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Abstract 

The hydrogen permeability of surface modified Pd60Cu40 wt% (Pd47.3Cu52.7 at%) membranes 

have been determined for the first time. Surface modification was accomplished through the 

deposition of Pd thin films of three different thicknesses (95.5 ± 0.1, 797.4 ± 0.2 and 

1,409.6 ± 0.2 nm) on to one side of a range of as-received Pd60Cu40 wt% membranes via 

magnetron sputtering. The Pd60Cu40 wt% membrane coated with a 1,409.6 ± 0.2 nm thick Pd 

thin film positioned on the feed side (445 kPa of hydrogen pressure) and cycled between 50 

and 450 °C achieved the highest hydrogen permeability of 1.09 × 10-8 mol m-1 s-1 Pa-0.5 at 

450 °C during the third cycle. This is a 58% increase on the value measured for the 

as-received Pd60Cu40 wt% under the same conditions. 

This improvement can be attributed to a Pd-rich Pd-Cu face centred cubic (FCC) phase 

forming through interdiffusion between the Pd thin film and bulk Pd-Cu membrane as a result 

of the test conditions used during hydrogen permeability measurements. This introduces a 

larger hydrogen concentration gradient across the membrane due to the relatively high 

hydrogen solubility of the Pd-rich Pd-Cu FCC phase resulting in the observed increase in 

permeability. A hydrogen pressure of 445 kPa produced an increase in interdiffusion rate 

compared with 100 kPa of pressure. This is related to a higher hydrogen pressure introducing 

a larger number of vacancy-hydrogen clusters resulting in increased atomic mobility. 

The Pd60Cu40 wt% membranes coated with a 797.4 ± 0.2 and 1,409.6 ± 0.2 nm thick Pd thin 

films retained an almost pure Pd surface throughout cycling between 50 and 450 °C with a 

feed and permeate hydrogen pressure of 445 and 100 kPa, respectively. For the deposition 

technique and test conditions used throughout this work, these surface modified membranes 

appear to stabilise the Pd thin films upon cycling across the critical temperature of 295 °C. 
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1. Introduction 

1.1. Introduction 

Nowadays, fossil fuel reserves are largely situated in politically unstable countries and rival 

nations. Climate change has been attributed to rise in anthropogenic CO2 emissions. 

Allegedly, peak oil has been reached as a result of the earth’s diminishing oil reserves. These 

factors have created a large demand in alternative green renewable energy and have also 

become the driving force behind the research and development into new technologies. 

Movement away from the hydrocarbon economy has brought about the advent of the 

hydrogen economy which aims at establishing a system for distributing and utilising energy 

derived from hydrogen. 

1.2. The hydrogen economy 

Hydrogen is not a primary fuel unlike oil, coal and natural gas. However, like electricity it is 

an energy carrier. Hydrogen is a secondary form of energy that is produced using primary 

energy sources [1]. Advocates of the Hydrogen Economy recognise that hydrogen can be an 

environmentally friendlier source of energy for the consumer, especially in the transport 

sector whereby no harmful pollutants are released into the atmosphere.  

The hydrogen economy is a system for delivering energy sourced from hydrogen through the 

establishment of a modified infrastructure. Moreover, hydrogen production, distribution, 

utilisation and storage are fundamental to the realisation of this system. Figure 1.1 is the life 

cycle of hydrogen when sourced from renewable energies. The diagram also demonstrates 

that hydrogen is produced from water, which is used in conjunction with oxygen to generate 

useful energy such as electricity giving water as a product.  
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Figure 1.1 Hydrogen life cycle derived from a renewable energy source [1]. 

1.2.1. Hydrogen production 

Hydrogen is the lightest and most abundant element in the universe; however, on earth it only 

occurs in its free element form in trace amounts. Some conventional methods for the 

production of hydrogen are steam reforming of natural gas (SMR), partial oxidation of 

residual oil, coal gasification, steam-iron process and water electrolysis [2]. Hydrogen can be 

manufactured without producing greenhouse gases through the electrolysis of water using a 

renewable energy source such as solar or wind energy. This method, however, is relatively 

costly and energy intensive. Production of hydrogen from biomass using biological processes 

has been an attractive method in recent times since significant amounts of hydrogen can be 

harvested from agricultural and municipal waste. 

1.2.1.1. Fossil fuels 

A majority of commercially available hydrogen (97%) is produced via steam reformation of 

natural gas and other light hydrocarbons [1]. This method involves two processes the first of 

which is shown in Equation 1.1: 

Primary 
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Storage transport

Environment
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Useful 
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Oxygen
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 ���� + ���� → ��� + (� + � 2
 )�� Equation 1.1 

 

where i = 1 and j = 4 for a methane feedstock and n = 1 and m = 2.2 for a naphtha feedstock. 

This stage is strongly endothermic and occurs at a process temperature of approximately 

815 °C and 3.5 MPa over a nickel based catalyst. The second exothermic process is known as 

the water gas shift reaction (Equation 1.2) and is split into two steps, the low temperature shift 

(LTS) and high temperature shift (HTS). The LTS occurs at 200 °C using a CuO catalyst 

whilst the HTS operates at 350 °C in the presence of an Fe2O3 catalyst [2, 3]: 

 �� + ��� ⇌ ��� +�� Equation 1.2 
 

Figure 1.2 illustrates the process flow diagram for SMR. The natural gas feedstock is first 

hydrogenated and then desulphurised in a ZnO bed. Subsequently, the natural gas is reformed   

producing synthesis gas, a mixture of hydrogen, carbon monoxide and small amounts of 

carbon dioxide, which then undergoes the HTS and LTS process. Hydrogen is separated from 

the hot gas mixture in the final step using commercial methods like pressure swing adsorption 

which is described in more detail in Section 2.1.1. 

 
Figure 1.2 SMR process flow diagram [1]. 
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The most recent edition of the United States Department of Energy (U.S. DoE) 2006 technical 

report states that, based on the lower heating value (LHV) of hydrogen, SMR was 

approximately 70% efficient with a production cost of U.S.$ 3.00 per gasoline gallon 

equivalent (gge) [4]. An obvious drawback with the SMR process is the release of CO2, a 

greenhouse gas, into the atmosphere from a non-renewable resource like CH4, although 

efforts have been made to develop carbon capture and sequestration to tackle this problem [5]. 

For the meantime, natural gas could be well suited as a temporary solution for establishing the 

hydrogen economy until which time a renewable energy source substitute is developed. 

1.2.1.2. Electrolysis of water 

In 1874, Jules Verne realised that fossil fuels were a finite resource and stated that “water will 

be the coal of the future” and manufacturing hydrogen from water could be a solution [6]. 

This can be achieved through the electrolysis of water (Equation 1.3). 

 ��� → �� + 1 2
 �� Equation 1.3 
 

Figure 1.3 shows a typical schematic of an electrolytic cell. The idea of producing hydrogen 

in this manner seems attractive considering the vast supply of water. However, the 

decomposition of water into its constituent molecules is endothermic and requires large 

amounts of energy to produce an appreciable amount of hydrogen meaning this method is 

relatively costly. The U.S. DoE reported that in 2006 typical low temperature electrolysis 

systems have an efficiency of approximately 62% based on the LHV of hydrogen with a 

production cost of U.S.$ 4.80 per gge [4]. Combining a renewable energy source, such as 

wind or solar, with an electrolyser could produce and store hydrogen which could be later 

used as a backup supply to help overcome intermittency in the electrical grid [7]. 
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Figure 1.3 Schematic of a typical electrolytic cell for hydrogen production from water. 
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which involves heating the organic material to above 700 °C under a controlled atmosphere of 

oxygen and/or steam. Gasification of biomass also produces useful by-products such as 

ethanol and acetate [8]. 

Biomass also has the advantage of being a naturally abundant renewable resource and having 

relatively little impact on the environment in comparison to fossil fuels. The U.S. DoE report 
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hydrogen content of lignocellulose (plant dry matter) is 6 – 6.5 wt% which is significantly 

lower when compared to 25 wt% in natural gas [9]. 

Production of hydrogen can be performed sustainably using dark, anaerobic bacterial growth 

on carbohydrate-rich substrates [10]. This process involves fermentation of the organic 

feedstock which produces carbon dioxide as well as hydrogen. One of the main drawbacks of 

this method of hydrogen production is the relatively low yield of 2 mol H2 mol-1 glucose [4]. 

1.2.2. Hydrogen distribution 

Hydrogen can be stored onsite at the point of production as compressed gas, liquid or 

chemically in a solid-state storage medium. Distribution of the hydrogen would be relatively 

simple since it can be delivered via pipeline to the point of use. 

Currently, in most developed countries there exists a pipeline infrastructure for the delivery of 

natural gas to homes for the purpose of heating and cooking. Hydrogen could be transported 

from the point of production to the point of use in a similar manner. In order to tackle 

hydrogen embrittlement, these pipelines are typically fabricated with low carbon and 

manganese content, ≤ 1 and ≈ 0.2 wt%, respectively. These low concentrations reduce the 

yield strength of the steel to < 290 MPa and as a result limit the operating pressure to 

< 10 MPa, whereby 4 – 6 MPa are commonly used. Research has shown that polymeric 

coatings for steel pipes and fibre reinforced polymer pipelines are impermeable to hydrogen 

and can increase the operating pressures to a range of 7 to 25 MPa [11]. 

In the last two decades, billions of cubic metres of hydrogen were produced and kept in 

intermediate storage and transported via pipeline to serve the chemical and aerospace 

industry. For more than 50 years Germany has been using a 200 km pipeline to transport 
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hydrogen for the chemical industry with virtually no problems. The United States, Japan and 

Italy also have an established pipeline network for the delivery of hydrogen for industrial 

applications [8]. 

Currently, there are only three liquefaction plants in Europe, one operated by Air Liquide in 

Waziers, France, another by Air Products in Rozenburg, Netherlands and one by Linde in 

Ingolstadt, Germany [11]. In the United Kingdom, the majority of hydrogen is transported in 

compressed gas cylinders to the point of use. In some countries, hydrogen is also transported 

by tanker in either a pressure vessel or in liquefied form. To help facilitate the transition over 

to a hydrogen economy, the existing pipeline infrastructure used by natural gas could be 

modified to enable the delivery of a hydrogen/natural gas mixture which could then be 

followed by the separation of hydrogen at the point of use [4, 11]. 

1.2.3. Hydrogen storage 

One of the biggest hurdles facing the establishment of a hydrogen economy is the issue of 

storing hydrogen in a safe, compact, reliable and cost effective manner. The U.S. DoE 

published an online article emphasising that in order for hydrogen to be competitive with 

conventional technologies it must achieve a vehicle range of 300 miles [4]. However, this is a 

challenge due to the physical properties of hydrogen. 

1.2.3.1. Onboard storage 

Hydrogen has a high gravimetric energy content, approximately three times more than petrol 

yet by volume has an energy content four times less than petrol [12]. This presents a problem 

when storing hydrogen for mobile applications especially since storage is limited to the space 

constraints of a road vehicle. In order to achieve the 300 mile range stipulated by the U.S. 

DoE, utilising existing storage technologies such as compressed hydrogen tanks would 



Introduction 

~ 8 ~ 
 

require a space larger than most car trunks. Not only does this provide a space issue but also 

the added problem of weight. The additional weight of the tank has a two-fold drawback since 

it reduces vehicle range and fuel economy. 

Targets for onboard storage based on a 5 kg hydrogen storage system were put in place by 

FreedomCAR in January 2002 in conjunction with the U.S. DoE and United States Council 

for Automotive Research (USCAR) [12]. The aim was to reduce system weight, volume, cost 

and refuelling time by 2015. It was stated in 2010 by the U.S. DoE that only two technologies 

were on par to meet the targets. MOF-177, a type of metal organic framework material, was 

reported to have exceeded the 2010 volumetric capacity target [13]. The second storage 

method was Cryo-compression which allegedly surpassed the 2015 targets set for gravimetric 

and volumetric capacities [14]. 

The more established storage techniques are high pressure tanks which are categorised into 

four groups based on the tank material and the working pressure. Type I tanks are all-metal 

containers made from either steel or aluminium. Type II are essentially Type I tanks encased 

in a glass fibre reinforced polymer (GFRP) winding. The Type III tanks are an improvement 

on the Type II featuring a composite material such as carbon fibre reinforced polymer (CFRP) 

with a metal liner made from either aluminium or steel. The modern Type IV tanks are 

constructed mainly from a CFRP with a polyethylene or polyamide liner [15]. 

A common method of storing hydrogen is in compressed gas form pressurised inside a tank 

anywhere between 35 and 70 MPa. Increasing the storage pressure would improve the energy 

density resulting in a smaller tank but a much heavier system. Hydrogen is a non-ideal gas 

meaning large amounts of energy are needed to compress hydrogen into smaller volumes. 

Compressed hydrogen tanks require 2.1% of the energy content to power the compressor [16]. 
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This energy would be lost at the compression step unless recovered otherwise making the 

system less efficient and more costly. Another major drawback for this mode of storage is the 

size and weight issue of a compressed tank making it an unattractive option for mobile 

applications. 

Hydrogen can also be stored in the liquid state under cryogenic conditions. Typically, these 

conditions have hydrogen stored under 35 MPa at -253 °C. Storing hydrogen in a liquid state 

will improve its volumetric density facilitating containment in a smaller tank. The associated 

problems with storing hydrogen in this manner include boil-off, energy for hydrogen 

liquefaction, tank size and the attributed costs. Boil-off can present a significant safety issue 

in situations where a hydrogen powered vehicle is parked in confined and poorly ventilated 

spaces since hydrogen is susceptible to auto-ignition. According to the U.S. DoE, 

approximately 30% of the hydrogen lower heating value is required for liquefaction indicating 

that this process is energy intensive therefore incurring large costs [4]. 

Currently, a hybrid system, named cryo-compression, is being developed that provides a 

pressure vessel which is lighter and more compact than most storage media. Furthermore, the 

operating temperature is not as low as cryogenic storage meaning there is less of a penalty for 

hydrogen liquefaction and reduced boil-off [4]. 

Novel methods involve storing hydrogen either physically or chemically within select 

materials. Hydrogen can be stored on the surface of a material through adsorption, either in 

molecular or monatomic form. Hydrogen can also be dissociated into atoms, absorbed into a 

solid material and stored in the crystal lattice such as in intermetallic hydrides. Other methods 

include the hydrogen atoms forming strong chemical bonds giving rise to chemical 

compounds such as complex hydrides and chemical hydrides [12]. 
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The aforementioned, metal organic frameworks (MOFs) store hydrogen through a process 

known as physisorption. This material is a relatively recent development which has garnered 

considerable attention due to its high hydrogen uptake. By definition, MOFs are highly 

ordered structures containing metal clusters and organic ligands as linkers [17]. Essentially, 

they are highly porous materials giving a vast surface area allowing for storage of hydrogen at 

the molecular level via adsorption. The infinite combinations of geometric and chemical 

variations using different secondary building units and linkers give MOFs an endless 

possibility as a storage medium. 

Metal hydrides are formed when certain metals react with hydrogen gas, the most useful metal 

hydrides react at room temperature under 500 kPa of hydrogen. Examples of metal hydrides 

are palladium hydride (PdH), magnesium hydride (MgH2) and lanthanum nickel hydride 

(LaNi5Hx). Absorption of hydrogen into such metals is an exothermic process, conversely 

desorption is endothermic meaning that heat energy is required to release the hydrogen. 

A majority of metal hydrides form strong bonds with monatomic hydrogen and so more heat 

energy is required to break these bonds and release the stored hydrogen. Reducing the energy 

required for hydrogen desorption can be done by using alloys that possess strong and weak 

hydride formers such as lithium amide, lithium borohydride and sodium borohydride. If the 

hydride bonds are too weak, then higher pressures will be required to form the hydride 

eliminating the cost saved from lowering the activation energy. The target for onboard metal 

hydride storage systems are less than 100 °C for hydrogen discharge [4]. 

1.2.3.2. Stationary storage 

For stationary storage in industrial applications, space is not as important as in mobile 

applications since the system is not limited to the volume constraints of a vehicle. As a result, 



Introduction 

~ 11 ~ 
 

the more traditional and established storage techniques such as compressed, liquid and slush 

hydrogen are utilised. Slush hydrogen is a combination of solid and liquid hydrogen 

coexisting together in thermodynamic equilibrium at the triple point which is at a lower 

temperature than liquid hydrogen and at a higher density. 

Hydrogen can also be stored in large quantities underground in caverns, salt domes and 

depleted oil and gas fields. There are many storage sites across the globe such as the ICI salt 

cavern in Teesside, England storing 95% pure hydrogen and 3 – 4% CO2 [18-20]. Between 

1956 and 1974 the French gas company Gaz stored syngas in an aquifer in Beynes, France 

citing no safety issues during this period. Russia has also stored hydrogen underground 

specifically for their aerospace industry under 9 MPa of pressure [20]. 

1.2.4. Hydrogen utilisation 

Hydrogen can be used to produce useful energy to power a road vehicle in one of two ways. 

Using an internal combustion engine (ICE), hydrogen can be burnt to convert chemical 

energy into mechanical energy. A hydrogen fuel cell can use hydrogen to convert chemical 

energy into electrical energy which can similarly be used to drive a vehicle. 

1.2.4.1. Combustion 

Like most fuels, hydrogen can be burned in an oxidation reaction. Combustion with a lean 

air-fuel mixture only produces water in the exhaust gas, whereas a rich mixture can form an 

exhaust stream containing nitrous oxides, NOx. The amount of NOx produced in the exhaust 

stream is determined by the air-fuel ratio, engine compression ratio, ignition timing, engine 

speed and whether thermal dilution is used. Trace amounts of CO and CO2 can be produced if 

small amounts of oil manage to seep into the combustion chamber. Hydrogen ICEs are 

designed to function with a high air-fuel ratio or lean mixture in order to decrease the levels of 
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NOx in the exhaust stream. For typical ICEs, the conversion of chemical energy to mechanical 

energy via thermal energy is limited by the Carnot efficiency which is slightly higher for 

hydrogen-air mixtures (~25%) than compared with petrol-air mixtures [21]. 

Existing petrol engines can be modified to allow the use of hydrogen instead of petrol by 

injecting the hydrogen through a specialised spark plug. Modification of an ICE to run on 

hydrogen is considered unviable, however, due to the low efficiency of the combustion 

process [22]. 

1.2.4.2. Fuel cells 

In a fuel cell, hydrogen is electrochemically combined with oxygen from air to produce 

electricity alongside water and heat. Essentially, a fuel cell employs the reverse 

electrochemical reaction (Equation 1.6) to that used in a water electrolyser to generate 

electricity. Currently, there exist various types of fuel cells all made distinct by their varying 

electrolyte material and operating temperatures. A polymer electrolyte fuel cell (PEFC) 

(Figure 1.4) is commonly used for vehicular applications and as such has been the focus of 

much research in recent times. 
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Figure 1.4 Schematic of a PEFC. 
 

In a PEFC, hydrogen is delivered to the anode in order to dissociate the hydrogen molecule 

into a proton and an electron (Equation 1.4). 

 �� → 2�� + 2�� Equation 1.4 
 

The proton migrates across a polymer based ionic conducting electrolyte whilst the electron 

conducts through an external circuit which provides electrical energy that can be used to 

power a vehicle. The proton and electron, along with oxygen, from the air intake, combine at 

the cathode to form water (Equation 1.5). 

 1 2
 �� + 2�� + 2�� → ��� Equation 1.5 
 

The overall fuel cell reaction is shown in Equation 1.6. 

 �� + 1 2
 �� → ��� Equation 1.6 
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The PEFC typically operates at temperatures between 50 – 80 °C and hydrogen pressures 

between 100 – 300 kPa [4, 11, 23] with an efficiency ranging from 50 – 60% and benefits 

from not being limited by the Carnot efficiency associated with ICEs [21]. The excess heat 

energy produced during the fuel cell reaction can be reused to further increase the efficiency 

to above 80% through combined heat and power. 

One of the main drawbacks of the PEFC is contamination of the platinum catalyst used at the 

anode with impurities such as carbon monoxide. Furthermore, several fuel cells are combined 

to form a stack in order to generate sufficient electricity to power a vehicle. Many challenges 

still remain with the PEFC including the use of expensive precious metal catalysts, durability 

and susceptibility to contamination. 

1.2.5. Hydrogen separation 

Nowadays, steam methane reforming (SMR) is the most common method for hydrogen 

production. The composition of the SMR product stream is typically 74% H2, 18% CO2, 

7% CH4 and 1% CO [24]. The water gas shift reaction involving steam is used to convert CO 

to CO2 and H2, however contamination of the gas stream with CO remains. While CO2 and 

H2O can be removed from the gas stream via condensation, CO requires a further purification 

step. A majority of applications need a minimum hydrogen purity of 99.99%, whereas, PEFCs 

require ultra-pure hydrogen (99.9995%) only tolerating contaminants in the parts per million 

within the feed stream. Any higher would be sufficient to poison the platinum catalyst used by 

PEFCs. Thus, hydrogen separation is an essential process constituting up to half of the 

production cost [25]. 

Membrane technology has been in strong development over the past 50 years and during this 

period has established a time and tested manufacturing method. Membranes can be used in a 
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variety of applications including micro filtration of bacteria to reverse osmosis for water 

clean-up. Membranes hold many advantages such as [26]: 

• Typically low energy consumption; 

• Ability to carry out separation continuously; 

• Mild process conditions; 

• Ease of scaling up; 

• Absence of additives; 

• Possibility to combine with other separation technologies. 

Main disadvantages are, depending on the specific membrane type: 

• Fouling tendency; 

• Low membrane lifetime; 

• Low selectivity or flux; 

• More or less linear up-scaling factor (whereas competing processes exhibit economies of 

scale). 

Pure Pd and its various alloys have the innate ability to allow monatomic hydrogen to 

selectively diffuse through its structure to produce purities in excess of ≥ 99.9999% [27], this 

process is depicted in Figure 1.5. Although, Pd and its alloys are relatively expensive, and so 

there is a growing need to investigate materials that contain as little Pd as possible without 

sacrificing membrane properties. 
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Figure 1.5 Schematic representation of hydrogen separation from a hot gas mixture using a Pd based 
membrane. 
 

Table 1.1 U.S. DoE technical targets [4]: dense metal membranes for hydrogen separation applications 
based on a membrane water gas shift reactor with syngas.  

Performance criteria 
Targets 

2006 2010 2015 

Flux ratea (mol m-2 s-1) > 0.75 0.94 1.13 
Module cost including membrane 
materialb (U.S.$ m-2) 

16,146 10,764 < 5,382 

Durability (hours) < 8,760 26,280 > 43,800 
Operating capabilityc (kPa) 1,380 2,760 2,760 – 4,140 
a Flux rate at 400 °C with a hydrogen partial pressure differential of 345 kPa 
b Pd does not present a significant cost to the membrane module, major contributors to the figure are the 
equipment cost, labour, Pd deposition, rolling of foils and drawing of tube. 
c Pressure differential depends on the application. Many applications require only 2,760 kPa, however, the 
target for coal gasification is 6,900 kPa.  
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SMR process as a membrane reactor. Commercial dense metal membranes are commonly 

based on the Pd-Ag binary alloy system that are either cold rolled into a foil or drawn into a 

tube with an approximate thickness of 50 µm. The hydrogen flux through such a membrane 

under the conditions stipulated by the U.S. DoE (Table 1.1) is approximately 0.1 mol m-2 s-1 

which is almost an order of magnitude lower than the 2015 target. 

Since hydrogen flux is inversely proportional to membrane thickness (see Section 2.1.3 for 

further details), it has been proposed that Pd-based thin film membranes that are less than 

5 µm thick can potentially meet the U.S. DoE flux rate target for dense metal membranes 

[28]. Using thin films has the added advantage of lowering material cost although at such low 

thicknesses the tensile strength of the membrane is reduced resulting in less resistance to 

thermal and mechanical stresses during operation. In order to remedy this, thin films are 

deposited onto a substrate for mechanical support. 

A broad range of porous supports have been investigated over the years such as alumina [29], 

silicon [30], nickel [31], glass [32] and stainless steel [33]. Porous stainless steel (PSS) 

substrates are the preferred choice for supporting Pd alloys due to their strength, robustness, 

similar thermal expansion coefficient as well as ease of welding and sealing [34]. Depositing 

defect-free Pd and Pd alloy thin films of < 5 µm thickness onto PSS is highly complex. Laser-

melting of the PSS reduces the surface roughness and porosity which can facilitate the 

deposition of a defect-free thin film. Furthermore, dense metallic membranes typically operate 

at approximately 400 °C which is a temperature that can promote intermetallic diffusion of Fe 

from the PSS substrate into the Pd-based thin film membrane which in turn can drastically 

reduce hydrogen permeability [28]. 
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An alternative approach to increase hydrogen permeability and reduce cost of Pd-based 

membranes is through alloying with a relatively inexpensive metal such as Cu. In the Pd-Cu 

system, the maximum hydrogen permeability is achieved at a composition of Pd60Cu40 wt% 

[35-37]. At typical membrane operating temperatures (400 °C), this composition corresponds 

to the ordered BCC phase which exhibits a hydrogen diffusivity two orders of magnitude 

greater than in the disordered FCC phase [37-40]. In addition, for this composition above 

450 °C the disordered FCC phase begins to form and at temperatures higher than 600 °C only 

this phase is stable. The Pd-rich Pd-Cu FCC phase has relatively high hydrogen solubility 

[41-43] and an enhanced resistance to H2S contamination over the BCC phase [44, 45]. 

Modifying the surface composition of a Pd60Cu40 wt% membrane through the addition of Pd 

may introduce a Pd-rich Pd-Cu FCC layer that may potentially improve hydrogen 

permeability and its resistance to H2S poisoning. 

1.3. Project aim  

The aim of this work is to explore the possibility of creating a Pd-rich Pd-Cu FCC phase on 

the surface of a BCC Pd60Cu40 wt% membrane that is stable under typical operating 

conditions for hydrogen separation and investigate the effects on hydrogen permeability. This 

can be achieved by depositing a Pd thin film onto one side of a Pd60Cu40 wt% membrane. 

Annealing the surface modified membrane creates a Pd-rich layer containing the FCC phase 

produced via Cu interdiffusion out of the bulk Pd60Cu40 wt% membrane and into the Pd thin 

film. Successful manipulation of the Pd60Cu40 wt% alloy surface composition could have the 

potential to produce a membrane with enhanced properties competitive with the more 

expensive Pd-Y and Pd-Ag alloy systems which currently dominate the Pd-based dense 

metallic membrane market. 
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2. Literature review 

2.1. Hydrogen separation techniques 

A review of hydrogen separation methods is presented with the aim of better understanding 

the advantages and disadvantages each technique presents for the application of hydrogen 

purification from hot gas mixtures. There currently exist three commercial methods including 

pressure swing adsorption, cryogenic distillation and hydrogen selective membranes. Each 

method yield varying purity levels some of which are used on large industrial scales, whilst 

others can be scaled down for smaller portable applications. 

2.1.1. Pressure swing adsorption 

Pressure swing adsorption (PSA) works by passing a gas mixture through a high surface area 

adsorber which has the ability to adsorb impurity gases whilst allowing hydrogen to permeate 

through the material. Impurity gas species are adsorbed to an adsorbent material at high gas 

partial pressures and conversely desorbed at lower partial pressures. A common adsorbent 

material used is Zeolite. The impurities can be removed by swinging the absorber pressure 

from the feed to the tail gas (exhaust) pressure coupled with a high purity hydrogen purge. 

The process is cyclic and more than one adsorber is used in order to maintain a constant flow 

for the feed, product and tail gas. Each adsorbent material undergoes the same process of 

swinging; however, the steps are staggered during the procedure. The driving force behind 

PSA is the impurity gases’ partial pressure difference between the feed and tail gas. Typically, 

hydrogen separation requires a 4:1 pressure ratio between the feed and tail gas. 

Two main advantages of PSA are its ability to produce hydrogen at high purities in the range 

of 99 to 99.999% and filter out impurities down to the region of parts per million (ppm). The 
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tail gas from PSA is typically utilised as fuel at low pressures which presents an economical 

benefit, however, large costs are incurred in compressing the tail gas which is comparable to 

the cost of the PSA unit. Hence, selection of a tail gas pressure is highly important. The 

hydrogen recovery from the PSA system is greatly reduced upon increasing the tail gas 

pressure which gives rise to a trade-off between hydrogen purity and tail gas compression 

costs [46]. Another drawback is the scale of operation and infrastructure. PSA can be adapted 

from a medium to large industrial scale, but is impractical to use on smaller portable scales. 

2.1.2. Cryogenic distillation 

This method is highly energy intensive, since the entire process operates under cryogenic 

conditions. Akin to conventional distillation techniques, cryogenic distillation is able to 

separate a feed gas mixture due to the ranging boiling points of the gas constituents. The 

impurity gases condense to form a liquid phase whilst hydrogen remains in a gaseous state 

since it has the lowest boiling point of the mixture at -252.9 °C. One major disadvantage is 

the limited purity levels of the extracted hydrogen at approximately 99% [47]. Furthermore, 

having this process operate at cryogenic temperatures incurs a high cost in terms of gas 

compression in order to maintain cold conditions, nonetheless the collected hydrogen can be 

easily stored as a liquid [48]. Similar to PSA, Cryogenic distillation is ideal for large 

industrial scales, however, unsuitable for small portable applications. 

2.1.3. Hydrogen selective membranes 

The driving force for hydrogen separation in a membrane configuration is a pressure gradient. 

Essentially, apply a high pressure feed gas mixture to one end of a hermetically sealed 

membrane whilst maintaining a relatively low pressure on the opposite side. Large hydrogen 

partial pressures will initiate mass transport where hydrogen will begin to migrate across the 
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membrane leaving behind the impurities gases. There are six main types of hydrogen selective 

membranes and their performance and application can be determined by identifying various 

parameters for each one. Table 2.1 displays the various properties, characteristics and issues 

associated with each type of membrane for ease of comparison. Overall, the membranes can 

operate at a large range of temperatures and pressures and are easily scalable between 

industrial and portable scales; moreover there are no moving parts, meaning there is no wear 

of the system. 

A nomenclature will be defined in order to identify the various terms used throughout this 

work. The high gas pressure side of a membrane is referred to as the feed or upstream side 

whilst the other side is known as the permeate or downstream side (Figure 2.1). Permeation 

can actually occur in both directions but will be more favourable in the direction of low 

pressure. The flow of gas on the feed side is aptly named feed flow and the remaining flow of 

gas on this side after permeation takes place is known as the retentate flow. On the other side, 

the inlet flow is called the sweep flow and the exit flow is referred to as the permeate flow. 

 
Figure 2.1 Schematic representation of gas flow through a membrane. 
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The term permeability has several meanings. However, in the context of this work, it is the 

measure of the ability of certain gases to diffuse through a solid material. Permeability is 

mathematically modelled and described using Fick’s laws of diffusion. A key parameter to 

consider for hydrogen separation is the hydrogen flux through a membrane. Flux, in this 

context, can be defined as the number of hydrogen moles diffusing through a perpendicular 

unit cross-sectional area per unit time. Steady-state flux of gases through a dense solid 

membrane can be described by Fick’s first law which is shown in Equation 2.1: 

 � = −� ���� Equation 2.1 

 

where, J, is flux of the diffusing species, D is the diffusion coefficient or diffusivity and ∂C/∂x 

is the concentration gradient. The negative sign indicates the direction of gas diffusion and 

can be disregarded. It should be noted that all common driving forces such as gradients in 

concentration, pressure, temperature and electromotive force can be broken down to 

differences in chemical potential in a system. Chemical potential is defined as the amount of 

energy available to an uncharged atom or molecule to perform work in a chemical system. 

Therefore, flux is ultimately a function of a chemical potential gradient. For example, reverse 

osmosis requires two driving forces: concentration and pressure however both parameters are 

interrelated to chemical potential. For simplicity, in the case of gas permeation through a 

membrane, concentration or pressure gradient will be considered since they can be 

empirically measured. 

In the instance where the gas surface concentration is not known, Henry’s law applies 

(Equation 2.2): 
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 �� = ��������  Equation 2.2 

 

where SH is a constant that is defined by the ratio of the non-dissociative gas concentration in 

a solid or liquid at dilute concentration (Cgas) to its vapour pressure (Pgas). Since the inlet and 

outlet gas pressure of a system can be measured relatively simply, the concentration term in 

Fick’s first law can be substituted with pressure. The proportionality constant in Equation 2.2 

(SH) can be referred to as the solubility constant (S) which is expressed as concentration per 

unit pressure. 

Diatomic molecules such as hydrogen dissociate into monatomic form prior to dissolution, 

therefore a new version of Henry’s Law is needed to describe such behaviour. The chemist, 

Adolf Sieverts, investigated the dissolution of gases in various metals and observed that due 

to molecular dissociation hydrogen solubility in metals is a function of the square root of its 

pressure in the gas phase [49]. Sieverts later modified Henry’s law (Equation 2.2) to give the 

following Equation 2.3 known as Sieverts’ law: 

 � = �
�� 
! �
  Equation 2.3 

 

Rearranging Equation 2.3 and substituting into Equation 2.1 gives the following expression 

shown in Equation 2.4: 

 � = �� ��� 
! �


�� ≅ �� ∆�� 
! �


∆�  Equation 2.4 
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where ∆�� 
! �
  is the square root of the pressure difference between the feed and permeate sides 

of the membrane and ∆x is the membrane thickness which can be denoted as simply, x. 

Equation 2.4 can be further manipulated to compute the total number of moles (Q) permeating 

through a dense metal membrane by multiplying both sides of the expression by the active 

membrane area (A) and the time (t) elapsed since gas permeation reached equilibrium to give 

the following Equation 2.5: 

 $ = �%& = �� %� ∆�� 
! �
 ∙ & Equation 2.5 

 

The term DS is merely the product of diffusivity and solubility of hydrogen in the dense metal 

membrane which gives rise to the term permeability, Φ, shown in Equation 2.6 where all 

variables are temperature dependent: 

 ( = �� Equation 2.6 
 

Differentiating Equation 2.5 with respect to t gives a formula for determining the flow rate 

and substituting in Equation 2.6  gives Equation 2.7: 

 
)$
)& = ( %

� ∆�� 
! �
  Equation 2.7 

 

If the steady state flow rate of hydrogen, the membrane active area, the thickness as well as 

the gas pressure on either side of the membrane are known, then the permeability can be 

easily determined. The slope of a straight line plot of Q against t can also be used to determine 

the permeability of the membrane using Equation 2.7. 
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Equation 2.4 can be further simplified to give Equation 2.8, a general formula for calculating 

the hydrogen flux through a membrane: 

 � = ((�!* − ��+)�  Equation 2.8 

 

where P1 is the hydrogen partial pressure on the feed side of the membrane and P2 is 

conversely the hydrogen partial pressure on the permeate side. The partial pressure exponent, 

n, also referred to as the n-value can take varying values depending on the assumed transport 

mechanism (Figure 2.2). For porous membranes Henry’s law applies, hence it is assumed that 

the n-value equals 1 and what is known as Knudsen diffusion occurs. This type of diffusion 

along with other mechanisms is discussed in detail in Section 2.1.3.1. The n-value is assumed 

to be 0.5 for hydrogen diffusion though a dense metal membrane and Equation 2.8 reverts to 

Sieverts’ law. This equation shows that flux is inversely proportional to membrane thickness. 

It should also be noted that permeability is a material constant and is independent of 

membrane thickness [50]. In addition, permeability is a temperature dependent parameter that 

is expressed in the following Arrhenius type Equation 2.9: 

 ( = (,��- .−/012 3 Equation 2.9 

 

where Φ0 is the maximum permeability at infinitely high temperatures, EΦ is the activation 

energy for permeation, R is the gas constant and T is the absolute temperature. Similarly, D 

and S are governed by an Arrhenius type relationship as shown in Equation 2.10 and Equation 

2.11, respectively. 

