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ABSTRACT 
 

Thymus colonisation and thymocyte positioning are mediated by interactions 

involving CCR7 and CCR9 and their respective ligands CCL19/CCL21 and CCL25. 

These chemokines also interact with the atypical receptor CCRL1, which is 

expressed in the thymus and has recently been reported to play an important role in 

normal abT-cell development. Our study has mapped CCRL1 expression within the 

adult and embryonic thymus, and shows that CCRL1 is expressed within the thymic 

cortex, at the subcapsular zone, and surrounding vessels at the corticomedullary 

junction.  We have used flow cytometry to show CCRL1 expression predominantly 

by cortical thymic epithelial cells, but also by a small population of medullary thymic 

epithelial cells and by a subset of mesenchymal cells. We show, using CCRL1 

deficient mice, that CCRL1 suppresses thymocyte progenitor entry into the thymus, 

and influences the intrathymic positioning of double negative thymocytes. 

Nevertheless, we have shown that CCRL1-/- mice have no major perturbations in T-

cell populations at different stages of thymic differentiation and development.  

Overall, this study characterises the expression of CCRL1 in key thymic 

microenvironments, but argues against a major role for CCRL1 in normal thymus 

development and function. 
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1.1 The Immune System 

The immune system is a complex network of cells and molecules, each with 

specialised roles for protection against infection and disease. Physical barriers such 

as the skin and mucosal membranes provide the initial defence against infection, 

and reflexes such as sneezing and coughing prevent microbial pathogens from 

adhering to host tissue – a vital process if a pathogen is to colonise the host.  In 

addition, the immune system has developed to provide two fundamentally different 

responses, which come into play if the initial defences are compromised: the innate 

and adaptive immune system. 

 

1.1.1 The Innate Immune System 

The innate immune system acts immediately once barrier defence mechanisms are 

breached. It exists to provide early defence, and to alert the adaptive immune 

system of danger. A defining feature of the innate system is a consistent and rapid 

response irrespective of previous exposure to the infective agent (Delves and Roitt, 

2000). The innate immune response involves the recognition of conserved features 

of pathogens. These conserved features are known as Pathogen Associated 

Molecular Patterns (PAMPs) e.g. liposaccharide, a component of gram-negative 

bacteria. Pattern Recognition Receptors (PRRs) are widely expressed by leukocytes 

and recognise such PAMPs. Recognition of PAMPs by PRRs allows the innate 

immune system to distinguish between self and non-self (Medzhitov and Janeway, 

2000). Toll like receptors (TLRs) are a class of PRRs and interaction of TLRs with 

their cognate ligands activates an intracellular signalling cascade leading to the 
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release of inflammatory cytokines and chemokines (Basset et al., 2003, Kumar et 

al., 2009). 

 

Ligation of PRRs expressed by macrophages leads to their activation. This causes 

the release of inflammatory mediators which are responsible for vasodilation and the 

recruitment of neutrophils and monocytes from the circulation into the tissue (Galli et 

al., 2011). This rapid influx of cells is known as inflammation and is characterised by 

the four Latin words calor, dolor, rubor, and tumor (heat, pain, redness, and 

swelling). 

 

In addition, macrophages express Fc and complement receptors; this allows 

phagocytosis of cells that are coated in antibody or complement. The function of 

complement includes the release of inflammatory mediators, pathogen opsonisation 

and removal by phagocytes, and the formation of the Membrane Attack Complex, 

which assembles to form a membrane-spanning pore, thus killing the pathogen 

(Basset et al., 2003). 

 

1.1.2 The Adaptive Immune System 

Typically the adaptive immune response takes several days to develop but has two 

striking advantages over the innate immune response. Firstly, when a pathogen is 

encountered by the adaptive immune system, immunological memory is generated, 

which allows the generation of a faster response should the pathogen be re-

encountered. Secondly, the adaptive response is much more specific than the 

innate response due to the vast repertoire of receptors expressed by cells of the 
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adaptive immune system. As with the innate immune system, the adaptive immune 

system is comprised of a variety of cell types that are generated from 

haematopoietic stem cells (HSCs) in the bone marrow (Delves and Roitt, 2000).    

 

1.1.3 Haematopoiesis 

HSCs are self-renewing cells responsible for the long-term generation of all blood-

cell lineages. HSCs comprise approximately 0.01% of nucleated cells in the bone 

marrow (BM) and express Thy 1, c-Kit and Sca-1 and lack expression of the lineage 

committed markers B220, Gr-1, Ter119, CD3, CD4, CD5, CD8 and CD11b (Rolink 

et al., 2006). HSCs give rise to multipotent progenitors (MPPs), which are not 

capable of self-renewal, but have full lineage differentiation potential. MPPs further 

differentiate into either lymphoid primed multipotent progenitor cells (LPMPs), or 

common myeloid progenitors (CMPs). LPMPs become common lymphoid 

progenitors (CLPs) and give rise to lymphocytes and NK cells. CMPs produce 

granulocyte-monocyte progenitors and megakaryocyte-erythrocyte progenitors and 

form cells of the myeloid lineage, as well as erythrocytes and platelets (Cedar and 

Bergman, 2011).  

 

1.1.4 Antigen Presentation to T cells 

The adaptive immune response is generated most effectively by professional 

antigen presenting cells (APCs) such as dendritic cells (DCs). Immature DCs 

continually sample the environment in peripheral tissues, and preferentially home to 

sites of inflammation due to secretion of inflammatory chemokines during an innate 
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immune response. Once a ‘danger signal’ is encountered, either in the form of 

damaged self or PAMPs, DCs mature to become professional APCs (Delves and 

Roitt, 2000). DC maturation is characterised by the upregulation of the costimulatory 

molecules CD80 and CD86. Once in this form, DCs migrate to secondary lymphoid 

tissue where they present antigen to T cells via major-histocompatibility-complex 

(MHC) molecules. There are two main classes of MHC molecules: class I and class 

II. The mechanism by which the antigen is processed and presented is different for 

each class of MHC molecule. 

 

1.1.5 Antigen Presentation via MHC Class I 

MHC class I (MHC-I) is expressed by almost all nucleated cells and is responsible 

for the presentation of endogenously derived peptides. Firstly, endogenous cytosolic 

proteins are converted to short peptides by the proteasome. These peptides are 

then transported to the endoplasmic reticulum (ER) where they form complexes with 

MHC-I with help from a ‘loading complex’. Once assembled, the peptide-MHC 

complex is transported from the ER to the cell membrane (Blum et al., 2013). 

Although MHC-I is usually expressed on all nucleated cells, exceptions include 

some virally infected cells or cells that have undergone malignant transformation. 

Cytotoxic CD8 T cells recognise peptides in association with MHC-I molecules via 

their T cell receptor (Delves and Roitt, 2000). In addition to T cells, NK cells 

recognise MHC-I by their killer inhibitory receptors (KIR). NK cells also express killer 

activating receptors (KAR), which bind to stress-related molecules e.g. MICA. If the 

KAR is engaged, the NK cell will kill the target cell, however, this signal can be 

overridden by the inhibitory signal produced when the KIR bind MHC-I. This proves 
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very useful in eliminating abnormal cells that have down regulated MHC-I 

expression, for example tumour cells (Delves and Roitt, 2000). 

 

1.1.6 Antigen Presentation via MHC class II 

MHC class II (MHC-II) molecules present peptides derived from exogenous proteins, 

and their expression is a unique feature of professional APCs. Antigens are 

internalised by endocytosis and are transported to the MHC-II compartment where 

they are processed by cathepsins and loaded onto MHC-II molecules. The 

assembled complex is exported to the cell membrane, where CD4 T cells are able to 

recognise the bound peptides (Blum et al., 2013). 

 

1.1.7 CD4 T Cells 

1.1.7.1 Conventional CD4 T cells 

CD4 T cells are largely cytokine-secreting helper cells, and the type of cytokine 

secreted by these cells allows them to be categorised into different conventional T 

helper (Th) subsets. Th1 cells secrete cytokine including IL-2 and IFNγ, whereas 

Th2 cells secrete cytokine including IL-4, 5, 6 and 10 but not IL-2 or IFNγ. The 

production of cytokine by Th1 cells facilitates cell-mediated immunity by the 

activation of macrophages and antigen-specific cytotoxic CD8 T cells, whereas Th2 

cells primarily help B cells to produce antibody (Zhou et al., 2009). Additional 

subsets of CD4 T cells exist, for example Th17 cells, which secrete IL-17, IL-17F, IL-

21, IL-6 and IL-23. Th17 cells have been implicated in autoimmune disease such as 

rheumatoid arthritis and psoriasis (Korn et al., 2009).  
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1.1.7.2 Regulatory T cells 

In addition to conventional Th cells, a subset of regulatory T (Treg) cells exist. Treg 

are characterised by their expression of the transcription factor Forkhead Box P3 

(Foxp3), and can develop in the thymus (natural, nTreg), or in the periphery 

(inducible, iTreg). Generation of nTreg in the thymus is thought to require high 

avidity TCR engagement during CD4 T cell development (Bensinger et al., 2001), 

while peripheral iTreg are generated from activated conventional CD4 T cells, 

favoured by stimulation with IL-2 and TGF-β, in the absence of IL-6 (Bettelli et al., 

2006, Curotto de Lafaille and Lafaille, 2009). The activation of Treg occurs in an 

antigen-specific manner, however once activated they can supress T cells bearing 

different specificities (Thornton and Shevach, 2000). The regulatory mechanisms 

used by Treg include the secretion of inhibitory cytokines, such as IL-10, IL-35 and 

TGF- β. In addition, Tregs can interact with APCs, which in turn reduces subsequent 

interactions between the APC and conventional T cells. (Tang and Bluestone, 

2008). Another proposed regulatory mechanism of Treg is the release of granzyme 

B and perforin to induce direct killing, although this has only been shown in vitro 

(Grossman et al., 2004). 
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1.1.8 CD8 T Cells 

CD8 T cells directly kill virally infected cells. This is achieved through the 

presentation of viral peptide in the context of MHC-I and the subsequent binding of 

specific CD8 T cells. Once bound, CD8 T cells release pore-forming perforin, which 

allows granzyme to enter and induce apoptosis in the target cell. In addition, Fas 

ligand expressed by CD8 T cells is able to ligate Fas molecules expressed by the 

target cell; this activates intracellular caspases and induces apoptosis. Like CD4 T 

cells, CD8 T cells also produce cytokines, including TNFα and IFNγ, which activate 

macrophages and recruit them to the site of inflammation (Zhang and Bevan, 2011).  

 

1.1.9 The T Cell Receptor (TCR) 

The TCR is vital for the activation of T cells. The majority of T cells express αβ TCR, 

however a small population express γδ chains instead. The α and β chains of the 

TCR are comprised of a constant and variable region, which are spliced together 

during T cell development in the thymus. The variable region undergoes gene 

rearrangement and produces a diverse array of TCRs with different specificities. The 

variable region of the α chain consists of variable (V), and junctional (J) gene 

segments, whereas the β chain consists of diversity (D), in addition to V and J 

(Turner et al., 2006).  

 

Very few T cells are specific for a given antigen, however they are capable of 

producing 1015 TCR variable regions. This is achieved by a recombination process, 

which modifies the variable-region genes by cutting and pasting the gene segments 

using nucleases and ligases. This process is subject to splicing inaccuracies, which 
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also increase diversity (Nemazee, 2006). In addition, the enzyme ‘terminal 

deoxyribonucleotidyltransferase’ adds additional nucleotides before ligation, thereby 

increasing diversity further (Cabaniols et al., 2001). Recombination–activating genes 

(Rag-1 and Rag-2) encode two of the enzymes involved in this process, and defects 

in these genes results in immunodeficiency due to the lack of mature lymphocytes 

with functional TCRs (Schwarz et al., 1996, Mombaerts et al., 1992).  

 

TCR-peptide-MHC interaction results in clonal selection and expansion of the 

activated T cell, thereby mounting a specific immune response. Most immune 

responses involve several clones (and are therefore termed polyclonal), because 

even simple antigens will bear many epitopes. Although the TCR can distinguish 

between similar antigens, molecular mimicry can occur. This is when an antigen 

receptor, such as the TCR, recognises unrelated antigens due to an identical 

epitope, or an epitope of similar shape or charge being presented. Autoimmune 

disease, for example psoriatic arthritis can be an outcome of such phenomenon 

(Cusick et al., 2012). 
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1.2 Chemokines 

Chemokines are small proteins (8-12kDa) required for the directional movement of 

cells between and within tissues. They have a variety of roles in the immune system 

including immune organ development, response to infection and wound healing. The 

majority of chemokines are secreted from the cell with the exception of CX3CL1 and 

CXCL16, which are tethered to the extracellular surface by mucin-like stalks. 

Although these chemokines are tethered, they can be cleaved by proteases allowing 

them to behave like other soluble chemokines (Allen et al., 2007). The tertiary 

structure of chemokines are similar, however their amino acid sequence can vary 

considerably. In addition to the structural classification (discussed below), 

chemokines can also be categorised based on their functional properties. 

‘Inflammatory chemokines’ are those upregulated during an inflammatory response 

to allow the recruitment of cells to areas of pathological insult. On the other hand, 

‘homeostatic chemokines’ are constitutively expressed to allow the homeostatic 

migration of cells to lymphoid tissues or other organs (Allen et al., 2007, Rossi and 

Zlotnik, 2000). These classification systems are not mutually exclusive as certain 

homeostatic chemokines can be upregulated during inflammation where they are 

able to recruit lymphocytes and promote the formation of ectopic lymphoid 

structures (Hjelmstrom et al., 2000, Barone et al., 2005).  

 

1.2.1 Structural Classification of Chemokines: Systematic Nomenclature 

The chemokine superfamily is divided into four groups based on the relative position 

of amino acid residues within a conserved cysteine motif at the N terminus of the 

protein: CXC, CC, XC, and CX3C. In CXC chemokines, the first two cysteines are 
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separated by one amino acid, whereas in CC chemokines both cysteines are 

adjacent. XC chemokines lack the first and third cysteine residue and CX3C 

chemokines have three amino acids between the first two cysteine residues (Allen et 

al., 2007, Rossi and Zlotnik, 2000).  

 

1.2.2 Interaction of Chemokines With Glycosaminoglycans 

Glycosaminoglycans (GAGs) are long, linear, polysaccharide chains that are highly 

charged (Tanaka et al., 1993a). They are abundantly expressed by endothelial cells, 

and are able to bind chemokines thus allowing chemokine presentation on the 

endothelial cell surface. This immobilisation of chemokines promotes 

transendothelial migration of leukocytes allowing their entry into tissues (Tanaka et 

al., 1993a, Rot, 1992). GAGs can differentially regulate chemokines that possess 

similar binding specificities. An example of this is seen with the CCR7 ligands, 

CCL19 and CCL21. CCL21 has an extended C-terminal tail, not present in CCL19 

(Nagira et al., 1997). Truncation of this C terminal prevents its immobilisation to the 

lumen of HEVs and as a result prevents the extravasation of lymphocytes (Stein et 

al., 2000). In addition, matrix-bound CCL21 causes cell adhesion and migration but 

cleavage of its C terminal tail, causes it to behave more like CCL19, causing cell 

migration but not adhesion (Schumann et al., 2010). In addition to GAGs, 

transendothelial cell migration can be regulated by DARC (discussed later).  
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1.2.3 Chemokine Induced Transendothelial Leukocyte Migration 

One of the most studied roles of chemokines is in the movement of leukocytes from 

blood into lymphoid tissue. Naïve T cells exit the blood into lymph nodes via high 

endothelial venules (HEVs). This is a multistep process involving chemokine 

mediated activation, firm arrest and transendothelial migration. HEV express 

peripheral-node addressins (PNAd), which bind to L-selectin (CD62L) expressed by 

the T cell. This interaction allows T cells to attach to HEVs, resulting in cell rolling 

due to the shear forces of blood flow. CCR7 on the rolling lymphocytes binds to 

CCL19 and/or CCL21 that are immobilised by GAGs on the HEV luminal surface. 

This induces a conformational change of integrin molecules expressed by the 

lymphocyte, allowing the T cell to bind firmly to ICAM-1 and ICAM-2 (or MAdCAM in 

the instance of mesenteric lymph node and Peyer’s Patches.) This arrest allows the 

lymphocyte to transmigrate through the endothelial cell layer, either between the 

endothelial cells (paracellular) or by piercing through the endothelial cell itself 

(transcellular) (Forster et al., 2008). The central role of chemokines in this process 

was shown in vitro using pertussis toxin (PTX) which had no affect on leukocyte 

rolling, but did inhibit leukocyte arrest (Bargatze and Butcher, 1993).  

 

1.2.4 Chemokine Receptors 

Chemokine receptors form part of the rhodopsin family of G protein coupled 

receptors (GPCR). They have seven membrane spanning α-helices, with an 

extracellular amino terminus, and an intracellular carboxyl terminus. An important 

feature of GPCR is a DRY motif at the cytoplasmic border of the second intracellular 

loop. This motif is important for G protein activation (Oldham and Hamm, 2008). The 
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structure of the chemokine receptor is outlined in Figure 1. Importantly, ‘atypical’ 

chemokine receptors have been described that are not able to activate G proteins. 

These receptors are described in detail later in this chapter.   
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Figure 1. The Structure of the Classical Chemokine Receptor. 

The classical chemokine receptor has seven membrane spanning domains 

(numbered 1-7), an extracellular amino (NH2) terminus, and intracellular carboxyl 

(COOH) terminus. The DRY motif is located within the second intracellular loop of 

the receptor, and is involved in G protein coupling. The carboxyl terminus contains 

serine and/or tyrosine residues that are phosphorylated by G protein coupled 

receptor kinases, leading to receptor desensitisation.   
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1.2.5 GPCR Signalling 

GPCR signalling involves the transmission of a signal via the activation of 

heterotrimeric G proteins. In the case of chemokine receptors, this initial signal is 

chemokine ligand binding. The heterotrimeric G protein consists of three subunits: 

Gα, Gβ, Gγ. In humans, there are 21 Gα subunits 6 Gβ subunits, and 12 Gγ 

subunits. G proteins are divided into four groups based on the structure of Gα: Gαs, 

Gαi, Gαq and Gα12. (Cotton and Claing, 2009, Oldham and Hamm, 2008). 

 

GDP bound to Gα renders the receptor inactive. Upon chemokine ligation, a 

conformational change causes the release of guanosine diphosphate (GDP) from 

Gα, this allows the formation of a stable complex between the receptor and G 

protein. This interaction is destabilised by guanosine triphosphate (GTP) binding to 

Gα. This allows Gα and Gβγ subunits to interact with downstream signalling targets. 

Gα is comprised of a GTPase domain that hydrolyses GTP to GDP thus terminating 

signal transduction (Cotton and Claing, 2009). 

 

Chemokine receptors signal through Gαi to mediate cell migration. Treatment with 

PTX irreversibly uncouples all isoforms of Gαi and blocks downstream signalling 

pathways. This feature has been an invaluable tool for chemokine biologists in 

deciphering the role of chemokines and their receptors in mediating immunological 

events (Cotton and Claing, 2009, Oldham and Hamm, 2008). 

 

Polarisation is a prerequisite for cell migration. This means that the front of the cell 

(leading edge) has different molecular processes to the back of the cell (uropod). 
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Cell migration is mediated by the polymerisation of F-actin at the leading edge and 

myosin II–mediated contraction at the uropod. In addition, other proteins that 

regulate the cytoskeleton e.g. the Arp2/3 complex are differentially localised 

between the leading edge and uropod (Chung et al., 2001). The maintenance of cell 

polarity is mediated by signalling through positive feedback loops. Members of the 

Rho family of small proteins, e.g. Rac and cdc42, have been shown to regulate 

reorganisation of the cytoskeleton during migration (Allen et al., 1998, Chung et al., 

2000). In addition, the Wiskott-Aldrich syndrome protein (WASP), and related 

proteins (N-WASP and Scar), interact with the Arp2/3 complex to drive branched 

actin polymerisation (Chung et al., 2001, Millard et al., 2004).  

 

Phosphatidylinositol-3 kinase (PI3K) activation occurs upon the activation of most 

chemokine receptors, however, this is not an absolute requirement for T cell 

migration (Ward, 2006). The role of PI3K in T cell migration has been studied using 

p110γ KO mice (p110γ is a catalytic isoform of PI3K). T cells from these mice were 

impaired in their ability to migrate in response to CCL19, CCL21 and CXCL12. 

Interestingly, B cell migration was unaffected in these mice, suggesting that B and T 

cells mediate their migration via different signalling pathways (Reif et al., 2004)  
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1.3 The Thymus 

The thymus is a primary lymphoid organ found in all vertebrates and is located in the 

central compartment of the thoracic cavity, above the heart and behind the sternum 

(Boehm, 2008). It is an encapsulated 3-dimensional structure composed of 

haematopoietic and stromal cells, which provide the necessary signals for T cell 

development (Alves et al., 2009). Early studies in the 1960’s by J. F. Miller were the 

first to show the immunological function of the thymus. One such study showed that 

mice thymectomised at birth had increased mortality rates compared to sham-

thymectomised controls unless antibiotics were administered, suggesting that 

thymectomised mice were more susceptible to infection (Miller, 1961). In addition, 

Miller also showed the tolerogenic function of the thymus. This was achieved by 

thymectomising CBA.T6T6 mice at birth, transplanting a C57Bl/6 thymus and 

subsequently transplanting skin grafts from either a syngeneic (C57Bl/6) or 

allogeneic (BALB/c) donor.  These mice accepted the C57Bl/6 skin but rejected the 

BALB/c skin, suggesting that the transplanted thymus was responsible for the 

acquisition of tolerance (Miller, 1962). Since then, a wealth of research has provided 

insight into the mechanisms involved in the effective production of fully competent, 

self-tolerant T cells. 
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1.3.1 Colonisation of the Thymus 

HSC are not present within the thymus, and therefore T cell development is 

dependent on the constant recruitment of progenitor cells to the thymus (Donskoy 

and Goldschneider, 1992). Progenitor cells are recruited from different sources in 

the prenatal and postnatal mouse. During embryonic development, progenitor cells 

are derived from the yolk sac, aorta-gonad-mesonephros region, placenta and fetal 

liver whereas postnatal progenitor cells are derived from the BM (Mikkola and Orkin, 

2006).  

 

During pre-vascularisation embryogenesis, progenitor cells migrate directly into the 

thymic anlage from the surrounding mesenchyme. Once the vasculature has 

developed progenitor cells enter the thymus by blood vessels at the 

corticomedullary junction (CMJ).  Lymphoid progenitor cells can be detected in the 

thymus at week 7-8 in human gestation and embryonic day (E) 11.5 (E11.5) in 

murine thymus (Calderon and Boehm, 2011). Lymphoid progenitor cells give rise to 

early thymic progenitors (ETPs). ETPs have an extremely limited ability to self-

renew therefore constant recruitment of progenitor cells is vital for T cell 

development; this is thought to occur in periodic waves approximately every four 

weeks in adult mice (Foss et al., 2001).  

 

One study characterised the vascular adhesion molecules that may be involved in 

the recruitment of progenitor cells to the adult thymus. This study used mice that 

were 5 and 9 weeks old (peak of progenitor homing), and mice that were 4 and 7 

weeks old (refractory period of progenitor homing). Analysis of the thymi from these 
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mice by immunohistochemistry revealed expression of PNAd, VCAM-1 and ICAM-1 

by post capillary venules at the CMJ. Expression of vascular adhesion protein 1 

(VAP-1) was limited to fewer vessels at the CMJ, and medullary vessels were VAP-

1 negative. Interestingly, PNAd expression fluctuated temporally, with highest 

expression during peak progenitor homing, and lower expression during refractory 

periods, suggesting that PNAd may play a role in progenitor cell recruitment 

(Lepique et al., 2003).   

 

Chemokine receptor-ligand interactions are responsible for the homing of 

haematopoietic progenitors to the embryonic thymus. The chemokines CCL21, 

CCL25 and CXCL12 are expressed by the thymic anlage, and CCL21 and CXCL12 

are expressed by the perithymic mesenchyme (Calderon and Boehm, 2011, Liu et 

al., 2006, Bleul and Boehm, 2000). At E12.5 the receptors for these chemokines 

(CCR7, CCR9 and CXCR4) can be detected on CD45+ cells isolated from the 

perithymic mesenchyme (Jenkinson et al., 2007a). The role for chemokines in the 

homing of progenitors cells to the embryonic thymus has been shown by several 

experiments using genetically modified mice. A recent report used combinations of 

CCR7, CCR9 and CXCR4 deficient mice to investigate the involvement of these 

chemokine receptors. It was shown that at E12.5, the CCR9 KO mouse had reduced 

numbers of CD45+ cells within the thymus but not around parathyroid. In contrast, 

the E12.5 CCR7 KO mouse had an absence of CD45+ cells around the parathyroid, 

in addition to a reduction of CD45+ cells within and around thymus. Analysis of the 

E12.5 CXCR4 KO thymus revealed a similar distribution of CD45+ cells to WT 

controls. At E12.5, CCR7, CCR9, CXCR4 triple KO mice has a complete absence of 
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CD45+ cells in and around the thymus and parathyroid. This suggests that all three 

chemokine receptors contribute to progenitor homing to the embryonic thymus. The 

triple KO thymus continued to have reduced cellularity at E17.5, suggesting these 

chemokines are also important in the recruitment of progenitor cells, post 

vascularisation (Calderon and Boehm, 2011). 

 

The influence of chemokines in the colonisation of the adult thymus is less clear.  

One study showed that the reduction of thymocytes in the CCR7/CCR9 double 

knockout (DKO) embryo is resolved by postnatal day 1 and hypothesises that this is 

due to compensatory proliferation of thymocytes and subsequent seeding of the 

thymus by blood vessels at the CMJ in a CCR7/CCR9 independent manner (Liu et 

al., 2006). A more recent study shows that the adult CCR7/CCR9 DKO has reduced 

frequencies of ETP but similar frequencies of total thymocytes compared to WT 

controls due to compensatory proliferation of DN3 thymocytes (Krueger et al., 2010). 

This suggests that homing to the adult thymus is dependent, in part, on CCR7 and 

CCR9, but that absolute thymocyte cellularity is unaffected in DKOs due to 

compensatory mechanisms. 

 

1.3.2 Heterogeneity Within the DN1 Population 

Several studies have shown that thymus seeding progenitor cells are not T lineage 

committed and can give rise to cells belonging to the lymphoid and myeloid lineage. 

The most immature thymocytes are termed DN1 thymocytes and are defined as 

CD25-CD44hi. These thymocytes are located at the perimedullary cortex – a narrow 

region of the cortex adjacent to the medulla (Petrie and Zuniga-Pflucker, 2007). This 
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is a heterogeneous population and can be subdivided into five groups (a-e) based 

on expression of CD24 and CD117. In addition to surface phenotype, these cells 

also differ based on their proliferative capacity, with DN1e cells having a relatively 

lower proliferative capacity compared to DN1a-d. When seeded onto culture plates 

containing a monolayer of OP9 cells, DN1a and DN1b cells express NK1.1 whereas 

DN1c and DN1d show expression of CD19, indicative that cells of the DN1 

population can give rise to cells of the NK and B cell lineage (Porritt et al., 2004). In 

addition to the lymphoid lineage, thymic progenitor cells show myeloid potential in 

the form of mast cell and DCs (Shen et al., 2003, Taghon et al., 2007). Moreover, 

studies using RAG-1/Cre X Rosa26YFP mice show YFP+ expression by thymic 

granulocytes, suggesting they have a history of Rag1 expression and are therefore 

derived from ETPs (De Obaldia et al., 2013).  

 

Notch signalling has been implicated in T lineage commitment. In mammals, four 

notch homologues exists (Notch 1-4) which interact with five ligands expressed by 

thymic epithelial cells (TECs): Jagged 1, Jagged 2, Delta-like ligand 1 (DLL1), DLL3 

and DLL4 (Radtke et al., 2013, Jenkinson et al., 2006). Early evidence for the role of 

Notch signalling in T lineage commitment was provided by the inducible inactivation 

of Notch-1 in newborn mice. These mice showed a block in T cell development, and 

an accumulation of B cells within the thymus (Radtke et al., 1999). On the other 

hand, a more recent study suggests the T/B lineage is determined prior to entry to 

the thymus. CD45+ cells were sorted from E12 fetal liver, perithymic mesenchyme 

and thymic epithelium, and cultured on OP9 stromal cells in the presence of IL-7. 

Purified CD45+ precursors from fetal liver gave rise to B cells, whereas precursor 
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cells from the thymic mesenchyme and epithelium did not (Harman et al., 2005). 

This provides evidence that loss of B cell potential occurs prior to interaction with 

notch ligand in the thymus. 

 

1.3.3 Early Intrathymic T Cell Development 

The phenotypic changes of thymocytes during DN development are complemented 

by intrathymic migration. DN1 thymocytes acquire the expression of CD25 and 

CD117 and efficiently transit to downstream DN2 thymocytes. There are still some 

cells with NK and myeloid potential in this population, but most are T lineage 

committed (Rolink et al., 2007, Porritt et al., 2004). DN2 thymocytes are located at 

the inner cortex where they upregulate Rag expression and begin to rearrange 

TCRγ and TCRδ chains. Stem cell factor (SCF), a cytokine that binds CD117, is 

expressed in this area of the cortex, and is partly responsible for the proliferation of 

CD117+ DN2 thymocytes. DN2 thymocytes downregulate expression of CD44 and 

CD117 to become DN3 thymocytes, and they migrate through the outer cortex to the 

SCZ along VCAM+ stromal cells (Petrie and Zuniga-Pflucker, 2007). Potential for 

alternative lineages is lost at this stage; therefore DN3 thymocytes are fully 

committed to becoming αβ or γδ T cells (Chi et al., 2009). IL-7 signalling is important 

during this stage of T cell development. OP9-DL1 cells were used to show that 

transition to the DN3 stage requires high levels of IL-7, but further differentiation 

past the DN3 stage is favoured by much lower IL-7 concentrations (Huang et al., 

2005). The importance of IL-7 production by TECs is seen in IL-7flox-flox FoxN1-Cre 

mice. Within the thymus of these mice, TECs are unable to produce IL-7, and as a 



 

 

23 

result have a dramatic reduction in thymocyte cellularity, and a virtually absent γδ T 

cell population (Shitara et al., 2013). DN3 thymocytes begin to rearrange their TCRβ 

locus and those which have succeeded in this begin to assemble the TCRβ and pre-

TCRα chains to form the pre-TCR complex. Successful expression of the pre-TCR 

complex allows thymocytes to proceed in their development whereas those 

thymocytes that have not successfully undergone TCRβ rearrangement die. Pre-

TCR+ cells dramatically proliferate and downregulate CD44 expression to become 

DN4 thymocytes. Although these cells downregulate CD44, they rapidly upregulate 

CD4 and CD8 expression, and for this reason they are also called pre double 

positive (DP) thymocytes. Pre-DP thymocytes migrate from the SCZ towards the 

medulla (Petrie and Zuniga-Pflucker, 2007). See Figure 2 for an overview of 

intrathymic T cell development.  

 

The role of chemokines and their receptors have been implicated in the outward 

migration of DN thymocytes, such receptors include CXCR4, CCR7 and CCR9. 

CXCR4 is expressed by ETPs and its ligand, CXCL12, is produced by a subset of 

cTECs. BM chimeras were generated by transferring donor cells from mice, which 

have an immature thymocyte-specific deletion of CXCR4, into wild type mice. This 

model showed that CXCR4 deficient DN thymocytes were unable to migrate 

outwards from the CMJ and were arrested in early DN development (Plotkin et al., 

2003). In addition, CCR7 and its ligands CCL19 and CCL21 influence this outwards 

migration. This is seen by the accumulation of DN2 thymocytes at the CMJ in plt 

(Paucity of lymph node T cells) and CCR7 KO mice. (Misslitz et al., 2004). Plt mice 

have a spontaneous mutation resulting in the genomic deletion of the CCL21 gene 
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(Scya21a), and the CCL19 gene (Scya19). As a result, plt mice do not express 

CCL19 or CCL21 in lymphoid organs, but do express CCL21 in lymphatic 

endothelium, albeit at reduced levels (Mori et al., 2001). Experiments using CCR9 

KO mice have shown that signalling via this receptor is also important for migration 

of DN thymocytes to the subcapsular zone (SCZ). In these mice, CD25+ DN 

thymocytes are dispersed throughout the cortex rather than being localised at the 

SCZ (Benz et al., 2004). 

 

1.3.4 Selection of the αβTCR Repertoire 

Newly generated TCRαβlowCD4+CD8+ DP thymocytes are subject to stringent 

selection events within the thymus. DP thymocytes interact via their TCR with 

peptide-MHC complexes expressed by cTECs. If these interactions are low affinity, 

thymocytes receive survival signals and further differentiate into SP thymocytes. 

This enrichment of ‘useful’ T cells is known as positive selection and only occurs in 

1-5% of thymocytes successfully pass through this process. If the TCR-peptide-

MHC interactions are high affinity, these potentially autoreactive thymocytes are 

induced to undergo apoptosis. This is known as negative selection (Takahama, 

2006, Petrie and Zuniga-Pflucker, 2007).  

 

Cortical DP thymocytes upregulate CCR7 and migrate to the medulla where CCR7 

ligands (CCL19 and CCL21) are expressed. The cortex to medulla migration of 

thymocytes is dependent on CCR7 and CCR9. An in vitro culture system using 

thymic slices showed that CCR7 deficient SP thymocytes exhibit disorientation 

compared to WT SP thymocytes which show directional bias towards the medulla 
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(Ehrlich et al., 2009). CCR9 has also been implicated in cortex to medulla migration 

of thymocytes via PlexinD1. PlexinD1 is a transmembrane glycoprotein and the 

receptor for semaphorin3E. PlexinD1 is expressed at high levels by DP thymocytes 

but has reduced expression by SP thymocytes and semaphorin3E is localised within 

the thymic medulla (Takamatsu et al., 2010). Using a transwell migration assay, 

semaphorin 3E-Fc was capable of inhibiting CCR9 mediated migration of positively 

selected CD69+ thymocytes. Moreover, the thymus from PlexinD1 KO embryos has 

a disorganised structure, with no clear cortical/medullary demarcation (Choi et al., 

2008). This study shows that semaphorin3E represses CCR9/CCL25 signalling, 

which would normally keep thymocytes within the cortex, thus allowing thymocytes 

to migrate towards the medulla.  

