
A Continuous Computational
Interpretation of Type Theories

by

Chuangjie Xu

A thesis submitted to

The University of Birmingham

for the degree of

Doctor of Philosophy

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
Viva date: 1 May 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/33528237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

Brouwer’s continuity principle that all functions from the Baire space to natural numbers
are continuous is provably false in intuitionistic dependent type theory, with existence
in the formulation of continuity expressed as a Σ-type via the Curry–Howard interpre-
tation. However, with an intuitionistic notion of anonymous existence, defined as the
propositional truncation of Σ, the principle becomes consistent and can be validated in
Johnstone’s topological topos. On the other hand, any of these two intuitionistic con-
ceptions of existence give the same, consistent, notion of uniform continuity for functions
from the Cantor space to natural numbers, again valid in the topological topos. But the
treatment of the topological topos is non-constructive in several respects.

The object of the thesis is to give a (constructive and hence) computational inter-
pretation of type theory validating the above uniform-continuity principle, so that type-
theoretic proofs with the principle as an assumption have computational content, and in
particular closed terms of natural number type evaluate to numerals.

For this, we develop a variation of the topological topos. The site we work with is
the monoid of uniformly continuous endomaps of the Cantor space 2N equipped with a
subcanonical topology consisting of certain countably many finite covering families, which
is suitable for predicative, constructive reasoning. Our variation of the topological topos
consists of sheaves on this site. Our concrete sheaves, like those in the topological topos,
can be described as sets equipped with a suitable continuity structure, which we call
C-spaces, and their natural transformations can be regarded as continuous maps. We
mainly work with C-spaces in the thesis because they have sufficient structure to give a
computational interpretation of the uniform-continuity principle. For instance, C-spaces
form a (locally) cartesian closed category with a natural numbers object. Moreover, there
is a fan functional in the category of C-spaces that continuously calculates (minimal)
moduli of uniform continuity.

The C-spaces in our topos correspond to the limit spaces in the topological topos,
in the sense that they are the concrete sheaves of the respective toposes in which they
live. Similarly to the approach to the Kleene–Kreisel continuous functionals via limit
spaces, we can also calculate the Kleene–Kreisel continuous functionals within the cate-
gory of C-spaces, by starting from the discrete space of natural numbers and closed under
products and exponentials. The C-spaces provide a classically equivalent substitute for
the traditional manifestations of the Kleene–Kreisel spaces, which admits a constructive
treatment of the uniform-continuity principle mentioned above. Moreover, if we assume in
our meta-language that all functions 2N → N are uniformly continuous, then we can show
constructively that the full type hierarchy is equivalent to the Kleene–Kreisel continuous
hierarchy within C-spaces.

Using the cartesian closed structure of C-spaces and the natural numbers object, we
build a model of Gödel’s system T, in which the uniform-continuity principle, formulated
as a skolemized formula with the aid of an additional constant with the type of the fan
functional, is validated. With the same interpretation of the term language of system T,
we build a realizability semantics of higher-type Heyting arithmetic, with continuous
maps of C-spaces as realizers, and use the fan functional again to realize a formula of
the uniform-continuity principle. Moreover, we validate the Curry–Howard formulation
of the uniform-continuity principle in the locally cartesian closed category of C-spaces.

The construction of C-spaces and the verification of the uniform-continuity principle
have been formalized in intensional Martin-Löf type theory in Agda notation, which is
available at http://cj-xu.github.io/ContinuityType/.

Certain extensions of type theory are needed for the type-theoretic development due
to the presence of proof relevance and the absence of function extensionality in Martin-
Löf type theory. To avoid such extensions that may destroy the computational content
of the development, we can make use of setoids, which produces a tedious formalization.
However, by adjusting the model construction and postulating the double negation of
function extensionality, we manage to achieve our main aim of extracting computational
content from type-theoretic proofs that use the uniform-continuity principle, in a relatively
clean way. In practice, we have used Agda to implement the extraction of computational
content.

http://cj-xu.github.io/ContinuityType/

Acknowledgements

I owe uncountably many thanks to a few people who provided me with their warm en-
couragement and kind support in every respect during my PhD study at Birmingham.

The first person that I would like to thank here is my supervisor, Mart́ın Escardó.
It is impossible for me to complete the work including writing this thesis without his
patient guidance and effective supervision. I would never forget his understanding and
consolation when I was overwhelmed by the message that my mother stayed in hospital
due to her serious illness.

I appreciate the valuable feedback from the members of my thesis group, Achim Jung
and Jon Rowe. In addition, I would like to acknowledge Achim, who was the supervisor in
my undergraduate final-year project, for leading me into the area of research, particularly
in theoretical computer science.

Achim was also the internal examiner in my thesis defence. I am deeply grateful to him
and the external examiner, John Longley, for making a very enjoyable viva examination,
for the helpful discussions during and after the viva, for their help of improving this thesis,
and for suggesting a list of interesting directions of further work.

I have benefited from the help, such as feedback and suggestions to my papers and
presentations, from the members of Theory of Computation Group in School of Computer
Science at Birmingham, especially Achim Jung, Steve Vickers and Paul Levy.

During my funded stay in Institut Henri Poincaré, Paris, for Semantics of proofs and
certified mathematics, I had interesting and beneficial discussions with Thierry Coquand,
Peter Dybjer, Simon Huber, Guilhem Jaber, Bassel Mannaa, Per Martin-Löf, Paul-André
Melliès, Anders Mörtberg, and Thomas Streicher.

I should also mention that my PhD study at Birmingham was financially supported
by the University Graduate School with the Doctoral Elite Researcher Scholarship which
made this work possible.

My family always unconditionally supports me and all my crucial decisions, such as
taking the exchange project to complete my bachelor degree at Birmingham, and pursuing
a doctorate degree.

Words cannot express my love and thanks to my wife, Min Tong, for understanding
my busy research life and for looking after me, as a sweet fiancee, during the final, abustle
phase of my writing up.

My special thanks also go to Nicolas, the little son of Mart́ın, for saving me from the
endless research, for his singular gift (a leaf from the plant in Mart́ın’s office), for his
elusive abstract painting, and for asking me tough questions such as

“Chuangjie, what’s your house number?” “Two-eleven.” “Why?” “Ur...”

Contents

1 Introduction 1
1.1 Summary of contributions . 7
1.2 Summary of related work . 8
1.3 Prerequisites . 9
1.4 Organization . 10

2 The formulation of continuity principles in type theory 12
2.1 The Curry–Howard interpretation of (Cont) 13
2.2 Relationship between ∃,∀ and Σ,Π in a topos 14
2.3 The Curry–Howard interpretation of (UC) 16
2.4 Discussion . 17

3 A variation of the topological topos 19
3.1 Johnstone’s topological topos . 20
3.2 Our variation of the topological topos . 22

3.2.1 The uniform-continuity site . 23
3.2.2 Subcanonicity of the uniform-continuity coverage 25
3.2.3 The cartesian closed structure of Shv(C,J) 25
3.2.4 Concrete and Extensional sheaves 28

3.3 C-spaces and continuous maps . 29
3.3.1 Concrete sheaves as a variation of quasi-topological spaces 29
3.3.2 The (local) cartesian closed structure of C-Space 30
3.3.3 Discrete C-spaces and natural numbers object 32

3.4 The representable sheaf is the Cantor space 33
3.5 The fan functional in the category of C-spaces 35

4 The Kleene–Kreisel continuous functionals 37
4.1 The Kleene–Kreisel continuous functionals 38
4.2 The Kleene–Kreisel spaces as a full subcategory of C-spaces 39
4.3 The Kleene–Kreisel and full type hierarchies 44

5 Modelling simple types in C-spaces 46
5.1 A continuous model of Gödel’s System T 46
5.2 A continuous realizability semantics of HAω 49

6 Modelling dependent types in sheaves 51
6.1 Martin-Löf type theory . 51
6.2 Modelling (UC) via the LCCC of C-spaces 53
6.3 Categories with families . 55
6.4 A continuous model of dependent types . 60
6.5 A sheaf model of dependent types . 64

7 Construction of the model in type theory 72
7.1 Function extensionality and proof relevance 73
7.2 Construction via different approaches . 78

7.2.1 Construction by postulating (funext) 79
7.2.2 Construction by using setoids . 82
7.2.3 Construction by adding a probe axiom 83
7.2.4 Construction by postulating ¬¬(funext) 84

7.3 Models of dependent types in intensional MLTT 86
7.3.1 The CwF of types . 86
7.3.2 The CwF of presheaves . 87
7.3.3 The CwF of C-spaces . 89

8 Construction of the model in Agda 92
8.1 Brief introduction to Agda . 92
8.2 Excerpts of the Agda implementation . 94
8.3 Sample computations of least moduli of uniform continuity 97
8.4 Overview of the Agda implementation . 99

9 Summary and further work 102
9.1 Continuity principles in type theory . 102
9.2 A constructive variation of the topological topos 103
9.3 A constructive manifestation of the Kleene–Kreisel continuous functionals . 104
9.4 Constructive validations of (UC) in intuitionistic type theories 105
9.5 Construction of the model in type theory and the Agda formalization . . . 106
9.6 Universes in sheaf models . 107

Bibliography 112

Index 119

CHAPTER 1

Introduction

We investigate the compatibility of intensional Martin-Löf type theory (MLTT) [61, 62, 70]
with Brouwerian continuity principles [7, 13, 74]. We consider the following two basic and
canonical such principles:

(Cont) All functions NN → N are continuous.

(UC) All functions 2N → N are uniformly continuous.

Our main aim is to give a computational interpretation of type theory validating them,
so that proofs in MLTT with (Cont) and (UC) as assumptions have computational con-
tent. However, instead of using computability theory to build such a model, we reason
constructively, in Chapters 3–6, so that the computational content is implicit. We make
it explicit in Chapters 7 and 8 by formalizing the model in MLTT itself, in Agda nota-
tion [11, 12, 64]. Because constructions and proofs in MLTT or Agda are programs in a
literal sense, we can “run” our model directly to compute moduli of uniform continuity,
as illustrated by some Agda experiments in Chapter 8.3.

The precise formulations of the above continuity principles are

(Cont) ∀(f : NN → N). ∀(α : NN). ∃(m : N). ∀(β : NN). α =m β ⇒ fα = fβ,

(UC) ∀(f : 2N → N). ∃(m : N). ∀(α, β : 2N). α =m β ⇒ fα = fβ,

where α =m β means that the sequences α and β agree at the first m positions. Intu-
itively, the continuity principle (Cont) says that the value of the function f at the infinite
sequence α depends only on a finite prefix of α, while the uniform-continuity principle
(UC) strengthens this to say that the length of such a prefix does not depend on α. In
classical mathematics, of course (Cont) implies (UC) using the compactness of the Cantor
space 2N [68]. The Baire space NN is not even locally compact, and, in fact, an example
of a continuous but not uniformly continuous function f : NN → N is f(α) = α(α(0)).

Johnstone’s topological topos [48], among other toposes [38, 75], validates these prin-
ciples. However, as illustrated in Chapter 3.1, the treatment of the topological topos is
non-constructive in several respects. Our model, discussed below and defined in Chap-
ter 3, is a variation of the topological topos, explicitly designed to allow a constructive
treatment of (UC).

An important point is that, because we are considering the formulation of (Cont) and
(UC) in MLTT, what we are interested in is their Curry–Howard (CH) interpretations

1

(CH-Cont) Π(f : NN → N). Π(α :NN). Σ(m :N). Π(β :NN). α =m β → fα = fβ,

(CH-UC) Π(f : 2N → N). Σ(m :N). Π(α, β :2N). α =m β → fα = fβ.

Perhaps surprisingly, (CH-Cont) is actually false in (intensional and hence in extensional)
MLTT [31], before we consider any model. We recall the proof of this fact in Chapter 2.1.
But the essence of the problem is that using (CH-Cont) and projections, we can define a
modulus-of-continuity functional

M : (NN → N)→ NN → N

such that
Π(α, β :NN). α =Mfα β → fα = fβ.

Whereas all functions NN → N may be continuous, it is contradictory to assume that
there is a functional M that finds moduli of continuity, because this can be used to
define a non-continuous function NN → N, as shown in Theorem 2.1.1. In particular, in
the topological topos, all functions NN → N are continuous, but there is no continuous
modulus-of-continuity functional M , where the continuity of M is taken in the sense of
sequential spaces, which form a full subcategory of the topological topos, as explained
below.

On the other hand, (CH-UC) is in some sense equivalent to (UC), as proved in Chap-
ter 2.3. In order to understand this, and also the difference between (Cont) and (CH-
Cont), we first consider toposes [49, 60]. Any topos, having a subobject classifier, can
interpret the quantifiers ∀ and ∃, and, being locally cartesian closed, can interpret the
type formers Π and Σ [67], and hence provide a model which simultaneously has (Cont)
and (UC) as subobjects of the terminal object 1, and (CH-Cont) and (CH-UC) as certain
objects. For example, in the topological topos, by the above discussion, (Cont) is the
object 1, but (CH-Cont) is the initial object 0. Again (UC) is the object 1, but (CH-UC)
is an object with a global point. In general, in any topos, we can show that (UC) is 1
if and only if (CH-UC) has a global point. Such a global point is a modulus-of-uniform-
continuity functional, or a fan functional. Thus, in particular, in the topological topos,
although it is not possible to continuously find moduli of continuity of functions NN → N,
it is possible to continuously find moduli of uniform continuity of functions 2N → N.

The discussion of the previous paragraph can be recast in type theory, as done in
Chapter 2.2, if we extend it with a type former ‖ − ‖ for so-called bracket types or propo-
sitional truncations [2, 73]. We interpret ‖X‖ in a topos as the image of the unique map
X → 1. The idea is that ‖X‖ is a type representing the truth-value of the assertion that
the type X is inhabited, without revealing any inhabitant of X. Then (Cont) and (UC)
can be equivalently formulated as

(Cont) Π(f : NN → N). Π(α :NN). ‖ Σ(m :N). Π(β :NN). α =m β → fα = fβ ‖,

(UC) Π(f : 2N → N). ‖ Σ(m :N). Π(α, β :2N). α =m β → fα = fβ ‖.

Given these type-theoretic formulations, we prove in Theorem 2.3.1, within type theory
extended with propositional truncation, that (UC) is logically equivalent (CH-UC).

Our model validates (CH-UC), and hence (UC), reasoning constructively. Of course
it cannot validate (CH-Cont) because it is provably false in MLTT. But, reasoning non-
constructively in our meta-theory, it validates (Cont). The reason is that, using (UC), all

2

functions NN → N are (uniformly) continuous on compact subsets of NN, and this gives
their continuity, with a proof by contradiction, which amounts to saying that NN is a
compactly generated space [33]. To avoid classical reasoning, we can instead work with
the model considered by van der Hoeven and Moerdijk [75], which we discuss after we
introduce our model.

To build the topological topos, one starts with the monoid of continuous endomaps of
the one-point compactification N∞ of the discrete natural numbers, and then takes sheaves
for the canonical topology of this monoid considered as a category. Several convenient
categories of spaces are fully embedded in the topological topos:

Topological topos
Ω ∀ ∃ U

Limit spaces
Π Σ

Sequential spaces
N × →

N∞

Firstly, the one-object full subcategory of topological spaces containing N∞ (or the monoid
for the definition of the topological topos) is of course fully embedded in the topos, by
the Yoneda Lemma. The category of sequential spaces, which is cartesian closed and
has a natural numbers object, and thus gives a model of Gödel’s system T, is also fully
embedded. But this category is not locally cartesian closed, and hence is not enough to
model dependent types. The larger category of Kuratowski limit spaces, which also arises
as the full subcategory of subobjects of sequential spaces in the topos (which hence are
called subsequential spaces by Johnstone) is locally cartesian closed [63]. Moreover, limit
spaces are precisely the concrete sheaves in the sense of [3]. The subobject classifier is not
(isomorphic to) a limit space, and hence logic lives outside the realm of “spaces”. Using
Streicher’s construction [71] for arbitrary Grothendieck toposes, assuming a Grothendieck
universe in set theory, one can build an object U that serves as a Martin-Löf universe.
But, again this object is not a limit space [34].

We work with a different site for our variation of the topological topos. Instead of the
monoid of continuous endomaps of N∞, we take the monoid C of uniformly continuous
endomaps of the Cantor space 2N. Rather than working with the canonical topology, we
consider a subcanonical one, consisting of certain countably many finite covering families,
which is suitable for predicative, constructive reasoning. We call it the uniform-continuity
coverage, because the coverage axiom specialized to our situation amounts to the fact that
the elements of the monoid C are the uniformly continuous functions (Chapter 3.2.1).
Our model consists of sheaves on this uniform-continuity site. Similarly to the topological
topos, certain spaces reside in our sheaf topos, as indicated in the following diagram:

3

Our sheaf topos

C-spaces

Limit spaces

Kleene–Kreisel
spaces

2N

Our concrete sheaves, like those in the topological topos, can be described as sets
equipped with a suitable continuity structure, which we call C-spaces, and their natural
transformations can be regarded as continuous maps. The idea is that we “topologize” a
set X by choosing a designated collection of maps 2N → X, called probes, that we want,
and hence declare, to be continuous. We call this collection the C-topology on X, and say
that X is a C-space. As discussed in Chapter 3.3.1, our C-spaces can be regarded as a
variation of Spanier’s quasi-topological spaces [69]. In this thesis, we mainly work with
C-spaces because:

1. C-spaces admit a more concrete and intuitive description.

2. C-spaces have sufficient structure, as discussed below, for our aim of giving a com-
putational interpretation of the uniform-continuity principle (CH-UC).

3. C-spaces are easier to work with, compared to sheaves, regarding the type-theoretic
implementation, as illustrated in Chapter 7.3.

One disadvantage of C-spaces is their lack of a subobject classifier and universe (or object
classifier). Similarly to the situation in the topological topos, the subobject classifier
in our sheaf topos is not a C-space. Hence, C-spaces are insufficient to interpret the
quantifiers ∀ and ∃, and thus cannot model the principles (Cont) or (UC). Moreover,
the universe object in our sheaf topos built using Streicher’s construction again is not a
C-space either. Thus, working with C-spaces, we cannot model Martin-Löf’s universes.
We demonstrate how our sheaves form a model of dependent types in Chapter 6.5, in the
sense of a category with families [29]. We also attempt to interpret the universe, following
Coquand’s construction of presheaf models [21], but we have more questions than answers
about the interpretation of the universe in our model, which we leave as an important
open problem (Chapter 9.6).

Similarly to limit spaces, our C-spaces also form a (locally) cartesian closed category
as shown in Chapter 3.3.2. The constructions are the same as those in the category of sets,
with suitable C-topologies. For instance, to get products of C-spaces we “C-topologize”
the cartesian products, and to get exponentials of C-spaces we “C-topologize” the sets
of continuous maps. As proved in Chapter 3.3.3, the category of C-spaces has a natural
numbers object N, which is a discrete C-space, i.e. any function from it is continuous.

4

Specifically, the probes on N are precisely the uniformly continuous maps 2N → N. The
Yoneda Lemma, specialized to our topos, says that a map 2N → X is continuous (in the
sense of C-spaces) if and only if it is a probe on X. In the special case X = N, it follows
that all morphisms 2N → N amount to uniformly continuous functions. Using this fact, in
Chapter 3.5, we construct a fan functional in the category of C-spaces that continuously
calculates minimal moduli of uniform continuity of maps 2N → N. This functional is used
to validate the uniform-continuity principle in type theory, as discussed below.

From the previous discussion, we see that the C-spaces in our topos correspond to the
limit spaces in the topological topos, in the sense that they are the concrete sheaves of
the respective toposes in which they live. We also show that limit spaces can be fully
embedded in the category of C-spaces, as proved in Chapter 4.2. An important fact is
that any topological space X becomes a limit space, by equipping it with all topologically
continuous maps N∞ → X, and becomes a C-space, by equipping it with all topologically
continuous maps 2N → X. Thus both objects N∞ and 2N of our topos and of the
topological topos are limit spaces and C-spaces. Given a limit space X, if we take all
continuous maps 2N → X (in the sense of limit spaces) to be the probes, then X becomes
a C-space. This gives the full embedding of limit spaces into C-spaces. Given a C-space X,
the continuous maps N∞ → X (in the sense of C-spaces) form a limit structure on X.
This gives a left adjoint to the embedding, which preserves finite products. Therefore,
limit spaces form an exponential ideal of the category of C-spaces.

One of the well known approaches to the Kleene–Kreisel continuous functionals [65,
66, 57, 58, 56] is to work with limit spaces: we start from the discrete space of natu-
ral numbers, close under products and exponentials, and then obtain a full subcategory
which is equivalent to any of the known formulations of Kleene–Kreisel spaces, as briefly
recalled in Chapter 4.1. When restricted to the objects in this subcategory, the embed-
ding mentioned above becomes an equivalence (in fact, even an isomorphism); therefore,
the Kleene–Kreisel spaces can be calculated within C-spaces by starting from the dis-
crete space of natural numbers and iterating products and exponentials. We emphasize
that the proof of this fact, in Chapter 4.2, is non-constructive. For example, the proof
that the natural numbers objects in the two categories coincide uses an argument by
contradiction. But we also emphasize that Chapter 4.2 is the only part of our work
that contains non-constructive arguments. Since our development of C-spaces, including
the cartesian closed structure (Chapter 3.3.2) and the fan functional (Chapter 3.5), is
constructive, our C-spaces provide a classically equivalent substitute for the traditional
manifestations of the Kleene–Kreisel spaces, which admits a constructive treatment of the
uniform-continuity principle discussed above.

Kleene–Kreisel spaces form a well-known simple-type hierarchy in which all functionals
are continuous. The full type hierarchy is the smallest full subcategory of sets containing
the natural numbers and closed under products and exponentials. One interesting obser-
vation in Chapter 4.3 is that, when assuming the Brouwerian axiom that all set-theoretic
functions 2N → N are uniformly continuous, the full type hierarchy is equivalent to the
Kleene–Kreisel continuous hierarchy within C-spaces, which is reminiscent of Fourman’s
recent work [39] on reflection. The proof is constructive, and it is interesting that other
Brouwerian axioms such as more general forms of continuity or Bar Induction are not
needed to prove the equivalence.

5

Using the cartesian closed structure of C-spaces and its natural numbers object, in
Chapter 5.1 we build a model of system T. We firstly recover a well known result, namely
that any T-definable function 2N → N in the full type hierarchy is uniformly continuous,
by establishing a logical relation between the set-theoretic interpretation (i.e. the full type
hierarchy) and the C-space interpretation (i.e. the Kleene–Kreisel continuous hierarchy)
of simple types. Since system T is a quantifier-free theory, in order to formulate the
uniform-continuity principle, we add a constant with the type of the fan functional, and
then skolemize the formula (UC) with the aid of this additional constant. Using the
definition of the fan functional, we easily show that (the skolemization of) the principle
(UC) is validated, by interpreting the constant as the fan functional. Then in Chapter 5.2,
with the same interpretation of the term language of T, we build a realizability semantics
of the higher-type Heyting arithmetic HAω [7, 74], with continuous maps of C-spaces as
realizers, and use the fan functional again to realize a formula of (UC). Although, in HAω,
the uniform-continuity principle is formulated with quantifiers ∀ and ∃, they are realized
by function spaces and binary products in the category of C-spaces, instead of using the
local cartesian closed structure.

Following Seely’s interpretation of (extensional) Martin-Löf type theory in locally
cartesian closed categories [67], we validate the uniform-continuity principle (CH-UC)
in the locally cartesian closed category of C-spaces in Chapter 6.2. The proof of this
result is essentially the same as the ones given to System T and HAω, as both theories
can be regarded as subsystems of MLTT. In order to address a well-known coherence is-
sue in Seely’s interpretation [25], regarding the interpretation of substitution as pullback,
we work with categories with families (CwFs) [29] in Chapters 6.4 and 6.5. We show
how to give CwF structures to the categories of C-spaces and of sheaves to get models of
dependent types.

The above work, presented in Chapters 3–6, is developed within an informal construc-
tive meta-theory, in style similar to Bishop’s mathematics [10]. Then in Chapter 7 we
develop it in a formal meta-theory, in Martin-Löf’s style [62]. We emphasize that our
model (in both its informal and formal manifestations) is developed in a minimalistic
constructive meta-theory, which is compatible with classical mathematics. In particular,
no constructively contentious principles, such as continuity axioms, fan theorem and Bar
induction [7, 74], or impredicativity are assumed in the meta-language.

Because Martin-Löf type theory is “proof-relevant” [62], the development in Chapter 7
needs to perform a number of adjustments, or refinements, to the informal development
of Chapters 3–6. For instance, the collection of uniformly continuous maps 2N → N is
formulated as a Σ-type, i.e. a uniformly continuous map is a pair consisting of a underlying
map 2N → N and a witness of uniform continuity. When formalizing the proof that the
domain N2N

of the fan functional is a discrete space (Lemma 3.5.1), if we attempt to prove
an equality of two uniformly continuous maps, i.e. two pairs, we would be able to only
obtain an equality of their underlying maps, which is not sufficient, because even for the
same map there could be many different witnesses of uniform continuity. By requiring
the existence of a minimal modulus of uniform continuity, the type that expresses that a
map is uniformly continuous can have at most one inhabitant, and with this refinement
we can complete the formalization of the discreteness proof of the space N2N

.
Another difficulty of the type-theoretic formalization, as discussed in Chapter 7.1, is

caused by the lack of function extensionality (funext) in MLTT. Certain issues with this

6

arise in the developments of: (1) exponentials of C-spaces, (2) discrete C-topologies, and
(3) the fan functional. To handle these issues, we developed mainly four approaches,
among others, all of them implemented in Agda and available at [77]:

1. Use setoids. This well known approach [41], which is also at the heart of Bishop’s
approach to constructive analysis [10], consisting of the use of types equipped with
equivalence relations, works here with no surprises. But the drawback, as usual, is
that it gives a long formalization that obscures the essential aspects of the construc-
tions and proofs.

2. Simply postulate (funext). This is of course the easiest approach, but would po-
tentially destroy the computational content of formal proofs, because then (funext)
becomes a constant without a computational rule. Thus, although we obtain a
clean formalization, we potentially lose computational content, which would defeat
the main aim of the thesis.

3. Postulate (funext) within a computationally irrelevant field. After the previous ap-
proach (2) was completed, we observed that our uses of (funext) do not really have
computational content, and we used a feature of Agda, called irrelevant fields [1],
to formulate and prove this observation. In practice, we actually needed to slightly
modify approach (2) to make this idea work, as discussed in Chapter 7.1. In any
case, the drawback is that it requires the extension of type theory with such irrele-
vant fields, which we would prefer to avoid.

4. Postulate the double negation of (funext). In turn, after we completed approach (3),
we observed that it does not really depend on the nature of irrelevant fields, but
only on the fact that irrelevant fields form a monad T with T∅ → ∅. As is well
known, double negation is the final such monad. There are two advantages with
this approach: (i) we do not need to work with a non-standard extension of MLTT,
and (ii) postulating negative, consistent axioms does not destroy computational
content [22].

With the last approach (4), we achieve our main aim of extracting computational content
from proofs that use the axiom (CH-UC), in a relatively clean way, avoiding the usual
bureaucracy associated with setoids.

1.1 Summary of contributions
The main contributions of this work mentioned above are summarized as follows:

1. The uniform-continuity principle (UC) is logically equivalent to its Curry–Howard
interpretation (CH-UC) (Chapter 2.3).

2. Without assuming Brouwerian axioms, we show constructively that the category of
C-spaces has a fan functional (2N → N) → N that continuously calculates moduli
of uniform continuity of maps 2N → N (Chapter 3.5).

3. Kleene–Kreisel continuous functionals can be calculated within the category of C-
spaces (Chapter 4.2).

7

The proof here is non-constructive (as are the proofs for the traditional approaches).
But we claim that C-spaces provide a good substitute of the traditional approaches
to the Kleene–Kreisel spaces for the purposes of constructive reasoning about con-
tinuity principles.

4. If we assume the Brouwerian principle that all set-theoretic functions 2N → N are
uniformly continuous, then we can show constructively that the full type hierarchy
is equivalent to the Kleene–Kreisel continuous hierarchy within C-spaces (Chap-
ter 4.3).

5. C-spaces give a model of system T with a uniform-continuity principle, expressed
as a skolemization with the aid of a fan-functional constant (Chapter 5.1).

6. C-spaces give a realizability semantics of HAω, in which the uniform-continuity
principle is realized by the fan functional (Chapter 5.2).

7. C-spaces give a model of dependent types with a uniform-continuity principle, ex-
pressed as a closed type via the Curry–Howard interpretation (Chapter 6.2).

8. We give a constructive treatment of C-spaces (Chapters 3.3–3.5) suitable for devel-
opment in a predicative intuitionistic type theory in the style of Martin-Löf [61, 62],
which we formalized in Agda notation [11, 12, 64] for concrete computational pur-
poses, and whose essential aspects are discussed in Chapters 7 and 8.

Among the above, (1) was merged with [31] to produce the paper [36] which has been
accepted for TLCA’2015; (2), (5), (6), and part of (8) were presented in our TLCA’2013
paper [78]; and (3), (4), (7), and part of (8), appeared as new results in its full version [35],
accepted for publication in APAL. All these results have been refined and expanded upon
in this thesis.

1.2 Summary of related work
We have already mentioned connections with earlier work in the above discussion. In this
section we briefly summarize this. Our contributions build upon the following work:

1. Johnstone’s paper On a topological topos (1979) [48],

2. Fourman’s papers Notions of choice sequence (1982) [37], Continuous truth I (1984) [38],
and Continuous truth II (2013) [39],

3. van der Hoeven and Moerdijk’s paper Sheaf models for choice sequences (1984) [75],

4. Spanier’s paper Quasi-topologies (1963) [69],

5. Bauer and Simpson’s unpublished work Continuity begets continuity (2006) [6], and

6. Coquand and Jaber’s paper A note on forcing and type theory (2010) [23] and A
computational interpretation of forcing in type theory (2012) [24].

8

Johnstone, Fourman, van der Hoeven and Moerdijk, among the above, work with sheaf
toposes on different sites, and so do we as discussed above and in Chapter 3.2. The con-
crete sheaves in these toposes can be regarded as variations of Spanier’s quasi-topological
spaces, and so can ours as discussed in Chapter 3.3.1.

As mentioned earlier, to build the topological topos, one starts with the monoid of
continuous endomaps of the one-point compactification of the discrete natural numbers,
and then takes sheaves for the canonical topology of this monoid considered as a category.
Working non-constructively, one can show that the continuity principles (Cont) and (UC)
are validated by the topological topos.

Fourman works with a site whose underlying category is the semilattice of finite se-
quences of natural numbers under the prefix order. He shows that general principles of
continuity, local choice and local compactness hold for his models. With an analysis of
iterated categorical extensions, he concludes a principle of predicative reflection. Our
result that (UC) implies the equivalence of the full type hierarchy and the Kleene–Kreisel
continuous hierarchy (Chapter 4.3) is analogous to his reflection principle.

Inspired by Fourman’s work, van der Hoeven and Moerdijk consider the monoid of
continuous endomaps of the Baire space NN and a so called open cover topology to get
a sheaf model of countable choice, continuity principle for maps NN → N, and Bar in-
duction. To be precise, the continuity principle validated by their model is its logical
formulation (Cont).

Bauer and Simpson’s work can be seen as taking place in the topological topos. They
consider a weaker notion of limit space, and develop a model of (some form of) predicative
constructive mathematics, in which every function of complete (separable) metric spaces is
sequentially continuous. They claim that their argument is predicative and constructive.

Our work is also related to Coquand and Jaber’s forcing model, which instead uses the
semilattice of finite binary sequences under the prefix order as the underlying category
of the site, modelling the idea of a generic infinite binary sequence. They iterate their
construction in order to be able to model the fan functional, and our model can be
regarded as accomplishing this iteration directly in a single step (personal communication
with Coquand). A difference is that their approach is syntactical rather than semantical:
instead of constructing a model, they decorate the operational semantics of type theory
with forcing information.

1.3 Prerequisites
The prerequisites for reading the thesis include:

1. Topology [68, 72]: topological space, continuous function, compact Hausdorff space,
Cantor space 2N, Baire space NN, one-point compactification N∞ of natural numbers.

