
SELF-AWARE SOFTWARE ARCHITECTURE
STYLE AND PATTERNS FOR CLOUD-BASED
APPLICATIONS

by

FUNMILADE OLUGBENGA FANIYI

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
June 2015

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

Modern cloud-reliant software systems are faced with the problem of cloud service

providers violating their Service Level Agreement (SLA) claims. Given the large pool of

cloud providers and their instability, cloud applications are expected to cope with these

dynamics autonomously. This thesis investigates an approach for designing self-adaptive

cloud architectures using a systematic methodology that guides the architect while design-

ing cloud applications. The approach termed Self-aware Architecture Pattern promotes

fine-grained representation of architectural concerns to aid design-time analysis of risks

and trade-offs. To support the coordination and control of architectural components in

decentralised self-aware cloud applications, we propose a Reputation-aware posted offer

market coordination mechanism. The mechanism builds on the classic posted offer market

mechanism and extends it to track behaviour of unreliable cloud services.

The self-aware cloud architecture and its reputation-aware coordination mechanism

are quantitatively evaluated within the context of an Online Shopping application us-

ing synthetic and realistic workload datasets under various configurations (failure, scale,

resilience levels etc.). Additionally, we qualitatively evaluated our self-aware approach

against two classic self-adaptive architecture styles using independent experts’ judgement,

to unveil its strengths and weaknesses relative to these styles.

Acknowledgements

On the journey that gave birth to this thesis, I have had the privilege of enjoying the

support of many wonderful people. First, I’ll like to specially thank my supervisor, Dr.

Rami Bahsoon, for his immeasurable support and patience throughout the course of my

study. Your dedication to your students and research is an example worth emulating.

I’m sincerely grateful to members of my thesis group: Prof. Xin Yao, Dr. Nick Hawes,

and Dr. Marco Cova. Your useful insights in the bi-annual meetings have shaped my

understanding of how to do research and made my experience an enjoyable one.

I’m grateful to the School of Computer Science, University of Birmingham, for spon-

soring my studies and many academic conferences over the course of the PhD programme.

I thank members of the EU Engineering Proprioception in Computing Systems (EPiCS)

project for many fruitful collaborations during the course of the project. Noteworthy are

Peter R. Lewis, Tao Chen, Leandro Minku, and EPiCers in the Birmingham team.

Thanks to members of SERG for making life in Computer Science an interesting one.

Lots of thanks to Bendra, Ronke, and Ogechi for proofreading drafts of this thesis.

I sincerely thank Dr Nelly Bencomo and Dr Shan He for the time and effort in exam-

ining this thesis and providing very useful comments. The stimulating discussions during

the viva and useful feedback has helped to significantly improve the thesis.

Special thanks to my brother from another mother, Ayobami Adediji. Words cannot

describe how grateful I am for your support. I also thank members of RCCG Winners

Place Aldershot for their prayers and encouragement, especially the Fagbayimu’s.

I’m especially grateful to my family. Amos, Bola, Fola, Fade, Adura, and Bayo,

words cannot describe how much I appreciate your support and patience through many

emotional roller coasters typical of graduate studies. You are the most wonderful family I

could wish for. Special thanks to my wife, Olumayowa, for being a strong pillar of support

and a friend I can always count on. Thank you May.

Finally, I thank my Lord Jesus Christ for being my Helper.

CONTENTS

List of Figures . vii

List of Tables . x

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.2.1 Areas Requiring Improvement . 3

1.3 Thesis Overall Aim and Objectives . 4

1.4 Research Philosophy and Method . 6

1.5 Running Example: Online Shopping Application in Federated Cloud 7

1.6 Main Contributions . 10

1.6.1 Summary of Contributions By Chapter 11

1.7 Roadmap of the Thesis . 11

2 Systematic Review of Service Level Management in Cloud 14

2.1 Overview of the Chapter . 14

2.2 Preambles . 15

2.2.1 Service Level Agreement in Computing 16

2.2.2 Life cycle of a Service Level Agreement 17

2.2.3 Why Autonomic Solution to Cloud Resource Management? 19

2.3 Systematic Review Methodology and Results 21

2.3.1 Research Methodology . 21

2.3.2 Results of Systematic Review . 22

2.3.3 Threat to Validity . 26

2.3.4 Gap Analysis . 27

2.4 Summary . 28

3 Architecture-based Self-Adaptation Styles 29

3.1 Overview of the Chapter . 29

3.2 Scope and Classification Framework . 31

3.3 Representative Self-adaptive Architecture Styles 35

3.3.1 IBM’s Autonomic Computing Reference Architecture 36

3.3.2 MAPE based Architectures . 38

3.3.3 3-layered Self-managed Architecture 42

3.3.4 Decentralised Reference Architecture 45

3.3.5 FUSION . 48

3.3.6 Observer-Controller (OC) . 50

3.3.7 Dynamic Data-Driven Application System 52

3.4 Comparative Analysis . 55

3.5 Gap Analysis . 58

3.5.1 Goal-awareness . 58

3.5.2 Time-awareness . 59

3.5.3 Interaction-awareness in Decentralised Architectures 60

3.5.4 Fine-grained Knowledge and Trade-off Analysis 61

3.6 Summary . 61

4 Architecture Style and Patterns for Self-aware Systems 63

4.1 Overview of the Chapter . 63

4.2 The Self-Aware Architecture Style . 65

4.2.1 Primitives of Self-aware Architecture Style 68

4.3 Patterns for Self-aware Architecture Style 70

4.3.1 Basic Information Sharing Pattern 72

4.3.2 Coordinated Decision-making Pattern 74

4.3.3 Temporal Knowledge Sharing Pattern 76

4.3.4 Goal Disseminating Pattern . 78

4.3.5 Meta-self-awareness and Self-aware Patterns 81

4.4 Related Work . 83

4.4.1 Classic Self-adaptive Architecture Styles 83

4.4.2 Approaches with Explicit Claim to Self-awareness 84

4.5 Summary . 84

5 Market-inspired Mechanism for Decentralised Coordination 86

5.1 Overview of the chapter . 86

5.2 Preliminaries . 88

5.3 Markets and Clouds . 89

5.3.1 Centralised and Decentralised Markets 89

5.3.2 Reputation Management and Markets 92

5.4 Posted Offer Market Mechanism . 93

5.4.1 Previous Extensions to the Mechanism 94

5.5 Design of Reputation-aware Posted Offer Market 95

5.5.1 Refinement of Classic Posted Offer Mechanism 95

5.5.2 Trading Strategies and Procedures 102

5.6 Instantiation of Self-aware Cloud Architecture 107

5.7 Empirical Study of Self-aware Cloud Architecture 110

5.7.1 Setup and Justification for Experimental Approach 110

5.7.2 Objective of the Study . 111

5.7.3 Study under Synthetic Workload 111

5.7.4 Study under Real Workload - Google Cluster Dataset 116

5.8 Conclusion . 121

6 Trade-off and Risk Analysis of Self-aware Cloud Software Architecture123

6.1 Overview of the Chapter . 123

6.2 Evaluation Method . 125

6.2.1 Architecture Trade-off Analysis Method (ATAM) 125

6.2.2 The ATAM Workshop . 127

6.2.3 Analysing Trade-offs using Utility Tree 128

6.3 Case 1: Evaluation of self-adaptivity and trade-offs in 3-Layered Architecture130

6.3.1 Online Shopping Application Induced by 3-layered Architecture style131

6.3.2 Analysis of Architectural Decisions 132

6.4 Case 2: Evaluation of self-adaptivity and trade-offs in DDDAS Architecture 134

6.4.1 Onling Shopping Application Induced by DDDAS Architecture . . . 135

6.4.2 Analysis of Architectural Decisions 137

6.5 Case 3: Evaluation of self-adaptivity and trade-offs in Self-aware Architecture138

6.5.1 Online Shopping Application Induced by Self-aware Architecture . . 138

6.5.2 Analysis of Architectural Decisions 140

6.6 Comparative Analysis of ATAM Results 141

6.6.1 Risks . 142

6.6.2 Sensitivity Points . 143

6.6.3 Trade-off Points . 144

6.6.4 Threat to Validity . 145

6.7 Reflection on Self-aware Architecture Patterns through External Applica-

tion Designers . 146

6.7.1 Approach . 146

6.7.2 Key Findings . 146

6.8 Summary . 149

7 Conclusion and Future Work 151

7.1 Overview of the Chapter . 151

7.2 Contributions of the Thesis . 152

7.2.1 Self-aware Architecture Patterns . 152

7.2.2 Decentralised Market Mechanism for Component Coordination . . . 153

7.2.3 Systematic Review of SLA-based Cloud Research 154

7.2.4 Classification Framework for Self-adaptive Architecture Styles . . . 155

7.3 Reflection on the Research . 155

7.3.1 Generality of results . 155

7.3.2 Usefulness of results . 156

7.4 Future Work . 156

7.4.1 Tool Support for Self-aware Architecture Design 157

7.4.2 Heterogeneity of Architectural Patterns among Self-aware Nodes . . 157

7.4.3 Systematic Market Mechanism Selection for Cloud Architectures . . 158

7.4.4 Improved Reputation-aware Posted Offer Market Mechanism 158

7.4.5 Socially-aware Adaptive Cloud Software Architecture 159

7.5 Closing Remarks . 160

List of References 161

Appendices 181

A List of Publications 182

B Systematic Review Process 184

B.1 Acronyms and Meaning . 184

B.2 Review Protocol . 185

B.3 Inclusion and Exclusion Criteria . 185

B.3.1 Inclusion Criteria . 185

B.3.2 Exclusion Criteria . 185

B.4 Search Process . 187

B.4.1 Choice of Indexing Service . 187

B.4.2 Search Query . 187

B.4.3 Search Result . 187

C Architectural Analysis Form 189

LIST OF FIGURES

1.1 Online Shopping Application faces a selection problem when considering

shipping and supplier services per order. 7

1.2 High-level overview of federated cloud applications showing reliance on

cloud services . 9

1.3 Roadmap of the Thesis . 12

2.1 Classic SLA Management Life Cycle . 18

3.1 Classification Framework for Self-adaptive Architecture Styles 33

3.2 MAPE-K Architecture Style. Source: [100] 36

3.3 Oreizy et al. Architecture Style. Source: [129] 39

3.4 Rainbow Reference Self-adaptive Software Architecture. Source: [45] 40

3.5 Architecture of Znn.com news application. Source: [44] 41

3.6 Self-Managed Architecture. Source: [105] 43

3.7 Decentralised Reference Architecture. Source: [167] 46

3.8 Decentralised Reference Architecture of Traffic Monitoring System. Source:

[167] . 48

3.9 FUSION Framework. Source: [64] . 49

3.10 Observer-Controller Architecture Style. Source: [146] 50

3.11 Observer Controller Architecture Patterns. Source: [146] 51

3.12 DDDAS feedback loop. Source: [128] . 53

3.13 DDDAS-based Autonomic Cloud Architecture. Source: [118] 54

4.1 Overview of Architecture of a Self-aware Node. Source: [68] 67

4.2 A Self-aware Node showing interaction of subcomponents realising different

levels of awareness. Source: [68] . 69

4.3 Notation for Describing Self-aware Architecture Pattern 71

4.4 Basic Information Sharing Pattern . 72

4.5 Concrete Instance of the Basic Pattern . 73

4.6 Coordinated Decision-making Pattern . 75

4.7 Concrete Instance of Coordinated Decision-making Pattern 75

4.8 Temporal Knowledge Sharing Pattern . 76

4.9 Concrete Instance of Temporal Knowledge Sharing Pattern 77

4.10 Goal Disseminating Pattern . 79

4.11 Goal Disseminating Pattern (with time-awareness capability) 79

4.12 Concrete Instance of Goal Disseminating Pattern (variant 1) 80

4.13 Concrete Instance of Goal Disseminating Pattern (variant 2) 80

4.14 Concrete Instance of Goal Disseminating Pattern (including meta-self-awareness

component) . 82

5.1 Centralised and Decentralised Market Set-up. Source: [71] 90

5.2 Conceptual Relationship Between Cloud Computing and Markets. Source:

[71] . 92

5.3 Reputation-aware Posted Offer Market Mechanism 97

5.4 Reputation-aware Posted Offer Mechanism in Cloud System 98

5.5 Failure Rate Interval . 98

5.6 Self-aware Cloud Architecture of an SBA’s Adaptation Subsystem 109

5.7 Low Resilience Cases - Sensitivity to Failure 112

5.8 High Resilience Cases - Sensitivity to Failure 112

5.9 Low Resilience Scenarios - Overhead of finding seller agent 114

5.10 High Resilience Scenarios - Overhead of finding seller agent 114

5.11 SLA Compliance for Bargain Hunters and Time Savers when using Reputation-

aware and Non-Reputation-aware Mechanism under synthetic workload . . 115

5.12 Trade-off between SLA Compliance and Average Overhead 115

5.13 Distribution of Jobs in Google Cluster Dataset 116

5.14 Sensitivity to Failure - Google Cluster Dataset 117

5.15 SLA Compliance for Bargain Hunter and Time Savers when using Reputation-

aware and Non-Reputation-aware Mechanism under real workload 118

5.16 Sensitivity to Failure for Oscillatory Frequencies 1, 5, and 10 119

5.17 SLA Compliance for Oscillatory Frequencies (OSC) 1, 5, and 10 120

6.1 Utility tree for Adaptation Engine Subsystem of Online Shopping Application129

6.2 Cloud Architecture Induced by 3-Layered Architecture Style. Source: [70] . 130

6.3 Components of Buyer and Seller Nodes. Source: [70] 132

6.4 Cloud Architecture Induced by DDDAS Architecture Style. Source: [70] . . 135

6.5 Illustrates the trade-off space between time to select a service and the cost

of searching for that service using Bargain Hunter and Time Saver strategies140

6.6 Comparison of Sensitivity Points by Architecture Style 143

6.7 Comparison of Trade-off Points by Architecture Style 144

6.8 Temporal Knowledge Aware Pattern. Source: [40] 148

6.9 Temporal Goal Aware Pattern. Source: [40] 148

LIST OF TABLES

1.1 Summary of Contributions By Chapters 11

2.1 Software Architecture Styles By XaaS . 25

2.2 Trade-off Analyses Space . 26

3.1 Comparison of Architecture Style for Self-adaptive System 56

3.2 Comparison of Architecture Style for Self-adaptive System (continued) . . 57

5.1 Variants of Posted Offer Market Mechanism 94

5.2 Definition of Variables . 99

5.3 Resource Node Failure Scenarios . 100

5.4 SLA Model: Attribute-Metric-Value for Buyer and Seller Agents 100

5.5 Rationale for Selecting Architecture Pattern 107

5.6 Responsibility of levels of awareness in SLA-based Cloud Architecture . . . 108

5.7 Architecture Artefact that realise Subcomponents Self-aware cloud archi-

tecture . 109

5.8 Schedule for seller nodes to change their resilience levels. Note: in accor-

dance with the Google Cluster Data, the last time step is 22700, hence,

transition time steps are evenly distributed across the simulation life time. 118

6.1 ATAM Workshop Activities . 128

6.2 Summary of Findings from Qualitative Analysis. In conformance with prac-

tices in software architecture evaluation[10][97], these findings should be inter-

preted as outcomes of design-time analysis of candidate architectures and not

findings implemented architectural instances. The findings serve as indicators of

expected behaviour of the studied styles. 142

6.3 Activities for Independent Assessment of Self-aware Patterns 147

B.1 Search Result (Initial) . 188

B.2 Search Result (After Applying Exclusion Criteria). Section 2.3.3 details

our effort to assert the validity of the review’s findings for papers published

after 2013. 188

CHAPTER 1

INTRODUCTION

“Man tries to make for himself in the fashion that suits him best a

simplified and intelligible picture of the world; he then tries to some extent

to substitute this cosmos of his for the world of experience, and thus to

overcome it. This is what the painter, the poet, the speculative philosopher,

and the natural scientist do, each in his own fashion.”

Albert Einstein

1.1 Motivation

Today’s software systems, influenced by new trends such as social networking, are orders

of magnitude larger than traditional systems that were in use about a decade ago. The

cloud is the preferred platform for provisioning these modern large-scale systems due to

its scalability and cost savings. Cloud computing provides on-demand access to an infinite

pool of computational resources at a reduced costs than those incurred when provisioned

in-house [28] [8].

As with conventional computing systems, cloud infrastructures are error-prone. Un-

predictable software crashes and service outages are unavoidable realities of cloud systems.

To assure cloud users (also referred to as application owners in this thesis), cloud providers

agree to service terms that encode expected quality of service levels along with penalties

1

to be enforced in the event of failure to comply. These service terms are contracted as

Service Level Agreements (SLAs).

SLA management (SLM)[112] is the field concerned with end-to-end management of a

service throughout its life. At the heart of SLM research is the problem of how to allocate

limited resources to users. It has been shown that resource allocation to service-based

applications, such as cloud applications, to meet SLAs is an NP (non-polynomial) hard

problem [7] [30]. Since demand for cloud resources may rapidly exceed planned forecast

[164], cloud providers are unlikely to always achieve 100% SLA compliance.

As cloud applications become more mission-critical, users are switching from using a

single cloud to a federated provisioning model. In the federated model, cloud services

can be purchased from multiple cloud providers and combined to fulfil an application’s

requirements. By spreading the risks of SLA violation among multiple clouds, federated

cloud applications can utilise a subset of these clouds that are reliable per time. It is

projected that novel software architectures will be required for the vision of SLA compliant

federated cloud applications to be realised [141].

Self-adaptation [42] offers a cost-effective approach for modelling dynamics of federated

clouds and is promising at managing complex trade-offs among conflicting requirements.

This is because self-adaptation endows a system with the ability to manage changes in

itself and its operating environment with minimal human intervention [100]. However,

given that entities in a cloud federation are decentralised, the underlying self-adaptive ar-

chitecture of a federated cloud application requires an efficient mechanism for coordinating

clouds, owned by different entities.

1.2 Problem Statement

Cloud computing is an active research area, yet a systematic approach for architecting

federated cloud applications is an open problem. Typically, application owners continually

change their service level expectations (e.g. availability and performance) depending on

2

emergent business requirements. Cloud providers, on the other hand, face a number of

decision problems, for example: which SLAs to selectively violate in the event that all

users’ SLAs cannot be fulfilled? The focus of this thesis is on the application owner’s

perspective of the cloud SLM problem.

To cope with changing cloud providers’ situation (e.g. transient reliability), the ap-

plication’s software architect needs to design an application that is able to:

• coordinate interaction with a large pool of cloud providers,

• select candidate cloud providers per time without compromising service quality, and

• revise cloud provider selection if quality expectations are not satisfied.

These architectural concerns call for a self-adaptive approach that takes into account

dynamics of cloud providers, changing workload demands, and variations in end users’

service level objectives (SLOs).

1.2.1 Areas Requiring Improvement

The following areas of existing cloud SLM solutions require further investigation.

• Lack of a systematic approach to design and instantiate self-adaptive cloud archi-

tecture. Federated cloud applications require decentralised software architectures to

account for distributed ownership of architectural components. However, the liter-

ature on self-adaptive cloud software architectures mostly addresses the problem of

self-adaptation from a centralised perspective (e.g. [33] [127]). While there are lim-

ited attempts to proffer decentralised self-adaptive architectural solution, e.g. [92]

[15], such attempts do not follow a systematic approach to design and instantiate

candidate architectures.

• Coarse-grained architectural knowledge models and limited support for trade-off anal-

ysis. In cloud research, it is usually assumed that users’ SLOs do not conflict. Con-

sequently, trade-off among SLOs are not explicitly modelled and analysed to inform

3

decisions about cloud provider selection. Crucially, self-adaptive cloud architecture

(e.g. [121] [18]) do not explicitly model architectural knowledge concerns (e.g. goal,

time, and interaction) at a fine-grain. State of the art knowledge models offer lim-

ited support for detailed trade-off analysis and do not help unveil design decisions

that may pose risks to the cloud application.

• Poor scalability of existing cloud self-adaptation mechanisms. Federated cloud appli-

cations are deployed to large user populations, thus scalability is a key requirement.

Fundamentally the adaptation mechanism implemented in the application’s under-

lying architecture must be scalable to support various workload scenarios. State of

the art self-adaptive cloud applications utilise heuristics (e.g [32]), policies (e.g [89]),

and optimisation (e.g [175]) techniques, amongst others, as adaptation mechanisms.

Whilst these techniques are effective for small scale workload scenarios, they do not

scale well to large user populations.

1.3 Thesis Overall Aim and Objectives

This thesis proposes an architecture-centric self-adaptive approach for managing federated

cloud applications that aim to comply with customer SLAs. Inspired by the concept of

Computational Self-awareness [115] [13] we aim to contribute architectural patterns for de-

signing cloud applications. A self-aware system is one that “...possesses information about

its internal state (private self-awareness), and sufficient knowledge of its environment to

determine how it is perceived by other parts of the system (public self-awareness).” [115]

Computational self-awareness therefore enables sophisticated self-adaptive behaviour by

endowing a system with an explicit knowledge model about itself and its operating envi-

ronment. By decomposing knowledge into fine-grained levels of abstraction, as advocated

by the self-aware approach, analysis of architectural design decisions is simplified [68].

Concretely, we aim to propose architectural patterns, for designing self-aware feder-

ated cloud applications, that promotes a systematic analysis of knowledge concerns at

4

fine-grained levels. The architectural patterns shall provide guidance to software archi-

tects for instantiation of candidate architectures and support the process of trade-off and

risk analysis. We additionally propose an efficient and scalable market mechanism for

coordinating decentralised components of self-aware federated cloud applications.

The following objectives are formulated to help us realise this aim:

• To innovate self-aware architectural patterns that adheres to well-founded architec-

tural principles.

• To utilise the self-aware architectural patterns for systematically reasoning about

the design and analysis of cloud architectures.

• To design a scalable mechanism for coordinating interaction of decentralised com-

ponents in federated cloud applications designed based on the proposed patterns.

This thesis argues that self-awareness and its underlying primitives can be exploited to

design SLA-compliant federated cloud applications. The levels of self-awareness presented

in this thesis vary from simple stimulus-awareness to increasingly advanced meta-self-

aware level [115]. This thesis studies the problem of self-adaptation from an architecture

style perspective [134]. The primary motivation for this approach is to abstract the

architecting process to a high level of abstraction that affords studying the underpinning

principles that makes one software architecture different from another.

To ease the coordination of cloud applications, we turn to economics-inspired mar-

ket mechanisms as a solution concept. Suppose we view cloud providers as sellers and

application owners as buyers in a cloud market. The market analogy provides a good

abstraction for modelling interaction of these cloud players. Markets are decentralised,

scalable, and offer robust mechanisms for managing distributed systems [47]. Therefore,

we adopt a suitable market mechanism namely the posted offer market mechanism [101].

The canonical posted offer market mechanism informs control decisions solely based on

asking price of sellers, hence the ability of sellers to fulfil service levels is not considered.

We propose a novel refinement to the posted offer mechanism to address this limitation

5

by capturing historic interaction with sellers using concepts from reputation manage-

ment. Combining price and reputation ratings as decision variables therefore reduces the

likelihood of selecting unreliable sellers (cloud providers).

1.4 Research Philosophy and Method

Scientific research calls for a disciplined approach to arrive at new findings or combine

known results in novel ways. Research approaches vary depending on the investigated

questions and research area involved. Shaw [148] argued that Software Engineering (SE) as

a young discipline lacks consensus on accepted strategies for answering research questions.

Shaw advocates that SE should mature towards a set of well-accepted research strategies

to match practices in more established sciences.

Broadly, SE researchers often make use of qualitative approaches (e.g. argumentation

and case studies) or quantitative approaches (e.g. proofs and statistically deduced evi-

dences) to validate results. The quantitative approach aims for repeatable experiments,

to help identify errors and promote independent verification of results [162]. Whilst suffi-

cient for some areas (e.g. formal methods), quantitative approaches do not cater for the

entirety of research areas in SE.

Software architecture research, in particular, inherently produce results in the form of

abstractions and processes that help to design high quality software systems. The nature

of software architecture research promotes at its core results that are process-oriented

rather than concrete artefacts in the sense of software products. Two common techniques

for validating software architecture results [148] are (i) to collect and analyse evidences

from experts (qualitative) and (ii) to utilise case studies that demonstrate the proposed

concepts in controlled experiments (quantitative).

The approach taken in this thesis combines elements of qualitative and quantitative ap-

proaches. The investigated research questions are initially validated via systematic reviews

to identify gaps in the literature. The thesis thereafter investigates the hypothesis that

6

by designing self-adaptive systems using our proposed self-aware architectural patterns,

software architects are able to more explicitly capture and analyse risky architectural

design decisions and trade-offs among quality concerns. By systematically adhering to

self-aware architectural patterns, software architects are forced to: (i) thoroughly reason

about architectural design decisions, and (ii) account for interaction between architectural

design decisions and how they trade-off against one another. Consideration of these two

dimensions are crucial to improving coverage of the system’s design space [57].

To test this hypothesis, a representative online shopping application case study under-

pinning key attributes of federated clouds was motivated. Based on this case study, firstly

we validate our self-aware architecture patterns using findings from expert assessments of

candidate architectures. Secondly we empirically study and validate our reputation-aware

posted offer market mechanism within the context of the case study.

1.5 Running Example: Online Shopping Application

in Federated Cloud

Adaptation

Engine

Customer GUI

Order Manager

Supplier 1

Supplier N

Shipper 1

Shipper N

Service-based On-line Shopping Application

Workflow of Order Application

Customers place orders, via mobile or web interfaces,

for specific product(s) and specify delivery deadlines.

Adaption engine queries suppliers and shippers to see if

they can meet the order, within the delivery constraint at

the lowest price. Adaptation engine recommends options

(combinations of shippers/suppliers) to Procurement

service, where one of the options is automatically

effected or approved by a human operator

Variation Points

· Availability of shipper and supplier

services at query time is not guaranteed

· Prices offered by shipper and supplier

change with time

· Trustworthiness of a shipper or supplier at

meeting orders is not known a priori

Payment

Figure 1.1: Online Shopping Application faces a selection problem when considering ship-
ping and supplier services per order.

We consider an online shopping application as a representative example of service-

based applications (SBAs) deployed in a cloud federation (see figure 1.1). Typically, every

SBA is composed of abstract services, which are instantiated by functionally equivalent

7

concrete services at run-time (see examples in figure 1.2). The architecture of each SBA

differs in topology and its constituent abstract services. The goal of each SBA is to ensure

it complies with customer SLAs. Each SBA has a local perspective of its SLA compliance

goal and is unaware of goals of other SBAs.

SBAs share a large pool of cloud services that offer various service levels at prices

which changes with time. Externally, SBAs interact via the shared cloud services and

possibly interfere with one another when competing for services. Consequently, there is

a tension between each application’s local goal satisfaction and the (global) objective of

fair resource distribution among SBAs.

In order to manage application dynamics, each SBA is endowed with an adaptation

engine (component). The objective of the component is to manage the pool of cloud

services on behalf of the SBA and ensure its SLA goals are met. Thus the component

makes service selection decisions, reacts to time-varying workload demands, and releases

selected services in an elastic manner as demand dwindles. Moreover, the components

owned by different SBAs autonomously coordinate and resolve conflicts among themselves

to ensure their private goals are achieved while respecting the global objective.

To realise the online shopping federated cloud application it must address two issues.

1. Its software architecture must make it easy to represent and analyse architectural

concerns i.e. goals, timing variations, and interactions with external cloud services.

Therefore an architectural approach that caters for these concerns and provides

support for analysis is needed.

2. A coordination mechanism for efficiently managing interaction with the large pool

of cloud services without compromising SLA goals is essential.

As earlier motivated, this thesis adopts computational self-awareness as an approach

for capturing architectural concerns and market-based control for coordination of archi-

tectural components. Within the context of this case study, we investigate two main

research questions:

8

Federated Cloud Application 1

A B

Q

Federated Cloud Application 2

A D EC

B F G H

Legend:

Cloud-reliant application

Cloud service type

Data and control

E

G H

Figure 1.2: High-level overview of federated cloud applications showing reliance on cloud
services

Q1: What are the architectural patterns that can be used by software architects to design

SLA compliant self-aware federated cloud applications?

Q2: How can market-based control be utilised to coordinate decentralised components

in the designed self-aware architectures whilst respecting SLA compliance goals?

To answer Q1, we propose five self-aware architectural patterns that provide primitives

for representing architectural concerns at a fine-grained level and therefore simplifies risk

and trade-off analyses. To answer Q2, we incorporate reputation measurement capabilities

into the classic posted-offer market mechanism. We demonstrate that our refined mecha-

nism is capable of coordinating interaction with multiple clouds and provide satisfactory

SLA compliance.

9

1.6 Main Contributions

The thesis demonstrates that by taking an architecture-centric self-adaptive approach

grounded on the principles of self-awareness and market coordination, federated cloud

applications can improve their SLA compliance as a result of an holistic treatment of

risks, trade-offs, scale, and cloud dynamics. The implication of this result is that owners of

mission critical applications, e.g. enterprise software systems, will be confident to entrust

their applications to the cloud, with an expectation of satisfactory SLA compliance.

The main contributions of this thesis are:

• An approach for designing self-adaptive federated cloud architecture, namely self-

aware architectural patterns, based on principles of computational self-awareness.

The proposed architectural patterns adheres to well-founded principles such as sep-

aration of concerns by allowing architects to reason about the representation of

architectural concerns and selection of behavioural strategies independently, focus-

ing on the feedback loops between these processes.

• A market-inspired mechanism for coordinating component interaction in self-ware

federated cloud applications. In particular, we extend the classic posted offer market

mechanism [101], incorporating reputation measurement capabilities to facilitate

selection of cloud services based on consideration of price and historic performance.

• A systematic literature survey of SLA-based cloud research. This survey revealed

advances and gaps in state-of-art SLA-based cloud research and motivates the need

for an architecture-centric self-adaptive approach.

• A classification framework for structuring the literature in self-adaptive architec-

ture style and qualitatively comparing properties of these styles on dimensions such

as level of separation of concern and in-built support for learning. The compari-

son is aimed at understanding the underlying principles underpinning self-adaptive

architecture styles.

10

The list of publications resulting from this research can be found in appendix A.

1.6.1 Summary of Contributions By Chapter

Table 1.1 lists the contribution of each chapter (detailed in section 1.7). The presented

work is the author’s original contribution, with the exception of Self-aware Architecture

Style, which was jointly incepted by the author and members of EPiCS project.

Ch. Contribution Credit
2 Systematic Review of Service Management in Cloud Author
3 Architecture-based Self-adaptation Styles Author
4 Self-aware Architecture Style Author and

EPiCS team
4 Self-aware Architectural Patterns Author
5 Market-inspired Mechanism for Decentralised Coordina-

tion
Author

6 Trade-off and Risk Analysis of Self-aware Cloud Software
Architecture

Author

7 Conclusion and Future Work Author

Table 1.1: Summary of Contributions By Chapters

1.7 Roadmap of the Thesis

This section presents the structure of the rest of the thesis. The roadmap to the thesis is

shown in figure 1.3.

Chapter 2, Systematic Review of Service Management in Cloud, studies the state of the

art in SLA-based cloud research using a systematic review methodology. Findings from

the survey are used to motivate the need for a novel self-adaptive architectural design

approach.

Chapter 3, Architecture-based Self-adaptation Styles, presents our classification frame-

work for structuring and characterising self-adaptive architecture styles. A comparative

study of eight representative self-adaptive architecture styles reveals gaps that motivate

the self-aware architectural patterns work presented in chapter 4.

11

Chapter 1:

Introduction

Chapter 2:

Systematic Review of Service

Level Management in Cloud

Chapter 3:

Architecture-based Self-

Adaptation Styles

Chapter 4:

Architecture Style and

Patterns for Self-aware

Systems

Chapter 7:

Conclusion and Future work

Chapter 6:

Trade-off and Risk Analysis of

Self-aware Cloud Software

Architecture

Chapter 5:

Market-inspired Mechanism

for Decentralised Coordination

Figure 1.3: Roadmap of the Thesis

In Chapter 4, Architecture Styles and Patterns for Self-aware Systems, we present our

five self-aware architectural patterns. The primitives of the self-awareness concept from

psychology are introduced. Self-aware architectural patterns are presented to promote a

systematic and disciplined way of architecting self-aware cloud applications.

Chapter 5, Market-inspired Mechanism for Decentralised Coordination, motivates the

use of economics-inspired approaches for decentralised coordination of federated cloud ap-

plication components and presents our refinement to the classic posted-offer market mech-

anism namely reputation-aware posted offer mechanism. Results from empirical studies

12

of the market-based self-aware cloud architecture under synthetic and realistic workload

are presented to demonstrate its ability to achieve satisfactory SLA compliance.

Chapter 6, Trade-off and Risk Analysis of Self-aware Cloud Software Architecture,

presents a qualitative evaluation of the self-aware architecture style within the context

of our online shopping cloud application. The evaluation is carried out in comparison

to two classic self-adaptive architecture styles (3-Layered [105] and DDDAS [53]) using

the Architecture Trade-off Analysis Method (ATAM) [97]. The results demonstrate the

potential of the self-aware architectural pattern to support trade-off analysis for federated

cloud applications.

Finally, Chapter 7, Conclusion and Future Work, concludes the thesis by summarising

the main contributions, reflecting on the research, and discussing avenues for future work.

13

CHAPTER 2

SYSTEMATIC REVIEW OF SERVICE LEVEL
MANAGEMENT IN CLOUD

“Society is indeed a contract. It is a partnership in all science; a partnership

in all art; a partnership in every virtue, and in all perfection. As the ends of

such a partnership cannot be obtained in many generations, it becomes a

partnership not only between those who are living, but between those who

are living, those who are dead, and those who are to be born.”

Edmund Burke

2.1 Overview of the Chapter

This chapter surveys the landscape of SLA-based cloud architecture to understand state

of the art and identify open problems. We adhere to the Systematic Literature Review

(SLR) guideline proposed by Kitchenham [102] [103]. A SLR documents the end-to-

end process of a review. Kitchenham’s guideline aims for a repeatable review process,

where the search protocol can be reproduced by an independent assessor and the findings

interpreted within the context of the research questions that triggered the review process.

The key findings of the systematic review indicate that MAPE-K1 and its variants are

the prominent self-adaptive architecture style in use in SLA-based cloud research. The

1MAPE-K is an acronym for Monitor, Analyse, Plan, Execute, and Knowledge phases of the famous
IBM self-adaptive architecture style [100]. Chapter 3 studies MAPE-K and other representative styles.

14

result also indicates that, in general, knowledge representation at the architecture level

and decentralised self-adaptive software architecture have received little attention.

One underlying theme of previous work [22][131][18] is that given the moderate dy-

namism and scale of systems preceding clouds, a centralised architecture often suffice as

a solution. On the contrary, centralised architectures are not feasible for managing SLAs

of federated cloud applications due to their large scale and dynamic topology [69].