 � = �,��- .−/412 3 Equation 2.10 
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 � = �,��- .−/512 3 Equation 2.11 

 

where D0 and S0 are diffusivity and solubility at infinitely high temperatures, ED is the 

activation energy for hydrogen diffusion and ES is the enthalpy of solution of hydrogen. 

Furthermore, EΦ is defined as the sum of the activation energies for both diffusivity and 

solubility which is expressed in Equation 2.12: 

 /0 = /4 + /5 Equation 2.12 
 

Membranes can also be assessed by looking at other characteristics such as selectivity towards 

gas mixtures. In other words, selectivity is the measure of the differences in permeability 

values between various gaseous species and also the membrane separation effectiveness. 

Consider a gas mixture comprised of gas A and B, the selectivity factor αA/B can be defined by 

the following Equation 2.13: 

 67 8⁄ = :7 :8⁄
�7 �8⁄  Equation 2.13 

 

where yA and yB denotes the partial pressure of gas A and gas B on the permeate side whereas 

xA and xB denotes the partial pressure of gas A and gas B on the feed side of the membrane 

[51]. There are two further factors which are also important in terms of gauging the 

effectiveness of a membrane which are the recovery and volume reduction. The recovery (Sr) 

is defined as the proportion of the feed gas permeating through the membrane and is shown in 

Equation 2.14: 
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 �; = <=<> Equation 2.14 

 

where qp is the permeated flow and qf is the feed flow. Volume reduction (VR) is the ratio of 

the feed flow to the retentate flow (qr) and is shown in Equation 2.15: 

 ?1 = <><;  Equation 2.15 

 

Membranes can be divided into two classes: porous and dense. The porous types are 

commonly micro-porous ceramics or porous carbon which employ molecular sieving as the 

primary mechanism for hydrogen purification. The dense membrane alternatives can be 

polymeric, metallic or ceramic based and utilise a solution-diffusion process for hydrogen 

separation. 
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Table 2.1 Properties of the various hydrogen selective membrane types adapted from Kluiters [51]. 

 
Dense 
polymer 

Micro-
porous 
ceramic 

Dense 
metallic 

Porous 
carbon 

Dense 
ceramic 

Temperature 
range (°C) 

< 100 200 – 600 300 – 600 500 – 900 600 – 900 

H2 selectivity Low 5 – 139 > 1,000 4 – 20 > 1,000 
H2 flux  
(×××× 10-3 mol m-2 s-1) 
at ∆P = 100 kPa 

Low 60 – 300 60 – 300 10 – 200 6 – 80 

Stability 
issues 

Swelling, 
compaction, 
mechanical 
strength 

Stability in 
H2O 

Phase 
transition 
 

Brittle, 
oxidising 
 

Stability in 
CO2 
 

Poisoning 
issues 

HCl, SOx, 
CO2 

 H2S, HCl, 
CO 

Strong 
adsorbing 
vapours, 
organics 

H2S 

Materials Polymers Silica, 
alumina, 
zirconia, 
titania, 
zeolites 

Pd 
alloy 

Carbon Proton 
conducting 
ceramics 
(mainly 
SrCeO3-δ, 
BaCeO3-δ) 

Transport 
mechanism 

Solution/ 
diffusion 

Molecular 
sieving 

Solution/ 
diffusion 

Surface 
diffusion; 
molecular 
sieving 

Solution/ 
diffusion 
(proton 
conduction) 

Development 
status 

Commercial 
by Air 
Products, 
Linde, 
BOC, 
Air Liquide 

Prototype 
tubular 
silica 
membranes 
available up 
to 90 cm. 
Other 
materials 
only small 
samples 
(cm2) 

Commercial 
by Johnson 
Matthey; 
prototype 
membrane 
tubes 
available up 
to 60 cm 

Small 
membrane 
modules 
commercial, 
mostly 
small 
samples 
(cm2) 
available 
for 
testing 

Small 
samples 
available 
for 
testing 

 

2.1.3.1. Porous selective membranes 

Currently, there exists a variety of porous media for the purpose of hydrogen separation which 

uses a process known as molecular sieving. Commercially available porous materials are 
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zeolites, Vycor glass, sintered metals such as nickel and a range of ceramics like alumina and 

zirconia. 

 

Figure 2.2 Diagram depicting the four transport mechanisms through a porous membrane: (a) Knudsen 
diffusion, (b) surface diffusion, (c) capillary condensation and (d) molecular sieving [52]. 
 

Behaviour of the hydrogen molecules as they manoeuvre through nanometre sized pores can 

be modelled using Knudsen diffusion as shown in Figure 2.2(a). This type of flow occurs 

when the mean free path (µ) or the average distance covered by a molecule between 

molecular collisions is greater than the pore size, resulting in frequent collisions with the pore 

walls. Knudsen diffusion is the predominant transport mechanism for pore sizes ranging 

between 2 and 50 nm which are classed as mesopores [53]. Using the Lennard–Jones 

intermolecular potential approach, Hirschfelder, Curtiss and Bird [54] calculated the mean 

free path of hydrogen to be 110.6 nm under ambient conditions. Additionally, Knudsen 

(a)

(b)

(c)

(d)
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diffusion is expected to occur when there exists a large Knudsen number (Kn) which is 

defined as the ratio of the mean free path of the gas component (µ) and the pore radius (L) as 

shown in Equation 2.16: 

 @A = B
C Equation 2.16 

 

The diffusion of a gas molecule along a mesopore is directly proportional to pore size and 

pressure, plus it is inversely proportional to the membrane thickness and the square root of the 

molecular weight [55]. If the mean free path of a gas molecule is relatively smaller than the 

pore size then Fick’s law of diffusion is prevalent [56]. 

Figure 2.3 and Figure 2.4 are images of a porous anodic alumina membrane. This material 

comprises of nano-sized pores arranged in a honeycomb-like configuration which can be used 

to support thin metal film membranes for the purpose of hydrogen separation. The flow of 

hydrogen through these nanopores can be modelled using Knudsen diffusion due to the shape 

and size of the pores. 



Literature review 

~ 31 ~ 
 

 

Figure 2.3 Porous anodic alumina membrane 
cross-section featuring mesopore channels 
~25 nm in diameter which lies within the 
Knudsen diffusion regime. Image taken from 
Kirchner et al [57]. 

 

Figure 2.4 Top view of the same porous anodic 
alumina membrane. 

 

Surface diffusion (Figure 2.2(b)) can occur alongside Knudsen diffusion as gas molecules are 

able to adsorb and propagate along the pore walls. Permeability will be high for the gas 

molecules which are readily adsorbed onto the pore walls. Nevertheless, this will result in low 

permeability for gas particles that are unable to adsorb onto the walls thus increasing the 

selectivity. Of course, this will result in a decrease in effective pore diameter. 

Capillary condensation (Figure 2.2(c)) occurs when a partially condensed gas phase occupies 

the pore. If the pore is completely filled with the condensed phase then only gas molecules 

that are soluble in this phase can permeate through the pores. Selectivity and flux are typically 

high for this mode of gas transport, although it is highly dependent on the gas composition, 

pore size and pore size uniformity. 



Literature review 

~ 32 ~ 
 

Molecular sieving (Figure 2.2(d)) can take place if the pore sizes are sufficiently small. The 

pore size must be between 0.3 and 1 nm. It works on the basis of filtering and separating out 

gas molecules that have different kinetic diameters. In general, only gas molecules small 

enough to fit into the pores may permeate through the membrane. 

It can be said that mesoporous materials are only effective at separating hydrogen from the 

heavier gaseous compounds such as CO2 and H2S, although they would seem to be ineffective 

at extracting hydrogen from the lighter gases such as CH4 and H2O. Furthermore, when 

comparing the hydrogen selectivity of the porous ceramic and carbon membranes to that of 

the dense ceramic and metallic alternatives, it is evident that dense membranes are by far the 

more selective as shown in Table 2.1. The highest hydrogen selectivity attainable with porous 

membranes is when the hydrogen flux is relatively low; therefore, increasing the flux will 

reduce the selectivity. 

2.1.3.2. Dense selective membranes 

Hydrogen permeation will occur through the bulk of the dense membrane material. Dense 

metal membranes display extremely high levels of selectivity; however, the flux is low, 

whereas porous membranes have high rates of flux but very low selectivity. The transport 

mechanism for hydrogen through a dense metal membrane can be described using a 

solution-diffusion model. Upon hydrogen gas coming into contact with a dense metal 

membrane surface, for example Pd, the molecules dissociate into monatomic form and 

subsequently ionise to form a single pair of a proton (H+) and an electron. The proton and 

electron will diffuse through the membrane to the other side whereby the proton is reduced to 

form a hydrogen atom that recombines with another hydrogen atom to reform the molecule 

and finally desorb into the gas phase. The main driving force for this phenomenon is the 
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difference in hydrogen partial pressure between the feed side and permeate side of the 

membrane. 

Steward [49] successfully compares and contrasts hydrogen permeability data for a range of 

materials found in literature demonstrating that metals that have a body centred cubic (BCC) 

crystal structure such as V, Nb and Ta exhibit higher hydrogen permeability values than the 

face centred cubic (FCC) metals such as Pd and Ni. Moreover, V, Nb and Ta have hydrogen 

permeability values an order of magnitude higher than that of Pd, however, these metals 

readily form an oxide layer under ambient conditions which severely hinder hydrogen 

dissociation and solubility. 

The metal data compiled by Steward [49] is displayed in the Figure 2.5 plot. A review by 

Uemiya [58] on membrane reformers includes a similar plot of the same data set, however, it 

erroneously includes permeability data for Zr which had never been reported by Steward [49]. 

In comparison, Adhikari and Fernando [59] present a review on hydrogen membrane 

separation techniques which features a more accurate plot  based on the data found in the 

Steward [49] review. 
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Figure 2.5 Natural logarithm of hydrogen permeability as a function of temperature for various metals 
plotted using data from Steward [49]. 
 

As shown in Table 2.1, dense membranes can be polymer, ceramic or metallic based. Polymer 

membranes are an existing technology and have been used industrially to separate hydrogen 

from a gaseous mixture of N2, CO and various hydrocarbons. These types of membranes can 

be further subdivided into two categories: glassy and rubbery polymeric membranes. The 

glassy type has relatively higher selectivity but lower flux, whereas the rubbery kind 

conversely has higher flux rates and lower selectivity. The main advantages for these 

membranes are their low cost and ability to cope with high pressure differences. Nenoff, 

Spontak and Aberg [25], concluded, however, that dense polymeric membranes based on 

polyamide-imide block co-polymers can benefit from reduced production cost and further 

development to improve stability at elevated temperatures in order to become competitive 

with the existing alternative membrane materials. 
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Table 2.1 shows that polymer membranes have relatively low levels of flux, selectivity, poor 

mechanical properties and a low operating temperature (< 100 °C). Moreover, they are prone 

to contamination by HCl, (SOx) and CO2 which make these membranes less attractive 

compared to other membrane types. Table 2.2 shows the hydrogen permeability and 

selectivity values of various polymeric membranes. 

Table 2.2 Hydrogen permeability and selectivity values of various dense polymeric membranes. 
Conditions are for 300 K at a 206.84 kPa feed pressure [59]. 

Polymer 
Hydrogen permeability 
(× 10-16 mol m-1 s-1 Pa-1) 

Selectivity 
H2/N2 H2/CH4 H2/CO2 

Polysulfone 40.5 15.1 30.3 2.0 
Polystyrene  79.6 39.7 29.8 2.3 
Polymethyl methacrylate 8.0 2.0 4.0 4.0 
Polyvinylidene fluoride 8.0 3.4 1.8 2.0 
 

Overall it appears that polystyrene has the best hydrogen permeability and general selectivity. 

Adhikari and Fernando [59] note that  research efforts have been more focussed towards 

metallic, carbon, zeolite and ceramic based membranes the latter being the preferred option 

since this type is inert to poisonous gases. 

According to Table 2.1, dense ceramic membranes have very good hydrogen selectivity 

comparable to that of dense metallic membranes. In a report by Kluiters [51], it is shown that 

dense ceramic membranes are capable of operating at relatively high temperatures typically 

between 600 and 900 °C. Contrary to the opinion of Adhikari and Fernando[59], the main 

disadvantages of these types of membranes are the inherently low flux rates and instability in 

the presence of CO2 and H2S. This class of membranes are commonly fabricated from proton 

conducting materials also known as perovskites such as strontium cerate (SrCeO3-δ) and 

barium cerate (BaCeO3-δ) [51]. A past review by Norby [60], mentions the emerging interest 

in mixed protonic-electronic conductors for the application of hydrogen separation. Moreover, 
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Norby advocates the versatility of the perovskites as an electrolyte material for solid oxide 

fuel cells [61]. 

Phair and Badwal [62] postulate that in order for a dense ceramic membrane to be 

commercially viable as a hydrogen separator, it must have an electron and proton conductivity 

in excess of 0.1 S cm-1 to produce flux rates comparable to dense metal membranes. 

Generally, these membranes cannot promote spontaneous hydrogen dissociation and re-

association on their surface therefore a secondary catalytic phase is required. Song et al [63], 

have shown that this problem can be alleviated through the addition of Ni to SrCe0.8Yb0.2O3-δ 

which improved the hydrogen flux at 900 °C by a factor of 13 from 5.93 × 10-5 to 

7.79 × 10-4 mol m-2 s-1. This rise in hydrogen flux is attributed to the Ni enhancing electron 

conductivity and thus hydrogen permeability. Despite such improvement, this ceramic – metal 

composite (cermet) is still not competitive with commercially available dense metal 

membranes. 

Supported dense metal membranes undergo interdiffusion between the metal film and porous 

substrate which can severely hinder hydrogen permeation whereas dense ceramic membranes 

do not experience such problems. Schwartz et al [64] have demonstrated that unlike metallic 

membranes, a cermet membrane based on a pyrochlore can easily be hermetically sealed 

using brazing alloys such as Inconel 600, nevertheless, they report that this membrane 

achieved hydrogen flux rates a factor of eight less than what is required for industrial 

processes. 

Dense metal membranes can operate between 300 and 600 °C, offer excellent hydrogen 

selectivity and superior flux rates when compared to other membrane types. The hydrogen 

purity levels achieved using dense metal membranes are in excess of 99.9999% which is ideal 
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for PEFCs which make use of a Pt catalyst that is prone to contamination by CO. The main 

drawbacks are the inherent cost associated with the dense metal membranes which are 

commonly based on Pd. Efforts are being made to deposit thin films of Pd onto porous 

substrates in order to reduce material cost and increase hydrogen flux rates since flux is a 

function of membrane permeability and thickness. An additional disadvantage is the 

susceptibility of pure Pd membranes to poisoning by H2S, HCl and CO. 

2.2. Dense metallic membranes 

2.2.1. Metallic membranes  

Hydrogen can rapidly diffuse through refractory metals especially those with a BCC crystal 

structure, however, these metals have highly inactive surfaces for the catalysis of hydrogen, 

meaning the rate of absorption and desorption is very slow. Buxbaum and Marker [65] 

recognised this and developed a Nb (BCC metal) membrane electrolessly plated with Pd 

(FCC metal) which had a relatively high hydrogen permeability of 3.2 × 10-7 mol m-1 s-1 Pa-0.5 

at 425 °C. Although, it was found that the hydrogen flux degraded over time due to 

interdiffusion occurring between the Nb and Pd film. 

In a similar attempt, Paglieri et al [66] previously fabricated a V90Pd10 at% membrane with a 

100 nm thick pure Pd film deposited on both sides. They claim that this membrane had 

achieved a hydrogen permeability of 3.86 × 10-8 mol m-1 s-1 Pa-0.5 at 400 °C, yet the 

membrane had cracked once cooled to 118 °C due to hydrogen embrittlement. Furthermore, 

Paglieri et al [66] qualitatively tested the endurance of membranes during thermal cycling by 

measuring the temperature at which a hydrogen charged membrane failed under gradual 
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cooling. Their findings indicate that membrane endurance under thermal cycling was 

enhanced by reducing the hydrogen solubility. 

Table 2.3 reveals the enthalpy of hydride formation to be exothermic for Nb, Ta, V, Ni and 

Pd; whereas, Fe and Pt are endothermic. Exothermic, means that this kind of reaction easily 

occurs and hydrides readily form. Endothermic reactions on the other hand need external 

sources of heat to proceed, so in this instance Fe and Pt require heat in order to produce their 

respective hydrides. Phair and Badwal [67] present a list of data similar to that shown in Table 

2.3, however, they incorrectly report that the enthalpy of hydride formation for Pd is 

endothermic (+20 kJ mol-1). 

Table 2.3 Hydrogen permeability values of selected metals and the associated enthalpy of hydride 
formation. 

Metal 
Crystal 

structure 
Hydrogen permeability at 500 °C 

(mol m-1 s-1 Pa-0.5) [49] 
∆H of hydride formation 

(kJ mol-1) [68] 
Nb BCC 1.6 × 10-6 -60 (NbH2) 
Ta BCC 1.3 × 10-7 -78 (TaH0.5) 
V BCC 1.9 × 10-7 -54 (VH2) 
Fe BCC 1.8 × 10-10 +14 (FeH) 
Ni FCC 7.8 × 10-11 -6 (NiH0.5) 
Pd FCC 1.9 × 10-8 -40 (PdH0.5) 
Pt FCC 2.0 × 10-12 +26 (PtH) 

 

2.2.2. Palladium membranes 

At this juncture it is important to understand the reason as to why metals such as Pd are 

popular in the field of hydrogen separation. Hydrogen dissolves in a variety of metals to 

create either interstitial solid solutions or metal hydrides. Certain metals require high 

temperatures and pressures to absorb hydrogen whereas some can form stable hydrides at 

room temperature.  
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The unique nature of Pd makes the metal ideal for the purpose of hydrogen separation in the 

sense that it has the ability to dissociate molecular hydrogen into monatomic form ready for 

fast diffusion through its lattice. Moreover, this metal is capable of absorbing approximately 

600 times its own volume in hydrogen whilst maintaining its physical properties and 

structural integrity, a facet that Thomas Graham discovered in 1866 [69]. It was not until the 

1950s that Pd membranes were scaled up from laboratory environments in favour of the 

nuclear fission industry since there existed a growing demand for separating hydrogen 

isotopes. Since then, Pd membranes are more commonly used for the production of ultra pure 

hydrogen for the semiconductor industry [70]. 

The density of Pd is 12.023 g cm-3 and has a melting point of 1,555 °C. Discovered by 

William Hyde Wollaston in 1803, it is a silvery white metal which is malleable and easily 

worked. Nowadays, it is widely used in the automotive industry in catalytic converters. In the 

neutral ground state, Pd has an electron configuration of: 1s2 2s2p6 3s2p6d10 4s2p6d10 5s0. There 

exist overlapping energy bands between the 4d and 5s energy bands which is typical of 

transition metals. This gives Pd a high affinity for donor electrons from other atoms. 

The Pd-H system features an interstitial solid solution (α-PdH) and palladium hydride 

(β-PdH) phase as shown in Figure 2.6. Both phases have the same FCC crystal structure; 

however, they differ in lattice parameter. Pure Pd has a lattice parameter of 3.89 Å (10 nm = 

1 Å). At room temperature, the α-PdH phase exists up to a composition known as αmax and 

can form alongside the βmin up to a H/Pd atomic ratio of ~0.6 whereby each phase has a lattice 

parameter of 3.895 and 4.025 Å, respectively [71]. The coexistence of these two phases gives 

rise to a notable feature of the phase diagram shown in Figure 2.6 and is referred to as the 

miscibility gap. The critical temperature (Tc) for β-PdH formation is approximately 295 °C 

(below hydrogen pressures of 2 MPa) above which this phase no longer occurs. 
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Figure 2.6 The Pd-H phase diagram reproduced from Huang et al [72] who used published data to 
construct the plot [73-75]. 
 

Cycling of a Pd membrane through the miscibility gap can incur a lattice volume expansion in 

excess of 10%. This occurs due to the disparity between the α- and β-PdH phase lattice 

parameters and as more hydrogen occupies the Pd lattice, internal stresses are created which 

ultimately lead to membrane failure. Such phenomenon has been studied using transmission 

electron microscopy of a Pd-H alloy containing the α-PdH + β-PdH phase showing clear 

evidence of dislocation production which is a precursor to embrittlement [71]. The effects of 

embrittlement can be avoided through purging the membrane of any hydrogen prior to 

thermal cycling in order to prevent crossing the miscibility gap. 

As shown in Figure 2.6, the α- and β-PdH phase are able to coexist below the Tc, however, 

above this temperature the β-PdH phase may only occur at extremely high pressures [76]. 
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According to Dolan [77], the formation of the β-PdH phase is an exothermic process and an 

increase in this phase content in metals such as Pd can lead to a reduction in hydrogen 

solubility of the α-PdH phase. An FCC  metal like Pd is innately more resistant to hydrogen 

embrittlement than BCC metals such as V since hydrogen solubility is relatively lower in Pd 

[77]. 

The obvious drawback of Pd is the inherent material cost, where its price has rapidly risen 

reaching a 5 year high of U.S.$ 908.00 per ounce in late 2014, the equivalent of U.S.$ 32.03 

per gram [78]. With the continued research and production of Pd alloys, the growing demand 

for Pd in various other industries also coupled with rising fuel prices will further compound 

Pd prices. This mere fact makes it ever more difficult to meet the cost target set out by the 

U.S. DoE. As a result, research aims have been geared towards developing Pd alloy 

membranes with minimal thickness or fabricating membranes that use less Pd.  

2.2.3. Palladium alloy membranes 

There exist a plethora of Pd alloys, some yet to be explored, which can bring about superior 

chemical and physical properties when compared to pure Pd. 

Table 2.4 shows hydrogen permeability figures for a range of alloys, however, there are some 

ternary alloys which are mentioned in literature but have no accompanying permeability data. 

Several elements such as Ag, Au, Cu, Y and Pt can be alloyed with Pd to form substitutional 

solid solutions and by doing so can lower the critical temperature (Tc) of the α-PdH → β-PdH 

phase transformation to below room temperature. The top three alloys in terms of hydrogen 

permeability and mechanical/chemical performance are Pd-Ag, Pd-Y and Pd-Cu. 
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Perhaps the most well-known and studied alloy is the Pd-Ag system which has a hydrogen 

permeability of nearly twice that of pure Pd as shown in Table 2.4. Alloying Pd with Ag 

lowers the Tc of the miscibility gap such as in Pd23Ag77 wt% where the Tc is at room 

temperature and as a result purging hydrogen from the membrane prior to thermal cycling is 

not required [77, 79]. Typically, Pd-Ag alloy membranes are used in commercial purifiers, 

though they exhibit short life cycles due to significant lattice expansion upon hydrogen 

absorption and undergo grain coarsening at high temperatures [80]. Furthermore, it has 

relatively low strength when compared to other Pd alloys such as Pd-Y and Pd-Cu. Another 

issue to note is the onset of rising fossil fuel prices that has a direct knock-on effect on the 

value of Ag (and Au) which could make this alloy commercially unattractive. 

The Pd-Y system has the highest reported hydrogen permeability of the Pd alloys. Harris and 

Norman [81] discovered that despite Y atoms being ~30% larger than Pd atoms, Y is soluble 

in Pd up to 12 at%. This is contrary to Hume-Rothery who stated that there is a 15% atomic 

mismatch limit [82]. Consequently, Pd-Y alloys owe their superior tensile strength to this 

atomic mismatch. The hydrogen permeability of a Pd92Y8 at% membrane at 400 °C is nearly 

2.5 times that of a Pd76Ag24 at% membrane and yet has not been commercialised. A probable 

reason for this is that Pd-Y alloys undergo work hardening during cold work, meaning several 

costly annealing stages would be necessary to facilitate processing of the alloy into a working 

membrane. 

The Pd-Cu system offers a number of advantages over pure Pd. It gives a maximum hydrogen 

permeability at approximately Pd60Cu40 wt% and although it does not have a higher hydrogen 

permeability than the Pd-Ag system, it is mechanically superior, more durable to hydrogen 

cycling and exhibits resistance to H2S contamination [44, 83]. For the Pd60Cu40 wt% 

composition, the ordered CsCl-type BCC phase is stable and is attributed to the high 
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hydrogen permeability demonstrated by this system [35, 37]. Piper [39] used electrical 

resistivity measurements to determine the room temperature hydrogen diffusivity of the 

Pd60Cu40 wt% BCC phase and reported a value of 5 × 10-5 cm2 s-1 which is more than a factor 

of 300 times greater than that of pure Pd at the same temperature. Opalka et al [84], used 

atomic modelling to show that sulphur interaction with the Pd-Cu system depended more on 

electronic characteristics than surface site geometry. Furthermore, dissolved hydrogen has 

shown to increase the compositional range at which the BCC | FCC + BCC phase boundary 

occurs in the Pd-Cu system almost acting as a third alloying constituent [39]. 
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Table 2.4 Hydrogen permeability values of pure Pd and miscellaneous Pd alloys (wt%) at 350 °C. 

 Permeability (× 10-8 mol m-1 s-1 Pa-n) n Reference 
Pd 1.43 0.5 Fletcher [28] 
Pd 1.20 0.5 Holleck [85] 
Pd 0.15 0.68 Hurlbert [86]  
Pd 0.80 0.5 Kamakoti [87] 
Pd 0.73 0.5 Katsuta [88] 
Pd 1.07 0.5 Koffler [89] 
Pd 1.39 0.5 McKinley [35] 

Pd 
1.33 0.5 

Morreale [90] 
0.24 0.62 

Pd 1.27 0.5 Toda [91] 
Pd75Ag25

a 3.21 0.5 Fort [92] 
Pd90Ag10 2.44 

0.5 McKinley [35] 
Pd73Ag27 1.99 
Pd60Ag40 0.68 
Pd48Ag52 0.10 
Pd75Ag25 1.65 0.5 Serra [93] 
Pd95Au5 1.49 

0.5 McKinley [35] 
Pd80Au20 1.35 
Pd60Au40 0.59 
Pd45Au55 0.13 
Pd99.5B0.5 1.32 0.5 McKinley [35] 
Pd94.25Ce5.75

a 2.42 0.5 Hughes [94] 
Pd60Cu40 1.42 0.5 Decaux [95] 
Pd80Cu20 0.17 

0.5 Howard [37] Pd60Cu40 0.50 
Pd47Cu53 0.04 
Pd80Cu20 0.17 

0.5 Kamakoti [87] 
Pd60Cu40 0.60 

Pd60Cu40 
1.07 

0.5 Krueger [96] 
1.76b 

Pd90Cu10 0.68 

0.5 McKinley [35] 
Pd70Cu30 0.12 
Pd60Cu40 1.49 
Pd55Cu45 0.25 
Pd45Cu55 0.01 
Pd60Cu40 0.35 0.5 Yuan [97] 
Pd92Gd8

a 5.33 
0.5 Sakamoto [98] 

Pd88.7Gd6.3Ag5
a 5.66 

Pd90Ni10 0.27 0.5 McKinley [35] 
Pd93.4Y6.6

a 5.39 
0.5 Fort [92] 

Pd90Y10
a 5.69 

Pd92Y8
a 3.82 0.5 Hughes [94] 

Pd92Y8
a 3.92 

0.5 Sakamoto [98] 
Pd85.3Y4.7Ag10

a 3.70 
a denotes at%. 
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Using density functional theory (DFT) analysis on an array of Pd3M alloys, it has been shown 

that hydrogen solubility is more dependent on electronic structure and less on lattice 

parameter [99]. As a result, attempts have been made to elucidate and develop a model that is 

capable of describing the nature of the electronic interaction between the dissolved hydrogen 

and the host alloy. Furthermore, it has also been demonstrated that the solubility of hydrogen 

in a metal is mainly dependent on the enthalpy of solution which is strongly related to the 

density of states (DOS) of the d-orbital for said metal [100]. 

Consideration should be given to the structure adopted by each alloy component when 

determining its DOS [77]. Since the introduction of an impurity to a metal can alter its DOS 

and in addition can change its heat capacity [101]. The DOS for an alloy is typically 

determined using rigid band approximation, which is based on the assumption that the band 

shape is unchanged upon alloying; however, the energy of all states is shifted depending on 

the impurity content [102]. 

Ebisuzaki and O’Keeffe [100] have applied the rigid band approximation alongside DOS data 

for transition metals [102, 103] to determine the change in DOS for alloys with different 

electron per atom ratios. The limitation of this model is that it may only apply to elements 

with the same crystal structure and are adjacent to each other on the periodic table [104]. 

Moreover, the rigid band approximation cannot be applied to elements in different blocks due 

to the increase in valence band width between the 3d and 5d blocks [77]. As a result, other 

models have been developed such as the tight binding recursion method [105, 106] and the 

superposition model based on charge transfer between unit cells of constituent metals [104]. 

Nonetheless, the rigid band approximation has proven to accurately determine the DOS of 

various alloys [101, 107]. 
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Hydrogen solubility has been predicted using DFT and used to calculate the solubility 

constant whereby the chemical potential of interstitial and gaseous hydrogen are equated [77]. 

This technique has been applied to crystalline Pd alloy membranes [87, 99, 108-111], 

amorphous non-Pd alloy membranes [112-114], AB2 hydrogen storage alloys [115-117] but 

currently not to binary higher order BCC Group IV and V alloy membranes. 

2.2.4. Hydrogen absorption in palladium and palladium alloys 

Before hydrogen absorption can occur in a metal, the hydrogen gas molecule adsorbs onto the 

metal surface and dissociates to form individual hydrogen atoms. This is a process known as 

dissociative chemisorption. Following dissociative chemisorption, the adsorbed hydrogen 

atoms are then ionised to produce a proton (H+) and an electron (e-) and subsequently 

absorbed by the host metal. This reaction is described in Equation 2.17:  

 
1 2
 ��(���) ⇌ �(DEF�G)� + �(DEF�G)�  Equation 2.17 

 

Like with most reactions there is an associated activation energy and in certain 

metal-hydrogen systems dissociation of the hydrogen molecules can be the rate limiting step 

in the formation of a hydride phase. 

Once the hydrogen is in monatomic form, it dissolves into the bulk metal to form either an 

interstitial solid solution or metal hydride phase. For a period of time it was debated in the 

chemical literature as to whether the dissolved hydrogen in transition metals exists as a 

H atom or if this atom donates or even accepts an electron. Svensson [118] observed that the 

magnetic susceptibility of PdHx drops linearly with increasing hydrogen content to zero at a 

H/Pd atomic ratio of 0.6. Similar behaviour was also reported for the Ni-H system [119]. 
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These findings were interpreted as the hydrogen atoms ionising and donating electrons to Pd 

gradually filling the d-band up until a H/Pd atomic ratio of 0.6 is reached at which point the 

d-band is full [120]. 

The dissolution of a single hydrogen atom can be described using the following steps as 

suggested by Franck [121] and Ebisuzaki and O’Keeffe [100]: 

 �(���) ⇌ �(���)� + �(���)�  Equation 2.18 
 

 �(���)� ⇌ �(DEF�G)�  Equation 2.19 
 

 �(���)� ⇌ �(DEF�G)�  Equation 2.20 
 

Initially, the hydrogen atom is considered to be ionised on the metal surface to form a proton  

and an electron (Equation 2.18) which are subsequently absorbed into the bulk metal as 

described in Equation 2.19 and Equation 2.20, respectively. When the dissolved hydrogen 

donates an electron to the host metal it becomes a proton and in effect increases the local 

electron density. From empirical evidence, Ebisuzaki and O’keeffe [100] surmised that the 

screened-proton model sufficiently described the behaviour of dissolved hydrogen in 

transition metals. 

The concentration of hydrogen inside the metal is described by Sieverts’ law (Equation 2.21) 

which is a variation of Equation 2.3: 

 � = �� 
! �
 ��- H−∆I,

12 J Equation 2.21 
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where ∆G
0 is the change in standard free energy of the hydrogen solution reaction shown in 

Equation 2.18. This term can also be defined in Equation 2.22: 

 ∆I, = ∆�, − 2∆�, Equation 2.22 
 

where ∆H
0 and ∆S

0 are the changes in standard enthalpy and entropy, respectively, for the 

dissolution of hydrogen into the metal. As a result, the solubility constant (S) shown in 

Equation 2.2 can be expressed in thermodynamic terms (Equation 2.23): 

 � = ��- H−∆I,
12 J Equation 2.23 

 

At low C, Sieverts’ law provides an adequate description of the variation of hydrogen 

solubility in a metal as a function of the square root of pressure. Assuming a low value for C 

is assumed, Sieverts’ law is a useful model for predicting hydrogen solubility in a Pd-based 

membrane under typical operating conditions [122]. As C increases, however, deviation from 

Sieverts’ law occurs for the following reasons [123]: 

• Elastic strain energy of the dissolved hydrogen expands the metal lattice to a point where it 

becomes a significant factor in determining hydrogen solubility. 

• The electronic properties of the metal-hydrogen system change as the ratio of free 

electrons to free metal atoms increase. 

• Hydrogen-hydrogen interaction of an attractive or repulsive nature increases. 

• The entropy stops representing a random occupancy of dissolved hydrogen within the 

unoccupied interstitial sites. 
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The process of hydrogen absorption into the host metal can be represented by the partial 

molar enthalpy of hydrogen at infinite dilution, ∆HH, shown in Equation 2.24 [43, 100]: 

 1 2
 ∆�� = /�F + /=KG + /;E= − /L + 1 2
 /M�� + /N + /, Equation 2.24 
 

where Est is the elastic strain energy imposed by the proton upon the host metal lattice, Epol is 

the energy change as a consequence of the conduction electrons becoming polarised by the 

protons, Erep is the coulombic repulsion energy between the screened proton and ion cores, Ew 

is the work function of the metal, Edis is the hydrogen molecule dissociation energy, EI is the 

ionisation energy of a hydrogen atom, E0 is the zero point energy. 

It has been assumed that all of the energy terms on the right hand side of Equation 2.24 are 

somewhat constant for various alloys with the exception of Est and Epol. Hence, differences in 

∆HH between various alloys can be attributed to the variation in either Est or Epol [43]. It is 

interesting to note that Ebisuzaki and O’Keeffe [100] propose that Epol has the most influence 

on ∆HH over all other energy terms and have excluded Est from their calculations. At very low 

hydrogen concentrations, Epol is considered to be constant for different alloys and equivalent 

to that of its pure metal [124-126]. 

Figure 2.7 demonstrates the dissolution of hydrogen into metals such as Pd using a simplified 

diagram adapted from Blagojević et al [127]. Initially, the hydrogen molecule moves towards 

the metal surface and can be physisorbed onto either an ‘on-top’ or hollow site through a Van 

der Waals type interaction. The molecule is then dissociated and the monatomic hydrogen 

atoms are chemisorbed into subsurface interstitial sites which results in the slight 

displacement of the above metal atoms. The hydrogen atoms proceed to diffuse further into 

the bulk metal. 
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Figure 2.7 Diagram depicting the hydrogen dissolution process adapted from Blagojević et al [127]. Step 
(a) hydrogen molecule approaches the metal surface, (b) physisorption of the hydrogen molecule onto the 
metal surface through Van der Waals interaction, (c) dissociation of the hydrogen molecule followed by 
dissociative chemisorption and (d) occupation of subsurface interstitial sites which is then proceeded by 
diffusion into the bulk metal. Furthermore, on-top and hollow sites are indicated. 
 

From an energetic perspective, Figure 2.7 can be related to a plot of potential energy as a 

function of distance into the metal (Figure 2.8). Studies have shown that the metal surface 

orientation has an influence on hydrogen occupation of subsurface sites. Reconstructed (110) 

surfaces of Pd and Ni or on less densely packed planes facilitate occupation of subsurface 

sites at low temperatures (100 K) and hydrogen pressures (10-6 Pa) [128-130], while higher 

temperatures and pressures are required for more densely packed planes [128]. 