2. Category theory [59, 49, 60]: category, functor, natural transformation, limit, ad-
junction, cartesian closed category, locally cartesian closed category, natural num-
bers object, subobject classifier, isomorphism of categories, equivalence of categories.

3. Topos theory [49, 60]: site, Grothendieck topology, canonical topology, subcanonical
topology, presheaf, sheaf.

Some basic familiarity with recursion theory [65], e.g. the Kleene–Kreisel continuous
functionals [65, 66, 57, 58], will be helpful when reading Chapter 4, where the first section

9

briefly presents some necessary background, and recalls the approach to Kleene–Kreisel
continuous functionals via limit spaces, to make the chapter self-contained.

Some knowledge of constructive mathematics (e.g. the first three chapters of [7] and
Chapter 4 of [74]), including that of constructive type theory (e.g. [61, 62, 70]), will be
necessary to understand Chapter 2, regarding the type-theoretic formulations of continuity
principles, and Chapters 7 and 8, regarding our type-theoretic development and Agda
implementation. But the readers unfamiliar with constructive mathematics will not be at
a disadvantage except in these chapters.

1.4 Organization
The remaining chapters of the thesis are organized as follows.

Chapter 2 investigates the Curry–Howard formulations of the two fundamental con-
tinuity principles, (Cont) and (UC). The former is provably false in intensional Martin-Löf
type theory and thus fails in any topos. The latter, which is the one that we are working
with in this thesis, is logically equivalent to the logical formulation.

Chapter 3 develops a variation of the topological topos, consisting of sheaves on a cer-
tain uniform-continuity site. In particular, C-spaces, corresponding to concrete sheaves,
form a (locally) cartesian closed category with a natural numbers object. Moreover, there
is a fan functional, in the category of C-spaces, that continuously calculates moduli of
uniform continuity of maps 2N → N.

Chapter 4 shows how the Kleene–Kreisel continuous functionals can be calculated
within C-spaces. When assuming that all set-theoretic functions 2N → N are uniformly
continuous, the full type hierarchy is equivalent to the Kleene–Kreisel continuous hierarchy
within C-spaces.

Chapter 5 employs C-spaces to model Gödel’s system T with a skolemization of (UC),
and to realize (UC) in the intuitionistic arithmetic HAω of finite types, with the aid of
the fan functional.

Chapter 6 validates the Curry–Howard interpretation of (UC) in the locally cartesian
closed category of C-spaces using the fan functional, and demonstrates how C-spaces and
sheaves form models of dependent type via the notion of category with families.

Chapter 7 discusses the main difficulties of developing the model in type theory,
provides a few approaches to overcome them, and explores the feasibility of internalizing
models of type theory.

Chapter 8 presents some examples of our Agda implementation to demonstrate how
to “run” the model to compute moduli of uniform continuity.

Chapter 9 concludes with a summary of main results in the thesis, as well as a few
interesting directions of further research related to the thesis.

The interdependence of the main chapters (2–8) in this thesis is given by the following
diagram, where the arrow B −→ A represents the dependence of B on A, and the dashed
one B 99K A means that A is helpful but not necessarily needed to understand B.

10

Chapter 2 Chapter 5oo_ _ _ _ _ _

zzuuuuuuuuuuuuuuuuuuuuuuuu

Chapter 6

jjT T T T T T T T

ttjjjjjjjjjjjjjjj
Chapter 7

tt

jjTTTTTTTTTTTTTTT
oo

ttjjjjjjjjjjjjjjj

jj

Chapter 8oo

Chapter 3

OO�
�
�
�
�
�
�

Chapter 4oo

The purpose of presenting the material in Chapter 2 is to clarify the aim of this
thesis, which is to extract computational content from type-theoretic proofs that use the
principle (CH-UC) as an assumption. Thus reading Chapter 2 will be helpful for readers
to understand how our model is constructed (Chapter 3) and which formulation of the
uniform-continuity principle is validated (Chapters 5 and 6).

Chapter 4 mainly demonstrates how the Kleene–Kreisel continuous functionals are
calculated within our model which is developed in Chapter 3, and hence is independent of
the other main chapters, except that the constructive proof of the hierarchy equivalence
is briefly mentioned in Chapter 7.

Chapters 5 and 6 employ C-spaces developed in Chapter 3 to model simple and de-
pendent type theories, and then validate the uniform-continuity principle. The work
presented in these three chapters, as highlighted above, is developed within an informal
constructive meta-language. Thus unfamiliarity with constructive mathematics will not
be a serious problem when reading them.

Chapters 7 and 8 investigate the constructive aspects of the work presented in the
precedent chapters.

11

CHAPTER 2

The formulation of continuity principles
in type theory

Two of the simplest continuity principles considered in constructive mathematics are

1. (Cont) All functions NN → N are continuous.

2. (UC) All functions 2N → N are uniformly continuous.

For more general continuity principles, e.g. for metric spaces, and their relationship to
other principles such as Bar Induction, the Fan Theorem, etc., see Troelstra and van
Dalen [74] and Beeson [7].

The aim of this thesis is to develop a model of dependent type theory that validates
(UC) directly. Moreover, we wish to develop such a model in a minimalistic constructive
meta-theory, compatible with classical mathematics, even type theory itself. Although
we will not model (Cont), in this chapter we discuss it in parallel with (UC) in order to
illustrate certain phenomena that arises from the Curry-Howard interpretation of logic
usually adopted in Martin-Löf type theory, and in order to clarify the main aim of the
thesis, which is to validate the Curry–Howard interpretation of (UC).

The precise logical formulations of the above principles are

(Cont) ∀(f : NN → N). ∀(α : NN). ∃(m : N). ∀(β : NN). α =m β ⇒ fα = fβ,

(UC) ∀(f : 2N → N). ∃(m : N). ∀(α, β : 2N). α =m β ⇒ fα = fβ,

where α =m β means that the sequences α and β agree at the first m positions. Both
principles are validated by Johnstone’s topological topos [48], which is recalled in Sec-
tion 3.1, among other toposes, such as [38, 75]. Under the Curry-Howard interpretation
of logic, these principles become the types

(CH-Cont) Π(f : NN → N). Π(α :NN). Σ(m :N). Π(β :NN). α =m β → fα = fβ,

(CH-UC) Π(f : 2N → N). Σ(m :N). Π(α, β :2N). α =m β → fα = fβ,

where the equality sign stands for the identity type (rather than judgemental equality).
Perhaps surprisingly, (CH-Cont) can be proved to fail in intensional (and hence in exten-
sional) MLTT [31, 36] (Section 2.1). Moreover, (CH-Cont) can also be considered in any

12

topos via its local cartesian closed structure, which allows one to interpret Π and Σ, and
always defines an initial object.

In contrast, we show that the principle (CH-UC) is not only consistent, but also
equivalent to (UC) in a precise sense (Section 2.3). This shows that the topological topos
validates (CH-UC), at least within a non-constructive meta-theory. The topological topos
is briefly discussed in Section 3.1, within Chapter 3 which presents a variation of the
topological topos allowing us to model (CH-UC), and, moreover, can be developed within
a minimal constructive meta-theory.

2.1 The Curry–Howard interpretation of (Cont)

The following theorem of intensional Martin-Löf type theory is due to Escardó [31, 36],
with an argument that goes back to Kreisel [54]. We reason informally, but rigorously,
in MLTT, where, as above, we use the equality sign to denote identity types. A formal
proof, written in Agda notation, is provided in loc. cit.

Theorem 2.1.1. If Π(f : NN → N).Π(α : NN).Σ(m : N).Π(β : NN). α =m β → fα = fβ
then 0 = 1.

Proof. Let 0ω denote the infinite sequence of zeros, that is, λi.0, and let 0nkω denote the
sequence of n many zeros followed by infinitely many k’s. Then

(0nkω) =n 0ω and (0nkω)(n) = k.

Assume Π(f : NN → N).Π(α : NN).Σ(m : N).Π(β : NN).α =m β → f(α) = f(β). By pro-
jection, with α = 0ω, this gives a modulus-of-continuity function

M : (NN → N)→ N

such that
Π(f : NN → N).Π(β : NN).0ω =Mf β → f(0ω) = f(β). (2.1)

We use M to define a non-continuous function f : NN → N and hence get a contradiction.
Let

m :≡ M(λα.0),

and define f : NN → N by
f(β) :≡ M(λα.β(αm)).

Observe that, by simply expanding the definitions,

f(0ω) = m.

By the defining property (2.1) of M ,

Π(β : NN).0ω =Mf β → m = fβ. (2.2)

Now we consider the two cases Mf = 0 and Mf > 0.
Assume Mf = 0. By (2.2),

Π(β : NN).m = fβ.

13

The choice βi :≡ i gives
m = f(λi.i) = M(λα.αm).

By the defining property (2.1) of M , this means that

Π(α : NN).0ω =m α→ 0 = αm.

But this gives 0 = 1 if we choose e.g. the sequence α = 0m1ω.
Now assume Mf > 0 instead. For any β : NN, by the continuity of λα.β(αm), by the

definition of f , and by the defining property (2.1) of M , we have that

Π(α : NN).0ω =fβ α→ β0 = β(αm).

Considering β :≡ 0Mf1ω, this gives

Π(α : NN).0ω =m α→ β0 = β(αm),

because fβ = m as 0ω =Mf β and f(0ω) = m. Considering α = 0m(Mf)ω, this in turn
gives 0 = β0 = β(αm) = β(Mf) = 1.

Because any topos interprets (extensional and hence intensional) MLTT, the above
holds in particular in the topological topos, despite the fact that this topos validates the
usual logical formulation of (Cont) with the logical quantifiers ∀,∃ rather than the type
formers Π,Σ. This apparent contradiction is discussed in the following section.

2.2 Relationship between ∃,∀ and Σ,Π in a topos

In order to understand how it can be that (Cont) is valid in some models of some vari-
eties of constructive mathematics [7, 74, 13], but absurd in intensional Martin–Löf type
theory, we consider toposes, as they simultaneously have the quantifiers ∃,∀ and the ob-
ject formers Σ,Π, which have markedly different meanings. Those of ∃,∀ come via the
subobject classifier Ω, and those of Σ,Π come via the local cartesian closed structure of
the topos [49].

The interpretation of a truth value in a topos is a sub-terminal object. For any
object X of a topos, its support, written ‖X‖, is the image of the unique map X → 1.
This expresses the inhabitedness of X as a truth value. Any map P : X → Ω to the object
of truth values can be regarded as a property of elements of X, and so we can form the
truth value ∃(x :X).P (x), or can be regarded as a family of sub-terminal objects indexed
by X, and so we can form the object Σ(x :X).P (x), and we have

∃(x :X).P (x) ∼= ‖Σ(x :X).P (x)‖.

We also have
∀(x :X).P (x) ∼= Π(x :X).P (x)

because a product of sub-terminal objects is always sub-terminal. Thus, although ∃,∀
and Σ,Π are related, they are different in general, as illustrated by (Cont), which is valid
in the topological topos, and its Curry–Howard interpretation (CH-Cont), which is not.

However, sometimes there is no essential difference between ∃ and Σ. We show that
this is the case for (UC) in Section 2.3. By the above discussion, the logical formulation

14

of (UC) can be equivalently expressed type-theoretically as

Π(f : 2N → N). ‖Σ(m : N). Π(α, β : 2N). α =m β → fα = fβ‖.

This type is not isomorphic to the “untruncated” type

Π(f : 2N → N). Σ(m : N). Π(α, β : 2N). α =m β → fα = fβ

as there are in general many moduli m : N of uniform continuity of the same f : 2N → N.
But we prove that they are “logically equivalent”, where we say that two objects X and
Y are logically equivalent if we have maps X → Y and Y → X.

We formulate and prove this in MLTT extended with a type constructor ‖ − ‖. This
extension can be interpreted in any topos as above, with identity types modelled by
equalizers. This is a fragment of the type theory considered in the HoTT book [73],
leaving out the univalence principle and higher inductive types. To formulate the support
operation ‖ − ‖, referred to as -1-truncation or propositional truncation in [73], we first
define

isPropA :≡ Π(a, b : A).a = b.

for any type A. This says that a proposition is a type with at most one element. We have
the formation rule

X Type

‖X‖ Type

with the postulate
isProp ‖X‖,

the introduction rule (or constructor)

x : X
|x| : ‖X‖,

and the elimination rule (or recursion principle)

isPropP f : X → P

f̄ : ‖X‖ → P

such that
f̄ |x| = f(x)

holds judgementally for all x : X. Intuitively, the above specification of ‖X‖ says that it
is the quotient of X by the equivalence relation that identifies all elements of X (and this
is the case in the topos interpretation).

From the existence of the truncation of the coproduct type 1 + 1 (of two copies
of the singleton type) and the judgemental equality obtained via the elimination rule,
one can prove function extensionality [52], that is, for any type X and any type family
x : X ` Y (x),

Π(f, g : Π(x :X).Y (x)). (Π(x : X).fx = gx)→ f = g.

We emphasize that the proof of the logical equivalence of the two formulations of the
uniform-continuity principle (Theorem 2.3.1) does use function extensionality, which is
available in this extended MLTT.

15

Remark. In our Agda formalization [77], we in fact postulate a weaker form of proposi-
tional truncation than that of the HoTT book, due to the lack of the judgemental equality
in the elimination rule. This does not seem to allow one to derive function extensionality,
and hence we have to additionally postulate function extensionality in order to complete
the formalization of the proof of Theorem 2.3.1.

2.3 The Curry–Howard interpretation of (UC)
Again, as in Section 2.1, we reason informally, but rigorously in type theory.

Theorem 2.3.1. In intensional Martin-Löf type theory with propositional truncation, the
proposition

Π(f : 2N → N). ‖Σ(m : N). Π(α, β : 2N). α =m β → fα = fβ‖

is logically equivalent to the type

Π(f : 2N → N). Σ(m : N). Π(α, β : 2N). α =m β → fα = fβ.

We use the following two lemmas from [51].

Lemma 2.3.2. If X is any type and f : X → X is a constant function in the sense that
fx = fy for all x, y : X, then the type fix(f) :≡ Σ(x :X).x = fx of fixed points of f is a
proposition.

This has a non-trivial proof and we refer the reader to loc. cit. But we include the
proof of the second lemma:

Lemma 2.3.3. For any type X we have ‖X‖ → X if X has a constant endomap.

Proof. Let f : X → X be constant. Then the type fix(f) is a proposition by the previous
lemma. Using the constancy witness of f , we can define a map X → fix(f). According
to the elimination rule of ‖ − ‖ we get a map ‖X‖ → fix(f). Then the composition with
the first projection gives the desired result.

We use this to prove the following:

Lemma 2.3.4. If A is a family of types indexed by natural numbers such that

1. A(n) is a proposition for any n : N, and

2. A(n) implies that A(m) is decidable for every m < n,

then

‖Σ(n :N).A(n)‖ → Σ(n :N).A(n).

Proof. Given a pair (n, an) : Σ(n :N).A(n), we know that A(m) is decidable for all m < n
and thus can find the minimal m such that A(m), by search bounded by n, which gives a
map µ : Σ(n :N).A(n)→ Σ(n :N).A(n). The witness of A(m) is obtained from the witness
of A(m) + ¬A(m). Thus, for different w,w′ : Σ(n :N).A(n), the map µ gives the same
minimal m, i.e. pr1(µ(w)) = pr1(µ(w′)) = m. Since A(m) is a proposition, the two
witnesses pr2(µ(w)) and pr2(µ(w′)) of A(m) are equal. Hence, the map µ is constant.
Then Lemma 2.3.3 gives the desired result.

16

The above three lemmas do not need function extensionality, but the application of
the last lemma in the following argument does. Specifically, function extensionality is
used to prove that the product type Π(α, β : 2N). α =n β → fα = fβ is a proposition for
any f : 2N → N and n : N.

Proof of Theorem 2.3.1. One direction is an immediate consequence of the fact that X →
‖X‖ for any type X. For the other direction, given f : 2N → N, we write

A(n) :≡ Π(α, β : 2N). α =n β → fα = fβ

for n : N. Equality of natural numbers is a proposition (see [73, §3.1]), and hence so
is A(n), because, by function extensionality, a product of a family of propositions is a
proposition (see [73, §3.6]). To conclude that A(n) implies A(m) decidable for all m < n,
it is enough to show that for all n, (1) ¬A(n+ 1) implies ¬A(n), and (2) if A(n+ 1) holds
then A(n) is decidable.

(1) This follows from A(n) → A(n + 1), which says that any number bigger than a
modulus of uniform continuity is also a modulus, which is immediate.

(2) For every n, the type

B(n) = Π(s : 2n). f(s0ω) = f(s1ω),

is decidable, because N has decidable equality and finite products of decidable types are
also decidable. Now let n : N and assume A(n + 1). To show that A(n) is decidable, it
is enough to show that A(n) is logically equivalent to B(n), because then B(n) → A(n)
and ¬B(n)→ ¬A(n) and hence we can decide A(n) by reduction to deciding B(n).

The implication A(n) → B(n) holds without considering the assumption A(n + 1).
To see this, assume A(n) and let s : 2n. Taking α = s0ω and β = s1ω, we conclude from
A(n) that f(s0ω) = f(s1ω), which is the conclusion of B(n).

Now assume A(n+1) and B(n). To establish A(n), let α, β : 2N with α =n β. We need
to conclude that f(α) = f(β). By the decidability of equality of 2, either α(n) = β(n)
or not. If α(n) = β(n), then α =n+1 β, and hence f(α) = f(β) by the assumption
A(n + 1). If αn 6= βn , we can assume w.l.o.g. that αn = 0 and βn = 1. Now take
s = α0α1 . . . αn−1(= β0β1 . . . βn−1). Then α =n+1 s0

ω and s1ω =n+1 β, which together
with A(n + 1) imply f(α) = f(s0ω) and f(s1ω) = f(β). But f(s0ω) = f(s1ω) by B(n),
and hence f(α) = f(β) by transitivity.

Then Lemma 2.3.4 gives the desired result.

Hence the Curry–Howard interpretation of (UC) is validated in the topological topos,
even though the Curry–Howard interpretation of (Cont) fails in any topos.

2.4 Discussion
Thanks to the logical equivalence proved in Theorem 2.3.1, in a type theory with proposi-
tional truncation we can work with either formulation of the uniform-continuity principle.
When we formalize in type theory the developments of Chapters 3–6, in Chapter 7, we will
take (CH-UC), as this allows us to avoid the inclusion of propositional truncation, which
is not available in MLTT. In Chapters 3–6 we will work in a deliberately informal ap-
proach to constructive mathematics, similar to Bishop’s [10] in style, and we will speak of

17

sets, that will be formalized as types in Chapter 7. It is worth emphasizing, however, that
although we do not work with propositional truncation in Chapter 7, we found it essential
to work with propositions in the above sense (namely types with at most one element,
or sub-singletons) in order to make some of the informal arguments work in type theory.
For example, in the official definition of (CH-UC) in the type-theoretic development (and
in the Agda formalization), we require the existence of a minimal modulus of uniform
continuity to make (CH-UC) into a proposition. Further discussion is in Chapter 7.1.

If we were considering the principle (Cont) as well, we would be forced to consider
the extension of type theory with propositional truncation, as discussed above, in order
to consistently formulate it as

Π(f : NN → N). Π(α :NN). ‖Σ(m :N). Π(β :NN). α =m β → fα = fβ‖.

In view of Theorem 2.1.1, it is not possible to remove the truncation operation via the
use of minimal moduli of continuity.

18

CHAPTER 3

A variation of the topological topos

As mentioned in previous chapters, the uniform-continuity principle (UC) is validated in
Johnstone’s topological topos [48], which is briefly recalled in Section 3.1 below. However,
the treatment of the topological topos is non-constructive in several respects that are
relevant to our work, in particular modelling (UC). For example, [48, Section 3] uses
arguments by contradiction or case analysis via excluded middle in order to obtain an
explicit description of the canonical coverage.

We work with a variation of the topological topos that allows us to constructively
model a dependent type theory with (the Curry–Howard interpretation of) the uniform-
continuity principle discussed in Chapter 2. In our variation, instead of working with the
canonical coverage, we work with a simpler, explicitly given coverage that is suitable for
modelling (UC) and still retains the “topological” character of the resulting topos.

Our model can be developed in a minimalistic constructive meta-theory, and has been
implemented in intensional Martin-Löf type theory [62] using Agda notation [11, 12, 64]
(Chapters 7 and 8). This enables us to extract computational content from type-theoretic
proofs that use (UC), avoiding non-constructive arguments in the correctness of the com-
putational extraction process. In this chapter, we work within informal constructive
mathematics, along the lines of Bishop’s mathematics [10]. In Chapter 7, we discuss how
the model can be developed within MLTT itself, with a development which we carried
out in Agda [77]. A major difference between the development of this Chapter with that
of Chapter 7 is that type theory is “proof relevant”, and hence some of the definitions
and arguments of this chapter have to be adapted to cope with the additional information
that a type-theoretic development has to take into account. This is explained further in
Chapter 7.

From Section 3.2 to Section 3.5, we (implicitly) use the axiom of choice to get moduli
of uniform continuity of maps 2N → 2N and moduli of local constancy of maps 2N → X.
This is not a problem in MLTT, provided the existential quantifier ∃ is interpreted as the
type former Σ. In a setting without choice, we would need to define uniform continuity
and local constancy by explicitly requiring a modulus.

In this thesis we explore only the aspects of the topos that are necessary for the purpose
of modelling (UC). In particular, it would be interesting to investigate how our sub-
canonical coverage differs from the canonical one. As far as simple types are concerned,
there is no difference, at least assuming classical logic in the meta-language, as we show
in Chapter 4.2 that the interpretations of the simple types in our topos are (a category

19

equivalent to that of) Kleene–Kreisel spaces, like in the topological topos. More generally,
we show in Chapter 4.2 that the Kuratowski limit spaces are fully embedded in our topos,
in the same way as in the topological topos.

This chapter is organized as follows. We begin with recalling the development of
the topological topos and some of its properties that are relevant to our work in Sec-
tion 3.1. Then, in Section 3.2, we define our variation which consists of sheaves on a
certain uniform-continuity site that is suitable for predicative, constructive analysis. In
Section 3.3, we look at the full subcategory of concrete sheaves, and illustrate how they
can be conveniently regarded as spaces, more precisely, as a variation of Spanier’s quasi-
topological spaces [69]. In Section 3.4, we investigate the representable sheaf, which is
concrete and has the universal property of 1+1 to the power the natural numbers object in
the subcategory of concrete sheaves and in the sheaf topos. In Section 3.5, without using
classical logic or Brouwerian principles [7], we construct a fan functional (2N → N)→ N
in the category of concrete sheaves, which continuously calculates least moduli of uniform
continuity of maps 2N → N.

3.1 Johnstone’s topological topos

We recall, in this section, the main aspects of Johnstone’s topological topos [48] that are
relevant to our investigation.

Let N∞ be the set N ∪ {∞}. We give it the usual topology that turns it into the
one-point compactification of natural numbers: a subset U ⊆ N∞ is open if and only if
whenever it contains ∞ there exists k ∈ N such that all n ≥ k are in U .

Remark. It is folklore in constructive mathematics that a better behaved construction
of N∞ is as the set of decreasing binary sequences (or alternatively as the isomorphic set
of binary sequences with at most one 1). This set is isomorphic to N ∪ {∞} if and only
if LPO holds [32]. But such constructivity issues are unimportant in this section, as the
treatment of the topological topos is already non-constructive.

To build the topos, one takes the full subcategory Σ of the category Top of topo-
logical spaces, which has two objects: the one-point space 1 and the one-point compact-
ification N∞. Then the topological topos is the category Shv(Σ,G) of sheaves on the
site (Σ,G), where G is the canonical Grothendieck topology (see [60] for the relevant
definitions).

As mentioned earlier, [48] also gives an explicit description of the canonical topology G
as follows: G(1) is the set consisting of the maximal sieve on 1; and G(N∞) is the set
of sieves R on N∞ such that (i) every map 1 → N∞ is in R, and (ii) for every infinite
T ⊆ N∞, there exists an infinite U ⊆ T such that fU ∈ R, where fU : N∞ → N∞ is the
unique order-preserving monomorphism whose image is U ∪ {∞}. To prove that G is a
Grothendieck topology and that G coincides with the canonical topology, arguments by
contradiction or case analysis via excluded middle are employed in [48].

In fact, taking Σ to be the monoid of continuous endomaps of N∞ would give an
equivalent topos, but [48] finds it more convenient to consider 1 as a separate object
in Σ. For instance, with 1 in Σ, the objects of the topological topos have a more intuitive
view: if X is an object, then the elements of X(1) are points, and the elements of X(N∞)
are “proofs” that a given sequence of points converges.

In the topological topos, the concrete sheaves correspond to the limit spaces, and the

20

Yoneda embedding sends the space N∞ to a concrete sheaf:

Topological topos

Concrete sheaves
(Limit spaces)

N∞

More convenient categories of spaces are fully embedded in the topological topos, as
indicated in the following picture:

Topological topos
Ω ∀ ∃ U

Limit spaces
Π Σ

Sequential spaces
N × →

N∞

For any topological space X, the hom-functor homTop(−, X) : Σop → Set is a sheaf
over the site (Σ,G). The assignment X 7→ homTop(−, X) gives a faithful functor Top→
Shv(Σ,G). When restricted to the subcategory Seq of sequential spaces, this functor
is full; thus, Seq can also be regarded as a full subcategory of the topological topos.
Moreover, it is cartesian closed and has a natural numbers object, and hence serves as a
model of Gödel’s system T.

But sequential spaces are not enough to model dependent types, as the category Seq
is not locally cartesian closed. Going beyond topological spaces, we have limit spaces,
recalled in Chapter 4.1, which happen to be the subobjects of sequential spaces [48].
One can easily view the embedding of limit spaces in the topological topos as follows:
the points are the same, and the convergent sequences are the proofs of convergence. In
fact, limit spaces correspond to concrete sheaves [3] in the topological topos (see Sec-
tion 3.3.1). Moreover, limit spaces form a locally cartesian closed category, which allows
one to interpret the type formers Π of dependent products and Σ of dependent sums [67].

Using Streicher’s construction [71] for arbitrary Grothendieck toposes, if we assume a
Grothendieck universe in set theory, then we can build an object that serves as a Martin-
Löf universe. However, this object is not a limit space (but it is an indiscrete object, in
the sense that all maps into the Sierpinski space are constant, and hence it has only two

21

“open subsets” [34]). Similarly, the subobject classifier Ω is also an object that fails to
be a space but is indiscrete in the same sense, and hence the “logic” of the topos takes
place in the “non-spatial”, outer layer. But, because we work with the Curry-Howard
interpretation of (UC), as discussed in Chapter 2, we can conveniently work in the layer
of limit spaces. The same will apply to our variation of the topos, where an additional
layer of C-spaces, containing limit spaces, arises.

Lastly, the Yoneda embedding sends the space N∞ to a sheaf in the topological topos
that corresponds to a limit space and a sequential space. Thus the one-object category
containing N∞ lives as a full subcategory of each of the above categories.

3.2 Our variation of the topological topos
Our variation of the topological topos consists of sheaves on a certain uniform-continuity
site defined in Section 3.2.1.

Our sheaf topos

Concrete sheaves
(C-spaces)

2N

We investigate the cartesian closed structure of the topos in Section 3.2.3. In particular,
we look at concrete sheaves, which form an exponential ideal of the topos (by virtue of the
equivalence of the categories of concrete sheaves and extensional sheaves) in Section 3.2.4.

Our sheaf topos

C-spaces

Limit spaces

Kleene–Kreisel
spaces

2N

The concrete sheaves can be conveniently regarded as spaces, which we call C-spaces,
and their natural transformations can be regarded as continuous maps, as explored in the
next section. Our C-spaces are analogous to limit spaces. For instance, they also form
a (locally) cartesian closed category with a natural numbers object, and thus suffice to
model simple types (Chapter 5) and even dependent types without universes (Chapter 6).

22

Furthermore, in Chapter 4.2 we show that limit spaces are fully embedded within the
category of C-spaces. Since the Kleene–Kreisel spaces live in the category of limit spaces,
they can also be directly calculated within the one of C-spaces, as proved in Chapter 4.2.
The Yoneda lemma maps the only object of the site to the internal Cantor space 2N,
that is, the exponential of 2 to the power N in the topos, where 2 is 1 + 1 and N is the
natural numbers object. This allows us to construct a fan functional, which continuously
calculates moduli of uniform continuity of maps 2N → N, using the Yoneda Lemma
(Section 3.5).

3.2.1 The uniform-continuity site

As discussed above, the site of definition for the topological topos can be taken to be
the monoid of continuous endofunctions of N∞ equipped with the canonical Grothendieck
topology. We replace this monoid by that of uniformly continuous endomaps of 2N, and
the canonical coverage by a subcanonical one, consisting of countably many finite covering
families, which is suitable for predicative, constructive reasoning.

Let C be the monoid of uniformly continuous endomaps of the Cantor space 2N, that
is, functions t : 2N → 2N such that

∀m ∈ N. ∃n ∈ N. ∀α, β ∈ 2N. α =n β ⇒ tα =m tβ.

We write 1 for the identity map of 2N as it is the identity element of the monoid C. Notice
that any continuous function 2N → 2N is uniformly continuous, assuming classical logic
or the Fan Theorem. Because we do not assume such principles, we need to explicitly
require uniform continuity in the definition of the monoid C.

Our coverage J on the monoid C consists of the covering families

{conss}s∈2n

for all n ∈ N, where 2n is the set of binary sequences of length n, and conss : 2N → 2N is
the concatenation map:

conss(α) = sα.

It is easy to verify that, for any n ∈ N and for any s ∈ 2n, the map conss is uniformly con-
tinuous and thus an element of the monoid C. This subcanonical (see below Lemma 3.2.4)
coverage J has the following convenient properties:

(1) J is countable.

(2) Each covering family is finite.

(3) Each covering family is jointly surjective.

(4) The maps in each covering family have disjoint images; thus, the compatibility
condition in the definition of sheaf holds automatically and hence can be ignored.

Because of (1), the coverage axiom specialized to our situation amounts to saying that,
for all t ∈ C,

∀m ∈ N. ∃n ∈ N. ∀s ∈ 2n. ∃t′ ∈ C. ∃s′ ∈ 2m. t ◦ conss = conss′ ◦ t′. (†)

23

Moreover, we have the following:

Lemma 3.2.1. A map t : 2N → 2N satisfies the coverage axiom (†) if and only if it is
uniformly continuous.

Proof. It is enough to prove

(∀α, β ∈ 2N. α =n β ⇒ tα =m tβ) ⇐⇒ (∀s ∈ 2n.∃t′ ∈ C.∃s′ ∈ 2m.t ◦ conss = conss′ ◦ t′)

for any m,n ∈ N.
(⇒) Given s ∈ 2n, we define t′ : 2N → 2N by taking t′α to be the suffix of t(sα) after

the first m bits for all α ∈ 2N, and define s′ ∈ 2m to be the prefix of t(s0ω) of length m.
Then the assumption ∀α, β ∈ 2N. α =n β ⇒ tα =m tβ gives the required equation.

(⇐) Given α, β ∈ 2N, if α =n β then they have the same prefix s ∈ 2n of length n.
By the assumption we get s′ ∈ 2m which is the prefix of tα and tβ of length m.

Thus, not only does the coverage axiom hold, but also it amounts to the fact that the
elements of the monoid C are the uniformly continuous functions. In virtue of this view,
we call J the uniform-continuity coverage and (C,J) the uniform-continuity site.

As discussed earlier, using the axiom of choice, for each t ∈ C we can define a map
modt : N→ N, called the modulus of uniform continuity , such that

∀m ∈ N. ∀α, β ∈ 2N. α =modt(m) β =⇒ tα =m tβ.

And, thanks to Lemma 3.2.1, it also satisfies

∀m ∈ N. ∀s ∈ 2modt(m). ∃t′ ∈ C. ∃s′ ∈ 2m. t ◦ conss = conss′ ◦ t′.

With a similar algorithm as that in the proof of Theorem 3.5.2, if t is uniformly continuous,
then for any m we can always find the least n satisfying (†). This allows us to define the
least modulus of uniform continuity of t, written as lmodt : N→ N.

