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Abstract 

 

Thyroid-Associated Ophthalmopathy (TAO) is a debilitating inflammatory condition of the 

orbit occurring in 30-50% of Graves’ Disease (GD) patients. It is not currently possible to 

predict which GD patients will develop TAO or the severity of their eventual ophthalmic 

manifestations. The aim of this thesis was to evaluate novel biomarkers for this purpose. 

 

I developed two immunoassays to detect serum antibodies to insulin-like growth factor-1 

receptor (IGF-1R-Ab) in GD, TAO and healthy controls (HC). Assays were validated to 

measure commercial monoclonal IGF-1R-Ab but no study group differences, or correlation 

with clinical activity or severity, were noted with sera. 

 

Differential IGF-1R expression on peripheral blood CD4+ and CD8+ T lymphocyte memory 

subsets was observed, although without variance between groups. However, T cell 

differentiation was perturbed, with elevated proportions of naïve, and reduced cytokine-

producing effector memory T cells, in GD and TAO compared to HC.  

 

Nuclear magnetic resonance-based serum metabolomic analysis differentiated GD and TAO 

subjects, and varying TAO clinical activity, with good uncorrected sensitivity and specificity. 

Distinguishing metabolites included lactate, isopropanol, methylguanidine and pyruvate.  

 

Collectively these data cast doubt on a simple model of IGF-1R-Ab being responsible for 

orbital inflammation in GD, but highlight the biomarker potential of metabolomics in TAO. 
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Graves’ Disease and Thyroid-Associated Ophthalmopathy:  

A Historical Perspective 

I have lately seen three cases of violent and long-continued palpitations in females, in each of which 

the same peculiarity presented itself – viz., enlargement of the thyroid gland; the size of this gland, at 

all times considerably greater than natural, was subject to remarkable variations in every one of these 

patients.  

 

In one, the beating of the heart could be heard during the paroxysm at some distance from the bed – 

a phenomenon I had never before witnessed, and which strongly excited my attention and 

curiosity…….. I could distinctly hear the heart beating when my ear was distant at least four feet from 

her chest! 

 

A lady, aged twenty, became affected with some symptoms which were supposed to be hysterical. 

This occurred more than two years ago; her health previously had been good. After she had been in 

this nervous state about three months, it was observed that her pulse had become singularly rapid. 

This rapidity existed without any apparent cause, and was constant, the pulse being never under 120, 

and often much higher. She next complained of weakness on exertion, and began to look pale and 

thin. Thus she continued for a year, but during this time she manifestly lost ground on the whole, the 

rapidity of the heart’s action having never ceased. 

 

In a few months, the action of the heart continuing with unceasing violence, a tumour, of a horseshoe 

shape, appeared on the front of the throat and exactly in the situation of the thyroid gland. This was at 

first soft, but soon attained a greater hardness, though still elastic. From the time it was first observed, 

it has increased little, if at all, in size and is now about thrice the natural bulk of the fully developed 

gland in a female after the age of puberty. 

 

It was now observed that the eye assumed a singular appearance, for the eyeballs were apparently 

enlarged, so that when she slept, or tried to shut her eyes, the lids were incapable of closing. When 

the eyes were open, the white sclerotic could be seen, to a breadth of several lines, all round the 

cornea. 

 

Graves RJ. Newly observed affection of the thyroid gland in females. From the clinical lectures 
delivered by Robert J. Graves, MD, at the Meath Hospital, during the session of 1834-35. 

London Medical and Surgical Journal 1835; 7:516-517.  

Cited by Major RH. Classic descriptions of disease with biographical sketches of the authors. 
Springfield, IL: CC Thomas, 1978: 279-281. 
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1.1 Thyroid-Associated Ophthalmopathy and Graves’ Disease 

 

Thyroid-Associated Ophthalmopathy (TAO), also known as Thyroid Eye Disease 

(TED), Graves’ Orbitopathy (GO), Graves’ Ophthalmopathy, Endocrine Orbitopathy 

and Ophthalmic Graves’ Disease, is an inflammatory condition of the orbit, 

associated with autoimmune thyroid diseases (AITD), particularly Graves’ disease 

(GD).1 TAO constitutes a major clinical and therapeutic challenge and is the 

commonest and most important extrathyroidal manifestation of GD.2 

 

 

Figure 1.1: Typical clinical features in a variety of TAO patients demonstrating the heterogeneous 
nature of ophthalmic manifestations. Patients with moderate disease severity but clinically inactive 
TAO (A & B) and severe, sight-threatening and active TAO (C). Clinical features include eyelid 
retraction, proptosis (asymmetrical in each of these subjects), conjunctival injection and caruncular 
swelling (Images used with the permission of the patients and of Mr. O. Durrani, Consultant 
Ophthalmologist, Birmingham & Midland Eye Centre). 

 

GD is an autoantibody-mediated, multisystem, autoimmune disorder affecting the 

thyroid gland, with additional connective tissue manifestations of the orbital tissues 

and, more rarely, the pre-tibial skin and the acra of the finger.3 The orbital 

manifestations (Figure 1.1) of GD do not appear to be a direct effect of 

hyperthyroidism, rather a reflection of the underlying autoimmunity, as patients need 

not be thyrotoxic to develop TAO.4  
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1.2 Graves’ Disease 

 

In GD, IgG antibodies (GD-IgG) bind to the thyroid-stimulating hormone receptor 

(TSH-R) on thyroid epithelial cells. These TSH-R antibodies (TRAb) modulate thyroid 

function in a number of different ways, with either thyroid-stimulating antibodies 

(TSAb), thyroid-blocking antibodies (TBAb) or antibodies with neutral properties.5 

 

TSAb mimic the actions of thyroid stimulating hormone (TSH) but are not subject to 

negative feedback by the hypothalamic-pituitary-thyroid axis. This results in TSH-R 

activation with overproduction of thyroid hormone, leading to increased thyroid gland 

size (goitre) and overproduction of thyroid hormones.6,7 Histological changes in the 

thyroid gland in GD include follicular hyperplasia and hypertrophy, vascular 

congestion, reduction in follicular colloid, with colloid droplets and scalloping and a 

predominant T cell infiltrate.8 This may result in hyperthyroidism, with high serum free 

tetraiodothyronine (T4, also known as thyroxine) and triiodothyronine (T3) and low or 

undetectable TSH. T3 and T4 activate the sympathetic nervous system, so typical 

symptoms of GD include palpitation (due to tachycardia or arrhythmia), tremor, 

weight loss, sweating, anorexia, heat intolerance, disruption of the menstrual cycle in 

women, difficulty swallowing (or perhaps breathing) due to retrosternal goitre 

(causing extrinsic compression of the oesophagus or trachea).  

 

Importantly, thyrotoxicosis refers to the biochemical and physiological manifestations 

of excessive thyroid hormone whereas hyperthyroidism is the over production of 

thyroid hormone by the thyroid gland. In addition to TRAb, antibodies generated to 
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thyroid peroxidase (TPO-Ab) or thyroglobulin (TG-Ab) can also be detected, in 

around 70% of patients with GD.9-11  

 

Although many manifestations of GD can be attributed to TSAb, the pathogenic basis 

for extrathyroidal manifestations, including TAO, remain poorly understood and, to 

some extent, controversial. It is generally agreed that autoimmunity to thyroid-related 

antigens occurs in the context of both genetic susceptibility and environmental risk 

factors but the exact molecular basis for the extrathyroidal manifestations of GD, 

including TAO, are not known. 

 

Overall, 90% of patients with TAO are hyperthyroid at presentation, with 6% 

presenting as euthyroid, 3% with another form of AITD, Hashimoto’s thyroiditis,12 and 

1% with primary hypothyroidism.13-16 Of all orbital conditions, TAO is one of the most 

common, accounting for 15-28% of unilateral proptosis and 80% of bilateral 

proptosis.17-19 TAO may precede the onset of hyperthyroidism in 20% of cases, 

although more commonly it presents at the same time or following onset of 

hyperthyroidism.20 Regardless of whether thyroid dysfunction or TAO develops first, 

the other becomes apparent within 18 months in 85% of patients.9,21 It is unclear why 

anatomically unrelated tissues undergo coinciding immune infiltration and 

inflammation in GD, but thyroid dermopathy, a nodular or diffuse thickening of the 

pre-tibial skin, is diagnosed in only 13% of patients with severe TAO.22 In addition, 

approximately 20% of patients with thyroid dermopathy have thyroid acropachy, 

which manifests as clubbing of the fingers (Figure 1.2).22  
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Figure 1.2: Extrathyroidal manifestations of GD. TAO patient with additional evidence of pre-tibial 
myxoedema (A), characterised by waxy, erythematous, indurated skin on the anterior aspect of both 
lower legs; thyroid acropachy (B), ‘clubbing’ and swelling of the fingers (and sometimes the toes), 
characterised by subperiosteal new bone formation. 
 

1.3 Epidemiology of GD and TAO 

 

The prevalence of GD is 1.85 – 2.7% and is the underlying cause of 50-80% of 

hyperthyroidism.23,24 TAO is clinically apparent in approximately 30-50% of patients 

with GD, but is detected in 70-80% of GD patients who undergo orbital imaging.25  

TAO has an incidence of 2.9 to 16.0 cases per 100,000 population per year and, 

from studies 10 years ago, was thought to affect an estimated 400,000 individuals in 

the United Kingdom (based on a population of 59 million people).26 Extrapolating 

from a presumed GD prevalence of 1%,27 Putta-Manohar and Perros made the 

assumption that if TAO occurs in 40% of those with GD, then the prevalence of TAO 

is 0.4%, or 3 million in Europe, 1.2 million in the US and 27 million worldwide.28 

 

TAO is the most common cause of orbital inflammation, accounting for approximately 

40% of all orbital disease.1 TAO may affect any age and ethnic group,28 although 

there appears to be a bimodal age distribution of TAO presentation, with peak 

http://en.wikipedia.org/wiki/Bone
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incidence in those aged 40-44 years and 65-69 years.14  It has been established that 

the age of onset tends to be higher in males.28 Women are 5 to 7 times more likely to 

develop the condition than men, although men are generally felt to have more severe 

manifestations, particularly with increasing age.29 Studies attempting to determine 

ethnic differences in TAO have found that the prevalence of TAO, and overall risk of 

TAO development in Europeans, were 6.4 times higher than that of Asian (Indian 

subcontinent) patients, although other groups have found similar prevalence of TAO 

in Asian (Malay, Chinese, and Indian) patients with GD as compared with Caucasian 

GD patients.30,31 However, more recent studies have found no independent 

association of ethnicity with the severity of TAO.32 

 

TAO progresses to sight-threatening disease in 3-5%, usually occurring in the 

context of compression of the optic nerve at the orbital apex by intraorbital tissues, 

known as dysthyroid optic neuropathy (DON), or corneal exposure with ocular 

surface breakdown and subsequent perforation.9 Rarely, other factors may threaten 

sight including eyeball subluxation and choroidal folds.2 Patients with TAO are 5 

times more likely to be smokers than non-smokers. TAO patients who smoke are 

also more severely affected, in a dose-dependent fashion.26,29,33-35 

 

1.4 Clinical Features of TAO 

 

The symptoms of TAO include change of appearance (including “staring” 

appearance), excessive watering of the eyes, double vision, dry, gritty, red eyes with 

retrobulbar aching sensation and reduced vision. These features are due to the 
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classical clinical signs of TAO (Figures 1.1 and 1.3), which consist of a variable 

combination of unilateral or bilateral ocular protrusion (known as proptosis or 

exophthalmos), upper and perhaps lower eyelid retraction, eyelid swelling and 

erythema, periorbital oedema, conjunctival and canalicular injection, swelling or 

chemosis, lagophthalmos, ocular surface exposure and disruption (with the possibility 

of corneal abrasion, ulceration and perforation), impaired ocular motility and optic 

nerve compression.36 TAO is bilateral in 85-95%.37 Although clinically unilateral TAO 

may occur, orbital imaging generally confirms the presence of asymmetric bilateral 

disease.9,22 Interestingly, euthyroid and hypothyroid patients have been shown to 

have milder and more asymmetric TAO.38 

 
 
 

 
Figure 1.3: Correlation of clinical signs of TAO with orbital imaging. Typical TAO patient 
displaying cardinal signs of TAO including proptosis, periocular swelling and conjunctival injection (A & 
B). Coronal (C) and axial (D) computed tomography images of the same patient demonstrating 
enlargement of the extraocular muscles, particularly medial rectus (MR), and impingement of the optic 
nerve at the orbital apex, representing dysthyroid optic neuropathy (demonstrated with black arrows). 
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1.5 Rundle’s Curve in TAO 

 

For the majority of those with TAO the clinical course is relatively predictable and can 

be described by ‘Rundle’s Curve’, first described in 1945 (Figure 1.4). There is an 

initial 6 to 12 months of increasing periorbital and orbital inflammatory activity, around 

a year of persistent but static inflammation and finally a ‘burnt out’, inactive phase.15  

 

TAO is generally self-limiting, with resolution of inflammation within 18-24 months of 

onset.9,39 Indeed, a series of 120 TAO patients determined that 74% needed no 

treatment or only supportive measures.15 In a series of 59 patients with mild TAO 

observed for a median of 12 months, 64.4% improved spontaneously, while only 

13.5% worsened.40 This highlights the importance of early diagnosis. Studies have 

demonstrated that in those TAO patients who have early diagnosis and adequate 

treatment there is more likely to be a self-limiting course of the disease and at least 

partial remission in 65%.41  

 

The factors involved in the resolution of TAO are, as yet, not fully identified. Theories 

include a decline in autoantigen or decreased autoantigen presentation as well as 

consumption of tissue substrate.9 The targets of other autoimmune diseases, such as 

synovial tissue in rheumatoid arthritis (RA) show recognisable lymphoid structures 

that provide the basis for sustained immune reactions.9  In AITD the thyroid gland 

has been shown to show a lymph node-like structure, with germinal centres (regions 

of secondary lymphoid tissue that promote B cell immunity) that may function to 

support maturation of memory B cells and plasma cells, perpetuating thyroid 

autoantibody production.42 However, no such structures have been detected in the 
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orbit in TAO.9 It is unexplained as to why there may be late reactivation of TAO 

(defined as recurrence of orbital inflammatory activity more than five years after 

quiescence) in around 5% of patients.39 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4: Rundle’s Curve demonstrating active, static and resolution (‘burnt out’) phases of TAO. 
Length of the disease phases vary, but the active phase is usually 6 – 12 months, static phase 12-18 
months and the resolution phase continuining for an indeterminate period. Medical intervention is 
undertaken during the period of disease activity with the aim of converting the patient to a state of 
lesser clinical activity and subsequent lesser clinical severity.   

 

1.6 Clinical Activity and Severity Scoring in TAO 

 

Classification of clinical activity and severity in TAO is extremely challenging and all 

measures currently in use are felt to be suboptimal.43 Several classification systems 

have been developed to assess the heterogeneous nature of TAO, although these 

should be separated into strategies to assess disease activity and those to assess 

disease severity.  
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The NO SPECS system was perhaps the first to be introduced, with the mnemonic 

representing different symptoms and signs which are either present or absent. N; No 

symptoms or signs, O; Only signs (of upper eyelid retraction, with or without lid lag), 

S; Soft tissue involvement (periocular and conjunctival injection and chemosis), P; 

Proptosis, E; EOM involvement (precipitating diplopia), C; Corneal involvement, S; 

Sight loss. This grading system has a number of disadvantages, mainly in failing to 

differentiate clinical activity from severity. This was therefore amended to provide 

more subdivisions of abnormality, for example with S; Soft tissue involvement being 

either absent, minimal, moderate or marked and C; Corneal involvement being 

represented by either absence of abnormality, stippling of cornea, ulceration or 

clouding, necrosis and perforation.44  

 

Since the late 1980’s the Clinical activity score (CAS), devised by Mourits et al 

(1989), has been widely used, principally because it aims to assess the activity of 

TAO and the likelihood of a patient responding to immunosuppressive treatment.45 

Certainly, CAS has been shown to correlate with levels of serum autoantibodies.46 In 

CAS a point is given to each parameter and a score equal to, or greater than, 3 

indicates active TAO. However, CAS has been criticised as it is felt to only truly be 

valid for the active phase of TAO. CAS has therefore been amended by the 

European Group on Graves’ Orbitopathy (EUGOGO), a multidisciplinary group of 

European GD and TAO clinicians.2 EUGOGO themselves define TAO as mild; 

requiring no treatment, moderate-to-severe; requiring intervention with 

immunosuppressants or radiotherapy, and sight-threatening; patients with DON or 
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severe corneal exposure with ulceration and perforation. Most recently, the VISA 

classification has been proposed, with V; Vision (presence or absence of DON), I; 

Inflammatory (signs such as conjunctival injection and chemosis), S; Strabismus (or 

ocular motility) and A; Appearance (such as lid retraction and proptosis).47 As yet it 

remains unclear which system is the optimum but, in keeping with the majority of 

studies, CAS is used throughout this thesis (Figure 1.5). 

 

 
Pain 

 
Painful, oppressive feeling on or behind the eyes (4 weeks) 
Pain on attempted eye movements (4 weeks) 
 
Eyelid(s) red 
Diffuse conjunctival injection at least one quadrant of eyeball 
 
Swollen eyelid(s) 
Swollen caruncle(s) 
Conjunctival oedema (chemosis) 
 
Proptosis increasing >2 mm (1-3 months) 
Reduced eye movements >5’ in any direction (1-3 months) 
Reduced visual acuity (1 line on Snellen chart (1-3 months)  
 

 

 
Redness 

 

 
Swelling 

 

 
 
Loss of Function 

 

Figure 1.5: The CAS score for assessment for disease activity, but not necessarily disease severity, 

in TAO.
48

 A point is given to each parameter present and a score 3 indicates active TAO. EUGOGO 
have adapted the activity measures to be scored out of 7 rather than 10, with removal of whether 
proptosis has increased, whether eye movements or visual acuity have reduced over the preceding 1-
3 months from the assessment. 

 

1.7 Medical and Surgical Management of TAO 

 

A consensus statement by EUGOGO was produced in 2008. This document 

recommends the review of TAO patients in combined thyroid-eye clinics and 

highlights that many TAO patients never reach combined clinics, or are referred too 

late to benefit from treatment.2 
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The management of TAO depends on the disease activity and severity.2 All cigarette 

smoking patients should be encouraged to quit. Underlying thyroid function should be 

controlled tightly, whether through anti-thyroid drug treatment such as methimazole 

(MMZ), carbimazole (CBZ, a pro-drug subsequently converted to MMZ in vivo. Both 

MMZ and CBZ function through thyroid peroxidase inhibition) or propylthiouracil 

(PTU), radioiodine (131I) or thyroidectomy. Regular administration of selenium is 

advocated in mild TAO, given its anti-inflammatory properties related to inhibition of 

NF-κB activation, C-reactive protein production and modulation of selenoprotein gene 

expression.49,50 Simple measures for those with mild TAO and ocular surface 

symptoms include cool compresses and topical lubricants, particularly for nocturnal 

use if there is incomplete eyelid closure. For diplopia, orthoptic assessment, Fresnel 

prisms or botulinum toxin injection into the relevant EOM(s) may be necessary.  

 

If there is active or sight-threatening disease then high-dose corticosteroids may be 

required.2 There is significant debate about the optimal dosing regimen and 

subsequent efficacy of oral and intravenous steroids,51 whether with or without 

combined radiotherapy,52 but response rates of 77% and 51% have been reported for 

intravenous and oral treatments, respectively.53 Immunosuppressants such as 

azathioprine,54 ciclosporin,55 and methotrexate have been advocated.56 It may be 

necessary to progress to orbital radiotherapy, usually a cumulative dose of 20 Gray 

per orbit, with ten doses in a two week period, if response to immunosuppression is 

poor, and particularly if ocular motility disruption is a prominent feature.57,58 Urgent 

orbital decompression surgery may be necessary if there is DON or intractable 
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corneal exposure. Rehabilitative surgery should always start with orbital 

decompression, followed by squint surgery, with periocular and eyelid surgery last.2 

 

The use of “biologic” agents such as infliximab and etanercept (anti-TNF-α 

antibodies) in TAO have previously been described in isolated case reports and small 

case series.59,60 However outcomes of the treatment of TAO with rituximab, an anti-

CD20 monoclonal antibody, has been more widely reported. The rationale for the use 

of rituximab in TAO is that B cell depletion might disrupt autoantibody generation, 

antigen presentation and pro-inflammatory cytokine production.61 Certainly, the 

germinal centres found in GD thyroid tissue, and proposed to perpetuate 

autoimmunity in GD,42 have been shown to be eliminated within one week of 

rituximab therapy.62 Indeed, sera of GD patients treated with rituximab have been 

shown to stimulate less cyclic adenosine monophosphate (cAMP) production in TSH-

R-transfected Chinese Hamster Ovary (CHO) cells as compared to sera from GD 

patients not treated with rituximab, suggesting reduced TSAb activity.63 These 

findings are consistent with previous data demonstrating a significant reduction in 

thyroid autoantibodies in GD patients following rituximab therapy.64-66 Rituximab has 

also been confirmed to reduce T and B lymphocytes in orbital tissues.67,68 A number 

of series, limited to relatively small numbers of TAO patients, have subsequently 

shown that rituximab may be efficacious in TAO, particularly those with steroid-

resistant disease. However, side effects such as hypotension, nausea, fever, joint 

pain and sinus tachycardia have been described in up to 50% of patients.64,65,69-71 A 

recent Cochrane review determined, due to lack of randomised controlled trials, that 

there is currently insufficient evidence to justify rituximab use in TAO patients.72 
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1.8 Long-term Psychosocial and Occupational Impact of TAO 

 

While psychological stress has been proposed to be a precipitant for GD,73,74 TAO is 

also known to cause significant long-term psychosocial morbidity.75 Specific, 

validated TAO quality of life questionnaires (e.g. GO-QoL, TED-QoL) have been 

developed to more fully assess this.76,77 TAO patients tend to have significantly poor 

self-image when compared with control groups.75 This is related to physical 

discomfort and visual dysfunction from the underlying disease process, but also to 

disfigurement. Unfortunately, exophthalmos is known to persist in the majority of 

patients. In a study of 122 patients with exophthalmometry measurements over 3-19 

years, even after correction of thyrotoxicosis, exophthalmos remained stable in 

78.7%, improved in 5.7% and worsened in 15.6%.78 Even after 10 years, between 61 

and 90% of patients report a change in their appearance as a result of TAO, 38% 

state that they are unhappy because of it and 63% feel that disfigurement 

significantly interferes with their psychosocial functioning.76,79,80 Certainly, in a cohort 

of 250 TAO patients, 45% felt constrained in their daily activities, 36% were on sick 

leave and 28% were disabled. Furthermore, 5% had retired early, and 3% had lost 

their job because of TAO.81  

 

In a separate study, the mean duration of sickness absence for TAO patients was 22 

days per year, as compared to the equivalent national average of almost 12 days per 

year. This was estimated to represent a cost of 3,301€ - 6,683€ per patient per year.  

Duration of sick leave was found to correlate significantly with TAO severity, while 

work disability correlated with diplopia.81 
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1.9 Genetics of TAO 

 

A genetic component in TAO is suggested by a 35% concordance rate for GD in 

monozygotic twins.82 A family history of thyroid disease, especially in maternal 

relatives, is associated with increased incidence of GD and younger age at onset.83 

Nevertheless, it has been proposed that 79% of the risk of developing GD is due to 

genetic factors, with 21% of the susceptibility due to environmental factors.82  

 

A number of susceptibility genes have been proposed to be involved in GD.9  These 

include MHC class II HLA-DR genes,84 MHC class I HLA-C genes,85 CD40,86 CTLA-4 

(2q33),87 the protein tyrosine phosphatase (PTPN22) region on chromosome 

1p13,88,89 tumour necrosis factor (TNF) (6p21.3),90 interferon-γ (IFN-γ) (12q14),91 

ICAM-1 (19p13),92 the IL-2Rα/CD25 region on chromosome 10p1593 and TSH-R 

(14q31) itself.94 In particular, a PTPN22 single nucleotide polymorphism (SNP), 

known as R620W, is associated with GD. This SNP, which codes for a variant of the 

protein tyrosine phosphatase Lyp, involved in the regulation of signalling through 

immune cell receptors, has also been associated with a range of other autoimmune 

diseases including type 1 diabetes mellitus, myasthenia gravis, RA, multiple sclerosis 

(MS) and systemic lupus erythematosus (SLE).95-97  

 

The IL-23R gene, which has also been associated with several autoimmune diseases 

including inflammatory bowel diseases98 and RA,99 has also been found to be 

implicated in GD and TAO.100 This may have particular aetiological significance in 
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TAO as IL-23 and IL-23R are known to be required for T cell differentiation toward 

certain possibly pathogenic T cell phenotypes.100 The gene locus for FoxP3, a key 

gene in the development of regulatory T cells (Treg) has also been analysed in 

separate Japanese and Caucasian cohorts. While no association was found between 

FoxP3 polymorphisms and AITD in a Japanese cohort, there was a significant 

association in the Caucasian group.101 However, no genetic study has identified 

markers that distinguish between GD with and without TAO.102,103   

 

1.10 Environmental Factors and TAO 

 

1.10.1 Smoking and TAO 

 

Cigarette smoking is considered to have a strong, consistent, independent 

association with TAO. There is evidence that individuals with GD who smoke are 

more likely to have increased risk of TAO, more severe disease and a poorer 

prognosis, with a dose-response relationship.2,29,34,104,105 Patients who smoke 

cigarettes are less likely to respond to therapy.33,104 In addition, smoking increases 

the risk for progression of TAO after radioiodine therapy (discussed in Chapter 

1.10.3) and decreases the efficacy of measures felt to reduce the risk of such 

radioiodine-related progression.29,106-108 Furthermore, it has been proposed that 

smoking cessation is associated with improved TAO outcome.2 

 

The prevalence of TAO in the United Kingdom may be decreasing. In one study the 

prevalence of TAO among GD patients was 57% in 1960 and 37% in 1990.109 
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However, the prevalence of TAO in some Eastern European countries has increased. 

These phenomena have been hypothesised to be due to rates of smoking, which are 

reducing in the United Kingdom but increasing in Eastern Europe.110 

 

The mechanism by which smoking initiates or aggravates TAO is, as yet, unknown. 

Nicotine and benzpyrene components increase sympathetic nervous system activity, 

and the latter is known to increase thyroid hormone secretion from thyroid follicular 

cells.111 Smoking has also been shown to increase the production of pro-

inflammatory cytokines such as IL-1 from mononuclear cells.105  Salvi et al (2000) 

found increased serum concentrations of pro-inflammatory IL-6 in TAO patients, 

irrespective of thyroid function tests or whether they were on treatment with anti-

thyroid medications, compared with controls.112 However, serum IL-6 receptors (IL-

6R) were significantly affected by treatment and were significantly higher in those 

patients with active TAO than inactive TAO. Serum IL-1Ra concentrations were not 

affected by the presence of TAO and did not differ in treated and untreated GD 

patients. Furthermore, smoking did not affect serum levels of IL-6, sIL-6R, TNF-α, IL-

1β and IL-6Ra, even in the presence of active TAO or presence of TRAb or TPO-Ab. 

 

Another hypothesis is that smoking causes tissue hypoxia, resulting in oxidative 

stress and inducing release of superoxide free radicals, which have previously been 

shown to cause orbital fibroblasts from TAO patients to proliferate and produce 

glycosaminoglycans (GAG) in vitro in a dose-dependent manner.105,113 
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1.10.2 TAO and Control of Thyroid Function 

 

Those TAO patients with poorly controlled thyroid function, irrespective of whether 

hyperthyroid or hypothyroid, are more likely than euthyroid patients to have severe 

TAO.114 However, no advantage or disadvantage is conferred on TAO patients if they 

are treated with either anti-thyroid drugs (of whatever regimen) or thyroidectomy 

(total or sub-total), and neither medical nor surgical management necessarily 

changes the course of TAO.107,115,116 

 

1.10.3 TAO and Radioiodine  

 

Radioiodine (also known as radioactive iodine or 131I) is used to treat hyperthyroidism 

arising from GD. About 15% of GD patients develop new TAO or experience 

progression of pre-existing TAO within the six months following radioiodine 

treatment. However, this risk is “almost eliminated” by a short (three month) course of 

oral glucocorticoids following radioiodine, particularly if post-treatment 

hypothyroidism is avoided,117,118 if patients are non-smokers and do not have high 

levels of thyroid autoantibody.106,107 It is known that radioiodine causes a prolonged 

release of serum antibodies such as TSH-R and TPO-Ab, but the mechanism for this 

is not known.119,120 It is proposed that this is secondary to damage to thyroid follicular 

cells, leading to liberation of thyroid antigens.121  
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1.11 Pathogenesis of TAO 

 

The pathogenesis of TAO remains unclear. There is not, as yet, a definitive, unified 

model for the disease. The association between thyroid dysfunction and orbitopathy 

is still not fully understood. The most widely-held hypothesis has been that there is 

cross-reactivity between orbital and thyroid antigens with a loss of peripheral immune 

tolerance to TSH-R.122,123  

 

The currently accepted immunological model of the pathophysiology of TAO (Figure 

1.6) indicates that the disease is triggered by the binding and activation of antigens 

on orbital fibroblasts by autoantibodies (e.g. those to TSH-R and insulin-like growth 

factor-1 receptor).124 The activated fibroblasts release cytokines and chemokines 

such as IL-16 and RANTES (regulated upon activation, normal T-cell expressed and 

secreted), also known as CCL5, which recruit T cells into the orbit. Subsequent, 

reciprocal activation of T cells and orbital fibroblasts, through CD40-CD40L 

interaction, further promotes cytokine production (e.g. IFN-γ, PGD2, IL-8, IL-1α, IL-

1β, CD154, IL-6).125 These cytokines, in turn, activate pro-inflammatory genes such 

as those encoding prostaglandin endoperoxide H synthase-2 (PGHS-2), IL-6, IL-8, 

hyaluronan synthase (HAS), and UDP glucose dehydrogenase, inducing fibroblasts 

to proliferate, produce hydrophilic GAG and differentiate toward either fat-forming 

adipocytes or scar-forming myofibroblasts, resulting in the underlying pathological 

and clinical features of TAO.9,124 
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Figure 1.6: Currently accepted immunological model of TAO with immunoglobulin-mediated 
fibroblast activation resulting in chemokine release and subsequent T cell recruitment. This promotes 
cytokine production and activates pro-inflammatory pathways, causing fibroblasts to proliferate, 
produce hydrophilic glycosaminoglycans and differentiate toward either fat-forming adipocytes or scar-
forming myofibroblasts (taken from Lehmann et al 2008).

124
 

 

 

The TSH-R is an autoantigen firmly established in the pathogenesis of GD.126  

Indeed, the clinical presentation has previously been shown to be influenced by the 

presence of circulating antibodies against TSH-R.127 Levels of TSH-R antibodies 

correlate positively with clinical features of TAO and influence the eventual 

prognosis.128 TSH-R is considered to be a shared antigen in GD and TAO, and to 

have a role in the pathogenesis of the latter.129 There will be further discussion of 

TSH-R as an autoantigen later in this thesis (Chapter 1.18) 
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1.12 Gross Features of TAO 

 

The hallmark pathological features of TAO are an increase in orbital connective 

tissues, with (1) production and deposition of excess hydrophilic extracellular matrix 

components such as GAG, particularly hyaluronic acid (hyaluronan, HA – a 

negatively charged, hydrophilic molecule which binds water approximately 1000 

times greater than albumin), mononuclear cell infiltration, fibroblast proliferation and 

differentiation with (2) de novo adipogenesis and subsequent expansion of orbital 

adipose tissues and extraocular muscles (EOM).130,131 Indeed, orbital GAG content in 

TAO is about 70% higher than healthy controls.131 This increased tissue volume and 

remodelling within the unyielding confines of the bony orbit results in protrusion of the 

globe (known as proptosis or exophthalmos), restriction of ocular movements, 

increased intraorbital pressure, reduced orbital venous drainage and microcirculation 

and the subsequent TAO phenotype.36 

 

1.13 Subtypes of TAO 

 

Variations in the clinical manifestations of TAO have been observed to exist. In a 

study of 95 untreated TAO patients, expansion of orbital fat, without EOM expansion, 

occurred in 5.3%.36 Some authors contend that this variation represents different 

configurations of orbital size and shape.132 However, others postulate that TAO can 

be subdivided into distinct types depending on differing tissue expansion patterns.  

On this basis, TAO has been subdivided into Type 1 and Type 2 (Figure 1.7).  
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Figure 1.7: Computed tomography features of different TAO subtypes. A: Predominant fat 
expansion and Type 1 phenotype; B: Predominant EOM expansion and Type 2 phenotype. C: 
Combined fat and muscle compartment expansion.
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Type 1 TAO is felt to be more common, primarily affecting women (M:F 8.5:1) with a 

wide age range, but mean of 36 years.  This subtype is represented by predominant 

fat compartment hypertrophy, with only mild-to-moderate EOM enlargement. In 

contrast, Type 2 TAO tends to have a more equal sex distribution (M:F 1.5:1) and to 

preferentially affect older age groups, with a mean of 52 years.  This subtype is 

primarily represented by expansion and dysfunction of the EOMs.133 There is also 

proposed to be Type 3 TAO, representing an expansion of both EOMs and orbital 

adipose tissue. Of the EOMs affected, inferior rectus is the most common, followed 

by medial rectus, then superior rectus and finally lateral rectus.8  
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1.14 Extraocular Muscles in TAO 

 

Although EOM volumes are increased in TAO, electron microscopic examination 

demonstrates that the muscle fibres themselves remain intact, at least in early 

disease.134 There is, however, infiltration of T cells, mast cells and B cells, as well as 

expansion of the perimysial connective tissue between EOM fibres. This has been 

interpreted to suggest that the connective tissue, rather than the muscle itself, is the 

autoimmune target.135 Later in the TAO disease process, there is fibrosis and fatty 

infiltration of EOMs, correlating with later deficiencies in ocular motility.125  

 

1.15 Oxidative Stress Model of TAO 

 

The generation of reactive oxygen species (ROS) has been proposed to occur in GD 

and TAO, both as a cause and a consequence of systemic and orbital inflammatory 

activity.136 Hyperthyroidism, with subsequent sympathetic nervous system 

hyperactivity, stimulation of cellular functions requiring mitochondrial activity, and 

consequent increased oxygen consumption, is known to increase ROS production. 

This, combined with orbital infiltration of immune cells, production of pro-inflammatory 

cytokines, altered orbital blood flow, cigarette smoking and treatment with anti-

thyroid, immunosuppressant drugs and administration of orbital radiotherapy, may all 

alter metabolic processes in patients with GD and TAO.137,138 Indeed, tissue damage 

related to hyperthyroidism is manifest in such features of GD as thyrotoxic myopathy 

and cardiomyopathy.139 
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ROS are molecules with unpaired electrons, such as hydrogen peroxide (H2O2) and 

superoxide anions (O2
–), which damage proteins, lipids, nucleic acids and cellular 

structures. Usually a ‘scavenging’ system of enzymes (e.g. superoxide dismutase 

(SOD), catalase, glutathione peroxidase (GPx) and glutathione reductase, as well as 

other vitamins (e.g. ascorbic acid) or molecules (e.g. glutathione) protect against 

ROS-mediated damage. However, any increase in ROS production or decrease in 

constituents of the ROS scavenging system results in oxidative stress.136  

 

Superoxide free radicals have been shown to cause orbital fibroblasts from TAO 

patients to proliferate and produce GAG in vitro in a dose-dependent manner.113 

Further in vitro studies have demonstrated that subjecting orbital fibroblasts to H2O2 

results in increased expression of proteins involved in T cell recruitment and antigen 

recognition such as HLA-DR and heat shock protein-72, features inhibited by pre-

treatment of fibroblast monolayers with the anti-thyroid drugs MMZ and PTU.140 

 

In untreated hyperthyroid GD patient serum, changes related to ROS metabolism 

have been identified as compared to controls. For example, increased products of 

lipid peroxidation have been noted, which correlate with serum thyroid hormone 

concentrations. In addition, increased thiobarbituric acid-reacting substances 

(TBARS) and SOD activity have been found, along with reduced anti-oxidant 

enzymes such as GPx.141,142 These oxidative stress markers normalise when the 

euthyroid state is returned, although more effectively due to antithyroid drugs than 

radioiodine.143,144 In addition, the aetiology of the hyperthyroidism may have an 

influence on the normalisation of oxidative parameters. For example, differences 
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have been found in autoimmune hyperthyroid (GD) patients as opposed to those with 

non-autoimmune (toxic multinodular goitre) hyperthyroidism, as well as GD patients 

with and without orbital manifestations.145,146 

 

This data relating to oxidant status in GD and TAO has been corroborated by clinical 

trial data. A large, randomised, double-blind placebo-controlled trial of 159 patients 

with mild TED found that at 6 and 12 months those who took the antioxidant 

selenium (100 µg, twice daily), although not the anti-inflammatory drug pentoxifylline, 

for six months had comparatively better quality of life, less ophthalmic involvement 

and reduced TED progression, with no adverse effects.49 

 

1.16 Microarray Studies in TAO 

 

There have been five microarray studies evaluating gene expression in orbital tissue 

from TAO subjects as compared to healthy controls.147-151 In one study, 25 known 

genes were increased in expression (>4-fold) in TAO orbital tissues and 11 genes 

were decreased (>4-fold).149 Separately, microarray studies have identified 

upregulation of several adipocyte regulatory genes (e.g. PPAR-, apolipoprotein E 

and adiponectin)149 and immediate early genes (e.g. cysteine-rich, angiogenic 

inducer, 61 [CYR61], cyclo-oxygenase-2 [COX-2]), as well as CYR61-responsive 

genes participating in inflammation such as IL-1, matrix metalloproteinase-3 (MMP-

3) and vascular endothelial growth factor (VEGF).148 Upregulation of the gene for 

secreted frizzled-related protein-1 (sFRP1), an inhibitor of the complex wingless-type 

(Wnt) signalling which, when active, inhibits adipogenesis, has been described.149 
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Likewise, other Wnt signalling genes (DKK3, sFRP4, Wnt5a) have been found to be 

downregulated in TAO by microarray150 and others (sFRP1 in chronic TAO and 

sFRP3 in active TAO) downregulated only when evaluated by RT-PCR.151 Although 

of uncertain significance, lysosome-related genes, such as CLN2, CLN3, and HEXB 

have also been implicated.147  

 

More recently, dysregulated expression of genes related to IGF-1 binding and 

signalling in TAO has been demonstrated. Ezra et al (2012) showed that the most 

differentially expressed genes between TAO and control orbital fat were IGF-1 and 

IGF-1R signalling and binding genes (e.g. SOCS3, IRS2) and downstream signalling 

and transcriptional regulators (e.g.SGK, c-JUN). However, only two of these (DKK3 

downregulated and SOCS3 upregulated) with expression change >4-fold.150  

 

The number of TAO subjects in each of these studies have been generally low, with 

the largest cohort being 20 patients with euthyroid, severe TAO149 and one of the 

studies including only two TAO patients.147 In addition, in four of the five studies, 

some of the TAO subjects had received immunomodulatory treatment prior to 

removal of orbital tissue for analysis. The majority of the studies have also been 

undertaken in severe TAO states, with selection bias meaning that the samples 

examined have not represented the majority of TAO cases with more mild disease.150  
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1.17 Autoantigens in TAO 

 

Infiltration of orbital tissues by lymphocytes is characteristic of TAO.22  However, why 

immunocompetent cells are directed into the orbit is unclear. A number of potential 

autoantigens have been proposed to have a role in TAO, although these remain 

poorly understood. It is felt that T cells infiltrate the orbit and respond to orbital 

autoantigens that are either identical to, or share epitopes with, a thyroid 

autoantigen.152 

   

Initially, the autoantigens were felt to be EOM-related antigens such as the 63 kDa 

calcium-binding skeletal muscle protein calequestrin, the 67 kDa flavoprotein subunit 

of the mitochondrial enzyme succinate dehydrogenase; G2s, a 141 amino acid 

fragment of the winged-helix transcription factor FoxP1 and collagen XIII, a 

connective tissue protein in orbital fibroblast cell membranes.153,154 However, these 

are now felt to be non-pathogenic and instead represent proteins released during 

tissue destruction rather than being a cause of the initial pathological process 

itself.155 TG and TPO have also been proposed, but the levels of anti-TG and anti-

TPO antibodies do not correlate with the presence, CAS scores or severity of TAO.9   

 

The autoantigens currently felt to be principally involved in GD and TAO are TSH-R 

and insulin-like growth factor-1 receptor (IGF-1R). It is important to note that the 

published data on TSH-R and IGF-1R is interwoven, often with that related to 

fibroblasts, meaning that autoantigen and fibroblast data frequently overlaps. 