We posit that an approach for architecting federated cloud application should provide

primitives for modelling knowledge concerns at a fine-grain, to ease risk and trade-off

analysis. Broadly, this thesis contributes novel self-aware architectural patterns that

provide primitives to support decentralised properties of federated cloud applications.

The rest of the chapter is structured as follows. Section 2.2 introduces cloud com-

puting, service level agreement, and autonomic computing within the context of cloud.

The research questions that steered the review process are presented in section 2.3.1 (see

appendix B for the systematic review protocol). Findings from the review are discussed

in section 2.3.2. The chapter concludes in section 2.4.

2.2 Preambles

There is no consensus on the definition of Cloud computing [8], however, three widely-

adopted definitions are those proposed by NIST [122], Buyya et al. [28], and Vaquero et

al. [164].

According to NIST [122]

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider
interaction.”

Buyya et al. [26] proposed that

15

“A Cloud is a type of parallel and distributed system consisting of a collection
of inter-connected and virtualised computers that are dynamically provisioned
and presented as one or more unified computing resource(s) based on service-
level agreements established through negotiation between the service provider
and consumers.”

Vaquero et al. [164] analysed more than 20 definitions of Cloud computing, and

proposed an integrated definition

“Clouds are a large pool of easily usable and accessible virtualised resources
(such as hardware, development platforms and/or services). These resources
can be dynamically reconfigured to adjust to a variable load (scale), allowing
also for an optimum resource utilization. This pool of resources is typically
exploited by a pay-per-use model in which guarantees are offered by the In-
frastructure Provider by means of customized SLAs.”

A common theme underlying cloud computing is that the cloud is fundamentally

dynamic [75] [164] [25]. This phenomenon can be viewed from three distinct perspectives

namely: (i) dynamic workings of the cloud system itself, (ii) dynamics due to changing

user behaviour and requirements, and (iii) dynamics of the cloud deployment environment

(e.g. network topology and runtime composition of services).

From the above perspectives, two important requirements come to light:

1. Cloud computing should be relatively autonomic to support dynamic provisioning

and reduce management effort.

2. Cloud providers and application owners should implement dynamic management

schemes to ensure SLAs are honoured.

2.2.1 Service Level Agreement in Computing

Service level agreement (SLA) was traditionally a business concept, as it specifies con-

tractual financial agreements between parties who engage in business activities. Business

SLAs were typically encoded in manual paper documents. Consequently, it was difficult

to monitor them. Detecting whether the terms of an SLA were honoured and enforcing

16

penalties heavily involved humans, to interpret the SLA and mediate between signatory

parties. In the late 1990s the concept of SLA gained the attention of academics and prac-

titioners in the the computing world [17]. Telecommunications and Enterprise Network

[113] communities were some of the early adopters.

Up to this point, SLAs were mostly defined in an ad-hoc manner or at best standard-

ised only for use within specific family of organisations or application domain. Another

drawback was the rigid specification of the terms of SLAs, as it was not possible to adapt

the values of SLA terms once they were deployed. The emergence of grid computing and

service-oriented architecture (SOA) triggered a number of important advancements in the

specification of automated SLAs. This is because the openness and autonomy of grids and

web services required specification formats that were not restricted to any organisation

or application domain’s syntax or semantics.

Two notable standardisation efforts addressed the SLA specification problem: IBM

pioneered work on Web Service Level Agreement (WSLA) [52] and the Open Grid Fo-

rum (OGF) proposed Web Service-Agreement (WS-Agreement) [4]. Both frameworks

promoted a notion of service-agnostic definition of service terms, measurement of service

metrics, aggregation of metrics within the context of SLA parameters, and monitoring

of service level objectives (SLOs). In both cases, XML schema was used as the under-

lying language for expressing WSLA and WS-Agreement. Therefore, the standards were

sufficiently open for adoption in many application domains.

2.2.2 Life cycle of a Service Level Agreement

Over the years, researchers have contributed to the vision of automated SLA management

(SLM). These contributions can be categorised along the lines of a typical SLA life cycle as

shown in figure 2.1. SLM is a broad topic involving negotiation, deployment, monitoring,

reporting and termination phases. A brief overview of each phase of the life cycle follows.

• SLA Negotiation: The requirement in this phase is for involved parties to define

17

SLA Negotiation
SLA

Establishment
SLA Monitoring

Violation
detected?

SLA Reporing

Take Action to
resolve violation

Yes

Service
Termination

No

Figure 2.1: Classic SLA Management Life Cycle

terms of service and agree to levels at which service will be provided including

monetary aspects. The negotiation process may provide mechanisms to support

dynamic negotiation of service levels that reflects changing QoS demand of cloud

users as their business operations evolves [29]. An example of such changes could be

a request for more VM instances due to spikes in workload resulting from flash crowd

effects. The agreed service levels are encoded using either a standard application-

agnostic SLA template (e.g. WSLA [52] and WS-Agreement [4]) or ad-hoc templates

that involved parties are able to interpret.

Another interesting point is that parties to the negotiation (i.e. cloud users and

providers) often adopt incompatible SLA templates [19]. Therefore, negotiation

among these parties often requires translation to a base SLA template before any

negotiation can take place. The challenge here is to ensure these translations tech-

niques are extensible (to accommodate new templates) and capable of producing

accurate representation of the original SLAs. It is hopeful that standardisation ef-

forts towards a unified SLA template for cloud computing would completely resolve

this problem in the future.

• Service Deployment: Typically, service/job requests from clients are assigned to

cloud resource nodes in this phase. The goal is to allocate resources having the

required capacity to jobs based on their specification and valuation. SLAs often

come in different classes such as Gold, Silver, and Bronze, where each class represents

a different valuation of the users in that class. Cloud providers may optionally

18

discriminate between jobs depending on the SLA class of users who own the jobs.

• SLA Monitoring: Once services are deployed, it is important to periodically monitor

resource nodes and the status of jobs under their execution. The monitoring activity

could span many dimensions such as monitoring the functional and non-functional

requirements of the job, monitoring the status of resource nodes and monitoring

network availability. Monitored data can quickly grow out of proportion, hence,

the time taken to analyse the data may become a bottleneck. Consequently, it

is important to monitor only relevant data and ensure that lightweight analysis

techniques are employed.

• Violation Management: Violation alerts which represent the likelihood of a job

failing or not meeting its defined service levels are sometimes reported as part of

monitored data. The goal is to take appropriate risk mitigation decisions in response

to these violation alerts. The decision should be timely and suitable for the context

of the violation alert. A worst-case resort may be to re-deploy the job if the risk of

violating the SLA cannot be averted.

• SLA Reporting and Termination: the emphasis at the reporting phase is to provide

SLA reports of high integrity containing detailed audit of activities that took place

during service provisioning [38]. The termination phase provides a mechanism for

parties to the agreement to terminate the SLA after completion of the service or in

response to violations caused by any of the parties as specified in the SLA.

Next, we zoom into the rationale for an autonomic approach to cloud SLM.

2.2.3 Why Autonomic Solution to Cloud Resource Management?

Autonomic computing systems are a class of software systems endowed with abilities to

manage themselves, similar to the autonomic nervous system’s role in managing human

body, by adapting to changes in their operating environment, user requirements, or inter-

19

nal changes in the system itself at run-time. Kephart and Chess [100], formally defined

autonomic systems as “computing systems that manage themselves in accordance with

high-level objectives from humans.”

Researchers often refer to autonomic systems as “Self-adaptive”, “Self-managed”,

“Self-organising”, or “Self-*” computing system. It is not uncommon to find researchers

using these terms interchangeably. As an example consider the definition below:

“Self-managed systems are those that are capable of adapting as required
through self-configuration, self-healing, self-monitoring, self-tuning, and so on,
which are also referred to as self-* or autonomic systems.” [106]

We adopt the generic terms self-adaptive and autonomic computing, which will be used

interchangeably in the rest of the thesis. From the conceptual underpinning of autonomic

computing, we identify four key motivations for adopting a self-adaptive solution for the

problem of cloud SLA management.

1. Large size: The large scale of cloud federations has exacerbated the administrative

overhead of SLA management. For these large-scale systems, the time lag and high

cost overhead of human-based solution, makes autonomic control solution the more

appealing option. Patikirikorala et al. [132] surveyed self-adaptive systems that

were designed using control approaches. Of particular interest, is the finding, by

the authors, that the recent increase in research effort in the use of control theory

for managing software systems is due to large systems such as cloud.

2. Heterogeneity: The openness of cloud systems coupled with its realisation using

service-oriented architecture has stretched the limits of conventional and naively

autonomic systems. In today’s open cloud systems, cloud service providers are un-

able to fully anticipate the various contexts in which their services will be composed

with services provided by other cloud providers. Therefore, there is the problem of

self-configuring these cloud services in the most seamless way and self-optimising

them at run-time to maintain acceptable quality of service. In addition, services

20

that are found to be faulty must be repaired using self-healing mechanisms and vul-

nerable services, susceptible to security attacks, require self-protection to prevent

exploitation by malicious users.

3. Dynamism: The presence of many heterogeneous cloud services and components

means architects of cloud-based applications have to cope with a large configuration

space. This is exacerbated by the varying demands from cloud users that cause

workload fluctuations, hence no single cloud service is the best for all usage scenarios.

4. Uncertainty: In federated clouds both internal triggers (e.g. software bugs) and

external triggers (e.g. workload spikes) of adaptation can occur haphazardly, dis-

rupting system stability over time. Cloud systems need to account for these changes

using autonomic mechanisms to remain useful to users.

Clearly a conventional static resource control approach, relying solely on human oper-

ators, is not feasible to meet the requirements of today’s cloud. We argue that autonomic

computing principles holds the promise to solving the challenges motivated above.

2.3 Systematic Review Methodology and Results

2.3.1 Research Methodology

The thesis has followed a systematic review methodology to investigate the state of the

art in SLA-based cloud research. This thesis studies papers that have implications for the

design of self-adaptive cloud architectures. Specifically, the following pertinent research

questions steered the review:

What are the dominant architectural styles for designing federated cloud appli-
cations? To what extent do these styles provide support for trade-off analysis?

The details of the review protocol can be found in appendix B. The next section

presents findings from the survey and outlines gaps in state of the art.

21

2.3.2 Results of Systematic Review

At the software architecture level, first we observe that 40% of papers claimed to offer

solutions grounded in autonomic computing, while the other 60% do not. Of the papers

that claimed to be autonomic, many of the solutions were of algorithmic nature rather

than architectural in their approach. Table 2.1 shows the architecture styles in use in

those papers that make explicit reference to autonomic architectures. Note, we use the

term ‘autonomic architecture’ to refer to self-* architectures in general as defined in

section 2.2.3.

XaaS Arch. Style Self-* Arch.

Artefact

Goal of

adaptation

Representative

Examples

IaaS MAPE-K VM controller To devise

an improve

knowledge

management

technique in

the MAPE-K

control loop

[18] [121]

Collect-

Analyse-

Anticipate-

Decide con-

trol loop

Cloud re-

source con-

trollers

To adaptively

control cloud

resources

and manage

energy

[166]

MAPE Cloud re-

source man-

ager

To allocate re-

sources while

optionally

minimising

operating cost

[127][65]

[63][88]

22

Decentralised

agent-based

architecture

Cloud re-

source con-

trollers

To devise

scalable

resource

managers

[176]

Hierarchical

control loop

Cloud re-

source con-

trollers

To achieve

a cost-aware

and workload-

sensitive

resource

allocation

[175]

SaaS Decentralised

agent-based

sense-plan-act

architecture

Application

resource

manager

To make

composite

cloud web

services avail-

able under

heavy load

and failures

[15] [92]

Centralised

MAPE archi-

tecture

Load balanc-

ing service

To balance

application

workload

across VMs

[31]

Cloud

Feder-

ation

MAPE-K Centralised

federated

cloud resource

manager

To optimally

distribute

workload at a

minimal cost

[33]

23

Two-level Hi-

erarchical ar-

chitecture

Cloud re-

source man-

agers

To realise

optimised

allocation

performance

across in-

dependent

clouds or

grids

[87]

PaaS Centralised

monitor-

manager-

allocator

Resource pro-

visioning ser-

vice

To dynami-

cally allocate

cloud resource

to jobs

[24]

Hierarchical

MAPE loops

Middleware

component

To improve

resource uti-

lization and

performance

of cloud

applications

[179]

DaaS Monitor-

Analyser-

Predictor-

Allocator

Resource allo-

cation frame-

work

To maximise

resource utili-

sation

[180]

24

Hierarchical

adaptation

loop

Cloud re-

source alloca-

tor

To man-

age shared

database

resources in

a cost-aware

manner

[174]

Table 2.1: Software Architecture Styles By XaaS

As it can be observed from table 2.1, MAPE and its variants are the most dominant

architecture styles as they are applied across several cloud layers of abstraction namely

IaaS, SaaS, PaaS, DaaS, and cloud federation. Hierarchical architectural styles are used at

all the aforementioned cloud layers, except SaaS, for the purposes of reducing complexity

of adaptation across different levels of concerns. Whilst the approach simplifies the archi-

tecting process, both centralised and hierarchical architectures are prone to problems such

as brittleness, limited scalability, and single-point of failure. Decentralised agent-based

architectures are in limited use at the IaaS and SaaS cloud layers. In instances where

they are used (e.g. [15] [176]), they address the problem of scalability and single-point of

failure present in centralised and hierarchical architectures.

Trade-off analysis

20% of the reviewed papers provided trade-off analysis between conflicting SLA pa-

rameters in their service level objectives. Table 2.2 shows the studied trade-off spaces.

Trade-off Parameters

Application performance Vs Power or Energy consumption/efficiency

Application performance Vs Resource operation cost

Cost Vs SLA fulfilment

Cost Vs Energy

25

Cost Vs Latency

Cost Vs Performance

Energy consumption Vs SLA violation or fulfilment

Energy cost Vs Client QoS

SLA violations Vs Resource utilization Vs Energy consumption

Throughput Vs Read size

System utilization Vs SLA optimization goals

Table 2.2: Trade-off Analyses Space

It can be observed that at most three SLA parameters were analysed in the trade-off

space whilst analysing self-adaptive cloud architecture for SLA-based resource allocation.

Given the limited number of SLA parameters studied in state of the art, it may be

argued that the trade-off space is representative of these SLA parameters. It is expected

that as more SLA parameters are studied, the number of analysed non-functional quality

attributes in the trade-off space would increase.

2.3.3 Threat to Validity

Some threats to the results of the SLR reported in this chapter are discussed below.

• Data sources: We have primarily collected studies from academic indexing services.

This has limited our understanding of the research topic to academic contributions,

except in cases where publications are co-authored with industrial practitioners. A

broader search, including data sources such as websites of companies that provide

and use cloud services may provide an interesting perspective to the review.

• Recency of findings: The study has considered papers up to the last quarter of

2013. As a mitigation step to confirm if the results of the review are still valid,

we conducted a supplementary review following the same protocol for only papers

26

published in 2014. This revealed new studies that adhered to an architectural ap-

proach to self-adaptation (e.g. [39] [91] [85]), however, the MAPE-K architecture

style was used in majority of the cases. Also, majority of the papers addressed

resource management problems at IaaS cloud layer, with the exception of [85] which

focused on reducing network delays at NaaS layer. Therefore, we assert that the

effort to pursue the self-aware architectural patterns which promotes fine-grained

architectural knowledge representation remains a viable and timely endeavour.

• Analysis of collected studies: We have analysed the primary studies with respect to

our research questions, which is primarily about self-adaptive software architecture

styles. It may be worthwhile to investigate other phases of SLA life cycle, such as

negotiation, to understand the interrelation between problems in these phases and

the SLA-based resource management problem.

2.3.4 Gap Analysis

From the foregoing, we can deduce the following gap in the literature:

1. Software Architecture Knowledge representation in the studied self-adaptive soft-

ware architectures are given little considerations (e.g. goal of adaptation, temporal

aspects of architectural elements, links between interacting components, etc.). Ex-

ceptions are [18] and [121] where a case-based reasoning knowledge representation

technique is used to more SLA objectives. In both [18] and [121], knowledge is mod-

elled as a coarse-grain entity, hence making it hard to reason about trade-offs among

knowledge concerns as they relate to timeliness of adaptation, goals of adaptation,

and interaction amongst cloud components. We argue that modelling knowledge

elements of the adaptation process as fine-grained entities is crucial for improving

the quality of adaptation. Therefore, we motivate the need for novel self-adaptive

architecture styles that treat the knowledge elements as a first-class concern and

drive the adaptation process based on fine-grained knowledge representation.

27

2. Decentralised self-adaptive architectures have not been explored in SLA-based cloud

research. Existing decentralised architecture rely on distributed agent-based think-

ing [144] rather than prominent self-adaptive architecture as promoted by the archi-

tectural community. We argue that work in decentralised self-adaptive architecture

should be built upon in SLA-based cloud research as it offers a simplified and princi-

pled way of reasoning about the complex interaction between components at various

levels of abstractions in the cloud.

2.4 Summary

This chapter systematically reviewed the landscape of SLA-based cloud research with

the view of answering research questions which are pertinent to this thesis. From the

systematic review, it was found that MAPE-K [100] and its variants are the prominent self-

adaptive architecture style in use in SLA-based cloud research. The result also indicated

that knowledge representation at the architecture level and decentralised self-adaptive

software architecture have received little attention.

Findings from the review provide evidence to support the claim that existing architec-

ture styles offer limited primitives for granular knowledge representation and design-time

trade-off analysis of self-adaptive architectures. Ergo, we motivate the need for a novel

architectural approach that addresses these limitations.

From the foregoing limitations, our research pursues the goal of exploiting principles

in self-awareness to arrive at new architectural patterns that caters for fine-grained knowl-

edge representation and decentralised control (chapter 3 and 4). Our reputation-aware

market-based mechanism complements the novel architecture patterns by providing scal-

able and robust coordination of components in decentralised architectures (chapter 5).

The novel architectural patterns are used as foundation for architecting an exemplar fed-

erated online shopping cloud application (chapter 5) and qualitatively compared to two

classic architecture styles to unveil its strengths and weaknesses (chapter 6).

28

CHAPTER 3

ARCHITECTURE-BASED SELF-ADAPTATION
STYLES

“All architecture is design but not all design is architecture. Architecture

represents the significant design decisions that shape a system, where

significant is measured by cost of change.”

Grady Booch

3.1 Overview of the Chapter

In chapter 2, using a systematic review methodology we have identified limitations of

existing self-adaptive architectures for service level management in cloud computing. In

this chapter, we conduct a deeper study of architecture styles for designing self-adaptive

systems. More formally, “an architectural style determines the vocabulary of components

and connectors that can be used in instances of that style, together with a set of con-

straints on how they can be combined” [79]. A style defines a collection of architectural

design decisions that are applicable within a given context (e.g. problem domain), the

constraints on a particular system within that context, and elicits the beneficial qualities

to be realised in the resulting system [160]. When architecture styles are specialised for a

particular problem domain, they are sometimes referred to as reference architectures [79].

Since the focus of this thesis is on self-adaptive architectures, we therefore use the terms

29

‘architecture style’ and ‘reference architecture’ for self-adaptive systems interchangeably.

Architecture styles are a useful way of specifying, designing, building, analysing, and

evolving a software system relative to some constraints or trade-offs. By adopting an ar-

chitecture style, a software architect can reason about the functional and non-functional

requirements of the system-to-be designed and the associated trade-offs. Software archi-

tects are not mandated to faithfully implement every aspect of the architecture style upon

which their system is built. Rather, architecture styles provide a set of guiding principles

and rationale about what is achievable, how trade-off in design decisions can be analysed,

and their impact on stakeholders’ quality concerns. In practice, software architects are

pragmatic in the selection and instantiation of architecture styles. Key considerations are

the constraints imposed by the software system-to-be designed, the characteristics of the

users and the deployment environment in which the system will be deployed.

Researchers have conducted surveys of models, methods, and architectures for self-

adaptive systems, e.g., [60][89][132][143][42], however, none of these studies reflect on

architecture styles from the perspective of their applicability to the cloud computing

domain. As an example, the software engineering roadmap on self-adaptive systems [111]

motivates the importance of control loops in the engineering of self-adaptive software

systems and presents architecture patterns within the context of the MAPE architecture

style. This effort complements the work presented in this chapter, since we study, in-

depth, the general principles underlying a broader set of architecture styles and compare

them in order to assess their adaptive capabilities.

As it was observed in chapter 2, many of the existing work on self-adaptive architec-

ture for service level management in cloud are instances of the MAPE architecture style.

It is worthwhile to consider the potential benefits or drawbacks of realising alternative

architecture styles. Consequently, this chapter takes a broader perspective than previous

surveys by studying representative self-adaptive architecture styles, followed by a com-

parative analysis based on metrics that define their adaptive capabilities. Following the

comparative analysis, we deduced gaps in the state of the art.

30

Specifically, the contributions and structure of this chapter is as follows.

1. We define a framework, in section 3.2, for classifying the literature on self-adaptive

architecture styles.

2. We study prominent architecture styles in self-adaptive software system domain

(section 3.3). In each case, we identify the objectives of the style, discuss its pros

and cons, and review examples of its application to various problem domains.

3. We compare the studied architecture styles and qualitatively measure their strengths

and weaknesses within the context of our classification framework (section 3.4).

4. Gaps in state of the art self-adaptive architecture styles are identified, and their

implication for service level management in cloud elicited (section 3.5).

3.2 Scope and Classification Framework

Architectural approaches for designing self-adaptive systems make use of the fundamen-

tal ingredients of a software architecture [134], i.e. components and connectors, to rea-

son about the adaptation mechanism (managing system) and the system being adapted

(managed system) and the interconnection between them. Components are computa-

tional entities endowed with functional and non-functional properties, hence it is possible

to assess their suitability for different context of use. Connectors, on the other hand, are

conduits that facilitate flow of control, objects, and messages between components. This

distinction between the roles of components and connectors in the classic sense makes it

possible to reason separately about the computational and communication requirements

of a software system.

By viewing a software from an architectural level of abstraction, it is easier to reason

about the various compositions of components and connections that are able to realise

prescribed specifications. Therefore, the architectural view permits a broad scope of

31

reasoning about a software system without bothering about the low-level details, e.g. al-

gorithmic or programming language, of how the software system is implemented. The

presence of tools for specifying architectures in the form of Architecture Description Lan-

guages (ADL) and verifying the correctness of their specification and properties makes

the architectural approach the preferred one [42].

Research has been conducted in communities that specialise in designing algorith-

mic techniques for implementing self-adaptive capabilities based on inspiration from non-

computing domains. Notable examples of such venues are International Conference on Au-

tonomous Agents & Multiagent Systems, International Conference on Self-Adaptive and

Self-Organizing Systems, and IEEE Transactions on Evolutionary Computation. Inspired

by nature (e.g.[119] amongst others), socio-economics (e.g. [27][108] amongst others), and

biology (e.g. [51][151] amongst others), researchers in these communities contribute in-

telligent algorithms which are adaptive, scalable, and robust in myriad of scenarios. The

interested reader is referred to the survey work of [60] to learn more about research in

these areas.

It is worth noting that while problems studied in the aforementioned communities

have the same overarching objectives and underlying characteristics (e.g. scalability, ro-

bustness etc.) as those studied in this thesis, the purpose of this chapter is to study the

principles underlying the building blocks of an autonomic system (i.e. its architecture

style) regardless of the computational technique in use. Taking an architectural view to

self-adaptation has several benefits. According to [45]

“As an abstract model, an architecture can provide a global perspective of the
system and expose important system-level behaviours and properties. As a
locus of high-level system design decisions, an architectural model can make
a system’s topological and behavioural constraints explicit, establishing an
envelope of allowed changes and helping to ensure the validity of a change.”

In order to classify contribution in the space of architectural styles for self-adaptation

we characterise their adaptability properties. Characterising adaptability is important in

order to: i) understand the impact of adaptability on system’s goals, ii) analyse the trade-

32

off between system’s adaptiveness and other QoS (e.g. availability, performance), and iii)

engineer appropriate level of adaptability for system to self-manage itself at run-time.

Architecture metrics for characterising adaptability can be divided into two categories:

quantitative and qualitative metrics.

It is infeasible to quantitatively assess an autonomic system at the architecture style

level of abstraction, since there is no implemented system in place. Consequently we aim

to understand the underlying principles underpinning self-adaptive architecture styles

using qualitative measures. Even in implemented self-adaptive systems, it may be hard

and expensive to compare quantitative metrics, for example those proposed by [133] [58]

[94] and [136], when such systems differ in their adaptation goals. Whereas, qualitative

metrics such as level of separation of concern and in-built support for learning are easier

to infer and characterise.

We propose a classification framework as shown in figure 3.1 for characterising adapt-

ability properties of self-adaptive architecture styles qualitatively.

Framework

Level of

separation of

concern

Transparency

to user

Degree of

autonomy

Architecture

patterns

Knowledge

representation

and trade-off

analysis

Notion

of time

Support for

learning
Emergence

Figure 3.1: Classification Framework for Self-adaptive Architecture Styles

The qualitative metrics shown in figure 3.1 are defined as follows.

1. Level of separation of concern: The self-adaptive system typically consists of

an adaptation engine and a managed element [100]. However, in some cases, the

adaptation logic could be dispersed in the functional logic of the system, thereby

blurring the distinction between the adaptive and non-adaptive parts of the system

[168]. This criterion specifies the level of separation between the adaptive and

non-adaptive part of the architecture style. Permissible value for this criterion are

33

n-level(s) of separation, where n is 1,2,3, etc.

2. Transparency to users: This measures the extent to which the architecture per-

mits human interference in the adaptation loop, either by allowing them specify the

goal of the system or adaptation logic. Also, the ability of the autonomic system

to self-report the rationale for its actions to users is also a dimension of trans-

parency. Transparency is measured using values: fixed goals, changeable goals, and

self-reporting.

3. Degree of autonomy: This criterion determines to what extent the architecture

style supports varying level of autonomous behaviour, ranging from zero autonomy

to fully autonomous behaviour. Organic computing distinguishes itself by clearly

discouraging the idea of fully autonomous behaviour [146]. In contrast controlled

self-organisation is promoted in order to provide the external agent (human or auto-

mated) specifying the goals of the organic system to switch the autonomic behaviour

on or off as desired.

4. Architecture Patterns: The self-adaptive architecture instantiated from an ar-

chitecture style can often be organised in a variety of patterns [23] such as cen-

tralised, decentralised, hierarchical, and master/slave [168]. This criterion specifies

the ability of the style to realise different architecture patterns. We rely on empirical

evidence of implementation of the styles, no speculative claims, to determine the

value for this criterion.

5. Knowledge representation and trade-off analysis: This criterion determines

how the architecture style stores knowledge about the managed system and the

adaptation process, and how this knowledge is used to perform run-time trade-

off analysis between conflicting adaptation concerns. Permissible values for this

criterion are implicit and explicit knowledge representation.

6. Notion of time: Each of the sub-components of a self-adaptive system has the

34

responsibility to manage the timing of its action. For example, monitoring may have

to take place at fixed intervals or intervals that have to be learnt by the monitoring

mechanism. In the case of hierarchical architecture patterns, adaptation actions at

lower levels usually proceed quicker than adaptation actions at upper levels. This

criterion specifies the provision of the architecture style to manage timing elements

of self-adaptive system’s subcomponents.

7. Support for learning: To adapt correctly in an ever changing, unpredictable envi-

ronment, learning is imperative. This criterion specifies the support the architecture

style provides for learning i.e. if there is in-built support for learning or none.

8. Emergent self-adaptation: Determines to what extent the architecture style sup-

port bottom-up architecture of self-organising systems that exhibit emergent auto-

nomic behaviour. That is, adaptability is realised by the aggregation of simple, local

actions of decentralised subcomponents, rather than through a centralised orches-

tral. Emergent self-adaptation can be seen in nature [99], a notable example is ant

colony’s foraging activity. Where present, we indicate the existence of emergence as

a form of self-adaptation.

We reiterate that while other approaches to self-adaptation are useful, this thesis ad-

heres to an architectural perspective to self-adaptation given the transparency of reasoning

about the adaptation process.

3.3 Representative Self-adaptive Architecture Styles

In the subsections that follow we zoom into the specific properties of self-adaptive archi-

tecture styles and assess these properties with respect to the requirements of modern SLA-

based cloud architectures. These styles describe the principles behind the systems being

adapted using component and connector representations. Adaptation changes are typi-

cally in the form of architectural reconfiguration i.e. replacement of component/connector,

35

or modification of component/connector properties (e.g. their parameters), and rearrange-

ment of architectural topology.

3.3.1 IBM’s Autonomic Computing Reference Architecture

Figure 3.2: MAPE-K Architecture Style. Source: [100]

The conceptual architecture of this style has at its core the notion of an autonomic

element that is responsible for managing its internal state and is able to interact with other

autonomic elements and the external world in which it operates. As shown in figure 3.2,

the autonomic element consists of two subparts: a managed element and an autonomic

manager. The managed element is typically a non-autonomic computing system that

requires coordination and control from an external source to meet the objective(s) specified

by its owner. The autonomic manager is responsible for monitoring (M) the operations of

the managed element via sensors, analysing (A) the sensed data, planning (P) alternate

course of action(s), if necessary, and effecting or executing (E) the planned action(s) via

actuators on the managed element. Additionally, there is a shared knowledge repository

36

(K) which can be used to encode shared rules, constraints, or the knowledge acquired by

the other four phases. The popular MAPE-K acronym used to describe this architecture

style is due to the five phases of the autonomic manager.

Autonomic elements have a structural organisation that resonates that of the human

body. Similar to the anatomy of the human body that progressively builds up from

molecules, cells, tissues, organs, and limbs to whole human bodies, autonomic elements

are expected to operate at different levels of abstractions. Depending on the level of

abstraction at which an autonomic element is operating, the type of behaviours it can

exhibit and the scope of its relationship with other autonomic elements will vary. Kephart

and Chess [100] posit that at lower levels, the range of behaviour and relationship to other

autonomic elements are expected to be relatively static and hard-coded. At the higher

levels, goals and relationships will be more dynamic and flexible, with autonomic elements

exhibiting greater freedom in their behaviours and compositions or relationships.

Pros

• Adheres to the separation of concern principle by separating the five phases of the

adaptation process into distinct components.

• More sophisticated patterns can be derived from the fundamental MAPE-K com-

ponents [168].

• There are several implementation examples to learn from e.g. robotics [140], databases

[169], software product line [1], gaming [120], and transport systems [165], just to

name a few.

Cons

• Largely limited to applications requiring centralised autonomic control as interaction

between autonomic managers is not explicitly modelled.

• Autonomic manager is limited to the knowledge encoded by experts such that the

system cannot evolve beyond this knowledge.

37

• The level of granularity of knowledge (K) component in the adaptation loop is

coarse. The style does not advocate modelling knowledge into fine grains to allow

reasoning about adaptation along multiple knowledge dimensions.

3.3.2 MAPE based Architectures

Two styles which are sub-classes of MAPE but generic enough to be classified as rep-

resentative styles with distinct qualities are presented in this section. While bearing

resemblance to MAPE, these styles have been the focus of many publications, as they

represent first efforts of realising self-adaptive systems based on architectural principles.

Oreizy’s Architecture

The work of Oreizy et al. [129] proposed a methodology for architecting self-adaptive

software systems. As depicted in figure 3.3, the architecture framework consists of an

adaptation management layer and an evolution management layer.

The adaptation layer consists of monitors for evaluating the extent to which the run-

ning system is meeting some specified system goals. For example, monitoring to ensure

the performance of the running system is within some acceptable range. In the event

that the evaluation indicates that the system is behaving below par, relevant plans are

generated to return the system to normal operation. These plans are then passed on to

deployment change phase which oversees how the plan is effected on the running system

by sequencing and coordinating changes.

The evolution layer caters to ensuring changes in the running system are performed in

such a way that the operation of the system is not disrupted. For example, a component

that is currently serving application needs should not be replaced while in a ‘busy’ mode.

Additionally, this layer ensures that system integrity and consistency are not violated

during the change process.

Pros

38

Figure 3.3: Oreizy et al. Architecture Style. Source: [129]

• Separation of concerns: adaptation layer can be changed independent of application

and vice versa.

• External feedback loop between the adaptation and change management layer makes

the interaction between them explicit.

39

Cons

• Scalability of the architecture was not articulated.

• There is no consideration of timeliness of monitoring or response in the architecture.

Rainbow

In line with IBM’s autonomic vision, Cheng et al. [45] [78] adopted an architectural

based approach to address the problem of automating the role of human expert in the

management of software-intensive systems. Rainbow architecture framework addresses

the problems of having a framework that:

1. is sufficiently generic to address the heterogeneous requirements of a variety of do-

main specific software systems

2. incorporates the self-adaptive (managing system) in a cost-effective way, promoting

reuse across a variety of applications

Figure 3.4: Rainbow Reference Self-adaptive Software Architecture. Source: [45]

40

Figure 3.5: Architecture of Znn.com news application. Source: [44]

An abstract architecture model, as depicted in figure 3.4, is used to model the be-

haviour of the managed system. The software architecture is representative of the com-

ponents and connectors in the managed system. The idea is to monitor properties of

the managed system, evaluate the properties according to some rules to detect violation

of desirable qualities, and effect adaptation actions in the event that a violation occurs.

Rainbow relies on hooks to monitor properties of the managed system and effect adapta-

tion changes.

A notable implementation of Rainbow is the Znn.com news website system presented

in [43]. Znn.com’s architecture, as shown in figure 3.5, consists of a N-tier (in this case

3-tier) web-based application, i.e. a presentation layer, application server layer, and

database backend layer. Clients, depicted as “c” in figure 3.5, make stateless request for

news content (e.g. pages containing videos, images, and/or data fetched from databases).

Servers, depicted as “s” in figure 3.5, render pages within specified response time, and

can be load balanced to decrease/increase the number of servers to ensure resources are

maximally utilised. The problem of self-adaptation is to ensure that response time con-

straint for rendering user requests are not violated while minimising the number (cost)

of servers, “s”, providing the service. The adaptation strategies is such that in the event

of spikes in workload, users are served content at a degraded quality (e.g. textual pages

instead of images/videos). Evaluation of Rainbow architecture within the context of the

znn.com application revealed that it is able to adapt cost-effectively to varying conditions

[44], albeit only within the limits of human expertise encoded in the system [5].

41

Pros

• Separation of concerns: adaptation layer can be changed independent of application

and vice versa.

• Knowledge is explicitly represented and consists of the architecture model, adapta-

tion strategies, and utility preferences [44].

Cons

• Centralised: scalability and single point of failure is a problem.

• Non-extensible, fixed self-contained adaptation strategies.

• Little support for injection of new strategies by human.

• Reactive, since adaptation is only triggered after detected constraint violation, and

not proactively anticipated.