As mentioned before, our variation of the topological topos is the category Shv(C,J)
of sheaves on the uniform-continuity site. Recall that a presheaf on a one-object category,
i.e. a monoid, can be formulated in terms of monoid actions [60, §I.1]: A presheaf on C
amounts to a set P with an action

((p, t) 7→ p · t) : P × C→ P

such that for all p ∈ P and t, r ∈ C

p · 1 = p, p · (t ◦ r) = (p · t) · r.

Then a natural transformation of presheaves (P, ·) and (Q, ·) amounts to a map φ : P → Q
that preserves the action, i.e.

φ(p · t) = (φ p) · t

for all p ∈ P and t ∈ C.
Because the maps in each covering family have disjoint images, the amalgamation

condition for a sheaf does not need to mention the compatibility condition in our case:

24

Lemma 3.2.2. A presheaf (P, ·) is a sheaf over (C,J) if and only if for any n ∈ N and
{ps ∈ P}s∈2n, there is a unique amalgamation p ∈ P such that, for all s ∈ 2n,

p · conss = ps.

Notice also that, by induction, it is enough to consider the case n = 1:

Lemma 3.2.3. A presheaf (P, ·) is a sheaf over (C,J) if and only if for any p0, p1 ∈ P ,
there is a unique amalgamation p ∈ P such that

p · cons0 = p0 and p · cons1 = p1.

We also call the above lemmas/definitions the sheaf condition. The first one is more
convenient to work with when a sheaf is given, while the second one makes verifying the
sheaf condition simpler.

To improve the readability of the thesis, we write P to denote the (pre)sheaf (|P |, ·)
where |P | is the underlying set and · is its action, and we often write P to mean |P | by
an abuse of notation.

3.2.2 Subcanonicity of the uniform-continuity coverage

One example of a presheaf is the monoid C itself with function composition as its action.
We have that the Yoneda embedding maps the only object ? of the monoid C to this
presheaf:

y(?) = (C, ◦).

The monoid C can be regarded as a one-object subcategory of that of topological spaces,
with object 2N and the morphisms all uniformly continuous maps 2N → 2N, so that we
can write the above equation as

y(2N) = (C, ◦).

Moreover, this presheaf is a sheaf. We only need to verify the sheaf condition: given any
t0, t1 ∈ C, the unique amalgamation t : 2N → 2N is simply

t(iα) = ti(α),

whose uniform continuity is immediate. Hence every representable presheaf is a sheaf,
which we record as follows:

Lemma 3.2.4. The uniform-continuity coverage is subcanonical.

This sheaf plays an important role in our model Shv(C,J), where it is used to con-
struct exponentials (Section 3.2.3) and the fan functional (Section 3.5).

3.2.3 The cartesian closed structure of Shv(C,J)

It is well known that the category of sheaves enjoys many categorical properties [60,
§III]. However, in this thesis, we are mainly working with its subcategory of C-spaces
(Section 3.3), e.g. providing a constructive substitute for Kleene–Kreisel continuous func-
tionals (Chapter 4) and modelling type theories with (UC) (Chapters 5 and 6). C-spaces
correspond to concrete sheaves which are explored in Section 3.2.4. Here we briefly re-
call the cartesian closed structure of the category Shv(C,J), in order to understand its
relation to concrete sheaves/C-spaces (see Corollaries 3.2.11 and 3.3.3).

25

Any singleton set 1 = {?} works as a terminal object in Shv(C,J). Specifically, its
action is defined by

? · t = ?

for all t ∈ C. It is obvious that 1 satisfies the sheaf axiom, and that, for any sheaf P , the
unique map unit : P → 1 is a natural transformation.

Given sheaves P and Q, the product P × Q is defined to be the set of all pairs (p, q)
for p ∈ P and q ∈ Q, with an action defined componentwise, i.e.

(p, q) · t = (p · t, q · t)

for any p ∈ P , q ∈ Q and t ∈ C. It is easy to check that P × Q is a sheaf and the
categorical product in Shv(C,J).

Given sheaves P and Q, we define the exponential QP to be the set of all natural
transformations from C× P to Q, with an action defined by

(φ · t)(r, p) = φ(t ◦ r, p)

for φ ∈ QP , t, r ∈ C and p ∈ P . To prove that QP is a sheaf, we need the following:

Lemma 3.2.5. Let Q be a sheaf and q, q′ ∈ Q. The equation q = q′ holds if and only if
there exists n ∈ N such that q · conss = q′ · conss holds for all s ∈ 2n.

Proof. (⇒) This direction follows from the definition. (⇐) Assume q ·conss = q′ ·conss for
some n ∈ N and for all s ∈ 2n. Then q is an amalgamation of the family {q′ · conss}s∈2n
and so is q′. As Q is a sheaf, there is only one unique amalgamation and thus q = q′.

Proposition 3.2.6. If P is a presheaf and Q is a sheaf, then QP is sheaf.

Proof. Given m ∈ N and {φs ∈ QP}s∈2m , we construct an amalgamation φ as follows:
Given r ∈ C, let n = lmodr(m), where lmodr is the least modulus of uniform continuity

of r as defined in Section 3.2.1. For each s ∈ 2n, we get rs ∈ C and s′ ∈ 2m such that
r ◦ conss = conss′ ◦ rs. Now given p ∈ P , the family {φs′(rs, p · conss)}s∈2n has a unique
amalgamation q, since φs′ is given and Q is a sheaf. We define φ(r, p) = q and then have

∀r ∈ C. ∀p ∈ P. ∀s ∈ 2lmodr(m). ∃s′ ∈ 2m. ∃rs ∈ C. φ(r, p) · conss = φs′(rs, p · conss). (‡)

We firstly show that φ is an amalgamation: for any s ∈ 2m, r ∈ C and p ∈ P , we have

(φ · conss)(r, p)
= φ(conss ◦ r, p) (by the action on QP)
= φ(conss ◦ r, p) · consε
= φs(r, p · consε) (by (‡) as lmodconss◦r(m) = 0)
= φs(r, p).

This φ is unique: let φ′ be another amalgamation. For any r ∈ C, p ∈ P and s ∈ 2lmodr(m),

26

we have

φ′(r, p) · conss
= φ′(r ◦ conss, p · conss) (by the naturality of φ′)
= φ′(conss′ ◦ rs, p · conss) (by (†), ∃s′ ∈ 2m. ∃rs ∈ C. r ◦ conss = conss′ ◦ rs)
= φs′(rs, p · conss) (φ′ is an amalgamation)
= φ(r, p) · conss (by (‡))

and thus φ′(r, p) = φ(r, p) by Lemma 3.2.5.
It remains to show that φ is a natural transformation. Given r, t ∈ C and p ∈ P , we

let nr = lmodr(m) and nt = lmodt(nr). Now given s ∈ 2nt , we get s′ ∈ 2nr and t′ ∈ C
such that t ◦ conss = conss′ ◦ t′ by (†). Then we have

φ(r, p) · t · conss
= φ(r, p) · conss′ · t′ (t ◦ conss = conss′ ◦ t′)
= φs′′(rs′ , p · conss′) · t′ (by (‡))
= φs′′(rs′ ◦ t′, p · conss′ · t′) (by the naturality of φs′′)
= φs′′(rs′ ◦ t′, p · t · conss) (t ◦ conss = conss′ ◦ t′)
= φ(r ◦ t, p · t) · conss. ((r ◦ t) ◦ conss = conss′′ ◦ (rs′ ◦ t′))

and thus φ(r, p) · t = φ(r ◦ t, p · t) by Lemma 3.2.5.

Lemma 3.2.7. If P and Q are sheaves, then the sheaf QP has the universal property of
an exponential.

Proof. We define the evaluation morphism by

eval : QP × P → Q eval(φ, p) = φ(1, p)

where 1 : 2N → 2N is the identity map. It is a natural transformation: given t ∈ C, we
have eval(φ, p) · t = φ(1, p) · t = φ(t, p · t) = φ · t(1, p · t) = eval(φ · t, p · t).

Given a sheaf R and a natural transformation g : R× P → Q, we define a map

λg : R→ QP λg(r)(t, p) = g(r · t, p)

which is a natural transformation: given u ∈ C, we have (λg(r) ·u)(t, p) = λg(r)(u◦t, p) =
g(r · u · t, p) = λg(r · u)(t, p) for all (t, p) ∈ C× P .

For any r ∈ R and p ∈ P , we have eval(λg(r), p) = λg(r)(1, p) = g(r, p) and thus the
following diagram commutes.

R× P
λg×1P

��

g

##GGGGGGGGGG

QP × P
eval

// Q

The uniqueness of λg is easy to verify.

Now we conclude the following:

Theorem 3.2.8. The category Shv(C,J) is cartesian closed.

27

3.2.4 Concrete and Extensional sheaves

We say a (pre)sheaf is called concrete if its action is function composition [3]. Then all
the elements in a concrete (pre)sheaf (P, ◦) must be maps from the Cantor space to some
set X. Concrete sheaves admit a more concrete description as sets with the additional
structures given by their elements, as we will discuss in Section 3.3. We denote the full
subcategory of concrete sheaves by CShv(C,J).

We now consider a subcategory of Shv(C,J) which is equivalent to CShv(C,J), and
clearly forms an exponential ideal of Shv(C,J). We say a (pre)sheaf (P, ·) is extensional
iff equality on P is determined by points: for every p, p′ ∈ P , we have that p = p′ if and
only if p · c = p′ · c for every constant c : 2N → 2N in the monoid C. We write EShv(C,J)
for the category of extensional sheaves. It has the following properties:

Proposition 3.2.9. (1) The terminal sheaf 1 is extensional.

(2) If sheaves P and Q are extensional, then so is P ×Q.

(3) If P is a sheaf and Q is an extensional sheaf, then QP is extensional.

Proof. (1) and (2) are trivial. Here we only prove (3): given φ, φ′ ∈ QP with φ · c = φ′ · c
for all constants c ∈ C, we want to show that φ and φ′ are pointwise equal. Given t ∈ C,
constant c ∈ C and p ∈ P , we have

φ(t, p) · c
= φ(t ◦ c, p · c) (by the naturality of φ)
= (φ · (t ◦ c))(1, p · c) (by the action on QP)
= (φ′ · (t ◦ c))(1, p · c) (t ◦ c is constant)
= φ′(t ◦ c, p · c) (by the action on QP)
= φ′(t, p) · c, (by the naturality of φ′)

and thus φ(t, p) = φ′(t, p) because Q is extensional.

Proposition 3.2.10. The categories EShv(C,J) and CShv(C,J) are equivalent.

Proof. (⇐) Every concrete sheaf (P, ◦) is extensional: if p, p′ ∈ P and p ◦ c = p′ ◦ c for all
constant c ∈ C, then we have p(α) = (p ◦ (λβ.α))(0ω) = (p′ ◦ (λβ.α))(0ω) = p′(α) for all
α ∈ 2N. Hence we have a functor σ : CShv(C,J)→ EShv(C,J) sends concrete sheaves
to themselves.

(⇒) Given an extensional sheaf (P, ·), we get a concrete sheaf (P̄ , ◦) where the set P̄
is defined by

P̄ :≡ {λα.(p · λβ.α) | p ∈ P}.

It is clear that (P̄ , ◦) is a sheaf. If P and Q are extensional sheaves, then for each natural
transformation φ : P → Q we can define φ̄ : P̄ → Q̄ by composition, i.e. φ̄(p̄) = φ ◦ p̄ for
all p̄ ∈ P̄ . Therefore, we get a functor τ : EShv(C,J)→ CShv(C,J).

To prove that the compositions σ ◦ τ and τ ◦σ are naturally isomorphic to the identity
functors, it is equivalent to prove that any extensional sheaf P is isomorphic to P̄ . Clearly
the map sending p ∈ P to p̄ ≡ λα.(p · λβ.α) ∈ P̄ is surjective. It is also injective: given
p 6= p′ ∈ P , we assume p̄ = p̄′. Then p̄(α) = p̄′(α), i.e. p · λβ.α = p′ · λβ.α for all α ∈ 2N.
This is equivalent to p · c = p′ · c for all constant c ∈ C using function extensionality.

28

Since P is extensional we have p = p′ which leads to a contradiction. Thus we have a
bijection between P and P̄ .

Since equivalences of categories preserve most categorical concepts and properties, e.g.
limits and colimits [59], we have the following:

Corollary 3.2.11. Concrete sheaves form an exponential ideal of Shv(C,J).

3.3 C-spaces and continuous maps
As mentioned earlier, concrete sheaves admit a convenient description as spaces, and
their natural transformations as continuous maps. More precisely, they are analogous
to Spanier’s quasi-topological spaces [69]. In this section, we firstly demonstrate how
concrete sheaves can be regarded as a variation of quasi-topological spaces, and call the
resulting objects C-spaces. Then we explore some properties of the category of C-spaces
that are necessary for modelling simple and dependent types.

3.3.1 Concrete sheaves as a variation of quasi-topological spaces

One advantage of quasi-topological spaces over topological spaces, which is the main
reason for Spanier’s introduction of the notion of quasi-topological space, is that quasi-
topological spaces form a cartesian closed category. This category serves as a model of
system T and HAω that validates the uniform-continuity principle, assuming classical logic
in the meta-language. Our concrete sheaves can be seen as analogues of quasi-topological
spaces, admitting a constructive treatment.

Recall that a quasi-topology on a set X assigns to each compact Hausdorff space K a
set Q(K,X) of functions K → X such that:

(1) All constant maps K → X are in P (K,X).

(2) If t : K ′ → K is continuous and q ∈ Q(K,X), then q ◦ t ∈ Q(K ′, X).

(3) If {ti : Ki → K}i∈I is a finite, jointly surjective family and q : K → X is a map with
q ◦ ti ∈ Q(Ki, X) for every i ∈ I, then q ∈ Q(K,X).

A quasi-topological space is a set endowed with a quasi-topology, and a continuous map
of quasi-topological spaces X and Y is a function f : X → Y such that f ◦ q ∈ Q(K,Y)
whenever q ∈ Q(K,X).

For example, every topological space X can be associated with a quasi-topology such
that Q(K,X) is the set of continuous maps K → X for every compact Hausdorff space K.
Then it follows that every continuous map f : X → Y of topological spaces X and Y is
continuous in the associated quasi-topologies. Therefore, this construction gives the full
embedding of topological spaces into quasi-topological spaces.

The definition of quasi-topological space can be modified by considering just one com-
pact Hausdorff space, the Cantor space, rather than all compact Hausdorff spaces, and by
restricting the jointly surjective finite families of continuous maps to the covering families
{conss}s∈2n considered in the previous section. Then we have the following:

Definition 3.3.1. A C-space is a set X equipped with a C-topology P , i.e. a collection of
maps 2N → X, called probes , satisfying the following conditions, called the probe axioms :

29

(1) All constant maps are in P .

(2) (Presheaf condition) If p ∈ P and t ∈ C, then p ◦ t ∈ P .

(3) (Sheaf condition) For any n ∈ N and any family {ps ∈ P}s∈2n , the unique map
p : 2N → X defined by p(sα) = ps(α) is in P .

A continuous map of C-spaces (X,P) and (Y,Q) is a map f : X → Y with f ◦ p ∈ Q
whenever p ∈ P . We write C-Space for the category of C-spaces and continuous maps.

Notice that the sheaf condition is logically equivalent to

(3′) For any p0, p1 ∈ P , the map p : 2N → X defined by p(iα) = pi(α) is in P .

and

(3′′) If p : 2N → X is a map such that there exists n ∈ N with p◦conss ∈ P for all s ∈ 2n,
then p ∈ P .

(3′) is a special case of (3) where n = 1, and is equivalent to (3) by induction on n. When
verifying that a given set is a C-space, it is more convenient to use (3′). And (3′′) is the
uncurried result of (3), and is more convenient to use if one already knows that a given
set is a C-space.

The idea is that we “topologize” the set X by choosing a designated set P of maps
2N → X that we want, and hence declare, to be continuous. For example, if X already has
some form of topology, e.g. a metric, we can take P to be the set of continuous functions
2N → X with respect to this topology and the natural topology of the Cantor space. Of
course we have to make sure the sheaf condition is satisfied.

As mentioned earlier, C-spaces provide a more concrete description of concrete sheaves
in the following sense. Given a C-space (X,P), the C-topology P together with function
composition is a concrete sheaf. Conversely, if (P, ◦) is a concrete sheaf, then all maps
in P should have the same codomain which is the underlying set of the resulting C-space.

Proposition 3.3.2. The two categories C-Space and CShv(C,J) are equivalent.

By virtue of this equivalence, C-Space can also be viewed as a full subcategory of
Shv(C,J). With the Corollary 3.2.11, we have the following:

Corollary 3.3.3. C-spaces form an exponential ideal of Shv(C,J).

Similarly to our abbreviation for (pre)sheaves in the previous section, the underlying
set of a space X is written |X| and its set of probes is written Probe(X), but we we often
write X to mean |X| by the standard abuse of notation.

3.3.2 The (local) cartesian closed structure of C-Space

Here we explore the cartesian closed structure of the category C-Space, in order to model
simple types (Chapter 5), as well as its local cartesian closed structure, in order to model
dependent types (Chapter 6).

Theorem 3.3.4. The category C-Space is cartesian closed.

30

Proof. Any singleton set 1 = {?} with the unique map 2N → 1 as the only probe is clearly
a C-space and a terminal object in C-Space.

Given C-spaces (X,P) and (Y,Q), their product is the cartesian product X × Y
equipped with the C-topology R defined by the condition that r : 2N → X × Y is in R iff
pr1 ◦ r ∈ P and pr2 ◦ r ∈ Q, where pr1 and pr2 are the projections. We skip the routine
verifications of probe axioms and the required universal property.

Given C-spaces (X,P) and (Y,Q), their exponential is the set Y X of continuous maps
X → Y equipped with the C-topology R defined by the condition that r : 2N → Y X is
in R iff for any t ∈ C and p ∈ P the map λα.r(tα)(pα) is in Q. Here we verify only the
sheaf condition (3′′): Suppose r : 2N → Y X is a map such that r ◦ conss ∈ R for all s ∈ 2n

for some n ∈ N. Given t ∈ C and p ∈ P , let m = modt(n). Then for each s ∈ 2m, we get
t′ ∈ C and s′ ∈ 2n such that t ◦ conss = conss′ ◦ t′. We have

(λα.r(tα)(pα)) ◦ conss = λα.r(t(conssα))(p(conssα)) = λα.r(conss′(t
′α))(p(conssα)).

Since r ◦ conss′ is in R, the map λα.r(conss′(t
′α))(p(conssα)) is in Q, and so is the map

(λα.r(tα)(pα)) ◦ conss. Then the sheaf condition (3′′) of Y gives the desired result.

Colimits of sheaves are generally constructed as the sheafifications of the ones in the
category of presheaves (see [60, §III.6]). Here we present a direct construction of finite
coproducts of C-spaces.

Theorem 3.3.5. The category C-Space has finite coproducts.

Proof. The empty set equipped with the empty C-topology is clearly a C-space and an
initial object in C-Space.

Binary coproducts can be constructed as follows: given C-spaces (X,P) and (Y,Q),
their coproduct is the disjoint union X+Y equipped with the C-topology R defined by the
condition that r : 2N → X +Y is in R iff there exists n ∈ N such that for all s ∈ 2n either
there exists p ∈ P with r(conssα) = inl(pα) for all α ∈ 2N or there exists q ∈ Q with
r(conssα) = inr(qα) for all α ∈ 2N, where inl and inr are the injections. Here we verify
only the sheaf condition (3′): Given r0, r1 ∈ R, we get n0 and n1 from their witnesses of
being a probe on X + Y . For the map r : 2N → X + Y defined by r(iα) = ri(α), one can
clearly see that the maximum of n0 and n1 is the desired n that makes r ∈ R.

The category C-Space has all pullbacks, which are constructed in the same way as
in Set. An exponential in a slice category C-Space/X is constructed in the same way
as in the slice category Set/X, with a suitable construction of the C-topology on its
domain. The proof is available in [3, Proposition 43], in the generality of concrete sheaves
on concrete sites. Here we present the construction, but skip the verification as it is
similar to the one for exponentials of C-spaces (which is presented in our formalization).

Theorem 3.3.6. The category C-Space is locally cartesian closed.

Proof. We skip the easy constructions and verifications of a terminal object and products
in a slice category, but give the construction of exponentials.

Given a continuous map f : X → Y and an element y ∈ Y , the fiber

f−1(y) = {x ∈ X | f(x) = y}

31

is a C-space, whose C-topology is inherited from X.

Given objects X
f−→ Y and Z

g−→ Y in C-Space/Y , we construct the exponential gf as
follows: The underlying set of the domain of gf is defined by

dom(gf) = {(y, φ) | y ∈ Y, φ : f−1(y)
cts−→g−1(y)}.

The C-topology on dom(gf) is defined by the condition that a map r : 2N → dom(gf) is
a probe iff

(i) the composite pr1 ◦ r : 2N → Y is a probe on Y , and

(ii) for any t ∈ C and p ∈ Probe(X) such that ∀α ∈ 2N. pr1(r(tα)) = f(pα), the map
λα.pr2(r(tα))(pα) is a probe on Z.

Verifying the sheaf condition for dom(gf) is similar to the one for exponentials in C-Space.
The exponential gf : dom(gf)→ Y is then defined to be the first projection. Condition (i)
amounts to the continuity of gf . And the idea of (ii) is that the composite

2N ×Y X
r×1X−−−→ dom(gf)×Y X

ev−→ Z

is continuous, where evaluation map ev applies the second component of (y, φ) ∈ dom(gf)
to x ∈ f−1(y) ⊆ X.

3.3.3 Discrete C-spaces and natural numbers object

We say that a C-space X is discrete if for every C-space Y , all functions X → Y are
continuous. A map p : 2N → X into a set X is called locally constant iff

∃m ∈ N. ∀α, β ∈ 2N. α =m β =⇒ p(α) = p(β).

We call m the modulus of local constancy of p.

Lemma 3.3.7. Let X be any set.

(1) The locally constant functions 2N → X form a C-topology on X.

(2) For any C-topology P on X, every locally constant function 2N → X is in P .

Proof. (1) Let P be a collection of all locally constant maps into X. The first two probe
axioms are obviously satisfied. We only verify the sheaf condition (3′): If p0 and p1 are
locally constant with moduli m0 and m1, then the unique map p : 2N → X defined by
p(iα) = pi(α) is locally constant with the modulus max(m0,m1) + 1.

(2) Let p : 2N → X be locally constant and n be its modulus of local constancy. Then,
for each s ∈ 2n, the composite p ◦ conss is constant and thus a probe on X. Using the
sheaf condition, we know that p is a probe on X.

In other words, the locally constant maps 2N → X form the finest C-topology on the
set X, in the sense of the smallest collection of probes. Moreover:

Lemma 3.3.8. A C-space is discrete if and only if the probes on it are precisely the locally
constant functions.

32

Proof. (⇒) Let (X,P) be a discrete C-space. According to the previous lemma, all locally
constant maps 2N → X form a C-topology, say Q, on X. Because (X,P) is discrete, the
map (X,P) → (X,Q) which is identity on points is continuous. By the definition of
continuity, all elements in P are also in Q, i.e. are locally constant.

(⇐) Let P be the collection of all locally constant functions into X. Given a C-space
(Y,Q) and a map f : X → Y , we show that f is continuous: if p : 2N → X is locally
constant whose modulus is n, then, for each s ∈ 2n, the composite f ◦p◦conss is constant
and thus a probe on Y . By the sheaf condition, the map f ◦ p is a probe on Y .

We thus refer to the collection of locally constant maps 2N → X as the discrete C-
topology on X. In particular, when the set X is 2 or N, the locally constant functions
amount to the uniformly continuous functions. Hence we have a discrete two-point space 2
and a discrete space N of natural numbers, which play an important role in our model:

Theorem 3.3.9. In the category C-Space:

(1) The discrete two-point space 2 is the coproduct of two copies of the terminal space 1.

(2) The discrete space N of natural numbers is the natural numbers object.

Proof. The universal properties of 2 and N can be constructed in the same way as in the
category Set, because the unique maps g and h in the diagrams below are continuous by
the discreteness of 2 and N:

1

g0 ��????????
in0 // 2

g

���
�
� 1

g1����������

in1oo 1
0 //

x
��???????? N succ //

h
���
�
� N

h
���
�
�

X X
f

// X.

3.4 The representable sheaf is the Cantor space
Because our site is a one-object category, there is only one representable presheaf, up
to isomorphism, which is a sheaf, as we have seen in Lemma 3.2.4 of Section 3.2.2. In
this section we show that it is the exponential 2N in the category C-Space and hence
also in Shv(C,J). We exploit this in Section 3.5 below to construct a fan functional
(2N → N)→ N that continuously calculates minimal moduli of uniform continuity in the
category C-Space.

As discussed in Section 3.2.2, the Yoneda embedding y : C→ Shv(C,J) gives

y(2N) = (C, ◦),

where 2N is the only object of the category C regarded as a subcategory of that of
topological spaces, and where (C, ◦) is the sheaf with composition C × C → C as the
action. This sheaf is concrete, and hence can be seen as a C-space, so that the Yoneda
embedding restricts to a functor

y : C→ C-Space.

33

This concrete sheaf, seen as a C-space, as in Section 3.3.1, is the set 2N equipped with
all uniformly continuous maps 2N → 2N as the probes. The following lemma shows that
this C-space is the exponential 2N of the discrete C-spaces 2 and N in the category of
C-spaces, as calculated in Theorem 3.3.4. Hence we can write

y(2N) = 2N,

where, as already discussed, 2N on the left-hand side stands for the only object of the
monoid C, and, on the right-hand side, for an exponential in the category of C-spaces.
This notational overloading should cause no confusion.

Lemma 3.4.1. The C-space y(2N) has the universal property of 2 to the power N in the
category C-Space, and hence also in the category Shv(C,J).

Proof. By the proof of Theorem 3.3.4, the underlying set of the exponential can be calcu-
lated as the set of all continuous maps N→ 2, which, by the discreteness of N, amounts
to the set 2N of all maps N→ 2. Again by Theorem 3.3.4, the probes on the exponential
are the maps r : 2N → 2N such that

∀t ∈ C. ∀p ∈ Probe(N). λα.r(tα)(pα) ∈ Probe(2). (‡)

To conclude the proof, we have to show that the C-topologies of the C-space y(2N) and of
the exponential C-space 2N coincide, which amounts to showing that a map r satisfies (‡)
iff it is uniformly continuous:

(⇒) Let n ∈ N be given. For each i ≤ n, we take t to be the identity and p = λα.i,
and have that λα.(rα)i : 2N → 2 is a probe and hence uniformly continuous. Let mi be
its modulus of uniform continuity, and let m be the maximum of {mi}i≤n. Then, for any
α, β ∈ 2N with α =m β, we have (rα)i = (rβ)i for all i ≤ n, i.e. rα =n rβ.

(⇐) Let t ∈ C and p ∈ Probe(N) be given. Because p is uniformly continuous, its
image is finite. We take n to be the maximum and then have that pα ≤ n for all α ∈ 2N.
Both r and t are uniformly continuous, and so is r◦t. Thus we take m = modr◦t(n), where
mod is the modulus-of-uniform-continuity function defined in Section 3.2.1. Let k be the
maximum of n and m. Then, for any α, β ∈ 2N with α =k β, we have r(tα) =n r(tβ) by
the uniform continuity of r ◦ t, and pα = pβ by the uniform continuity of p. As pα ≤ n,
we have r(tα)(pα) = r(tβ)(pβ). Hence λα.r(tα)(pα) is uniformly continuous and thus a
probe on 2.

Using this, we conclude that the Yoneda Lemma amounts to saying that a function
2N → X into a C-space X is a probe iff it is continuous. More precisely:

Lemma 3.4.2 (Yoneda). A map of the set 2N to the underlying set of a C-space X is a
probe if and only if it is continuous when regarded as a map from the exponential 2N to
the space X in the category C-Space.

Proof. (⇒) Let p : 2N → X be a probe on X. By the presheaf condition of X, we have
that p ◦ t is a probe on X for each t ∈ C, which means that the map p is continuous.
(⇐) Let p : 2N → X be a continuous map. The identity map 1 is uniformly continuous
and thus a probe on 2N. Thus p = p ◦ 1 is a probe on X by the continuity of p.

34

3.5 The fan functional in the category of C-spaces
Although the categories of topological spaces and of locales fail to be cartesian closed,
they have the exponentials 2N and N2N

, where 2 is 1 + 1 and N is the natural numbers
object. Moreover, the exponential N2N

is discrete [47, 30]. The same phenomenon takes
place in the category of C-spaces.

Lemma 3.5.1. The exponential N2N
is a discrete C-space.

Proof. Given a probe p : 2N → N2N
, we want to show that it is locally constant. By the

construction of exponentials in the previous section, we know that for all t, r ∈ C,

λα.p(tα)(rα) ∈ Probe(N),

i.e. λα.p(tα)(rα) is uniformly continuous. In particular, we can take

t(α)(i) = α2i and r(α)(i) = α2i+1,

both of which are uniformly continuous, and define q : 2N → N by q(α) = p(tα)(rα).
From the uniform-continuity witness of q, we get its modulus n. Then we define a map
join : 2N × 2N → 2N by

join(α, β)(2i) = αi
join(α, β)(2i+ 1) = βi.

Given α, α′, β ∈ 2N with α =n α
′, we have

p(α)(β)
= p(t(join(α, β)))(r(join(α, β))) (by the definitions of t, r, join)
= q(join(α, β)) (by the definition of q)
= q(join(α′, β)) (join(α, β) =2n join(α′, β), 2n ≥ n)
= p(α′)(β).

Hence p is locally constant and therefore N2N
is discrete.

As in the classical case of Kleene–Kreisel functionals, this lemma is at the heart of
our construction of the fan function in the category C-Space. Notice, however, that we
did not need to use a compactness argument, as is needed for Kleene–Kreisel functionals,
which allowed us to avoid classical logic and Brouwer’s Fan Theorem to prove the above
lemma. We remark that Hyland [47] proves the above lemma in the category of locales
also in intuitionistic logic without Brouwerian principles.

Theorem 3.5.2. There is a fan functional

fan: N2N → N

in C-Space that continuously calculates least moduli of uniform continuity.

Proof. Given f ∈ N2N
, i.e. a continuous map 2N → N, we know f is uniformly continuous

according to the Yoneda lemma. Then, from the witness of its uniform continuity, we get
a modulus mf .

35

From this modulus we calculate the least modulus of f as follows: We define a function
lmod: (2N→N)→N→N by induction on its second argument:

lmod f 0 = 0
lmod f (n+ 1) = if (∀s ∈ 2n. f(s0ω) = f(s1ω)) then (lmod f n)

else (n+ 1).

With a proof by induction, we can show that lmod f n is the smallest modulus if n is any
modulus of f . Hence, we define

fan(f) = lmod f mf .

As the space N2N
is discrete by the previous lemma, this functional is continuous.

We use this functional to model the uniform-continuity principle, which is expressed
as a skolemized formula in system T (Chapter 5.1) and as a type via the Curry–Howard
interpretation in MLTT (Chapter 6.2)

36

CHAPTER 4

The Kleene–Kreisel
continuous functionals

From a constructive point of view, the traditional treatment of the Kleene–Kreisel con-
tinuous functionals [65, 66, 57, 58, 56] is problematic, because the proofs available in the
literature rely on either classical logic or constructively contentious principles such as Bar
Induction or the Fan Theorem [7, 74]. One such example is the fact that all functions
2N → N in the category of Kleene–Kreisel functionals are uniformly continuous. It is
thus natural to ask whether it is possible to develop the theory of Kleene–Kreisel spaces
constructively, which was one of the original motivations of this project. It turns out
that this is indeed the case, using our category of C-spaces, constructively developed in
Chapter 3.3, to host the Kleene–Kreisel spaces as a full subcategory: we start with the
natural numbers object, and close under finite products and function spaces.

We start the chapter with a brief introduction to the Kleene–Kreisel continuous func-
tionals and some approaches to them. In particular, we recall the development of limit
spaces which host the Kleene–Kreisel spaces as a full subcategory, and some of their
properties that are relevant to our investigation.

Then, in the next section, we show that limit spaces are fully embedded in the category
of C-spaces. Moreover, the embedding becomes an equivalence when restricted to simple
objects, that is the least collection containing the natural numbers object and closed under
finite products and exponentials. Since the Kleene–Kreisel spaces are precisely the simple
objects in the category of limit spaces, they can also be calculated within C-spaces.