 



Chapter 1 General Introduction 

28 

 

1.18 Thyroid Stimulating Hormone Receptor (TSH-R) 

 

TSH-R is an autoantigen firmly established in the pathogenesis of GD.126 However, 

the role of TSH-R autoantibodies in TAO is less certain as there is no direct evidence 

of a link between TSH-R and TAO pathogenesis.156,157  The observation that GD and 

TAO occur concomitantly has lead to the hypothesis that there must be a shared 

antigen between the thyroid and the orbit that is responsible for autoimmunity in 

these anatomically distinct sites. TSH-R is considered to be a shared antigen in GD 

and TAO, and to have a role in the pathogenesis of the latter, but this remains, as 

yet, unproven.129 

 

1.18.1 TSH-R and TSH-R Antibodies and TAO 

 

There are a number of indirect pieces of evidence for a role of TSH-R in TAO. Levels 

of TSH-R antibodies correlate positively with clinical features of TAO and influence 

the eventual prognosis.128,158-160 Even in patients with euthyroid TAO it has been 

determined that TRAb are present in the vast majority.4 Furthermore, the prevalence 

of TAO in untreated GD patients increases with higher TSH-binding inhibitory 

immunoglobulins (TBII) in a dose-dependent manner, with those patients with TBII 2-

10 U/L having a 14% prevalence and TBII >40 U/L a 38% prevalence of GD.161 As 

already discussed, TRAb rise by 70% in the six months following radioiodine, while 

TSH-R decrease after anti-thyroid drug treatment or thyroidectomy.162,163 

 

In animal studies, BALB/c mice immunised with human TSH-R A-subunit plasmids by 

in vivo muscle electroporation developed clinical and histological features of TAO, 
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whereas those injected with control plasmids did not. Furthermore, all animals had 

high levels of predominantly stimulatory TSH-R antibodies, which persisted up to 15 

weeks after plasmid immunisation.164 

 

The evidence against a role of TSH-R in TAO is the absence of a definite case of 

neonatal TAO. There is an entity of neonatal hyperthyroidism, due to trans-placental 

passage of maternal immunoglobulins and rare forms of non-immune neonatal 

hyperthyroidism due to molecular abnormalities of TSH-R. Such babies may have 

eyelid retraction but no cases of true neonatal TAO have been reported.165,166 

Nevertheless, new autoimmune disease, including GD, may be induced, likely due to 

adoptive immunity following bone marrow transplantation from a GD donor to a non-

autoimmune individual.167 

 

1.18.2 Structure and Function of TSH-R 

 

The thyroid gland functions under the control of TSH, released from the anterior 

portion of the pituitary gland. TSH-R is expressed on the surface of thyroid epithelial 

cells and binds TSH, regulating the synthesis and secretion of thyroid hormones. 

TSH binding to TSH-R activates mainly the adenylate cyclase pathway, via the 

stimulatory G protein (Gs), resulting in an increase in intracellular cAMP. However, 

TSH-R may also interact with Gq/11, which activates phosphatidylinositol signalling, 

phospholipase C (PLC) and protein kinase A signal transduction systems.168 Indeed, 

it is known that TSH-R signals via cAMP, as well as PI3K/pAkt/mTOR (phosphatidyl 

inositol 3-kinase/pAkt/mammalian target of rapamycin).169 Following this, genes 
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related to thyroid hormone synthesis are activated. TG is iodinated and converted to 

T4 through the action of TPO. T4 is then deiodinated to T3.170,171 Chronic over-

stimulation of TSH-R results in thyroid hyperplasia, hyperthyroidism and GD.170 

 

TSH-R is a G protein-coupled receptor, with seven membrane-spanning segments, 

three extracellular and intracellular loops, a large ligand binding extracellular domain 

(α subunit) linked by disulfide bonds to the membrane-domain and an intracellular 

carboxy terminal (β subunit).170,171 TSH-R α subunit is responsible for initiating or 

augmenting immune responses,172 although TSH-R has been shown to dimerise, 

potentially modulating the actions of TSH.173 TSH-R is encoded by ten exons on the 

TSH-R gene on chromosome 14q31. This encodes an 84-87 kDa protein consisting 

of 764 amino acids, although SDS-PAGE sometimes reveals an apparent molecular 

weight of 95–100 kDa.168 This discrepancy is thought to be due to receptor shedding 

of the α subunit.168  

 

1.18.3 Expression of TSH-R in the Orbit and Extra-Thyroidal Tissues 

 

TSH-R was cloned in 1989 and,174 other than the thyroid, has also been shown to be 

expressed in a number of extra-thyroidal sites,175 such as human skin,176 abdominal 

adipose tissue,177 brain,178 lacrimal gland,129 heart,179 bone,180 testis,181 thymus and 

lymphocytes.182,183 It has also been found on cells in the bone marrow.184 TSH-R 

mRNA and protein has also been detected in cultured fibroblasts from pre-tibial 

dermopathy tissues.185,186 Subsequently, TSH-R mRNA and protein has been 

detected in orbital tissues and orbital fibroblasts, albeit at extremely low levels.185,187-
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195 TSH-R have since been found to be expressed on orbital differentiating 

preadipocytes.188,196 Indeed, elevated TSH-R expression is observed in orbital 

tissues, particularly newly differentiated adipocytes, in TAO, with the highest levels in 

those with clinically active disease.126,148,197-199  

 

TSH-R immunoreactivity therefore unifies thyroid, orbit and pre-tibial tissues in TAO, 

but any role for TSH-R in TAO would appear to require differentiation of fibroblasts to 

adipocytes in the first instance. TSH-R expression is generally increased during 

adipogenesis, meaning that it is unknown whether this is a primary or secondary 

effect. In contrast, thyrocytes require no such adipocytic differentiation to express 

TSH-R or to be activated by TSH or TRAb.148,187,188,197,200,201 It has therefore been 

proposed that TSAb may not necessarily cause TAO but are implicated in disease 

progression.187 

 

Evidence supporting the involvement of cytokines in the TAO disease process is their 

effect on TSH-R expression in TAO orbital tissue202,203 and their possible actions on 

orbital fibroblasts.204,205 Certainly, IL-6 is elevated in the circulation of GD patients 

and has been found to stimulate TSH-R expression in vitro in orbital fibroblasts.112,206  

It has therefore been proposed that IL-6 may play a role in TAO by stimulating TSH-

R expression in orbital tissues. However, it is uncertain whether IL-6 also stimulates 

adipogenesis in the orbit.126 Indeed, other cytokines, including IFN-γ and TGF-β, 

inhibit TSH-R expression and adipogenesis by orbital fibroblasts.126 The initiation and 

subsequent clinical severity of TAO may therefore be influenced by competing 

inhibitory and stimulatory cytokine-related effects occurring within orbital tissues.  
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1.19 The Insulin-Like Growth Factor-1 Receptor (IGF-1R) 

 

The IGF-1 axis is a prime candidate involved in TAO and it has been speculated that 

stimulating antibodies to IGF-1R (IGF-1R-Ab) are involved in TAO development. 

However, despite a wide and growing body of evidence for the involvement of IGF-

1R in TAO, this remains controversial.122   

 

1.19.1 Structure and Function of IGF-1R 

 

The IGF-1R, also known as CD221,207 is a heterotetrameric transmembrane 

glycoprotein of approximately 150-200 kD molecular weight,208,209 that is highly 

expressed in all mammalian cell types and tissues.210,211 The receptor consists of two 

 and two  subunits, with the N-terminus  subunit being extracellular and highly 

glycosylated, while the  subunit has an extracellular domain, a transmembrane 

domain and an intracellular, cytoplasmic tyrosine kinase domain (Figure 1.8). The 

extracellular domain may be divided into six discrete regions: at the N terminus is a 

receptor L domain (L1), a cysteine-rich repeat (CRR) domain, another receptor L 

domain (L2) and three type III fibronectin domains – FnIII-1, FnIII-2, FnIII-3.  It is 

FNIII-2 that constitutes the division between IGF-1R  and  chains. The IGF-1R 

extracellular domain, particularly an interface that includes L1, L2, FnIII-1 and FnIII-2, 

constitutes the binding region for ligand. Following the extracellular regions is a 

transmembrane portion and a cytoplasmic tyrosine kinase signalling domain.212 The 

IGF-1R gene maps to chromosome 15q26.3, with both the  and  subunits being 

encoded within a single precursor cDNA, encoding a 1,368 amino acid proreceptor 
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polypeptide that is proteolytically cleaved and disulfide-linked to yield the mature 

receptor.213  

 

IGF-1R acts as a receptor tyrosine kinase, influencing cellular processes including 

cell migration, metabolism, survival, proliferation and differentiation.121,130 IGF-1R 

mediates tumour proliferation and inhibition of apoptosis, including through the 

PI3K/Akt/FRAP/mTOR/p70s6k pathway.214,215 It is therefore important in signalling 

pathways controlling tissue growth and development.216 In particular, it has been 

shown to stimulate the growth of some types of cancer, including breast, prostate, 

pancreatic, hepatocellular and lung cancers,217,218 and a number of IGF-1R-specific 

therapeutic antibodies are currently under investigation in clinical trials.219-222 

 

 

 
Figure 1.8: Schematic diagram of the IGF-1R demonstrating  and  subunits, the cysteine-rich 

domain as well as phosphorylation domain distribution on  and  chains and the location of - and 

- disulfide bonds (taken from Smith 2010).
213
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In addition to its role in oncogenesis, IGF-1R also has immune-mediating roles. It has 

diverse roles in thymic development and immune function,223 including stimulating 

cytokine production by T cells and monocytes.224,225 It also increases B cell antibody 

production.226,227 IGF-1 is important in fetal and neonatal growth as well as being 

implicated in adipogenesis.228 

 

There is around 85% homology between IGF-1R and the insulin receptor in terms of 

sequence and structure. In addition, IGF-1R ligands IGF-1 and IGF-2 share 50% 

homology to insulin.208,213 This has been proposed to lead to difficulties in accurately 

detecting and targeting IGF-1R. 

 

1.19.2 Insulin-Like Growth Factor-1 

 

Essentially all of the biological activities of IGF-1 (also known as somatomedin) have 

been shown to be mediated via IGF-1R, with IGF-1R binding IGF-1 with high affinity 

and IGF-2 and insulin with much lower affinity.213 IGF-1, a single-chain polypeptide of 

70 amino acids, derives from two distinct sources: the liver (80%) generates IGF-1 as 

a component of the growth hormone (GH) axis; IGF-1 is also produced locally by 

many peripheral tissue cell types, such as skeletal muscle, both in the resting state 

and in response to inflammatory mediators.213 IGF-1 secretion is primarily regulated 

by GH. Through a negative feedback loop, IGF-1 then inhibits the release of GH 

releasing hormone (GHRH) in the hypothalamus, reducing GH levels. The IGF-1 
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principally produced by such tissues as skeletal muscles has been shown to act 

locally in a paracrine fashion.229 

 

Normal serum levels of IGF-1 have been established, with lower levels being 

associated with increased mortality.230,231 Human sera contains IGF-1 concentrations 

of around 200 µg/L in normal individuals. However, in GH deficiency it may be 

around 100 µg/L and in acromegaly 1000 µg/L.232 Acromegaly is a disease 

characterised by GH excess, usually due to a GH-secreting pituitary adenoma, that 

results in tissue overgrowth, including coarsening of the facial features, large hands 

and feet and associated cardiovascular and endocrine complications.229 Analysis of 

serum IGF-1 is are therefore important in acromegaly diagnosis and monitoring. 

 

Free IGF-1 is regulated by a family of six IGF binding proteins (IGFBP) which act as 

transporters of IGF-1 and prevent IGF-1 degradation. IGFBP undergo proteolysis by 

IGFBP proteases such as serine proteases, PSA, cathepsins and matrix 

metalloproteinases (MMP). The majority (80%) of IGF-1 in serum is bound to IGFBP-

3, a 264 amino acid protein, and the remainder to other IGF1BPs, with less than 1% 

being unbound.213,233 This unbound component has a half-life of only 10 minutes, 

although the complex of IGF-1/IGFBP-3 has a half-life of 16 hours.229 The half-life of 

GH is only 30 minutes, its secretion is pulsatile and daytime levels, although diurnal, 

are low or essentially undetectable. GH levels are also altered with such factors as 

age, gender, exercise and stress. As IGF-1 levels are less likely to undergo such 

fluctuations it is tested for in preference to GH itself.  
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1.19.3 IGF-1R-Mediated Cell Signalling 

 

IGF-1R signal transduction takes place following a conformational change induced by 

receptor ligation. Tyrosine autophosphorylation of the Src homology and collagen 

domain protein p66, Shc, and insulin receptor substrate (IRS) -1, -2, -3 and -4 (which 

serve as docking proteins) activates multiple pathways, including PI3K/Akt and 

mitogen-activated protein kinase (MAPK)/ extracellular-signal-regulated kinases 

(ERK1/2). However, “cross-talk” between IGF-1 and other growth factors makes the 

IGF-1 signalling cascade even more complicated (Figure 1.9).210,234 As already 

described, there are at least six IGF-1 binding proteins (IGFBP) which modulate the 

effects of IGF-1 by acting as transporter proteins and storage pools.210 The 

concentrations of IGFBP are different in different body compartments.210 

 

 

Figure 1.9: IGF-1 signal transduction demonstrating IGF-1R tyrosine kinase autophosphorylation 
activity, catalysing phosphorylation of cellular proteins (e.g. IRS-1, insulin-receptor substrate-1) which 
go on to interact with signalling molecules such as PI3K (phosphatidyl inositol 3-kinase) and MAPK 
(mitogen-activated protein kinase) (taken from Delafontaine et al 2004).

210
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IGF-1 is thought to have a regulatory role in the immune system, particularly in 

human T lymphocyte development and function, including chemotaxis and 

proliferation.223 IGF-1 has also been shown to have a role in innate immunity. In 

particular, NK cells produce IGF-1, and IGF-1 itself is able to modulate the 

cytotoxicity of NK cells.235 IGF-1, even in nanomolar concentrations in vitro, leads to 

growth of a number of cell types, including hepatocytes, pancreatic β cells, epithelial 

cells and fibroblasts.236 Peripheral blood T and B cells and monocytes from healthy 

donors express low levels of IGF-1R in vivo.237 However, IGF-1R appears to be 

overexpressed on a number of cell types in GD and TAO, including orbit, skin and 

thyroidal fibroblasts.238,239, T cells240 and B cells.3 It is therefore hypothesised that 

increased immune cells expressing IGF-1R in GD and TAO may be responsible for 

the connective tissue manifestations in GD and TAO.3,240 

1.19.4 IGF-1R and Cancer  

 

IGF-1R has been implicated in a number of forms of human cancer.241 Indeed, IGF-

1R was identified on neoplastic tissues as early as 1987.242 IGF-1R is known to be 

important in tumour biology and malignant transformation. For example, IGF-1R 

activity has been shown to promote growth and survival of cancer cells and has also 

been associated with survival of metastases.212 Many tumour cell lines have 

increased expression of IGF-1 or IGF-1R.243,244 Furthermore, fibroblasts lacking IGF-

1R are unable to undergo malignant transformation, an ability restored when IGF-R 

expression is reinstated to these cells by transfection.245 Inhibition of IGF-1R has 

been found to decrease tumour size and reduce tumour growth.222  
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Mitsiades et al (2004) found that IGF-1R is expressed in numerous malignant cell 

types, both haematologic (multiple myeloma, lymphoma, leukaemia) and solid 

tumours (breast, prostate, lung, colon, thyroid, renal, adrenal, retinoblastoma, 

sarcoma).207 Specifically, increased plasma IGF-1 and reduced IGF-1BP3 

concentrations have been associated with increased risk of breast, prostate, lung and 

colorectal cancer.246-251 Indeed, serum IGF-1 measurement has been proposed as a 

possible predictor of risk in several types of cancer, even if IGF1BP-3 levels are 

taken into account. For example, a four-fold increase in the risk of prostate cancer 

has been determined in men whose serum IGF-1 levels are the highest population 

quartile.249 Likewise, a seven-fold increased breast cancer risk, at least in pre-

menopausal women was found in women with higher serum IGF-1 levels.248 Finally, 

a relative risk of 2.5 was found for colorectal cancer in patients who had IGF-1 levels 

in the highest quintile.  

 

1.19.5 Therapeutic Antibodies to IGF-1R 

 

From the above data it is clear that IGF-1R is an important therapeutic target. As a 

result, a number of IGF-1R monoclonal antibodies have been developed. 

Dalotuzumab (MK0646), Figitumumab (CP-751871), Cixutumumab (IMC-A12), 

Ganitumab (AMG-479), Teprotumumab (RV001) have each been used in clinical 

trials. Indeed, Teprotumumab is being used in a current phase 2 clinical trial in TAO 

patients (NCT01868997). Examples of other situations in which IGF-1R monoclonal 

antibodies have been used include small cell lung cancer and Ewing’s sarcoma.252,253  
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1.19.6 Colocalisation of TSH-R and IGF-1R 

 

A functional link between IGF-1R and TSH-R has been suggested since initial 

studies demonstrating IGF-1 enhancement of TSH action in an in vitro model.254,255 

Precedents for such an interaction already exist. For example, there is known to be 

cross-talk between IGF-1R and epidermal growth factor receptor (EGFR).256 

 

Previous studies have shown that TSH-R levels are 11-fold higher on thyrocytes than 

on TAO or control fibroblasts. In contrast, IGF-1R levels are 3-fold higher on TAO as 

compared to control fibroblasts.187  However, it may be that TSH-R and IGF-1R form 

a functional complex, as immunoprecipitation studies on fibroblasts, thyrocytes and 

thyroid tissue demonstrate that specific antibodies against either IGF-1R or TSH-R 

bring both proteins out of solution. Furthermore, confocal microscopy shows IGF-1R 

and TSH-R colocalisation to perinuclear and cytoplasmic compartments in fibroblasts 

and thyrocytes, with similar findings in TAO orbital tissue. Finally, treatment of 

thyrocytes with recombinant human TSH results in rapid (presumably IGF-1R-

mediated) ERK phosphorylation which can be abrogated by IGF-1R blocking 

antibody, suggesting that IGF-1R may be involved in TSH signalling pathways.187  

 

In a separate study, Kumar et al (2012) noted stimulation of the production of 

hyaluronan in six euthyroid TAO orbital fibroblast cultures with bovine TSH, IGF-1 

and M22, a high-affinity, human, monoclonal, stimulatory TSH-R antibody which has 

previously been shown to increase adipogenesis in TAO orbital fibroblasts by PI3K 
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activation.257,258 These findings were somewhat in contrast to van Zeijl et al (2010 

and 2011) who found that GD-IgG and recombinant human TSH did not increase 

hyaluronan production by undifferentiated orbital fibroblasts, although using orbital 

fibroblasts that had differentiated into adipocytes it was found that GD-IgG, but not 

recombinant human TSH, did stimulate hyaluronan synthesis.201,259 In the study of 

Kumar et al (2012), hyaluronan synthesis by M22 was inhibited by the IGF-1 blocking 

monoclonal antibody, 1H7 (in serum free media). In addition, M22-induced 

hyaluronan synthesis was abrogated by LY294002 (PI3K inhibitor) or rapamycin 

(mTOR inhibitor) but not protein kinase inhibitor, reinforcing that M22 stimulates 

hyaluronan synthesis in TAO orbital fibroblasts via PI3K/pAkt/mTOR signalling. 

 

It is noteworthy that neither of the colocalisation studies of Tsui et al (2008) and 

Kumar et al (2012) utilised GD-IgG to stimulating TAO orbital fibroblasts. The authors 

concede that using M22, a very definite stimulatory antibody, may be different to the 

constituents of GD-IgG, which may be stimulatory, inhibitory or neutral. 

 

1.19.7 IGF-1R and IGF-1R Autoantibodies in TAO 

 

The rationale for a role of IGF-1R as an autoantigen in TAO has arisen from a 

significant body of research. The first description of the presence of excess IGF-1 in 

orbital tissues was by Hansson et al in 1986.260 This group took samples of formalin-

fixed orbital tissue from two patients with ‘endocrine exophthalmos’ an ‘unexplained 

complication of thyrotoxicosis’, and demonstrated IGF-1 immunoreactivity along the 

plasma membranes of muscle and adipose cells, greater than that present in control 
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tissue of the temporal muscle of the same subject. In the same year, Tramontano et 

al (1986) found that IGF-I and TSH each produced dose-dependent enhancement of 

DNA synthesis and cell proliferation in a rat thyroid follicular epithelium cell line. 

When added together, IGF-I and TSH were synergistic in stimulating DNA synthesis. 

Importantly, this synergistic effect was also noted when IGF-I was utilised in 

association with GD-IgG.254 

 

However, the initial proposal for the presence of IGF-1R autoantibodies (IGF-1R-Ab) 

in TAO was from Weightman et al (1993). This group noted that TAO is characterised 

by hypertrophy of EOMs and intraorbital adipose tissue, suggesting the involvement 

of growth factors. IGF-1 is known to induce hypertrophic changes in muscle and fat 

cells.260 They therefore investigated the effect of IgG extracted from the sera of 

patients with GD (with or without TAO) on [125I]-IGF-1 binding sites on human orbital 

fibroblasts grown from EOM explants.261  In this study, IgG prepared from 12 out of 

23 (52%) GD subjects was shown to significantly inhibit [125I]-IGF-1 binding to orbital 

fibroblasts, when compared with IgG prepared from healthy individuals.261 

 

It has subsequently been shown that IGF-1R is overexpressed on cultured retro-

orbital fibroblasts from TAO patients.239 A functional effect of GD-IgG directed against 

IGF-1R is indicated by both GD-IgG and recombinant IGF-1 itself resulting in 

increased stimulation of hyaluronan production by cultured orbital fibroblasts, as well 

as the production of T cell chemoattractants such as IL-16 and RANTES from GD 

and TAO subjects, but not controls.238,239 This in vitro effect is reduced by inclusion of 

a transwell, suggesting necessity for cell-to-cell (T cell to fibroblast) contact, and 
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diminished by the blocking IGF-1 monoclonal antibody 1H7, indicating that this effect 

is likely IGF-1-mediated.238,239   

 

Furthermore, T cells from peripheral blood and orbital tissue in patients with GD are 

skewed toward the CD3+IGF-1R+ phenotype, particularly in the CD45RO+ memory 

T cell population.240 However, expression of IGF-1R on CD45RA+ “naïve” T cells is 

similar between GD and controls.240 IGF-1R appears important in T cell proliferation 

and survival, with addition of IGF-1 or GD-IgG enhancing T cell proliferation (as 

measured by BrdU incorporation) and reducing T cell apoptosis (as measured by 

high Annexin-V but low 7-AAD expression).240  

 

Even in healthy subjects, T cells internalise IGF-1R from their cell membrane soon 

after activation with IGF-1, down-regulating IGF-1R expression between 1 and 6 

hours after stimulation, followed by re-expression, de novo synthesis and IGF-1R up-

regulation, peaking at 48 hours after activation, subsequently reaching levels higher 

than baseline.262 The group undertaking these studies suggest that this indicates a 

role for IGF-1R on lymphocytes in supporting the expansion of memory T cells in GD. 

Taking this further, McCoy et al (2014) studied 8 patients with moderate-to-severe 

TAO treated with rituximab. It was determined that clinical indices improved for these 

individuals and that reduced IGF-1R+CD3+ and IGF-1R+CD4+ and IGF-1R+CD8+  T 

cells were noted 4-6 weeks after treatment. Likewise, the phenotype of B cells from 

GD subjects is skewed toward CD19+IGF-1R+ in peripheral blood and orbital tissue.3  
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This also affects the function of B cells, with increased B cell antibody production 

(IgG but not IgM) from those with GD as compared with controls.3  

 

It has been proposed that increased IGF-1R expression in GD is acquired rather than 

purely genetic. In 18 pairs of monozygotic twins (seven pairs with only one of the 

twins with GD (i.e. “discordant”) four pairs with both twins having GD (i.e. 

“concordant”) and seven healthy pairs), those individuals with GD had increased IGF-

1R+ T cells (both naïve and memory CD4+ and CD8+ cells) and B cells, compared to 

those without GD. However, in twin pairs discordant for GD, the affected twin had 

higher IGF-1R+ cells as compared to their healthy twin.216 The resulting implication is 

that IGF-1R expression is an acquired factor in a genetically susceptible individual.216 
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1.20 T Cell Differentiation and Plasticity 

 

To comprehend the possible importance of particular T lymphocyte subsets in GD 

and TAO it is necessary to discuss current understanding of T cell phenotypes in 

health and disease. 

 

T lymphocytes are components of the adaptive immune response. T cells are 

produced in the thymus, where gene segment rearrangement takes place to produce 

an antigen-specific T cell receptor (TCR), a heterodimer of αβ or γδ chains. T cells 

are separated on the basis of CD4+ and CD8+ expression, with CD8+ T cells being 

cytotoxic (producing such lytic materials as perforin and granzyme, which induce 

apoptosis of a targeted cell) and CD4+ T helper (Th) cells assisting other cells in 

immune responses.263 CD8+ and CD4+ T cells recognise peptides derived from 

protein antigens presented on MHC Class I and II by antigen presenting cells (e.g. 

macrophages, dendritic cells), respectively, and become activated. In the thymus T 

lymphocytes undergo a process to ensure that they can sufficiently recognise 

peptide-MHC complexes while at the same time not recognising self-peptide, hence 

inducing autoimmunity. Within the thymus, T cells initially express both CD4 and 

CD8. Prior to exiting the thymus each T cell downregulates either CD4 or CD8 to 

become a CD4+ or CD8+ cell, and leaves as a naïve T cell, circulating between 

blood and secondary lymphoid organs.264  

 

Initially, CD4+ T helper cells were felt to be divided into two major phenotypic 

subsets, Th1 and Th2.265 This paradigm was accepted for many years. Indeed, Th1 

cells were thought to be responsible for many organ-specific autoimmune diseases, 
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whereas Th2 cells were felt to be responsible for asthma and other allergic 

reactions.263 However, many different subsets have now been discovered (Figure 

1.10), the most pertinent for discussion in the context of TAO being Th17, Treg and 

Tfh. In addition, there is now understood to be significant plasticity of T cell lineages. 

  

 

 
Figure 1.10: Proposed Th cell lineages including lineage-defining transcription factors and cytokines 
produced. CD4+ Th cells can be divided into at least four lineages: Th1, Th2, Th17 and Treg. Other 
subtypes including Tfh, Th9 Th3 and Tr1 also exist but Tfh cells also produce Th1, Th2, Th17 or Treg 
cytokines and some Th1, Th2, Th17 and Treg subsets secrete Th9, Tr1 or Th3 cytokines (taken from 
O’Shea et al 2010).

266
  

 

1.20.1 T Helper 1 (Th1) 

 

Th1 CD4+ cells are characterised by IFN-γ secretion and are important for 

macrophage activation and clearance of intracellular pathogens.  They are defined by 

the transcription factor T-bet, a member of the T-box transcription factors. Th1 cells 
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are induced by IFN-γ and IL-27, and particularly IL-12, which bind to their respective 

receptors on undifferentiated naïve CD4+ T cells.266  

 

1.20.2 T Helper 2 (Th2) 

 

Th2 CD4+ cells are critical for IgE production, eosinophil recruitment and clearance 

of extracellular parasites. GATA-3 is the transcription factor defining the Th2 

phenotype.  Th2 cells are induced by either an IL-4-dependent or IL-4-independent 

pathway and subsequently produce cytokine such as IL-4, IL-5, IL-10 and IL-13.267 

 

1.20.3 T Helper 17 (Th17) 

 

Th17 cells are critical for immune responses against extracellular bacteria and fungi, 

and produce many cytokines including IL-17A, IL-17F, IL-22 and IL-21. Although IL-

17A and IL-17F are isoforms of the same cytokine they have different immunological 

effects, with only IL-17A being able to activate macrophages.268 RORC is the Th17 

transcription factor in humans (RORt in mice).267 Th17 have been linked with 

autoimmune diseases such as RA, MS and Crohn’s disease, which were initially 

thought to be controlled by an IL-12-mediated response.269  However, IL-23 shares a 

receptor subunit (p40) with IL-12 (with a separate p19 subunit being attached rather 

than the p35 subunit that IL-12 possesses). From this it became clear that a number 

of autoimmune diseases, earlier attributed to Th1, might instead involve other IL-23-

responsive Th cells, namely Th17 cells.267,269 
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1.20.4 T Follicular Helper (Tfh) 

 

These cells, which express CXCR5 and ICOS (inducible T-cell costimulatory or 

CD278), play a role in B cell activation and immunoglobulin class switching, helping 

B cells produce antibody responses through the chemokine receptor CXCL13. Tfh 

produce cytokines of other lineages, such as Th1, Th2 and Th17, but particularly IL-

21. Bcl6 is considered to be the master regulator of Tfh, acting as a transcriptional 

repressor to prevent the activity of other lineage-defining transcription factors (e.g. T-

bet or GATA-3). Although it is uncertain whether Tfh cells are a separate lineage to 

Th1, Th2, and Th17, they have been shown to be involved in the generation and 

maintenance of germinal centres.266 

 

1.20.5 Regulatory T Cells (Treg) 

 

Treg are a CD4+ subset that suppress otherwise pathogenic immunity by inducing 

self-tolerance.270 They comprise 5-10% of the CD4+ T cell population and can be 

produced in the thymus (nTreg) or induced in the periphery (iTreg or pTreg).271 Treg 

are characterised by expression of the Forkhead Box P3 (FoxP3) gene, IL-2 receptor 

α chain (CD25High) and low expression of CD127 (CD127Low).271 Treg utilise different 

mechanisms to suppress effector T cell activation including (1) production of 

immunosuppressive cytokines such as IL-10 and TGF-β, (2) release of protease 

enzymes (e.g. granzyme), with destruction of effector cells and (3) CTLA-4 binding to 

CD80/86, thereby affecting dendritic cell maturation and preventing effector cell 

proliferation.267,270,271 Indeed, dysfunction of FoxP3 can result in IPEX 

(immunodysregulation polyendocrinopathy enteropathy X-linked) syndrome. 
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1.21 Defining CD4+ and CD8+ Memory T Cell Populations 

 

It is possible to define distinct T cell populations on their basis of particular surface 

markers. The common leucocyte antigen CD45 has a variety of isoforms depending 

on alternative splicing of a single complex gene composed of 33 exons,272 with the 

subsequent products ranging in molecular weight from 180 to 220 kDa. Naïve T cells 

are defined by their expression of one of the largest and glycosylated of these 

isoforms, CD45RA, while memory T cells express the shortest isoform, CD45RO. 

Indeed, there is a reciprocal relationship of these two CD45 isoforms with CD45RA+ 

lymphocytes being CD45RO- and vice versa.272 One of the constituents of CD45 is 

an intracellular tyrosine phosphatase, which facilitates signalling by T lymphocytes 

following TCR binding. The shorter, CD45RO, isoform of CD45 is more permissive 

for binding to the TCR-MHC complex. 

 

Sallusto et al (1999) demonstrated that CCR7, a chemokine receptor, controls 

homing of T cells to secondary lymphoid organs.273 Once activated, T cells lose 

CCR7 expression. Therefore, on the basis of the expression of CCR7, memory T 

cells (defined by either CD45RO positivity or CD45RA negativity) may be divided into 

functionally distinct “central memory” (CM) (CCR7+) or “effector memory” (EM) 

(CCR7-) (Figures 1.11 and 1.12). In addition, particularly in CD8+ T cells, there is a 

population of “effector memory RA” (EMRA), “revertant” cells (CD45RO- or 

CD45RA+ and CCR7).273 These EMRA cells are antigen experienced are therefore 

able to produce IFN-γ.274 It has been found that this may be driven by chronic viral 

infection, particularly Cytomegalovirus (CMV).275  
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Figure 1.11: Linear model of T lymphocyte differentiation, with development of CD4+ and CD8+ T 
cells from naïve to central and effector memory status followed by the effector memory RA phenotype 
(adapted from Wikén et al 2011).
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 Naive CM EM EMRA 

CD3 + + + + 

CD45RA + - - + 

CD45RO - + + - 

CD28 + + - - 

CD62 Ligand + + - - 

CD27 + + - - 

CCR7 + + - - 

Cytokines IL-2 IL-2 IL-2, IFN-γ, IL-
4 or IL-5 

IL-2 +/- IFN-γ 

 

Figure 1.12: Markers of T cell Memory Status. CD4+ and CD8+ T cell memory subsets can be 
defined by expression of a number of markers including isoforms of the CD45 common leucocyte 
antigen: CD45RA (higher molecular weight) and CD45RO (lower molecular weight), as well as the 
lymphocyte homing marker, CCR7 (CM: Central Memory, EM: Effector Memory, EMRA: Effector 
Memory RA). 

 

1.22 CD4+ and CD8+ Memory T cell Populations in GD and TAO 

 

Several groups have produced evidence of a deviation in the distribution of CD4+ 

and CD8+ T cell memory subsets in the peripheral blood of patients with GD and 
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TAO. However, these have generally not been consistent findings (Table 1.1). The 

reasons postulated for the differing results may include methodological variations, 

differences in patient cohorts in terms of extent and duration of thyroid dysfunction, 

differing drugs or medical treatment strategies and differing TAO clinical activity. In 

particular, previous groups did not differentiate patients with TAO from those with GD 

and also did not take account of treatment differences between patients, particularly 

if they were on thionamide drugs such as CBZ and PTU. 

 

Table 1.1: Summary of previous studies investigating T cell subset distributions in TAO.  
Adapted from Vaidya et al (2005).

277
   

 
Study TAO/

HC 
CD4+ CD8+ CD4+/CD8+ 

Ratio 
Memory T 

Cells 
Naïve T 

Cells 

 
Van der Gaag et 
al, 1984 
 

 
54/13 

 

 

 

 

 
NS 

 
(-) 

 
(-) 

 
Felberg et al, 
1985 
 

 
45/24 

 
NS 

 

¶ 

 

¶ 

 
(-) 

 
(-) 

 
Tyuntyunikov et 
al, 1992 
 

 
47/27 

 


† 

 
NS 

 


† 

 
(-) 

 
(-) 

 
Vaidya et al, 2005 
 

 
26/24 

 

 

 
NS 

 

 

 

 

 

 

 
¶Only in a subgroup of TAO patients with chemosis. †Only in patients with active and severe TAO, not 
in mild and stable disease.  NS: Not significantly different from healthy controls. (-): Not done. 
 

 

Certain factors need to be taken into consideration when interpreting these previous 

studies. In particular, some of the studies included hyperthyroid patients. This is 

significant as it has been shown that even the treatment of hyperthyroid GD, with 

thionamide drugs such as CBZ or PTU, can alter the distribution of peripheral T cell 

subsets.278,279 The actual TAO disease activity and severity has also been 
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demonstrated to affect peripheral T cell subsets, with more active, severe subjects 

being those with an increased proportion of CD4 T cells.280  Also of significance is 

that no group, so far, has differentiated GD subjects without inflammatory ocular and 

orbital manifestations from those with TAO. 