 

1.3.5 Thymocyte Maturation 

SP thymocytes spend approximately 12 days in the medulla before being exported 

to the periphery (Scollay and Godfrey, 1995). SP thymocytes were originally thought 

to be fully mature, ready to leave the thymus in an orderly ‘first in – first out’ or 

random fashion. However, recent studies have shown a developmental pathway of 

SP thymocytes within the medulla, and continued development of recent thymic 

emigrants (RTE) in the periphery. SP thymocytes undergo four developmental 

stages during their maturation within the medulla. They can be divided into four 

subsets, SP1 (6C10+CD69+), SP2 (6C10-CD69+), SP3 (CD69-Qa2-), and SP4 

(CD69-Qa2+) (Li et al., 2007). These phenotypic changes are accompanied by the 

additional deletion of potentially autoreactive thymocytes. The expression of tissue-

restricted antigens by mTEC is in part dependent on the transcription factor 
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autoimmune regulator (Aire). Aire deficiency leads to autoimmune 

polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), and a similar 

condition in mice (Anderson et al., 2002). A recent publication used a system of 

RelB KO embryonic thymus lobes grafted under the kidney capsule of WT mice to 

show the effects of an mTEC deficient environment on T cell development. These 

experiments showed that the medullary microenvironment is not an absolute 

requirement for the maturation of conventional SP thymocytes, but is required for 

the maturation of Foxp3-CD25+ Treg precursors into Foxp3+ CD25+ Tregs (Cowan et 

al., 2013).  
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Figure 2. An Overview of Intrathymic T Cell Development. 

Haematopoietic precursor cells arise in the bone marrow and enter the thymus by 

blood vessels at the corticomedullary junction (CMJ). Once inside the thymus they 

are known as early thymic progenitors (ETP). ETP begin their outward migration 

from the CMJ and become double negative (DN) thymocytes. DN thymocytes 

migrate to the subcapsular zone (SCZ) before rearranging their TCRβ chain. 

Following successful gene rearrangement, DN thymocytes upregulate CD4 and CD8 

to become double positive (DP) thymocytes. Developing DP thymocytes interact 

with cortical thymic epithelial cells (cTEC) associated with self-antigen in the context 

of MHC-I or MHC-II. Inadequate T cell receptor (TCR) signalling results in cell death 

by neglect, whereas intermediate levels of TCR signalling results in survival signals. 

Thymocytes that successfully pass through this selection process migrate to the 

medulla, where they interact with self-antigen presented by medullary thymic 

epithelial cells (mTEC). High affinity binding of thymocytes to self-antigen results in 

pro-apoptotic signalling, to ensure removal of potentially autoreactive thymocytes 

(negative selection). SP thymocytes continue their maturation within the medulla 

before leaving the thymus by blood vessels at the corticomedullary junction (CMJ).  
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1.3.6 Additional Mechanisms of Negative Selection 

In addition to mTEC, thymic dendritic cells (DC) contribute to the deletion of 

autoreactive thymocytes during negative selection. Three populations of thymic DC 

exist, plasmacytoid (p)DC, Sirpα- conventional (c)DC, and Sirpα+ cDC. The 

chemokine XCL1 is produced by mTEC, and its receptor, XCR1 is expressed by 

thymic DCs. Work from Takahama’s lab recently showed that the expression of 

XCL1 by mTEC is AIRE dependant, and an absence of XCL1 production results in 

the disrupted positioning of thymic DCs across the CMJ. The correct positioning of 

DCs was shown to be vital for the induction of central tolerance, as thymocytes from 

XCL1 KO mice caused autoimmunity when transferred into athymic nude mice (Lei 

et al., 2011).  

 

Thymic pDCs are a migratory DC subset and are involved in the transport of 

peripheral antigen to the thymus for presentation to developing thymocytes. 

Moreover, use of CCR9 KO mice showed that CCR9 controls the homing of pDCs to 

the thymus, In addition, using a TCR transgenic system, it was shown that antigen-

loaded pDCs were effective at deleting antigen-specific SP thymocytes. This data 

showed that pDCs were capable of inducing central tolerance in a CCR9 dependant 

fashion (Hadeiba et al., 2012). Sirpα- cDCs are not migratory, instead these cells are 

generated intrathymically. Using langerin-GFP reporter mice, it was shown that 

Sirpα- cDCs arise within the DN1c population of cells described by Petrie and 

colleagues, but not amongst ETP (Luche et al., 2011, Porritt et al., 2004). This 

suggests that Sirpα- cDCs are generated from a separate DC precursor cell. Unlike 

Sirpα- cDCs which are generated intrathymically and are located within the thymic 



 

 

29 

medulla, Sirpα+ cDCs are a migratory subset and are positioned within the cortex 

and perivascular areas. Baba and colleagues used CCR2 KO mice, which have a 

reduction in Sirpα+ cDCs, to show a role for these DCs in the presentation of blood-

borne antigen to developing thymocytes during negative selection (Baba et al., 

2009). 

 

The thymus also contains a small population of B cells that play a role during 

negative selection. Experiments using RAG2pGFP Tg mice suggest that these B 

cells arise within the thymus from Rag2 expressing progenitor cells (Perera et al., 

2013). In addition, parabiosis studies of congenic CD45.1 and CD45.2 mice show 

minimal circulation of B cells through the thymus (Perera et al., 2013). Thymic B 

cells have a unique phenotype compared to peripheral B cells, they express higher 

levels of MHC-II, CD80 and CD86, and are capable of presenting self antigen to 

mediate negative selection of autoreactive T cells (Perera et al., 2013, Frommer and 

Waisman, 2010). The influence of chemokines on the thymic B cell population is not 

clear, however CCR7 KO mice have a reduction in this population of cells (Akirav et 

al., 2011). 
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1.3.7 Export to the Periphery 

The mechanisms for thymocyte egress from the thymus are still not fully clear, 

however several molecules have been implicated both in neonatal and adult mice. 

SP thymocytes upregulate the transcription factor Kruppel-like factor (KLF) 2 and as 

a result, target genes including sphingosine-1-phosphate receptor-1 (S1P1) and 

CD62L are also upregulated (Zachariah and Cyster, 2010). The concentration of the 

S1P1 ligand, S1P, is high in serum and low in the thymus, thereby creating an S1P 

gradient allowing mature thymocytes to egress. In addition to S1P in the serum, S1P 

is produced by neural crest pericytes which ensheathe thymic blood vessels. 

Specific deletion of S1P production by such pericytes has been shown to 

dramatically impair thymic export (Zachariah and Cyster, 2010). CD69 is transiently 

upregulated on SP thymocytes following TCR engagement. Interestingly S1P1 KO 

mice fail to downregulate CD69 expression on SP thymocytes, and treatment with 

the S1P1 agonist FTY720 results in the downregulation of CD69 on thymocytes. 

Moreover, constitutive expression of CD69 by thymocytes inhibits their egress from 

the thymus, therefore suggesting this molecule has a role in egress from the thymus 

(Love and Bhandoola, 2011).  

 

CCR7 KO and plt neonatal mice have a reduction in peripheral T cell numbers, 

indicating a role for CCR7 in thymocyte egress. Thymocyte egress in adult mice 

seems to be CCR7 independent as these abnormalities are restored to normal 

levels after the neonatal stage (Ueno et al., 2004). Moreover, an in vitro system 

which used FTOC thymus lobes, cultured in the presence or absence of chemokines 

showed a highly significant increase in thymic export in the presence of CCL19 
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compared to several other chemokines, including the alternative CCR7 ligand, 

CCL21 (Ueno et al., 2002). This study also used neutralising antibodies and showed 

that blockade of CCL19 reduced the number of T cells in peripheral blood of 

newborn mice, whereas CCL21 did not, providing further evidence for the role of 

CCL19 in thymocytes egress (Ueno et al., 2002). See Figure 3 for an overview of 

the involvement of chemokines and their receptors in T cell development.  

 

The identification of recent thymic emigrants (RTE) as a population distinct from the 

bulk peripheral T cells is an important factor when studying thymic egress. RTE 

were first identified by injecting fluorescein isothiocyanate (FITC) into the thymus of 

mice, and isolating FITC+ T cells from the periphery (Berzins et al., 1999). This 

technique has several caveats, including the short half-life of FITC, and the 

inadvertent labelling of recirculating T cells. Recently, the use of RAG2p-GFP Tg 

mice, in which the Rag2 promoter drives the expression of GFP, has been used to 

identify RTE. In these mice, the GFP signal remains, even once the Rag gene is 

switched off, thereby labelling RTE as GFP+. This model has an additional 

advantage of allowing young GFPhi RTE to be distinguished from older GFPlo RTE. 

RTE undergo a maturation process in the periphery characterised by the 

downregulation of CD24, D3, CTLA-4 and PD-1, and the upregulation of Qa2, 

CD45RB, Ly6C, IL-7Rα, and CD28 (Fink, 2013, Boursalian et al., 2004).  
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Figure 3. The Involvement of Chemokines and Chemokine Receptors in T Cell 
Development 

The recruitment of early thymic progenitors (ETP) from the vasculature into the 

thymus is dependant on the expression of CCR7 and CCR9. During the 

development of double negative (DN) thymocytes, downregulation of CCR7 

expression, and upregulation of CCR9 and CXCR4 occurs. This mediates the 

outward migration of DN thymocytes towards the subcapsular zone (SCZ). Upon 

reaching the double positive (DP) stage, thymocytes express high levels of CCR9 

and CXCR4. Following selection events within the cortex, developing thymocytes 

express CCR7 and CCR4 and downregulate the expression of CCR9 to allow the 

migration of single positive (SP) thymocytes into the thymic medulla. Fully mature 

SP thymocytes upregulate the expression of sphingosine-1-phosphate receptor 

(S1P1), in addition to CCR7, to mediate their egress into the periphery.  
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1.4 Thymic Stroma 

Optimal thymic microenvironments for T cell development are created by the thymic 

stroma. Thymic stroma consists of primarily EpCAM-1 positive TEC, but also a 

population of EpCAM-1 negative cells which are comprised of mesenchymal cells, 

endothelial cells and fibroblasts.  

 

1.4.1 Thymic Epithelial Cells 

During positive and negative selection events, developing thymocytes interact with 

peptide-MHC complexes on TECs. cTEC express MHC-I and MHC-II, and mediate 

positive selection. Mice deficient in Thymus Specific Serine Protease (TSSP) or 

cathepsin L have shown the importance of these proteases in the positive selection 

of SP4 thymocytes (Nakagawa et al., 1998, Viret et al., 2011, Gommeaux et al., 

2009). Selection of CD8 T cells by cTEC requires the thymoproteasome subunit β5T 

(Nitta et al., 2010). The majority of self-peptides presented by TEC are derived from 

endogenous proteins, due to their poor ability to phagocytose. TECS exhibit high 

levels of autophagy and when this process is disrupted, for example in Atg5 (a gene 

essential for mammalian macroautophagy) deficient mice, positive selection is 

impaired, suggesting this is an important mechanism for peptide presentation 

(Nedjic et al., 2008). cTEC express the markers cytokeratin-8, CD205, Ly51 and 

β5T. Flow cytometric analysis of cTEC allows the identification of cTEClo 

(CD40loMHC-IIlo) and cTEChi (CD40hiMHC-11hi) cells. mTEC express markers such 

as cytokeratin-5, UEA-1, CD80, Aire, ERTR5, and lack expression of cTEC specific 

markers. Like cTEC, mTEC can be divided into mTEClo (CD80loMHC-Illo) and 
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mTEChi (CD80hiMHC-IIhi). A proportion of mTEChi cells express Aire (Anderson and 

Takahama, 2012, Gray et al., 2006).  

1.4.2 TEC Development 

TEC development begins early during embryonic development by the existence of a 

bipotent cell which can give rise to both cTEC and mTEC lineages. This was shown 

using a model that involved the isolation of a single TEC from an E12 YFP+ mouse. 

This cell was microinjected into a non-fluorescent host thymus that was then grafted 

under the kidney capsule of a WT mouse. Analysis of the graft revealed YFP+ cells 

in both the cortex and medulla, elegantly showing the ability of the bipotent TEC to 

form cTEC and mTEC (Rossi et al., 2006). A recent study further characterised TEC 

progenitors. This study isolated CD205+CD40- TEC from an E15 thymus to create a 

reaggreate thymic organ culture that was then grafted under the kidney capsule of a 

WT mouse. After 6-8 weeks, the graft was analysed and showed the presence of 

cTEC and mTEC. Moreover, the graft was capable of supporting normal T cell 

development (Baik et al., 2013). This suggests that TEC expressing CD205, (which 

was previously thought to be expressed by only those cells in the cTEC lineage), are 

able to give rise to both cTEC and mTEC lineages. A similar result was shown using 

β5t-Cre-loxP-GFP mice which showed GFP expression by mTEC, in addition to 

cTEC, suggesting that β5t must be expressed by TEC progenitors which give rise to 

both cTEC and mTEC (Ohigashi et al., 2013). 
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1.4.3 Thymic Mesenchyme 

Thymic mesenchyme originates from neural crest (NC) cells, which migrate into the 

pharyngeal region and surround the third pharyngeal pouch during early embryonic 

development. Interactions between mesenchymal cells and TEC have been 

implicated in thymus organogenesis. One study used E12 thymi in which PDGFRα+ 

mesenchyme was removed, or left intact (Jenkinson et al., 2007b). These thymi 

were subsequently grafted under the kidney capsule of WT mice and harvested 3 

weeks later. Analysis of the grafted thymi revealed demarcation of cortical and 

medullary areas and an ability to support T cell development, irrespective of the 

presence or absence of PDGFRα+ mesenchyme. Interestingly, mesenchyme 

depleted thymi were hypoplastic suggesting that PDGFRα+ mesenchymal cells play 

a role in the induction of TEC proliferation. The extent to which NC derived cells 

make a long-lasting contribution to the adult thymus remains poorly understood.  

 

Mesenchymal stromal cells are a broad population of cells. Within the thymus they 

comprise of the connective tissue forming cells of the capsule and septae, 

endothelial cells, perivascular cells and fibroblastic cells. Studies have used Sox10-

cre Rosa26-YFP mice to label NC derived cells (Muller et al., 2008, Foster et al., 

2008). Flow cytometric analysis of the thymus from Sox10-cre Rosa26-YFP adult 

mice revealed UEA-CD31-EpCAM-1-Ly51+ cells that expressed YFP (Muller et al., 

2008). Embryonic NC derived cells are PDGFRα+PDGFRβ+, whereas NC derived 

cells in the adult thymus are PDGFRα-PDGFRβ+ (Muller et al., 2008, Foster et al., 

2008). Staining of the adult Sox10-cre Rosa26-YFP thymus by both 

immunofluorescence and flow cytometry shows YFP+αSMA+ perivascular cells 
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(Muller et al., 2008, Foster et al., 2008). High magnification images show that larger 

vessels at the CMJ coexpress YFP and αSMA whereas cortical capillaries show 

heterogeneity. Some cortical capillaries show an inner layer of endothelial cells, 

surrounded by YFP+αSMA- cells, followed by YFP-αSMA+ cells, whereas others 

coexpress YFP and SMA. A third subset of cortical capillaries comprise of only an 

inner layer of endothelium surrounded by YFP+ cells, such capillaries could be 

surrounded by pericytes of non-NC origin (Muller et al., 2008). 

 

Thymic mesenchyme, in addition to TEC, has been identified as a source of VEGF. 

Moreover, VEGF-A deletion in TEC results in altered thymic vasculature, suggesting 

that the thymic mesenchyme may play a role in the formation of thymic vasculature 

(Muller et al., 2005). A recent study used a combination of Foxn1 mutant, KO and 

WT mice to specifically address this issue. This study showed that Foxn1 is 

responsible, in a dose dependent manner, for the generation of thymic vasculature. 

Moreover, Foxn1 is needed to ensure the generation of a complete capillary network 

within the thymus, and for tight association between endothelial and perivascular 

cells (Bryson et al., 2013). This data therefore provides evidence that epithelial-

endothelial-mesenchymal cell interactions are vital for the development of a 

functional thymic vascular network.  
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1.5 Atypical Chemokine Receptors 

Atypical chemokine receptors (ACKRs) are 7-transmembrane receptors that share a 

similar structure to classical chemokine GPCR. The defining feature of ACKR is the 

absence or modification of the DRYLAIV domain in the second intracellular loop of 

the GPCR. This results in a receptor which is able to ligate its cognate chemokine, 

but unable to couple to G proteins and therefore unable to induce classical 

chemokine signalling and subsequent cell migration. To date, four atypical 

chemokine receptors have been recognised and incorporated into the new 

nomenclature, ACKR1 (Duffy antigen receptor for chemokines, DARC), ACKR2 

(D6), ACKR3, (CXCR7), and ACKR4 (CCRL1) (Ulvmar et al., 2011, Nibbs and 

Graham, 2013) (Bachelerie et al., 2014) Two additional molecules (CCRL2 and C5a 

complement receptor) await independent confirmation. See Figure 4 for an overview 

of the atypical chemokine receptor family.   
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Figure 4. Atypical Chemokine Receptors and Their Ligands. 

The chemokines (CCL in blue, CXCL in red), and their interaction with atypical and 

classical chemokine receptors.   
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1.5.1 ACKR1, DARC  

DARC was initially discovered as the Duffy (fy) blood group antigen. It consists of 

two major co-dominant alleles, FY*A and FY*B. The antigen was named after R. 

Duffy, a haemophiliac patient who suffered adverse reactions following blood 

transfusions. In depth analysis of serum from this patient revealed an ‘unusual 

antibody’. This antibody was specific towards Fyb+ erythrocytes (Cutbush and 

Mollison, 1950).  

 

Interestingly, in addition to Duffy ‘positive’ homozygous and heterozygous 

individuals, a third Duffy ‘negative’ phenotype exists. The majority of individuals of 

West African ancestry carry the Duffy ‘negative’ phenotype. The FY*B allele of Duffy 

‘negative’ individuals has a single nucleotide polymorphism within the GATA-1 

binding site of erythroid cells (Tournamille et al., 1995). These individuals therefore 

lack DARC expression by erythrocytes, but retain DARC expression by endothelial 

cells. Two malarial parasites (Plasmodium vivax and Plasmodium knowlesi) use 

DARC to enter erythrocytes (Horuk et al., 1993, Miller et al., 1975). It is believed that 

the Duffy ‘negative’ phenotype evolved to protect against infection from 

Plasmodium.  

 

Duffy was designated DARC after it was shown to bind a wide range of inflammatory 

CC and CXC chemokines (Tournamille et al., 1997, Lee et al., 2003). Erythrocytes 

lack the cellular machinery needed for endocytosis therefore chemokines bound to 

erythrocyte DARC remain on the cell surface. For this reason erythrocyte DARC 

was originally described as a chemokine ‘sink’ (Darbonne et al., 1991). This theory 
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was supported when DARC deficient mice were used to show the importance of 

DARC in reducing circulating levels of inflammatory chemokines and dampening the 

inflammatory response (Dawson et al., 2000). A recent review proposed a model 

whereby erythrocyte DARC buffers chemokine levels during homeostatic and 

inflammatory conditions (Hansell et al., 2011).  

 

In vitro studies using MDCK cells transfected with DARC show the ability of DARC 

to transport chemokines across cell monolayers (Pruenster et al., 2009). Moreover, 

in a model of contact hypersensitivity, mice that overexpress endothelial DARC, 

show enhanced leukocyte migration into the skin (Pruenster et al., 2009). These 

experiments elegantly show the ability of endothelial DARC to transcytose its 

chemokine ligands from the baso-lateral to luminal surface, and as a result, enhance 

leukocyte extravasation.  

 

1.5.2 ACKR2, D6 

D6 was first identified in 1997. Competitive radio-ligand binding assays identified it 

as a receptor with high promiscuity for inflammatory CC chemokines (Nibbs et al., 

1997b, Nibbs et al., 1997a). Ligand binding of D6 fails to induce a calcium flux and 

classical chemokine receptor signalling (Fra et al., 2003). Immunofluorescent 

staining of HEK293 cells transfected with D6-GFP shows the majority of D6 within 

the cell. This intracellular localisation of D6 is due to its constitutive recycling to and 

from the cell surface independent of ligand binding. A recent study has shown that a 

conserved tyrosine motif in the N terminus is needed for chemokine internalisation 

and therefore effective chemokine scavenging (Hewit et al., 2014).  
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Inflammatory disease models in D6 deficient mice highlight a role for D6 in the 

regulation of the inflammatory response. Carbon tetrachloride induced liver damage 

in D6 KO mice revealed increased chemokine levels and prolonged liver damage 

(Berres et al., 2009). Similar phenotypes of D6 KO mice were observed during 

Mycobacterium tuberculosis infection (Di Liberto et al., 2008), and allergen-induced 

airway disease (Whitehead et al., 2007). Interestingly, expression of D6 by 

lymphatic endothelial cells allows the clearance of inflammatory CC chemokines to 

prevent inflammatory leukocytes adhering to these cells. This allows mature CCR7+ 

DCs to sense the CCL21 gradient and enter the lymph node without obstruction 

(McKimmie et al., 2013).  

 

1.5.3 ACKR3, CXCR7 

Comparison of CXCR4 deficient and WT fetal liver cells revealed that surprisingly, 

CXCL12 bound with similar affinity to both (Burns et al., 2006). This data was the 

first to suggest the existence of another chemokine receptor for CXCL12. This 

receptor was identified as CXCR7. CXCR7 KO mice show perinatal lethality 

implicating CXCR7 in embryogenesis, specifically vasculogenesis and angiogenesis 

(Sanchez-Martin et al., 2013).  

 

In vitro studies using cells transfected with CXCR4 or CXCR7 revealed interesting 

data about the binding specificities of CXCR7.  Addition of CXCL11 inhibited the 

binding of CXCL12 to CXCR7 but not CXCR4. Moreover, ligand binding of CXCR7 

did not induce calcium flux or cell migration (Burns et al., 2006). As a result, CXCR7 

was identified as an ACKR for CXCL11 and CXCL12.  
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A recent study used pharmacological blockade of CXCR7 and showed its 

involvement in the regulation of circulating CXCL12 (Berahovich et al., 2014). 

Additional studies point towards a role for CXCR7 in autoimmunity, as arthritic 

symptoms were relieved by the administration of CXCR7 antagonists in a mouse 

model of collagen induced arthritis (Watanabe et al., 2010).  

 

1.5.4. ACKR4, CCRL1 

CCRL1, also known as CCX-CKR; ChemoCentryx Chemokine Receptor (in 

reference to the company that was among the first to clone the receptor), CCR11, 

and ACKR4, was first identified in 2000 (Gosling et al., 2000, Schweickart et al., 

2000). The first publication to describe this molecule showed expression of CCRL1 

mRNA by several human tissues. These included non-hematopoietic organs such 

as heart, kidney, placenta and brain, but also lymphoid tissues, specifically spleen 

and lymph node. Moreover, CCRL1 mRNA was detected in human T cells and 

monocyte-derived immature DCs. 

 

HEK293 cells were transfected with human CCRL1 (hCCRL1) to investigate the 

chemokine binding specificity of this receptor. Radio-ligand binding experiments 

revealed high affinity binding of CCL19, CCL21 and CCL25 to CCRL1. This study 

also identified CXCL13 as a lower-affinity ligand of CCRL1. Approximately 80 other 

chemokines, both human and murine, were assessed and showed no affinity for 

CCRL1 (Gosling et al., 2000).  
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In 2002, Townson and Nibbs identified murine CCRL1 (mCCRL1). mCCRL1 shares 

85% identity with hCCRL1 and 30-40% identity with other CC chemokine receptors 

such as CCR7 and CCR9. This study also revealed that mice have one copy of the 

CCRL1 gene whereas humans have two; one on chromosome 3, and the other on 

chromosome 6; these genes differ in sequence by three nucleotides (Townson and 

Nibbs, 2002).  

 

Ligand cross-competition studies showed that similarly to hCCRL1, mCCRL1 

exhibits high affinity binding of CCL19, CCL21 and CCL25 without subsequent 

calcium flux. Binding affinity of mCCRL1 is highest for CCL19, and slightly lower for 

CCL21 and CCL25. Interestingly, unlike hCCRL1, mCCRL1 does not bind 

mCXCL13 (Townson and Nibbs, 2002). CCL19, CCL21 and CCL25 were later 

confirmed as the ligands for CCRL1 in 2007 (Heinzel et al., 2007).  

 

The function of CCRL1 was further assessed in vitro using HEK293 cells transfected 

with hCCRL1. CCL19 was added to cultures of HEK-hCCRL1 and HEK-hCCR7 and 

the fate of internalised chemokine determined using trichloroacetic acid 

precipitation, an assay often used to determine chemokine degradation. Cells 

transfected with hCCRL1 showed an accumulation of CCL19, moreover these cells 

were capable of degrading high levels of CCL19 compared to control HEK-hCCR7 

cells. Furthermore, when in continuous culture with excess CCL19, hCCRL1 

transfectants were able to degrade the majority of CCL19 whereas hCCR7 

transfectants performed equally to non-transfected controls (Comerford et al., 2006). 

In keeping with a scavenging function, TEP cells transfected with CCRL1 have been 
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shown to inhibit the CCL19 and CCL21 migration of BM derived DCs in vitro (Ulvmar 

et al., 2014).  

 

Expression of mCCRL1 was analysed by Townson and Nibbs using Northern blot 

analysis and RT-PCR. CCRL1 was detected in non-hematopoietic organs as 

previously described, including heart, testis, and skeletal muscle. mCCRL1 was also 

detected in the spleen, and at lower levels in Peyer’s patches, lymph nodes and 

peripheral blood. Northern blot analysis of hCCRL1 failed to detect expression by 

leukocytes, contrary to previous reports (Townson and Nibbs, 2002, Gosling et al., 

2000).  

 

One study used CCRL1-eGFP knock in mice to map protein expression of CCRL1 in 

heterozygous mice, which were phenotypically indistinguishable from WT mice. 

Flow cytometric analysis confirmed that hematopoietic cells from BM, spleen and 

lymph nodes do not express CCRL1. Immunofluorescence revealed CCRL1 

expression by non-hematopoietic cells within the thymus, intestine, epidermis, and 

subcapsular sinus of the lymph node. Contrary to previous reports, CCRL1 

expression was undetectable in the heart, kidney, spleen and brain (Heinzel et al., 

2007). A recent publication has also used these CCRL1-eGFP mice, and a specific 

anti-CCRL1 antibody, to further characterise the expression of CCRL1 within the 

lymph node. Here, CCRL1 is expressed by a particular subset of lymphatic 

endothelial cells that line the outer wall of the subcapsular sinus (Ulvmar et al., 

2014).  
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Given the in vitro data showing a role for CCRL1 in chemokine degradation 

(Comerford et al., 2006), CCRL1-eGFP homozygous mice were used to investigate 

CCRL1 deficiency in vivo. Analysis of the lymph nodes from these mice revealed a 

reduction in MHC-IIhi DCs, but no alteration in the number of MHC-IIlo DCs. This 

suggests a requirement for CCRL1 in steady state homing of DCs to the lymph node 

via afferent lymphatics. Interestingly, epicutaneous application of FITC normalised 

the numbers of MHC-IIhi DCs in the lymph nodes suggesting that activation of DCs 

must facilitate additional homing mechanisms to compensate for the lack of CCRL1 

(Heinzel et al., 2007).  A more recent study has further examined the lymph nodes in 

resting CCRL1-/- mice by flow cytometry and immunofluorescence. This study 

revealed an accumulation of CCR7+ DCs at the subcapsular sinus, which is coupled 

with a reciprocal decrease in the number of CCR7+ DCs within the lymph node. 

Immunofluorescent staining of CCL21 in CCRL1-/- lymph nodes revealed disrupted 

patterning of CCL21 in the subcapsular sinus compared to littermate controls. These 

experiments show that expression CCRL1 at the subcapsular sinus is necessary to 

create gradients of CCL21 to allow effective migration of CCR7+ DCs into the lymph 

node (Ulvmar et al., 2014).   

 
Although the evidence favours a scavenging role for CCRL1, there are other 

functions this ACKR could have. One such function could be the transcytosis of 

chemokines, similar to endothelial DARC. Over-expression of cavolin-1, a negative 

regulator of caveolae-mediated endocytosis significantly reduced the ability of HEK-

hCCRL1 cells to internalise CCL19 (Comerford et al., 2006). This suggests that 

CCRL1 uses caveolae to mediate chemokine internalisation, rather than β-arrestin 

dependent clathrin-coated pits used by classical chemokine receptors. Although 
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caveolae have been implicated in transcytosis, it is important to note that 

transcytosis mediated by endothelial DARC is cavolin-1 independent (Zhao et al., 

2011).  In addition, a more recent study shows the recruitment of β-arrestins by 

hCCRL1 upon stimulation with CCL19, CCL21 and CCL25 (Watts et al., 2013). 

These conflicting data on signalling and vesicular involvement downstream of 

CCRL1 are yet to be clarified.  A recent study co-expressed CCRL1 with many 

different classical chemokine receptors. FRET analysis of cells co-transfected with 

CCRL1-GFP and CXCR3-Venus showed heteromerisation.  In addition, this study 

showed that co-expression of CCRL1 with CXCR3 resulted in the inhibition of 

chemotaxis of HEK293 cells in response to CXCL9 and CXCL10, suggesting that 

CCRL1 may influence the availability of chemokines other than CCR7L and CCR9L 

via this mechanism (Vinet et al., 2013). The in vivo significance this data has not yet 

been shown.  

 

Consistent with a scavenging function, CCRL1-/- mice have increased levels of 

CCL21 in the serum (Comerford et al., 2010). The levels of CCL19 and CCL21 in 

the lymph nodes of CCRL1 deficient mice are less clear, one study reported 

increased levels of both chemokines in lymph nodes from CCRL1-/- mice, however a 

more recent study found no difference in the level of either chemokine, using the 

same strain of CCRL1-/- mice (Comerford et al., 2010, Ulvmar et al., 2014). Further 

analysis of CCRL1-/- mice using a model of MOG induced experimental autoimmune 

encephalitis (EAE) has implicated CCRL1 in CD4 T cell differentiation and the 

kinetics of the immune response. This study showed that CCRL1-/- mice have an 

earlier onset of EAE with more severe symptoms. In depth analysis of lymph nodes 
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during EAE revealed fewer CCR6+ CD4 T cells within the CCRL1-/-. In contrast, the 

spleen of CCRL1-/- mice had increased cellularity, specifically of CCR6+ T cells. 

During EAE, CCRL1-/- mice also had fewer Th1 cells per Th17 cell in the spleen and 

spinal cord, along with increased levels of IL-23 in the spleen. IL-23 causes 

differentiation of Th17 cells, leading to the conclusion that CCRL1 plays a role in the 

suppression of Th17 responses. Administration of anti-CCL21 neutralising 

antibodies during the time course of EAE delays the onset of disease in CCRL1-/- 

mice compared to WT, therefore suggesting that CCRL1 mediates its effects in this 

model via CCL21 (Comerford et al., 2010). 

 

ACKRs, including CCRL1, have been implicated in cancer. These studies primarily 

show a reduced ACKR expression in cancer tissue compared to healthy tissue (Zhu 

et al., 2013, Zeng et al., 2011, Feng et al., 2009). All studies correlate a lack of 

ACKR co-expression (DARC, D6 and CCRL1) with lymph node metastasis and poor 

survival (Feng et al., 2009, Hou et al., 2013, Zeng et al., 2011, Zhu et al., 2013). The 

effect of CCRL1 expression alone on cancer development has not been clearly 

addressed, however low CCRL1 expression has been correlated with lymph node 

metastasis (Feng et al., 2009). Many questions in this area of research are yet to be 

answered.  
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1.5.5 CCRL1 in Thymus Function 

Heinzel and colleagues carried out the first detailed analysis of CCRL1 within the 

thymus. Using CCRL1-eGFP mice, they mapped thymic expression of CCRL1. 

Immunofluorescence was used to show expression of CCRL1 exclusively by TEC, 

specifically perivascular epithelial cells of the CMJ and medulla, and subcapsular 

epithelial cells. This method revealed no GFP+ cells within the thymic cortex. 

ERTR7+ fibroblasts were negative for GFP, as were tomato lectin stained 

endothelial cells. Flow cytometric analysis confirmed expression of CCRL1 by only 

EpCAM-1+ TECs. cTEC were identified by flow cytometry using the marker CDR-1; 

these cells expressed intermediate levels of GFP. Flow cytometry excluded CCRL1 

expression from the population of UEA-1+ mTEC (Heinzel et al., 2007). More recent 

publications have confirmed that thymic expression of CCRL1 is primarily cTEC 

(Bunting et al., 2013, Rode and Boehm, 2012, Ribeiro et al., 2013), however the 

latest report showed intermediate levels of CCRL1 expression by CD80+ mTEC in 

the postnatal thymus (Ribeiro et al., 2014). Analysis of the embryonic thymus 

revealed CCRL1 expression from E13.5 by TEC of the SCZ (Heinzel et al., 2007), 

this was confirmed using flow cytometry in a more recent publication (Ribeiro et al., 

2014). 