We use non-constructive arguments in Section 4.2 (and in no other section) to estab-
lish the equivalence of Kleene–Kreisel spaces calculated within limit spaces and within
C-spaces. The point is that our constructive development of C-spaces provides a classi-
cally equivalent substitute for the traditional manifestations of the Kleene–Kreisel spaces,
which admits a constructive treatment of the uniform-continuity principle, as illustrated
in Chapters 5 and 6.

In the last section, we show that the full type hierarchy is equivalent to the Kleene–
Kreisel hierarchy within C-spaces under the assumption of the Brouwerian axiom that all
set-theoretic functions 2N → N are uniformly continuous. Here the proof is constructive,
and has been formalized in intensional MLTT in Agda notation [77]. It is interesting
that other Brouwerian axioms such as more general forms of continuity principle or Bar
Induction are not needed to prove the equivalence.

37

4.1 The Kleene–Kreisel continuous functionals

Continuous functionals were first discussed in Kleene’s paper [50], using the notion of
countable functional, and in Kreisel’s paper [53], using the notion of continuous functional,
and are thus known as the Kleene–Kreisel continuous functionals. In both approaches,
the aim is to develop a hierarchy of total functionals of finite types. The idea of this type
hierarchy is that the action of a functional on an input is locally determined via finite
approximation to that input.

In a cartesian closed category with a natural numbers object N, define the simple
objects to be the least collection containing N and closed under products and exponentials.
The simple objects of any such category give an interpretation of the simply typed lambda
calculus and higher-type primitive recursion (the term language of Gödel’s system T). The
Kleene–Kreisel continuous functionals form a category equivalent to the full subcategory
on the simple objects of any of the following categories, among others:

1. compactly generated topological spaces [65, 33],

2. sequential topological spaces [33],

3. Simpson and Schröder’s QCB spaces [4, 33],

4. Kuratowski limit spaces [45],

5. filter spaces [45],

6. Scott’s equilogical spaces [5]

7. Johnstone’s topological topos [48].

See Normann [66] and Longley [57, 58] for the relevance of Kleene–Kreisel spaces in the
theory of higher-type computation. Counterexamples include Hyland’s effective topos [46]
and the hereditary effective operations (HEO) [57], which give a second simple-type hier-
archy (see [57] for a discussion).

Here we briefly recall the definition of limit space and some properties that will be
used in the next section. A limit space (also known as a subsequential space in [48] and
an L-space in [45]) is a set X together with a family of functions x : N∞ → X, written as
(xi)→ x∞ and called convergent sequences in X, satisfying the following conditions:

1. The constant sequence (x) converges to x.

2. If (xi) converges to x∞, then so does every subsequence of (xi).

3. If (xi) is a sequence such that every subsequence of (xi) contains a subsequence
converging to x∞, then (xi) converges to x∞.

We call the collection of convergent sequences in X the limit structure on X. A function
f : X → Y of limit spaces is said to be continuous if it preserves convergent sequences,
i.e. (fxi) → fx∞ whenever (xi) → x∞. We write Lim to denote the category of limit
spaces and continuous maps.

As mentioned in Chapter 3.1, the category Lim is cartesian closed and has a natural
numbers object. Here we give the constructions of products and exponentials of limit

38

spaces, omitting their verification: Let X and Y be limit spaces. The underlying set of
the product X × Y consists of pairs of elements of X and Y ; and, a sequence (xi, yi)
converges to (x, y) in X × Y iff (xi)→ x in X and (yi)→ y in Y . The underlying set of
the exponential Y X consists of continuous maps X → Y ; and, a sequence (fi) converges
to f in Y X iff (fixi) → fx in Y whenever (xi) → x in X. We recall the following facts
without proof.

Lemma 4.1.1.

1. Any topological space with all topologically convergent sequences forms a limit space.

2. Any continuous map of topological spaces is continuous in the sense of limit spaces.

In particular, the one-point compactification N∞ and the Cantor space 2N (together
with their topologically convergent sequences) are limit spaces. The following is analogous
to the Yoneda Lemma 3.4.2.

Lemma 4.1.2. Convergent sequences in any limit space X are in one-to-one correspon-
dence with the (limit) continuous maps N∞ → X.

4.2 The Kleene–Kreisel spaces as a full subcategory

of C-spaces
In this section we present a classical proof that the full subcategory of simple objects
in C-Space is isomorphic to the category of Kleene–Kreisel spaces. But, as discussed in
Chapter 3, we have a constructive proof that this subcategory has a fan functional without
assuming Brouwerian axioms. Thus, this subcategory can be seen as a constructive, clas-
sically equivalent, substitute for the traditional manifestations of Kleene–Kreisel spaces.
Notice that this section is the only part in the thesis in which we employ non-constructive
arguments.

As recalled in the previous section, limit spaces provide an approach to the Kleene–
Kreisel continuous functionals via sequence convergence [45]. Therefore, instead of Kleene’s
notion of countable functional or Kreisel’s notion of continuous functional, we relate our
C-spaces to limit spaces to show how the Kleene–Kreisel spaces can be calculated within
our constructive model.

In this section, to avoid confusion, we reserve the terminologies continuous function for
morphisms of topological spaces, probe-continuous function for morphisms of C-spaces,
and limit-continuous function for morphisms of limit spaces.

We first prove the analogue of Lemma 4.1.1 for C-spaces.

Lemma 4.2.1.

1. The continuous maps from the set 2N with the usual Cantor topology to any topo-
logical space X form a C-topology on X.

2. Any continuous map of topological spaces is probe-continuous.

Proof. We firstly show that the three probe axioms are satisfied.
(1) Clearly all constant maps are continuous.

39

(2) Let p : 2N → X be a continuous map and t ∈ C. As t is uniformly continuous and
thus continuous, the composite p ◦ t of two continuous maps is continuous.

(3) Let p0, p1 : 2N → X be continuous maps. Then it is clear that the map p : 2N → X
defined by p(iα) = pi(α) is also continuous.

Now let f : X → Y be a continuous map of topological spaces. Since any probe p is
a continuous map 2N → X, the composite f ◦ p is continuous and thus a probe on Y .
Hence f is probe-continuous.

In particular, N∞ together with all continuous maps 2N → N∞ forms a C-space. Now
we define functors between the categories Lim and C-Space. By the above lemmas, the
following holds for any of the three notions of continuity considered in this section. Notice
that non-constructive arguments are employed to define the following maps and to prove
their continuity (however, non-constructivity here could be avoided by working with N∞
defined as the set of decreasing binary sequences [32]):

Lemma 4.2.2. The following maps r and s are continuous, and r is a retraction with
section s:

r : 2N → N∞
1n0α 7→ n

1ω 7→ ∞,

s : N∞ → 2N

n 7→ 1n0ω

∞ 7→ 1ω.

For a limit space X, define the limit probes on X to be the limit-continuous maps
2N → X w.r.t. the limit structure on 2N given in Lemma 4.1.1. The following shows that
limit spaces can be regarded as a full subcategory of C-spaces.

Lemma 4.2.3 (The functor G : Lim→ C-Space).

1. For any limit space X, the limit probes form a C-topology on X.

2. For any two limit spaces X and Y , a function X → Y is limit-continuous if and
only if it is continuous w.r.t. the limit probes.

This gives a full and faithful functor G : Lim→ C-Space which on objects keeps the
same underlying set but replaces the limit structure by the C-topology given by limit
probes, and is the identity on morphisms.

Proof. (1) We need to show that the three probe axioms are satisfied.

(i) It is clear that any constant map is limit-continuous and thus a probe.

(ii) Let p : 2N → X be limit-continuous and t ∈ C. Given any convergent sequence
(xi)→ x∞ in 2N, the induced map x : N∞ → 2N is continuous. Because t is uniformly
continuous, the composite t ◦x is continuous and thus a convergent sequence. Then
we have (p(t(xi)))→ p(t(x∞)) by the limit-continuity of p, and thus the composite
p ◦ t is limit-continuous.

(iii) Given probes p0, p1 : 2N → X, i.e. p0, p1 are limit-continuous, we define a map
p̄ : 2 → (2N → X) by p̄(0) = p0 and p̄(1) = p1. By the discreteness of 2, this map
is limit-continuous. Since both the head function, h(α) = α0, and the tail function,
t(α) = λn.αn+1, are limit-continuous, the map p : 2N → X, defined by

p = λα.p̄(hα)(tα),

40

is also limit-continuous, by the cartesian closedness of Lim. Clearly p is the unique
amalgamation of p0, p1.

(2) Let X and Y be limit spaces. (⇒) Suppose that f : X → Y is a limit-continuous
map. Then it is also probe-continuous w.r.t. the C-topologies given as above, because
any probe p on X is a limit-continuous map, and the composite f ◦ p limit-continuous
and hence a probe on Y . (⇐) Suppose that f : X → Y is a probe-continuous map, w.r.t.
the C-topologies given as above. Given a convergent sequence (xi) → x∞, we know that
the induced map x : N∞ → X is limit-continuous by Lemma 4.1.2. By (2(⇒)), we know
that x is probe-continuous, and hence so is the composite f ◦ x. Since the retraction
r : 2N → N∞ is continuous and thus a probe on N∞, the composite f ◦ x ◦ r is a probe
on Y , i.e. a limit-continuous map. As (1i0ω) → 1ω in 2N, the sequence (f(x(r(1i0ω))))
converges to f(x(r(1ω))), which amounts to (fxi)→ fx∞ by the definition of r.

Lemma 4.2.4 (The functor F : C-Space→ Lim).

1. For any C-space X, the probe-continuous maps N∞ → X form a limit structure
on X.

2. For any two C-spaces X and Y , if a function X → Y is probe-continuous then it is
limit-continuous w.r.t. the above limit structures.

This gives a functor F : C-Space → Lim which on objects again keeps the same
underlying set but replaces the C-topology by an appropriate limit structure, and is the
identity on morphisms.

Proof. (1) We need to verify the three axioms of limit structure.

(i) Clearly any constant map N∞ → X is probe-continuous and thus a convergent
sequence.

(ii) If x : N∞ → X is probe-continuous, i.e. (xi) → x∞, and (xfi) is a subsequence of
(xi), then we extend the reindexing function f : N→ N to f̃ : N∞ → N∞ by defining
f̃(n) = f(n) for n ∈ N and f̃(∞) = ∞. Once we show that f̃ is probe-continuous,
then so is the composite x ◦ f̃ and thus (xfi) → x∞. For endomaps N∞ → N∞,
probe-continuity corresponds to continuity. Given an open set U ⊆ N∞. If ∞ 6∈ U
then U must be a finite subset of N. Since f , as a subsequence-reindexing function,
is injective (in fact, bijective) and strictly increasing, the set f̃−1(U) is also a finite
subset of N and thus open. If ∞ ∈ U then its complement Ū is a finite subset of N.

The complement f̃−1(U) = f̃−1(Ū) is a finite subset of N and thus f̃−1(U) is open.

(iii) Suppose that (xi) is a sequence such that every subsequence of (xi) has a subsequence
converging to x∞. We need to prove the the induce map x : N∞ → X is probe-
continuous. Let p be a probe on N∞. By the assumption, we have a subsequence
(xfi) which converges to x∞. We extend the reindexing function f as above and get a
continuous map f̄ : N∞ → N∞. We know that f is bijective and thus the inverse f̄−1

is also continuous, because any continuous bijection of compact Hausdorff spaces
is a homeomorphism. Since (xfi) → x∞, the map x ◦ f̄ is probe-continuous, i.e.
x ◦ f̄ ◦ q is a probe for any probe q on N∞. If we choose q = f̄−1 ◦ p which is a probe
by the continuity of f̄−1, then x ◦ f̄ ◦ f̄−1 ◦ p = x ◦ p is a probe on X.

41

(Notice that in both (ii) and (iii) we have used excluded middle.)
(2) Let X and Y be C-spaces, and let f : X → Y be a probe-continuous map. Given a

convergent sequence (xi)→ x∞, i.e. a probe-continuous map x : N∞ → X, the composite
f ◦ x is also probe-continuous and hence a convergent sequence on Y .

Lemma 4.2.5. Limit spaces form a reflective subcategory of C-spaces.

Proof. It remains to show that F : C-Space → Lim is left adjoint to G, i.e. for any C-
space X and limit space Y , we have Lim(FX, Y) ∼= C-Space(X,GY) naturally. As the
underlying sets remain the same when we apply the functors, this is equivalent to saying
that a map f : X → Y is limit-continuous iff it is probe-continuous.

(⇒) Suppose f is limit-continuous, i.e. if x : N∞ → X is probe-continuous then
(fxi) → fx∞. Given a probe p : 2N → X on X, we want to show that f ◦ p is a
probe on Y , i.e. f ◦ p is limit-continuous. Given a convergent sequence α : N∞ → 2N,
i.e. α is probe-continuous, the composite p ◦ α is also probe-continuous. Then by the
limit-continuity of f we have that (f(pαi)) converges to f(pα∞).

(⇐) Suppose f is probe-continuous. Given a probe-continuous function x : N∞ →
X (a convergent sequence), we want to show that (fxi) → fx∞. Since the retraction
r : 2N → N∞ defined in Lemma 4.2.2 is continuous and thus probe-continuous, so is the
composite x ◦ r. By the probe-continuity of f , we have that f ◦ x ◦ r is a probe on Y and
thus limit-continuous. Since (1i0ω)→ 1ω in 2N, the sequence (f(x(r(1i0ω)))) converges to
f(x(r(1ω))), which amounts to (fxi)→ fx∞ by the definition of r.

Lemma 4.2.6. The reflector F : C-Space→ Lim preserves finite products.

Proof. It is trivial to verify that terminal objects are preserved by F . Now we show
that F preserves binary products. Let X and Y be C-spaces. Both F (X ×C-Space Y)
and F (X) ×Lim F (Y) have the same underlying set, the cartesian products of X and
Y . We need to show that their limit structures are the same. (⇒) Given a convergent
sequence z : N∞ → X × Y in F (X ×C-Space Y), i.e. a probe-continuous map, clearly
the pair (z ◦ pr1, z ◦ pr2) is a convergent sequence in F (X) ×Lim F (Y). (⇐) Given a
convergent sequence (x, y) in F (X)×Lim F (Y), where both x : N∞ → X and y : N∞ → Y
are probe-continuous, we define a map z : N∞ → X × Y by zi = (xi, yi). Clearly z is
probe-continuous and thus a convergent sequence in F (X ×C-Space Y). One can easily see
that, if a convergent sequence is transferred by one of the above directions and then by
the other, it remains the same.

In view of the above, we can regard Lim as a full subcategory of C-Space.

Lemma 4.2.7. [49, Corollary A.1.5.9] Let G : C → D be a functor between cartesian
closed categories, and suppose G has a left functor F . If G is full and faithful and F
preserves binary products, then G is cartesian closed (i.e. G preserves finite products and
exponentials).

Lemma 4.2.8. [49, Proposition A.4.3.1] Let D be a cartesian closed category, and C a
reflective subcategory of D, corresponding to a reflector F on C. Then F preserves finite
products iff (the class of objects of) C is an exponential ideal in D (i.e. the exponential
CD is in C whenever C ∈ C and D ∈ D).

The above two general categorical lemmas give the following:

42

Theorem 4.2.9.

1. The functor G : Lim→ C-Space is cartesian closed.

2. Limit spaces form an exponential ideal of C-Space.

Moreover, the discrete objects in these two categories coincide.

Lemma 4.2.10. If X is a discrete C-space, then G(F (X)) = X.

Notice that the following proof contains an argument by contradiction.

Proof. It suffices to prove that p : 2N → X is a probe on X iff it is a probe on G(F (X)).
(⇒) This direction holds for any C-space X. Let p be a probe on X. Then p is a

probe-continuous map by the Yoneda Lemma 3.4.2. We need to show that p is a probe on
G(F (X)), i.e. p is limit-continuous. Given a convergent sequence x : N∞ → 2N, we know
that x is also a probe-continuous map. Thus the composite p ◦ x is probe-continuous and
thus a convergent sequence on X.

(⇐) Let p be a probe on G(F (X)). According to the definitions of G and F , this
means that, for any continuous maps x : N∞ → 2N and q : 2N → N∞, the composite
p ◦ x ◦ q is locally constant. We need to show that p is a probe on X, i.e. p is locally
constant. For the sake of contradiction, assume that p fails to be locally constant. By
classical logic, this amounts to

∀m ∈ N. ∃α, β ∈ 2N. α =m β ∧ pα 6= pβ

which, by countable choice, defines two sequences (αi) and (βi) such that (i) αm =m β
m

and (ii) pαm 6= pβm for all m ∈ N. Because of the compactness of 2N and (i), there are
subsequences (αfi) and (βfi), both of which converge to the same point γ ∈ 2N and satisfy
αfi =fi β

fi for all i ∈ N. Because the composites α ◦ f and β ◦ f , being convergent, are
continuous, we know that both p◦ (α◦ f)◦ r and p◦ (β ◦ f)◦ r are locally constant, where
r is the retraction defined in Lemma 4.2.2. Let m to be the maximum of their moduli.
By their local constancy and the fact 1m0ω =m 1ω, we have

pαfm = p
(
αf(r(1m0ω))

)
= p

(
αf(r(1ω))

)
= pγ

pβfm = p
(
βf(r(1m0ω))

)
= p

(
βf(r(1ω))

)
= pγ

and thus pαfm = pβfm which contradicts (ii) and hence shows that p must be locally
constant.

Recall that Kleene-Kreisel spaces can be obtained within Lim by starting with the
natural numbers object, and closing under finite products and function spaces. By The-
orem 4.2.9 and Lemma 4.2.10, the full subcategory of C-Space generated by the same
process is isomorphic to the above one of Lim, which leads to the following conclusion:

Theorem 4.2.11. The Kleene–Kreisel spaces can be calculated within C-Space by start-
ing from the natural numbers object and iterating products and exponentials.

43

An outline of a more direct proof of this theorem is as follows: (0) F (GX) = X for
any limit space X. (1) If a map p : 2N → X is a probe on a C-space X, then it is also a
probe on G(FX). (2) If X = G(FX) and Y = G(FY), then X × Y = G(F (X × Y)).
(3) If Y = G(FY) then Y X = G(F (Y X)). The proofs of (0) and (1) are easy and those
of (2) and (3) use (1). The advantage of the more abstract approach we have chosen is
that it gives additional information.

4.3 The Kleene–Kreisel and full type hierarchies
The full type hierarchy is the smallest full subcategory of Set containing the natural
numbers and closed under exponentials. If we work in a constructive set theory (or type
theory) with the Brouwerian axiom (UC), it turns out that the full type hierarchy is
equivalent to the Kleene–Kreisel hierarchy calculated within C-Space. It is interesting
that other Brouwerian axioms such as more general forms of continuity or Bar Induction
are not needed to prove the equivalence. In the proofs below, we explicitly assume (UC)
whenever it is needed.

For a set X, one can take all maps 2N → X as probes on X. The resulting space
is called indiscrete, and we refer to the collection of all maps 2N → X as the indiscrete
C-topology on X. It is clear that X is indiscrete iff for any C-space Y , all maps Y → X
are continuous. This is equivalent to saying that the functor ∇ : Set → C-Space that
endows a set with the indiscrete C-topology is a right adjoint to the forgetful functor
C-Space → Set. Moreover, the adjunction becomes an equivalence when restricted to
indiscrete spaces:

Lemma 4.3.1. The category of indiscrete C-spaces is equivalent to Set.

Lemma 4.3.2. Indiscrete C-spaces form an exponential ideal.

Proof. Let X be a C-space and Y an indiscrete C-space. Given r : 2N → Y X , for any
t ∈ C and p ∈ Probe(X), the map λα.r(tα)(pα) has codomain Y and thus a probe on Y .
Therefore, all maps 2N → Y X are probes on Y X .

The crucial, but easy, observation is this:

Lemma 4.3.3. If (UC) holds in our constructive category of sets, then the discrete space
N is also indiscrete.

Remark. As discussed above, we are working in an informal constructive set theory,
in which neither excluded middle nor its negation are postulated. In such a set theory,
(UC) for set-theoretical functions 2N → N is independent. But (UC) actually holds in
Brouwerian intuitionism. In fact, the point of Chapter 3 is to construct a topos model of
such a constructive set theory validating (UC).

Proof. By construction, the discrete C-topology consists of all uniformly continuous func-
tions 2N → N. But if (UC) holds, this amounts to all functions 2N → N, which, by def-
inition, constitute the indiscrete C-topology, and hence N is indiscrete (and the discrete
and indiscrete C-topologies are the same).

The desired result follows directly from the previous lemmas:

44

Corollary 4.3.4. If (UC) holds, then the full type hierarchy is equivalent to the Kleene–
Kreisel hierarchy.

This can be strengthened so that its converse also holds:

Theorem 4.3.5. The forgetful functor from the Kleene–Kreisel hierarchy to the full type
hierarchy is an equivalence if and only if (UC) holds.

Proof. By the above lemmas, if (UC) holds, then the adjunction restricts to an equivalence
of the two hierarchies. Conversely, if it is an equivalence, then (UC) holds, because, as
we have seen, it always holds in C-Space.

Two larger full subcategories of Set and C-Space are equivalent if (UC) holds.

Lemma 4.3.6.

1. Finite products of indiscrete C-spaces are indiscrete.

2. If (UC) holds, then finite coproducts of indiscrete C-spaces are indiscrete.

Proof. The first claim is trivial. If (UC) holds, then the space 2 is both discrete and
indiscrete. If X and Y are indiscrete spaces, we construct a coproduct X + Y as in the
proof of Theorem 3.3.5. We also define, by cases, a map i : X + Y → 2 which maps
in0 x to 0 and in1 y to 1 for any x ∈ X and y ∈ Y . As 2 is indiscrete, the map i is
continuous. Given any map r : 2N → X + Y , the composite i ◦ r is a probe on 2 and thus
locally constant, i.e. there is a natural number n such that for all s ∈ 2n the composite
i ◦ r ◦ conss is constant. If its value is 0, then r ◦ conss maps all α ∈ 2N to in0 x for some
x ∈ X, i.e. there is a map p : 2N → X such that r(conssα) = in0(pα); otherwise, there is
a map q : 2N → Y such that r(conssα) = in1(qα). By the definition, the map r is a probe
on X + Y .

Define extended hierarchies by closing under finite products and coproducts, in addi-
tion to exponentials.

Theorem 4.3.7. If (UC) holds, then the extended full type hierarchy is equivalent to the
extended Kleene–Kreisel hierarchy.

We also conjecture that, under the assumption that all set-theoretic maps 2N → N
are uniformly continuous, the above equivalence can be extended to the dependent-type
hierarchies in the categories Set and C-Space, in the sense that the structures of category
with families [29] on Set and on C-Space are equivalent.

45

CHAPTER 5

Modelling simple types in C-spaces

Our C-spaces form a cartesian closed category with a natural numbers object, as proved
in Chapter 3.3, which suffices to model Gödel’s System T and its logic HAω. Moreover,
there is a fan functional in the category of C-spaces that continuously calculates moduli of
uniform continuity (Theorem 3.5.2), which will be used to validate the uniform-continuity
principle (UC) in both theories. In the case of system T, in which quantifiers are absent,
we skolemize (UC) using (an additional constant for) the fan functional. We also recover
a well known result, namely that any definable function 2N → N in the full type hierarchy
is uniformly continuous, by establishing a logical relation between the full type hierarchy
and the Kleene–Kreisel functionals. We emphasize that all the work in this Chapter has
been implemented in intensional Martin-Löf type theory in Agda notation, as discussed
in Chapters 7 and 8.

5.1 A continuous model of Gödel’s System T
The term language of system T has a ground type N of natural numbers, binary product
type × and function type →. For our purposes, it is convenient (although not strictly
necessary) to add a ground type 2 of booleans. The constants and equations associated
to the ground types are

• the natural number 0 : N,

• the successor function suc : N→ N, and

• the recursion combinator

rec : σ → (N→ σ → σ)→ N→ σ
rec x f 0 = x
rec x f (suc n) = f n (rec x f n).

• booleans f, t : 2,

• the case-distinction function:

if : 2→σ→σ→σ
if f x y = x
if t x y = y,

46

The atomic formulas in system T consist of equations between terms of the same type,
and more complex formulas are obtained by combining these with the propositional con-
nectives ∧ and⇒ (the negation of a formula φ can of course be defined as φ⇒ 0 = suc 0).

The term language of system T can be interpreted in any cartesian closed category
with a natural numbers object N and a coproduct 2 (or 1+1) of two copies of the terminal
object [55]. Specifically, types are interpreted as objects: the ground type N is interpreted
as the object N, the ground type 2 as the coproduct 2, product types as products, and
function types as exponentials. Contexts are interpreted inductively as products. And a
term in context is interpreted as a morphism from the interpretation of its context to the
one of its type. The constant rec and if are interpreted using the universal properties of N
and 2 in the standard way [55].

Throughout this section (and the next), we use σ, τ to range over types, bold lower
case letters t, u, x, f , m, α, β to range over terms, and φ, ψ to range over formulas.

Uniform continuity of T-definable functions. As we have seen, both the categories
Set and C-Space are cartesian closed and have a natural numbers object and a coproduct
1 + 1, and hence serve as models of system T. We now recover a well-known result
(Theorem 5.1.3), using a logical relation between these two models. In the following
we use the semantic brackets [[−]] for the interpretation, and add Set and C-Space as
subscripts to distinguish which model we are working with.

Definition 5.1.1. The logical relation R over the set-theoretical and C-space models is
defined by

1. If σ is a T type, then Rσ ⊆ [[σ]]Set× [[σ]]C-Space is defined by induction on type σ as
follows:

(a) Rι(a, a
′) iff a = a′, where ι is the ground type 2 or N;

(b) Rσ→τ (f, f
′) iff, for any a ∈ [[σ]]Set and any a′ ∈ [[σ]]C-Space, if Rσ(a, a′) then

Rτ (f(a), f ′(a′)).

2. If Γ ≡ x1 :σ1, . . . , xn :σn is a context, then RΓ ⊆ [[Γ]]Set × [[Γ]]C-Space is defined by

RΓ(~a, ~a′) iff Rσi(ai, a
′
i) for all i ≤ n.

3. Given f ≡ [[Γ ` t : τ]]Set and f ′ ≡ [[Γ ` t : τ]]C-Space, R(f, f ′) iff, for any ~a ∈ [[Γ]]Set

and any ~a′ ∈ [[Γ]]C-Space, if RΓ(~a, ~a′) then Rτ (f(~a), f ′(~a′)).

With a proof by induction on terms as usual, we can easily show that the interpreta-
tions of any T term in these two models are related.

Lemma 5.1.2. If Γ ` t : τ , then R([[Γ ` t : τ]]Set, [[Γ ` t : τ]]C-Space).

We say that an element x ∈ [[σ]]Set in the set-theoretical model is T-definable if it is
the interpretation of some closed T term, i.e. there exists a closed term t : σ such that
x = [[t]]Set.

Theorem 5.1.3. Any T-definable function 2N → N is uniformly continuous.

Proof. If f : 2N → N interprets the term f : (N→2)→N, then f is related to the contin-
uous map [[f]]C-Space : 2N → N according to the above lemma. By the definition of the
logical relation, we can easily show that f is uniformly continuous.

47

Validating the uniform-continuity principle in system T. The above shows that
the definable functions 2N → N in the full type hierarchy are uniformly continuous, with
uniform continuity formulated externally to the theory, in the model. We now show how
to validate the internal principle of uniform continuity, working with C-spaces.

In a theory with quantifiers, such as HAω discussed in the next section, the principle
(UC) is formulated as follows, as discussed in Chapter 2:

` ∀(f :(N→2)→N). ∃(m :N). ∀(α,β :N→2). α =m β ⇒ fα = fβ.

In order to express this in system T, which lacks quantifiers, we first treat Γ ` ∀(x :σ).φ
as Γ,x :σ ` φ, and then we add a constant

fan : ((N→2)→N)→N

to remove the existential quantifier by skolemization, so that we get the purely equational
formulation

f :(N→2)→N,α :N→2,β :N→2 ` α =fan(f) β ⇒ fα = fβ.

To formulate α =m β, we define a term agree : (N→2)→(N→2)→N→2 by

agree α β :≡ rec t (λi. λx. min (eq αi βi) x),

where min : 2→2→2 gives the minimal boolean and eq : 2→2→2 has value t iff its two
arguments are the same, both of which can be defined using if. The idea is that

agree α β m = t iff α and β are equal up to the first m positions.

Then the formula of (UC) that we are working with becomes

f :(N→2)→N,α :N→2,β :N→2 ` agree α β (fan f) = t⇒ fα = fβ.

We interpret types and terms of this theory in C-Space as before, while the meaning
of the constant fan is given by the functional fan: N2N → N constructed in Chapter 3.5.
Here and in the next section, semantic brackets without explicit decorations refer to the
C-Space interpretation. Formulas are interpreted inductively as follows. Given ~ρ ∈ [[Γ]],

(1) [[Γ ` t = u]](~ρ) :≡ [[Γ ` t : σ]](~ρ) = [[Γ ` u : σ]](~ρ),

(2) [[Γ ` φ ∧ ψ]](~ρ) :≡ [[Γ ` φ]](~ρ)× [[Γ ` ψ]](~ρ),

(3) [[Γ ` φ⇒ ψ]](~ρ) :≡ [[Γ ` φ]](~ρ)→ [[Γ ` ψ]](~ρ),

where, in the right-hand side, = represents equality (or identity type), × binary product,
and → function space in the meta-theory. We then say that C-Space validates Γ ` φ iff
[[Γ ` φ]](~ρ) is inhabited for any ~ρ ∈ [[Γ]].

Theorem 5.1.4. The model of C-spaces validates (UC).

Proof. If the interpretation of the formula agree α β m = t is inhabited, then we have
[[α]] =[[m]] [[β]], with a proof by induction on [[m]]. In particular, the inhabitedness of
the interpretation of agree α β (fan f) = t implies [[α]] =fan[[f]] [[β]]. According to the
definition of fan, we have [[fα]] = [[fβ]].

48

5.2 A continuous realizability semantics of HAω

Heyting arithmetic over finite types , abbreviated HAω, is system T (with its equational
theory and logical connectives) extended with the intuitionistic quantifiers [7, §V] [74, §3
and §9]. For technical convenience, we add a singleton type 1 to the inductive definition
of types in T.

To any HAω formula φ we associate a T type |φ | of potential realizers. Then a
continuous realizer of a formula Γ ` φ is a pair

(~ρ, e) ∈ [[|Γ|]]× [[φ]].

We call this a continuous realizability semantics .

Definition 5.2.1 (Continuous realizability). The types of potential realizers of formulas
in HAω are given inductively as follows:

1. |t = u | :≡ 1,

2. |φ ∧ ψ | :≡ |φ| × |ψ | ,

3. |φ⇒ ψ | :≡ |φ| → |ψ | ,

4. |∀(x :σ).φ| :≡ σ → |φ| ,

5. |∃(x :σ).φ| :≡ σ × |φ| .

Let Γ be a context and ~ρ ∈ [[Γ]]. The relation

(~ρ, e) realizes Γ ` φ

is defined by induction on formulas as follows:

1. (~ρ, ?) realizes Γ ` t = u iff [[Γ ` t : σ]](~ρ) = [[Γ ` u : σ]](~ρ), where ? is the element
of the terminal C-space,

2. (~ρ, (e, e′)) realizes Γ ` φ∧ ψ iff (~ρ, e) realizes Γ ` φ and (~ρ, e′) realizes Γ ` ψ, where
e ∈ [[|φ |]] and e′ ∈ [[|ψ |]],

3. (~ρ, e) realizes Γ ` φ ⇒ ψ iff for all a ∈ [[|φ|]] with (~ρ, a) realizing Γ ` φ, the pair
(~ρ, e(a)) realizes Γ ` ψ, where e : [[|φ|]]→ [[|ψ |]] is continuous,

4. (~ρ, e) realizes Γ ` ∀(x :σ).φ iff for any a ∈ [[σ]], the pair ((~ρ, a), e(a)) realizes Γ,x :σ `
φ, where e : [[σ]]→ [[|φ|]] is continuous and (~ρ, a) ∈ [[Γ,x :σ]],

5. (~ρ, (a, e)) realizes Γ ` ∃(x :σ).φ iff ((~ρ, a), e) realizes Γ,x :σ ` φ, where a ∈ [[σ]] and
e ∈ [[|φ |]].