 

1.23 Orbital Infiltration of T cells in TAO 

 

There is known to be a diffuse infiltrate of T cells in the EOM interstitial tissue and 

orbital adipose tissue but it is not clear if true autoreactive T cells are present, or if 

this represents non-specific recruitment of recently activated T cells.1,281,282 Both 

CD4+ (Th1 and Th2) and CD8+ T cells are present in TAO retro-orbital tissues, but 

there have been contradictory findings regarding whether CD4+ or CD8+ 

lymphocytes are the most prevalent and which T lymphocyte subsets predominate.281 

Some groups have found CD4+ T cells to predominate283-285 while others have found 

a majority of CD8+ T cells.286 Still others have hypothesised that the predominant T 

cell subset in the orbital tissue in TAO may change over the course of the 

disease,287, with Th1 clones predominating in cultures from patients with recent onset 

(<2 years) TAO and predominantly Th2-type clones in cultures from patients more 

remote from TAO onset (>2 years).203,281,283,288 

 

1.24 Orbital Fibroblasts and TAO 

 

Orbital fibroblasts are felt to be the focus of the autoimmunity in TAO, rather than 

EOMs.125 Indeed, the activation, differentiation and proliferation of orbital fibroblasts 
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is currently regarded as a key event in the pathogenesis of TAO 289. Certainly, orbital 

fibroblasts are present in orbital adipose tissue as well as in the interstitial space 

between EOM cells.290 Orbital fibroblasts also express important surface molecules 

and cytokines relevant to TAO.238,239,291-293 

 

For example, it is known that hyaluronan synthesis by orbital fibroblasts in vitro is 

stimulated by several cytokines and growth factors, including IL-1,294  IFN-γ,295 and 

platelet-derived growth factor.296 Specifically, in orbital fibroblast cultures from 

patients with GD and TAO, IGF-1 and GD-IgG provoke T cell chemoattractant (IL-16 

and RANTES) and hyaluronan production.238,239,296 This production is exaggerated as 

compared to control orbital fibroblasts.205,291,297 Likewise, treatment with CD154 

upregulates the expression of IL-6, IL-8, and monocyte chemoattractant protein-1 

(MCP-1) in TAO fibroblasts but not in control cultures. IL-1β also induces greater 

MCP-1, IL-6, and IL-8 in TAO-derived fibroblasts as compared to controls.291 

 

TAO orbital fibroblasts also have exaggerated production of prostaglandin E-2 (PGE-

2) in response to IL-1β, CD154 and leukoregulin as a result of induction of pro-

inflammatory genes such as PGHS-2, IL-1α, IL-1β, IL-6, RANTES, and IL-16 and 

microsomal PGE-2 synthase genes, resulting in increased synthesis and 

accumulation of hyaluronan.298  PGE-2 has also been shown to bias the 

differentiation of naïve T cells to the Th2 phenotype at the expense of Th1 

responses.125,299  
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It has been proposed that orbit (and pre-tibial) fibroblasts have distinct susceptibility 

factors to local cytokines, so that while T cell recruitment in GD and TAO may be 

generalised, the clinical manifestations are predominantly noted in the orbit.125 This 

can be explained by an overexpression of putative autoantigens, particularly IGF-1R, 

by orbital fibroblasts, although detectable levels of TSH-R are only produced when 

orbital fibroblasts are induced to become adipocytes.187,188 

 

The major factor thus far identified as explaining the site-specific, exaggerated 

responses of orbital fibroblasts to cytokines is the low levels of soluble IL-1 receptor 

antagonist (sIL-1RA) expressed by orbital fibroblasts as compared to non-orbital 

fibroblasts.  This results in poorly-opposed IL-1β signalling. In addition, IL-4 and IL-13 

induce 15-lipoxygenase exclusively in orbital fibroblasts from patients with GD, 

perhaps accounting for the different patterns of inflammation found in TAO.125,300 

 

Fibroblasts, through increased CD40 expression, allow T cell co-stimulation via 

interactions with CD154, resulting in clonal expansion of T cells, once again 

enhancing pro-inflammatory cytokine production (e.g. IL-1, IL-6 and IL-8).  These, in 

turn, cause increased expression of PGHS-2, HAS and UGDH genes which leads to 

further inflammation and connective tissue production.9,125,293 These features are 

similar to those described in cultured human thyrocytes.301 TAO orbital fibroblasts, 

but not those of HC, can be induced to differentiate to adipocytes by IL-1β and IL-6, 

leading to increased TSH-R on orbital fibroblasts.302 However, TNF-α and IFN-γ 

inhibit adipocyte differentiation, possibly acting within the TAO orbital tissues to 

modulate expression of TSH-R.302,303  
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Autologous T cells have been shown to drive orbital fibroblast proliferation in mixed 

culture, dependent on MHC class II and CD40-CD40L signalling.304 Other data 

demonstrate that activated T cells from TAO patients can stimulate differentiation of 

fibroblasts to adipocytes through lymphocyte-derived PGD2, presumably mediated 

through PPAR-γ.305 Furthermore, retrobulbar CD8+ T cells from TAO patients 

recognise autologous orbital fibroblasts, but not EOM extracts, in a MHC class-1 

restricted manner.286 These T cells also proliferate in response to autologous 

proteins from orbital fibroblasts (but not orbital myoblasts).282  

 

Lastly, there is also heterogeneity of the orbital fibroblast population in TAO, with 

divergent potential for differentiation, providing the basis for clinical variations in TAO 

phenotype.  For example, the expression of CD90 (Thy-1) has been used to 

differentiate the phenotype and function of orbital fibroblast subsets.  Orbital tissue 

contains both Thy-1+ and Thy-1- fibroblasts.  Thy-1+ fibroblasts differentiate into 

scar-forming, fibrosis-generating myofibroblasts when treated with TGF-.125 

Meanwhile, Thy-1- fibroblasts differentiate into adipocytes when treated with PPAR-γ 

agonists.300,306 Interestingly, PPAR-γ agonists such as thiazolidinediones (e.g. 

pioglitazone), commonly administered to diabetic patients, have been shown to 

increase expansion of orbital tissue in those with coexisting TAO.307-309 While both 

Thy-1+ and Thy-1- subsets produce IL-6 following stimulation with IL-1β or CD154, 

Thy-1+ fibroblasts produced higher levels of PGHS-2 and PGE-2. In contrast, Thy-1- 

orbital fibroblasts produced more IL-8, and when treated with IFN-γ.291,292  
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TSH-R function has been demonstrated, with increased cAMP production from TAO 

orbital fibroblasts, when stimulated with recombinant human TSH and GD-IgG, 

leading to differentiation into mature adipocytes and to increased hyaluronic acid 

production, mainly through upregulation of HAS-1 and HAS-2.188,257,259,297,310 Some of 

these observations are abrogated by a small molecule antagonist of TSH-R 

activation.311 Interestingly, IGF-1 alone did not increase HAS-2 mRNA in orbital 

preadipocytes, with an increase in transcripts only when IGF-1 was used in 

combination with rapamycin.312 

 

Another unique finding of orbital fibroblasts was described by Hoa et al (2012), who 

demonstrated that IGF-1 and GD-IgG cause accumulation of a 110 kDa fragment of 

IGF-1R in the cell nucleus of TAO fibroblasts, where it colocalises with chromatin. 

This observation was blocked by the IGF-1R blocking monoclonal antibody, 1H7. 

[125I]-IGF-1 cross-links with surface IGF-1R and the complex accumulates in TAO 

orbital fibroblasts. This requires phosphorylation of IGF-1R and ADAM17, a 

membrane-associated metalloproteinase. This same accumulation in the orbital 

fibroblast cell nucleus was not observed in HC orbital fibroblasts.209 

 

1.25 Fibrocytes in TAO  

 

Recent studies have raised the possibility that CD34+ fibroblasts, originating from 

bone-marrow derived fibrocytes, may infiltrate the orbit and differentiate into orbital 

adipose cells. 
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Fibrocytes can originate from monocyte or B cell precursors and represent a subset 

of peripheral blood mononuclear cells (PBMC), constituting 0.5% of circulating 

leucocytes, although frequencies may vary in a number of diseases.313 Fibrocytes 

have been described as ‘pluripotent monocyte lineage progenitor cells’ but their 

function within bone marrow, and beyond, is uncertain.314 Fibrocytes have been 

shown to be able to differentiate into a wide variety of cell types, depending on the 

cytokine milieu in which they find themselves.315 They are CD45+ and have markers 

representative of bone marrow origin, including being CD34+CD11b+ and CXCR4+. 

They have phenotypic features in common with both fibroblasts (produce Col I and α-

SMA) and haematopoietic cells (CD45+ and CD34+).157 

 

Fibrocytes migrate to, and infiltrate, connective tissues (particularly sites of injury) 

using the CXCL12/CXCR4 pathway,316 and perform functions such as wound 

healing, inflammation, angiogenesis and tissue remodelling.317 They have a number 

of attributes which exemplify their ability to mediate chronic inflammatory disease 

processes.318,319 Fibrocytes have the potential to be involved in antigen-specific T cell 

activation in that they constitutively express MHC class II.320 They also synthesise 

collagen I (Col I),321 and are able to differentiate into either adipocytes (when 

stimulated by PPAR-γ agonists) or myofibroblasts (when stimulated by TGF-β).322 

Fibrocytes have therefore been implicated in fibrotic processes such as those in 

lung,316,323,324 liver,325 and kidney.326 They may also be involved in RA.327 It is 

interesting, therefore, that a series of articles have recently built a range of evidence 

for the role of fibrocytes in the pathogenesis of GD and TAO, particularly because 

fibrocytes could represent a therapeutic target in these conditions. 
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Recent studies have found significantly more (mean of five-fold increase) peripheral 

fibrocytes in cultured PBMC of 70, predominantly euthyroid, GD subjects when 

compared with controls.157 Fifty-one of the GD patients had manifestations of TAO, 

16 with active disease as defined by CAS≥3.157 Subsequent studies have shown that 

these CD34+CXCR4+Col I+ cells appear morphologically similar to orbital fibroblasts. 

Moreover, these cells express putative autoantigens such as IGF-1R, TG and TSH-

R, with TSH-R expression on peripheral fibrocytes being increased in GD as 

compared to controls.157,314,328 However, CD34+ cells are only found in GD orbital 

tissue, not in healthy controls. While GD orbital fibroblasts consist of a mixture of 

CD34+ and CD34- cells, TG and TSH-R mRNA levels are only found in CD34+ 

cells.328 These CD34+ cells subsequently express TSH-R to high levels, higher than 

orbital fibroblasts, and are induced by TSH and the monoclonal TSH-R antibody M22 

to produce pro-inflammatory cytokines such as IL-1, IL-6, IL-8 and TNF- as well as 

RANTES and MCP-1.123,157,314,329 However, there was no difference in GD patients 

with and without TAO in terms of fibrocyte yields, nor any difference between those 

with active versus inactive TAO, degree of exophthalmos, thyroid function, smoking, 

nor duration of TAO.157,314 Clearly the presumption of the groups publishing this work 

is that orbital CD34+ cells are derived from circulating fibrocytes. 

 

In an attempt to link autoimmune processes in the thyroid and the orbit, Smith et al 

(2013) characterised CD34+ fibrocytes in thyroid tissue. CD34+Col I+CXCR4+TSH-

R+ cells were identified in thyroid tissue from GD, Hashimoto’s thyroiditis and 
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‘normal’ thyroids. However, while thyroid fibroblasts were Col I+CXCR4+TSH-R+ and 

produced IL-6 and IL-8 when treated with TSH, they were CD34-. 

 

The balance between IL-1 and IL-1RA, hypothesised to be important in GD and 

TAO,330 as well as other diseases, particularly SLE,331 has also been investigated in 

fibrocytes. IL-1β, a proinflammatory cytokine, is detected in TAO orbital tissues, 

especially in more active TAO.193 In a study by Li et al (2013), in keeping with 

previous studies, orbital fibroblasts treated with IL-1β go on to display more pro-

inflammatory IL-1α, IL-1β and PGHS-2 mRNA than fibrocytes, whereas fibrocytes 

exhibit higher levels of IL-1 receptor antagonist mRNA (IL-1RA), both secreted (sIL-

1RA) and intracellular (icIL-1RA), which are known to competitively bind IL-1 receptor 

and inhibit downstream signalling.332 Furthermore, when fibrocytes are treated with 

IL-1β they upregulate sIL-1RA whereas fibroblasts treated in the same way 

upregulated only icIL-1RA. It is sIL-1RA, responsible for controlling IL-1 activities 

between cells, which is the IL-1RA which is the more important modulator of IL-1. In 

contrast, icIL-1RA is felt to regulate intracellular activities.332 In animal models of 

rheumatoid arthritis and osteoarthritis, sIL-1RA has even been postulated to have 

therapeutic potential.333 The hypothesis from this is that the hyperactive response of 

orbital fibroblasts in TAO is because they do not produce the potent antagonist of IL-

1β, sIL-1RA, due to a shift from sIL-1-RA to icIL-1RA as they change from fibrocytes 

to CD34+ fibroblasts, presumably within the TAO orbit. In addition, although 

fibrocytes initially produce sIL-1RA, they go on to lose this ability as they transform to 

orbital fibroblasts.332 
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Lastly, the IGF-1R monoclonal blocking antibody Teprotumumab (RV001, R1507), a 

fully humanised monoclonal antibody that binds to the ligand-binding extracellular 

alpha subunit of IGF-1R, and currently undergoing a phase 2 clinical trial 

(NCT01868997) in patients with moderate-to-severe, active TAO, inhibits the 

expression and action (as defined by reduced pAkt levels induced by TSH or IGF-1 

and the production of IL-6 and IL-8 mRNA and protein induced by TSH) of TSH-R 

and IGF-1R in fibrocytes, supporting the rationale for blocking IGF-1R in TAO.334 This 

is also in accordance with with findings of other studies which determined reduced 

TSH-R-related signalling in TAO orbital fibroblasts with another IGF-1R blocking 

monoclonal antibody, 1H7.258,335 

 

Until recently it has been uncertain how such anatomically distinct sites should be 

involved in the same disease process, how the autoimmune thyroid disease in GD 

links with the orbital inflammation in TAO. The authors of these various papers 

postulate that fibrocytes may migrate from bone marrow to be recruited to, and 

infiltrate, thyroid and orbital tissues in GD, as well as other distinct soft tissues such 

as the pre-tibial region (thyroid dermopathy) and acra of the finger (thyroid 

acropachy), thus providing a potential link between the pathological glandular and 

extra-thyroidal manifestations of GD. However, the link between bone marrow and 

thyroid autoimmunity remains uncertain. Certainly, evidence exists that fibrocytes 

express potential autoantigens, are able to present these antigens in association with 

MHC class II, produce cytokines and GAG and are known to be involved in fibrotic 

reactions in other diseases. It is noteworthy that none of the fibrocyte studies so far 
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have used GD-IgG. It is uncertain whether this is because the experiments have not 

yet been performed or whether results have proven inconclusive.  

 

A number of putative autoantigens associated with autoimmune endocrine disease 

other than GD and TAO have been shown to be expressed on human fibrocytes. For 

example, fibrocytes express islet cell antigens implicated in type 1 diabetes mellitus, 

namely ICA512 (IA-2) and ICA69, although in healthy individuals, GD and MS 

patients as well as those with type 1 diabetes mellitus.336  

 

1.26 Animal Models of TAO 

 

Until recently it was felt that there was no existing robust animal model for TAO. 

None of the models previously developed were felt to exhibit the full spectrum of GD, 

recapitulating the characteristic features of orbital remodelling or demonstrating a 

primary role for the TSH-R as an orbital target antigen.164 In addition, a number of 

these models proved difficult to replicate.337-339  

 

A number of TSH-R induced murine models were attempted, with either transfer of 

TSH-R-primed T cells to naïve syngeneic recipients, the use of a TSH-R fusion 

protein or genetic immunisation with a plasmid encoding the TSH-R to generate 

TSH-R-primed T cells.338 Thyroiditis was transferred to NOD (non-obese diabetic) 

and BALB/c mice, but this was associated with only low titres of TSH-R antibodies 

(which were predominantly inhibitory rather than stimulatory) and there was no 

evidence of orbital disease in a significant proportion of the mice.337 However, 



Chapter 1 General Introduction 

61 

 

examination of the orbits in 17 of 25 of animals showed lymphocytic and mast cell 

infiltration, accumulation of adipose tissue, dissociation of muscle fibres and 

evidence of TSH-R immunoreactivity, whereas control mice showed no such ocular 

pathology.337,340-342  This was a predominantly Th2-mediated thyroiditis, with the 

extent of the orbital changes correlating with the extent of the Th2 response in the 

thyroid immune infiltrate. It has been observed, however, that different methods of 

TSH-R vaccination may lead to Th1 responses in which IFN-γ, rather than 

autoantibody, lead the immune response.337,338 It has been argued that differences in 

orbital anatomy may underpin the lack of proptosis that occurs in mice in the models 

attempted. 

 

More recently, all 22 female BALB/c mice immunised with human TSH-R A-subunit 

plasmids by in vivo muscle electroporation resulted in the clinical and 

histopathological features of TAO, with evidence of asymmetric but bilateral enlarged 

EOM, proptosis and indications of orbital congestion, clinically and on in vivo MRI, as 

compared with those injected with control plasmids.164 In addition, histopathology of 

orbital tissue demonstrated infiltration of CD3+ T lymphocytes, macrophages and 

mast cells, as well as GAG deposition, although no B lymphocytes. The histological 

findings were heterogeneous, with some mice manifesting predominantly EOM 

abnormalities, with interstitial inflammatory infiltrate or otherwise adipogenesis with 

expansion of retro-ocular adipose tissue. Furthermore, all animals had high levels of 

TSH-R antibodies, predominantly with stimulatory function, which persisted up to 15 

weeks after plasmid immunisation. The majority also had IGF-1R antibodies. 

However, the animals with evidence of TAO were predominantly hypothyroid (2/8 
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having significantly depressed T4 and 5/8 showing lower T4), with one mouse having 

evidence of hyperthyroidism, and the majority of these mice (6/7) also having 

evidence of hypothyroid histological appearances, with only one mouse 

demonstrating histological changes of hyperthyroidism. There was no thyroiditis in 

either group. Interestingly, those mice injected with an IGF-1Rα plasmid (n=3) did not 

lead to any histological changes in thyroid or orbital tissues.164  

 

These findings differed somewhat to a previous study by the same group using the 

same hTSH-R A-subunit plasmid, with only one out of eight animals developing 

hyperthyroidism in the most recent study as compared with eight out of 12 in their 

previous study.343 The previous study resulted in a high frequency of TSH-R and 

IGF-1R antibodies but no evidence of orbital inflammation. The hypothesis raised by 

this group was that a variation in plasmid injection technique, with a deeper injection 

over a larger muscle area, was responsible as a result of improved transfection 

efficiency during electroporation.164 

 

1.27 Immune Reconstitution and TAO 

 

An intriguing observation exists relating to secondary AITD, felt to represent GD, 

following the treatment of patients with relapsing-remitting MS with Campath-1H 

(Alemtuzumab), a humanised anti-CD52 monoclonal antibody which depletes T cells.  

Coles et al (1999) noted that a third of MS patients treated with Campath-1H 12-24 

mg/day for 5 days developed TSH-R antibodies and AITD. In addition, the 

reconstituted T cells had decreased proliferation and IFN-γ secretion in vitro.344 Of 27 
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patients, 9 developed GD and 2 of these had evidence of TAO.344 None of these 

patients had any particular genetic polymorphisms associated with AITD.  

Interestingly, there have apparently been no reports of AITD development when 

Campath-1H has been used in any other of its medical indications (e.g. RA).344 

Further studies have determined that this phenomenon is driven by higher serum 

levels of IL-21 and that patients who went on to develop secondary AITD had more 

than two-fold greater levels of serum IL-21 than the non-AITD group.345 Immune 

reconstitution GD may also occur in other instances, such as following bone marrow 

transplantation from a donor with GD and during the phase of CD4+ expansion in 

patients with human immunodeficiency virus (HIV) infection treated with highly-active 

anti-retroviral therapy (HAART).167,346 

 

The increased serum IL-21 levels related to immune reconstitution GD may provide 

an avenue for study in the context of follicular helper T cells (Tfh).  As detailed in 

Chapter 1.20.4, these cells are felt to be a distinct CD4+ Th subset which are 

present in B cell follicles of secondary lymphoid organs and identified by constitutive 

expression of CXCR5.347 Tfh mediate antigen-specific B cell activation, triggering 

germinal centre formation, probably through expression of CD40L and the secretion 

of IL-21 and IL-4.347  It is therefore possible that Tfh may be involved in GD and TAO. 

 

1.28 Current Difficulties in Predicting TAO Onset, Activity and Severity – The 
Need For A Biomarker in TAO 

 

1) Predicting TAO Disease Onset and Severity: Although it is known that 30-50% 

of patients with GD will go on to develop TAO and that 85% of these will do so within 

http://en.wikipedia.org/wiki/CXCR5
http://en.wikipedia.org/wiki/CD40L
http://en.wikipedia.org/wiki/IL-21
http://en.wikipedia.org/wiki/IL-4
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18 months of their initial diagnosis it is, at present, not possible to determine exactly 

which GD patients will subsequently be affected. In addition, it is currently not 

feasible to ascertain which of those who acquire TAO will be in the minority (3-5%) 

who develop severe, sight-threatening manifestations, which may be recalcitrant to 

conventional immunosuppressant treatment. If it were possible to differentiate these 

patients on the basis of particular biomarkers of acceptable sensitivity and specificity 

it would permit the evidence-based targeting of more intensive medical and 

ophthalmic monitoring of, and resource allocation to, those at greatest risk as well as 

the focusing of specific interventions and treatment strategies (e.g. smoking 

cessation, tight control of thyroid function, avoidance of radioiodine). 

 

2) Providing Definite, Objective Diagnostic Criteria for TAO: While diagnosing 

TAO in a patient with GD would appear to be straightforward, this is certainly not 

always the case, particularly in early stages of disease. TAO diagnosis can be 

extremely challenging, as GD itself has some ocular manifestations (e.g. lid lag and 

lid retraction) which do not necessarily represent TAO but are actually manifestations 

of thyrotoxicosis and resulting sympathetic nervous system overactivity. Likewise, 

many of the most severely affected, sight-threatened TAO patients are those who do 

not present with classical proptosis or overt inflammatory signs, but who insidiously 

lose vision from unrecognised optic nerve compression. In both cases, the ability to 

differentiate on the basis of an objective biomarker would be extremely beneficial. 

 

3) Following Responses to Therapy: With increasing utilisation of diverse 

immunosuppressant (e.g. azathioprine) and monoclonal antibody (e.g. rituximab) 
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therapies in TAO, and the advent of “personalised medicine”, it is crucial to have 

robust, impartial methods for determining responses to treatment. The clinical 

methods we utilise at present are adequate, but imperfect, and require objective and 

complementary assessments. Likewise, in planning the development and 

deployment of future novel treatments developed from clinical trials we require more 

concrete outcome measures to determine the efficacy of a particular candidate 

treatment, and to compare the utility of a novel therapy with established treatments. 

 

4) Establishing the Optimum Time to Perform Rehabilitative Surgery for TAO: It 

is currently often difficult to discern if patients with TAO have persisting active, 

inflammatory disease (characterised by conjunctival injection and chemosis) or 

“burnt-out” disease with signs of venous congestion (also characterised by 

conjunctival injection and chemosis). Again, the clinical activity and severity scores 

we utilise at present are suboptimal. This is important, as we need to identify the 

correct time to undertake rehabilitative surgery for TAO. In the absence of sight-

threatening TAO, the usual strategy is to wait until the active phase of disease has 

ended before proceeding to surgery. However, if this is performed too early then a 

patient may go on to require further surgery that should not have been necessary. 

 

As already described, previous studies have investigated the epidemiology, 

inflammatory mechanisms and genetics of both GD and TAO in large cohorts of 

patients and through a diverse range of statistical methods and laboratory 

techniques. Many of these studies have aimed to identify particular risk factors or 

markers of the likelihood of developing severe TAO. From these it is clear that TAO 
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is a complex disorder associated with a number of genetic polymorphisms (e.g. 

PTPN22, CTLA-4) and candidate molecules of interest (e.g. IGF-1R) but also with a 

number of patient-specific factors such as cigarette smoking, uncontrolled thyroid 

function and treatment with radioiodine. The interaction between these multiple 

factors means that analysing the effect of a single possible biomarker that predicts 

TAO onset and prognosticates the course and severity of the ensuing orbital disease, 

while controlling for so many other variables, is extremely difficult. 

 

1.29 PhD Hypotheses 

 

There is a significant body of evidence for the involvement of IGF-1R in TAO 

pathogenesis. This is underlined by the influence of GD-IgG on production of T cell 

chemoattractants and GAG by orbital fibroblasts, abrogated by IGF-1R monoclonal 

blocking antibody.  

 

I hypothesise that: 

 

1) Autoantibodies to IGF-1R (IGF-1R-Ab) are present in sera of patients with GD with 

(GD+TAO+) and without (GD+TAO-) orbital manifestations and can be detected by 

immunoassay. IGF-1R-Ab titres correlate with TAO activity and may act as a 

biomarker for those individuals most likely to develop severe orbital disease. 

 

2) IGF-1R-Ab skew T cell memory populations, with preferential accumulation of 

naïve T cells over cytokine-producing effector memory T cells as a result of the role 
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of IGF-1R in cell proliferation and survival, combined with data demonstrating 

differential expression of IGF-1R on memory CD4+ and CD8+ T lymphocytes, 

 

3) Finally, although TAO arises from both genetic and environmental risk factors, the 

downstream metabolites produced from this complex interaction can be measured in 

GD+TAO+ and GD+TAO- sera and permit differentiation of the two groups when 

analysed by metabolomic techniques. 

 

1.30 PhD Aims and Objectives  

 

In order to address my hypothesis I have sought to undertake three principle 

objectives during this thesis: 

 

Part 1: Develop, optimise and validate assays to detect and quantify IGF-1R-Ab, 

utilise these assays in GD+TAO+ and GD+TAO- subject sera and correlate IGF-1R-

Ab titres with clinical phenotype; 

 

Part 2: Characterise the memory and T helper phenotype of CD4+ and CD8+ T 

lymphocytes in GD+TAO+ and GD+TAO- subjects and correlate with clinical 

phenotype; 

 

Part 3: Undertake metabolomic analysis of the sera of GD+TAO+ and GD+TAO 

subjects, identify metabolites of importance and determine the sensitivity and 

specificity by which these groups may be differentiated. 
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General details of reagents and experimental techniques are described in this 

chapter. Specific adaptations, details of optimisation and subsequent amendments 

are described in each of the relevant results chapters. 

 

2.1 Ethical Approval 

 

Clinical data collection and patient sampling was undertaken following ethical 

approval in accordance with the Declaration of Helsinki. Successful acquisition of 

favourable opinion for collection of peripheral blood from patients with GD or TAO, 

and healthy controls, was gained from Birmingham East, North and Solihull Research 

Ethics Committee (Reference: 10/H1206/70; UKCRN number 10073).   

 

2.2 Multiple-Site Research & Development Approval 

 

Research and development approval was gained from three distinct sites:  Sandwell 

and West Birmingham Hospitals NHS Trust (which encompasses Birmingham and 

Midland Eye Centre, BMEC), University Hospital Birmingham NHS Trust (UHB), and 

the University of Birmingham (UoB). 

 

2.3 Definition of Study Groups 

 

Three separate study groups were identified: 
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GD+TAO+: Diagnosis of GD made on the basis of initial biochemical hyperthyroidism 

(raised serum free T4 (fT4) and/or free T3 (fT3) concentrations and undetectable 

serum TSH), presence of goitre and identification of high titre of TPO-Ab (>59 IU/ml). 

Patients were hyperthyroid, euthyroid or hypothyroid.  

 

References ranges for thyroid function tests: 

fT4 10 – 22 pmol/L 

fT3 3.1 – 6.8 pmol/L 

TSH 0.30 – 4.50 mIU/L 

 

In addition, these subjects had presence of ocular or orbital manifestations of TAO, 

as previously described. TAO subjects were from different phases in the disease – 

some in the early, active phase (CAS≥3), while others were ‘inactive’ as defined by 

EUGOGO (CAS<3) and some had no clinical evidence of inflammatory activity at the 

time of their assessment. 

 

GD+TAO-: Diagnosis of GD made on the basis of initial biochemical hyperthyroidism 

(as described above) together with the presence of a palpable diffuse goitre and a 

significant titre of TPO-Ab, as previously described.348 At the time of recruitment, 

patients may have been hyperthyroid, euthyroid or hypothyroid. However, subjects 

had no evidence of ocular or orbital manifestations of TAO. 

 

Healthy Controls (HC): No previous or current thyroid dysfunction, no known 

underlying autoimmune disease and on no immunomodulatory drugs.  

 



Chapter 2 Materials and Methods 

71 

 

Both the GD+TAO- and GD+TAO+ subjects were heterogeneous groups in terms of 

thyroid status at the time of sampling, thionamide treatment, radioiodine or 

thyroidectomy treatment and cigarette smoking status. Despite all GD+TAO+ and 

GD+TAO- subjects having been TPO-Ab positive at the time of their GD diagnosis, I 

also measured their serum TRAb levels at the time at which they were recruited in to 

the study with a commercial TRAb ELISA (ElisaRSRTM TRAb 3rd Generation, 

Cardiff, UK). This assay had a cut-off for TRAb positivity of ≥0.4 uL. 

 

2.4 Patient Identification, Assessment and Sample Collection 

 

Study participants were identified and recruited on their attendance to either a tertiary 

referral endocrinology clinic at UHB (for GD+TAO+ and GD+TAO- subjects) or a 

tertiary referral orbital diseases clinic at BMEC (for GD+TAO+ subjects).  HC 

subjects were recruited from a combination of UHB and BMEC.  All subjects were 

carefully age- and sex-matched.  A comprehensive medical history was taken from 

each subject, including age, sex, current and previous medications and smoking 

history, and all underwent a full ophthalmic, neuro-ophthalmic and orbital 

assessment.  TAO disease activity was determined by CAS score (described in 

Figure 1.5) with active TAO defined by a CAS score of 3.   

 

All peripheral blood sampling from GD+TAO+ and GD+TAO- patients and HC 

subjects in UHB and BMEC clinics was undertaken by myself. Samples from the 

different groups were analysed in mixed batches. Experiments never took place with 

samples from just one of the investigated groups.  
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2.5 Alphabetical List of Reagents, Media and Solutions 

 

Reagent     Source 

 

Brefeldin A     Sigma-Aldrich, Dorset, UK 

BSA      Sigma-Aldrich, Dorset, UK 

CFSE      Caltag/Invitrogen, Paisley, UK 

Compensation Particles Set   BD Biosciences, Oxford, UK 

Counting Beads    Caltag/Invitrogen, Paisley, UK 

Des(1-3)IGF-1     IBT Systems, Reutlingen, Germany 

EDTA      Sigma-Aldrich, Dorset, UK 

Ficoll-Paque Plus    GE Healthcare, Amersham, UK 

GPS      Sigma-Aldrich, Dorset, UK  

HEPES     Sigma-Aldrich, Dorset, UK 

HIFCS      Sigma-Aldrich, Dorset, UK 

Human T-Activator CD3/CD28 Beads Caltag/Invitrogen, Paisley, UK 

IGF-1      Peprotech, London, UK 

IGF-1R Duoset    R&D Systems, Abingdon, UK 

Ionomycin     Sigma-Aldrich, Dorset, UK 

IL-6 Monoclonal Antibody   R&D Systems, Abingdon, UK 

KHCO3      Sigma-Aldrich, Dorset, UK 

Lightcycler 480 Genotyping Master Mix Roche, Switzerland 

Lightning Link Biotinylation Kit  Innova Biosciences, Cambridge 

NH4Cl      Sigma-Aldrich, Dorset, UK 

PBS      Oxoid, Cambridge, UK 

Phosflow Fixation Buffer   BD Biosciences, Oxford, UK 

Phosflow Permeabilisation Buffer (III) BD Biosciences, Oxford, UK 

Phosflow Stain Buffer    BD Biosciences, Oxford, UK 

PMA      Sigma-Aldrich, Dorset, UK 

PTPN22 Anchor & Sensor Probes  TIB MOLBIOL, Germany 

PTPN22 Forward & Reverse Primers TIB MOLBIOL, Germany 

Quickgene DNA Whole Blood Kit  Fujifilm, Japan 

RPMI Medium 1640    Sigma-Aldrich, Dorset, UK 

Tween 20     Sigma-Aldrich, Dorset, UK   
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2.6 List of Antibodies for Surface Staining Studies 

 

Antibody Channel Isotype Dilution Source 

 
CD3 
 

 
eFluor780  
(APC Cy7) 
 

 
Mouse IgG1 

 
1/50 

 
eBioscience, Hatfield, UK 

 
CD4 
 

 
PE Cy7 

 
Mouse IgG1 

 
1/10 

 
BD Pharmingen, Oxford, UK 
 

 

CD8 
 

 
PE Cy5 

 
Mouse IgG1 

 
1/40 

 
Beckman Coulter, High 
Wycombe, UK 

 
CD8 
 

 
V500 (Violet 2) 
 

 
Mouse IgG1 

 
1/20 

 
BD Biosciences, Oxford, UK 

 
CD69 
 

 
FITC 

 
Mouse IgG1 

 
1/20 

 
eBioscience, Hatfield, UK 

 
CD71 

 
FITC 

 
Mouse IgG1 

 
1/20 

 
eBioscience, Hatfield, UK 
 

 
CD154 
 

 
FITC 

 
Mouse IgG1 

 
1/20 

 
Biolegend, Cambridge, UK 

 
CD25 
 

 
PECy5 

 
Mouse IgG1 

 
1/10 

 
Biolegend, Cambridge, UK 

 
CD127 
 

 
FITC 

 
Mouse IgG1 

 
1/20 

 
eBioscience, Hatfield, UK 
 

 
CD45RO 
 

 
PETR 

 
Mouse IgG1 

 
1/50 

 
Beckman Coulter, High 
Wycombe, UK 

 
CD45RA 
 

 
PETR 

 
Mouse IgG1 

 
1/80 

 
Beckman Coulter, High 
Wycombe, UK 

 
CCR7 
 

 
FITC 

 
Mouse IgG2a 
 

 
1/20 

 
R&D Systems, Abingdon, UK 

 
CCR7 
 

 
AlexaFluor 488 
(FITC) 
 

 
Mouse IgG2a 

 
1/20 

 
Biolegend, Cambridge, UK 

 

IGF-1R 
 

 
PE 

 
Mouse IgG1 

 
1/10 

 
Santa Cruz Biotech, UK  

 
CXCR5 
 

 
AlexaFluor 647 
(APC) 
 

 
Rat IgG2b 

 
1/160 

 
BD Biosciences, Oxford, UK 
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2.7 List of Antibodies for Intracellular Cytokine Staining Studies 

 

Antibody Channel Isotype Dilution Source 

 
IFN-γ 
 

 
eFluor450 
(Violet 1) 

 

 
Mouse IgG1 

 
1/80 

 
eBioscience, Hatfield, UK 
 

 
IL-5 
 

 
PE 

 
Rat IgG2a 

 
1/20 

 
BD Pharmingen, Oxford, 
UK 
 

 
IL-17A 
 

 
PerCP Cy5.5 

 
Mouse IgG1 

 
1/20 

 
eBioscience, Hatfield, UK  
 

 
IL-21 
 
 

 
eFluor 660 
(APC) 

 

 
Mouse IgG1 

 
1/20 

 
eBioscience, Hatfield, UK  
 
 

 

2.8 List of Antibodies for Phosflow Studies 

 

Surface 
Antibody 

Channel Isotype Dilution Source 

 
Phospho-
Akt 
 

 
PE 

 
Mouse IgG1 

 
1/5 

 
BD Biosciences, Oxford, UK  

 
Phospho-
ERK1/2 
 

 
PE 

 
Mouse IgG1 

 
1/5 

 
BD Biosciences, Oxford, UK  

 

2.9 Preparation of Peripheral Blood 

 

Peripheral blood was collected in EDTA vacutainer tubes and stored at 4oC until use 

in experiments, within four hours of sampling. It was decided to perform T cell 

phenotype studies using both PBMC and lysed blood. The latter was used in order to 

analyse any differences in neutrophil and monocytes between the groups studied. 

Preparation of lysed blood and peripheral blood mononuclear cells were as follows: 
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2.9.1 Whole Blood Lysis 

 

Peripheral blood was centrifuged and resuspended at a 1/10 dilution (1 ml of 

peripheral blood) of filter-sterilised red cell lysis buffer (8.29 g NH4Cl, 1 g KHCO3 and 

37.2 mg EDTA per litre of distilled H20). After 7 minutes at room temperature, the 

suspension was diluted with 15 ml RPMI to block further lysis. Following 

centrifugation, the pellet underwent two washes, each time being resuspended in 

10 ml PBS, followed by centrifugation at 400 g for 8 minutes. Cells were mixed 1:1 

with trypan blue (8 μl) and counted in a haemocytometer.  Cells were resuspended in 

RPMI at a concentration of 1x106 cells/ml and placed in a 96-well plate. 

 

2.9.2 Peripheral Blood Mononuclear Cells 

 

12-15 ml of peripheral blood were collected in a 50 ml Falcon tube and diluted 1:1 

with RPMI/1% GPS/1% HEPES. This mixture was gently layered over 7 ml Ficoll-

Paque in 25 ml universal tubes (17 ml max blood/universal tube). These were 

centrifuged for 30 minutes at 20°C, 400 g with no brake. The PBMC buffy layer was 

removed and transferred to 10ml RPMI/1% GPS/1% HEPES. Cells were then 

washed through three cycles of centrifugation (at 6 to 8 minutes, 400 g, 20oC, brake 

9) and resuspended in 10 ml RPMI. Cells were mixed 1:1 with trypan blue (8 μl) and 

counted in a haemocytometer. Cells were resuspended in RPMI at a concentration of 

1x106 cells/ml and placed in a 96-well plate. 
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2.9.3 Isolation, Storage and Thawing of Serum 

 

For each subject a separate sample of peripheral blood was also collected in serum 

separating tubes and stored at 4oC. This was centrifuged at 400 g for 8 minutes and 

the serum layer removed, placed in 500 µl aliquots in 1 ml cryovials and stored at -

80oC until ready for use. When required these serum samples were thawed at 37°C 

in a water bath while being gently rotated. All samples were analysed after a 

maximum of one freeze-thaw cycle. 

 

2.10 Extraction of DNA for PTPN22 R620W Genotyping 

  

DNA was extracted from whole blood samples using the QuickGene-810 system 

(Fujifilm, Japan) using a standardised protocol. The QuickGene-810 system 

(http://www.autogen.com/product-quickgene-810.htm) is a technique for extracting 

nucleic acids, based on the use of a porous polymer membrane which selectively 

traps nucleic acids. When ethanol is added to lysates of whole blood samples the 

polarity is reduced which promotes the adsorption of nucleic acids into the 

membrane. The membrane is washed with a low polarity solution (wash buffer) under 

low pressure to remove any contaminating components without desorbing the nucleic 

acids. Finally, the nucleic acids are eluted using a high polarity solution (elution 

buffer) under low pressure and a pure solution of nucleic acids is obtained. 

 

EDB buffer (30 µl) was added to a 1.5 ml microcentrifuge tube, followed by whole 

blood (200 µl) and LDB buffer (250 µl) and vortexed for 15 seconds. Samples were 

incubated at 56°C for 2 minutes and >99% ethanol (250 µl) was added following this. 
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Samples were vortexed and loaded into the QuickGene-810 system, set on DNA 

whole blood mode. Following extraction, DNA samples were stored at 4°C until use. 

  

2.11 PTPN22 R620W Genotyping 

  

The Roche LightCycler 480 System (Roche Diagnostics Ltd. UK) was used to identify 

the single nucleotide polymorphism of PTPN22 (rs2476601) by real-time PCR and 

melting curve analysis (Appendix 1). This has previously been well-validated.349 

 

Primers and probes included; primers: 5–GCCTCAATGAACTCCTCAAAC–3 

(forward) and 5-CTGATAATGTTGCTTCAACGGA–3 (reverse), probes: the sensor 

(A) 5–CAGGTGTCCATACAGGAAGTG–3–FLU and the anchor 5–LCRED640–

GGGGATTTCATCATCTATCCTTGGAGCAGTTG–PH.  

 

Primers and probes were used at concentrations of 10 µM and 3 µM, respectively. 

The components for each PCR reaction (5.5 µl PCR grade water, 0.5 µl forward 

primer, 0.5 µl reverse primer, 0.3 µl anchor probe, 0.2 µl sensor probe and 2 µl 

genotyping master mix) were added to a 1.5 ml microcentrifuge tube and vortexed 

thoroughly. Into each well of a 96-well white qPCR plate was added 9 µl of reagent 

mix and 1 µl of the DNA extracted as described in Chapter 2.10.  

 

2.12 Statistical Analysis 

 

Statistical analysis was performed for all univariate analyses with GraphPad Prism 

version 5.0 (GraphPad Software, California 2008). Non-parametric continuous 
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comparisons were undertaken with the Mann Whitney U test for two groups, Kruskal-

Wallis test (and Dunn’s multiple comparison) for multiple groups. Correlation was 

undertaken with Spearman’s rank correlation. Multivariable logistic regression 

analysis was with SPSS version 20 (IBM, Chicago, IL, 2012). The minimum level of 

confidence at which the results were to be judged significant was p<0.05. 
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3.1 Introduction 

 

As already discussed, there is a significant body of evidence for the role of IGF-

1/IGF-1R and putative IGF-1R autoantibodies in the pathogenesis of TAO.  