 

The thymus from WT, heterozygous and homozygous CCRL1-eGFP mice were 

analysed to assess thymic function (Heinzel et al., 2007). This study reported no 

defect in T cell development in the absence of CCRL1. Thymus cellularity and 

proportions of DN, SP and DP thymocytes were unaltered. Thymocyte proliferation 

and apoptosis were similar in WT and CCRL1-GFP/GFP mice. Distribution of CD25+ 
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DN thymocytes was assessed in the CCRL1 GFP/GFP thymus, and was comparable to 

those in WT mice. In addition, the number of CD4+CD69+CD62L- RTEs were 

reported as normal in CCRL1 GFP/GFP mice. Combined, these results suggested 

CCRL1 was not needed for postnatal thymus function. Analysis of the early embryo 

(E12.5 and E13.5) showed similar numbers of CD45+ cells in the WT and CCRL1 

GFP/GFP thymus. These findings indicate that CCRL1 is not needed for the 

recruitment of progenitor cells to the embryonic anlagen. Overexpression of CCRL1 

by Foxn1+ TEC reduces the thymus cellularity in the embryo (Heinzel et al., 2007), 

suggesting that CCRL1 may play a role in the recruitment of progenitor cells to the 

embryonic thymus but in the absence of CCRL1, a compensatory mechanism is in 

place.  

 

The most detailed analysis of CCRL1 in the thymus was recently reported by 

Bunting and colleagues (Bunting et al., 2013). They describe the CCRL1-/- thymus 

as dramatically larger with increased cellularity compared to WT counterparts. They 

report a disrupted architecture of the CCRL1-/- thymus, containing fewer, but 

significantly larger medullary areas. Flow cytometric analysis of the CCRL1-/- thymus 

revealed increased proportions of SP4 thymocytes. Within the SP thymocyte 

population, there were higher proportions of CD69+CD62L- immature thymocytes. 

Analysis of the localisation of CD25+CD44+ DN thymocytes revealed an 

accumulation of these cells within the medulla. Pixel analysis of CCL25 staining in 

WT mice showed a reduction from the cortex inwards towards the medulla, 

suggestive of a chemokine gradient. This gradient is lost in the CCRL1-/- thymus, 

and is presumably responsible for the accumulation of DN thymocytes within the 
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medulla. Analysis of chemokine levels by ELISA shows a reduction in CCL19 and 

CCL25 in the CCRL1-/- thymus, this finding is less intuitive considering the role of 

CCRL1 as a scavenging receptor. It is argued the reduction in chemokine levels is 

the product of altered chemokine production due to an increased number of mTEC. 

In addition, in vitro analysis of thymic lobes treated with CCL19 results in increased 

egress of CD69+CD62L- CD4 and CD8 T cells. This increase in RTE is also reported 

in vivo by increased proportions of CD3+CD4+CD44-CD69-CD24+ cells in the spleen. 

Moreover, analysis of the CCRL1-/- spleen revealed increased proportions of 

CD3+CD4+CD8+ peripheral DP cells, suggesting that DP thymocytes are leaking out 

of the thymus. Aged (8-10 month) CCRL1-/- mice showed spontaneous 

autoimmunity that resembles Sjögren's syndrome. This was characterised by 

immune infiltrate into the submandibular salivary gland and liver. This autoimmune 

phenotype was proposed to be mediated by autoreactive T cells generated due to 

defective thymic function in the absence of CCRL1 (Bunting et al., 2013).  

 

Several studies have used CCRL1 as a tool to probe thymus function. One such 

study crossed IL-7-YFP and CCRL1-GFP reporter mice and showed that within the 

TEC compartment, IL-7+ cTECs express high levels of CCRL1. In addition, a 

proportion of IL-7-CCRL1+ cTECs were also identified, suggesting the potential use 

of CCRL1 as a marker of cTEC heterogeneity (Ribeiro et al., 2013). These dual 

reporter mice have been used more recently to show that cTEC acquire expression 

of CCRL1 after E12.5 of gestation and by E18.5 of gestation, all CCRL1hi TEC are 

IL-7+ as seen in the postnatal thymus (Ribeiro et al., 2014). Development of CCRL1+ 

cTEC was blocked in the severely lymphopenic Rag2-/-IL2rg-/- strain of mouse, 
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suggesting that cTEC maturation is regulated by crosstalk between TEC and 

immature thymocytes. This study also identified a population of CCRL1int CD80+ 

mTEC; these cells are not present during embryogenesis, but are clearly visible 5 

days after birth. CCRL1int mTEC are rare in Rag2-/- thymi, but were found to be 

restored in Rag2-/--Marilyn TCR Tg mice, suggesting that the development of 

CCRL1int mTEC is closely linked with T cell selection (Ribeiro et al., 2014). Another 

study used CCRL1-DTR mice to selectively ablate the cTEC compartment. These 

experiments revealed a sexually dimorphic ability of cTECs to regenerate, a 

mechanism linked to androgen receptor expression within the TEC compartment 

(Rode and Boehm, 2012).   

 

Collectively, although the above studies indicate CCRL1 expression by thymic 

stroma, the precise expression pattern is unclear. Moreover, given conflicting 

reports of the thymic phenotype in CCRL1 deficient mice, the role of this molecule in 

thymus development and function remains controversial. Thus a major goal of this 

thesis is to investigate the expression pattern of CCRL1 within the thymus, and 

determine the effect of CCRL1 expression on thymic function. 
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THESIS AIMS 

As discussed in this introduction, the sequential stages of T cell development have 

been well described. However, the precise involvement of the atypical chemokine 

receptor, CCRL1, in these processes is yet to be fully elucidated. 

 

The general aims and objectives of this thesis are as follows: 

• To map the expression of CCRL1 within the embryonic and adult thymus 

• To identify the cell type(s) which express CCRL1 

• To study the role of CCRL1 in sequential stages of T cell development, using 

two different strains of CCRL1 deficient mice 

  



 

 

53 

 

 

 

 

CHAPTER 2: MATERIALS AND METHODS 

  



 

 

54 

2.1 Mice 

 

 

 Timed matings were obtained by placing a male mouse into a cage 

with one or two female mice. The presence of a vaginal plug was designated as day 

zero of gestation (E0). This method made it possible to identify the exact age of 

mice used in this study. Adult mice were 8-10 weeks old. Details of mouse strains 

used in this thesis are in Table 1. 

 

Table 1. Mouse strains 

Mouse Strain CD45 
Isotype Source 

 

C57Bl/6 

BoyJ 

CCRL1-/- 

 

CCRL1-eGFP 

 

Plt 

RAG2pGFP 

CCL25-/- 

 

CD45.2 

CD45.1 

CD45.2 

 

CD45.2 

 

CD45.2 

CD45.2 

CD45.2 

 

Harlan 

BMSU 

R. Nibbs, University of Glasgow 

(Comerford et al., 2010) 

T. Boehm, Max Plank Institute (Heinzel et 

al., 2007) 

BMSU (Mori et al., 2001) 

BMSU (Boursalian et al., 2004) 

BMSU 
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2.2 Isolation of Cells From Primary Tissue 

2.2.1 Tissue Isolation 

Lymphoid tissue was dissected using forceps and scissors and placed in Roswell 

Park Memorial Institute (RPMI)-1640 media (Sigma). Tissue was cleaned of blood 

and surrounding connective tissue using forceps, before subsequent processing. 

 

 Embryos were removed from the uterus and 

washed in phosphate buffered saline (PBS). Placentas and amniotic sacs were 

removed from the uterus and the embryos were placed in RPMI. Thymic lobes were 

then dissected from the thoracic tree of the embryo using fine forceps.  

 

2.2.2. Isolation of Haematopoietic Cells 

Haematopoietic cells from the adult thymus were obtained by mincing the thymic 

lobes with sharp scissors in eppendorfs containing 1mg/ml collagenase D and 

0.2mg/ml DNase in RPMI. Eppendorfs were placed in a thermomixer at 37°C for 30 

minutes. Disaggregation was aided by gentle pipetting of the cells. The enzymatic 

reaction was stopped by the addition of 1mM EDTA in RPMI-1640 containing 10% 

heat inactivated fetal calf serum (FCS) (Invitrogen). Cell suspensions were filtered 

through a 70µm cell strainer (BD). 

 

Haematopoietic cells were isolated from embryonic thymic lobes by placing the 

lobes in eppendorfs containing 1mg/ml collagenase D (Roche) and 0.2mg/ml DNase 

(Roche). Eppendorfs were incubated in a thermomixer at 37°C for 15 minutes. A 
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single cell suspension was obtained by gentle pipetting. The enzymatic reaction was 

stopped as described above. 

 

Haematopoietic cells were isolated from spleen and lymph nodes by gently forcing 

the tissue through a 70µm cell strainer (BD) and rinsing thoroughly with FACS 

buffer. FACS buffer consisted of Ca2+ and Mg2+ free PBS, supplemented with 

0.3mM EDTA (Sigma), and 1% bovine serum albumin (BSA) (Sigma).   

Spleen samples were centrifuged at 350g for 10 minutes, and the subsequent cell 

pellet treated with 2ml ACK red blood cell lysis buffer (Invitrogen) for 5 minutes at 

4°C. Splenocytes were then washed with 20ml RPMI containing 10% FCS.  

 

Blood was acquired from either the tail vein, or from the heart in a terminal 

procedure, into tubes containing an appropriate volume of 100mM EDTA. Blood was 

red blood cell lysed by the addition of an appropriate volume of BD Pharm Lyse 

buffer (BD). Samples were incubated with this buffer at room temperature for 5 

minutes before being washed with 20ml RPMI containing 10% FCS. 

 

All single cell suspensions were centrifuged at 350g for 10 minutes at 4°C and then 

resuspended in an appropriate volume of FACS buffer. All cells were counted using 

Count Bright Absolute Counting Beads (Invitrogen). 

 

2.2.3 Isolation of Stromal Cells 

Embryonic thymic lobes were suspended in 0.25% trypsin (Sigma) diluted in 0.02% 

EDTA and incubated at 37°C for 10-20 minutes (exact timing of incubation 
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depended on age of embryo). Complete disaggregation was ensured by gentle 

pipetting until a single cell suspension was observed. Enzyme activity was 

quenched by adding an equal volume of RPMI containing 10% FCS followed by 

centrifugation at 400g for 10 minutes at 4°C.   

 

Stromal cells were isolated from the adult thymus by mincing the tissue with sharp 

scissors followed by enzymatic digestion with liberase (Roche) and 0.2mg/ml DNase 

for 30 minutes at 37°C in a thermomixer. After 15 minutes the proportion of media 

containing free cells was removed and replaced with fresh enzyme mix. The 

reaction was stopped by the addition of 1mM EDTA in RPMI containing 10% FCS 

and the resulting cell suspension was filtered through a 70µm cell strainer. Cells 

were centrifuged at 350g for 10 minutes at 4°C. Cell pellets were resuspended in an 

appropriate volume of FACS buffer and cells were counted using Count Bright 

Absolute Counting Beads. 

 

2.3 Surface Staining of Cells for Flow Cytometry 

Cells from WT or CCRL1-GFP thymi were surface stained using for flow cytometry 

using the same protocol. Cell suspensions were incubated with purified anti-

CD16/32 (eBioscience) for 15 minutes, and then an appropriate volume of cells 

were transferred into a 96 well v-bottom plate and pelleted by centrifugation at 350g 

for 4 minutes at 4°C. The supernatant was flicked off and cells were resuspended in 

50-100µl of primary antibody diluted in FACS buffer (volume of antibody was 

dependent upon number of cells to be stained). Cells were incubated for 30 minutes 
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at 4°C and then washed twice with 200µl FACS buffer. During anti-CCR7 staining, 

cells were incubated with the primary antibody cocktail at 37°C for 30 minutes.  

Once staining was complete, cells were washed and resuspended in an appropriate 

volume of FACS buffer and transferred to FACS tubes. An LSRFortessa was used 

to collect the data and FlowJo software was used for analysis. See Table 2 for 

details of antibodies used for flow cytometry. Cells stained with each antibody 

individually were used for compensation, and a combination of unstained cells or 

fluorescence minus one were used to set gates where appropriate.   
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Table 2. Antibodies Used for Flow Cytometry. 

Target antigen and 
conjugate Clone Source Working 

dilution 

CD45.2 AlexaFluor-700 104 ebioscience 1:200 

CD45 PE-Cy7 30-F11 ebioscience 1:500 

CD45.1 eFluor-450 A20 ebioscience 1:50 

CD4 Brilliant Violet-605 RM4-5 Biolegend 1:200 

CD4 PerCP-Cy5.5 RM4-5 BD 1:600 

CD4 eFluor450 RM4-5 ebioscience 1:100 

CD3 PerCP 145-2C11 BD 1:50 

CD8α Brilliant Violet-510 53-6.7 Biolegend 1:200 

CD8α V500 53-6.7 BD 1:200 

CD8α APC 53-6.7 ebioscience 1:600 

CD44 PE-Cy7 IM7 ebioscience 1:1000 

CD25 FITC PC61 BD 1:500 

CD25 APC PC61.5 ebioscience 1:1000 

TCRβ APC-eFluor-780 H57-5 ebioscience 1:100 

TCRγδ PE GL3 ebioscience 1:600 

CD69 PerCP-Cy5.5 H1.2F3 ebioscience 1:100 
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Target antigen and 
conjugate Clone Source Working 

dilution 

CD62L APC MEL-14 ebioscience 1:1000 

CD19 PE-Cy7 1D3 ebioscience 1:600 

B220 FITC RA3-6B2 ebioscience 1:400 

CD11c eFluor450 N418 ebioscience 1:50 

Lineage cocktail 
eFluor450 CD3, B220, 
CD11b, TER-119, Ly-G6 

17A2, RA3-
6B2, M1/70, 
TER-119, RB6-
8C5 

ebioscience 1:15 

CD117 PerCP-eFluor-710 2B8 ebioscience 1:70 

CCR7 PE 4B12 ebioscience 1:50 

CCR9 PerCP-eFluor710 CW-1.2 ebioscience 1:500 

TER-119 AlexaFluor-700 TER-119 Biolegend 1:100 

EpCAM PerCP-eFluor710 G8.8 ebioscience 1:1000 

Ly51 PE (used to define 
cortex) BP-1 BD 1:1000 

CD31 PE-Cy7 390 ebioscience 1:600 

Podoplanin eFluor660 8.1.1 ebioscience 1:400 

MHC-II (I-A/I-E) 
AlexaFluor-700 

M5/114.15.2 ebioscience 1:200 

CD80 Brilliant Violet 421 16-10A1 Biolegend 1:200 

Foxp3-eFluor450 FJK-16s ebioscience 1:100 

AIRE AlexaFluor488 5H12 ebioscience 1:100 
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2.4 Staining of Intracellular Antigens for Flow Cytometry 

The staining protocols used to detect intracellular antigens varied depending on i) 

the antigen being detected, and ii) whether preservation of GFP was needed. 

 

Detection of Aire was always performed in conjunction with IC fixation buffer 

(eBioscience). Once surface staining was complete, cells were incubated with 200µl 

IC fixation buffer for 30 minutes at room temperature. Cells were then washed twice 

in 200µl 1x perm buffer (eBioscience). Anti-Aire-488 was diluted in 1x perm buffer, 

and then added to cells. Cells were incubated at 4°C for 20 minutes, then washed 

twice in 1x perm buffer, before being resuspended in FACS buffer. Aire staining was 

only performed on WT cells, therefore preservation of GFP was not needed.    

 

If preservation of GFP was not needed, then detection of Foxp3 was performed 

using a Foxp3 staining kit in accordance with manufacturer’s instructions 

(eBioscience). Briefly, following surface staining, cells were incubated with 200µl 

fixation/permeabilisation working solution for 30 minutes at room temperature. Cells 

were then washed twice in 200µl 1x perm buffer Anti-Foxp3-efluor450 was diluted in 

1x perm buffer and added to cells. Cells were incubated at 4°C for 20 minutes, then 

washed twice in 1x perm buffer, before being resuspended in FACS buffer.  

 

If preservation of GFP was needed, then detection of Foxp3 was performed using a 

BD Cytofix/Cytoperm kit (BD). Following surface staining, cells were incubated in 

200µl Cytofix/Cytoperm solution for 30 minutes at room temperature. Cells were 

then washed twice in 200µl 1x perm/wash buffer. Anti-Foxp3-efluor450 was diluted 
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in 1x perm/wash buffer and added to cells. Cells were incubated at 4°C for 20 

minutes, then washed twice in 1x perm/wash buffer, before being resuspended in 

FACS buffer. 

 

2.5 Magnetic Activated Cell Sorting 

Cell suspensions from digested adult thymus were depleted of CD45+ 

haematopoietic cells to increase the proportion of stromal cells, for stromal cell 

analysis by flow cytometry. This was achieved using the cell separation system from 

Miltenyi biotech according to manufacturer’s instructions. Briefly, cells were 

incubated with anti-CD45 microbeads (10µl of beads per 106 cells) at 4°C for 15 

minutes. Cells were then washed using FACS buffer and resuspended in the 

appropriate volume of FACS buffer. Cell suspensions were added to LD columns 

that had been pre-washed with FACS buffer. Columns were rinsed with at least 5ml 

FACS buffer, and the flow-through collected. 

 

2.6 Tissue Sectioning and Fixation 

Non-GFP tissue was embedded in OCT compound (Fisher Scientific) and frozen 

using dry ice. The block of tissue was then transferred to a cryostat where it 

equilibrated to -20°C. Tissue was mounted on a metallic cryostat chuck using OCT 

compound. The cryostat was used to cut 8µm sections, which were collected, onto 

either multi-spot or superfrost glass slides (Fisher Scientific). Sections were dried at 

room temperature for one hour before fixation in acetone (Sigma) at 4°C for 20 
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minutes. Fixed tissue sections were allowed to dry for 5 minutes at room 

temperature and were then stored at -20°C until use.  

 

GFP tissue was fixed prior to freezing. This was achieved by incubating the tissue in 

a solution of 2-4% PFA containing 10% sucrose (Sigma) for 4 hours at 4°C. Tissue 

was then washed in 20% sucrose overnight at 4°C and then embedded in OCT 

compound and frozen on dry ice. Tissue was sectioned as described above, but was 

collected onto only superfrost slides, and then stored at -80°C until use. 

 

2.7 Immunofluorescent Labelling of Frozen Sections 

Sections were removed from storage and left at room temperature to thaw within 

grip seal bags. Staining buffer consisted of PBS containing 10% FCS and 0.5% 

Tween-20 (Sigma). Once thawed, sections were blocked for 20 minutes using 10% 

serum obtained from the species in which the secondary antibody was raised. 

Serum was diluted using staining buffer. Serum was blotted off and the area 

surrounding each section was dried using tissue. 50-70µl of primary antibody mix or 

staining buffer only (for control sections) was added to each section. The volume 

added depended on the area to be covered. All steps were performed in the dark 

and at room temperature. Sections were incubated with the primary antibody for 1 

hour, and then washed for 15 minutes in staining buffer. Any secondary and tertiary 

antibodies needed were applied using the same method but incubation periods were 

reduced to 30 minutes. Control sections were treated with no primary but all 

subsequent antibodies. GFP was detected using anti-GFP antibody. Details of all 

antibodies used for immunofluorescence in Table 3 and Table 4. 
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Stained slides were submerged in F4’,6-diamidino-2-phenylindole (DAPI, 300nM in 

distilled water, Invitrogen) for 20 seconds, followed by three 20 second washes in 

PBS. Slides were mounted with Prolong Gold (Invitrogen) and a cover slip was 

added and sealed using clear nail varnish. Slides were left to dry at room 

temperature overnight and then stored at -20°C. Images were acquired using a 

Zeiss LSM 510 Meta, or Zeiss LSM 710 Zen confocal microscope. Image analysis 

was performed using Zeiss AIM image analysis software, ZenLite and ImageJ.  
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Table 3. Antibodies Used for Immunofluorescent Staining of Murine Tissue. 

Target antigen and 
conjugate Clone Source Working 

dilution 

CD45 biotin 30-F11 ebioscience 1:200 

EpCAM AF-647 G8.8 ebioscience 1:100 

CD8β biotin H35-17.2 ebioscience 1:200 

CD25 FITC PC61 BD 1:500 

CD31 biotin 390 ebioscience 1:100 

CD205 AF-488 (used to 

define cortex) 
205yekta eBioscience 1:100 

β5T Polyclonal MBL International 1:100 

Keratin-5 (used to 

define medulla) 
Polyclonal Covance 1:1000 

Keratin-8 (used to 

define cortex) 
KS8.7 Progene 1:10 

Pan-cytokeratin FITC C-16 Sigma 1:600 

α-SMA Cy3 1A4 Sigma 1:400 

CCRL1 C16 Santa Cruz 1:50 

CD25 APC PC61.5 ebioscience 1:1000 

Podoplanin supernatant  A. Farr* 
1:10 
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Target antigen and 
conjugate Clone Source Working 

dilution 

 

Pan-endothelial cell 

antigen 

 

MECA-32 

 

BD 

 

1:100 

CD31 MEC 13.3 BD 1:100 

CD49f (integrin α 6) 

biotin 

GoH3 ebioscience 1:100 

Fibronectin Polyclonal Millipore 1:100 

Laminin LAM-89 Sigma 1:1000 

ER-TR7 supernatant  W. van Ewijk** 1:10 

 
AF, AlexaFluor 
* Grown from a hybridoma cell line, gift from Andy Farr, University of Washington 
** Grown from a hybridoma 1:2 cell line, gift from W. van Ewijk, Leiden University, 
Netherlands 
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Table 4. Secondary Antibodies Used for Immunofluorescence. 

Reactivity and conjugate Host Source Working 
dilution 

Anti goat IgG AF647 Donkey Invitrogen 1:100 

Anti goat IgG AF488 Donkey Invitrogen 1:200 

Anti goat IgG AF555 Donkey Invitrogen 1:400 

Anti rabbit IgG AF647 Donkey Invitrogen 1:100 

Anti rabbit IgG AF488 Donkey Invitrogen 1:200 

Anti rabbit IgG AF555 Donkey Invitrogen 1:400 

Anti rat IgG AF546 Donkey Invitrogen 1:400 

Anti rat IgG AF555 Donkey Invitrogen 1:400 

Anti rat IgG AF647 Chicken Invitrogen 1:100 

Anti rat IgM AF594 Goat Invitrogen 1:500 

Anti FITC AF488 Rabbit Invitrogen 1:200 

Anti rabbit FITC Goat Southern 
Biotech 

1:100 

Anti hamster IgG biotin Rabbit Invitrogen 1:200 

Anti mouse IgG2b AF488  Goat Invitrogen 1:200 

Anti mouse IgG2b AF555 Goat Invitrogen 1:200 

Anti GFP AF488 Rabbit Invitrogen 1:200 

Anti GFP Goat Abcam 1:400 
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Reactivity and conjugate Host Source Working 
dilution 

Streptavidin 647 - Invitrogen 1:100 

Streptavidin 488 - Invitrogen 1:200 

Streptavidin 555 - Invitrogen 1:1000 

AF; AlexaFluor, GFP; green fluorescent protein 
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2.8 Preparation of Human Thymus for Immunofluorescence 

Human thymus tissue was obtained from young children undergoing cardiac 

surgery. Tissue was washed in PBS, and cut into small pieces (approx. 1cm3) and 

frozen using dry ice. Cryosections were generated and sections were stained using 

the same methods described for murine tissue.  Details of antibodies used for the 

detection of human antigens can be found in Table 4.  

 

 

Table 4. Antibodies Used for Immunofluorescent Staining of Human Thymus. 

Target antigen and 
conjugate Clone Source Working 

dilution 

CD4 FITC RPA-T4 ebioscience 1:100 

CD8a biotin HIT8a ebioscience 1:100 

EpCAM biotin (used to 

define medulla) 

1B7 ebioscience 1:100 

CD205 AF647 (used to 

define cortex) 

HD30 Biolegend 1:100 

CCRL1 13E11 J. Chiba* 1:200 

CD31 JC70 ebioscience 1:200 

 
* Gift from J. Chiba, Department of Biological Science and Technology, Tokyo 
University of Science, Japan (Takatsuka et al., 2011) 
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2.9 Genotyping of CCRL1-/- and CCRL1-eGFP mice 

2.9.1 Extraction of DNA 

Ear clips from mice were placed in autoclaved eppendorfs, and 75µl of lysis buffer 

(25mM NaOH, 0.2mM EDTA in RNAse free water) was added to each sample.  

Eppendorfs were incubated at 95°C for 30 minutes and were subsequently 

neutralised using an equal volume of 40mM Tris-HCl. Samples were then thoroughly 

vortexed and kept at 4°C until use.   

 

2.9.2 Genotyping 

A 10µl PCR mix was made which contained all appropriate primers (20µM), MyTaq 

Red Mix (Bioline), and water. This mix was combined with 2µl DNA in 96 well PCR 

plates (4titude). PCR reactions were carried out in an Eppendorf Thermocycler. 

Details of the primers used are summarised in Table 5 and Table 6. 

 

Genotyping of CCRL1-/- mice required the following PCR conditions: 5 mins (94°C), 

followed by 37 cycles of 15 seconds (94°C), 30 seconds (55°C), 45 seconds (72°C), 

then 72°C for 10 minutes. Genotyping of CCRL1-GFP mice required the following 

PCR conditions: 5 mins (95°C), followed by 29 cycles of 30 seconds (95°C), 30 

seconds (55°C), 1 minute 30 seconds (72°C), then 72°C for 10 minutes.  

 

At the end of each PCR, samples were kept at 4°C until being run on agarose gels.  

1.5% agarose gels containing 1x SybrSafe (Invitrogen) were cast. Once the gel had 

set, combs were removed and the gel was submerged in an electrophoresis tank 
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containing 1x bionic buffer (Sigma). 10µl of PCR product was loaded into each well 

and gels were run at 80V until clear separation of bands was visible. 100bp or 1kb 

DNA ladder (Invitrogen) was included on the gel to allow the sizes of the PCR 

products to be determined. Product visualisation was achieved using GeneSnap 

software. 

 

Table 5. Primers Used for Genotyping CCRL1-/- Mice. 

Primer Primer sequence 
 

11com5 

11wt5 

3’IRES  

 

TGC TGG TGA GCT CTG GGT TC 

AAT CGC CAC AAC TAC GGA GTT C 

CCC TAG ATG CAT GCT CGA CG 

 

Table 6. Primers Used for Genotyping CCRL1-GFP Mice. 

Primer Primer sequence 
 

P1 

P2 

P3  

 

TAG GAT TTA GTG ACT AAG AGC  

CAC ACA CAG GCA ACA GAT CC   

TGA ACT TGT GGC CGT TTA CGT C 

 

2.10 Phenotyping of RAG2pGFP Mice 

20-40µl of blood was obtained from the tail vein in tubes containing 100µl 100mM 

EDTA. Red blood cells were lysed using BD Pharm Lyse buffer as described 

previously, and the subsequent cell suspension was analysed by flow cytometry 

using an LSRFortessa. The presence of GFP+ cells confirmed RAG2pGFP 

heterozygous or homozygous mice.  
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2.11 Quantitation of Chemokine Levels 

2.11.1 Preparation of Samples for Chemokine Measurement 

The thymus was weighed and immersed in 500µl homogenisation solution (Tissue 

Protein Extraction Reagent (Pierce) containing 1 Complete Protease Inhibitor 

Cocktail tablet (Roche) per 10ml). The tissue was homogenised (OMNI 

International) in this solution. The resulting protein lysate was transferred into 

eppendorfs and centrifuged at 10,000g for 5 minutes at 4°C and the supernatants 

removed for analysis. The total protein content of the lysate was determined using a 

BCA protein assay kit (Pierce) according to manufacturer’s instructions and using 

serial dilutions of BSA (Merck Millipore) as standards. 

 

2.11.2 ELISA 

CCL19, CCL21 and CCL25 levels were measured using DuoSet ELISA kits (R&D 

Systems), according to manufacturer’s instructions. All steps of the ELISA were 

carried out at room temperature. ELISA plates (Nunc, Thermo Scientific) were 

coated with 100µl capture antibody and left overnight (1µg/ml anti-CCL25, 2µg/ml 

anti-CCL19, 4µg/ml anti-CCL21). Plates were then washed 3 times with PBS 

containing 0.05% Tween-20 (Sigma) using a multichannel pipette, and blocked with 

300µl reagent diluent (1% BSA in PBS) for 1 hour. Standards were prepared 

following manufacturer’s instructions. Plates were washed and 100µl detection 

antibody was added to each well (600ng/ml anti-CCL25, 100ng/ml anti-CCL19, 

50ng/ml anti-CCL21). Plates were incubated for 2 hours and washed as before. 

100µl streptavidin-HRP diluted to 1:200 was added to each well and incubated for 
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20 minutes in the dark. Plates were washed and 100µl substrate solution (R&D 

Systems) was added to each well. Plates were incubated in the dark for 20 minutes. 

50µl 1M HCl (Sigma) was added to each well and the OD read at 450nm. A 

standard curve was generated using GraphPad Prism software and from this, the 

sample chemokine concentrations were calculated.  

 

2.12 Generation and Maintenance of TEP-CCRL1 

2.12.1 TEP-CCRL1 Generation 

TEP cells (Tanaka et al., 1993b) were retrovirally transfected with CCRL1 by Kyoko 

Nakamura at the University of Birmingham.  

 

2.12.2 Maintenance of TEP-CCRL1 cells 

TEP-CCRL1 cells were cultured in Dulbecco’s modified Eagles medium (DMEM) 

(Sigma) with 10% FCS, 2mM L-glutamine (Sigma), penicillin and streptomycin 

(Sigma). Cells were passaged every 2-3 days once 80% confluency was achieved. 

To passage cells, all media was removed from the 75cm2 culture flask (Corning) and 

cells were rinsed with PBS. Adherent cells were then treated with TrypLE Express 

(Invitrogen) at a volume of 1ml/25cm2 surface area. After this process, cells were 

examined using an inverted microscope to ensure all cells were detached. TrypLE 

Express was then inactivated by the addition of culture media and the resulting cell 

suspension was transferred to a 15ml tube. Cells were pelleted via centrifugation at 

200g for 6 minutes at room temperature. Pelleted cells were either resuspended in 
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warm culture media, and transferred to new culture flasks for further use, or were 

frozen (see below).  

 

2.12.3 Cryopreservation of Cells 

Cell pellets were resuspended in culture media containing 10% Dimethyl Sulphoxide 

(DMSO, Sigma) and transferred to a 1ml cryovial (Nunc, Thermo Scientific) which 

was placed in a Nalgene Mr Frosty freezing container (Sigma), precooled to 4°C. 

The freezing container was then transferred to -80°C to allow a 1°C/minute cooling 

rate. Once frozen, vials were transferred to liquid nitrogen for long-term storage.  

 

2.13 Transmigration Assay 

The 5µm-pore polycarbonate filters (Corning) of 6.5mm diameter cell culture inserts 

were coated with murine collagen IV (BD Biosciences, Oxford, UK) for 4 hours at 

room temperature. Inserts were rinsed twice with PBS to remove excess collagen, 

and were then transferred to 12 well plates containing 600µl cell culture media (as 

described previously). TEP-CCRL1 or TEP-GFP cells were seeded onto the filter in 

100µl (at a concentration of 2x104cells/insert), and were left to grow for two days. 

One hour before the assay, the medium in the bottom wells was changed to RPMI + 

2% FCS + chemokine or RPMI + 2% FCS alone. Thymocytes were isolated by 

forcing the tissue through a 70µm cell strainer and the final cell concentration 

adjusted to 1x106 cells/ml RPMI + 2% FCS. Cell culture media was removed from 

the upper well and replaced with 100µl cell suspension. Plates were incubated for 3 

hours at 37ºC with 5% CO2. After incubation, the plate was put on ice, the inserts 

removed and EDTA (Sigma-Aldrich) was added to the wells at 5nM to detach any 
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cells which had adhered to the bottom of the well. Cells from the lower chamber 

were counted and stained as previously described.  

 

2.14 Generation of Irradiation Bone Marrow Chimeras 

Baytril was used as an antibiotic and was added to drinking water of recipient mice 

one week prior to irradiations. Mice were  irradiated with two separate doses 

of 5.5Gy. Bone marrow cells were harvested from the femur and tibia of donor mice. 

Between 2-6x106 cells were injected i.v per mouse. Congenic CD45.1 and CD45.2 

mice were used to allow the identification of host and donor cells.  

 

2.15 Human Thymus Tissue 

Human thymus tissue was obtained from children (usually aged between 1-4 years) 

undergoing cardiac surgery. Samples are acquired from the University of 

Birmingham Human Biomaterials Resource Centre (application number 12-110).  
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CHAPTER 3: EXPRESSION OF CCRL1 

WITHIN THE THYMUS 
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3.1 Introduction and Aims 

CCL19, CCL21, and CCL25, and their classical chemokine receptors, CCR7 and 

CCR9, are heavily involved in T cell development. They have been implicated in the 

recruitment of progenitor cells, cortex to medulla migration of SP thymocytes, cortex 

to subcapsular migration of DN thymocytes, and the export of mature T cells. 

CCRL1 expression by perivascular TECS and subcapsular epithelial cells has been 

described (Heinzel et al., 2007); however the detailed phenotype of these cells 

remains unknown. In addition, CCRL1+ TEC have been described in the E13.5 

thymus (Heinzel et al., 2007). Despite this initial description, follow-up studies have 

not addressed expression of CCRL1 within the thymus during ontogeny.  

 

In view of this, the focus of this chapter was to characterise the expression of 

CCRL1 within the thymus. Thus the aims were as follows: 

• To establish methods of CCRL1 detection 

• To identify the thymic microenvironments in which CCRL1 is expressed 

• To identify the cell type(s) which express CCRL1 

• To determine the expression of CCRL1 within the thymus during ontogeny 
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3.2 Results 

3.2.1 Establishing Methods for Measuring CCRL1 Expression In Situ 

To determine expression of CCRL1 within the thymus it was necessary to establish 

reliable methods of detection. At the time this project commenced, very few anti-

CCRL1 antibodies were commercially available, and none had been used in the 

literature. Expression of CCRL1 protein had only been shown using CCRL1-GFP 

reporter mice generated by Heinzel et al (Heinzel et al., 2007). This publication 

detected GFP expression by 4% paraformaldehyde (PFA) fixation of tissues, 

followed by slow-freezing and the cutting of relatively thick (18µm) sections. 

