Aug 2009. Springer.

[CJS+08] Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, Joe-Kai Tsay,

and Christopher Walstad. Breaking and fixing public-key kerberos.

Inf. Comput., 206:402–424, February 2008.

[CLCZ10] Hubert Comon-Lundh, Véronique Cortier, and Eugen Zălinescu. De-

ciding security properties for cryptographic protocols. application to

key cycles. ACM Transactions on Computational Logic, 11(2):1–42,

2010.

Bibliography 295

[CLN09] Cas J.F. Cremers, Pascal Lafourcade, and Philippe Nadeau. Compar-

ing state spaces in automatic security protocol analysis. In Véronique

Cortier, Claude Kirchner, Mitsuhiro Okada, and Hideki Sakurada, ed-

itors, Formal to Practical Security, volume 5458 of Lecture Notes in

Computer Science, pages 70–94. Springer Berlin Heidelberg, 2009.

[Com] Gerald Combs. Wireshark. http://www.wireshark.org.

[Cre08] Cas J.F. Cremers. The scyther tool: Verification, falsification, and

analysis of security protocols. In Aarti Gupta and Sharad Malik,

editors, Computer Aided Verification, volume 5123 of Lecture Notes in

Computer Science, pages 414–418. Springer Berlin Heidelberg, 2008.

[CS10] Tom Chothia and Vitaliy Smirnov. A traceability attack against e-

passports. In International Conference on Financial Cryptography

and Data Security, FC, 2010.

[CS12] Véronique Cortier and Ben Smyth. Attacking and fixing helios: An

analysis of ballot secrecy. Journal of Computer Security, 2012.

[CW12a] Véronique Cortier and Cyrille Wiedling. A formal analysis of the

norwegian e-voting protocol. In Principles of Security and Trust,

POST, volume 7215 of Lecture Notes in Computer Science, pages

109–128, Tallinn, Estonia, March 2012. Springer.

[CW12b] Véronique Cortier and Cyrille Wiedling. A formal analysis of the

norwegian e-voting protocol. In Pierpaolo Degano and Joshua D.

Guttman, editors, Principles of Security and Trust, POST, volume

7215 of Lecture Notes in Computer Science, pages 109–128. Springer

Berlin Heidelberg, 2012.

[DKRS11] Stéphanie Delaune, Steve Kremer, MarkD. Ryan, and Graham Steel.

A formal analysis of authentication in the tpm. In Pierpaolo Degano,

Bibliography 296

Sandro Etalle, and Joshua Guttman, editors, Formal Aspects of Se-

curity and Trust, FAST, volume 6561 of Lecture Notes in Computer

Science, pages 111–125. Springer Berlin Heidelberg, 2011.

[DLMS99] Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Sce-

drov. Undecidability of bounded security protocols. In Workshop on

Formal Methods and Security Protocols, FMSP’99, Trento, Italy, July

1999.

[DRS08] Stéphanie Delaune, Mark D. Ryan, and Ben Smyth. Automatic verifi-

cation of privacy properties in the applied pi-calculus. In Conferences

on Privacy, Trust Management and Security, volume 263 of Interna-

tional Federation for Information Processing (IFIP), pages 263–278.

Springer, 2008.

[DSHJ10] Nitish Dalal, Jenny Shah, Khushboo Hisaria, and Devesh Jinwala. A

comparative analysis of tools for verification of security protocols. Int’l

J. of Communications, Network and System Sciences, 3(10):779–787,

2010.

[DY81] Danny Dolev and Andrew C. Yao. On the security of public key

protocols. Annual IEEE Symposium on Foundations of Computer

Science, 0:350–357, 1981.

[Eng] Tobias Engel. Locating mobile phones using signalling system 7.

http://events.ccc.de/congress/2008/Fahrplan/attachments/

1262_25c3-locating-mobile-phones.pdf. 25th Chaos Communi-

cation Congress (25C3).

[Ett09] Ettus. USRP. http://www.ettus.com/products, 2009.

[Fox97] Dirk Fox. IMSI-Catcher. Datenschutz und Datensicherheit (DuD),

21:539–539, 1997.

http://events.ccc.de/congress/2008/Fahrplan/attachments/1262_25c3-locating-mobile-phones.pdf
http://events.ccc.de/congress/2008/Fahrplan/attachments/1262_25c3-locating-mobile-phones.pdf
http://www.ettus.com/products

Bibliography 297

[Gad] Great Scott Gadgets. HackRF. http://greatscottgadgets.com/

hackrf/.

[GHB08] Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi.

Understanding individual human mobility patterns. Nature, 453:779–

782, 2008.

[GHT05] Andreas Grlach, Andreas Heinemann, and WesleyW. Terpstra. Sur-

vey on location privacy in pervasive computing. In Philip Robinson,

Harald Vogt, and Waleed Wagealla, editors, Privacy, Security and

Trust within the Context of Pervasive Computing, volume 780 of The

International Series in Engineering and Computer Science, pages 23–

34. Springer US, 2005.

[gnu06] GNU Radio. http://gnuradio.org, 2006.