 

3.1.1 Summary of Current Evidence for a Role of IGF-1R in TAO 

 

Early studies in this area established competition of [125I]-IGF-1 with GD-IgG for 

binding to orbital fibroblast cell membranes.261 It has since been demonstrated that 

IGF-1R is overexpressed on cultured retro-orbital fibroblasts from GD patients as well 

as on T and B lymphocytes from orbital tissue and peripheral blood, compared with 

healthy controls.3,240 This elevated IGF-1R observed on T lymphocytes of patients 

with TAO is reduced following treatment with rituximab.350  

 

In addition, IGF-1 and GD-IgG stimulate GAG and T cell chemoattractant (IL-16 and 

RANTES) production by orbital fibroblasts (blocked by the monoclonal anti-IGF-1R 

antibody, 1H7), and cotransfection with a dominant-negative IGF-1R plasmid 

attenuates such effects,238,239,351 similar to that noted in cultured thyrocytes.301 van 

Zeijl CJ et al (2011) found that TSH did not result in increased hyaluronan production 

by TAO orbital fibroblasts but that GD-IgG did, implying a non-TSH, non-cAMP 

signalling route, possibly representative of a mechanism related to  IGF-1R activation 

and signalling.201  

 

Recent data has established that CD34+ fibrocytes (cells for which an increasing 

evidence base exists linking autoimmune processes in the thyroid and the orbit in 
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TAO) also express IGF-1R.123 Furthermore, twin studies indicate increased IGF-1R 

expression on lymphocytes in affected siblings, representative of an acquired rather 

than genetic parameter.216 There is also data demonstrating location and functional 

interaction of TSH-R and IGF-1R.187,258 Finally, Ezra et al (2012) have demonstrated 

that expression of genes related to IGF-1 binding and signalling (e.g. IGFBP-6, SGK-

1 and SOCS3) are dysregulated in TAO orbital tissue, by microarray.150 Indeed, on 

the basis of these findings, a clinical trial is currently taking place into the role of 

Teprotumumab, a humanised monoclonal IGF-1R antibody in the treatment of TAO 

(clinical trials identifier NCT01868997, EudraCT (European Union Drug Regulating 

Authorities Clinical Trials) number EU2014-000113-31). 

 

Together these data, from a number of different groups, and over a number of years, 

suggest that, at least in a proportion of GD patients, GD-IgG may stimulate IGF-1R 

and contribute to the development of TAO. However, despite this weight of evidence 

for a role of IGF-1/IGF-1R in TAO pathogenesis, originating in 1986, even in 2013 no 

convenient assay had been published to be utilised specifically to measure IGF-1R-

Ab in GD and TAO patients. 

 

3.1.2 Existing Assays for the Measurement of IGF-1R Antibodies  

 

Over the past decade a number of IGF-1R-Ab assays have been developed for other 

purposes but which, until recently, had never been translated to be used in studies of 

GD or TAO.  
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Chen et al (2003) developed an IGF-1 kinase receptor activation (KIRA) assay. This 

assay, based on a HEK-293 (Human Embryonic Kidney) cell line stably transfected 

with human IGF-1R, was developed with the purpose of measuring IGF-1 bioactivity 

in diseases related to atherosclerosis and cancer.352 The assay functions on the 

basis of measuring autophosphorylation of the tyrosine residues of IGF-1R in 

response to stimulation with human serum in vitro, to determine the IGF-1R 

stimulating activity of that serum. The assay utilises a monoclonal capture antibody to 

IGF-1R (MAD1) and a biotinylated antiphosphotyrosine monoclonal antibody 

(BAM1676) as a detection antibody. The published intra-assay coefficient of variation 

was 5.6% and inter-assay coefficient of variation <15%.352 

 

Yin et al (2011) optimised two enzyme-linked immunosorbent assays (ELISA) for 

detection and measurement of Dalotuzumab (MK 0646), a humanised anti-IGF-1R 

IgG1 antibody (blocking the binding of both IGF-1 and IGF-2 to IGF-1R) undergoing 

phase III clinical trials for use in cancer therapy, in human serum.208,222 The purpose 

of the assay in this context was the investigation of the pharmacokinetic properties of 

Dalotuzumab. This group attempted to validate two ELISA, using an IGF-1R-

mediated capture step and either a mouse anti-human IgG-Fc-specific antibody 

conjugated to horseradish peroxidase (HRP) or a biotinylated mouse anti-human 

IgG1-specific antibody. It was determined that only the ELISA utilising the anti-IgG1 

antibody could be validated. The authors felt that their methods may be applied to 

detect other IGF-1R of interest. Indeed, the ELISA devised by Yin et al (2011) was 

used by Moshkelgosha et al (2013) to measure serum IGF-1R autoantibodies in a 

TAO animal model,164,208 while that devised by Chen et al (2003) was used by 

Varewijck et al (2013), as discussed later.352,353 
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3.1.3 Principles of IGF-1R-Ab Immunoassays 

 

The inspiration, basis and principle for the two distinct IGF-1R-Ab immunoassays I 

developed were previous ELISA established for the detection of TRAb (in GD) and 

Aquaporin-4-Ab (in neuro-inflammatory disorders), each of which have been shown 

to have good sensitivities and specificities.354,355   

 

Principle of ELISA 1:354 Presumed IGF-1R-Ab in the sera of GD+TAO+, GD+TAO- 

and HC subjects are allowed to interact with recombinant human IGF-1R (rhIGF-1R) 

coated onto ELISA plate wells (Figure 3.1 A & B). After an incubation period, sera 

are discarded leaving IGF-1R-Ab bound to the plate-bound rhIGF-1R. Biotinylated 

Des(1-3)IGF-1 (an IGF-1 which lacks three N-terminal residues) is then added for 

further incubation, where it binds to plate-bound rhIGF-1R binding sites which have 

not been occupied, and therefore blocked, by serum IGF-1R-Ab already bound to 

rhIGF-1R. The use of Des(1–3)IGF-I (referred to as Biotin-IGF-1 throughout the rest 

of this chapter) is important as it binds IGF-IR with high affinity but does not bind 

IGFBP.238 The amount of Biotin-IGF-1 bound to the plate can be measured by 

addition of streptavidin-horseradish peroxidase (sHRP), which itself binds to biotin 

and can be detected by the addition of 3,3’,5,5’–tetramethylbenzidine (TMB), which 

turns blue on reaction with biotin (Figure 3.1 C). This reaction is ceased by the 

addition of stop solution, causing the well contents to turn from blue to yellow. The 

absorbance, in terms of an optical density (OD) of the yellow reaction mixture, is then 

determined using an ELISA plate reader. A lower absorbance (lower OD) indicates 

the presence of increased IGF-1R-Ab in a sample as the IGF-1R-Ab inhibits binding 

of Biotin-IGF-1 to the ELISA plate coated with rhIGF-1R. 
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Figure 3.1: Diagrammatic representation of the principle of ELISA 1. Recombinant human IGF-1R 
(rhIGF-1R) (blue diamond) is coated onto ELISA plate wells (A). Biotinylated Des(1-3)IGF-1 (green 
square with red star) binds to rhIGF-1R, occupying the optimum proportion of binding sites (left panel, 
B). However, if IGF-1R-Ab (black figure) in human sera are allowed to interact with rhIGF-1R before 
Biotinylated Des(1-3)IGF-1 are introduced to the system, these occupy rhIGF-1R binding sites, 
meaning that Biotinylated Des(1-3)IGF-1 cannot do so (right panel, B). When strepavidin-HRP (purple 
circle) is then added, less is able to bind to Biotinylated Des(1-3)IGF-1 and there is subsequently a 
lesser ELISA signal determined from the substrate solution (blue circle converting to yellow circle) (C). 
The quantity of serum IGF-1R-Ab is therefore determined by the proportion of the maximum signal 
which is attenuated by their binding. 
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Principle of ELISA 2:355 Presumed IGF-1R-Ab in the sera of GD+TAO+, GD+TAO- 

and HC subjects are allowed to interact with rhIGF-1R coated onto ELISA plate wells 

(Figure 3.2 A & B). After an incubation period, sera are discarded leaving IGF-1R-Ab 

bound to the plate-bound rhIGF-1R. A biotinylated IGF-1R (IGF-1R-Biotin) is added 

in a second incubation step. IGF-1R-Ab bound to rhIGF-1R coated on the plate will 

also interact with IGF-1R-Biotin due to the bivalent (or multivalent with soluble IgM) 

nature of antibodies (Figure 3.2 B). After further incubation, the well contents are 

discarded, leaving IGF-1R-Biotin bound to IGF-1R-Ab, which is in turn bound to 

plate-bound rhIGF-1R. The amount of IGF-1R-Biotin bound is then determined as in 

ELISA 1, with further steps involving sHRP, TMB, stop solution and measurement of 

absorbance using an ELISA plate reader (Figure 3.2 C). Higher absorbances (higher 

OD) indicate the presence of increased IGF-1R-Ab in samples of interest. 
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Figure 3.2: Diagrammatic representation of the principle of ELISA 2. Recombinant human IGF-1R 
(rhIGF-1R) (blue diamond) is coated onto ELISA plate wells (A). IGF-1R-Ab (black figure) in human 
sera are allowed to interact with rhIGF-1R. Due to the bivalent nature of immunoglobulins, a 
biotinylated rhIGF-1R (blue diamond with red star) may bind to the serum IGF-1R-Ab (B), When 
strepavidin-HRP (purple circle) is added, this binds rhIGF-1R plus IGF-1R-Ab plus biotinylated rhIGF-
1R complex and there is a subsequently greater ELISA signal determined from the substrate solution 
(blue circle converting to yellow circle) (C). The quantity of serum IGF-1R-Ab is therefore determined 
by the optical density measured. 
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3.2 Aims and Objectives 

 

In this chapter I aimed to establish and validate two novel ELISA-based assays for 

the measurement and quantification of IGF-1R-Abs, specifically in GD+TAO+ and 

GD+TAO- patients, with the aim of comparing these measurements with HC 

subjects. I also aimed to correlate IGF-1R-Ab with demographic factors, as well as 

clinical, genetic and immunological indices of GD and TAO, including thyroid 

function, TRAb and PTPN22 (R620W) GD susceptibility genotype. 

 

3.3 Methods 

 

The final ELISA 1 and ELISA 2 are presented in this section, with details of the 

optimisation, validation and subsequent use of each immunoassay in GD+TAO+, 

GD+TAO- and HC sera being fully described in Chapter 3.4. 

 

3.3.1 Final Optimised IGF-1R-Ab ELISA 1  

 

On the day prior to the ELISA, 100 μl of rhIGF-1R at 3000 ng/ml was used to coat 

each well of a 96-well ELISA plate (Nunc-Immuno Maxisor, Fisher Scientific), with the 

plate being sealed and incubated overnight at 4oC.   

 

On the day of the ELISA, each well was initially washed with 300 μl of wash buffer 

(PBS/Tween 20 0.05%) three times using a plate washer (Biochrom Asys Atlantis 

microplate washer).  After the last wash, any remaining wash buffer was removed by 

inverting the plate and blotting it against clean paper towels. Wells were then blocked 
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with 300 μl of block buffer (PBS/Tween 20, 5%) and incubated at room temperature 

for one hour. Following this, further washes (as described above) were performed. 

100 μl of human serum, either GD+TAO+, GD+TAO- or HC, diluted 1/100 in reagent 

diluent (PBS), were placed in the relevant wells in duplicate.  The ELISA plate was 

then covered with an adhesive strip and incubated at 4oC for 16 hours on a plate 

shaker (500 shakes/minute).  

 

Following this, the three-wash step was repeated. 100 μl of Biotin-IGF-1 at 100 ng/ml 

was placed in each well, the plate again covered with an adhesive strip and 

incubated at room temperature for two hours. Following this, the three-wash step was 

repeated. 100 μl of sHRP was then added to each well at a dilution of 1/200, the 

plate again covered and incubated in the dark at room temperature for 20 minutes.  A 

further three-wash step was then repeated. 100 μl of substrate solution (1:1 mixture 

of colour reagent A (H2O2) and colour reagent B (TMB)) was then placed in each well 

and incubated in the dark at room temperature for 20 minutes.  Following this, 50 μl 

of stop solution (H2SO4) was added to each well and the plate gently tapped to 

ensure thorough mixing. The OD of each well was then determined using a 

microplate reader (Bio-tek Instruments EL808) set to read at 450 nm and 630 nm. 

Subtraction of the measured OD at 630 nm from that at 450 nm was then performed 

to correct for optical imperfections in the ELISA plate itself.  

 

3.3.2 Final Optimised IGF-1R-Ab ELISA 2  

 

On the day prior to the ELISA, 100 μl of rhIGF-1R at 1000 ng/ml was used to coat 

each well of a 96-well ELISA plate (Nunc-Immuno Maxisor, Fisher Scientific), with the 
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plate being sealed and incubated overnight at 4oC.  On the day of the ELISA, each 

well was initially washed with 300 μl of wash buffer (PBS/Tween 20 0.05%) three 

times using a plate washer (Biochrom Asys Atlantis microplate washer).  After the 

last wash, any remaining wash buffer was removed by inverting the plate and blotting 

it against clean paper towels.  Wells were then blocked with 300 μl of block buffer 

(PBS/Tween 20, 5%) and incubated at room temperature for one hour. Following 

this, further washes (as described above) were performed. 100 μl of human serum, 

either GD+TAO+, GD+TAO- or HC, diluted 1 in 10 in reagent diluent (PBS), were 

placed in the relevant wells in duplicate.  The ELISA plate was then covered with an 

adhesive strip and incubated at 4oC for 16 hours on a plate shaker. Following this, 

the three-wash step was repeated. 100 μl of IGF-1R-Biotin was then placed in each 

well, the plate again covered with an adhesive strip and incubated at room 

temperature for two hours. Following this, the three-wash step was repeated. 100 μl 

of sHRP was then added to each well at a dilution of 1/200, the plate again covered 

and incubated in the dark at room temperature for 20 minutes.  A further three-wash 

step was then repeated. 100 μl of substrate solution (1:1 mixture of colour reagent A 

(H2O2) and colour reagent B (TMB) was then placed in each well and incubated in 

the dark at room temperature for 20 minutes.  Following this, 50 μl of stop solution 

(H2SO4) was added to each well and the plate gently tapped to ensure thorough 

mixing. The OD of each well was then determined using a microplate reader (Bio-tek 

Instruments EL808) set to read at 450nm and 630nm.  Subtraction of the measured 

OD at 630nm from that at 450nm was then performed to correct for optical 

imperfections in the ELISA plate itself.  
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3.3.3 Statistical Analysis 

 

Statistical analysis was performed by GraphPad Prism version 5.0 (GraphPad 

Software, California 2008). D'Agostino-Pearson test determined that IGF-1R-Ab 

levels as measured by ELISA 1 and ELISA 2 were not normally distributed. 

Therefore, non-parametric comparisons between GD+TAO+, GD+TAO- and HC were 

undertaken with the Mann Whitney U test for two groups, Kruskal-Wallis test (and 

Dunn’s multiple comparison) for multiple groups. Correlation was undertaken with 

Spearman’s rank correlation. The minimum level of confidence at which the results 

were to be judged significant was p<0.05. 
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3.4 Results 

 

3.5 ELISA 1 

 

A human IGF-1R Duoset (R&D Systems, Abingdon, UK) was adapted to perform the 

function of an IGF-1R autoantibody ELISA. This IGF-1R Duoset comprises an IGF-

1R monoclonal capture antibody which binds IGF-1R within a sample of interest (or 

rhIGF-1R or at varying concentrations, in order to obtain a standard curve). The IGF-

1R or rhIGF-1R, in turn, is bound by a biotinylated polyclonal goat anti-human 

detection antibody which itself binds sHRP, leading to a blue colour change in a 

H2O2/TMB substrate solution and conversion to a yellow colour with a stop solution. 

Determination of the OD of this colour is undertaken using a microplate reader.  

 

I instead bound rhIGF-1R directly to the ELISA plate and used the IGF-1R 

monoclonal capture antibody as an IGF-1R monoclonal antibody, the concentration 

of which could be adjusted to test the validity of the developing IGF-1R-Ab ELISA. 

 

3.5.1 Determination of Optimum Concentrations of rhIGF-1R and Biotin-IGF-1 

 

It was determined that not using IGF-1R capture antibody to bind rhIGF-1R to the 

ELISA plate was preferable as Biotin-IGF-1, even at 100 ng/ml and 1000 ng/ml, could 

not be detected when capture antibody was used (Figure 3.3 A). In addition, even 

without capture antibody, Biotin-IGF-1 at 1000 ng/ml resulted in too high a 

background signal, with OD of around 0.5 even without rhIGF-1R bound to the ELISA 
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plate (Figure 3.3 B). From this experiment it was determined to use no IGF-1R 

capture antibody prior to rhIGF-1R and to use Biotin-IGF-1 at 100 ng/ml.  

 

It was noted that the signal gained from using rhIGF-1R at 1000 ng/ml and Biotin-

IGF-1 at 100 ng/ml resulted in an optical density of only around 0.6. As the aim of the 

ELISA was to inhibit the maximum signal gained from optimum Biotin-IGF-1 binding 

to rhIGF-1R (by addition of IGF-1R-Ab presumably within sera), it was felt that a 

higher baseline optical density was required, with the aim being for a starting OD of 

around 1.  

 

I therefore determined the optical density achieved with a higher range of rhIGF-1R 

from 1000 – 10,000 ng/ml, in 2000 ng/ml increments (with Biotin-IGF-1 standardised 

at 100 ng/ml) and found that there was a plateau of the OD at around 4000 ng/ml 

(Figure 3.4 A). The chosen OD of 1 was achieved at 3000 ng/ml of rhIGF-1R. 

Furthermore, the signal gained could be blocked by around 75% with 1 µg/ml IGF-1R 

monoclonal antibody, a percentage inhibition that itself plateaued at 3000 ng/ml of 

rhIGF-1R, before gradually decreasing (Figure 3.4 B) as rhIGF-1R continued to 

increase in concentration up to 10,000 ng/ml. For the balance of cost of reagents, 

attainment of a target baseline OD of 1 and the greatest sensitivity of detecting 

blocking by IGF-1R monoclonal antibody (and therefore, by extension, serum IGF-

1R-Ab), an ELISA plate coating of 3000 ng/ml rhIGF-1R was chosen. 
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Figure 3.3: Optimisation of rhIGF-1R ELISA plate coating and Biotin-IGF-1 levels in ELISA 1. A 
range of concentrations of IGF-1R (0 – 1000 ng/ml) and Biotin-IGF-1 (0 – 1000 ng/ml) were used to 
establish the optimum relative levels of each, when the ELISA was undertaken with an IGF-1R capture 
antibody used to bind rhIGF-1R to the ELISA plate (A) and without such a capture antibody (B). 
Optical density determined from absorbance of each ELISA plate well at 450/630 nm. Each plot 
representative of two repeated experiments. 
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Figure 3.4: Optimisation of rhIGF-1R ELISA plate coating and detection of inhibition of Biotin-
IGF-1 binding in ELISA 1. A range of rhIGF-1R concentrations from 0 – 10,000 ng/ml were 
investigated, with 1000 ng/ml increments and use of a standardised Biotin-IGF-1 concentration of 100 
ng/ml. It was determined that the ELISA signal was optimal at around 3000 ng/ml. (A) IGF-1R 
monoclonal antibody, as expected, was found to inhibit Biotin-IGF-1 binding, with the greatest 
inhibition of the assay found at an rhIGF-1R ELISA plate coating of 3000 ng/ml. (B) Optical density 
determined from absorbance of each ELISA plate well at 450/630 nm. Each plot representative of two 
repeated experiments. 
 

 



Chapter 3 IGF-1R Autoantibodies in GD and TAO 

95 

 

3.5.2 Determination of Optimum ELISA 1 Reagents and Conditions 

 

A number of the conditions for ELISA 1 were further investigated (Figure 3.5 A-C). I 

compared the optical density gained with PBS or bicarbonate 0.05 M and found that 

PBS resulted in an OD closer to my preferred ELISA baseline signal of 1 and larger 

differences in the inhibition of this signal with increasing concentrations of IGF-1R 

monoclonal antibody, hence PBS was chosen to be used in all further assays 

(Figure 3.5 A).  

 

I also analysed whether it would be advantageous to use a plate shaker during the 

incubation of IGF-1R monoclonal antibody or patient sera with the plate-bound 

rhIGF-1R. Again, greater differential inhibition from the baseline OD with shaking of 

the ELISA plate was observed (500 shakes per min) over a range of IGF-1R 

monoclonal antibody concentrations and continued to use this technique throughout 

all studies using patient sera (Figure 3.5 B). 

 

Finally, the optimum dilution of patient sera was evaluated, based on the percentage 

inhibition of the initial ELISA signal and the difference that could be observed 

between a pilot set of 12 patient samples (6 TAO, 6 HC). In summary, a serum 

dilution of 1 in 10 and that of 1 in 1000 resulted in there being no observable 

difference between patient samples – in the case of a 1 in 10 dilution the degree of 

non-specific binding was felt to be too high, while in the case of a 1 in 1000 dilution 

barely any diminution of signal between subjects could be observed (Figure 3.5 C). 

A serum dilution of 1 in 100 was therefore used. 
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Figure 3.5: Optimisation of incubation conditions for ELISA 1. A number of the conditions for 
ELISA 1 were investigated, including whether PBS or bicarbonate 0.05 M would be the preferred 
diluent for IGF-1R monoclonal antibody (A), whether the ELISA plate should be shaken during the 
incubation of sera or IGF-1R monoclonal antibody with plate-bound rhIGF-1R (B) and what the 
optimum dilution of patient sera should be (C). On the basis of these studies, PBS was used as the 
IGF-1R monoclonal antibody and sera diluent, plates were shaken during incubation and a 1/100 
dilution of sera was used for all subsequent analyses. Sera were pooled from 6 HC and 6 active TAO 
subjects in each experiment. Optical density determined from absorbance of each ELISA plate well at 
450/630 nm. Each plot representative of two repeated experiments. 
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3.5.3 No Interference of Non-IGF-1R Monoclonal Antibody on ELISA 1 

 

With rhIGF-1R at 3000 ng/ml, Biotin-IGF-1 at 100 ng/ml and 16 hour incubation of 

IGF-1R monoclonal antibody with plate-bound rhIGF-1R at 4oC it was investigated 

whether recombinant IGF-1 (rIGF-1) (Peprotech, London) itself, or other non-IGF-1R 

commercial antibody, might interfere with the assay system, presumably by 

occupying rhIGF-1R binding sites, thereby preventing the binding of Biotin-IGF-1 and 

resulting in a lower OD which could erroneously be attributed to serum IGF-1R-Ab. 

This is clearly important given that IGF-1 itself, and other immunoglobulins, are 

present in human serum samples. Although the IGF-1R monoclonal antibody 

demonstrated blocking of Biotin-IGF-1 as normal, over a range of concentrations (0 – 

2000 ng/ml), rIGF-1 at 0 – 1000 μg/ml was also seen to result in a reduction in the 

ELISA signal detected, with the original OD of 1.52 being reduced by almost 75% to 

1.12 with only 0.01 μg/ml rIGF-1, suggesting that IGF-1 in serum samples may 

impact on the results of ELISA 1 (Figure 3.6 A). Furthermore, although this occurred 

at IGF-1 levels of 0.01 μg/ml, this was seen to plateau at concentrations of 0.1 μg/ml 

and above, which would be commensurate with normal, physiological levels of serum 

IGF-1 (0.01 to 1 μg/ml).356 However, IL-6 monoclonal antibody, an IL-6 capture 

antibody obtained from an IL-6 ELISA kit (R&D Systems, Abingdon, UK) at 0 – 2000 

ng/ml was not detected by ELISA 1 (Figure 3.6 B).  
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Figure 3.6: Effect of non-IGF-1R monoclonal antibody and rIGF-1 on ELISA 1. The effect of 
recombinant human IGF-1 (0 – 1000 µg/ml) (A) and IL-6 monoclonal antibody (0 – 2000 ng/ml) (B). 
ELISA 1 was undertaken with fully optimised conditions, with recombinant human IGF-1R (rhIGF-1R) 

at 3000 ng/ml, Biotin-IGF-1 at 100 ng/ml and 16 hour incubation of IGF-1R antibody at 4
o

C. IGF-1R 
monoclonal antibody was utlised as previously (0 – 2000 ng/ml). Each plot representative of two 
repeated experiments.  
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3.6 ELISA 2 

 

Similar to ELISA 1, the same existing IGF-1R Duoset (R&D Systems, Abingdon, UK) 

was modified to perform the function of an IGF-1R-Ab ELISA. In particular, the IGF-

1R capture antibody was used as an IGF-1R monoclonal antibody in order to assess 

how varying concentrations of rhIGF-1R and IGF-1R-Biotin would function to detect 

putative IGF-1R-Ab in patient sera. 

 

3.6.1 Biotinylation of Recombinant Human IGF-1R 

 

rhIGF-1R (R&D Systems, Abingdon, UK) was biotinylated using a Lightning-Link-

Biotin Type A biotinylation kit (Innova Biosciences, Cambridge) in accordance with 

instructions provided. Successful biotinylation of rhIGF-1R was confirmed with an 

IGF-1R-Biotin standard curve. (Figure 3.7) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7: Confirmation of successful biotinylation of rhIGF-1R. Standard curve of IGF-1R-Biotin 

to plate-bound IGF-1R at concentration of 1000 ng/ml and incubation at 16 hours at 4
o

C with IGF-1R 
monoclonal antibody at 100 ng/ml. Optical density determined from absorbance of each ELISA plate 
well at 450/630 nm. Plot representative of three repeated experiments. 
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3.6.2 Optimisation of rhIGF-1R and IGF-1R-Biotin Concentrations and Duration 
of IGF-1R Monoclonal Antibody Incubation 

 

It was crucial to determine the most appropriate concentration of rhIGF-1r coating 

each ELISA plate well as there was concern that if the spacing between each IGF-1R 

molecule were too small (high rhIGF-1R concentration) then this may circumvent the 

main principle of the ELISA. That is, the rationale for the ELISA is that 

immunoglobulins are divalent, with the ability to bind two IGF-1R molecules – in this 

case the rhIGF-1R coating the ELISA plate and, in addition, serum IGF-1R 

monoclonal antibody. If each rhIGF-1R molecule were too close together then it is 

possible that IGF-1R-Ab would bind to two plate-bound rhIGF-1R and therefore not 

be able to bind IGF-1R monoclonal antibody in the test system, or IGF-1R-Ab in sera. 

Likewise, if the spacing between each IGF-1R molecule were too great (low rhIGF-

1R concentration) there would be insufficient IGF-1R-Ab binding to generate a 

sufficient subsequent signal.  

 

I therefore investigated a range of rhIGF-1R and IGF-1R-Biotin concentrations (0 – 

1000 ng/ml for each), with varying concentrations of IGF-1R monoclonal antibody (0 - 

1000 ng/ml). The ELISA was undertaken with only a one hour incubation of IGF-1R 

monoclonal antibody with rhIGF-1R and resulted in disappointing eventual OD of only 

around 0.32, even with the highest concentrations of rhIGF-1R, IGF-1R-Biotin and 

IGF-1R monoclonal antibody (Figure 3.8). I therefore increased the rhIGF-1R-IGF-

1R monoclonal antibody incubation time to 16 hours and achieved more satisfactory 

OD, although again with rhIGF-1R and IGF-1R-Biotin concentrations each of 1000 

ng/ml (Figure 3.9). 
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Figure 3.8: Optimisation of concentrations of rhIGF-1R and IGF-1R-Biotin in ELISA 2. A range of 
rhIGF-1R ELISA plate coating and IGF-1R-Biotin concentrations were used (0 – 1000 ng/ml for each) 
and varying concentrations of IGF-1R monoclonal antibody – 0 ng/ml (A), 0.1ng/ml (B), 1 ng/ml (C), 10 
ng/ml (D), 100 ng/ml (E) and 1000 ng/ml (F). The ELISA was undertaken with only a one hour 
incubation of IGF-1R monoclonal antibody. In this system it can be seen that only 1000 ng/ml of IGF-
1R monoclonal antibody could be detected with rhIGF-1R and IGF-1R-Biotin concentrations of 1000 
ng/ml each (F). Each plot representative of two repeated experiments. 
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Figure 3.9: Optimisation of duration of incubation of IGF-1R monoclonal antibody with rhIGF-
1R and IGF-1R-Biotin in ELISA 2. A range of rhIGF-1R ELISA plate coating and IGF-1R-Biotin 
concentrations were used (0 – 1000 ng/ml) and varying concentrations of IGF-1R monoclonal antibody 
– 0 ng/ml (A), 1 ng/ml (B), 10 ng/ml (C), 100 ng/ml (D), 1000 ng/ml (E) and 10,000 ng/ml (F). The 
ELISA was undertaken with 16 hour incubation of IGF-1R monoclonal antibody. In this system it can 
be seen that only 1000 ng/ml of IGF-1R monoclonal antibody could be detected with rhIGF-1R and 
IGF-1R-Biotin concentrations of 1000 ng/ml each (E & F). Each plot representative of two repeated 
experiments. 
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An attempt to evaluate if even higher concentrations of rhIGF-1R and IGF-1R-Biotin 

would result in higher eventual ODs, with a standardised concentration of IGF-1R 

monoclonal antibody (100 ng/ml), with 16 hour incubation, determined that a rhIGF-

1R concentration of 1000 ng/ml was definitely the optimum, irrespective of the 

concentration of IGF-1R-Biotin used. Indeed, as rhIGF-1R concentration increased 

beyond 1000 ng/ml there was a deterioration in ODs achieved. Higher ODs were 

possible with increased IGF-1R-Biotin concentrations, unfortunately at the expense 

of higher background levels of OD even when no rhIGF-1R was coating each ELISA 

plate well. For example, the background OD level with IGF-1R-Biotin of 1000 ng/ml 

was 0.03, whereas at 5000 ng/ml it was 0.07 (Figure 3.10).   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Evaluation of a range of rhIGF-1R and IGF-1R-Biotin concentrations in detecting 
IGF-1R monoclonal antibody in ELISA 2. With a standardised concentration of IGF-1R monoclonal 
antibody (100 ng/ml), with 16 hour incubation, it was determined that a rhIGF-1R concentration of 
1000 ng/ml was the optimum, irrespective of the concentration of IGF-1R-Biotin used. Higher OD are 
achievable with higher concentrations of IGF-1R-Biotin, although at the expense of a higher 
background signal and expense of reagents. Each plot representative of two repeated experiments. 
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3.6.3 No Interference of Recombinant IGF-1 or Non-IGF-1R Monoclonal 
Antibody on ELISA 2 

 

It was investigated whether rIGF-1 (Peprotech, London) itself might be detected by 

the assay system. Although IGF-1R monoclonal antibody was detected as normal, 

neither rIGF-1 at 0 – 100 μg/ml nor an IL-6 capture antibody obtained from an IL-6 

ELISA kit (R&D Systems, Abingdon, UK), at 0 – 2000 ng/ml were detected by ELISA 

2 (Figure 3.11). Importantly, normal levels of serum IGF-1 are 0.01 to 1 μg/ml,356 so 

the levels of rIGF-1 used in this experiment were supra-physiological. 

 

3.6.4 Optimum Dilution of Human Sera in ELISA 2 

 

The optimum dilution of patient sera, based on the OD achieved and the difference in 

OD that could be detected between different subjects, was evaluated. In a pilot set of 

12 patient samples, 6 TAO and 6 age- and sex matched HC, a serum dilution of 1/10 

with PBS appeared to be the optimum, with dilutions of 1/100 and 1/1000 resulting in 

barely any detectable OD (Figure 3.12) 

 

3.6.5 Consistent IGF-1R-Ab Measurements with Equivalent ELISA 2 Protocol 

 

Using the sera of six of the most clinically active TAO patients in my cohort, 

alongside six age- and sex-matched HC for each of those patients, I undertook 

ELISA 2 with a 1/10 serum dilution with PBS and gained OD values for each in two 

separate experiments on two separate days, separated by a month. Gratifyingly, the 

OD values obtained were remarkably similar, attesting to the reproducibility and inter-

experimental consistency of ELISA 2 (Figure 3.13). 
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Figure 3.11: Effect of non-IGF-1R monoclonal antibody and rIGF-1 on ELISA 2. Although IGF-1R 
monoclonal antibody was detected as normal, over a range of concentrations (0 – 2000 ng/ml), neither 
recombinant human IGF-1 (rIGF-1) at 0 – 100 μg/ml (A) nor IL-6 monoclonal antibody at 0 – 2000 
ng/ml (B) were detected by ELISA 2. ELISA 2 was undertaken with fully optimised conditions, with 
recombinant human IGF-1R (rhIGF-1R) at 1000 ng/ml, IGF-1R-Biotin at 1000 ng/ml and 16 hour 

incubation of serum with plate-bound rhIGF-1R at 4
o

C. Each plot representative of two repeated 
experiments. 
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Figure 3.12: Investigation of the median effect of dilution of serum samples for GD+TAO+ and 
HC subjects. Sera of 6 GD+TAO+ and 6 age- and sex-matched HC were used in ELISA 2, either 
undiluted (A) or otherwise diluted 1 in 10 (B) or 1 in 100 (C) with PBS. rhIGF-1R 1000 ng/ml and IGF-
1R-Biotin 1000 ng/ml. Incubation of undiluted or diluted serum samples for 16 hours with rhIGF-1R. 
On the basis of this study, a serum dilution of 1 in 10 was used in all further experiments related to 
participant sera. Data presented represent optical density determined from each individual serum 
sample, with horizontal line representing median value of all samples in that group. Results 
representative of two repeated experiments. 
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Figure 3.13: Consistency of optical density measurements between experiments for both 
GD+TAO+ and HC subjects with ELISA 2. IGF-1R-Ab were measured by ELISA 2 in the sera of six 
of the most clinically active GD+TAO+ patients in my cohort, alongside six age- and sex-matched HC 
for each of those patients. ELISA 2 was undertaken with serum diluted 1 in 10 in PBS and gained OD 
values for each subject in two separate experiments on two separate days a month apart (A). The OD 
values between the two separate experiments were compared for GD+TAO+ (B) and HC subjects (C). 
Non-parametric comparison of OD values for the separate experiments was undertaken with Wilcoxon 
matched pairs signed rank test. (Key: NS, Not significant). Plots representative of repeated experiment 
at different time points. 
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3.7 Use of ELISA 1 and ELISA 2 in GD+TAO+, GD+TAO- and HC Subjects 

 

The following are results of the fully-optimised IGF-1R-Ab assays, based on inhibition 

of Biotin-IGF-1 binding to rhIGF-1R by IGF-1R-Ab (ELISA 1) or on binding of IGF-1R-

Biotin to IGF-1R-Ab which, in turn, are bound to rhIGF-1R (ELISA 2). 

 

3.7.1 Study Subjects 

 

There were 110 GD+TAO+, 67 GD+TAO- subjects and 78 age- and sex-matched 

healthy controls (HC). Demographic and clinical parameters for these participants are 

summarised in Table 3.1.  

 

Although there were no significant differences in terms of age, sex and cigarette 

smoking status, as well as thyroid status between the GD+TAO+ and GD+TAO- 

subjects, significant differences were observed in serum levels of TRAb between the 

three groups of interest, with 78% of GD+TAO+, 54% of GD+TAO- and 5% of HC 

being TRAb positive. The groups also differed in PTPN22 genotype, with 15% of 

GD+TAO+ patients being PTPN22 susceptibility SNP heterozygotes (GA) and 2% 

homozygotes (AA), as compared to 8% and 9% of GD+TAO- and HC, respectively, 

being heterozygotes and none being homozygotes (Figure 3.14). Furthermore, those 

patients with clinically active TAO (CAS ≥3) had significantly higher TRAb, with 

results approaching significance for cigarette smoking and dysthyroid status (Figure 

3.15) 

 

 



Chapter 3 IGF-1R Autoantibodies in GD and TAO 

109 

 

 

 

 

Table 3.1: Demographic features, clinical measures, thyroid function, TRAb status and PTPN22 
(R620W) genotype for GD+TAO+, GD+TAO- and HC study groups. 
 
 

 HC 
 

GD+ TAO- GD+ TAO+ 

 
Number 

 
78 

 
67 

 
110 

 

 
Median age in 
years (IQR) 
 

 
44 (24) 

 
46 (20) 

 
51 (20) 

 
Gender (M:F) 
 

 
15 : 63 

 
9 : 58 

 
20 : 90 

 
Smokers 

 
51% 

 
48% 

 
57% 

 

 
GD Duration 
>12 months 
 

 
N/A 

 
75% 

 
90% 

 
CAS≥3 
 

 
N/A 

 
N/A 

 
18% 

 
TAO Severity 
(Mild/Mod/Sev) 
 

 
N/A 

 
N/A 

 
25 : 70 : 15 

 
Thyroid Status 
(Hypo/Eu/Hyper) 
 

 
N/A 

 
5 : 41 : 21 

 
11 : 85 : 14 

 
TRAb Positive 
 

 
5% 

 
54% 

 
78% 

 
Thionamides 

 
N/A 

 

 
73% 

 
53% 
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Figure 3.14: TRAb levels and PTPN22 (R620W) genotype in GD+TAO+, GD+TAO- and HC 
groups. Significant differences were observed in serum levels of TRAb between  the  110 GD+TAO+, 
67 GD+TAO- subjects and 78 age- and sex-matched healthy controls (HC). Dotted line indicates cut-
off for definition of TRAb positivity (≥0.4 U/L) as defined by the assay data sheet (mean of duplicates). 
Non-parametric analysis was undertaken with Kruskal-Wallis (with Dunn’s post-test). (NS: Not 
significant; **p<0.01; ***p<0.001) (A). PTPN22 (R620W) genotype of study groups based on real-time 
PCR and melting curve analysis (B).  
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Figure 3.15: Relationship between TRAb levels and clinical, immunological and PTPN22 
(R620W) genotype in GD+TAO+ subjects. No statistically significant differences were noted in age 
(A), cigarette smoking status (B), EUGOGO severity grade (D), thyroid function (E) or duration of GD 
(F). However, there was significant difference in TRAb with TAO clinical activity score (C). Non-
parametric analysis was undertaken with Mann-Whitney U test (for two groups) or Kruskal-Wallis test 
(with Dunn’s multiple comparison) for multiple groups. (NS, Not significant; **p<0.01). 
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3.7.2 IGF-1R-Ab are not elevated in GD+TAO+ or GD+TAO- subjects as 
compared to HC when measured by ELISA 1 or ELISA 2   

 

Using both ELISA 1 (Figure 3.16) and ELISA 2 (Figure 3.17) no significant 

differences were noted in the median levels of serum IGF-1R-Ab measured between 

GD and HC controls and between GD+TAO+ and GD+TAO- patients. With respect to 

ELISA 1, the median percentage inhibition of Biotin-IGF-1 binding in the GD+TAO+ 

(13%, IQR 10.5) , GD+TAO- (14%, IQR 9.6) and HC (14%, IQR 11.7) group were not 

significantly different. Similarly, if it is assumed that the levels of IGF-1R-Ab in serum 

are normally distributed and one uses means, the proportion of subjects defined as 

IGF-1R-Ab positive, irrespective of whether this is stated to be 1, 2 or 3 standard 

deviations above the mean IGF-R-Ab of the HC population, are also no different. For 

example, if we set a cut-off at 2 standard deviations above the HC mean IGF-1R-Ab, 

then the proportion of “IGF-1R-Ab positive” subjects in the GD+TAO+, GD+TAO- and 

HC group are 4.7%, 6.3% and 4.2%, respectively (using ELISA 2). 