• Deployment can be cumbersome if hooks (monitors and effectors) are not present

in managed system or if number of required hooks are many.

• Timeliness of monitoring or response in the architecture was not considered.

3.3.3 3-layered Self-managed Architecture

Inspired by Gat’s three layered architecture in the AI robotics domain [80], Kramer and

Magee presented a conceptual three layered architecture [105] for self-adaptive software

system (see figure 3.6). In accordance with the separation of concern principle, each layer

is responsible for different aspects of the self-management control loop.

• Component Control: layer consists of components whose composition realises

the functional and non-functional properties of the managed system. Components

are able to monitor characteristics of the system being managed, for example by

42

Figure 3.6: Self-Managed Architecture. Source: [105]

performing health checks for security breaches at predefined intervals. Similarly,

components are able to effect changes to the managed systems in accordance with

the overall specification of the managed system.

When an undesirable scenario arises, such as detection of a threat, components

effect actions to ensure the system’s overall specification is not violated. When

components are unable to handle the detected scenario, it is cascaded to the Change

Management layer.

• Change Management: acts as a bridge between the upper layer that encompasses

the system’s goals and the lower layer that reports scenarios that are beyond its

control. In response to new scenarios from the lower layer, the change management

layer inspects a set of pre-computed plans that correspond to different mappings of

components in the lowest layer. By selecting a plan, the change management layer

effects an adaptation action(s). Adaptation actions could involve adding, deleting,

or updating components and/or their interconnections as required. The process of

inspecting, selecting, and enforcing pre-planned adaptation strategies is a reactive

mechanism. In the event that no plan exists to cater to a detected scenario, then

the goal management layer is invoked to generate new plan for the novel scenario.

Moreover, when new goals or objectives are specified at the goal management layer,

the requisite plans for realising the goals are added to the change management layer.

43

• Goal management: is dedicated to generating new plans for scenarios that are

not currently addressed by pre-computed plans at the change management layer.

Additionally, administrators specify new goals or objectives for the managed system

at this layer. For example, new goals may be injected to reflect agreed service level

objectives with customers.

Skyes et al. [155][156] implemented the 3-layered style using an automatic reactive

planning approach [82]. In their approach, users are able to specify high-level goals,

which may impose functional and/or non-functional restrictions on eventual component

selection to meet the goals. From these goals, reactive plans are generated, where a

reactive plan consists of condition-action pair that determines the behaviour reified by

the goals. The plans are provided as input to an architectural controller which derives

the component configurations that satisfy the high-level goals specified by users. Their

approach suffers from two shortcomings, namely, (1) component configuration only caters

to functional properties, i.e., non-functional and structural constraints are not considered

in their architectural adaptation, (2) they do not account for the state of components

(e.g., idle, busy) during reconfiguration, therefore, it is possible to render components

dependent on the adapted component orphan while adaptation is taking place.

Furthermore, Sykes et al. [155] posited that it is infeasible to completely specify and

analyse adaptation configurations for every scenario a self-adaptive system is likely to

encounter in its lifetime. That is, the specification of a pre-computed set of plan for all

architectural changes the system will require is non-trivial. Crucially, in large-scale cloud

applications, the large number of components and their execution modes makes any static

predefined configuration ineffective at managing cloud dynamics.

These limitations were improved upon in [157], where non-functional attributes of

components were monitored and utilised as a basis for composing components. Further,

to account for component control in a decentralised deployment scenarios, Sykes et al.

[158] proposed the use of gossip protocol [59] within the 3-layered architecture as the basis

for coordinating component assembly in a scalable and efficient manner.

44

Pros

• Separation of concerns (goals → change management → component control): the

relationship between actions carried out by components at lower levels are logically

separated from the higher level specification that encompass the system’s goals.

• Knowledge about each concern is captured at the layer where the concern is ad-

dressed in the adaptation loop.

• The style accounts for timeliness of decision-making (time-awareness) via two inter-

acting external feedback loops. Component control (lowest layer) responds quickly

to changes from the managed system, while successive higher levels require more

time to deliberate on adaptation decisions.

Cons

• Scalability: although in [158] scalability limitation of the style is addressed using a

gossip protocol, this mainly scales data sharing between components when they are

cooperating towards achieving a common overarching system goal. In applications

where each self-adaptive subsystem is concerned with its self-interested goal, which

may conflict with other subsystem’s goals, there is no provision for resolving such

conflict in this approach.

• Knowledge representation is implicit, hence run-time trade-off analysis is limited.

• No in-built support for learning.

• Largely applicable in centralised deployments [167].

3.3.4 Decentralised Reference Architecture

Motivated by the limitation of existing self-adaptive architecture styles, e.g. [45], that

assume a central oracle will be responsible for managing the actions of other nodes or

45

subsystems in a self-managed system, Weyns et al. [167] proposed a reference architecture

for decentralised self-adaptation. They proposed an approach to engineer distributed self-

adaptive software systems in which centralised control is not possible.

In their approach, a self-adaptive system is conceived as a collection of local self-

adaptive systems. By visualising the system as a sum of subsystems rather than a single

unit, autonomous control exists at the subsystem level. Each subsystem consists of a

self-adaptive unit and a local system that it manages to achieve some specified goal. The

self-adaptive subsystem is equipped with elements of the MAPE to enable it autonomously

control the part of the broader system under its control. In contrast to predominantly

centralised architectures, this architecture style makes explicit provision for decentralised

coordination (control) among independent subsystems. Figure 3.7 shows the style.

Figure 3.7: Decentralised Reference Architecture. Source: [167]

Similar to MAPE, the monitor, analyse, plan, and execute operations are represented

in the architecture. These operations are referred to as meta-computations in the language

of the style, which make use of meta-models to reason about concerns of the managed

46

system, its goals, and data structures used for information sharing [167]. Crucially, the

coordination mechanism included in the adaptation loop provides communication and

control facilities to allow one local self-adaptive unit coordinate with other self-adaptive

units. The coordination mechanism and its associated model provide the underlying

decentralisation capabilities for this architecture style.

Using the case study of a traffic monitoring system [167], the architecture style is

instantiated as shown in figure 3.8. The objective of the traffic monitoring system is to

detect traffic jam on the highway. To realise this objective, cameras (subsystems) are

deployed in distributed manner, with as little overlap between their visibility region (field

of view) as possible, to ensure maximum coverage of the highway. Each camera monitors

the part of the traffic within its field of view and collaborates with other cameras in a de-

centralised fashion to detect traffic patterns. The problem they addressed is the detection

of failure of individual camera and recovery, i.e. self-healing, in the system. By exploiting

a rule-based (event, condition, and effect) coordination mechanism to effect detection and

correction, a de-centrally coordinated architecture is realised. Other domains that can

benefit from decentralised architecture are mobile e-Learning systems [83] to coordinate

mobile devices used by students in educational activities and federated cloud systems to

coordinate clouds distributed across multiple sites.

Pros

• Separation of concerns: monitor, analyse, plan, execute, and coordinate operations

can be easily reasoned about in terms of the meta-level computation and meta-model

used.

• Scalability: removal of central bottleneck in the architecture makes it possible to

scale the system.

• Robust: the decentralised style ensure no single point in the architecture is weaker

than others.

Cons

47

Figure 3.8: Decentralised Reference Architecture of Traffic Monitoring System. Source:
[167]

• Knowledge is modelled only in terms of interaction and goal thereby reducing run-

time trade-off analysis for other concerns such as timeliness of response.

• No explicit support for learning.

• There is no systematic guidance to instantiate the style. For example, architec-

tural design decisions about how to resolve conflict between two concerns, such as

overhead of communication (among decentralised subsystems) and system’s perfor-

mance, cannot be reached in a methodical manner.

3.3.5 FUSION

Elkhodary et al. [64] proposed FUSION, a framework for tuning self-adaptive software

system at run-time as shown in figure 3.9. FUSION uses feature-based approach and

online learning for analysis and adaptation. The approach is capable of coping with un-

certainty, unanticipated changes and QoS trade-offs through learning and feature adap-

tation. The unit of adaptation is a feature, i.e. a functional or non-functional abstraction

of a capability provided by the system.

48

Figure 3.9: FUSION Framework. Source: [64]

Pros

• Adheres to separation of concerns principle.

• Has in-built support for learning, hence it is able to manage uncertainties.

• Using feature models reduces engineering effort compared to using analytical models

such as neural networks.

Cons

• Scalability: the approach is mainly suited to centrally controlled systems. The

FUSION (managing) subsystem could become a bottleneck in large scale systems.

• Brittleness: in a distributed deployment, where the FUSION self-adaptive unit man-

ages many systems, it will become a single point of failure as the distributed system

grows in size.

• Closely tied to feature modelling and reinforcement learning.

• System goals are relatively fixed once specified.

49

3.3.6 Observer-Controller (OC)

The goal of organic computing is to design computing systems that exhibit autonomic

behaviour through controlled self-organisation [146]. By controlled self-organisation, this

means the degree of autonomy exhibited by the system is managed by an external con-

troller, typically the user of the system, such that the system does not manifest unantic-

ipated emergent behaviours. In essence, the system is always accountable to the human

operator who specifies the goals of the system.

Figure 3.10: Observer-Controller Architecture Style. Source: [146]

Figure3.10 shows organic computing’s Observer-Controller (OC) architecture style.

The managed system in this case is described as the system under observation and control

(SuOC), which takes input from the environment and produces output according to its

functional objective. The observer component acts as a monitor, recording observations

from the SuOC and its components, the recorded observations are aggregated, and re-

ported to the controller component. The decision whether to adapt the SuOC or not is

taken by the controller after evaluating the reported observation. In the event that the

SuOC needs to be adapted, the controller effects the adaptation action as required.

As earlier mentioned, the distinguishing characteristics of the OC paradigm is the

notion of discouraging full autonomy. The adaptation loop is always reporting its status

to the external controller (e.g. a human operator), who is able to steer the system if an

50

emergent behaviour is discovered. This has the advantage of making users feel inclusive

in the feedback loop, and making them trust the organic system. On the downside, con-

sistently involving users contradicts the rationale for self-adaptation, therefore a balance

of user involvement and autonomy is required to realise the benefit of transparency.

The OC architecture style can be organised to derive patterns for centralised, decen-

tralised, and hierarchical control as shown in figure 3.11. In the centralised pattern (fig-

ure 3.11(a)), one pair of observer and controller component is responsible for the adaptive

behaviour of the SuOC, which may itself not be a centralised system. On the other hand,

the decentralised pattern (figure 3.11(b)) consists of organic systems, each responsible for

different SuOCs, and may not be connected to one another. The hierarchical/multi-level

pattern (figure 3.11(c)) consists of lower level organic systems that are controlled by a

higher level observer-controller pair. That is, the lower level organic systems are the SuOC

of the higher level organic system in the multi-level pattern. Principles of the observer-

controller style have been used to architect applications in domains such as traffic light

controller [20], robotics [140], and off-highway machines [172].

Figure 3.11: Observer Controller Architecture Patterns. Source: [146]

Pros

• User involvement in the adaptation loop is explicitly captured by making it possible

for user to steer the adaptation process, thereby tuning the degree of autonomy and

interrupt the system if it gives rise to undesirable emergent behaviour.

51

• Adheres to separation of concern principle by separating the adaptation layer (ob-

server / controller) from the managed system, i.e. SuOC.

Cons

• User involvement could become a burden, if the system frequently requires user’s

approval before effecting adaptation plans generated by the controller.

• Knowledge about the adaptation process is implicit in the controller and hence

trade-off analysis largely depends on computational model used to implement the

controller.

• The concern about difference in time at different levels of abstraction (e.g. the

system and the adaptation loop) is not addressed by OC style.

• In the hierarchical and decentralised patterns of the OC style, the interaction be-

tween components of the interacting control loops is not made explicit [165]. That

is, it is unclear how the observer and controller subcomponents of the interacting

organic computing systems interact to realise the objective of the distributed system.

• There is no in-built support for learning, although some instances of the style make

use of specialised learning models. For example [140] used a multi-layer learning

approach for coordination of a society of robots, while [172] made use of machine

learning for the management subsystem of an off-highway machine.

3.3.7 Dynamic Data-Driven Application System

Dynamic Data-Driven Application System (DDDAS) [53][54][130][61] is a paradigm for

engineering self-adaptive systems that relies heavily on the measurement of data about the

application (managed system), making decisions (e.g. predictions) based on the measured

data, and injecting/impacting the managed system to ensure it operates within some

bounds of desired behaviour. The managing system in this paradigm does the online or

52

archival measurement and prediction, typically a simulation of the application behaviour

is used for this purpose. On the other hand, the managed system or application is also

able to steer the measurement process, in a way that meets its application goals [53][54].

Simulating the adaptation actions before effecting them on the managed system has

the advantage of mimicking likely scenarios, which may be too expensive or critical to

test on the real system, in a safe and controlled environment. In essence, by simulating

the adaptation actions beforehand, there is a higher guarantee of correct adaptation. The

outcome of the simulation process can then be used to steer the application being managed

appropriately. The feedback control loop of the DDDAS architecture style is shown in

figure 3.12.

Figure 3.12: DDDAS feedback loop. Source: [128]

In [11], the idea of using DDDAS paradigm for QoS optimisation whilst minimising

power consumption was proposed. Although no implementation was presented, the work

demonstrates at a qualitative level how a DDDAS-based software architecture could be

realised to meet QoS and power objectives.

Liu et al. [118] proposed a cloud architecture (see figure 3.13) for managing virtualised

resources in a cloud. At the low level of the architecture stack, virtualised compute,

storage, network resources, load balancer, scheduler, and admission controllers compo-

nents are present. Each low level component is associated with an autonomous worker

agent that controls the execution of the component. At the high level management layer,

management processes perform scenario-based what-if simulation evaluation of manage-

ment actions before updating rules to control action of low level resources. The DDDAS

paradigm is realised by the simulation approach and bidirectional coordination between

managed resource (low level) and the managing system (management layer). Knowledge

53

Figure 3.13: DDDAS-based Autonomic Cloud Architecture. Source: [118]

sharing is done via a distributed data repository which stores state of low level resources

and informs adaptive actions at the high level management layer. In chapter 6, we present

our instantiation of the DDDAS architecture style to autonomously manage SLA compli-

ance in a federated cloud [73].

Pros

• Simulating adaptation actions before impacting them on the managed system has

the benefit of improving the guarantee of adapting correctly.

• Real-time update of the simulation via measurement is useful to keeping the man-

aging system consistent with the view of the environment and emergent behaviours

in the managed system.

• Adaptation policy or strategies can be added or modified by human administrator

at run-time. For example, the policy-based external input in figure 3.13 provides a

means of updating the rules used to adapt low level execution components.

Cons

• Evaluating adaptation actions using simulation has the downside of being infeasible

when the computing system is resource-constrained. Also, for highly perturbed

54

systems, there is an additional overhead of keeping the state of the simulation and

managing system consistent.

• Application goals are relatively static.

• Knowledge representation is not explicitly modelled in the architecture style, al-

though instances can make knowledge representation and its interaction with com-

ponents of the feedback loop explicit (e.g. [118]).

• Has no in-built support for learning.

• Mostly suited to centralised systems where a central oracle (at the managing layer)

having a global view of the system is responsible for managing the managed sub-

system.

3.4 Comparative Analysis

We document the key findings deduced after studying the styles in the aforementioned sec-

tions. We classify these styles using well-defined qualitative adaptation metrics presented

in section 3.2. While some metrics can easily be assessed based on inherent properties

of a style, we rely on empirical evidence from concrete implementations of the styles to

measure others. Table 3.1 presents the outcome of the comparative analysis.

55

Table 3.1: Comparison of Architecture Style for Self-adaptive System
Arch.
Style →
Metric ↓

MAPE-
K

Oreizy Rainbow 3 Lay-
ered

Decentral
-ised
Arch

FUSION Organic
Comput-
ing

DDDAS

Level of
separa-
tion

1-level:
Adap-
tation
layer is
sepa-
rated
from
man-
aged
element

1-level:
Adap-
tation
layer is
sepa-
rated
from
appli-
cation

1-level:
Archi-
tecture
adap-
tation
layer is
sepa-
rated
from
man-
aged
system
layer

4-levels:
Separa-
tion of
3-tier
adap-
tation
layer
from
man-
aged
system

3-levels:
Separa-
tion into
meta-
adaptive
layer,
adap-
tive
layer,
and
man-
aged
system

1-level:
Separa-
tion of
adap-
tation
layer
from
managed
system

1-level:
Separa-
tion of
adapta-
tion layer
(observer
/ con-
troller)
from
managed
system
(SuOC)

1-level:
Adap-
tation
layer
(simu-
lation)
is sep-
arated
from
managed
system

Trans-
parency
to users

Fixed
goals

Fixed
goals

Fixed
goals

Change-
able
goals

Fixed
goals

Fixed
goals

Changeable
goals,
Self-
reporting

Fixed
goals

Degree
of auton-
omy

Fully
auto-
nomous

Fully
auto-
nomous

Fully
auto-
nomous

Fully
auto-
nomous

Fully
auto-
nomous

Fully
auto-
nomous

User-
driven
adapta-
tion

Fully
auto-
nomous

Archi-
tecture
patterns

Central-
ised

Central-
ised

Central-
ised

Hierarch-
ical

Decentral-
ised

Central-
ised

Centralised,
Decen-
tralised,
and Hier-
archical

Central-
ised

Knowledge
represen-
tation
and
trade-off
analysis

Explicit
knowl-
edge
repre-
senta-
tion in
the K
compo-
nent

Implicit Explicit
repre-
senta-
tion of
knowl-
edge
about
adap-
tation
strate-
gies
and
utility
prefer-
ences
[44]

Implicit
knowl-
edge
repre-
senta-
tion at
each
layer of
abstrac-
tion:
plans
(upper),
adap-
tation
strate-
gies
(mid-
dle)
etc.

Implicit Explicit
knowledge-
base to
support
learning
process

- Implicit
(in sim-
ulation).
Some
instances
make
use of
explicit
knowl-
edge
reposito-
ries (e.g.
[118])

Emergence is peculiar to Organic computing as its proponents advocate the importance

of emergence as a form of autonomic behaviour [124]. The Organic Computing paradigm

56

Table 3.2: Comparison of Architecture Style for Self-adaptive System (continued)
Arch.
Style →
Metric ↓

MAPE-
K

Oreizy Rainbow 3 Lay-
ered

Decentral
-ised
Arch

FUSION Organic
Comput-
ing

DDDAS

Notion
of time

- - - Adapt-
ation
feed-
back
loop at
lower
layers
are
faster
than
higher
layers

- - - Simulation
runs
ahead
of the
managed
applica-
tion

Support
for
learning

No
in-built
support

No
in-built
support

No
in-built
support
for
learn-
ing

- No
in-built
support

In-built
support

No in-
built
support
but im-
plemen-
tations
may
realise
learning
using
other
mech-
anisms
e.g. [140]
[172]

No
in-built
support,
although
the sim-
ulation
may im-
plement
learning
algo-
rithms

Emergent
self-
adaptation

- - - - - - Identified
as po-
tentially
useful
[124] but
no prin-
cipled
approach
was
provided
[146]

-

is often described as one that affords controlled self-organisation since the user is the

principal in the adaptation process. However, there was no architecting principle to guide

the reasoning of emergence, and ultimately this view of autonomic behaviour was critiqued

as one that does not “suffice to characterize the essential attributes and mechanisms of

(controlled) self-organization and adaptivity” [146].

57

3.5 Gap Analysis

This section highlights the gaps in state of the art self-adaptive architecture styles.

3.5.1 Goal-awareness

Most architecture styles assume run-time architecture goals are relatively static. This

should not be confused with adaptation strategies which are dynamic in most cases. For

example, Rainbow [45] provides mechanisms for encoding expert knowledge in an appli-

cation domain as adaptation strategies, and selects one of them using decision theory at

run-time [42]. The prevalence of static goal representation can be traced back to early

efforts to implement autonomic systems that perform relatively fixed human administra-

tive tasks in a cost-effective fashion. In those early systems, the goals were relatively

fixed, with adaptation predominantly focused on selection of appropriate strategies (at

run-time) to meet these fixed goals.

[146] and [105] are exceptional styles in this respect because they make run-time

goals explicit, thereby making it possible to change user preferences and constraints. In

particular, [146] makes the role of the human explicit in the adaptation loop and provides

a feedback loop from the system to the user, i.e. status reporting (see figure 3.10).

Modern software systems such as cloud-based applications are deviating from the as-

sumption of fixed goals. For example, users of a public cloud are free to express their

application goals (e.g. combination of SLA parameters and constraints on those param-

eters) in any order, depending on their business goals. In these emerging application

domains, goals are considered as dynamic entities that can change at run-time. Chang-

ing run-time goals should have the consequent effect of changing the adaptation strategies

used to achieve the updated/new goal(s), without violating system constraints. As rightly

identified by Sawyer et al. [145], involving humans in the feedback loop opens opportu-

nities to design self-explaining autonomic systems that can both adapt themselves and

explain their adaptation decisions , e.g. using scenarios, to end users.

58

3.5.2 Time-awareness

We argue that time should be treated as an explicit adaptation concern in self-adaptive

architecture styles, and should not be left to the application designer as part of their im-

plementation concerns. We explicate this position by considering the simplest autonomic

system, where a central autonomic manager adapts a single computing node. Here, the

notion of time-awareness can be traced to the following questions: (1) how often should

the managed system be sensed (monitoring)? (2) how often should changes be impacted

on the monitored system (execute)? (3) should the adaptation loop rely on historic data or

anticipate future events while making adaptation decisions? It is clear that depending on

the notion of time, different architectural configurations would suffice. Architecture-level

primitives that aid reasoning about how time affects the architectural design decisions

are crucial.

In distributed systems, the problem of timing is exacerbated, as coordinating auto-

nomic managers, working in a cooperative setting, to adapt the managed subsystems

require a notion of time that is consistent. This concern is often left to the application

designer, for example a heartbeat timing mechanism is used to coordinate decentralised

cameras in [167]. With the exception of [105] and [53], where time is explicitly considered

as an adaptation concern, most architecture styles treat time as an implicit aspect of the

adaptation loop.

In [105], the speed of adaptation at each layer of the hierarchical architecture pro-

gressively reduces as it commences from the component control layer (responsible for

monitoring/execution), to change management layer (performs strategy selection), and

goal management (plans new strategies for emergent scenarios). It is unclear how this

architecture caters to the timing requirement of decentralised architectures. The bidirec-

tional co-adaptation approach in [53] assumes the measurement subsystem (simulation)

runs ahead of the application (managed system) being adapted. The rationale of the

difference in time here is to allow the managing subsystem time to assess the impact of

various adaptation actions before impacting the system.

59

3.5.3 Interaction-awareness in Decentralised Architectures

Most of the architecture styles are specialised for centralised control [129][45][64][53] and

hierarchical control [105]. The work of [81], although not instantiating any of the reference

architectures in this chapter, realised decentralised control via a broadcast coordination

mechanism, which suffered from scalability limitations. Sykes’ [158] implementation of a

decentralised architecture based on the 3-layered style [105] is largely due to the use of

the gossip coordination mechanism. Hence, we agree with Weyns’ [167] claim that the

choice of coordination mechanism is crucial in a decentralised architecture. Furthermore,

the style could make the realisation of such mechanisms easier by providing primitives to

implement and reason about coordination.

The exception is the decentralised reference architecture [167], which is specialised for

decentralised control, and makes the coordination mechanism and its associated model

explicit. Although variants of [146] can be structured to realise centralised, hierarchical,

and decentralised patterns, it does not make the coordination among the interaction

autonomic system (termed organic system) explicit. As earlier mentioned, a noteworthy

effort in architectural pattern cataloguing is [168], where 5 architecture patterns derived

from interacting MAPE loops were proposed. However, the patterns are limited in their

representation of run-time goals and knowledge is represented at a coarse-grain level,

hence limiting run-time trade-off analysis.

The state of the art in self-adaptive architecture would benefit from a style that sup-

ports decentralisation by design, making interaction among interacting autonomic subsys-

tems explicit as well as fine-grained knowledge representation. Additionally, there is no

systematic methodology to instantiating any of the self-adaptive architecture style. This

contrasts to practice in more mature software architecture pattern communities [79][23],

where methodical processes for understanding and instantiating reference architectures

are given special attention.

60

3.5.4 Fine-grained Knowledge and Trade-off Analysis

It was observed that there was no unified, principled approach about representing the

knowledge that a self-adaptive system should encode in other to realise its objective. In

[45], the focus of knowledge is the representation of adaptation strategies, while knowl-

edge in [64] is essentially a supporting mechanism to facilitate the learning capabilities of

the architecture. In [105], knowledge is distributed according to the concerns on different

layers of the hierarchical architecture (although it is not made explicit). Other architec-

ture styles make the knowledge concern of adaptation an implicit concern. Application

designers may violate this implicit assumption by making knowledge explicit to aid the

architecture of their system. As an example, [118] used a distributed knowledge repository

to manage interaction between the low level execution layer and high level management

layer in a DDDAS-based cloud architecture.

We argue that such coarse grain and unstructured representation of knowledge has the

effect of misguiding application designers on which principles to adopt for encoding differ-

ent knowledge concerns. In particular, we believe that by making knowledge explicit and

represented at a fine-grain level to address concerns for time, goal, and interaction, rea-

soning about time-awareness (as discussed in section 3.5.2), goal-awareness (as discussed

in section 3.5.1), and decentralisation (as discussed in section 3.5.3) and the trade-off

between them will be significantly improved.

3.6 Summary

In this chapter we studied representative architecture styles for designing self-adaptive

software systems. In particular, the studied architecture styles are measured with respect

to the degree of adaptability they afford. From our findings, we characterised the extent

to which each studied architecture style realised the adaptation metrics of interest, for

example: level of separation of concerns, support for learning, knowledge representation

etc. Additionally, we performed a comparative analysis to position our findings from each

61

architecture style relative to other styles using well-defined adaptation metrics. Further-

more, we conducted a gap analysis and found that state of the art architecture styles

are lacking in their modelling of goals, time, interaction in decentralised systems, and

fine-grained knowledge representation to support trade-off analysis.

Given the requirements of modern cloud service level management, we argue that

a novel architecture style that fills the identified gaps and provides a methodological

approach to engineering self-adaptive cloud applications is needed. Chapter 4 presents the

self-aware architecture style, our novel contribution to architecture-based self-adaptation

that has in-built support for learning, fine-grained knowledge representation, and eases

analyses of non-functional qualities and trade-offs at multiple levels of abstraction.

62

CHAPTER 4

ARCHITECTURE STYLE AND PATTERNS FOR
SELF-AWARE SYSTEMS

“I believe that at the end of the century the use of words and general

educated opinion will have altered so much that one will be able to speak of

machines thinking without expecting to be contradicted.”

Alan Turing

4.1 Overview of the Chapter

A handful of architecture styles have been contributed in line with the vision of architecture-

based self-adaptation e.g. [53] [45] [105] [64] [146]. These approaches often make simpli-

fied assumptions about knowledge acquisition and representation when modelling and

managing trade-offs encountered in dynamic, open systems. As a result, the quality of

adaptation tends to be limited as it does not fully capture complex trade-offs arising from

heterogeneity of the interacting nodes, the operating scale, openness, and dynamics of the

environment.

It has been observed that “fine-grained” knowledge representation provides useful

primitives for more effective design of self-adaptive architectures [67][36][98]. Decompos-

ing knowledge about a system to finer grain raises the system’s awareness about itself,

i.e. its self-awareness. According to Lewis et al. [115] a self-aware system is one that

63

“...possesses information about its internal state (private self-awareness), and sufficient

knowledge of its environment to determine how it is perceived by other parts of the system

(public self-awareness).” Prior to Lewis et al. [115], Kephart and Chess [100] posited that

self-awareness is an enabler to realising advanced autonomic behaviour.

The EU-funded FP7 project Engineering Proprioception in Computing Systems1 (EPiCS)

[13] [66] has produced results related to how concepts of self-awareness and self-expression

can be used to engineer autonomic computing systems. We exploit these concepts and

the self-aware architecture style [68] as conceptual foundations for innovating self-aware

architectural patterns, which are the novel contributions of this thesis. Computational

self-awareness endows a self-adaptive system with capabilities for acquiring knowledge by

monitoring via internal sensors (within the self-adaptive system), external sensors (in the

operating environment), and representing knowledge using learning models.

This chapter’s objective is to answer the first research question (Q1) in chapter 1:

What are the architectural patterns that can be used by software architects
to design SLA compliant self-aware federated cloud applications?

Building on the conceptual foundations of self-awareness, this chapter contributes five

architectural patterns for designing self-aware computing systems. These patterns ad-

here to well-tested architectural principles, such as separation of concerns, and provide a

systematic approach for instantiating a self-aware architecture. Each pattern provides a

solution to a recurring design problem in a given context [93]. By inspecting the charac-

teristics of a pattern and exemplar of its use, architects of federated cloud applications

are able to make informed design decisions about their systems. Patterns are presented

in increasing order of complexity and build on one another to aid comprehension.

The contributions of the chapter are as follows:

• The self-aware architecture style is presented in section 4.2. Unlike state of the

art architecture styles, the self-aware style incorporates fine-grained knowledge rep-

1The self-aware architecture style presented in this chapter was jointly incepted by the author in
collaboration with members of EPiCS project. The work on self-aware architecture patterns is the
author’s original contribution.

64

resentation to model concerns relating to stimuli, goal, interaction, and time. It

offers in-built support for learning and facilitates knowledge representation, run-

time strategy selection, and reasoning about adaptation actions at a meta level.

• We advance the foundation of the self-aware style by codifying design lessons learnt

from existing applications of the style in the form of patterns [68] [40]. Our novel

architectural patterns (section 4.3) are generic templates that serve as guidelines for

organising self-aware applications [23], therefore, aiding reuse of the style.

4.2 The Self-Aware Architecture Style

This section describes an architecture-style for self-awareness by looking at a self-aware

node. A node in our context refers to the boundary of the system that is to be man-

aged. More generally, a node has autonomy over its representation of itself and operating

environment, and is able to exert its behaviour on the environment and other nodes.

It is important to clarify conceptual differences about how a self-adaptive node is

perceived by the agent and architecture communities. Approaches to self-adaptation

presented in chapter 3 can be classified as architecture-based self-adaptation [42]. Whereas

the type of system capable of self-adaptation could be described in the agent literature

as architectures of agents that are capable of learning [142]. There is a subtle difference

between these two types of architectures in terms of the boundary of what is considered

to be the self and level of control exerted by the environment in the relationship between

the self and environment. This difference is elaborated upon as follows.

A self-adaptive software system essentially consists of two parts: (i) a managed part

that can be monitored and controlled, operating in an environment which may be un-

controllable, and (ii) an adapting part that can monitor the managed part, reason about

it, and adapt it to realise some goal. A software agent is essentially an autonomous

system that can reason about itself and its environment and can perform actions in the

environment to meet its design objectives [46].

65

A self-aware node as conceived in this thesis interacts with an environment, which may

be a controllable managed system or an uncontrollable environment. While this difference

may impact choice of architectures, in the model of our style controllability of managed

system and/or environment is not given special treatment - this concern is left as design

decisions when instantiating the style in various application domains. Perry and Wolf’s

seminar work [134] provide an instructive definition to clarify these terminologies.

“An architecture style is that which abstracts elements and formal aspects
from various specific architectures. An architectural style is less constrained
and less complete than a specific architecture.” [134]

This definition sheds light into why constraints, such as controllability, may be treated

as soft constraints when presenting an architecture style as opposed to when presenting

a specific architecture of a system. Since this chapter considers an architecture from

the stylistic perspective rather than a specific architecture, therefore, the two types of

controllable states identified in the agent and architecture communities may be abstracted

as design decisions to consider when instantiating the style. More precisely, we view the

self-aware style as one that describes how a self-adaptive system may be designed in the

context of both controllable and uncontrollable environments.

Figure 4.1 depicts the internal composition of a constituent node in the said style. It

describes its structure, interaction, and relationship with the environment. The self-aware

style introduces an approach to analysis, reasoning, and management of self-adaptation

and their dynamic trade-offs by decomposing knowledge according to the concerns of the

system. Specifically, knowledge is decomposed into five distinct levels of awareness, which

are discussed in this chapter, namely: stimuli, interaction, time, goal, and meta. The

idea is to simplify architectural design and analysis of self-adaptive system by decoupling

knowledge concerns across these dimensions and making the interaction between them

explicit. By taking this approach, trade-off points [48] that may hinder the system from

meeting its requirements are easier to identify and reason about.

Self-awareness processes are able to collect information both from internal sensors

66

Design time goals
Learnt
models

Self-expressionSelf-expression

Self-awarenessInternal
sensors
Internal
sensors

External
sensors
External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators
External
actuators

Internal
actuators
Internal

actuators

Data flow

Control

Figure 4.1: Overview of Architecture of a Self-aware Node. Source: [68]

(regarding private experiences internal to the node and typically externally unobservable)

and external sensors (regarding experiences of the node’s physical environment as well

as of other nodes). Additionally, self-awareness processes are able to observe the actions

taken by the node, and have access to goals specified for the node at design time.

Self-expression processes make use of knowledge obtained and represented by self-

awareness processes and determine appropriate actions as a result. The self-expression

component therefore has control over actuators. The self-expression component has no

privileged direct access to the design-time goals, however in a typical instantiation, a self-

awareness process will be responsible for representing goal information in a meaningful,

useful and efficient manner (e.g. through a utility function), to the self-expression com-

ponent. In this way, though a node may be designed with multiple complex and context

dependent goals, it may possess the ability to be aware of which goals are relevant given

its current context, and expose only those to the self-expression component at a given

time. This separation can act to simplify the required self-expression behaviour.

67

4.2.1 Primitives of Self-aware Architecture Style

This section introduces two important primitives underlying the self-aware architecture

style [68]: levels of self-awareness and the notion of public and private self-awareness.

Levels of Self-awareness

According to [115], there are five levels of computational self-awareness that can be used

to describe a computing system’s self-awareness capabilities as described below.

Stimulus-aware: A node is stimulus-aware if it has knowledge of stimuli, which enables

it to respond to external entities. The node is not able to distinguish between the sources

of stimuli neither can it distinguish between past or future stimuli. Stimuli-awareness is

the lowest level of awareness and a prerequisite for other levels of awareness.

Interaction-aware: A node is interaction-aware if it has knowledge that stimuli and its

own actions form part of interactions with other nodes and the environment. It has knowl-

edge via feedback loops that its actions can cause specific reactions from the environment

in which it is deployed.

Time-aware: A node is time-aware if it has knowledge of historical and/or likely future

phenomena. Implementing time-awareness may involve the node possessing an explicit

memory, capabilities of time series modelling and/or anticipation.

Goal-aware: A node is goal-aware if it has knowledge of current goals, objectives, pref-

erences and constraints. Goal-awareness constitutes objectives of the system that are

capable of changing at run-time; not hard-coded design-time goals. Utility functions and

state models are examples of implementation options for goal-aware capability.