We say a closed HAω formula φ is realizable if there exists e ∈ [[|φ|]] such that (?, e)
realizes ` φ.

49

Theorem 5.2.2. The principle (UC), formulated as the following HAω formula

` ∀(f :(N→2)→N). ∃(m :N). ∀(α,β :N→2). agree α β m = t⇒ fα = fβ

is realized by the fan functional.

Proof. If (?, e) realizes (UC), then e is a continuous map

N2N → N× (2N → 2N → 1→ 1).

By Definition 5.2.1, given any continuous f : 2N → N, the pair ((?, f), e(f)) should realize

f :(N→2)→N ` ∃(m :N). ∀(α,β :N→2). agree α β m = t⇒ fα = fβ.

If we define the first component of e(f) to be fan(f), i.e. the modulus of uniform continuity
of f , then we want that ((?, f, fan(f)), (pr2(e(f)))) realizes

f :(N→2)→N,m :N ` ∀(α,β :N→2). agree α β m = t⇒ fα = fβ.

Now we write
Γ ≡ f :(N→2)→N,m :N,α :N→2,β :N→2.

Given any α, β ∈ 2N, using the same argument as in the proof of Theorem 5.1.4, we can
show that if ((?, f, fan(f), α, β), ?) realizes Γ ` agree α β m = t then we have α =fan(f) β.
By the definition of fan, we have fα = fβ, i.e.

[[Γ ` fα]](?, f, fan(f), α, β) = [[Γ ` fβ]](?, f, fan(f), α, β).

Therefore, ((?, f, fan(f), α, β), ?) realizes Γ ` fα = fβ, and hence (UC) is realizable.

50

CHAPTER 6

Modelling dependent types in sheaves

In the previous chapter, we modelled system T and HAω in the cartesian closed category
of C-spaces, and then validated the uniform-continuity principle (UC) using the fan func-
tional. In this chapter, we generalize this to a dependently typed theory. We begin with
a short introduction to Martin-Löf type theory (MLTT) [61, 62, 70]. Then in Section 6.2,
following Seely’s method [67], we show that the Curry–Howard formulation of (UC) is
validated in the locally cartesian closed category of C-spaces. It is well known that there
is a coherence issue with substitutions arising in Seely’s interpretation [25], which has
been handled in a number of ways [25, 26, 29, 42]. We briefly recall the one via the notion
of category with families (CwF) [29] in Section 6.3, and then construct CwF-structures
in the categories of C-spaces (Section 6.4) and of sheaves (Section 6.5).

6.1 Martin-Löf type theory

Martin-Löf type theory (MLTT) provides an alternative foundation of constructive math-
ematics, based on the well-known slogan “propositions as types” [62]. The idea is that, in
first order intuitionistic logic, propositions are interpreted as types, and proofs as terms,
which is known as the Curry–Howard interpretation. Because of its computational con-
tent, MLTT can be regarded as a dependently typed programming language. The design
of a number of proof assistants and programming languages is based on MLTT, including
Coq [8] and Agda [11].

In this section, we recall the dependently typed theory based on Martin-Löf [62]. Our
presentation is informal as in the first Chapter of the HoTT book [73], but is sufficient for
the purpose of modelling the uniform-continuity principle (Section 6.2). We give another
presentation of type theory in Section 6.3, via Cartmell’s notion of generalized algebraic
theory [14], to illustrate its close relation to the notion of category with families [29].

To present the theory, we use the following two forms of judgment:

1. a : A, which means that a is a term of type A, and

2. a ≡ b, which means that a and b are judgmentally equal objects.

We use the symbol ≡ for judgmental equality, and reserve = to denote identity types,
as in the HoTT book [73]. Notice that a judgment may depend on a context, that is an
ordered list of free variables occurring in the types or terms of that judgment. For the
sake of readability, in this introductory section we omit contexts, but explicitly list the

51

free variables involved in the constructions of types and of terms. In Section 6.3 we deal
with contexts explicitly.

MLTT has a more general version of function types, called a Π-type. The element of
a Π-type is a dependent function, whose codomain type depends on the element of the
domain type to which the function is applied. Given a type A and a family B which to
each element x : A assigns a type B(x), the Π-type is written as

Π(x :A).B(x).

When B is a constant family, then the above is simply the ordinary function type A→ B.
For a variable x : A, if we have a term b : B(x), then we can construct a dependent
function via λ-abstraction

λx.b : Π(x :A).B(x).

If we apply a dependent function f : Π(x :A).B(x) to a term a : A, then we get

f(a) : B(a).

Moreover, we have the following computation rules of Π-types: for any b : B(x), a : A
and f : Π(x :A).B(x),

(λx.b)(a) ≡ b[a/x] f ≡ λx.f(x)

where b[a/x] means replacing all occurrences of x in b by a and hence is an element
of B(a).

MLTT also has a generalized version of product types, call a Σ-type. An element of
a Σ-type is a dependent pair in which the type of the second component depends on the
first component. Given a type A and a family B which to each element x : A assigns a
type B(x), the Σ-type is written as

Σ(x :A).B(x).

When B is a constant family, then the above is simply the ordinary product type A×B.
By pairing terms a : A and b : B(a), we have

(a, b) : Σ(x :A).B(x).

The first projection from a Σ-type is a function

pr1 : (Σ(x :A).B(x))→ A,

while the second one is dependent

pr2 : Π(w :Σ(x :A).B(x)).B(pr1(w)).

The computational rules of Σ-types include

pr1(a, b) ≡ a pr2(a, b) ≡ b w ≡ (pr1(w), pr2(w))

for any a : A, b : B(a) and w : Σ(x :A).B(x).
For any two elements of a type, MLTT has a type expressing their equality, called an

52

identity type. Given a, b : A, the identity type is written as

a =A b.

An element of a =A b can be regarded as a proof that a and b are propositionally equal.
To construct elements of an identity type, we have the following dependent function

refl : Π(a : A). a =A a

called reflexivity, which says that every element of type A is equal to itself. The induction
principle for the identity type over elements of type A is given by the J-eliminator

J : (Π(a :A).C(a, a, refla))→ Π(a :A).Π(b :A).Π(p : a =A b).C(a, b, p)

for each family C which to elements a, b : A and p : a =A b assigns a type C(a, b, p). The
computational rule of identity type is

J(c, a, a, refla) ≡ c(a)

for any c : Π(a :A).C(a, a, refla) and a : A. In other words, to prove a property for all
elements a, b : A and p : a =A b, it suffices to consider all the cases where the elements
are a, a and refla. We omit the indices and simply write a = b and refl when they can be
inferred from the context.

6.2 Modelling (UC) via the LCCC of C-spaces
In Chapter 5.1, we showed that C-spaces give a model of system T that validates the
uniform-continuity principle (UC), namely

∀(f : 2N → N). ∃(m ∈ N). ∀(α, β ∈ 2N). α =m β =⇒ fα = fβ.

For this, we used the cartesian closedness of C-spaces to interpret simple types and for-
mulas in system T, and we gave a skolemized version of (UC) using the fan functional
in order to remove the quantifiers, which are absent from system T. In this section, we
exploit the local cartesian closedness of C-spaces to model dependent types. In this case,
the uniform-continuity principle is formulated as a closed type (CH-UC), via the Curry–
Howard interpretation, rather than as a logical formula, namely

Π(f : (N→ 2)→ N). Σ(m :N). Π(α : N→ 2). Π(β : N→ 2). α =m β → fα = fβ,

where 2 denotes the type of binary digits f and t, N denotes the type of natural numbers.
Here α =m β stands for Π(i :N). i < m → αi = βi. For this, we have to introduce the
less-than relation < as a ground type, or equivalently define it as a Σ-type. Another
way is to define a term agree : (N→2)→(N→2)→N→2 using the primitive recursor as
in Chapter 5.1. It is provable in type theory that

agree α β m = t iff Π(i :N). i < m→ αi = βi.

53

Because all these definitions are equivalent, they would have equivalent interpretations in
any model. Therefore, it does not matter which definition of α =m β that we are working
with. Our objective is to show that the type (CH-UC) is inhabited in the locally cartesian
closed category of C-spaces.

As is well known, locally cartesian closed categories [67] and variations, such as cat-
egories with attributes [42] and categories with families [29], give models of dependent
type theories. Seely’s interpretation in locally cartesian closed categories [67] has a co-
herence issue with type substitution, as pointed out by Curien [25]. This problem can be
addressed by changing the syntax to work with explicit substitutions [25], or by changing
the semantics to work with categories with attributes [42] or categories with families [29].
A more recent discussion of categorical models of MLTT, relating Curien’s [25] and Hof-
mann’s [42] approaches can be found in [26].

Clairambault and Dybjer show that locally cartesian closed categories and categories
with families are biequivalent [17]. Using one direction of this biequivalence, which
amounts to Hofmann’s construction [42], one can translate a locally cartesian closed cat-
egory C to a category with families (C, TC). Then one can show, by induction on types,
that Γ ` A is inhabited in C iff it is inhabited in (C, TC). Therefore, we can ignore the
coherence issue and work directly with the locally cartesian closed structure of C-Space
to model the uniform-continuity principle.

Recall that, in Seely’s model, a type in context Γ ` A is interpreted as an object, i.e.
a morphism Ā → Γ̄, in the slice category C/Γ̄, and a term Γ ` a : A is interpreted as a
section of the interpretation of its type:

Ā
[[Γ`A]] //

id @@@@@@@

@@@@@@@ Γ̄

[[Γ`a:A]]����������

Ā.

The right adjoint to the pullback functor interprets Π-types, its left adjoint interprets
Σ-types, and equalizers interpret identity types. We say the model C validates Γ ` A iff
the interpretation [[Γ ` A]] has sections.

Theorem 6.2.1. The locally cartesian closed category of C-spaces validates the Curry–
Howard formulation (CH-UC) of the uniform-continuity principle.

Proof. It is enough to show that the domain of [[` CH-UC]] is inhabited. The proof is
essentially the same as that of Theorem 5.1.4, which is carried out using the fan functional.

Since the space dom([[` (N→2)→N]]) is equivalent to the exponential N2N
in C-Space,

the underlying set of dom([[` CH-UC]]) is equivalent to the set of continuous functions
N2N → dom(u), where u is the interpretation of

f : (N→ 2)→ N ` Σ(m :N). Π(α : N→ 2). Π(β : N→ 2). α =m β → fα = fβ.

The underlying set of dom(u) is equivalent to the set of pairs (f,m), where f ∈ N2N
and

m ∈ N, such that fα = fβ whenever α =m β. By the definition of the fan functional, the
pair (f, fan(f)) is clearly in dom(u). Therefore, we have a map

(f 7→ (f, fan(f)) : N2N → dom(u)

54

which is continuous because N2N
is discrete by Lemma 3.5.1.

Notice that the space dom(u) in the above proof consists of tuples (f,m, φ) which
satisfy certain conditions. These conditions, together with the continuous map φ, amount
to saying that m is a modulus of uniform continuity of the map f . Notice that this holds
in various flavours of (extensional and intensional) MLTT, and that system T can be
regarded as a subsystem of MLTT, and that the proof given here is essentially the same
as the one given above for system T, in a slightly different language.

6.3 Categories with families

We worked with the local cartesian closed structure of C-Space to model (UC) in the
previous section, following Seely’s interpretation of MLTT in LCCCs [67]. As pointed
out by Curien [25], Seely’s model has a coherence problem: Substitutions in MLTT are
strictly associative, i.e.

Γ ` t : A Γ, x :A ` u : B Γ, y :B ` C
Γ ` (C[u/y])[t/x] ≡ C[(u[t/x])/y].

Seely interprets substitutions as pullbacks. The two substituted types in the above equa-
tion correspond to the following two pullbacks

//

��

y
//

��

y

��
∼=

//

��

y

��// // // //

which are only isomorphic in general, because taking pullbacks is associative up to iso-
morphism, but not up to equality in most categories.

One refinement of Seely’s model, which addresses the above coherence issue, is Dybjer’s
notion of category with families (CwF) [29]. In this section we define the notion of model
of MLTT as a CwF, and take the syntax of MLTT to be the initial such model, following
Dybjer [29, 17]. To give such a model, we start with a base category C whose objects
are referred to as contexts, and whose morphisms are referred to as substitutions, and
we assume a terminal context, written []. We need to impose additional structure to the
category C in order to be able to model types in context and terms of types in context.
This is taken to be a functor from C to the category of families of sets, which ensures that
(the interpretation of) substitutions are associative up to equality and hence addresses the
coherence problem, as illustrated below. A so-called context comprehension operation is
also imposed to C which extends a given context with a type in that context. Moreover,
other extra structures may be added to C in order to model certain types (e.g. natural
numbers) or type formers (e.g. Π- and Σ-types) of a dependently typed theory.

The notion of category with families can be described as a generalized algebraic theory
(GAT) in the sense of Cartmell [14]. Such a theory contains sorts, operators and equations
of well-formed objects. There are four sorts, corresponding to the following four forms of
sequent:

(1) “Γ `” means that Γ is a context.

(2) “σ : ∆→ Γ” means that σ is a substitution.

55

(3) “Γ ` A” means that A is a type in context Γ.

(4) “Γ ` u : A” means that u is a term of type A in context Γ.

Operators are introduced via typing rules for forming contexts (e.g. context extension),
substitutions (e.g. substitution composition), types (e.g. Π- and Σ-type formers) and
terms (e.g. associated constructors).

In this section, we also recall the GAT-presentation of a CwF-structure immediately
after giving the corresponding categorical definitions. For both presentations, we use
Γ,∆,Θ to range over contexts, σ, τ, ν over substitutions, A,B over types, and u, v, w over
terms.

Base category of contexts and substitutions. A category with families contains a
base category C whose objects represent contexts and whose morphisms represent substi-
tutions. In the GAT-presentation, this corresponds to the following typing rules

Γ `
1: Γ→ Γ

σ : ∆→ Γ τ : Θ→ ∆
σ ◦ τ : Θ→ Γ

with the following equations

1 ◦ σ = σ = σ ◦ 1 (σ ◦ τ) ◦ ν = σ ◦ (τ ◦ ν).

The intuition of an identity substitution is to replace the free variables in an expression
by those free variables themselves. And composition of substitutions can be regarded as
performing substitutions one by one. The equations of types and of terms below will make
this clearer.

Moreover, the category C has a terminal object [] representing the empty context.
The corresponding GAT-description is given by

Γ
[] `

Γ `
〈〉 : Γ→ []

with equations
〈〉 ◦ σ = 〈〉 1[] = 〈〉.

Here 〈〉 is the unique substitution to the terminal context which expresses the weakening
rule for closed expressions, i.e. if an expression is derivable in the empty context then it
can be derived from any context. The two equations guarantee the uniqueness of 〈〉, as
for any substitution σ : Γ→ [] it holds that σ = 1[] ◦ σ = 〈〉 ◦ σ = 〈〉.
Types, terms and their substitutions. Let Fam be the category of families of sets.
Recall that an object in Fam is a family of sets {Ai}i∈I and that a morphism {Ai}i∈I →
{Bj}j∈J consists of a function f : I → J and a family of functions gi : Ai → Bf(i) indexed
by i ∈ I. A category with families also contains a functor T : Cop → Fam. It maps each
context Γ ∈ C to a family of sets {Term(Γ, A)}A∈Type(Γ), where

• Type(Γ) represents the set of types in Γ, and

• Term(Γ, A) represents the set of terms of type A in context Γ.

For each substitution σ : ∆→ Γ, the Fam-morphism T (σ) : T (Γ)→ T (∆) consists of

56

• a type substitution function mapping A ∈ Type(Γ) to A[σ] ∈ Type(∆), and

• a family of term substitution functions in which, for each A ∈ Γ, there is a function
mapping u ∈ Term(Γ, A) to u[σ] ∈ Term(∆, A[σ]).

The GAT-presentation of the functor T is the following:

Γ ` A σ : ∆→ Γ
∆ ` A[σ]

Γ ` u : A σ : ∆→ Γ
∆ ` u[σ] : A[σ]

with equations

A[1] = A A[σ][τ] = A[σ ◦ τ] u[1] = u u[σ][τ] = u[σ ◦ τ].

The intuition of the two equations with identity substitution is that by replacing the
free variables in a type (or a term) by themselves one of course gets the same type (or
term). And the other two equations express the idea that performing the composite of
two substitutions is equivalent to performing them one by one, which avoids the coherence
problem that occurs in Seely’s model.

Context comprehension. In addition to the base category C and the function T ,
a category with families also contains an operation of context comprehension. To each
context Γ ∈ C and type A ∈ Type(Γ), it associates a context Γ.A, a substitution p: Γ.A→
Γ, and a term q ∈ Term(Γ.A,A[p]), satisfying the following universal property: for any
context ∆ ∈ C, substitution σ : ∆ → Γ and term u ∈ Term(∆, A[σ]), there is a unique
substitution (σ, u) : ∆ → Γ.A such that p ◦ (σ, u) = σ and q[(σ, u)] = u. The GAT-
presentation of the context comprehension operation is the following:

Γ ` A
Γ.A `

Γ ` A
p: Γ.A→ Γ

Γ ` A
Γ.A ` q : A[p]

σ : ∆→ Γ Γ ` A ∆ ` u : A[σ]

(σ, u) : ∆→ Γ.A

with equations

p ◦ (σ, u) = σ q[(σ, u)] = u (p, q) = 1 (σ, u) ◦ δ = (σ ◦ δ, u[δ]).

Notice that in the categorical definition the last two equations can be derived from the
uniqueness property of substitution extension.

It may be helpful to think of a context as a (dependent) sequence of types, and a
substitution as a (dependent) sequence of terms. The extended context Γ.A is obtained
by adding A to the end of the sequence Γ. The substitution p: Γ.A → Γ expresses the
weakening rule, i.e. from an expression in a context Γ we can get one in the extended
context Γ, x:A. The term Γ.A ` q : A[p] gives the last variable in the context Γ.A. And
the extended substitution (σ, u) is obtained by adding u to the end of the sequence σ.

An example of a category with families. Up to this point, we have presented the
full definition of category with families which gives a model of the minimal fragment of
MLTT. In summary, a category with families consists of a base category C, a functor
T : Cop → Fam and a context comprehension operation. A basic example is obtained by
choosing C to be the category Set of sets and functions and defining the following:

57

• The terminal object [] of Set is a singleton set.

• Type(Γ) is the set of Γ-indexed small sets, i.e. if A ∈ Type(Γ) then A = {Aγ}γ∈Γ

where each Aγ is a small set.

• Term(Γ, A) is the dependent product
∏

γ∈ΓAγ, i.e. elements in Term(Γ, A) are de-
pendent functions.

• Given A ∈ Type(Γ) and σ : ∆ → Γ, we define A[σ] ∈ Type(∆) by (A[σ])δ = Aσ(δ)

for each δ ∈ ∆.

• Given t ∈ Term(Γ, A) and σ : ∆→ Γ, we define t[σ] ∈ Term(∆, A[σ]) by (t[σ])(δ) =
t(σ(δ)) for each δ ∈ ∆.

• Given Γ ∈ Set and A ∈ Type(Γ), we define Γ.A to be the dependent sum
∑

γ∈ΓAγ.
Then p and q are the first and second projections, and substitution extension is
defined using the universal property of dependent sums.

Moreover, the category Set admits additional structures, such as those introduced below,
to interpret different types. All these structures on Set can be easily implemented in
intensional MLTT.

Σ-types. A category with families supports Σ-types if and only if

• for any types A ∈ Type(Γ) and B ∈ Type(Γ.A) we have a type ΣAB ∈ Type(Γ),

• for any elements u ∈ Term(Γ, A) and v ∈ Term(Γ, B[(1, u)]) we have an element
(u, v) ∈ Term(Γ,ΣAB), and

• for any element w ∈ Term(Γ,ΣAB) we have elements pr1(w) ∈ Term(Γ, A) and
pr2(w) ∈ Term(Γ, B[(1, pr1(w))]),

such that the following equations hold:

(pr1(w), pr2(w)) = w pr1(u, v) = u pr2(u, v) = v

(ΣAB)[σ] = Σ(A[σ])(B[(σ ◦ p, q)]) (u, v)[σ] = (u[σ], v[σ])

pr1(w)[σ] = pr1(w[σ]) pr2(w)[σ] = pr2(w[σ]).

The corresponding GAT-presentation is given by the following typing rules:

Γ ` A Γ.A ` B
Γ ` ΣAB

Γ ` u : A Γ ` v : B[(1, u)]

Γ ` (u, v) : ΣAB

Γ ` w : ΣAB
Γ ` pr1(w) : A

Γ ` w : ΣAB
Γ ` pr2(w) : B[(1, pr1(w))]

together with the same equations as above.

58

Π-types. A category with families supports Π-types if and only if

• for any types A ∈ Type(Γ) and B ∈ Type(Γ.A) we have ΠAB ∈ Type(Γ),

• for any element t ∈ Term(Γ.A,B) we have an element λt ∈ Term(Γ,ΠAB), and

• for any elements w ∈ Term(Γ,ΠAB) and u ∈ Term(Γ, A) we have an element
app(w, u) ∈ Term(Γ, B[(1, u)]),

such that the following equations hold:

app(λv, u) = v[(1, u)] λ(app(w[p], q)) = w

(ΠAB)[σ] = Π(A[σ])(B[(σ ◦ p, q)])

(λv)[σ] = λ(v[(σ ◦ p, q])) app(w, u)[σ] = app(w[σ], u[σ]).

The corresponding GAT-presentation is given by the following typing rules:

Γ ` A Γ.A ` B
Γ ` ΠAB

Γ.A ` v : B
Γ ` λv : ΠAB

Γ ` w : ΠAB Γ ` u : A
Γ ` app(w, u) : B[(1, u)]

together with the same equations as above.
The construction of category with families and the additional structures to support

Σ- and of Π-types are well-known [29, 21]. Now we introduce the structure for intensional
identity types. We adopt the basic construction of [16], and propose the equations with
substitutions that the type former Id and the eliminator J have to satisfy.

Intensional identity types. A category with families supports intensional identity
types if and only if

• for any type A ∈ Type(Γ) we have a type IdA ∈ Type(Γ.A.A[p]),

• for any type A ∈ Type(Γ) we have a substitution R: Γ.A→ Γ.A.A[p].IdA, and

• for any type B ∈ Type(Γ.A.A[p].IdA) and term u ∈ Term(Γ.A,B[R]) we have a
term J(u) ∈ Term(Γ.A.A[p].IdA, B),

such that the following equations hold:

p ◦ R = (1, q) (J(u))[R] = u

IdA[((σ ◦ p, q) ◦ p, q)] = IdA[σ] J(u)[(((σ ◦ p, q) ◦ p, q) ◦ p, q)] = J(u[(σ ◦ p, q)])

The corresponding GAT-presentation is given by the following typing rules:

Γ ` A
Γ.A.A[p] ` IdA

Γ ` A
R: Γ.A→ Γ.A.A[p].IdA

Γ.A.A[p].IdA ` B Γ.A ` u : B[R]

Γ.A.A[p].IdA ` J(u) : B

together with the same equations as above.
Intuitively IdA ∈ Type(Γ.A.A[p]) is the type that the last two variables in the context

Γ.A.A[p] are equal. In another presentation of MLTT in Section 6.1, we have a constructor

59

refl, which is a proof that any element is equal to itself, to introduce elements of an identity
type. Here, the morphism R: Γ.A→ Γ.A.A[p].IdA is playing the role of refl as intuitively
R replaces the occurrences of variables a, b : A and p : a =A b in an expression by a, a
and refla. In fact the element refl can be defined as the term q[R] of type IdA[(1, q)] in
context Γ.A which expresses that the last variable in Γ.A is equal to itself. One can of
course equivalently add refl as a constant and then define the morphism R using q and
refl. But we find R to be more convenient to work with, e.g. to formulate the J-eliminator
and its computational rule.

6.4 A continuous model of dependent types
In Section 6.2, we employed the locally cartesian closed category of C-spaces to model
Martin-Löf type theory, following Seely’s method [67]. To avoid the coherence issue of
this interpretation [25], we also work with the notion of category with families [29] which
was recalled in Section 6.3. Instead of applying Hofmann’s construction [42] to get a
CwF-structure from a locally cartesian closed category, we directly develop one on the
category of C-spaces. The idea of this model is that each context is (interpreted as) a
C-space, while a type on a context Γ consists of a family of sets indexed by the underlying
set of Γ and a family of C-topologies indexed by the probes on Γ.

The meta-theory for developing the CwF-structure on C-spaces in this section is some
form of constructive set theory. It is an open problem whether this can be developed in
intensional MLTT possibly extended with the axiom of function extensionality.

In this section, we write Γ,∆,Θ to denote C-spaces, as they represent contexts, σ, τ, ν
to denote continuous maps, as they represent substitutions, A,B to denote (interpreta-
tions of) types, and u, v, w to denote (interpretations of) terms.

The base category. Recall that a C-space is a set Γ equipped with a C-topology P
consisting of maps 2N → Γ, called probes on Γ, satisfying the following conditions:

(s1) For all γ ∈ Γ, the map λα.γ is in P .

(s2) If p ∈ P and t ∈ C, then p ◦ t ∈ P .

(s3) For any p0, p1 ∈ P , the unique map p : 2N → Γ defined by p(iα) = pi(α) is in P .

The above three conditions are called the probe axioms. Notice that the condition (s3) is
logically equivalent to

(s3’) For any n ∈ N and {ps ∈ P}s∈2n , the unique map p : 2N → N defined by p(sα) =
ps(α) is in P .

A continuous map of C-spaces (Γ, P) and (∆, Q) is a map σ : Γ→ ∆ such that σ ◦ p ∈ Q
whenever p ∈ P .

We abbreviate Γ for the C-space (|Γ|,Probe(Γ)), where |Γ| stands for the underlying
set and Probe(Γ) for the C-topology on |Γ|, and often write Γ to mean |Γ|.

For any C-space Γ, clearly the identity map 1: Γ → Γ is continuous. It is easy to
verify that composition preserves continuity of maps. Therefore, C-spaces form a category,
which is written as C-Space. This category has a terminal object, which is a singleton
set 1 = {?} equipped with the unique map 2N → 1 as the only probe.

60

Types and terms. Given a C-space Γ, a type Γ ` A is family {Aγ}γ∈Γ of sets equipped
with a family {Qp}p∈Probe(Γ) of collections Qp consisting of dependent maps Πα:2NAp(α),
also called probes, satisfying the following conditions:

(t1) For all γ ∈ Γ and a ∈ Aγ, the map λα.a is in Qλα.γ.

(t2) If p ∈ Probe(Γ), q ∈ Qp and t ∈ C, then q ◦ t ∈ Q(p◦t).

(t3) For any p ∈ Probe(Γ), q0 ∈ Qp◦cons0 and q1 ∈ Qp◦cons1 , the unique map q : Πα:2NAp(α)

defined by q(iα) = qi(α) is in Qp.

The following condition is logically equivalent to (t3):

(t3’) For any p ∈ Probe(Γ), n ∈ N and {qs ∈ Qp◦conss}s∈2n , the unique map q : Πα:2NAp(α)

defined by q(sα) = qs(α) is in Qp.

We also abbreviate A for a type (|A|,Probe(A)), where |A| stands for the underlying
family and Probe(A) for the family of collections of dependent probes, and often write A
to mean |A|.

Given a type Γ ` A, a term Γ ` u : A is a dependent function u : Πγ:ΓAγ such that
u ◦ p ∈ Probe(A)p whenever p ∈ Probe(Γ).

Substitutions of types and terms. Given a type Γ ` A and a continuous map
σ : ∆→ Γ, we define the substituted type ∆ ` A[σ] by

A[σ]δ :≡ Aσ(δ)

for δ ∈ ∆. Given a probe p ∈ Probe(∆), we define

Probe(A[σ])p :≡ Probe(A)(σ◦p).

It is well-defined due to the continuity of σ. The three conditions of types are easy to
verify. But in a type-theoretic treatment this requires a closer look due to the presence
of proof relevance, which will be discussed further in Chapter 7.3.

Given a term Γ ` u : A and a continuous map σ : ∆ → Γ, we define the substituted
term ∆ ` u[σ] : A[σ] by

u[σ](δ) :≡ u(σ(δ))

for δ ∈ ∆. It is easy to check that it satisfies the condition of terms.
Since substitutions of types and terms are defined by composition as above, the fol-

lowing required equations clearly hold:

A[1] = A A[σ][τ] = A[σ ◦ τ] u[1] = u u[σ][τ] = u[σ ◦ τ]

Context comprehension. Given a type Γ ` A, the C-space Γ.A is defined by

Γ.A :≡ Σγ:ΓAγ

and Probe(Γ.A) by the condition that a map p : 2N → Γ.A is in Probe(Γ.A) iff pr1 ◦ p ∈
Probe(Γ) and pr2 ◦ p ∈ Probe(A)(pr1◦p), where pr1 and pr2 are projections of dependent
sums. We skip the routine proof of the probe axioms.

61

The continuous map p: Γ.A→ Γ is the first projection pr1, which is clearly continuous.
The term Γ.A ` q : A[p] is the second projection pr2, which clearly satisfies the

condition of terms.
Given a continuous map σ : ∆→ Γ and a term Γ ` u : A[σ], the extended substitution

(σ, u) : ∆→ Γ.A is defined by

(σ, u)(δ) :≡ (σ(δ), u(δ))

for δ ∈ ∆, which is clearly continuous.
Using the universal property of dependent sums, it is routine to check the following

equations:

p ◦ (σ, u) = σ q[(σ, u)] = u (p, q) = 1 (σ, u) ◦ τ = (σ ◦ τ, u[τ])

Σ-types. Given types Γ ` A and Γ.A ` B, the type Γ ` ΣAB is defined by

(ΣAB)γ :≡ Σa:AγB(γ,a)

and Probe(ΣAB) by the condition that, for all p ∈ P , a map q : Πα:2N(ΣAB)p(α) is in
Probe(ΣAB)p iff pr1 ◦ q ∈ Probe(A)p and pr2 ◦ q ∈ Probe(B)(p,pr1◦q).

Given terms Γ ` u : A and Γ ` v : B[(1, u)], the term Γ ` (u, v) : ΣAB is defined by

(u, v) : Πγ:Γ(ΣAB)γ (u, v)(γ) :≡ (u(γ), v(γ)).

Clearly (u, v) satisfies the condition of terms.
Given a term Γ ` w : ΣAB, the term Γ ` pr1(w) : A is defined by

pr1(w) : Πγ:ΓAγ pr1(w)(γ) :≡ pr1(w(γ))

and the term Γ ` pr2(w) : B[(1, pr1(w))] by

pr2(w) : Πγ:ΓB(γ,pr1(w(γ))) pr2(w)(γ) :≡ pr2(w(γ)).

Clearly both satisfy the condition of terms.
Using the universal property of dependent sums, one can easily verify the following

equations:
pr1(u, v) = u pr2(u, v) = v (pr1(w), pr2(w)) = w

(ΣAB)[σ] = Σ(A[σ])(B[(σ ◦ p, q)])

(u, v)[σ] = (u[σ], v[σ]) pr1(w)[σ] = pr1(w[σ]) pr2(w)[σ] = pr2(w[σ])

Π-types. Given types Γ ` A and Γ.A ` B, the type Γ ` ΠAB is defined as follows:
Given γ ∈ Γ, we define (ΠAB)γ to be the set of dependent functions ϕ : Πa:AγB(γ,a) such
that ϕ ◦ q ∈ Probe(B)λα.(γ,q(α)) whenever q ∈ Probe(A)λα.γ. Given p ∈ Probe(Γ), we say
a map r : Πα:2N(ΠAB)p(α) is in Probe(ΠAB)p iff λα.r(tα)(qα) ∈ Probe(B)λα.(p(tα),qα) for
all t ∈ C and q ∈ Probe(A)p◦t. Now we verify the three conditions of types:

• Given γ ∈ Γ, ϕ ∈ (ΠAB)γ, t ∈ C and q ∈ Probe(A)λα.γ, the composite ϕ ◦ q is in
Probe(B)λα.(γ,q(α)) since ϕ is in (ΠAB)γ; thus λα.ϕ is in Probe(ΠAB)λα.γ.