 

3.7.3 No correlation between IGF-1R-Ab as measured by ELISA 1 and ELISA 2 
and clinical, immunological or genetic features of GD and TAO 

 

Those GD+TAO+ patients with active TAO (CAS ≥3) were shown to have 

significantly higher TRAb levels than those with inactive TAO (CAS<3). Such TRAb 

results also approached statistical significance for those GD+TAO+ patients who 

were cigarette smokers (as compared to non-smokers) and for those who were either 

hypothyroid or hyperthyroid (as compared to euthyroid) (Figure 3.15). No significant 

association was found in terms of any demographic, clinical or immunological 

parameter, nor in terms of PTPN22 (R620W) genotype, and IGF-1R-Ab levels, as 



Chapter 3 IGF-1R Autoantibodies in GD and TAO 

113 

 

measured by either ELISA 1 or ELISA 2 (Figure 3.18 and 3.19). There were no 

changes in the findings when inactive TAO patients of over 18 months duration were 

removed from analysis (‘burnt out’ cases) (Appendix 2 and 3). These univariate 

analyses were confirmed by multivariable logistic regression (Appendix 4 and 5).  

 

3.7.4 No correlation between IGF-1R-Ab, TRAb and TPO-Ab but significant 
correlation between IGF-1R-Ab as measured by ELISA 1 and ELISA 2 

 

As demonstrated in Figures 3.20 and 3.21, there was no correlation between IGF-

1R-Ab, as measured by either ELISA 1 or ELISA 2, with either TRAb or TPO-Ab in 

the GD+TAO+ patients. The lack of correlation between TRAb and TPO-Ab may be 

explained by the TPO-Ab having been measured at the time when the patient was 

initially diagnosed with GD, sometimes a significant number of months in the past 

and certainly prior to the taking of peripheral blood and separation of serum for 

storage. This may have meant that with time and treatment there was an alteration in 

the autoantibody constituents of the serum of each of the patients analysed, with a 

proportion of patients who were previously TPO-Ab positive now being TRAb 

negative. The TPO-Ab for each subject were also determined independently by the 

UHB clinical immunology laboratory whereas TRAb were measured with a TRAb 

ELISA kit (ElisaRSRTM TRAb 3rd Generation, Cardiff, UK). However, it is 

encouraging to note that IGF-1R-Ab levels as measured by ELISA 1 and ELISA 2 did 

show significant correlation, with Spearman’s r of 0.31 (p=0.0001). This suggests that 

the two ELISA are at least measuring the same constituent of the serum. 
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Figure 3.16: Comparison of IGF-1R-Ab levels as measured by ELISA 1 in the study populations. 
No significant difference was observed in serum levels of IGF-1R-Ab between 177 GD patients and 78 
age- and sex-matched healthy controls (A), nor between the 110 GD+TAO+ and 67 GD+TAO- 
subjects (B), using ELISA 1 (mean of duplicates). Non-parametric analysis was undertaken with 
Mann-Whitney U test. (NS, Not significant). 
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Figure 3.17: Comparison of IGF-1R-Ab levels as measured by ELISA 2 in the study populations. 
No significant differences were observed in serum levels of IGF-1R-Ab between 177 GD (combined 
GD+TAO+ and GD+TAO-) patients and 78 age- and sex-matched healthy controls (A), nor between 
the 110 GD+TAO+ and 67 GD+TAO- subjects, using ELISA 2 (B) (mean of duplicates). Non-
parametric analysis was undertaken with Mann-Whitney U test. (NS, Not significant). 
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Figure 3.18: Relationship between IGF-1R-Ab as measured by ELISA 1 and clinical, 
immunological and PTPN22 (R620W) genotype in GD+TAO+ subjects. No statistically significant 
differences were noted in age (A), cigarette smoking status (B), PTPN22 genotype (C), thyroid status 
(D), TAO clinical activity score (E), EUGOGO severity grade (F), TRAb status (G) or duration of GD 
(H). Non-parametric analysis was undertaken with Mann-Whitney U test (for two groups) or Kruskal-
Wallis test (with Dunn’s multiple comparison) for multiple groups. (NS, Not significant). 
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Figure 3.19: Relationship between IGF-1R-Ab as measured by ELISA 2 and clinical, 
immunological and PTPN22 (R620W) genotype in GD+TAO+ subjects. No statistically significant 
differences were noted in age (A), cigarette smoking status (B), PTPN22 genotype (C), thyroid status 
(D), TAO clinical activity score (E), EUGOGO severity grade (F), TRAb status (G) or duration of GD 
(H). Non-parametric analysis was undertaken with Mann-Whitney U test (for two groups) or Kruskal-
Wallis test (with Dunn’s multiple comparison) for multiple groups. (NS, Not significant). 
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Figure 3.20: Correlation between measured levels of serum IGF-1R-Ab and TRAb or TPO-Ab 
with ELISA 1 and ELISA 2. No correlation between serum IGF-1R-Ab and either TRAb or TPO-Ab 
with ELISA 1 (A & B) for GD+TAO+ and GD+TAO- subjects. For ELISA 2 (C & D) there was a small 
but statistically significant negative correlation between IGF-1R-Ab and TPO-Ab (D). Note: fewer 
subjects had undergone measurement of TPO-Ab than TRAb. Non-parametric analysis was 
undertaken with Spearman’s rank correlation. 
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Figure 3.21: Correlation between measured levels of TRAb and TPO-Ab and between IGF-1R-
Ab as measured with ELISA 1 and ELISA 2. No correlation between serum TRAb and TPO-Ab (A). 
However, serum IGF-1R-Ab, as measured with ELISA 1 and ELISA 2 did demonstrate significant 
correlation in GD+TAO+ and GD+TAO- subjects (B). Non-parametric analysis was undertaken with 
Spearman’s rank correlation. 
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3.8 Discussion 

 

Despite extensive validation, evidence for good inter-assay agreement and 

consistency of measures in a large population of age- and sex-matched GD+TAO+, 

GD+TAO- and HC, I found no difference in IGF-1R-Ab with either of the assays. 

There was also no correlation of IGF-1R-Ab with TAO clinical activity or severity. This 

is contrary to previous findings examining the effect of putative GD-IgG on orbital 

fibroblasts, mediated by presumed IGF-1R-Ab.238,239,261 However, since developing 

the ELISA, two other groups have published their own IGF-1R-Ab assays which may 

be valid for therapeutic and pathogenic IGF-1R-Ab detection and which, to some 

extent, concur with my findings.  

 

3.8.1 Published IGF-1R-Ab Detection Assays in TAO Patients 

 

Minich et al (2013) utilised a luminescent immunoprecipitation assay, generating an 

IGF-1R-luciferase fusion protein which was stably transfected into HEK-293 cells.232 

These cells were then subject to immunoprecipitation studies in 108 TAO and 92 HC 

subject sera. All samples were gained within 12 months of the first symptoms of 

TAO. Crucially, the cut-off point for IGF-1R-Ab positivity was chosen as signals 

located more than 3 standard deviations from the mean signals of healthy controls. In 

this study 10% of TAO and 11% of HC were positive for IGF-1R-Ab, a finding that 

was independent of serum IGF-1 levels. In addition, purified IgG were equivalent to 

the original serum samples. In TAO patients for whom there were greater than three 

consecutive samples over an average period of 2 years, IGF1-R-Ab were 

consistently elevated. However, no stimulatory effects on IGF-1R 
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autophosphorylation were seen with TAO sera. In addition, serum IGF-1R-Ab+ 

samples reduced IGF-1-mediated activation of HepG2 (hepatocellular carcinoma) 

cells and MCF-7 (breast cancer) cell viability. This was proposed to confirm that IGF-

1R-Ab in this study were IGF-1R antagonists. In contrast to TSAb, no subjects with 

stimulatory IGF-1R-Abs were identified. Importantly, as with my data, there were no 

associations between IGF-1R-Ab levels and severity or activity of TAO, or of TRAb 

levels. This group therefore concluded that there was no evidence from their study to 

support a role for IGF-1R-Ab in TAO pathogenesis.232 

 

Varewijck et al (2013) undertook a prospective study of 70 consecutive TAO patients 

(26 euthyroid on antithyroid therapy, 39 subclinical hyperthyroidism, 5 still 

hyperthyroid), with a mean CAS of 1.6 (range 0-5), median time after diagnosis of 

GD of 3 years and median time after TAO diagnosis of 1 year.353 They used an IGF-1 

kinase receptor activation assay, based on the measurement of autophosphorylation 

of tyrosine residues of IGF-1R in response to stimulation with human serum in vitro, 

in order to determine serum IGF-1R activating capacity. Again, this involved a HEK-

293 cell line stably transfected with the human IGF-1R gene and IGF-1R-Ab activity 

was compared with TBII.353 Compared to healthy controls, the IGF-1R stimulating 

activity of TAO subject sera was low-normal and total serum IGF-1 was normal. 

However, a significant inverse relationship between total IGF-1 and CAS was noted. 

In contrast to the results of my assays there was positive correlation between TBII 

and CAS. Moreover, there was positive correlation between IGF-1R stimulating 

activity and age in patients with TBII above the mean +1SD, although no such 

relationship for those with lower levels of TBII. Overall, IgG depletion (by protein G 

magnetic beads) did not change IGF-1R stimulating activity. However, in 10 of 20 
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patients the IGF-1R stimulating activity decreased after IgG depletion, an effect 

mainly seen in those with higher IGF-1R stimulating activity. Varewijck et al therefore 

concluded that it was possible that GD-IgG might contribute to IGF-1R activation in 

this GD subset.353 

 

3.8.2 Criticisms of Current IGF-1R-Ab Detection Assays 

 
 
The evidence presented by my assays and the studies of Minich et al and Varewijck 

et al are unexpected in that they may be argued to conflict with the body of evidence 

available for the involvement of IGF-1R in TAO pathogenesis. However, a number of 

criticisms have been made regarding some aspects of the experimental design of 

each of the studies.357  

 

Smith (2013) highlighted that a number of confounding factors may have been 

present, particularly in reflecting the true complexity of the IGF-1 and IGF-1R 

pathway. For example, levels of IGF-1, IGF-2 and IGFBP were not measured or 

taken into account in interpreting some of the results, particularly as cultured cell 

lines may produce some of these factors.357 Given the relative binding affinities of 

IGF-1, IGF-1 and insulin, if IGFs or IGFBP were higher or lower in any of the groups 

then these could have resulted in under- or overestimation of the true levels of IGF-

1R-Ab.357 Certainly there is alteration of the IGF-1 system in RA, with low or normal 

IGF-1 but increased or normal IGFBP as compared with controls.358,359 However, 

normal levels of IGF-1, IGF-2 and IGFBP have been documented in TAO patients.356 

In addition, as TAO activity correlates with TRAb levels (although not necessarily 

TPO-Ab),46,159 patients with active TAO and high TRAb should have high titres of 
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other autoantibodies. If there were multiple other autoantibodies in the sera of 

GD+TAO+ or GD+TAO- subjects these may have interfered with IGF-1R-Ab 

interactions with rhIGF-1R.357 

 

Neither of the published assays, nor my own, used human orbital fibroblasts as the 

target for the putative serum antibodies. Studies examining the effect of IGF-1 and 

GD-IgG have utilised cultured human fibroblasts, aiming to more directly replicate in 

vivo conditions. It is conceivable, therefore, that antibody-induced receptor activation 

may be tissue-specific and that the particular “unique attributes” of GD orbital 

fibroblasts may facilitate representative cellular responses mediated by GD-IgG. 

Hence, using such an “artificial” in vitro target as a cultured cell line transfected with a 

particular receptor (as in the published IGF-1R-Ab assays) or a recombinant receptor 

protein (as in my IGF-1R-Ab assays) may not be sufficiently “physiological” to permit 

true findings to be revealed.125,357  

 

For instance, in the case of ELISA 1, there is the assumption that serum IGF-1R-Ab 

block the binding of Biotin-IGF-1 to IGF-1R. This may not necessarily be the case if, 

for example, IGF-1R-Ab bind to separate epitopes on IGF-1R. Furthermore, if rhIGF-

1R is of an inappropriate configuration or incorrectly glycosylated for true IGF-1R-Ab 

then an accurate representation of IGF-1R-Ab levels may not be obtained. If any of 

these assay systems is an imperfect means of measuring IGF-1R-Ab levels and 

activity it follows that each may therefore not be valid to correlate with any clinical or 

immunological measure. I did attempt to optimise an ELISA based on that of Yin et al 

(2011), with presumed binding of IGF-1R-Ab to plate-bound rhIGF-1R and using a 
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secondary biotin-conjugated donkey anti-human IgG Fc-γ specific antibody and a 

goat anti-human IgG to bind IGF-1R-Ab, but without success. 

 

It has also been stated that a definition of IGF-1R-Ab positivity of 3 standard 

deviations above the mean of the healthy controls, as in the study of Minich et al, is 

an arbitrary cut-off. This, combined with the possibility of not detecting low affinity 

IGF-1R-Ab with the assay techniques chosen, as is the case with those 

autoantibodies in SLE and glomerulonephritis. I utilised the Duoset IGF-1R capture 

antibody as a positive control in my studies. However, this may not replicate the true 

situation as this capture antibody will have been specifically raised to the 

recombinant IGF-1R protein used to bind putative IGF-1R-Ab in patient serum. One 

would assume that the interaction between these two molecules would be of 

particular high affinity, likely not in the physiological range of any putative IGF-1R-Ab 

interacting with IGF-1R on, for example, orbital fibroblasts. It was certainly the case, 

in other studies, that some pathogenic antibodies were of low affinity, low enough 

perhaps not to be detected by an immunoassay.360,361 It would therefore have been 

instructive to have utilised an alternative IGF-1R monoclonal antibody, such as 1H7, 

which could have further validated ELISA 1 and 2. 

 

Finally, the previous evidence of IGF-1R and TSH-R colocalisation has not been 

taken into account.187,258 Indeed, there are further examples of interactions between 

IGF-1R and other receptors. Carapancea et al (2007) found co-expression of IGF-1R 

and platelet derived growth factor receptor (PDGFR) in two high-grade glioma cell 

lines. Targeting both receptors increased cell death in both cell lines, greater than 
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inhibition of either receptor alone.362 Other studies have found similar cross-talk 

between IGF-1R and epidermal growth factor receptor (EGFR).256,363  

 

3.8.3 Rationalisation of IGF-1R-Ab Detection Assay Findings 

 

To add credence to the findings of my assays, recently validated animal models also 

found that IGF-1R may not have such a direct link with TAO. Moshkelgosha et al 

(2013) found that all BALB/c mice gained high levels of TSH-R antibodies, 

predominantly with stimulatory function after TSH-R plasmid immunisation. The 

majority also had IGF-1R antibodies.164 However, Zhao et al (2011) determined that, 

although those mice injected with TSH-R A-subunit plasmid developed high levels of 

both TSH-R antibodies and IGF-1R antibodies, those injected with an IGF-1Rα 

subunit plasmid developed IGF-1R antibodies but no changes in phenotype.343 

Moreover, simultaneous challenge by double antigen immunisation with the two 

plasmids (TSH-R and IGF-1R) at distant anatomical sites reduced the incidence of 

hyperthyroidism, potentially as a consequence of antigenic competition.164,343 

 

If serum IGF-1R-Ab are not specifically present in GD or TAO patients at levels 

above those in HC subjects, this raises the question as to the reasons for the multiple 

existing sources of experimental data which appear to validate the role of 

autoantibodies to IGF-1R in TAO. There is certainly evidence for a role of IGF-1/IGF-

1R in autoimmunity. In a number of animal models, levels of IGF-1 are associated 

with altered disease outcomes.356,364,365 With respect to TAO, sources have 

postulated that IGF-1 may be produced locally in the orbit as a result of prior 

inflammatory processes. It has also been proposed that IGF-1 may be secreted in an 
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autocrine or paracrine manner by orbital tissues, with subsequent increased IGF-1R 

expression on orbital fibroblasts, adipocytes and lymphocytes.232 Another explanation 

is of epitope spreading and a step-wise generation of increasing numbers and 

diversity of autoantigens, progressively resulting in more disease manifestations.357 

 

Even if this hypothesis of local up-regulation of IGF-1/IGF-1R signalling in active TAO 

patients were to be accepted, the type of autoantibodies produced may not be in 

keeping with their necessary potentiation of autoimmune activity. That is, although it 

has been demonstrated that IGF-1R expression is increased on TAO orbital 

fibroblasts and infiltrating lymphocytes,238,240 if the local IGF-1R-Abs involved in TAO 

were of the same nature as those found in TAO serum in the studies of Varewijck et 

al, then they would have an inhibitory rather than stimulatory effect on IGF-1R-related 

signalling. They would therefore be expected to reduce, rather than increase, the 

usual trophic effects of IGF-1.353 It has been hypothesised that those Igs that 

influence the TSH-R could be those activating IGF-1R. However, others have stated 

that because of differences in their molecular structure it is more likely that there are 

two distinct autoantibodies – one to TSH-R and another to IGF-1R.357 

 

There is also always the possibility, as in the case of rheumatoid factor in RA, that at 

least a proportion of IGF-1R-Ab may be IgM rather than IgG in nature.366 For 

example, in patients with autoimmune diseases (e.g. SLE, RA, MS primary biliary 

cirrhosis), the monomeric form of IgM is found at greater levels, possibly related to 

exposure to infectious agents (e.g. Epstein-Barr virus, Human Herpes Virus-6, 

Mycobacteria, Chlamydia Pneumoniae, Escherichia Coli). It is uncertain whether this 

elevation of IgM is a cause or consequence of the autoimmunity in these diseases.367 
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Although IGF-1R-Ab were quantified in the relevant patient sera, the relative activity 

of these antibodies was not determined. In particular, whether the antibodies were 

stimulatory, inhibitory or neutral in nature. Although there were no quantifiable 

differences in IGF-1R-binding antibodies between GD+TAO+, GD+TAO- and HC 

groups, it could be argued that there may be differing proportions of stimulatory or 

inhibitory antibodies, with a preference for stimulatory IGF-1R-Ab in the GD+ groups. 

However, Varewijck et al found that in TAO serum the IGF-1R-Ab they detected had 

a universally inhibitory, rather than stimulatory effect. Again this is in contrast with 

previous studies which found stimulatory effects of GD-IgG. 

 

3.8.4 Recent Developments in TSH-R Antibody Assays 

 

As previously detailed, there are a number of TRAb assays in existence that have 

been investigated in GD and TAO patients.159,160,162 Recently a number of newer 

TRAb assays have been evaluated for their ability to predict the severity (as defined 

by NO SPECS rather than the EUGOGO severity scale) of TAO course in untreated, 

newly-diagnosed (duration of ocular symptoms <6 months) TAO subjects. In 

particular, it has been proposed that these assays are able to discriminate between 

TSAb and TBAb. Jang et al (2013) determined, with two separate assays (a third-

generation TBII assay and a thyroid-stimulating immunoglobulin (TSI) bioassay), 

those patients with higher TRAb at initial measurement were at greater risk of more 

severe TAO at one year.368 This is clinically relevant as those patients with higher 

TRAb may warrant closer follow-up and more aggressive treatment to reduce risks of 

disease progression. This study also demonstrated that a single TRAb measurement 

may provide adequate information to predict TAO course.  



Chapter 3 IGF-1R Autoantibodies in GD and TAO 

128 

 

 

The same group, in a separate study, found a positive correlation between TRAb with 

three assays (two of the same assays as in their previous study as well as a separate 

TBII assay) and TAO clinical activity as defined by CAS. On multivariate regression 

analysis the results of these assays were also significantly correlated with specific 

TAO features such as proptosis (for two of the assays) and proptosis, soft tissue 

involvement and extraocular muscle involvement for one of the assays, based on the 

use of Mc4-CHO cells.369 However, there was no such association between TRAb 

and DON with any of the assays. In a larger group of TAO patients, in whom TSI and 

TBII were measured simultaneously, Jang et al (2014) found that TAO was more 

active and severe in those with greater TSI as compared to greater TBII.370 

 

3.8.5 Future Directions for the Development of IGF-1R-Ab Assays in TAO 

 

Although no differences in IGF-1R-Ab between GD+TAO+, GD+TAO- and HC, or 

between GD+TAO+ patients of different activity and severity were found, my assays 

may still be of utility. In particular, with the possible future use of commercial IGF-1R 

monoclonal antibodies as treatments, in TAO and in other diseases, one may desire 

to measure the serum levels of these therapeutic antibodies and correlate this with 

any possible treatment effect as an outcome measure in clinical trials. With a 

successful IGF-1R-Ab assay now developed it may be possible to convert this to a 

Luminex platform, binding the IGF-1R moiety to a relevant Luminex bead alongside 

other such autoantigens in GD and TAO such as TPO, TG and TSH-R, permitting the 

measurement of each of these in sera in one assay. 
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There was no correlation between IGF-1R-Ab levels as measured with my assay and 

TRAb as measured with an existing commercial ELISA. However, I did not measure 

the actual functional activity of these TRAb and could therefore not distinguish 

between TRAb of stimulatory, inhibitory or neutral function. Studies by Tsui et al 

(2008) and Kumar et al (2012) conclude that TSH-R and IGF-1R signalling are 

closely linked in the TAO orbit.187,258 Whether this represents a true physical 

association is uncertain. It may also be that there is indirect modulation due to 

common downstream signalling cascades. If this were to be the case then this may 

explain why IGF-1R-Ab were not necessarily measured in any of the assays devised 

for use in TAO patients.187,257 

 

It may also have been instructive to have used another cohort of patients in which the 

IGF-1 axis is deranged, or in which IGF-1 may have a role in pathogenesis, such as 

RA. These would have acted as a separate disease control cohort to validate my 

findings in GD and TAO.371 Indeed, an interesting previous observation is that there 

may be a common pathway in GD and RA in that the stimulatory activity of GD-IgG 

may and RA-IgG not be specific to GD and RA, respectively. For example, Pritchard 

et al (2004) demonstrated stimulation of TAO orbital fibroblasts by IgG from RA 

patients and stimulation of RA synovial fibroblasts by IgG from GD patients, further 

showing that this was likely mediated by IGF-1R.372  

 

My assay would appear to be more user-friendly than some of those already 

reported. Varewiijck et al required 48 hours of culture of HEK-293 cells, followed by 

stimulation for 15 minutes at 37oC with increasing amounts of human rIGF-1 (0.06-

1.0 nmol/L) or serum samples. Serum samples were diluted 1 in 10, in keeping with 
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my assays. Varewijck et al used wells coated with monoclonal Ab to IGF-1R (MAD1) 

capture antibody and mainly examined TBII rather than stimulatory TRAb. The 

assays I devised and validated were not as labour-intense and do not require cell 

culture facilities or expertise. 

 

It may be that the subjects recruited do not possess IGF-1R-Ab. It may be, for 

example, that IGF-1R-Ab are only present in high titre in those with early-onset GD, 

those with hyperthyroid GD or those prior to CBZ or PTU treatment. It may be 

necessary, therefore to gain sera from other, alternative subjects with these particular 

clinical characteristics. Against this assertion, a large number of sera from carefully 

assessed GD and TAO patients, representing all of those adhering to inclusion and 

exclusion criteria in two large tertiary referral centres over a two-year period. It would 

have been difficult to have recruited more subjects. 

 

3.9 Conclusion 

 

No difference in IGF-1R-Ab levels could be determined using two distinct, well-

validated assays in GD+TAO+, GD+TAO- and HC subjects. Furthermore, there was 

no association between IGF-1R-Ab and clinical activity or severity of TAO, dysthyroid 

status, duration of GD, PTPN22 (R620W) GD susceptibility polymorphism or 

cigarette smoking. Despite the available evidence for IGF-1R autoimmunity in TAO 

my study is largely in agreement with those of Minich et al (2013) and Varewijck et al 

(2013) in that IGF-1R-Ab cannot be readily detected in sera of GD+TAO+ and 

GD+TAO- patients. 
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4.1 Introduction 

 

4.1.1 T Lymphocytes in TAO 

 

Although the main pathogenic events in TAO appear to be localised to the orbital 

tissues, it is felt likely that any underlying immunologic abnormalities may be 

represented, and therefore detectable, in the peripheral blood.277,280 It has been 

proposed that TAO is, at least partly, a T lymphocyte-mediated disorder, given that 

infiltration of both CD8+ and CD4+ T helper cells into the orbital tissues of TAO 

patients has previously been observed.135,281,282,373 Some studies have found that the 

majority of orbital tissue T cell clones make Th1 cytokines, namely IFN-γ, IL-2 and 

TNF-α, rather than Th2 cytokines such as IL-4, IL-5 or IL-10.283,285 However, other 

studies have shown predominantly Th2 cytokine mRNA.203 Although the Th1/Th2 

paradigm is now outdated, early studies demonstrated both cell-mediated (Th1) and 

humoral (Th2) responses, with Th1 predominating in early disease and Th2 

later.281,288 However, the antigen specificity of these T cells has not yet been fully 

established. Hence, at present, T cells are thought to be recruited to the orbital 

tissues through an apparently non-antigen-specific mechanism. The importance of T 

lymphocytes in the initiation and progression of the ophthalmic manifestations of GD 

has been emphasised by a number of authors, while alterations in the homeostasis 

of T cell phenotype in TAO and other systemic autoimmune diseases have also 

previously been described. 

  

TAO subjects have also been shown to have increased CD3+IGF-1R+ T cells, 

particularly of the CD45RO+ phenotype.240 However, further investigation of relative 
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T cell IGF-1R expression in subjects with TAO as compared to HC, and the possible 

functional and immunological consequences of this require further elucidation. In 

addition, studies into T cell profiles, including alterations in memory status and T 

helper phenotype in peripheral blood, and how these vary with factors such as 

duration of AITD, presence of thyroid dysfunction, TRAb status, cigarette smoking 

and clinical activity scoring in TAO are also necessary. 

 

4.1.2 Significance of T Lymphocyte Memory Phenotype in Health and Disease 

 

As discussed in Chapter 1.21, according to a T lymphocyte differentiation model, 

peripheral CD4+ and CD8+ T lymphocytes can each be divided into four functionally 

distinct memory populations based on their expression of isoforms of the protein 

tyrosine phosphatase receptor, CD45, and the lymphocyte homing marker CCR7, 

with naïve (CD45RO- (or CD45RA+) CCR7+), CM (CD45RO+ (or CD45RA-) 

CCR7+), EM (CD45RO+ (or CD45RA-) CCR7-) and EMRA (CD45RO- (or CD45RA+) 

CCR7-) as defined by flow cytometry.  

 

The CD4+ and CD8+ T cell memory compartments are of a fixed ‘size’, hence if one 

of the memory subtypes is increased in proportion then one or more of the other 

proportions must be reduced. This balance of the T cell memory populations is 

critical in maintaining adequate peripheral tolerance but also effective immune 

function, particularly as each population has differing proliferative, homing and 

effector characteristics.374,375 Memory T cell homeostasis is incompletely 

understood,376 but antigen-specific activation and differentiation of naive lymphocytes 

generates short-lived EM and longer-lived CM T cells.374 CM T cells have more 
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limited effector function but home to secondary lymphoid organs, while EM T cells, 

although having a lesser proliferative capacity, are directed to peripheral tissues and 

are capable of secreting effector cytokines such as IFN-γ and TNF-α, producing 

perforin and having cytotoxic effects.273,377,378 CM T cells may rapidly proliferate and 

gain EM status when stimulated with antigen. EMRA cells have the greatest levels of 

perforin and granzyme, and are the most differentiated.  

 

4.1.3 CD4+ and CD8+ T Cell Subsets in Peripheral Blood in GD and TAO 

 

As described in Chapter 1.22, several groups have found a deviation in the 

distribution of CD4+ and CD8+ T cell memory subsets in the peripheral blood of 

patients with GD and TAO.277,280,379 In particular, it has been proposed that levels of 

thyroid hormones may affect T cell subsets.380 Alteration in the distribution of these T 

cell populations has also been proposed to justify the role of T cells in GD 

autoimmunity.381 

 

Vaidya et al (2005) examined the peripheral blood T cell phenotype of euthyroid 

patients with “moderately severe active TAO” and compared them with HC by flow 

cytometry. Although CD3+ T cells were equivalent between TAO and controls, there 

were increased CD4+ T cells, and a subsequently higher CD4+/CD8+ ratio, in TAO 

as compared to HC. In addition, patients with TAO had a higher proportion of naïve 

(CD4+CD45RA+) T cells and lower memory (CD4+CD45RO+) T cells, although no 

differences in CD8+ cells.277 Another study found increased proportions of 

CD4+CD62L+, CD4+ICAM-1+, CD8+CD62L+ and CD8+ICAM-1+ peripheral blood T 

lymphocytes in TAO as compared to HC. Only the proportion of CD8+CD54+ T cells 
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were higher in TAO than GD patients and CD4+/CD8+ ratio was equivalent between 

TAO, GD and HC groups.382 

 

In contradiction with the findings of Vaidya et al, other groups have determined 

increased CD4+CD28- and CD8+CD28- T cells in TAO as compared with HC. CD28- 

cells were predominantly CD45RO+, suggesting that they were activated or memory 

T cells. Furthermore, GD-derived T cells produced more intracellular IFN-γ than 

those from healthy controls, and the CD4+CD28- and CD8+CD28- T cells in TAO 

patients produced more intracellular IFN-γ than those from GD patients without TAO. 

These findings correlated positively with serum TRAb, suggesting an important role 

of IFN-γ-producing CD28- T cells in the pathogenesis of GD and TAO.383 

 

Xia et al (2006) found that peripheral blood Th1 (as defined by IFN-γ positivity) were 

greater than Th2 (as defined by IL-4 positivity) T cells in 20 TAO subjects as 

compared to 20 each of GD and HC subjects. The Th1/Th2 ratio in TAO patients was 

therefore also higher than in the other groups. The proportion of CD4+ T cells was 

also higher in TAO and GD subjects than HC but CD8+ T cells were lower in TAO 

and GD patients than HC, with a resulting increased CD4+/CD8+ ratio. There was 

also a positive correlation between an increasing percentage of Th1 cells (and the 

Th1/Th2 ratio) with CAS, although not with TRAb titres. The conclusion was that Th1 

cells predominate in TAO, representing a shift in T cell subsets from GD to TAO.384 

 

Correlation between T cell subtypes and immunological measures have also been 

determined. Bossowski et al (2003) found an increased CD4+/CD8+ ratio, CD4+ and 

CD4+CD45RO+ cells with a decrease in CD8+ cells and CD4+CD45RA+ cells in 
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untreated GD patients as compared with HC. There was a positive correlation 

between serum fT4 and CD4+CD45RO+ cells and between TRAb and CD4+ cells 

but negative correlation between TRAb, TPO-Ab and TG-Ab and CD8+ cells.381 The 

elevation in CD4+ T cells, particularly in those with active TAO, has been proposed to 

mediate the autoantibody responses important in TAO.280 

 

However, although T cells have been defined as being either naïve or memory 

subsets by CD45RA and CD45RO, the markers CCR7 or CD62L have not been 

widely used to subclassify these further. Therefore, despite numerous previous 

studies, the CM and EM phenotype of CD4+ and CD8+ T cells in the peripheral blood 

of GD and TAO patients are not precisely delineated. The difficulties related to this 

have been expounded upon by Matteuci et al (2011). This group explained that 

CD4+ or CD8+ cells found to be CD45RA+ might by naïve cells, but could also be 

EMRA cells. Likewise, CD4+ or CD8+ cells found to be CD45RA- might be memory 

cells, but without further subdivision into EM or CM cells, which physiologically are of 

markedly differing function.385 Determination of these phenotypes may therefore 

provide important insights into T cell homeostasis in GD and TAO.  

 

4.2 Aims and Objectives 

 

The aim of this chapter was to definitively characterise CD4+ and CD8+ T cell 

memory populations in GD+TAO+, GD+TAO- patients and age- and sex-matched 

HC, in particular investigating peripheral blood percentages of CD4+ T helper 

subtypes such as Treg and Tfh cells. Furthermore, we wished to determine the range 

of cytokines secreted by these cells and to evaluate their activation status. In each 
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case we aimed to explore any associations of perturbations in T cell homeostasis 

with clinical and immunological measures.  

 

4.3 Methods 

 

4.4 Cell Sorting of CD4+ and CD8+ Memory T Cell Populations 

 

60 ml of peripheral venous blood was collected from HC, and PBMC isolated as 

previously described (Section 2.9.2). at the same time of day. Compensation 

between two colours used in the staining was achieved by staining 5 x 105 cells with 

individual fluorochrome-conjugated antibodies. The cells for the population sort were 

stained with an antibody mix of either anti-CD4 PECy7 or anti-CD8β PECy5, along 

with anti-CD45RO PETR and anti-CCR7 AlexaFluor 488 (FITC channel) in a volume 

of 500 μl. The cells were stained for 20 minutes on ice, after which they were washed 

and filtered through a 30 μm filter (Miltenyi Biotech) and placed into 5 ml round-

bottom polypropylene tubes (Falcon 352063). The cells were sorted on the Mo-Flo 

fluorescence-activated cell sorter (Dako Cytomation), after being gated on forward 

and side scatter profiles to include only live lymphocytes, and on cell surface marker 

combinations to select memory populations of interest. These populations included 

only CD4+ or only CD8β+ cells and were based on expression of CD45RO (or 

CD45RA) and CCR7 as previously discussed (Figure 4.1). This experimental 

protocol is summarised in Appendix 6. 
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Figure 4.1: Identification of T cell memory subsets by flow cytometry. Following identification of 
lymphocytes from their forward and side scatter characteristics, CD4+ and CD8+ T cell memory status 
may be defined based on their expression of CD45RO and CCR7 (A) or CD45RA and CCR7 (B), with 
division into by CD45RO-  (CD45RA+) CCR7+ (Naive), CD45RO+ (CD45RA-) CCR7+ (Central 
Memory, CM), CD45RO+ (CD45RA-) CCR7- (Effector Memory, EM) and CD45RO- (CD45RA+) 
CCR7- (Effector Memory RA, EMRA). 
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4.4.1 Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) CD4+ Memory T 
Cell Proliferation Assay 

 

The sorted CD4+ T cell memory populations were labelled with carboxyfluorescein 

diacetate succinimidyl ester (CFSE, Invitrogen). CFSE is a fluorescent cell staining 

dye used to monitor lymphocyte proliferation due to the progressive halving of CFSE 

fluorescence within daughter cells following each cell division. The cells were 

transferred to a universal tube and washed twice with 10 ml sterile PBS, before being 

resuspended in PBS at 50 µl/106 cells. 2.5 µl of 10M CFSE was added to 5 ml of 

sterile PBS to give a 2 µM solution. This was added at a 1:1 ratio to the cell 

suspension to give a final CFSE concentration of 2.5 µM, and incubated for 10 

minutes at room temperature with periodic shaking. At 10 minutes an equal volume 

of RPMI/10%HIFCS was added. After a further minute the cells were washed with 

PBS once and then with RPMI/10%HIFCS twice. The cells were resuspended in 

RPMI/10%HIFCS at 2x105/ml.  

 

CFSE-labelled PBMC were placed in a 96-well plate at 2x105 per well in 100 µl 

RPMI/10% HIFCS. Cells were stimulated with 50 µl of human T cell activator anti-

CD3/CD28 beads (Caltag/Invitrogen, Paisley, UK) at a bead-to-cell ratio of 1:32 and 

five ten-fold serial dilutions of 50 µl recombinant human IGF-1 (rhIGF-1) from 0.0001 

µg/ml to 1.0 µg/ml in the appropriate wells (as well as “blank” wells containing only 

RPMI/10% HIFCS but no rhIGF-1). These incubated at 37oC in 5% CO2 for 4 days. 

Additional wells containing unstimulated PBMC for compensation purposes were 

allocated.  
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After four days, cells were centrifuged for 4 minutes at 400 g at 4°C, the supernatant 

removed and the 96-well plate gently vortexed. Cells were stained with anti-CD4 PE 

Cy7 surface marker antibody (made up in 50 μl at appropriate dilution) and incubated 

on ice in the dark for 20 minutes. 100 μl of PBS/2% BSA was added to each anti-

CD4 PE Cy7-labelled well prior to further centrifugation and removal of supernatant. 

Cells were then resuspended in 100 μl of PBS/2% BSA and pipetted into FACS tubes 

containing 195 μl of PBS/2% BSA as well as 5 μl of counting beads.  For dead cell 

exclusion, 30 μl Sytox blue dye, a nucleic acid stain that penetrates the compromised 

plasma membranes of dead cells but does not cross normal cell membranes, was 

added at a concentration of 1/800 to the FACS tubes and incubated for 5 to 10 

minutes prior to flow cytometry. The above experimental protocol is summarised in 

Appendix 7. 

 

4.4.2 Phosflow Protocol: Investigation of PI3K and MAPK Signalling in 
Recombinant IGF-1-Stimulated CD4+ and CD8+ T Cells 

 

PBMC were isolated (as previous described) and resuspended at 1x106 cells in 

100 µl RPMI/10% HIFCS per well of a 96-well plate. Additional wells for 

compensation purposes were composed of 20 μl of positive and negative 

compensation beads. PBMC were allowed to rest for 3 hours at 37oC, 5% CO2. After 

this period, cells were treated with appropriate stimuli, depending on the experiment.  

For experiments related to phospho-Akt and phospho-ERK1/2 following cell 

stimulation by IGF-1, either 2.5 µl of recombinant IGF-1 at concentrations from 

0.0001 to 10 µg/ml, 2.5 µl of “blank” (RPMI/10%HIFCS) or PMA at 750 ng/ml as a 

positive control were used.  For experiments related to phospho-Stat5 following cell 



Chapter 4 T Lymphocyte Phenotype in GD and TAO 

141 

 

stimulation by IL-2, either 2.5 μl of IL-2 at 100 U/ml, 2.5 µl of “blank” 

(RPMI/10%HIFCS) or PMA at 750 ng/ml as a positive control were used. In each 

circumstance, cells were incubated in stimulating conditions at 37oC for 20 minutes.   

 

Following this, cells were fixed by adding 100 µl of pre-warmed BD cytofix buffer, 

mixing gently and incubating at 37oC for 10 minutes. Cells were centrifuged for 8 

minutes at 600 g at 4°C, the supernatant removed and the 96-well plate gently 

vortexed   Cells were then permeabilised by adding 50 µl of chilled BD Perm Buffer 

III, mixed gently and incubated on ice for 30 minutes.  Cells were washed twice, each 

time by adding 150 µl of BD stain buffer, centrifuging at 600 g for 8 minutes and 

discarding the supernatant. Cells were stained with surface marker antibodies and 

Phosflow antibodies (made up in 50 μl) and incubated at room temperature wrapped 

in foil for 20 minutes. Following this, 150 μl of BD stain buffer was added to each well 

prior to further centrifugation at 600g for 8 minutes and removal of supernatant. Cells 

were resuspended in 100 μl of BD stain buffer and placed into FACS tubes 

containing 200 μl of BD stain buffer before being run on the flow cytometer. This 

experimental protocol is summarised in Appendix 8. 

 

4.5 Antibody Staining for Flow Cytometry 

 

4.5.1 Antibody Staining of Cell Surface Markers 

 

Depending on the cells being examined (lysed whole blood or PBMC) between 50-

100 μl of cells were placed in to 96-well plates (with a typical count per well of 1x106 

cells). Additional wells for compensation purposes were composed of 20 μl of 
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positive and negative compensation beads. Cells were centrifuged for 4 minutes at 

400 g at 4°C, the supernatant removed and the 96-well plate gently vortexed. Cells 

were stained with surface marker antibodies (made up in 50 μl at appropriate 

dilutions) and incubated on ice in the dark for 20 minutes. 100 μl of PBS/2% BSA 

was added to each well prior to further centrifugation and removal of supernatant. For 

dead cell exclusion, 30 μl Sytox blue dye was added at a concentration of 1/800 to 

the FACS tubes and incubated for 5 to 10 minutes prior to flow cytometry. CD4+ and 

CD8+ T cell memory populations were determined as detailed (Figure 4.2 and 4.3). 