In Figure 2.8, the energy levels represent the chemical potential of each hydrogen state during 

the dissolution process. Step (a) shows the chemical potential of a single hydrogen atom in the 

gaseous state, H(gas), moving towards the metal surface. Two hydrogen adsorbed states, H(ads), 

are shown where step (b) corresponds to the chemical potential of a single hydrogen atom 

adsorbing onto an on-top site and step (c) relates to the chemical potential associated with a 

single hydrogen atom adsorbing onto a hollow site. Subsequently, step (d) refers to the 

chemical potential of a single hydrogen atom in the subsurface interstitial sites, H(ss), which is 

then followed by diffusion into the bulk metal. 

(a) (b) (c) (d)

H2 molecule

Metal surface

On-top site

Hollow site
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The plot further shows that adsorption is activated in the shallow energy wells of the on-top 

sites requiring high hydrogen pressure to be filled, whereas adsorption in the hollow sites is 

non-activated thus occurring spontaneously. In addition, hydrogen absorption is shown to be 

somewhat endothermic with a high activation energy barrier present between an adsorbed 

hydrogen atom on a hollow site, H(ads), and the absorbed state, H(abs). The heights of the 

activation energy barriers and depths of the energy wells depend on the properties of the 

metal, surface structure and hydrogen coverage. The activation energy barrier between step 

(c) and (d) could potentially be lowered by high hydrogen coverage or a surface 

reconstruction [128]. 

 
Figure 2.8 Plot of potential energy as a function of distance adapted from Protopopoff and Marcus [131] 
showing the different states of a single hydrogen atom during the dissolution process. Steps (a), (b), (c) and 
(d) correspond to the steps shown in Figure 2.7. Step (a) represents the chemical potential for a hydrogen 
atom in the gaseous state approaching the metal surface, (b) an energy well for hydrogen adsorption 
(H(ads)) onto an on-top site, (c) an energy well for hydrogen adsorption (H(ads)) onto a hollow site and (d) an 
energy well for hydrogen occupation of subsurface interstitial sites (H(ss)) and subsequent absorption 
(H(abs)) and diffusion into the bulk metal. 
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The behaviour of hydrogen solubility with temperature is dependent on the chemical 

properties of the host metal. This is determined by the tendency of the host metal to either 

form a solid solution or a stable metal hydride [132]. Examples of metals that exhibit an 

increase in hydrogen solubility with rise in temperature are Mn, Fe, Co and Ni which are 

known as endothermic occluders. These metals only form solid solutions with hydrogen 

occupying random sites [77]. For the purpose of hydrogen separation, metals like Pd, Ti, V, 

Nb and Zr are popular and are classed as exothermic occluders [133] since they exhibit a 

decrease in hydrogen solubility with increasing temperature. This is due to the propensity of 

the metal to form a stable and ordered metal hydride [77]. 

Commonly, Pd readily accepts donor electrons from other atoms such as hydrogen due to the 

aforementioned overlapping energy bands located between the 4d and 5s energy bands. The 

occupancy of the hydrogen atom distorts the lattice and introduces an elastic strain energy. 

The insertion of four hydrogen atoms into the Pd FCC unit cell results in a volume expansion 

of 11.5 Å3 hence one hydrogen atom produces an increase in volume of 2.9 Å3 [134]. 

A pressure-composition-temperature (PCT) diagram is commonly used to understand the 

thermodynamic properties of a metal-hydrogen system. Figure 2.9 is a PCT diagram for the 

palladium-hydrogen system featuring a series of isotherms that show the absorption behaviour 

at different hydrogen pressures. Similar to Figure 2.6, three distinct regions can be shown in 

the Pd-H PCT diagram which are the α-PdH phase, α-PdH + β-PdH mixed phase and β-PdH 

phase. The extent of each isotherm plateau defines the miscibility gap which corresponds to 

the conditions where the α- and β-PdH phase coexist. 
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Figure 2.9 Pd-H PCT diagram reproduced from Knapton showing a series of isotherms that define the 
miscibility gap region [135]. 
 

At conditions below 300 °C and 2 MPa of hydrogen pressure, an increase in hydrogen 

concentration within Pd results in the formation of the β-PdH phase which creates 

considerable lattice expansion causing stresses to be built up inside the metal. The Pd-Cu 

system has been selected for this work since the miscibility gap is closed above room 

temperature meaning that membranes fabricated from this alloy do not suffer from hydrogen 

embrittlement caused by cycling between the α- and β-PdH phases. 

Hydrogen solubility in Pd alloys such as Pd-Cu and Pd-Ag, have been studied through 

comparison of solubility at a standard pressure of 101.325 kPa [100] and by determining the 

composition of the hydride phase [136]. In both instances, the findings show evidence of an 

electronic effect influencing hydrogen solubility. Since Pd-Cu and Pd-Ag have an almost 

identical electron band structure it would therefore be expected that both alloys have similar 

hydrogen solubility values yet Figure 2.10  gives evidence to the contrary. 
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Figure 2.10 Hydrogen solubility at 101.325 kPa and 30 °C as a function of alloy composition for Pd-Cu 
and Pd-Ag, reproduced from Burch and Buss [43]. 
 

At 101.325 kPa of hydrogen pressure and 30 °C, hydrogen solubility (ratio of hydrogen to 

metal atoms (H/M)) in Pd-Cu alloy decreases more rapidly with increasing Cu content than 

the Pd-Ag alloy with increasing Ag content. This can be attributed to the difference between 

lattice parameters of both alloy systems since an increase in Cu content in the Pd-Cu system 

results in a decrease in lattice parameter whereas the reverse is true upon increase of Ag 

content in the Pd-Ag system. The relatively larger lattice parameter of the Pd-Ag system 

means that a proton imparts less strain energy upon dissolution resulting in a decrease in ∆HH 

compared with values associated with the Pd-Cu system as shown in Table 2.5: 
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Table 2.5 Relative partial molar enthalpies and lattice parameters for Pd-Cu and Pd-Ag alloys. 

Alloy composition (at%) ∆HH (kJ mol-1) Lattice parameter (Å) 
Pd -18.0a 3.889c 
Pd95Cu5 -17.7a 3.877c 
Pd90Cu10 -17.4a 3.865c 
Pd85Cu15 -16.4a 3.853c 
Pd80Cu20 -16.0a 3.840c 
Pd90Ag10 -30.8b 3.906d 
Pd80Ag20 -39.1b 3.926d 
a [43], b [136], c [137], d [138]. 
 

Hydrogen solubility of other commercial Pd alloys such as Pd-Y have been investigated by 

Yoshihara and McLellan [139] at various temperatures. It was shown that hydrogen solubility 

increased with increasing Y content over the entire Pd-Y solid solution range. Maximum 

hydrogen solubility was also shown to decrease with increasing temperature due to the 

exothermic nature of hydrogen absorption in the Pd-Y system. Furthermore, it was observed 

that the partial molar enthalpy of hydrogen at infinite dilution, ∆HH, decreased with 

increasing Y content which was attributed to lattice dilation caused by the addition of Y. 

The Pd-Ce alloys exhibit relatively lower hydrogen solubility in comparison to Pd-Y alloys 

[140] despite Ce expanding the metal lattice more so than Y [81]. Yoshihara and McLellan 

[139] suggest that Y atoms have a trapping effect on the dissolved hydrogen, whereas 

Yoshinari et al [141] propose that this phenomenon only occurs at low temperatures of 

between 100 – 150 K. The hydrogen solubility in the Pd-Y system has been shown to be 

influenced by the thermal history of the alloy in particular at high Y contents [142].  

The improvement of hydrogen solubility in Pd-Y alloys has also been noted by Yoshinari et al 

[141]. Using an electrolytic method, hydrogen solubility at room temperature was determined 

for Pd, Pd98Y2 at% and Pd95Y5 at%. The results revealed that compared to pure Pd, the 
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Pd98Y2 at% and Pd95Y5 at% alloys had an increase in solubility by a factor of 1.7 and 2.3, 

respectively. 

2.2.5. Hydrogen diffusion in palladium and palladium alloys 

As previously mentioned, hydrogen propagates through non-porous media such as dense 

metal membranes via means of solution-diffusion. A mechanism that is not entirely 

understood, yet nonetheless is used to describe the behaviour of hydrogen with certain metal 

membranes. The permeated hydrogen from these membranes is sufficient to power PEFCs 

and in some cases can operate at temperatures corresponding to industrial processes such as 

the water gas shift reaction (350 °C), steam methane reformation (815 °C) and methanol 

synthesis (300 °C). 

To date, many theories have been proposed in order to elucidate the mechanism behind 

hydrogen diffusion through a metal lattice and this is still subject to a fair deal of speculation. 

However, Kehr [143] has suggested several different mechanisms for hydrogen diffusing 

through metal lattices, such as in Pd, which are all temperature dependent. Figure 2.11 

displays the four types of diffusion. 

 
Figure 2.11 Kehr’s proposed diffusion models for hydrogen in metals [143]. 
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At extremely low temperatures, there are virtually no thermal vibrations which are also 

known as phonons (Region I). In this state, hydrogen atoms are able to become “self trapped” 

due to the relaxation of the surrounding metal lattice. It is then assumed that the hydrogen 

atoms progress to the adjacent interstitial site via a quantum mechanical process referred to as 

‘band propagation’. As the temperature increases, hydrogen atoms are transported through a 

mechanism referred to as thermally activated tunnelling (Region II) which involves phonons. 

At higher temperatures (Region III), hydrogen atoms are modelled as classical particles and 

are able to execute over-barrier jumps between neighbouring interstitials sites. At even higher 

temperatures (Region IV), hydrogen atoms behave more like a fluid similar to the flow of 

liquids and gases as opposed to being confined to interstices. 

Kehr [143] notes that these mechanisms are simply broad qualitative assumptions whereby 

more than one method of transport can transpire at a given temperature. Region III is of 

interest as this is expected to occur between 200 – 600 °C which is comparable to the 

operating temperature of a metal membrane. Therefore, the diffusion mechanism used in Pd 

and its alloys can be described by the thermally activated jumps over barrier method which 

involves classical rate theory [144]. The jump rate of a hydrogen atom between interstitial 

sites (Γ) is expressed in Equation 2.25: 

 Γ = A�P	��- .−/7R823 Equation 2.25 

 

where, ni is the nearest number of neighbouring interstitial sites, v is the vibrational frequency 

of the solute hydrogen atom in an interstitial site, EA is the activation energy and kB is 

Boltzmann’s constant. For interstices in a cubic lattice, the theoretically derived diffusivity 

(D) can be expressed as the following (Equation 2.26): 
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 � = S�TΓ Equation 2.26 
 

where a is the lattice parameter and γ is the geometric factor which is 1/12 for the FCC lattice 

and 1/24 for the BCC lattice. Combining Equation 2.25 and Equation 2.26 gives Equation 

2.27: 

 � = S�	TA�P	��- .−/7R823 Equation 2.27 

 

The activation energy (EA) term can be separated into two parts as shown in Equation 2.28: 

 /7 = ∆� − 2∆� Equation 2.28 
 

where ∆H is the change in molar enthalpy as a result of lattice distortion created by hydrogen 

atoms jumping between interstitial sites and ∆S is the change in molar entropy as a result of 

change in vibrational frequency. Equation 2.27 and Equation 2.28 can be combined to give 

Equation 2.29: 

 � = S�	TA�P	��- .−∆�12 3��- .∆�1 3 Equation 2.29 

 

Certain terms can be merged into the pre-exponential constant (D0) to give the simplified 

Arrhenius relationship (Equation 2.10) previously mentioned in Section 2.1.3. 

Equation 2.10 is only valid under certain conditions and as already stated the operating 

temperatures for membrane applications are normally in the range of 200 – 600 °C where the 

concentration of hydrogen is relatively low and the diffusion of hydrogen can be sufficiently 

described by the classical diffusion model (Equation 2.10). Diffusion of solute atoms in 
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metals becomes non-classical at temperatures below 100 K, at high hydrogen concentrations 

and with different hydrogen isotopes. Hence, Equation 2.10 is not valid under these 

conditions and so a quantum theory of diffusion is necessary [145]. To date, no theory has 

been able to accurately model the diffusion of solute atoms in a metal for each temperature 

regime. 

A variety of methods have been used to measure the diffusion of hydrogen in metals such as 

mechanical relaxation, X-ray and permeation techniques. A majority of diffusion data is 

obtained with the aid of non-equilibrium techniques like the Gorsky effect and permeation 

measurements. The Gorsky effect uses the lattice relaxation effect which involves the 

diffusion of hydrogen atoms from one side under compression to another side under tension 

whereby the diffusivity is determined by measuring the time taken for elastic relaxation [145]. 

This technique negates any surface effects meaning that accurate diffusion data can be 

obtained. Furthermore, diffusion data can be acquired by determining the jump frequency of 

hydrogen atoms using equilibrium measurements like quasi-elastic neutron scattering (QNS) 

and nuclear magnetic resonance (NMR). 

The crystal structure has a marked effect on the solubility and diffusion mechanism of a dense 

metal membrane. The BCC crystal structure features an atom positioned at each corner of the 

cubic unit cell and one in the centre as shown in Figure 2.12. A range of transition metals 

form the BCC crystal structure such as W, V, Cr, Rb, Nb, Mo and Ta. Furthermore, Pd alloys 

such as the Pd-Cu system form an ordered BCC crystal structure which is shown in Figure 

2.12. 
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Figure 2.12 A representation of the BCC unit cell, showing the arrangement of Pd atoms (red spheres) 
and Cu atoms (blue spheres) in this type of crystal structure. An example of a tetrahedral site (left) and 
octahedral site (right) is also highlighted revealing the position occupied by the hydrogen atom (green 
sphere) in each case during diffusion.  
 

Similarly, the FCC crystal structure is another type of cubic unit cell, however, an atom is 

positioned at the centre of each face of the cubic unit cell as opposed to being situated at the 

centre of the 3D cell as shown in Figure 2.13. This type of crystal structure is adopted by Pd 

and a variety of Pd alloys. Note, that the length of each dimension of the cubic unit cell is 

known as the lattice parameter. 
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Figure 2.13 A representation of the FCC unit cell, showing the arrangement of Pd atoms (red spheres) and 
Cu atoms (blue spheres) in this type of crystal structure. An example of a tetrahedral site (left) and 
octahedral site (right) is also highlighted revealing the position occupied by the hydrogen atom (green 
sphere) in each case during diffusion. 
 

Both crystal structures feature octahedral (O) and tetrahedral (T) interstitial sites which can be 

occupied by dissolved monatomic hydrogen. Table 2.6 shows the different concentrations and 

varying sizes of the interstices existing within the BCC and FCC unit cell that help dictate the 

hydrogen solubility and transport mechanisms of the metal. 

Table 2.6 Crystallographic data for BCC and FCC metals [77]. 

Structure BCC FCC 
Space group Im3m Fm3m 

Interstitial site Octahedral Tetrahedral Octahedral Tetrahedral 
Number per atom 3 6 1 2 
Size relative to M atom radius 0.155 0.291 0.414 0.225 
Packing density (%) 68 74 
 

As shown in Table 2.6, there are 3 times more O and T sites available in the BCC crystal 

structure compared to that of the FCC crystal structure; however it should be noted that the T 

sites surrounding the BCC O sites are severely distorted. Furthermore, the T sites in the BCC 
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crystal structure are larger than the O sites, whereas the reverse is true in the FCC crystal 

structure [77]. 

The Nb-H system has been investigated by Gissler and Rother [146] with the aid of 

quasielastic neutron scattering in order to study the transport of hydrogen in a BCC metal. 

From this work, Dolan [77] concludes that hydrogen propagates through the BCC metal 

lattice via a series of hops between O and T sites and further suggest that the (1/4) (111) 

hexahedral site may also have an involvement in the diffusion process. 

Upon dissolution, the hydrogen atom has a tendency to occupy O interstitial sites in the Pd 

FCC unit cell [100]. Data for diffusion of hydrogen in an FCC metal, such as Pd, was collated 

from 25 authors by Völkl and Alefeld [40]. The pre-exponential constant and activation 

energy were calculated to be D0 = 2.90 × 10-3 cm2 s-1 and EA = 22.2 kJ mol-1, respectively. 

These values, however, are approximately an order of magnitude higher when compared to 

Group V BCC metals such as V and Nb. 

Conversely, DOS calculations have shown that hydrogen will preferentially inhabit the O 

sites as opposed to the T sites in the Pd system since the O interstices are far more stable [147, 

148]. Although, it has been argued in literature that hydrogen can also occupy T sites as well 

as O sites in the Pd lattice. In-situ high resolution neutron diffraction studies at 310 °C of Pd 

loaded with 9 MPa of deuterium revealed significant T site occupation [149]. Furthermore, it 

has also been cited in literature that the activation energy for diffusion of hydrogen increases 

with increasing distance between interstitial sites, hence diffusivity is greater in metals with 

shorter lattice parameters [150]. 

Theoretical models such as DFT are commonly used in conjunction with experimental data to 

predict the diffusion of hydrogen in pure metals as well as in ordered and disordered alloys 
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[151]. The rate of thermally activated jumps between interstitial sites can be determined by 

calculating vibrational frequencies of the hydrogen atoms in the interstitial sites and the 

activation energy for jumping which is also known as the transition state [77]. 

Additionally, DFT has been useful in proving that activation energy for hydrogen diffusion 

between neighbouring tetrahedral interstices in Group V BCC metals such as Ta is greater 

than Nb [152]. Moreover, it has also been shown that at temperatures which correspond to the 

operating temperature of dense metal membranes (~400 °C), hydrogen diffusion was best 

described by over-barrier thermally activated jumps [77]. This is in good agreement with 

Kehr’s aforementioned model demonstrated by region III in Figure 2.11. In metals with 

relatively small lattice parameters, thermally activated tunnelling is expected to dominate 

which is outlined in Kehr’s model in region II of Figure 2.11. Hence, alloying metals such as 

Pd, V, Nb and Ta with smaller elements can increase the contribution of phonon assisted 

tunnelling in hydrogen diffusion [77]. 

In most instances, substitutional alloying of Pd with other elements has the effect of reducing 

hydrogen diffusivity, irrespective of whether the solute atom increases or decreases the lattice 

volume. An exception to this is the Pd60Cu40 wt% alloy which forms the ordered BCC phase 

below 600 °C [153, 154]. It has been reported, that this ordered phase has the highest room 

temperature diffusivity (D = 2.0 × 10-5 cm2 s-1) compared to any metal-hydrogen system and 

is two orders of magnitude greater than that of pure Pd (D = 2.0 × 10-7 cm2 s-1) [39]. Despite, 

such high hydrogen diffusivity, the hydrogen permeability is relatively low since increasing 

Cu content reduces hydrogen solubility unlike Ag and Y. 

The room temperature hydrogen diffusivity was measured by Barlag et al [155] for various 

FCC Pd alloys which were made using elements that have high hydrogen solubility (V and 
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Nb) and low hydrogen solubility (Ag, Cu and Ni) relative to pure Pd, the results of which are 

displayed in Figure 2.14. It was shown that there was little change in hydrogen diffusivity at 

Ag concentrations of ≤ 20 at%. This observation agreed well with work by Holleck [85] who 

observed negligible change in ED from pure Pd to Pd80Ag20 at% as shown in Table 2.7. At Ag 

concentrations greater than 20 at%, a sharp decrease in hydrogen diffusivity is seen in Figure 

2.14 reaching a minimum at approximately Pd40Ag60 at% and subsequently increasing with 

further Ag additions up until the value of pure Ag is achieved. 

 
Figure 2.14 Hydrogen diffusivity in A1-xBx alloys at low hydrogen concentrations where hydrogen 
solubility in A is greater than in B [61]. 
 

Using a Monte Carlo simulation method, Barlag et al [155] was able to explain the variation 

of hydrogen diffusion as a function of Ag content by proposing a simple two-state model. In 
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this model, it is assumed that two types of O sites exist giving rise to different hydrogen 

occupation probabilities or different hydrogen solubility values. 

Barlag et al [155] mention that at low Ag additions, the Ag atoms partially obstruct the 

energetically favourable hydrogen diffusion route in the Pd matrix, resulting in a round-about 

way trajectory. With increasing Ag content, Pd atoms behave like traps in a Ag matrix thus 

hindering the diffusion of hydrogen through the lattice. A similar trend is observed in the FCC 

phase region when substituting Ag with less hydrogen soluble elements such as Ni or Cu. 

Upon alloying Pd with elements which have relatively higher hydrogen solubility values, such 

as Nb and V, it was found these metals acted as hydrogen traps in the Pd matrix therefore 

reducing its diffusivity. From these observations, Barlag et al [155] proposed that alloying Pd 

with elements with relatively higher hydrogen solubility would result in reduction in 

diffusivity due to this trapping effect. 

Table 2.7 Hydrogen diffusion data for Pd and various Pd alloys with compositions expressed in at%. 

 ED (kJ mol-1) D0 (cm2 s-1) × 10-3 Reference 
Pd 22.2 2.90 [40] 
Pd 22.0 2.94 [85] 
Pd90Ag10 22.2 2.69 [85] 
Pd80Ag20 22.3 2.33 [85] 
Pd75Ag25 25.9 3.07 [93] 
Pd75Ag25 29.6 1.04 [156] 
Pd47.5Cu52.5 10 3.0 [39] 
Pd92Y8 30.9 1.23 [156] 
 

Electronic effects have also been shown to have a large influence on ED for several Pd alloys 

relative to pure Pd. It has been shown by the work of Buchold et al [157] that variation in ED 

is proportional to the valence electron concentration (VEC). This quantity is defined as the 

total number of valence electrons in the alloy per atom. It was suggested that the increase in 
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ED with solute concentration is attributed to the filling of the Pd d-band resulting in a 

reduction in proton screening. Therefore, there appears to be a correlation between ED and the 

VEC of the alloy. 

Hughes and Harris [94] were able to confirm the theory of Buchold et al by investigating the 

hydrogen diffusivity in Pd92Y8 at%, Pd75Ag25 at% and Pd94.25Ce5.75 at% using permeation 

experiments. Furthermore, the hydrogen diffusivities of these alloys were found to have an 

Arrhenius-type relationship with temperature. From Table 2.7 it can be seen that Pd92Y8 at% 

and Pd75Ag25 at% have similar ED and D0 values which can be ascribed to the similar VEC 

values. This highlights that the difference in their hydrogen permeability can be attributed to 

differences in hydrogen solubility in both alloys. 

2.3. Pd-Cu system 

Currently, Pd-Cu alloy membranes remain of interest for the purpose of hydrogen separation 

applications due to their high catalytic activity for hydrogen dissociation, high permeability 

and mechanical robustness. Furthermore, Pd-Cu alloys containing the crystalline FCC crystal 

structure have shown potential to purify hydrogen feed streams containing impurities such as 

H2S [44, 45, 158, 159]. This alloy system exhibits better resistance to hydrogen embrittlement 

and H2S poisoning than pure Pd and Pd-Ag alloy membranes [35, 36]. 

2.3.1. Phase diagram 

Ruer [160] conducted preliminary studies into the Pd-Cu binary system using thermal analysis 

and metallography. Taylor [161]; Jones and Sykes[162]; Nemilov [163]; and Jaumot and 

Sawatzky [164] have also investigated this system. Nemilov [163], was able to establish the 

Pd-Cu liquidus using thermal analysis data. Hansen [165] published a Pd-Cu phase diagram 
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featuring the solidus and liquidus based from data acquired from Ruer [160] and Nemilov 

[163]. 

The existence of the ordered AuCu3 type structure was observed in Pd-Cu alloy compositions 

of less than 20 at% Pd and a tetragonal structure was seen in the compositional range of 20 – 

25 at% Pd [162, 164, 166]. Schubert et al [167, 168] theorised that between 18.5 – 25 at% Pd 

a one dimensional long-period superlattice (1D-LPS) structure forms with a more complex 

LPS structure occurring between 25.5 – 30 at% Pd. It was later discovered by Watanabe et al 

[169] that this complex LPS phase was indeed the 2D-LPS structure. The 2D-LPS phase has a 

large orthorhombic unit cell which is essentially made up of the elementary face-centred 

tetragonal lattice [170]. The 1D-LPS and 2D-LPS phases have garnered a fair amount of 

interest in the past and have been the focus of many studies [171-176]. 

Subramanian and Laughlin [154], have previously calculated and summarised the lattice 

parameters for the various Pd-Cu phases, however, they have concluded that the symmetry of 

2D-LPS phase was monoclinic as opposed to orthorhombic based on the data produced by 

Watanabe and Ogawa [170]. The Pd-Cu alloy system crystal structure data is outlined in 

Table 2.8. 

Table 2.8 Crystal structure data for the Pd-Cu system. 

Phase Composition 
(Pd wt%) 

Space 
group 

Structur-bericht 
designation 

Prototype Reference 

FCC (α) 0 – 100 UV3XV A1 Cu [153] 
Cu3Pd ~12.1 – 32.1 �V3XV L12 AuCu3 [162] 
1D-LPS ~25.5 – 39.4 �4VV - Cu3Pd [172] 
2D-LPS ~28.2 – 42.9 - - Cu3Pd [175] 
CuPd (β) ~48.5 – 59.8 �V3XV B2 CsCl [162] 
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Subramanian and Laughlin [154] more recently modified the phase diagram by slightly 

amending the solidus and liquidus temperature so that they conformed to the accepted melting 

points of Pd and Cu. Huang [72] and Li [153] both utilised the calculation of phase diagram 

(CALPHAD) technique to produce the latest Pd-Cu phase diagram, moreover Li [153] was 

able to model the phase boundaries to temperatures as low as 200 K (Figure 2.15). 

 
Figure 2.15 Pd-Cu phase diagram adapted from Li et al [153] calculated using the CALPHAD method 
and compared with literature data [160-164]. 
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2.3.2. The influence of crystal structure on hydrogen permeability  

 
Figure 2.16 The Pd-Cu phase diagram revealing the miscibility gap in more detail, α = FCC phase and β = 
BCC phase. The phase diagram has been reproduced from literature [153, 154] and also features a 
hydrogen permeability dashed line plot as a function of Pd content at 350 °C compiled using data from 
Howard et al [37] and McKinley [35]. 
 

According to the Pd-Cu phase diagram (Figure 2.16), the Pd60Cu40 wt% composition contains 

an ordered BCC phase below 450 °C which has widely been reported in literature [35, 36, 39, 

135] to possess the highest hydrogen permeability of this binary system. This optimum 

composition exists in a narrow range since a deviation of 3 wt% or more can result in at least 

a 50 % reduction in permeability [97]. 

In the Pd-Cu system, diffusivity of hydrogen in the BCC phase is orders of magnitude greater 

than in the FCC phase [37-40]. A reason for such relatively low diffusivity in the FCC phase 

is due to the FCC activation energy for hydrogen diffusion being a factor of three times higher 

than that of the BCC phase. This could be attributed to the smaller BCC unit cell possessing 
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three times as many octahedral and tetrahedral interstitial sites than the FCC phase [77] 

facilitating a much more rapid transport of hydrogen from one unit cell to another. At 

temperatures above 600 °C, a phase transition from the ordered BCC phase to the disordered 

FCC phase occurs which comparatively has a lower permeability yet enhanced resistance to 

H2S contamination [44, 45]. Furthermore it has been observed that alloying Pd with Cu has 

the effect of reducing the solubility and increasing the hydrogen absorption pressure of the 

system [177]. 

2.3.3. The effects of hydrogen on the Pd-Cu system 

Piper [39] had investigated the room temperature diffusivity values of a range of Pd-Cu alloy 

compositions by measuring the electrical resistivity of the foils. It was observed that dissolved 

hydrogen had the profound effect of shifting the BCC | FCC + BCC phase boundary to higher 

Pd compositions. As shown in Figure 2.17, this shift in the phase boundary appears to be 

greater between 0 and 0.51 MPa as opposed to 0.51 and 12.16 MPa of hydrogen pressure. 

Huang et al [72] also report a similar effect and furthermore treat dissolved hydrogen as a 

third alloying element ergo implying that a Pd-Cu-H ternary system exists.  

Figure 2.18 shows how hydrogen solubility varies in the BCC phase for different pressures at 

320 °C and additionally reveals the shift in the phase boundary with increasing hydrogen 

concentration. Lässer [74] also observed similar effects, noting shifts in phase boundaries for 

different hydrogen isotopes dissolved in Pd. 
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Figure 2.17 Diffusivity values at 25 °C in FCC + BCC mixed phase Pd-Cu alloys. The BCC | FCC + BCC 
phase boundary has been shown to shift its position upon the application of a hydrogen pressure as 
indicated at the top of the plot. Recreated from Piper [39]. 
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Figure 2.18 A plot revealing the variation of hydrogen solubility in the Pd-Cu system between 45 and 
70 at% Cu at 320 °C. In addition the influence of dissolved hydrogen on the position of the 
BCC | FCC + BCC phase boundary is shown. Image recreated from Huang et al [72]. 
 

The formation of the BCC phase appears to be facilitated in the presence of hydrogen. It has 

been reported that hydrogen helps induce and promote atomic diffusion and rearrangement 
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First principle calculations were carried out by Huang et al [72] predicting the enthalpy of 

formation of various phases in the Pd-Cu-H system at 298 K. The alleged enthalpy of 

formation for the Pd-Cu BCC phase is -12.73 kJ mol-1 which was the most exothermic of all 

of the phases reported which suggests it is the most stable.  

Hydrogen has another marked influence on the Pd-Cu system such as permeation hysteresis 

during temperature cycling of ~Pd50Cu50 at% membranes through the miscibility gap  [97, 

180]. It was shown that transition into the mixed FCC + BCC phase region by a Pd-Cu FCC 

alloy membrane was suppressed during cooling unlike in the heating stage of the cycle. This 

effect has been linked to non-equivalent phase transformation occurring in the mixed phase 

region and it has been theorised that a retardation in the FCC(H) → BCC(H) phase transition 

is delayed due to the existence of a metastable hydrogenated FCC Pd-Cu(H) phase [97]. 

Cycling of a Pd-Cu membrane through the mixed phase region could present durability issues 

in the presence of hydrogen. Hydrogen solubility in the FCC phase is approximately one 

order of magnitude greater than that of the BCC phase [72, 87]  and this caveat could lead to 

the formation of hydrogen pockets at the grain boundaries resulting in the build-up of 

mechanical stresses. These stresses are the result of an FCC(H) → BCC(H) phase 

transformation which requires the instantaneous release of dissolved hydrogen into the grain 

boundaries. If these hydrogen pockets reside deep within the bulk of the membrane, then there 

will be insufficient time to reach the membrane surface and desorb. This means that either the 

remaining FCC domains must absorb the surplus hydrogen or internal pressure builds up 

eventually leading to membrane failure [180]. 
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2.3.4. H2S resistance 

In general, Pd alloy membranes have attracted a lot of attention for their ability to separate 

hydrogen from coal gasification and steam reforming process streams [181-184], however the 

presence of H2S in these streams can deactivate a membrane and significantly reduce 

hydrogen permeability and selectivity. The Pd-Cu system offers improved resistance to 

membrane contamination from sulphurous compounds such as H2S thus being the subject of 

many studies [44, 45, 83, 159, 185-188]. 

Edlund [185] observed that hydrogen permeability through a 50 µm thick Pd60Cu40 wt% foil 

membrane exposed to 1,000 ppm of H2S in hydrogen at 773 K and 700 kPa for 350 hours 

exhibited no change. Previously, Edlund fabricated a composite membrane composed of a 

V-based metal, silicon dioxide diffusion barrier and Pd coating and exposed it to H2S at 

700 °C and 894 kPa [189]. Exposure to hot H2S was shown to corrode the membrane. 

McKinley [36] compared the effect of H2S on pure Pd, Pd73Ag27 wt%, Pd60Au40 wt% and 

Pd60Cu40 wt% membranes at 350 °C and a pressure differential of 517 kPa. A gas mixture of 

4 – 5 ppm H2S in hydrogen was used to measure the permeability of 25.4 µm thick foil 

membranes. The hydrogen permeability of a pure Pd membrane decreased by approximately 

37% after 6 hours exposure to H2S and further reduced to 29% after 6 days in comparison to 

its original value measured in a pure hydrogen atmosphere. The hydrogen permeability of the 

Pd73Ag27 wt% membrane in a pure hydrogen atmosphere was almost double that of pure Pd, 

however, when exposed to H2S after 6 hours it dropped to nearly 1% of this value. The 

hydrogen permeability of the Pd60Au40 wt% membrane in a pure hydrogen atmosphere was 

less than half that of pure Pd, yet showed relatively little change after 6 hours exposure to H2S 

with only an 86% decrease in its original value. Furthermore, the Pd60Cu40 wt% membrane 
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achieved a permeability 35% higher than pure Pd in a pure hydrogen atmosphere although 

when exposed to H2S for 6 hours its permeability declined to 10% of its original value and 

then down to 5% after 6 days. 

McKinley [36] noted that the membranes used in the study recovered their original hydrogen 

permeability when the feed gas was reverted back to pure hydrogen. Following H2S exposure, 

the Pd-Au and Pd-Cu membranes did not show any signs of corrosion or pitting, however, the 

Pd and Pd-Ag membranes had a dull appearance. This observation led McKinley to theorise 

that the decrease in hydrogen permeability seen in the Pd-Au and Pd-Cu membranes was a 

result of H2S adsorption as opposed to sulphide formation or chemical attack. This was in 

good agreement with the work of O’Brien et al [188] who tested the performance of pure Pd 

and Pd60Cu40 wt% membranes in 1,000 ppm H2S. It was shown that the Pd membrane formed 

a corrosion product, Pd4S, during H2S exposure which was approximately 6.6 µm thick. XPS 

revealed that sulphur only penetrated 3 nm into the Pd-Cu membrane surface and formed a 

Pd-Cu-S layer which was responsible for deactivation of the membrane. 

Kulprathipanja et al [186] studied the effects of low H2S concentrations on the hydrogen 

permeation through Pd and Pd-Cu membranes. They demonstrated that H2S concentration, as 

opposed to exposure time, is the main factor in reducing hydrogen permeation in Pd and 

Pd-Cu membranes. It was also found that hydrogen permeation at 773 K can be completely 

inhibited by 100 ppm of H2S in the feed stream while hydrogen permeation was only 

prevented in a Pd60Cu40 wt% alloy membrane at 300 ppm of H2S. Furthermore, surface 

roughness had a marked effect on reducing the H2S tolerance of a membrane. Rough surfaces 

tend to have broken bonds located at grain boundaries which facilitate the adsorption of 

sulphur. Therefore, it was concluded that cast and rolled foils possessed better resistance to 

H2S contamination over electrolessly deposited metal membranes due to a smoother surface. 
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Morreale et al [44] showed that the hydrogen permeation of Pd-Cu alloy foils exposed to 

1,000 ppm of H2S experienced little change at temperatures associated with the FCC 

crystalline phase. Hydrogen permeation in the BCC phase, however, was found to drop by 

two orders of magnitude under the same conditions. Therefore a clear correlation between 

H2S tolerance and crystal structure was established showing that the Pd-rich Pd-Cu FCC 

phase brings about enhanced protection from sulphide contamination. 

2.4. Thin film membranes and deposition techniques 

2.4.1. Thin film membranes  

Using conventional rolling and drawing techniques a minimum foil thickness of 

approximately 20 µm can be achieved. Foils fabricated below this thickness can form 

pinholes and various other defects which can severely reduce the membrane selectivity. Thin 

film deposition techniques are used to produce defect-free membranes of < 5 µm thick which 

can help meet the 2015 U.S. DoE flux targets [190]. Thin film membranes are often deposited 

onto a relatively thick substrate for added mechanical support to fabricate what is known as a 

composite membrane. A key requirement for the substrate material is to have a thermal 

expansion coefficient that closely matches that of the film in order to prevent delamination 

during operation. 