Meta-self-aware: A node is meta-self-aware if it has knowledge of its own level(s) of

awareness and the degree of complexity with which the level(s) are exercised. This ad-

vanced state of awareness permits choosing between implementation options for realising

lower levels of awareness. Also, it permits a self-aware system to degrade gracefully instead

of failing catastrophically.

In architectural terminology, each level of self-awareness maps to a component in a

68

software architecture. Therefore, we are able to reason about interaction of these levels

by conceptualising them as subcomponents of a self-aware node. Figure 4.2 depicts an

architectural representation of a self-aware node showing how its subcomponents relate

to one another.

Private Public

Stimulus awareness

Interaction awareness

Time awareness

Goal awareness

Run time goals

Design time goals

Learnt
models

Self-expressionSelf-expression

Meta-
self-awareness

Meta-
self-awareness

Self-awarenessInternal
sensors
Internal
sensors

External
sensors
External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators
External
actuators

Internal
actuators
Internal

actuators

Data flow

Control

Figure 4.2: A Self-aware Node showing interaction of subcomponents realising different
levels of awareness. Source: [68]

Private and Public Self-awareness

Private and public self-awareness are concerned with internal and external sources of

knowledge respectively. Self-aware architecture style makes a distinction between exter-

nal and internal sources of data, from which the self-awareness component constructs

knowledge. Data connectors clearly establish this relationship in figure 4.2.

With the exception of interaction awareness, all self-aware subcomponents can ex-

hibit both private and public self-awareness. Since external accessibility is a necessary

prerequisite for interaction, interaction awareness subcomponent is only public.

The self-expression component of the architecture (in figure 4.2) exploits learnt knowl-

edge to effect correct behaviour of the system using one or more strategies. These strate-

69

gies determine the node’s actions, given the availability and state of the node’s knowledge.

Clearly, the types of learning carried out in the self-awareness component, and the types

of models available, will have a large bearing on what strategies it is possible to learn and

enact in the self-expression component.

To design a self-aware cloud application, the software architect must decide: (i) what

level(s) of self-awareness to implement, (ii) the structural organisations of the level(s) of

self-awareness, and (iii) the expected quality of service of each structural organisation.

Next, we present our self-aware patterns that help architects make informed decisions.

4.3 Patterns for Self-aware Architecture Style

Building on the primitives of self-aware architecture style, we codify the knowledge about

how to architecture self-aware applications in the form of architecture patterns in this

section. We elicit five patterns, where each pattern is decentralised by design. That is,

structurally our self-aware patterns resembles a peer-to-peer network of interconnecting

self-aware nodes, varying only in the number of the subcomponents and the type of

interconnection between them.

Until recently, architecture patterns for self-adaptive systems have received little at-

tention [168]. Many existing patterns target specific application domains [123], limiting

their reuse outside the domains where they were originally conceived. Weyns et al. [168]

argued that UML notations are limited in their ability to characterise self-adaptive archi-

tecture patterns, hence they proposed a simple, generic notation for describing patterns

for Monitor-Analyse-Plan-Execute (MAPE) architecture style. Our patterns are distinct

in focus from Weyns’ in the sense that while we model knowledge concerns in the archi-

tecture, their attention was about MAPE component interaction.

We adopt a pattern notation, similar to the one in [168] for describing our self-aware

patterns. Firstly, Weyns’s notation [168] is simple and easy to comprehend. Secondly,

we believe describing our self-aware patterns using existing notation in the self-adaptive

70

community makes our work accessible to other researchers and paves the way for others

to build on our work. The pattern notation is depicted in figure 4.3.

Inter-component connector

self-aware

subcomponent

Mul_Op Mul_Op

Intra-component connector

Mul_Op: *, 1, or 0

Subcomponents of a self-aware node are:

I.S. – internal sensor, I.A. – internal actuator

E.S. – external sensor, E.A. – external actuator

S.E. – self-expression, In. A. – interaction awareness

T.A. – time-awareness, G.A. – goal-awareness

M.S.A – meta-self-awareness

Figure 4.3: Notation for Describing Self-aware Architecture Pattern

Two types of connectors are used to express the relationship between subcomponent

of a self-aware node and its relation to other self-aware node(s). The intra-component

connector applies to subcomponents of the same type, while inter-component connector

applies to linkage between components of different types. There are three types of multi-

plicity operators (mul op). The multiplicity operator asterisk, *, signifies the many-side

of a connection, while 1 or 0 indicates that one or zero connections of the type specified

is permitted. E.g., a * on both sides of the intra-component arrow of a subcomponent

means one or more subcomponents of that type can be linked to one another across nodes.

Stimulus-awareness subcomponent is considered an invariant in the five self-aware

patterns, hence it is not shown in our pattern description, since as discussed in section 4.2.1

it is a prerequisite for any form of awareness. We document our patterns using standard

pattern template [23] as follows.

• Problem/Motivation: A scenario where the pattern is applicable

71

• Solution: A representation of the said pattern in a graphical form

• Consequences: A narration of the outcome of applying the pattern

• Example: Instance of the pattern in real applications or systems

Next, we present the five self-aware patterns using the template described above.

4.3.1 Basic Information Sharing Pattern

Problem/Motivation. Sometimes one computing node may not be sufficient to cope

with the complexity of an application or to meet the demands of users as they scale. To

manage application complexity, functionalities could be divided among several self-aware

nodes, where each node is specialised in a few functionalities, collaborating to provide the

application’s service. More self-aware nodes may also be introduced to meet the scalability

requirement of the system. In each case, at the basic level, there is a need to provide a

means for the nodes to interact with one another to carry out their respective roles.

Private Public

Interaction awareness

*

Self-expressionSelf-expression

Self-awarenessInternal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

*

1

1

1

1

*

*

Design time goals

**

Figure 4.4: Basic Information Sharing Pattern

72

Solution. The simplest pattern for interacting self-aware nodes is the basic information

sharing pattern. In this pattern, a self-aware node contains only the interaction-awareness

subcomponent, which can be connected to one or more self-aware nodes as shown in

figure 4.4. Each self-aware node may have one or more sensors (internal/external) and

actuators (internal/external). The underlying characteristic of this pattern is that peers

are linked only at the level of interaction-awareness.

An example of the basic pattern where two nodes are connected via their interaction-

awareness subcomponents is shown in figure 4.5. Although only two nodes are shown in

figure 4.5, the number of connected nodes is not limited to two. The number of nodes

is limited by the scalability of the interaction mechanism. For instance, a broadcast

mechanism may limit the number of interconnected nodes when compared to a gossip

protocol. In practice, a node may be connected to either all or a subset of nodes in the

systems depending on its role in the system.

Self-expression

Self-awarenessInternal
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

Internal
actuators

Design time goals

Self-expression

Self-awarenessInternal
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

Internal
actuators

Design time goals

I.S. I.S.

I.A. I.A.

E.S.

E.A.S.E.

E.S.

E.A.S.E.

In. A. In. A.

Figure 4.5: Concrete Instance of the Basic Pattern

Consequences. Self-aware nodes could use the interconnection between them to negoti-

ate the protocol to use for communicating in a network. This pattern can also be used to

facilitate sharing information among nodes about neighbourhood relation in a network.

Crucially, in this pattern each self-aware node maintains its autonomy about how to

make adaptation decisions via its self-expression component. This means that each node

is responsible for its interpretation and reaction to the information shared via interaction-

awareness. Therefore, this pattern is not suitable for cooperative problem-solving scenar-

73

ios, where nodes need to reach an agreement among themselves about the best course of

action for the problem. This limitation is addressed in the coordinated decision-making

pattern (see next section). The basic information sharing pattern assumes the system’s

goal is preconfigured at design time, consequently, constraining the system’s adaptation.

Examples. Federated datacenters and clouds, owned by distinct entities, are good can-

didate applications of the basic information sharing pattern. The owners of such clouds

or datacenters may choose only to share status information about availability of resources

or current load and not cooperate beyond this level. Thus, each cloud provider maintains

autonomy over its resources while collaborating with other cloud providers in a limited

way to facilitate outsourcing of resources, if required. Participants in a grid computing

set-up utilise similar communication model and rely on incentive-based mechanisms to

facilitate resource sharing [173].

4.3.2 Coordinated Decision-making Pattern

Problem/Motivation. Decisions made by individual self-aware nodes in a group may

be suboptimal due to their limited view of the system and its operating environment.

As noted in the basic information sharing pattern, individual self-aware nodes do not

cooperate when making decisions. In applications requiring near-optimal and consistent

global decision making in a cooperative setting, a more advanced architectural pattern

may be required. In particular, such a pattern should make it possible for nodes to

synchronise their self-expressive actions.

Solution. The coordinated decision-making pattern provides a means of coordinating

actions of multiple, interconnected self-aware nodes. Figure 4.6 shows this pattern. It

differs from the basic pattern in that self-expressive nodes are linked to one another, such

that they are able to agree on what action to take.

Consequences. Unlike the basic pattern, given the * to 0 multiplicity on the self-

expression component in figure 4.6, it is not mandatory for nodes to link their self-

expression components to each other. This makes it possible for nodes to form clusters,

74

Private Public

Interaction awareness

*

Self-expressionSelf-expression

Self-awarenessInternal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

*

1

1

1

1

*

*

Design time goals

**

* 0

Figure 4.6: Coordinated Decision-making Pattern

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Design time goals

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Design time goals

I.S.

I.A.

E.S.

E.A.S.E.

In. A.

I.S.

I.A.

E.S.

E.A.S.E.

In. A.

Figure 4.7: Concrete Instance of Coordinated Decision-making Pattern

where nodes in a cluster cooperate to solve problems in one part of a system, while nodes

in other clusters cooperate to solve problems in other parts. Figure 4.7 shows an example

where two self-aware nodes instantiate this pattern. As argued in the case of the basic

pattern, using two nodes to illustrate the pattern as shown in figure 4.7 does not limit

the number of nodes that can realise the pattern in a real system.

The downside of this pattern is that although nodes are able to form clusters and

cooperate on what action to take, they are unable to decide the timing of such actions,

75

i.e. when to act. This notion of time insensitivity is addressed in the Temporal Knowledge

Sharing Pattern (see next section). The temporal knowledge sharing pattern incorporates

time-awareness capabilities into the coordinated decision making pattern.

Examples. Large-scale cloud federations where providers agree to implement unified

resource allocation policies, irrespective of how such policies are enforced at individual

cloud levels, are a candidate application of this pattern. In such federated clouds, policy

changes are negotiated via interaction-awareness subcomponents, upon agreement the

self-expression component of each cloud enforce the agreed policy within its (local) cloud.

4.3.3 Temporal Knowledge Sharing Pattern

Problem/Motivation. As stated in the previous section, coordinated decision-making

pattern does not provide a means of coordinating the timing of actions agreed upon by

cooperating nodes. This limitation may not be tolerated in applications where timing of

actions has an impact on the integrity of the application. Also historic knowledge may be

required to forecast future actions, in order to improve the accuracy of adaptive actions.

Private Public

Interaction awareness

Time awareness

Design time goals

Self-expressionSelf-expression

Self-awarenessInternal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

*

**

*

*

*

*

*

1 1

1

1

1

1
0

0

Figure 4.8: Temporal Knowledge Sharing Pattern

76

Solution. The temporal knowledge sharing pattern solves this problem by incorporating

time-awareness capabilities into the coordinated decision-making pattern. As shown in

figure 4.8, each self-aware node has a time-aware subcomponent which is, optionally (as

denoted by its multiplicity), linked to other self-aware nodes to represent timing informa-

tion. An example where two nodes are connected using this pattern is shown in figure 4.9.

This timing information can be exploited by the self-expression component to manage the

timing of adaptation actions across multiple nodes.

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Design time goals

Interaction awareness

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Design time goals

I.S.

I.A.

E.S.

E.A.S.E.

In. A.

T. A.

I.S.

I.A.

E.S.

E.A.S.E.

In. A.

T. A.

Figure 4.9: Concrete Instance of Temporal Knowledge Sharing Pattern

Consequences. The knowledge of timing information provides a rich basis to enrich

the power of the adaptation action that is possible. However, there are a lot of design

considerations left to the application designer who instantiates the style. For example,

how often should timing information be recorded? In storage constrained systems, how

long should acquired knowledge be stored for before forgetting (removing) them? Should

the forgetting process be total, i.e. delete all knowledge acquired within a period at once,

or selective? Depending on the concerns of the application at hand, these questions will

have different answers.

It should be noted that up till now, all the patterns discussed do not cater to changing

goals. That is, they assume the goal of the self-adaptive system is known at design-time

and statically encoded in the system, without opportunity to modify it at run-time. The

pattern discussed in the next section - Goal Disseminating Pattern - will address the

challenge of modifying or changing goal at run-time.

77

Examples. Clusters in cloud datacenters, where the servers in the cluster cooperate to

execute tasks assigned to the cluster head, are able to exploit this pattern. For example,

a parallel scientific application assigned to the cluster, requiring coordination across dif-

ferent time-steps of the application could utilise the pattern to ensure actions taken in

each time-step are coordinated to avoid compromising the integrity of the result.

4.3.4 Goal Disseminating Pattern

Problem/Motivation. User preferences are mostly dynamic, i.e. users want different

things at different times. As an example, a user who is pleased with operating a computing

system using a touch screen at one time may prefer a voice interaction mood at another

time. These changes in user preferences may range from simple changes, such as mood

of user-interaction, to more advanced ones. Furthermore, a computing system may itself

decide to change its goal, depending on the amount of resources available to it. A federated

cloud application that is unable to scale its resources may choose to satisfy SLAs of only

premium users, instead of aiming to satisfy SLAs of all users. Therefore a specialised

pattern that allows explicit representation of run-time goals and facilitate changes to

these goals, as the system evolves, is needed.

Solution. Figure 4.10 shows the goal disseminating pattern that address the concern of

representing run-time goal. A goal-awareness subcomponent represents knowledge about

run-time goals, which can be changed as the system evolves. The goal-awareness subcom-

ponent in a self-aware node can, optionally, share its state information with goal-awareness

subcomponents in other self-aware nodes.

As with previous patterns, goal information sharing is not necessarily globally shared

with all nodes. Hence, a subset of nodes in a system could share their goal state, while

their goal information is disjoint from other nodes. It is important to note that sharing

goal information is not equivalent to unifying goal state across nodes. It is possible for

nodes to share goal information, while each pursues its distinct goal. The reverse scenario,

where goal information are unified across nodes, is also possible.

78

Private Public

Interaction awareness

Goal awareness

Run time goals

Design time goals

Self-expressionSelf-expression

Self-awareness
Internal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

*

**

*

*

* *

*

1

11

1 1

1

0

0

Figure 4.10: Goal Disseminating Pattern

Private Public

Interaction awareness

Time awareness

Goal awareness

Run time goals

Design time goals

Self-expressionSelf-expression

Self-awareness
Internal
sensors

Internal
sensors

External
sensors

External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators

External
actuators

Internal
actuators

Internal
actuators

Data flow

Control

* 0

* 0

**1

1

1
1

1

1

11

* *

**
* 0

Figure 4.11: Goal Disseminating Pattern (with time-awareness capability)

Consequences. As can be observed from figure 4.10, a time-awareness subcomponent

is not included in this variant of the style. This implies that time-awareness is not a

necessary prerequisite for goal-awareness. While each node is able to change its goal at

79

run-time, it does not represent temporal information to realise the capabilities of the

temporal knowledge sharing pattern. For the sake of completeness, we include a variant

of the pattern that addresses this limitation (see figure 4.11). The variant in figure 4.11

makes the inclusion of temporal knowledge explicit, making it suitable for application

domains where changing goals and forecasting are required.

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Run time goals

Interaction awareness

Self-expression

Self-awarenessInternal
sensors

External
sensors

External
actuators

Internal
actuators

Run time goals

I.S.

I.A.

E.S.

E.A.S.E.

In. A.

G. A.

I.S.

I.A.

E.S.

E.A.S.E.

In. A.

G. A.

Figure 4.12: Concrete Instance of Goal Disseminating Pattern (variant 1)

Self-expression

Self-awareness

Internal
sensors

External
sensors

External
actuators

Internal
actuators

Run time goals

Self-expression
External
actuators

Internal
actuators

I.S.

I.A.

E.S.

E.A.S.E. I.A. E.A.S.E.

In.A.

T.A.

G.A.

Self-awarenessInternal
sensors

External
sensors

Run time goals

I.S. E.S.

In.A.

T.A.

G.A.

Figure 4.13: Concrete Instance of Goal Disseminating Pattern (variant 2)

In both variants of the pattern, self-expression component makes use of the goal-

awareness subcomponent to make strategic decisions in line with the system’s current goal.

Figure 4.12 shows an instance of the pattern (without time-awareness), while figure 4.13

an instance (with time-awareness).

Examples.

Service-based applications operating in dynamic, open cloud environment are possible

80

candidates of this pattern. Here, applications are composed from cloud services which

are selected based on QoS and cost considerations. A service that is highly performant

at one time may degrade in quality at later times due to overloading of the service. Each

application has service level agreement (SLAs), to which it must adhere. Application

goals encoded in SLAs may themselves change as users demand different levels of service

from time to time.

Using the second variant of the goal-disseminating pattern (see figure 4.11) in this

scenario has the benefit of making each application capable of representing temporal

knowledge about service performance and forecasting which service(s) are likely to be more

dependable and long-lasting. Also, the goal-awareness subcomponent makes it possible

to represent SLA terms of users and adapt such goals as they change. Lastly, by sharing

temporal knowledge, applications can cascade knowledge of service performance among

themselves. It should be noted that this introduces opportunities to falsely badmouth or

inflate performance of services. Considerations for filtering out good knowledge are left

to the computational models used to implement time- and goal-awareness.

4.3.5 Meta-self-awareness and Self-aware Patterns

As discussed in section 4.2.1, meta-self-awareness is useful for managing the trade-off be-

tween various levels of self-awareness and for modifying goals at run-time. Since reasoning

at the meta level is considered an advanced form of awareness, which may be beneficial

or necessary in some contexts and not beneficial in others. This section specially treats

the relation between meta-self-awareness and the patterns discussed in previous sections.

We reiterate that one of the distinct benefits of the self-aware style is to reduce the

complexity of modelling adaptive behaviour when compared to non-self-aware approaches.

For the sake of illustration, consider the problem of modelling and tuning an online learn-

ing algorithm, e.g. neural network, for deciding actions of an application in different

scenarios. It is known that this task is time-consuming and requires expertise mathemat-

ical skills, which may not be readily available [64]. Additionally, in some use cases, small

81

changes in the application scenarios may render the solution proffered by the algorithm

invalid or incorrect - another cycle of algorithm tuning may be needed to cater to these

changes. An alternative approach is to provide families of algorithms for different con-

texts and dynamically select the appropriate algorithm at run-time using online learning

capabilities of the meta-self-aware component.

Self-expression

Self-awareness

Internal
sensors

External
sensors

External
actuators

Internal
actuators

Run time goals

Self-expression
External
actuators

Internal
actuators

I.S.

I.A.

E.S.

E.A.S.E. I.A. E.A.S.E.

In.A.

T.A.

G.A.

Self-awarenessInternal
sensors

External
sensorsI.S. E.S.

In.A.

T.A.

G.A.Run time goals

M.S.A M.S.A

Figure 4.14: Concrete Instance of Goal Disseminating Pattern (including meta-self-
awareness component)

While the first approach offers faster adaptation, if application scenarios are relatively

stable, the second approach is able to better cope with complexity in highly perturbed

environments, where one algorithm is insufficient to cover the scope of adaptive behaviour.

Accordingly, we recommend that every pattern can optionally incorporate the meta-self-

aware component depending on the complexity to be managed and expertise of the ap-

plication designer. Figure 4.14 shows a variant of the goal-dissemination pattern where

a meta-self-aware pattern is present to manage trade-off between goal-, interaction-, and

time-awareness subcomponents.

82

4.4 Related Work

4.4.1 Classic Self-adaptive Architecture Styles

Similar to classic architecture styles surveyed in chapter 3 (e.g. [100] [129] [45] [105][167][64][146][53]),

our self-aware style emphasises a separation between the acquisition and representation of

the learnt knowledge and the decision making processes. However, knowledge in our style

is explicitly modelled at a finer grain (stimuli, goal, time, interaction, and meta) than

classic styles. Similar to architectural pattern approach in organic computing [146] and

MAPE [168], we provide a catalogue of patterns to guide software architects. In contrast

to existing work in self-adaptive architecture patterns, we explicitly model the knowledge

dimension of the control loop. Since knowledge (self-awareness) is an enabler of a sys-

tem’s self-adaptive capabilities, our approach offers a more comprehensive coverage of the

system’s design space.

Crucially, with the exception of [167], classical self-adaptive architecture styles are

mainly centralised or hierarchical, however our approach is decentralised by design. This

offers capability to manage dynamics of large scale federated cloud applications. Aside

from [105] and [53], the notion of time-awareness was not explicitly captured in exist-

ing approaches. In our approach, we provide explicit patterns to guide architects when

designing time-critical applications.

Our work complements learning-inspired architecture styles such as FUSION [64].

While FUSION makes use of feature-based models and reinforcement learning for anal-

ysis and adaptation, we provide an extensible style for architects to choose models that

best fit their problems. This consideration is especially important in the meta-self-aware

pattern of our style as learning models implemented in self-aware and meta-self-aware

subcomponents may well be different. One limitation of our work is that we have not

explored the concept of emergence as a form of self-awareness as suggested by [115] and

captured in organic computing [146]. This dimension is left as future work.

83

4.4.2 Approaches with Explicit Claim to Self-awareness

SEEC (SElf-awarE Computing) is another framework that claims self-aware capabilities

[86]. SEEC relies on the (O)bserve-(D)ecide-(A)ct (ODA) [86] architecture style. The

(O)bserve and (A)ct in ODA serves as monitor and executor components respectively,

while analysis and planning tasks are performed by the (D)ecide component. ODA is

centralised by design and does not account for the levels of self-awareness in our approach.

Zambonelli et al. [178] positioned their research on self-awareness and self-expression

from a formal modelling perspective using ensembles to realise self-adaptation at both

individual node and collective levels. In particular, concepts from artificial immune sys-

tem and MAPE-K architecture style were used to model knowledge and realise adaptive

behaviour. Similar to our work, [62] identified five levels of self-awareness namely: event-,

situation-, adaptability-, goal-, and future-awareness, however, no architecture or style

was suggested for reasoning about each level and how they relate to one another.

4.5 Summary

This chapter introduced the conceptual foundation of self-aware architecture style and its

design principles. We described primitives of the style such as levels of self-awareness and

the notion of public and private self-awareness. We advanced the foundation of the self-

aware style by contributing five novel architectural patterns to codify solutions to common

design problems encountered when using the style in specific contexts. We argued for the

ability of the patterns to fill gaps identified in existing architecture style and justified

design decisions made when incepting the patterns.

As a first step to evaluate the architectural patterns, in chapter 5, we instantiate the

goal disseminating pattern within the context of the online shopping cloud application

introduced in section 1.5. One of the core requirements for a quantitative evaluation of

the decentralised self-aware cloud architecture is a coordination mechanism to control

interaction of architectural components. In chapter 5, we propose and evaluate such a

84

mechanism namely Reputation-aware posted offer mechanism within the context of our

self-aware cloud architecture. Chapter 6 takes a qualitative dimension to the evaluation

of the self-aware style by relying on independent stakeholders to compare it with two

classic architecture styles and analysing feedback from independent application designers

on their experience using the self-aware style.

85

CHAPTER 5

MARKET-INSPIRED MECHANISM FOR
DECENTRALISED COORDINATION

“All models are wrong, but some are useful.”

George E. P. Box

5.1 Overview of the chapter

Federated clouds are characterised by distributed ownership of architectural components

by multiple cloud providers where no single provider has global knowledge of the entire

federation. To engineer a self-aware architecture for federated cloud applications, it is

crucial to investigate computational mechanisms for coordinating the components of such

a decentralised system.

The coordination of components in a decentralised system significantly impacts the

system’s ability to meet its design objectives. In the federated cloud application context,

the underlying software architecture and the implemented computational mechanism driv-

ing interaction of components in the architecture both determine the extent to which the

application can meet customer SLAs.

In Computer Science literature, coordination and control is a well-studied topic es-

pecially in the agent-based community. Notably cloud computing researchers have used

86

heuristics (e.g [32]), policies (e.g [89]), and optimisation (e.g [175]) mechanisms for coor-

dinating cloud resources. Whilst these mechanisms are useful for managing interaction of

cloud architectural components at small scales, they do not scale well to larger deploy-

ments. In particular, they are limited in their ability to manage trade-offs amongst design

objectives in large scale deployments such as federated cloud settings.

Suppose we view the set of cloud services which may be used to compose a federated

cloud application as an economy. Market-based Control (MBC) [47] offers a class of mech-

anisms which makes use of such an economy analogy to address limitations of heuristics,

policies, and optimisation approaches. MBC approaches have been used for managing

trade-offs amongst multiple (conflicting) objectives in distributed systems such as com-

munication networks [107], interactive music [35], and smart camera networks [67]. Essen-

tially MBC translates socio-economic concepts that make market institutions scalable and

resolve trade-offs autonomously into computational terms. By designating components

as buyers and sellers in the market economic system and coordinating their interaction

using a mechanism, a robust, scalable, and decentralised system can be realised.

Given the suitability of MBC to manage federated clouds, we adopt the posted-offer

market mechanism [101] for coordinating architectural components (section 5.3 details

the rationale for our choice). This chapter’s objective is therefore to answer the second

research question (Q2) raised in chapter 1:

How can market-based control be utilised to coordinate decentralised compo-
nents in a self-aware architecture whilst respecting SLA compliance goals?

To answer the above question, we extend the classic posted-offer mechanism to incorpo-

rate measurement of agents’ performance using reputation ratings as a way of capturing

their reliability at fulfilling SLAs. The refined mechanism is referred to as reputation-

aware posted offer market mechanism. In this chapter, we demonstrate that our refined

mechanisms performs better than classic posted offer mechanism at complying with SLAs.

Researchers are beginning to explore application of economics-inspired principles to

problems in cloud [24] [126] [41][76]. These research contributions can broadly be classi-

87

fied as using economics approach for dynamically pricing cloud resources, using economics

mechanisms to facilitate negotiation between parties in a cloud market, and for dynam-

ically allocating cloud resources to users based on SLA requirements. This thesis takes

the third perspective in our treatment of economics-inspired coordination and control.

Part of the work presented in this chapter has been published in [71] and [116]. Con-

cretely, this chapter makes the following contributions:

• A short review of MBC approaches and their application to cloud (section 5.3).

• The design of a novel reputation-aware posted offer market mechanism that meets

the requirements of SLA-based cloud resource management is the focus of sec-

tion 5.4 and 5.5.

• A candidate self-aware federated cloud architecture using our reputation-aware

posted offer market mechanism is instantiated and presented in section 5.6.

• Empirical study of the self-aware cloud architecture and reputation-aware versus

classic posted offer mechanism under synthetic and realistic workload (section 5.7).

The work presented in this chapter complements self-aware architecture patterns in-

troduced in chapter 4, in that the market mechanism serves as a way of coordinating

decentralised components in the self-aware federated cloud architecture instantiated here.

5.2 Preliminaries

First, we introduce the terms that are used in the discussions that follow.

• Agents: “are computer systems [or architectural components] that are capable of in-

dependent, autonomous action in order to satisfy their design objectives...As agents

have control over their own behaviour, they must cooperate and negotiate with

others in order to satisfy their goals” [46].

88

• Market: an institution that facilitates interaction (trading) among agents1 by ex-

changing currency and (re)distributing resources. In the computational sense, mar-

kets are mostly virtual rather than physical institutions. Also, the exchanged cur-

rency is usually artificial, instead of real cash.

• Buyer: a market agent who requires some resources and is willing to acquire it in

exchange for currency.

• Seller: a market agent who provides some resources and is willing to release it in

exchange for currency.

• Market Mechanism: governs how market agents interact, i.e. interaction between

forces of demand and supply, to determine prices and units of services sold in the

market.

• Non-Strategic Market Agents: simply follow the rules defined by the market mech-

anism without adapting their behaviour based on emergent scenarios.

• Strategic Market Agents: behave rationally, by adapting in a way that give them

advantage over other agents. An example of such adaptation could be to search for

the most cost-effective deal in the market.

5.3 Markets and Clouds

This section presents market based approaches, their application to cloud computing, and

the role of reputation management in market design.

5.3.1 Centralised and Decentralised Markets

Designers of market-based systems adhere to a centralised or decentralised approach de-

pending on the goal of the system. In a centralised market system, a market marker or

1The term agent is used here, since multi-agent systems are a good way of modelling interacting
market entities.

89

auctioneer collects bids and asks from buyers and sellers respectively (see figure 5.1a).

The auctioneer matches these bids and asks in some way (depending on the mechanism),

to decide the pairing of buyers and sellers. A famous and well studied centralised market

mechanism is the Continuous Double Auction (CDA) [104]. For large scale systems, the

auctioneer constitutes a bottleneck, and therefore limits the scalability of the system.

Also, failure of the auctioneer or delays in computing results could make the system unus-

able. To address these limitations, some markets instantiate multiple auctioneers, either

as a way of separating the load or having specialist auctioneers for different scenarios.

On the other hand, a decentralised market has no central entity (see figure 5.1b).

Instead, buyers and sellers explore the market and bargain with one another to decide

who to trade with, in a distributed manner. An example of a mechanism that follows this

approach is bilateral bargaining mechanism [50]. While this approach is more scalable

than its centralised counterpart, the search time to explore the market limits performance

in a large system. Moreover, there is no guarantee that the resulting buyer-seller pairing

is optimal. That is, a combination of buyer and seller does not assure either of maximum

utility.

Auctioneer

Bid

Bid

Bid

Ask

Ask

Buyer SellerKey:

(b) Bargaining in a Decentralised market(a) Centralised market

Ask

Figure 5.1: Centralised and Decentralised Market Set-up. Source: [71]

Both centralised and decentralised approaches have been used for resource allocation

in distributed systems such as grid computing [171] [138]. The application of market-

based approaches to cloud differs from grid due to the near instant on-demand request

90

for cloud services coupled with unanticipated user requirement and duration of service.

The market analogy for cloud was proposed by Buyya [26]. Buyya envisioned the cloud

as a global market where several customers (cloud users) having various requirements

meet sellers (cloud vendors) possessing different capabilities to trade. It was suggested

that such trading could be achieved via a cloud exchange in which brokers manage the

selection of cloud vendors on behalf of the users.

Following this proposal, researchers have pursued in-depth study of market-oriented

cloud from various dimensions, including: price modelling [110], resource sharing among

service providers [76, 152, 147], and resource allocation at the hardware layer [177]. These

results mostly focus on the use of market mechanisms for selection of clouds with specified

QoS or price for service composition at the SaaS layer.

Other researchers have focused on cloud services at the IaaS layer [6] [150] [154]. The

work of [6] provided a game theoretic formulation of the service provisioning problem in

cloud systems. In [150], the problem of running independent equal-sized tasks on a cloud

infrastructure with a limited budget was studied. They concluded that a constrained

computing resource allocation scheme should be benefit-aware, i.e., the heuristics for task

allocation should incorporate the limited resource in supply within the system. Sun et al.

[154] proposed a Nash Equilibrium based Continuous Double Auction (NECDA) cloud

resource allocation algorithm. They used the continuous double auction and a Nash

equilibrium solution concept to allocate resources in an M/M/1 queuing system, with the

objectives of meeting performance QoS.

The relation between clouds and markets, as depicted in figure 5.2, makes it possible

to apply concepts from markets to computational resource allocation problems in the

cloud. The utility derived from consumption of cloud resource determines the buyer’s

valuation of the resource and the price they are willing to pay for it. The notion of

variability in markets, in terms of seller’s capacity etc., can be used to model trends, such

as heterogeneity and unpredictability of resource nodes in cloud software architectures.

91

Cloud

computing

Markets

Utility-based usage

· On-demand access

· Price discrimination

based on user’s

preferences

Heterogeneity

· User objectives

· Resource capacity

Unpredictability

· Workload

· Resource Failure

Large Scale

· Users

· Geographical

distribution

Pricing

Derived from buyer-seller

interactions and their

respective private valuation

Variability

· Seller’s capacity

· Quality of resource

· Quantity demanded/supplied

· Buyer’s preferences

Size

· Buyer/seller

populations

· Strategies

Concepts

Attributes

Links

Legend

Figure 5.2: Conceptual Relationship Between Cloud Computing and Markets. Source:
[71]

5.3.2 Reputation Management and Markets

Another dimension for distinguishing between resource allocation in cloud architectures

is to consider whether they are state-based or stateless, when allocating resources at run-

time. Stateless approaches make allocation decisions based on predefined rules without

consideration of the extent to which resource nodes are able to meet the expected QoS.

In contrast, state-based approaches take into account QoS concerns before allocating

resources.

One state-based approach for managing the behaviour of resource nodes in a dynamic

environment is the use of reputation metrics. This is especially true in multi-agent systems

where the concept has been well-researched and applied to problems of trust management

in ad-hoc mobile networks [21] and peer-to-peer computing [135]. In these domains, the

system designer defines what constitutes acceptable and unacceptable behaviour. Conse-

quently, an agent’s reputation rating (or trust value) increases when it acts in an accept-

able manner and decreases when it acts otherwise. Modern recommender systems utilise

this concept to elicit shopping trends, subsequently dispatching targeted marketing ma-

92

terials that best reflect the user’s preferences.

Market designers leverage on the notion of reputation measurements to elicit the trust-

worthiness or dependability of market agents to ensure efficient resource allocation [55]

[137]. An agent’s reputation could then be used to make decisions about whether it is

more likely to meet the service level terms of jobs allocated to it.

5.4 Posted Offer Market Mechanism

This section presents the ideas and assumptions about the posted offer market mechanism.

Aside from the market mechanisms mentioned in section 5.3, another viable market

mechanism is the retail-inspired posted offer or posted price market mechanism originally

proposed by Fred E. William [170]. It was devised as a simple way of investigating the

impact of auctions in a distributed market setting. The two scenarios considered in his

experiment are (i) buyers making price offers and sellers responded only with quantity

offers, and (ii) sellers posting their quantity offers and buyers responded only with price

bids. Even though the notion of price leadership (i.e. whether buyer or seller made the

first price offer or quantity offer respectively) was focal to his investigation; the distinction

between the scenarios are often ignored in actual implementation.

In William’s investigation, the assumptions underlying the posted offer mechanism in-

clude (i) both buyer and seller information (i.e. price offer and quantity offer respectively)

are private, (ii) traded product are homogeneous across all sellers, (iii) buyers and sellers

could not change their price offer and quantity offer respectively once this is decided at

the beginning of the trading period, and (iv) seller(s) are free to sell to any buyer(s) and

buyer(s) are free to buy from any seller(s).