62

• Given p ∈ Probe(Γ), r ∈ Probe(ΠAB)p, t, t
′ ∈ C and q ∈ Probe(A)p◦t◦t′ , we have

λα.r(t(t′α))(qα) ∈ Probe(B)λα.(p(t(t′α)),qα) by applying the proof of r ∈ Probe(ΠAB)p
to t ◦ t′ and q.

• Given p ∈ Probe(Γ), r0 ∈ Probe(ΠAB)p◦cons0 and r1 ∈ Probe(ΠAB)p◦cons1 , we show
that the map r : 2N → (ΠAB)p(α), defined by r(iα) = ri(α), is in Probe(ΠAB)p
as follows: Given t ∈ C and q ∈ Probe(A)p◦t, we let n = modt(1). By (†), for
each s ∈ 2n, there are i ∈ 2 and t′ ∈ C such that t ◦ conss = consi ◦ t′. Since
p ◦ t ◦ conss = p ◦ consi ◦ t′, the composite q ◦ conss ∈ Probe(A)p◦consi◦t′ . Then we
have

(λα.r(tα)(qα)) ◦ conss = λα.ri(t
′α)((q ◦ conss)α)

which is in Probe(B)(λα.(p(tα),qα))◦conss , because ri ∈ Probe(ΠAB)p◦consi . Then us-
ing (t3’) of B, we know that λα.r(tα)(qα) ∈ Probe(B)λα.(p(tα),qα) and thus r ∈
Probe(ΠAB)p.

Thus Γ ` ΠAB is well-defined.
Given a term Γ.A ` v : B, we define Γ ` λv : ΠAB by

λv : Πγ:Γ(ΠAB)γ λv(γ) :≡ λa.v(γ, a).

For a ∈ Aγ the result v(γ, a) is in B(γ,a). And, for any q ∈ Probe(A)λα.γ, we have
(λa.v(γ, a))◦q = v◦(λα.(γ, qα)) ∈ Probe(B)λα.(γ,qα) because v is a term. Thus λa.v(γ, a) ∈
(ΠAB)γ and λv is well-defined. It remains to show that λv is a term: given p ∈
Probe(Γ), t ∈ C and q ∈ Probe(A)p◦t, we have λα.(λv)(tα)(qα) = v ◦ (λα.(p(tα), qα)) ∈
Probe(B)λα.(p(tα),qα) using the fact that v is a term.

Given terms Γ ` w : ΠAB and Γ ` u : A, the term Γ ` app(w, u) : B[(1, u)] is defined
by

app(w, u) : Πγ:ΓB(γ,u(γ)) app(w, u)(γ) :≡ w(γ)(u(γ)).

Now we show that the condition of terms is satisfied: Given p ∈ Probe(Γ), we have
u◦p ∈ Probe(A)p and w◦p ∈ Probe(ΠAB)p since they are terms. Expanding the definition
of Probe(ΠAB)p and using the uniform continuity of the identity map 1: 2N → 2N, we
know app(w, u) ◦ p = λα.w(pα)(u(pα)) is in Probe(B)(λγ.(γ,uγ))◦p.

It remains to verify the following required equations:

• app(λv, u) = v[(1, u)]

For any Γ.A ` v : B, Γ ` u : A and γ ∈ Γ, we have

app(λv, u)(γ)
= (λv(γ))(u(γ)) (by the definition of app)
= v(γ, u(γ)) (by the definition of λ)
= v[(1, u)](γ).

• λ(app(w[p], q)) = w

For any Γ ` w : ΠAB, γ ∈ Γ and a ∈ Aγ, we have

(λ(app(w[p], q)))(γ)(a)
= app(w[p], q)(γ, a) (by the definition of λ)
= w[p](γ, a)(q(γ, a)) (by the definition of app)
= w(γ)(a).

63

• (ΠAB)[σ] = Π(A[σ])(B[(σ ◦ p, q)])

For any Γ ` A, Γ.A ` B, σ : ∆→ Γ and δ ∈ ∆, we have

Πa:(A[σ])δ(B[(σ ◦ p, q)])(δ,a)

= Πa:Aσ(δ)
B(σ◦p,q)(δ,a)

= Πa:Aσ(δ)
B(σ(δ),a).

Thus the elements of (ΠAB)σ(δ) and (Π(A[σ])(B[(σ◦p, q)]))δ have the same type. It
is easy to show that a map Πa:Aσ(δ)

B(σ(δ),a) is in (ΠAB)σ(δ) iff it is in (Π(A[σ])(B[(σ◦
p, q)]))δ.

• (λv)[σ] = λ(v[(σ ◦ p, q)])

For any Γ.A ` v : B, σ : ∆→ Γ, δ ∈ ∆ and a ∈ Aσ(δ), we have

(λv)[σ](δ)(a)
= v(σ(δ), a)
= v[(σ ◦ p, q)](δ, a)
= λ(v[(σ ◦ p, q)])(δ)(a).

• app(w, u)[σ] = app(w[σ], u[σ])

For any Γ ` w : ΠAB, Γ ` u : A, σ : ∆→ Γ and δ ∈ ∆, we have

app(w, u)[σ](δ)
= w(σ(δ))(u(σ(δ)))
= (w[σ])(δ)((u[σ])(δ))
= app(w[σ], u[σ])(δ).

6.5 A sheaf model of dependent types
We gave an interpretation of dependent types using C-spaces in the previous section.
However, C-spaces are insufficient to model universes (see [34] for a discussion). Therefore,
in this section, we work with the full category of sheaves over the uniform-continuity site
(defined in Chapter 3.2.1). We will attempt to interpret universes in our sheaf model in
Chapter 9.6 where certain issues regarding the type-theoretic development arise. Hence
we leave modelling universes using sheaves as an important open problem.

Coquand presents a presheaf model of dependent types in his note [21], which is a
category with families supporting Σ-types, Π-types and universes, using set theory as the
meta-language. However, he has not extended his construction to sheaves. In this section,
we construct a CwF-structure on the category of sheaves on our uniform-continuity site,
following Coquand’s method [21].

In this section, we write Γ,∆,Θ to denote sheaves, as they represent contexts, σ, τ, ν
to denote natural transformations, as they represent substitutions, A,B to denote (inter-
pretations of) types, and u, v, w to denote (interpretations of) terms.

The base category. Recall that a sheaf is a (small) set Γ equipped with an action

· : Γ→ C→ Γ

satisfying the following conditions:

(s1) γ · 1 = γ for all γ ∈ Γ,

64

(s2) (γ · t) · r = γ · (t ◦ r) for all γ ∈ Γ and t, r ∈ C, and

(s3) for any γ0, γ1 there exists a unique amalgamation γ ∈ Γ such that γ · cons0 = γ0

and γ · cons1 = γ1.

As discussed in Chapter 3.2.1, the condition (s3) is logically equivalent to the following:

(s3’) for any n ∈ N and {γs}s∈2n , there exists a unique amalgamation γ ∈ Γ such that
γ · conss = γs for all s ∈ 2n.

A map σ : ∆→ Γ of sheaves is a natural transformation if

σ(δ) · t = σ(δ · t)

for all δ ∈ ∆ and t ∈ C.
We abbreviate Γ for the sheaf (|Γ|, ·), where |Γ| stands for the underlying set and · for

the action, and often write Γ to mean |Γ|.
Sheaves and natural transformations defined as above form the base category of the

model, i.e. contexts are interpreted as sheaves and substitutions as natural transforma-
tions. In particular, the terminal object (or empty context) is a singleton sheaf.

Types and terms. A type Γ ` A is a Γ-indexed family of sets, i.e. A = {Aγ}γ∈Γ where
each Aγ is a (small) set, equipped with a restriction map

∗ : Aγ →
∏
t : C

Aγ·t

for every γ : Γ, satisfying the following conditions:

(t1) a ∗ 1 = a for all γ ∈ Γ and a ∈ Aγ,

(t2) (a ∗ t) ∗ r = a ∗ (t ◦ r) for all γ ∈ Γ, a ∈ Aγ and t, r ∈ C, and

(t3) for any γ ∈ Γ, a0 ∈ Aγ·cons0 and a1 ∈ Aγ·cons1 , there is a unique amalgamation a ∈ Aγ
such that a ∗ cons0 = a0 and a ∗ cons1 = a1.

Intuitively, a type over Γ is a dependent “sheaf” which depends on the sheaf Γ. Similarly
to the logical equivalence of (s3) and (s3’), the condition (t3) is logically equivalent to

(t3’) for any γ ∈ Γ, n ∈ N and {as ∈ Aγ·conss}s∈2n , there is a unique amalgamation a ∈ Aγ
such that a ∗ conss = as for all s ∈ 2n.

Given a type Γ ` A, a term Γ ` u : A is a dependent function

u :
∏
γ:Γ

Aγ

such that
u(γ) ∗ t = u(γ · t)

for all γ ∈ Γ and t ∈ C. The intuition of the above condition is that terms are “dependent
natural transformations”.

The following lemma of equality over elements of a type is analogous to Lemma 3.2.5:

65

Lemma 6.5.1. Let A be a type over Γ. Given γ ∈ Γ and a, a′ ∈ Aγ, the equation a = a′

holds iff there exists n ∈ N such that a ∗ conss = a′ ∗ conss for all s ∈ 2n.

Proof. (⇒) is obvious. (⇐) uses condition (t3’).

Substitutions of types and terms. Given a type Γ ` A and a substitution σ : ∆→ Γ,
the substituted type ∆ ` A[σ] is defined by composition (or reindexing), i.e. (A[σ])δ :≡
Aσ(δ) for all δ ∈ ∆, and restriction maps of A[σ] are inherited from A. We can easily
verify that A[σ] satisfies conditions (t1) to (t3), using the naturality of σ. Since type
substitutions are defined by composition, the following equations hold:

A[1] = A, A[σ][τ] = A[σ ◦ τ].

Given a term Γ ` u : A and a substitution σ : ∆→ Γ, the substituted term ∆ ` u[σ] :
A[σ] is again defined by composition, i.e. u[σ] :≡ u ◦ σ. The above condition is satisfied
because of the naturality of σ. Since term substitutions are defined by composition, the
following equations hold:

u[1] = u, u[σ][τ] = u[σ ◦ τ].

Context comprehension. Given a type Γ ` A, we construct a new sheaf Γ.A by the
dependent sum

Γ.A :≡
∑
γ : Γ

Aγ.

The action is defined by, for all (γ, a) ∈ Γ.A and t ∈ C,

(γ, a) · t :≡ (γ · t, a ∗ t).

Then we have to verify that the three conditions (s1) to (s3) of sheaves are satisfied, which
is routine.

The natural transformation p: Γ.A→ Γ is given by the first projection

p:
∑
γ:Γ

Aγ → Γ p(γ, u) :≡ γ.

And the term Γ.A ` q : A[p] is given by the second projection

q:
∏

w:
P
γ:Γ Aγ

Ap(w) q(γ, u) :≡ u.

Clearly, the map p is a natural transformation, and q satisfies the condition of term.
Substitution extension is defined using the universal property of dependent sums:

Given a natural transformation σ : ∆→ Γ and a term ∆ ` b : A[σ], we define the map

(σ, b) : ∆→
∑
γ:Γ

Aγ by (σ, b)(δ) = (σ(δ), b(δ))

which is clearly a natural transformation ∆ → Γ.A. It satisfies the required universal
property, i.e. (σ, b) is the unique (up to pointwise equality) natural transformation such

66

that the equations p◦ (σ, b) = σ and q[(σ, b)] = b hold (pointwise), since p and q are given
by the projection maps.

Σ-types. Given types Γ ` A and Γ.A ` B, we define Γ ` ΣAB by, for each γ ∈ Γ

(ΣAB)γ :≡
∑
a:Aγ

B(γ,a).

The restriction map on γ ∈ Γ is defined componentwise, i.e. for any (a, b) ∈ (ΣAB)γ and
t ∈ C,

(a, b) ∗ t :≡ (a ∗ t, b ∗ t).

It is routine to show that the conditions (t1) to (t3) are satisfied.
Given terms Γ ` u : A and Γ ` v : B[(1, u)], we define the term Γ ` (u, v) : ΣAB by

(u, v) :
∏
γ:Γ

(ΣAB)γ (u, v)(γ) :≡ (u(γ), v(γ)).

Since v(γ) ∈ B(γ,u(γ)), the pair (u, v)(γ) is well defined. One can easily show that (u, v)
satisfies the condition of terms by following the definitions.

Projections are defined via the projection maps in the meta-theory: Given a term
Γ ` w : ΣAB, we define the term Γ ` pr1(w) : A by

pr1(w) :
∏
γ:Γ

Aγ (pr1(w))(γ) :≡ pr1(w(γ)),

and the term Γ ` pr2(w) : B[(1, pr1(w))] by

pr2(w) :
∏
γ:Γ

B(γ,pr1(w(γ))) (pr2(w))(γ) :≡ pr2(w(γ)),

where the rightmost pr1 and pr2 are the projections in the meta-theory. It is routine to
show that pr1(w) and pr2(w) satisfy the condition of terms.

Moreover, we need to verify the following required equations, which is routine:

1. (pr1(w), pr2(w)) = w,

2. pr1(u, v) = u,

3. pr2(u, v) = v,

4. (ΣAB)[σ] = Σ(A[σ])(B[(σ ◦ p, q)]),

5. (u, v)[σ] = (u[σ], v[σ]),

6. pr1(w)[σ] = pr1(w[σ]),

7. pr2(w)[σ] = pr2(w[σ]).

Notice that the equations of terms hold pointwise while the one of types holds up to
isomorphism.

67

Π-types. Given types Γ ` A and Γ.A ` B, we define Γ ` ΠAB by, for each γ ∈ Γ,
choosing (ΠAB)γ to be the set of dependent functions ϕ :

∏
t:C

∏
a:Aγ·t

B(γ·t,a) such that

ϕt(a) ∗ r = ϕt◦r(a ∗ r)

for any t, r ∈ C and a ∈ Aγ·t. One can think of the elements of (ΠAB)γ as C-indexed
families of terms of type B. (This condition is necessary because app should satisfy the
condition of terms as shown later.) The restriction map on γ ∈ Γ is defined by, for any
ϕ ∈ (ΠAB)γ and t, r ∈ C,

(ϕ ∗ t)r :≡ ϕ(t◦r).

Following the definitions, we know that ϕ ∗ t is in (ΠAB)γ·t if ϕ is in (ΠAB)γ; thus the
restriction map is well-defined. Conditions (t1) and (t2) are easy to verify. Here we show
that (t3) is also satisfied: Given γ ∈ Γ, ϕ0 ∈ (ΠAB)γ·cons0 and ϕ1 ∈ (ΠAB)γ·cons1 , we
define a dependent map ϕ :

∏
t:C

∏
a:Aγ·t

B(γ·t,a) as follows: given t ∈ C and a ∈ Aγ·t, we let

n to be the least modt(1) (see Chapter 3.2.1 for the definition of modt). For each s ∈ 2n

we have a ∗ conss ∈ Aγ·conss . Since t · conss = consis · ts for some is ∈ 2 and ts ∈ C, the
element a ∗ conss is also in Aγ·consis ·ts and thus we have ϕists(a ∗ conss) ∈ B(γ·consis ·ts,a∗conss).
Because (γ · consis · ts, a ∗ conss) = (γ · t · conss, a ∗ conss) = (γ · t, a) ∗ conss, we get a
family {ϕists(a∗ conss) ∈ B(γ·t,a)∗conss}s∈2n . Using (t3’) of type B, we define ϕt(a) to be the
unique amalgamation of that family, and have

∀s ∈ 2n. ϕt(a) ∗ conss = ϕists(a ∗ conss) (‡)

Now we have to prove:

(1) ϕ is in (ΠAB)γ: Given t, r ∈ C and a ∈ Aγ·t, we let n be the least modt(1) and m
be the least modr(n) and have

∀s ∈ 2m. ∃s′ ∈ 2n. ∃r′ ∈ C. ∃i ∈ 2. ∃t′ ∈ C. t◦r◦conss = t◦cons′s ◦r′ = consi ◦ t′ ◦r′

by applying (†) twice. For each s ∈ 2m, we have

ϕt(a) ∗ r ∗ conss = ϕt(a) ∗ conss′ ∗ r′ (by (†))
= ϕit′(a ∗ conss′) ∗ r′ (by (‡))
= ϕi(t′◦r′)(a ∗ conss′ ∗ r′) (ϕi is in (ΠAB)γ)

= ϕ(consi◦t′◦r′)(a ∗ conss′ ∗ r′) (ϕ is an amalgamation (see (2)))
= ϕ(t◦r◦conss)(a ∗ r ∗ conss). (by (†))

Let k be the least mod(t◦r)(1). We know k ≤ m and thus let s = s0s1 where s0 ∈ 2k

and s1 ∈ 2(m−k). Then we have t ◦ r ◦ conss0 = consi ◦ u for some u ∈ C. (Notice
that i is the same as in the above equation. We omit the proof as this fact is not
needed to get the following equation.) Now we also have

ϕ(t◦r)(a ∗ r) ∗ conss = ϕ(t◦r)(a ∗ r) ∗ conss0 ∗ conss1 (s = s0s1)
= ϕiu(a ∗ r ∗ conss0) ∗ conss1 (by (‡))
= ϕi(u◦conss1)(a ∗ r ∗ conss0 ∗ conss1) (ϕi is in (ΠAB)γ)

= ϕ(consi◦u◦conss1)(a ∗ r ∗ conss) (ϕ is an amalgamation)
= ϕ(t◦r◦conss)(a ∗ r ∗ conss). (by (†))

68

Therefore, we have ϕt(a) ∗ r ∗ conss = ϕ(t◦r)(a ∗ r) ∗ conss for all s ∈ 2m. Applying
Lemma 6.5.1 gives the desired result.

(2) ϕ is an amalgamation of ϕ0 and ϕ1: Given t ∈ C, i ∈ {0, 1} and a ∈ Aγ·consi·t, we
know 0 is the least modconsi·t(1), and thus have

(ϕ ∗ consi)t(a) = ϕ(consi◦t)(a) (by the definition of ∗)
= ϕ(consi◦t)(a) ∗ consε (consε ≡ 1)
= ϕit(a). (by (‡))

(3) ϕ is unique (up to pointwise equality): Suppose ψ ∈ (ΠAB)γ is an amalgamation
of ϕ0 and ϕ1. Given t ∈ C and a ∈ Aγ·t, we let n be the least modt(1) and have, for
each s ∈ 2n,

ψt(a) ∗ conss = ψ(t◦conss)(a ∗ conss) (ψ is in (ΠAB)γ)
= ψ(consis◦ts)(a ∗ conss) (by (†), i.e. t ◦ conss = consis ◦ ts)
= (ψ ∗ consis)ts(a ∗ conss) (by the definition of ∗)
= ϕists(a ∗ conss) (ψ is an amalgamation)
= ϕt(a) ∗ conss (by (‡))

and thus ψt(a) = ϕt(a) by Lemma 6.5.1.

Given a term Γ.A ` v : B, the abstraction Γ ` λv : ΠAB is defined by

λv :
∏
γ:Γ

(ΠAB)γ ((λv)(γ))t(a) :≡ v(γ · t, a).

We know v :
∏

w:
P
γ:Γ Aγ

Bw. Then v(γ · t, a) ∈ B(γ·t,a), and thus (λv)(γ) is well-defined.

Now we show that (λv)(γ) is in (ΠAB)γ: given t, r ∈ C and a ∈ Aγ·t, we have

((λv)(γ))t(a) ∗ r = (v(γ · t, a)) ∗ r = v(γ · t · r, a ∗ r) = ((λb)(γ))(t◦r)(a ∗ r).

It remains to show that λv satisfies the condition of terms: given γ ∈ Γ, t, r ∈ C and
a ∈ Aγ·t·r, we have

((λv)(γ) ∗ t)r(a) = ((λv)(γ))(t◦r)(a) = v(γ · t · r, a) = ((λv)(γ · t))r(a)

and thus (λv)(γ) ∗ t = (λv)(γ · t) holds pointwise.
Given terms Γ ` w : ΠAB and Γ ` u : A, the application Γ ` app(w, u) : B[(1, u)] is

defined by

app(w, u) :
∏
γ:Γ

B(γ,u(γ)) (app(w, u))(γ) :≡ (w(γ))1(u(γ)).

69

Since (w(γ))1 :
∏

a:Aγ
B(γ,a) and u(γ) ∈ Aγ, the result (app(w, u))(γ) is well-defined. Now

we show that app(w, u) satisfies the condition of terms: given γ ∈ Γ and t ∈ C, we have

(app(w, u))(γ) ∗ t = (w(γ))1(u(γ)) ∗ t (by the definition of app)
= (w(γ))t(u(γ) ∗ t) (w(γ) is in (ΠAB)γ)
= (w(γ) ∗ t)1(u(γ) ∗ t) (by the definition of ∗ on ΠAB)
= (w(γ · t))1(u(γ · t)) (both w and u are terms)
= (app(w, u))(γ · t). (by the definition of app)

As mentioned earlier, the condition of elements in (ΠAB)γ is used in the above proof that
app(w, u) is a term.

Moreover, we need to verify the following equations. The equations of terms hold
pointwise, while the one of types holds up to isomorphism.

1. app(λv, u) = v[(1, u)]

app(λv, u)(γ)
= ((λv)(γ))1(u(γ)) (by the definition of app)
= v(γ · 1, u(γ)) (by the definition of λ)
= v[(1, u)](γ) (by the definition of substitution extension)

for any Γ ` u : A, Γ.A ` v : B and γ ∈ Γ.

2. λ(app(w[p], q)) = w

(λ(app(w[p], q))(γ))t(a)
= app(w[p], q)(γ · t, a) (by the definition of λ)
= (w[p](γ · t, a))1(q(γ · t, a)) (by the definition of app)
= (w(γ · t))1(a) (by the definitions of p and q)
= (w(γ) ∗ t)1(a) (by the condition of term)
= (w(γ))t(a) (by the definition of ∗ on ΠAB)

for any Γ ` w : ΠAB, γ ∈ Γ, t ∈ C and a ∈ Aγ·t.

3. (ΠAB)[σ] = Π(A[σ])(B[(σ ◦ p, q)])

Given δ ∈ ∆, the families (ΠAB)σ(δ) and (Π(A[σ])(B[(σ ◦ p, q)]))δ are isomorphic:
elements of the first family have type Πt:CΠa:Aσ(δ)·tB(σ(δ)·t,a), and ones of the second
have type Πt:CΠa:Aσ(δ·t)B(σ(δ·t),a). Due to the naturality of σ, i.e. σ(δ) · t = σ(δ · t),
elements of the two families have the same types, and the conditions that they
satisfy are also equivalent.

4. (λv)[σ] = λ(v[(σ ◦ p, q]))

((λv)[σ](δ))t(a)
= ((λv)(σ(δ)))t(a)
= v(σ(δ) · t, a) (by the definition of λ)
= v(σ(δ · t), a) (by the naturality of σ)
= v[(σ ◦ p, q)](δ · t, a)
= (λ(v[(σ ◦ p, q]))(δ))t(a)

for any Γ.A ` v : B, σ : ∆→ Γ, δ ∈ ∆, t ∈ C and a ∈ Aσ(δ)·t.

70

5. app(w, u)[σ] = app(w[σ], u[σ])

app(w, u)[σ](δ)
= app(w, u)(σ(δ))
= (w(σ(δ)))1(u(σ(δ))) (by the definition of app)
= (w[σ](δ))1(u[σ](δ))
= app(w[σ], u[σ])(δ)

for any Γ ` w : ΠAB, Γ ` u : A, σ : ∆→ Γ and δ ∈ ∆.

71

CHAPTER 7

Construction of the model in type theory

In the previous chapters we constructed a model of type theory in informal set theory. In
this chapter, we discuss the construction of the model in Martin-Löf type theory, which we
have formalized in Agda notation [11, 12, 64]. The main purpose of this formalization is
to extract computational content from our model of C-spaces, as illustrated in Section 8.3,
rather than merely certify that our constructions and proofs are correct.

The main difficulties of formulating the constructions and proving theorems in type
theory involve the presence of proof relevance and the lack of function extensionality in
MLTT. For instance, a continuous map is formulated as a pair consisting of an underlying
map and a continuity witness. In the informal proof of the fact that the domain N2N

of the
fan functional is a discrete C-space (Lemma 3.5.1), we ignored continuity witnesses and
proved equality of underlying maps only (using function extensionality implicitly). But
in MLTT both equalities of underlying maps and of continuity witnesses are required.
Even worse, a map f : 2N → N can have more than one uniform-continuity witnesses,
because if m ∈ N is a modulus of uniform continuity of f then so is any number that is
greater than m. In order to formalize the proof of Lemma 3.5.1, we require the existence
of a minimal modulus of uniform continuity. With this refinement, we still need function
extensionality to prove that uniform continuity is a proposition, that is, a type with at
most one element.

The following results of the thesis have been formalized [77]:

1. The two formulations

Π(f : 2N → N). ‖Σ(m :N). Π(α, β :2N). α =m β → fα = fβ‖
Π(f : 2N → N). Σ(m :N). Π(α, β :2N). α =m β → fα = fβ

of the uniform-continuity principle are logically equivalent in intensional MLTT
extended with propositional truncation.

This theorem is already formulated and proved in type theory in Chapter 2.3, and
the Agda proof is a direct translation.

2. C-Spaces form a (locally) cartesian closed category with a natural numbers object,
a coproduct 1 + 1, and a continuous functional fan: (2N → N)→ N that calculates
minimal moduli of uniform continuity (Chapters 3.3–3.5).

72

3. Assuming the Brouwerian principle that all type-theoretic functions 2N → N are
uniformly continuous, the full type hierarchy is equivalent to the Kleene–Kreisel
continuous hierarchy within C-spaces (Chapter 4.3).

4. C-Spaces give a model of Gödel’s system T. All T-definable functions 2N → N are
uniformly continuous. The uniform-continuity principle, expressed as a skolemiza-
tion, is validated by the fan functional (Chapter 5.1).

5. C-Spaces give a continuous realizability semantic of HAω. The uniform-continuity
principle is realized by the fan functional (Chapter 5.2).

6. The uniform-continuity principle in MLTT, expressed as a type via the Curry–
Howard interpretation, is validated by the fan functional in the locally cartesian
closed category of C-spaces, following Seely’s method (Chapter 6.2).

In addition, we implemented several models of dependent types via the notion of category
with families (CwF) discussed in Chapters 6.3–6.5. The purposes of formalizing the CwF
of types/sets are to understand the CwF-structure of identity types, and to verify the
equations with substitutions that we proposed for identity types in Chapter 6.3. We also
formalized the basic CwF-structures of C-spaces and of (pre)sheaves, in order to explore
the feasibility of a type-theoretic implementation of sheaf models.

To discuss the type-theoretic development of the above work, we present some neces-
sary constructions and theorems using informal type theory as in the HoTT book [73].
The basic notations have been introduced in Chapter 6.1. In particular, we also need the
type of (small) types, that is, the universe U , e.g. to formulate C-spaces (see Section 7.2.1).

This chapter is organized as follows. Section 7.1 discusses the issues in type-theoretic
development caused by the absence of function extensionality and by the presence of proof
relevance in MLTT. Then Section 7.2 explains a few approaches, together with the main
constructions and adjustments, to address those issues. The last part of this chapter,
Section 7.3, demonstrates some experiments of internalizing models of dependent types.

7.1 Function extensionality and proof relevance
As mentioned above, the first difficulty of the type-theoretic development of the model is
the absence of function extensionality (funext), which can be formulated as the following
type

Π(X :U). Π(Y :X→U). Π(f, g :Π(x :X).Y (x)). (Π(x :X).fx = gx)→ f = g,

in intensional MLTT. Another difficulty is caused by the fact that MLTT is proof-relevant ,
i.e. a proof in MLTT is a term of some type. Some issues related to such difficulties,
discussed below, arise in the type-theoretic rendering of

(1) discrete C-spaces,

(2) exponentials of C-spaces, and

(3) the fan functional.

73

(1) and (2) are in a similar situation related to the lack of (funext) for functions N→ 2.
(3) is subtler and more interesting: (funext) is seemingly necessary, but also not sufficient
for constructing the fan functional and for proving its desired property, due to the presence
of proof relevance in MLTT.

To discuss the above issues, we need the following types and functions:

• The cantor space
2N : U

is represented as the function type N → 2, where N denotes the type of natural
numbers and 2 denotes the type of booleans as usual. Given α : 2N and i : N, we
write αi to denote the application α(i).

• The less-than-or-equal-to relation of natural numbers

n ≤ m : U

is defined inductively with (i) a constructor 0 ≤ m for each m : N, and (ii) a function
n ≤ m→ n+ 1 ≤ m+ 1. An equivalent definition of n ≤ m is Σ(k :N). n+ k = m,
but the inductive definition is more convenient for our purposes.

• Given α, β : 2N, the relation
α =n β : U

is defined by induction on the natural number n, with (i) a constructor α =0 β, and
(ii) a function α =n β → αn = βn → α =n+1 β. An equivalent definition of α =n β
is Π(i :N). i < n → αi = βi, but again the inductive definition is more convenient
for our purposes.

• The collection of binary sequences of length n

2n : U

is represented as the vector type Vec(2, n) whose inductive definition is available in
Section 8.1 in Agda notation. We write ε : Vec(X, 0) to denote the empty vector,
and x :: xs : Vec(X,n+ 1) to denote the concatenation of x : X and xs : Vec(X,n).

• A property of elements of a type X is expressed as a type family P : X → U . We
write x ∈ P to denote P (x). Following this idea, a naive formulation of uniform
continuity of maps 2N → 2N is the the type family C: (2N → 2N)→ U defined by

C(t) :≡ Π(m :N). Σ(n :N). Π(α, β : 2N). α =n β → tα =m tβ.

Then a witness of uniform continuity of t is an element of type t ∈ C.

• The concatenation map of binary sequences

cons : Π(n :N). 2n → 2N → 2N

is defined by induction on finite sequences: (i) consεα :≡ α, (ii) (cons(b::s)α)0 :≡ b,
and (iii) (cons(b::s)α)i+1 :≡ (conssα)i. We omit the length n and simply write conssα
(rather than cons(n, s, α)) for the sake of readability.

74

• We also need the following functions

take : Π(n :N). 2N → 2n drop: N→ 2N → 2N.

The first function returns the prefix of a given infinite sequence while the second
returns the suffix. Both are easily defined by induction on the first argument.

The issues of (1) and of (2) arise in the verification of the sheaf condition. We men-
tioned in Chapter 3.3.1 that the following sheaf conditions are equivalent:

(s1) For any n ∈ N and any family {ps ∈ P}s∈2n , the map p : 2N → X defined by
p(sα) = ps(α) is in P .

(s2) For any p0, p1 ∈ P , the map p : 2N → X defined by p(iα) = pi(α) is in P .

(s3) If p : 2N → X a map such that there exists n ∈ N with p ◦ conss ∈ P for all s ∈ 2n,
then p ∈ P .

Here X is a set and P is the desired C-topology on X. Under the Curry–Howard inter-
pretation, they become the following types:

(s1) Π(n :N). Π(ρ : 2n → 2N → X). (Π(s :2n). ρs ∈ P)→ Amln(ρ) ∈ P ,

(s2) Π(ρ : 2→ 2N → X). (Π(i :2). ρi ∈ P)→ Aml2(ρ) ∈ P ,

(s3) Π(p : 2N → X). (Σ(n :N). Π(s :2n). p ◦ conss ∈ P)→ p ∈ P ,

where X is a type, P is a family (2N → X) → U , the map Amln(ρ) : 2N → X is defined
by Amln(ρ)(α) :≡ ρ (take n α) (drop n α), and the map Aml2(ρ) : 2N → X is defined by
Aml2(ρ)(α) :≡ ρα0(α◦ succ). However, the above types are not equivalent unless (funext)
is available. For example, we need Amln(ρ) ◦ conss = ρs to prove the equivalence of (s1)
and (s3) which clearly requires (funext). In particular, we cannot work with (s2) because
verifying it for exponentials requires the equivalence with (s1) or (s3) (see the proof of
Theorem 3.3.4). We find (s3) more convenient to work with, e.g. to cooperate with the
coverage axiom since both involve cons maps. Working with the sheaf condition (s3), we
notice that the constructions of (1) and of (2) rely on on the equation

cons (take n α) (drop n α) = α

for all n : N and α : 2N, which holds up to pointwise equality only, i.e. we can only prove
Π(i :N). (cons (take n α) (drop n α))i = αi.