Deposition of Pd and Pd alloy thin films onto a range of porous substrates has garnered a lot 

of research interest over the years. The dense thin film acts as the selective membrane for 

hydrogen purification and so it is essential that the membrane is free of any defects. Defects in 

a membrane can vary from pinholes to voids or open pores found in the crystal structure. The 

presence of pinholes and grain boundary defects in the dense thin film is detrimental to 
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selectivity as gases are able to flow through a membrane via the Knudsen diffusion 

mechanism [191]. 

The most popular types of composite membranes are pure Pd deposited onto either porous 

alumina or porous stainless steel. The relatively large pore size of certain substrates require an 

intermediate layer with finer pores which can facilitate the deposition of defect-free thin films 

[192]. Due to the complex structure of composite membranes, comparison of hydrogen 

permeability with free-standing membranes is complicated since each individual component 

must be analysed separately. 

Both Pd and Pd alloy thin films have been deposited using an array of techniques such as 

electroless plating, electroplating deposition, chemical vapour deposition and physical vapour 

deposition most notably using magnetron sputtering. Each of these deposition techniques are 

discussed in the following section. 

2.4.2. Electroless plating 

This technique uses a reducing agent for coating thin films onto a substrate through the 

reduction of metal complex ions in solution without the involvement of an external power 

supply. Uemiya et al [32] were the first to employ this method for the fabrication of Pd and 

Pd alloy composites. Defect-free Pd thin films have been successfully deposited with 

thicknesses ranging from 1 µm [193] to 33 µm [194]. 

Electroless plating (ELP) entails the reduction of metallic salt complexes on the substrate 

surface that requires an activation step since the plated metal behaves as a catalyst for 

subsequent reactions [195]. 
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Conventional ELP requires sensitisation and activation through seeding of the substrate 

surface with Pd precursor particles followed by coating of the Pd film on top of the activated 

surface. An intermediate layer can be applied to the substrate in order to smooth out any 

rough surfaces. Typically, sensitisation is performed by immersing the smoothed surface into 

acidic tin (SnCl2 or SnCl4) solutions to attach the Pd particles to the surface in the proceeding 

activation step. 

Typically, ELP baths contain a Pd-amine complex stabilised by a sequestering agent like 

Na2EDTA. The plating solution is usually mechanically agitated in order to achieve a uniform 

coating and can prevent gas bubbles adhering to the substrate surface which can create film 

defects. The substrate is removed and the plating bath replenished once the Pd solution has 

been completely consumed. This is repeated until the desired film thickness is obtained. 

Vacuum annealing is used to achieve a homogenous film. 

The advantages of ELP include ease of plating any shapes or geometries, simple setup and 

low cost [196]. However, the drawback is the complex and laborious task of the pre-treatment 

steps such as activation and sensitisation before any plating can be performed. Another issue 

with fabricating Pd alloy films is the different reduction potentials associated with the metallic 

ions resulting in an uneven coating. This problem was encountered by Bhandari and Ma [197] 

when fabricating Pd-Ag alloys using ELP which resulted in dendritic growth . This could be 

remedied by tailoring the reduction overpotential of Ag to closely match that of Pd through 

adjusting the reactant concentration [198]. 

Several attempts have been made to co-deposit solid solution Pd-Ag alloy films via ELP with 

little success [199-201]. The effect of varying the Pd and Ag content of the plating bath on 

film composition was investigated by Shu et al [201] who noted that Ag preferentially plates 
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and passivates the substrate therefore hindering the deposition of Pd unless the plating bath is 

Pd-rich. A plating bath composition of 83.4 at% Pd and 16.6 at% Ag was shown to deposit 

films containing distinct Pd and Ag phases with small traces of a Pd-rich Pd-Ag solid solution 

phase. Annealing the film in hydrogen considerably improves homogeneity and produces a 

composition of Pd44Ag56 at% [201]. 

An alternative method for fabricating Pd alloy thin films is to sequentially deposit distinct 

metal layers and anneal to produce a homogenous film composition. This technique has been 

used to produce Pd-Ag [202-208] and Pd-Cu [208-211] membranes deposited onto an array of 

substrates. Despite giving better control over film composition over co-deposition, other 

significant discrepancies can occur. Keuler and Lorenzen [202] fabricated multiple Pd-Ag 

membranes via sequential deposition under the same conditions and produced film 

thicknesses ranging from 1.4 to 2.16 µm with compositions varying between Pd-Ag20-25 wt%. 

Furthermore, high temperatures are needed in order to fully homogenise the films. 

It was observed that annealing of Pd-Cu films at 600 °C was sufficient to achieve 

compositional homogeneity, however it was inadequate to obtain homogenous Pd-Ag films as 

a result of non-uniform deposition of Ag [208]. Hou and Hughes [204, 205], were able to 

produce a homogenous 5 µm thick Pd-Ag film by annealing at 600 °C for 50 hours under 

hydrogen. It is evident that hydrogen enhances homogenisation by facilitating atomic 

rearrangement [179]. 

Annealing at temperatures as high as 800 °C have been used to homogenise Pd-Ag 

membranes [207], nevertheless, at this temperature appreciable metallic interdiffusion may 

occur between the film and metal substrate. Non-metallic substrates are not prone to 

interdiffusion with Pd (alloy) thin films, however, there is a marked difference in thermal 
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expansion coefficient which could introduce defects at high annealing temperatures and even 

result in film delamination. 

Films deposited using ELP frequently have lower densities than the bulk substrate material 

due to the formation of voids and presence of impurities. Roa and Way [212] have previously 

reported a C content of up to 7 wt% of the electrolessly deposited film. Deposition rate, film 

structure and morphology are dependent on many variables. Using high plating temperatures 

can increase the deposition rate which consequently results in finer and more closely packed 

grains within the film. Films with small grain sizes tend to give better selectivity since they 

contain fewer defects. Paradoxically, if the deposition rate is too high then the films may form 

voids introducing more defects thus reducing the selectivity [213]. Other factors which 

influence deposition rate are substrate surface topography, plating bath concentration, 

substrate composition and activation conditions. 

2.4.3. Electroplating deposition 

This technique is a liquid phase electrochemical process whereby metal ions are plated onto 

an electrode substrate under the application of an external electric field. In the electroplating 

deposition (EPD) setup, the substrate is the cathode typically immersed in an aqueous 

electrolyte containing mobile metal plating ions which reduce on the substrate surface. She et 

al [214] and Hsieh [215] describe, in detail, the fabrication of Pd composite membranes 

utilising EPD. The benefits of using this technique are the ease of controlling film thickness 

through plating time and current density in addition to the simplicity of the experimental setup 

[216]. The main disadvantage is that EPD may only be applied to electrically conductive 

substrates [198]. 
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2.4.4. Chemical vapour deposition 

Chemical vapour deposition (CVD) involves the thermal decomposition of one or more 

volatile precursors close to the substrate surface in order to deposit a thin film. This method 

has proved to be very useful in fabricating Pd coatings with controlled thicknesses [195]. Ye 

et al first used this method for depositing ultrathin Pd films onto an α-Al2O3 disk using PdCl2 

as the precursor [217]. This technique was further adapted by Itoh et al [218] to produce 

tubular Pd composite membranes via forced-flow CVD to give a 2 – 4 µm thick Pd film with 

a H2/N2 selectivity of 5,000. 

Higher quality Pd and Pd alloy films are typically achieved with CVD in comparison to ELP. 

Thin films produced using CVD often give a partial pressure exponent (n-value) close to 1 for 

hydrogen permeation since hydrogen dissociation becomes the rate limiting step due to the 

enhanced diffusivity of these coatings [195, 219]. Despite the capability of CVD producing 

thin films of high quality and selectivity, the method requires Pd precursors that are highly 

volatile with good thermal stability in order to achieve a short processing time and high yield 

[217, 219]. Another drawback is the usage of high purity constituents and stringent process 

conditions which limit the application of CVD. Costly and highly volatile organometallic Pd 

precursors such as Pd(C3H5)2, Pd(C3H5)(C5H5) and Pd(C5H5)2 are used for Pd thin film 

deposition through metallo-organic CVD (MOCVD) under high vacuum [220]. Moreover, the 

Pd thin film produced using this technique is prone to contamination from residual C [198]. 

2.4.5. Physical vapour deposition 

Physical vapour deposition (PVD) entails the bombardment of a solid metal target by a high 

energy beam of electrons or ions in a high vacuum in order to deposit thin film coatings onto 

a substrate [221]. This technique is similar to CVD, however, without the involvement of 



Literature review 

~ 82 ~ 
 

chemical decomposition occurring at the substrate surface since the precursors in PVD are 

solid metallic targets as opposed to chemical compounds. 

A common PVD technique is magnetron sputtering [222] whereby the metal target is 

bombarded by an excited Ar plasma under a high vacuum to deposit thin films onto a 

substrate surface. Prior to sputtering, a cleaning run is performed using the gas plasma to 

remove any contaminants from the substrate surface. Substrates can be rotated within the 

sputtering chamber in order to improve the uniformity of the deposited film. Moreover, thin 

films can be sputter deposited onto both conductive and non-conductive substrates with 

excellent quality. 

Magnetron sputtering offers better control over film thickness as it is directly proportional to 

sputtering time. This method has been effectively employed in the fabrication of thin 

multilayers such as Pd/Nb40Ti30Ni30/Pd supported on porous nickel [223]. It has been shown 

that Pd-Cu and Pd-Ag solid solution alloy films can be successfully sputter deposited without 

the need for annealing at high temperatures [224, 225]. Xomeritakis and Lin [222], deposited 

110 – 390 nm thick Pd-Ag films onto alumina substrates with a single Pd75Ag25 at% target. 

They produced membranes with the compositions in the following range Pd-Ag13.3-20.4 at% by 

varying plasma power and attributed these lower Ag concentrations to the dissimilar atomic 

mass and binding energy of Pd and Ag. 

McCool et al [224] attempted to solve this matter by carrying out a pre-sputter routine to 

clean the surface of the target in order to achieve some degree of surface equilibration during 

which the substrate is masked to prevent any unwanted deposition. They define surface 

equilibration as sputtering both elements at the same ratio as the target composition in order 

to attain the same composition in the deposited film. Pre-sputtering times were varied 
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between 1 – 15 minutes whereby a greater match in film composition was obtained following 

longer pre-sputtering times. It was approximated that 100 nm should be removed from the 

target surface in order to achieve equilibration. Jayaraman and Lin [191] deposited Pd-Ag thin 

films with thicknesses ranging between 250 and 500 nm onto γ-alumina substrates from a 

Pd75Ag25 at% target resulting in a film composition of Pd77Ag23 at%. Mejdell et al [226] 

prepared free-standing Pd-Ag membranes with thicknesses ranging between 1.3 – 5.0 µm 

with a similar composition to its Pd77Ag23 at% target. 

Co-sputtering has also been used to fabricate Pd-Cu [225, 227] and Pd-Ag [228-230] 

membranes from individual pure metal targets. During sputtering, the voltage to the Pd target 

is fixed whereas the voltage to the alloying targets is varied in order to control film 

composition. Yang et al [225] observed a linear correlation between Cu target voltage and Cu 

concentration in their Pd-Cu sputtered film (Figure 2.19). They deposited a series of films 

with Cu concentrations ranging between 0 – 60 wt% all of which contained the FCC phase. 

This is unexpected since according to the Pd-Cu binary phase diagram [154], a mixed FCC 

and BCC phase occurs above approximately 30 wt% Cu and a purely BCC phase exists 

between roughly 40 and 55 wt% Cu at room temperature. They further report that the 

formation of a metastable super-saturated solid solution was formed as a result of an increase 

in the Gibbs free energy of the nanocrystalline film with respect to bulk Pd-Cu alloys. It was 

also noted that film thickness increased linearly with deposition time provided a constant 

deposition rate was maintained [225]. 
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Figure 2.19 Cu concentration in a Pd-Cu sputtered film as a function of Cu target voltage with a constant 
340 V Pd target voltage [225]. 
 

Zhang et al [228], also utilised co-sputtering to produce 100 nm thick Pd-Ag films with 

compositions ranging from 0 – 45 at% Ag. X-ray diffraction and energy dispersive 

spectroscopy were used to determine the film composition and homogeneity. It was seen that 

at a constant Pd target voltage of 400 V and above a Ag target voltage of 250 V, the Ag 

concentration in the co-deposited film is proportional to Ag target voltage as shown in Figure 

2.20. 
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Figure 2.20 Ag concentration in a Pd-Ag sputtered film as a function of Ag target voltage with a constant 
400 V Pd target voltage [228].  
 

A disadvantage of using magnetron sputtering is the relatively high cost of the equipment due 

to the usage of a high vacuum and high power density required to vaporise the target [231]. 

Furthermore, magnetron sputtering is limited to coating flat substrates as opposed to complex 

geometries [198]. 

2.4.6. Pd thin films and diffusion barrier layers 

As previously stated, hydrogen migrates through dense metal membranes via a 

solution-diffusion mechanism. Thus, enhancing the rate at which hydrogen dissolves becomes 

ever more crucial as membrane thickness is reduced. Metals such as V, Nb, Ta and Zr form a 

robust oxide layer which severely obstructs surface reaction sites [65, 232] and as a result a 

thin film protective coating using a non-passive metal, such as Pd, is required. 
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Interdiffusion occurring between a BCC metal and Pd thin film can reduce membrane 

performance due to exposure of species which are susceptible to oxidation [233]. 

Buxbaum [234], highlighted the issues brought about by interdiffusion between an alloy 

membrane and the catalyst layer and showed that dissolved hydrogen can accelerate the whole 

process acting as a form of lubricant between the alloying species. Dissolved hydrogen can 

also place a stumbling block in meeting the 2015 U.S. DoE targets [190] of operating for 

extended durations at 400 °C due to the adverse effects of interdiffusion on the coated 

membrane. 

Slowing the rate of interdiffusion can allow the use of Pd films of a reduced thickness which 

will inherently reduce material cost. The use of a diffusion barrier layer between Group IV 

and V alloy membranes and Pd alloy thin films was introduced by a patent in 2006 held by 

Eltron Research [235]. The requirement that the barrier layer must permit hydrogen 

permeation restricts the materials that can be selected for this role and so the aforementioned 

patent has suggested the use of perovskites, oxy-acids and fluorides whilst others have 

mentioned the use of metal oxides [236, 237], carbides [238] and chalcogenides [239]. 

Metal chalcogenides in glass form are a well known proton conductor [240-242]; however, 

one major drawback is the associated low melting point of these materials. Other research 

[243, 244] has mentioned the use of high-bond valence metals such as Nb and Ta as an 

intermediate layer between the Pd thin film and porous support substrate. Alternative 

diffusion barriers which have been useful in hindering interdiffusion was also proposed by 

Edlund in the form of porous non-metallic layers composed of refractory oxides in woven, 

paper or felt [245] arrangements or as porous deposited layers [246]. 
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3. Experimental techniques  

3.1. Material and sample preparation 

During the course of this work, care was taken to ensure that all samples were handled with 

nitrile gloves and tweezers in order to minimise surface contamination of the foil and 

membrane samples. Acetone and a cotton bud were used where necessary to remove any 

finger prints or dirt from the membrane prior to sputter deposition and hydrogen permeability 

testing. 

3.1.1. Rolled foils 

Two batches of cold rolled Pd-Cu foil were supplied by Johnson Matthey Noble Metals 

(Royston, UK) with a nominal composition of Pd60Cu40 wt%. The thickness of each foil was 

measured using a digital micrometer. Batch 1 had an approximate thickness of 31.0 ± 0.8 µm 

and Batch 2  had a thickness of 31.3 ± 0.8 µm. Membranes discs (diameter = 21 mm) were cut 

from either batch for hydrogen permeability experiments. The disc geometry was ideal since 

it allowed hydrogen permeability measurements, ex-situ X-ray diffraction and microscopy 

analysis to be performed on the same sample. Square foil offcuts (~5 × 5 mm) were also 

prepared in order to fit inside the in-situ variable temperature X-ray diffraction pressure cell. 

In addition, a 67.8 ± 1.8 µm thick pure Pd (99.95%) cold rolled foil, supplied by Goodfellow 

(Huntingdon, UK), was used during this work acting as a standard. 
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3.1.2. Magnetron sputtering  

For the coated foil and membrane samples, thin Pd coatings of varying thicknesses were 

deposited onto one side using a closed field unbalanced magnetron sputter ion plating 

(CFUBMSIP) system produced by Teer Coatings Ltd [247]. Figure 3.1 is a schematic 

representation of the sputtering system used to prepare the surface modified Pd-Cu 

membranes during this study. 

 
Figure 3.1 Schematic illustration of the sputtering system (CFUBMSIP) used in this work. 
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A clean surface is crucial for obtaining high quality coatings that achieve good substrate 

adherence and uniform thickness. A two-step cleaning process was employed during this 

work for the Pd-Cu membrane disc and foil offcut samples. The first step involved cleaning 

the samples in an ultrasonic bath for 5 minutes. Subsequently, the samples were mounted 

inside of the sputtering system, evacuated to 10-7 kPa and subjected to an ion cleaning process 

with an argon plasma prior to sputtering. The sputtering process utilises a Pd target (99.9% 

purity) which was sputtered onto the samples at a target current of 1 A and argon flux of 

25 standard cubic centimetres per minute. Sputtering parameters were kept constant with only 

the coating durations varied to achieve different film thicknesses. In order to produce a high 

quality coating the depositions were performed in a single continuous step without breaking 

the vacuum in order to prevent contamination. 

For this work, Batch 1 and Batch 2 Pd-Cu foil membranes were sputter-coated with Pd in 

order to modify the membrane surface. Coating parameters have been summarised in Table 

3.1. Three different coating times were chosen in order to create Pd-Cu foil membranes with 

varying Pd thin film thicknesses on one side. This was done to investigate the effect of the Pd 

thin film and film thickness on the hydrogen permeability of a Pd-Cu membrane. 

Table 3.1 Summary of coating times used to fabricate the surface modified Pd-Cu membranes 
investigated in this work. A target current of 1 A has been used. 

Type Coating time (s) 
A 50 
B 1,000 
C 1,800 

 

It should be noted that sputter deposition can be affected by many variables that are difficult 

to control, for example new targets have a higher sputter rate than worn targets. Furthermore, 

target surface condition and vacuum level can have an effect on the deposition rate. 



Experimental techniques 

~ 90 ~ 
 

Two methods were used to determine the thickness of the Pd thin film coating. The first 

method involved coating a glass slide with Pd, alongside other samples, with a portion of the 

glass surface protected with Kapton tape. Removal of the tape revealed the uncoated surface 

of the glass slide creating a step from which the Pd film thickness could be measured. 

Profilometry was used to accurately measure the distance between the top surface of the Pd 

thin film and glass slide top surface to give the film thickness using an Ambios XP-200 Stylus 

surface profilometer with a scanning speed of 0.1 mm s-1 at 2 mg of force on the tip. 

The second method for determining film thickness was to weigh the samples before and after 

sputter deposition using a balance accurate to 5 decimal places of a gram. For simple sample 

geometries such as membrane discs or square offcuts, the Pd film thickness can be estimated 

assuming uniformity across the sample surface. The following Equation 3.1 is used to 

determine film thickness: 

 &> = Z��[M −Z�\[M%�  Equation 3.1 

 

where tf is the film thickness, Ms is the mass of the sample before Pd sputter deposition, Ms+Pd 

is mass of the sample subsequent to Pd sputter deposition, ρPd density of Pd (12.023 g cm-3) 

and As is sample surface area. 

3.2. Hydrogen permeability measurement 

3.2.1. Membrane permeability rig 

A custom made membrane permeability rig (MPR) was constructed for testing the hydrogen 

permeability of dense metal membranes. The MPR is designed to apply a controlled gas flow 

to the feed side of a hermetically sealed membrane and to measure the flow of hydrogen 
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which permeates through to the other side. The measurement equipment used in the MPR 

system was monitored and controlled with a PC and SpecView data logging software. Figure 

3.2 shows a schematic diagram of the MPR system used in this work. 

 
Figure 3.2 Schematic illustration of the MPR system.  
 

Four Brookes 5850S Mass Flow Controllers (MFC) calibrated between 6 – 600 ml min-1 with 

± 6 ml min-1 accuracy were used to control the feed gas to the feed side of the sealed 

membrane. This enables the inlet of up to four gases meaning the membrane can be tested 

either under pure hydrogen or a mixed gas feed stream. Air Products supplied the hydrogen 

(99.99996%) and nitrogen (99.9998%) high pressure cylinders used in the MPR. 

To prevent any build-up of contaminants and to maintain a stable hydrogen feed pressure, the 

feed gas is left continually flowing and bled out through another Brookes 5850S MFC also 

calibrated between 6 – 600 ± 6 ml min-1. The bleed MFC was connected to the four inlet 
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MFCs in order to regulate and maintain a constant feed side pressure ranging from 100 to 

1,100 ± 0.5 kPa. 

An additional Brookes 5850S MFC (6 – 600 ± 6 ml min-1) positioned on the downstream end 

of the MPR system was utilised to monitor the quantity of hydrogen permeating through the 

membrane. The precision of the MFC gives a ± 60% instrumental error in the hydrogen 

permeability measurements for a flow rate of 10 ml min-1, whereas a much lower instrumental 

error of ± 20% in hydrogen permeability readings is expected at higher flow rates of 

30 ml min-1. A Swagelok KFB series back pressure regulator with a range of 100 – 

1,800 ± 5 kPa was used to adjust and control the downstream pressure. A Hawco-Direct 

408-857 digital pressure transducer with a 100 – 1,700 ± 5 kPa range was used to measure the 

pressure on both ends of the membrane. A Pfeiffer TSU-071E turbo-molecular drag pumping 

station with a membrane backing pump is used to evacuate the reactor down to ~10-6 kPa. 

The temperature of the reactor and membrane was controlled by an Elite Thermal Systems 

Ltd split furnace capable of a ramp rate ranging between 0.1 and 10 °C min-1 and a maximum 

temperature of 1,100 °C. Three Inconel K-type thermocouples were used to monitor the 

temperature within the reactor. One thermocouple was positioned inside the furnace heating 

zone in order to accurately measure the furnace temperature, the second thermocouple was 

positioned near to the reactor base to measure seal temperature and the third thermocouple 

was placed 1 mm from the membrane surface to measure membrane temperature. 

A single rod of Inconel 625 grade II alloy was machined to fabricate the reactor chamber 

which features a silver compression gasket to hermetically seal the lid with the mounted base. 

The reactor has a 1,200 cm3 internal volume and 5.5 cm diameter which can easily 

accommodate an array of different membrane geometries. The reactor was designed to have a 
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maximum operating temperature and pressure of 850 °C and 2,100 kPa, respectively. 

Swagelok 316L stainless steel fittings were bored through the reactor base to allow the gas 

pipes to reach inside the reactor and to have the membrane positioned inside the furnace 

heating zone. 

The membranes were mounted in between two hardened 316LN stainless steel conflat 

vacuum flanges both featuring a hardened 316SS knife edge. Both flanges had a 1.27 cm bore 

diameter. The bottom flange was welded to a 1.27 cm diameter 316L stainless steel pipe 

which was positioned inside the furnace heating zone. The top loose flange was used as a cap 

to produce a hermetic seal around the edge of the membrane. With the membrane resting on 

the bottom flange knife edge, an ultra high vacuum (UHV) copper gasket was placed on the 

top side of the membrane followed by the loose flange. Six low thermal expansion hex bolts 

were used to fasten both flanges together to deform the membrane around the knife edge of 

the bottom flange creating a gas tight seal. Figure 3.3 shows how the membranes were 

mounted onto the holder inside the MPR reactor vessel. 

 



Experimental techniques 

~ 94 ~ 
 

 
Figure 3.3 Cross section diagram showing the typical arrangement of a membrane mounted inside the 
MPR reactor vessel. 
 

The integrity of the hermetic seal was tested by applying a 300 kPa N2 pressure gradient 

across the membrane. A flow of < 2 ml min-1 is below the detectable limit of the downstream 

MFC, however, if no increase was observed in the downstream pressure after 30 minutes the 

seal was considered gas tight. 

The same testing procedures were used for each membrane in the MPR ensuring consistency 

in measurements and aiding in fair comparison between all membranes. The testing procedure 

was similar to those used by past investigators of self-supporting bulk Pd-based foil 

membranes [28, 94, 156, 248]. All membranes were heated at a ramp rate of 2 °C min-1 and 

then furnace cooled at a cooling rate of approximately 0.5 °C min-1. A maximum hydrogen 

feed flow rate of 100 ml min-1 was used during every measurement.  
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Typical test conditions in the MPR were isobaric where the membranes were typically cycled 

up to a maximum temperature of 450 °C using a hydrogen feed pressure of 445 kPa and 

permeate pressure of 100 kPa resulting in a pressure differential of 345 kPa. These pressures 

were chosen for ease of comparison with the U.S. DoE dense metal membrane flux targets 

(Table 1.1) which were based on a 345 kPa hydrogen pressure differential across a membrane. 

Some membranes were heated to as high as 700 °C in order to measure the hydrogen 

permeability of the high temperature Pd60Cu40 wt% FCC phase. As a precautionary measure, 

membranes were positioned on a porous stainless steel support to prevent doming and failure 

during testing. 

Three types of hydrogen permeability measurements were performed in the MPR. The first 

type involved measuring the hydrogen permeability of the as-received pure Pd membrane and 

Pd60Cu40 wt% membrane in order to determine a baseline with which the surface modified 

Pd-Cu membranes could be compared. The as-received membranes were mounted inside the 

MPR reactor vessel using the arrangement shown in Figure 3.3. 

The second type entailed measuring the hydrogen permeability of the surface modified Pd-Cu 

membranes with the Pd thin film positioned on the high pressure feed side as shown in Figure 

3.4(a). Conversely, the third measurement type involved measuring the hydrogen permeability 

of Pd coated Pd-Cu membranes with the Pd thin film positioned on the low pressure permeate 

side which is also shown in Figure 3.4(b) in order to understand the effects this configuration 

has on hydrogen permeability. 
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Figure 3.4 Membrane mounting arrangement of the surface modified Pd-Cu membranes inside of the 
MPR reactor vessel where (a) the Pd thin film is positioned on the high pressure feed side and (b) the Pd 
thin film is positioned on the low pressure permeate side. 
 

Prior to MPR testing, the membranes were cleaned with acetone in an ultrasonic bath for 

5 minutes. After a membrane is mounted inside the MPR reactor vessel, the system is 

evacuated and a N2 leak test is performed. If the leak test fails, the membrane is removed, the 

flanges are inspected and cleaned, the membrane is replaced and secured using a new UHV 

Cu gasket and the leak test is repeated. Figure 3.5 shows a cross sectional view of the MPR 

reactor vessel indicating the position of the membrane during testing. Note that the upstream 

mass spectrometry feed line was not used in this work. 
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Figure 3.5 Schematic diagram of the MPR reactor vessel [28]. 
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Following the MPR refurbishment, the N2 calibrated downstream MFC was replaced with an 

MFC calibrated for hydrogen thus negating the need for the conversion factors. Therefore, 

hydrogen permeability measurements obtained from membranes after the MPR overhaul will 

be presented and discussed here. 

3.3. Material characterisation and analysis 

At various stages throughout this work, the membranes were characterised using X-ray 

diffraction to determine existing phases, phase changes, surface composition and conditions 

for interdiffusion. Energy dispersive spectroscopy was used for surface chemical analysis 

which helped verify the surface composition. Furthermore, X-ray photoelectron spectroscopy 

was used to acquire a compositional depth profile of the membranes to study any changes in 

surface composition along the thickness. Furthermore, a field emission gun coupled with a 

scanning electron microscope was used to obtain high resolution images of the Pd thin film 

microstructure.  

3.3.1. Membrane crystal structure and composition  

3.3.1.1. X-ray diffraction 

Ex-situ X-ray diffraction (XRD) analyses were performed with a Bruker D8-Advance 

diffractometer using monochromatic CuKα1 radiation (λ = 1.54056 Å). All ex-situ XRD 

analyses were performed under ambient conditions. XRD patterns were collected for both the 

top and basal surfaces of the membrane and offcut samples before and after exposure to 

hydrogen over a 2θ range of 25 to 140° using an approximate step size of 0.028°. It will be 

common practice throughout this work to perform XRD analysis on a membrane before and 
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after MPR testing to identify any structural changes that may occur as a result of exposure to 

high temperatures in a hydrogen atmosphere. 

XRD analysis can be used for phase identification, determining phase composition and 

detecting any interdiffusion between the sputter-deposited Pd thin film and bulk Pd-Cu 

membrane. Bragg’s law was used to calculate the interplanar distance, dhkl: 

 ] = 2)^_G`�Aa Equation 3.2 

 

where θ is the scattering angle in degrees. For the composition of Pd-Cu foil used in this work 

only the BCC and FCC phases were observed. Table 3.2 shows the Miller indices of the 

expected diffraction planes for the BCC and FCC crystal structures: 

Table 3.2 Miller indices for the BCC and FCC diffraction planes. 

BCC FCC 
(110) (111) 
(111) (200) 
(200) (220) 
(210) (311) 
(211) (222) 
(220) (400) 

(300)/(221) (331) 
(310) (420) 

 

The interplanar distance is related to the lattice parameter (a) through Equation 3.3: 

 S = )^_Gbℎ� + R� + d� Equation 3.3 
 

where h, k and l are the Miller indices of the diffraction plane. Rearranging Equation 3.2 and 

substituting into Equation 3.3 gives Equation 3.4: 
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 S = ]√ℎ� + R� + d�
2`�Aa  Equation 3.4 

 

In order to calculate the lattice parameter for the BCC and FCC phase, the lattice parameter 

for each hkl diffraction plane for that particular phase is calculated using Equation 3.4 and 

plotted against cos
2
θ. The y-intercept of this plot gives the value for the absolute lattice 

parameter. The lattice parameter is of significance in this work as it can be used to accurately 

determine alloy and phase composition using Vegard’s law [249]. This is an empirical rule 

that stipulates a linear correlation between lattice parameter (a) and the alloy concentration of 

the constituent elements.  

In-situ variable temperature XRD (VTXRD) was performed on square foil offcuts using an 

Anton Paar XRK 900 pressure cell in order to observe any phase transformations and 

interdiffusion between the Pd thin film and bulk Pd-Cu membrane under similar conditions 

used in the MPR. One as-received foil offcut was analysed under 445 kPa of flowing helium 

to determine the phase transition temperatures in an inert atmosphere and a second foil offcut 

was tested under 445 kPa of flowing hydrogen for comparison. The aim was to investigate the 

effects of hydrogen on phase transition under conditions similar to those used in the MPR.  

Furthermore, VTXRD studies were performed on Pd coated foil offcuts under 445 and 

100 kPa of flowing hydrogen to observe the effects of temperature and hydrogen pressures 

used in the MPR on interdiffusion between the Pd thin film and bulk Pd-Cu membrane. 

VTXRD scans were conducted isothermally before heating to the next temperature set point. 

The temperature ramp rate used for all VTXRD experiments was 2.4 °C min-1 heating from 

30 to 700 °C and then cooled back to 30 °C at approximately 5 °C min-1. 



Experimental techniques 

~ 101 ~ 
 

3.3.1.2. Scanning electron microscopy/Energy dispersive spectroscopy 

Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) was 

performed in secondary electron imaging mode using a Jeol 6060 microscope. The Jeol 6060 

works in conjunction with INCA EDS software which was used to determine the composition 

of the as-received Pd-Cu foil and any compositional variation in the membranes before and 

after MPR testing. A Jeol 7000 microscope equipped with a field emission gun (FEG) was 

also used to produce high magnification and high resolution images of the Pd thin film 

microstructure. 

3.3.1.3. X-ray photoelectron spectroscopy  

X-ray photoelectron spectroscopy (XPS) compositional depth profiling can be obtained using 

a series of ion beam etch cycles combined with XPS scans of the exposed surface. Using an 

ion gun, the surface of the sample is etched for a set period of time prior to being switched off 

to allow XPS scanning of the newly exposed surface. A sequence of etching cycles and XPS 

spectra acquisition will then be used to construct a plot of composition as a function of depth 

for a sample. 

Depth profiling of the as-deposited surface modified Pd-Cu foil offcuts was used to 

investigate any interdiffusion between the Pd thin film and bulk Pd-Cu foil taking place 

during the sputtering process and to identify at which depth the interface occurs.  In addition, 

XPS depth profiling was performed on surface modified Pd-Cu foil offcuts following 

VTXRD experiments and surface modified Pd-Cu membrane offcuts after MPR testing in 

order to examine the effects of elevated temperatures and hydrogen pressures on near surface 

composition. 
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A Thermo K-Alpha XPS Spectrometer with a monochromated K-Alpha source fitted with a 

MAGCIS ion gun was used for the depth profile analysis. The charge compensation was on 

during measurements. The following depth profile settings were used:  

• Monatomic Ar gun mode  

• Ion energy = 2 keV  

• 2 × 2 mm scan area  

• Reference etching rate (Ta2O5) = 0.21 nm s-1  

An appropriate etch cycle and etch depth was selected according to the Pd film thickness 

being analysed. Thinner Pd films had a shorter etch cycle compared to relatively thicker Pd 

films in order to achieve higher resolutions of the interface region. Using a Ta2O5 reference, 

etching depth of the foils was estimated.  
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4. Results and discussion 

4.1. Introduction 

Several membranes have been studied throughout the course of this work in order to compare 

and further understand the effects of a Pd thin film on the performance of bulk Pd-Cu foil 

membranes for the application of hydrogen separation. Characterisation techniques introduced 

in Section 3.3 were employed to further relate the influence of crystal structure, phase 

composition and interdiffusion on hydrogen permeability. 

Initially, bulk Pd and two batches (Batch 1 and Batch 2) of Pd-Cu membranes were tested in 

the membrane permeability rig (MPR) under a pure hydrogen atmosphere to establish a 

baseline reference against which to measure the performance of the surface modified Pd-Cu 

membranes. From this, a comparison will be drawn in order to determine which membrane 

achieves the highest hydrogen permeability. The aforementioned characterisation techniques 

have been performed pre and post MPR testing in order to understand and explain the 

hydrogen permeability values achieved by each membrane studied in this work. 

Three types of surface modified Pd-Cu membranes have been investigated in this work, 

referred to as Type A, B and C. Table 4.1 provides further details of the three types of surface 

modified Pd-Cu membranes giving details of Pd coating times and Pd-Cu foil batch substrate 

used.  

Table 4.1 Description of the three types of surface modified Pd-Cu membranes used in this work. 

Type Pd coating time (s) Pd-Cu substrate 
A 50 Batch 1 and 2 
B 1,000 Batch 2 
C 1,800 Batch 2 
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It should be noted that due to a limited supply, only two Type A membranes were prepared 

using the Batch 1 Pd-Cu foil. The remaining Type A and all of the Type B and C membranes 

were fabricated using the Batch 2 Pd-Cu foil. The Type A, B and C membranes have been 

tested in the MPR using the configuration shown in Figure 3.4(a) and (b). The aim was to 

determine how the hydrogen permeability of the Type A, B and C membranes are affected 

upon positioning the Pd thin film on the feed side and permeate side during MPR testing. 

4.2. As-received bulk Pd foil membrane 

4.2.1. Pre-MPR characterisation 

Ex-situ XRD scans were performed on both sides of the Pd membrane under ambient 

conditions before MPR testing. The XRD pattern is shown in Figure 4.1 and clearly indicates 

a single phase FCC crystal structure present in the as-received Pd membrane with each (hkl) 

diffraction peak indexed. Moreover, the pattern shows preferential texturing in the (220) and 

(311) diffraction planes which could be attributed to the direction of the cold rolling process. 