Each seller is given a production cost schedule showing the quantity s/he can produce

and the cost of production per quantity. Similarly, each buyer is given a revenue sched-

ule showing the quantity s/he can purchase and revenue per quantity. A fixed cost is

93

charged each time a seller or buyer participates in a trading period. Section 5.5 details

the algorithms that control buyer and seller agents’ behaviour in the market.

5.4.1 Previous Extensions to the Mechanism

In comparison to a central auction, the bidding process of the posted offer model is known

to be less cumbersome and more reflective of resource provisioning scenarios in distributed

computer networks [107]. Indeed, the posted offer mechanism has been adopted and

extended for managing resources in computational systems under various assumptions

[107][37][173][114]. Such extensions were proposed towards solving problems in domains

such as communication networks [107], large-scale service-oriented systems [114] and com-

putational grids [37][173]. Table 5.1 summarises these contributions.

Author Market objective Assumption(s) Extension
[107] Investigated the impact

of self-interested agents
on global market objec-
tive

Agents were self-
interested and utility
maximising with local
view of market

Proposed a technique
that reduced the oscil-
lations caused by delays
in a communication net-
work

[37] Minimise mean flow
time per job (i.e. job
turnaround time)

Small-size network of
active nodes (2-10 ma-
chines)

Heuristic-based learn-
ing for decision-making
and detection of inac-
curate job estimates

[173] Improve market effi-
ciency in a decentralised
P2P computational grid

Network and hardware
failure were not ac-
counted for

Simplistic price ad-
justment and penalty
schemes

[114] Fully decentralised load
balancing in large-scale
service-oriented systems

Resource nodes were re-
liable and network con-
nectivity was uniform

Adaptive pricing by
evolutionary market
agents

Proposed
in this
thesis

Improve SLA compli-
ance in cloud-based ap-
plications

Resource nodes and net-
work connectivity are
unreliable

Reputation metrics are
incorporated to identify
dependable resource
nodes

Table 5.1: Variants of Posted Offer Market Mechanism

94

5.5 Design of Reputation-aware Posted Offer Market

Our reputation-aware posted offer market mechanism is presented in this section.

Consider a marketplace consisting of a set of buyers and sellers trading in a cloud

federation. Buyers and sellers have different utility functions representing their valuation

of resources to be sold or bought respectively. Buyers are service seeking nodes, acting on

behalf of application owners and willing to exchange currency to meet application SLAs.

Sellers are service providing nodes, acting on behalf of cloud providers capable of offering

service for payment. Moreover, there are multiple types of services traded in the market.

The workload pattern of service requests or jobs is defined by some random distribu-

tion. A service request is defined by a set of multiple attributes which specifies its SLA

terms. Trading between buyers and sellers takes place according to rules specified by the

market mechanism in place at trading rounds. A trading round denotes a time instance

when a buyer agent can select a candidate cloud service (seller). The market objective is

to facilitate rapid matching of buyers and sellers to maximise allocative efficiency.

In reality sellers (cloud providers) are not fully reliable neither are network connections

linking buyers to sellers, hence, the mechanism driving the interaction of traders needs

to account for these to maximise allocative efficiency. It is important to note that the

reliability distribution of sellers is not known to buyers beforehand, hence, this information

needs to be learnt. Next, we present our approach for selecting reliable cloud providers.

5.5.1 Refinement of Classic Posted Offer Mechanism

First we state a number of assumptions that distinguish the classic posted offer market

(where humans are traders) from our variant which is deployed in computing systems.

Our assumptions are consistent with practices in market-based control [47][50].

1. Seller agents are resource providing nodes in a computer network and buyer agents

are service agents representing users of these resources.

95

2. Each buyer agent is responsible for a job in each trading round, for which it makes

bids to sellers who may offer to execute the job.

3. Each seller agent has a reputation associated with it. Seller agents report their

reputation rating when asking for jobs.

4. Currency in the market is not ‘real currency’, rather ‘artificial money’ are exchanged

between buyers and sellers. Thus, ‘artificial money’ is used only as a control tool.

5. Trading happens concurrently across multiple buyer-seller pairs and continues as

long as at least an active buyer and seller exists in the market.

Buyer to Seller Trading

Computational systems which are controlled by market algorithms fundamentally rely on

“price” as the tool for understanding the interaction among market agents, and it aids

the system design in a way that ensures some desirable global properties are realised.

However, price alone tells us little about whether agents are reliable or not. To elicit the

reliability of agents, we model their behaviour using price and reputation metrics which

capture their trading capabilities and performance over time. Measuring both dimensions

gives a holistic view to improve the efficiency of resource allocation.

We refine the generic posted offer mechanism by introducing the notion of reputable

market agents to provide a metric for measuring the reliability of sellers at executing ser-

vice requests allocated to them. Due to the dynamics of the environment, cloud providers

vary in their capability and reliability measures. Therefore, the refined steps of the mech-

anism consists of collecting performance data about cloud providers, and making use of

this knowledge to make decision about resource allocation to cloud providers.

Losing and Gaining Reputation

After each transaction sellers are rated based on their performance at completing the

requested service. Buyers rate sellers by comparing the actual performance with those

96

specified in the SLA associated to the service request. Using this distributed reputation

rating approach, sellers gain reputation ratings for service requests completed according

to SLAs and lose reputation ratings for those that violate SLAs.

Figure 5.3 depicts a sequence diagram showing interaction of buyer and seller agents

in our refined posted offer market mechanism.

Figure 5.3: Reputation-aware Posted Offer Market Mechanism

In a cloud deployment context, buyers and sellers in our refined mechanism are mapped

to cloud entities as shown in figure 5.4.

Notations

The variables used in our mechanism formulation and algorithms are defined in table 5.2.

Seller Agent Resilience Model

By resilience, we mean “The persistence of service delivery that can justifiably be trusted,

when facing changes” [109]. Resilience is measured by the ability of the mechanism to

filter out resource nodes that are unable to meet a job’s SLA. In order to introduce

faulty behaviour into the system, we define the Failure Rate of a resource node (seller

agent) as the instantaneous probability of the node failing on demand. Therefore, a seller

agent, S, has a failure rate in the bound [0, 0.1], where a value of 0 signifies maximum

97

Broadcast Price Offer

based on Job Spec

cu: Cloud

User

Submit Job

Value Job

[if Idle] Fetch Active Bids

[if payoff is good]

Send resource capacity and reputation

Contract job to selected seller agent

Return job result

Return job result

ba: Buyer

Agent
n: Network

sa: Seller

Agent

Select best seller

from all offers received

Update reputation

based on

performance

from last job

Evaluate job specs

And price offers

Executes job

Rate seller based on job

cr: Cloud

resource node

Manage resource

Figure 5.4: Reputation-aware Posted Offer Mechanism in Cloud System

reliable behaviour, and a value of 0.1 denotes maximum unreliability. Two sub-intervals

of the bound are compared (see figure 5.5) across three scalability scenarios as shown in

table 5.3. High resilience indicate trustworthy service delivery and the opposite holds for

low resilience.

0 0.001 0.009 0.01 0.09 0.1

Reliable

High resilience Low resilience

Unreliable

Figure 5.5: Failure Rate Interval

Service Level Agreement (SLA) and Reputation Models

To ease analysis, we define an SLA model consisting of four non-functional (NF) at-

tributes: availability, performance, security, and SLA priority. SLA priority, in particular,

98

Variable Definition

WorkloadDataset A synthetic/real workload data representing the dis-
tribution of jobs over trading rounds

NumOfTradingRnd Number of trading round in simulation run

ResilienceLevel The resilience level (high or low) of seller agents in
the market

jb A job or a request for service

jbSLA A tuple (Availability, Security, Performance, Prior-
ity) that defines a job’s SLA based on buyer agent
values in table 5.4

N Number of jobs in a trading round

M Number of seller agents in market

ListOfJobs A collection of jobs {jb1, jb2, . . , jbN}
B A buyer agent

ListOfBuyerAgents A collection of buyer agents {B1, B2, . . , BN}
S A seller Agent

SRep Seller agent’s reputation rating

ListOfSellerAgents A collection of seller agents {S1, S2, . . , SM}
ListOfInterestedSellerAgents An arbitrary collection of tuples (S, SRep)

ListOfEligibleSellerAgents An arbitrary collection of seller agents

TRep Market threshold reputation i.e. mean of SRep for all
seller agents

Table 5.2: Definition of Variables

captures the cloud user’s valuation of the job. The idea is to use the SLA model as a

descriptor for a job’s computational requirement.

Table 5.4 captures the metrics for measuring each non-functional attribute and the

range of permissible values that buyer and seller agent’s can assume for each attribute.

These attribute-values are randomly initialised for each job submitted to the system

following a normal distribution. As it can be observed from the table, we have deliberately

set higher values for seller agents for all attribute-values. This is because, the objective of

the study is primarily to evaluate the self-aware architecture’s scalability and its resilience

to failure, rather than the intricate details of buyer to seller matching process.

The two key ingredients of the posted offer mechanism (see figure 5.3) are the reputa-

99

Scenario Failure Rate # B # S

Low resilience (case A) [0.01 - 0.09] 50 50

Low resilience (case B) [0.01 - 0.09] 200 200

Low resilience (case C) [0.01 - 0.09] 500 50

High resilience (case A) [0.001 - 0.009] 50 50

High resilience (case B) [0.001 - 0.009] 200 200

High resilience (case C) [0.001 - 0.009] 500 50

Table 5.3: Resource Node Failure Scenarios

Attribute Metric B Values S Values

Availability Uptime (%) 90 - 99.9999 100

Performance # instructions per second 80 - 99.9999 100

Security Encryption Support Yes (1) or No (0) Yes (1)

Priority Low, Medium, High Random -

Table 5.4: SLA Model: Attribute-Metric-Value for Buyer and Seller Agents

tion model used to assess the seller agents, and buyers and sellers utility functions. The

models used to capture these properties of the mechanism are presented below.

Reputation Model: the reputation rating of a seller agent, S, is defined by an historic

model as follows:

SRep =
TotalRequest − FailedRequest

TotalRequest

∗ 100% (5.1)

where TotalRequest and FailedRequest are the total number of requests and total number

of failed requests executed by the seller respectively.

In every trading round, buyer make use of the threshold reputation rating, TRep, which

is the mean of all SRep in the market, that is

TRep =

M∑
i=1

SRep
i

M
(5.2)

Buyer agents (irrespective of the strategy in use), consider only sellers with SRep >=

TRep in that trading round. The only exception being the first trading round, since the

100

value of TRep cannot be computed at this stage - nothing is known about the reputation

of seller agents at first interaction.

Utility Functions: given an SLA, the buyer utility function is defined as

Ub(jb) = wb + (k ∗ βprice) (5.3)

The value of wb is initialised based on the job’s priority. For results presented here,

wb is empirically set to:

wb =

2, if SLA Priority is High.

1, if SLA Priority is Medium.

0, otherwise.

(5.4)

SLA priorities are randomly assigned to jobs, following a normal distribution. k is a

sensitivity factor for tuning the valuation of the buyer agent. k = 0.1 for all scenarios con-

sidered here. The value of βprice is derived from summation of NF attributes of the buyer

agent. That is βprice =
4∑

i=1

BAttributei
, where, Attributei refer to attributes in table 5.4.

Given a job request, the seller utility is defined as

Us(jb) = ws ∗ θprice (5.5)

For results presented here, ws is empirically set to:

ws =

0.1, if SLA Priority is High.

0.01, if SLA Priority is Medium.

0.001, otherwise.

(5.6)

Similar to βprice, the value of θprice is derived from summation of NF attributes of

the seller agent. That is θprice =
4∑

i=1

SAttributei
, where, Attributei refer to attributes in

101

table 5.4.

It is worth noting that this formulation ensures that when trading solely based on

price, it is always possible to find a seller agent for a job request. However, there is no

assurance that the chosen seller will successfully execute the job. It is this problem that

our refinement to the posted offer mechanism addresses by preferring reputable sellers to

non-reputable ones, making it adapt to fluctuating seller resilience levels.

5.5.2 Trading Strategies and Procedures

Trading Strategies

A market agent’s trading strategy determines how the agent makes trading decisions.

Either buyer or seller agents can be equipped with trading strategies, ranging from very

simple ones to complex strategies. Two buyer strategies, originally conceived in [116], are

considered here to illustrate the impact of the applied strategy on the outcome allocation.

• Time Savers : purchase from any seller chosen at random, provided the price is

acceptable, i.e., selling price less or equal buyer’s valuation.

• Bargain Hunters : are always in search of the seller with the best possible price.

That is, the selling price must be the lowest among available sellers. If more than

one seller offers the lowest price, then one is chosen at random.

Crucially, the significance of the impact of these strategies can be appreciated only

when their benefits, in terms of number of failure recorded, and overhead are compared.

Analysing the strategies in isolation without having this big picture in mind provides little

insight for understanding the trade-off between their benefits and overhead.

Reputation-aware Mechanism Procedures

The variables used in the algorithms presented in this section are defined in table 5.2. The

market coordinates interaction of buyers and sellers using Algorithm 1, while Algorithm 2

102

is used by buyer agents for selecting seller agents. In Algorithm 1: steps 1-3 initialises

the algorithm, steps 5-10 initialise each trading round, buyers concurrently select sellers

for jobs assigned to them in steps 12-22. It is important to note that TRep is dynamically

updated as trading occurs, since it is an aggregate of seller reputation.

103

Algorithm 1 Market Coordination Procedure (Reputation-aware)

Input: WorkloadDataset, NumOfTradingRnd, ResilienceLevel

1: Set n := NumOfTradingRnd;

2: Randomly initialise SLA values for jobs in all trading rounds;

3: Randomly initialise ListOfSellerAgents based on ResilienceLevel;

4: for i = 1 to n do

5: Set N := Number of jobs in WorkloadDataSet for trading round i;

6: Initialise ListOfJobs for N jobs;

7: Initialise ListOfBuyerAgents for N jobs;

8: for each job jb in ListOfJobs do

9: Randomly assign jb to a buyer in ListOfBuyerAgents: B(jb)← jb;

10: end for

11: Compute threshold reputation, TRep, for trading round i using Eqn 5.2;

12: for each buyer B in ListOfBuyerAgents do

13: B privately computes utility, Ub(jb), for its job using Eqn 5.3;

14: B broadcasts tuple (B, jb) to sellers;

15: for each seller S in ListOfSellerAgents do

16: S privately computes utility, Us(jb), for all job requests using Eqn 5.5;

17: if (Us(jb) > 0) then

18: Compute reputation rating, SRep, of S using Eqn 5.1;

19: Add tuple (S, SRep) to ListOfInterestedSellerAgents;

20: end if

21: end for

22: Buyer selects a seller from ListOfInterestedSellerAgents using Algorithm 2;

23: end for

24: end for

In step 1 of Algorithm 2, only one strategy is used by all buyers per run (in simulation)

of the algorithm. That is, strategies are homogeneous for buyers for each simulation run.

104

Algorithm 2 Buyer Decision-making Procedure (Reputation-aware)

Input: ListOfInterestedSellerAgents, jb, TRep

Output: JobStatus

1: Set St := Strategy BargainHunter or TimeSaver defined in section 5.5.2;

2: for each seller S in ListOfInterestedSellerAgents do

3: if (SRep >= TRep) then

4: Add S to ListOfEligibleSellerAgents;

5: end if

6: end for

7: if ListOfEligibleSellerAgents is empty then

8: Resubmit job, jb, in next trading round;

9: else

10: Pick S from ListOfEligibleSellerAgents using strategy St;

11: Dispatch job, jb, to seller S;

12: Set JobStatus := Success or Fail depending on performance of seller, S;

13: if (JobStatus is Success) then

14: Seller, S, updates reputation, SRep, using Eqn 5.1;

15: else

16: Seller, S, increments failed requests and updates reputation, SRep, using Eqn 5.1;

17: end if

18: end if

Classic Non-Reputation-aware Posted Offer Mechanism Procedures

The variables used in the algorithms presented in this section are defined in table 5.2. Al-

gorithms for the classic non-reputation-aware posted offer mechanism [107] are presented

in Algorithm 3 (market coordination) and Algorithm 4 (buyer decision-making). Trading

is based only on the notion of price; reputation of sellers is not considered.

105

Algorithm 3 Market Coordination Procedure (Non-Reputation-aware)

Input: WorkloadDataset, NumOfTradingRnd, ResilienceLevel

1: Set n := NumOfTradingRnd;

2: Randomly initialise SLA values for jobs in all trading rounds;

3: Randomly initialise ListOfSellerAgents based on ResilienceLevel;

4: for i = 1 to n do

5: Set N := Number of jobs in WorkloadDataSet for trading round i;

6: Initialise ListOfJobs for N jobs;

7: Initialise ListOfBuyerAgents for N jobs;

8: for each job jb in ListOfJobs do

9: Randomly assign jb to a buyer in ListOfBuyerAgents: B(jb)← jb;

10: end for

11: for each buyer B in ListOfBuyerAgents do

12: B privately computes utility, Ub(jb), for its job using Eqn 5.3;

13: B broadcasts tuple (B, jb) to sellers;

14: for each seller S in ListOfSellerAgents do

15: S privately computes utility, Us(jb), for all job requests using Eqn 5.5;

16: if (Us(jb) > 0) then

17: Add tuple S to ListOfEligibleSellerAgents;

18: end if

19: end for

20: Buyer selects a seller from ListOfEligibleSellerAgents using Algorithm 4;

21: end for

22: end for

106

Algorithm 4 Buyer Decision-making Procedure (Non-Reputation-aware)

Input: ListOfEligibleSellerAgents, jb

Output: JobStatus

1: Set St := Strategy BargainHunter or TimeSaver defined in section 5.5.2;

2: if ListOfEligibleSellerAgents is empty then

3: Resubmit job, jb, in next trading round;

4: else

5: Pick S from ListOfEligibleSellerAgents using strategy St;

6: Dispatch job, jb, to seller S;

7: Set JobStatus := Success or Fail depending on performance of seller, S;

8: end if

5.6 Instantiation of Self-aware Cloud Architecture

A self-aware architecture that realises the requirements of the Online shopping cloud

application (c.f.Chapter 1, section 1.5) is presented in this section.

Table 5.5: Rationale for Selecting Architecture Pattern
Pattern Suitable? Rationale
Basic Information Sharing No Caters for only interacting nodes, with-

out modelling changing goals, time con-
cern, and sharing of self-expressive de-
cisions

Coordinated Decision-making No Caters for interacting nodes, without
modelling changing goals and time con-
cerns

Temporal Knowledge Sharing No Caters for interacting nodes and tem-
poral knowledge sharing, without mod-
elling changing goals

Goal Disseminating Yes Caters for interacting nodes, changing
goals, and temporal knowledge sharing

In the self-aware approach, the underlying software architecture of the adaptation sub-

system should cater for fine-grained representation of knowledge pertaining to changing

goals, workload, and service availability. The self-aware style, presented in chapter 4,

107

offers primitives for modelling knowledge using a multi-level representation approach that

simplifies run-time trade-off analyses.

Given the choice of five self-aware architecture patterns (see chapter 4) from which

an architecture instance could be derived, we revisit our pattern catalogues to assess

the suitability of each pattern at meeting the requirements of the problem at hand. As

shown in table 5.5, the Goal Disseminating Pattern is most representative for the Online

shopping cloud application. The responsibility of each level of awareness in the goal

disseminating pattern within the context of the Online shopping cloud application is

described in table 5.6. The architecture artefacts that realise different subcomponents of

the self-aware cloud architecture are described in table 5.7.

Table 5.6: Responsibility of levels of awareness in SLA-based Cloud Architecture
Level of awareness Dynamics to manage Constraints
Stimulus-awareness Sensing changes to workload and re-

sponding to user requests
Detection of workload
changes, add/remove
services

Goal-awareness Changing user goals as SLAs vary from
one user to another

Addition of new SLA,
modification of exist-
ing SLA

Interaction-awareness Communicating with cloud services
and adaptation subsystems belong-
ing to other service-based applications
(SBAs)

Network connectivity

Time-awareness Sensitivity to temporal changes in
workload and cloud service availability

User arrival rate,
number of services

Using the reputation-aware posted offer as adaptation mechanism, the self-aware ar-

chitecture of the adaptation subsystem is shown in figure 5.6. The design goal of the

system is to meet the SLA compliance of cloud users. The run-time goal, which changes

per user request, captures the SLA goal of the request currently being managed by the

adaptation subsystem. For example, in the context of the online shopping application,

each order introduces a new SLA goal, which is defined by the delivery time and cost

constraints.

The adaptation subsystem is deployed in an environment where it senses cloud ser-

108

Table 5.7: Architecture Artefact that realise Subcomponents Self-aware cloud architecture
Self-aware subcomponent Architectural artefact
Stimulus-awareness Workload dataset captures spikes and dwindles in

user requests and their SLA classes
Goal-awareness An utility function is used to deduce candidate ser-

vice’s likelihood of meeting service levels
Interaction-awareness A locally performance repository stores availabil-

ity information about cloud services and provide
service connection information to facilitate inter-
action

Time-awareness A locally managed performance repository stores
reputation rating of services, in terms of the level
to which the service met promised QoS, and the
duration of their use

Self-expression Locally managed strategies are encoded in each
self-aware subsystem to guide the process of service
selection

Architecture

topology;

Abstract services

Workload model

Service performance

repository

Service performance

repository

Utility function

Stimulus

Interaction

Time

Goal

Internal Sensor Monitor

services and

user requests

External Sensor

Subscribe to

service

External Actuator

Service selection

strategies

Self-Expression
Substitute

concrete

service

Internal Actuator

Maintain QoS

of service-based

application

Runtime Goal

Self-Awareness

Time

Load

A2A1

Workload

Services

Environment

Key Data flow

Control

Component

Cloud service

Figure 5.6: Self-aware Cloud Architecture of an SBA’s Adaptation Subsystem

vices and the workload generated by user requests. The external sensor and actuator

components serve as monitors and hooks for adapting cloud services. Typically, external

monitors and actuators are cloud APIs which can be dynamically adapted at run-time.

109

The internal sensor is an architectural model of the application topology and character-

istics of its components which need to be respected when instantiating cloud services. In

this architecture, the internal actuator carries out service substitution at run-time.

5.7 Empirical Study of Self-aware Cloud Architec-

ture

This section studies the self-aware cloud architecture by comparing the outcome SLA com-

pliance under two coordination mechanism: (i) reputation-aware posted offer mechanism

(ii) non-reputation-aware posted offer mechanism. The study is conducted using synthetic

workload (section 5.7.3) and realistic Google Cluster workload [56] (section 5.7.4).

5.7.1 Setup and Justification for Experimental Approach

Simulation-based approach is used for our experimental study. While we acknowledge that

there is much to be learnt from a real deployment of our self-aware cloud architecture

(see section 5.8), we adopt a simulation approach to evaluate the architecture for the

following reasons. Firstly, it is well-known in the cloud community [25] that simulations

are preferred for studying properties of novel computational mechanisms as they afford

the opportunity to repeat experiments in a quick and inexpensive controlled environment

[12]. Secondly, extreme scenarios and edge cases which are hard to replicate in real clouds

may be studied using simulations, thereby improving the robustness of the proffered

solution. Thirdly, experimentation by simulation reduces the effect of the interference

problem which results due to co-located cloud services starving other services in the shared

infrastructure, thereby causing an experiment to result to different outcomes depending

on how much interference is present at the times the experiments are carried out.

The CloudSim simulation toolkit [25] was used for evaluation purposes. CloudSim is

developed using Java programming language, it abstracts the cloud infrastructure (virtual

machines, hosts, network, etc.) using computational models that are extensible, and it

110

provides a way of experimenting with workload datasets (synthetic and real). In our work,

we have extended the broker and scheduling classes to implement the functionality of our

reputation-aware market mechanism. The configuration of the experimental platform is

a 6GB RAM, 2.40GHz, 64-bits Windows 7 machine. For all cases, results are averaged

over 10 independent simulation runs to account for stochasticity.

5.7.2 Objective of the Study

In line with the objective of the thesis, we investigate the following aspects of the self-

aware cloud architecture.

1. Sensitivity of the architecture to high and low resilient cloud services when operating

under two self-expressive trading strategies (bargain hunter and time savers).

2. Effect of scale on the architecture.

3. Overhead incurred by the architecture’s adaptation mechanism in terms of how long

it takes to find suitable cloud services in a trading round.

We differentiate buyers agents in our results using the notation below.

• RBH - Bargain Hunter strategy in reputation-aware mechanism

• RTS - Time Saver strategy in reputation-aware mechanism

• NRBH - Bargain Hunter strategy in non-reputation-aware mechanism

• NRTS - Time Saver strategy in non-reputation-aware mechanism

5.7.3 Study under Synthetic Workload

Since buyer agents manage jobs on behalf of cloud users, we model scalability of jobs by

increasing the number of buyer agents in the simulation. The overhead of each strategy

is measured by the number of seller agents inspected before a trading decision is made.

111

Experimental Setting

In this study, number of sellers, M , and number of buyers, N , are to #S and #B re-

spectively as defined in table 5.3 for case A, B, and C under each resilience mode, Re-

silienceMode, (low or high). Number of trading round, NumTradingRnd, is set to 10000.

WorkloadData, is a synthetic workload defined by generation of job, jb, for each buyer

agent, B, at every 10th time step. SLA for each job, jbSLA, is randomly initialised using

a normal distribution based on values defined in table 5.4. Each seller, S, has its resource

provisioning capacity defined by values defined in table 5.4.

Results

The results for low and high resilience cases under synthetic workload are shown in fig-

ure 5.7 and 5.8.

Figure 5.7: Low Resilience Cases - Sensitivity to Failure

Figure 5.8: High Resilience Cases - Sensitivity to Failure

112

Next, we interpret the results in terms of failure rate, scalability, and overhead incurred

by reputation-aware and non-reputation-aware posted offer mechanisms.

Effect of Reputation on Failure Rate

In low resilience cases (figure 5.7) NRBH and NRTS performed better than RBH and

RTS initially (approximately first 1000 time steps). The percentage success of NRBH

and NRTS was in the region of 70-50% and 60-40% respectively. RBH and RTS were

more successful than NRBH and NRTS after the first 1000 time steps. Both RBH and

RTS performed better overall and eventually converged towards zero failed nodes. RBH

and RTS have percentage success in the region 90-70% and 70-60% respectively.

In high resilience cases (figure 5.8), the success rate of NRBH and NRTS are in the

region of 90-75% and 85-65% respectively. NRBH and NRTS record higher success per-

centage than RBH and RTS in the first (approximately) 500 time steps. For the rest of

the simulation, RBH and RTS outperformed both NRBH and NRTS, having percentage

success in the region of 99-90% and 95-85% respectively.

The initial better performance of NRBH and NRTS over RBH and RTS may be

attributed to the time taken for RBH and RTS to build up their reputation repository to

reflect seller agents’ resilience. Overall the learning capability of RBH and RTS accounts

for their higher SLA compliance over NRBH and NRTS. In contrast, inability of NRBH

and NRTS to learn may explain why they do not significantly improve their success rate

throughout the simulation.

Scalability of Reputation-aware and Non-Reputation-aware Mechanisms

In both low and high resilience cases, results indicate that RBH, RTS, NRBH, and NRTS

scale as the number of jobs increase from 50 to 500. When compared to NRBH and NRTS,

the RBH and RTS were able to scale more gracefully given the shape of the curves. In low

resilience cases, the results (figure 5.7) indicate more instability (noise) in the behaviour of

all four strategies when compared to high resilience cases (figure 5.8). Additionally under

113

moderate workload (case A and B), where buyers and sellers are of equal population sizes,

RBH outperformed RTS, NRBH, and NRTS.

Figure 5.9: Low Resilience Scenarios - Overhead of finding seller agent

Figure 5.10: High Resilience Scenarios - Overhead of finding seller agent

Overhead of Reputation-aware and Non-Reputation-aware Mechanisms

From figures 5.9 and 5.10, it can be observed that in both lower and higher resilience cases

RBH and NRBH incurred higher overhead than RTS and NRTS. This is because NRBH

inspected all sellers in each case before selecting a seller based on price. RBH inspected

sellers that had SRep >= TRep before selecting a seller therefore reducing the set of sellers

available to RBH when compared to NRBH. NRTS selected sellers irrespective of their

reputation rating hence inspected more sellers than RTS which selected only sellers with

SRep >= TRep.

Figure 5.11 summaries the average SLA compliance, i.e. percentage success, for all

cases considered. Overall, we observe a trade-off between the SLA compliance and the

114

Figure 5.11: SLA Compliance for Bargain Hunters and Time Savers when using
Reputation-aware and Non-Reputation-aware Mechanism under synthetic workload

overhead as shown in figure 5.12. In practice, these results can guide the software archi-

tecture about how to resolve this trade-off space, i.e., deciding which strategy to adopt

for a job given its timeliness constraint and acceptable failure rate.

Figure 5.12: Trade-off between SLA Compliance and Average Overhead

115

Figure 5.13: Distribution of Jobs in Google Cluster Dataset

5.7.4 Study under Real Workload - Google Cluster Dataset

This section evaluates the reputation-aware and non-reputation-aware posted offer mech-

anisms using the Google cluster dataset [56]. The Google cluster dataset provides traces

over a 7 hour period. Each task in the workload belongs to a single job. Hence, we focus

on the allocation of resources at the task-level. The distribution of jobs over the workload

period is shown in figure 5.13. Job Type (0, 1, 2) is used as a categorization of work i.e.

SLA classes corresponding to Low, Medium, and High respectively.

Experimental Setting

WorkloadData, is a real workload defined by jobs as distributed in figure 5.13. At each

time step, N is set to the number of jobs, jb, at that time step in figure 5.13. Each of the

N jobs at a time step is assigned to one of the N buyer agents, B. M = 52800, to account

for the highest workload in the dataset. ResilienceMode is defined for each case (low or

high) as defined in figure 5.5. Number of trading round, NumTradingRnd, is set to 76

as defined by WorkloadData (figure 5.13). The priority of each job is defined by its SLA

class in the Google Cluster workload dataset. Each seller, S, has its resource provisioning

116

capacity defined by values defined in table 5.4.

Results

The results for low and high resilience cases under real workload are shown in figure 5.14.

Figure 5.14: Sensitivity to Failure - Google Cluster Dataset

In the high resilience case, RBH performed better than RTS, NRBH, and NRTS,

having a percentage success in the region of 100-90%. NRBH and NRTS had percentage

success in the region of 95-90% and 85-80% respectively. RTS had percentage success

in the region of 100-95% but was worse off than RBH, NRBH, and NRTS in the first

(approximately) 300 time steps, however, its success rate improved afterward converging

to zero failed nodes. The pattern of failure in the low resilience case is comparable to the

high resilience case, however, the behaviour of RTS in the low resilience scenario resembles

a step function. That is, consistent small changes in number of failed nodes were recorded

at short intervals, followed by a sudden jump (improvement) to much lower number of

failed nodes. Figure 5.15 shows the recorded SLA compliance.

117

Figure 5.15: SLA Compliance for Bargain Hunter and Time Savers when using
Reputation-aware and Non-Reputation-aware Mechanism under real workload

S Oscillatory frequency Transition Time steps

50 1 at 11350

50 5 Every 3783 ticks

50 10 Every 2063 ticks

Table 5.8: Schedule for seller nodes to change their resilience levels. Note: in accordance
with the Google Cluster Data, the last time step is 22700, hence, transition time steps
are evenly distributed across the simulation life time.

Measuring Impact of Fluctuating Cloud Service Resilience

Up until now, the notion of seller agent resilience is initialised at the start of the simulation

run, and fixed throughout the simulation. According to [117], the dynamics of real cloud

data centres necessitates an approach that is able to manage transitions across several

resilience levels. We define such a transition as the Oscillatory Frequency of the node’s

resilience. This is the number of times a seller node makes a transition from one resilience

level to another. We do not differentiate between cyclic transitions at this point, i.e., the

case where the seller node returns to its initial resilience level after a number of successive

transitions.

The enriched failure model firstly sets out the resilience levels, here we consider only

118

high and low resilience, and secondly set the number of transitions (oscillations) and the

time steps when these transitions will occur. An example of the enriched failure model

for a population of sellers is shown in table 5.8.

The seller population in table 5.8 is split evenly between the two resilience levels,

therefore, there are 50 seller nodes, of which 25 are high resilient and the other 25 are low

resilient. At the transition time step, a seller node changes to the opposite resilience level,

i.e., a high resilience seller node changes to low, and vice versa. Figure 5.16 shows the

impact of the oscillatory frequencies 1, 5, and 10 on the number of failed nodes recorded.

Results

Figure 5.16: Sensitivity to Failure for Oscillatory Frequencies 1, 5, and 10

In the case of one oscillatory frequency RBH recorded significantly smaller number of

failed nodes when compared to RTS prior to the transition time step (time tick 11350).

However, after the transition time step, the behaviour of RBH and RTS are comparable,

as they both record less than 20 failures. NRBH record less than 100 failures in the prior

to the transition time step but failure increased afterwards, peaking at approximately 200

failures. NRTS recorded the most failure prior to the transition but significantly improved

after the transition, peaking at approximately 100 failures.

In the case of five oscillatory frequency case, RBH and RTS behaved in a way similar

to the one oscillatory frequency case up to the first transition time step (time tick 3783).

After the first transition step, RBH recorded consistently low number of failure (< 25) for

119

the rest of the simulation run. The number of failures recorded by RTS declined abruptly

after that first transition time step (only one failed node at time step 4000). This number

peaks at 12 for the first transition period. Thereafter, the number increases up to 49 failed

nodes in the second transition period. The desired minimal number of failed nodes only

occurs at the third transition period (after 11349 time ticks), where the number of failed

nodes peak at 3. This minimal failed nodes behaviour is sustained in transition periods

4 and 5. On the other hand, NRBH and NRTS are observed to behaved similarly to the

one oscillatory frequency case, by oscillating between success and failure across alternate

transitions.

The behaviour of RBH, RTS, NRBH, and NRTS in the ten oscillatory frequency

case are consistent with those observed in the five oscillatory frequency case as shown in

figure 5.16. The achieved SLA compliance across the three oscillatory frequencies (1,5,

and 10) is depicted in figure 5.17.

Figure 5.17: SLA Compliance for Oscillatory Frequencies (OSC) 1, 5, and 10

120

5.8 Conclusion

Self-aware software architecture for decentralised federated cloud applications require a

mechanism to allow application components coordinate their interaction. We instantiated

a candidate self-aware cloud architecture within the context of the online cloud shopping

application introduced in chapter 1. This chapter investigated market-based control as

a viable solution concept for coordinating decentralised self-aware architectures. We re-

viewed the literature on market-based control for cloud and identified the posted offer

market mechanism as a candidate mechanism for the purpose of evaluating our self-aware

cloud architecture. We proposed our refinement to the canonical mechanism namely

reputation-aware posted offer mechanism to track changing reliability of seller agents,

which are equivalent to cloud services.