 

4.5.2 Intracellular Cytokine Staining 

 

Where possible 1x106 cells were resuspended in 50 μl of RPMI/10% HIFCS into a 

96-well plate. To stimulate the cells to produce cytokine, a stimulation solution 

containing PMA and Ionomycin (both at a concentration of 500 ng/ml) was added to 

cells for stimulation while RPMI/10% HIFCS was added to any non-stimulated wells. 

To prevent cytokine release, 2 µg/ml of Brefeldin A was added to all the wells, 

including those cells not for stimulation. The wells were made up to 200 μl with 

RPMI/10% HIFCS or stimulation solution and left in the incubator at 37ºC, 5% CO2, 

for 3 hours.  

 

Following this the plate was centrifuged for 4 minutes at 4ºC and 400 g and the 

supernatant discarded.  Surface antibodies were made up to 50 μl in PBS/2%BSA. 

The plate was left on ice in the dark for 15 minutes. The wells were washed with 100 

μl of PBS/2%BSA and centrifuged for 4 minutes at 4ºC and at 400 g. The cells were 

then fixed and permeabilised. The supernatant was removed by flicking the plate and 
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the cells were re-suspended in 50μl of Reaction Buffer A (Caltag/Invitrogen, Paisley, 

UK). The plate was left at room temperature and kept in the dark for 15 minutes. The 

wells were washed with 100μl of PBS/2%BSA and centrifuged. The antibodies for 

intracellular staining were made up to 50 μl using Reaction Buffer B 

(Caltag/Invitrogen, Paisley, UK) added to the wells, and left for 15 minutes in the dark 

at room temperature. The wells were then washed with 100 μl of PBS/2%BSA and 

centrifuged. Once the cells had been re-suspended in 300 μl of PBS/2% BSA they 

were then analysed on the flow cytometer. Compensation beads were used to bind a 

single antibody for fluorescence compensation purposes (as previously described). 

 

4.5.3 Surface and Intracellular Staining Analysis 

 

Flow cytometry was undertaken with a Dako-Cyan ADP High Performance flow 

cytometer (Dako, Colorado). Multi-colour cytometry compensation was performed 

using anti-mouse Ig  negative control compensation beads, individually stained with 

each flurorochrome conjugated-antibody. This circumvents spectral overlap by 

adjusting for false positives from other flurorochromes. Analysis was undertaken with 

Summit 4.3 for Windows (Dako, Colorado 2007). The number of events analysed per 

sample was between 10,000 and 500,000. 

 

Calibration was checked on a daily basis with Flowcheck Fluorospheres (Beckman 

Coulter Inc). Isotype controls were used to determine the level of background non-

specific binding. The level of median fluorescence intensity (MFI) was used to 

distinguish between high and low levels of expression, with MFI being calculated 

by: MFI [Test Antibody] – MFI [Isotype Control]. 
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Figure 4.2: Gating strategy for determining CD4+ and CD8+ memory T cell populations in 
PBMCs of GD+ TAO+, GD+ TAO- and HC subjects.  For T cells the lymphocyte gate of the forward 
and side scatter profile (Panel A) was utilised, with subsequent separation into CD4+ and CD8+ 
populations (Panel B).  Memory populations were then differentiated by CD45RO- CCR7+ (Naive), 
CD45RO+ CCR7+ (Central Memory, CM), CD45RO+ CCR7- (Effector Memory, EM) and CD45RO- 
CCR7- (Effector Memory RA, EMRA) (Panel C). 
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Figure 4.3: Gating strategy for determining CD4+ and CD8+ memory T cell populations in lysed 
whole blood of GD+ TAO+, GD+ TAO- and HC subjects. For T cells the lymphocyte gate of the 
forward and side scatter profile (Panel A) was utilised, with subsequent separation into CD4+ and 
CD8+ populations (Panel B). Memory populations were then differentiated by CD45RA and CCR7 into 
Naïve (CD45RA+ CCR7+), CM (CD45RA- CCR7+), EM CD45RA- CCR7- (Panel C) and for CD8+ 
also an EMRA (CD45RA+ CCR7-) population (Panel C).  
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4.6 Results 

4.6.1 Study Subjects 

 

63 GD (37 GD+TAO+, 26 GD+TAO-) subjects and 27 age- and sex-matched HC 

were identified.  Demographic and clinical indices are summarised in Table 4.1. Of 

the GD+TAO+ subjects, 9 were defined as having clinically active TAO (CAS ≥3).   

 

Table 4.1: Demographic features, clinical measures, thyroid function, TRAb status and PTPN22 
(R620W) genotype for T cell study groups It should be noted that not all of the subjects in each 
group were used for each experimental component undertaken, for example in studies on regulatory T 
cells there were 24 GD+TAO+, 21 GD+TAO- and 27 HC.  However, subjects within each group were 
always age- and sex-matched for each experiment.   
 

 HC 
 

GD+ TAO- GD+ TAO+ 

 
Number 

 
27 

 
26 

 
37 

 

 
Median age in 
years (IQR) 
 

 
45 (28) 

 
43 (16) 

 
51 (20) 

 
Gender (M:F) 
 

 
6 : 19 

 
6 : 20 

 
10 : 27 

 
Smokers 

 
52% 

 
54% 

 
57% 

 

 
GD Duration 
>12 months 
 

 
N/A 

 
81% 

 
92% 

 
CAS≥3 
 

 
N/A 

 
N/A 

 
24% 

 
TAO Severity 
(Mild/Mod/Sev) 
 

 
N/A 

 
N/A 

 
9 : 19 : 9 

 
Thyroid Status 
(Hypo/Eu/Hyper) 
 

 
N/A 

 
8 : 16 : 2 

 
7 : 27 : 3 

 
TRAb Positive 
 

 
5% 

 
54% 

 
57% 

 
Thionamides 

 
N/A 

 

 
71% 

 
57% 



Chapter 4 T Lymphocyte Phenotype in GD and TAO 

147 

 

4.6.2 Peripheral Blood CD4+ and CD8+ T Cell Memory Populations in 
GD+TAO+, GD+TAO- and HC 

 

Median CD4/CD8 ratios (with IQR) were 4.1 (3.4), 3.8 (2.0) and 3.1 (2.2) in the 

GD+TAO+, GD+TAO- and HC groups, respectively, with no statistically significant 

differences (using Kruskal-Wallis test and Dunn’s multiple comparisons). The 

proportion of naive CD4+ T cells were significantly increased in GD+TAO+ and 

GD+TAO- patients, while EM CD4+ T cells were significantly decreased,  compared 

with HC (Figure 4.4, summarised in Table 4.2). There were no significant differences 

between the groups in terms of CM and EMRA CD4+ T cells. There were no 

significant differences between GD+TAO+ and GD+TAO- subjects in any of the 

CD4+ T cell memory phenotypes.  

 

Table 4.2: Median percentages (with interquartile range) for each of the CD4+ T cell memory 
populations in each of the three participant cohorts. Non-parametric analysis was undertaken by 
Kruskal-Wallis test (with Dunn’s post-test). 
 

CD4+ 
 

HC GD+TAO- GD+TAO+ P 

 
Naive 

 
58% (27) 

 

 
66% (27) 

 
66% (19) 

 
0.01 

 
CM 
 

 
19% (14) 

 
20% (20) 

 
15% (8) 

 
0.05 

 
EM 
 

 
16% (14) 

 
8% (6) 

 
10% (8.5) 

 
<0.0001 

 
EMRA 
 

 
6% (3.5) 

 
4% (4) 

 
5% (6) 

 
0.27 
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Figure 4.4: Increased naïve CD4+ T cells and decreased EM populations, in GD+TAO+ and 
GD+TAO- patients compared with HC. Proportions of CD45RO- CCR7+ (Naïve), CD45RO+ CCR7+ 
(Central Memory, CM), CD45RO+ CCR7- (Effector Memory, EM) and CD45RO- CCR7- (Effector 
Memory RA, EMRA) CD4+ T cells were defined. The proportion of naive CD4+ T cells were increased 
in GD+TAO+ and GD+TAO- patients compared with HC, while EM CD4+ T cells were also increased 
in GD+TAO+ and GD+TAO- subjects. There were no significant differences between GD+TAO+ and 
GD+TAO- subjects. Non-parametric analysis was undertaken with Kruskal-Wallis test (with Dunn’s 
multiple comparison). (Key: NS: Not significant; *p=0.01 to 0.05; **p=0.001 to 0.01; *** p<0.001). 
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Similarly, naïve CD8+ T cells were significantly increased in GD+TAO+ and 

GD+TAO- patients, while EMRA CD8+ T cells were significantly reduced, compared 

with HC. For EM CD8+ T cells, there was a significant decrease, as compared to HC, 

only in the GD+TAO+ group. There were no significant differences between 

GD+TAO+ and GD+TAO- subjects in any of the CD8+ T cell memory phenotypes 

(Figure 4.5, summarised in Table 4.3).  

 

Table 4.3: Median percentages (with interquartile range) for each of the CD8+ T cell memory 
populations in each of the three participant cohorts. Non-parametric analysis was undertaken by 
Kruskal-Wallis test (with Dunn’s post-test). 
 

CD8+ 
 

HC GD+TAO- GD+TAO+ P 

 
Naive 

 
48% (37) 

 

 
64% (31) 

 
70% (35) 

 
0.004 

 
CM 
 

 
3% (3.5) 

 
3% (4) 

 
3% (6) 

 
0.9 

 
EM 
 

 
18% (14) 

 
15% (12) 

 
10% (11.5) 

 
0.02 

 
EMRA 
 

 
26% (34) 

 
16% (15) 

 
15% (17) 

 
0.009 

 

 

When the CD4+ and CD8+ T cell memory populations, which were determined to be 

significantly altered in GD patients (compared with HC), were analysed further in a 

combined group of GD+TAO+ and GD+TAO- subjects, there were no associations 

between proportions of the abnormal CD4+ and CD8+ memory populations and a 

range of clinical measures, including TAO clinical activity and severity. Indeed, the 

only factor determined to have significant association with the skewed populations 

was age (Table 4.4). 
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Figure 4.5: Increased naïve CD8+ T cells and decreased EM populations, in GD+TAO+ patients, 
with decreased EMRA in GD+TAO+ and GD+TAO- patients compared with HC. Proportions of 
CD45RO- CCR7+ (Naïve), CD45RO+ CCR7+ (Central Memory, CM), CD45RO+ CCR7- (Effector 
Memory, EM) and CD45RO- CCR7- (Effector Memory RA, EMRA) CD8+ T cells were defined. The 
proportion of naive CD8+ T cells were increased and EMRA CD8+ T cells were decreased in 
GD+TAO+ and GD+TAO- patients compared with HC. EM CD8+ T cells were significantly reduced in 
only GD+TAO+ subjects compared to HC. There were no significant differences between GD+TAO+ 
and GD+TAO- subjects. Non-parametric analysis was undertaken with Kruskal-Wallis test (with 
Dunn’s multiple comparison). (Key: NS: Not significant; *p=0.01 to 0.05; **p=0.001 to 0.01). 

 



Chapter 4 T Lymphocyte Phenotype in GD and TAO 

151 

 

Table 4.4: Summary of factors assessed for contribution to elevations of CD4+ and CD8+ Naïve 
T cell populations and reduction in CD4+ and CD8+ EM (and CD8+ EMRA) populations in GD 
(GD+TAO+ and GD+TAO- combined) and HC subjects. Non-parametric analysis was undertaken 
either by Mann-Whitney test (for two groups) Kruskal-Wallis test (with Dunn’s post-test) (for more than 
two groups). 
 

 
 

CD4+ Naive CD4+ EM CD8+ Naive CD8+ EM CD8+ EMRA 

 
Age 

 
* 

≤40 years: 
71% (30) 

>40 years: 
63% (33) 

 

 
** 

≤40 years: 
6.5% (4.5) 
>40 years: 
11% (8.4) 

 

 
*** 

≤40 years:  
80% (16) 

>40 years:  
56% (29) 

 

 
* 

≤40 years:  
8.4% (8.5) 
>40 years:  
15% (9.4) 

 

 
** 

≤40 years:  
10% (8.9) 

>40 years:  
21% (18) 

 

 
CAS 
 

 
NS 

 
NS 

 
NS 

 
NS 

 
NS 

 
TAO Severity 
 

 
NS 

 
NS 

 
NS 

 
NS 

 
NS 

 
Smoking 
 

 
NS 

 
NS 

 
NS 

 
NS 

 
NS 

 
GD Duration 
 

 
NS 

 
NS 

 
NS 

 
NS 

 
NS 

 
Thyroid 
Status 
 

 
NS 

 
NS 

 
NS 

 
NS 

 
NS 

 
TRAb Status 
 

 
NS 

 
NS 

 
NS 

 
NS 

 
NS 

 
PTPN22 
Genotype 
 

 
NS 

 
NS 

 
NS 

 
NS 

 
NS 

 

4.6.3 Analysis of cytokine production from peripheral blood T cells in GD+ 
TAO+, GD+ TAO- and HC 

 

We also determined the cytokines produced by PMA- and ionomycin-stimulated 

CD4+ and CD8+ T cells in the three study groups. IFN-γ (representative of Th1 

cells), IL-5 (representative of Th2 cells), IL-17 (representative of IL-17-producing 

Th17 CD4+ T cells) and IL-21 (representative of Tfh cells) were chosen for analysis, 

with percentage cytokine secretion determined as shown in Figure 4.6.  
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Figure 4.6: Gating strategy for determining cytokine secretion by CD4+ and CD8+ CD45RO+ 
and CD45RO- T cell populations in PBMCs of GD+ TAO+, GD+ TAO- and HC subjects. PMA- and 
ionomycin-stimulated cytokine secretion of CD4+ and CD8+ T cells. For T cells the lymphocyte gate of 
the forward and side scatter profile, as previously described, was utilised. There was subsequent 
separation into CD45RO+ and CD45RO- populations for IFN-γ, IL-17, IL-5 and IL-21.  
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Interestingly, CD4+CD45RO+ T cells from GD+TAO+ produced significantly less 

IFN-γ than HC, while GD+TAO- produced less IL-17 (Figure 4.7, summarised in 

Table 4.5). There were no significant differences in IL-5 or IL-21 produced by CD4+ 

T cells of any of the groups. In CD8+CD45RO+ T cells, the only abnormality noted 

was that both GD+TAO+ and GD+TAO- subjects produced less PMA- and 

ionomycin-stimulated IFN-γ than HC (Figure 4.8, summarised in Table 4.6).  

 

Table 4.5: Median percentages (with interquartile range) of a range of intracellular cytokines 
detected for PMA- and ionomycin-stimulated CD4+ T cells in each of the three participant cohorts. 
Non-parametric analysis was undertaken by Kruskal-Wallis test (with Dunn’s post-test). 
 

CD4+ 
 

HC GD+TAO- GD+TAO+ P 

 
IFN-γ 

 
9.6% (6.8) 

 

 
5.3% (6.8) 

 
4.8% (4.2) 

 
0.006 

 
IL17 
 

 
0.6% (0.6) 

 
0.3% (0.4) 

 
0.4% (0.4) 

 
0.003 

 
IL-5 
 

 
0.3% (0.4) 

 
0.2% (0.3) 

 
0.3% (0.4) 

 
0.4 

 
IL-21 
 

 
0.3% (0.4) 

 
0.3% (0.3) 

 
0.4% (0.7) 

 
0.12 

 
 
 
Table 4.6: Median percentages (with interquartile range) of a range of intracellular cytokines 
detected for PMA- and ionomycin-stimulated CD4+ T cells in each of the three participant cohorts. 
Non-parametric analysis was undertaken by Kruskal-Wallis test (with Dunn’s post-test). 
 

CD8+ 
 

HC GD+TAO- GD+TAO+ P 

 
IFN-γ 

 
11% (11) 

 

 
9.6% (9) 

 
6.3% (8) 

 
0.01 

 
IL17 
 

 
0.1% (0.4) 

 
0.3% (0.2) 

 
0.2% (0.3) 

 
0.4 

 
IL-5 
 

 
0.2% (0.4) 

 
0.3% (0.5) 

 
0.5% (0.5) 

 
0.09 

 
IL-21 
 

 
0.1% (0.2) 

 
0.1% (0.3) 

 
0.2% (0.2) 

 
0.7 
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Figure 4.7: Reduced cytokine production by CD4+ T cells in GD+TAO+ and GD+ TAO- 
compared with HC subjects. Reduced PMA-ionomycin-stimulated IFN-γ production by CD4+ T cells 
from GD+TAO+, and reduced IL-17 production by GD+TAO+, as compared with HC. Non-parametric 
analysis was undertaken with Kruskal-Wallis test (with Dunn’s multiple comparison). (Key: NS: Not 
significant; **p=0.001 to 0.01).  
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Figure 4.8: Reduced cytokine production by CD8+ T cells in GD+TAO+ and GD+ TAO- 
compared with HC subjects. Reduced PMA-ionomycin-stimulated IFN-γ production by CD8+ T cells 
from GD+TAO+ and GD+TAO- subjects as compared with HC. Non-parametric analysis was 
undertaken with Kruskal-Wallis test (with Dunn’s multiple comparison). (Key: NS: Not significant; 
*p=0.01 to 0.05).  
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Again, when IFN-γ production by CD4+ and CD8+ T cells in GD (GD+TAO+ and 

GD+TAO- combined) were analysed further there were no associations with a range 

of clinical measures, including TAO clinical activity and severity. Once again, the only 

factor determined to have significant association with the IFN-γ production by CD8+, 

although not CD4+, T cells was age (Table 4.7). 

 

Table 4.7: Summary of factors assessed for contribution to CD4+ and CD8+ T cell cytokine 
production in GD (GD+TAO+ and GD+TAO- combined) and HC subjects. Non-parametric analysis 
was undertaken either by Mann-Whitney test (for two groups) Kruskal-Wallis test (with Dunn’s post-
test) (for more than two groups). 
 

 
 

CD4+ IFN-γ CD8+ IFN-γ 

 
Age 

 
NS 

 
** 

≤40 years: 
8.2% (5.5) 
>40 years: 
15% (14) 

 

 
CAS 
 

 
NS 

 
NS 

 
TAO 
Severity 
 

 
NS 

 
NS 

 
Smoking 
 

 
NS 

 
NS 

 
GD Duration 
 

 
NS 

 
NS 

 
Thyroid 
Status 
 

 
NS 

 
NS 

 
TRAb Status 
 

 
NS 

 
NS 

 
PTPN22 
Genotype 
 

 
NS 

 
NS 

 

 



Chapter 4 T Lymphocyte Phenotype in GD and TAO 

157 

 

4.6.4 CD4+CD25HighCD127Low Treg in GD+ TAO+, GD+ TAO- and HC 

 

CD4+CD25HighCD127Low regulatory T cells were characterised in accordance with 

Figure 4.9.  The proportion of CD25HighCD127Low cells as a proportion of total CD4+ 

cells was determined for each of the study groups. There was no statistically 

significant difference in the percentage of these cells in GD+TAO+ and GD+TAO- 

cohorts, as compared with HC. Median percentage of CD4+CD25HighCD127Low T 

cells (IQR) in GD+TAO+, GD+TAO- and HC subjects were 7.2% (3.5), 6.1% (4.8) 

and 6.8% (3.5), respectively (Figure 4.10). 

 

4.6.5 CD4+CXCR5+ T Follicular Helper Cells and IL-21 in GD+ TAO+, GD+ TAO- 
and HC Subjects 

 

Although there had been no increase in IL-21-producing CD4+ T cells on PMA and 

ionomycin stimulation (Figure 4.7, Table 4.5), we evaluated the peripheral blood 

percentage of CD4+CXCR5+ T follicular helper cells in the three study groups. 

Median percentage of CD4+CXCR5+ T cells (IQR) in GD+TAO+, GD+TAO- and HC 

subjects were 11% (4), 11% (3.4) and 12% (4), respectively (Figure 4.11). There 

were no significant differences between the groups. Similarly, evaluating serum IL-21 

levels between GD and HC subjects determined no differences, and there was no 

association between serum IL-21 levels and any GD or TAO clinical factors (Figures 

4.12 and 4.13). 
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Figure 4.9: Gating strategy used to determine CD4+ CD25
High

 CD127
Low

 T cells, representative of 
regulatory T cells (Treg), in PBMCs of GD+TAO+, GD+TAO- and healthy subjects. The lymphocyte 
gate of the forward scatter (FS) and side scatter (SS) profile (A) was utilised, with subsequent gating 

on the CD4+ population (B). CD25
High

CD127
Low

 T cells were then gated on as indicated (C).  
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Figure 4.10: No significant difference in CD4+CD25
High

CD127
Low

 regulatory T cells as a 
proportion of total CD4+ T cells in PBMCs of 34 GD+TAO+, 21 GD+TAO- and 27 age- and sex-

matched healthy control (HC) subjects. Median percentage of CD4+ CD25
High

 CD127
Low

 T cells 
indicated for each of the study groups of interest. Non-parametric analysis was undertaken with 
Kruskal-Wallis test (with Dunn’s post hoc test) (NS, Not significant). 
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Figure 4.11: Representative flow cytometry plots for CD4+ CXCR5+ T follicular helper cells. 
Proportion of CXCR5+ CD4+ T lymphocytes determined from T cell gate on forward and side scatter 
profiles and CD3+CD4+ T cells (A). Proportion of CXCR5+ cells of CD4+ T cells in GD+TAO+, 
GD+TAO- and HC subjects. 34 GD+TAO+, 21 GD+TAO- and 27 HC subjects (B). 
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Figure 4.12: Serum IL-21 levels in GD+TAO+, GD+TAO- and HC subjects. IL-21 levels determined 
by ELISA for 85 GD+TAO+, 63 GD+TAO- and 72 HC subjects using commercial IL-21 ELISA. Median 
IL-21 levels in these groups were 48pg/ml, 66 pg/ml and 55 pg/ml, respectively. 
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Figure 4.13: Relationship between IL-21 levels and clinical, immunological and genetic factors 
in GD+TAO+ subjects. No statistically significant differences were noted in age (A), cigarette 
smoking status (B), TAO clinical activity score (C), EUGOGO severity grade (D), thyroid status (E) or 
duration of GD (F). Non-parametric analysis was undertaken with Mann-Whitney U test (for two 
groups) or Kruskal-Wallis test (with Dunn’s multiple comparison) for multiple groups. (NS, Not 
significant). 
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4.6.6 Early and Late T Cell Activation Marker Expression in GD+ TAO+, GD+ 
TAO- and HC Subjects  

 

Early (CD69) and late (CD71, CD154) T cell activation marker expression by CD4+ 

and CD8+ T cells were measured in all three cohorts of interest (Figure 4.14).  

Figures 4.15 A & B show that there was no statistically significant difference in the 

expression of any of these markers in either CD4+ or CD8+ T cells between 

GD+TAO+, GD+TAO- and HC subjects. There was also no correlation between 

expression of early and late T cell activation markers by CD4+ and CD8+ T cells and 

TAO clinical activity or severity. 
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Figure 4.14: Representative flow cytometry plots for CD4+ and CD8+ T lymphocyte activation 
status. CD3+CD4+ and CD3+CD8+ T cells divided into naïve (CD45RO-) and memory (CD45RO+) 
and investigated for early (CD69) and late (CD71, CD154) activation markers in PBMCs.  
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Figure 4.15: Early and late activation markers on CD4+ (A) and CD8+ (B) T cells in GD+TAO+, 
GD+TAO- and HC. Non-parametric analysis was undertaken with Kruskal-Wallis test (with Dunn’s 
multiple comparison). (Key: NS: Not significant).  
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4.6.7 IGF-1R Expression on CD4+ and CD8+ T Cell Memory Populations by 
GD+ TAO+, GD+ TAO- and HC Subjects 

 

CD4+ and CD8+ T cell memory subtypes for measurement of IGF-1R expression 

were defined as described and illustrated in Figure 4.3. Figures 4.16 A & B 

demonstrate IGF-1R fluorescence patterns distinct from those of an isotype control in 

each of the naïve and memory populations in both CD4+ and CD8+ cells. To 

reiterate, ΔMFI was defined as: MFI [Test Antibody] – MFI [Isotype Control]. IGF-1R 

expression was higher on CD4+ than CD8+ T cell memory populations.   

 

There were no statistically significant differences in IGF-1R expression in any of the 

CD4+ or CD8+ memory populations in GD+TAO+ or GD+TAO- subjects as 

compared with HC (Figures 4.17 and 4.18, summarised in Tables 4.8 and 4.9). 

There were no associations between levels of IGF-1R expression on CD4+ and 

CD8+ memory populations and TAO clinical activity. 

 

Validation of the experimental techniques with two thyroid cancer cell lines (K1 and 

TPC1), determined that it was possible to detect IGF-1R expression on these cell 

types with the IGF-1R monoclonal antibody and isotype control used in all 

experiments (Appendix 9) 

 

 

 

 

 

 



Chapter 4 T Lymphocyte Phenotype in GD and TAO 

167 

 

 
 
 
 
Table 4.8: Summary of ΔMFI for IGF-1R expression on CD4+ T cell memory populations. Non-
parametric analysis was undertaken with Kruskal-Wallis test (with Dunn’s post-test). 
 

CD4+ 
 

HC GD+TAO- GD+TAO+ P 

 
Naive 

 
8.5 (5.2) 

 

 
7.2 (6.2) 

 
11 (5.5) 

 
0.09 

 
CM 
 

 
3.9 (1.6) 

 
1.6 (3.0) 

 
3.2 (3.3) 

 
0.15 

 
EM 
 

 
2.2 (1.4) 

 
2.5 (2.2) 

 
3.3 (3.1) 

 
0.27 

 

 

 

 

 

Table 4.9: Summary of ΔMFI for IGF-1R expression on CD8+ T cell memory populations. Non-
parametric analysis was undertaken with Kruskal-Wallis test (with Dunn’s post-test). 
 

CD8+ 
 

HC GD+TAO- GD+TAO+ P 

 
Naive 

 
6.0 (2.0) 

 

 
4.1 (6.1) 

 
6.4 (2.9) 

 
0.13 

 
CM 
 

 
2.4 (1.5) 

 
2.7 (4.0) 

 
3.5 (4.3) 

 
0.25 

 
EM 
 

 
2.1 (1.8) 

 
2.5 (2.2) 

 
3.3 (3.1) 

 
0.50 

 
EMRA 
 

 
2.0 (1.7) 

 
2.3 (2.8) 

 
3.0 (3.9) 

 
0.3 
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Figure 4.16: Representative plots for IGF-1R expression on different naïve and memory T cell 
populations of CD4+ (A) and CD8+ (B) T cells (black, hatched curves) from lysed whole blood of 
TAO and HC subjects compared with isotype control (solid grey curves).  Example shown is for HC 
subject. For each population ΔMFI was calculated as MFI [IGF-1R] – MFI [Isotype Control]. 
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Figure 4.17: No difference in IGF-1R MFI for CD4+ T cell memory populations in lysed whole 
blood of GD+TAO+, GD+TAO- as compared with HC subjects, comparing naïve, CM and EM 
CD4+ cells. No data for CD4+ EMRA cells is presented as this population was too small to permit 
analysis. Non-parametric analysis was undertaken with Kruskal-Wallis test (with Dunn’s multiple 
comparison). (Key: NS: Not significant).  
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Figure 4.18: No difference in IGF-1R MFI for CD8+ T cell memory populations in lysed whole 
blood of GD+TAO+, GD+TAO- as compared with HC subjects, comparing naïve, CM, EM and 
EMRA CD8+ cells. Non-parametric analysis was undertaken with Kruskal-Wallis test (with Dunn’s 
multiple comparison). (Key: NS: Not significant).  
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4.6.8 Effect of Recombinant IGF-1 on T Cell IGF-1R Signalling Pathways and 
IGF-1R-Mediated Proliferation 

 

4.6.9 IGF-1-Stimulated Phospho-Akt and Phospho-ERK1/2 from T Cells 

 

A minimal effect of rhIGF-1 was noted for Phospho-Akt and no effect was noted for 

Phospho-ERK1/2 (Figures 4.19 and 4.20) in stimulating IGF-1R in PBMC from HC. 

To validate this we performed analogous experiments and noted no effect when 

GD+TAO+, GD+TAO- or HC sera were used, either in PBMC or in a thyroid cancer 

cell line (K1 and TPC1) with established expression of TSH-R and IGF-1R.386 It is 

interesting to observe that, at least for Phospho-Akt, the level of expression 

progressively increased with IGF-1 concentration to a maximum at 0.1 μg/ml and 

then diminished at the 1.0 μg/ml and 10 μg/ml IGF-1 concentrations.  

 

4.6.10 IGF-1-Stimulated T Cell Proliferation 

 

When CD4+ T cells were sorted into their constituent memory populations (naïve, 

CM and EM), utilising the anti-CD3/CD28 bead-to-cell ratio of 1:32 for all wells, and 

maintaining the range of IGF-1 concentrations, we noted no definite increase in the 

proliferation of any of the CD4+ T cell memory populations, as measured by CFSE 

proliferation (explained in Section 4.4.1) and corrected for by the number of counting 

beads, over the range of concentrations of IGF-1 utilised (Figures 4.21 & 4.22). 
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Figure 4.19: Increased Phospho-Akt expression, predominantly in peripheral blood CD8+ 

CD45RO- T cells, with optimal stimulating concentration of recombinant IGF-1 of 0.1g/ml (Healthy 
Control). CD4+ and CD8+ T cells were identified as previously described and either left unstimulated 
(Panel A) or stimulated by a range of IGF-1 concentrations (Panel B).  Phospho-Akt expression was 
defined by Phospho-Akt MFI (Panel C) or by percentage of Phospho-Akt positive cells (Panel D). 
Representative figure of n=3. 
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Figure 4.20: No change in Phospho-ERK1/2 expression by peripheral blood CD4+ or CD8+ T 
cells when stimulated with a range of concentrations of recombinant human IGF-1 (Healthy Control). 
CD4+ and CD8+ T cells were identified as previously described and either left unstimulated (Panel A) 
or stimulated by a range of IGF-1 concentrations (Panel B).  Phospho-ERK1/2 expression was then 
defined by Phospho-ERK1/2 MFI (Panel C) or by percentage of Phospho-ERK1/2 positive cells (Panel 
D). Representative figure of n=3. 
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Figure 4.21: CFSE proliferation plots for CD4+ T cells sorted into their memory populations. In 
all cases, the purity of the sorted T cell memory populations was >97%. Cells were cultured for 4 days 
in the presence of CD3/CD28 beads at a bead-to-cell ratio of 1:32 and a range of rIGF-1 
concentrations (0 – 1 µg/ml). 
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Figure 4.22: No observed effect of recombinant IGF-1 in differentially mediating the 
proliferation of CD4+ memory T cell populations in the presence of CD3/CD28 beads at a bead-to-
cell ratio of 1:32 and a range of rIGF-1 concentrations (0 – 1 µg/ml) after a 4 day culture. Figure 4.22 
represents the outcome of the experiment represented Figure 4.21, with the total number of cells 
determined by an adjustment for the number of counting beads in each sample. Representative 
results of two separate experiments.  
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4.7 Discussion 

 

Some of the previous studies in GD and TAO, which have aimed to evaluate T 

lymphocyte memory status, have not divided T cells into their four memory 

phenotypes. My study is novel in that previous work has largely distinguished CD4+ 

and CD8+ T cells as memory or naïve on the basis of CD45RA or CD45RO alone. 

This is an oversimplification. We went a step further, utilising CCR7 to separate T 

cells into naive, EM, CM and EMRA populations. We also further differentiated GD 

patients into GD+TAO+ and GD+TAO- groups. Finally, we correlated T cell memory 

phenotype with a range of disease parameters. 

 

4.7.1 Theories on Perturbation of T Cell Memory Populations in Disease States 

 

This study determined that, while the peripheral blood CD4+/CD8+ ratio was 

unchanged, CD4+ and CD8+ T lymphocyte memory profiles, as defined by CD45RO 

and CCR7, are skewed in patients with GD and TAO. This observation was noted 

both from intracellular cytokine staining studies in PBMC and from IGF-1R 

expression data performed on lysed whole blood of a distinct cohort of GD+TAO+ 

and GD+TAO- patients and HC, at different times. Specifically, we observed a 

reduction in EM CD4+ and CD8+ T cells and a concomitant elevation of naïve T cells 

in GD+TAO+ and GD+TAO- subjects. Separate components of the results are 

complementary in that the reduced proportions of EM T lymphocytes are 

appropriately reflected in reduced stimulated cytokine production by GD+TAO+ and 

GD+TAO- subjects as compared to HC, even though no change in activation markers 

(CD69, CD71 and CD154) for either CD4+ or CD8+ T cells was observed. Whether 
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there are any changes in the in vivo functioning of the CD4+ and CD8+ T cell 

populations was not determined by this study. 

 

It is interesting that this perturbation in T cell memory subtype proportions is “shared” 

between GD and TAO, with no increased derangement in those patients with 

differing thyroid status, cigarette smoking, longer duration or more active orbital 

inflammatory disease. The mechanism for the aberration of T cell phenotype is 

uncertain. If one accepts the model of T memory cell differentiation proposed by 

Sallusto et al (1999),273 my findings suggest that there is a delay in the differentiation 

of CD4+ and CD8+ naive T cells to more mature memory status. This may also 

reflect a compensatory mechanism whereby new T cells are being produced to 

replace EM cells migrating to, and being sequestered in, sites of inflammation such 

as the thyroid or orbit. 

 

This alteration in peripheral blood T cell homeostasis in GD and TAO is in keeping 

with other autoimmune and inflammatory diseases, where a range of different 

changes in CD4 and CD8 T cell memory phenotypes have been observed. An 

equilibrium of both CD4+ and CD8+ memory T cells is constantly taking place, with 

consumption of T cells matched by influx of new T cells from the thymus. This is 

especially so in inflammatory and autoimmune conditions because of higher-than-

usual requirements for lymphocyte turnover. In particular, EM T cells are consumed 

in inflammatory processes, with antigenic responses resulting in activation-induced 

apoptosis, although there may also be an effect of thionamide or immunosuppressant 

drugs.377 Again, this could be what we are observing in TAO – an increased turnover 
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of EM cells with a compensatory increase in CD4+ and CD8+ T cells of the naïve 

phenotype.  

 

Alternatively, this may be representative of the effects of putative IGF-1R-Ab on T 

cells. These data demonstrate differential expression of IGF-1R on CD4+ and CD8+ 

T cells, with highest levels on naive cells and progressive reduction in expression 

from CM to EM to EMRA. Given the well-documented role of the IGF-1/IGF-1R axis 

in promoting T cell proliferation and reducing T cell apoptosis,240 it may be attractive 

to propose that the data demonstrating a progressive reduction in IGF-1R expression 

as T cells differentiate from naïve to CM to EM may explain why there is an alteration 

in GD+ TAO+ and GD+ TAO- subjects. It could be that IGF-1 or IGF-1R-Ab are 

acting differentially on T cell memory subsets, preferentially expanding the naive T 

cell pool over other subsets, through increased proliferation or preferential survival, 

or both. However, one must consider that, as has been suggested, the differentiation 

of memory T cells may not be linear at all.387,388 In addition, as described in Chapter 

3, and by other authors, putative serum IGF-1R-Ab have not been found to be 

elevated in GD+TAO+ or GD+TAO- subjects as compared to HC,232,353 and serum 

IGF-1 levels are also equivalent in these groups.356  

 

To investigate further whether patient medications were a significant influence we 

could have included another group of subjects without autoimmune thyroid disease 

but who were still hyperthyroid and required similar medications. For example, those 

with hyperthyroidism due to toxic multinodular goitre or amiodarone-induced 

thyrotoxicosis. These patients are also on CBZ or PTU, but do not have the 

underlying autoimmunity of those with GD or TAO. 
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4.7.2 T Cell Memory Subsets in Systemic Autoimmune Disease 

 

While this study recognised no change in CD4+/CD8+ ratio between study groups, 

this is in contrast to other research groups in TAO.277,384,389 A wide array of previous 

similar studies in other autoimmune and inflammatory human diseases have also 

noted alterations in T cell memory populations, although these are often 

contradictory. There have been various hypotheses as to why such dysregulation 

occurs, with theories ranging from deranged T cell homeostasis, altered T cell 

activation and thymic involution.390-392  

 

Reduced CD4+CD45RA+, but not CD8+CD45RA+, T cells have been found in 

peripheral blood in MS.393 Increased CD4+CD45RO+ cells have been noted in 

peripheral blood in primary biliary cirrhosis.394 Increased CD45RA and CCR7 

expression on CD8+ T cells have been noted in recent-onset type 1 diabetic 

children.395 Additionally, in RA it has been found that EM (CD45RA-CD62L-) CD8+ T 

cells were significantly decreased, whereas CM (CD45RA-CD62L+) CD8+ T cells 

were increased, as compared with controls. There were no such differences in naïve 

and EMRA CD8+ T cells. The CM CD4+ T cell subpopulation was increased in RA 

patients, whereas the naive and EM phenotype of CD4+ T cells did not differ. In the 

same study, patients with SLE displayed no change in the distribution of naïve or 

memory CD4+ or CD8+ T cells.377  

 

In RA, increased proportions of CD45RO+ peripheral blood T cells were observed in 

RA patients with higher IgM rheumatoid factor titres,366 in keeping with other studies 

in SLE and MS which found reduced CD4+CD45RA+ T cells.396,397 Studies in juvenile 
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systemic sclerosis and type 1 diabetes mellitus found increased EMRA CD4+ cells, 

while naive and CM cells were reduced.385,398 Likewise, there was an accumulation of 

these terminally differentiated memory T cells in SLE,399 and an increase in the ratio 

of CD8+ EMRA cells in RA, which previous groups had labelled “false naïve” CD4+ 

and CD8+ cells, correlating with duration of disease.374,400 This latter point was 

proposed to be representative of the effect of chronic antigen stimulation of T cell 

memory phenotypes.374 In contrast with the findings of Fekete et al (2007), other 

studies have found a reduction in EMRA CD8+ T cells and increase in CM CD8+ 

cells in RA. There was also an increase in CM CD4+ T cells in RA patients as 

compared with controls. There was no such difference in any CD4+ or CD8+ T cell 

memory population in SLE.377  

 

In type I diabetes mellitus, another T cell mediated organ-specific autoimmune 

disease, Matteucci et al (2011) found that intermediate and long-term glycaemic 

control affected T cell memory profile, noting negative correlation with CM and naive 

cells, and positive correlation with EMRA cells.385 In contrast, proportions of 

CD45RA+CD4+ cells, and tendency to CD45RA+CD8+ cells T cells were lower in 

paediatric type I diabetes mellitus patients, and decreased further with increased 

age.401 In sarcoidosis a subgroup with good prognosis disease had reduced 

expression of Th1 cytokines and also FoxP3+ cells in bronchoalveolar lavage (BAL) 

fluid, the inflammatory site in sarcoidosis.276  

 

Wikén et al (2011) established that the most common T cell subset in BAL were EM 

cells (CD45RO+CD27-) followed by CM cells (CD45RO+CD27+), with the opposite 

being found in peripheral blood.276 As already stated, this could be the same situation 
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in GD and TAO. That is, the EM cells are reduced in peripheral blood as they have 

been preferentially trafficked to the primary site of inflammation, the orbital tissues. 