The (222) diffraction plane is present in this pattern, however, due to its relatively low 

intensity count it may appear invisible. 
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Figure 4.1 XRD patterns of the as-received pure Pd foil membrane prior to MPR testing performed on the 
feed side (a) and permeate side (b). 

4.2.2. MPR results  

The hydrogen permeability of bulk pure Pd membranes has been studied extensively over the 

years [28, 35, 85-91, 250] and is well established. Therefore, the hydrogen permeability of a 

67.8 µm thick Pd membrane was measured in the membrane permeability rig (MPR) to 

validate the system calibration and experimental methodology following the MPR overhaul 

(see Section 3.2). In order to accurately measure the hydrogen permeability of the Pd 

membrane, the partial pressure exponent, also known as the n-value, must be determined. 

It is important, however, to understand the definition of the n-value. Consider the physical 

adsorption of hydrogen by a porous membrane through a process known as physisorption 

which is described in Equation 4.1. 
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 ��(���) ⇌ ��(�M�K;fEM) Equation 4.1 
 

In this instance, at dilute concentrations and constant temperature, Henry’s law may apply as 

shown in Equation 2.2. As previously noted in Section 2.1.3, this law stipulates that the 

concentration (Cgas) of hydrogen molecules in the porous membrane, for example, is directly 

proportional to its partial pressure (Pgas) in the gas phase. 

 �� = ��������  Equation 2.2 

 

The term SH has previously been referred to as the solubility constant but it can also be seen 

as the equilibrium constant for the physisorption process shown in Equation 4.1. Now, 

consider the chemisorption of a hydrogen molecule onto the surface of a dense metal 

membrane and the subsequent dissociation into monatomic form and absorption (Equation 

4.2).  

 1 2
 ��(���) ⇌ �(�f�K;fEM) Equation 4.2 
 

From Equation 4.2, SH also referred to as the solubility constant, S, can be defined by 

Sieverts’ law (Equation 2.3): 

 � = �
�� 
! �
  Equation 2.3 

 

Sieverts’ law is valid assuming hydrogen behaves like an ideal gas, hence S can be defined as 

the ratio of hydrogen concentration in the metal over the hydrogen partial pressure in the gas 

phase raised to the exponent of the number of moles, in this case 0.5. This exponent is 
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referred to as the n-value, as previously shown in Equation 2.8, and can vary anywhere 

between 0.5 and 1. 

 � = ((�!* − ��+)�  Equation 2.8 

 

An n-value close to 0.5 indicates a permeation process that is rate limited by hydrogen 

diffusion through the bulk membrane whereas an n-value approaching 1 means that hydrogen 

dissociation at the membrane surface is the rate limiting step. Authors have reported n-values 

for free-standing Pd membranes ranging between 0.62 and 0.8 [86, 90, 251, 252]. 

The reason for the observed deviation from Sieverts’ square root dependence on hydrogen 

pressure has been a matter of speculation. One theory is that the concentration of dissolved 

hydrogen in the membrane may have an effect on the diffusivity and thus permeability along 

with the n-value [253]. Others postulate that the cause could be hydrogen diffusion through 

defects in the Pd membrane or even through gaps in the membrane sealing mechanism [252]. 

Another explanation assumes that when a free-standing Pd membrane is sufficiently thin, 

hydrogen diffusion across the thickness of the membrane is rapid and surface dissociation 

becomes the rate limiting step where the n-value would deviate from 0.5 and tend towards 1. 

However, previous work has reported to the contrary that Pd membranes with thicknesses as 

low as 7.2 µm exhibit diffusion limited permeation [252]. 

The n-value was determined for the Pd membrane used in this work by performing 

permeability isotherms at 350, 375, 400, 425 and 450 °C. This temperature range was chosen 

since hydrogen flux was appreciable under the pressure differentials used during 

measurements. At each temperature, the hydrogen permeate pressure is maintained at 100 kPa 

and the hydrogen flux is measured at hydrogen feed pressures of 300, 400, 500, 600 and 
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700 kPa. The permeability isotherms for the pure Pd membrane are presented in plots of 

membrane flux as a function of hydrogen differential pressure as shown in Figure 4.2 and 

Figure 4.3. The n-values were determined using least squares regression for the experimental 

data. In Figure 4.2, the data points were constrained to an n-value of 0.5 to establish how well 

the Pd membrane obeys Sieverts’ law under the MPR test conditions used. This is measured 

using the coefficient of determination (R2). In Figure 4.3, the n-value was adjusted to optimise 

R2 in order to find its best fit. 

 
Figure 4.2 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. 
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Figure 4.3 Membrane flux as a function of hydrogen differential pressure with n constrained to the best fit 
value of 0.57. 
 

As shown in Figure 4.2, an n-value of 0.5 gives high values of R2 revealing a good linear fit 

for the hydrogen flux measured across the Pd membrane. Figure 4.3 reveals, however, that an 

n-value of 0.57 gives the best fit for the measured hydrogen flux through the Pd membrane 

which compares well with the n-value of 0.62 reported by Morreale et al [90]. Moreover, it 

was shown that the n-value varied with hydrogen feed pressure where at < 500 kPa an n-value 

of approximately 0.57 was measured and at > 2,500 kPa an n-value of 0.65 was observed 

[90]. 

Morreale [90] has discussed the effect of hydrogen feed pressure on the n-value by relating 

the dependence of hydrogen permeability to the hydrogen concentration in the membrane. 
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According to Sieverts’ law (Equation 2.3), increasing the hydrogen pressure would increase 

the hydrogen concentration on the membrane feed side. 

Since membrane permeability (Φ) is proportional to the product of diffusivity (D) and the 

solubility constant (S) (Equation 2.6), an increase in hydrogen concentration at the membrane 

feed side may influence D and S and therefore Φ. 

 ( = �� Equation 2.6 
 

It would be expected that increasing the hydrogen concentration at the membrane feed side 

relative to the permeate side would create an even greater driving force for hydrogen diffusion 

and thus an increase in diffusivity. Holleck [85] observed that under sub-atmospheric 

conditions hydrogen diffusivity increases with increasing hydrogen feed pressure in a Pd 

membrane. However, the reverse has been shown to occur in V [254] and Nb-Ta [255] 

systems. It was suggested that hydrogen diffusivity decreased with increasing concentration 

as result of a reduced number of available neighbouring interstitial sites that facilitate atomic 

jumps [255]. In general, a decisive trend has not been established yet between hydrogen 

concentration and diffusivity. 

It would also seem plausible that hydrogen concentration would have an effect on the 

solubility constant. It has been theorised that an increase in hydrogen concentration can form 

an non-ideal solution whereby the dissolved H+ exhibit repulsive forces between each other. 

As shown in Equation 2.3, an increase in hydrogen concentration would result in an increase 

in the solubility constant and therefore membrane permeability. By substituting Equation 2.3 

into Equation 2.6 it can be seen that Φ is proportional to C (Equation 4.3). 
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 ( = � �
�� 
! �
  Equation 4.3 

 

Contaminants present on the surface of the Pd membrane could reduce the number of active 

sites for hydrogen dissociation and absorption into the metal thus decreasing the rate of the 

dissolution reaction which could be responsible for the observed deviation from Sieverts’ law. 

Nonetheless, the experimentally determined n-value of 0.57 indicates that hydrogen 

permeation through the bulk Pd membrane is still mainly limited by diffusion. 

Hydrogen permeability of the Pd membrane was measured as a function of temperature using 

the MPR. Isobaric conditions were used during membrane permeability measurements where 

445 kPa of hydrogen pressure was applied to the feed side and 100 kPa was maintained at the 

permeate side to produce a constant 345 kPa pressure (50 psi) gradient across the membrane. 

These conditions are used throughout this work unless otherwise stated. Figure 4.4 shows 

hydrogen permeability calculated using an n-value of 0.5 and 0.57.  
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Figure 4.4 Hydrogen permeability as a function of temperature for the 67.8 µm thick pure Pd foil 
membrane with a hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa. The solid symbol 
curve was calculated using an n-value of 0.5 whereas the open symbol curve uses the best fit n-value of 
0.57. 
 

Assuming there are no surface contaminants of the Pd membrane, the behaviour of Φ can be 

modelled using the Arrhenius type Equation 2.9. 

 ( = (,��- .−/012 3 Equation 2.9 

 

Plotting ln(Φ) against reciprocal temperature, T 
-1, yields a straight line as shown in Figure 

4.5. The slope of this straight line corresponds to the hydrogen permeation activation energy 

(EΦ) and the y-intercept gives the permeability constant (Φ0). The two curves in Figure 4.4 

were used to construct the plot in Figure 4.5 in order to determine EΦ and Φ0 for both 

n-values. 
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Figure 4.5 Arrhenius plot of the hydrogen permeability data shown in Figure 4.4 between 350 and 450 °C. 
The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses the best 
fit n-value of 0.57. 
 

For n = 0.5, Φ0 was determined to be 2.41 × 10-7 mol m-1 s-1 Pa-0.5 and EΦ was calculated to be 

17.54 kJ mol-1. For n = 0.57, a Φ0 of 8.76 × 10-8 mol m-1 s-1 Pa-0.57 and EΦ of 17.53 kJ mol-1 

can be calculated. The general permeability formulae (350 – 450 °C) for the Pd membrane 

have been derived from Figure 4.5 using an n-value of 0.5 and the best fit value of 0.57 as 

shown in Equation 4.4 and Equation 4.5, respectively. 

 (+g,.i = 2.41	×	10�k��- H−17.54	×	10n12 J Equation 4.4 

 

 (+g,.ik = 8.76	×	10�q��- H−17.53	×	10n12 J Equation 4.5 
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The more realistic n-value of 0.57 thus shows that the hydrogen dissolution at the membrane 

surface has a major impact on the overall permeation mechanism by reducing hydrogen 

permeability by a factor of approximately three when compared to the theoretical n-value of 

0.5 assumed by Sieverts' law. 

The values for EΦ and Φ0 determined for the bulk Pd membrane used in this work fall within 

the range found in literature (Table 4.2) and as a result validate the reliability of the MPR 

system and experimental procedure. Therefore, permeability data obtained for other 

membranes investigated in this work can be compared to those found in literature with high 

confidence. Furthermore, it can be noted from the data compiled in Table 4.2 that Φ0 

decreases with increasing n-value whereas EΦ remains relatively unaffected by changes in the 

n-value as found in this work and the work of Morreale [90]. 

Table 4.2 Published data for hydrogen permeability in bulk free-standing Pd membranes. 

Thickness (µm) Geometry n Φ0 (mol m-1 s-1 Pa-n) EΦ (kJ mol-1) Reference 

70 disc 0.5 2.80 × 10-7 15.40 Fletcher [28] 

800 – 2,025 disc 0.5 1.42 × 10-7 12.81 Holleck [85] 

10 – 150 disc 0.68 1.47 × 10-8 11.91 Hurlbert [86] 

940 disc 0.5 3.80 × 10-7 20.50 Katsuta [88] 

486 – 762 disc 0.5 2.20 × 10-7 15.67 Koffler [89] 

1,000 disc 
0.5 3.31 × 10-7 13.81 

Morreale [90] 
0.62 5.65 × 10-8 13.41 

11,500 wire 0.5 1.72 × 10-7 13.46 Toda [91] 

67.8 disc 
0.5 2.41 × 10-7 17.54 

Present work 
0.57 8.76 × 10-8 17.53 

 

It should also be noted that Fletcher’s [28] data was obtained on the same MPR used 

throughout this work prior to the system overhaul. From Table 4.2, it can be seen that 

Fletcher’s [28] value for EΦ lies mid-range of the literature values whereas Φ0 is the second 

highest of the literature values. For further comparison, Table 2.4 shows that Fletcher [28] has 
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reported a hydrogen permeability for a free-standing Pd membrane of 

1.43 × 10-8 mol m-1 s-1 Pa-0.5 at 350 °C for an n-value of 0.5 which is the highest found in 

literature. Post MPR system overhaul, this work reports a hydrogen permeability for a free-

standing Pd membrane of 8.15 × 10-9 mol m-1 s-1 Pa-0.5 at 350 °C and an n-value of 0.5, which 

is 43% lower than the figure reported by Fletcher [28]. 

Two possible reasons could explain the observed discrepancy. Firstly, Fletcher [28] acquired 

hydrogen permeability data on the MPR pre-overhaul using a N2 calibrated MFC, whereas 

this work obtained measurements post-overhaul using a hydrogen calibrated MFC. Secondly, 

the Pd membranes studied by Fletcher [28] had undergone bowing during hydrogen 

permeability measurements as a result of the applied pressure differential. The bowing effect 

produced a 2.1 mm vertical displacement in the Pd membranes which had to be accompanied 

by a decrease in membrane thickness and increase in active surface area which led to an 

apparent increase in hydrogen permeability. 

Rather than using the initial membrane active surface area and thickness to calculate hydrogen 

permeability, Fletcher [28] used the deformed active membrane surface area and thickness 

instead for improved accuracy. However, the deformed parameters were mathematically 

estimated as opposed to physically measured. To alleviate this issue, this work used a porous 

stainless steel support to prevent membrane bowing which had the added benefit of being able 

to use the initial membrane active surface area and thickness for determining the hydrogen 

permeability with improved accuracy and reliability. 

Comparing the hydrogen permeability data for Pd membranes is difficult since there are many 

variables that can affect the accuracy of the results. It could be said that purity of the Pd foil, 

membrane geometry, experimental equipment, conditions and methodology can vary from 
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author to author. Therefore, measurements obtained by one author may not necessarily be 

reproduced by another author in a separate location. With that being said, the hydrogen 

permeability measured for the Pd membrane in this work comfortably lies within the range of 

the published data displayed in Table 2.4 and Table 4.2 hence it would have greater reliability 

over the data reported by Fletcher [28]. 

Morreale [90] noted the effects of hydrogen feed pressure on the n-value, although there 

appears to be no information available in literature on the effects of temperature. Figure 4.6 

displays the variation in the n-value as a function of temperature for the Pd membrane. At 

350 °C, the n-value is 0.52 and appears to obey Sieverts’ law, however, increasing the 

temperature to 375 °C increases the n-value to 0.58 where it remains stable up until 425 °C 

and slightly decreases to 0.57 at 450 °C. Deviation from Sieverts’ law with increasing 

temperature could be explained by the endothermic nature of hydrogen diffusion which is 

expected to increase with a rise in temperature. 
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Figure 4.6 Variation of n-value as a function of temperature for the pure Pd membrane. 

4.2.3. Post-MPR characterisation 

Ex-situ XRD scans were performed on both sides of the Pd membrane under ambient 

conditions after MPR testing to examine the effects of thermal cycling in a hydrogen 

atmosphere. By comparing Figure 4.1 with Figure 4.7, it can be seen that there are no signs of 

any phase or structural changes that have occurred as a result of MPR testing. Like Figure 4.1, 
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planes.  
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Figure 4.7 XRD patterns of the as-received pure Pd foil membrane following MPR testing performed on 
the feed side (a) and permeate side (b). 
 

The lattice parameter (a) for the Pd membrane was determined from Figure 4.1 and Figure 

4.7. With the wavelength (λ) of the monochromatic CuKα1 X-ray beam known, the value for a 

can be obtained using Equation 3.4 for each scattering angle (θ) indicated by the position of 

each diffraction plane. 

 S = ]√ℎ� + R� + d�
2`�Aa  Equation 3.4 

 

From the XRD data shown in Figure 4.1 and Figure 4.7, the average value for a was 

calculated to be 3.8905 ± 0.0003 Å. This is in excellent agreement with published values 

which range between 3.89 – 3.891 Å [28, 34, 38, 77, 85, 256, 257] thus proving the high 

reliability and accuracy of the XRD equipment and method used for calculating a. 
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4.3. As-received bulk Pd-Cu foil membranes 

4.3.1. Pre-MPR characterisation 

In the as-received state, the nominal composition of the Batches 1 and 2 foil was stated as 

Pd60Cu40 wt%. According to the Pd-Cu phase diagram (Figure 2.16), the Pd60Cu40 wt% 

composition contains a CsCl-type ordered BCC equilibrium phase below 450 °C. Figure 4.8 

and Figure 4.9 show representative ex-situ XRD patterns of Batches 1 and 2, respectively. 

The analysis indicates the presence of the disordered FCC structure which could be due to the 

alloy being quenched from the high temperature FCC phase during the melting process. 

Furthermore, Figure 4.8(a) reveals a peak at 2θ = 29.4° which coincides with the Cu2O(110) 

diffraction plane. It would seem plausible that the Cu used to fabricate either batch may have 

formed an oxide layer prior to melting which could then explain the origin of the Cu2O(110) 

diffraction peak. 
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Figure 4.8 XRD patterns of the as-received Batch 1 Pd-Cu foil membrane before MPR testing performed 
on the feed side (a) and permeate side (b). 
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Figure 4.9 XRD patterns of the as-received Batch 2 Pd-Cu foil membrane before MPR testing performed 
on the feed side (a) and permeate side (b). 
 

From Figure 4.8, the lattice parameter for both sides (Side (a) and Side (b)) of the 

Batch 1 Pd-Cu membrane in the as-received state can be determined. The lattice parameters 

were calculated as 3.759 and 3.754 Å for Side (a) and Side (b), respectively, using Equation 
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manner from Figure 4.9, to give 3.759 and 3.754 Å for Side (a) and Side (b), respectively. 
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In Table 4.3, the calculated lattice parameters were used in Equation 6.1 to determine the 

associated FCC phase compositions and compared with the EDS chemical analysis results. 
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Appendix (Section 6.1). It is apparent for both membranes that Side (a) has a different FCC 

phase composition to that of Side (b) indicating that both batches have compositional 

inhomogeneity. This observation is corroborated well by the EDS results despite the 

compositions obtained from either technique not matching exactly. It should be noted that the 

EDS analysis sampled information from both batches over a relatively smaller area 

(~150 µm2) compared to XRD which scans and collects information from the entire 

membrane surface (~350 mm2). Hence, the compositions obtained using XRD analysis are 

considered to be more accurate and therefore it can be said that the average FCC phase 

composition for both batches of Pd-Cu membranes in the as-received state is 

Pd61.3Cu38.7 wt%. 

Table 4.3 A summary of the FCC phase compositions (wt%) determined using XRD and EDS for both 
batches of as-received Pd-Cu membranes. 

 Surface XRD EDS 

Batch 1 
Side (a) Pd62.0Cu38.0 Pd61.7 ± 0.2Cu38.3 ± 0.2 
Side (b) Pd60.6Cu39.4 Pd58.9 ± 0.2Cu41.1 ± 0.2 

Batch 2 
Side (a) Pd62.0Cu38.0 Pd60.8 ± 0.6Cu39.2 ± 0.6 
Side (b) Pd60.6Cu39.4 Pd57.6 ± 0.9Cu42.4 ± 0.9 

 

4.3.1.1. Effects of temperature and hydrogen pressure on the as-received Pd-Cu foil 

VTXRD experiments were performed on Batch 1 Pd-Cu foil offcuts in the as-received state. 

Due to the similarity in composition, the results obtained from the Batch 1 Pd-Cu foil offcuts 

can be representative of Batch 2 also. Initially, a Batch 1 Pd-Cu offcut (Foil 1) was cycled 

under 445 kPa of helium during VTXRD in order to determine the phase transition 

temperature in the absence of hydrogen. Figure 4.10 shows the heating stage of the cycle 

between 250 and 700 °C. XRD scans were recorded at 25 °C increments between 250 and 

500 °C in order to capture any sudden phase changes. Above 500 °C, XRD scans were taken 

every 50 °C up until the end of the cycle at 700 °C. At room temperature, Foil 1 contains only 
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the disordered FCC phase, denoted α. The BCC phase, denoted β, starts to form at 300 °C and 

appears to be fully ordered by 475 °C as indicated by the  BCC Pd-Cu(100) diffraction peak 

at 2θ = 30°. ‘c’ denotes the corundum sample holder. At 325 °C, the FCC phase begins to 

disappear leaving behind the BCC phase although the FCC phase reforms at 475 °C. By 

600 °C, the BCC phase disappears with only the FCC phase present up until the end of the 

heating stage of the cycle at 700 °C. 

 
Figure 4.10 VTXRD patterns of Foil 1 showing the heating stage of a cycle under 445 kPa of flowing 
helium, where ‘c’, ‘α’ and ‘β’ denote the diffraction peaks attributed to the corundum sample holder, 
FCC and BCC phase, respectively. 
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Figure 4.11 depicts the VTXRD results during the cooling stage immediately following the 

heating stage of the cycle (Figure 4.10) where scans were recorded at 50 °C increments. 

According to Figure 4.11, Foil 1 contains only the FCC phase from 700 to 450 °C. At 450 °C, 

the BCC phase forms to produce a mixed phase in Foil 1. By 300 °C, the BCC phase is fully 

ordered and the FCC phase diminishes significantly, however, it does not disappear 

completely. 

Small quantities of the FCC phase remain stable in Foil 1 when cooled to room temperature 

possibly due to the fast cooling rate of the VTXRD pressure cell which is estimated to be 

approximately 5 °C min-1. In comparison, the MPR system is capable of much slower cooling 

rates of around 0.5 °C min-1. A slow cooling rate is essential in facilitating the full phase 

transformation from the disordered high temperature FCC phase to the ordered equilibrium 

BCC phase. It proved challenging to achieve a sufficiently low enough cooling rate with the 

water cooled pressure cell thus causing difficulty in forming a pure BCC phase in Foil 1. 
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Figure 4.11 VTXRD patterns of Foil 1 showing the cooling stage of a cycle under 445 kPa of flowing 
helium, where ‘c’, ‘α’ and ‘β’ denote the diffraction peaks attributed to the corundum sample holder, 
FCC and BCC phase, respectively. 
 

The VTXRD results displayed by Figure 4.10 and Figure 4.11 are summarised in Table 4.4. It 

is evident that upon heating of Foil 1 under 445 kPa of helium, that the BCC phase is stable 

between 300 and 600 °C. The Pd-Cu phase diagram illustrated in Figure 2.16 shows that the 

FCC + BCC | FCC phase boundary occurs at 550 °C for a composition of Pd60Cu40 wt%. 

Subramanian [154], Huang [72] and Li [153] have used data from Jones [162] to construct the 

Pd-Cu phase diagram which also indicates that for the composition of Pd60Cu40 wt%, the 

FCC + BCC | FCC phase boundary resides at 550 °C. According to these authors, the BCC 

30 35 40 45 50 55 60 6550
100
150
200
250
300
350
400
450
500
550
600
650
700

In
te

ns
ity

 (C
ou

nt
s)

c
c c

c
c

α

β

β
α

β

βc



Results and discussion 

~ 126 ~ 
 

phase will not exist above 550 °C; however, according to Figure 4.10 the BCC phase is stable 

up until 600 °C under the experimental conditions used. 

Interestingly, the BCC phase forms at 450 °C during the cooling stage indicating that the 

FCC + BCC | FCC phase boundary has shifted to a lower temperature. Perhaps this 

observation is attributed to the non-equilibrium cooling rate encountered by Foil 1 which 

would not facilitate the formation of the BCC phase at a similar temperature observed during 

the heating stage. A slower cooling rate may increase the temperature at which the BCC phase 

nucleates during the cooling stage. 

Table 4.4 Summary of results from the VTXRD experiment performed on Foil 1 cycled under 445 kPa of 
flowing helium from 30 to 700 °C and back to 30 °C. Temperatures are shown at which the FCC and BCC 
phase are stable during the heating and cooling stage of the cycle. 

 Heating (2.4 °C min-1) Cooling (5 °C min-1) 
FCC 30 – 325 °C, 475 – 700 °C 700 – 30 °C 
BCC 300 – 600 °C 450 – 30 °C 

 

VTXRD experiments were conducted on a separate as-received Batch 1 Pd-Cu foil offcut 

(Foil 2) under 445 kPa of hydrogen pressure with the same cycle programme used on Foil 1. 

The results are summarised in Table 4.5. Figure 4.12 demonstrates that the BCC phase forms 

at 275 °C and appears to be completely ordered by 400 °C as evidenced by the BCC 

Pd-Cu(100)  diffraction peak. The VTXRD analysis attempts to simulate test conditions in the 

MPR, however it should be noted that a hydrogen pressure gradient is not present across 

Foil 2 during the experiment. 

Hydrogen also appears to have a marked effect on the Pd-Cu phase diagram. Figure 4.12 

reveals that for the composition of Foil 2 (Pd61.3Cu38.7 wt% as determined in Section 4.3.1), 

the FCC phase begins forming at 500 °C to give a mixture of the BCC and FCC phase. By 

650 °C, the BCC phase disappears. According to Figure 2.16, at 450 °C the composition of 



Results and discussion 

~ 127 ~ 
 

Foil 2 resides within the mixed phase region close to the BCC | FCC + BCC phase boundary. 

In addition, Figure 4.12 shows that 445 kPa of hydrogen pressure shifts the 

BCC | FCC + BCC and FCC + BCC | FCC phase boundaries to higher temperatures and Pd 

concentrations. A similar effect was reported by Piper [39] showing that larger shifts in the 

phase boundaries towards higher Pd concentrations are observed at higher hydrogen 

pressures. Moreover, the BCC phase can be stabilised to higher than normal Pd alloy 

concentrations with high hydrogen pressures. It is noticeable that the BCC phase is stable 

over a wider temperature range (275 – 650 °C) in Foil 2 compared with Foil 1 (300 – 600 °C). 

Furthermore, upon heating the FCC phase disappears at the same temperature (325 °C) and 

reforms at a higher temperature (500 °C) in Foil 2 compared to Foil 1. This is evidence that 

445 kPa of hydrogen pressure is able to accelerate the FCC to BCC phase transformation and 

stabilise the BCC phase to higher temperatures. 
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Figure 4.12 VTXRD patterns of Foil 2 showing the heating stage of a cycle under 445 kPa of flowing 
hydrogen, where ‘c’, ‘α’ and ‘β’ denote the diffraction peaks attributed to the corundum sample holder, 
FCC and BCC phase, respectively.  
 

The cooling stage of the cycle is shown in Figure 4.13. The FCC phase is present in Foil 2 

from 700 to 30 °C, yet like Foil 1, there is a dramatic decline in the FCC phase content at 

300 °C. Foil 2 forms the BCC phase at 500 °C during the cooling stage whereas Foil 1 forms 

this phase at 450 °C. This is further proof that 445 kPa of hydrogen pressure accelerates the 

FCC to BCC phase transformation. Also, Foil 2 appears to attain a fully ordered BCC phase at 

275 °C which is lower than the ordering temperature of Foil 1 (300 °C) during the heating 

stage suggesting that the presence of hydrogen can increase the rate of ordering. 

30 35 40 45 50 55 60 65250
300
350
400
450
500
550
600
650
700

In
te

ns
ity

 (C
ou

nt
s)

c
c c

c
c

α

β

β

α

β

β

2θ (degree)

c



Results and discussion 

~ 129 ~ 
 

 
Figure 4.13 VTXRD patterns of Foil 2 showing the cooling stage of a cycle under 445 kPa of flowing 
hydrogen, where ‘c’, ‘α’ and ‘β’ denote the diffraction peaks attributed to the corundum sample holder, 
FCC and BCC phase, respectively.  
 

Table 4.5 Summary of results from the VTXRD experiment performed on Foil 2 cycled under 445 kPa of 
flowing hydrogen from 30 to 700 °C and back to 30 °C. Temperatures are shown at which the FCC and 
BCC phase are stable during the heating and cooling stage of the cycle. 

 Heating (2.4 °C min-1) Cooling (5 °C min-1) 
FCC 30 – 325 °C, 500 – 700 °C 700 – 30 °C 
BCC 275 – 650 °C 500 – 30 °C 
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4.3.2. MPR results 

The hydrogen permeability of the as-received Pd-Cu foil membranes were measured for 

Batches 1 and 2. The quantity of foil was limited for both batches; therefore measurements 

were repeated where possible. It should also be noted that hydrogen permeability 

measurements presented here were obtained on the overhauled MPR. 

4.3.2.1. Batch 1 

Initially, the hydrogen permeability of the Batch 1 Pd-Cu membrane was measured between 

50 and 450 °C in the MPR. Figure 4.14 shows that the first cycle began hydrogen permeation 

at 410 °C. The first cycle anneals the membrane and brings about a phase transformation from 

the disordered FCC phase to the ordered BCC phase. Under the test conditions used, only the 

ordered crystalline BCC phase is stable at 410 °C which is corroborated by the VTXRD 

results shown in Figure 4.12. Ordering of this phase should occur relatively quickly, 

especially in the presence of hydrogen [178, 179, 259, 261] since only local rearrangement of 

the Pd and Cu atoms is required. Additionally, it can be seen that hydrogen permeation begins 

at 370 °C for the second cycle and 350 °C for the third cycle. 
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Figure 4.14 Hydrogen permeability as a function of temperature for the 31.0 µm thick as-received 
Batch 1 Pd-Cu foil membrane showing the first three cycles heated between 50 and 450 °C. A hydrogen 
feed pressure of 445 kPa and permeate pressure of 100 kPa was applied during measurements assuming 
an n-value of 0.5. 
 

The Pd-Cu BCC phase is a fast diffuser of hydrogen compared to the Pd-Cu FCC phase [154, 

165, 262] and therefore more permeable to hydrogen. McKinley [35] reports that hydrogen 

permeation is enhanced in the presence of the ordered BCC phase, which would explain 

hydrogen permeation commencing at 410 °C. 

It has been shown by Piper [39] and Huang [72] that increasing hydrogen pressure can shift 

the BCC | FCC + BCC phase boundary to high Pd compositions as shown in Figure 2.17 and 

Figure 2.18. It should be noted that the feed side is exposed to 445 kPa of hydrogen pressure 

whereas 100 kPa of hydrogen pressure is applied to the permeate side. This means that for the 

given composition of the Batch 1 Pd-Cu membrane, more of the FCC phase is converted to 
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the BCC phase on the feed side as compared to the permeate side throughout the duration of 

the MPR test. 

Evidence for this is shown in Figure 4.33(b) where the small presence of the FCC phase is 

indentified on the permeate side by the Pd-Cu(111) diffraction peak in a 

Batch 1 Pd-Cu membrane that was cycled only three times between 50 and 450 °C in the 

MPR before removal. In keeping with the reporting structure used throughout this thesis, 

Figure 4.33 can be found in Section 4.3.3 which presents the post-MPR characterisation 

results for the Batch 1 Pd-Cu membrane.  

The permeate side of the membrane will undergo further phase transformation from the less 

permeable FCC phase to the more permeable BCC phase during each cycle until the FCC 

phase is diminished. This effect would explain hydrogen permeation commencing at lower 

temperatures with each successive cycle. For comparison, Figure 4.35 shows a diffraction 

pattern indicating only a single BCC phase for a Batch 1 Pd-Cu membrane that has completed 

more cycles than the membrane scanned in Figure 4.33 performing a total of eight cycles, two 

of which were heated to a maximum temperature of 700 °C. 

It has been theorised that rapid phase transformation is due to accelerated atomic diffusion 

caused by the formation of vacancy-hydrogen clusters [178, 179, 263, 264] which is the 

trapping of hydrogen atoms in metal vacancies. As a result, the membrane surface exposed to 

the relatively higher hydrogen pressure on the feed side undergoes a more rapid phase 

transformation from the FCC to the BCC phase. 

Following MPR testing, n-value measurements were performed on the 

Batch 1 Pd-Cu membrane with the results shown in Figure 4.15 and Figure 4.16. An n-value 

of 0.58 gives the best fit for the data shown in Figure 4.16, which is very similar to the 
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n-value of 0.57 obtained for the Pd membrane indicating that hydrogen diffusion is again the 

rate limiting step for the Batch 1 Pd-Cu membrane under the test conditions used. 

 
Figure 4.15 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. 
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Figure 4.16 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.58. 
 

For comparison, Figure 4.17 shows a plot of the third cycle from Figure 4.14 for the 

Batch 1 Pd-Cu membrane where the solid symbol curve is calculated using an n-value of 0.5 

and the open symbol curve is calculated using an n-value of 0.58. 
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Figure 4.17 Hydrogen permeability as a function of temperature for the 31.0 µm thick Batch 1 Pd-Cu foil 
membrane showing the third cycle. A hydrogen feed pressure of 445 kPa and permeate pressure of 
100 kPa was applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 
whereas the open symbol curve uses the best fit n-value of 0.58. 
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Figure 4.18 Arrhenius plot of the hydrogen permeability data shown in Figure 4.17 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.58. 
 

The general permeability formulae (350 – 450 °C) for the Batch 1 Pd-Cu membrane derived 

from Figure 4.18 using an n-value of 0.5 and the best fit value of 0.58 which are shown in 

Equation 4.6 and Equation 4.7, respectively. 

 (+g,.i = 2.88	×	10�i��- H−51.09	×	10n12 J Equation 4.6 

 

 (+g,.iq = 8.87	×	10�s��- H−51.09	×	10n12 J Equation 4.7 

 

The hydrogen permeability of the Batch 1 Pd-Cu membrane at 350 °C was measured as 

1.52 × 10-9 mol m-1 s-1 Pa-0.5 during the third cycle. This is more than a factor of five times 
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lower than the value measured for the Pd membrane at the same temperature. Also, compared 

to literature data this value is notably low as shown in Table 4.6. However, it is important to 

note that the authors in Table 4.6 report hydrogen permeability values at 350 °C which do not 

agree well with each other since they range between 0.35 – 1.76 × 10-8 mol m-1 s-1 Pa-0.5. 

Table 4.6 Hydrogen permeability of free-standing Pd60Cu40 wt% foil membranes at 350 °C compiled from 
Table 2.4. 

Permeability (× 10-8 mol m-1 s-1 Pa-n) n Reference 
1.42 0.5 Decaux [95] 
0.50 0.5 Howard [37] 
0.60 0.5 Kamakoti [87] 
1.07 

0.5 Krueger [96] 
1.76a 
1.49 0.5 McKinley [35] 
0.35 0.5 Yuan [97] 

a denotes measurement taken after heat treatment of alloy membrane. 
 

A likely cause for such low hydrogen permeability observed in the as-received Pd-Cu 

foil membranes is explained by Krueger [96] who cites that homogenising an as-received 

Pd60Cu40 wt% foil membrane at 1,100 °C in a mildly reducing atmosphere for 40 minutes can 

improve hydrogen permeability by up to 65%. Such an improvement has been linked to a 

phenomenon known as coring. This occurs when an alloy melt is cooled to the solid phase 

under non-equilibrium conditions causing the exterior of the alloy to solidify at a more rapid 

rate than the interior. The grains that form in the inner region are richer in the higher melting 

point component; in this case Pd, whereas the outer region grains will be Pd-depleted and so 

this effect will lead to compositional inhomogeneity within the alloy [96]. Such 

inhomogeneity can be of detriment to the performance of a Pd-Cu membrane since hydrogen 

permeability is sensitive to phase composition. 
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In addition to the effects of coring, Piper [39] demonstrated in Figure 2.17 that annealing at 

350 °C in 507 kPa of hydrogen pressure can improve the room temperature diffusivity of a 

Pd47.3Cu52.7 at% (Pd60Cu40 wt%) membrane by more than a factor of two over annealing under 

a vacuum at the same temperature. In general, annealing in a hydrogen atmosphere is 

beneficial for the membrane to reverse the effects of coring and promote the formation of the 

equilibrium BCC phase. 

It was observed that the n-value for the Batch 1 Pd-Cu membrane exhibited a much higher 

deviation from Sieverts’ law with temperature than the Pd membrane. Variation in n-value as 

a function of temperature is shown in Figure 4.19 for the Batch 1 Pd-Cu membrane. Initially, 

Sieverts’ law is obeyed between 350 and 375 °C, however, increasing the temperature results 

in a maximum n-value of 0.69 at 425 °C with a slight reduction to 0.65 at 450 °C. 