Although this allowed the detection of GFP, the thick sections did not give an 

optimal resolution for imaging (Heinzel et al., 2007).   

 

Our aim was to optimise and compare the use of anti-CCRL1 antibody and CCRL1-

GFP reporter mice for the detection of CCRL1 in the thymus. To test the antibody 

approach, sections of WT and CCRL1-/- thymus were generated and stained with 

the anti-CCRL1 antibody (following the immunofluorescence staining protocol 

described in the Materials and Methods chapter of this thesis). CCRL1+ cells were 

detected in the WT thymus but not in the CCRL1-/- thymus (Figure 5). Low levels of 

staining were present in the CCRL1-/- thymus, however this staining was determined 

as non-specific, as it was visually distinct from the CCRL1 staining in the WT 

thymus. Next, we assessed the detection of GFP in the CCRL1-GFP reporter 

thymus. To do this, thymi from CCRL1-GFP and WT mice were fixed in 4% and 2% 

PFA, and sections generated. Sections wre stained using anti-GFP, and upon 

imaging, GFP+ cells were detected in CCRL1-GFP thymi (fixed in 2% and 4% PFA), 
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and importantly, no GFP+ cells were detected in the WT thymus (Figure 6). 

Moreover, these cells were in similar locations to those detected using the anti-

CCRL1 antibody. Interestingly, more CCRL1+ cells were detected using the CCRL1-

GFP reporter thymus compared to CCRL1 detection using the antibody, and 

possible reasons for this are discussed later in this thesis.   

 

Detection using CCRL1-GFP reporter mice revealed much higher sensitivity than 

the antibody, whilst maintaining specificity. The main disadvantage to this system is 

the PFA fixation process, which is necessary to detect GFP. PFA cross-links 

antigens and can render them unrecognisable to antibody detection. For this reason, 

we fixed CCRL1-GFP tissue in 2% PFA, rather than the 4% used by Heinzel et al. 

This resulted in the same sensitivity and specificity of GFP detection as 4% PFA 

fixation (Figure 6). Both systems of CCRL1 detection were tested for use in flow 

cytometry, however only CCRL1-GFP mice yielded successful results. We have 

used CCRL1-GFP mice to map CCRL1 expression where possible, however in 

certain situations, where PFA fixation was not compatible with the use of particular 

antibodies, detection of CCRL1 was by anti-CCRL1 antibody. A list of antibodies 

that were tested in conjunction with 2% PFA fixation can be found in Table 7.  

  



 

 

80 

 

Figure 5. Sensitivity and Specificity of Anti-CCRL1 Antibody in Adult Thymus.  

The thymus from adult WT and CCRL1-/- mice was frozen, and cryosections 

generated. Sections were stained with anti-CCRL1 antibody. Staining shown is 

representative of at least three experiments.  
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Figure 6. Sensitivity and Specificity of CCRL1-GFP Reporter Mice. 

Adult CCRL1-GFP and WT thymi were fixed in 4% (A) and 2% PFA (B) and then 

frozen. Cryosections were generated, stained with DAPI and anti-GFP, and images 

were acquired. Images are representative of staining from at least three 

experiments.  
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Table 7. Antibodies Tested on Thymus Tissue Treated With 2% PFA 

Antibody  
Primary Antibody 

Dilution 
Secondary 
Antibody 

 
Secondary 

Antibody Dilution 
Successful 

Staining 
PDGFRβ biotin  1:100 SA 555  1:1000 Yes 
Keratin-8 biotin  1:100 SA 555  1:1000 No 

CD80 biotin  1:100 SA 555  1:1000 No 
CD31 biotin  1:100 SA 555  1:1000 Yes 

CD205 biotin  1:100 SA 555  1:1000 Yes 
ERTR7 (rat)  1:10 Anti-rat 555  1:500 No 

Podoplanin (hamster)  1:10 Anti-hamster 594  1:500 Yes 
CD31 (rat)  1:100 Anti-rat 555  1:500 No 

NG2 (rabbit)  1:100 Anti-rabbit 555  1:500 No 
MECA-32 (rat)  1:100 Anti-rat 555  1:500 Yes 

Keratin-5 (rabbit)  1:1000 Anti-rabbit 555  1:500 No 
MTS10 (rat)  1:10 Anti-rat IgM 594  1:500 No 
Β5t (rabbit)  1:100 Anti-rabbit 555  1:500 No 
αSMA Cy-3  1:200 N/A  N/A Yes 
CD25 PE  1:200 N/A  N/A No 

UEA-1 biotin  1:100 SA 555  1:1000 No 
VEGFR3 (rat)  1:100 Anti-rat 555  1:500 No 

Integrin-α6 biotin  1:100 SA 555  1:1000 Yes 
ICAM biotin  1:100 SA 555  1:1000 Yes 
VCAM biotin  1:100 SA 555  1:1000 Yes 
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Antibody  
Primary Antibody 

Dilution 
Secondary 
Antibody 

 
Secondary 

Antibody Dilution 
Successful 

Staining 
CCRL1 (goat)  1:50 Anti-goat 555  1:500 No 
ERTR5 (rat)  1:1000 Anti-rat IgM 594  1:500 No 

CD4 647  1:200 N/A  N/A Yes 
CD8β biotin  1:200 SA 555  1:1000 Yes 
CD45 biotin  1:200 SA 555  1:1000 Yes 

Fibronectin (rabbit)  1:100 Anti-rabbit 555  1:500 Yes 
Laminin (rabbit)  1:1000 Anti-rabbit 555  1:500 Yes 
CD248 (rabbit)  1:400 Anti-rabbit 594  1:500 Yes 

Pan-keratin FITC  1:600 N/A  N/A No 
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3.2.2 CCRL1 is Expressed Within the Adult Thymus 

Following successful detection of CCRL1, we determined the location of CCRL1 

expression within the adult thymus using both anti-CCRL1 antibody and CCRL1-

GFP reporter mice. Firstly, sections of WT adult thymus were stained with 

antibodies against CD4, CD8, and CCRL1. This allowed the identification of thymic 

cortex and medulla, based on the restricted distribution of DP and SP thymocytes 

respectively. Expression of CCRL1 was detected by cells at the thymic capsule 

(Figure 7A), within the cortex (Figure 7B), and surrounding the vasculature at the 

CMJ (Figure 7C). Co-staining was not visible between CCRL1 and CD4, however 

few cells appeared to co-express CCRL1 and CD8 within the cortex (Figure 7B). We 

next performed similar staining on sections from CCRL1-GFP thymi, this time using 

anti-GFP, rather than anti-CCRL1, and show CCRL1 expression at the capsule 

(Figure 8A), within the cortex (Figure 8B), and surrounding vasculature at the CMJ 

(Figure 8C), as in WT mice. CCRL1 expression, determined using this more specific 

method of detection, revealed no co-expression between CCRL1 and either CD4 or 

CD8.  
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Figure 7. Staining of WT Thymus Using Anti-CCRL1 Antibody.  

Cryosections of adult WT thymus were stained for CD4, CD8 and CCRL1. CCRL1 

expression (red) is observed by cells at the thymic capsule (A), within the cortex (B), 

and surrounding vessels (labelled ‘V’) at the corticomedullary junction (C). A 

minimum of 3 mice were analysed, similar expression patterns were seen. 
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Figure 8. Staining of CCRL1-GFP Adult Thymus. 

Adult CCRL1-GFP thymi were fixed in 2% PFA and then frozen. Cryosections were 

stained for CD4, CD8, and anti-GFP. CCRL1 expression (green) is readily observed 

by cells at the thymic capsule (A), within the cortex (B), and surrounding vessels at 

the corticomedullary junction (C). ‘V’ indicates vessel. A minimum of 3 mice were 

analysed, similar expression patterns were seen. 
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3.2.3 CCRL1 is Expressed by Non-Haematopoietic Cells 

The thymus is home to several different types of haematopoietic cells, including 

thymocytes, B cells, and DCs. Our initial CCRL1 detection, using anti-CCRL1 

antibody, revealed possible co-expression between CCRL1 and CD8, although this 

was not reproduced when CCRL1-GFP reporter mice were used. This co-

expression of CCRL1 and CD8 may represent the non-specific staining, visible in 

the CCRL1-/- thymus using this method of detection. Nevertheless, it was important 

to determine whether CCRL1 was expressed by haematopoietic cells within the 

thymus. To achieve this, we used CCRL1-GFP reporter mice in conjunction with 

immunofluorescence (as previously described) and stained thymus sections for 

CD45 (a haematopoietic marker) (Figure 9A). No co-staining was visible between 

CD45 and CCRL1, suggesting that thymic expression of CCRL1 is restricted to non-

haematopoietic cells. To verify this, thymi from CCRL1-GFP mice were digested to 

generate a cell suspension consisting of both haematopoietic and non-

haematopoietic cells. The resulting cell suspension was stained for CD45 and 

EpCAM (epithelial cell adhesion molecule, expressed by TEC). Analysis of these 

cells by flow cytometry showed expression of CCRL1 by CD45- cells, but not by 

CD45+ cells (Figure 9B). WT thymi were stained alongside, GFP expression by 

CD45+ and CD45- cells were used to set the gate for the detection of GFP. 
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Figure 9. CCRL1 is Expressed by Non-Haematopoietic Cells. 

Adult CCRL1-GFP thymi were fixed in 2% PFA and then frozen. Cryosections were 

stained for CD45 (red). Co-staining was not observed between CCRL1 (green) and 

CD45 (red) (A). Adult CCRL1-GFP thymi were digested and cells stained for CD45 

and EpCAM. Histograms show CCRL1 expression by CD45+ and CD45- cells from 

WT and CCRL1-GFP thymi (B). A minimum of 10 mice were analysed, similar 

expression patterns were seen. 
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3.2.4 CCRL1 is Expressed by Thymic Epithelial Cells 

CCRL1 expression by TEC has previously been described by others (Heinzel et al., 

2007, Bunting et al., 2013). We confirmed expression of CCRL1 by TEC using flow 

cytometry and immunofluorescence. CCRL1-GFP thymi were digested, and the 

resulting cell suspension was stained for CD45 and EpCAM as before. Flow 

cytometric analysis revealed CCRL1 expression by 26% of total TECs (mean value) 

(Figure 10A, C). We further characterised CCRL1 expression by TEC by including 

Ly51 (a marker specific for cTEC) to allow the identification of cTEC (Ly51+) and 

mTEC (Ly51-) by flow cytometry. WT thymi were stained alongside, and GFP 

expression within each population from WT thymi was used to set the gate for the 

detection of GFP+ cells (Figure 10B). Quantitative analysis showed that CCRL1 was 

expressed by approximately 15.2% (mean value) of mTEC and significantly more 

cTEC (mean: 58.4%, p=<0.0001) (Figure 10D).  

 

TEC were also identified using immunofluorescence by staining thymus sections 

from CCRL1-GFP reporter mice with antibodies against keratin-8 and CD205, to 

identify cTEC (Figure 11A), and keratin-5 to identify mTEC (Figure 11B). Co-staining 

was visible between CCRL1-GFP and both keratin-8 and CD205, thus confirming 

CCRL1 expression by cTEC. GFP+ cells were not detected within the keratin-5+ 

areas of the thymus, despite the detection of CCRL1+ cells within the Ly51- mTEC 

population by flow cytometry. Possible reasons for this discrepancy are later 

discussed.  
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Analysis of TEC compartments by flow cytometry allows the use of additional 

markers to distinguish between immature TEC (TEClo), and mature TEC (TEChi). 

The thymus from CCRL1-GFP mice was digested and cTEC and mTEC identified as 

previously show. mTEC were further analysed based on their expression of MHC-II 

and CD80. MHC-IIloCD80- (mTEClo), and MHC-IIhiCD80+ (mTEChi) were assessed 

for CCRL1-GFP expression. cTEC were also analysed based on their expression of 

MHC-II and CD40, and expression of CCRL1 was determined by cTEClo (MHC-

IIloCD40-) and cTEChi (MHC-IIhiCD40+) populations. WT thymi were stained 

alongside, and GFP expression within each population from WT thymi was used to 

set the gate for the detection of GFP+ cells. (Figure 12). Quantitative analysis of 

CCRL1 expression by these populations showed low levels of CCRL1 expression by 

both mTEC populations (median: 15.2% of mTEClo, 6.3% of mTEChi). Interestingly, 

CCRL1 expression by mTEClo was significantly higher than the expression by 

mTEChi (p=0.0041) (Figure 13A). Expression of CCRL1 by cTEC was consistently 

higher than by mTEC, and interestingly CCRL1 expression by cTEClo was also 

significantly higher than expression by cTEChi (p=0.0262). (Figure 13B). 
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Figure 10. CCRL1 Expression by Thymic Epithelial Cells is Detectable by Flow 

Cytometry. 

Adult CCRL1-GFP thymi were digested and stained for flow cytometry. CCRL1 is 

expressed by CD45-EpCAM+ cells (A). Staining with Ly51 allowed the identification 

of mTEC and cTEC. CCRL1 was expressed by Ly51- mTEC and Ly51+ cTEC (B). 

Quantitation of GFP expression by total TEC (CD45-EpCAM+) n=10 mice (C). 

Quantitation of GFP expression by mTEC and cTEC n=9 mice (D). Statistical 

analysis performed (D'Agostino-Pearson followed by t test). ***p<0.0001. 
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Figure 11. CCRL1 Expression by Thymic Epithelial Cells is Detectable by 

Immunofluorescence. 

Adult CCRL1-GFP thymi were fixed in 2% PFA and then frozen. Cryosections were 

stained for keratin 8 (red), and CD205 (red), in conjunction with anti-GFP (green). 

Co-expression was visible between both keratin-8 and CD205, and CCRL1 (A). 

Sections were also stained for keratin 5 (red), and anti-GFP (green) to identify 

mTEC, however co-expression was not observed (B). A minimum of 3 mice were 

analysed, similar expression patterns were seen.  

 

  

CCRL1-GFP Keratin-8 CCRL1-GFP CD205 

20µm 20µm 

A 

CCRL1-GFP Keratin-5 

20µm 

B 



 

 

93 

 

Figure 12. Differential CCRL1 Expression by Defined Populations of Thymic 

Epithelial Cells. 

Adult CCRL1-GFP thymi were digested and stained for flow cytometry. CD45-

EpCAM+ cells were first gated, then mTEC were gated as Ly51-, and cTEC were 

gated as Ly51+ prior to the analysis shown. mTEChi and mTEClo were gated based 

on the expression of MHC-II and CD80 (A). cTEChi and cTEClo were gated based on 

the expression of MHC-II and CD40 (B). CCRL1 expression by each population in 

CCRL1-GFP and WT thymi is shown in overlay histograms. Staining was repeated 

on 7 mice with similar expression patterns.   
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Figure 13. CCRL1 Expression by Populations of mTEC and cTEC. 

Quantitation of CCRL1-GFP expression by mTEClo and mTEChi (A), and cTEClo and 

cTEChi (B). n=7 mice. Statistical analysis performed (Man Whitney). **p<0.01, 

*p<0.05.  
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3.2.5 CCRL1 is Expressed by a Population of EpCAM Negative Stromal Cells 

Although TEC comprise a high proportion of stromal cells within the thymus, a 

heterogeneous population of EpCAM- cells exist. CCRL1 expression by EpCAM- 

cells within the thymus was determined using CCRL1-GFP mice. EpCAM-Ly51+ 

cells have been described; these are mesenchymal cells of neural crest origin within 

the adult thymus (Muller et al., 2008). EpCAM-podoplanin+ cells have also been 

described, and are termed thymic fibroblastic reticular cells (tFRC) (Fuertbauer et 

al., 2013).   

 

We digested the thymus of CCRL1-GFP mice and stained for Ly51 and podoplanin 

for analysis by flow cytometry. Expression of Ly51 and podoplanin by CD45-EpCAM-

TER-119- cells revealed three populations, Ly51+podoplanin-, Ly51-podoplanin- and 

Ly51intpodoplanin+ (Figure 14A). Expression of CCRL1 by each of these populations 

was determined, using a WT thymus to set the gate for detection of GFP+ cells 

(Figure 14B). Quantitative analysis showed GFP expression by 22% of 

Ly51intpodoplanin+ cells (median value). This was significantly higher than 

expression by Ly51+podoplanin- (p=0.0079) and Ly51-podoplanin (p=0.0079) cells 

(Figure 14C). 
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Figure 14. CCRL1 is Expressed by a Population of EpCAM Negative Cells. 

Adult CCRL1-GFP thymi were digested and stained for flow cytometry. CD45-

EpCAM-TER-119- cells were first gated prior to the analysis shown. Three 

populations of cells are identified based on the expression of Ly51 and podoplanin 

(A). CCRL1 expression on each of these subsets in WT and CCRL1-GFP mice is 

shown in overlay histograms (B). Quantitation of CCRL1-GFP expression by thymic 

mesenchymal populations (C) n=5 mice. Statistical analysis performed (Man 

Whitney). **p<0.01. 
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3.2.6 CCRL1 Expression Surrounding Vasculature Does Not Map to 

Endothelial Cells or Basal Membrane Proteins 

Initial confocal images of the thymus from CCRL1-GFP mice revealed CCRL1 

expression surrounding vessels at the CMJ. We stained sections of CCRL1-GFP 

and WT thymi with a wide array of markers to identify the phenotype of these cells. 

First, we stained endothelial cells using the markers CD31 (Figure 15A) and MECA-

32 (Figure 15B). Both markers revealed CCRL1+ cells surrounding the endothelial 

cells, however high resolution images reveal an absence of co-staining between 

CCRL1 and either endothelial cell marker. To further analyse expression of CCRL1 

in relation to CD31, ZenLite Software was used to generate a profile of the distance 

between the two fluorophores (Figure 15C).  Although there was some overlap, the 

peak intensity of CCRL1 and CD31 were distinct, confirming that CCRL1 and CD31 

were in close proximity but were not co-expressed by the same cell. Due to the 

close proximity of CCRL1+ cells and endothelial cells, we next determined whether 

CCRL1 was expressed by the basal lamina or basement membrane associated with 

the thymic vasculature. To achieve this, CCRL1-GFP thymi were stained for laminin 

to identify the basal lamina (Figure 16A). CCRL1+ cells were in close proximity but 

co-expression was not observed. This was confirmed using ZenLite software as 

before, to show the distance between peak intensities for laminin and CCRL1 

(Figure 16B). CCRL1-GFP thymi were also stained for fibronectin to identify the 

extracellular matrix proteins associated with the basement membrane (Figure 17A). 

Similar to the other markers, CCRL1+ cells were in close proximity to fibronectin+ 

cells, but co-localisation was not detected (Figure 17B).  
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Figure 15. CCRL1 is Not Expressed by Endothelial Cells. 

Adult CCRL1-GFP thymi were fixed in 2% PFA and then frozen. Cryosections were 

stained for CD31 (red) (A), and MECA-32 (red) (B), in conjunction with anti-GFP 

(green). No co-localisation is visible between CCRL1 (green) and either CD31 or 

MECA-32. Distance between the two fluorophores was determined using Zeiss Zen 

software, which shows no co-expression between CCRL1 (green) and CD31 (red) 

(C). CCRL1 expression was determined on CD31+podoplanin- endothelial cells by 

flow cytometry (D). A minimum of 3 mice were analysed and similar expression 

patterns were seen.  
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Figure 16. CCRL1 is Not Expressed by the Basal Lamina of Thymic Blood 
Vessels. 

Adult CCRL1-GFP thymi were fixed in 2% PFA and then frozen. Cryosections were 

stained for laminin (red), and anti-GFP (green) (A). Distance between the two 

fluorophores was determined using Zeiss Zen software, which shows no co-

expression between CCRL1 (green) and laminin (red) (B).  
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Figure 17. CCRL1 is Not Expressed by Extracellular Matrix Proteins 

Surrounding Blood Vessels.  

Adult CCRL1-GFP thymi were fixed in 2% PFA and then frozen. Cryosections were 

stained for fibronectin (red), and anti-GFP (green) (A). Distance between the two 

fluorophores was determined using Zeiss Zen software, which shows no co-

expression between CCRL1 (green) and fibronectin (red) (B).  
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3.2.7 CCRL1 Expression Surrounding Vasculature Does Not Map to Pericytes 

Pericytes are cells that line the outer surface of endothelial cells. The expression of 

CCRL1 by cells surrounding endothelial cells, rather than expression by the 

endothelial cells themselves, suggested CCRL1 may be expressed by pericytes. 

The thymus from CCRL1-GFP mice was sectioned and was stained for αSMA, 

which is expressed by vascular smooth muscle cells of thymic arterioles, but is 

undetectable surrounding capillaries of the adult thymus (Odaka, 2009). CCRL1+ 

cells were visible surrounding αSMA+ pericytes of a vessel close to the CMJ (Figure 

18A). A cross-section of a larger vessel showed CCRL1 expression by cells lining 

the outer surface of αSMA+ cells, rather than co-expression between CCRL1 and 

αSMA (Figure 18B), suggesting that CCRL1+ cells are located at the outer surface 

of pericytes.  

 

Sections of CCRL1-GFP thymus were also stained for CD248 (endosialin). CD248 

is a mesenchymal stromal cell marker expressed within the thymus by pericytes 

(Lax et al., 2012). Similarly to αSMA, this staining revealed the location of CCRL1+ 

cells surrounding the outer surface of CD248+ pericytes. Interestingly, this staining 

combination revealed heterogeneity in the thymic blood vessels. Some vessels were 

surrounded by a layer of CD248+, followed by a layer of CCRL1+ cells, whereas 

some vessels were surrounded with only CCRL1+ or CD248+ cells (Figure 19A). 

Absence of co-localisation between CCRL1 and CD248 was verified using ZenLite 

software (Figure 19B).    
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Figure 18. CCRL1 is Not Expressed by αSMA+ Pericytes. 

Adult CCRL1-GFP thymi were fixed in 2% PFA and then frozen. Subsequent 

cryosections were stained for αSMA (red), CD8 (blue), and anti-GFP (green) (A). 

CCRL1 expression surrounding αSMA+ cells can be at the CMJ. A cross section of a 

larger vessel clearly shows CCRL1 is expressed by cells that line the outer surface 

of αSMA+ pericytes, no co-localisation is visible (B). A minimum of 3 mice were 

analysed and similar expression patterns were seen. 
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Figure 19. CCRL1 is Not Expressed by CD248+ Pericytes. 

Adult CCRL1-GFP thymi were fixed in 2% PFA and frozen. Cryosections were 

stained for CD248 and CD31. CCRL1 is expressed by cells surrounding CD248+ 

pericytes or is surrounding vessels which lack CD248+ pericytes (A). Distance 

between the two fluorophores was determined using Zeiss Zen software, which 

shows no co-expression between CCRL1 (green) and CD248 (red) (B). A minimum 

of 3 mice were analysed and similar expression patterns were seen. 
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3.2.8 CCRL1 Expression Surrounding Thymic Vasculature is by Podoplanin+ 

PDGFRβ+ TEC  

We described a population of CCRL1+ cells surrounding endothelial cells at the 

CMJ, which were negative for pericyte markers. Although the specific expression of 

CCRL1 surrounding the vessels doesn’t fit with wide-spread TEC localisation, it was 

important to determine whether these CCRL1+ cells were TEC. To achieve this, 

cryosections of WT adult thymus were stained for CCRL1, pan-keratin and CD31 to 

identify CCRL1 expression in relation to TEC and endothelial cells (Figure 20A, B). 

Pan-keratin staining was not compatible with PFA fixation, hence WT thymus and 

anti-CCRL1 antibody were used in this instance. Co-staining of CCRL1 and pan-

keratin was visible surrounding CD31+ endothelial cells (Figure 20C). Due to the 

localisation of these vessels at the CMJ, we next determined whether these CCRL1+ 

TEC expressed keratin-8 or keratin-5 (markers typically associated with cTEC and 

mTEC respectively) (Figure 21). Vessels were identified based on DAPI staining, 

and at these locations CCRL1 co-stained with keratin-8 but not keratin-5, indicative 

of CCRL1 expression by cTEC.  

 

Additional staining was performed on sections from CCRL1-GFP thymi using 

antibodies against podoplanin and GFP (Figure 22A). This revealed co-staining of 

CCRL1 and podoplanin by cells surrounding vessels (Figure 22B). Podoplanin is a 

38kDa glycoprotein expressed by many cell types including podocytes of the kidney, 

lymphatic endothelial cells, and fibroblastic reticular cells (FRCs). In the thymus, 

podoplanin is expressed by thymic FRCs, predominately within the medulla. The 

importance of podoplanin in the development of nTreg has been shown using 
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podoplanin deficient mice. In addition, analysis of CCL21 localisation within the 

podoplanin deficient thymus revealed CCL21 staining scattered within the cortex, 

whereas in WT mice CCL21 staining was restricted to the medulla (Fuertbauer et 

al., 2013). These experiments show the contribution of podoplanin to CCL21 

compartmentalisation within the thymus. Thymus sections from CCRL1-GFP mice 

were also stained for PDGFRβ, a receptor with expression limited to cells 

surrounding thymic blood vessels within the thymus (Odaka, 2009) (Figure 23A). 

This showed co-staining of CCRL1 with PDGFRβ (Figure 23B), suggestive of a 

population of CCRL1+ podoplanin+ PDGFRβ+ cTEC surrounding CMJ vasculature.   
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Figure 20. CCRL1 Expression Surrounding Vessels is by a Population of TEC. 

Adult WT thymi were frozen and subsequent cryosections stained for CCRL1 

(green), pan-keratin (red), and CD31 (blue) (A). Co-localisation of pan-keratin and 

CCRL1 surrounding the vasculature is highlighted in the enlarged inset (B), and is 

verified using ZenLite software (C).  
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Figure 21. CCRL1+ TEC Surrounding Vessels Express Keratin-8.  

Cryosections of WT thymus were stained with keratin-8 (green), (A) and keratin-5 

(B) to identify cTEC and mTEC, respectively.  CCRL1 (red) is expressed by keratin-

8+ cells surrounding the vasculature. Co-localisation is not visible between keratin-5 

and CCRL1.  
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Figure 22. CCRL1+ TEC Surrounding Thymic Blood Vessels are Podoplanin+. 

Adult CCRL1-GFP thymi were fixed in 2% PFA and then frozen. Cryosections were 

stained for podoplanin (red) and anti-GFP (green) (A). Distance between the two 

fluorophores was determined using Zeiss Zen software, which shows co-expression 

between CCRL1 (green) and podoplanin (red) (B). A minimum of 3 mice were 

analysed and similar expression patterns were seen. 
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Figure 23. CCRL1+ TEC surrounding vessels are PDGFRβ+.  

Adult CCRL1-GFP thymi were fixed in 2% PFA and then frozen. Cryosections were 

stained for PDGFRβ (red), CD31 (blue), and GFP (green) (A). Co-expression of 

CCRL1 and PDGFRβ was verified using Zeiss Zen software (B).  
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3.2.9 Podoplanin+ cTEC at the Thymic Capsule Express CCRL1 

Initial examination of CCRL1 expression within the thymus revealed expression of 

CCRL1 by CD45- stromal cells at the thymic capsule. To further characterise these 

cells, cryosections of WT thymi were stained with anti-CCRL1 in conjunction with 

antibodies against ERTR7 (a marker of thymic reticular fibroblasts) (Figure 24A) and 

CD248 (a marker of fibroblasts and pericytes) (Figure 24B). Co-localisation was not 

visible between ERTR7 and CCRL1, and CCRL1+ cells were in close proximity to 

CD248+ cells. Further analysis using ZenLite software showed no co-staining of 

CCRL1 and CD248 (Figure 24C). WT thymus sections were also stained for CCRL1 

in conjunction with CD205 (Figure 25A) and podoplanin (Figure 25B).  Clear co-

staining is visible between CCRL1 and both these markers thus identifying CCRL1+ 

cells at the thymic capsule as podoplanin+ cTEC.  
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Figure 24. CCRL1 Expression at the Thymic Capsule Does Not Map With 

ERTR7 or CD248 Expression. 

Cryosections of WT thymi were stained for CCRL1 (red), in conjunction with ERTR7 

and CD248 (green) (A). No co-localisation is visible between CCRL1 and either of 

these markers. Absence of co-localisation between CCRL1 and CD248 was verified 

using Zeiss Zen software (C). A minimum of 3 mice were analysed and similar 

expression patterns were seen. 
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Figure 25. CCRL1 Expression at the Thymic Capsule is by a Population of 

Podoplanin+ cTEC.   

Cryosections of WT thymi were stained for CCRL1 (red), in conjunction with CD205 

(A) and podoplanin (B). Co-localisation is visible between CCRL1 and both of these 

markers. A minimum of 3 mice were analysed and similar expression patterns were 

seen. 
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3.2.10 CCRL1 is Expressed by TEC in the Embryonic Thymus From E13 

CCRL1 expression has previously been described within the E13 thymus (Heinzel et 

al., 2007) therefore we systematically mapped the thymic expression of CCRL1 

during ontogeny.  

 

Embryonic TEC development can be analysed by flow cytometry, using the markers 

CD40 and CD205. At E12 the thymus contains only EpCAM+CD40- TEC, which can 

be split into two populations, CD205- and CD205+ (Baik et al., 2013). The CD40-

CD205- population declines in size during embryonic development, and by E17, very 

few cells have this phenotype (Baik et al., 2013). CD40-CD205+ cells were thought 

to be immature cTEC, however these cells have since been shown to have mTEC 

lineage potential (Baik et al., 2013). Further maturation of the TEC population 

involves continual upregulation of CD40. CD40+CD205+ cells are thought to be fully 

mature cTEC. Between E14 and E15 a population of CD40+CD205- cells emerge; 

these cells are the start of the mTEC population, a population that increases in size 

during late embryonic and neonatal development (Baik et al., 2013). We have used 

the cTEC marker Ly51, as a surrogate for CD205, along with CD40, to allow the 

identification of these TEC populations.   

 

Thymi from E12 CCRL1-GFP mice were digested and stained for CD45, EpCAM, 

Ly51, and CD40 for analysis by flow cytometry. Expression of CCRL1 by CD45-

EpCAM- mesenchymal cells was negligible. In addition, CCRL1 was undetectable 

on all EpCAM+ TEC populations (Figure 26A). To confirm this observation, thymi 

from E12 WT mice were frozen and cryosections were generated. Sections were 
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stained for CCRL1 and pan-keratin (Figure 26B). CCRL1 expression was not 

detectable by any cells within the E12 thymus. 

 

E13 CCRL1-GFP thymi were analysed using the same method of flow cytometry 

(Figure 27A, B), and immunofluorescence (Figure 27C). No CCRL1+ cells were 

detectable in the EpCAM-CD45- thymic mesenchyme population. Analysis of the 

E13 TEC compartment by flow cytometry revealed two populations of cells (CD40-

Ly51-, and CD40-Ly51+). Expression of CCRL1 was detected in both of these 

populations of cells (mean: 7.9% of CD40-Ly51-, and 11.6% of CD40-Ly51+). 

Immunofluorescence analysis of E13 WT thymi stained with anti-CCRL1 showed 

few CCRL1+ cells at the periphery of the thymic anlagen, however CCRL1 did not 

co-stain with pan-keratin. 

 

 Flow cytometric analysis of the E14 thymus revealed multiple TEC populations 

(CD40-Ly51-, CD40-Ly51+, CD40intLy51+, CD40hiLy51+, and CD40hiLy51-) (Figure 

28A). CCRL1 was expressed by a relatively high proportion of CD40-Ly51- cells 

(mean: 49%), and CD40-Ly51+ cells (mean: 69%). A small population of the 

maturing cTEC (CD40intLy51+) express CCRL1 (mean: 33% of cells). Within the E14 

thymus the emergence of the mTEC population was visible (CD40hiLy51-), however 

no CCRL1+ cells were detected within this population (Figure 28B). CCRL1 

expression was significantly upregulated on CD40-Ly51+ cells compared to CD40-

Ly51- cells (p=0.0006), and was significantly downregulated at every subsequent 

stage of TEC development. Analysis of the E14 thymus by immunofluorescence 

showed CCRL1 expression by many cells at the periphery of the thymus (Figure 
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29C). No co-localisation was detectable between CCRL1 and pan-keratin, and the 

possible reasons for this are discussed later in this chapter.   

 

Flow cytometric analysis of the E15 thymus revealed a significant upregulation of 

CCRL1 expression between transition of CD40-Ly51- cells to CD40-Ly51+ cells 

(p=0.0286). CCRL1 was expressed by 53.2% of CD40-Ly51- cells, 87.3% of CD40-

Ly51+ cells, 82.9% of CD40intLy51+ cells, and 41.4% of CD40hiLy51+ cells (mean 

values). The emerging mTEC population (CD40hiLy51-) expressed much lower 

levels of CCRL1 compared to CD40hiLy51+ cells (mean: 8.2% of cells, p=0.0286) 

(Figure 29B). Immunofluorescence of the E15 thymus also revealed much greater 

expression of CCRL1 than seen at earlier developmental stages. The location of 

CCRL1 expression was also altered from earlier developmental stages; at E15 

CCRL1 is expressed throughout the thymus rather than being localised at the 

periphery (Figure 29C). Some co-staining is detected between CCRL1 and pan-

keratin. 

 

Analysis of the E17 thymus by flow cytometry showed a similar expression pattern 

of CCRL1 as in the E15 thymus (Figure 30A). Here, CCRL1 was expressed by 

97.6% of CD40-Ly51+, 94.8% of CD40loLy51+, and 95.6% of CD40intLy51+ cells 

(mean values). Expression of CCRL1 by mature cTEC (CD40hiLy51+) was 

significantly reduced compared to CD40intLy51+ cells (mean: 82%, p=0.0135), and 

expression by CD40hiLy51- mTEC was further reduced compared to CD40hiLy51+ 

cells (mean: 6.4%, p=0.0009) (Figure 30B).  
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Figure 26. CCRL1 is Not Expressed Within the E12 Thymus. 