In case (1) regarding discrete C-spaces, we attempt to prove the sheaf condition (s3)
as follows. Given a type X, the discrete C-topology is a type family LC: (2N → X)→ U
defined by

LC(p) :≡ Σ(m :N). Π(α, β : 2N). α =m β → p(α) = p(β)

which expresses that the map p is locally constant. Let a map p : 2N → X, a natural
number n : N, and a proof of Π(s :2n). p ◦ conss ∈ LC be given. The goal is to prove
p ∈ LC. Let ms be the modulus of local constancy of p ◦ conss for each s : 2n, and let m

75

be the maximum of all ms’s. We want to prove that n + m is a modulus of p: given
α, β : 2N with α =n+m β, we have

take n α = take n β and drop n α =m drop n β.

Let s :≡ take n α. By the local constancy of p ◦ conss we have

p(conss(drop n α)) = p(conss(drop n β)).

But this is insufficient to conclude pα = pβ because the equation conss(drop n α) = α
holds up to pointwise equality as discussed above.

In case (2) regarding exponentials of C-spaces, the verification of (any of the above
formulations of) the sheaf condition uses the coverage axiom, which is formulated as the
following type:

Π(t : 2N → 2N). t ∈ C→
Π(m :N). Σ(n :N). Π(s :2n). Σ(s′ :2m). Σ(t′ : 2N → 2N). t′ ∈ C× t ◦ conss = conss′ ◦ t′.

To prove that the coverage axiom holds, we use one direction of Lemma 3.2.1: given
a uniformly continuous map t and a natural number m, we get n using the uniform-
continuity witness of t; given s : 2n, we construct s′ : 2m and t′ : 2N → 2N by taking

s′ :≡ take m (t(conss0
ω)) and t′(α) :≡ drop m (t(conssα))

where 0ω : 2N is the constantly zero sequence, i.e. (0ω)i :≡ 0 for all i : N. We can easily
show t′ ∈ C. However, we are not able to prove t ◦ conss = conss′ ◦ t′ or its weakening
Π(α :2N). t(conssα) = conss′(t

′α), as the latter equation can be expanded to

t(conssα) = cons (take m (t(conssα))) (drop m (t(conssα)))

which holds up to pointwise equality as mentioned above. Therefore, without (funext) we
can only prove

Π(α :2N). Π(i :N). (t(conssα))i = (conss′(t
′α))i

for the coverage axiom, which is clearly insufficient for verifying the sheaf condition for
exponentials as t ◦ conss = conss′ ◦ t′ is required.

There are two issues in the construction and proof of (3), regarding (3a) the discrete-
ness of the exponential N2N

and (3b) the desired property of the fan functional. Both of
them are related to the lack of (funext) and the presence of proof relevance:

(3a) To show the discreteness of N2N
, i.e. to show that any given probe p : 2N → N2N

is
locally constant, we follow the proof of Lemma 3.5.1, and get a natural number n
which we want to prove to be a modulus of local constancy of p, i.e. given any
α, β : 2N with α =n β, we want to prove pα = pβ. Since pα and pβ are continuous
maps from the exponential 2N to the discrete C-space N, we need to show both
equalities of their underlying maps and of their continuity witnesses. In the proof
of Lemma 3.5.1, we prove the equality of the underlying maps using (funext) whose
usage seems to be unavoidable. However, there is no way to prove that their con-
tinuity witnesses are also equal: the continuity of a map f : 2N → N means that

76

f ◦ q : 2N → N is uniformly continuous (or locally constant) whenever q : 2N → 2N is
a probe on the exponential 2N; but even for the same uniformly continuous map, it
can have more than one witnesses of uniform continuity because if n is a modulus
then so is any number greater than n.

(3b) In order to validate the uniform-continuity principle, we have to show that the fan
functional computes moduli of uniform continuity of continuous maps 2N → N,
i.e. for any continuous maps f : 2N → N and α, β : N → 2 (all of them are pairs
consisting of a function and a continuity witness), the type

pr1(α) =pr1(fan)(f) pr1(β) → pr1(f)(α) = pr1(f)(β)

is inhabited. In the proof of Theorem 3.5.2, we show that any given continuous map
f : 2N → N is uniformly continuous, because the identity map 1 is a probe on 2N

and thus f = f ◦1 is a probe on N. However, in a proof-relevant setting, the identity
map is not a probe on the exponential 2N, because an element of the exponential 2N

is a pair consisting of a map N → 2 and a continuity witness. Thus we have to
explicitly defined an “identity” probe I : 2N → 2N which equips a sequence N → 2
with a continuity witness using the discreteness of the space 2, to make it an element
of the exponential 2N. Now, if pr1(α) =pr1(fan)(f) pr1(β) is known, what we can prove
is pr1(f)(I(pr1α)) = pr1(f)(I(pr1β)). Therefore, to get the desired result, we need
I(pr1α) = α for all continuous maps α : N → 2. This requires to prove equality of
continuity witnesses of a given map N → 2, which is impossible without further
adjustments as discussed in (3a).

Both issues are related to the fact that uniform continuity is not a proposition, i.e. a map
2N → N (or 2N → 2) can have more than one witnesses of uniform continuity. To solve
such issues, we refine uniform continuity to mean that there exists a minimal modulus
of uniform continuity. Hence, given a map f : 2N → N, its uniform continuity (or local
constancy) is formulated as

UCN(f) :≡ Σmin(n :N). Π(α, β : 2N). α =n β → fα = fβ,

where Σmin is defined by, for any family P : N→ U

Σmin(n :N).P (n) :≡ Σ(n :N). P (n)× (Π(m :N). P (m)→ n ≤ m).

Now a uniform-continuity witness of f becomes a tuple, consisting of a natural number n,
a proof that n is a modulus of uniform continuity of f , and a proof that any modulus of
uniform continuity of f is greater than or equal to n. Given any two uniform-continuity
witnesses, the minimal moduli (i.e. the first components) must be the same. Then, using
(funext) and the fact that the types n = m and n ≤ m are propositions for any n,m : N,
one can show that the above refinement of uniform continuity is a proposition. Moreover,
if two uniformly continuous maps 2N → N are pointwise equal, then they have the same
minimal modulus and thus yield the same morphism in the category of C-spaces, which
solves issue (3a). We similarly refine uniform continuity of maps f : 2N → 2 to

UC2(f) :≡ Σmin(n :N). Π(α, β : 2N). α =n β → fα = fβ

77

in order to tackle issue (3b). Another benefit of this refinement is that the minimality of
moduli is maintained during the construction of the model. Thus the definition of the fan
functional does not need to additionally compute the minimal modulus from a given one
as in the proof of Theorem 3.5.2. However, with this refinement, we still need (funext) to
complete the type-theoretic implementation of the fan functional.

7.2 Construction via different approaches

To address the issues caused by the lack of (funext), we developed the following ap-
proaches, all of which have been implemented in Agda and are available at [77].

Postulate (funext). This is probably the simplest approach which produces the most
readable and clean type-theoretic implementation of our work. We present the main
definitions and constructions in Section 7.2.1. The drawback of this approach is that it
does not compute in Agda. We give explicit examples in Section 7.2.1 and explain why
they can or cannot be normalized to numerals. (The Agda implementation can be easily,
but laboriously, translated to the cubical type theory by Coquand et al. [9, 19], which
does compute in the presence of funext. But this is left for future work.)

Use setoids. In this approach, we work with setoids [41], that is, with types equipped
with equivalence relations. We discuss, in Section 7.2.2, the main adjustments to the
model construction and explain how they solve the above issues. With this approach, we
successfully implemented the model in intensional MLTT, which allows us to compute
least moduli of uniform continuity of T-definable functions 2N → N. But one of its
drawbacks, as usual, is that it makes the constructions and proofs tedious, long and
unreadable.

Add a probe axiom. This was motivated by an important adjustment of the approach
based on setoids. We add the following probe axiom

If a map 2N → X is pointwise equal to a probe on X, then it is a probe on X.

The intuition is that this axiom is playing the role of the “transport” function. As
discussed in Section 7.2.2, it avoids some usages of (funext), e.g. in the proof that any map
from a discrete C-space is continuous, and hence preserves some amount of computational
content, e.g. of the examples in our experiment of computing moduli of uniform continuity.
However, (funext) is still required in some other constructions and proofs.

Postulate (funext) within a computationally irrelevant field. In earlier stages of
this work, we conjectured that (funext) occurs only in computationally irrelevant contexts.
In order to attempt to verify it, we made use of Agda’s irrelevant fields and postulated
(funext) within such an irrelevant context [1]. In fact, the Agda type checker proved our
conjecture false. To make this idea work, we added a probe axiom similar to (actually
stronger than) the one of the previous approach. The first drawback of this approach is
that it produces a different model (or category) from the original one as introduced in
Chapter 3.3 because of the additional probe axiom. Another drawback is that it requires
the extension of type theory with irrelevant fields. We will not discuss this approach
further in the thesis. But the corresponding Agda implementation is available at [77].

Postulate the double negation of (funext). This was based on the observation
that the only property of irrelevant fields we used is that they form a monad T satisfying

78

T∅ → ∅. Since double negation is the final such monad, i.e. TX → ¬¬X, we can instead
postulate ¬¬(funext). We present the main adjustments of this approach, one of which is
to add a probe axiom as in the previous approaches, in Section 7.2.4. From a constructive
point of view, the model produced using this approach is not the same as the original
one. However, they provide the same interpretation to simple (and to dependent) types.
And more interestingly, it does not destroy computational content because the consistent
axiom we postulated is in a negative form [22].

7.2.1 Construction by postulating (funext)

In this section we present the main construction of the model in intensional MLTT ex-
tended with the axiom of function extensionality, which we have formalized in Agda
notation by postulating the axiom (funext) [77]. However, the Agda implementation fails
to compute moduli of uniform continuity, because the postulated term (funext) has no
computation rules. In the end, we provide two examples of moduli of uniform continuity
and explain why they can and cannot be normalized to numerals.

Chapter 3.3.1 defines a C-topology P on a set X to be a collection of maps 2N → X
satisfying the following probe axioms:

(1) All constant maps are in P .

(2) If p ∈ P and t ∈ C, then p ◦ t ∈ P .

(3) If p : 2N → X is a map such that there exists n ∈ N with p◦conss ∈ P for all s ∈ 2n,
then p ∈ P .

Given X : U and P : (2N → X) → U , these probe axioms are translated to the following
product type, written as probe-axioms(X,P), under the Curry–Howard interpretation

(Π(x :X). λα.x ∈ P)

×
(
Π(p : 2N → X). p ∈ P → Π(t : 2N → 2N). t ∈ C→ p ◦ t ∈ P

)
×

(
Π(p : 2N → X). (Σ(n :N). Π(s :2n). p ◦ conss ∈ P)→ p ∈ P

)
.

Remark. A naive formulation of the first probe axiom is

Π(p : 2N → X). (Π(α, β : 2N). pα = pβ)→ p ∈ P

which is logically equivalent to Π(x :X). λα.x ∈ P under the assumption of (funext). The
choice of these two formulations affects the proofs of the following:

(a) The chosen type family for exponentials satisfies the first probe axiom.

(b) All maps from discrete C-spaces are continuous.

When working with the longer formulation, the proof of (a) needs to use (funext) while
the one of (b) does not. However, with the shorter formulation we choose, the proof
of (a) does not require (funext) but the one of (b) does. Therefore, working with any of
them cannot avoid the usage of (funext) without further adjustments. More details will
be provided when discussing exponentials and discrete C-spaces below.

79

The type of C-spaces is then formulated as

Space :≡ Σ(X :U). Σ(P : (2N → X)→ U). probe-axioms(X,P).

In words, an element X : Space consists of a underlying set/type |X| : U , a type family
Probe(X) : (2N → |X|)→ U representing the C-topology on |X|, and a proof of the probe
axioms. The operators | − | : Space → U and Probe: Π(X :Space). (2N → |X|) → U are
easily defined using the projections pr1 and pr2. Given X, Y : Space, we write, for any
map f : |X| → |Y |,

continuous(f) :≡ Π(p : 2N → |X|). p ∈ Probe(X)→ f ◦ p ∈ Probe(Y)

and then define the type of continuous maps of X and Y by

Map(X, Y) :≡ Σ(f : |X| → |Y |). continuous(f).

A continuous map is thus a pair consisting of a underlying map and a continuity witness.
For the cartesian closed structure, we present only the constructions of underlying sets

and of type families (C-topologies), but omit the verifications of probe axioms and proofs
of universal properties:

1. The terminal C-space is (proved to be) the singleton type 1 equipped with the
constant family (2N → 1)→ U which sends the (unique) map 2N → 1 to type 1.

2. Given C-spaces X and Y , the product X × Y consists of the binary product type
|X| × |Y | as its underlying set and the family R : (2N → |X| × |Y |)→ U defined by

r ∈ R :≡ pr1 ◦ r ∈ Probe(X)× pr2 ◦ r ∈ Probe(Y)

as its C-topology.

3. Given C-spaces X and Y , the exponential Y X consists of the type Map(X, Y) of
continuous maps as its underlying set and the family R : (2N → Map(X, Y)) → U
defined by

r ∈ R :≡ Π(p : 2N → |X|). p ∈ Probe(X)→
Π(t : 2N → 2N). t ∈ C→ λα.pr1(r(tα))(pα) ∈ Probe(Y)

as its C-topology.

As mentioned above, verifying the shorter formulation of the first probe axiom is
easy, because when r is λα.f for any f : Map(X, Y) we have λα.pr1(r(tα))(pα) =
pr1(f) ◦ p which is a probe on Y according to the continuity witness pr2(f).

In order to solve the issues related to proof relevance (see Section 7.1), the discrete
C-topology UCN : (2N → N)→ U on natural numbers is refined as

p ∈ UCN :≡ Σmin(n :N). Π(α, β : 2N). α =n β → pα = pβ,

and the one UC2 : (2N → 2)→ U on booleans is refined as

p ∈ UC2 :≡ Σmin(n :N). Π(α, β : 2N). α =n β → pα = pβ.

80

For the sake of readability, we write N to mean the discrete C-space of natural numbers,
2 to mean the discrete two-point C-space, and 2N to mean the exponential of 2 to the
power N, by abuses of notations.

One direction of Lemma 3.3.8 is that if the probes of a C-space X are precisely the
locally constant maps then X is discrete (all maps from X are continuous). It is useful, for
instance, for proving the continuity of the recursion combinator of natural numbers. As
mentioned earlier, we need (funext) to prove it because we are working with the shorter
formulation of the first probe axiom: Let a map f : |X| → |Y | be given. If p : 2N → |X|
is locally constant with modulus n, then for any s ∈ 2n the map f ◦ p ◦ conss is constant.
By the first probe axiom, the map λα.f(p(conss0

ω)) is in Probe(Y). Using (funext) we
have f ◦ p ◦ conss = λα.f(p(conss0

ω)) and thus f ◦ p ◦ conss ∈ Probe(Y).
As mentioned in Section 7.1, we constructed an “identity” probe

id : 2N → Σ(α : N→ 2). continuous(α)

of the exponential 2N, the first component of whose output is the same as the input,
and the second component is constructed by using the lemma that all maps from N are
continuous. In other words, id equips any map N→ 2 with a continuity witness to make
it a continuous map. The following direction of the Yoneda Lemma 3.4.2

Π(X : Space). Map(2N, X)→ Σ(p : 2N → |X|). p ∈ Probe(X)

is proved by composing a given continuous map with the above “identity” probe. When X
is the discrete C-space N, for any f : Map(2N,N), we have a map pr1(f) ◦ id : 2N → N
which is a probe on N, i.e. a uniformly continuous map. Using the uniform-continuity
witness pr2(f), we get the least modulus m of uniform continuity of pr1(f) ◦ id. Since
the probe id does not change the input sequences, we can show that m is also the least
modulus of uniform continuity of f in the following sense:

Π(α, β : Map(N,2)). pr1(α) =m pr1(β)→ pr1(f)(α) = pr1(f)(β).

This is how we construct the underlying map of the fan functional. We omit the proof of
its continuity which uses (funext) as discussed in Section 7.1.

Since (funext) is a constant without computational rule, the computational content of
our formal development is destroyed. For example, we can get a closed term of type N as
follows: Define a closed T-term F of type (N→ 2)→ N, and then apply the interpretation
to get a continuous map [[F]] : 2N → N. (The inductive definition of system T and its
interpretation function into C-spaces can be found in Chapter 8.2 in Agda notation.)
Using the fan functional, we get its least modulus of uniform continuity, i.e. a closed term
pr1(fan)([[F]]) : N. However, not all such closed terms can be normalized to numerals:

1. The following closed T-term

F0 :≡ λα.0 : (N→ 2)→ N

is interpreted as a constantly zero function. Recall that the continuity witness
of [[0]] is a constant map sending probes on 2N to the uniform-continuity witness of
λα.0 whose first component (the least modulus of uniform continuity) is clearly 0.

81

Hence, Agda normalizes pr1(fan)([[F0]]) to 0, and in this case we have no loss of
computational content.

2. However, our Agda implementation fails to compute the (least) modulus of uniform
continuity of the following closed T-term

F1 :≡ λα. if t 0 0 : (N→ 2)→ N

which is also interpreted as a constantly zero function. Because the continuity wit-
ness of [[if]] is constructed using Lemma 3.3.8 whose proof uses (funext) as discussed
before, the closed term pr1(fan)([[F1]]) contains (funext) which stops the normal-
ization as (funext) has no computational rules. The normal form of pr1(fan)([[F1]])
produced by Agda has more than 300 lines in the way Agda outputs it [77, module
UsingFunext.ModellingUC.ComputationExperiments].

Remark. As explained above, the fan functional computes the least modulus of uniform
continuity of a map f : 2N → N using only the continuity witness of f without looking
into its underlying map. Thus, though [[F0]] and [[F1]] have the same underlying map,
Agda successfully computes the least modulus of uniform continuity of F0, but fails to
compute the one of F1. One can even prove that the two continuous maps [[F0]] and
[[F1]] are identical. However, this does not help the computation because again this proof
unavoidably uses (funext).

7.2.2 Construction by using setoids

Recall that the type of setoids in MLTT is formulated as

Setoid :≡ Σ(X : U). Σ(R : X → X → U). isEqRel(R)

where isEqRel(R) is the following product type

(Π(x : X). R(x, x))
× (Π(x, y : X). R(x, y)→ R(y, x))
× (Π(x, y, z : X). R(x, y)→ R(y, z)→ R(x, z))

expressing that R is reflexive, symmetric and transitive. The type of morphisms, also
called extensional maps, of setoids X and Y is formulated as

E-map(X, Y) :≡ Σ(f : |X| → |Y |). Π(x, x′ : |X|). x ∼X x′ → fx ∼Y fx′

where |X| is the underlying type of X and ∼X is the equivalence relation on |X|.
Compared to the development in Section 7.2.1, several adjustments need to be applied

to the model constructions in order to solve the issues discussed in Section 7.1:

1. For the notion of uniform continuity, we consider only the extensional endomaps
of 2N, i.e. a uniformly continuous map t : 2N → 2N should also satisfy

Π(α, β : 2N). (Π(i :N).αi = βi)→ (Π(i :N).(tα)i = (tβ)i).

This clearly solves issues of (1) and of (2), because now only pointwise equality is
required for elements of 2N.

82

2. Given X : Setoid, we consider only the extensional maps 2N → |X| to be probes,
i.e. a C-topology on X is a type family P : E-map(2N, X)→ U satisfying the probe
axioms. Recall that any predicate P on a setoid X should preserve its equivalence
relation, i.e. Π(x, y : X). x ∼X y → P (x) → P (y). Therefore, we have to require
the C-topology P to additionally satisfy

Π(p, q : E-map(2N, X)). (Π(α : 2N).pr1(p)(α) ∼X pr1(q)(α))→ p ∈ P → q ∈ P.

In words, if a map q is pointwise equal to a probe p then q is also a probe. This
additional condition avoids transporting probe-witnesses along equality of maps
obtained using (funext).

3. Continuous maps of C-spaces now have to be extensional. The collection of contin-
uous, extensional maps of C-spaces X and Y , together with the equivalence relation
defined pointwise, forms the underlying setoid of the exponential Y X . This defines
a notion of equality of continuous maps that ignores continuity witnesses, which
solves the issues of (3) with no need of requiring minimal moduli of uniform conti-
nuity. But we remark that, when defining the fan functional, we have to calculate
minimal moduli of given continuous maps 2N → N as in the proof of Theorem 3.5.2,
because the fan functional has to be extensional, i.e. for any two continuous maps
2N → N which are pointwise equal, the fan functional should give the same modulus
of uniform continuity.

This approach allows us to implement the model without postulating any non-standard
axiom for intensional MLTT. However, it gives a longer and less readable formalization
that obscures the essential aspects of the constructions and proofs. Hence we looked for
an approach that gives a concise formalization without losing computational content.

7.2.3 Construction by adding a probe axiom

Motivated by the second adjustment in the approach of using setoids (Section 7.2.2), we
add the following probe axiom:

(4) If a map is pointwise equal to a probe, then it is a probe.

This is formulated as

Π(p, q : 2N → X). p ∈ P → (Π(α : 2N).pα = qα)→ q ∈ P

where X : U is the underlying type/set of a C-space, and P : (2N → X) → U is the
C-topology on X.

Now, in each case the construction of a C-space is performed, we have to verify the
above axiom. For example, the discrete C-space N of natural numbers satisfies the axiom,
because if a map p is uniformly continuous and q is pointwise equal to p then clearly q is
also uniformly continuous (with the same least modulus as of p). Moreover, for any two
C-spaces X and Y , our previous constructions of product X × Y , of coproduct X + Y
and of exponential XY satisfy the above probe axiom.

As mentioned in Section 7.2.2, this additional probe axiom is playing the role of the
transport function. More specifically, it avoids transporting probe witnesses along paths
constructed using (funext) in the proofs of the following:

83

1. Exponentials satisfy the sheaf condition. Recall that the proof of this fact uses the
coverage axiom. As discussed in Section 7.1, without using (funext), the required
equation in the coverage axiom holds only up to pointwise equality, i.e.

Π(α :2N). Π(i :N). (t(conssα))i = (conss′(t
′α))i.

With probe axiom (4), rather than t ◦ conss = conss′ ◦ t′, the pointwise equality

Π(α :2N). t(conssα) = conss′(t
′α)

is sufficient to verify the sheaf condition for exponentials. However, (funext) is still
needed to obtain the above pointwise equality.

2. Any map from a discrete C-space is continuous. In Section 7.2.1 we prove this
fact by using (funext): we know that a map is a probe and that another map is
pointwise equal to it, and then conclude that the second map is also a probe by
applying (funext) to get an equality of the two maps. It is clear that, with probe
axiom (4), the usage of (funext) here is no longer needed.

In Section 7.2.1, the least modulus of uniform continuity of the T-function λα. if t 0 0
cannot be normalized to a numeral. By adding the probe axiom (4), the continuity
witness of the case-distinction function if is constructed without using (funext). Therefore,
Agda successfully normalizes its least modulus of uniform continuity to the numeral 0.
Moreover, all the examples in our experiments, reported in Chapter 8.3, can be successfully
normalized to numerals. However, because (funext) is still needed, e.g. in the verification
of the sheaf condition for exponentials and in the continuity witness of the fan functional,
the computational content of our development is still potentially destroyed (though we
now have no examples that do not compute).

7.2.4 Construction by postulating ¬¬(funext)

After introducing an additional probe axiom, as discussed in Section 7.2.3, the least
uniform-continuity moduli of all the T-definable functions in our experiment (Chapter 8.3)
can be normalized to numerals. Hence, we conjectured that the usages of (funext) had no
computational content, and made use of Agda’s irrelevant fields [1] to attempt to verify
this idea. We had two observations in the approach of using irrelevant fields:

1. We actually need a condition that is stronger than probe axiom (4), and hence get
a model which is not the same as the one introduced in the previous chapters.

2. The only property of irrelevant fields we used to construct the model is that they
form a monad T satisfying T∅ → ∅.

It is well known that double negation ¬¬ is the final monad T such that T∅ → ∅.
Hence we instead postulated the double negation of (funext) and added the following
stronger form of probe axiom (4)

Π(p, q : 2N → X). p ∈ P → (Π(α : 2N). ¬¬(pα = qα))→ q ∈ P.

Here ¬¬ cannot be removed because, in the verification of the sheaf condition for expo-
nentials, we have two pointwise equal sequences α, β : 2N (given by the pointwise coverage

84

axiom explained in Section 7.1), and using ¬¬(funext) we can only conclude ¬¬(pα = pβ)
for some map p.

One can easily prove that the above probe axiom is preserved by the constructions
of products, coproducts and exponentials. To show that the discrete space N (and 2)
satisfies the probe axiom, we use the following facts:

(a) ¬¬A→ A holds for any decidable type A, i.e.

Π(A : U). (A+ ¬A)→ ¬¬A→ A

which can be proved by case analysis on A+ ¬A.

(b) Natural numbers have decidable equality, i.e.

Π(n,m : N). (n = m) + ¬(n = m).

which can be proved by induction on both n and m.

We remark that the above facts are also needed when proving the continuity of the fan
functional.

There are a few advantages of this approach:

• It provides a relatively concise development of the work in type theory.

• It does not require non-standard extension of MLTT such as irrelevant fields.

• With classical logic, we get the same model as the one explained in the previous
chapters.

Every type becomes decidable under classical logic; thus, the usage of ¬¬ can be
got rid of in the development.

• Using (funext) we can prove that this model gives an equivalent interpretation to
simple (and to dependent) types as the original one.

This can be verified by induction on the (simple and dependent) type structure. A
type A is said to be ¬¬-separated if Π(x, y :A). ¬¬(x = y) → x = y. We know N
is ¬¬-separated as discussed above. And (funext) is needed when showing that the
function space A→ B is ¬¬-separated whenever B is ¬¬-separated. Therefore, the
underlying type of any simple C-spaces is ¬¬-separated.

• More interestingly and more importantly, it does not destroy the computational
content of the development.

This is because the canonicity of a type theory is preserved when a negative consis-
tent axiom is postulated. More detailed discussion of this meta-theorem and some
examples of using it are provided in [22]. Here we briefly recall its proof: Consider
a consistent closed type ¬A and extend MLTT with a constant c : ¬A. There is
no closed term a : A; otherwise, the application c(a) would inhabit the empty type.
We can use any known generalizations of Tait’s computability method for system T
to MLTT to re-prove the normalization theorem. For this, we need to extend the
proof with an inductive clause that if a closed term a : A is computable then so is
c(a), which is clearly true as there is no closed term of type A.

85

7.3 Models of dependent types in intensional MLTT
As mentioned earlier, we implemented several models of dependent types, in the sense of
Dybjer’s category with families (CwF) [29], for different purposes. It is, in fact, too early
for us to claim that these are the internalized models of MLTT, because:

1. It is still a long-term goal to internalize the syntax of type theory in type theory [15].

2. It is a long standing conjecture that the syntactic category of MLTT is the initial
object among CwFs and the others [76].

We do not have the syntax or the interpretation functors into the “models”. Instead, for
each model (or category more precisely), we defined (the interpretations of) contexts, sub-
stitutions, types and terms, and then verify the corresponding required rules/equations.
This section presents the work using informal type theory. The formal formulation in
Agda notation is available at [77].

7.3.1 The CwF of types

We studied the CwF-structure on the category of sets in Chapter 6.3. Here we formalize
CwF-the structure on types. The formalization is very straightforward. In particular,
(funext) is not needed to formalize the structure or to prove the equations. And all
required equations hold judgmentally (in the sense that all the equality proofs are refl).
Hence we made use of this to investigate the CwF-structure of identity types.

In the CwF of types, a context is a type and a substitution is a function of contexts. We
write Cxt to denote the type of contexts and Sub(∆,Γ) to denote the type of substitutions
of contexts ∆ and Γ, and then have the following definitions:

Cxt :≡ U Sub(∆,Γ) :≡ ∆→ Γ.

A type in context Γ is a Γ-indexed type family, i.e.

Type(Γ) :≡ Γ→ U .

A term of type A in context Γ is a dependent function mapping each γ : Γ to an element
of Aγ, i.e.

Term(Γ, A) :≡ Π(γ :Γ).Aγ.

Substitutions of types and of terms are defined using composition: given A : Type(Γ),
u : Term(Γ, A) and σ : Sub(∆,Γ),

A[σ] :≡ A ◦ σ, u[σ] :≡ u ◦ σ.

Given Γ: Cxt and A : Type(Γ), the extended context Γ.A is the dependent sum, i.e.

Γ.A :≡ Σ(γ :Γ).Aγ.

The substitution p: Γ.A → Γ and the term q: Term(Γ.A,A[p]) are the first and second
projections.

We omit the definitions of (the interpretations of) Π-type and of Σ-type, and probe
into the one of identity type. Given A : Type(Γ), we know IdA : Type(Γ.A.A[p]) has to

86

be a type family indexed by tuples (γ, a, b) where γ : Γ and a, b : Aγ, and hence define
IdA(γ, a, b) : U to be the identity type of a and b, i.e.

IdA(γ, a, b) :≡ a = b.

The reflexivity substitution R: Γ.A→ Γ.A.A[p].IdA maps an element to the reflexivity in
the following sense:

R(γ, a) :≡ (γ, a, a, refl).

Given a type B : Type(Γ.A.A[p].IdA) and a term u : Term(Γ.A,B[R]), we define the term
J(u) : Term(Γ.A.A[p].IdA, B) using the J-eliminator as follows

J(u)(γ, a, b, p) :≡ J(λx.u(γ, x), a, b, p)

where the second J is the J-eliminator in the meta-theory discussed in Chapter 6.1. More-
over, all the equations we proposed for identity types in Chapter 6.3 type check and hold
judgmentally.

7.3.2 The CwF of presheaves

For simplicity, here we discuss the formulation of presheaves on monoids only. The one
of presheaves on arbitrary categories should be highly similar. The purpose of such
formulation is to explore the feasibility of type-theoretic implementation of sheaf models.
We also implemented the essential CwF-structure (without supports of Σ- or Π-types)
of sheaves on our uniform-continuity site (explained in Chapter 6.5) in Agda, which is
available at [77].

A naive formulation of the type of presheaves on a monoid (M, ◦, 1) is the following

Presheaf :≡ Σ(Γ: U).
Σ(· : Γ→M → Γ).

(Π(γ :Γ). γ · 1 = γ)
×(Π(γ :Γ).Π(t, r :M). (γ · t) · r = γ · (t ◦ r)).

There is a problem in the above formulation. But we keep working on this naive formu-
lation until the problem is identified. Natural transformations are formulated as

Nat(∆,Γ) :≡ Σ(σ : |∆| → |Γ|). Π(δ :|∆|).Π(t :M). σ(δ) ·Γ t = σ(δ ·∆ t)

where |Γ| : U is the underlying type of Γ: Presheaf, and ·Γ : |Γ| →M → |Γ| is the monoid
action of Γ, both of which can be easily defined using projections. We omit the subscript
and write · to denote the monoid action of any presheaf, by abuses of notations. Using
projections again, we get the proofs of presheaf conditions of Γ: Presheaf, and write Γ1

and Γ2 to denote them, i.e.

Γ1 : Π(γ :|Γ|). γ · 1 = γ Γ2 : Π(γ :|Γ|).Π(t, r :M). (γ · t) · r = γ · (t ◦ r).

Contexts are (interpreted as) presheaves and substitutions are natural transformations:

Cxt :≡ Presheaf Sub(∆,Γ) :≡ Nat(∆,Γ).

87

Then types in context Γ are formulated as follows:

Type(Γ) :≡ Σ(A : |Γ| → U).
Σ(∗ : Π(γ :|Γ|).Aγ→Π(t :M).Aγ·t).

(Π(γ :|Γ|).Π(a :Aγ). a ∗ 1 =Γ1(γ) a)
×(Π(γ :|Γ|).Π(a :Aγ).Π(t, r :M). (a ∗ t) ∗ r =Γ2(γ,t,r) a ∗ (t ◦ r)).

In the above formulation, we adopt the following abbreviations for the sake of readability:

• a ∗ t :≡ ∗ (γ, a, t).
The first argument of the restriction map ∗ is omitted.