 
Figure 4.19 Variation of n-value as a function of temperature for the 31.0 µm thick Batch 1 Pd-Cu foil 
membrane. 
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Further permeability studies were carried out on the Batch 1 Pd-Cu membrane by cycling 

between 250 and 700 °C immediately after cycling between 50 and 450 °C in order to 

investigate the effects of the high temperature FCC crystal structure on hydrogen 

permeability. The results are displayed in Figure 4.20 showing the second cycle. For clarity, 

the cycle pattern proceeds from A – B – C – D – E – A. 

 
Figure 4.20 Hydrogen permeability as a function of temperature for the 31.0 µm thick Batch 1 Pd-Cu foil 
membrane during the second cycle between 250 and 700 °C. A hydrogen feed pressure of 445 kPa and 
permeate pressure of 100 kPa was applied during measurements. The dashed lines represent the phase 
boundaries of the FCC (α), BCC (β) and mixed phase regions, which were determined from the phase 
transition temperatures shown in Figure 4.12. 
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and 450 °C (Figure 4.14 and Figure 4.17). At 350 °C, the Batch 1 Pd-Cu membrane achieves 

a hydrogen permeability of 6.36 × 10-9 mol m-1 s-1 Pa-0.5 which falls well within the literature 

value range shown in Table 4.6. Moreover, this value is more than a factor of four times 

greater than that shown in Figure 4.14 and Figure 4.17. The overall increase in hydrogen 

permeability and decrease in hydrogen permeation start temperature can be linked to the 

exposure of the membrane to higher temperatures for longer durations which can help remove 

the effects of coring created during alloy production. 

From B to C, hydrogen permeability drops by nearly a factor of eight. According to Figure 

4.12, 500 °C corresponds with the formation of the less permeable FCC phase and by 650 °C 

the membrane contains only the FCC phase. Such decline in hydrogen permeability can be 

attributed to the lower hydrogen diffusivity of this phase (< 2 × 10-6 cm2 s-1 at room 

temperature) compared to that of the BCC (4.6 × 10-5 cm2 s-1 at room temperature) [39]. A 

similar observation has been reported by Kamakoti et al [87] using density functional theory 

to model the movement of hydrogen between interstices. 

Despite not providing data evidence, Piper [39] suggests that hydrogen diffusivity is relatively 

lower in the FCC phase due to the activation energy for hydrogen diffusion being a factor of 

three times higher than that of the BCC phase. This could be attributed to the smaller BCC 

unit cell possessing three times as many octahedral and tetrahedral interstitial sites than the 

FCC alternative [77] facilitating a much more rapid transport of hydrogen from one unit cell 

to the next. Hydrogen permeability in the FCC phase was significantly low so that the 

downstream MFC had difficulty detecting any hydrogen permeation at times since the device 

was calibrated to measure only as low as 6 ± 6 ml min-1 of hydrogen gas flow. With such 

large error for small gas flows, the activation energy could not be accurately determined. 
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Hydrogen permeation hysteresis is clearly visible from C, D to E. This effect has been linked 

to non-equivalent phase transformation occurring in the mixed FCC + BCC region and it has 

been theorised that a retardation in the FCC(H) ⇋ BCC(H) phase transition occurs due to the 

existence of a metastable hydrogenated FCC Pd-Cu(H) phase [97]. The VTXRD results 

shown in Figure 4.11 and Figure 4.13 clearly indicate that the FCC phase is stable down to 

lower than normal temperatures in the presence and absence of hydrogen during the cooling 

stage of the cycle. This means that rather than a metastable hydrogenated FCC Pd-Cu(H) 

phase being the prime cause of the observed hysteresis in Figure 4.20, it is proposed instead 

that the cooling rate which controls the rate of phase transformation from the FCC to the BCC 

phase has more of an influence. 

At E, it appears as though the FCC phase has transformed to the more permeable BCC phase 

after which the curve continues its path back to A to conclude the cycle. The effects of 

hydrogen permeation hysteresis could be remedied by having a more controlled and slower 

cooling rate as opposed to the natural furnace cooling rate used throughout this work. 

Subsequent to cycling up to 700 °C, n-value measurements were performed in order to assess 

any changes brought about by the exposure of the membrane to higher temperatures in a 

hydrogen atmosphere. Figure 4.21 shows a decline in n-value from 0.58 to 0.52. The effects 

of coring have drawn Pd atoms into the interior of the membrane leaving a Cu-rich surface. 

The presence of this Cu-rich surface will reduce the ability of the membrane to dissociate 

hydrogen thus increasing the n-value. Cycling of the membrane to 700 °C will facilitate 

compositional homogenisation through diffusion of Cu atoms into the Cu-depleted interior 

resulting in the n-value tending to 0.5. 
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Figure 4.21 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.52. This measurement was performed on the Batch 1 Pd-Cu foil membrane following cycling 
between 250 and 700 °C during MPR testing. 
 

The Batch 1 Pd-Cu membrane was finally cycled between 250 and 450 °C after completing 

the two cycles between 250 and 700 °C revealing a marked improvement in hydrogen 

permeability. Figure 4.22 shows that during the third cycle between 250 and 450 °C, the 

Batch 1 Pd-Cu membrane achieved a hydrogen permeability of 6.98 × 10-9 mol m-1 s-1 Pa-0.5 at 

350 °C which is a 360% increase on the value obtained at the same temperature during the 

third cycle between 50 and 450 °C. In addition, Figure 4.22 shows the third cycle calculated 

using the new best fit n-value of 0.52. 
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Figure 4.22 Hydrogen permeability as a function of temperature for the 31.0 µm thick Batch 1 Pd-Cu foil 
membrane showing the third cycle. This measurement was performed after cycling between 250 and 
700 °C during MPR testing. A hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa was 
applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 whereas the 
open symbol curve uses the best fit n-value of 0.52. 
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Figure 4.23 Arrhenius plot of the hydrogen permeability data shown in Figure 4.22 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.52. 
 

From Figure 4.23, the following general permeability formulae (350 – 450 °C) were derived 

based on an n-value of 0.5 and best fit value of 0.52 as demonstrated in Equation 4.8 and 

Equation 4.9, respectively.  

 (+g,.i = 3.41	×	10�k��- H−19.86	×	10n12 J Equation 4.8 

 

 (+g,.i� = 2.71	×	10�k��- H−19.86	×	10n12 J Equation 4.9 

 

It is clear that cycling the Batch 1 Pd-Cu membrane up to 700 °C in a hydrogen atmosphere 

has the effect of reducing the EΦ from 51.09 kJ mol-1, as shown in Equation 4.6 and Equation 
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4.7, by 61% to 19.86 kJ mol-1. Furthermore, the test conditions used have also reduced the Φ0 

by one order of magnitude. Figure 4.24 reveals that the n-value fluctuates about 0.51 and 

experiences a slight increase to 0.54 at 450 °C. 

 
Figure 4.24 Variation of n-value as a function of temperature for the 31.0 µm thick Batch 1 Pd-Cu foil 
membrane following cycling between 250 and 700 °C during MPR testing. 
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the associated standard error bars.  
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Figure 4.25 Hydrogen permeability as a function of temperature for the 31.3 µm thick as-received 
Batch 2 Pd-Cu foil membranes showing the first three cycles heated between 50 and 450 °C. A feed 
pressure of 445 kPa and permeate pressure of 100 kPa was applied during measurements assuming an 
n-value of 0.5. 
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on the values obtained as a result of annealing and compositional homogenisation. Therefore, 

the n-value has been determined following cycles between 250 and 700 °C. 

 
Figure 4.26 Arrhenius plot of the hydrogen permeability data shown in Figure 4.25 between 350 and 
450 °C for the third cycle using an n-value of 0.5. 
 

From the data displayed in Figure 4.26, the following general permeability formula (350 – 

450 °C) for the Batch 2 Pd-Cu membranes was calculated and is shown in Equation 4.10 

assuming an n-value of 0.5. Despite a similar EΦ value (41.67 ± 3.4 kJ mol-1), the Φ0 

((8.81 ± 5.12) × 10-6 mol m-1 s-1 Pa-0.5) is one order of magnitude smaller than the value 

shown in Equation 4.6 for the Batch 1 Pd-Cu membrane. The lower EΦ value for the 

Batch 2 Pd-Cu membranes helps to explain hydrogen permeation commencing at lower 

temperatures and achieving relatively higher hydrogen permeability values compared with the 

Batch 1 Pd-Cu membrane. 
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 (+g,.i = (8.81 ± 5.12)	×	10�s��- H−(41.67 ± 3.40)	×	10n
12 J Equation 4.10 

 

Immediately after the Batch 2 Pd-Cu membranes completed three cycles between 50 and 

450 °C, two cycles between 250 and 700 °C were performed. Figure 4.27 shows the second 

cycle completed by the Batch 2 Pd-Cu membranes between 250 and 700 °C. 

 
Figure 4.27 Hydrogen permeability as a function of temperature for the 31.3 µm thick Batch 2 Pd-Cu foil 
membranes during the second cycle between 250 and 700 °C. A hydrogen feed pressure of 445 kPa and 
permeate pressure of 100 kPa was applied during measurements. The dashed lines represent the phase 
boundaries of the FCC (α), BCC (β) and mixed phase regions, which were determined from the phase 
transition temperatures shown in Figure 4.12. 
 

Similar to what has been shown with the Batch 1 Pd-Cu membrane (Figure 4.20), the 
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formation of the disordered FCC phase. A slight increase in hydrogen permeability is 

observed up until the end of the heating stage of the cycle at C. The cooling stage proceeds 

from C to D whereby the hysteresis effect comes into play. This FCC phase begins to 

disappear at D and at E the membrane predominantly contains the BCC phase at which point 

the cycle proceeds to the end of the cycle at A. Points A, B, C, D and E occur at very similar 

temperatures to those shown in Figure 4.20 demonstrating that the Batch 1 and 

Batch 2 Pd-Cu membranes behave very similar under the same test conditions which further 

suggest that both batches are almost identical in composition but differ possibly in 

compositional homogeneity. 

The n-value measurements were carried out on the Batch 2 Pd-Cu membranes subsequent to 

the 250 to 700 °C cycles. The data shown in Figure 4.28 has been calculated using an n-value 

constrained to 0.5, whereas the data in Figure 4.29 was determined with the best fit value of 

0.59 ± 0.03. 
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Figure 4.28 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. This 
measurement was performed on the Batch 2 Pd-Cu foil membranes following cycling between 250 and 
700 °C during MPR testing. 
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Figure 4.29 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.59 ± 0.03. This measurement was performed on the Batch 2 Pd-Cu foil membranes following 
cycling between 250 and 700 °C during MPR testing. 
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comparison, Figure 4.30 shows the third cycle calculated using the average best fit n-value of 

0.59. 

 
Figure 4.30 Hydrogen permeability as a function of temperature for the 31.3 µm thick Batch 2 Pd-Cu foil 
membranes showing the third cycle. This measurement was performed after cycling between 250 and 
700 °C during MPR testing. A hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa was 
applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 whereas the 
open symbol curve uses the best fit n-value of 0.59. 
 

Figure 4.8(a), Figure 4.33(b) and also Figure 4.35(a) and (b) show a diffraction peak at 

2θ = 29.4° which corresponds to the Cu2O(110) diffraction plane. The presence of Cu2O may 

have an adverse effect on the mechanical properties of the membrane as well as hydrogen 
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until it encounters Cu2O in which case the following reaction occurs (Equation 4.11) [265]. 

 2�(�f�) + �v�� → 2�v + ���(���) Equation 4.11 
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The absorbed hydrogen (H(abs)) reacts with Cu2O to produce Cu and steam. Since steam is 

insoluble in Cu, pockets containing steam form and coalesce with adjacent pockets to form 

voids which, in extreme cases, lead to membrane failure [265]. Furthermore, these pockets 

can act as hydrogen traps and could potentially reduce diffusivity and consequently 

permeability of the membrane. This might be one of the reasons as to why the 

Batch 2 Pd-Cu membranes achieve relatively higher hydrogen permeability values over the 

Batch 1 Pd-Cu membrane. 

 
Figure 4.31 Arrhenius plot of the hydrogen permeability data shown in Figure 4.30 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.59 ± 0.03. 
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 (+g,.i = (6.32 ± 4.74)	×	10�k��- H−(19.93 ± 6.12)	×	10n
12 J Equation 4.12 

 

 (+g,.iw = (1.81 ± 1.36)	×	10�k��- H−(19.92 ± 6.12)	×	10n
12 J Equation 4.13 

 

As shown in Equation 4.12, the Batch 2 Pd-Cu membranes have an EΦ value of 

19.93 ± 6.12 kJ mol-1 and Φ0 value of (6.32 ± 4.74) × 10-7 mol m-1 s-1 Pa-0.5 when the n-value 

is constrained to 0.5. In comparison with Equation 4.10, it is apparent that the EΦ value has 

more than halved as a result of completing several cycles under a hydrogen atmosphere where 

two cycles experienced a maximum temperature of 700 °C. This facilitated annealing and 

homogenisation of the membrane similar to what was witnessed with the 

Batch 1 Pd-Cu membrane. In addition, the effect of annealing has reduced the Φ0 value by 

one order of magnitude which was also observed with the Batch 1 Pd-Cu membrane. 

Figure 4.32 reveals the changes in the average n-value for the Batch 2 Pd-Cu membranes with 

temperature. The trend is quite different from that observed for the Batch 1 Pd-Cu membrane. 

At 350 °C, the n-value increases from 0.55 to a maximum of 0.61 between 375 and 400 °C 

after which a plateau is evident around 0.59 all the way up to 450 °C. 
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Figure 4.32 Variation of n-value as a function of temperature for the 31.3 µm thick Batch 2 Pd-Cu foil 
membranes. 

4.3.3. Post-MPR characterisation  

Ex-situ XRD analysis was performed on the Batch 1 and 2 Pd-Cu membranes after hydrogen 

permeability measurements in order to determine any changes in crystal structure as a result 
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amounts of the FCC phase as indicated by the Pd-Cu(111)* and Pd-Cu(200)* diffraction 

peaks (Figure 4.34(b)). 

 
Figure 4.33 XRD patterns of the as-received Batch 1 Pd-Cu foil membrane after MPR testing performed 
on the feed side (a) and permeate side (b). This membrane was cycled to a maximum temperature of 
450 °C. ‘*’ indicates the FCC diffraction peak. 
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Figure 4.34 XRD patterns of the as-received Batch 2 Pd-Cu foil membrane after MPR testing performed 
on the feed side (a) and permeate side (b). This membrane was cycled to a maximum temperature of 
450 °C. ‘*’ indicates the FCC diffraction peak. 
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from the FCC to the equilibrium BCC phase. 
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Figure 4.35 XRD patterns of the as-received Batch 1 Pd-Cu foil membrane after MPR testing performed 
on the feed side (a) and permeate side (b). This membrane was cycled to a maximum temperature of 
700 °C. 
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Figure 4.36 XRD patterns of the as-received Batch 2 Pd-Cu foil membrane after MPR testing performed 
on the feed side (a) and permeate side (b). This membrane was cycled to a maximum temperature of 
700 °C. 
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calculated to be 2.975 Å and 2.978 Å, respectively. From the XRD data shown in Figure 4.36, 

the lattice parameters for the Batch 2 Pd-Cu membranes were calculated as 2.978 Å for both 

the feed side and permeate side. These lattice parameter values agree extremely well with the 

value range 2.97 – 2.977 Å [39, 210, 266, 267] found in literature for the same phase 

composition. 

Using Equation 6.2, the associated BCC phase compositions are calculated for both Batch 1 

and Batch 2 Pd-Cu membranes and summarised in Table 4.7. As indicated by the XRD and 

EDS data, it can be said that following MPR testing the Batch 2 Pd-Cu membranes possess an 

identical BCC phase composition on both sides of the membrane unlike the 

Batch 1 Pd-Cu membrane which exhibits very different compositions on both sides. The 

homogeneity in the Batch 2 Pd-Cu membrane would most likely be responsible for the higher 

hydrogen permeability values reached in comparison to the Batch 1 Pd-Cu membrane. It is 

evident when comparing the compositions presented in Table 4.3 with those shown in Table 

4.7 that the conditions used during MPR testing has the effect of homogenising the 

composition of the Pd-Cu membranes. 

Table 4.7 A summary of the BCC phase compositions (wt%) determined using XRD and EDS for both 
batches of Pd-Cu membrane. 

 Surface XRD EDS 

Batch 1 
Feed side Pd60.0Cu40.0 Pd60.7 ± 0.6Cu39.3 ± 0.6 
Permeate side Pd61.6Cu38.4 Pd65.0 ± 0.9Cu35.0 ± 0.9 

Batch 2 
Feed side Pd61.6Cu38.4 Pd62.2 ± 0.6Cu37.8 ± 0.6 
Permeate side Pd61.6Cu38.4 Pd61.9 ± 0.9Cu38.1 ± 0.9 
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4.4. Type A membranes  

4.4.1. Pre-MPR characterisation 

As outlined in Table 4.1, Type A membranes were prepared by sputtering Pd onto one side of 

an as-received Pd-Cu membrane for 50 seconds. The Type A membranes which use an 

as-received Batch 1 Pd-Cu membrane for a substrate are referred to as a 

Type A-B1 membrane. Similarly, a Type A membrane which has an as-received 

Batch 2 Pd-Cu membrane substrate is referred to as a Type A-B2 membrane. In total four 

membranes were prepared: two Type A-B1 membranes and two Type A-B2 membranes. 

Furthermore, ‘F’ and ‘P’ will be notations to distinguish the position of the Pd thin film 

during MPR testing. For example, the Type A-B1-F membrane denotes that Pd has been 

sputter-coated for 50 seconds onto one side of a Batch 1 Pd-Cu membrane and MPR tested 

with the Pd thin film positioned on the feed side. Similarly, the Type A-B2-P membrane 

denotes that Pd has been sputter-coated for 50 seconds onto one side of a 

Batch 2 Pd-Cu membrane and MPR tested with the Pd thin film positioned on the permeate 

side. The same convention will be used for the Type B and C membranes.  
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Figure 4.37 SEM micrographs showing the microstructure representative of a Type A-B1 and 
Type A-B2 membrane. Coating time was 50 seconds with a Pd target current of 1 A. 

(a)

(b)
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After the Pd sputter deposition process was complete, SEM micrographs were acquired 

representative of a Type A-B1 and Type A-B2 membrane in order to view the Pd thin film 

microstructure (Figure 4.37(a) and (b)). The micrographs show that the Pd thin film is 

polycrystalline in nature made up of nanometre sized grains. The average grain size can be 

estimated from Figure 4.37(b) to be approximately 38 nm which is comparable to the 30 nm 

grain size achieved by Jayaraman et al [268] who sputter-deposited Pd onto porous α-alumina 

supports under similar conditions to those used in this work. 

The thickness of the Pd thin film was determined using the methods outlined in Section 3.1.2. 

The Type A-B1 and Type A-B2 membranes were weighed before and after Pd deposition and 

with the use of Equation 3.1, an estimated thickness of 82 ± 4 nm for the Pd thin film was 

determined. 

 &> = Z��[M −Z�\[M%�  Equation 3.1 

 

Equation 3.1 assumes that the Pd thin film is fully dense with a continuous and uniform 

thickness throughout the coated area. 

Alongside the Type A-B1 and Type A-B2 membranes, a glass slide with a portion of the 

surface masked with Kapton tape was Pd sputter-coated for 50 seconds. Following the 

sputtering process, the Kapton tape was removed to reveal the glass section protected from the 

Pd deposition. This created a step between the glass surface and the deposited Pd thin film 

from which the thickness can be measured. Figure 4.38 shows the profilometer trace for the 

glass slide that was Pd sputter-coated for 50 seconds. The initial 1,050 µm of the x-axis 

represents the non-coated glass surface after which the edge of the Pd thin film is reached. 

The stylus tip travels just under 1 mm along the top surface of the Pd thin film to complete the 
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measurement. The trace shows that the Pd thin film thickness is approximately 95.5 ± 0.1 nm 

thick. From Figure 4.38, the trace reveals that the Pd thin film does not have a uniform 

thickness along the x-axis. The thickness measured using profilometry is larger than that 

calculated using Equation 3.1 suggesting that the deposited Pd thin film is not completely 

dense. 

 
Figure 4.38 Profilometer trace for a glass slide that has been Pd sputter-coated for 50 seconds. The first 
1,050 µm of the x-axis represents the area of the glass slide masked with Kapton tape during Pd 
deposition.   
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Figure 4.39 XRD pattern which is representative for the Pd sputter-coated side of a Type A-B1 and 
Type A-B2 membrane in the as-deposited state before MPR testing. 
 

Figure 4.39 illustrates an XRD pattern representative of a Type A-B1 and 

Type A-B2 membrane. The presence of the Pd thin film is indicated by the Pd(111), (200), 

(220), (311) and (400) diffraction peaks. A noticeable feature of Figure 4.39 is the peak 

asymmetry evident in these diffraction peaks. With peak asymmetry, the diffraction peaks 

themselves are made up of smaller individual diffraction sub-peaks (Figure 4.40(a)) 

positioned at different scattering angles. Yet the XRD pattern combines the individual peaks 

into one asymmetric diffraction peak as demonstrated in Figure 4.40(b).  

2θ (degree)

30 40 50 60 70 80 90 100 110 120 130 140

In
te

ns
ity

 (
ar

b) FC
C

 P
d-

C
u(

11
1)

FC
C

 P
d-

C
u(

20
0)

FC
C

 P
d-

C
u(

22
0)

FC
C

 P
d-

C
u(

31
1)

FC
C

 P
d-

C
u(

40
0)

FC
C

 P
d-

C
u(

33
1)

FC
C

 P
d-

C
u(

42
0)

FC
C

 P
d-

C
u(

22
2)

FC
C

 P
d(

11
1)

FC
C

 P
d(

20
0)

FC
C

 P
d(

22
0)

FC
C

 P
d(

31
1)

FC
C

 P
d(

40
0)



Results and discussion 

~ 166 ~ 
 

 
Figure 4.40 Illustration demonstrating peak asymmetry. 
 

The Pd(111) diffraction peak from Figure 4.39 is shown in greater detail in Figure 4.41. 

Asymmetry in this peak is observed on the right hand side spreading over a range of higher 

scattering angles. An increase in scattering angle is caused by a decrease in interplanar 

distance and consequently a reduction in the lattice parameter. As shown in Figure 6.1 in the 

Appendix, the Pd-Cu FCC crystal structure contracts with increasing Cu content. This may 

suggest that interdiffusion of Cu atoms from the Pd-Cu membrane into the Pd thin film takes 

place during the sputtering process producing an interface region that exhibits a range of 

Pd-Cu compositions. 

From points A, B, C, D and E in Figure 4.41, the corresponding compositions were calculated 

using Equation 3.4 and Equation 6.1 and compiled in Table 4.8. It should be noted that, XRD 

data points were acquired every 0.028° 2θ in each pattern and it is assumed that this step size 

is sufficient for a good first approximation. Point A is highlighted with a green dashed line to 

indicate the 2θ position of the pure Pd(111) diffraction peak. 
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Figure 4.41 Magnification of the Pd(111) diffraction peak shown in Figure 4.39. 
 

Table 4.8 Compositions determined for points A to E in Figure 4.41.  

 Scattering angle, 2θ (degree) Composition (wt%) 
A 40.09 Pd100Cu0 
B 40.15 Pd97.6Cu2.4 
C 40.24 Pd95.8Cu4.2 
D 40.29 Pd94.6Cu5.4 
E 40.35 Pd93.4Cu6.6 

 

Using the scattering angles for the most intense peaks corresponding to each Pd-Cu(hkl) 

diffraction plane (for example point C in Figure 4.41), the composition of the Pd thin film was 

calculated to be Pd93.4Cu6.6 wt%. This has been done using the method detailed in Section6.1. 

Three foil offcuts were Pd sputter-coated alongside the Type A-B1 and 

Type A-B2 membranes. These Pd sputter-coated foil offcuts originate from the 
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Batch-2 Pd-Cu foil and are referred to as Type A-B2 Foil 1, Type A-B2 Foil 2 and 

Type A-B2 Foil 3. XPS depth profile analysis was performed on the as-deposited 

Type A-B2 Foil 1 to observe the variation in Pd and Cu concentration with etch depth as 

shown in Figure 4.42. An estimate for etch depth was determined from the etch time using an 

etching rate of 0.21 nm s-1 obtained from a Ta2O5 standard. 

According to Figure 4.42, the top 75 nm of the thin film is pure Pd below which an 

interdiffusion region exists. Note that the XPS depth profile is performed down to a depth of 

200 nm and therefore the interdiffusion region may continue beyond this point meaning 

greater analysis depths are required in order to reach the composition of the bulk Pd-Cu foil. 

This is further evidence that interdiffusion between the deposited Pd thin film and bulk Pd-Cu 

foil occurs during the sputtering process.  

It should be noted, however, that XPS scans were performed at 25 nm intervals. A higher 

resolution or shorter intervals would be required to accurately determine the depth and size of 

the interdiffusion region. Significant interdiffusion can occur between bimetallic interfaces in 

bulk metals and alloys at the Tammann temperature [269]. This is defined as half of the 

melting point (in K) of the constituent metals hence the Tammann temperature for the Pd-Cu 

system ranges between 679 K (326 °C) for Cu and 914 K (641 °C) for Pd. Therefore it is 

expected that Cu atoms will be more mobile than Pd atoms during the interdiffusion process. 

Various work on this topic [261, 270-274] has shown that significant interdiffusion can occur 

in Pd-Cu thin films fabricated using deposition techniques such as electrodeposition, thermal 

evaporation and magnetron sputtering. Bukaluk [274] reports interdiffusion between Pd/Cu 

multilayers occurring at temperatures as low as 120 °C. The authors have attributed this 
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phenomenon to the polycrystalline nature of the deposited thin films which introduce grain 

boundary defects that promote interdiffusion. 

Figure 4.37 shows a nanocrystalline Pd thin film with countless grain boundary defects which 

can facilitate interdiffusion. It may seem unlikely that either a Type A-B1 or 

Type A-B2 membrane could reach the necessary temperatures in 50 seconds for interdiffusion 

to take place. However, it should be noted that irrespective of the short coating time, it is 

possible that the Pd atoms will arrive at the surface of the Pd-Cu membrane with sufficient 

kinetic energy for interdiffusion to occur. 

 
Figure 4.42 XPS depth profile analysis of Type A-B2 Foil 1 in the as-deposited state. The etch depth was 
estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
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4.4.1.1. Effects of temperature and hydrogen pressure on interdiffusion 

Type A-B1 and Type A-B2 membranes have been tested in the MPR with the Pd thin film 

positioned on the feed and also on the permeate side in order to investigate the effect on 

membrane permeability. VTXRD analysis was performed on Type A-B2 Foil 2 and 

Type A-B2 Foil 3, which are representative of the Type A-B1/2-F/P membranes, between 30 

and 700 °C under conditions similar to those used in the MPR in order to study the influence 

of temperature and hydrogen pressure on the interdiffusion of the Pd thin film with the bulk 

Pd-Cu foil. 

Type A-B2 Foil 2 was tested under 445 kPa of flowing hydrogen in order to emulate 

conditions in the MPR on the feed side. Figure 4.43(a) is a contour plot of temperature against 

scattering angle. It is apparent from this plot that the Pd thin film forms the β-PdH phase at 

temperatures as low as 30 °C. This is shown by the β-PdH(111) diffraction peak located at 

2θ = 38.30°. Hence, the Pd lattice parameter expands from 3.89 to 4.067 Å which is a 14.3% 

lattice volume expansion as a result of 445 kPa of hydrogen pressure. The β-PdH(111) 

diffraction peak shifts to 2θ = 39.81° at 200 °C indicating the formation of the α-PdH phase as 

hydrogen is desorbed from the Pd thin film with increasing temperature. Due to hydrogen 

desorption, the lattice parameter contracts to 3.92 Å. This observation is expected since the 

enthalpy of hydride formation in Pd is exothermic [68]. 
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Figure 4.43 VTXRD contour plots  tracking the movement of the (a) PdH(111) diffraction peak from the 
Pd thin film of Type A-B2 Foil 2 under 445 kPa of flowing hydrogen and (b) the PdH(111) diffraction 
peak from the Pd thin film of Type A-B2 Foil 3 under 100 kPa of flowing hydrogen whilst heating between 
30 and 700 °C. 
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To study the effects of hydrogen permeate pressure on interdiffusion between the Pd thin film 

and Pd-Cu foil, VTXRD was conducted on Type A-B2 Foil 3 under 100 kPa of flowing 

hydrogen (Figure 4.43(b)). Similar to Type A-B2 Foil 2, the Pd thin film readily forms the 

β-PdH phase at 30 °C, however, the β-PdH(111) diffraction peak occurs at a relatively higher 

scattering angle, 2θ = 38.53°. This scattering angle signifies that the Pd lattice parameter has 

increased to 4.043 Å as a result of exposure to 100 kPa of hydrogen pressure causing a 12.3% 

lattice volume dilation. From this it is evident that 445 kPa of hydrogen pressure generates a 

larger lattice expansion in the Pd thin film compared to a pressure of 100 kPa. 

Furthermore, Figure 4.43(b) shows that at 150 °C the β-PdH(111) diffraction peak shifts to 

2θ = 39.98° indicating that hydrogen desorption in the Pd thin film occurs to form the α-PdH 

phase. According to the Pd-H PCT diagram (Figure 2.9), it is expected that hydrogen will 

desorb from Pd at lower temperatures when at lower hydrogen pressures. The intensity of the 

α-PdH(111) diffraction peak decreases at 300 °C, however, it is still detectable up until 

700 °C suggesting that small traces of the α-PdH phase is stable at such high temperatures 

under 100 kPa of hydrogen pressure. This also means that minute remains of the Pd thin film 

can still be detected following interdiffusion with the Pd-Cu foil under these conditions. 

Similar to what is shown in Figure 4.43(a), interdiffusion takes place between 350 and 600 °C 

as demonstrated by the movement of the α-PdH(111) diffraction peak to higher scattering 

angles to eventually merge with the Pd-rich Pd-Cu(111) diffraction peak. 

The Pd-Cu(111) diffraction peak associated with the bulk Pd-Cu foil does not disappear 

during the VTXRD experiment indicating that the FCC phase remains stable throughout the 

entire temperature range. This implies that 100 kPa of hydrogen pressure is insufficient in 

promoting the complete transformation of the FCC phase to the BCC phase during the 

VTXRD run. 
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Following the VTXRD runs, XPS depth profile analysis was carried out on Type A-B2 Foil 2 

and Type A-B2 Foil 3 with the results shown in Figure 4.44 and Figure 4.45, respectively. It 

appears that the top few nanometres of Type A-B2 Foil 2 contains a Pd-rich phase with a 

composition of Pd90.2Cu9.8 wt%. Similarly, the surface of Type A-B2 Foil 3 has a composition 

of Pd87.9Cu12.1 wt%. Both indicate the presence of the Pd-rich Pd-Cu FCC phase observed in 

Figure 4.43(a) and (b). This is proof that the Pd-rich Pd-Cu FCC phase forms on the surface 

of the Type A membranes as a result of interdiffusion occurring between the Pd thin film and 

bulk Pd-Cu membrane under similar conditions used in the MPR. 

 
Figure 4.44 XPS depth profile analysis of Type A-B2 Foil 2 following VTXRD under 445 kPa of hydrogen 
pressure. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
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Figure 4.45 XPS depth profile analysis of Type A-B2 Foil 3 following VTXRD under 100 kPa of hydrogen 
pressure. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
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Figure 4.14. Compared to the Batch 1 Pd-Cu membrane, the second and third cycles for the 

Type A-B1-F membrane begin at much lower temperatures, 250 and 220 °C, respectively. In 

addition, both the second and third cycles have permeability values that vary similarly with 

temperature. Remarkably, the Type A-B1-F membrane achieves a maximum hydrogen 

permeability of 1.05 × 10-8 mol m-1 s-1 Pa-0.5 at 450 °C during the third cycle which is almost 

double that achieved by the Batch 1 Pd-Cu membrane at the same temperature and cycle. 

 
Figure 4.46 Hydrogen permeability as a function of temperature for the Type A-B1-F membrane. The plot 
shows the first three cycles heated between 50 and 450 °C using a hydrogen feed pressure of 445 kPa and 
permeate pressure of 100 kPa assuming an n-value of 0.5. 
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calculated to be 0.55 as shown in Figure 4.48. This is a slight reduction from the n-value of 

0.58 obtained for the Batch 1 Pd-Cu membrane.  

 
Figure 4.47 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. 
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Figure 4.48 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.55. 
 

Figure 4.49 depicts the third cycle completed by the Type A-B1-F membrane with the solid 
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Figure 4.49 Hydrogen permeability as a function of temperature showing the third cycle for the 
Type A-B1-F membrane. A hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa was 
applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 whereas the 
open symbol curve uses the best fit n-value of 0.55. 
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Figure 4.50 Arrhenius plot of the hydrogen permeability data shown in Figure 4.49 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.55. 
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17.93 kJ mol-1 as result of positioning the Pd thin film on the feed side during MPR testing. 

Figure 4.51 demonstrates the variation of the n-value for the Type A-B1-F membrane with 

temperature. The largest increase happens at 375 °C achieving an n-value of 0.58 with a 

minor decrease to an n-value of 0.55 after which a steady rise occurs to an approximate 

n-value of 0.57. In comparison, Figure 4.19 shows that the Batch 1 Pd-Cu membrane 

undergoes a much more drastic increase with temperature achieving an n-value of 0.65 at 

450 °C. 

 
Figure 4.51 Variation of n-value as a function of temperature for the Type A-B1-F membrane. 
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Type A-B2-F membrane began hydrogen permeation at 270 and 260 °C, respectively. These 

temperatures are much lower than those demonstrated by the Batch 2 Pd-Cu membranes 

which began hydrogen permeation during the second and third cycle at 330 and 320 °C. 

Moreover, the hydrogen permeability of the Type A-B2-F membrane varies similarly with 

temperature during the second and third cycle. The hydrogen permeability measured for the 

Type A-B2-F membrane at 450 °C during the third cycle is 8.82 × 10-9 mol m-1 s-1 Pa-0.5 

which is a 29% increase on the average value of (6.86 ± 0.6) × 10-9 mol m-1 s-1 Pa-0.5 achieved 

by the Batch 2 Pd-Cu membranes at the same temperature and cycle. 

 
Figure 4.52 Hydrogen permeability as a function of temperature for the Type A-B2-F membrane. The plot 
shows the first three cycles heated between 50 and 450 °C using a hydrogen feed pressure of 445 kPa and 
permeate pressure of 100 kPa assuming an n-value of 0.5. 
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The results of the n-value measurements for the Type A-B2-F membrane are shown in Figure 

4.53 with the data constrained to 0.5. As shown in Figure 4.54, the best fit n-value is 0.58 for 

the Type A-B2-F membrane.  

 
Figure 4.53 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. 
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Figure 4.54 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.58. 
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Figure 4.55 Hydrogen permeability as a function of temperature showing the third cycle for the 
Type A-B2-F membrane. A hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa was 
applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 whereas the 
open symbol curve uses the best fit n-value of 0.58. 
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Figure 4.56 Arrhenius plot of the hydrogen permeability data shown in Figure 4.55 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.58. 
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Figure 4.57 reveals an almost linear increase in the n-value for the Type A-B2-F membrane 

across the temperature range showing a strong deviation from Sieverts’ law as indicated by an 

n-value of approximately 0.66 at 450 °C. 

 
Figure 4.57 Variation of n-value as a function of temperature for the Type A-B2-F membrane. 
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side of the membrane that could have been released over the remaining course of the cycle by 

the downstream MFC resulting in higher than normal hydrogen permeability measurements.  