E12 thymi from CCRL1-GFP mice were digested and stained for flow cytometry. 

Live cells were gated prior to the analysis shown. Overlaid histograms show GFP 

expression in WT and CCRL1-GFP mice. CCRL1 expression is not detected in 

CD45-EpCAM- cells, CD45-EpCAM+CD40-Ly51- or CD45-EpCAM+CD40-Ly51+ cells 

(A). Cryosections of E12 WT thymi were stained for CCRL1 (red), in conjunction 

with pan-keratin (green) and DAPI (blue) (B). No CCRL1+ cells were visible within 

the E12 thymus. Immunofluorescence staining is representative of at least three 

thymi.  

50µm 

CCRL1 Pan-keratin DAPI 

C
D

45
 

EpCAM 

C
el

l n
o.

 

CCRL1-GFP 

C
D

40
 

Ly51 

C
el

l n
o.

 

CCRL1-GFP 

A 

B 

WT 
CCRL1-GFP 

50µm 



 

 

117 

 

Figure 27. CCRL1 is Expressed by TEC Within the E13 Thymus. 

E13 thymi from CCRL1-GFP mice were digested and stained for flow cytometry. 

Live cells were gated prior to the analysis shown. Overlaid histograms show GFP 

expression in WT and CCRL1-GFP mice. CCRL1 expression is not detected in 

CD45-EpCAM- cells. CD45-EpCAM+CD40-Ly51- and CD45-EpCAM+CD40-Ly51+ cells 

reveal a population of CCRL1+ cells (A). Quantitation of GFP expression by TEC (B) 

n=4. Cryosections of E13 WT thymi were stained for CCRL1 (red), in conjunction 

with pan-keratin (green) and DAPI (blue) (B). Few CCRL1+ cells were visible within 

the E13 thymus (shown with white arrow). Immunofluorescence staining is 

representative of at least three thymi. 
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Figure 28. CCRL1 is Expressed by Immature cTEC at E14. 

E14 thymi from CCRL1-GFP mice were digested and stained for flow cytometry. 

Live cells were gated prior to the analysis shown. Overlaid histograms show GFP 

expression in WT and CCRL1-GFP mice. CCRL1 expression is detected in a small 

proportion of CD45-EpCAM- cells. CD45-EpCAM+CD40-Ly51- and CD45-

EpCAM+CD40-Ly51+ cells reveal expression of CCRL1 (A). Quantitation of GFP 

expression by TEC (B) n=7 **p=<0.01, ***p=<0.001. Cryosections of E14 WT thymi 

were stained for CCRL1 (red), in conjunction with pan-keratin (green) and DAPI 

(blue) (B). CCRL1+ cells were visible at the subcapsular region of the E14 thymus 

(shown with white arrow). Immunofluorescence staining is representative of at least 

three thymi. 
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Figure 29. CCRL1 is Expressed by Immature and Mature cTEC at E15. 

E15 thymi from CCRL1-GFP mice were digested and stained for flow cytometry. 

Live cells were gated prior to the analysis shown. Overlaid histograms show GFP 

expression in WT and CCRL1-GFP mice. CD45-EpCAM+CD40-Ly51-, CD45-

EpCAM+CD40-Ly51+, CD45-EpCAM+CD40intLy51+ and CD45-EpCAM+CD40+Ly51+ 

cells reveal expression of CCRL1 (A). Quantitation of GFP expression by TEC (B) 

n=4 *p<0.05. Cryosections of E15 WT thymi were stained for CCRL1 (red), in 

conjunction with pan-keratin (green) and DAPI (blue) (C). CCRL1+ cells were visible 

throughout the E15 thymus. Immunofluorescence staining is representative of at 

least three thymi. 
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Figure 30. CCRL1 is Highly Expressed by all cTEC at E17. 

E17 thymi from CCRL1-GFP mice were digested and stained for flow cytometry (A). 

Overlaid histograms show GFP expression in WT and CCRL1-GFP mice. Live cells 

were gated prior to the analysis shown. CD45-EpCAM+CD40-Ly51-, CD45-

EpCAM+CD40loLy51+, CD45-EpCAM+CD40intLy51+ and CD45-EpCAM+CD40+Ly51+ 

cells reveal expression of CCRL1. Quantitation of GFP expression by TEC (B) n=8 

*p<0.05, ***p<0.001 
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3.2.11 CCRL1 Is Expressed Within The Human Thymus 

Expression of CCRL1 was determined within the human thymus using an anti-

human CCRL1 antibody in conjunction with immunofluorescence (Takatsuka et al., 

2011). Human thymus tissue was acquired from young children undergoing cardiac 

surgery. The human thymus was cut into small pieces (approx. 1cm2) and frozen. 

8µm cryosections were generated from the frozen tissue, and sections were stained 

for CD4 and CD8, in conjunction with CCRL1, to determine cortex and medulla 

(Figure 31A). CCRL1 expression is detected primarily within the thymic medulla 

(based on the location of SP4 and SP8 thymocytes). In the murine thymus, CCRL1 

expression was not found within the medulla by immunofluorescence, therefore it 

was vital to confirm this unusual expression pattern in the human thymus. To 

achieve this, sections of human thymus were stained with antibodies against 

EpCAM (to identify mTEC), and CD205 (to identify cTEC) (Figure 31B). This 

staining revealed CCRL1+ cells located within the EpCAM+ thymic medulla, 

particularly associated with structures that appear to be Hassall’s Corpuscles. Few 

CCRL1+ cells were also detected within the cortex, close to the CMJ. Co-staining 

was not visible between CCRL1 and either EpCAM or CD205. CCRL1 expression 

close to the CMJ prompted us to determine whether CCRL1 was expressed 

surrounding vessels in the human thymus, as in the mouse thymus. We therefore 

stained sections of human thymus for CD31 and CCRL1 to determine if the 

expression pattern was similar (Figure 31C). This staining combination revealed 

CCRL1+ cells surrounding CD31+ endothelial cells.   
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Figure 31. CCRL1 is Expressed Within the Human Thymus. 

Human thymi were frozen and cryosections generated. Sections were stained for 

CCRL1 in conjunction with CD4 and CD8 (A), EpCAM and CD205 (B), and CD31 

(C). CCRL1 is expressed within the thymic medulla, and surrounding CD31+ 

endothelial cells. Image representative of one experiment.  
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3.3 Discussion 

3.3.1 CCRL1 is Expressed by TEC 

This chapter described a detailed analysis of CCRL1 expression within the adult and 

embryonic thymus. We have identified CCRL1 expressing cells using both anti-

CCRL1 antibody, and CCRL1-GFP reporter mice. It is important to note that CCRL1 

detection using the antibody will show expression of CCRL1 protein, whereas 

detection using CCRL1-GFP reporter mice will show CCRL1 gene activity. If 

expression of CCRL1 is highly regulated at the protein level, there will be 

discrepancies in the expression of CCRL1 using both methods of detection. We 

have shown that detection of CCRL1 by both approaches gives a similar expression 

pattern, however the anti-CCRL1 antibody gives a much weaker expression profile 

compared to CCRL1-GFP reporter mice. In addition to abundance of CCRL1 

protein, other reasons for this comparatively weaker detection of CCRL1 may be 

due to a working dilution of the primary or secondary antibody that is too low, or a 

poor ability of the secondary antibody to recognise and bind the primary antibody. 

The anti-CCRL1 antibody was tested at different concentrations, with additional 

amplification staining steps, and in conjunction with different secondary antibodies. 

The protocol that gave the optimal balance between specificity and sensitivity was 

used for all anti-CCRL1 antibody detection in this thesis. 

 

We have used flow cytometry and immunofluorescence to show that CD45+ cells 

within the thymus do not express CCRL1; this is in agreement with several 

publications (Bunting et al., 2013, Rode and Boehm, 2012, Heinzel et al., 2007). 

Expression of CCRL1 by thymic epithelial cells (TEC) has previously been detected 
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using immunofluorescence, flow cytometry and real time PCR of sorted cell 

populations (Bunting et al., 2013, Rode and Boehm, 2012, Heinzel et al., 2007). 

Interestingly, our flow cytometric analysis of thymi from CCRL1-GFP mice shows 

CCRL1 expression by approximately 60% of Ly51+ cTEC whereas a similar analysis 

of these mice by Heinzel et al showed CCRL1 expression by all CDR-1+ (Ly51) 

cTECs (Heinzel et al., 2007). In keeping with our data, selective ablation of cTEC by 

CCRL1-DTR transgenic mice does not affect some small clusters of keratin-8+ 

cTEC, thus providing additional evidence that not all cTEC express CCRL1 (Rode 

and Boehm, 2012).  

 

Our study shows expression of CCRL1 by a population of mTEC using flow 

cytometry but not immunofluorescence. This is in contrast to the report by Heinzel et 

al, where flow cytometry revealed a lack of CCRL1 expression by all UEA-1+ 

mTECs.  Furthermore, ablation of CCRL1+ TEC by the CCRL1-DTR system leaves 

the mTEC population intact, suggesting that, in agreement with Heinzel et al, 

CCRL1 is not expressed by mTEC (Rode and Boehm, 2012).  Despite this, a recent 

publication using CCRL1-GFP reporter mice identified intermediate levels of CCRL1 

expression by a population of mTEC in the postnatal thymus (Ribeiro et al., 2014). 

The fact that we can detected CCRL1 expression by mTEC using only flow 

cytometry may be due to the lower sensitivity of immunofluorescence (Basiji et al., 

2007). Our flow cytometric analysis identified mTEC as EpCAM+Ly51-, therefore it is 

possible that some CCRL1+ cTEC which may express lower levels of Ly51 could be 

included in this gate. To further assess CCRL1 expression by cTEC and mTEC we 

stained for CD40, CD80 and MHC-II to allow the division of cTEC and mTEC into 
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mature and immature populations, moreover, inclusion of CD80 allows the positive 

identification of at least some mTEC.  CCRL1 expression by each population was 

determined by flow cytometry and revealed expression of CCRL1 by both immature 

and mature cTEC and mTEC. CCRL1 detection by mature mTEC (MHC-IIhiCD80hi), 

suggest that this is true expression by mTEC, rather than contamination within the 

gate by cTEC, and is in agreement with the recent publication by Ribeiro et al. 

 

3.3.2 CCRL1 is Expressed by Thymic Mesenchyme 

Thymic stroma consists of mesenchymal cells and TEC. The mesenchymal 

population within the thymus is poorly defined, however a population of EpCAM-

Ly51+ cells of neural crest origin have been described (Muller et al., 2008). CCRL1 

expression by different populations of thymic mesenchymal cells have been 

investigated by others using real time PCR. Rode and colleagues sorted EpCAM-

Ly51+ cells and detected minimal expression of CCRL1, while Bunting et al sorted 

bulk non-epithelial non-endothelial (EpCAM-CD31-) cells and detected higher levels 

of CCRL1 transcript than those expressed by CD45+ cells (Bunting et al., 2013, 

Rode and Boehm, 2012).  

 

We determined expression of CCRL1 within the mesenchymal population by flow 

cytometry using CCRL1-GFP reporter mice. We showed CCRL1 expression by a 

population of EpCAM-Ly51intpodoplanin+ cells. This population of cells has been 

shown by others to produce retinoic acid, which is needed for the regulation of TEC 

expansion (Sitnik et al., 2012). Our flow cytometric analysis of the thymic 

mesenchyme showed that the majority of podoplanin+ cells express intermediate 
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levels of Ly51, therefore this population is likely to include the recently described 

podoplanin+ thymic fibroblastic reticular cells (tFRCs) (Fuertbauer et al., 2013). We 

show CCRL1 expression by approximately 20% of Ly51intpodoplanin+ cells, which 

may account for the low levels of CCRL1 transcript shown by Bunting et al in 

EpCAM-CD31- cells.  Despite our ability to detect CCRL1 expression by this 

population using flow cytometry, we were unable to confirm expression of CCRL1 by 

mesenchymal cells using immunofluorescence. We have detected few cells, which 

are negative for pan-keratin by immunofluorescence, however like EpCAM, pan-

keratin may not stain all TEC when using immunofluorescence. Moreover, we were 

unable to combine pan-keratin staining with the use of CCRL1-GFP reporter mice. 

CCRL1+ mesenchymal cells express podoplanin, however many TEC also express 

podoplanin, therefore this cannot be used as a definitive marker for either 

population. We would need to further characterise the CCRL1+ mesenchymal 

population by flow cytometry to identify additional markers that could be used to 

identify these same cells using immunofluorescence, in order to obtain information 

regarding their intrathymic location.  

 

3.3.3 CCRL1 is Expressed by Perivascular and Subcapsular TEC 

Heinzel et al first described CCRL1 expression by cells surrounding tomato lectin 

stained endothelial cells within the thymus. This article concluded that these cells 

were TEC based on the expression of EpCAM by all CCRL1-GFP+ cells (Heinzel et 

al., 2007). We confirmed CCRL1 expression by perivascular cells, but further 

identified these cells as PDGFRβ+podoplanin+ cTEC. Podoplanin+ epithelial cells 

associated with thymic vasculature have previously been described (Farr et al., 
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1992), however PDGFRβ expression described within the thymus has been limited 

to mesenchymal cells (Odaka, 2009). As a result, this population of cTEC is not 

described in the literature, therefore it would be necessary to show co-expression of 

PDGFRβ with TEC-specific markers.  

 

CD248 is a pericyte-specific mesenchymal stromal cell marker within the thymus 

that regulates blood endothelial vessel formation (Lax et al., 2012). We have shown 

that CCRL1 is not expressed by CD248+ pericytes. Interestingly our staining 

revealed CD248 is commonly expressed surrounding vessels which are not 

surrounded by CCRL1 and vice-versa. This heterogeneity in vascular structures 

may point towards differences in function of these vessels. In addition, we have 

confirmed the expression of CCRL1 by subcapsular cTECs described by Heinzel et 

al (Heinzel et al., 2007). Moreover, we further characterised these cells based on 

their expression of podoplanin.  
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3.3.4 CCRL1 is Expressed Within the Thymus During Ontogeny 

The expression of CCRL1 by TEC has been described in the embryonic thymus 

(Heinzel et al., 2007, Ribeiro et al., 2014). In agreement with Heinzel et al, we could 

not detect any CCRL1+ cells within the E12 thymus by confocal microscopy or flow 

cytometry, but were able to detect CCRL1+ cells at the periphery of the thymic 

anlagen by E13.5 of gestation. By E14, the thymus had a clear population of 

CCRL1+ cells surrounding the entire periphery, and flow cytometric analysis 

identified these cells as CD40-Ly51- and CD40-Ly51+. Widespread CCRL1 

expression was visible in the E15 thymus, however Heinzel et al reported that at this 

stage of gestation, CCRL1 expression was limited to subcapsular regions (Heinzel 

et al., 2007). Flow cytometric analysis of the E15 thymus showed high expression by 

immature and mature cTEC. This data is in agreement with Ribeiro et al, who 

described the progressive acquisition of CCRL1 by cTEC during E12.5-E15.5 of 

gestation. By E17, we showed expression of CCRL1 by the majority of immature 

CD40-/low cTEC, and CD40+ mature cTEC.  

 

It is interesting to note that within the E17 thymus, considerably more cTEC express 

CCRL1 at higher levels, than within the adult thymus. The gates for GFP+ cells in 

both adult and embryonic thymi were set based on the GFP level in the same 

population of cells from WT mice of the same age. Background levels of GFP, as 

determined by levels in WT mice, are lower in the embryonic stromal cell 

populations compared to those from the adult. This may account for an 

underestimation of the proportion of GFP+ cells in the adult thymus, as it would 

suggest that adult WT stromal cells have increased auto-fluorescence.  
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Interestingly, CCRL1 expression detected by immunofluorescence did not reveal co-

staining with pan-keratin, whereas flow cytometric analysis clearly identified these 

cells as EpCAM+. Flow cytometric analysis of CCRL1 expression in the embryonic 

thymus used CCRL1-GFP mice, whereas immunofluorescence analysis used anti-

CCRL1 antibody. The discrepancies in the data produced by both methods is likely 

due to the different sensitivities of both methods as discussed earlier in this chapter.  

 

Although still not fully clear, the developmental programme of TEC during 

embryogenesis has recently been revised and shows that CD205+ TEC, (a marker 

commonly associated with cTEC) can give rise to mature mTEC (Baik et al., 2013). 

It is clear that during this pathway CCRL1 is downregulated, thus providing evidence 

that this molecule is expressed by precursors to both mTEC and cTEC lineages, 

however CCRL1 expression is maintained primarily within cTEC populations. 
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3.3.5 CCRL1 Has a Distinct Expression Pattern in The Human Thymus 

CCRL1 expression within the human thymus has not previously been determined. 

For this reason we used an anti-human CCRL1 antibody and show that unlike the 

murine thymus, CCRL1 is expressed primarily within the medulla. Despite this 

localisation of CCRL1 expression, immunofluorescence did not reveal co-staining 

between CCRL1 and EpCAM or CD205, therefore we were unable to conclude that 

CCRL1 is expressed by TEC. The role of the cortex and medulla in murine and 

human thymi are similar, therefore there is not an obvious reason for the differential 

expression of CCRL1. For these reasons, confirmation of CCRL1 expression either 

using a different CCRL1-antibody or by PCR on sorted populations of cells, would 

be necessary before drawing conclusions from this data.  

 

It was initially proposed that human CCRL1 binds CXCL13 (Gosling et al., 2000), 

however follow-up studies have not since mentioned this interaction. Human thymic 

B cells express CXCR5, the classical chemokine receptor for CXCL13 (Rehm et al., 

2009), therefore if CCRL1 scavenges CXCL13, it may play a role in the positioning 

of B cells within the human thymus.  Within the human thymic medulla, epithelial cell 

structures called Hassall’s corpuscles are proposed to aid in the removal of 

apoptotic cells and the development of Treg (Watanabe et al., 2005). CCRL1 

expression is detected on groups of medullary cells which appear to be Hassall’s 

corpuscles based on EpCAM and DAPI staining, however co-staining was not 

visible, therefore further analysis would be needed to confirm this.  
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Similarly to the murine thymus, perivascular cells within the human thymus also 

express CCRL1. Although their positioning would suggest they are TEC, this has not 

been shown.  

 

To summarise, CCRL1 is expressed solely by stromal cells within the murine 

thymus. It is expressed primarily by cTEC positioned at the SCZ, by cells 

surrounding vessels at the CMJ, and by cells scattered throughout the cortex. 

Expression of CCRL1 by cells surrounding vasculature is maintained in the human 

thymus, however unlike the murine thymus, CCRL1 is expressed primarily within the 

human thymic medulla. We have identified CCRL1 expression within the murine 

embryonic thymus, and have specifically shown the onset of expression at E13 of 

gestation, where it is expressed by few cells at the periphery. In addition, we have 

shown that as ontogeny progresses, CCRL1 expression becomes more widespread 

until the majority of cTEC are CCRL1+. Due to the heterogeneous expression of 

CCRL1 by thymic stromal cell populations, it may be of use as a marker to further 

study distinct TEC and mesenchymal populations to aid our understanding of thymic 

stromal cell development and function.  
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CHAPTER 4: INVESTIGATING THE ROLE 

OF CCRL1 IN THYMUS DEVELOPMENT 

AND FUNCTION 
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4.1 Introduction and Aims 

Intrathymic T cell development requires developing thymocytes to migrate within 

and between specialised thymic microenvironments. This intrathymic migration is 

mediated by chemokines, in particular CCL19, CCL21 and CCL25, which bind the 

classical chemokine receptors CCR7 and CCR9, and the atypical chemokine 

receptor CCRL1. In addition to intrathymic migration, these chemokines are involved 

in the recruitment of progenitor cells to the embryonic and adult thymus (Krueger et 

al., 2010, Liu et al., 2006), and the export of mature thymocytes (Ueno et al., 2004, 

Ueno et al., 2002). 

  

In the previous chapter, I defined the expression of CCRL1 by thymic stroma. Such 

studies identified expression of CCRL1 by subsets of cTEC and mTEC, in the 

embryonic and adult thymus. In addition, we identified CCRL1 expression by a 

population of perivascular TEC, and non-epithelial stromal cells in the adult thymus.  

 

Importantly, analysis of CCRL1 expression specifically identifies three 

microenvironments of the thymus: the SCZ, the cortex, and the CMJ. The SCZ is 

implicated in the development of DN thymocytes, and cTEC provide the necessary 

environment for positive selection. Vasculature at the CMJ is the site for recruitment 

of progenitor cells and the export of mature T cells into the periphery. Collectively, 

the expression of CCRL1 within these three microenvironments may suggest its 

involvement during multiple stages of T cell development. 

Conflicting data in the literature leaves the precise role of CCRL1 during T cell 

development unclear. One study used mice lacking CCRL1 due to homozygous 
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expression of CCRL1-GFP and determined no major role for CCRL1 within the 

thymus (Heinzel et al., 2007). However, a more recent study analysed an alternative 

strain of CCRL1-/- mouse and described severe defects in many stages of T cell 

development (Bunting et al., 2013). 

 

In view of this, the objective of this chapter is, by building on expression data in the 

previous chapter, to analyse several stages of T cell development in both strains of 

CCRL1 deficient mice, compared to WT mice, to determine any potential role for 

CCRL1 in these processes. Specifically the aims are: 

• To determine if populations of DP and SP thymocytes are affected in the 

CCRL1 deficient thymus. 

• To determine if DN thymocyte development is altered in the absence of 

CCRL1. 

• To analyse the recruitment of progenitors to the CCRL1 deficient thymus. 

• To determine any alteration in the export of mature T cells from the CCRL1 

deficient thymus. 
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4.2 Results 

4.2.1 CCRL1 Inhibits Thymocyte Migration to CCL19 and CCL25 In Vitro 

In vitro studies have shown that CCRL1 binds the chemokines CCL19, CCL21, and 

CCL25 and targets them for degradation (Townson and Nibbs, 2002, Comerford et 

al., 2006). We wanted to determine the effect of CCRL1 on the ability of thymocytes 

to migrate in response to these ligands. This was achieved using an in vitro 

transmigration assay, similar to the assay used by Ulvmar and colleagues (Ulvmar 

et al., 2014). Briefly, the thymic epithelial cell line (TEP) (Tanaka et al., 1993b) was 

retrovirally transfected to express GFP (TEP-GFP), or CCRL1 in conjunction with 

GFP (TEP-CCRL1) (Figure 32). The expression of GFP was determined using flow 

cytometry, prior to their use in transmigration assays, to ensure a similar, and 

relatively high proportion of TEP cells were transfected (75.2% of TEP-GFP, and 

63.5% of TEP-CCRL1) (Figure 33). Cell culture inserts with a pore size of 3µm were 

seeded with TEP-GFP or TEP-CCRL1. Once confluent, the media in the plates was 

changed to differing concentrations of CCL19 or CCL25. Unfractionated WT 

thymocytes from adult thymus were added to the upper well and incubated for 3 

hours at 37°C.  

 

WT thymocytes added to the CCL19 assay, ‘input cells’, were stained for CD4, CD8 

and CCR7 and analysed by flow cytometry (Figure 34A). In addition the migrated 

thymocytes were also stained, and representative FACS plots show the analysis of 

cells that migrated in response to 10nM CCL19 (Figure 34B). It is clear that migrated 

cells are predominantly CCR7+ SP4 and CCR7+ SP8 thymocytes. The number of 

thymocytes that migrated in response to 0nM, 1.25nM, 2.5nM, 5nM, 10nM, 20nM 
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CCL19 in the presence of either TEP-GFP or TEP-CCRL1 are shown (Figure 34C). 

TEP transfected with CCRL1 appeared to inhibit the migration of thymocytes at 

concentrations ranging from 1.25-10nM CCL19. At 20nM CCL19, numbers of 

migrated thymocytes are similar between TEP-GFP and TEP-CCRL1.  

 

The transmigration assay was repeated with varying concentrations of CCL25 (0-

180nM) (Figure 35). Migrated thymocytes were stained for CD4, CD8, TCRβ and 

CCR9 and counted by flow cytometry, and representative FACS plots show cells 

that have migrated in response to 120nM CCL25 (Figure 35B). It is clear that TEP-

GFP and TEP-CCRL1 both result in the migration of the same populations of 

thymocytes. Comparison between bulk thymocytes that were put into the assay, and 

specifically those which have migrated, reveal a preferential migration of CCR9+ DP 

thymocytes. The number of cells that migrated was tallied (Figure 35C). Although 

similar numbers of cells migrated in response to 20-80nM CCL25, there is a clear 

reduction in the number of cells that have migrated across the TEP-CCRL1 

monolayer in response to 120nM CCL25. At 180nM CCL25, numbers of migrated 

thymocytes are reduced, and similar between TEP-GFP and TEP-CCRL1. 
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Figure 32. Expression of CCRL1 and GFP by TEP-GFP and TEP-CCRL1 

TEP cells transfected with TEP-GFP (A) or TEP-CCRL1 (B) were seeded onto lab-

tek chamber slides and cultured overnight at 37°C. The following day, transfected 

cells were stained for CCRL1 and DAPI and images acquired. Expression of CCRL1 

can be seen on TEP cells transfected with TEP-CCRL1 only.  GFP+ cells are 

present within TEP-GFP and TEP-CCRL1 cells. 
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Figure 33. Expression of GFP by TEP-GFP and TEP-CCRL1 by Flow Cytometry 

Expression of GFP by TEP-GFP and TEP-CCRL1 were assessed using flow 

cytometry to determine the proportion of transfected cells, prior to their use in 

transmigration assays.   
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Figure 34. CCRL1 Inhibits Thymocyte Migration in Response to CCL19 In Vitro 

WT thymocytes were added to a transwell coated with a monolayer of thymic 

epithelial cells (TEP) transfected with CCRL1 or vector only (GFP). Flow cytometric 

analysis of the thymocytes added to the assay is shown (A). Migrated thymocytes 

were stained for CD4, CD8 and CCR7 and analysed by flow cytometry. Grey 

histograms show CCR7 expression on total thymocytes added to the assay (B). 

Representative density plots show thymocytes that have migrated in response to 

10nM CCL19. The numbers of cells in the lower chemotaxis chamber were counted 

using counting beads in conjunction with flow cytometry (C). Bars represent the 

mean, and error bars show the SEM. Each concentration of CCL19 was used in 

duplicate; therefore no statistical analysis was performed.  
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Figure 35. CCRL1 Inhibits Thymocyte Migration in Response to CCL25 In Vitro 

WT thymocytes were added to a transwell coated with a monolayer of thymic 

epithelial cells (TEP) transfected with CCRL1 or vector only (GFP). Flow cytometric 

analysis of the thymocytes added to the assay is shown (A). Migrated thymocytes 

were stained for CD4, CD8, TCRβ and CCR9 and analysed by flow cytometry (B). 

Representative density plots show thymocytes that have migrated in response to 

120nM CCL25. The numbers of cells in the lower chemotaxis chamber were 

counted using counting beads in conjunction with flow cytometry (C). Bars represent 

the mean, and error bars show the SEM. Each concentration of CCL25 was used in 

duplicate; therefore no statistical analysis was performed. 
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4.2.2 The CCRL1 Deficient Thymus is of Normal Weight and Cellularity 

Our in vitro studies have shown the ability of CCRL1 to influence thymocyte 

migration. Moreover, expression of CCRL1 within the thymus suggests this molecule 

may play a role in T cell development and thymus function. To gain insight into the 

potential role of CCRL1 in vivo, we carried out a systematic analysis of thymus 

function in CCRL1 deficient mice.  

 

Two strains of CCRL1 deficient mice have been described; conventional CCRL1-/- 

and CCRL1-GFP/GFP. CCRL1-/- mice were generated by replacing the open reading 

frame of CCRL1 with a floxed phosphoglycerine kinase (PGK) neomycin cassette 

(Comerford et al., 2010). It has been reported that these mice have significant 

defects in thymus function, including increased thymus size and cellularity, and 

disruptions to the thymic stroma resulting in defective T cell development and the 

escape of autoreactive T cells, which leads to Sjögren’s Syndrome in aged mice 

(Bunting et al., 2013). The second strain; CCRL1-GFP/GFP knock-in mice, were 

generated by replacing the N-terminal half of the single coding exon of CCRL1 with 

an EGFP cassette. Mice homozygous for GFP are CCRL1 deficient. Interestingly, all 

parameters of thymus function are reported to be normal in these mice (Heinzel et 

al., 2007). Due to these conflictions, the initial experiments in this chapter use both 

strains of mice.  

 

Macroscopic examination of the thymus from CCRL1-/- mice showed that it has a 

similar size and appearance to WT and heterozygous (het) littermate controls 

(Figure 37A). To allow quantitation of thymus size, thymi from WT, het and CCRL1-/- 
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littermates were dissected from both male and female mice and the weight 

determined (Figure 37B and Table 8). No statistical difference was found in the 

weight of the CCRL1-/- thymus from female or male mice compared to littermate 

controls (Table 10). In addition to thymus weight, the cellularity of the thymus was 

also determined. To do this, the thymus was digested and absolute cell number 

tallied using counting beads in conjunction with flow cytometry. The thymus 

cellularity was similar between all genotypes of the same sex, and no statistical 

difference was found (Figure 37C, Table 11, Table 12).  

 

The same methods were employed to determine thymus weight and thymus 

cellularity from CCRL1-GFP/GFP mice to account for any differences in strain of mice 

(Figure 37D). Thymi from female CCRL1-GFP/GFP mice were of a similar weight and 

cellularity to thymi from female CCRL1-/- mice (Table 9 and Table 11). Moreover, 

there was no difference in weight or cellularity of the thymus between WT, het and 

CCRL1-GFP/GFP (Table 10, Table 12). These experiments show no difference in 

thymus weight or cellularity in either strain of CCRL1 deficient mice.  
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Figure 36. Representative Genotyping of CCRL1-/- Mice. 

Image of agarose gel with DNA ladder to indicate size of PCR product. DNA from 

WT mice is 610bp, and CCRL1-/- mice is 420bp.   
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Figure 37. Thymus Weight and Cellularity is Normal in CCRL1 Deficient Mice. 

Macroscopic image of WT, het and CCRL1-/- littermate thymi, scale bar shows 

increments of 1mm (A). The thymus from WT, het and CCRL1-/- mice were weighed 

(B), and the cellularity calculated by flow cytometry (C). Horizontal bars represent 

the mean values. Statistical analysis performed (D'Agostino-Pearson followed by t 

test). The procedure was repeated in CCRL1-GFP/GFP mice (D). Horizontal bars 

represent the median values. Statistical analysis performed (Mann Whitney). Each 

point represents one mouse. 
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Table 8. Thymus Weight in Male and Female CCRL1-/- Mice. 

 Female  Male 

 WT 
(n=6) 

Het 
(n=17) 

CCRL1-/- 
(n=13)  WT 

(n=13) 
Het 

(n=14) 
CCRL1-/- 
(n=22) 

Mean (mg) 67.8 69.3 71.0  56.9 60.5 61.5 

SEM 5.66 2.36 3.15  1.88 1.84 1.65 
Data expressed as mean and standard error of the mean (SEM).  

 
 
 
Table 9. Thymus Weight in Female CCRL1-GFP/GFP Mice. 

 Female CCRL1-GFP/GFP  

 WT (n=7) Het (n=5) CCRL1-GFP/GFP (n=3)  

Median (mg) 67.9 70.9 68.5  

25th Quartile 67.4 68.1 67.2  

75th Quartile 71.0 60.7 79.6  
Data expressed as median (bold) with 25th and 75th quartile.  

 
 
 
Table 10. Statistical Analysis of Thymus Weight. 

 WT vs. Het  WT vs. KO  Het vs. KO 

Female CCRL1-/- 0.7719  0.5980  0.6602 

Male CCRL1-/- 0.1837  0.0846  0.6969 
Female CCRL1-GFP/GFP 0.4318  0.7317  0.7857 

p values shown. D'Agostino-Pearson followed by t test was performed for female 
and male CCRL1-/-. Mann Whitney statistical test was used for female CCRL1-
GFP/GFP. Female CCRL1-/- strain, WT n=6, het n=17, KO n=13. Male CCRL1-/- strain, 
WT n=14, het n=14, KO n=23. Female CCRL1-GFP/GFP strain, WT n=7, het n=5, KO 
n=3.  
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Table 11.  Thymus Cellularity in CCRL1-/- and CCRL1-GFP/GFP mouse lines. 

  WT (n=5) Het (n=11) KO (n=9) 

Female CCRL1-/- 
Median (x 108) 1.102 1.064 1.124 
25th Quartile 1.058 0.970 0.984 
75th Quartile 1.187 1.107 1.156 

     

  WT (n=5) Het (n=12) KO (n=10) 

Male CCRL1-/- 
Median (x 108) 1.311 1.190 1.102 
25th Quartile 1.411 0.930 0.952 
75th Quartile 1.467 1.429 1.390 

     

  WT (n=7) Het (n=5) KO (n=3) 

Female  
CCRL1-GFP/GFP 

Median (x 108) 0.954 1.139 0.903 
25th Quartile 0.807 0.795 0.783 
75th Quartile 1.176 1.356 1.259 

Data expressed as median (bold) with 25th and 75th quartile.  