We empirically studied the self-aware architecture and its posted offer market adap-

tation mechanism using both synthetic and realistic workload. The study was conducted

to find out the behaviour of the solution approach under different scenarios consisting

of cloud services across high and low resilience bands at scales ranging from minimal

to high scale. Two self-expressive adaptation strategies namely time-saving and bar-

gain hunting buyer agents were studied. We compared our reputation-aware mechanism

with classic non-reputation aware posted offer mechanism for all cases. Results indi-

cated that our reputation-aware mechanism achieved higher SLA compliance than classic

non-reputation-aware posted offer mechanism with minimal overhead.

Our approach provides a methodology for architects of self-adaptive cloud applications

to study achievable SLA compliance levels under various scenarios. Results such as those

obtained from our simulation studies provides guidance for engineering adaptive strategies

for applications running on real cloud infrastructure.

We do not claim that our proposed mechanism is optimal for all scenarios, rather, we

have chosen the posted offer market mechanism and extended it due to its ability to fit

the decentralised nature of self-adaptive architectures studied in this thesis (see chapter

4). Similarly, the reputation model used in our empirical study could be improved upon,

121

for example by including anticipatory/predictive learning capabilities.

Real deployment of our mechanism will inevitably introduce new implementation con-

straints that may require revising our solution approach. For example, components and

APIs provided by cloud providers differ in their interfaces and offered services. We note

that our results exclude these real-world deployment issues and speculate that consider-

ation of these issues may reveal new opportunities for tuning our self-aware cloud archi-

tecture to cater for them.

122

CHAPTER 6

TRADE-OFF AND RISK ANALYSIS OF
SELF-AWARE CLOUD SOFTWARE

ARCHITECTURE

“Qualitative analysis transforms data into findings. No formula exists for

that transformation. Guidance, yes. But no recipe. Direction can and will

be offered, but the final destination remains unique for each inquirer,

known only when - and if - arrived at”

Michael Quinn Patton

6.1 Overview of the Chapter

The primary focus of this chapter is to evaluate self-aware architecture patterns presented

in chapter 4 within the context of a federated cloud application. We perform a two-

phased qualitative evaluation to meet the thesis’ objective of providing an approach for

systematically reasoning about the design and analysis of cloud architectures.

The objective of the first phase is to evaluate a self-aware cloud architecture relative to

architectures induced by DDDAS [54] and 3-Layered [105] styles to unveil risk and trade-

off points in the architectures. The objective of the second phase is to assess the coverage

of the self-aware patterns and the ease of interpreting the patterns in application domains

outside cloud. Given the qualitative nature of the evaluation, we take precautionary steps

123

to eliminate bias in our conclusion by enlisting independent stakeholders and self-adaptive

application designers as evaluators in both phases of our evaluation.

The Architecture Trade-off Analysis Method (ATAM) [97][48] was used in the first

phase of our evaluation. ATAM is a mature and well validated scenario-based evaluation

method that has been successfully applied in many software domains [96][48][16]. The

choice of ATAM as a method of evaluating cloud-based applications has been explored

by [72]. In [72], we used ATAM for architectural analysis of cloud software deployed in

unpredictable, resource-constrained environments.

Two software architectures instantiated based on DDDAS [54] (simulation-based adap-

tation) and 3-Layered [105] (hierarchical) styles are used as baseline for comparison.

The three candidate architectures (self-aware, DDDAS, and 3-Layered) make use of our

reputation-aware mechanism (see chapter 5) for coordinating components. Independent

stakeholders analysed these architectures to uncover risk and trade-off points in each case.

Findings from independent stakeholders in the qualitative ATAM evaluation suggests

that within the context of the evaluated architectures: self-aware style is more likely to

offer higher levels of scalability and availability than DDDAS and 3-Layered, and probably

comparable to DDDAS in timeliness of adaptation, but most likely to be worse off in data

consistency. In conformance with practices in software architecture evaluation [10][97],

these findings should be interpreted as outcomes of design-time analysis of candidate

architectures and not findings from implemented architectural instances. The findings,

though subjective, serve as indicators of expected behaviour of the studied styles.

In the second phase of our evaluation we engaged application designers outside the

cloud domain. The main objective was to understand the extent to which the style pro-

vided a systematic support for design-time analysis of each application’s self-adaptive

qualities. Specifically, four independent application designers have architected their re-

spective applications based on principles of self-aware architecture pattern.

Feedback received from independent assessors indicated that the style provided a sys-

tematic approach to instantiating self-adaptive architectures and helped them uncover

124

subtle trade-offs in their application’s self-adaptive architectures. However, three gaps

were identified in our original self-aware architecture patterns: (i) physical interconnec-

tions between components needed to be made explicit, (ii) two additional patterns needed

to be added to reduce the complexity of the architecting process for non-interactive ap-

plications, and (iii) the methodological approach of the architecting process needed to

be improved. These gaps were filled by revising the architecture patterns accordingly, to

address limitations (i) and (ii), and an improved methodological approach was derived

based on our evaluation method, to address limitation (iii), as presented in [40].

The rest of this chapter is structured as follows. Section 6.2 introduces the ATAM

evaluation method. The self-adaptive architectures induced by the 3-Layered, DDDAS,

and Self-aware architecture styles are the focus of sections 6.3, 6.4, and 6.5 respectively.

Findings from independent stakeholders during the ATAM evaluation are discussed in

section 6.6. Evaluation by independent application designers and our findings from this

exercise are presented in section 6.7. We conclude the chapter in section 6.8

6.2 Evaluation Method

The candidate self-adaptive architectures analysed in this chapter are instantiated within

the context of the online shopping cloud application introduced in chapter 1 (section 1.5).

To meet the objective of the first phase our evaluation, we aim to answer the following

research question:

Does design-time risk and trade-off analysis of self-aware cloud architecture
indicate better quality of service expectations when compared to architectures
induced by DDDAS and 3-Layered?

6.2.1 Architecture Trade-off Analysis Method (ATAM)

This section presents the ATAM evaluation method and the motivation for choosing it

for the first phase of our evaluation.

125

Two approaches to analysing adaptability properties of self-adaptive architectures are

quantitative and qualitative approaches. In the former, metrics for analysing trade-off

between adaptability and other QoS (e.g. availability, performance, and security) are

specified [133]. The work of [153], [58], [94], and [136] subscribe to the quantitative ap-

proach, however, this approach is not widely adopted, since comparing adaptive properties

of systems, which may have different goals, is both hard and expensive.

In the qualitative approach, metrics such as level of separation of concern, organisation

of components (centralised or decentralised), and architectural support for learning are

considered. We have already defined these metrics and used them to compare self-adaptive

architecture styles in chapter 3. By relying on scenario-based methodology [10], we are

able to evaluate self-adaptive architectures using architectural evaluation methods.

The goal of the ATAM is to analyse architectural approaches with respect to scenarios

generated from business drivers for the purpose of identifying risk points in the architec-

ture [95]. This is achieved by a disciplined reasoning about software architecture relating

to multiple quality attributes [10]. There are two important classifications of risk points

in ATAM namely sensitivity points and trade-off points. A sensitivity point refers to a

parameter of the architecture that affects the achievement of one quality attribute. On

the other hand, a trade-off point refers to a parameter of the architecture that affects

the achievement of more than one quality attribute, where one improves and the other

degrades. These risk points, together with documentations of the architecture, scenarios,

and quality-attributes analyses are the products of ATAM.

An ATAM evaluation is conducted in a workshop-style setting, where stakeholders

(e.g. researchers and implementers) collectively evaluate candidate software architectures.

The main principle of ATAM is that probing architectures from multiple perspectives by

stakeholders, who did not design the architecture, is likely to unveil design decisions that

could potentially pose risks to the software system [96]. Architecture evaluation results

can be used to refine architectures, to guide selection of a candidate architecture, and to

learn about properties of implemented systems. A comprehensive description of ATAM

126

is presented in [97].

6.2.2 The ATAM Workshop

A workshop was conducted to evaluate the three architectures presented in this chapter

using ATAM. Participants included the author (responsible for designing software archi-

tectures) and four stakeholders who are knowledgeable about self-adaptive software sys-

tems (responsible for architectural analysis). The architectures presented in this chapter

have previously benefited from feedback obtained from two masters projects supervised

during this research programme[84] [159]. The feedback has contributed to the under-

standing and refinement of the architectures. The workshop activities were organised in

line with steps of an ATAM evaluation [97]. Each activity and its objective, participants,

and result are summarised in table 6.1. A template of the form used to structure feedback

from stakeholders is shown in appendix C.

Only two stakeholders had past experience conducting an ATAM evaluation, there-

fore it was necessary to present the rationale for ATAM and some architectural analysis

exercises. The key message to stakeholders was that the expected outcome of an ATAM

is to identify architectural design decisions that could pose potential risks to the software

system. Stakeholders found the online shopping application easy to follow as they claimed

to interact with such systems in everyday life. Stakeholders were given an overview of

each architecture style and exemplars to illustrate underlying concepts.

Candidate architectures of the online shopping application as induced by each archi-

tecture style were presented. Stakeholders were able to grasp the architectural concepts,

however, the workings of the market-based adaptation mechanism was not immediately

intuitive. Hence it was necessary to explain the market-based mechanism to help stake-

holders understand how components interact in the architectures. The architectural doc-

umentation was subsequently updated to explicitly capture the workings of the market

mechanism. As shown in table 6.1, stakeholders derived the utility tree, analysed the

candidate architectures, and presented their findings.

127

Table 6.1: ATAM Workshop Activities
S/N Activity Objective Participants Result

1 Presentation
of ATAM

To present the underlying
concepts and main rationale
for conducting an ATAM

Author and
stakeholders

N/A

2 Presentation
of Business
drivers

To present the problem of
SLA compliance in the on-
line shopping application
case study using scenarios

Author and
stakeholders

N/A

3 Presentation
of architec-
tural styles

To present the key proper-
ties and underlying primi-
tives of the 3 architecture
styles to be considered

Author and
stakeholders

N/A

4 Presentation
of architec-
tures

To explain the architecture
and key design decisions of
the 3 candidate architec-
tures to be evaluated

Author and
stakeholders

N/A

5 Derivation of
utility tree

To derive the main qual-
ity attribute requirements
and constraints for scenar-
ios presented in (2)

Stakeholders The utility tree
presented in sec-
tion 6.2.3

6 Analysis of
Candidate
architectures

To analyse each candidate
architecture for risks, sensi-
tivity points, and trade off
points

Stakeholders Analyses of
candidate ar-
chitectures as
presented in
sections 6.3 - 6.5

7 Architectural
documenta-
tion

To update missing details
in the presented architec-
ture as suggested by stake-
holders

Author Description of
candidate ar-
chitectures as
presented in
sections 6.3 - 6.5

8 Documentation
of findings

To document key findings
uncovered during analysis
as they relate to architec-
tural risks, sensitivity, and
trade off points

Stakeholders Findings as pre-
sented in sec-
tions 6.3.2, 6.4.2,
6.5.2, and 6.6

6.2.3 Analysing Trade-offs using Utility Tree

The first step in conducting an ATAM analysis is to make the quality attributes to be

measured explicit. These attributes form the basis against which candidate architectures

would be compared to unveil the extent to which they meet the system’s goals. An utility

128

tree is a tool for explicating quality attributes by categorising scenarios into quality at-

tribute dimensions and prioritise scenarios in the order of their importance to the systems.

Three levels of prioritisation are available: (H)igh, (M)edium, and (L)ow. The notation

(X,Y) is used to annotate each scenario, where X denotes the importance of the require-

ment to the system relative to other requirements, and Y is the risk or effort associated

with the realisation of that requirement [97].

Within the context of the cloud federation scenario described in section 1.5 presented

in chapter 1, stakeholders elicited an excerpt of quality attributes requirements that are

crucial for adaptability property of the architecture and represented them using the utility

tree shown in figure 6.1. Adaptability here refers to the ability of the system to successfully

accommodate change while executing [109].

Utility

Performance

Adaptability

Software Fault

Network Fault

[S6] If aggregate service utilization < 40%, consolidate

load onto fewer services and release idle services

(H, M)

(M, L)

Workload

Flunctuation

(H, H)

[S3] If a cloud service fails, service substitution

should be effected in < 30secs
(H, M)

Workload

[S1] Under normal workload, a cloud service

request and instantiation should not exceed 10 secs
(H, M)

(H, H)

Cost Service Selection
[S7] If more than one cloud service is able to meet a

QoS, priority should be given to the cheaper service
(H, L)

[S5] If cloud service utilization > 90%, instantiate

new service and distribute load between services

[S4] If latency to a cloud service is unstable the

overall system should still continue working

[S2] Under peak workload, a cloud service request

and instantiation should not exceed 20 secs

Figure 6.1: Utility tree for Adaptation Engine Subsystem of Online Shopping Application

Using the quality attributes in the utility tree and the requirements, stakeholders were

able to probe the self-adaptive architectures using attribute-specific questions to find out

architectural decisions that may lead to risks, sensitivity points, and trade-off points.

129

6.3 Case 1: Evaluation of self-adaptivity and trade-

offs in 3-Layered Architecture

This section presents the self-adaptive architecture for the scenario presented in section 1.5

of chapter 1 using the 3-Layered architecture style [105].

(Job1, SLA1) B1

B2

B3

Cloud Service ProvidersSeller Agents

manage CSPs

Buyer Agents manage

Cloud Users’ SLA

S1
CSP1

CSP3 CSP4

CSP2

S2

CSP1 CSP2

User 1

Federated CSPs

Federated CSPs

D
IS

T
R

IB
U

T
E

D
 A

U
T

O
N

O
M

O
U

S
 T

R
A

D
IN

G

B
E

T
W

E
E

N
 B

U
Y

E
R

 A
N

D
 S

E
L

L
E

R
 A

G
E

N
T

S

Users submit

requests with

varying SLAs

BKey Buyer Node Server Node CSP Cloud Service ProviderS

(Job2, SLA2)

(Job3, SLA3)

User 2

User 3

Goal Management

(Max. SLA Compliance)

Change Management

(Market Mechanism)

Component Control

(Monitor & Effect Changes)

[senses]

[effects][specifies]

Data and control flow

Layer demarcation

Inter-node connection

Reputation

Repository

R

R

W

W

R = Read from Repo W = Write to RepoRepository

Figure 6.2: Cloud Architecture Induced by 3-Layered Architecture Style. Source: [70]

The reference architecture [105] consists of three distinct layers: goal management,

change management and component control layer. The component control layer, at the

bottom, is where components are created, deleted, bound and unbound to monitor the

managed system and execute adaptation changes. The change management layer, at the

middle, consists of pre-compiled plans for responding to change requests from the lower

(component control) layer or upper (goal management) layer. The goal management layer

is where user goals are specified and new plans are generated to meet unforeseen adapta-

tion needs. Our instantiation of the reference architecture model [105] for decentralised

control is depicted in figure 6.2.

In the architecture, the change management layer incorporates a decentralised mech-

130

anism for making the architecture resilient and scalable in the presence of component

failures at the lower layer. Our reputation-aware posted offer market mechanism, pre-

sented in chapter 5, is used to realise the change management control. The posted-offer

mechanism is preferred because when compared to other economic auction models (e.g.

continuous double auction and bilateral bargaining), it has the benefit of saving the time

spent on negotiation and provides the flexibility for buyers to rapidly switch among mul-

tiple sellers [34].

The layers of the architecture in figure 6.2 are described as follows:

6.3.1 Online Shopping Application Induced by 3-layered Archi-
tecture style

• Goal Management

SLAs typically encompass the goals and requirements of cloud users’ jobs as agreed

with the cloud provider. Therefore, the goals which dictate the objectives of buyer

agents in the market mechanism are elicited from these SLAs. The market-based

mechanism makes resource allocation decisions based on these goals to make a best-

effort attempt to ensure SLAs are not violated.

• Change Management

Once the buyer agents are equipped with knowledge about the goals of the cloud

users as defined in the SLAs, buyer agents enter into negotiation with seller agents

to make decision about which cloud resource is most capable of executing the cloud

user’s job with the lowest probability of violating the job’s SLA. This negotiation

and subsequent resource allocation is carried out via a reputation-aware posted offer

market mechanism (see chapter 5) which utilises information about seller agents’

reputation to measure their reliability. A high-level description of components in

the buyer and seller nodes is shown in figure 6.3.

• Component Control

131

BuyerAgent

Goal Manager

Trading Strategy

Negotiator

SellerAgent

Trading Strategy

Monitor

Negotiator

Executor

-Network Endpoint*

-Network Endpoint*

Figure 6.3: Components of Buyer and Seller Nodes. Source: [70]

Cloud resource nodes are analogous to seller agents in the architecture. Seller agents

could be designated as manager components of cloud service providers. These seller

agents are equipped with components for monitoring the current state of the ex-

ecuting job and their own resource usage or health status. In addition, executor

components which carry out resource allocation actions as directed by interaction

with buyer agents or other seller agents are present in each seller agent node.

6.3.2 Analysis of Architectural Decisions

Following analysis of the 3-layered cloud architecture of figure 6.2, the following findings

were recorded.

132

Risks

1. In scenario S6, when consolidating load to a service and turning off idle services,

there is no mechanism for deciding which of the currently running under-utilized

services should be kept running. This decision has implication for overall service

provisioning cost, as it is more cost-efficient to keep the cheaper of two services,

with comparable QoSes, running than to transfer load to the more expensive one.

2. The mechanism for detecting changes in latency, in scenario S4, on the channel

connecting the cloud-reliant application to the cloud service is not specified. It

is crucial to explicitly state the mechanism that will be used to detect changes

in latency and mechanism for tuning sensing threshold to avoid problems of too

frequent sensing or delayed sensing, hence, leading to incorrect adaptation.

Sensitivity Points

1. The performance of the adaptation subsystem is sensitive to the time required to

acquire knowledge about customer SLAs from the goal management layer to the

change management layer.

2. The availability of the adaptation subsystem is sensitive to the uptime of the repu-

tation repository. Hence, the repository constitutes a single point of failure.

3. The integrity of data written or read from the reputation repository is sensitive to

the transactional consistency of the read/write operation. If improperly handled this

may lead to corruption of reputation records, and consequently incorrect adaptation.

4. The throughput of the adaptation subsystem (i.e. the number of cloud services

instantiated per unit time) is sensitive to the availability of cloud services and the

latency of the communication channel used for sourcing services.

133

Trade-off Points

1. Adaptability versus Performance

This is one of the key findings of the analysis, as it is manifested in different forms

in the architecture. As the occurrence of software faults increases (scenario S3), the

performance overhead required to find suitable services also increases. This implies

that improving the resilience of the architecture via the adaptive mechanism is likely

to degrades performance, especially for the peak workload scenario S2.

2. Adaptability versus Cost

The high service utilisation induced by spikes in workload (scenario S2) necessitates

instantaneous sourcing for additional services (scenario S5). The combination of

scenario S2 and S5 implies costly services may be selected to meet emergent ap-

plication needs due to the performance constraint specified in scenario S2. This

situation conflicts with the underlying business rationale of scenario S7. In other

words, improving the scalability of the architecture on one hand may compromise

the cost-effectiveness of the service provision.

6.4 Case 2: Evaluation of self-adaptivity and trade-

offs in DDDAS Architecture

The cloud federation architecture induced by DDDAS is shown in figure 6.4. The DDDAS

adaptive layer in the architecture realises the adaptation mechanism use to coordinate and

control CSPs. It is composed of distributed simulator instances. These simulators receive

requests from cloud users and select cloud providers capable of meeting these requests.

The simulators receive control feedbacks from cloud providers signifying successful execu-

tion of submitted job requests or risk alerts signifying their inability to do so. Risk alerts

could be triggered by reasons such as unanticipated resource failure and unforeseen spike

in workload. The simulators act on this feedback by taking risk mitigation actions such

134

as selection of substitute cloud provider(s) to avoid violating the SLA terms of submitted

requests. Feedbacks received by the simulator can also be discriminated as: high priority

(requires immediate intervention), medium priority (react within a time bound) or low

priority (trivial, non-threatening risk). The knowledge acquired from the continuous inter-

action between simulators and CSPs improves the accuracy of the simulators at selecting

reliable CSPs. Next, we zoom into the details of adaptive layer of the architecture.

Market-based Simulator Instance, MS1

CSP Reputation

Repository

. . .

CLOUD USERS DDDAS ADAPTIVE LAYER

CSP1

. . .

(Job1 , SLA1)

(Job2 , SLA2)

(Job3 , SLA3)

(JobM , SLAM)

(Jobi , SLAi)

CLOUD SERVICE

PROVIDERS

Trading Strategy

Repository

CSP2

CSP3

CSPN

update

rating
fetch

rating

selects cloud provider

feedback

select strategy

Market-based Simulator Instance, MS2

Market-based Simulator Instance, MSK

UM

U1

U2

U3

Submits job and its SLA

to execute

Key

User i

Cloud Service Provider i

Repository Ui

CSPi

Figure 6.4: Cloud Architecture Induced by DDDAS Architecture Style. Source: [70]

6.4.1 Onling Shopping Application Induced by DDDAS Archi-
tecture

The adaptive layer consists of many simulator instances which coordinate the cloud fed-

eration. The distributed simulation approach is preferred due to the scale of the cloud

federation. A single simulator instance may constitute a bottleneck under heavy work-

load and thus make the adaptation subsystem less scalable. Distribution of simulator

instances improves the scalability of the adaptation subsystem and affords dedication of

simulators to multiple concerns. For example, some simulators may be more efficient

at selecting CSP for specific types of incoming job requests than others. In accordance

135

with the DDDAS paradigm, these simulators collect data based on current state of the

cloud, perform measurements to detect probable violations, and effect control changes to

mitigate them.

More precisely, the simulators performs the following functions:

• receive job requests and associated SLAs as input from cloud users,

• inspect offerings of cloud service providers at specified intervals,

• select CPS(s) to execute job requests based on job type and SLA terms,

• monitor job execution to detect risk alerts from cloud providers, and

• effect actions to prevent the violation of users’ SLAs whenever a risk alert is received.

Simulator instances select CSPs by utilising our reputation-aware posted offer market

mechanism. The steps of the reputation-aware posted offer mechanism for each trading

round is described as follows:

Step 1: sellers (CSPs) publish the prices and service terms of their resource offerings

Step 2: buyers search for active sellers in the reputation repository

Step 3: if buyer finds a matching seller, allocate job to it, then step 4, otherwise step 2

Step 4: buyer (simulator instance) monitors the selected seller (CSP) at intervals

Step 5: if seller successfully executes job then sends success notification else raise alert

Step 6: if buyer detects risk alert or seller (CSP) is not responsive then reputation repos-

itory is updated with a negative rating for the CSP and transfers control to step 2 else

step 7

Step 7: if CSP violates SLA constraint, reputation repository is updated with a negative

rating for the CSP otherwise it is updated with positive rating

Step 8: cloud user is notified of completed job

136

6.4.2 Analysis of Architectural Decisions

Risk

1. SLA constraints are the drivers for deciding which trading strategy is used to meet a

job request, however, the impact of mixing strategies is not explicitly stated. While

the mechanism is able to accommodate diverse trading strategies, the overall impact

on the architecture’s adaptive behaviour is not explicitly stated.

Sensitivity Points

1. The computational overhead of the adaptive layer is sensitive to the number of

market simulators active per unit time.

2. As with the 3-layered architecture, the repositories constitute single points of failure.

The impact of failure of the trading strategy repository is likely to be catastrophic

because it encodes the logic of how CSPs are selected.

3. The accuracy of allocation decisions made by the simulators is sensitive to their

training time. That is the time spent initialising the system to look ahead, acquiring

knowledge about cloud services, before actually making selection decisions.

4. The integrity of data written or read from the repositories are sensitive to the

transactional consistency of the read/write operation. If improperly handled this

may lead to corruption of reputation records, and consequently incorrect adaptation.

Trade-off Points

1. Adaptability versus Cost

In order to make correct adaptation actions, simulators should continue running

in order to maintain the current state of the real-world. However, this consumes

computational resources, which is costly, especially in the variant of the architecture

where simulators are dedicated to various job types.

137

2. Adaptability versus Performance

During peak workload scenario (S2), the computational overhead incurred by the

simulators is likely to negatively impact the performance constraints specified for

service instantiation, hence, leading to violation of the SLAs.

6.5 Case 3: Evaluation of self-adaptivity and trade-

offs in Self-aware Architecture

In chapter 4, the self-aware architecture style was presented and we reiterated its adher-

ence to a decentralisation by design paradigm. Crucially, the style models knowledge at

a more granular level when compared to state of the art self-adaptive architecture styles.

In chapter 5, we already presented a self-aware architecture that realises the requirements

of the cloud service provisioning problem highlighted in section 6.2.3. The rest of this

section overviews the key principles of self-awareness as they relate to the architecture

presented in section 5.6 of chapter 5.

6.5.1 Online Shopping Application Induced by Self-aware Ar-
chitecture

• Stimulus-aware Component This characterises spikes or dwindles in user request

traffic. It models the workload and distinguishes them across different SLA classes

(e.g. premium and normal SLA).

• Interaction-aware Component

Knowledge about the interaction between the adaptation subsystem and cloud ser-

vices is captured by this component using the performance repository. This func-

tionality is realised by storing location information (e.g. RESTful service URI)

about cloud services and facilitate the connection to these services.

• Time-aware Component

138

This component makes use of a locally managed performance repository to store

rating of services, in terms of the level to which the service met promised QoS,

and the duration of their use. The posted offer mechanism encapsulates the rule

for computing the reputation rating of cloud services. One of the implications of

a decentralised architecture is that each adaptation subsystem maintains different

service performance repositories. This raises the issue of timeliness or recency of

ratings. Relying on obsolete reputation rating may lead to poor adaptation.

• Goal-aware Component

Given an application QoS, this component makes use of an utility function to deduce

the candidate services which are likely to provide optimal QoS. An implication of

the decentralised architecture is that utility functions used for goal representation

may be formulated in such a way that different adaptation subsystems value SLAs

differently. A good application of this is when buyer agents are distinguished based

on the workload across different SLA classes. Premium users may be serviced by

more strategic and sophisticated buyer agents than normal users.

• Self-Expression Component

It makes service selection decisions based on allocation strategies. Similar to the

3-layered architecture, service selection strategy is managed locally. This has the

advantage that the adaptation subsystem can be easily specialised, by adding or

removing trading strategies, without affecting the rest of the system. As discussed

in chapter 5, two strategies studied in this thesis are bargain hunter and time saver

strategies. Bargain hunters choose service with the lowest price possible. That is, the

selling price must be the lowest among available services. If more than one service

offers the lowest price, then one is chosen at random. Time savers choose services

at random, provided the price is acceptable, i.e., price less or equals application’s

budget.

139

6.5.2 Analysis of Architectural Decisions

Sensitivity Points

1. Unlike the 3-layered and DDDAS cloud architectures, the service performance repos-

itory is locally maintained by each adaptation subsystem. The currency, i.e. up-to-

datedness, of each adaptation subsystem is sensitive to the amount of interactions

with (possibly different) cloud services in the market.

Trade-off Points

1. Adaptability versus Cost

Depending on the strategy selected by the self-expression component, there exist a

trade-off between the time to select a service and the cost of the service. For example

the bargain hunter and time saver strategies are at different points in this trade-off

space as shown in figure 6.5. While adaptability makes timely service instantiation

possible, the cost of the adaptation is high.

 T
im

e

Cost

Strategy 1

Strategy 2

Figure 6.5: Illustrates the trade-off space between time to select a service and the cost of
searching for that service using Bargain Hunter and Time Saver strategies

2. Adaptability versus Accuracy

The decentralised nature of the architecture means that each adaptation subsystem

only has a local view of the cloud service market. This limits its ability to make

optimal service selection decision, as it may have little historic knowledge about a

candidate cloud service, whereas another application’s adaptation subsystem might

140

have knowledge about the service’s recent performance. This means improving

resilience of the architecture via adaptability by eliminating single points of failure

impacts the ability of adaptation subsystems to make optimal resource allocation

decisions.

3. Adaptability versus Communication Load

To address the trade-off point between adaptability and accuracy, there is a need

to communicate reputation ratings of cloud services as observed by one adaptation

subsystem to others. This way knowledge about a cloud service’s true performance

can be propagated among adaptation subsystems. However, this introduces a trade-

off between adaptability and communication, as the propagation of knowledge to

improve adaptability imposes higher communication overhead on the network than

usual. A key design decision in the self-aware architecture is to use a knowledge

propagation mechanism such as gossip protocol that is less communication intensive.

6.6 Comparative Analysis of ATAM Results

Based on findings from qualitative evaluation using ATAM in section 6.3, 6.4, and 6.5,

this section presents implications of these findings from perspective of stakeholders. A

comparative analysis is presented to compare and contrast the studied architectures in

order to find out how the essential features of their underlying styles answers the question

that triggered the qualitative evaluation exercise:

Does design-time risk and trade-off analysis of self-aware cloud architecture
indicate better quality of service expectations when compared to architectures
induced by DDDAS and 3-Layered?

Table 6.2 summaries the findings from the qualitative evaluation. The analysis by

stakeholders of the implications of the findings follows.

141

Risks Sensitivity Points Trade-off Points
3-Layered 2 4 2
DDDAS 1 4 2
Self-aware 0 1 3

Table 6.2: Summary of Findings from Qualitative Analysis. In conformance with practices
in software architecture evaluation[10][97], these findings should be interpreted as outcomes
of design-time analysis of candidate architectures and not findings implemented architectural
instances. The findings serve as indicators of expected behaviour of the studied styles.

6.6.1 Risks

Both 3-Layered and DDDAS cloud architectures recorded 2 and 1 risks respectively. It

is interesting to note that the risk identified in both architectures affect different qual-

ity attributes. Specifically, it was found that mechanisms were missing in the 3-Layered

architecture for addressing cost implication of architectural decision in the service consol-

idation scenario (S6) and detecting changes in latency in scenario S4. The former may

lead to costly adaptation, while the latter may lead to incorrect adaptation in unstable

network scenario (S4). On the other hand, the sharing of trading strategy repository

in the DDDAS architecture has the potential of causing unintended emergent adaptive

behaviour, which is undesirable.

No risks were identified in the self-aware architecture. Stakeholders suggested two

possible explanations for this: (i) By the nature of the evaluation it is hard to deduce

implications of concurrency in the decentralised self-aware architecture. For example, this

could be studied empirically as presented in chapter 5, (ii) From an architectural design

perspective, fine-grained decomposition of knowledge effectively captured the dimensions

of architectural concerns within the context of the case study. It is therefore expected that

more complex applications may unveil risks which are not observed in this case study.

The second point is in line with the aim of this thesis, which is to provide a systematic

design-time architectural approach to explicitly capture design decisions and reduce risks

such as unintended, incorrect, and costly adaptive behaviour.

142

6.6.2 Sensitivity Points

Figure 6.6 summarises the stimuli (triggers for architecture decisions as they affect pa-

rameters of the architecture) and responses (affected quality attributes).

Figure 6.6: Comparison of Sensitivity Points by Architecture Style

It can be observed from figure 6.6 that the reputation repository is most critical to the

adaptability of the 3-Layered and DDDAS architectures. This can be attributed to the

hierarchical and centralised nature of these architectures. Importantly, system availability

in both cases is dependent on uptime of the repository and its corruption will affect the

integrity of data used for making adaptive decisions.

The 3-Layered and DDDAS architecture exhibit sensitivity to time in different ways.

The performance of the adaptation subsystem in the 3-Layered architecture is affected

by time required to propagate SLA information from one layer to another. On the other

hand, DDDAS market simulators suffer a delay in time spent in training at start up to

acquire knowledge about cloud services. Further, the number of simulators impacts the

computational overhead incurred by the system.

The self-aware architecture’s decentralised design reduces the impact of unavailability

of reputation repository in one adaptation subsystem on continued working of other parts

of the system. That is, no one point in the architecture is weaker than another. However,

the self-aware architecture’s reputation repository may become obsolete quicker than those

of the other two architectures. This is because the adaptation subsystem in the self-aware

143

architecture is responsible for acquiring knowledge about cloud services by itself, unlike

the other approaches where a shared central repository is present.

It follows that the self-aware architecture can potentially offer higher levels of robust-

ness, availability and scalability when compared to the 3-Layered and DDDAS architec-

tures, however, it offers poorer data consistency when compared to them. An important

caveat is that these benefits of self-aware architecture may not be realisable in a centralised

deployment, due to likelihood of outdated reputation repository.

6.6.3 Trade-off Points

Figure 6.7 shows the trade-off points uncovered by the analysis of the 3 architectures.

Figure 6.7: Comparison of Trade-off Points by Architecture Style

The trade-off between adaptability and cost is common to all three architectures,

although manifested in different forms. In the 3-Layered and Self-aware architectures the

improved scalability achieved by automatically selecting cloud services due to spikes in

workload may result in costly adaptation. On the other hand, the DDDAS architecture

is more likely to accrues cost because simulators are kept running to maintain a real-time

view of the world.

Achieving adaptability is likely to conflict with performance in the 3-Layered and

DDDAS architectures. In the former the conflict may result from performance overhead

imposed on fewer running services when a software fault takes place, while in the latter

it may result from performance demands caused by peak workload. This possibilities

is likely to limit the ability of these architectures to scale under peak workload when

144

compared to the self-aware architecture.

Two related trade-off points found in the analysis of the self-aware architecture are

adaptability versus accuracy and adaptability versus communication. It was found that

the resolution tactics for the former results in the latter. This may be attributed to the

decentralised systems in general, where achieving a fully consistent view of distributed

data is not achievable. It was suggested that a robust information sharing mechanism is

crucial to ensure these trade-off points does not significantly degrade the ability of the

architecture to adapt correctly.

Given the findings from the ATAM qualitative evaluation, stakeholders conclude that

the self-aware style is more likely to offer higher levels of scalability and availability than

DDDAS and 3-Layered, and probably comparable to DDDAS in timeliness of adaptation,

but most likely to be worse off in data consistency.

6.6.4 Threat to Validity

In this section, we present the threats to the validity of the result.

• Stakeholders in our ATAM evaluation have formulated use case scenarios and quality

attribute requirements to steer the evaluation. Consideration of complex/extreme

scenarios beyond the scope of work presented here is therefore a threat to our results.

• Studying two competing self-adaptive styles (DDDAS and 3-Layered) in our ATAM

evaluation limits the generality of our results. Studies including other representative

self-adaptive styles (e.g. those presented in chapter 3) may show additional benefits

and limitations of the self-aware style.

• Stakeholders have analysed the architectures within the limits of the posted offer

mechanism and the trading strategies presented in chapter 5. The use of another

adaptation mechanism with different properties may reveal additional insights about

component interactions and the resultant risks, sensitivity, and trade-off points.