The second and third cycles both begin at 290 °C, which is lower than the corresponding 

cycles completed by the Batch 1 Pd-Cu membrane (410 and 370 °C). However, this is slightly 

higher than the temperatures associated with the second and third cycles completed by the 

Type A-B1-F which is 250 and 220 °C, respectively. The Type A-B1-P membrane achieves a 

hydrogen permeability of 7.45 × 10-9 mol m-1 s-1 Pa-0.5 at 450 °C during the third cycle which 

is a 33% increase on the value obtained by the Batch 1 Pd-Cu membrane but a 29 % decrease 

on the value achieved by the Type A-B1-F membrane at the same temperature and cycle. 

 
Figure 4.58 Hydrogen permeability as a function of temperature for the Type A-B1-P membrane. The plot 
shows the first three cycles heated between 50 and 450 °C using a hydrogen feed pressure of 445 kPa and 
permeate pressure of 100 kPa and assuming an n-value of 0.5. 
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The results of the n-value measurements for the Type A-B1-P membrane are shown in Figure 

4.59 and Figure 4.60 whereby a best fit value of 0.60 was determined. The third cycle 

completed by the Type A-B1-P membrane is shown in Figure 4.61 where the solid symbol 

curve has been calculated using an n-value of 0.5 and the open symbol curve was computed 

using the best fit value of 0.60. This is a 9% increase on the n-value of 0.55 obtained for the 

Type-A-B1-F membrane, nevertheless hydrogen permeation is still limited by the diffusion 

process. 

 
Figure 4.59 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. 
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Figure 4.60 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.60. 
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Figure 4.61 Hydrogen permeability as a function of temperature showing the third cycle for the 
Type A-B1-P membrane. A hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa was 
applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 whereas the 
open symbol curve uses the best fit n-value of 0.60. 
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Figure 4.62 Arrhenius plot of the hydrogen permeability data shown in Figure 4.61 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.60. 
 

The general permeability formulae (350 – 450 °C) for the Type A-B1-P membrane are 

derived from Figure 4.62 using an n-value of 0.5 and the best fit value of 0.60 as shown in 

Equation 4.18 and Equation 4.19, respectively. 

 (+g,.i = 2.40	×	10�s��- H−34.44	×	10n12 J Equation 4.18 

 

 (+g,.s, = 5.46	×	10�k��- H−34.42	×	10n12 J Equation 4.19 

 

Assuming an n-value of 0.5, the EΦ value of 34.44 kJ mol-1 for the Type A-B1-P membrane 

gives a 32% reduction on the value obtained for the Batch 1 Pd-Cu membrane, however this 
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value is almost double that of the value calculated for the Type A-B1-F membrane 

(17.93 kJ mol-1).  

A wide fluctuation in the n-value can be observed in Figure 4.63 for the 

Type A-B1-P membrane reaching a maximum value of approximately 0.71 at 425 °C, which 

is the largest deviation from Sieverts’ law measured yet. The general trend is shown to be an 

increase in n-value over the experimental temperature range. The Type A-B1-F membrane 

showed a steadier rise in its n-value but only ever reaching a maximum of 0.58. 

 
Figure 4.63 Variation of n-value as a function of temperature for the Type A-B1-P membrane. 
 

Figure 4.64 illustrates the first three cycles completed by the Type A-B2-P membrane. The 

first cycle starts at 360 °C which is slightly lower than the hydrogen permeation start 
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hydrogen permeation at 290 °C which is comparable to the corresponding cycles for the 
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Type A-B2-F membrane. Furthermore, this temperature is lower than the hydrogen 

permeation start temperature of 330 and 320 °C for the second and third cycles, respectively, 

associated with the Batch 2 Pd-Cu membranes. The Type A-B2-P membrane achieves a 

hydrogen permeability of 8.36 × 10-9 mol m-1 s-1 Pa-0.5 at 450 °C during the third cycle which 

is 22% higher than the hydrogen permeability measured for the Batch 2 Pd-Cu membranes at 

the same temperature and cycle. Moreover, this figure is 5% lower than that measured for the 

Type A-B2-F membrane at the same temperature and cycle. 

 
Figure 4.64 Hydrogen permeability as a function of temperature for the Type A-B2-P membrane. The plot 
shows the first three cycles heated between 50 and 450 °C using a hydrogen feed pressure of 445 kPa and 
permeate pressure of 100 kPa assuming an n-value of 0.5. 
 

The data for the n-value measurements obtained for the Type A-B2-P membrane is displayed 
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Type A-B2-F membrane. Figure 4.67 depicts the third cycle completed by the 

Type A-B2-P membrane where the solid symbol curve is calculated using an n-value of 0.5 

and the open symbol curve is calculated using the best fit n-value of 0.55.  

 
Figure 4.65 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. 
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Figure 4.66 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.55. 
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Figure 4.67 Hydrogen permeability as a function of temperature showing the third cycle for the 
Type A-B2-P membrane. A hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa was 
applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 whereas the 
open symbol curve uses the best fit n-value of 0.55. 
 

Temperature (°C)

280 300 320 340 360 380 400 420 440 460

Pe
rm

ea
bi

lit
y 

(×
 1

0-8
 m

ol
 m

-1
 s

-1
 P

a-n
)

0.0

0.2

0.4

0.6

0.8

1.0
n = 0.5
n = 0.55



Results and discussion 

~ 197 ~ 
 

 
Figure 4.68 Arrhenius plot of the hydrogen permeability data shown in Figure 4.67 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.55. 
 

The general permeability formulae (350 – 450 °C) for the Type A-B2-P membrane have been 

derived from Figure 4.68 using an n-value of 0.5 and the best fit value of 0.55 as shown in 

Equation 4.20 and Equation 4.21, respectively. 

 (+g,.i = 3.69	×	10�s��- H−36.41	×	10n12 J Equation 4.20 

 

 (+g,.ii = 1.94	×	10�s��- H−36.41	×	10n12 J Equation 4.21 

 

The Type A-B2-P membrane has an EΦ value of 36.41 kJ mol-1 and is 22% higher than the EΦ 

value determined for the Type A-B2-F membrane yet is 13% lower than the EΦ value 
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obtained for the Batch 2 Pd-Cu membranes. The n-value displays an almost linear increase 

with temperature reaching a maximum at approximately 0.60. The Type A-B2-F membrane 

exhibits a similar trend, however, it achieves a higher maximum n-value of 0.66. 

 
Figure 4.69 Variation of n-value as a function of temperature for the Type A-B2-P membrane. 
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Temperature (°C)

340 350 360 370 380 390 400 410 420 430 440 450 460

n
-v

al
ue

0.48

0.50

0.52

0.54

0.56

0.58

0.60



Results and discussion 

~ 199 ~ 
 

4.4.3. Post-MPR characterisation 

Following MPR testing, it was discovered that the Type A-B1/2-F/P membranes contain a 

mixture of the BCC and FCC phase as demonstrated in Figure 4.70 and Figure 4.72. The BCC 

phase originates from the bulk Pd-Cu membrane. As expected, the Pd-Cu membrane 

undergoes a phase change from the initial disordered FCC phase to the ordered BCC phase as 

a result of MPR testing. Furthermore, the remaining FCC phase belongs to the Pd thin film 

which had interdiffused with the bulk Pd-Cu membrane to produce a Pd-rich Pd-Cu FCC 

phase during MPR testing. 

The composition of this newly formed phase can be determined using the method described in 

Section 4.3.1. Figure 4.71 shows the Pd-Cu(111) diffraction peak from Figure 4.70 in greater 

detail demonstrating asymmetry and therefore clear evidence of interdiffusion. The 

composition associated with points A to F in Figure 4.71 are displayed in Table 4.9 showing 

the range of compositions found on the Pd sputter-coated surface of the Type A-B1-F and 

Type A-B2-F membrane. The BCC phase composition on the feed side is Pd60.8Cu39.2 wt% 

whereas on the opposite permeate side a BCC phase composition of Pd61.8Cu38.2 wt% exists. 
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Figure 4.70 XRD pattern which is representative for the Pd sputter-coated side of a Type A-B1/2-F and 
Type A-B2-F membranes following MPR testing. 
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Figure 4.71 Magnification of the Pd-Cu(111) diffraction peak shown in Figure 4.70. 
 

Table 4.9 Compositions determined for points A to F in Figure 4.71.  

 Scattering angle, 2θ (degree) Composition (wt%) 
A 40.77 Pd83.6Cu16.4 
B 41.17 Pd73.6Cu26.4 
C 41.23 Pd72.1Cu27.9 
D 41.28 Pd70.5Cu29.5 
E 41.34 Pd69.0Cu31.0 
F 41.40 Pd67.4Cu32.6 

 

Similarly, Figure 4.73 shows a magnified view of the Pd-Cu(111) diffraction peak from 

Figure 4.72 which also shows signs of interdiffusion occurring on the Pd sputter-coated side 

of the Type A-B1-P and Type A-B2-P membrane. The compositions were calculated for 

points A to F shown in Figure 4.73 and are displayed in Table 4.10. The BCC phase 

composition on both sides of the membrane is Pd61.7Cu38.3 wt%. 
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Figure 4.72 XRD pattern which is representative for the Pd sputter-coated side of the 
Type A-B1/2-P membranes following MPR testing. 
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Figure 4.73 Magnification of the Pd-Cu(111) diffraction peak shown in Figure 4.72. 
 

Table 4.10 Compositions determined for points A to F in Figure 4.73.  

 Scattering angle, 2θ (degree) Composition (wt%) 
A 40.80 Pd83.0Cu17.0 
B 41.09 Pd75.8Cu24.2 
C 41.17 Pd73.6Cu26.4 
D 41.26 Pd71.3Cu28.7 
E 41.31 Pd69.8Cu30.2 
F 41.40 Pd67.4Cu32.6 

 

Both compositions of the Pd-rich Pd-Cu FCC phase agree well with those obtained using XPS 

depth profiling. Figure 4.74 and Figure 4.75 indicates a Pd-rich Pd-Cu FCC phase 

composition of Pd89.5Cu10.5 wt% and Pd90.0Cu10.0 wt%, respectively. This provides further 

proof that this new phase forms on the Pd sputter-coated surface of the 

Type A-B1/2-F/P membranes under the conditions tested in the MPR. 
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Figure 4.74 XPS depth profile analysis representative of a Type A-B1/2-F membrane following MPR 
testing. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
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Figure 4.75 XPS depth profile analysis representative of a Type A-B1/2-P membrane following MPR 
testing. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
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4.5. Type B membranes 

4.5.1. Pre-MPR characterisation 

Two Type B membranes were prepared for MPR testing by sputtering one side of the 

Batch 2 Pd-Cu membranes with Pd for 1,000 seconds in order to determine the effect of Pd 

thin film thickness on membrane performance. SEM images were captured of the 

Type B-B2 membranes in the as-deposited state (Figure 4.76(a) and (b)), showing grains that 

range between 50 and 250 nm in size. It is apparent that, depositing Pd with a 1 A target 

current for 1,000 seconds promotes significant grain growth which is a process favoured at 

high temperatures. It was not possible to directly measure the temperature of the Pd 

sputter-coated foil membranes and offcuts, however, it was evident that the Type B variety 

had undergone heating as a result of the deposition process. This effect would likely be the 

cause of the grain growth observed in Type B-B2 membranes/foil offcuts. 
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Figure 4.76 SEM micrographs showing the microstructure representative of a Type B-B2 membrane. 
Coating time was 1,000 seconds with a Pd target current of 1 A. 
 

(a)

(b)
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The thickness of the Pd thin film was estimated with Equation 3.1 to be 606 ± 26 nm 

assuming a fully dense film. Profilometry of the Pd sputter-coated glass slide (Figure 4.77) 

which was simultaneously coated with the Type B-B2 membranes and offcuts reveals a film 

thickness of approximately 797.4 ± 0.2 nm. The discrepancy in thickness suggests that the Pd 

thin film has some degree of porosity which could be attributed to the large grain boundary 

volume typical of a nanocrystalline microstructure. 

 
Figure 4.77 Profilometer trace for a glass slide that has been Pd sputter-coated for 1,000 seconds. The first 
1,130 µm of the x-axis represents the area of the glass slide masked with Kapton tape during Pd 
deposition.  
 

Figure 4.78 depicts a representative XRD pattern acquired from the Pd sputter-coated surface 

of a Type B-B2 membrane. As expected, in the as-deposited state the Type B-B2 membrane 

indicates the presence of only the FCC phase. The presence of the Pd thin film is clearly 
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scattering angle Pd(111) and Pd(200) diffraction peaks is due to the incident X-ray beam 

glancing the top surface of the Type B-B2 membrane collecting a majority of the information 

from the Pd thin film. 

 
Figure 4.78 XRD pattern which is representative for the Pd sputter-coated side of a Type B-B2 membrane 
in the as-deposited state before MPR testing. 
 

As the Pd thin film is deposited onto the Batch 2 Pd-Cu membrane, growth proceeds and the 

Pd adsorbed atoms (adatoms) have the tendency to arrange themselves into the most densely 

packed plane as this configuration has the lowest free energy. The most densely packed plane 

for the FCC crystal structure is the (111) plane. The relatively high intensity Pd(111) 
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Using the scattering angles associated with the Pd(hkl) diffraction peaks, the composition of 

the Pd thin film was calculated to be Pd99.5Cu0.5 wt% indicating that, although minute, there is 

evidence for interdiffusion of Cu atoms from the bulk Pd-Cu membrane into the Pd thin film 

occurring during the Pd deposition process. This seems plausible as the nanocrysalline nature 

of the Pd thin film shown in Figure 4.76(a) and (b) would facilitate interdiffusion during 

deposition. 

Three Type B-B2 foil offcuts were prepared along with the Type B-B2 membranes referred to 

as Type B-B2 Foil 1, Type B-B2 Foil 2 and Type B-B2 Foil 3. Figure 4.79 displays the results 

of the XPS depth profile analysis performed on Type B-B2 Foil 1. An XPS scan resolution of 

50 nm was implemented during the analysis. The Cu concentration begins to rise at an 

approximate depth of 890 nm and plateau at 1,050 nm indicating the interdiffusion region and 

providing further proof that interdiffusion occurs during the sputtering process. 

Deeper into Type B-B2 Foil 1, a region resembling a bottleneck exists originating from the 

bulk Batch 2 Pd-Cu foil showing the Cu concentration decreasing to form a second plateau at 

a depth of 1,500 nm. This could be caused from the residual effects of coring whereby the 

relatively lower melting point Cu atoms diffuse towards the extremities of the foil and the Pd 

atoms concentrate towards the inner region. It should be noted that the total analysis depth is 

approximately 1,680 nm and that it may be necessary to analyse to greater depths in order to 

reach the original composition of the Batch 2 Pd-Cu foil (~Pd60Cu40 wt%). 
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Figure 4.79 XPS depth profile analysis of Type B-B2 Foil 1 in the as-deposited state. The etch depth was 
estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
 

4.5.1.1. Effects of temperature and hydrogen pressure on interdiffusion 

The VTXRD results for Type B-B2 Foil 2 and Type B-B2 Foil 3 are displayed in Figure 

4.80(a) and (b), respectively. Both foils are representative of the Type B-B2-F/P membranes. 

Type B-B2 Foil 2 readily forms the β-PdH phase at 30 °C under 445 kPa of hydrogen 

pressure as indicated by the β-PdH(111) diffraction peak positioned at 2θ = 38.41° as shown 
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volume expansion experienced by Type A-B2 Foil 2. Moreover, hydrogen desorption in 

Type B-B2 Foil 2 occurs at the same temperature as Type A-B2 Foil 2 (200 °C) forming the 

α-PdH phase as shown by the α-PdH(111) diffraction peak at 2θ = 39.81°. 
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At 400 °C, the α-PdH(111) diffraction peak moves to higher scattering angles to merge with 

the Pd-rich Pd-Cu(111) diffraction peak which appears above 400 °C. In addition, the 

Pd-Cu(111) diffraction peak associated with the bulk Pd-Cu foil disappears at 275 °C. In 

general, the Pd thin film seems to completely interdiffuse with the bulk Pd-Cu foil under the 

VTXRD conditions used. 

 
Figure 4.80 VTXRD contour plots  tracking the movement of the (a) PdH(111) diffraction peak from the 
Pd thin film of Type B-B2 Foil 2 under 445 kPa of flowing hydrogen and (b) the PdH(111) diffraction 
peak from the Pd thin film of Type B-B2 Foil 3 under 100 kPa of flowing hydrogen whilst heating between 
30 and 700 °C. 
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formation of the α-PdH phase which is indicated by the α-PdH(111) diffraction peak. This 

particular phase remains stable to almost 700 °C. Under the VTXRD conditions, 

interdiffusion mainly occurs between 400 and 550 °C, ceases and then continues at 650 °C 

although the Pd thin film remains stable almost up to 700 °C. The Pd-Cu(111) diffraction 

peak originating from the bulk Pd-Cu foil drops in intensity between 325 °C and merges with 

the Pd-rich Pd-Cu(111) diffraction peak at 500 °C. 

XPS depth profile analysis was performed on Type B-B2 Foil 2 and Type B-B2 Foil 3 

following VTXRD analysis with the results displayed in Figure 4.81 and Figure 4.82, 

respectively. It is apparent that Type B-B2 Foil 2 contains the Pd-rich Pd-Cu FCC phase on 

the Pd sputter-coated surface giving a composition of Pd85.6Cu14.4 wt%. Moreover, 

Type B-B2 Foil 3 shows evidence of the Pd-rich Pd-Cu FCC phase with a composition of 

Pd89.5Cu10.5 wt%. The Pd-rich Pd-Cu FCC phase associated with Type B-B2 Foil 2 has a 

relatively higher Cu concentration likely caused through an increased rate of interdiffusion 

facilitated by the relatively higher hydrogen pressure. 
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Figure 4.81 XPS depth profile analysis of Type B-B2 Foil 2 following VTXRD under 445 kPa of hydrogen 
pressure. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
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Figure 4.82 XPS depth profile analysis of Type B-B2 Foil 3 following VTXRD under 100 kPa of hydrogen 
pressure. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 

4.5.2. MPR results 

4.5.2.1. Pd thin film positioned on the feed side 

For a valid comparison, the hydrogen permeability of the Type B-B2-F membrane will mainly 
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Figure 4.83. Hydrogen permeation begins during the first cycle at 390 °C comparable to the 

corresponding hydrogen permeation start temperatures of the Batch 2 Pd-Cu membranes 
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cycles completed by the Batch 2 Pd-Cu membranes (330 and 320 °C, respectively) and the 

Type A-B2-F membrane (270 and 260 °C, respectively). 

The Type B-B2-F membrane achieves a hydrogen permeability of 

1.00 × 10-8 mol m-1 s-1 Pa-0.5 at 450 °C during the third cycle. This is a 46% increase on the 

average hydrogen permeability of (6.86 ± 0.6) × 10-9 mol m-1 s-1 Pa-0.5 achieved by the 

Batch 2 Pd-Cu membranes at the same temperature and cycle. This is also a 13% increase on 

the hydrogen permeability of 8.82 × 10-9 mol m-1 s-1 Pa-0.5 achieved by the 

Type A-B2-F membrane at the same temperature and cycle. 

 
Figure 4.83 Hydrogen permeability as a function of temperature for the Type B-B2-F membrane. The plot 
shows the first three cycles heated between 50 and 450 °C using a hydrogen feed pressure of 445 kPa and 
permeate pressure of 100 kPa assuming an n-value of 0.5. 
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Figure 4.84 and Figure 4.85 illustrate the n-value measurement results for the 

Type B-B2-F membrane with the data constrained to 0.5 and the best fit value of 0.63, 

respectively. Figure 4.86 shows the third cycle completed by the Type B-B2-F membrane 

using an n-value of 0.5 for the solid symbol curve and the best fit value of 0.63 for the open 

symbol curve. 

 
Figure 4.84 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. 
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Figure 4.85 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.63. 
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Figure 4.86 Hydrogen permeability as a function of temperature showing the third cycle for the 
Type B-B2-F membrane. A hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa was 
applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 whereas the 
open symbol curve uses the best fit n-value of 0.63. 
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Figure 4.87 Arrhenius plot of the hydrogen permeability data shown in Figure 4.86 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.63. 
 

The general permeability formulae (350 – 450 °C) have been derived from Figure 4.87 for the 

Type B-B2-F membrane using an n-value of 0.5 and the best fit value of 0.63 as shown in 

Equation 4.22 and Equation 4.23, respectively. For an n-value of 0.5, the 

Type B-B2-F membrane gives an EΦ value of 23.41 kJ mol-1 which is a 22% reduction on the 

EΦ value obtained for the Type A-B2-F membrane and a 44% decrease on the EΦ value 

obtained for the Batch 2 Pd-Cu membranes. 

 (+g,.i = 4.99	×	10�k��- H−23.41	×	10n12 J Equation 4.22 

 

 (+g,.sn = 7.83	×	10�q��- H−23.41	×	10n12 J Equation 4.23 
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Figure 4.88 demonstrates the variation of the n-value with temperature for the 

Type B-B2-F membrane. To begin with, the n-value declines from 0.62 to just above 0.56 

between 350 and 375 °C. Subsequently the n-value increase to 0.64 between 400 and 425 °C 

and finally declining to 0.60 at 450 °C. In general, it is apparent that the hydrogen permeation 

in the Type B-B2-F membrane is diffusion limited. 

 
Figure 4.88 Variation of n-value as a function of temperature for the Type B-B2-F membrane. 
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begins at 300 °C for both second and third cycles completed by the Type B-B2-P membrane. 

Again, this is comparable to the second and third cycle hydrogen permeation start temperature 

of 290 °C for the Type A-B2-P membrane. Although, the second and third cycle hydrogen 

permeation start temperatures of 320 and 330 °C, respectively, for the 

Batch 2 Pd-Cu membranes is slightly higher in comparison. 

 
Figure 4.89 Hydrogen permeability as a function of temperature for the Type B-B2-P membrane. The plot 
shows the first three cycles heated between 50 and 450 °C using a hydrogen feed pressure of 445 kPa and 
permeate pressure of 100 kPa assuming an n-value of 0.5. 
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Type B-B2-F membrane, this is a 24% and 31% reduction, respectively, in hydrogen 

permeability for the equivalent cycle and temperature. 

In Figure 4.90, the n-value measurement data for the Type B-B2-P membrane is constrained 

to 0.5 while Figure 4.91 displays the data constrained to the best fit value of 0.60. In addition, 

Figure 4.92 shows the third cycle completed by the Type B-B2-P membrane where the solid 

symbol curve has been calculated using an n-value of 0.5 and the open symbol curve has been 

calculated using the best fit value of 0.60. 

 
Figure 4.90 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. 
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Figure 4.91 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.60. 
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Figure 4.92 Hydrogen permeability as a function of temperature showing the third cycle for the 
Type B-B2-P membrane. A hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa was 
applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 whereas the 
open symbol curve uses the best fit n-value of 0.60. 
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Figure 4.93 Arrhenius plot of the hydrogen permeability data shown in Figure 4.92 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.60. 
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Type A-B2-P membrane (36.41 kJ mol-1). On the other hand, this is a 62% increase on the EΦ 

value of 23.41 kJ mol-1 obtained for the Type B-B2-F membrane. 

Figure 4.94 shows that, in general, the Type B-B2-P membrane n-value increases with 

temperature and remains around a value of 0.60 indicating that hydrogen permeation remains 

limited by the diffusion process. 

 
Figure 4.94 Variation of n-value as a function of temperature for the Type B-B2-P membrane. 
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Note that the FCC diffraction peaks exhibit asymmetry revealing evidence of interdiffusion 

resulting in the formation of the Pd-rich Pd-Cu FCC phase. Figure 4.96 shows a magnified 

view of the Pd-Cu(111) diffraction peak displayed in the XRD scan acquired for the 

Type B-B2-F membrane (Figure 4.95). The compositions associated with points A to K are 

listed in Table 4.11 demonstrating the compositional range of the Pd-rich Pd-Cu FCC phase. 

The composition of the BCC phase found on the Pd sputter-coated side of the 

Type B-B2-F membrane is Pd61.3Cu38.7 wt%. The non-coated side contained only the BCC 

phase with a composition of Pd60.8Cu39.2 wt%.  

 
Figure 4.95 XRD pattern which is representative for the Pd sputter-coated side of the 
Type B-B2-F membrane following MPR testing. 
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Figure 4.96 Magnification of the Pd-Cu(111) diffraction peak shown in Figure 4.95. 
 

Table 4.11 Compositions determined for points A to K in Figure 4.96. 

 Scattering angle, 2θ (degree) Composition (wt%) 
A 40.18 Pd97.0Cu3.0 
B 40.26 Pd95.2Cu4.8 
C 40.46 Pd90.9Cu9.1 
D 40.58 Pd88.3Cu11.7 
E 40.69 Pd85.7Cu14.3 
F 40.77 Pd83.6Cu16.4 
G 40.91 Pd80.2Cu19.8 
H 41.03 Pd77.3Cu22.7 
I 41.14 Pd74.3Cu25.7 
J 41.28 Pd70.5Cu29.5 
K 41.34 Pd69.0Cu31.0 

 

In addition, Figure 4.98 shows the Pd-Cu(111) diffraction peak from  the XRD scan acquired 
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compiled in Table 4.12. Furthermore, the composition of the BCC phase detected on the Pd 

sputter-coated side of the Type B-B2-P membrane is Pd62.4Cu37.6 wt%. The non-coated side 

contained only the BCC phase with a composition of Pd61.1Cu38.9 wt%.  

 
Figure 4.97 XRD pattern which is representative for the Pd sputter-coated side of the 
Type B-B2-P membrane following MPR testing. 
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Figure 4.98 Magnification of the Pd-Cu(111) diffraction peak shown in Figure 4.97. 
 

Table 4.12 Compositions determined for points A to L in Figure 4.98. 

 Scattering angle, 2θ (degree) Composition (wt%) 
A 40.01 Pd100.0Cu0.0 
B 40.24 Pd95.8Cu4.2 
C 40.49 Pd90.2Cu9.8 
D 40.60 Pd87.6Cu12.4 
E 40.66 Pd86.3Cu13.7 
F 40.80 Pd83.0Cu17.0 
G 40.92 Pd80.1Cu19.9 
H 40.97 Pd78.7Cu21.3 
I 41.06 Pd76.6Cu23.4 
J 41.20 Pd72.8Cu27.2 
K 41.28 Pd70.5Cu29.5 
L 41.37 Pd68.2Cu31.8 
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Pd-rich Pd-Cu FCC phase determined using the XRD data. Figure 4.99 shows that the top 

surface of the Type B-B2-F membrane has a composition of Pd95.0Cu5.0 wt% whereby the Pd 

concentration gradually declines with depth and plateaus at 1,470 nm. In contrast, Figure 

4.100 reveals a top surface composed of pure Pd for the Type B-B2-P membrane, however, 

the Pd concentration displays a sharp dip at an approximate depth of 50 nm and continues to 

gradually decrease and plateau at a depth of 1,500 nm similar to that observed in the 

Type B-B2-F membrane. 

 
Figure 4.99 XPS depth profile analysis representative of a Type B-B2-F membrane following MPR testing. 
The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
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Figure 4.100 XPS depth profile analysis representative of a Type B-B2-P membrane following MPR 
testing. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
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4.6. Type C membranes 

4.6.1. Pre-MPR characterisation 

Two Type C membranes were prepared for MPR testing by sputtering one side of the 

Batch 2 Pd-Cu membranes with Pd for 1,800 seconds in order to determine the effect of Pd 

thin film thickness on membrane performance. Figure 4.101(a) and (b) shows SEM images of 

a typical as-deposited Type C-B2 membrane revealing a microstructure containing equiaxed 

grains akin to that observed with the Type B-B2 membrane. The grain size ranges between 67 

and 300 nm which is slightly larger than the grains found in the Type B-B2 membrane (50 – 

250 nm) further indicating that grain growth occurs at elevated temperatures brought about by 

prolonged coating times. This seems logical, as the Type C-B2 series of membranes and foil 

offcuts had undergone heating during the deposition process so much so that it was necessary 

for the samples to cool sufficiently prior to handling. 
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Figure 4.101 SEM micrographs showing the microstructure representative of a Type C-B2 membrane. 
Coating time was 1,800 seconds with a Pd target current of 1 A. 
 

(a)

(b)
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The thickness of the Pd thin film was approximated using Equation 3.1 to be 1,127 ± 39 nm 

assuming a fully dense film. A glass slide was routinely Pd sputter-coated alongside the 

Type C-B2 membranes and offcuts. Profilometry has been performed on this glass slide 

(Figure 4.102) revealing a Pd thin film thickness of approximately 1,409.6 ± 0.2 nm. Once 

again, the measured thickness is larger than the estimated figure which further suggests that 

the Pd thin film is not fully dense. 

 
Figure 4.102 Profilometer trace for a glass slide that has been Pd sputter-coated for 1,800 seconds. The 
first 1,030 µm of the x-axis represents the area of the glass slide masked with Kapton tape during Pd 
deposition.  
 

A representative XRD pattern is illustrated in Figure 4.103 for the Pd sputter-coated side of 
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intensity giving evidence that the Pd adatoms are preferentially arranged in the most densely 

packed (111) plane. 

A Pd thin film composition of Pd98.1Cu1.9 wt% was determined using the scattering angles 

associated with the Pd(hkl) diffraction peaks demonstrating again that interdiffusion between 

the deposited film and the bulk Pd-Cu membranes occur during the sputtering process owing 

to the nanocrystalline microstructure of the Type C-B2 membranes/foil offcuts. 

 
Figure 4.103 XRD pattern which is representative for the Pd sputter-coated side of a 
Type C-B2 membrane in the as-deposited state before MPR testing. 
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1,520 nm indicating the start of the interdiffusion region and plateaus at around 1,800 nm. It 

would seem necessary to continue analysis to greater depths in order to reach the end of the 

interdiffusion region. 

Furthermore, it is important to note that the thickness of the Pd thin film determined by XPS 

(1,520 nm) is different from that measured via profilometry for two main reasons. Firstly, the 

etch depth is estimated from a Ta2O5 standard which may etch at a different rate to a Pd-Cu 

sample. Moreover, the membranes and foil offcuts were weighed before and after the 

sputtering process revealing relatively different deposited Pd masses for each sample. It was 

shown that the Pd sputter-coated membranes and foil offcuts had similar thin film thicknesses 

as demonstrated by the error margin associated with the estimated thickness (1,127 ± 39 nm). 

 
Figure 4.104 XPS depth profile analysis of Type C-B2 Foil 1 in the as-deposited state. The etch depth was 
estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
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4.6.1.1. Effects of temperature and hydrogen pressure on interdiffusion 

Figure 4.105(a) and (b) show the VTXRD results for Type C-B2 Foil 2 and Type C-B2 Foil 3, 

respectively, and are both representative of the Type C-B2-F/P membranes. As evidenced in 

Figure 4.105(a) by the β-PdH(111) diffraction peak at 2θ = 38.38°, Type C-B2 Foil 2 readily 

forms the β-PdH phase at 30 °C under 445 kPa of hydrogen pressure. A lattice parameter of 

4.059 Å can be calculated from this scattering angle demonstrating that the Pd lattice volume 

had expanded by 13.6%. This is similar to the lattice volume expansion observed for 

Type A-B2 Foil 2 (14.3%) and Type B-B2 Foil 2 (13.4%) at the same temperature and 

hydrogen pressure. 

 
Figure 4.105 VTXRD contour plots tracking the movement of the (a) PdH(111) diffraction peak from the 
Pd thin film of Type C-B2 Foil 2 under 445 kPa of flowing hydrogen and (b) the PdH(111) diffraction 
peak from the Pd thin film of Type C-B2 Foil 3 under 100 kPa of flowing hydrogen whilst heating between 
30 and 700 °C.  
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at 2θ = 39.79°. Significant interdiffusion takes place between 400 and 700 °C, however the 

α-PdH phase appears to be stable even up to 700 °C meaning that the Pd thin film does not 

completely interdiffuse with the bulk Pd-Cu foil under the conditions used in the VTXRD 

experiment. Furthermore, the Pd-Cu(111) diffraction peak associated with the bulk Pd-Cu foil 

disappears at 300 °C and reappears above 500 °C to merge with the Pd-rich Pd-Cu(111) 

diffraction peak at higher temperatures. 

At 30 °C and 100 kPa of hydrogen pressure, Figure 4.105(b) reveals that in Type C-B2 Foil 3 

the β-PdH(111) diffraction peak appears at 2θ = 38.45°. This scattering angle corresponds to a 

lattice parameter of 4.052 Å representing a 13.0% Pd lattice volume expansion. Like in 

Type A-B2 Foil 3 and Type B-B2 Foil 3, the β-PdH → α-PdH phase transformation occurs at 

150 °C in Type C-B2 Foil 3 as demonstrated by the formation of the α-PdH(111) diffraction 

peak at 2θ = 39.96°. Similar to Type C-B2 Foil 2, interdiffusion in Type C-B2 Foil 3 takes 

place between 400 and 650 °C and the α-PdH phase remains stable up until 700 °C showing 

that the Pd thin film does not fully interdiffuse with the bulk Pd-Cu foil at a hydrogen 

pressure of 100 kPa. In addition, the Pd-Cu(111) diffraction peak originating from the bulk 

Pd-Cu foil disappears at 325 °C and reappears at 500 °C to finally merge with the 

Pd-rich Pd-Cu(111) diffraction peak. 

Following the VTXRD runs, XPS depth profile analysis was performed on Type C-B2 Foil 2 

and Type C-B2 Foil 3 with the results displayed in Figure 4.106 and Figure 4.107, 

respectively. Figure 4.106 shows that the Pd sputter-coated side of Type C-B2 Foil 2 has a 

Pd-rich Pd-Cu FCC phase composition of Pd79.7Cu20.3 wt%. The Cu concentration 

immediately increases and stabilises at a depth of around 50 nm and then steadily increases 

over the analysis depth. Figure 4.107 shows that the top surface of Type C-B2 Foil 3 has a 
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composition of Pd76.1Cu23.9 wt%. The Cu concentration experiences a slight dip at a depth of 

50 nm after which the composition remains relatively constant across the analysis depth. 

Interestingly, the Pd-rich Pd-Cu FCC phase compositions for Type C-B2 Foil 2 and 

Type C-B2 Foil 3 have a higher Cu content compared to the Pd-rich Pd-Cu FCC phase 

present in Type B-B2 Foil 2 (Pd85.6Cu14.4 wt%) and Type B-B2 Foil 3 (Pd89.5Cu10.5 wt%). This 

could be attributed to the existence of a larger Cu concentration gradient introduced by the 

relatively thicker Pd thin film (~1,400 nm) in Type C-B2 Foil 2 and Type C-B2 Foil 3 

creating a greater driving force for Cu interdiffusion into the Pd thin film.  

 
Figure 4.106 XPS depth profile analysis of Type C-B2 Foil 2 following VTXRD under 445 kPa of 
hydrogen pressure. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
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Figure 4.107 XPS depth profile analysis of Type C-B2 Foil 3 following VTXRD under 100 kPa of 
hydrogen pressure. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 

4.6.2. MPR results 

4.6.2.1. Pd thin film positioned on the feed side 

Figure 4.108 shows the initial three cycles completed by the Type C-B2-F membrane. For the 
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lower than the corresponding hydrogen permeation start temperatures for the second and third 
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(210 and 200 °C, respectively). 
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At 450 °C, the Type C-B2-F membrane achieves a hydrogen permeability of 

1.09 × 10-8 mol m-1 s-1 Pa-0.5 during the third cycle.  This value is 59%, 24% and 9% higher 

than the values achieved at the same temperature and cycle by the Batch 2 Pd-Cu membranes, 

the Type A-B2-F membrane and the Type B-B2-F membrane, respectively.   