This may be an erroneous view, given that EM T cells were reduced in both GD and 

TAO in my studies. However, this may once again be representative of the previous 

finding of orbital manifestations (representative of TAO) being seen on orbital 

imaging even in GD patients without clinical signs of TAO.25  

 

4.7.3 T Lymphocyte Memory Phenotype and Ageing 

 

It was crucial to ensure that the three groups of study subjects were appropriately 

age-matched. It is known that the proportion of memory T lymphocytes (although not 

necessarily with any alteration in the ratio of CM to EM cells) increases with age, at 

the expense of naïve cells.374,402 This has been demonstrated in both CD4+ and 

CD8+ populations, despite no change in total numbers of both types of T cell with 

increasing age,403 even though other studies have recognised thymic involution in the 

elderly.404 Paradoxically, ageing is associated with increased IFN-γ production.405 

With respect to CD8+ T cells this is felt to be due to accumulation of EMRA cells.406  

 

Generally, there is an increase in the differentiation state of T cells with age. Hong et 

al (2004) demonstrated that elderly subjects (>65 years) had a decreased frequency 

of naïve and increased frequency of EM and EMRA CD8+ T cells compared to young 

(≤40 years). Interestingly, the frequency of CM cells was equivalent.407 However, in 

these groups, the proportion of naïve CD8+ T cells was 9.5% in the elderly and 

46.4% in the young, while EM CD8+ T cells was 28.2% in the elderly and 51.3% in 

the young, much different to the findings my groups. Understandably and predictably 
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there was a strong correlation between the proportions of naïve and EM CD8+ cells, 

with the implication being that there are homeostatic mechanisms in place to balance 

the total T cell pool.407 Groups have hypothesised that an increase in EM cells with 

age is a compensatory mechanism for a decrease in naïve T cells. Another 

hypothesis is that prolonged or repeated exposure to antigen with age results in a 

loss of naïve cells, but this would be opposite to my findings in TAO patients. Certain 

cytokines such as IL-7 and IL-15 are known to influence T cell memory status. If one 

of these cytokines were affected in GD or TAO then that may result in skewing of T 

cell phenotype.408 

 

4.7.4 IGF-1R Expression on T Cell Memory Subtypes 

 

We have demonstrated no significant difference in IGF-1R expression on any of the 

peripheral blood CD4+ or CD8+ T cell memory subsets, as measured by flow 

cytometry, between GD+TAO+, GD+TAO- and HC. This data is in contradiction with 

that of Douglas et al (2007) who documented that T cells from peripheral blood and 

orbital tissue in patients with GD are skewed toward the CD3+IGF-1R+ phenotype, 

particularly in the CD45RO+ memory T cell population, with CD45RA+IGF-1R+ naïve 

T cells appearing similar between GD and controls.240 

 

My data demonstrates generally low expression of IGF-1R on all T cell memory 

subsets, both CD4+ and CD8+, but with a higher expression on CD4+. In both CD4+ 

and CD8+ cells, this level of expression gradually reduces as T cells progress from 

naïve to CM and then to EM. These largely divergent findings may be as a result of 

my method of defining positivity of IGF-1R expression. Douglas et al (2007) 



Chapter 4 T Lymphocyte Phenotype in GD and TAO 

183 

 

determined IGF-1R expression on the basis of the percentage of T cells that were 

IGF-1R+, whereas we examined IGF-1R expression by the comparison between MFI 

for IGF-1R and an isotype control.  Douglas et al (2007) also noted a difference in 

IGF-1R expression between CD4+ memory and CD8+ memory cells. One may 

imagine that if serum IGF-1 levels were altered in GD or TAO, or if there were 

stimulating IGF-1R-Ab, then this could explain an up- or down-regulation of IGF-1R 

expression on immune cells. Certainly, serum IGF-1 levels have been found to be 

consistently elevated in hyperthyroid GD.409 However, other studies have shown that 

serum levels of total and free IGF-1 and IGFBP are equivalent to controls in 

euthyroid GD, even with active TAO.356   

 

Nearly all immunological cells express IGF-1R.235 IGF-1R is expressed on 

monocytes, natural killer cells and CD4+ T cells, with lesser levels on CD8+ cells and 

the lowest level of expression on B cells. Somewhat in contrast, Stuart et al (1991) 

found that IGF-1R expression was highest on monocytes and B cells but with only 

low levels on T cells.410 Intravenous administration of IGF-1 stimulates T cell 

development from thymocytes, with CD4-CD8- cells having 3-4 times more IGF-1R 

per cell compared with CD4-CD8+, CD4+CD8- and CD4+CD8+ cells.223 Furthermore 

IGF-1R is involved in the transition of T cells from the G0- to G1-phase of the cell 

cycle. Indeed, T cells cannot enter S-phase of the cell cycle when IGF-1R expression 

is inhibited by anti-sense RNA.411 IGF-1 has been shown to result in three-fold 

increase in T cell proliferation in a dose-dependent fashion, plateauing around 10 

ng/ml, as measured by [3H]TdR incorporation.412 This effect was abrogated by the 

monoclonal IGF-1R antibody αIR3. IGF-1 also promotes B cell development in the 

bone marrow.413  
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Kooijman et al (1995) analysed the expression of IGF-1R on human peripheral T 

lymphocytes of differing activation and maturation status, in healthy individuals. In 

this study 87% of CD4+CD45RA+ and 66% of the CD8+CD45RA+ cells were IGF-

1R+, while 37% of the CD4+CD45RO+ and 38% of the CD8+CD45RO+ cells were 

IGF-1R+, as defined by binding of αIR3. In addition, activated CD4+ and CD8+ T 

cells had lower levels of IGF-1R expression than non-activated T cells. From this it 

was postulated that the reduced IGF-1R positivity of activated T lymphocytes meant 

that T cell activation correlates with IGF-1R downregulation, or otherwise that the 

IGF-1R- cells were those which were preferentially activated.  

 

This is in keeping with the observation that T cells internalise IGF-1R following 

activation with IGF-1,262 but in contrast to findings of other groups who determined 

that IGF-1R, IGF-2R and insulin receptor are all expressed on PHA-activated T cells. 

This IGF-1R expression was noted to be greatest around the time of maximum T 

lymphocyte proliferation, but expression was maintained throughout an 8–11 day T 

cell culture.236 If reduced IGF-1R positivity of activated T lymphocytes correlates with 

IGF-1R downregulation (or otherwise that IGF-1R- cells were those preferentially 

activated) this would be in keeping with recent studies that have suggested that IGF-

1R-Ab in GD and TAO are inhibitory rather than stimulatory.232 

 

Laurberg et al (2012) verified an increase in IGF-1R density on CD4+ cells in steroid- 

and disease modifying anti-rheumatic drug (DMARD)-naïve RA patients as compared 

to controls, irrespective of whether the RA patients were treated with combinations of 

methotrexate and cyclosporin or methotrexate and placebo. However, there was no 



Chapter 4 T Lymphocyte Phenotype in GD and TAO 

185 

 

such difference in the proportions of IGF-1R+ cells.371 As compared with controls, 

elevations in IGF-1R MFI have been noted in other pathologies such as Crohn’s 

disease, in the bowel lamina propria and submucosa.414 This, combined with the 

findings in RA and GD suggests that there is an increase in IGF-1R expression on T 

lymphocytes under inflammatory conditions. Against this assertion is the observation 

that the IGF-1R positivity did not change in patients with RA before and during 

immunosuppressive treatment.371  

 

McCoy et al (2014) studied 8 patients with moderate-to-severe TAO treated with 

rituximab.350 It was determined that TAO clinical indices improved for these 

individuals and that reduced IGF-1R+CD3+ and IGF-1R+CD4+ and IGF-1R+CD8+  T 

cells were noted 4-6 weeks after treatment. In two patients the levels of the IGF-1R+ 

T cells returned to pre-treatment levels after 16 weeks. From this, it was postulated 

that T cell IGF-1R expression may be a biomarker for the clinical response to 

rituximab in TAO, although it was uncertain whether this was because of increased 

turnover of IGF-1R+T cells or whether IGF-1R expression was reduced on T cells. In 

similar findings, Cohen et al (2005) demonstrated that CP-751,871 (another high-

affinity IGF-1R monoclonal antibody) was able to inhibit IGF-1 ligand binding to IGF-

1R and to down-regulate IGF-1R in vitro and in vivo in a human tumour xenograft 

model. CP-751,871 was also seen to induce down-regulation of IGF-1R on ex vivo 

human PBMC, including CD3+CD4+ and CD3+CD8+ T lymphocytes and CD19+ B 

lymphocytes from healthy volunteers.212 Such down-regulation of cell surface 

receptors with antibody binding has been observed with other receptors such as 

HER2,415 as well as IGF-1R.416,417  
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4.7.5 T Cell Activation Markers in GD and TAO 

 

We found no difference in early and late T cell activation markers between the study 

groups. Expression of CD69 is associated with activation and proliferation of 

lymphocytes and has previously been shown to be present at sites of inflammation 

(e.g. rheumatoid joints).418-420 Indeed, CD69 is among the earliest markers 

upregulated following T cell activation,419 and is also rapidly down-regulated.418 

Likewise, CD25 (IL-2Rα) expression is up-regulated as a result of T cell activation, 

with a consequent increase in response to IL-2.418 Douglas et al (2006) found the 

fraction of T cells expressing CD69 and CD25 in TAO patient peripheral blood 

(already rendered euthyroid by either radioiodine or surgical thyroidectomy) to be 

higher than controls, although there was no correlation between disease activity and 

the expression of these markers.127 There was also no difference in HLA-DR 

expression by T cells in TAO subjects as compared with controls.127   

 

Likewise, Gessl et al (1998) examined the expression of T cell activation markers 

HLA-DR and CD69 on naïve (CD45RA+) and memory (CD45RA-) CD4+ and CD8+ T 

cells in peripheral blood of those with untreated, hyperthyroid GD. Compared to 

healthy subjects, these GD patients did not have increased HLA-DR expression on 

memory CD4+ or CD8+ cells but did have increased HLA-DR on naive CD8+ T cells.  

In addition, those GD patients who had been rendered euthyroid on MMZ had greater 

HLA-DR expression on total and memory CD4+ and CD8+ T cells than those with 

hyperthyroid GD. However, proportions of total CD4+ and CD8+ cells expressing 

CD69 were increased in the hyperthyroid GD patients, but normalised following 

thyrostatic treatment.  This group therefore suggested an association of HLA-DR with 
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ongoing autoimmunity and that CD69 expression may related to thyroid hormone 

concentration.421  

 

CD154 (CD40 ligand) is expressed by activated T cells, and is known to interact with 

CD40 on B and T cells, having a particular role in B cell activation and differentiation, 

but also inhibiting T cell apoptosis. CD154 is thought to be increased in human 

autoimmune disease (e.g. SLE) and, in mouse models, anti-CD154 antibodies have 

been shown to inhibit thyroiditis, lupus nephritis and experimental allergic 

encephalomyelitis.  Watanabe et al (2004) studied peripheral blood T cell expression 

of CD154 by subjects with GD and control subjects, finding that intensities of CD154 

expression on CD4+ T cells from euthyroid GD subjects were reduced as compared 

with controls, although not varying between subjects with different GD severity.  This 

group therefore hypothesised that a reduction in CD154 may result in a negative 

effect on T cell autoreactivity, promoting autoimmunity.422  

 

Previous studies in RA have noted an increase in CD8+ terminally differentiated 

effector memory/central memory T cell ratio in RA patients compared with controls, 

correlating with disease duration. However, there was no difference in CD4+ or CD8+ 

T cell memory subsets between RA and controls. This group suggested that this 

represented the effect of persisting antigen-driven immune responses.374 

 

4.7.6 Regulatory T Lymphocytes in TAO 

 

We also determined no difference in the proportion of CD4+ T cells with a Treg 

phenotype (CD25HighCD127Low) in GD+TAO+, GD+TAO- and HC groups, although 
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some may argue that this requires further validation with measurement of the 

proportion of FoxP3+ cells and also investigation into the actual regulatory 

functioning of these cells. Derangements in the balance between effector and 

regulatory T cells are a principal feature in autoimmune disease pathogenesis.423 

This is important in TAO as manifestations of this disease are felt to represent a 

balance between pro- and anti-inflammatory cytokines.424  

 

Previous studies have established that Treg may contribute to the development of 

such diseases as type I DM, MS, RA and inflammatory bowel disease.389,425,426 Treg 

have also been found to be reduced,425,427 or unchanged,428,429 in peripheral blood in 

MS patients as compared to HC. Two studies have analysed Treg in GD, with no 

difference being detected compared with HC in terms of Treg frequencies.430,431 

However, one of these studies found that there was a reduction in anti-inflammatory 

IL-10 production by GD Tregs as compared with HC.431 Further to these two studies, 

Kahaly et al (2011) examined Treg in TAO and found that, although TAO and HC 

Treg (CD4+CD25+FoxP3+) frequencies were equivalent, both TAO and HC Treg 

frequency and activity was increased with rabbit polyclonal anti-T lymphocyte 

globulin, greater than those for GD Treg.389 

 

4.7.7 IL-21 and T Follicular Helper Cells in GD and TAO 

 

Given the previous literature regarding a possible role for IL-21 in AITD related to 

Alemtuzumab treatment of MS patients,345 we evaluated PBMC for Tfh. Secretion of 

Il-21 has been proposed to be a major role of Tfh.347 Tfh, as previously discussed, 

have been postulated to be a T helper subtype involved in the regulation of B cell 
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immunity, particularly in promoting migration to germinal centres through the 

chemokine receptor, CXCR5. In addition to CXCR5, other surface molecules such as 

ICOS (inducible costimulator) or PD-1 (programmed death-1) are felt to be involved 

in Tfh functioning. Indeed, in other studies evaluating SLE and systemic sclerosis 

patients, CD4+ T cells were defined as being Tfh on the basis of CXCR5 and ICOS 

positivity and CD4+CXCR5+ T cells did not correlate with autoantibody levels.432 

 

Although not evaluating TAO patients, Zhu et al (2012) found higher percentages of 

CD4+CXCR5+ICOSHigh T cells in patients with GD and Hashimoto’s thyroiditis as 

compared to controls, but CD4+CXCR5+ T cells were equivalent in these groups.433 

Median percentages of CD4+CXCR5+ T cells are not directly presented in their data, 

but their figures suggest proportions of around 15-20% for each group, 

commensurate with my data. In this study, CD4+ cells from GD and HT patients 

expressed greater IL-21 when stimulated by PHA than control subjects. There was 

also a positive correlation between CD4+CXCR5+ICOSHigh cells and serum 

autoantibodies (TRAb, TPO-Ab, TG-Ab). However, overall, there was no change in 

the proportion of CD4+CXCR5+ICOSHigh T cells following treatment of GD with MMZ 

and PTU (for 6 months).433 It may, therefore, be that the definition of Tfh as being 

CD4+CXCR5+ was insufficient. Certainly Zhu et al (2012) advocated use of ICOS or 

PD-1 in addition to CXCR5 as, for instance, Th17 cells may also express CXCR5.434  

 

Furthermore, Jia et al (2011) found elevated serum levels of IL-21 in 40 GD patients, 

at significantly greater levels than 42 TAO patients and 24 HC, with IL-21 levels 

being 95.0 pg/mL in TAO patients and 87.2 pg/mL in HC.435 Data for GD patients 

were not directly presented, but appeared to be around 120 pg/mL. Again, each of 
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these measurements is greater than that measured in this study. This group also 

found that IL-21 gene single nucleotide polymorphisms, rs907715 and rs13143866 

are associated with GD and TAO, respectively, with the conclusion being that IL-21 is 

associated with GD and TAO. 

 

4.8 Conclusion 

 

In summary, skewing of memory T cell populations as seen in this study may 

represent dysregulated lymphocyte homeostasis, with preferential generation or 

survival of naïve T cells, increased sequestration of effector memory T cells in 

inflamed tissues or an effect of thionamide or immunosuppressant drugs. Further 

understanding of the mechanisms involved in this shift in T cell differentiation and 

memory phenotype may provide further information to elucidate the pathogenesis of 

TAO in patients with GD.377
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5.1 Introduction 

 

5.1.1 Current Challenges in the Diagnosis and Management of TAO 

 

It has already been established that TAO is a heterogeneous condition 

encompassing a spectrum of manifestations, from mild to very severe, and may be of 

such significance to result in visual impairment and debilitating facial disfigurement.1 

This heterogeneity makes stratifying those GD patients at risk of developing TAO, 

and those TAO patients at risk of the most active and severe disease, exceptionally 

difficult. Early diagnosis remains important as the cosmetic and functional 

manifestations of TAO are irreversible, often requiring a range of surgical procedures 

for rehabilitation, in the form of combinations of orbital decompression, squint and 

eyelid surgery to return an individual to a functionally and aesthetically acceptable 

situation. 

 

At present there are an array of difficulties in predicting TAO onset and eventual 

severity, for which the current tools of clinical activity and severity scoring advocated 

by EUGOGO are suboptimal. For instance, although it is said that 30-50% of patients 

with GD will go on to develop TAO, it is currently not possible to determine exactly 

which GD patients will be affected, nor which will be in the minority (3-5%) who 

develop severe, sight-threatening manifestations. If it were possible to differentiate 

these patients at an early, even pre-symptomatic, stage it may permit the targeting of 

more intensive medical and ophthalmic monitoring to those at greatest risk, as well 

as the focusing of specific interventions such as smoking cessation or early 

immunosuppression.  
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The diagnosis of TAO can itself be extremely challenging, particularly as GD has 

ocular manifestations (e.g. lid lag and lid retraction) that do not necessarily signify 

orbital inflammatory disease but are instead representative of thyrotoxicosis and 

consequent sympathetic nervous system overactivity. The ability to differentiate 

these patients on the basis of an objective measure would be extremely beneficial.  

 

Finally, it is currently often difficult to discern if patients with TAO have persisting 

active, inflammatory disease or “burnt-out” disease with signs of venous congestion, 

as both are characterised by conjunctival injection and chemosis. This is important as 

it is crucial to identify the correct time to undertake rehabilitative surgery for TAO. In 

the absence of sight-threatening TAO, the usual strategy is to wait until the active 

phase of disease has ended before performing orbital decompression, squint or 

eyelid surgery. However, if this surgery is undertaken too early then a patient may go 

on to require further interventions or repeat procedures that should not have been 

necessary. 

 

In light of the difficulties associated with correct classification of TAO, discriminatory 

biomarkers would be extremely useful. A biomarker is defined as a “characteristic 

that is objectively measured and evaluated as an indicator of normal biologic 

processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention”.436 As already described, previous studies have extensively investigated 

the epidemiology, inflammatory mechanisms, genetics and lifestyle risk factors of 

both GD and TAO in large cohorts of patients. The pathogenesis of TAO is complex, 

with interaction between a number of genetic polymorphisms (e.g. PTPN22, CTLA-
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4),89,437 candidate molecules (e.g. TSH-R, IGF-1R)357 and patient-specific factors 

such as cigarette smoking.29 These multiple influences mean that analysing the 

influence of a single putative biomarker that predicts TAO onset and prognosticates 

the course and severity of the ensuing orbital disease, while controlling for so many 

other variables, is extremely difficult. 

 

5.1.2 Metabolomics: a role in GD and TAO diagnosis? 

 

Metabolomics is the systematic analysis of the metabolite profile of a body fluid or 

tissue.438 It is a powerful technique, capable of reproducibly identifying and 

quantifying multiple metabolites in a biofluid (e.g. serum, cerebrospinal fluid, urine). 

Metabolomics is based on the concept that the metabolic properties of tissues are 

altered by disease processes in such a way that distinct pathologies may be reflected 

in unique metabolite patterns - each condition having a unique metabolomic 

“fingerprint”.438  

 

Metabolites are the final downstream products of the interaction between genetic and 

environmental factors in disease development. Metabolomics therefore provides a 

‘snap-shot’ of metabolic processes at a specific point in time, facilitating the 

integration of multiple interacting disease-modifying factors and generating a global 

overview of the summative effect of genetics and environment. This is of particular 

relevance in GD and TAO as a number of studies have previously demonstrated 

metabolic changes in these conditions, with increases in oxidative metabolites in 

plasma and tissues.141 In addition, TAO orbital fibroblasts display an altered redox 

metabolite balance when cultured.439 These specifically altered metabolites may in 
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turn reflect more widespread metabolic changes at the tissue, organ or system level. 

If this is the case, the investigation of the global metabolite fingerprint could provide a 

novel means of characterising these patients. 

 

5.1.3 Role of Metabolomics in Autoimmune and Inflammatory Diseases 

 

Metabolomics has previously been successfully applied in the diagnosis and 

classification of a number of medical conditions. For example, metabolomic analysis 

of bronchoalveolar (BAL) fluid has been shown to distinguish cystic fibrosis patients 

with higher versus lower levels of inflammation.440 Analysis of serum in coronary 

heart disease was able to discriminate different degrees of coronary artery 

stenosis.441 Metabolomic analysis of faecal extracts has been determined to 

differentiate patients with Crohn’s disease from those with ulcerative colitis,442 whilst 

analysis of plasma discriminates those with RA (of different degrees of disease 

activity) from healthy controls. Importantly, these differences resolve following 

treatment.443 Ex-vivo metabolomic analysis of brain tumour biopsies has been shown 

to differentiate malignant from normal tissue, and urinary metabolite profiles can 

identify patients with renal cell carcinoma from controls.444,445 

 

Metabolomic analysis of cerebrospinal fluid has also been undertaken in a number of 

neurological conditions. In MS, metabolomics had a sensitivity and specificity of 80% 

and 53%, respectively, for predicting diagnosis.446 Similarly, in idiopathic intracranial 

hypertension, metabolomics had a sensitivity of 71% and specificity of 70%. 

Likewise, CSF from patients with bacterial or fungal meningitis could be separated 

from viral meningitis and healthy controls.446,447 With reference specifically to ocular 
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disease, metabolomics has shown potential to distinguish different forms of 

inflammatory uveitis.448 A distinctive metabolic profile for proliferative diabetic 

retinopathy has also been identified.449 As yet, none of the published studies seems 

to have achieved a sensitivity or specificity suitable for diagnostic purposes, but each 

provide evidence that metabolomic analysis may support differential diagnosis or 

prognosis. 

 

5.1.4 Metabolomic Techniques and the Principles of Nuclear Magnetic 
Resonance (NMR) 

 

A range of techniques have been applied for metabolomic analysis. Most 

metabolomic studies make use of untargeted approaches where the resulting 

metabolite content is not presumed or predicted. These methods include gas or liquid 

chromatography, mass spectrometry and nuclear magnetic resonance (NMR). While 

these are each different approaches, the end target in all methods is identification 

and quantification of the tested sample. In contrast, targeted techniques such as 

chemometric assays or metabolite arrays, allow direct quantification of known 

metabolites in a given sample. These are often useful for confirming and validating 

the findings of untargeted methods.  

 

This study was performed using NMR due to the availability of local facilities (Henry 

Wellcome Building for NMR, University of Birmingham) and relative simplicity of 

sample preparation. NMR functions on the principle that atomic nuclei have spin 

properties, aligning themselves if placed in a magnetic field. If these aligned nuclei 

are provided with a radiofrequency pulse they absorb energy and resonate. Each of 
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the nuclei will resonate at a different frequency, based on their atomic mass and 

structure (Figure 5.1). The resulting frequency spectra reflect the functional groups 

of the original molecule and can therefore be used to identify the constituent 

metabolites in a sample, while peak heights reflect concentration. 

 

 

Figure 5.1: Schematic diagram of the principles of 
1
H-nuclear magnetic resonance (

1
H-NMR) 

spectroscopy. 

 

5.2 Aims and Objectives 

 

Metabolomics has not previously been utilised in GD or TAO, but would appear to be 

a potentially useful approach given the complex interaction between intrinsic and 

extrinsic factors in these diseases. In this chapter we assessed the value of 1H-NMR-

based metabolomic profiling as a novel means of differentiating a large cohort of 

GD+TAO+, GD+TAO- and age- and sex-matched HC, examining exactly which 

metabolites are altered in each situation and their relative sensitivity and specificity 

for establishing accurate diagnoses alongside established clinical criteria. 
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Furthermore, we aimed to correlate metabolomic profiles according to disease 

duration, clinical activity, thyroid hormone and autoantibody status and cigarette 

smoking status.  

 

In this study we hypothesise that (1) there is a characteristic metabolomic pattern in 

GD+TAO+ serum that differentiates them from GD+TAO- and HC subjects and (2) 

metabolite patterns distinguish TAO patients of different clinical activity and severity. 

 

5.3 Methods 

 

5.3.1 1H-NMR Spectroscopy  

 

After thawing, serum samples (1 ml) were centrifuged at 15,000 g for 5 minutes. 

200 μl of serum was removed from each sample and passed through a 3 kDa filter 

(Pall Nanosep, VWR, Lutterworth) which had previously been washed six times with 

warmed, distilled water. The serum filtrate was buffered with phosphate buffer 

(100 mM) and brought to concentrations of 10% D2O (deuterium oxide) and 0.5 mM 

TMSP (trimethylsilyl-2,2,3,3-tetradeuteropropionic acid) internal standard. Each 

sample was then centrifuged and loaded into a standard 1.7 mm NMR tube (Bruker 

Rheinstetten, Germany) for spectroscopy. 

 

One-dimensional (1D) 1H-NMR spectra were acquired at 300 °K using a standard 

spin-echo pulse sequence, with excitation sculpting (a method of removing signal 

derived from water without losing signal from other metabolites associated with water 

protons) to suppress any residual water, on a DRX 600 MHz NMR spectrometer 
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(Bruker BioSpin, Rheinstetten, Germany) with a cryoprobe. Two-dimensional (2D) J-

Resolved (JRES) NMR spectra were obtained as previously described.450 Samples 

were processed and data calibrated with respect to the TMSP signal. Spectra were 

read into Prometab (version 2) software within MatLab (version 7.0, MathWorks, 

Cambridge, UK) and truncated to a range of 0.2–10.0 parts per million. Spectra were 

segmented into 0.005 ppm (2.5 Hz) chemical shift “bins,” and the spectral areas 

within each bin were integrated. Spectra were corrected for baseline offset, 

normalised to a total spectral area of unity and a generalised log (glog) 

transformation applied to increase weighting of smaller peaks. A data matrix was 

compiled, with rows representing single samples and chemical shifts in columns. 

 

5.3.2 Statistical Analysis of Metabolomic Data  

 

NMR spectra were excluded from analysis if they displayed poor data quality, such 

as distorted baselines or unusually broad peak widths. However, outlying metabolite 

profiles with satisfactory spectra were assumed to be due to biological variation or 

disease diversity and were therefore maintained in the analysis.  

 

Data bins from groups of spectra were mean-centered and assessed using principal 

component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) 

using PLS_Toolbox (version 3.5, Eigenvector, Washington, USA). PLS-DA is a 

supervised analysis technique which builds a model to evaluate separation between 

groups based on known factors. The PLS-DA model was cross-validated using 

Venetian blinds, a method which re-assigns randomly selected blocks of data to the 

PLS-DA model to determine accuracy of the model in correctly assigning class 
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membership. Identification of relevant metabolite peaks in the spectra, that permitted 

discrimination of groups of interest, was carried out using Chenomx NMR Suite 

(version 4.0, Chenomx, Alberta, Canada), an NMR analysis program which provides 

a library of a range of metabolites which may be found in biofluids, in conjunction with 

the Human Metabolome Database (www.hmdb.ca/). The peak heights of metabolites 

of interest were compared in the study groups using Mann-Whitney test (for two 

groups) and Kruskal-Wallis test (with Dunn’s post-test) (for more than two groups).  

 

5.3.3 Multivariate Analysis by Genetic Algorithm 

 

GALGO, a genetic algorithm available in the statistical environment R, was also 

applied to the data as a method of multivariate variable selection. GALGO combines 

genetic algorithm-driven multidimensional searches and statistical classification 

methods to find combinations of variables that can distinguish between sample 

classes using a nearest centroid classification approach. 

 

The results of GALGO analyses are presented as PCA plots, where the x- and y-

axes represent first and second principal components providing the greatest variation 

between samples and the next largest unrelated variation, respectively. GALGO 

analysis was cross-validated using K-fold cross-validation, where the original sample 

is randomly partitioned into subsamples and each observation is used for both 

training and validation. 

 

All metabolomic processing and analysis was undertaken in conjunction with Dr. 

Stephen Young and Mr. Martin Fitzpatrick of the Rheumatology Research Group, 

http://www.hmdb.ca/
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Centre for Translational Inflammation Research, School of Immunity and Infection, 

University of Birmingham Medical School. 

 

5.4 Results 

 

5.4.1 Study Subjects 

 

The subject sera used in this study are the same as those used in the IGF-1R-Ab 

immunoassay studies of Chapter 3. Of 110 GD+TAO+ subjects, 20 were determined 

to be clinically active (CAS ≥3) and 90 inactive (CAS <3). Sixty-seven GD+TAO- 

subjects and 78 age- and sex-matched HC were also recruited. There were no 

statistically significant differences in median age, ratio of males to females or the 

percentage of smokers between the three groups (see Table 3.1). 

 

5.4.2 Differentiation of Study Subjects by Metabolomic Profiles 

 

No definite differentiation was obtained on any of the unsupervised, PCA analyses. 

PLS-DA demonstrated good separation of GD (combined GD+TAO+ and GD+TAO-) 

subjects from HC individuals along latent variable 1 (LV1) (Figure 5.2 A), with the 

discrimating metabolite peaks on a weightings plot being those for isopropanol (1.17 

and 4.03), higher in GD subjects (Figure 5.2 B). Furthermore, it was possible to 

separate the two groups of GD patients on PLS-DA, those with and without TAO, on 

a PLS-DA plot (Figure 5.3 A), again on the basis of two isopropanol peaks (1.17 and 

4.03) as well as a lactate peak (1.34) (Figure 5.3 B). In this case, these peaks were 

positive in the GD+TAO+ group as compared with GD+TAO-. Taking this further, 
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GD+TAO+ subjects could be discriminated with PLS-DA on the basis of their 

metabolomic profile into those with active (CAS≥3) and inactive (CAS<3) TAO 

(Figure 5.4 A). There were a range of metabolite peaks principally contributing to 

this, with positive peaks toward the active TAO group for lactate (1.33) and pyruvate 

(2.38) alongside reduced peaks toward the inactive TAO group for isopropanol (1.17 

and 4.02) and methylguanidine (2.83) in the active TAO group (Figure 5.4 B).  

 

The means by which these differentiating peaks (in Figure 5.4 B) were identified 

from comparison of the metabolomic spectra and use of Chenomx NMR Suite and 

the Human Metabolome Database is illustrated (Figure 5.5 A-D). Interestingly, PLS-

DA analyses were also able to separate GD (GD+TAO+ and GD+TAO- combined) 

patients on the basis of their positive of negative TRAb status (Figure 5.6 A & B), 

their thyroid status (hyper-, hypo- or euthyroidism) (Figure 5.7 A & B) and PTPN22 

(R620W) genotype (Figure 5.8 A & B). In each case, the peaks distinguishing 

between groups were a combination of lactate, ethanol and isopropanol.  
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Figure 5.2: Partial least squares discriminant analysis (PLS-DA) of serum NMR spectra from 
GD and HC subjects. PLS-DA model on 2 latent variables (LV) constructed to determine if GD 
(combined GD+TAO+ and GD+TAO-) and HC groups could be separated on the basis of their 
metabolomic spectra (A); a weightings plot permitted assessment of the contribution of specific 
metabolites to the discrimination between GD and HC subjects. The metabolites which provide the 
greatest degree of discrimination between GD and HC are indicated. Positive peaks correspond to 
metabolites at higher concentration in GD relative to HC, and vice versa for the negative peaks (B). 
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Figure 5.3: Partial least squares discriminant analysis (PLS-DA) of serum NMR spectra from 
GD and TAO subjects. PLS-DA model on 2 latent variables (LV) constructed to determine if GD 
(GD+TAO-) and TAO (GD+TAO+) groups could be separated on the basis of their metabolomic 
spectra (A); a weightings plot permitted assessment of the contribution of specific metabolites to the 
discrimination between GD and TAO subjects. The metabolites which provide the greatest degree of 
discrimination between GD and TAO are indicated. Positive peaks correspond to metabolites at higher 
concentration in TAO relative to GD, and vice versa for the negative peaks (B). 
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Figure 5.4: Partial least squares discriminant analysis (PLS-DA) of serum NMR spectra from 
active and inactive TAO subjects. PLS-DA model on 2 latent variables (LV) constructed to 
determine if active GD+TAO+ and inactive GD+TAO+ groups could be separated on the basis of their 
metabolomic spectra (A); a weightings plot permitted assessment of the contribution of specific 
metabolites to the discrimination between active and inactive TAO subjects. The metabolites which 
provide the greatest degree of discrimination between the two groups are indicated. Positive peaks 
correspond to metabolites at higher concentration in active TAO relative to inactive TAO, and vice 
versa for the negative peaks (B). 
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Figure 5.5: Identification of relevant metabolite peaks contributing to active or inactive TAO 
using Chenomx NMR suite in combination with the Human Metabolome Database. Relevant peaks 
noted from weightings plot of Figure 5.4 B analysed and determined to be isopropanol (A), lactate (B), 
methylguanidine (C) and pyruvate (D). Black lines determine the metabolomic spectra of the group of 
interest, blue peaks those identifying particular metabolites within Chenomx NMR suite and red peaks 
other metabolites permitting localisation of metabolites of interest within the spectra.  
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Figure 5.6: Partial least squares discriminant analysis (PLS-DA) of serum NMR spectra from 
GD patients based on their TRAb status. PLS-DA model on 2 latent variables (LV) constructed to 
determine if GD (combination of GD+TAO+ and GD+TAO-) subjects could be separated on the basis 
of their metabolomic spectra (A); a weightings plot permitted assessment of the contribution of specific 
metabolites to the discrimination between the different TRAb status. The metabolites which provide 
the greatest degree of discrimination between the three groups are indicated. Positive peaks 
correspond to metabolites at higher concentration in TRAb+ relative to TRAb-, and vice versa for the 
negative peaks (B). 
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Figure 5.7: Partial least squares discriminant analysis (PLS-DA) of serum NMR spectra from 
GD patients based on their thyroid function. PLS-DA model on 2 latent variables (LV) constructed 
to determine if GD (combination of GD+TAO+ and GD+TAO-) subjects could be separated on the 
basis of their thyroid function (hypo-, hyper- or euthyroid) by their metabolomic spectra (A); a 
weightings plot permitted assessment of the contribution of specific metabolites to the discrimination 
between the different thyroid functions. The metabolites which provide the greatest degree of 
discrimination between the three groups are indicated. Positive peaks correspond to metabolites at 
higher concentration in euthyroid and hypothyroid relative to hyperthyroid, and vice versa for the 
negative peaks (B). 
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Figure 5.8: Partial least squares discriminant analysis (PLS-DA) of serum NMR spectra from 
GD patients based on their PTPN22 (R620W) genotype. PLS-DA model on 2 latent variables (LV) 
constructed to determine if GD (combination of GD+TAO+ and GD+TAO-) subjects could be 
separated on the basis of their metabolomic spectra (A); a weightings plot permitted assessment of 
the contribution of specific metabolites to the discrimination between the different PTPN22 (R620W) 
genotypes. The metabolites which provide the greatest degree of discrimination between the three 
groups are indicated. Positive peaks correspond to metabolites at higher concentration in those to the 
right of the axis, LV1, and vice versa for the negative peaks. (B) 
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5.4.3 Sensitivity and specificity of analysis models for discriminating groups 

 

The sensitivity and specificity of the PLS-DA models for differentiating the groups of 

interest, as well as their sensitivity and specificity as cross-validated by Venetian 

blinds (explained in Section 5.3.2), are displayed in Table 5.2. 

 

Table 5.2: Uncorrected and cross-validated sensitivities and specificities for each of the PLS-
DA analyses undertaken in GD+TAO+, GD+TAO- and HC and demonstrated in Figures 5.2 – 5.8. 
 

Groups 
Analysed 
 

Sensitivity Specificity Sensitivity 
(CV) 

Specificity 
(CV) 

 
GD 
HC 
 

 
78% 

 

 
85% 

 
47% 

 
66% 

 
GD 
TAO 
 

 
97% 

 
96% 

 
63% 

 
64% 

 
Active TAO 
Inactive TAO 
 

 
85% 

 
85% 

 
73% 

 
30% 

 
TRAb+GD 
TRAb- GD 
 

 
91% 

 
92% 

 
51% 

 
62% 

 
Hypothyroid 
Euthyroid 
Hyperthyroid 
 

 
 

99% 

 
 

94% 

 
 

66% 

 
 

63% 

 
PTPN22 
GG 
GA 
AA 
 

 
 

91% 

 
 

89% 

 
 

38% 

 
 

19% 
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5.4.4 Comparison of metabolites discriminating groups of interest 

 

On assessing the spectral peak areas on weightings plots (proportional to metabolite 

concentration) of the primary metabolites responsible for differentiation of groups of 

interest in univariate analysis, it was determined that, overall, only isopropanol (1.17) 

was significantly elevated in GD+TAO+ subjects, as compared with GD+TAO- and 

HC groups overall (Figure 5.9). However, on analysis of active (CAS≥3) and inactive 

(CAS<3) TAO subjects only pyruvate (2.38) was found to be significantly elevated in 

the active group (Figure 5.10).  

 

GALGO analysis determined that many of the same peaks were of importance in 

multivariable analysis as those that were identified from PLS-DA models. In 

particular, lactate (1.34 and 1.35) and isopropanol (4.06) were peaks that were 

common between PLS-DA and GALGO (Figure 5.11) 
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Figure 5.9: Concentration of discriminating metabolites identified from PLS-DA models in 
GD+TAO+, GD+TAO- and HC groups. Peak heights (proportional to the concentration of each 
metabolite) for the principal metabolites determined to differentiate groups of interest from PLS-DA 
weightings plots. Metabolites shown, (A) Isopropanol (1.17), (B) Isopropanol (4.03), (C) Lactate (1.34), 
(D) Lactate (4.13), (E) Pyruvate (2.38) and (F) Methylguanidine (2.83). Analysis of Isopropanol (1.17) 
between GD+TAO+ and GD+TAO- also demonstrated significant elevation in GD+TAO+ (P=0.03, 
data not shown) Non-parametric analysis was undertaken with Mann-Whitney test (for two groups) or 
Kruskal-Wallis test (with Dunn’s multiple comparison) (more than two groups). (Key: NS: Not 
significant; *p=0.01 to 0.05). 
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Figure 5.10: Concentration of discriminating metabolites identified from PLS-DA models in 
active and inactive TAO. Peak heights (proportional to the concentration of each metabolite) for the 
principal metabolites determined to separate active (CAS≥3) and inactive (CAS<3) TAO subjects from 
PLS-DA weightings plots. Metabolites shown, (A) Isopropanol (1.17), (B) Isopropanol (4.02), (C) 
Methylguanidine (2.83), (D) Pyruvate (2.38) and (E) Lactate (1.33) Non-parametric analysis was 
undertaken with Mann-Whitney U test. (Key: NS: Not significant; *p=0.01 to 0.05). 
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Figure 5.11: Multivariable selection of NMR spectra of serum from GD+TAO+, GD+TAO- and HC 
with GALGO. Analysis of the study groups following selection of NMR spectral bins which best 
discriminated between the conditions. 500 solutions were found in 500 search cycles matched with the 
corresponding spectra, with forward selection procedure using the 157 most frequent bins.  
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5.5 Discussion 

 

This is the first study to evaluate the use of metabolomics in GD and TAO. In this 

large cohort of GD+TAO- and GD+TAO+ subjects, alongside age- and sex-matched 

HC, we demonstrate the potential of metabolomics to differentiate GD+TAO- and 

GD+TAO+ patients and also GD+TAO+ patients of differing levels of clinical activity. 