 
 
 
Table 12. Statistical Analysis of Thymus Cellularity in CCRL1-/- and  

CCRL1-GFP/GFP Mice 

 WT vs. Het  WT vs. KO  Het vs. KO 
Female CCRL1-/- 0.2127  1.000  0.4941 

Male CCRL1-/- 0.1296  0.0539  0.8691 
Female CCRL1-GFP/GFP 0.5303  1.000  0.7857 
p values shown. No statistical differences are found. D'Agostino-Pearson followed 
by t test was performed for female and male CCRL1-/-. Mann Whitney statistical test 
was used for female CCRL1-GFP/GFP.  Female CCRL1-/- strain, WT n=5, het n=11, 
KO n=9. Male CCRL1-/- strain, WT n=5, het n=12, KO n=10. Female CCRL1-GFP/GFP 

strain, WT n=7, het n=5, KO n=3.  
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4.2.3 CCRL1-/- Mice Have a Normal Programme of T Cell Development 

CCRL1-/- mice and littermate controls were genotyped as described in the materials 

and methods, and representative genotyping is shown in Figure 38. To determine 

any alterations in the populations of thymocytes in the CCRL1-/- thymus compared to 

control mice, thymi from WT, het and CCRL1-/- mice, were digested and the resulting 

cell suspension stained for flow cytometry. Antibodies against CD4, CD8 and TCRβ 

were used to identify DP and SP thymocytes. Representative FACS plots show the 

gating strategy used (Figure 39A). The proportions and absolute cell numbers of DP 

and SP thymocytes were determined in male and female littermates (Figure 39B 

and Figure 39C). These parameters are unchanged in CCRL1-/- mice compared to 

littermate controls, irrespective of gender (Table 13 and Table 14).  

 

The maturation of SP thymocytes occurs within the medulla and is a well-defined 

process. Immature SP thymocytes express CD69 and their maturation is 

accompanied by the upregulation of Qa2 and CD62L (Weinreich and Hogquist, 

2008). We determined the maturation status of SP thymocytes in CCRL1-/- and 

control thymi by staining thymocytes for CD69 and CD62L, in addition to CD4, CD8 

and TCRβ (Figure 40A). The proportions of CD69+CD62L- immature, and CD69-

CD62L+ mature, SP4 and SP8 thymocytes are unaltered in the CCRL1-/- thymus 

compared to littermate controls (Figure 40B, Figure 40C, and Table 15). 
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Figure 38. Representative Genotyping of CCRL1-/- Mice. 

Image of agarose gel showing PCR products from genotyping WT and CCRL1-/- 

mice. DNA ladder indicates size of PCR product. WT PCR product is 610bp, 

CCRL1-/- PCR product is 420bp.  
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Figure 39. Normal Numbers of DP and SP Thymocytes in CCRL1-/- Mice. 

Thymocytes were stained to allow the identification of DP and SP thymocytes by 

flow cytometry. Live CD45+ cells were first gated. DP were identified as CD4+CD8+, 

SP4 were identified as CD4+CD8-TCRβ+, and SP8 were identified as CD4-

CD8+TCRβ+ (A). The proportions and absolute cell numbers of DP and SP 

thymocytes were determined in the male thymus (B), and female thymus (C). 

Horizontal bars represent the median values. Statistical analysis performed (Mann 

Whitney). Each point represents one mouse.  
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Table 13. Statistical Analysis of Proportions of DP, SP4 and SP8 Thymocytes 
in CCRL1-/- Mice Compared to Littermate Controls 

  WT vs. Het  WT vs. KO  Het vs. KO 

Female 
DP 0.8281  0.6000  0.2132 
SP4 0.8082  1.000  0.3028 
SP8 0.9517  0.3301  0.1768 

 
      

Male 
DP N/A  N/A  0.2343 
SP4 N/A  N/A  1.000 

SP8 N/A  N/A  0.5380 
p values shown. Female WT n=4, het n=12, KO n=9. Male WT n=1, het n=7, KO 
n=6.  
 
 
 
Table 14. Statistical Analysis of the Numbers of DP, SP4 and SP8 Thymocytes 
in CCRL1-/- Mice Compared to Littermate Controls 

  WT vs. Het  WT vs. KO  Het vs. KO 

Female 
DP 0.1296  0.4140  0.8036 
SP4 0.5853  0.9399  0.1886 
SP8 0.7618  0.4140  0.0817 

       

Male 
DP N/A  N/A  0.6282 
SP4 N/A  N/A  0.6282 
SP8 N/A  N/A  0.5338 

p values shown. No statistical differences are found. Mann Whitney statistical test 
was used for all data.  Female WT n=4, het n=12, KO n=9. Male WT n=1, het n=7, 
KO n=6.  
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Figure 40. Unaffected SP Thymocyte Maturation in the CCRL1-/- Thymus. 

Thymocytes were stained for CD62L and CD69 to allow the identification mature         

(CD62L+CD69-) and immature (CD62L-CD69+) SP thymocytes by flow cytometry. 

Representative density plots were gated on live CD45+, CD4/CD8+, TCRβ+ cells, 

before the analysis of CD62L and CD69 expression (A). The proportions and 

numbers of mature and immature SP thymocytes in the male thymus (B), and 

female thymus (C) were determined. Horizontal bars represent the median values. 

Statistical analysis performed (Mann Whitney). Each point represents one mouse.  
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Table 15. Statistical Analysis of SP Thymocyte Maturation in CCRL1-/- Mice 

Compared to Littermate Controls.  

   Het vs. CCRL1-/- 

   SP4 SP8 

Female 
CD69+CD62L-  0.3249 0.8857 
CD69-CD62L+  0.2000 0.2000 

     

Male 
CD69+CD62L-  0.9017 1.000 
CD69-CD62L+  1.000 0.7302 

p values shown. No statistical differences are found. Mann Whitney statistical test 
was used for all data. Female WT n=2, het n=4, CCRL1-/- n=4. Male WT n=1, het 
n=5, CCRL1-/- n=4.  
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4.2.4 Normal Expression of CCR7 and CCR9 by CCRL1-/- Thymocytes 

CCRL1 has been shown to scavenge its ligands CCL19, CCL21 and CCL25 in vitro 

(Gosling et al., 2000). Moreover, a recent publication has illustrated the scavenging 

function of CCRL1 in vivo, by showing disrupted CCL21 gradients in the lymph node 

of CCRL1-/- mice, which resulted in the accumulation of CCR7+ DCs in the 

subcapsular sinus of these mice (Ulvmar et al., 2014). For these reason we 

analysed the populations of CCR7+ and CCR9+ thymocytes from CCRL1-/- mice 

compared to littermate controls.  

 

Populations of DP and SP thymocytes were identified by flow cytometry as 

previously shown, and then the expression of CCR7 by each population determined. 

Representative histograms show CCR7 expression by thymocytes from CCRL1-/- 

and littermate control mice (Figure 41A). Thymocytes from CCR7-/- mice were 

stained alongside as a negative control to ensure correct positioning of the CCR7 

gate. In the littermate control thymus, CCR7 expression was highest on SP 

thymocytes (mean: 78.7% of SP4 and 73.5% of SP8), whereas expression of CCR7 

on DP thymocytes was minimal (mean: 3%). CCR7 expression by the same 

thymocyte populations from CCRL1-/- mice was comparable to control thymi (mean: 

3.2% of DP, 79.2% of SP4, 69.9% of SP8) (Figure 41B). In addition, the median 

fluorescent intensity (MFI) of CCR7 expression by DP, SP4 and SP8 thymocytes 

was calculated to determine whether the density of CCR7 expression at the cell 

surface was influenced by CCRL1 (Figure 41C). There was no statistical difference 

in the proportion of CCR7+ thymocytes, or the CCR7 MFI expression by DP, SP4 or 

SP8 thymocytes from CCRL1-/- or control mice (Table 15).  
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Expression of CCR9 by DP and SP thymocytes was also determined by flow 

cytometry (Figure 42A). In the littermate control thymus, CCR9 was expressed 

highly by DP thymocytes (mean: 85.5%), but was expressed by fewer SP 

thymocytes (mean: 42.9% of SP4, 30.3% of SP8). CCR9 expression by CCRL1-/- 

thymocytes is comparable to thymocytes from littermate control mice (mean: 84.6% 

of DP, 40.7% of SP4, 28.2% of SP8) (Figure 42B). Moreover, CCR9 MFI was 

determined on populations of DP, SP4 and SP8 thymocytes, and revealed no 

significant differences in levels of CCR9 expression by CCRL1-/- thymocytes 

compared to littermate controls. (Figure 42C, Table 17)  
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Figure 41. CCR7 Expression by Thymocytes is Unaltered in CCRL1-/- Mice. 

Thymocytes were stained for CCR7, and a CCR7-/- thymus was used as a negative 

control for CCR7 staining (grey solid histogram). DP and SP thymocytes were 

identified as previously shown. Expression of CCR7 by DP and SP thymocytes was 

determined (A). The proportion of CCR7+ thymocytes (B), and MFI (median 

fluorescent intensity) of CCR7 expression (C) is shown. Horizontal bars represent 

the median values. Statistical analysis performed (Mann Whitney). Each point 

represents one mouse.  

CCR7 

DP SP4 SP8 
Het 

CCRL1-/- 

CCR7 

C
el

l n
o.

 
C

el
l n

o.
 

DP SP4 SP8 

A 

B 

KO
Het
WT

KO
Het
WT

2

3

4
50
60
70
80
90

DP      SP4      SP8

%
 o

f c
el

ls

Het 
CCRL1-/- 

0

1000

2000

3000

DP      SP4      SP8

M
FI

C 



 

 

156 

 

Figure 42. CCR9 Expression by Thymocytes is Unaltered in CCRL1-/- Mice. 

Thymocytes were stained for CCR9, and the expression of CCR9 by DP and SP 

thymocytes was determined (A). DP and SP thymocytes were identified as 

previously shown. The proportion of CCR9+ thymocytes (B), and MFI (median 

fluorescent intensity) of CCR9 expression (C) is shown. Statistical analysis 

performed (Mann Whitney). Each point represents one mouse.  
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Table 16. Statistical Analysis of CCR7 Expression by DP, SP4 and SP8 

Thymocytes in CCRL1-/- Mice Compared to Littermate Controls. 

  Het vs. CCRL1-/- 

  CCR7+ cells CCR7 MFI 

DP  0.6095 1.000 
SP4  1.000 0.9372 
SP8  0.6095 0.6991 

p values shown, no statistical differences were found.  
Mann Whitney statistical test was used for all data. Het n=6, CCRL1-/- n=4.  
 
 
 
Table 17. Statistical Analysis of CCR9 Expression by DP, SP4 and SP8 

Thymocytes in CCRL1-/- Mice Compared to Littermate Controls. 

  Het vs. CCRL1-/- 

  CCR9+ cells CCR9 MFI 

DP  0.3358 0.9143 
SP4  0.1488 0.0667 
SP8  0.5887 0.3524 

p values shown, no statistical differences were found.  
Mann Whitney statistical test was used for all data. Het n=6, CCRL1-/- n=4.  
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4.2.5 Normal Generation of nTreg in the CCRL1-/- Thymus 

Within the thymus, interactions between CCR7 and CCR9, and their ligands 

CCL19/CCL21 and CCL25 respectively, are required for cortex to medulla migration 

of SP thymocytes (Choi et al., 2008, Ehrlich et al., 2009). Although we have shown 

no difference in the populations of conventional SP thymocytes in the CCRL1-/- 

thymus, the medullary microenvironment is vital for the maturation of Treg (Cowan 

et al., 2013). Due to the potential ability of CCRL1 to influence CCR7 and CCR9 

dependent processes, we analysed the maturation of Treg in the CCRL1-/- thymus 

and littermate controls. This was achieved by staining SP thymocytes for CD69, 

CD25 and Foxp3 for flow cytometric analysis. Treg precursors were identified as 

CD69+CD25+Foxp3- whereas mature Treg were identified as CD69-CD25+Foxp3+ 

(Figure 43A). The majority of CD69+ SP thymocytes were conventional SP4 

thymocytes and therefore lacked expression of CD25 or Foxp3. Although few 

CD69+CD25+Foxp3- cells were detected in CCRL1-/- and control thymi (mean: 0.73% 

in het, 0.72% in CCRL1-/-), no statistical difference was found (p=0.9944). CD69-

CD25+Foxp3+ mature Treg accounted for a slightly larger population of CD69- cells 

(mean: 4.5% in het, 4.3% in CCRL1-/-), however no statistical difference was found 

between CCRL1-/- and littermate control mice (p=0.7861) (Figure 43B). These 

results show normal maturation of Treg precursors into mature Treg. 
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Figure 43. nTreg Development is Normal in the CCRL1-/- Thymus. 

Treg precursors and mature Tregs were identified in the thymus based on the 

expression of CD69, CD25 and Foxp3 by flow cytometry. Cells were first gated as 

live CD45+CD4+TCRβ+, then Treg precursors were identified as CD69+CD25+Foxp3- 

whereas mature Treg were identified as CD69-CD25+Foxp3+ (A). The proportion of 

Treg precursors and mature Treg are shown (B). Horizontal bars represent the 

median values. Statistical analysis performed (Mann Whitney). Each point 

represents one mouse.  
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4.2.6 Normal DN Thymocyte Development but Increased ETP in CCRL1-/- Mice 

The outward migration of DN thymocytes during their development is dependent on 

CCR7 and CCR9 mediated signalling (Benz et al., 2004, Misslitz et al., 2004). To 

determine any potential involvement of CCRL1 in this process, we analysed the 

proportions and numbers of DN thymocytes in CCRL1-/- and littermate controls. 

Thymi were digested and thymocytes stained with a panel of markers to allow the 

identification of DN thymocytes by flow cytometry. DN thymocytes were identified as 

CD45+lineage-. The markers used to define lineage were, CD3, CD4, CD8, TCRβ, 

B220, CD11b, CD11c, TER-119, ly-G6. Populations of DN1-4 thymocytes were 

subsequently identified based on their expression of CD44 and CD25 (Figure 44A). 

The proportions and absolute cell numbers of DN1 (CD44+CD25-), DN2 

(CD44+CD25+), DN3 (CD44-CD25+), and DN4 (CD44-CD25-) thymocytes were 

determined in thymi from female (Figure 44B), and male (Figure 44C) mice. 

Proportions and numbers of thymocytes in each DN population were similar 

between all genotypes, irrespective of gender. There was a significant difference in 

the number of DN3 thymocytes within the female WT vs. het thymus (p=0.0476) 

(median: 1.309x106 cells in WT, 1.133x106 cells in het), however no other statistical 

differences were found (Table 18 and Table 19).  

 

Studies using chemokine receptor deficient mice have shown that the recruitment of 

progenitor cells to the adult thymus is also dependent on CCR7 and CCR9. 

(Krueger et al., 2010, Zlotoff et al., 2010, De Obaldia et al., 2013). We determined 

the proportions and numbers of ETP in the CCRL1-/- thymus compared to littermate 

controls. ETP were identified by flow cytometry as CD45+lineage-CD25-
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CD44+CD117+ (Figure 45A). The percentage and number of ETP was determined in 

thymi from male (Figure 45B) and female (Figure 45C) mice. There is a consistent 

trend for increased percentages and absolute numbers of ETP in male and female 

CCRL1-/- thymi compared to littermate controls (Table 20). Proportions of ETP in the 

male CCRL1-/- thymus were increased to a median of 0.56% from 0.37% of lineage 

negative cells present in WT/het thymi (p=0.1055). Absolute numbers of ETP in the 

male CCRL1-/- thymus were also increased and approaching a level of significance 

(median: 13462 cells in CCRL1-/-, 9350 cells in mixed control group, p=0.0667). 

Proportions of ETP in the female CCRL1-/- thymus were significantly increased from 

a median of 0.35% of lineage negative cells present in control thymi to a median of 

0.69% of lineage negative cells in CCRL1-/- thymi (p=0.0163). Absolute numbers of 

ETP in the female CCRL1-/- thymus were also increased, but levels of significance 

not reached (median: 9560 in WT/het, 12366 in CCRL1-/-, p=0.2977). See Table 21 

for p values.  

 

This data suggests a potential role for CCRL1 in either the recruitment of ETP to the 

adult thymus, or the production of common lymphoid progenitors (CLP) in the bone 

marrow (BM). CD135+CD27+CD127+ CLP have been described within the BM, and 

BM chimeras have identified this population of cells as those responsible for a 

robust and rapid wave of thymopoiesis (Serwold et al., 2009). We identified this 

population of cells in the BM of CCRL1-/- mice compared to littermate controls using 

flow cytometry. In our analysis, CLP were identified as CD45+lineage-

CD135+CD27+CD127+ (Figure 46A). The proportion of CLP in the BM of CCRL1-/- 

and control mice were very similar (Figure 46B) (median: 31.5% of lineage negative 
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cells in control, 30.3% of lineage negative cells in CCRL1-/-, p=1.000). This result 

suggested that the production of CLP is unaffected in the CCRL1-/-, therefore the 

increased ETP observed in the CCRL1-/- thymus is more likely to be due to 

increased recruitment of progenitors from the circulation.  
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Figure 44. DN Thymocyte Development is Unaffected in CCRL1-/- Mice. 

Thymocytes were stained for CD25 and CD44 to allow the identification of DN1 

(CD44+CD25-), DN2 (CD44+CD25+), DN3 (CD44-CD25+), and DN4 (CD44-CD25-). 

Cells were first gated as live CD45+lineage-, prior to the identification of DN1-4 (A). 

Lineage markers used were CD3, CD4, CD8, TCRβ, B220, CD11b, CD11c, TER-

119, ly-G6. The proportions and absolute cell numbers of DN1-4 thymocytes in the 

female thymus (B), and male thymus (C). Horizontal bars represent the median 

values. Statistical analysis performed (Mann Whitney). Each point represents one 

mouse.  
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Table 18. Statistical Analysis of Proportions of DN Thymocytes in CCRL1-/- 
Mice Compared to Littermate Controls. 

  Het vs. CCRL1-/- 

  Female Male 

DN1  0.3290 0.2857 
DN2  0.3434 0.7302 
DN3  1.000 0.9048 
DN4  0.7449 0.9048 

p values shown, no statistical differences were found.  
Mann Whitney statistical test was used for all data.  
Female WT n=2, het n=7, CCRL1-/- n=5. Male WT n=1, het n=5, CCRL1-/- n=4.  
 
 
 
Table 19. Statistical Analysis of Numbers of DN Thymocytes in CCRL1-/- Mice 
Compared to Littermate Controls.  

  WT vs. Het  WT vs. KO  Het vs. KO 

Female 
DN1 0.9048  0.6623  0.7857 
DN2 0.9048  0.3290  1.000 
DN3 0.0476  0.9307  0.1429 

 DN4 0.0952  0.9307  0.3929 
       

Male 
DN1 N/A  N/A  0.2857 
DN2 N/A  N/A  0.5556 
DN3 N/A  N/A  1.000 

 DN4 N/A  N/A  0.7302 
p values shown. Significant difference highlighted in bold italic type.  
Mann Whitney statistical test was used for all data. 
Female WT n=3, het n=6, CCRL1-/- n=5. Male WT n=1, het n=5, CCRL1-/- n=4.  
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Figure 45. Increased ETP in the CCRL1-/- Thymus. 

Thymocytes were stained to allow the identification of ETP by flow cytometry. ETP 

were identified as CD45+lineage-CD25-CD44+CD117+ (A). Lineage markers used 

were CD3, CD4, CD8, TCRβ, B220, CD11b, CD11c, TER-119, ly-G6. The 

proportions and absolute cell numbers of ETP in the male (B), and female (C) 

thymus are shown. Horizontal bars represent the median values. Statistical analysis 

performed (Mann Whitney) *p<0.05. Each point represents one mouse.  
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Table 20. Proportions of ETP in Male and Female Thymi of CCRL1-/- Mice 
Compared to Littermate Controls. 

  WT  Het  CCRL1-/- 

Female 
Median (%) 0.37  0.35  0.69 
25th Quartile 0.24  0.31  0.49 
75th Quartile 0.52  0.48  0.77 

       

Male 
Median (%) 0.36  0.38  0.56 
25th Quartile 0.36  0.29  0.45 

75th Quartile 0.36  0.5  0.57 
Data expressed as median (bold) with 25th and 75th quartile.  
Female WT n=3, het n=6, CCRL1-/- n=5. Male WT n=1, het n=5, CCRL1-/- n=4. 
 
 
 
 
Table 21. Statistical Analysis of ETP Frequency in CCRL1-/- Mice Compared to 
Littermate Controls.  

  WT vs. Het  WT vs. KO  Het vs. KO 

Female 
Proportion 0.8969  0.1429  0.0222 

Cell number 0.7143  0.3929  0.4286 
       

Male 
Proportion N/A  N/A  0.1706 

Cell number N/A  N/A  0.1111 
p values shown. Statistical differences highlighted in bold italic type.  
Mann Whitney statistical test was used for all data.  
Female WT n=3, het n=6, CCRL1-/- n=5. Male WT n=1, het n=5, CCRL1-/- n=4.    
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Figure 46. Unaltered Frequency of CLP in the Bone Marrow of CCRL1-/- Mice. 

The bone marrow (BM) was stained for flow cytometry to allow the identification of 

CLP  (CD45+lineage-CD135+CD27+CD127+) (A). Lineage markers used were CD3, 

CD4, CD8, TCRβ, B220, CD11b, CD11c, TER-119, ly-G6. The proportion of CLP in 

the BM were determined (B). Horizontal bars represent the median values. 

Statistical analysis performed (Mann Whitney). Each point represents one mouse. 
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4.2.7 Increased Frequency of Migratory Sirpα+ cDCs in CCRL1-/- Mice 

Two subsets of conventional (c) DC are present within the thymus and can be 

identified by flow cytometry based on the expression of MHC-II, CD11c, CD11b and 

Sirpα. Sirpα- cDCs are generated within the thymus whereas Sirpα+ cDCs are 

generated extrathymically, and are a migratory subset, which are recruited into the 

thymus (Luche et al., 2011, Baba et al., 2009).  A recent publication identified a 

reduction in the population of CD8α+ Sirpα- resident thymic cDCs from CCR7/CCR9 

DKO BM, suggestive of a role for CCR7 and CCR9 in the development or 

maintenance of this population (De Obaldia et al., 2013). For this reason, we 

analysed populations of thymic DC in CCRL1-/- and littermate control mice.   

 

We identified resident Sirpα- cDC as MHC-II+CD11c+CD11b-Sirpα-, and Sirpα+ cDC 

as MHC-II+CD11c+CD11b+Sirpα+ (Figure 47A). The proportion and number of both 

subsets of cDCs were quantitated in the CCRL1-/- thymus compared to littermate 

controls (Figure 47B, C). The percentage of Sirpα+ cDCs was significantly increased 

in the CCRL1-/- thymus (median: 12.4% of MHC-II+ cells in het, 17.3% of MHC-II+ 

cells in CCRL1-/-, p=0.0012). In addition, the absolute cell number of Sirpα+ cDCs 

was also significantly increased in the CCRL1-/- thymus (median: 121,440 cells in 

het thymus, 190,545 cells in CCRL1-/- thymus, p=0.0140). There was no difference 

in the percentage or number of resident Sirpα- cDCs in the CCRL1-/- thymus 

compared to littermate controls.  
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In addition to cDC, plasmacytoid (p) DC exist within the thymus. Thymic pDCs are a 

migratory DC subset responsible for the transport of peripheral antigens to the 

thymus in a CCR9-dependant manner (Hadeiba et al., 2012). Thymic pDCs were 

identified as B220+CD11c+ cells (Figure 48A), and the proportion and absolute 

number of these cells calculated (Figure 48B). No statistical difference was found in 

the percentage (p=0.3660) or absolute number (p=0.2949) of pDCs between 

CCRL1-/- and littermate controls.  

 

We next determined the positioning of thymic DCs in CCRL1-/- mice by staining 

cryosections of WT and CCRL1-/- thymus with CD4, CD8 and CD11c. This allowed 

the identification of cortex and medulla, using the localisation of DP and SP 

thymocytes respectively, and allowed identification of total DC based on expression 

of CD11c. Thymic DCs were localised primarily within the medulla in the WT thymus 

(Figure 49A), which was comparable to their localisation within the CCRL1-/- thymus 

(Figure 49B). These results suggest that CCRL1 expression is not needed for the 

correct positioning of thymic DCs.    
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Figure 47. Increased Sirpα+ DCs in the CCRL1-/- Thymus. 

Cell suspensions obtained from digested thymi were stained for CD11b and Sirpα to 

allow the identification of Sirpα+ migratory DC, and Sirpα- resident DC. 

Representative density plots were first gated on live cells, prior to the identification 

of thymic cDC (A). The proportions and absolute cell numbers of migratory and 

resident thymic DC are shown (B).  Horizontal bars represent the median values. 

Statistical analysis performed (Mann Whitney) **p<0.001 *p<0.05. Each point 

represents one mouse.  
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Figure 48. Unaltered Frequency of Thymic Plasmacytoid DC in CCRL1-/- Mice. 

Cell suspensions obtained from digested thymi were stained for B220 and CD11c to 

allow the identification of B220+CD11c+ plasmacytoid (p) DC. Representative density 

plots were first gated on live cells, prior to the identification of pDCs (A). The 

proportions and absolute cell numbers of pDCs were determined (B).  Horizontal 

bars represent the median values. Statistical analysis performed (Mann Whitney). 

Each point represents one mouse.  

B
22

0 

CD11c 

Het A CCRL1-/- 

B 
B

22
0 

CD11c 

Plasmacytoid DC

Het CCRL1-/-
0.0

0.5

1.0

1.5

%
 o

f  
ce

lls

Plasmacytoid DC

Het CCRL1-/-

2

4

6

8

0

C
el

l n
um

be
r (

x1
04 )

%
 o

f c
el

ls
 

C
el

l n
um

be
r (

x1
04

) 



 

 

172 

 

  
Figure 49. Normal Localisation of Thymic DC in CCRL1-/- Mice. 

Adult WT (A) and CCRL1-/- (B) thymi were frozen and sections stained for CD4, CD8 

and CD11c. CD11c+ DC are localised primarily within the thymic medulla, with some 

DCs positioned close to the corticomedullary junction. Dashed line shows 

demarcation between cortex ‘C’ and medulla ‘M’.   
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4.2.8 Unaltered Frequency of Thymic B Cells in CCRL1-/- Mice 

The population of thymic B cells remains largely unstudied, however their role in the 

presentation of self-antigen in the process of negative selection has been 

documented (Frommer and Waisman, 2010, Akirav et al., 2011, Perera et al., 2013, 

Walters et al., 2014). These cells arise from Rag expressing progenitor cells within 

the thymus, however it is not clear whether these progenitor cells would form part of 

the ETP population we identified using flow cytometry in this study. Experiments 

using BM chimeras have shown a reduction in thymic B cells from CCR7/CCR9 

DKO BM (De Obaldia et al., 2013), suggesting these chemokine receptors could be 

involved in either the generation of thymic B cells or their transport into the thymus.  

 

Given our data showing increased ETP in the CCRL1-/- thymus, and the possible 

role of CCR7 and CCR9 in the recruitment of thymic B cell progenitors, we analysed 

the population of thymic B cells in the CCRL1-/- and littermate control thymus. Thymi 

were digested and thymic B cells identified by flow cytometry as CD45+CD4-CD8-

TCRβ-B220+CD19+. A small population of B cells are detected in control and 

CCRL1-/- thymi (Figure 50A). The percentage and absolute number of thymic B cells 

were determined in male and female thymi (Figure 50B, C). There was no difference 

in the percentage or absolute numbers of B cells in the thymus from male (%, 

p=0.9048, cell number, p=0.4127) or female (%, p=0.4678, cell number, p=0.3429) 

CCRL1-/- mice compared to het littermate controls.   
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Figure 50. Unaltered Frequency of Thymic B Cells in CCRL1-/- Mice. 

Thymic B cells were identified as CD45+CD4-CD8-TCRβ-B220+CD19+ (A). The 

proportions and absolute cell numbers of thymic B cells are shown in the male 

thymus (B), and female thymus (C). Horizontal bars represent the median values. 

Statistical analysis performed (Mann Whitney). Each point represents one mouse.  
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4.2.9 Abnormal Distribution of DN Thymocytes in CCRL1-/- Mice 

The outward migration of DN thymocytes, which is accompanied by their 

development, is mediated by several chemokine receptors. Mice deficient in 

CXCR4, CCR7 or CCR9 show abnormal localisation of DN thymocytes, however the 

homing of DN thymocytes to the SCZ is not an absolute requirement for T cell 

development (Misslitz et al., 2004, Benz et al., 2004, Plotkin et al., 2003). The 

localisation of DN thymocytes in the CCRL1-/- thymus was determined by staining 

cryosections of thymi for CD4, CD8 and CD25. CD4 and CD8 identify the thymic 

cortex and medulla by the distribution of DP and SP thymocytes respectively. CD25 

is expressed by DN2 (CD44+CD25+) and DN3 (CD44-CD25+) thymocytes. Within the 

adult thymus the following areas were identified: SCZ (50µm from the tissue edge), 

outer cortex (100µm from the SCZ), mid cortex (any area between the outer cortex 

and CMJ), and CMJ (50µm into the cortex from the medulla). Representative 

images of heterozygous and CCRL1-/- thymus showing these areas can be found in 

Figure 51A. CD25+ cells were manually enumerated in each area to determine the 

number of CD25+ cells/mm2. Three sections were stained from each mouse, and 

three areas were quantitated per section. The mean of the three areas quantitated 

was used for all subsequent analysis.  Three CCRL1-/- and three control thymi were 

analysed. CD25+ cells were found in greatest density at the SCZ, and at this location 

there was a significant reduction of these cells in the CCRL1-/- thymus (p=0.0040). 

CD25+ cells were also reduced in the CCRL1-/- at the outer cortex (p=0.0081). There 

was no difference in the number of CD25+ cells at the cortex or CMJ regions of the 

CCRL1-/- thymus compared to controls (Figure 51B, Table 22).  
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A similar quantitation was carried out in the thymus from neonatal mice (2 days old), 

where the localisation of CD25+ DN thymocytes to the SCZ is more prevalent (Benz 

et al., 2004). In these younger mice, CD25+ cells at the SCZ (50µm from the tissue 

edge) and outer cortex (100µm from the SCZ) were identified. A representative 

image from CCRL1-/- and control thymi, showing these areas can be found in Figure 

52A. CD25+ cells were manually enumerated in each area to determine the number 

of CD25+ cells/mm2. Three sections were stained from each mouse, and three areas 

were quantitated per section. Three thymi of each genotype were analysed. Similar 

to the adult thymus, CD25+ cells were found in greatest density at the SCZ, where 

there was a significant reduction in the CCRL1-/- thymus (p=0.0151). CD25+ cells 

were not reduced in the neonatal CCRL1-/- thymus at the outer cortex (p=0.9114) 

(Figure 52B, Table 23).   



 

 

177 

 

Figure 51. Abnormal Distribution of CD25+ DN Thymocytes in CCRL1-/- Thymi. 

Cryosections were stained for CD8 and CD25 and the following areas identified: 

SCZ (50µm from the tissue edge), outer cortex (100µm from SCZ), mid cortex (any 

area between outer cortex and CMJ), and CMJ (50µm into the cortex from the 

medulla) Representative confocal staining of het and CCRL1-/- thymus, with areas to 

be quantitated identified (A). Scale bar shows 50µm. Cells were manually 

enumerated to determine the number of CD25+ cells/mm2 in each area (B). Three 

sections were stained from each mouse, and three areas were quantitated per 

section, n=3 mice of each genotype. Each point represents the mean quantitation 

per section and horizontal bars represent the mean. Statistical analysis performed 

(Two way ANOVA with Bonferroni post test) **p<0.01  
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Figure 52. Abnormal Distribution of CD25+ DN Thymocytes at the Subcapsular 

Zone of Neonatal CCRL1-/-  Mice. 

Thymi from 2 day old mice was cryosectioned and stained for CD4 CD8 and CD25 

and the following areas identified: SCZ (50µm from the tissue edge), and the outer 

cortex (100µm from SCZ). Representative confocal staining of het and CCRL1-/- 

thymus, with areas to be quantitated identified is shown. Three sections were 

stained from each mouse, and two areas were quantitated per section, n=3 mice of 

each genotype. Each point shows the quantitation per section and horizontal bars 

represent the mean. Statistical analysis performed (Two way ANOVA with 

Bonferroni post test) *p<0.05  
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Table 22. CD25+ cells/mm2 in the Adult Thymus 

                Het      CCRL1-/- Het vs. 
CCRL1-/- 

 Mean SEM  Mean SEM P value 

SCZ 2486 173.6  1864 62.7 0.0040 

Outer cortex 1329 69.9  1129 51.2 0.0081 

Mid cortex 1015 63.3  1057 77.5 0.6872 
CMJ 1428 121.0  1347 116.0 0.5690 

The mean and SEM of the number of CD25+ cells/mm2 in the SCZ, outer cortex, mid 
cortex and CMJ of the CCRL1-/- and het adult thymus. n=3 het, 3 CCRL1-/-. 
Significant p values are highlighted in bold italic type (two way ANOVA with 
Bonferroni post test). 
 
 
 
 
Table 23. CD25+ cells/mm2 in the Neonatal Thymus 

                  Het     CCRL1-/- Het vs. 
CCRL1-/- 

 Mean SEM  Mean SEM P value 

SCZ 4219 199.9  3474 168.1 0.0151 

Outer cortex 680 43.2  671 63.8 0.9114 
The mean and SEM of the number of CD25+ cells/mm2 in the SCZ and outer cortex 
of the CCRL1-/- and het neonatal thymus. n=3 het, 3 CCRL1-/-.  
Significant p values are highlighted in bold italic type (two way ANOVA with 
Bonferroni post test). 
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4.2.10 Unaltered Levels of CCRL1 Ligand in the CCRL1-/- Thymus 

Although the scavenging function of CCRL1 has been shown several times in vitro, 

this has not been consistently reflected by levels of CCRL1 ligand in vivo. Analysis 

of the CCRL1-/- mouse by Comerford and colleagues revealed increased levels of 

CCL19 and CCL21 in the lymph node of CCRL1-/- mice, however this was not 

reproduced in the latest analysis of the same mice by Ulvmar et al (Ulvmar et al., 

2014, Comerford et al., 2010). In addition, analysis by Bunting et al revealed 

reduced levels of CCL19 and CCL25 in the CCRL1-/- thymus, a surprising finding, 

considering the scavenging role of CCRL1 (Bunting et al., 2013). Due to these 

conflicting reports, we analysed the levels of CCL19, CCL21 and CCL25 in the 

thymus of CCRL1-/- and littermate control mice. The levels of these chemokines 

were determined by ELISA, using thymus tissue from plt and CCL25-/- mice as 

negative controls for CCL19/CCL25 and CCL25 respectively. There was no 

significant difference in the levels of CCL19, CCL21 or CCL25 between CCRL1-/- 

thymi and littermate controls (Figure 53, Table 24).    
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Figure 53. Unaltered Levels of CCR7L and CCR9L in the CCRL1-/- Thymus. 