 
Figure 4.108 Hydrogen permeability as a function of temperature for the Type C-B2-F membrane. The 
plot shows the first three cycles heated between 50 and 450 °C using a hydrogen feed pressure of 445 kPa 
and permeate pressure of 100 kPa assuming an n-value of 0.5. 
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0.56, respectively. In addition, Figure 4.111 illustrates the third cycle completed by the 

Type C-B2-F membrane where the solid symbol curve is calculated using an n-value of 0.5 

and the open symbol curve utilises the best fit value of 0.56.   
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Figure 4.109 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. 
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Figure 4.110 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.56. 
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Figure 4.111 Hydrogen permeability as a function of temperature showing the third cycle for the 
Type C-B2-F membrane. A hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa was 
applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 whereas the 
open symbol curve uses the best fit n-value of 0.56. 
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Figure 4.112 Arrhenius plot of the hydrogen permeability data shown in Figure 4.111 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.56. 
 

From Figure 4.112, the following general permeability formulae (350 – 450 °C) can be 

derived for the Type C-B2-F membrane using an n-value of 0.5 and the best fit value of 0.56 

as demonstrated in Equation 4.26 and Equation 4.27, respectively. Assuming an n-value of 

0.5, the EΦ for the Type C-B2-F membrane is 20.52 kJ mol-1. This value is 51%, 31% and 

14% lower than those determined for the Batch 2 Pd-Cu membranes, Type A-B2-F membrane 

and Type B-B2-F membrane, respectively. 

 (+g,.i = 3.44	×	10�k��- H−20.52	×	10n12 J Equation 4.26 

 

 (+g,.is = 1.44	×	10�k��- H−20.52	×	10n12 J Equation 4.27 

1/Temperature (K-1)

0.00135 0.00140 0.00145 0.00150 0.00155 0.00160 0.00165

ln
(P

er
m

ea
bi

lit
y)

-19.8

-19.6

-19.4

-19.2

-19.0

-18.8

-18.6

-18.4

-18.2
n = 0.5
n = 0.56



Results and discussion 

~ 248 ~ 
 

Contrary to the observed trend thus far, Figure 4.113 shows that the n-value generally 

decreases with temperature. This suggests that Sieverts’ law is more favoured at higher 

temperatures when the ~1,400 nm thick Pd thin film of the Type C-B2-F membrane is 

positioned on the feed side during MPR testing. 

 
Figure 4.113 Variation of n-value as a function of temperature for the Type C-B2-F membrane. 
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cycle. A similar phenomenon was witnessed with the Type A-B1-F membrane as shown in 

Figure 4.58. As previously mentioned, this irregularity may be caused by the brief inability of 

the back pressure regulator to stabilise the permeate pressure. 

The second and third cycle both begin hydrogen permeation at 300 °C displaying comparable 

hydrogen permeability values as a function of temperature. This hydrogen permeation start 

temperature is identical to the corresponding cycles for the Type B-B2-P membrane, similar 

to that shown for the Type A-B2-P membrane (290 °C) and is lower than that found for the 

Batch 2 Pd-Cu membranes (320 and 330 °C). 

The Type C-B2-P membrane achieves a hydrogen permeability of 

7.43 × 10-9 mol m-1 s-1 Pa-0.5 at 450 °C during the third cycle. For the same temperature and 

cycle, this value is 8% higher than that achieved by the Batch 2 Pd-Cu membranes and 

Type B-B2-P membrane yet 11% lower compared to that measured for the 

Type A-B2-P membrane. 
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Figure 4.114 Hydrogen permeability as a function of temperature for the Type C-B2-P membrane. The 
plot shows the first three cycles heated between 50 and 450 °C using a hydrogen feed pressure of 445 kPa 
and permeate pressure of 100 kPa assuming an n-value of 0.5. 
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whereby the solid symbol curve has been calculated using an n-value of 0.5 and the open 

symbol curve has been calculated using the best fit value of 0.59. 
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Figure 4.115 Membrane flux as a function of hydrogen differential pressure with n constrained to 0.5. 
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Figure 4.116 Membrane flux as a function of hydrogen differential pressure with n constrained to the best 
fit value of 0.59. 
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Figure 4.117 Hydrogen permeability as a function of temperature showing the third cycle for the 
Type C-B2-P membrane. A hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa was 
applied during measurements. The solid symbol curve was calculated using an n-value of 0.5 whereas the 
open symbol curve uses the best fit n-value of 0.59. 
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Figure 4.118 Arrhenius plot of the hydrogen permeability data shown in Figure 4.117 between 350 and 
450 °C. The solid symbol curve was calculated using an n-value of 0.5 whereas the open symbol curve uses 
the best fit n-value of 0.59. 
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Batch 2 Pd-Cu membranes, Type A-B2-P membrane and Type B-B2-P membrane, 

respectively.  

In contrast to the Type C-B2-F membrane, Figure 4.119 demonstrates that the n-value for the 

Type C-B2-P membrane undergoes a drastic increase over the temperature range showing a 

significant deviation from Sieverts’ law; however it is still evident that hydrogen diffusion 

remains the rate limiting step in the permeation process. 

 
Figure 4.119 Variation of n-value as a function of temperature for the Type C-B2-P membrane. 
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Figure 4.120 XRD pattern which is representative for the Pd sputter-coated side of the 
Type C-B2-F membrane following MPR testing. 
 

Figure 4.121 shows a magnified view of the Pd-Cu(111) diffraction peak associated with the 

Pd-rich Pd-Cu FCC phase depicted in Figure 4.120. The asymmetry in the peak is a clear sign 

of interdiffusion occurring between the Pd thin film and bulk Pd-Cu membrane revealing a 

wide compositional gradient in the Pd sputter-coated side of the Type C-B2-F membrane as 

shown in Table 4.13. The composition of the BCC phase detected on the Pd sputter-coated 

side of the Type C-B2-F membrane is Pd62.7Cu37.3 wt%. The non-coated side contained only 

the BCC phase with a composition of Pd63.0Cu37.0 wt%. 

Furthermore, Figure 4.123 gives a more detailed view of the Pd-Cu(111) diffraction peak 

corresponding to the Pd-rich Pd-Cu FCC phase displayed in Figure 4.122. This reveals a wide 

range of compositions detected on the Pd sputter-coated side of the Type C-B2-P membrane. 
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The compositions associated with the scattering angles shown in Figure 4.123 are compiled in 

Table 4.14 which indicates the remnants of the Pd thin film. Moreover, the composition of the 

BCC phase identified on the Pd sputter-coated side of the Type C-B2-P membrane is 

Pd61.3Cu38.7 wt%. The non-coated side contained only the BCC phase with a composition of 

Pd61.6Cu38.4 wt%. 

 
Figure 4.121 Magnification of the Pd-Cu(111) diffraction peak shown in Figure 4.120. 
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Table 4.13 Compositions determined for points A to M in Figure 4.121.  

 Scattering angle, 2θ (degree) Composition (wt%) 
A 40.09 Pd98.8Cu1.2 
B 40.24 Pd95.8Cu4.2 
C 40.34 Pd93.3Cu6.7 
D 40.41 Pd92.1Cu7.9 
E 40.58 Pd88.3Cu11.7 
F 40.63 Pd87.0Cu13.0 
G 40.75 Pd84.3Cu15.7 
H 40.86 Pd81.6Cu18.4 
I 40.97 Pd78.7Cu21.3 
J 41.09 Pd75.8Cu24.2 
K 41.14 Pd74.3Cu25.7 
L 41.26 Pd71.3Cu28.7 
M 41.40 Pd67.4Cu32.6 

 

 
Figure 4.122 XRD pattern which is representative for the Pd sputter-coated side of the 
Type C-B2-P membrane following MPR testing. 
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Figure 4.123 Magnification of the Pd-Cu(111) diffraction peak shown in Figure 4.122. 
 

Table 4.14 Compositions determined for points A to J in Figure 4.123. 

 Scattering angle, 2θ (degree) Composition (wt%) 
A 40.04 Pd99.9Cu0.1 
B 40.09 Pd98.8Cu1.2 
C 40.15 Pd97.6Cu2.4 
D 40.35 Pd93.4Cu6.6 
E 40.49 Pd90.2Cu9.8 
F 40.60 Pd87.6Cu12.4 
G 40.69 Pd85.7Cu14.3 
H 40.86 Pd81.6Cu18.4 
I 41.20 Pd72.8Cu27.2 
J 41.28 Pd70.5Cu29.5 

 

Figure 4.124 and Figure 4.125 show the XPS depth profile analysis results for the 

Type C-B2-F membrane and Type C-B2-P membrane, respectively. These results agree well 

with the compositions obtained using XRD analysis of the Pd-Cu(111) asymmetric diffraction 
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peaks for both membranes. Figure 4.124 shows that the top surface composition of the 

Type C-B2-F membrane is Pd96.8Cu3.2 wt% after which the Cu concentration steadily 

increases as a function of etch depth. Similarly, Figure 4.125 indicates that the 

Type C-B2-P membrane has a top surface composition of Pd96.5Cu3.5 wt% and subsequently 

the Cu concentration gradually increases over the analysis depth. In both cases, it seems 

evident that a near pure Pd surface remains on the Pd sputter-coated side of the 

Type C-B2-F membrane and Type C-B2-P membrane following MPR testing. Furthermore, it 

is apparent that the interdiffusion region in the Type C-B2-F membrane and 

Type C-B2-P membrane extends to much greater depths than 2,000 nm suggesting a 

compositional gradient has formed over a relatively large distance. 

 
Figure 4.124 XPS depth profile analysis representative of a Type C-B2-F membrane following MPR 
testing. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 
 

Etch depth (nm)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
d/

C
u 

co
nc

en
tra

tio
n 

(w
t%

)

0

20

40

60

80

100

Pd
Cu



Results and discussion 

~ 261 ~ 
 

 
Figure 4.125 XPS depth profile analysis representative of a Type C-B2-P membrane following MPR 
testing. The etch depth was estimated using a reference etching rate of 0.21 nm s-1 for Ta2O5. 

4.7. General discussion 

The effects of hydrogen on the Pd-Cu alloy system have become more apparent throughout 

the course of this work. Table 4.15 summarises the results obtained from the VTXRD study. 

At 445 kPa of hydrogen pressure, the β-PdH phase in Type A/B/C-B2 Foil 2 readily forms at 

30 °C and is stable up until 225 °C. The hydrogen depleted α-PdH phase forms at 200 °C 

signalling that hydrogen desorption from the hydrogen rich β-PdH phase takes place. It is 

evident that the α-PdH phase is stable to higher temperatures in the relatively thicker Pd thin 

film. For example, in Type A-B2 Foil 2 the α-PdH phase remains present up until 450 °C, 

whereas in Type B-B2 Foil 2 and Type C-B2 Foil 2 this phase disappears at 550 and 700 °C, 

respectively. This observation is plausible since a thicker Pd thin film which has a relatively 

larger amount of deposited Pd would require higher temperatures to completely interdiffuse 
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with the bulk Pd-Cu foil compared with thinner films under same durations and VTXRD test 

conditions. 

At 100 kPa, the β-PdH phase forms between 30 and 150 °C in Type A-B2 Foil 3, while in 

Type B-B2 Foil 3 and Type C-B2 Foil 3 this phase is stable up to 175 °C. In the case of 

Type A-B2 Foil 3, the β-PdH phase may exist up to 175 °C, however, since the β-PdH(111) 

diffraction peak reduces in intensity during the phase transformation to the α-PdH phase this 

peak becomes indistinguishable from the background noise. 

The α-PdH phase is detected up to 700 °C in Type A/B/C-B2 Foil 3 (100 kPa of hydrogen 

pressure) which is higher than the temperatures observed for Type A/B/C-B2 Foil 2 (445 kPa 

of hydrogen pressure) indicating that at higher hydrogen pressures interdiffusion is 

accelerated. Furthermore, under 100 kPa of hydrogen pressure the Pd-Cu FCC phase 

originating from the as-received Pd-Cu foil offcut is stable over a wider temperature range 

compared with 445 kPa of hydrogen pressure. This can both be attributed to the formation of 

the well known vacancy-hydrogen clusters [178, 179, 263, 264] that accelerate atomic 

diffusion responsible for rapid phase transformation and evidently increased rate of 

interdiffusion. 

In Type A/B-B2 Foil 2/3, interdiffusion occurs at the same temperatures. Although, in the 

case of Type C-B2 Foil 2/3, this process starts at a higher temperature of 400 °C and 

potentially continues above 700 °C. This indicates that a portion of the Pd thin film in 

Type C-B2 Foil 2/3 remains stable under the conditions used during the VTXRD experiment 

likely due to its relatively large thickness compared with the Pd thin films in 

Type A/B-B2 Foil 2/3. 
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Table 4.15 Summary of the VTXRD results. 

 
Hydrogen 
pressure 
(kPa) 

β-PdH 
temperature 
range (°C) 

α-PdH 
temperature 
range (°C) 

Pd-Cu FCC 
temperature 
range (°C) 

Interdiffusion 
temperature 
range (°C) 

Type A-B2 
Foil 2 

445 30 – 225 200 – 450 
30 – 325,  
500 – 700 

350 – 600 

Type A-B2 
Foil3 

100 30 – 150 150 – 700 30 – 700 350 – 600 

Type B-B2  
Foil 2 

445 30 – 225 200 – 550 
30 – 275,  
450 – 700 

350 – 600 

Type B-B2  
Foil 3 

100 30 – 175 150 – 700 
30 – 325,  
450 – 700 

350 – 600 

Type C-B2  
Foil 2 

445 30 – 225 200 – 700 
30 – 275,  
475 – 700 

400 – 700+ 

Type C-B2  
Foil 3 

100 30 – 175 150 – 700 
30 – 300,  
475 – 700 

400 – 700+ 

 

An overall summary of the results are compiled in Table 4.16. In addition, Figure 4.126 

displays a plot of hydrogen permeability as a function of temperature comparing the third 

cycle completed by each membrane studied in this work. 

It is shown that the best fit n-value (BFN) is relatively unaffected by the presence or position 

of the Pd thin film during MPR testing. However, the Batch 1 Pd-Cu membrane demonstrates 

a decrease in the best fit n-value from 0.58 to 0.52 as a result of a series of cycles between 

250 and 700 °C using hydrogen feed and permeate pressures of 445 and 100 kPa, 

respectively. An additional observation is that the Batch 1 Pd-Cu membrane n-value shows no 

significant change with increasing temperature following these cycles. The conditions used in 

these cycles facilitate rapid phase transformation, compositional homogenisation and ordering 

due to enhanced atomic mobility as evidenced by VTXRD studies and is likely responsible 

for the observed changes in the Batch 1 Pd-Cu membrane n-value. 
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One significant finding is the marked increase in the hydrogen permeability displayed by the 

Batch 1 and Batch 2 Pd-Cu membranes subsequent to cycling between 250 and 700 °C. The 

outcome for both membranes showed a more than 50% decrease in the EΦ value and 

reduction in Φ0 resulting in a doubling of the hydrogen permeability measured during the 

third cycle between 250 and 450 °C after completing the 250 to 700 °C cycles as shown in 

Figure 4.126. Such improvements can be attributed to the removal of residual coring effects 

due to gradual homogenisation of the membranes with each successive cycle enabling the 

Batch 1 and Batch 2 Pd-Cu membranes to achieve comparable or even higher permeability 

values than that observed for the pure palladium membrane. 
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Table 4.16 Summary of results obtained for the membranes investigated in this work. N.B. the permeability data has been determined between 350 and 
450 °C.  

Membrane BFN 

Permeability 
constant, Φ0

 (×××× 10-7 
mol m-1 s-1 Pa-n) 

Activation energy, 
EΦ (kJ mol-1) 

Permeability during 
third cycle at 450 °C 

(×××× 10-8 
mol m-1 s-1 Pa-n) 

Pd thin film 
surface 
composition 
post MPR 
testing (wt%) - 
XRD 

Pd thin film 
surface 
composition 
post MPR 
testing (wt%) - 
XPS 

n-value n-value n-value 

0.5 BFN 0.5 BFN 0.5 BFN 

Pda 0.57 2.41 0.88 17.54 17.53 1.29 0.47 - - 

Batch 1 Pd-Cub 
0.58 288.33 88.68 51.09 51.09 0.56 0.17 

- - 
0.52* 2.71* 3.41* 19.86* 19.86* 1.19* 0.95* 

Batch 2 Pd-Cuc 
- 

88.13 
± 51.20 

- 
41.67 
± 3.40 

- 
0.69 

± 0.06 
- - - 

0.59* 
6.32 

± 4.74* 
1.81 

± 1.36* 
19.93 

± 6.12* 
19.92 

± 6.12* 
1.44 

± 0.08* 
0.41 

± 0.02* 
- - 

Type A-B1-F 0.55 2.15 1.04 17.93 17.93 1.05 0.51 
Pd83.6Cu16.4 Pd89.5Cu10.5 Type A-B2-F 0.58 13.26 4.18 29.95 29.93 0.88 0.28 

Type A-B1-P 0.60 23.98 5.46 34.44 34.42 0.75 0.17 
Pd83.0Cu17.0 Pd90.0Cu10.0 Type A-B2-P 0.55 36.93 19.42 36.41 36.41 0.84 0.44 

Type B-B2-F 0.63 4.99 0.78 23.41 23.41 1.00 0.16 Pd97.0Cu3.0 Pd95.0Cu5.0 
Type B-B2-P 0.60 38.83 10.08 38.01 38.01 0.69 0.17 Pd100.0Cu0.0 Pd100.0Cu0.0 
Type C-B2-F 0.56 3.44 1.44 20.52 20.52 1.09 0.46 Pd98.8Cu1.2 Pd96.8Cu3.2 
Type C-B2-P 0.59 21.89 6.35 33.91 33.91 0.74 0.22 Pd99.9Cu0.1 Pd96.5Cu3.5 
BFN = best fit n-value. Approximate Pd thin film thickness (nm) in Type A, B and C membranes is 95.5 ± 0.1, 797.4 ± 0.2 and 1,409.6 ± 0.2, respectively. 
Membrane thickness (µm) a = 67.8 ± 1.8, b = 31.0 ± 0.8, 31.3 ± 0.8. * indicates membrane permeability data acquired during the third cycle between 250 and 
450 °C after cycling twice between 250 and 700 °C. 
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Figure 4.126 Hydrogen permeability as a function of temperature plot comparing each membrane 
investigated in this work. All curves show the third cycle completed by each membrane between 50 and 
450 °C using a hydrogen feed pressure of 445 kPa and permeate pressure of 100 kPa assuming an n-value 
of 0.5. *indicates membrane permeability data acquired during the third cycle between 250 and 450 °C 
after cycling twice between 250 and 700 °C. 
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be observed with the Type A/B/C-B2-F/P membranes whereby the EΦ value is decreased due 

to the deposition of the Pd thin film on to the surface of the Batch 2 Pd-Cu membrane. 

As evidenced by the XRD and XPS data, the Pd thin film interdiffuses with the bulk Pd-Cu 

membrane during MPR testing producing a compositional gradient on the Pd sputter-coated 

surface. Figure 4.127 clearly shows that at room temperature the hydrogen to metal ratio 

(H/M) otherwise known as the hydrogen solubility increases in a Pd-Cu alloy with increasing 

Pd content. Solubility data for the Pd-Cu at higher temperatures is not available in the 

literature although it is known that hydrogen solubility decreases in a Pd-Cu alloy with 

increasing temperature [137, 177]. 

 
Figure 4.127 Hydrogen solubility data for the Pd-Cu alloy system at room temperature and 101.325 kPa 
compiled from literature [41-43]. 
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As demonstrated by Sieverts’ law (Equation 2.3), at a given temperature hydrogen solubility 

is proportional to concentration.  

 � = �
�� 
! �
  Equation 2.3 

 

It follows that if the Pd thin film introduces a compositional gradient during MPR testing, this 

will in turn produce a solubility gradient and therefore a concentration gradient (∂C/∂x) 

which, according to Fick’s first law (Equation 2.1), is the driving force for diffusion and 

consequently permeability. 

 � = −� ���� Equation 2.1 

 

Figure 4.128(a) is a schematic representation of the Batch 1 and Batch 2 Pd-Cu membranes 

during MPR testing which assumes a relatively uniform Pd60Cu40 wt% composition through 

the membrane thickness. Applying a hydrogen pressure differential across the membrane 

creates the concentration gradient necessary for conventional hydrogen diffusion. 
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Figure 4.128 A schematic illustration showing the membrane composition, hydrogen pressure and 
concentration as a function of membrane thickness during MPR testing at a given temperature where (a) 
represents the Batch 1 and Batch 2 Pd-Cu membranes, (b) represents the Type A-B1-F and 
Type A/B/C-B2-F membranes and (c) represents the Type A-B1-P and Type A/B/C-B2-P membranes. 
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Comparing the Type A/B/C-B2-F membranes, the Type C-B2-F membrane has the highest 

hydrogen permeability, followed by the Type B-B2-F membrane and lastly the 

Type A-B2-F membrane. This is perhaps attributed to the thicker Pd thin film in the 

Type C-B2-F membrane producing a relatively richer Pd surface that increases hydrogen 

solubility and introduces a larger hydrogen concentration gradient responsible for the increase 

in hydrogen permeability. 

Figure 4.128(c) is a representation of the Type A-B1-P and Type A/B/C-B2-P membranes 

whereby the Pd thin film is exposed to the permeate side. It is shown in Table 4.16 and Figure 

4.126, that the Type A-B1-P and Type A/B/C-B2-P membranes achieve a higher hydrogen 

permeability than the corresponding Batch 1 and Batch 2 Pd-Cu membranes yet a lower 

hydrogen permeability compared to the Type A-B1-F and Type A/B/C-B2-F membranes. The 

applied pressure differential produces the concentration gradient necessary for hydrogen 

permeation, however, the high hydrogen solubility of the Pd-rich Pd-Cu FCC phase on the 

permeate side likely creates a plateau in the concentration profile causing the slight reduction 

in hydrogen permeability. 

The Type B-B2-P membrane achieves the lowest hydrogen permeability of all the surface 

modified Pd-Cu membranes. This is possibly due to the Type B-B2-P membrane forming a 

pure Pd surface on the Pd sputter-coated side during MPR testing producing a larger plateau 

in the concentration profile which results in the observed decrease in hydrogen permeability. 

In addition, the second and third cycles of the Type A-B1-P and 

Type A/B/C-B2-P membranes achieved very similar hydrogen permeability values as a 

function of temperature. As demonstrated in Figure 4.126, this group of membranes 

commence hydrogen permeation at relatively lower temperatures in comparison to the 
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Batch 1 and Batch 2 Pd-Cu membranes. This could be a sign that the Type A-B1-P and 

Type A/B/C-B2-P membranes achieve ordering in comparatively less time due to the 

increased hydrogen solubility introduced by the Pd thin film. This creates more vacancy-

hydrogen clusters promoting atomic ordering so that the maximum hydrogen permeability of 

the Type A-B1-P and Type A/B/C-B2-P membranes is attained faster. However, with further 

cycling, the Batch 1 and Batch 2 Pd-Cu membranes will become more ordered and could 

begin to achieve higher hydrogen permeability values compared with the Type A-B1-P and 

Type A/B/C-B2-P membranes since a Pd thin film is not present to plateau the concentration 

profile which can reduce permeability. 

The pure bulk Pd membrane used in this work was never cycled below the critical 

temperature (295 °C) in a hydrogen atmosphere during MPR testing in order to avoid the 

α-PdH → β-PdH phase transformation which involves a lattice volume expansion capable of 

causing membrane failure. However, it has been observed that the surface modified Pd-Cu 

membranes that maintain a relatively pure Pd surface during MPR testing 

(Type B/C-B2-P/F membranes) are capable of being cycled to temperatures as low as 50 °C 

without showing any evidence of film delamination or cracking. The bulk Pd-Cu membrane 

substrate appears to stabilise the Pd thin film preventing delamination under the conditions 

used during MPR testing. 
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5. Conclusions 
For the first time, the hydrogen permeability of surface modified Pd60Cu40 wt% membranes 

has successfully been measured in this work. For a valid assessment, membranes which have 

completed the same number of cycles under the same test conditions in the MPR system are 

compared. The results confirm the hypothesis that modifying the surface of a Pd-Cu 

membrane using Pd sputter deposition can improve hydrogen permeability when the Pd thin 

film is positioned on the feed side during MPR testing. 

Initially, hydrogen permeability was measured for the Batch 1 and Batch 2 Pd-Cu membranes 

in the as-received state by cycling between 50 and 450 °C. On the third cycle the hydrogen 

permeability for the Batch 1 and Batch 2 Pd-Cu membranes were determined at 450 °C to be 

5.59 × 10-9 and (6.86 ± 0.6) × 10-9 mol m-1 s-1 Pa-0.5, respectively, which is relatively low 

compared with published data. However, it was observed that the Batch 1 and Batch 2 Pd-Cu 

membranes attained higher permeability values with each successive cycle. Moreover, it was 

found that cycling the Batch 1 and Batch 2 Pd-Cu membranes to temperatures as high as 

700 °C, had the effect of reducing the EΦ value by a factor of two and decreasing the n-value 

resulting in a hydrogen permeability at 450 °C of 1.19 × 10-8 and 

(1.44 ± 0.08) × 10-8 mol m-1 s-1 Pa-0.5, respectively. These new values are in good agreement 

with the published figures [37, 87, 97]. 

Coring was discovered to be the culprit for the initially low hydrogen permeability values 

demonstrated by the Batch 1 and Batch 2 Pd-Cu membranes. Coring likely occurred as a 

result of rapid cooling of the Pd-Cu alloy melt thus retaining the high temperature disordered 

FCC phase down to room temperature. Furthermore, this created compositional 

inhomogeneity as the component with the lowest melting point, in this case Cu atoms, 
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solidifies first and migrates to the outer extremities of the alloy leaving the Pd atoms to 

concentrate in the inner regions. 

Prolonged cycling and exposure to elevated temperatures in hydrogen was found to be 

effective in homogenising the Batch 1 and Batch 2 Pd-Cu membranes and increasing their 

hydrogen permeability. Krueger [96] reports a similar observation with a Pd-Cu alloy 

membrane and proposes that annealing at temperatures close to the melting point of Cu in an 

atmosphere containing hydrogen is sufficient to reverse the effects of coring and significantly 

enhance hydrogen permeability. 

Permeation hysteresis was also observed with the Batch 1 and Batch 2 Pd-Cu membranes 

upon cycling up to 700 °C. Yuan [97], attributes this to the presence of a metastable 

hydrogenated FCC Pd-Cu(H) phase that delays the FCC(H) ⇋ BCC(H) phase transformation. 

However, VTXRD analysis performed on offcuts of the Batch 1 Pd-Cu foil reveals that the 

FCC phase is stable to lower than normal temperatures in either a pure hydrogen atmosphere 

or pure helium atmosphere. Therefore, it is proposed that the stability of the FCC phase to 

lower than expected temperatures is more related to the cooling rate as opposed to the 

existence of a metastable hydrogenated FCC Pd-Cu(H) phase. Slower cooling rates will allow 

ample time for the phase transformation from the FCC to the BCC phase to occur and reach 

equilibrium. 

Furthermore, VTXRD analysis of the Batch 1 and Batch 2 Pd-Cu foil offcuts showed that 

445 kPa of hydrogen pressure moves the BCC | FCC + BCC and FCC + BCC | FCC phase 

boundaries to higher temperatures and Pd concentrations in the Pd-Cu binary phase diagram. 

This corresponds well to the observations reported by Piper [39]. This effect helps to explain 
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the ability of the BCC phase to remain stable past the position of the phase boundaries shown 

in the published Pd-Cu phase diagram [154]. 

It was revealed with the use of XRD and XPS depth profile analysis that interdiffusion 

between the Pd thin film and Pd-Cu foil substrate occurs in the Type A/B/C-B2 foil offcuts 

during the Pd deposition process. It is plausible to assume that interdiffusion occurs in the 

Type A-B1 and Type A/B/C-B2 membranes since they were sputter-coated under the same 

conditions as the Type A/B/C-B2 foil offcuts. The SEM micrographs of the Pd thin films in 

the as-deposited state reveal a nanocrystalline microstructure with equiaxed-shaped grains. 

Various authors [261, 270-274] postulate that the polycrystalline nature of a deposited thin 

film introduces grain boundary defects through which interdiffusion can be facilitated at 

relatively low temperatures. Apparently, a Pd target current of 1 A is sufficient in producing 

temperatures necessary to allow interdiffusion between the Pd thin film and Pd-Cu foil 

substrate during deposition. 

Furthermore, it has been shown using VTXRD analysis of the Type A/B/C-B2 foil offcuts 

that the β-PdH phase is stable up to a maximum temperature of 175 °C under 100 kPa of 

hydrogen pressure. This limit is raised to 225 °C under 445 kPa of hydrogen pressure. The 

stability of the α-PdH phase depends on the thickness of the Pd thin film and hydrogen 

pressure. At 100 kPa of hydrogen pressure, the α-PdH phase remains stable up to 700 °C. 

Whereas, at 445 kPa of hydrogen pressure, the α-PdH phase disappears at 450 and 550 °C in 

Type A-B2 Foil 2 and Type B-B2 Foil 2, respectively, as a result of a reduction in hydrogen 

solubility caused by Cu interdiffusion into the Pd thin film. It was also found that the 

Pd-Cu FCC phase attributed to the bulk Pd-Cu foil substrate is stable over a wider 

temperature range under 100 kPa of hydrogen pressure compared with 445 kPa of hydrogen 
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pressure. This indicates that higher hydrogen pressures accelerate the Pd-Cu FCC to BCC 

phase transformation. 

The Type A-B1 and Type A/B/C-B2 membranes achieved a relatively higher hydrogen 

permeability at 450 °C during the initial third cycle in comparison to the corresponding 

Batch 1 and Batch 2 Pd-Cu membranes at the same temperature and cycle. During MPR 

testing, interdiffusion between the Pd thin film and the bulk Pd-Cu membrane form both a 

Pd-rich Pd-Cu FCC phase and a compositional gradient on the Pd sputter-coated side of the 

Type A-B1 and Type A/B/C-B2 membranes. Positioning the Pd sputter-coated side of the 

Type A-B1 and Type A/B/C-B2 membranes on the feed side during MPR testing creates a 

larger than normal hydrogen concentration gradient due to the higher hydrogen solubility of 

the Pd-rich Pd-Cu FCC phase. This increased hydrogen concentration gradient is likely the 

cause of the relatively higher hydrogen permeability achieved by the Type A-B1-F and 

Type A/B/C-B2-F membranes. 

In contrast, positioning the Pd sputter-coated side of the Type A-B1 and 

Type A/B/C-B2 membranes on the permeate side during MPR testing may have the opposite 

effect. The pressure differential across the membrane creates the hydrogen concentration 

gradient necessary for permeation, although the Pd-rich Pd-Cu FCC phase positioned on the 

permeate side introduces a hydrogen solubility gradient acting in the direction opposing 

hydrogen diffusion. This may have the effect of producing a plateau in the hydrogen 

concentration profile towards the permeate side of the membrane hence reducing the 

hydrogen permeability in Type A-B1-P and Type A/B/C-B2-P membranes. 

The presence of the Pd thin film appears to have no effect on the bulk Pd-Cu membrane 

n-value. The overall trend demonstrates that the n-value increases with increasing 
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temperature. This ultimately means that the permeation process becomes less limited by 

hydrogen diffusion at higher temperatures. Such behaviour appears valid since at elevated 

temperatures the endothermic nature of hydrogen diffusion means that the rate of this process 

increases. Moreover, Doyle [123] attributes a deviation from Sieverts’ law to the increase in 

hydrogen concentration. This results in the expansion of the host metal lattice by the 

dissolved hydrogen which may significantly affect hydrogen solubility. This can also alter the 

electronic properties of the metal-hydrogen system as more electrons are introduced by the 

dissolved hydrogen upon ionisation. This may also lead to an increase in repulsive interaction 

between protons (H+) which may adversely affect the hydrogen dissociation process.   

It was discovered that the Type B/C-B2 membranes retained an almost pure Pd surface 

following MPR testing and showed no signs of film delamination or disintegration as result of 

cycling between 50 and 450 °C in a hydrogen atmosphere. Typically, a bulk pure Pd 

membrane would rupture if cycled through the critical temperature (295 °C) in the presence of 

hydrogen due to the lattice volume expansion created by the α-PdH → β-PdH phase 

transformation. It seems that this expansion is suppressed in the deposited Pd thin film and 

stabilised by the bulk Pd-Cu membrane substrate. 

Given reports of the Pd-rich Pd-Cu FCC phase exhibiting greater resistance to H2S 

contamination [45, 87, 159], the surface modified Pd-Cu membranes investigated in this work 

may have the potential to separate hydrogen from a gas mixture containing H2S under typical 

membrane operating conditions with improved durability. 

5.1. Further work 

Modifying the surface composition of a Pd60Cu40 wt% foil membrane via Pd sputter 

deposition shows great promise for the application of hydrogen separation and has scope for 



Conclusions 

~ 277 ~ 
 

further research and development. The following is a list of suggestions and recommendations 

for future work: 

• Further studies should be conducted in order to determine the durability and stability of the 

Pd-rich Pd-Cu FCC phase. Additional cycles should be completed under varying hydrogen 

pressure differentials and temperatures to better understand the interdiffusion process. 

• Different Pd thin film thicknesses can be explored in order to examine and identify the 

optimum Pd-rich Pd-Cu FCC phase composition. 

• Additional work could be focussed on indentifying the nature of the decline observed in 

the EΦ value for the Type A-B1-F/P and Type A/B/C-B2-F/P membranes. The EΦ value is 

a sum of the activation energy for diffusion (ED) and the enthalpy of solution of hydrogen 

(ES). One or both of these values may vary in order for the EΦ value to decrease. Therefore, 

diffusivity and solubility experiments can be performed on a new batch of surface 

modified Pd60Cu40 wt% membranes in order to determine whether ED or ES is responsible 

for changes in EΦ. 

• In order to fully eliminate the effects of coring in the as-received Pd-Cu foil, suitable 

conditions must be sought for annealing and homogenisation. A Pd-Cu membrane 

containing a fully ordered equilibrium BCC phase could make an ideal substrate for 

fabricating a new range of Type A, B and C membranes which could have enhanced 

hydrogen permeability. 

• Test a new batch of surface modified Pd60Cu40 wt% membranes in a hydrogen atmosphere 

containing various concentrations of H2S in order to assess the performance and durability 

of the Pd-rich Pd-Cu FCC phase. 
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6.  Appendix 

6.1. Method for calculating the Pd-Cu FCC and BCC phase composition 

Vegard’s law [249] has been initially used to accurately determine the phase composition of 

the as-received Pd-Cu foils. Literature data [137, 162, 164, 168, 171, 266, 275-282] has been 

compiled into a plot of FCC Pd-Cu lattice parameter as a function of Pd concentration (Figure 

6.1). 

 
Figure 6.1 Lattice parameter of FCC Pd-Cu alloys as a function of Pd content featuring a dashed line of 
best fit. 
 

Equation 6.1 was determined from a line of best fit for the Figure 6.1 data where xPd is the Pd 

concentration given in at%. 
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Pd concentration (at%)

0 10 20 30 40 50 60 70 80 90 100

L
at

tic
e 

pa
ra

m
et

er
 [Å

]

3.60

3.65

3.70

3.75

3.80

3.85

3.90

3.95
[137]
[162]
[164]
[168]
[171]
[266]
[275]
[276]
[277]
[278]
[279]
[280]
[281]
[282]



Appendix 

~ 279 ~ 
 

Figure 6.2 is a plot of BCC Pd-Cu lattice parameter as a function of Pd concentration 

constructed using literature data [162, 168, 259, 266, 275, 276, 279, 281, 283]. Using this 

data, Equation 6.2 was derived. 

 
Figure 6.2 Lattice parameter of BCC Pd-Cu alloys as a function of Pd content featuring a dashed line of 
best fit. 
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