[GRB12] Nico Golde, Kevin Redon, and Ravishankar Borgaonkar. Weaponiz-

ing femtocells: The effect of rogue devices on mobile telecommunica-

tions. In Network and Distributed System Security Symposium, NDSS,

NDSS, 2012.

[GRBR13] Gurchetan S. Grewal, Mark D. Ryan, Sergiu Bursuc, and Peter Y. A.

Ryan. Caveat coercitor: Coercion-evidence in electronic voting. In

IEEE Symposium on Security and Privacy, SP ’13, pages 367–381,

Washington, DC, USA, 2013. IEEE Computer Society.

[Gut12] Joshua D. Guttman. State and progress in strand spaces: Proving

fair exchange. Journal of Automated Reasoning, 48(2):159–195, 2012.

[H02] Hans Httel. Deciding framed bisimilarity. Electronic Notes in Theo-

retical Computer Science, (6):1–18, 2002.

[Her06] J. Herzog. Applying protocol analysis to security device interfaces.

IEEE Security Privacy, 4(4):84–87, 2006.

http://greatscottgadgets.com/hackrf/
http://greatscottgadgets.com/hackrf/
http://gnuradio.org

Bibliography 298

[Int97] Lucas D. Introna. Privacy and the computer: Why we need privacy

in the information society. Metaphilosophy, 28(3):259–275, 1997.

[KFD10] Ioannis Krontiris, Felix C. Freiling, and Tassos Dimitriou. Location

privacy in urban sensing networks: research challenges and directions

[security and privacy in emerging wireless networks]. Wireless Com-

munications, IEEE, 17(5):30–35, October 2010.

[Kin10] Kineto Wireless Inc. official Unlicensed Mobile Access presentation

webiste. http://www.smart-wi-fi.com/, June 2010.

[KKHK12] Denis Foo Kune, John Koelndorfer, Nicholas Hopper, and Yongdae

Kim. Location leaks over the GSM air interface. In Network and

Distributed System Security Symposium, NDSS, NDSS, 2012.

[KO06] Geir Koien and Vladimir Oleshchuk. Location privacy for cellular

systems; analysis and solution. In Privacy Enhancing Technologies

Symposium, PET, volume 3856, 2006.

[KR05] Steve Kremer and Mark D. Ryan. Analysis of an electronic voting

protocol in the applied pi calculus. In European Conference on Pro-

gramming Languages and Systems, ESOP’05, pages 186–200, Berlin,

Heidelberg, 2005. Springer-Verlag.

[Kru09] John Krumm. A survey of computational location privacy. Personal

Ubiquitous Comput., 13(6):391–399, August 2009.

[KSR08] Petr Klus, Ben Smyth, and Mark D. Ryan. Proswapper, 2008.

[KT09] Ralf Küsters and Tomasz Truderung. Using proverif to analyze proto-

cols with diffie-hellman exponentiation. In Computer Security Foun-

dations Symposium, CSF, CSF, pages 157–171, Washington, DC,

USA, 2009. IEEE Computer Society.

http://www.smart-wi-fi.com/

Bibliography 299

[KT11] Ralf Küsters and Tomasz Truderung. Reducing protocol analysis with

xor to the xor-free case in the horn theory based approach. J. Autom.

Reason., 46(3-4):325–352, April 2011.

[Liu11] Jia Liu. A proof of coincidence of labeled bisimilarity and observa-

tional equivalence in applied pi-calculus, 2011.

[Low96a] Gavin Lowe. Breaking and fixing the needham-schroeder public-key

protocol using fdr. In International Workshop on Tools and Algo-

rithms for Construction and Analysis of Systems, TACAs ’96, pages

147–166, London, UK, UK, 1996. Springer-Verlag.

[Low96b] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key

protocol using fdr. In Tools and Algorithms for the Construction and

Analysis of Systems, TACAS, 1996.

[LTV10] Pascal Lafourcade, Vanessa Terrade, and Sylvain Vigier. Comparison

of cryptographic verification tools dealing with algebraic properties. In

Pierpaolo Degano and Joshua D. Guttman, editors, Formal Aspects

in Security and Trust, volume 5983 of Lecture Notes in Computer

Science, pages 173–185. Springer Berlin Heidelberg, 2010.

[MM] Sam May and Luca Melette. Distributed gsm security

analysis. https://program.sigint.ccc.de/fahrplan/system/

attachments/21/original/120518.GSMMAP-SIGINT.pdf. SIGINT

2012.

[Mod10] Sebastian Alexander Modersheim. Abstraction by set-membership:

verifying security protocols and web services with databases. In Con-

ference on Computer and Communications Security, CCS, CCS, pages

351–360, New York, NY, USA, 2010. ACM.