145

6.7 Reflection on Self-aware Architecture Patterns

through External Application Designers

Following the inception of self-ware architecture patterns, four application partners within

the EPiCS project were enlisted to independently architect their applications using the

patterns and provide feedback on their experience. These applications are: computation

of financial pricing algorithms on clusters, distributed smart camera network management,

dynamic protocol stack configuration, and operating system for heterogeneous multi-core

software/hardware platform. This additional step is done to further eliminate bias from

our findings reported in previous sections. Specifically, application designers acted as

assessors with a view of answering the following questions:

• How easy is it to systematically interpret self-aware architecture patterns and use

them to instantiate architectures within the context of their applications?

• Do the proposed self-aware architecture patterns cover the scope of their applica-

tions’ architectures and inform a methodical design-time analysis process?

6.7.1 Approach

The approach taken was to disseminate the documentation of the self-architecture pattern

to application experts together with questionnaires to capture their feedback about the

architecture pattern(s) instantiated in their respective applications. The activities shown

in table 6.3 were carried out to assess self-aware architecture patterns.

6.7.2 Key Findings

Need to make Physical Interconnection Explicit

In the original self-aware patterns description, interconnection among self-aware subcom-

ponents in the same node (intra) or across different nodes (inter) were expressed as logical

146

Table 6.3: Activities for Independent Assessment of Self-aware Patterns
Activity Actors Dissemination

Channel
Conception and documentation of self-aware architec-
ture patterns

The author Report

Clarification of ambiguities and understanding of self-
aware architecture pattern

The author and
EPiCS teams

Meetings

Dissemination of self-aware architecture patterns The author and
EPiCS teams

Report

Design of self-aware application architectures Application
experts

Independently
done by applica-
tion experts

Collection of feedback from application designers
about self-aware patterns and discussion of findings

EPiCS teams
and application
experts

Workshop with
four application
experts and other
self-adaptive
researchers in
attendance

Reflection on findings from self-aware patterns The author and
EPiCS teams

Report

interconnection with consideration of actual physical connectors left for architectural in-

stances. However, it was found that showing physical interconnection at the architectural

pattern level of abstraction may serve to guide designers about which self-aware subcom-

ponent can exchange data with other subcomponents. Hence, physical interconnections

among self-aware subcomponents were expressed in all the patterns as presented in [40].

Incompleteness of Catalogue of Architecture Patterns

It was found that some of the original self-aware patterns as presented in chapter 4 could

introduce complexity in certain contexts, hence two of the styles were further elaborated to

arrive at simpler variants of those styles. The revised patterns are: Temporal Knowledge

Sharing pattern and the Goal Disseminating pattern.

In the case of the Temporal Knowledge Sharing pattern, it was found that for applica-

tions where sensitivity to time is required but not interaction with external subsystems,

the Interaction-awareness subcomponent could constitute an overhead. Therefore a new

variant of the Temporal Knowledge Sharing pattern namely Temporal Knowledge Aware

147

Pattern was derived, without the interaction-aware subcomponent, as shown in figure 6.8.

Figure 6.8: Temporal Knowledge Aware Pattern. Source: [40]

Similarly in the case of the Goal Disseminating pattern, it was found that interaction-

awareness subcomponent may be an overkill when acceptable adaptation decisions could

be reached without sharing goal and time information with other subsystems. A new vari-

ant of the Goal Disseminating pattern called Temporal Goal Aware Pattern was derived,

as shown in figure 6.9.

Figure 6.9: Temporal Goal Aware Pattern. Source: [40]

These new architecture patterns and their detailed description can be found in [40].

148

Need for Improved Methodological Approach to Architecting Self-awareness

Application designers found our original idea of providing a systematic process for engi-

neering self-aware application by confirming the ease of following the process to arrive at

instances of architectures for their respective applications. However, application designers

argued that a more elaborate methodological approach could help improve the rigour of

the architecture design process. Hence, such a methodological approach was proposed

in [40], where a question-answer style method was used to elicit designer’s intent and

score alternative options at every step of the architecting process. It was found that

these methodological approach improved the disciplined reasoning about the architecting

process and helped application designer explore design decisions more systematically.

6.8 Summary

In this chapter, we have realised the thesis’ objective of providing an approach for sys-

tematically reasoning about the design and analysis of cloud architectures. A two-phased

evaluation approach was used to evaluate the self-aware architecture patterns relative to

two competing styles namely DDDAS [54] and 3-Layered [105] architecture styles.

In the first phase of our evaluation, we sought to identify risk and trade-off points in

the three candidate architectures using ATAM [97]. Findings from independent stakehold-

ers in the qualitative ATAM evaluation suggests that within the context of the evaluated

architectures: self-aware style is more likely to offer higher levels of scalability and avail-

ability than DDDAS and 3-Layered, and probably comparable to DDDAS in timeliness

of adaptation, but most likely to be worse off in data consistency.

In the second phase of our evaluation, we sought feedback from independent asses-

sors (researchers and application experts) to: (i) find out if external application designers

are able to interpret the architecture patterns and instantiate self-adaptive architectures

methodologically following the pattern description, and (ii) find out if the self-aware ar-

chitecture patterns, presented in chapter 4, covered the scope of applications beyond our

149

online shopping cloud application. Feedback received from application designers indicated

three gaps in our original patterns: a need to make physical interconnections explicit, ad-

dition of two patterns to the pattern catalogue, and an improved methodological approach

to the architecting process. These gaps were filled by revising the architecture patterns

and proposing an improved methodological approach as presented in [40].

By reasoning about the architecturing process in terms of our self-aware architecture

patterns, we have provided software architects a principled approach to guide their deci-

sion about which architecture pattern to instantiate. As it was observed in our self-aware

cloud architecture and the four applications evaluated by external application designers,

the self-aware patterns are easy to interpret and compare with the underlying characteris-

tics of an application’s problem domain. By following our structured thinking approach,

ad-hoc trial-and-error selection of patterns is eliminated as the architect is fully aware

of the capabilities and limitations of each pattern before proceeding to use it. This con-

tribution is in line with an important open challenge in the self-adaptive architecture

community, i.e. the problem of cataloguing available design pattern for self-adaptation

and promoting a principled approach to pattern selection and applicability [111].

150

CHAPTER 7

CONCLUSION AND FUTURE WORK

“There is no real ending. It’s just the place where you stop the story.”

Frank Herbert

7.1 Overview of the Chapter

This thesis has researched the use of an architecture-centric self-adaptive approach grounded

on the principles of self-awareness and market coordination to address the problem of

SLA violation in cloud-based applications. The approach termed self-aware architecture

patterns gains inspiration from concepts of computational self-awareness. Computational

self-awareness enables sophisticated autonomic behaviour to be realised by explicitly mod-

elling the knowledge about the system, its environment, and its level of awareness. This

thesis has studied the problem of self-adaptation from an architecture style perspective

[134]. The primary motivation for this approach is to abstract the architecting process to

a high level of abstraction that affords studying the underpinning principles that makes

one software architecture different from another.

The architectural patterns proposed in chapter 4 and evaluated in chapter 6 has met

the thesis’ objectives of innovating self-aware architectural patterns and designing cloud

software architectures based on the patterns. The reputation-aware market mechanism

151

proposed and evaluated in chapter 5 has met the thesis’ objective of designing a scalable

mechanism for coordinating decentralised components of federated cloud applications.

The rest of this chapter is structured as follows. The main contributions of the thesis

are summarised in section 7.2. A reflection on the consequence of the research beyond

the scope of this thesis and the implication of the results for the self-adaptive architecture

community is presented in section 7.3. Avenues for developing the research further is

presented in section 7.4. Section 7.5 concludes the chapter.

7.2 Contributions of the Thesis

The following are the main contributions of the thesis.

7.2.1 Self-aware Architecture Patterns

This thesis has contributed a new architectural pattern namely self-aware architecture

pattern based on the self-aware style to promote a systematic selection and instantiation

of architectures. The self-aware architecture pattern has been partly described in [68]

and [40]. The patterns was primarily inspired by gaps in the state of the art and a

lack of systematic approach to architecting self-adaptive cloud applications. The pattern

improves the state of the art by promoting the notions of explicit knowledge modelling

for self-adaptive concerns in terms of:

1. Stimuli-awareness - captures knowledge about awareness of input from external

sources or components internal to the self-adaptive system

2. Goal-awareness - encodes knowledge about design- and run-time goals of the self-

adaptive systems and how these goals evolve throughout the system’s lifetime

3. Interaction-awareness - captures knowledge about a self-aware system’s interaction

with other computational entities or the environment

152

4. Time-awareness - refers to knowledge about temporal information and how this can

be used for time modelling, reactive or proactive adaptation

5. Meta-self-awareness - is the most advanced form of awareness, where a node is

aware of its own level of awareness and can coordinate lower levels of awareness (i.e.

stimuli, goal, interaction, or time) based on its meta-level knowledge

The benefits of decomposing knowledge to these fine-grains is that it promotes a

systematic reasoning about how architectural components realise each quality concern

and how one concern complements or conflicts against another. Effectively representing

trade-off spaces early in the architecting process makes it possible to engineer solutions

for most scenarios the system is likely to encounter at run-time.

We have contributed a catalogue of five architecture patterns for architecting self-

aware systems. These patterns are designed to progressively build on each other, making

it possible for architects to assess the suitability of each pattern to the characteristics of

their problem domain. Experience from architecting applications using our architecture

pattern has been positive and it has already been applied beyond the cloud application

domain [40]. Although independent experts have identified few notable gaps in the original

version of our patterns, the patterns have promoted a systematic way of reasoning about

the architecting process. Consequently, opportunities for introducing errors and wrong

adaptive behaviour to the architected systems has been reduced.

7.2.2 Decentralised Market Mechanism for Component Coordi-
nation

One of the key architectural primitives for architecting self-aware federated cloud appli-

cations is the mechanism for coordinating decentralised components. Federated cloud

applications face the challenge of operating in an open and highly dynamic environment,

hence the need for a robust coordination mechanism. This thesis has contributed a de-

centralised market mechanism namely Reputation-aware posted offer market mechanism

153

to fill this gap. Importantly, unlike decentralised mechanisms in the literature that cater

solely to the problem of coordination, our market mechanism address the problem of

filtering out unreliable services by relying on reputation ratings acquired from historic

interactions. We have validated the convergence, resilience, scalability, and incurred over-

head properties of our mechanism through empirical studies.

While this thesis has mainly considered the use of the proposed market mechanism

within the context of three representative self-adaptive architecture styles (DDDAS, 3-

Layered, and Self-aware), we hope future work will explore its applicability beyond these

styles to validate to what extent it is able to support the primitive of other architecture

styles. As suggested in chapter 5, there is room for improving our market mechanism itself.

For example, we have used an historic reputation model for the purpose of forecasting

likely behaviour of computational entities. A future research direction is to study our

market mechanism while incorporating a predictive reputation model (e.g. [90]).

7.2.3 Systematic Review of SLA-based Cloud Research

This thesis has adopted the philosophy of identifying good principles and lessons learnt

from related work before tackling research questions pertinent to the thesis. We initially

set out with the aim of learning about the gap in SLA-based cloud resource allocation

research domain. To achieve this we carried out a systematic literature review (SLR)

following the methodology proposed by Kitchenham et al. [103]. Accordingly, this thesis

has contributed to the body of systematic reviews in cloud research. We have motivated

the core research problems tackled in this thesis based on findings from the systematic

review i.e. a lack of systematic architecting process for self-adaptive architectures and

limited decentralised coordination mechanisms to support self-adaptive architectures.

154

7.2.4 Classification Framework for Self-adaptive Architecture
Styles

In accordance with the philosophy of this thesis, we explored the literature on self-adaptive

architecture styles to know if existing styles offered primitives that met the requirement of

SLA-based cloud resource allocation. Within the context of the literature on self-adaptive

architecture styles, we noted that the literature is not well structured and the terminologies

for describing styles vary largely depending on the research community and problem

domain where the style is predominantly used. This thesis has provided a template for

structuring the literature in self-adaptive architecture style domain by contributing a

classification framework that captures underlying properties of self-adaptive architecture

styles and provides a basis for comparative analysis of these styles. In chapter 3, we have

used this framework to classify eight representative architecture styles.

7.3 Reflection on the Research

This section reflects on the generality of this thesis’ contribution within the Software

Engineering (SE) discipline and the usefulness of the claimed results within the specialised

domain of self-adaptive software architecture.

7.3.1 Generality of results

It is known that research in Software Engineering undergo a gestation period before they

become widely applicable. According to Redwine and Riddle’s [139] technology maturity

model, software technology ideas progress through six phases: basic research, concept for-

mulation, development and extension, internal enhancement, external enhancement and

exploration, and popularisation [139]. Progression from basic research to popularisation

typically take 15-20 years [139] [149].

This research work aimed to design a generally applicable self-adaptive architecture

pattern and a market-based mechanism to support coordination of components in variants

155

of the pattern. The author has demonstrated the benefit of the self-aware architecture pat-

terns and market mechanism within the context of SLA-based cloud-based applications.

Independent application designers and researchers external to this thesis have adopted and

explored the use of the architecture patterns within application domains outside the scope

of this thesis namely: computation of financial pricing algorithms on clusters, distributed

smart camera network management, dynamic protocol stack configuration, and operating

system for heterogeneous multi-core software/hardware platform. The exploration of the

self-aware architecture patterns remains a subject of ongoing research [40].

7.3.2 Usefulness of results

We reflect on the usefulness of the results of this thesis within the context of architect-

ing self-adaptive systems in general. The main objective of this thesis is to provide a

systematic and principled approach to architecting self-adaptive systems in a way that

promotes fine-grained analysis of risks and trade-offs of federated cloud applications. This

objective has been realised by contributing self-aware architecture patterns, which the au-

thor claims are useful and timely towards easing the architecting process of self-adaptive

systems. By decomposing the knowledge concerns of a self-adaptive system to fine-grains

(stimuli, time, interaction, goal, and meta), the architect is able to reason about each

concern independent of others to uncover sensitivity points and also reasoning about how

each concern promotes or conflicts with others to uncover trade-off points. Addition-

ally, the self-aware architecture patterns provide a catalogue from which architects can

choose which pattern(s) meet the requirements of their problem domain based on intrinsic

properties of the patterns and exemplars of their use in other applications.

7.4 Future Work

This section explores some avenues for building on this thesis for future research work.

156

7.4.1 Tool Support for Self-aware Architecture Design

Computer Aided Software Engineering (CASE) tools provide a means of analysing and

verifying quality of designed software before implementation. In the software architecture

community, CASE tools have been used to support so-called Architectural Description

Languages (ADLs) [49] such that architects are able to visually explore the design space

of the system-to-be. Acme [77] and LTSA [163][74] are some notable examples of tools

that have aided adoption of architectural practices.

One important future work is to provide tool support for modelling and verifying

designs of self-aware systems. This could be achieved by complementing existing ADLs

with profiles to support visual design and modelling of self-aware architectures. Each

design pattern proposed in this thesis will therefore correspond to a profile. New pat-

terns can be abstractly added to such tools by creating new profiles corresponding to the

new patterns. Successful implementation of such a tool will improve exploitation of our

architectural patterns among researchers and practitioners.

7.4.2 Heterogeneity of Architectural Patterns among Self-aware
Nodes

The self-aware software architecture of a decentralised system, where nodes cooperate

or compete, to achieve some specified goal(s) implicitly assumes that interacting nodes

are structurally identical. However, in cases where self-aware nodes belong to different

entities, it is not uncommon for nodes to instantiate structurally distinct self-aware archi-

tecture patterns. For example, one node may adhere to the Goal Disseminating pattern

(with time-awareness capability) while the other realises the same pattern without time-

awareness capability. This introduces a challenge of how to explicitly map self-aware

subcomponents of structurally distinct self-aware nodes to one another. One potential

approach to address this challenge is for self-aware nodes to declare beforehand how they

are structurally organised; suppose they are structurally dissimilar, we suggest utilising

a negotiation protocol to map out their differences and resolve structural conflicts. It

157

expected that some of these resolutions would be invalid. Therefore, it is crucial to devise

a mechanism for checking the space of structural resolutions and filter out invalid ones.

7.4.3 Systematic Market Mechanism Selection for Cloud Archi-
tectures

This thesis has demonstrated that market-based approaches are promising at adapting to

changing user requirements and operating conditions in cloud-based application domain.

However, there is a lack of guidance on how to map these market mechanisms to specific

cloud architectures. The question of which market mechanism is suitable for different

architecture patterns and in what context remains open. In order to demonstrate the

feasibility of market-based approaches in general and to gain assurance about their be-

haviour at run-time, it is important to evaluate representative architecture patterns which

fit the design abstraction of the problem. This we have done using simulation studies.

The extent to which this result holds in deployed systems can be argued. Kevin Lai [108]

suggests that the process of system design and market mechanism should be integrated,

not disjoint. This way, the software architect can align the underlying assumptions of the

mechanism with those of the architecture at hand. Even at this, much is to be learned

from a real deployed system, where some of the assumptions may fail or change in ways

not anticipated at design time.

7.4.4 Improved Reputation-aware Posted Offer Market Mecha-
nism

In our reputation-aware posted offer market mechanism, two representative buyer trading

strategies (time savers and bargain hunters) were studied. However, the literature in Com-

putational Economics (e.g. [161]) has recently highlighted the importance of evolutionary

market agents that are able to behave more rationally than hand-crafted strategies. We

suggest the use of more sophisticated buyer strategies as another direction for future work

in improving our market mechanism. Lastly, an important result in the mechanism design

158

domain is the impossibility result due to Myerson and Satterthwaite [125]. The impossi-

bility result implies that no single mechanism is dominant in a system where interacting

agents are able to make bids and counter offers. This suggests that while our mechanism

indicate satisfactory result within the scope of our evaluation, it is needless to say a more

advanced market mechanism may dominate it. Therefore, another area for future work

is to compare decentralised market mechanisms using common datasets and experimen-

tal scenarios to deduce their niches, in order to guide mechanism selection or engineer

self-adaptive systems to use a combination of market mechanisms appropriately.

7.4.5 Socially-aware Adaptive Cloud Software Architecture

This thesis has taken an architectural perspective to self-adaptation, specifically, we have

studied architectural artefact at the style level of abstraction. A complementary approach

is requirement-based self-adaptation (e.g. [14][145]), where users are treated as first-class

entities in the adaptation loop. As noted by [5], combining requirement-based adapta-

tion and architectural-based adaptation provides an improved model of system’s goals

(requirements) and deployment variabilities (architecture).

A specialised form of requirement-based self-adaptation is Social Adaptation [3] [2]

which is defined as “a system’s autonomous ability to analyse users’ feedback and choose

an alternative behaviour which is collectively shown to be the best for meeting require-

ments in a context.” [2]. Social Adaptation is unique in the sense that instead of catering

to the requirement of a user or subset of users at run-time, it harnesses the “wisdom of

the crowd” to adapt the system in a way that is deemed best by end-users’ collective

judgement rather than the decisions of an elite group of users or those of developers of

the self-adaptive system.

Combining the self-aware architectural style with a socially-derived user feedback loop

will ensure the self-adaptive systems has a collective view of users’ perception of the

system’s goal. This is especially applicable to crowdsourced applications where a large

group of users collectively solve complex problems. To achieve this objective the following

159

research questions need to be answered: How do we explicitly model socially-derived

feedback in the self-aware style? What aggregation mechanism should be used to combine

individual user’s views of the system? How do we resolve conflicts between a user’s

(personalised) and group’s (community) adaptive goals?

7.5 Closing Remarks

This thesis has presented the self-aware architecture patterns that offers a systematic

and principled approach to architecting software systems that must adapt to changes in

user requirements, system, and environmental conditions without external intervention.

The self-aware architecture patterns achieves this by modelling knowledge concerns at

fine-grained levels, thereby promoting improved analysis of trade-offs and risk points

in the architecture. Additionally, we contributed a market mechanism for coordinating

decentralised components of federated cloud applications.

The author hopes the findings presented in this thesis improves our understanding of

architecting self-adaptive systems that copes with dynamic, large scale systems such as

cloud. As identified in roadmaps [42] [111] many open problems remain to be solved before

the vision of truly robust, scalable, and reliable self-adaptive systems comes to reality.

The author hopes the work presented in this thesis will pave way for future research work

that solves some of these problems and moves the discipline forward.

160

LIST OF REFERENCES

[1] Nadeem Abbas, Jesper Andersson, and Welf Löwe. Autonomic software product
lines (ASPL). In Proceedings of the Fourth European Conference on Software Ar-
chitecture: Companion Volume, ECSA ’10, pages 324–331, New York, NY, USA,
2010. ACM.

[2] Raian Ali, Carlos Soĺıs, Inah Omoronyia, Mazeiar Salehie, and Bashar Nuseibeh. So-
cial adaptation - when software gives users a voice. In Joaquim Filipe and Leszek A.
Maciaszek, editors, ENASE, pages 75–84. SciTePress, 2012.

[3] Malik Almaliki, Funmilade Faniyi, Rami Bahsoon, Keith Phalp, and Raian Ali.
Requirements-driven social adaptation: Expert survey. In Camille Salinesi and
Inge van de Weerd, editors, Requirements Engineering: Foundation for Software
Quality, volume 8396 of Lecture Notes in Computer Science, pages 72–87. Springer
International Publishing, 2014.

[4] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki
Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web services
agreement specification (ws-agreement). In Global Grid Forum, volume 2, 2004.

[5] Konstantinos Angelopoulos, Vı́tor E. Silva Souza, and João Pimentel. Requirements
and architectural approaches to adaptive software systems: a comparative study.
In Proceedings of the 8th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’13, pages 23–32, Piscataway, NJ,
USA, 2013. IEEE Press.

[6] Danilo Ardagna, Barbara Panicucci, and Mauro Passacantando. A game theoretic
formulation of the service provisioning problem in cloud systems. In Proceedings of
the 20th international conference on World wide web, WWW ’11, pages 177–186,
New York, NY, USA, 2011. ACM.

[7] Danilo Ardagna and Barbara Pernici. Global and local qos constraints guarantee in
web service selection. In Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE
International Conference on. IEEE, 2005.

161

[8] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A view of cloud computing. Commun. ACM, 53:50–58, April 2010.

[9] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. Above the clouds: A berkeley view of cloud com-
puting. Technical Report UCB/EECS-2009-28, Electrical Engineering and Com-
puter Sciences University of California at Berkeley, 2009. Available Online at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html [Last Ac-
cessed: 28-Sep-2014].

[10] Muhammad Ali Babar and Ian Gorton. Comparison of scenario-based software
architecture evaluation methods. In APSEC ’04: Proceedings of the 11th Asia-
Pacific Software Engineering Conference, pages 600–607, Washington, DC, USA,
2004. IEEE Computer Society.

[11] Rami Bahsoon. A framework for dynamic self-optimization of power and depend-
ability requirements in green cloud architectures. In Software Architecture, pages
510–514. Springer, 2010.

[12] Adam Barker, Blesson Varghese, Jonathan Stuart Ward, and Ian Sommerville. Aca-
demic cloud computing research: Five pitfalls and five opportunities. In 6th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 14), Philadelphia, PA,
June 2014. USENIX Association.

[13] T. Becker, A. Agne, P.R. Lewis, R. Bahsoon, F. Faniyi, L. Esterle, A. Keller,
A. Chandra, A.R. Jensenius, and S.C. Stilkerich. EPiCS: Engineering proprio-
ception in computing systems. In Proc. of the 15th IEEE International Conf. on
Computational Science and Engineering (CSE), pages 353–360, 2012.

[14] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier. Require-
ments reflection: requirements as runtime entities. In Software Engineering, 2010
ACM/IEEE 32nd International Conference on, volume 2, pages 199–202, 2010.

[15] N. Bonvin, T.G. Papaioannou, and K. Aberer. Autonomic sla-driven provisioning
for cloud applications. In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th
IEEE/ACM International Symposium on, pages 434–443, 2011.

[16] Nelis Boucké, Danny Weyns, Kurt Schelfthout, and Tom Holvoet. Applying the
atam to an architecture for decentralized control of a transportation system. In
Quality of Software Architectures, pages 180–198. Springer, 2006.

162

[17] J. Bouman, J. Trienekens, and M. van der Zwan. Specification of service level agree-
ments, clarifying concepts on the basis of practical research. In Software Technology
and Engineering Practice, 1999. STEP ’99. Proceedings, pages 169–178, 1999.

[18] Ivona Brandic, Vincent C. Emeakaroha, Michael Maurer, Schahram Dustdar, San-
dor Acs, Attila Kertesz, and Gabor Kecskemeti. Laysi: A layered approach for
sla-violation propagation in self-manageable cloud infrastructures. In Proceedings
of the 2010 IEEE 34th Annual Computer Software and Applications Conference
Workshops, COMPSACW ’10, pages 365–370, Washington, DC, USA, 2010. IEEE
Computer Society.

[19] Ivona Brandic, Dejan Music, Philipp Leitner, and Schahram Dustdar. Vieslaf frame-
work: Enabling adaptive and versatile sla-management. In Grid Economics and
Business Models, volume 5745 of Lecture Notes in Computer Science, pages 60–73.
Springer Berlin / Heidelberg, 2009.

[20] J. Branke, M. Mnif, C. Muller-Schloer, and H. Prothmann. Organic computing;
addressing complexity by controlled self-organization. In Leveraging Applications
of Formal Methods, Verification and Validation, 2006. ISoLA 2006. Second Inter-
national Symposium on, pages 185–191, 2006.

[21] Sonja Buchegger and Jean yves Le Boudec. A robust reputation system for mobile
ad-hoc. Technical report, EPFL-IC-LCA; CH-1015 Lausanne, Switzerland, Nov
2003.

[22] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L. Wolf, and P. S. Yu. Utility
computing sla management based upon business objectives. IBM Systems Journal,
43(1):159 –178, 2004.

[23] Frank Buschmann, Kevlin Henney, and Schmidt C. Douglas. Pattern-oriented soft-
ware architecture: On patterns and pattern languages. John Wiley and Sons, 2007.

[24] R. Buyya, S.K. Garg, and R.N. Calheiros. Sla-oriented resource provisioning for
cloud computing: Challenges, architecture, and solutions. In Cloud and Service
Computing (CSC), 2011 International Conference on, pages 1–10, Dec 2011.

[25] R. Buyya, R. Ranjan, and R.N. Calheiros. Modeling and simulation of scalable
cloud computing environments and the cloudsim toolkit: Challenges and opportu-
nities. In High Performance Computing Simulation, 2009. HPCS ’09. International
Conference on, pages 1 –11, June 2009.

163

[26] Rajkumar Buyya. Market-oriented Cloud Computing: Vision, Hype, and Reality
of Delivering Computing as the 5th Utility. In CCGRID ’09: Proceedings of the
2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
page 1, Washington, DC, USA, 2009. IEEE Computer Society.

[27] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger. Eco-
nomic models for resource management and scheduling in grid computing. Concur-
rency and Computation: Practice and Experience, 14(13-15):1507–1542, 2002.

[28] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer Systems,
25(6):599 – 616, 2009.

[29] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Gener. Comput. Syst., 25:599–616,
June 2009.

[30] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Vil-
lani. An approach for qos-aware service composition based on genetic algorithms.
In Proceedings of the 2005 conference on Genetic and evolutionary computation,
GECCO ’05, pages 1069–1075, New York, NY, USA, 2005. ACM.

[31] V. Cardellini, E. Casalicchio, F. Lo Presti, and L. Silvestri. Sla-aware resource
management for application service providers in the cloud. In Network Cloud Com-
puting and Applications (NCCA), 2011 First International Symposium on, pages
20–27, Nov 2011.

[32] Hugo E. T. Carvalho and Otto Carlos M. B. Duarte. Voltaic: volume optimization
layer to assign cloud resources. In Proceedings of the 3rd International Conference
on Information and Communication Systems, ICICS ’12, pages 3:1–3:7, New York,
NY, USA, 2012. ACM.

[33] E. Casalicchio and L. Silvestri. An inter-cloud outsourcing model to scale per-
formance, availability and security. In Utility and Cloud Computing (UCC), 2012
IEEE Fifth International Conference on, pages 151–158, 2012.

[34] Timothy N. Cason, Daniel Friedman, and Garrett H. Milam. Bargaining versus
posted price competition in customer markets. International Journal of Industrial
Organization, 21(2):223 – 251, 2003.

164

[35] Arjun Chandra, Kristian Nymoen, Arve Voldsund, AlexanderRefsum Jensenius,
Kyrre Glette, and Jim Torresen. Market-based control in interactive music envi-
ronments. In Mitsuko Aramaki, Mathieu Barthet, Richard Kronland-Martinet, and
S?lvi Ystad, editors, From Sounds to Music and Emotions, volume 7900 of Lecture
Notes in Computer Science, pages 439–458. Springer Berlin Heidelberg, 2013.

[36] Arjun Chandra, Kristian Nymoen, Arve Volsund, Alexander Refsum Jensenius,
Kyrre Glette, and Jim Torresen. Enabling participants to play rhythmic solos
within a group via auctions. In Proc. Int. Symp. on Computer Music Modeling
and Retrieval (CMMR), pages 674–689, jun 2012.

[37] Anthony Chavez, Alexandros Moukas, and Pattie Maes. Challenger: a multi-agent
system for distributed resource allocation. In Proceedings of the first international
conference on Autonomous agents, AGENTS ’97, pages 323–331, New York, NY,
USA, 1997. ACM.

[38] A. Chazalet. Service level checking in the cloud computing context. In Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on, pages 297 –
304, July 2010.

[39] Tao Chen and Rami Bahsoon. Symbiotic and sensitivity-aware architecture for
globally-optimal benefit in self-adaptive cloud. In Proceedings of the 9th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS 2014, pages 85–94, New York, NY, USA, 2014. ACM.

[40] Tao Chen, Funmilade Faniyi, Rami Bahsoon, Peter R. Lewis, Xin Yao, Lean-
dro L. Minku, and Lukas Esterle. The handbook of engineering self-aware and
self-expressive systems. Technical report, EPiCS EU FP7 project consortium, Au-
gust 2014. Available online at http://arxiv.org/abs/1409.1793 [Last Accessed: 28-
Sep-2014].

[41] Yee-Ming Chen and Hsin-Mei Yeh. Autonomous adaptive agents for market-based
resource allocation of cloud computing. In Machine Learning and Cybernetics
(ICMLC), 2010 International Conference on, volume 6, pages 2760 –2764, July
2010.

[42] Betty Cheng, Rogrio de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper
Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, et al. Soft-
ware engineering for self-adaptive systems: A research roadmap. In Betty Cheng,
Rogrio de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors, Software
Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer
Science, pages 1–26. Springer Berlin / Heidelberg, 2009.

165

[43] Shang-Wen Cheng. Rainbow: cost-effective software architecture-based self-
adaptation. PhD thesis, School of Computer Science Carnegie Mellon University,
Pittsburgh, PA 15213, 2008.

[44] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Evaluating the effectiveness
of the rainbow self-adaptive system. In Software Engineering for Adaptive and Self-
Managing Systems, 2009. SEAMS’09. ICSE Workshop on, pages 132–141. IEEE,
2009.

[45] Shang-Wen Cheng, An-Cheng Huang, D. Garlan, B. Schmerl, and P. Steenkiste.
Rainbow: architecture-based self-adaptation with reusable infrastructure. In Auto-
nomic Computing, 2004. Proc. Int. Conf. on, pages 276–277, 2004.

[46] P. Ciancarini and M. Wooldridge. Agent-oriented software engineering. In Software
Engineering, 2000. Proceedings of the 2000 International Conference on, pages 816–
817, 2000.

[47] Scott H. Clearwater, editor. Market-based control: a paradigm for distributed re-
source allocation. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1996.

[48] Paul Clements, Rick Kazman, and Mark Klein. Evaluating software architectures:
methods and case studies. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[49] Paul C. Clements. A survey of architecture description languages. In Proceedings of
the 8th International Workshop on Software Specification and Design, IWSSD ’96,
pages 16–, Washington, DC, USA, 1996. IEEE Computer Society.

[50] D. Cliff and J. Bruten. Minimal-intelligence agents for bargaining behaviors in
market-based environments. Technical report, HP LABORATORIES, 1997.

[51] Dave Cliff. Biologically-inspired computing approaches to cognitive systems: a
partial tour of the literature. Technical report, Hewlett-Packard Company, 2003.

[52] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan,
M. Spreitzer, and A. Youssef. Web services on demand: Wsla-driven automated
management. IBM Systems Journal, 43(1):136 –158, 2004.

[53] Frederica Darema. Dynamic data driven applications systems: A new paradigm for
application simulations and measurements. In Computational Science-ICCS 2004,
pages 662–669. Springer, 2004.

166

[54] Frederica Darema. Dynamic data driven applications systems: New capabilities for
application simulations and measurements. In Computational Science–ICCS 2005,
pages 610–615. Springer, 2005.

[55] Rajdeep K. Dash, Sarvapali D. Ramchurn, and Nicholas R. Jennings. Trust-based
mechanism design. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’04, pages 748–
755, Washington, DC, USA, 2004. IEEE Computer Society.

[56] Google Cluster Data. http://googleresearch.blogspot.com/2010/01/google-cluster-
data.html [Last Accessed: 28-Sep-2014].

[57] Rogrio de Lemos, Holger Giese, Hausi Mller A., and Mary Shaw, editors. Software
Engineering for Self-Adaptive Systems: A Second Research Roadmap (Draft Version
of May 20, 2011), Dagstuhl Seminar Proceedings 10431, 2010.

[58] Scott A DeLoach, Valeriy A Kolesnikov, et al. Using design metrics for predicting
system flexibility. In Fundamental Approaches to Software Engineering, pages 184–
198. Springer, 2006.

[59] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing, pages 1–12. ACM, 1987.

[60] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gäıti, Erol Ge-
lenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco
Zambonelli. A survey of autonomic communications. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), 1(2):223–259, 2006.

[61] Craig C Douglas. Dynamic data driven applications systems–dddas 2008. In Com-
putational Science–ICCS 2008, pages 3–4. Springer, 2008.

[62] Schahram Dustdar, Christoph Dorn, Fei Li, Luciano Baresi, Giacomo Cabri, Cesare
Pautasso, and Franco Zambonelli. A roadmap towards sustainable self-aware service
systems. In Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, pages 10–19. ACM, 2010.

[63] X. Dutreilh, N. Rivierre, A Moreau, J. Malenfant, and I Truck. From data center
resource allocation to control theory and back. In Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on, pages 410–417, July 2010.

167

[64] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. Fusion: a framework for engi-
neering self-tuning self-adaptive software systems. In Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of software engineering,
FSE ’10, pages 7–16, New York, NY, USA, 2010. ACM.

[65] N. Elprince. Autonomous resource provision in virtual data centers. In Integrated
Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on,
pages 1365–1371, May 2013.

[66] EPiCS. Engineering proprioception in computing systems (EPiCS).
http://www.epics-project.eu/ [Last Accessed: 28-Sep-2014].