In addition, GD subjects could be separated on the basis of their thyroid autoantibody 

status, thyroid function and PTPN22 (R620W) genotype.  

 

5.5.1 Metabolites identified as putative biomarkers in GD and TAO 

 

The range of metabolites principally found to be responsible on PLS-DA analysis 

were not extensive. Although cross-validated sensitivities and specificities for the 

separation of groups were generally poor as compared with some other studies in the 

literature, the concentrations of two of the differentiating metabolites identified from 

the PLS-DA models, namely isopropanol (1.17) and pyruvate (2.38), were found to 

be significantly elevated in GD+TAO+ (as compared with GD+TAO- and HC) and 

active GD+TAO (as compared with inactive GD+TAO+) subjects, respectively. It is 

acknowledged that substantial validation is still required, particularly with separate 

patient cohorts. However, this study highlights a possible future role for these 

metabolites as biomarkers in GD and TAO.  

 

Biomarkers have the potential to facilitate diagnosis, predict prognosis, monitor 

disease progression and impart information on disease causality, matters that are 

crucial for clinicians caring for those with GD and TAO. Importantly, a clinically useful 
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biomarker must be minimally invasive, cheap, sensitive, reproducible and rapid. Each 

of these pre-requisites are met by 1H-NMR spectroscopy as it is an automated, high-

throughput technique with each metabolite spectrum acquired within half an hour. 

The technique is also reproducible, and sensitive to the nanogram range.451 NMR 

requires only small sample volumes and is non-destructive, meaning that samples 

can be reprocessed. The technique can also be quantitative if, as in the case of this 

study, a reference sample is used. As human metabolome databases become more 

complete this technology may be translated into clinical tests in an even wider range 

of conditions, including GD and TAO. 

 

There are, however, a number of potential challenges associated with 1H-NMR. For 

example, spectral peak congestion may occur when the resonances of multiple 

metabolites overlap. This may mean that low concentration metabolites are obscured 

if they coincide with more prominent metabolites. This may impede metabolite 

recognition, limit accuracy of metabolite identification and impair pattern recognition 

multivariate analyses. For example, the isopropanol peaks identified as permitting 

differentiation in my analyses are very close in the metabolomic spectrum to those for 

3-hydroxybutyrate. It is also critical that sample collection and storage is consistent in 

order to minimise degradation of metabolites. Lenz et al (2003) investigated whether 

there may be day-to-day variation in metabolomic profiles due to lifestyle and dietary 

differences. Reassuringly, the blood and urine spectra of healthy controls showed 

little variability on different study days.452 Likewise, variability of 163 serum 

metabolites in 100 healthy individuals over a four-month period demonstrated good 

reproducibility, suggesting that for the majority of metabolites a single measurement 

may be sufficient, at least for healthy subjects.453  
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5.5.2 Isopropanol 

 

Isopropanol (isopropyl alcohol; 2-propanol; C3H7OH) is a constituent of normal 

serum, with typical mean concentration of 83.3 ± 132.8 µM as determined by 

NMR.454 The uppermost limit of isopropanol in my studies was 300 µM. The Human 

Metabolome Database states that small amounts of isopropanol are produced by 

human gut bacteria. This may be significant given that large studies, such as INDIGO 

(Investigation of Novel biomarkers and Definition of the role of the microbiome In 

Graves’ Orbitopathy), are being undertaken to investigate changes in the gut 

microbiota in patients with GD and TAO. No specific published literature could be 

found to corroborate the statement about isopropanol production in the gut made by 

the Human Metabolome Database, but a number of studies have examined the role 

of other volatile organic compounds (VOC), carbon-based chemicals that may be 

emitted from faeces and breath and may also be detected in blood, as biomarkers in 

a range of diseases. Unfortunately, the analysis of these metabolites is difficult due to 

their abundance and complexity. However other VOC, such as hexanal, 1-octen-3-ol 

and octane have been presented as possible biomarkers of liver cancer and 3-

methylbutanal is elevated in chronic hepatic encephalopathy.455   

 

Isopropanol is best known as a solvent, tissue preservative and disinfectant. In 

particular it is a primary constituent of sanitising alcohol hand gel and alcohol wipes 

used in the pre-preparation of skin prior to venepuncture for peripheral blood. This is 

obviously of concern as the biofluid used for analysis in this study was serum derived 

from peripheral blood. Initially, this raised the possibility of the isopropanol simply 

being a contaminant in samples. 
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Denery et al (2011) undertook a study of differing blood-taking methods prior to the 

use of such samples in metabolomics analysis. This group highlighted that future 

large-scale metabolomics analysis may be carried out on biofluids, particularly blood, 

which have been ‘banked’ and for which there is inadequate knowledge of collection 

and storage protocols.456 In their study blood was taken either through capillary 

puncture with a sterile lancet, or formal venepuncture. However, in each case a 70% 

isopropyl alcohol wipe was used to clean the area prior to sampling, and allowed to 

air-dry. In addition, the first spot of blood released following lancet puncture was 

wiped away with clean gauze.  

 

Reassuringly, analysis with liquid chromatography-mass spectrometry determined 

only slight differences between the various preparation methods. Despite this, 23 

significant differences were noted in metabolite compounds between samples 

collected either by capillary or venous routes from the same subjects, with the 

majority being ascribed to the materials used to pre-treat the skin. Obviously, the 

concerning factor was that some of these differences were in molecules of identical 

mass and molecular formula to human metabolites, meaning that they could be 

mistakenly attributed to actual differences in metabolite profiles. However, only the 

capillary sampling method resulted in the aberrant finding of metabolites related to 

70% isopropyl alcohol wipes. Indeed, the authors commented that the same wipes 

were used for pre-treating the venepuncture site as the capillary sampling site, and 

argued that the larger volume of blood collected, possibly in addition to the lesser 

contact time with the skin, during venepuncture meant that any metabolites 

associated with the wipe were limited.456 
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Certainly this was the case with my sampling methods. Every peripheral blood 

sampling, and each serum sample preparation, was undertaken by myself using a 21 

gauge needle and blood taken from the antecubital fossa. Despite being a multi-site 

study there were no discrepancies in blood-taking protocol between different clinical 

areas. In addition, the blood samples were taken and processed non-consecutively, 

that is, the GD+TAO+ samples were interspersed with GD+TAO- or HC subjects. 

Indeed, it was often the case that the taking of a GD+TAO+ blood sample was 

followed within minutes by the taking of a GD+TAO- or HC sample (a healthy friend 

or relative attending hospital with a GD+TAO+ of GD+TAO- patient and recruited as 

a HC). In addition, it is the personal preference of the researcher who took all of the 

blood samples in this study not to use a 70% isopropyl alcohol wipe prior to 

venepuncture, in keeping with published evidence.457 Further, gloves were always 

used for venepuncture, meaning that there would be no isopropyl alcohol gel on the 

hands of the phlebotomist in contact with the recruited subject. Serum sample 

preparation for NMR spectroscopy was unchanged from a range of experiments 

undertaken by the same group and no solvent was used in any part of the 

processing. Finally, despite isopropanol being found as being significant in these 

metabolomic analyses, no related products contained in alcohol wipes or hand gel, 

such as acetone, were detected. 

 

5.5.3 Methylguanidine 

 

Methylguanidine (C2H7N3) is a metabolite related to protein catabolism, and may also 

be produced in putrefaction. It is synthesised from creatinine, associated with the 
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synthesis of H2O2, and is considered a uraemic toxin.458 The pathogenesis of 

diseases such as chronic renal failure involve reduced urine production, decreased 

excretion of urea and methylguanidine and accumulation of these substances in 

plasma and tissues of patients.459 Indeed, methylguanidine was one of six urinary 

metabolites found to have have good discriminatory ability in an NMR-based 

metabolomics study of canine transitional cell bladder cancer.458 

 

Conversely, methylguanidine may be increased as a compensatory mechanism, 

protecting against cytotoxic effects of ROS, inhibiting pro-inflammatory nitric oxide 

synthase and scavenging O2- and metabolites such as peroxynitrites, produced in 

inflammatory conditions. There is evidence that methylguanidine may have an anti-

inflammatory role in that it decreases the degree of tissue damage in an endotoxic 

shock mouse model, again likely due to inhibition of nitric oxide synthesis and TNF-α 

secretion.460,461  

 

5.5.4 Lactate and Pyruvate 

 

Pyruvate (pyruvic acid, C3H4O3) can be made from glucose through glycolysis, 

converted back to glucose via gluconeogenesis, or to fatty acids through acetyl 

coenzyme A. Pyruvate supplies energy to cells through the Krebs cycle (also known 

as the tricarboxylic acid cycle (TCA) or citric acid cycle) in aerobic conditions or is 

converted to lactate (lactic acid, C3H6O3) under anaerobic conditions (Figure 5.12). 

An imbalance in each of these metabolites may therefore indicate that there is a 

contribution of oxidative stress in GD and TAO subjects. 
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Figure 5.12: Simplified diagram of common metabolic pathways showing some of the relevant 
discriminating metabolites in GD subjects, indicated in red (taken from Zhang et al 2008).

458
 

 

5.5.5 Established Metabolic Abnormalities in GD and TAO 

 

These metabolomic findings are in keeping with previous studies which have 

demonstrated derangement of the metabolic status of GD and TAO patients. 

Changes related to ROS metabolism, have been identified in hyperthyroid GD patient 

thyroid tissue and plasma, with increased byproducts of lipid peroxidation, increased 

SOD activity and reduced anti-oxidant enzymes such as GPx compared to 

controls.141,462 Serum oxidative stress markers, present during the hyperthyroid 

phase of GD, normalise following attainment of the euthyroid state, effects that have 

been proposed to be independent of anti-thyroid treatment.143 

 

Furthermore, when groups of untreated autoimmune, hyperthyroid GD (without TAO) 

and non-autoimmune hyperthyroid toxic multinodular goitre patients were compared, 

there were equivalent increases in peripheral blood oxidative stress markers. When 

euthyroidism was established in each of these groups with MMZ there was 
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normalisation of all oxidative parameters in both groups, suggesting that the 

observed oxidative stress was due to hyperthyroidism rather than autoimmunity.463 

When hyperthyroid GD patients with and without TAO were compared, oxidative 

stress markers were again elevated in both groups. However, attainment of the 

euthyroid state with MMZ resulted in normalisation of oxidative stress markers only in 

those without orbital inflammation, not in those with ocular manifestations, suggesting 

that orbital inflammation itself contributes to peripheral blood measures of oxidative 

stress.146 In patients with euthyroid but active TAO, oxidative stress markers were 

again elevated. These normalised with corticosteroid treatment but recurred when 

corticosteroids were ceased.145  

 

These findings are in keeping with my metabolomic data demonstrating 

differentiation of GD+TAO+ subjects from GD+TAO-. All of the GD patients had 

current or previous hyperthyroidism, and the consequent hypercatabolic state 

associated with this, but were heterogeneous in their dysthyroid status at the time of 

blood sampling. It would appear that the most significant contribution to the metabolic 

difference between the groups was the orbital inflammation experienced by the 

GD+TAO+ patients. Of course, the great hope was that the metabolomic PLS-DA 

model would have separated GD+TAO+ and HC patients into two very separate 

groups, with the GD+TAO- distributed between these – those GD+TAO- subjects 

who would go on to develop TAO being closer in metabolomic profile to the 

GD+TAO+ group, whilst those GD+TAO- who would never develop TAO being closer 

to the HC. However, this was not observed to be the case.  
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A number of in vitro studies have suggested that increased O2- production has a 

pathogenic role in TAO. Fibroblasts from severe TAO, but not control subjects, have 

been shown to proliferate in response to superoxide radicals in a dose-dependent 

manner.113 In addition, TAO orbital fibroblasts have been shown to have increased 

O2- and SOD activity as compared to control orbital fibroblasts.464 Cultured TAO 

orbital fibroblasts also display an altered redox metabolite balance, with elevated 

oxidative stress markers, reduced antioxidant molecules (e.g. glutathione), reduced 

enzymes involved in protection from oxidative stress (e.g. GPx) and hypersensitivity 

to a H2O2 oxidative stress model, compared to age-matched normal controls.439,465 It 

is therefore relevant that some of the metabolites found to permit metabolomic 

differentiation of GD+TAO+ subjects from GD+TAO- and HC were those associated 

with oxidative stress and hypoxic metabolism. For example, increased lactate 

(produced when glucose is broken down and oxidised to pyruvate) was one of the 

metabolites associated with the GD+TAO+ group. This also provides a metabolic link 

between IGF-1 and TAO as Fu et al (1991) previously demonstrated a role for IGF-1 

in priming neutrophils for superoxide anion secretion.466 

 

Previous studies have advocated the use of antioxidants as treatments for GD and 

TAO. Indeed, Seven et al (1998) found that treatment with vitamin C (ascorbate) 

supplementation decreased oxidative stress in groups of hyperthyroid subjects 

treated with PTU as well as controls.467 However, no clinical trial of vitamin C 

supplementation in GD or TAO patients has yet been undertaken. Nevertheless, as 

already discussed, a successful trial of the use of the antioxidant trace element 

selenium in reducing disease activity has been undertaken in patients with mild 

TAO.49 
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The inflammatory state within the TAO orbit has been hypothesised to be related to 

infiltration of CD4+ and CD8+ T lymphocytes, plasma cells and macrophages. It is 

interesting, therefore, to note the differentiation of GD+TAO+ and GD+TAO- subjects 

by PTPN22 R620W genotype (even though the numbers in the study population 

carrying the allelic variant conferring GD susceptibility were low). The PTPN22 

variant is associated with increased risk for the development of multiple autoimmune 

diseases.468 A specific association with TAO has not been noted, however this 

PTPN22 SNP is associated with a change in lymphocyte memory populations as well 

as the cytokine profile observed following activation of T lymphocytes. Overall, these 

alterations have a tendency to increase autoimmunity, preserving autoreactive 

lymphocytes or impeding mechanisms that regulate autoreactivity.468 

 

5.5.6 Conclusion 

 

With increasing utilisation of diverse immunosuppressant (e.g. azathioprine) and 

monoclonal antibody (e.g. rituximab) therapies in TAO, and the advent of 

“personalised medicine” - the tailoring of healthcare based on knowledge of the 

genetic or metabolic characteristics of an individual - it is crucial to have robust, 

impartial methods for determining responses to treatment. The clinical methods we 

utilise at present are imperfect and require greater objectivity. Similarly, in developing 

future novel treatments from clinical trials we require more concrete outcome 

measures to determine the efficacy of particular candidate treatments. In summary, 

this study, combining clinical phenotyping of a large cohort of GD and TAO subjects 

with PTPN22 (R620W) genotyping, thyroid function, TRAb and metabolomic data, 
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demonstrates the translational potential of metabolomics as a diagnostic tool for TAO 

in those with GD and identifies a number of biologically plausible metabolites which 

may permit discrimination of such groups.  
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6.1 Introduction 

 

The pathogenesis of TAO is poorly understood. This thesis has explored a range of 

immunological parameters, namely serum IGF-1R-Ab, peripheral T lymphocyte 

phenotype and serum metabolite profiles, with potential to function as biomarkers in 

GD and TAO. There is a large body of existing evidence in TAO for a role of the IGF-

1/IGF-1R axis, alterations in peripheral blood T cell memory status and T helper 

phenotype, as well as for aberrations in metabolism either as a cause or 

consequence of TAO pathogenesis, and this thesis has both supported and 

challenged some of these assertions in equal measure. 

 

6.2 Summary of experimental findings  

 

This thesis has demonstrated that: 

 

1. It is possible to reliably and repeatably measure monoclonal IGF-1R antibody with 

two novel immunoassays, based on the principles of existing assays used in the 

quantification of other autoantibodies; 

 

2. These immunoassays can be utilised in human sera, with subsequent 

measurement of putative serum IGF-1R-Ab; 

 

3. There is no significant difference in levels of measured IGF-1R-Ab between 

GD+TAO+, GD+TAO- and age- and sex-matched HC individuals and no correlation 
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between IGF-1R-Ab and any clinical parameter, particularly TAO clinical activity and 

severity scores, in keeping with recent studies utilising cell-based IGF-1R-Ab assays; 

 

4. T cell memory phenotype (both CD4+ and CD8+) is skewed in GD and TAO, with 

elevated proportions of naïve (CD45RO-CCR7+) and reduction of effector memory 

(CD45RO+CCR7-) T cells, with additional evidence of reduction in effector memory 

RA (CD45RO-CCR7-) CD8+ T cells, as compared to HC; 

 

5. The altered memory phenotype in GD and TAO is matched by a reduction in IFN-γ 

production by CD4+ and CD8+ T cells following PMA and ionomycin stimulation, 

without any change in the (early or late) activation state of T lymphocytes; 

 

6. There is no apparent variation between GD+TAO+, GD+TAO- and HC in 

proportions of CD4+CD25HighCD127Low regulatory T cells or CD4+CXCR5+ T 

follicular helper cells. In addition serum IL-21 levels, proposed to contribute to TAO 

pathogenesis from studies of MS patients undergoing immune reconstitution 

following Alemtuzumab therapy, were also unchanged; 

 

7. Metabolomic analysis of sera was able to differentiate GD+TAO+, GD+TAO- and 

HC patients, with additional separation of GD+TAO+ subjects on the basis of their 

clinical activity scores. Other parameters on which it was possible to distinguish 

patient groups included thyroid function, TRAb status and PTPN22 (R620W) GD 

susceptibility genotype. 
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8. Candidate metabolite markers found to discriminate groups of interest on 

metabolomic analysis included lactate, isopropanol, methylguanidine and pyruvate, 

although measuring the actual concentrations of metabolites, only isopropanol 

(GD+TAO versus GD+TAO-) and pyruvate (active GD+TAO+ versus inactive 

GD+TAO+) demonstrated significant differences. 

 

6.3 Is there over- or under-estimation of rates of TAO in GD? 

 

In the context of immunological measures we have determined no difference 

between GD+TAO+ and GD+TAO- patients, for example in T cell memory phenotype 

or in IGF-1R-Ab immunoassays. It was hoped that a differentiation between the 

groups may have been possible based on one of these parameters, with subsequent 

potential to use these as biomarkers. However, in retrospect, the clinical separation 

of GD patients into TAO+ and TAO- groups may be difficult given that TAO can be 

demonstrated by orbital imaging in the majority of patients with GD.25  Indeed, many 

previous studies in GD have not necessarily distinguished those with ophthalmic 

manifestations of GD from those without. 

 

It may also be that there is an overestimation of the rate of TAO in GD patients. 

Anecdotally, the oft-quoted rate of the presence of clinically manifest TAO in GD 

patients appears to be unrealistically high. The accepted literature attests that 30-

50% of GD patients will go on to develop TAO, with 85% of these doing so within 18 

months of their diagnosis with AITD.22 From my cohort of GD patients (without 

clinically apparent orbitopathy at recruitment) only one subject has apparently 

developed TAO, with a current minimum follow-up of over 18 months.  
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Reviewing the published literature in this area, TAO is felt to be clinically relevant in 

25% of unselected GD patients if eyelid signs are excluded and 40% if eyelid signs 

are included.469 It is interesting to note that many of the articles stating a 30-50% rate 

of TAO in GD patients either do not make reference to the original source of this 

data, instead quoting a review paper (which itself may have referenced yet another 

review) and not providing an adequate original reference. The earliest reference that 

could be found from an extensive retrospective review of the TAO literature was by 

Teng et al in 1977. However, this article was actually concerned with the follow-up of 

a cohort of euthyroid TAO patients over a number of years, in order to determine 

their eventual thyroid function, rather than a group of GD patients followed up to 

determine the proportion developing TAO.470 It may therefore be that the rate of 

conversion to TAO in GD patients is less than that often cited. This is important in the 

future planning of services for GD and TAO, in providing a rationale for future large-

scale studies in this area and in power calculations for future clinical trials. 

 

6.4 A context for the role of the IGF-1/IGF-1R axis in TAO 

 

If it is not the case that serum IGF-1R-Ab bind to IGF-1R on orbital fibroblasts, 

initiating production of T cell chemoattractants and hyaluronic acid and inducing 

proliferation and differentiation toward orbital preadipocytes or myofibroblasts, then 

what other models of TAO pathogenesis may be proposed? Is there an interaction 

between IGF-1R and TSH-R following TRAb binding to TSH-R? Does IGF-1R 

potentiate TSH-R-mediated signalling? Is there a shared antigenic epitope between 

TSH-R and IGF-1R? 
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From the results of the various reported IGF-1R-Ab assays it has been suggested 

that IGF-1 itself may act in an autocrine/paracrine manner within orbital tissues. If 

autocrine/paracrine orbital IGF-1 production were elevated in TAO then orbital 

fibroblasts would be well-equipped to bind IGF-1, given their higher levels of IGF-1R 

expression and exaggerated inflammatory responses. Certainly, there is evidence for 

autocrine/paracrine functioning of IGF-1 in other tissues. When hepatic IGF-1 

secretion is abolished in a mouse model, with a 75% reduction in serum IGF-1, 

normal postnatal growth still takes place. This has been presumed to be because of 

autocrine/paracrine production of IGF-1.471,472 There is also evidence that cells of the 

immune system can produce IGF-1 and IGFBP,473,474 and levels of IGF-1 can be 

modulated by cytokines.475 In addition, IGF-1 induces T cells to produce differing T 

helper cytokines,225 and activation of the T lymphocyte receptor complex alters IGF-

1R expression.236 Whether locally-produced IGF-1R-Ab or autocrine/paracrine IGF-1 

contributes to the pathology in TAO has not yet been explored. 

 

6.5 Comparison between TAO and RA as a model for future investigations in 
peripheral T cell memory phenotype 

 

It is possible to draw similarities with TAO and other autoimmune diseases, 

particularly RA. It has been proposed, for example, that RA may develop in a non-

linear fashion. This condition is known to be related to a number of genetic 

polymorphisms and environmental risk factors.476 Prior to development of the full 

manifestations of synovitis in the primary site of inflammation, the synovial joint, 

(analogous to orbital inflammatory disease in TAO) there is a period of systemic 
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autoimmunity with rheumatoid factor and anti–citrullinated protein antibodies (akin to 

the TRAb, TPO-Ab and TG-Ab which may be present in GD).477 Indeed, the 

presence of these antibodies may predict future RA development.478 Likewise, RA is 

a T cell-mediated autoimmune condition likely related to an antigen-specific 

response, much as TAO is presumed to be.281,479 Inflammatory activity in TAO 

damages surrounding structures such as EOMs, blood vessels and the optic nerve, 

just as in RA the surrounding tendons, ligaments and bone may be damaged. 

Furthermore, despite definite joint-related disease there are also peripheral blood T 

lymphocyte phenotypic changes.374 

 

Following from the data on T cell phenotype and ageing, and given the age-matched 

status of the healthy controls, the increased naïve cells and reduced EM, with 

reduced IFN-γ production seen in the GD and TAO patients appears to be 

concordant with an apparent reversal of immunological ageing. In RA it has been 

postulated that there is “premature immunosenescence”, with loss of expression of 

CD28 and oligoclonal T cell proliferation, possibly due to a defect in generating new 

T lymphocytes.480  

 

In GD and TAO patients it may be possible to undertake a similar strategy to Koetz et 

al (2000), who measured TCR rearrangement excision circles (TREC) as a measure 

of the output of newly generated T cells from the thymus in RA patients. If new, naive 

T cells are truly increased there would be an increase in TREC-containing cells. In 

addition, if there is a true increase in naïve cells this would result in an adaptation by 

the ‘system’ to maintain homeostasis by reducing the proportion of memory T cells, 

as we observed. Another strategy would therefore be to measure telomere length to 
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assess the degree of T cell turnover and proliferation. For example in RA it was 

found that TREC were reduced, suggesting reduced thymic activity, and telomere 

length was shortened as compared to age-matched controls.480 One would 

hypothesise that the opposite would be seen in TAO, with increased thymic 

emigration responsible for increased naïve T cells. Again, this could link to a role of 

IGF-1R, which has been recognised to facilitate thymocyte development and, by 

extension, naïve T cell production by the thymus.223 

 

6.6 Autoantibody profiling in GD and TAO 

 

Questions remain about the nature of the autoantigens in GD. GD is regarded as a 

true autoimmune disease due to its organ-specific impact on the thyroid gland, 

alongside a range of extra-thyroidal manifestations restricted to the orbit, pre-tibial 

skin and acra of the finger. Further evidence is the recently published recapitulation 

of thyroid autoimmunity and orbital inflammation in an animal model of TAO by 

immunisation with TSH-R plasmid.164 Lastly, there are generally good, although 

unpredictable, responses to immunosuppressive treatments. 

 

Rather than continuing to investigate only a limited selection of autoantigens, there 

may be a role for wider profiling of the serum autoantibody repertoire in GD and TAO. 

It is possible, for example, that autoimmune diseases, including AITD, are initiated by 

a number of autoantigens rather than a single target. In addition, it remains uncertain 

whether autoantibodies are the precipitants of autoimmune disease or whether they 

are a secondary effect related to inflammatory tissue damage. In this regard, protein 

microarrays consisting of a range of protein fragments, possible antigens, against 
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which to test serum immunoglobulins may provide a high-throughput means of 

generating novel future biomarkers. Libraries of such proteins exist, such as the 

Human Protein Atlas project. Certainly, such a strategy has recently been used in a 

range of autoimmune and inflammatory diseases, including MS, SLE, ankylosing 

spondylitis and autoimmune hepatitis.481-483 

 

For example, Ayoglu et al (2013) tested 90 plasma samples, of only 10 µl volume, 

from MS patients for 11,520 protein fragments of 80-100 residues, representing 7644 

unique proteins. Following this, 51 differentially regulated antigens were found from 

verification in 376 further MS patients.481 Importantly the antigen library did not 

necessarily consist of proteins known to be associated with MS. Rather, the potential 

epitopes were produced and selected in an unbiased manner, aiming to be based on 

unique sequences from protein-encoding genes from different regions of low 

similarity. This inherently untargeted approach is felt to be the strength of the 

technique in identifying novel disease targets. The authors acknowledged that the 

limitation of the methodology is that it may not take account of epitopes which have 

the ability to alter their conformation. However, it is attractive to consider the 

possibility of utilising the serum samples already biobanked in GD and TAO patients 

in such a technique. 

 

6.7 Alternative strategies for metabolic analysis in GD and TAO 

 

The candidate metabolic biomarkers identified in my study to differentiate GD and 

TAO patients (isopropanol) and active and inactive TAO patients (pyruvate) require 

validation with a new cohort of GD, TAO and HC subject samples. In addition, a 
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wider variety of different biofluids and tissues should be gained including urine and, 

given the possible role for the gut microbiome in producing isopropanol, faeces. 

 

There is an expanding role for metabo-genomics in the assessment of disease, 

combining examination of genotype with genome-wide association studies (GWAS) 

and metabolic markers to learn more about the consequences of specific 

polymorphisms on the downstream effects of both genetics and environment.484 

Clearly, no particular susceptibility genes have been noted for TAO, but those for GD 

(e.g. PTPN22, CTLA-4) could certainly be evaluated 

 

Longitudinal sampling of individual subjects should be given priority. Serum and urine 

could be taken from the initial time of presentation with GD and repeated sampling 

undertaken throughout all stages of disease - commencement of anti-thyroid drug 

treatment, radioiodine treatment, subsequent development of TAO and following the 

active, stable and quiescent phases of disease. In so doing one may hope to predict 

the likelihood of onset of TAO in patients initially presenting with GD alone and also 

to prognosticate responses to existing and future therapies. Certainly, there are 

indications that this may be possible in such diseases as RA.485 Furthermore, 

longitudinal sampling would: 1) permit a time-course of the variations in the important 

metabolite peaks occurring during the course of GD and TAO; 2) permit identification 

of any “switch” in metabolic pathways which predominate at different stages in 

disease; 3) eliminate any variations in dietary, medication and lifestyle factors that 

are inherent in different subjects within the same study group. The difficulty of such a 

study is that samples would need to be taken from a large number of GD patients in 

order for there to be a sufficient number of eventual subjects to follow through to the 
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full course of their TAO, particularly given previous comments in this chapter about 

the possibly erroneous published rates of conversion from GD to TAO. 

 

It may be possible to examine the metabolomic profile of orbital fibroblast 

supernatant as a means of dissecting the metabolic responses to different insults. In 

particular, culturing orbital fibroblasts from TAO patients with different oxidative 

stress stimuli such as cigarette smoke extract, hypoxic conditions or H2O2, or 

otherwise antioxidative molecules such as ascorbic acid. Furthermore, culturing 

orbital fibroblasts with GD-IgG and assessing the metabolomic outcomes may be a 

strategy for assessing the downstream activities of genes associated with a switch in 

orbital fibroblast phenotype. In this way it may be possible to differentiate 

metabolites, and hence metabolic pathways, that are switched on or off in an in vitro 

model of TAO.  

 

6.8 In vivo imaging of TAO orbital inflammation 

 

Taking metabolite evaluation further, there is precedent for extending NMR analysis 

of biofluids to non-invasive, in vivo imaging of diseased anatomical sites and 

prognosticating disease states based on such imaging. For example 1H-NMR 

spectroscopy (MRS), the magnetic resonance imaging of a diseased structure, and 

evaluating the metabolite profile within, has been shown to have a role in the 

assessment of paediatric brain tumours.486,487 In this technique a small area of 

interest is examined with NMR  and bioinformatic techniques being used to measure 

the metabolite profile of that structure.  
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Recent studies have assessed the role of MRS within low-grade paediatric brain 

tumours. Significant differences were found between brain tumour histological 

subtypes, with discriminatory metabolites such as choline and myoinositol being 

determined.486 In addition, a prospective study imaging paediatric brain tumour 

patients, with median follow-up of 35 months, determined that MRS biomarkers such 

as glutamine and N-acetyl aspartate predicted improved brain tumour survival.487 It is 

reasonable to assume that this may be extended to imaging of the orbital structures 

such as orbital adipose tissue and EOMs in TAO, taking GD patients at presentation 

with clinical manifestations of TAO, performing MRS and following these patients up 

over time to determine metabolites associated with subsequently more active or 

severe disease, or disease that responded poorly to immunosuppressive treatment.  

 

Magnetic resonance imaging (MRI) is a routine part of TAO patient assessment, so 

extending this investigation to include MRS should not be prohibitively expensive, or 

uncomfortable for patients. MRI T2 relaxation times have been shown by a number of 

authors to correlate with TAO clinical activity.488 However, this still does not address 

the fundamental question for patients with GD, namely whether they will develop 

TAO at all. Another in vivo imaging technique may be of utility in GD and TAO in this 

regard. Digital infrared thermal imaging (thermography), measuring the temperature 

of a structure as a surrogate for inflammatory processes occurring, has been 

established in two studies to discriminate active from inactive TAO and to correlate 

with cessation of inflammatory activity following high-dose corticosteroid 

therapy.489,490 The natural extension of this cheap, quick, non-invasive technique is to 

prospectively and longitudinally image GD patients from their presentation with AITD 

and throughout any eventual development of TAO. It would be hypothesised that any 
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developing orbital inflammatory process could be detected in a patient classified to 

only have GD and necessary steps taken to treat TAO early. 

 

Escalating intervention, in terms of medical and surgical therapies, is based on the 

clinical identification of inflammatory activity. Selectively targeting interventions such 

as smoking cessation, selenium (or other anti-oxidants) and possible future 

development of immuno-modulatory drugs to those patients at greatest risk of 

progression will be both more cost effective of benefit to patients. 

 

6.9 Conclusion 

 

A number of biomarkers for a range of diseases already exist, so to aim for such 

indicators is not necessarily an unachievable ambition in GD and TAO. For example, 

BRCA genes to determine risks of breast cancer,491 blood pressure as a risk factor 

for stroke, levels of certain forms of cholesterol in coronary and vascular disease and 

C-reactive protein in inflammation. Furthermore, anti-citrullinated antibodies can be 

detected in the blood before the first symptoms of RA appear.477  

 

One may argue that it is currently futile to explore biomarkers permitting the early 

diagnosis and prognosis of TAO as, at present, no pre-emptive treatment strategies 

are available to obviate TAO. It is acknowledged that no large-scale, randomised 

trials currently exist on, for example, the role of smoking cessation in GD in 

preventing TAO. Neither is their evidence for the early treatment with 

immunosuppressive therapies (whether corticosteroid, disease-modifying agents or 

biologic therapies) in preventing TAO development. However, one may use the 
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alternative argument that if such therapies are created in future, therapies that can 

prevent TAO onset in GD patients, then to target these therapies will require a 

biomarker to determine exactly which patients should be treated. 

 

The key to the optimal future management of TAO is in the identification of GD 

patients most likely to be afflicted by the extra-thyroidal manifestations of orbital 

inflammatory disease at the earliest possible, even pre-clinical, stage. Further, the 

earliest recognition of those TAO patients pre-determined to have the most active 

and severe disease will provide the best possibility to intervene and avoid the 

debilitating and possibly sight-threatening consequences of this disease.  
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7.1 Appendix 1 

 
 

 

 

 

Appendix 1: Representative example of the output and interpretation of melting curve analysis for 
determination of PTPN22 (R620W) genotype from whole blood samples of GD+TAO+, GD+TAO- and 
HC subjects. Subjects were divided into GG (wild type), GA (heterozygotes) and AA (homozygous for 
R620W single nucleotide polymorphism). Complete protocol is detailed in Chapter 2.10 and 2.11. 
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7.2 Appendix 2 

 

 

 

 
Appendix 2: Results of IGF-1R-Ab ELISA 1 (A) and ELISA 2 (B) for GD+TAO+ subjects 
demonstrating the full spectrum of clinical activity scores (CAS). Horizontal lines represent median 
results for each CAS group. There were no significant differences between any of the patient groups 
with either ELISA 1 or ELISA 2. Non-parametric analysis was undertaken with Kruskal-Wallis (with 
Dunn’s post-test). (NS: Not significant).  
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7.3 Appendix 3 

 

 

 

 

Appendix 3: Results of IGF-1R-Ab ELISA 1 (A) and ELISA 2 (B) for GD+TAO+ subjects 
demonstrating the full spectrum of clinical activity scores (CAS). In this analysis any patients with CAS 
of 0 and with TAO for >18 months (and therefore presumed to be ‘burnt out’ cases) were removed 
from the analysis. Horizontal lines represent median results for each CAS group. There were no 
significant differences between any of the patient groups with either ELISA 1 or ELISA 2. Non-
parametric analysis was undertaken with Kruskal-Wallis (with Dunn’s post-test). (NS: Not significant).  
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7.4 Appendix 4 

 
 

 

Variable Odds Ratio 

Age 
≤40 years 
>40 years 

 
1.0 
0.49 (0.1 – 2.9) p=0.4 
 

Sex 
Female 
Male 

 
1.0 
2.4 (0.4 – 14.5) p=0.3 
 

Smoker 
No 
Yes 

 
1.0 
1.2 (0.3 – 4.1) p=0.8 
 

Duration of GD 
≤12 months 
>12 months 

 
1.0 
1.5 (0.4 – 5.9) p=0.5 
 

Thyroid Status 
Euthyroid 
Hypothyroid 
Hyperthyroid 

 
1.0 
0.7 (0.1 – 4.8) p=0.7 
1.7 (0.2 – 16.1) p=0.7 
 

CAS 
<3 
≥3 

 
1.0 
0.7 (0.2 – 2.9)p=0.6 
 

 

 

 

 

Appendix 4: Multivariable logistic regression analysis to assess the independent association of the 
results of IGF-1R-Ab ELISA 1 with GD+TAO+ subject age, sex, cigarette smoking status, duration of 
GD, thyroid status (euthyroid, hypothyroid, hyperthyroid) and clinical activity score (CAS). There was 
no independent association of IGF-1R-Ab as assessed by either assay with any of the variables 
examined, validating the univariate analyses determined in Chapter 3.7.4. For ELISA 1 the 
comparison was for those patients with percentage inhibition of Biotin Des-IGF-1 of <20% or ≥20%. 
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7.5 Appendix 5 

 
 
 

Variable Odds Ratio 

Age 
≤40 years 
>40 years 

 
1.0 
0.9 (0.2 – 4.0) p=0.9 
 

Sex 
Female 
Male 

 
1.0 
4.1 (0.7 – 22.8) p=0.1 
 

Smoker 
No 
Yes 

 
1.0 
1.7 (0.5 – 5.4) p=0.4 
 

Duration of GD 
≤12 months 
>12 months 

 
1.0 
1.1 (0.3 – 3.9) p=0.9 
 

Thyroid Status 
Euthyroid 
Hypothyroid 
Hyperthyroid 

 
1.0 
1.4 (0.2 – 9.7) p=0.7 
0.3 (0.02 – 4.6) p=0.4 
 

CAS 
<3 
≥3 

 
1.0 
0.5 (0.1 – 2.0) p=0.3 
 

 

 

 

 

Appendix 5: Multivariable logistic regression analysis to assess the independent association of the 
results of IGF-1R-Ab ELISA 2 with GD+TAO+ subject age, sex, cigarette smoking status, duration of 
GD, thyroid status (euthyroid, hypothyroid, hyperthyroid) and clinical activity score (CAS). There was 
no independent association of IGF-1R-Ab as assessed by either assay with any of the variables 
examined, validating the univariate analyses determined in Chapter 3.7.4. For ELISA 2 the 
comparison was for those patients with Optical Density of <1 and ≥1.  
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7.6 Appendix 6 

 
 
 

 
 

 
 
 
 
Appendix 6: Summary of the protocol for preparation of peripheral blood mononuclear cells (PBMC) 
from whole blood samples. Complete protocol is detailed in (Chapter 2.9.2).  
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7.7 Appendix 7 

 

 

 
 
Appendix 7: Summary of the protocol for preparation of peripheral blood mononuclear cells (PBMC) 
from whole blood samples for cell sorting and carboxyfluorescein diacetate succinimidyl ester (CFSE) 
proliferation studies. Complete protocol is detailed in Chapter 4.4.1.  
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7.8 Appendix 8 

 

 

 
 
Appendix 8: Summary of the protocol for preparation of peripheral blood mononuclear cells (PBMC) 
from whole blood samples for Phosflow analysis. Complete protocol is detailed in Chapter 4.4.2.  
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7.9 Appendix 9 

 
 

 

 

Appendix 9: Representative plots for IGF-1R expression on different two thyroid cancer cell lines, K1 
(A) and TPC1 (B), kindly provided by the University of Birmingham Translational Thyroid Research 
Group. These experiments were performed as positive controls for IGF-1R surface staining studies of 
CD4+ and CD8+ memory T lymphocyte populations of CD4+ (A) and CD8+ (B) For each population 
ΔMFI was calculated as MFI [IGF-1R] – MFI [Isotype Control]. Complete protocol for IGF-1R surface 
staining is detailed in Chapter 4.5.1 and the T lymphocyte IGF-1R ΔMFI in Chapter 4.6.7. 
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