CCR7L and CCR9L were quantified by ELISA analysis. The levels of CCL19 and 

CCL21 were determined, and the thymus from a plt mouse used as a negative 

control (A). The level of CCL25 was also determined, using the thymus from a 

CCL25-/- mouse as a negative control (B). Each point represents one mouse and 

horizontal bars represent the median. Statistical analysis performed (Mann 

Whitney). 
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Table 24. Levels of CCL19, CCL21, and CCL25 in the CCRL1-/- Thymus 
Compared to Littermate Controls. 

     p values  

  WT n=4 Het n=6 KO n=8   WT vs. 
Het 

WT vs. 
KO 

Het vs. 
KO  

CCL19 
pg/mg 

thymus 

Median 8.423 7.766 6.429   0.6095 0.2828 0.8518  

25th  5.866 3.058 3.813       

75th  12.94 10.44 8.560       

  WT n=4 Het n=6 KO n=7   WT vs. 
Het 

WT vs. 
KO 

Het vs. 
KO  

 
CCL21 
ng/mg 

thymus 

Median 2.347 1.847 1.720   0.4762 0.3152 1.000  

25th  1.711 0.997 1.175       

75th  3.366 3.082 2.703       

 WT n=5 Het n=5 KO n=8   WT vs. 
Het 

WT vs. 
KO 

Het vs. 
KO  

CCL25 
ng/mg 

thymus 

Median 4.641 3.907 4.562   0.5476 0.8329 0.8329  

25th  4.022 2.292 2.431       

75th  5.627 5.243 5.493       

Data expressed as median (bold) with 25th and 75th quartile. p values shown (Mann 
Whitney statistical test).   
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4.2.11 Unaltered TEC Populations in the CCRL1-/- Thymus 

Recent analysis of the stromal compartment of the CCRL1-/- thymus reported 

increased numbers of immature mTEClo and mature mTEChi (Bunting et al., 2013). 

We also performed a detailed analysis of the TEC population in CCRL1-/- mice 

compared to littermate controls. Briefly, thymi were digested and stromal cells 

enriched by MACS depletion of CD45+ cells. Cells were stained for EpCAM to 

identify total TEC, then Ly51 to distinguish between Ly51- mTEC and Ly51+ cTEC. 

Staining for CD80 and Aire allowed the identification of mature CD80+Aire+ mTEC 

(Figure 54A). The absolute cell number of total TEC was unchanged between 

CCRL1-/- and het thymi (p=0.3429) (Figure 54B). The proportion and cell number of 

EpCAM+Ly51+ cTEC was also similar between CCRL1-/- and littermate controls 

(p=0.3429, p-0.3429 respectively) (Figure 54C). The percentage of EpCAM+Ly51- 

mTEC was similar been CCRL1-/- and control mice (p=0.8857), as was the absolute 

cell number (p=0.4857). The median proportion of CD80+Aire+ mTEC was also 

similar in CCRL1-/- (7.8%), and het (7.9%) thymi (p=0.8857); this was reflected in 

absolute cell numbers (p=0.4857) (Figure 54D). In summary, our analysis showed 

no difference in the percentage or absolute cell number of any TEC population 

analysed in CCRL1-/- compared to littermate controls.  

 

To determine the localisation of cortical and medullary microenvironments within the 

CCRL1-/- thymus, we stained sections of WT (Figure 55A) and CCRL1-/- (Figure 55B) 

thymus for CD205 and TR5 to show cortex and medulla, respectively. This revealed 

distinct cortical and medullary regions in both WT and CCRL1-/- mice. Moreover, 
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staining for CD4 and CD8 revealed the correct positioning of DP and SP thymocytes 

within the cortex and medulla in CCRL1-/- thymus.  
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Figure 54. No Alteration in TEC Populations in the CCRL1-/- Thymus. 

Thymi were digested and TEC were enriched by depleting CD45+ cells using MACS 

technology. Cells were stained to allow the identification of TEC populations by flow 

cytometry (A).  The absolute number of TEC (B), the proportions and absolute cell 

numbers of Ly51+ cTEC (C), Ly51- mTEC, and CD80+Aire+ mTEC (D) are shown. 

Horizontal bars represent the median values. Statistical analysis performed (Mann 

Whitney). Each point represents one mouse.  
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Figure 55. Normal Cortex and Medulla Organisation in CCRL1-/- Mice 

Thymus sections from WT (A), and CCRL1-/- (B) mice were stained for CD205 and 

TR5 to identify cortex ‘C’ and medulla ‘M’ respectively. Sections were also stained 

for CD4 and CD8 to allow the identification of SP and DP thymocytes, and 

determine their positioning within the thymus with respect to cortical and medullary 

areas.  
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4.2.12 Analysis of Irradiation Bone Marrow Chimeras 

The data shown so far focuses on the CCRL1-/- thymus under steady-state 

conditions, and fails to identify a major role for CCRL1. To further this study, we 

generated irradiation bone marrow (BM) chimeras to determine any involvement of 

CCRL1 in thymic reconstitution. Two groups of mice were created; CCRL1-/- hosts 

that were reconstituted with WT BM, and WT hosts that were reconstituted with 

CCRL1-/- BM. Haematopoietic cells from CCRL1-/- mice were CD45.2 whereas those 

from WT mice were CD45.1. This allowed the identification of host and donor cells in 

our analysis.  

 

The thymus from irradiation bone marrow chimeras were harvested 9 weeks post 

reconstitution, and analysed using flow cytometry. The thymus was digested and 

thymocytes stained for CD4, CD8 and TCRβ, to allow the identification of DN, DP 

and SP thymocytes (Figure 56A). The cellularity of the thymus was calculated and 

showed a significant difference in WT hosts that had received CCRL1-/- BM 

(p=0.0303) (Figure 56B). The proportions of DN, DP, SP4 and SP8 thymocytes 

were similar in both groups of BM chimeras (p=0.0732, p=0.8705, p=0.8708, 

p=0.1490 respectively). The number of DN thymocytes was significantly different in 

WT mice that had received CCRL1-/- BM, compared to CCRL1-/- mice that had 

received WT BM (WT mice reconstituted with CCRL1-/- BM median: 429776 cells, 

CCRL1-/- mice reconstituted with WT BM median: 319601 cells, p=0.0051). Despite 

this, there was no significant difference in the absolute cell number of DP 

(p=0.2020), SP4 (p=0.2677) or SP8 (p=0.7551) thymocytes (Figure 56C).     
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Figure 56. Increased DN Thymocytes in Irradiated WT Hosts, Reconstituted 

with CCRL1-/- Bone Marrow. 

Irradiation bone marrow chimeras were generated and the thymus was analysed by 

flow cytometry 9 weeks post reconstitution. Thymocytes were stained to allow the 

identification of DN, DP and SP thymocytes by flow cytometry as previously shown 

(A). Thymus cellularity was calculated (B), and the proportions and absolute cell 

numbers of DN, DP and SP thymocytes are shown (C). Horizontal bars represent 

the median values. Statistical analysis performed (Mann Whitney) *p<0.05, 

**p<0.01. Each point represents one mouse.  
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4.2.13 Increased Proportions of Peripheral T Cells in CCRL1-/- Mice 

To assess any role for CCRL1 in the maintenance of the peripheral T cell pool, we 

examined the populations of T cells in the blood, spleen and inguinal lymph node 

(LN) of steady-state CCRL1-/- and control mice. Firstly the blood from CCRL1-/- mice 

and het littermate controls was stained for flow cytometry. TCRβ was used to detect 

αβ T cells, and then CD4, CD8, CD25 and Foxp3 allowed the subsequent detection 

of CD4 T cells, CD8 T cells, and Tregs (Figure 57A.) There was a highly significant 

increase in the proportion of αβ T cells in the blood of CCRL1-/- mice compared to 

littermate controls (p=<0.0001, het mean: 21.1%, CCRL1-/- mean: 28.5%).  

Moreover, there was a significant increase in the numbers of αβ T cells/µl blood 

(p=0.0047), (Figure 57B). The relative proportions of CD4 and CD8 T cells were 

unchanged in the blood of CCRL1-/- mice compared to controls, however there was 

a trend for increased numbers of both populations (consistent with the overall trend 

for increased numbers of αβ T cells) (Figure 57C, Table 25. Although the proportion 

of αβ T cells was increased in the blood of CCRL1-/- mice, the proportion of Treg 

was significantly decreased (p=0.0017). The percentage of Treg decreased from a 

mean of 7.6% in het controls, to 5.3% in CCRL1-/-. Despite this difference in 

proportion, the absolute number of Foxp3+ Treg was similar in the peripheral blood 

of CCRL1-/- and littermate control mice. (Figure 57D, Table 25).  

 

A similar flow cytometric analysis of the spleen was performed whereby splenocytes 

were stained for TCRβ, CD4, CD8, CD25 and Foxp3 to allow the identification of αβ 

T cells, CD4 T cells, CD8 T cells, and Foxp3+ Treg (Figure 58A). Similar to blood, 

proportions of αβ T cells were significantly increased in the CCRL1-/- spleen 
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(p=0.0186), however this increase was not reflected in absolute cell numbers 

(Figure 58B). The proportion of CD8 T cells was significantly increased in the 

CCRL1-/- spleen (p=0.0455), and the proportion of CD4 T cells was reciprocally 

decreased (p=0.0694). Despite this, there was no difference in the absolute number 

of CD4 or CD8 T cells between the spleen from CCRL1-/- mice and littermate 

controls (Figure 58C, Table 25). Similarly to the blood, there was a trend for reduced 

proportions of Treg in the CCRL1-/- spleen, however this was not significant 

(p=0.1478). The absolute numbers of Treg in the CCRL1-/- spleen were similar to 

control mice.  

 

The same flow cytometric staining and analysis was performed on cells obtained 

from the inguinal LN of CCRL1-/- and control mice (Figure 59A). Interestingly, there 

was no difference in the percentage or absolute number of αβ T cells in the inguinal 

LN from CCRL1-/- compared to control mice (Figure 59B). Moreover, there was no 

difference in the proportions or numbers of CD4 or CD8 T cells (Figure 59C). Foxp3+ 

Treg were also present in similar proportions and numbers in the inguinal LN from 

CCRL1-/- and control mice (Figure 59D, Table 25). 
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Figure 57. Increased Proportions of T Cells in the Peripheral Blood of CCRL1-/- 

Mice. 

Blood was stained and analysed by flow cytometry to allow the identification of 

conventional T cells and Tregs. Live lymphocytes were gated prior to the detection 

of TCRβ+ cells (A). The proportions and absolute cell numbers of αβ T cells (B), 

CD4 and CD8 T cells (B), and Foxp3+ Tregs (C) are shown. Horizontal bars 

represent the median values. Statistical analysis performed (D'Agostino-Pearson 

followed by t test) **p<0.01, ***p<0.001 Each point represents one mouse.  
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Figure 58. Increased Proportions of T Cells in the Spleen of CCRL1-/- Mice. 

Splenocytes were stained and analysed by flow cytometry to allow the identification 

of conventional T cells and Tregs. Live lymphocytes were gated prior to the 

detection of TCRβ+ cells (A). The proportions and absolute cell numbers of αβ T 

cells (B), CD4 and CD8 T cells (B), and Foxp3+ Tregs (C) are shown. Horizontal 

bars represent the median values. Statistical analysis performed (D'Agostino-

Pearson followed by t test) *p<0.05. Each point represents one mouse.  
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Figure 59. Unaltered Proportions of T Cells in the CCRL1-/- Lymph Node. 

Inguinal lymph node cells were stained and analysed by flow cytometry to allow the 

identification of conventional T cells and Tregs. Live lymphocytes were gated prior to 

the detection of TCRβ+ cells (A). The proportions and absolute cell numbers of αβ T 

cells (B), CD4 and CD8 T cells (B), and Foxp3+ Tregs (C) are shown. Horizontal 

bars represent the median values. Statistical analysis performed (Mann Whitney). 

Each point represents one mouse.  
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4.2.14 Thymic Egress is Not Dependant on CCRL1 

Given the increased proportions of αβ T cells in the peripheral blood of CCRL1-/- 

mice, we compared thymic output between CCRL1-/- mice and littermate controls. 

This was achieved by crossing CCRL1-/- mice with RAG2pGFP mice to allow the 

identification of recent thymic emigrants (RTE) by expression of GFP. Expression of 

GFP was determined on total αβ T cells in blood (Figure 60A), inguinal LN (Figure 

60B), and spleen (Figure 60C). No significant differences were found in the 

proportion of RAG2pGFP+ cells between CCRL1-/- mice and littermate controls in 

blood, lymph node or spleen.  

 

To determine any difference in the egress of specific T cell populations from the 

thymus, we next identified CD4, CD8 and Foxp3+ T cells in the blood by flow 

cytometry as previously shown (Figure 61A). Expression of RAG2pGFP was 

determined using blood from a WT (RAG2pGFP negative) mouse as a negative 

control (not shown). The proportion and number of cells expressing RAG2pGFP are 

unchanged for CD4, CD8 and Treg cells in the blood (Table 26) (Figure 61B). CD4, 

CD8 and Treg RTE were identified using the same method in the spleen (Figure 62), 

and inguinal LN (Figure 63), and similar proportions and numbers of RAG2pGFP+ 

CD4 and CD8 T cells, and Treg were present in both tissues from CCRL1-/- and het 

littermate controls. These results show similar frequencies of RTE in the blood, 

spleen and inguinal LN in CCRL1-/- and littermate control mice.  
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Figure 60. Proportion on RTE in Blood, Lymph Node and Spleen of CCRL1-/- 

and littermate controls. 

Expression of RAG2pGFP was determined on TCRb+ T cells from blood (A), 

inguinal lymph node (B), and spleen (C) using flow cytometry. The proportions of 

RAG2pGFP+ TCRb+ T cells were quantitated for each tissue, no significant 

differences were found between CCRL1-/- mice and littermate controls. Overlaid 

histograms show GFP expression by cells from WT and RAG2pGFP mice.  
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Figure 61. Normal Proportions of RTE in CCRL1-/- Blood. 

Blood from CCRL1-RAG2pGFP mice was analysed by flow cytometry to determine 

the number of GFP+ RTE. Live CD3+TCRβ+ cells were gated prior to the detection of 

CD4+, CD8+ and Foxp3+ T cells (A). The proportion and absolute numbers of GFP+ 

CD4 and CD8 T cells, and Foxp3+ Treg are shown (B). Horizontal bars represent the 

median values. Statistical analysis performed (Mann Whitney).  Each point 

represents one mouse.  
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Figure 62. Normal Proportions of RTE in CCRL1-/- Spleen. 

Splenocytes from CCRL1-RAG2pGFP mice were analysed by flow cytometry to 

determine the number of GFP+ RTE. Live CD3+TCRβ+ cells were gated prior to the 

detection of CD4+, CD8+ and Foxp3+ T cells (A). The proportion and absolute 

number of GFP+ CD4 and CD8 T cells, and Foxp3+ Treg are shown (B). Horizontal 

bars represent the median values. Statistical analysis performed (Mann Whitney).  

Each point represents one mouse.  
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Figure 63. Normal Proportions of RTE in CCRL1-/- Inguinal Lymph Node.  

Inguinal lymph nodes from CCRL1-RAG2pGFP mice were analysed by flow 

cytometry to determine the number of GFP+ RTE. Live CD3+TCRβ+ cells were 

gated prior to the detection of CD4+, CD8+ and Foxp3+ T cells (A). The proportion 

and absolute number of GFP+ CD4 and CD8 T cells, and Foxp3+ Treg are shown 

(B). Horizontal bars represent the median values. Statistical analysis performed 

(Mann Whitney).  Each point represents one mouse.  
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Table 25. Statistical Analysis of Peripheral T Cell Populations in the CCRL1-/- 

Mouse Compared to Littermate Controls 

  p values 

  Blood   Spleen     Inguinal LN 
% αβ T cell  <0.0001  0.0186  0.3251 

Number of αβ T cell  0.0047  0.9444  0.8981 

% CD4 T cell  0.1877  0.0694  0.7286 

Number of CD4 T cell  0.0802  0.5279  0.2133 

% CD8 T cell  0.1088  0.0455  0.8263 

Number of CD8 T cell  0.4354  0.5873  0.2318 

% Treg 

Number of Treg 

 0.0017 
0.7699 

 
0.1478 

0.7037 
 

0.4045 

0.9829 

Statistical analysis performed (D'Agostino-Pearson followed by t test), significant p 
values are highlighted in bold italic type. 
 

 

 

 

Table 26. Statistical Analysis of RAG2pGFP Expression by Peripheral T cell 

Subsets. 

   p values 
   CD4  CD8  Treg 

Proportion 
Blood  0.4260  0.4824  0.6734 
Spleen  0.0678  0.4260  0.1745 

iLN  0.4260  0.2417  0.3736 
        

Absolute 
Number 

Blood  0.2317  0.2011  0.4333 
Spleen  0.1223  0.2417  0.1466 

iLN  0.4606  0.6828  0.8081 
Statistical analysis performed (D'Agostino-Pearson followed by  
Mann Whitney), no statistical differences are present. 
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4.2.15 Normal Colonisation of the E12 Thymus in the Absence of CCRL1 

Progenitor cells are first detected in the murine thymus at E11.5. During pre-

vascularisation embryogenesis, progenitor cells migrate to the thymic anlagen from 

the surrounding mesenchyme (Calderon and Boehm, 2011). At these early 

developmental stages, CCL21, CCL25 and CXCL12 are expressed by the thymic 

anlagen and surrounding mesenchyme (Calderon and Boehm, 2011, Liu et al., 

2006), and the receptors for these chemokines are expressed by CD45+ cells 

isolated from the perithymic mesenchyme (Jenkinson et al., 2007a). Combinations 

of single, double and triple CCR7/CCR9/CXCR4 KO mice have shown the 

importance of these chemokine-chemokine receptor interactions in the recruitment 

of progenitor cells to the thymus during pre-vascularisation embryogenesis 

(Calderon and Boehm, 2011).  

 

We analysed the E12 thymus from CCRL1-/- mice and littermate controls to 

determine whether CCRL1 played a role in the recruitment of progenitor cells at this 

early pre-vascular stage. This was achieved by the dissection and digestion of 

individual thymic lobes from E12 embryos. The resulting cell suspensions were 

stained for EpCAM and CD45 for flow cytometry, and cells were tallied using 

counting beads. FACS analysis revealed three populations of cells; CD45-EpCAM+ 

TEC, CD45+EpCAM- haematopoietic cells, and CD45-EpCAM- mesenchymal cells 

(Figure 64A). The number of haematopoietic cells and TEC were calculated (Figure 

64B), and were similar between CCRL1-/- and littermate control thymi 

(haematopoietic cells p=1.000, TEC p=0.3524. Despite this, the range of CD45+ and 

EpCAM+ cells was wide, especially in the control group of mice (709-5359 CD45+ 
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cells, 1610-21507 EpCAM+ cells), therefore to take into account any differences in 

the dissection of the tissue, the CD45+: EpCAM+ ratio was calculated (Figure 64C). 

This revealed a slightly higher ratio in CCRL1-/- mice, suggesting an increase in the 

number of CD45+ cells per EpCAM+ cell, however this difference was not statistically 

significant (p=0.0667).  
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Figure 64. Normal Colonisation of the E12 CCRL1-/- Thymus. 

E12 thymic lobes were digested and analysed by flow cytometry to determine the 

number of EpCAM+ and CD45+ cells. Live cells were gated prior to the detection of 

these subsets (A). The number of CD45+ and EpCAM+ cells are shown (B). The 

CD45+:EpCAM+ ratio was calculated (C). Horizontal bars represent the median 

values. Statistical analysis performed (Mann Whitney).  Each point represents one 

mouse.  
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4.2.16 CCRL1 Regulates the Recruitment of Progenitor Cells to Vascularised 

Embryonic Thymus 

Although the vasculature begins to develop in the embryonic thymus at E13.5, it is 

not functional until E15.5., and at this stage, progenitor cells are recruited to the 

thymus via vasculature at the CMJ (Liu et al., 2006). Mice deficient in CCR7, CCR9 

and CXCR4 have reduced thymus cellularity at E17.5, suggesting a role for these 

chemokines in the recruitment of progenitor cells by this method (Calderon and 

Boehm, 2011).  

 

In the previous chapter we showed onset of CCRL1 expression within the embryonic 

thymus at E13. For this reason we stained sections of E13 WT and CCRL1-/- thymus 

for CD45, pan-keratin and laminin to observe the organisation of haematopoietic, 

and epithelial and non-epithelial stromal cells. The WT thymus showed a clear 

keratin+ epithelial cell compartment, completely surrounded by laminin+ basal 

lamina, with CD45+ progenitor cells scattered at the periphery and within the tissue 

(Figure 65A). This distribution of haematopoietic and stromal cells was similar in the 

CCRL1-/- thymus (Figure 65B).  

 

We analysed the thymus at E14 (pre-vascularisation), E15 (during the transition to 

functional vasculature), and E17 (post-vascularisation). Thymus from mice at these 

stages of development were dissected, digested and cells tallied and stained for 

flow cytometry. As expected, the cellularity of the thymus progressively increased 

between E14 and E17, however no difference in cellularity was observed between 

CCRL1-/- and control mice at any age (Figure 66A, Table 27).  
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Populations of DN thymocytes were identified using the same panel of markers as in 

the adult thymus. DN thymocytes were identified as CD45+lineage-. Lineage markers 

used were CD3, CD4, CD8, TCRβ, B220, CD11b, CD11c, TER-119, and Ly-G6. 

Populations of DN1-4 thymocytes were identified based on their expression of CD44 

and CD25 (DN1, CD44+CD25-, DN2, CD44+CD25+, DN3, CD44-CD25+, DN4, CD44-

CD25-). At E14, there was a significant increase in the proportion of DN3 

thymocytes in CCRL1-/- thymi (p=0.0403). Proportions of DN1, DN2 and DN4 

thymocytes were similar between CCRL1-/- and control thymi. Similarly, the number 

of thymocytes in each DN population are unchanged between E14 CCRL1-/- and 

control thymi, and no statistical difference was found (Figure 66B, Table 28, Table 

29). At E15, there was no difference in the proportion or absolute cell number of 

DN1-4 thymocytes in CCRL1-/- mice compared to littermate controls (Figure 66C, 

Table 28, Table 31). Interestingly, at E17, although all proportions of DN thymocytes 

were unchanged between CCRL1-/- and control mice, there was a significant 

increase in the number of DN1 thymocytes in the CCRL1 -/- thymus (p=0.0027) 

(Table 30, Table 31).  

 

The DN1 population is heterogeneous, consisting of CD117+ ETP, and CD117- DN1 

thymocytes. To determine whether the increased population of DN1 thymocytes in 

the E17 CCRL1-/- thymus was a reflection of increased progenitor cells, we analysed 

the population of ETP. This was achieved by the digestion of embryonic thymic 

lobes, and subsequent staining for flow cytometry as previously described. ETP 

were further identified as CD45+Lineage-CD44+CD25-CD117+. Consistent with the 

unaltered DN1 population at E14 and E15, the proportions and numbers of ETP 
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were unaltered at this developmental stage (Table 32, Figure 67). At E17, there was 

a significant increase in the proportion (p=0.0095), and absolute number (p=0.0049) 

of ETP in the CCRL1-/- thymus compared to littermate controls. 
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Figure 65. Normal Distribution of Haematopoietic and Stromal Cells in E13 

CCRL1-/- Thymus 

Cryosections of E13 WT and CCRL1-/- thymus were stained for pan-keratin, laminin 

and CD45. A similar distribution of these cells is seen in WT (A), and CCRL1-/- (B) 

thymus. Staining is representative of three mice of each genotype. 
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Figure 66. Increased DN1 Thymocytes in the E17 CCRL1-/- Thymus. 

E14, E15 and E17 thymic lobes were digested and thymus cellularity tallied (A). 

Populations of DN thymocytes were analysed by flow cytometry as previously 

shown in the adult thymus. The proportions and absolute cell numbers of DN1-4 

thymocytes are shown at E14 (B), E15 (C), and E17 (D). Horizontal bars represent 

the median values. Statistical analysis performed (Mann Whitney) *p<0.05, 

**p<0.01. Each point represents one mouse.  
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Figure 67. Increased ETP in the E17 CCRL1-/- Thymus. 

E14, E15 and E17 thymic lobes were digested and ETP detected by flow cytometry 

as previously shown in the adult thymus. The proportions and absolute cell numbers 

of ETP are shown at E14 (B), E15 (C), and E17 (D). Horizontal bars represent the 

median values. Statistical analysis performed (Mann Whitney)  **p<0.01. Each point 

represents one mouse.  
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Table 27. Thymus Cellularity at E14, E15, and E17 

  Median   p value 

E14 
(x104) 

Het (n=14) 6.96  
0.9128 

CCRL1-/- (n=11) 5.08  

E15 
(x105) 

Het (n=4) 3.59  
0.9333 

CCRL1-/- (n=8) 3.54  

E17 
(x105) 

Het (n=12) 2.65  
0.6160 

CCRL1-/- (n=8) 2.78  

Median thymus cellularity shown for E14, E15, and E17 CCRL1-/- and het controls. 
Statistical analysis performed (Mann Whitney). 
 
 
 
 

Table 28. Statistical Analysis of the Proportions of DN Thymocytes from E14, 

E15 and E17 CCRL1-/- and Littermate Control Thymi 

 DN1  DN2  DN3  DN4 

E14 0.0784  0.1069  0.0403  1.000 

E15 0.1091  0.8649  0.5697  0.8081 

E17 0.0813  0.2190  0.1812  0.7546 
Statistical analysis performed (Mann Whitney). Significant p values highlighted 
 in bold italic type. 
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Table 29. Proportions of DN Thymocytes in Thymi from E14, E15, and E17 CCRL1-/- and Control Mice. 

  DN1  DN2        DN3       DN4 

  Median 25th 75th  Median 25th 75th  Median 25th 75th  Median 25th 75th 

E14 
Het (n=10) 12.35 10.83 15.08  18.85 16.68 21.55  46.85 43.8 49.18  19.95 18.58 21.3 

CCRL1-/- 
(n=7) 10.9 8.65 11.4  16.7 14.1 18.9  51 48.6 55.1  19.7 19.4 20.9 

                 

E15 
Het (n=4) 4.12 3.523 4.23  10.51 7.848 12.3  46.8 45.18 49.33  10.01 8.26 11.7 

CCRL1-/- 
(n=8) 4.285 4.18 4.563  10.85 9.27 12.33  48.15 44.28 50.05  9.915 8.223 12.68 

                 

E17 
Het (n=8) 3.485 3.065 3.915  9.285 7.923 13.25  60.2 58.03 67.75  26.35 17.88 29.7 

CCRL1-/- 
(n=6) 4.17 3.753 4.623  10.8 9.87 14.3  58.75 55.23 60  26.5 20.78 30.83 

Data expressed as median (bold type), with 25th and 75th quartiles. 
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Table 30. Absolute Numbers of DN Thymocytes in Thymi from E14, E15, and E17 CCRL1-/- and Control Mice. 

  DN1  DN2  DN3  DN4 

  Median 25th 75th  Median 25th 75th  Median 25th 75th  Median 25th 75th 

E14 
(x104) 

Het (n=10) 
6.23 2.67 8.38  

8.50 5.28 10.99  
21.05 12.34 28.44  

5.70 3.86 6.68 

KO (n=7) 3.60 2.46 8.27  5.42 3.77 11.30  15.70 13.22 38.12  4.20 3.77 8.86 
                 

E15 
(x105) 

Het (n=4) 1.31 1.09 2.08  3.32 3.10 4.67  16.90 12.58 23.68  3.65 2.18 6.02 

KO (n=8) 1.73 1.35 2.11  4.05 3.87 4.14  17.36 15.86 21.67  3.73 2.64 6.21 
                 

E17 
(x105) 

Het (n=8) 1.88 1.19 2.25  5.40 2.77 8.77  35.49 20.93 39.92  11.23 7.97 17.31 

KO (n=6) 2.83 2.38 2.94  7.75 6.15 8.87  36.71 31.35 45.86  16.53 13.41 22.01 

Data expressed as median (bold type), with 25th and 75th quartiles. 
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Table 31. Statistical Analysis of the Numbers of DN Thymocytes from E14, E15 

and E17 CCRL1-/- and Control Thymi 

 DN1  DN2  DN3  DN4 

E14 0.4747  0.5362  0.9623  0.8125 

E15 0.5697  0.2828  0.9333  0.8081 

E17 0.0027  0.1419  0.6620  0.1079 
Statistical analysis performed (Mann Whitney). Significant p values highlighted in 
bold italic type. 
 
 
 
 
Table 32. Statistical Analysis of the ETP Population in E14, E15 and E17 

CCRL1-/- and Control Thymus 

 p values 

 Proportion   Absolute Number 
E14 0.0878   0.5362 

E15 0.4606   0.4606 

E17 0.0095   0.0049 

Statistical analysis performed (Mann Whitney). Significant p values highlighted  
in bold italic type. 
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4.3 Discussion 

Given the important role of homeostatic chemokines in intrathymic T cell 

development and selection, the main aim of this chapter was to investigate the role 

played by CCRL1, an atypical chemokine receptor that binds CCL19, CCL21 and 

CCL25. Such work builds on data presented in chapter 3 that define the intrathymic 

expression patterns of CCRL1, and aims to resolve the current controversy 

surrounding the role of CCRL1 in thymus function. 

 

4.3.1 CCRL1 Inhibits Thymocyte Migration In Vitro 

CCRL1 has been shown to scavenge its ligands thereby influencing chemokine 

bioavailability in vitro and in vivo (Ulvmar et al., 2014, Heinzel et al., 2007, 

Comerford et al., 2006, Townson and Nibbs, 2002, Gosling et al., 2000). We have 

shown CCRL1 is expressed within the thymus and although recent studies have 

examined the thymic effect of CCRL1 using CCRL1 deficient mice (Bunting et al., 

2013, Heinzel et al., 2007), the effect of CCRL1 on thymocyte migration in vitro has 

not been shown.  

 

Our initial experiments aimed to determine the effect of CCRL1 on the migration of 

thymocytes in response to CCR7 and CCR9 ligands. A transmigration assay was 

used whereby WT thymocytes migrated through a monolayer of TEP transfected 

with or without CCRL1 in response to CCL19 or CCL25. We found that CCRL1 

inhibited the migration of thymocytes in response to both of these chemokines, 

consistent with its scavenging function. In addition, at high concentrations of 

chemokine (20nM CCL19, 180nM CCL25), the number of thymocytes which migrate 
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across a monolayer of TEP-GFP was reduced. This suggests that CCR7 and CCR9, 

expressed by thymocytes, are undergoing increased phosphorylation and 

internalisation leading to receptor desensitisation (Kohout et al., 2004). Interestingly, 

at these high chemokine concentrations, expression of CCRL1 by TEP cells no 

longer resulted in reduced thymocyte migration compared to control TEP cells, 

suggesting that the scavenging ability of CCRL1 had reached its limit. We report 

CCRL1-mediated inhibition of thymocyte migration in conditions up to 10nM CCL19, 

and in keeping with this data, Comerford et al showed that CCRL1 mediates 

effective scavenging of 10nM CCL19 in vitro (Comerford et al., 2006). Statistical 

analysis was not performed on our data due to the limited number of repeats (n=2). 

Although our data is in keeping with reports from the literature, it would be important 

to repeat the experiment, using an increased number of internal repeats, and also to 

include a chemokine that is not a ligand of CCRL1 e.g. CXCL12, as a negative 

control.   

 

4.3.2 Unaltered Thymus Weight and Cellularity in the Absence of CCRL1 

Two strains of CCRL1 deficient mice have been generated; CCRL1-/- mice 

(Comerford et al., 2010), used in the recent publication by Bunting et al (Bunting et 

al., 2013), and homozygous CCRL1-GFP/GFP mice (Heinzel et al., 2007). Early work 

using CCRL1-GFP/GFP mice revealed a role for this receptor in the homing of DCs to 

the lymph node, but reported no alterations in thymic function and T cell 

development (Heinzel et al., 2007). Contrary to this, a recent publication by Bunting 

et al describe severe defects in thymus function of CCRL1-/- mice, including 
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dramatically increased thymus size and cellularity, resulting in Sjögren’s-like 

pathology in these mice when aged (Bunting et al., 2013).  

 

Given the unclear nature of the role of CCRL1 within the thymus, and our data 

showing both the expression of CCRL1 within the thymus, and the ability of CCRL1 

to inhibit thymocyte migration in vitro, we performed our own analysis of thymus 

function in the absence of CCRL1.  

 

We carried out initial analysis using both strains of CCRL1 deficient mice (CCRL1-/-, 

and CCRL1-GFP/GFP) to monitor any strain-related differences. Initial examination of 

CCRL1 deficient thymi from either strain revealed no difference in weight or 

cellularity compared to heterozygous (het) and wild-type (WT) littermate controls. 

This recapitulates the data shown by Heinzel et al but is in contrast to the 

publication from Bunting et al, where increased thymus weight and cellularity of 

CCRL1-/- mice was reported (Bunting et al., 2013). When comparing the size and 

cellularity of the CCRL1-/- thymi in our study to that of Bunting et al, it is interesting to 

note that the size and cellularity of the CCRL1-/- thymus is similar in both studies. 