[MW04] Ulrike Meyer and Susanne Wetzel. A man-in-the-middle attack on

UMTS. In ACM Workshop on Wireless Security, WiSe, 2004.

https://program.sigint.ccc.de/fahrplan/system/attachments/21/original/120518.GSMMAP-SIGINT.pdf
https://program.sigint.ccc.de/fahrplan/system/attachments/21/original/120518.GSMMAP-SIGINT.pdf

Bibliography 300

[NMa] Karsten Nohl and Luca Melette. Defending mobile phones. http://

events.ccc.de/congress/2011/Fahrplan/attachments/1994_

111217.SRLabs-28C3-Defending_mobile_phones.pdf. 28th Chaos

Communication Congress (28C3).

[NMb] Karsten Nohl and Sylvain Munaut. Wideband gsm sniffing. http://

events.ccc.de/congress/2010/Fahrplan/attachments/1783_

101228.27C3.GSM-Sniffing.Nohl_Munaut.pdf.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption

for authentication in large networks of computers. Commun. ACM,

21(12):993–999, December 1978.

[NS06] Arvind Narayanan and Vitaly Shmatikov. How to break anonymity

of the netflix prize dataset. arXiv preprint arXiv:0610105, 2006.

[NS09] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social net-

works. In IEEE Symposium on Security and Privacy, SP ’09, pages

173–187, Washington, DC, USA, 2009. IEEE Computer Society.

[Pag10] Chris Paget. Practical cellphone spying. Def Con 18 Hacking Confer-

ence, 2010.

[pat] http://www.pathintelligence.com. Path Intelligence Ltd. (2010)

FootPath.

[PM08] Juan Carlos López Pimentel and Raul Monroy. Formal Support to

Security Protocol Development: A Survey. Computación y Sistemas,

12:89 – 108, 09 2008.

[PR11] M Peters and Pieter Rogaar. A review of proverif as an automatic

security protocol verifier, 2011.

[Pro] AVISPA Project. AVISPA protocol library. http://www.

avispa-project.org.

http://events.ccc.de/congress/2011/Fahrplan/attachments/1994_111217.SRLabs-28C3-Defending_mobile_phones.pdf
http://events.ccc.de/congress/2011/Fahrplan/attachments/1994_111217.SRLabs-28C3-Defending_mobile_phones.pdf
http://events.ccc.de/congress/2011/Fahrplan/attachments/1994_111217.SRLabs-28C3-Defending_mobile_phones.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1783_101228.27C3.GSM-Sniffing.Nohl_Munaut.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1783_101228.27C3.GSM-Sniffing.Nohl_Munaut.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1783_101228.27C3.GSM-Sniffing.Nohl_Munaut.pdf
http://www.pathintelligence.com
http://www.avispa-project.org
http://www.avispa-project.org

Bibliography 301

[PVs] http://www.markryan.eu/research/UMTS/.

[RT03] Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with

a finite number of sessions and composed keys is np-complete. Theor.

Comput. Sci., 299(1-3):451–475, April 2003.

[Rya11] Mark D. Ryan. Cloud computing privacy concerns on our doorstep.

Commun. ACM, 54(1):36–38, January 2011.

[Shi09] Katie Shilton. Four billion little brothers?: Privacy, mobile phones,

and ubiquitous data collection. Commun. ACM, 52(11):48–53,

November 2009.

[SMCB12] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Au-

tomated analysis of diffie-hellman protocols and advanced security

properties. In Computer Security Foundations Symposium, CSF, CSF,

pages 78–94. IEEE, 2012.

[Str07] Daehyun Strobel. IMSI Catcher, 2007. Seminar Work, Ruhr-

Universitat Bochum.

[Tom13] Tom Ritter and Doug DePerry and Andrew Rahimi. I Can Hear

You Now: Traffic Interception and Remote Mobile Phone Cloning

with a Compromised CDMA Femtocell. https://www.blackhat.

com/us-13/briefings.html, july 2013. Blackhat.

[tra] http://www.markryan.eu/research/mobile/.

[WB90] Samuel D. Warren and Louis D. Brandeis. The right to privacy. Har-

vard Law Review, IV(5), 1890.

[Weh09] Dennis Wehrle. Open Source IMSI-Catcher für GSM. Master Thesis,

October 2009.

http://www.markryan.eu/research/UMTS/
https://www.blackhat.com/us-13/briefings.html
https://www.blackhat.com/us-13/briefings.html
http://www.markryan.eu/research/mobile/

Bibliography 302

[WFS+] Harald Welte, Holger Freyther, Dieter Spaar, Stefan Schmidt, Daniel

Willmann, Jan Luebbe, Thomas Seiler, and Andreas Eversberg.

OpenBSC. http://openbsc.osmocom.org.

[WMEoc] Harald Welte, Sylvain Munaut, Andreas Eversberg, and other con-

tributors. OsmocomBB. http://bb.osmocom.org.

[ZdlR09] Jie Zhang and Guillaume de la Roche. Femtocells: Technologies and

Deployment. John Wiley & Sons, Ltd, 2009.

[ZF05] Muxiang Zhang and Yuguang Fang. Security analysis and enhance-

ments of 3GPP authentication and key agreement protocol. IEEE

Transactions on Wireless Communications, 4(2):734–742, 2005.

http://openbsc.osmocom.org
http://bb.osmocom.org