[67] Lukas Esterle, Peter R. Lewis, Xin Yao, and Bernhard Rinner. Socio-economic
vision graph generation and handover in distributed smart camera networks. ACM
Trans. Sen. Netw., 10(2):20:1–20:24, January 2014.

[68] F. Faniyi, P.R. Lewis, R. Bahsoon, and Xin Yao. Architecting self-aware software
systems. In Software Architecture (WICSA), 2014 IEEE/IFIP Conference on, pages
91–94, April 2014.

[69] Funmilade Faniyi and Rami Bahsoon. Engineering Proprioception in SLA Man-
agement for Cloud Architectures. In Proceedings of the 9th Working IEEE/IFIP
Conference on Software Architecture, WICSA, June 2011.

[70] Funmilade Faniyi and Rami Bahsoon. Self-managing sla compliance in cloud ar-
chitectures: a market-based approach. In Proc. of the 3rd Int. ACM SIGSOFT
symposium on Architecting Critical Systems, ISARCS’12, pages 61–70, 2012.

[71] Funmilade Faniyi and Rami Bahsoon. Economics-driven software architecting for
cloud. In Ivan Mistrik, Rami Bahsoon, Rick Kazman, and Yuanyuan Zhang, edi-
tors, Economics-Driven Software Architecture, pages 83 – 103. Morgan Kaufmann,
Boston, 2014.

[72] Funmilade Faniyi, Rami Bahsoon, Andy Evans, and Rick Kazman. Evaluating Secu-
rity Properties of Architectures in Unpredictable Environments: A Case for Cloud.
In Proceedings of the 9th Working IEEE/IFIP Conference on Software Architecture,
WICSA, June 2011.

[73] Funmilade Faniyi, Rami Bahsoon, and Georgios Theodoropoulos. A dynamic data-
driven simulation approach for preventing service level agreement violations in cloud
federation. Procedia Computer Science, 9:1167–1176, 2012.

168

[74] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Ltsa-ws: A tool
for model-based verification of web service compositions and choreography. In Pro-
ceedings of the 28th International Conference on Software Engineering, ICSE ’06,
pages 771–774, New York, NY, USA, 2006. ACM.

[75] Ian Foster, Yong Zhao, Ioan Raicu, and hiyong Lu. Cloud Computing and Grid
Computing 360-Degree Compared. In GCE: 2008 Grid Computing Environments
Workshop, pages 60–69, 2008.

[76] Ikki Fujiwara, Kento Aida, and Isao Ono. Applying double-sided combinational
auctions to resource allocation in cloud computing. In Proceedings of the 2010 10th
IEEE/IPSJ International Symposium on Applications and the Internet, SAINT ’10,
pages 7–14, Washington, DC, USA, 2010. IEEE Computer Society.

[77] David Garlan, Robert Monroe, and David Wile. Acme: An architecture description
interchange language. In CASCON First Decade High Impact Papers, CASCON
’10, pages 159–173, Riverton, NJ, USA, 2010. IBM Corp.

[78] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. Software architecture-
based self-adaptation. In Yan Zhang, Laurence Tianruo Yang, and Mieso K. Denko,
editors, Autonomic Computing and Networking, pages 31–55. Springer US, 2009.

[79] David Garlan and Mary Shaw. An introduction to software architecture. Technical
Report CMU/SEI-94-TR-21, ESC-TR-94-21, Carnegie Mellon University Software
Engineering Institute, January 1994.

[80] Erann Gat. On three-layer architectures. In David Kortenkamp, R. Peter Bonnasso,
and Robin Murphy, editors, Artificial Intelligence and Mobile Robots. MIT/AAAI
Press, 1997.

[81] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organising software architec-
tures for distributed systems. In Proceedings of the first workshop on Self-healing
systems, WOSS ’02, pages 33–38, New York, NY, USA, 2002. ACM.

[82] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning: theory &
practice. Morgan Kaufmann, 2004.

[83] D. Gil, J. Andersson, M. Milrad, and H. Sollervall. Towards a decentralized and
self-adaptive system for m-learning applications. In Wireless, Mobile and Ubiquitous
Technology in Education (WMUTE), 2012 IEEE Seventh International Conference
on, pages 162–166, 2012.

169

[84] Carlos Mera Gmez. Simulation tool for market-based cloud resource allocation.
Master’s thesis, School of Computer Science, The University of Birmingham, UK,
September 2011.

[85] M. Hamze, N. Mbarek, and O. Togni. Autonomic brokerage service for an end-to-
end cloud networking service level agreement. In Network Cloud Computing and
Applications (NCCA), 2014 IEEE 3rd Symposium on, pages 54–61, Feb 2014.

[86] Henry Hoffmann, Martina Maggio, Marco D Santambrogio, Alberto Leva, and
Anant Agarwal. SEEC: A framework for self-aware computing. Technical Re-
port MIT-CSAIL-TR-2010-049, Massachusetts Institute of Technology, Cambridge,
October 2010.

[87] Ye Huang, Nik Bessis, Peter Norrington, Pierre Kuonen, and Beat Hirsbrunner. Ex-
ploring decentralized dynamic scheduling for grids and clouds using the community-
aware scheduling algorithm. Future Gener. Comput. Syst., 29(1):402–415, January
2013.

[88] Nikolaus Huber, Fabian Brosig, and Samuel Kounev. Model-based self-adaptive
resource allocation in virtualized environments. In Proceedings of the 6th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’11, pages 90–99, New York, NY, USA, 2011. ACM.

[89] Markus C Huebscher and Julie A McCann. A survey of autonomic computingde-
grees, models, and applications. ACM Computing Surveys (CSUR), 40(3):7, 2008.

[90] F. Hussain, E. Chang, and O. Hussain. A robust methodology for prediction of
trust and reputation values. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 97–108, 2008.

[91] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Autonomic resource provisioning
for cloud-based software. In Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014, pages
95–104, New York, NY, USA, 2014. ACM.

[92] Dejun Jiang, Guillaume Pierre, and Chi-Hung Chi. Autonomous resource provi-
sioning for multi-service web applications. In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, pages 471–480, New York, NY, USA,
2010. ACM.

170

[93] Joanna Juziuk, Danny Weyns, and Tom Holvoet. Design patterns for multi-agent
systems: A systematic literature review. In Onn Shehory and Arnon Sturm, edi-
tors, Agent-Oriented Software Engineering, pages 79–99. Springer Berlin Heidelberg,
2014.

[94] Elsy Kaddoum, Claudia Raibulet, Jean-Pierre Georgé, Gauthier Picard, and Marie-
Pierre Gleizes. Criteria for the evaluation of self-* systems. In Proceedings of
the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’10, pages 29–38, New York, NY, USA, 2010. ACM.

[95] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere. The
architecture tradeoff analysis method. In Proceedings of the Fourth IEEE Interna-
tional Conference on Engineering of Complex Computer Systems (ICECCS), pages
68–78, Monterey, CA, 1998. IEEE Computer Society.

[96] Rick Kazman, Mario Barbacci, Mark Klein, S. Jeromy Carrière, and Steven G.
Woods. Experience with performing architecture tradeoff analysis. In ICSE ’99:
Proceedings of the 21st international conference on Software engineering, pages 54–
63, New York, NY, USA, 1999. ACM.

[97] Rick Kazman, Mark Klein, and Paul Clements. ATAM: Method for Architecture
Evaluation. Technical report, Carnegie Mellon University, Software Engineering
Institute Carnegie Mellon University Pittsburgh, PA 15213, August 2000.

[98] Ariane Keller, Stephan Neuhaus, Markus Happe, Daniel Borkmann, and Red Hat.
Autonomic configuration of dynamic protocol stacks. In 2 nd Workshop on Self-
Awareness in Reconfigurable Computing Systems (SRCS13), page 3, 2013.

[99] Jeffrey O Kephart. Learning from nature. Science, 331(6018):682–683, 2011.

[100] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, January 2003.

[101] Jon Ketcham, Vernon L Smith, and Arlington W Williams. A comparison of posted-
offer and double-auction pricing institutions. The Review of Economic Studies,
51(4):595614, 1984.

[102] B.A. Kitchenham, Tore Dyba, and M. Jorgensen. Evidence-based software engi-
neering. In Software Engineering, 2004. ICSE 2004. Proceedings. 26th International
Conference on, pages 273–281, 2004.

171

[103] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK,
Keele University, 33:2004, 2004.

[104] Paul Klemperer. Auction theory: A guide to the literature. Journal of Economic
Surveys, 13(3):227–286, 1999.

[105] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural challenge. In
2007 Future of Software Engineering, FOSE ’07, pages 259–268, Washington, DC,
USA, 2007. IEEE Computer Society.

[106] Jeff Kramer and Jeff Magee. A rigorous architectural approach to adaptive soft-
ware engineering. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,
24(2):183–188, Mar 2009.

[107] Kazuhiro Kuwabara, Toru Ishida, Yoshiyasu Nishibe, and Tatsuya Suda. An equi-
libratory market-based approach for distributed resource allocation and its applica-
tions to communication network control. In Market-based control: A paradigm for
distributed resource allocation, pages 53 –73. World Scientific, Singapore, 1996.

[108] Kevin Lai. Markets are dead, long live markets. SIGecom Exch., 5:1–10, July 2005.

[109] Jean-Claude Laprie. From dependability to resilience. In 38th IEEE/IFIP Int.
Conf. On Dependable Systems and Networks, 2008.

[110] Young Choon Lee, Chen Wang, Albert Y. Zomaya, and Bing Bing Zhou. Profit-
driven service request scheduling in clouds. In Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CC-
GRID ’10, pages 15–24, Washington, DC, USA, 2010. IEEE Computer Society.

[111] Rogrio et al. Lemos. Software engineering for self-adaptive systems: A second
research roadmap. In Rogrio Lemos, Holger Giese, HausiA. Mller, and Mary Shaw,
editors, Software Engineering for Self-Adaptive Systems II, volume 7475 of Lecture
Notes in Computer Science, pages 1–32. Springer Berlin Heidelberg, 2013.

[112] L. Lewis and P. Ray. Service level management definition, architecture, and re-
search challenges. In Global Telecommunications Conference, 1999. GLOBECOM
’99, volume 3, pages 1974–1978 vol.3, 1999.

[113] Lundy Lewis. Service Level Management for Enterprise Networks. Artech House,
Inc., Norwood, MA, USA, 1st edition, 1999.

172

[114] Peter Lewis, Paul Marrow, and Xin Yao. Resource allocation in decentralised com-
putational systems: an evolutionary market-based approach. Autonomous Agents
and Multi-Agent Systems, 21:143–171, 2010. 10.1007/s10458-009-9113-x.

[115] Peter R. Lewis, Arjun Chandra, Shaun Parsons, Edward Robinson, Kyrre Glette,
Rami Bahsoon, Jim Torresen, and Xin Yao. A survey of self-awareness and its
application in computing systems. In Proc. Int. Conf. on Self-Adaptive and Self-
Organizing Systems Workshops (SASOW), pages 102–107, 2011.

[116] Peter R. Lewis, Funmilade Faniyi, Rami Bahsoon, and Xin Yao. Markets and clouds:
Adaptive and resilient computational resource allocation inspired by economics.
In Niranjan Suri and Giacomo Cabri, editors, Adaptive, Dynamic, and Resilient
Systems, pages 285–318. Taylor & Francis, 2013.

[117] Qianhui Liang and Bu-Sung Lee. Delivering high resilience in designing platform-
as-a-service clouds. In Cloud Computing (CLOUD), 2011 IEEE International Con-
ference on, pages 676–683, 2011.

[118] Qi Liu, Dilma Da Silva, Georgios K. Theodoropoulos, and Elvis S. Liu. Towards
an agent-based symbiotic architecture for autonomic management of virtualized
data centers. In Proceedings of the Winter Simulation Conference, WSC ’12, pages
147:1–147:13. Winter Simulation Conference, 2012.

[119] P Marrow. Nature-inspired computing technology and applications. BT Technology
Journal, 18(4):13–23, 2000.

[120] Pedro Martins and Julie A. McCann. ajme: making game engines autonomic. In
Proceedings of the 3rd International Conference on Fun and Games, Fun and Games
’10, pages 48–57, New York, NY, USA, 2010. ACM.

[121] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Adaptive resource configu-
ration for cloud infrastructure management. Future Generation Computer Systems,
29(2):472 – 487, 2013. Special section: Recent advances in e-Science.

[122] Peter Mell and Timothy Grance. The nist definition of cloud computing (draft).
NIST special publication, 800(145):7, 2011.

[123] Daniel A. Menasce, João P. Sousa, Sam Malek, and Hassan Gomaa. Qos archi-
tectural patterns for self-architecting software systems. In Proceedings of the 7th
International Conference on Autonomic Computing, ICAC ’10, pages 195–204, New
York, NY, USA, 2010. ACM.

173

[124] C Muller-Schloer. Organic computing-on the feasibility of controlled emergence.
In Hardware/Software Codesign and System Synthesis, 2004. CODES+ ISSS 2004.
International Conference on, pages 2–5. IEEE, 2004.

[125] Roger B Myerson and Mark A Satterthwaite. Efficient mechanisms for bilateral
trading. Journal of economic theory, 29(2):265–281, 1983.

[126] Vivek Nallur and Rami Bahsoon. Design of a market-based mechanism for quality
attribute tradeoff of services in the cloud. In Proceedings of the 2010 ACM Sympo-
sium on Applied Computing, SAC ’10, pages 367–371, New York, NY, USA, 2010.
ACM.

[127] Hien Nguyen Van, Frederic Dang Tran, and Jean-Marc Menaud. Autonomic virtual
resource management for service hosting platforms. In Proceedings of the 2009 ICSE
Workshop on Software Engineering Challenges of Cloud Computing, CLOUD ’09,
pages 1–8, Washington, DC, USA, 2009. IEEE Computer Society.

[128] Olufunmilola O. Onolaja. Dynamic Data-Driven Framework for Reputation Man-
agement. PhD thesis, The University of Birmingham, October 2012.

[129] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic,
A. Quilici, D.S. Rosenblum, and A.L. Wolf. An architecture-based approach to self-
adaptive software. Intelligent Systems and their Applications, IEEE, 14(3):54–62,
1999.

[130] Ying Ouyang, Jia En Zhang, and Shi Ming Luo. Dynamic data driven application
system: Recent development and future perspective. ecological modelling, 204(1):1–
8, 2007.

[131] M. P. Papazoglou and D. Georgakopoulos. Introduction: Service-oriented comput-
ing. Commun. ACM, 46:24–28, October 2003.

[132] T. Patikirikorala, A. Colman, J. Han, and Liuping Wang. A systematic survey on
the design of self-adaptive software systems using control engineering approaches.
In Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012
ICSE Workshop on, pages 33–42, 2012.

[133] Diego Perez-Palacin, Raffaela Mirandola, and Jos Merseguer. On the relationships
between qos and software adaptability at the architectural level. Journal of Systems
and Software, 87(0):1 – 17, 2014.

174

[134] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, Oct 1992.

[135] A.G.P. Rahbar and O. Yang. Powertrust: A robust and scalable reputation sys-
tem for trusted peer-to-peer computing. Parallel and Distributed Systems, IEEE
Transactions on, 18(4):460 –473, April 2007.

[136] C. Raibulet and L. Masciadri. Evaluation of dynamic adaptivity through metrics:
an achievable target? In Software Architecture, 2009 European Conference on
Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference
on, pages 341–344, 2009.

[137] Sarvapali D. Ramchurn, Claudio Mezzetti, Andrea Giovannucci, Juan A. Rodriguez-
Aguilar, Rajdeep K. Dash, and Nicholas R. Jennings. Trust-based mechanisms for
robust and efficient task allocation in the presence of execution uncertainty. J. Artif.
Int. Res., 35:119–159, June 2009.

[138] R. Ranjan, A. Harwood, and R. Buyya. Sla-based coordinated superscheduling
scheme for computational grids. In Cluster Computing, 2006 IEEE International
Conference on, pages 1 –8, Sept. 2006.

[139] Samuel T. Redwine, Jr. and William E. Riddle. Software technology maturation.
In Proceedings of the 8th International Conference on Software Engineering, ICSE
’85, pages 189–200, Los Alamitos, CA, USA, 1985. IEEE Computer Society Press.

[140] Willi Richert and Bernd Kleinjohann. Adaptivity at every layer: a modular ap-
proach for evolving societies of learning autonomous systems. In Proceedings of the
2008 international workshop on Software engineering for adaptive and self-managing
systems, SEAMS ’08, pages 113–120, New York, NY, USA, 2008. ACM.

[141] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente, R. Mon-
tero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Emmerich, and
F. Galan. The reservoir model and architecture for open federated cloud comput-
ing. IBM Journal of Research and Development, 53(4):4:1 –4:11, july 2009.

[142] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach.
Pearson Education, 3 edition, 2010.

[143] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and re-
search challenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

175

[144] Tuomas W. Sandholm. Distributed rational decision making, pages 201–258. MIT
Press, Cambridge, MA, USA, 1999.

[145] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. Requirements-
aware systems: A research agenda for re for self-adaptive systems. In Requirements
Engineering Conference (RE), 2010 18th IEEE International, pages 95–103, 2010.

[146] Hartmut Schmeck, Christian Müller-Schloer, Emre Çakar, Moez Mnif, and Urban
Richter. Adaptivity and self-organization in organic computing systems. ACM
Trans. Auton. Adapt. Syst., 5(3):10:1–10:32, September 2010.

[147] Shifeng Shang, Jinlei Jiang, Yongwei Wu, Guangwen Yang, and Weimin Zheng. A
knowledge-based continuous double auction model for cloud market. In Proceedings
of the 2010 Sixth International Conference on Semantics, Knowledge and Grids,
SKG ’10, pages 129–134, Washington, DC, USA, 2010. IEEE Computer Society.

[148] Mary Shaw. The coming-of-age of software architecture research. In Proceedings of
the 23rd International Conference on Software Engineering, pages 656–664. IEEE
Computer Society, 2001.

[149] Mary Shaw. What makes good research in software engineering? International
Journal on Software Tools for Technology Transfer, 4(1):1–7, 2002.

[150] Weiming Shi and Bo Hong. Resource allocation with a budget constraint for com-
puting independent tasks in the cloud. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on, pages 327 –334, 30
2010-dec. 3 2010.

[151] Moshe Sipper. Machine nature: The coming age of bio-inspired computing, vol-
ume 11. McGraw-Hill New York, 2002.

[152] Biao Song, M. M. Hassan, and Eui-nam Huh. A novel heuristic-based task selection
and allocation framework in dynamic collaborative cloud service platform. In Pro-
ceedings of the 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, CLOUDCOM ’10, pages 360–367, Washington, DC, USA,
2010. IEEE Computer Society.

[153] Nary Subramanian and Lawrence Chung. Metrics for software adaptability. Proc.
Software Quality Management (SQM 2001), April, 2001.

176

[154] Dawei Sun, Guiran Chang, Chuan Wang, Yu Xiong, and Xingwei Wang. Effi-
cient nash equilibrium based cloud resource allocation by using a continuous double
auction. In Computer Design and Applications (ICCDA), 2010 International Con-
ference on, volume 1, pages V1–94 –V1–99, June 2010.

[155] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. Plan-directed archi-
tectural change for autonomous systems. In Proceedings of the 2007 conference on
Specification and verification of component-based systems: 6th Joint Meeting of the
European Conference on Software Engineering and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, SAVCBS ’07, pages 15–21, New York,
NY, USA, 2007. ACM.

[156] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. From goals to compo-
nents: a combined approach to self-management. In Proceedings of the 2008 inter-
national workshop on Software engineering for adaptive and self-managing systems,
SEAMS ’08, pages 1–8, New York, NY, USA, 2008. ACM.

[157] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. Exploiting non-
functional preferences in architectural adaptation for self-managed systems. In
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages
431–438, New York, NY, USA, 2010. ACM.

[158] Daniel Sykes, Jeff Magee, and Jeff Kramer. Flashmob: distributed adaptive self-
assembly. In Proceedings of the 6th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS ’11, pages 100–109, New
York, NY, USA, 2011. ACM.

[159] Saltanat Tangbayeva. Maintaining optimal quality of service in cloud applications
using market-based techniques. Master’s thesis, School of Computer Science, The
University of Birmingham, UK, September 2012.

[160] Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. Software architecture:
foundations, theory, and practice. Wiley Publishing, 2009.

[161] Leigh Tesfatsion and Kenneth L Judd. Handbook of computational economics:
agent-based computational economics, volume 2. Elsevier, 2006.

[162] W.F. Tichy. Should computer scientists experiment more? Computer, 31(5):32–40,
1998.

177

[163] Sebastian Uchitel, Robert Chatley, Jeff Kramer, and Jeff Magee. Ltsa-msc: Tool
support for behaviour model elaboration using implied scenarios. In Hubert Garavel
and John Hatcliff, editors, Tools and Algorithms for the Construction and Analysis
of Systems, volume 2619 of Lecture Notes in Computer Science, pages 597–601.
Springer Berlin Heidelberg, 2003.

[164] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: towards a cloud definition. ACM SIGCOMM Computer Communication
Review, 39(1):50–55, 2009.

[165] Pieter Vromant, Danny Weyns, Sam Malek, and Jesper Andersson. On interacting
control loops in self-adaptive systems. In Proceedings of the 6th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
’11, pages 202–207, New York, NY, USA, 2011. ACM.

[166] Xiaoying Wang, Zhihui Du, and Yinong Chen. An adaptive model-free resource and
power management approach for multi-tier cloud environments. Journal of Systems
and Software, 85(5):1135 – 1146, 2012.

[167] Danny Weyns, Sam Malek, and Jesper Andersson. On decentralized self-adaptation:
lessons from the trenches and challenges for the future. In Proceedings of the 2010
ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS ’10, pages 84–93, New York, NY, USA, 2010. ACM.

[168] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola,
Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and KarlM.
Gschka. On patterns for decentralized control in self-adaptive systems. In Rogrio
Lemos, Holger Giese, HausiA. Mller, and Mary Shaw, editors, Software Engineering
for Self-Adaptive Systems II, volume 7475 of Lecture Notes in Computer Science,
pages 76–107. Springer Berlin Heidelberg, 2013.

[169] David Wiese, Gennadi Rabinovitch, Michael Reichert, and Stephan Arenswald. Au-
tonomic tuning expert: a framework for best-practice oriented autonomic database
tuning. In Proceedings of the 2008 conference of the center for advanced studies on
collaborative research: meeting of minds, CASCON ’08, pages 3:27–3:41, New York,
NY, USA, 2008. ACM.

[170] Fred E. Williams. The effect of market organization on competitive equilibrium:
the multi-unit case. The Review of Economic Studies, 40(1):97–113, 1973.

178

[171] Rich Wolski, James S. Plank, John Brevik, and Todd Bryan. Analyzing market-
based resource allocation strategies for the computational grid. Int. J. High Perform.
Comput. Appl., 15:258–281, August 2001.

[172] Micaela Wuensche, Sanaz Mostaghim, Hartmut Schmeck, Timo Kautzmann, and
Marcus Geimer. Organic computing in off-highway machines. In Proceedings of the
second international workshop on Self-organizing architectures, SOAR ’10, pages
51–58, New York, NY, USA, 2010. ACM.

[173] Lijuan Xiao, Yanmin Zhu, L.M. Ni, and Zhiwei Xu. Gridis: An incentive-based grid
scheduling. In Parallel and Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, page 65b, april 2005.

[174] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin Moon, C. Pu, and H. Hacigu-
mus. Intelligent management of virtualized resources for database systems in cloud
environment. In Data Engineering (ICDE), 2011 IEEE 27th International Confer-
ence on, pages 87–98, 2011.

[175] Pengcheng Xiong, Zhikui Wang, S. Malkowski, Qingyang Wang, D. Jayasinghe, and
C. Pu. Economical and robust provisioning of n-tier cloud workloads: A multi-
level control approach. In Distributed Computing Systems (ICDCS), 2011 31st
International Conference on, pages 571–580, 2011.

[176] Yagiz Onat Yazir, Chris Matthews, Roozbeh Farahbod, Stephen Neville, Adel Gui-
touni, Sudhakar Ganti, and Yvonne Coady. Dynamic resource allocation in com-
puting clouds using distributed multiple criteria decision analysis. In Proceedings
of the 2010 IEEE 3rd International Conference on Cloud Computing, CLOUD ’10,
pages 91–98, Washington, DC, USA, 2010. IEEE Computer Society.

[177] Xindong You, Xianghua Xu, Jian Wan, and Dongjin Yu. Ras-m: Resource allocation
strategy based on market mechanism in cloud computing. In ChinaGrid Annual
Conference, 2009. ChinaGrid ’09. Fourth, pages 256 –263, Aug. 2009.

[178] Franco Zambonelli, Nicola Bicocchi, Giacomo Cabri, Letizia Leonardi, and Mari-
achiara Puviani. On self-adaptation, self-expression, and self-awareness in auto-
nomic service component ensembles. In Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), 2011 Fifth IEEE Conference on, pages 108–113. IEEE, 2011.

[179] Ying Zhang, Gang Huang, Xuanzhe Liu, and Hong Mei. Integrating resource con-
sumption and allocation for infrastructure resources on-demand. In Cloud Com-
puting (CLOUD), 2010 IEEE 3rd International Conference on, pages 75–82, July
2010.

179

[180] Jie Zhu, Bo Gao, Zhihu Wang, B. Reinwald, ChangJie Guo, Xiaoping Li, and Wei
Sun. A dynamic resource allocation algorithm for database-as-a-service. In Web
Services (ICWS), 2011 IEEE International Conference on, pages 564–571, July
2011.

180

Appendices

181

APPENDIX A

LIST OF PUBLICATIONS

The work presented in this thesis is based on and extends the followings papers that have

been published during the course of the PhD programme.

1. “Architecting Self-aware Software Systems”, F. Faniyi, P. R. Lewis, R. Bahsoon, X.

Yao, in 11th Working IEEE/IFIP Conference on Software Architecture (WICSA),

2014.

2. “Engineering Proprioception in SLA Management for Cloud Architectures”, F.

Faniyi, R. Bahsoon, in Proceedings of the 9th Working IEEE/IFIP Conference on

Software Architecture (WICSA), 2011.

3. “EPiCS: Engineering Proprioception in Computing Systems”, T. Becker, A. Agne,

P. R. Lewis, R. Bahsoon, F. Faniyi, L. Esterle, A. Keller, A. Chandra, A. R. Jense-

nius, S. C. Stilkerich, in Proceedings of the 10th IEEE/IFIP Conference on Embed-

ded and Ubiquitous Computing, 2012.

4. “Self-Managing SLA Compliance in Cloud Architectures: A Market-based Ap-

proach”, F. Faniyi, R. Bahsoon, in the Proceedings of the International ACM Sigsoft

Symposium on Architecting Critical Systems, ISARCS, 2012.

5. “A Dynamic Data-Driven Simulation Approach for Preventing SLA Violations in

Cloud Federation”, F. Faniyi, R. Bahsoon, G. Theodoropoulos, in the Procedia:

182

Procedia Computer Science, Proceedings of the International Conference on Com-

putational Science, ICCS, 2012.

6. “Economics-driven Software Architecting for Cloud”, F. Faniyi, R. Bahsoon, in

Economics-driven Software Architecture, 2013, Elsevier.

7. “Markets and Clouds: Adaptive and Resilient Computational Resource Allocation

inspired by Economics”, P. R. Lewis, F. Faniyi, R. Bahsoon, X. Yao, in Niranjan

Suri and Giacomo Cabri (Eds.), Adaptive, Dynamic, and Resilient Systems, 2013,

Taylor & Francis.

8. “Evaluating Security Properties of Architectures in Unpredictable Environments: A

Case for Cloud”, F. Faniyi, R. Bahsoon, A. Evans, R. Kazman, in Proceedings of

the 9th Working IEEE/IFIP Conference on Software Architecture (WICSA), 2011.

9. “Architectural Aspects of Self-aware and Self-expressive Computing Systems”, P.

R. Lewis, A. Chandra, F. Faniyi, K. Glette, T. Chen, R. Bahsoon, J. Torresen, X.

Yao in IEEE Computer, 2015 (to appear).

10. “Requirements-driven Social Adaptation: Expert Survey”, M. Almaliki, F. Faniyi,

R. Bahsoon, K. Phalp, R. Ali, in the 20th International Working Conference on

Requirements Engineering: Foundation for Software Quality (REFSQ), 2014.

11. “Using Obstacles for Systematically Modelling, Analysing and Mitigating Risks in

Cloud Adoption”, S. Zardari, F. Faniyi, R. Bahsoon, in the book on Aligning En-

terprise, System and Software Architectures, 2012. IGI Global.

This thesis should be regarded as the definitive account of the work.

183

APPENDIX B

SYSTEMATIC REVIEW PROCESS

A systematic review of SLA-based resource allocation was carried out to find out about

the strengths and weaknesses of state of the art. This section documents the review

process. The research questions that triggered the review are presented in chapter 2.

B.1 Acronyms and Meaning

In this section, we define some acronyms used in the discussion of the SLR.

• Infrastructure as a Service (IaaS): In this model, cloud users are provided virtual

machine instances, which are configured to meet user’s preferences. Amazon Elastic

Compute Cloud (EC2) is a notable example.

• Software as a Service (SaaS): Cloud providers manage application and data on behalf

of users in this model. Notable examples are Google Docs and Salesforce CRM.

• Platform as a Service (PaaS): Here, a platform is provided for users to develop and

deploy applications using specialised APIs, while providers manage scalability and

load-balancing. Google AppEngine and Microsoft Azure are PaaS providers.

• Data as a Service (DaaS): Cloud users are provided a service for creating, storing,

and accessing their database using this model.

184

• Network as a Service (NaaS): Cloud users are able to configure low-level network

protocols, packets, and routing, as a way of improving caching and data aggregation.

• Storage as a Service (StaaS): Cloud users are provided service for storing data

(structured or unstructured) in third-party cloud systems. The burden of backup

and recovery of data is managed by the provider (e.g. DropBox and Amazon S3).

• Cloud Federation: In this model multiple cloud providers are used to flexibly respond

to variations in workload and prevent a single point of failure. It addresses the

limited scalability of single cloud providers and lack of interoperability among them.

B.2 Review Protocol

The review was conducted using the systematic literature review (SLR) methodology pro-

posed by Kitchenham et al. [102]. The protocol consists of the following steps: selection

of indexing services, definition of search query, inclusion, and exclusion criteria.

B.3 Inclusion and Exclusion Criteria

B.3.1 Inclusion Criteria

The following document types were included: journal, conference, technical reports, and

workshop papers. Also, we consider papers that claim SLM solutions applicable to both

grid and cloud computing. The rationale for former studies is because we aim to under-

stand the resource allocation methods used not necessarily the application context.

B.3.2 Exclusion Criteria

The following category of studies were excluded from our initial search.

• E1: Abstracts of keynotes; Title pages of conference proceedings.

185

• E2: Duplicate entries. For examples, papers with same concepts and results appear-

ing in multiple venues. Also, longer version (e.g. journal) of papers that previously

appeared in workshop or conference proceedings are preferred to shorter versions.

• E3: Papers that do not consider SLAs at cloud adoption or deployment phases.

• E4: Papers that were published before year 2008. This is because cloud computing

was formally incepted in 2008 [164][9]. Our search for the term “Cloud comput-

ing” revealed that papers returned before 2008 were are not related to the topic as

conceived in this thesis.

We further categorised papers as “relevant” or “not relevant”. This distinction is

crucial to the review, since we do not want to be too stringent such that we miss out

papers that are related to our research. On the other hand, we do not want to include

closely related work that focus on a different research theme from ours.

• E5: Cloud adoption papers. Our research problem is not about deciding whether

to use cloud computing or not. We already assume that cloud is the studied deploy-

ment environment. Therefore, we do not include papers focusing on cloud adoption.

• E6: Papers that do not use SLAs for architecture adaptation. Since the

research problem of this thesis is about investigating approaches to architecting self-

adaptive cloud architectures. Papers that capture cloud SLAs but do not use them

in actual resource provisioning are not relevant to our problem.

• E7: Cloud technology-specific papers. Papers that report improvement to

cloud specific technologies (e.g. Amazon Web Services and Windows Azure) in

aspects outside SLA-based resource management are not included

• E8: Cloud experimentation papers. Similarly, researches that mainly use the

cloud for experimental purposes that fall outside the scope of SLA-based resource

allocation are excluded.

186

B.4 Search Process

B.4.1 Choice of Indexing Service

The following indexing services were used for the review process, since they are known to

cover a broad range of Computer Science topics.

• IEEE Xplore (http://ieeexplore.ieee.org/)

• ACM Digital Library (http://portal.acm.org)

• Science Direct (http://www.sciencedirect.com/)

• ISI Web of Knowledge (http://apps.webofknowledge.com/)

• Engineering Village, which also indexes INSPEC and COMPENDEX

(http://www.engineeringvillage.com)

• Google Scholar (http://scholar.google.co.uk/)

The search date was bounded between 2008 and 2013 (inclusive). Section 2.3.3 (re-

cency of findings) details our effort to assert the validity of the review’s findings for papers

published after the search date.

B.4.2 Search Query

SLA-based resource allocation in cloud computing is saturated with many methods, also

contributions may focus on one or more phases of the SLA life cycle. To accommodate

the largest possible pool of papers we opted for an open ended search term, which was

(‘‘Cloud computing’’ AND ‘‘SLA’’ AND ‘‘Resource allocation’’).

B.4.3 Search Result

Table B.1 shows the result of the initial search from all chosen indexing services. Given the

limited time, we were unable to review all papers from the initial result set. A pragmatic

187

approach of focusing on the top 100 papers, when filtered by relevance, from each indexing

service was adopted. Table B.2 shows the result after applying the exclusion criteria.

Indexing Service Start Year End Year # of Papers
IEEE Xplore 2008 2013 105
ACM Digital Library 2008 2013 165
Science Direct 2009 2013 121
ISI Web of Knowledge 2009 2013 4
Engineering Village 2009 2013 207
Google Scholar 2009 2013 2990

Total 3592

Table B.1: Search Result (Initial)

Indexing Service Start Year End Year # of Papers
IEEE Xplore 2008 2013 49
ACM Digital Library 2008 2013 11
Science Direct 2009 2013 16
ISI Web of Knowledge 2009 2013 10
Engineering Village 2009 2013 6
Google Scholar 2009 2013 14

Total 106

Table B.2: Search Result (After Applying Exclusion Criteria). Section 2.3.3 details our
effort to assert the validity of the review’s findings for papers published after 2013.

188

APPENDIX C

ARCHITECTURAL ANALYSIS FORM

Architecture style

Summarise the architectural
solution / design rationale

What are the identified
quality attribute priorities?

What are the supported
quality attribute scenarios?

What are the identified risks
and their implication?

What are the identified sen-
sitivity points and their im-
plication?

What are the identified
trade-off points and their
implication?

Additional comments .

189