Surprisingly, it is the thymi of WT mice used by Bunting et al which are considerably 

smaller than the WT thymi used in our study. This prompted a review of the size and 

cellularity of thymi from WT mice of a similar age in the literature, which revealed 

thymus weight commonly ranged from approximately 55-70mg, and thymus 

cellularity frequently ranged from approximately 8x107-2x108 (Ross et al., 2012, 

Zlotoff et al., 2010, Krueger et al., 2010, Gossens et al., 2010, Yang et al., 2009, 

Gray et al., 2007, Hick et al., 2006, Gray et al., 2006, Howard et al., 1999). Data by 
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Bunting et al show an approximate average of 40mg for thymus weight, and 5x107 

for thymus cellularity, thus suggesting these control mice had a small thymus in 

comparison to WT mice used by others in the field and in addition to the WT mice 

used in our study.  For this reason we used CCRL1-/- mice alongside littermate 

controls in all experiments.  

 

In addition, Bunting et al reported increased numbers of mTEC in CCRL1-/- mice, in 

fitting with the increased thymus size and cellularity they describe. Despite this 

increased mTEC population, Bunting et al show that on a per cell basis, there are 

more thymocytes per Aire+ mTEC, and propose that this causes defective negative 

selection, and is the reason for the Sjögren’s syndrome-like pathology they observe.  

We performed our own analysis of the TEC compartment of CCRL1-/- and control 

mice by flow cytometry. Our analysis determined the proportion and number of total 

TEC, cTEC, mTEC and CD80+Aire+ mTEC, and in contrast to Bunting et al, found no 

significant differences in any TEC population compared to littermate controls. 

Moreover, we show normal cortex and medulla demarcation, and correct positioning 

of SP and DP thymocytes within these environments. It is important to note that our 

flow cytometric TEC analysis showed a wide range of absolute cell numbers for all 

TEC populations. This is most likely due to differing efficiencies in digestion, and 

would be improved by increasing the number of mice analysed.  
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4.3.3 CCRL1-/- Mice Have a Normal Programme of T Cell Development 

CCR7 and CCR9 are involved in the cortex to medulla migration of thymocytes 

(Choi et al., 2008, Ueno et al., 2004). This intrathymic migration is vital in order for 

developing thymocytes to undergo negative selection and further maturation within 

the medulla. Expression of CCRL1 within the thymus may regulate the bioavailability 

of CCR7L and CCR9L, and therefore CCR7 and CCR9 dependant processes. Our 

study used grouped WT and het mice for comparison with CCRL1-/- littermates, to 

allow a greater number of littermate-controlled mice to be used. Individual WT and 

het mice can be individually identified on graphical representation of data and show 

a similar phenotype in all comparisons made.   

 

Our study used flow cytometry to show unchanged proportions and numbers of DP 

and SP thymocytes, suggesting that this transition does not require CCRL1. Bunting 

et al reported increased proportions of SP4 thymocytes and increased absolute cell 

numbers of DP, SP4 and SP8 thymocytes, whereas in keeping with our data, 

Heinzel et al reported no differences in these parameters. The overall increase in 

thymus cellularity reported by Bunting et al is likely to account for these differences, 

however the gating strategy used to detect SP thymocytes differs between our study 

and the publications by both Heinzel and Bunting et al. Our flow cytometric analysis 

identified SP thymocytes as CD4+CD8-TCRβ+ or CD4-CD8+TCRβ+ whereas both 

previous publications did not determine TCRβ expression by SP thymocytes. Gating 

specifically on TCRβ+ cells ensured no contamination within the gate from DP, DN 

or immature single positive (IPS), all of which express lower levels of TCRβ.   
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Analysis of the CCRL1-/- thymus by Bunting et al showed increased proportions of 

CD69+CD62L- immature SP4 and SP8 thymocytes. This publication hypothesised 

that the increased immature thymocyte population they observed was due to 

impaired post-selection maturation, possibly as a result of altered TEC populations 

(Bunting et al., 2013). We carried out a similar analysis of SP thymocyte maturation 

using the same markers, and found no difference in the proportions of immature or 

mature SP4 or SP8 thymocytes. Additional markers can be used in conjunction with 

CD69 and CD62L to identify the maturation status of SP thymocytes by flow 

cytometry, for example Qa2 and CD24 (Weinreich and Hogquist, 2008). However, 

incorporation of these markers would only be of benefit to further investigate any 

differences highlighted by our initial use of CD69 and CD62L. In addition to 

conventional SP thymocyte development we analysed the development of Treg 

within the CCRL1-/- thymus by flow cytometry. We found no difference in the 

proportion of CD69+CD25+Foxp3- Treg precursors or CD69-CD25+Foxp3+ mature 

Treg between CCRL1-/- and control thymi, thus providing evidence that CCRL1 is 

not required for this process.  

 

Previous analysis of DN thymocytes within the CCRL1-/- thymus has yielded 

contradicting results. Bunting et al described decreased proportions of DN3 

thymocytes, and increased numbers of DN4 thymocytes, whereas Heinzel et al 

reported no difference in any DN subset. Similar to Heinzel et al, our examination of 

the DN thymocyte population by flow cytometry showed no major differences in the 

proportion or absolute cell numbers of any DN thymocyte subset. We did find a 

significant reduction in the number of DN3 thymocytes in female CCRL1-/- thymi 



 

 

220 

compared to controls, however the absolute cell numbers did not differ greatly, 

therefore suggesting this difference would not be biologically significant. It is 

possible that the DN4 population identified by Bunting et al included stromal cells, as 

DN thymocytes were not identified as CD45+ in this particular study, therefore they 

would be negative for all markers used.  

 

Interestingly, we found increased proportions of early thymic progenitors (ETP) in 

the CCRL1-/- female thymus. Proportions and absolute cell numbers of ETP were 

also increased in male thymus but not to a statistically significant level. Previous 

publications have not determined ETP frequency in the CCRL1-/- thymus, however 

the recruitment of ETP to the thymus is mediated by CCRL1 ligands (Zlotoff et al., 

2010). ETP enter the thymus by vessels at the CMJ, and expression of CCRL1 by 

TEC at this location may regulate this chemokine-mediated process.  

 

4.3.4 Abnormal Localisation of DN Thymocytes in the Absence of CCRL1 

Although we found no difference in the numbers of DN thymocytes, suggesting their 

development is normal in the absence of CCRL1, we did highlight differences in the 

localisation of these cells in the CCRL1-/- thymus.  The intrathymic migration of DN 

thymocytes is mediated by CCR9-CCL25 interactions, however, in keeping with our 

data, this positioning is not crucial for their development (Benz et al., 2004). Staining 

thymus sections for CD8 and CD25 allowed the quantitation of CD25+ cells in 

different areas of the thymus. We used CD25 as a marker for DN2 and DN3 

thymocytes. It is possible that our analysis may inadvertently include other 

populations of cells such as CD25+ Treg, although given their location within the 
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thymic medulla (an area we did not analyse), this is unlikely. Similar to the 

phenotype described in CCR9-/- mice (Benz et al., 2004), we observed decreased 

numbers of CD25+ cells/mm2 in the subcapsular regions of adult and newborn 

CCRL1-/- thymi. Bunting et al also determined the positioning of DN thymocytes 

within the CCRL1-/- thymus, and showed a different mislocalisation of these cells.  

Bunting et al described a dramatic accumulation of CD25+ DN2 thymocytes in the 

medulla and CMJ, and suggested this was due to low levels of CCL25 throughout 

the cortex, CMJ and medulla (determined by immunofluorescence) (Bunting et al., 

2013). On the other hand, Heinzel et al report unaltered homing of DN thymocytes 

to the SCZ in CCRL1-GFP/GFP mice (Heinzel et al., 2007), however a thorough 

analysis was not performed in this study. Although we show a significant decrease 

in the number of CD25+ DN thymocytes at the SCZ of CCRL1-/- mice, we did not find 

a reduction in this population in any other area quantitated. This data does not 

recapitulate our flow cytometry data, which shows absolute numbers of DN 

thymocytes are unaltered in CCRL1-/- mice. Future experiments should account for 

all areas of the thymus, including careful quantitation of the medulla, to resolve this 

discrepancy.    

 

4.3.5 Normal Levels of CCRL1 Ligand in the CCRL1-/- Thymus 

We measured levels of CCRL1 ligand by ELISA, and have shown that levels of 

CCL19, CCL21 and CCL25 are unchanged in CCRL1 deficient thymi. This suggests 

any influence that CCRL1 has on chemokine bioavailability is not wide-spread, but is 

likely to be confined to particular microenvironments. Our ELISA analysis reflects 

both intracellular stores of chemokine, as well as secreted chemokine. CCRL1 is 
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only able to regulate levels of extracellular chemokine, therefore it is possible that 

the high levels of intracellular chemokine have masked any differences between 

CCRL1-/- and control thymi using this method. An alterative method of tissue 

processing, which only accounted for extracellular chemokine, would be more 

informative regarding the influence of CCRL1, however the levels of extracellular 

chemokine may be below the level of detection if this type of approach was used.  

 

In contrast to our data, Bunting et al showed a reduction in total levels of CCL19 and 

CCL25, measured by ELISA, in the CCRL1-/- thymus, this is an unexpected finding 

considering the scavenging function of this molecule.  When this data was 

normalised per TEC, Bunting et al showed a reduction in CCL19, an increase in 

CCL21 and unchanged levels of CCL25. It was hypothesised that these differences 

were due to altered chemokine production by CCRL1 deficient TEC suggesting a 

role other than chemokine-scavenging for CCRL1 within the thymus (Bunting et al., 

2013).  

 

4.3.6 Antigen Presenting Cells in the CCRL1-/- Thymus 

Given that thymic DC subsets express CCR9 (Hadeiba et al., 2012), we analysed 

thymic DC populations by flow cytometry and compared proportions and absolute 

numbers of cells within each DC population between CCRL1-/- and control thymi. 

We found no difference in proportions or absolute cell numbers of Sirpα- resident 

thymic DCs, or migratory thymic pDCs.   
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Analysis of the Sirpα+ migratory thymic DCs revealed increased proportions and 

absolute cell numbers of this population. The factors involved in the recruitment of 

this DC subset is not clear, however it is possible that expression of CCR7 and/or 

CCR9 may be required, as is the case for plasmacytoid DC migration into the 

thymus (Hadeiba et al., 2012). Further experiments would be necessary to 

determine the expression of such candidate chemokine receptors by Sirpα+ 

migratory thymic DCs, and to determine if they are correctly positioned within the 

thymus.  

 

In WT mice, Sirpα+ DCs are located in the cortex and perivascular areas - areas that 

we have shown to express CCRL1. Although we have determined the localisation of 

total CD11c+ DCs within the thymus, and show this is similar between CCRL1-/- and 

WT mice, staining with additional markers to allow the identification of thymic DC 

subsets would be beneficial. Moreover, a system to allow the enumeration of thymic 

DCs in defined areas across the corticomedullary junction, similar to that used by 

Takahama (Lei et al., 2011), would allow the precise localisation of these cells to be 

determined.  

 

4.3.7 Populations of Lymphocytes in the Periphery of CCRL1-/- Mice 

To determine the extent of thymic reconstitution in the absence of CCRL1, we 

created irradiation BM chimeras using CCRL1-/- and BoyJ mice to allow the 

identification of host and donor haematopoietic cells. We show that at 9 weeks post 

reconstitution, WT mice reconstituted with CCRL1-/- BM have an increased thymus 

cellularity. It would be important to repeat these experiments, but include two 
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additional groups of control mice; WT mice reconstituted with WT BM, and CCRL1-/- 

mice reconstituted with CCRL1-/- BM. These control groups would account for any 

impact of irradiation, which may be responsible for the differences in thymus 

cellularity we observed.   

 

To further examine any involvement of CCRL1 in the maintenance of the peripheral 

T cell pool, we performed a detailed analysis of T cell populations in the blood, 

spleen and inguinal LN of CCRL1-/- mice compared to littermate controls. This 

analysis showed increased proportions and numbers of αβ T cells in the blood of 

CCRL1-/- mice. Interestingly, we found a reduction in the proportion of Foxp3+ Treg 

in the blood of CCRL1-/- mice, however the absolute number of Treg in the blood 

was unaltered. This could be explained by a slight alteration in the composition of 

the CD4 T cell subset in terms of conventional CD4 T cell vs. Treg. A reduced 

proportion of Treg, with unchanged proportion of total CD4 T cells must relate to an 

increased proportion of conventional CD4 T cells. The reduction in the proportion of 

Foxp3+ Treg in CCRL1-/- mice has not previously been described, and may 

contribute to the autoimmune pathology described by Bunting et al (Bunting et al., 

2013), rather than the defective central tolerance that they hypothesise.  

 

The CCRL1-/- spleen showed increased proportions of αβ T cells, however no 

alterations were seen in Foxp3+ Tregs. Analysis of the inguinal LN showed no 

differences in any T cell subset between CCRL1-/- mice and littermate controls. 

There are several possibilities for the alterations in T cell populations in different 

peripheral sites of CCRL1-/- mice. One such reason is likely to be the expression of 



 

 

225 

CCRL1 within the lymph node (Ulvmar et al., 2014), and the spleen (Appendix, 

Figure 71). Given the ability of CCRL1 to influence the recruitment of CCR7+ DCs to 

the lymph node; it is possible that CCRL1 plays a role in the recruitment or egress of 

cells from any lymphoid tissue where it is expressed. This may result in differential 

leukocyte populations within the blood, and also within secondary lymphoid tissue.  

 

In addition, the expression of CCRL1 by perivascular TECs may influence the 

egress of mature thymocytes, which would also impact on the T cell populations 

within the blood and secondary lymphoid tissue. To address this, we crossed 

CCRL1-/- mice with RAG2pGFP Tg mice (Boursalian et al., 2004) and determined 

levels of RAG2pGFP expression by peripheral T cells to identify recent thymic 

emigrants (RTE). We found no differences in the proportion or absolute number of 

RAG2pGFP+ CD4 or CD8 conventional T cells, or Foxp3+ Treg in the blood, spleen 

or inguinal LN of CCRL1-/- and control mice. Bunting et al reported increased thymic 

output in CCRL1-/- mice, determined by increased RTE in the spleen (identified by 

flow cytometry as CD3+CD4+CD44-CD69-CD24+), and increased proportions and 

numbers of CD4+CD8+ T cells in the spleen. Our FACS analysis of blood and 

secondary lymphoid tissue always revealed minimal frequencies of DP T cells with 

no obvious bias for CCRL1-/- mice, consistent with our RTE data. To determine 

whether the DP T cells observed by Bunting et al are immature thymocytes as is 

proposed, or a staining artefact or doublet cells, it would be important to determine 

the level of TCRβ expression by these cells. DP thymocytes express lower levels of 

TCRβ compared to mature SP T cells, therefore if immature T cells egress from the 
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CCRL1-/- thymus at this relatively early stage of development, surface TCRβ 

expression may be lower.   

 

4.3.8 The Role of CCRL1 Within the Thymus During Ontogeny 

In the previous chapter, we showed expression of CCRL1 within the embryonic 

thymus from E13 of gestation. In addition, Heinzel et al reported that CCRL1-/- mice 

have normal thymus cellularity at E12.5 and E13.5, while overexpression of CCRL1 

by TEC reduces thymus cellularity at E14.5 and E16.5 (Heinzel et al., 2007). Our 

analysis of the thymus from CCRL1-/- embryos shows no alteration in the number of 

haematopoietic cells at E12, suggesting that although this initial recruitment relies 

heavily on chemokines, CCRL1 does not influence this process. This finding is 

perhaps not surprising given the absence of CCRL1 expression within the thymic 

anlagen at E12. We also found normal positioning of CD45+ cells, and normal 

stromal cell organisation in the CCRL1-/- thymus at E13, suggesting that although 

CCRL1 is expressed at this developmental stage, it is not required in these 

processes.  

 

In addition, we analysed the CCRL1-/- thymus at E14, E15, and E17 (developmental 

ages where we show high levels of CCRL1 expression within the thymus) and show 

no difference in the cellularity of the CCRL1-/- thymus at any of these ages 

compared to littermate controls. At E14 we found a small but statistically significant 

increase in the percentage of DN3 thymocytes, however this is not reflected in 

absolute numbers of DN3 thymocytes therefore is unlikely to have biological 

significance. Interestingly, at E17, we found increased numbers of DN1 thymocytes, 



 

 

227 

which is reflected in the increased percentages and numbers of ETP, similar to the 

adult CCRL1-/- thymus. The involvement of chemokines in the recruitment of 

progenitor cells to the vascularised embryonic thymus has been shown using 

CCR7/CCR9/CXCR4 triple KO mice, which exhibit reduced thymus cellularity at E17 

(Calderon and Boehm, 2011). Our data suggests that CCRL1 influences the 

CCR7/CCR9 mediated recruitment process of ETPs to the vascularised embryonic 

thymus, which is most likely due to the perivascular expression of CCRL1 by TECs 

at the CMJ.  

 

In summary, we show normal thymic function and T cell development in the absence 

of CCRL1. We show an increased circulating conventional T cell pool, but using 

RAG2pGFP mice, rule out the involvement of CCRL1 in thymocyte egress. Further 

studies would be needed to determine the role of CCRL1 on the recruitment of T 

cells to peripheral lymphoid tissues in an attempt to explain the differences we have 

highlighted in peripheral lymphoid organs. We suggest a minor role for CCRL1 in the 

recruitment of progenitor cells to the vascularised embryonic thymus, and provide 

evidence that this role is maintained in the adult thymus, but to a lesser extent. 

Overall, this chapter provides a systematic analysis of thymus function in the 

absence of CCRL1, and in contrast to the recently published data by Bunting et al, 

argues against a major role for CCRL1 in thymus function.  
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CHAPTER 5: GENERAL DISCUSSION 
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5.1 Expression and Function of CCRL1 Within the Thymus 

CCRL1 binds and scavenges CCL19, CCL21 and CCL25 (Comerford et al., 2006). 

These chemokines, which also bind the classical chemokine receptors CCR7 and 

CCR9, mediate the intrathymic migration of thymocytes, which is crucial for their 

development. The expression of CCRL1 within the thymus may have a functional 

impact on the regulation of CCR7 and CCR9 dependant processes. This thesis 

aimed to map CCRL1 expression within the thymus, and to determine any role for 

this molecule during T cell development using CCRL1 deficient mice.  

 

We have shown expression of CCRL1 within the adult thymus by a high proportion 

of cTEC, and used immunofluorescence to show the localisation of CCRL1+ cTEC at 

the subcapsular zone. During early T cell development, thymocytes migrate 

outwards through the cortex to the SCZ. Although the precise mechanisms 

underlying this migration have not been fully described, CCR9 deficient mice exhibit 

an accumulation of CD25+ DN thymocytes in the subcapsular region, thus showing 

the requirement for CCR9 during this process (Benz et al., 2004). Similarly to CCR9 

deficient mice, we observed an accumulation of CD25+ DN thymocytes in the 

subcapsular region of CCRL1-/- mice. The scavenging action of CCRL1 expression 

by cTEC may regulate the bioavailability of CCL25 in particular thymic niches, and 

as a result, may regulate this CCR9 dependant migration. This type of chemokine 

patterning by CCRL1 has been described in the lymph node, whereby CCRL1 

expression by lymphatic endothelial cells in the ceiling of the subcapsular sinus 

creates functional gradients of CCL21 (Ulvmar et al., 2014). Without a similar 

quantitative analysis of extracellular CCL25 density in defined thymic regions, it is 
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not possible to determine whether gradients of this chemokine are regulated by 

CCRL1. 

 

This thesis also showed expression of CCRL1 by TEC surrounding vasculature at 

the CMJ. Vessels within this thymic microenvironment are the site of progenitor 

entry to the thymus (Lind et al., 2001). Several studies using chemokine receptor 

KO mice have implicated CCR7, CCR9 and CXCR4 in this recruitment process in 

the embryonic and adult thymus (Calderon and Boehm, 2011, Krueger et al., 2010, 

Scimone et al., 2006, Liu et al., 2006, Misslitz et al., 2004). We showed increased 

frequencies of ETP in the adult and E17 embryonic CCRL1-/- thymus, thus 

suggesting the requirement of CCRL1 in the vascularised thymus to modulate this 

process. If this is indeed the case, and CCRL1-/- mice have enhanced recruitment of 

ETP into the thymus, there may be a reciprocal decrease in ETP frequency in the 

blood.  It would therefore be of interest to quantitate the number of ETP in the blood 

of CCRL1-/- mice using flow cytometry. An alternative explanation for this phenotype 

may be that ETP do not transit into DN thymocytes as effectively in CCRL1-/- mice, 

thus accounting for their accumulation, however we show similar proportions and 

absolute cell numbers of DN thymocytes in the absence of CCRL1 suggesting that 

this is not the case. We hypothesise that CCRL1 expression by perivascular TEC, 

may influence the gradients of CCR7 and/or CCR9 ligands at this site, thus 

regulating the recruitment of ETP, however further experiments would be needed to 

elucidate the precise mechanism.  

 



 

 

231 

Egress of mature T cells from the thymus also occurs at vessels at the CMJ, 

however this process is heavily dependant on S1P production by neural crest 

derived pericytes surrounding these vessels (Zachariah and Cyster, 2010). In 

addition to S1P, CCR7 expression has been implicated in the thymic egress of 

mature T cells. Neonatal CCR7-/- mice exhibit a reduction in circulating T cells, and 

moreover, in vitro studies show that CCL19 mediates T cell egress in fetal thymic 

organ cultures, whereas CCL21 does not. (Ueno et al., 2002). Despite this 

requirement for CCR7 and CCL19 interactions in thymic egress, we found no 

alteration in the frequency of recent thymic emigrants (RTE) in CCRL1-/- mice using 

the RAG2pGFP Tg mouse line. It is unknown whether the recruitment of progenitor 

cells and the export of mature T cells occur via the same blood vessels, or if 

different vessels would be specialised for each process. Perivascular expression of 

CCRL1, coupled with the role we have shown for this molecule in the regulation of 

ETP recruitment, may provide evidence for heterogeneity within the vasculature 

networks located at the CMJ. If this is the case, it may be possible to use CCRL1 as 

a marker to distinguish between blood vessels by which ETP are recruited, and 

mature T cells leave.  

 

We have shown expression of CCRL1 by non-epithelial stromal cells within the 

thymus. These cells are phenotypically identified as Ly51intpodoplanin+ and have 

been shown by others to have high retinoic acid generating activity, and 

consequently regulate TEC expansion (Sitnik et al., 2012).  Expression of CCRL1 by 

such thymic mesenchyme has not previously been described, and the function of 

CCRL1 within this population remains unknown. Our study has only identified 
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CCRL1+ mesenchymal cells within the thymus using flow cytometry, thus providing 

no information about the localisation of these cells. It is likely that the distribution of 

these cells would be important for their role; therefore it would be necessary to 

optimise mesenchymal-specific markers for use in immunofluorescence in 

conjunction with CCRL1-GFP mice.   

 

Our data shows a small population of mTEC that express CCRL1. A well-defined 

role of mTEC is to express tissue-restricted antigens and mediate negative selection 

of autoreactive thymocytes (Mathis and Benoist, 2009). CCRL1 expression by 

mTEC had not been noted in the literature until recently (Ribeiro et al., 2014). In 

agreement with this publication, we found expression of CCRL1 by CD80hi and 

CD80lo mTEC. Although Ribeiro et al used CCRL1 as a marker to map emergence 

of TEC populations, the role of CCRL1 expression by mTEC was not addressed. 

The medullary microenvironment produces CCL19 and CCL21, thus mediating the 

cortex to medulla migration of SP thymocytes, moreover, the requirement for this 

environment in the development of invariant NKT (iNKT) and Treg has recently been 

shown (White et al., 2014, Cowan et al., 2013). We have shown normal SP 

thymocyte maturation, and unaltered development of nTreg in the absence of 

CCRL1, thus suggesting that although CCRL1 is expressed by mTEC, it does not 

influence these mTEC-specific processes.  
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Figure 68. Summary of CCRL1 Expression in the Adult Thymus. 

Summary of CCRL1 expression as determined by flow cytometry and 

immunofluorescence. The population of CCRL1+ mesenchyme has only been 

detected using flow cytometry, therefore the intrathymic location remains unknown.  

Role of CCRL1 in the recruitment of ETP and Sirpα+ DCs to the thymus, and the 

localisation of DN2/3 thymocytes to the SCZ.  
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We have shown using ELISA that total levels of CCL19, CCL21 and CCL25 are 

unchanged in the thymus of CCRL1-/- mice compared to littermate controls. As 

discussed previously, this method will show extracellular chemokine (which CCRL1 

is able to scavenge), as well as intracellular stores of chemokine, therefore this 

method may not be sensitive enough to detect small changes in only the 

extracellular chemokine compartment. An alterative method to assess chemokine 

availability would be to stain sections of unfixed thymus for CCL21 and CCL25 and 

measure the chemokine gradient in areas of the thymus that express CCRL1, as 

previously shown in the lymph node (Ulvmar et al., 2014). Lack of fixation would limit 

the detection of intracellular chemokine, thus allowing quantitation of only the 

extracellular chemokine. This would be useful in providing information regarding the 

precise location of chemokine gradient patterning, as we could assess the 

positioning of cells, e.g. SP thymocytes, DCs, in these areas. Although we have 

shown no gross alteration in the positioning of SP or DP thymocytes, or thymic DCs, 

a mild mislocalisation of these cells may be apparent when focusing on areas of 

chemokine gradient disruption. This method worked well in the lymph node, where 

CCRL1 is only expressed in one microenvironment, however in the thymus we have 

shown expression of CCRL1 by many stromal cells, which are widely dispersed. 

Without PFA fixation, detection of CCRL1-GFP would not be possible; therefore it 

would be difficult to pinpoint specific areas that may be influenced by CCRL1. 
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Overall, our studies have shown that although many stromal cell populations 

express CCRL1, absence of this molecule has no major impact on T cell 

development. This could be due to unknown compensatory mechanisms, for 

example, CCR7L and CCR9L may bind an additional atypical chemokine receptor 

(ACKR), which is able to compensate for the lack of CCRL1 in CCRL1-/- mice. One 

such candidate could be CCRL2, which has been shown to bind CCL19 (Catusse et 

al., 2010), however the function of this receptor is awaiting further confirmation 

before being officially categorised as an ACKR.  

 

It is important to note the striking differences between the data shown in this thesis 

and that reported by Bunting et al (Bunting et al., 2013). The reasons for the 

discrepancy between our findings and those of Bunting et al are not clear, however 

we analysed CCRL1-/- mice alongside littermate controls, thus ruling out the 

possibility that any potential differences were impacted by differences in animal 

substrains or their housing and husbandry. Moreover, in agreement in Heinzel et al 

(Heinzel et al., 2007), our analysis of CCRL1 deficient mice, due to homozygous 

expression of GFP, showed no overt thymus phenotype. Table 33 summarises a 

comparison of major parameters of thymus function between this thesis, Heinzel et 

al, and Bunting et al.  
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Table 33. Comparison of Results With Published Data.  

Parameter  This Thesis  Bunting et al  Heinzel et al 
Thymus Weight  No change  !  No change 

       
Thymus Cellularity  No change  !  No change 

       

DN Thymocytes  No change  
"% DN3 

!number DN4  No change 

       
DP Thymocytes  No change  !number  No change 

       

SP Thymocytes  No change  
!% SP4 

!number all SP  No change 

       
SP Maturation  No change  !CD69+CD62L-  N/D 

       
ETP  Increased  N/D  N/D 

       
RTE  No change  !  No change 

       
Thymocyte 
Positioning  !DN at SCZ  !DN at medulla   No change 

       
Thymic DC  !Sirpα+  N/D  N/D 

       
Chemokine Levels  No change  "CCL19 and CCL25  N/D 

       
TEC Populations  No change  !numbers of mTEC  N/D 

       
Autoimmunity  N/D  Yes  N/D 

N/D (not determined). Arrows indicate increase or decrease. 
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5.2 Future Directions 

This thesis has mapped CCRL1 expression within the thymus, but has shown that it 

is dispensable for thymic function. CCRL1 is expressed by epithelial and non-

epithelial stromal cells within the thymus, and could be of future use as a marker to 

help further determine the roles of these stromal populations. Expression analysis 

could be built upon by including additional non-epithelial cell markers, to further 

characterise the mesenchymal population using immunofluorescence. Although our 

data shows that CCRL1 is not required for T cell development, it would be 

informative to attempt to optimise a method for measuring gradients of CCR7L and 

CCR9L in the thymus, to confirm its scavenging function in vivo. Careful analysis of 

the positioning of cells, for example DCs and SP thymocytes, in areas of CCRL1 

expression may reveal a subtle role for this molecule.  

 

Bunting et al reported inflammatory lesions containing T cells, B cells and DCs in the 

submandibular glands and liver of aged (8-10 month old) CCRL1-/- mice (Bunting et 

al., 2013). It was hypothesised by Bunting et al that this Sjögren’s Syndrome-like 

pathology was due to major thymic perturbations observed in CCRL1-/- mice, which 

consequently resulted in defective central tolerance and spontaneous autoimmunity. 

Our study has shown normal thymic function in the absence of CCRL1, thus 

suggesting defects in central tolerance were an unlikely candidate for the Sjögren’s 

Syndrome described by Bunting et al. This prompted us to firstly determine whether 

CCRL1 was expressed within the salivary gland, as this had not been reported in 

the literature. We used CCRL1-GFP reporter mice, and showed using 

immunofluorescence, CCRL1 expression by podoplanin+ stromal cells within the 
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submandibular gland of adult mice (Figure 69) We further explored the role of 

CCRL1 within the salivary gland, along with collaborators (Joana Dias De Campos 

and Francesca Barone), by using an inducible model of Sialadenitis (Bombardieri et 

al., 2012). Briefly, the submandibular gland was cannulated, and replication-

defective adenovirus-5 was administered. Over a period of three weeks, this model 

recapitulates both phenotypic and functional features of Sjögren’s Syndrome. Eight 

days following cannulation, aggregates of T and B cells are visible in the WT 

salivary glands, however CCRL1-/- salivary glands show mislocalisation of T cells, 

such that aggregates are not formed, and instead T cells are positioned throughout 

the tissue (Figure 70). Digestion of these glands and subsequent flow cytometric 

analysis allowed the identification of CD4+, CD8+ and Foxp3+ T cells (Figure 71). At 

day 8 post cannulation, there were significantly higher proportions of CD8 T cells in 

the salivary gland from CCRL1-/- mice compared to WT (Figure 72). At day 15 post 

cannulation there were increased absolute numbers of total T cells in the CCRL1-/- 

salivary gland, however this difference was not apparent from the 

immunofluorescent staining of the salivary glands at the same time point (Figure 

70), therefore further analysis is needed. Although we have shown CCRL1 

expression by salivary gland stromal cells, and have shown normal thymic function 

in CCRL1-/- mice, given the report by Bunting et al it would be necessary to generate 

irradiation BM chimeras to use this model. This would enable us to determine 

whether the phenotype is due to an absence of CCRL1 expression by stromal or 

haematopoietic cells. 
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Figure 69. CCRL1 is Expressed by Stromal Cells Within the Salivary Gland. 

Submandibular glands from CCRL1-GFP mice were fixed in 2% PFA and frozen. 

Cryosections were stained for anti-GFP (A), and podoplanin (red) (B). CCRL1-GFP 

is detected throughout the tissue, co-staining is visible between CCRL1-GFP and 

podoplanin. 
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Figure 70. Disrupted Tertiary Lymphoid Structure Formation in CCRL1-/- 
Salivary Glands Following Cannulation. 

The submandibular glands of WT and CCRL1-/- mice were cannulated, and 

replication-defective adenovirus administered to induce Sjögren’s Syndrome 

pathology. Submandibular glands were harvested 8 (A) and 15 (B) days following 

cannulation, and were frozen and stained for CD3 and CD19 to show the distribution 

of T and B cells.  At day 8, but not day 15, widespread positioning of CD3+ T cells is 

visible in CCRL1-/- glands. 
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Figure 71. Identification of T cell Subsets in the Salivary Gland Following 
Cannulation.  

The submandibular glands of WT and CCRL1-/- mice were cannulated, and 

replication-defective adenovirus administered to induce Sjögren’s Syndrome 

pathology. Submandibular glands were harvested 8 (A) and 15 (B) days following 

cannulation, and were digested and stained for flow cytometry. Representative 

FACS plots show the identification of total T cells, CD4 T cells, CD8 T cells and 

Treg. Live CD45+ cells were first gated prior to the analysis shown. 
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Figure 72.Quantitation of T cells in the Salivary Gland Following Cannulation. 

T cell subsets were identified using flow cytometry as previously shown. Proportions 

of CD45+ cells (A), and proportions and absolute numbers of T cells (B), CD4 T 

cells (C), CD8 T cells (D), and Treg (E) are shown. Data analysed by Mann Whitney, 

*p<0.05. 
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5.3 Concluding Remarks 

In summary, we have shown CCRL1 expression by the majority of cTEC, relatively 

few mTEC and by a population of mesenchymal cells within the adult thymus. This 

information would allow the use of CCRL1 as a phenotypic marker to further study 

heterogeneity within TEC and non-TEC compartments. In addition, we have 

identified a specific population of CCRL1+ TEC which surround vasculature at the 

CMJ, and have shown data which points towards a role for these cells in the 

recruitment of progenitor cells to the embryonic and adult thymus. 

 

Importantly, this thesis has contributed to the field of chemokine regulation by 

atypical chemokine receptors. The publication by Bunting et al significantly altered 

the current understanding of how chemokine-mediated intrathymic T cell 

development is controlled. The data presented in this thesis helps resolve the 

discrepancy in the literature by showing that the requirement for CCR7 and CCR9 

during thymocyte development does not require CCRL1 mediated regulation of 

ligand availability.  
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Figure 71. CCRL1 Expression Within the Spleen. 

Adult CCRL1-GFP and WT spleen were fixed in 4% PFA and then frozen. 

Cryosections were stained for CD4 and B220. CCRL1-GFP expression (green) is 

readily observed by cells at the marginal zone. No GFP+ cells are detected in the 

WT spleen. 
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