• a ∗ 1 =Γ1(γ) a :≡ transportA(a ∗ 1,Γ1(γ)) = a.
Since a ∗ 1: Aγ·1 and a : Aγ are not in the same type, we have to transport a ∗ 1
along the path Γ1(γ) : γ · 1 = γ in order to express the equality of a ∗ 1 and a.

For a given A : Type(Γ), we also write |A| : |Γ| → U to denote its underlying type family,
∗A : Π(γ :|Γ|).|A|γ→Π(t :M).|A|γ·t to denote its restriction map, and A1, A2 to denote its
proofs of presheaf conditions.

Type substitutions are defined using composition as in the CwF of types: Given
A : Type(Γ) and σ : Sub(∆,Γ), we define the underlying type of A[σ] by

|A[σ]|δ :≡ |A|pr1(σ)(δ)

for δ ∈ |∆|, and then restriction map ∗A[σ] : Π(δ :|∆|).|A|pr1(σ)(δ)→Π(t :M).|A|pr1(σ)(δ·t) by

a ∗A[σ] t :≡ transport|A|(a ∗A t, pr2(σ)(δ, t)).

Since a∗A t : |A|pr1(σ)(δ)·t, we have to transport it along the path pr1(σ)(δ) · t = pr1(σ)(δ · t)
given by the naturality (i.e. the second component) of σ. Then it remains to verify the
presheaf conditions, in which the problem we mentioned above arises: To attempt to
prove, for example, the first condition, i.e.

Π(δ :|∆|).Π(a :|A|pr1(σ)(δ)). a ∗A[σ] 1 =∆1(δ) a,

we take any δ :|∆| and a :|A|pr1(σ)(δ), and have

transport|A[σ]|(a ∗A[σ] 1,∆1(δ))
= transport|A[σ]|(transport|A|(a ∗A 1, pr2(σ)(δ, 1)),∆1(δ))
= transport|A|(transport|A|(a ∗A 1, pr2(σ)(δ, 1)), appr1(σ)(∆1(δ)))

= transport|A|(a ∗A 1, pr2(σ)(δ, 1) · appr1(σ)(∆1(δ)))

and
transport|A|(a ∗A 1,Γ1(pr1(σ)(δ))) = a.

However, we cannot conclude a ∗A[σ] 1 =∆1(δ) a unless we have

pr2(σ)(δ, 1) · appr1(σ)(∆1(δ)) = Γ1(pr1(σ)(δ)).

There are three independent paths involved above, given by the naturality of σ and by
the proofs of the first presheaf condition of ∆ and Γ. To require two arbitrary paths to

88

be equal to another arbitrary one for a type X, whenever this type-checks, is equivalent
to saying that X is a set (or an hset) in the sense that Π(x, y :X). Π(p, q : x = y). p = q.

Therefore, the underlying type of a presheaf has to be a set, and hence the formulation
of presheaf become

Presheaf :≡ Σ(Γ: U).
Σ(· : Γ→M → Γ).

(Π(γ, γ′ : Γ).Π(p, q : γ = γ′). p = q)
×(Π(γ :Γ). γ · 1 = γ)
×(Π(γ :Γ).Π(t, r :M). (γ · t) · r = γ · (t ◦ r)).

Moreover, since a type is a family of presheaves, the underlying type family of a type has
to be set-valued, and hence the proper formulation of type should be

Type(Γ) :≡ Σ(A : |Γ| → U).
Σ(∗ : Π(γ :|Γ|).Aγ→Π(t :M).Aγ·t).

(Π(γ :|Γ|).Π(a, a′ : Aγ).Π(p, q : a = a′). p = q)
×(Π(γ :|Γ|).Π(a :Aγ). a ∗ 1 =Γ1(γ) a)
×(Π(γ :|Γ|).Π(a :Aγ).Π(t, r :M). (a ∗ t) ∗ r =Γ2(γ,t,r) a ∗ (t ◦ r)).

The remaining constructions of the CwF-structure on presheaves are the straightfor-
ward translations of those in Chapter 6.5 (ignoring the sheaf condition). However, the
proofs (e.g. the verifications of the presheaf conditions) are not easy, as they highly use
the transport function and a number of its properties. We also remark that (funext) is
only needed in the construction of Π-type, e.g. to prove that the proposed underlying
type family of a Π-type is set-valued.

7.3.3 The CwF of C-spaces

One formulation of C-spaces has been given in Section 7.2.1. In this section, we take
another formulation of the sheaf condition which is equivalent to the one adopted in
Section 7.2.1 when (funext) is available. Since this is an exploration of internalizing
models of type theory, we do not worry about the issues of (funext) too much and hence
choose the following formulation of C-spaces that is more convenient to work with:

Space :≡ Σ(X : U).
Σ(P : (2N → X)→ U).

(Π(x :X). λα.x ∈ P)
×(Π(p : 2N→X). p ∈ P → Π(t : 2N→2N). t ∈ C→ p ◦ t ∈ P)
×(Π(ρ : 2→2N→X).(Π(i :2).ρi ∈ P)→ Aml(ρ) ∈ P)

where Aml(ρ) is the amalgamation of ρ0 and ρ1 which is defined by

Aml(ρ)(α) :≡ ρα0(α ◦ succ).

And the type of continuous maps of X, Y : Space is formulated as

Map(X, Y) :≡ Σ(f : |X| → |Y |). Π(p : 2N → |X|). p ∈ Probe(X)→ f ◦ p ∈ Probe(Y).

89

Again we use |X| to represent the underlying type of X : Space and Probe(X) to represent
its C-topology. We also write X1, X2, X3 to denote the proofs of the three probe axioms
of X.

As discussed in Chapter 6.4, contexts are interpreted as C-spaces and substitutions as
continuous maps, i.e.

Cxt :≡ Space, Sub(∆,Γ) :≡ Map(∆,Γ).

Intuitively, a type in Γ: Cxt is a Γ-indexed family of “spaces”: the underlying type family
is indexed by elements of Γ and the C-topology family is indexed by the probes on Γ. Let
the underlying type family of a type be A : |Γ| → U . A C-topology family Q on A should
be indexed by maps p : 2N → |Γ| and probe witnesses p ∈ Probe(Γ), i.e.

Q : Π(p : 2N → |Γ|). p ∈ Probe(Γ)→ (Π(α :2N).Ap(α))→ U .

Chapter 6.4 defines the three dependent probe axioms of the C-topology family Q on a
type A in context Γ to be:

1. For all γ ∈ Γ and a ∈ Aγ, the map λα.a is in Qλα.γ.

2. If p ∈ Probe(Γ), q ∈ Qp and t ∈ C, then q ◦ t ∈ Qp◦t.

3. For any p0, p1 ∈ Probe(Γ), q0 ∈ Qp0 and q1 ∈ Qp1 , we have q ∈ Qp where p is defined
by p(iα) = pi(α) and q is defined by q(iα) = qi(α).

Under the Curry-Howard interpretation, they become the following product type:

(Π(γ :|Γ|). Π(a :Aγ). λα.a ∈ Q(λα.γ,Γ1(γ)))

× (Π(p : 2N→|Γ|). Π(pΓ: p ∈ Probe(Γ)). Π(t : 2N→2N). Π(tC : t ∈ C).
Π(q : Π(α :2N).Ap(α)).q ∈ Q(p,pΓ) → q ◦ t ∈ Q(p◦t,Γ2(p,pΓ,t,tC)))

× (Π(ρ : 2→2N→|Γ|). Π(ρΓ: Π(i :2).ρi ∈ Probe(Γ)).
Π(ζ : Π(i :2).Π(α :2N).Aρi(α)).(Π(i :2).ζi ∈ Q(ρi,ρΓi))→ Aml(ζ) ∈ Q(Aml(ρ),Γ3(ρ,ρΓ))).

We write it as
probe-axiomsΓ(A,Q)

and formulate types in context Γ as

Type(Γ) :≡ Σ(A : |Γ| → U).
Σ(Q : Π(p : 2N → |Γ|). p ∈ Probe(Γ)→ (Π(α :2N).Ap(α))→ U).
probe-axiomsΓ(A,Q).

And terms of type A in context Γ are formulated as

Term(Γ, A) :≡ Σ(u : Π(γ :|Γ|).|A|γ).
Π(p : 2N → |Γ|). Π(pΓ: p ∈ Probe(Γ)). u ◦ p ∈ Probe(A)(p,pΓ)

where similarly |A| denotes the underlying type family of type A and Probe(A) denotes
its C-topology family.

90

However, there is a problem in the above formulations: the C-topology family of a type
is also indexed by probe witnesses, but there may be more than one probe witnesses for
the same map. For example, given p : 2N → |Γ| and pΓ: p ∈ Probe(Γ) for some Γ: Cxt,
we have another probe witness pΓ′ :≡ Γ2(p, pΓ, 1, 1C), where 1C is the uniform-continuity
witness of the identity map 1: 2N → 2N. If Q is the C-topology family of A : Type(Γ), then
it does not make sense to have Q(p,pΓ) and Q(p.pΓ′) two distinct C-topologies, because Q
should be indexed exactly by (the underlying maps of) the probes rather than the proofs
that they are probes. This is more than a conceptual issue. As explained in Chapter 6.4,
type substitutions are defined by compositions: given A : Type(Γ) and σ : Sub(∆,Γ), the
underlying type family of A[σ] : Type(∆) is defined by

|A[σ]|δ :≡ |A|pr1(σ)(δ)

for δ : |∆|, and the C-topology family is defined by

q ∈ Probe(A[σ])(p,p∆) :≡ q ∈ Probe(A)(pr1(σ)◦p,pr2(σ)(p,p∆))

for p : 2N → |∆|, p∆: p ∈ Probe(∆) and q : Π(α :2N).|A|pr1(σ)(p(α)). When verifying the
dependent probe axioms for A[σ], we got into a situation where we had q ∈ Probe(A)(p,pΓ)

which is not sufficient to conclude q ∈ Probe(A)(p,pΓ′) since pΓ, pΓ′ : p ∈ Probe(Γ) are
obtained via different ways (e.g. using the naturality of σ or the probe axioms of Γ).

One way to address the above issue is to additionally require C-topologies to be
proposition-valued: If P is a C-topology of a space Γ then

Π(p : 2N → Γ). isProp(p ∈ P)

where isProp(X) :≡ Π(x, x′ : X). x = x′ expresses that X : U is a proposition. Similarly,
if Q is a C-topology family of a type A in context Γ then

Π(p : 2N → |Γ|). Π(pΓ: p ∈ Probe(Γ)). Π(q : Π(α :2N).Ap(α)). isProp(q ∈ Q(p,pΓ)).

Requiring C-topologies to be proposition-valued is reasonable when we think of a C-
topology on X to be a subset of the function space 2N → X. In type theory Σ(x :X).P (x)
is called a subtype of X : U , for some proposition-valued type family P : X → U . Here P
has to be proposition-valued, otherwise the subtype may have more elements than X.

In our Agda implementation, we instead added the following condition

Π(p : 2N → |Γ|). Π(pΓ, pΓ′ : p ∈ Probe(Γ)).Π(q : Π(α :2N).Ap(α)). q ∈ Q(p,pΓ) → q ∈ Q(p,pΓ′)

in the product type probe-axiomsΓ(A,Q). If C-topologies are proposition-valued, then
clearly this condition always holds. But this weaker condition concisely solves the above
issue, and is preserved by all the constructions of the CwF-structure on C-spaces, e.g.
type substitution, Σ-type and Π-type.

91

CHAPTER 8

Construction of the model in Agda

Agda [11, 12, 64] is both a functional programming language with dependent types, based
on Martin-Löf type theory (MLTT), and a proof assistant for writing and checking proofs,
based on the Curry–Howard interpretation of logic. We confine ourselves to a fragment of
Agda corresponding to intensional MLTT, with an extension to address the issues caused
by the absence of function extensionality and by the presence of proof relevance of MLTT
as discussed in Section 7.1. In particular, we disable Streicher’s K axiom [70, 44, 20, 18],
which is enabled by default in Agda.

Our Agda implementation, which is available at [77], should be considered as a sig-
nificant part of this thesis. Not only did it take a considerable portion of the research
time, but also it demonstrates how we achieved the main aim of the thesis, that is to
extract computational content of type-theoretic proofs which use the uniform-continuity
principle.

We begin with a short introduction to Agda (Section 8.1), with the necessary def-
initions to support the discussion in this chapter. Then we list some examples in our
Agda implementation (Section 8.2), regarding the constructions of C-spaces and of sys-
tem T. Using the example code, we demonstrate how to “run” our model to compute
uniform-continuity moduli of T-definable functions 2N → N (Section 8.3). In the end of
the chapter, we conclude with an overview of our Agda files (Section 8.4).

8.1 Brief introduction to Agda
A data type in Agda can be defined by using the keyword data to specify its name and
using where to list its constructors. For instance, nature numbers are defined as follows:

data N : Set where
zero : N
succ : N → N

Agda allows Unicode characters in naming identifiers, as shown in the above example.
The important point is that the type of the data type that we are introducing must be
stated explicitly. Here Set is the type of small types. Agda has countably many type
universes

Set : Set1 : Set2 : ...

For example, N is an element of Set as defined above; while C-spaces live in Set1 as we
will see in Section 8.2.

92

One example of a dependent type is that of vectors:

data Vec (A : Set) : N → Set where
〈〉 : Vec A zero
:: : {n : N} → A → Vec A n → Vec A (succ n)

where the first constructor 〈〉 represents an empty vector, and the second one _::_ con-
structs a vector over type A of length succ n from a given element of A and a given vector
over A of length n. In the above definition, A is a parameter to Vec, which means it is fixed
over all constructors of Vec. The type Vec also has an index of type N which denotes
the length of the vector and can vary over constructors. Agda allows implicit arguments,
declared by enclosing them in curly bracket, and tries to infer them automatically. For
instance, the first argument n of the constructor _::_ is implicit. Underscores in Agda are
used to denote the positions of arguments, which allows to define prefix, postfix and even
midfix operators. For instance “x :: xs” is the same as “_::_ x xs”.

The type former of dependent products (or Π-types) is already pre-defined. We can
also redefine it as follows:

P : {A : Set} → (A → Set) → Set
P {A} B = (a : A) → B a

Dependent sums (or Σ-types) can be defined as follows:

data S {A : Set} (B : A → Set) : Set where
, : (a : A) (b : B a) → S B

In both definitions, we make the argument A implicit. Then we write, for example,
S \(a : A) → B a instead of S B to have a notation closer to Σ(a :A).B(a) that is used
in Chapter 7. Projections are defined by pattern matching:

pr1 : {A : Set} {B : A → Set} → (S \(a : A) → B a) → A
pr1 (a , _) = a

pr2 : {A : Set} {B : A → Set} → (w : S \(a : A) → B a) → B(pr1 w)
pr2 (_ , b) = b

where the underscores denote nameless arguments that are not used. Recall that product
types can be defined as Σ-types:

× : Set → Set → Set
A × B = S \(a : A) → B

Coproducts (or disjoint unions) can be defined as follows, where case is the non-dependent
elimination rule:

data _+_ (A B : Set) : Set where
inl : A → A + B
inr : B → A + B

case : {X0 X1 Y : Set} → (X0 → Y) → (X1 → Y) → X0 + X1 → Y
case f0 f1 (inl x0) = f0 x0

case f0 f1 (inr x1) = f1 x1

93

The empty type is defined without given constructors:

data ∅ : Set where

∅-elim : {A : Set} → ∅ → A
∅-elim ()

Here is a special pattern () that indicates that there is no case to be matched. Identity
types and the J-eliminator are defined as follows:

data _≡_ {A : Set} : A → A → Set where
refl : {a : A} → a ≡ a

J : {A : Set} (C : (x y : A) → x ≡ y → Set)
→ ((a : A) → C a a refl) → (x y : A) (p : x ≡ y) → C x y p

J C c x .x refl = c x

The use of a dot is a technicality of the implementation of Agda to deal with non-linear
patterns. It is needed because the only constructor of the identity type is refl, which
then forces x and y to be the same (definitionally equal).

Agda provides a form of dependent pattern matching [20], which allows one to prove
Streicher’s K axiom [44], and hence that every type in Agda is a set (the equality of any
two of its points is a proposition). A version of pattern matching without the K axiom [18]
is enabled with the flag --without-K, by adding the following to the Agda code:

{-# OPTIONS --without-K #-}

As mentioned earlier, we have chosen to implement the model without using the K axiom,
which is ensured by using this without-K flag in every Agda file, in order to be more general
and also to be compatible with homotopy type theory [73].

8.2 Excerpts of the Agda implementation
In this section, we present some parts of our Agda implementation that correspond to the
simplest approach of postulating (funext) explained in Chapter 7.2.1 and can be found in
the package UsingFunext at [77]. One purpose of presenting the Agda implementation is
to compare our Agda programs to the informal proofs in Chapter 7. Moreover, the Agda
code presented in this section will also support the demonstration of running our model
to compute uniform-continuity moduli in Section 8.3.

The notations used in this section are very close to those in Chapter 7. For example,
we also use C to denote the type of uniform continuity of maps 2N → 2N and write t ∈ C

to express that t is uniformly continuous as in Chapter 7. Additional explanations will
be provided when necessary.

C-spaces and continuous maps are formulated as follows:

probe-axioms : (X : Set) → ((2N → X) → Set) → Set
probe-axioms X P =

((x : X) → (l a → x) ∈ P)
× ((t : 2N → 2N) → t ∈ C → (p : 2N → X) → p ∈ P → p ◦ t ∈ P)
× ((p : 2N → X) → (S \(n : N) → (s : 2Fin n) → p ◦ cons s ∈ P) → p ∈ P)

94

TopologyOn : Set → Set1

TopologyOn X = S \(P : (2N → X) → Set) → probe-axioms X P

Space : Set1

Space = S \(X : Set) → TopologyOn X

continuous : (X Y : Space) → (U X → U Y) → Set
continuous X Y f = (p : 2N → U X) → p ∈ Probe X → f ◦ p ∈ Probe Y

Map : Space → Space → Set
Map X Y = S \(f : U X → U Y) → continuous X Y f

where

U : Space → Set
Probe : (X : Space) → (2N → U X) → Set

are defined using the projections pr1 and pr2 to extract the underlying set and the C-
topology of a Space.

Remark. In Chapter 7.2, we write continuous(f) to mean that f is continuous, using
informal type theory. Here we have to specify the domain and codomain explicitly and
write continuous X Y f because, though Agda allows users to use implicit arguments,
we found that in practice it cannot infer spaces when making the first two arguments
of continuous implicit. In a few other places of the development, we have to specify
some arguments explicitly; therefore, the Agda implementation is in fact longer and less
readable than the informal development in Chapter 7.2.

The fan functional is a continuous map of the following type:

fan : Map ((NSpace ⇒ 2Space) ⇒ NSpace) NSpace

whereNSpace and 2Space are the discrete spaces of natural numbers and of booleans, and
X ⇒ Y is the exponential of X Y : Space. The underlying map (i.e. the first component)
of fan is defined as follows:

|fan| : Map (NSpace ⇒ 2Space) NSpace → N

|fan| f = pr1 (pr2 (Lemma[Yoneda] NSpace f))

where Lemma[Yoneda] is (one direction of) the Yoneda Lemma that each continuous map
2N → X corresponds to a probe on X

Lemma[Yoneda] : ∀(X : Space) → Map (NSpace ⇒ 2Space) X
→ S \(p : 2N → U X) → p ∈ Probe X

and is proved by compositing the given continuous map to the “identity” probe on the
exponential 2N (also see Chapter 7.2.1). We remark that the construction of the continuity
witness of |fan|, that is the second component of fan, unavoidably requires (funext) or
its weakening ¬¬(funext) as explained in Chapters 7.1 and 7.2.4.

95

The term language of System T is implemented with three components: types,
contexts and terms. Here we consider ground types 2 of booleans and N of natural
numbers, and function types s V t, which are formalized by the following data type:

data Ty : Set where
2 : Ty
N : Ty
V : Ty → Ty → Ty

To avoid naming variables, we use de Bruijn indices to represent variables in T-terms, by
defining contexts as vectors with a projection function to give the types of variables in a
given context:

data Cxt : N → Set where
e : Cxt zero
+ : {n : N} → Cxt n → Ty → Cxt (succ n)

[] : {n : N} → Cxt n → Fin n → Ty
(xs + x) [zero] = x
(xs + x) [succ i] = xs [i]

Here Fin n is a finite type of size n. Then we define terms by

data Tm : {n : N} → Cxt n → Ty → Set where
VAR : {n : N}{G : Cxt n} → (i : Fin n) → Tm G (G [i])
⊥ : {n : N}{G : Cxt n} → Tm G 2
> : {n : N}{G : Cxt n} → Tm G 2
IF : {n : N}{G : Cxt n}{s : Ty} → Tm G (s V s V 2 V s)
ZERO : {n : N}{G : Cxt n} → Tm G N
SUCC : {n : N}{G : Cxt n} → Tm G (N V N)
REC : {n : N}{G : Cxt n}{s : Ty} → Tm G (s V (N V s V s) V N V s)
LAM : {n : N}{G : Cxt n}{s t : Ty} → Tm (G + s) t → Tm G (s V t)
• : {n : N}{G : Cxt n}{s t : Ty} → Tm G (s V t) → Tm G s → Tm G t

In Chapter 5.1 we add a constant of the fan functional for the purpose of formulating the
uniform-continuity principle. Here we also extend the above theory with the following
Tm-constructor

FAN : {n : N} {G : Cxt n} → Tm G (((N V 2) V N) V N)

in order to have more interesting sample computations of uniform-continuity moduli of
T-definable functions 2N → N, as demonstrated in Section 8.3.

The interpretation of system T in C-spaces is given via three interpretation maps
which have the following types:

[[_]]y : Ty → Space
[[_]]c : {n : N} → Cxt n → Space
[[_]]m : {n : N}{G : Cxt n}{s : Ty} → Tm G s → Map [[G]]c [[s]]y

In particular, the additional Tm-constructor is interpreted using the functional fan:

[[FAN]]m = (l _ → fan) , (l _ _ → l p pP _ _ → pr2 fan p pP)

In words, the Tm-constructor FAN is interpreted as a constant function with value fan,
whose continuity witness is constructed using the one of fan.

96

8.3 Sample computations of

least moduli of uniform continuity
Our type-theoretic developments of C-spaces and of system T including its interpretation
in C-spaces allow us to compute least moduli of uniform continuity of functions 2N → N
from their T-definitions, simply via the following:

modu : Tm e ((N V 2) V N) → N

modu F = pr1 fan (pr1 [[F]]m ?)

where ? is the unique element of the singleton type which interprets the empty context.
In words, any T-term F : Tm e ((N V 2) V N) is interpreted as a continuous map
pr1 [[F]]m ? : Map (NSpace ⇒ 2Space) NSpace. Then applying the functional fan
(defined and explained in Chapter 7.2.1 using informal type theory and in Section 8.2 using
Agda notation) to the continuous map gives its least modulus of uniform continuity.

In this section we provide some examples of closed T-terms of type (N V 2) V N

and the expected results of applying modu to them. As discussed in Chapter 7, all our
formalizations, except UsingFunext, give the expected results.

To improve the readability of our examples, we defined the following T-numerals

ONE TWO THREE FOUR FIVE : {n : N}{G : Cxt n} → Tm G N
ONE = SUCC • ZERO
TWO = SUCC • ONE
THREE = SUCC • TWO
FOUR = SUCC • THREE
FIVE = SUCC • FOUR

as well as the interpretation [[_]] of closed T-terms with meaning in the function space
2N → N

[[_]] : Tm e ((N V 2) V N) → 2N → N

[[t]] a = pr1 (pr1 [[t]]m ?) (ID a)

where ID : 2N → U(NSpace ⇒ 2Space) is the “identity” probe of the exponential 2N,
as discussed in Chapter 7.2.1, which sends a sequence to a continuous map. In each of
the following examples, both a T-term and its type-theoretic meaning are provided:

1. F1 is a constant function which always returns the numeral TWO:

F1 = LAM TWO

F1-interpretation : [[F1]] ≡ l a → 2
F1-interpretation = refl

The expected result of normalizing modu F1 is 0.

2. F2 is also constant, though it looks at the first bit of inputs:

F2 = LAM (IF • (VAR zero • ZERO) • ONE • ONE)

F2-interpretation : [[F2]] ≡ l a → if (a 0) 1 1
F2-interpretation = refl

97

The expected result of normalizing modu F2 is also 0.

3. F3 is a non-trivial function defined using the case-distinction function IF:

It returns FIVE, if the 4th bit is ⊥.
It returns ONE, if the 4th bit is > and the 5th one is ⊥.
It returns TWO, if both the 4th and 5th bits are >.

F3 = LAM (IF • (VAR zero • THREE) • FIVE
• (IF • (VAR zero • FOUR) • ONE • TWO))

F3-interpretation : [[F3]] ≡ l a → if (a 3) 5 (if (a 4) 1 2)
F3-interpretation = refl

The expected result of normalizing modu F3 is 5.

4. F4 is another constant function:

It looks at 2nd and 3rd or 4th bits but always returns ZERO.

F4 = LAM (IF • (VAR zero • ONE) • (IF • (VAR zero • TWO) • ZERO • ZERO)
• (IF • (VAR zero • THREE) • ZERO • ZERO))

F4-interpretation : [[F4]] ≡ l a → if (a 1) (if (a 2) 0 0)
(if (a 3) 0 0)

F4-interpretation = refl

The expected result of normalizing modu F4 is 0.

5. F5 is a non-trivial function defined using the recursor REC:

It applies SUCC to ZERO 3 times, i.e. returns THREE, if the 2nd bit is ⊥.
It applies SUCC to ZERO twice, i.e. returns TWO, if the 2nd bit is >.

F5 = LAM (REC • ZERO • LAM SUCC • (IF • (VAR zero • ONE) • THREE • TWO))

F5-interpretation : [[F5]] ≡ l a → rec zero (l _ → succ) (if (a 1) 3 2)
F5-interpretation = refl

The expected result of normalizing modu F5 is 2.

6. F6 is a more complicated example defined using F4 and F5:

F6 = LAM (REC • (IF • (VAR zero • (F5 • VAR zero)) • FIVE • TWO) • LAM SUCC
• (IF • (VAR zero • (F4 • VAR zero)) • THREE • TWO))

F6-interpretation : [[F6]] ≡ l a → rec (if (a ([[F5]] a)) 5 2) (l _ → succ)
(if (a ([[F4]] a)) 3 2)

F6-interpretation = refl

The expected result of normalizing modu F6 is 4.

98

8.4 Overview of the Agda implementation
The Agda implementation is organized in the following packages:

1. Preliminaries is a general purpose library. We do not use the Agda standard
library because it assumes the K axiom.

2. Continuity contains (1) the formal proof of Theorem 2.3.1 that the two type-
theoretic formulations of the uniform-continuity principle are logically equivalent,
and (2) some properties of uniform continuity for constructing the model such as
the closure property under composition.

3. There are two sub-packages in UsingFunext:

(1) Space implements the main constructions of C-spaces, including the (local)
cartesian closedness, discrete C-spaces and the fan functional, with the aid
of the postulated constant of function extensionality (funext). This can be
regarded as a formalization of the informal development in Chapters 3.3–3.5
within intensional MLTT extended with (funext).

(2) ModellingUC contains the formal proofs of

• Theorem 4.3.5: the full type hierarchy is equivalent to the Kleene–Kreisel
continuous hierarchy within C-spaces when assuming the principle of uni-
form continuity and function extensionality.

• Theorem 5.1.3: all T-definable maps 2N → N are uniformly continuous;

• Theorem 5.1.4: the model of C-spaces validates the uniform-continuity
principle in system T;

• Theorem 5.2.2: the uniform-continuity principle in HAω can be realized
by the fan functional;

• Theorem 6.2.1: the Curry–Howard formulation of the uniform-continuity
principle is inhabited in the locally cartesian closed category of C-spaces.

As explained in Chapter 7.2.1, the computational content of the implementation in
this package is destroyed because the postulated constant (funext) has no computa-
tional rule. For example, in the module ComputationExperiments, the closed Agda
term representing a uniform-continuity modulus of the constant map λα.if(t, 2, 2)
cannot be normalized to a numeral (its normal form has 367 lines in the way Agda
outputs it).

4. The following packages also provide the constructions and proofs of C-spaces, and
show how the uniform-continuity principle in system T is validated in the model
of C-spaces, with different approaches to address the issues caused by the lack of
function extensionality in MLTT (and in Agda):

• UsingSetoid makes use of setoids, as discussed in Chapter 7.2.2, and hence
does not postulate any form of function extensionality, but produces a long
and unreadable formalization.

99

• AddingProbeAxiom introduces an additional probe axiom (that if a map is
pointwise equal to a probe then it is a probe) in the definition of C-spaces as
discussed in Chapter 7.2.3. We remark that this package uses the postulated
constant of function extensionality.

• UsingIrrelevantFunext postulates function extensionality within Agda’s ir-
relevant field. It also requires an additional probe axiom that is stronger than
the one mentioned above, and hence produces a model that is not exactly the
same as the one in UsingFunext a constructive point of view.

• UsingNotNotFunext postulates the double negation of function extensionality
to construct the model, as discussed in Chapter 7.2.4. It produces the same in-
terpretation to simple (and dependent) types and preserves the computational
content of the development.

Each of the above packages has a module named ComputationExperiments, which
contains some sample computations of minimal moduli of uniform continuity of
T-definable functions 2N → N which are explained in Section 8.3. We emphasize
that the uniform-continuity moduli (that is a closed Agda term) of all the sample
functions in these modules can be successfully normalized to numerals.

5. CwF formalizes the structures of category with families on sets/types, on C-spaces,
and on sheaves.

In total, the above Agda formalization has over 16,000 lines split into 85 modules. The
following graph shows the dependency of the modules for the version UsingNotNotFunext:

100

Figure 8.1: A dependency graph of the modules for the version UsingNotNotFunext.

101

CHAPTER 9

Summary and further work

We conclude the thesis with a summary of the main results in the thesis and a few
interesting directions for further research that are related to the thesis.

9.1 Continuity principles in type theory

In Chapter 2 we study the compatibility of intensional Martin-Löf type theory (MLTT)
with the following two Brouwerian principles of continuity:

(Cont) All functions NN → N are continuous.

(UC) All functions 2N → N are uniformly continuous.

Their precise formulations

(Cont) ∀(f : NN → N). ∀(α :NN). ∃(m :N). ∀(β :NN). α =m β ⇒ fα = fβ,

(UC) ∀(f : 2N → N). ∃(m :N). ∀(α, β :2N). α =m β ⇒ fα = fβ.

are validated by Johnstone’s topological topos [48]. But what we are interested in is their
Curry–Howard interpretations:

(CH-Cont) Π(f : NN → N). Π(α :NN). Σ(m :N). Π(β :NN). α =m β → fα = fβ,

(CH-UC) Π(f : 2N → N). Σ(m :N). Π(α, β :2N). α =m β → fα = fβ.

The principle (CH-Cont) is provably false in (intensional and hence in extensional)
MLTT [31], since using (CH-Cont) one can define a modulus-of-continuity function, which
allows one to define non-continuous functions NN → N. An informal proof of this fact is
recalled in Chapter 2.1.

On the other hand, (CH-UC) is not only consistent, but also equivalent to (UC),
which can be formulated and proved in intensional MLTT extended with (1) the axiom
of function extensionality and (2) a type former ‖ − ‖ for propositional truncations. In
such extension, (UC) is formulated as

Π(f : 2N → N). ‖Σ(m :N). Π(α, β :2N). α =m β → fα = fβ‖.

It is not isomorphic to (CH-UC), because in general there can be many uniform-continuity
moduli of the same f : 2N → N. But they are logically equivalent (see Theorem 2.3.1).

102

The crucial idea is that, by requiring the existence of a minimal modulus of uniform
continuity, the type of uniform continuity becomes a proposition, with the aid of function
extensionality in the proof. Using the elimination rule of ‖ − ‖ and the fact that a map
2N → N is uniformly continuous if and only if it has a minimal modulus of uniform
continuity, we get the desired logical equivalence.

Further work 1. Investigate the compatibility of continuity with univalence: Voevod-
sky’s Univalence Axiom [73] is also in the heart of viewing types as topological spaces,
originally for the purposes of homotopy theory, but more recently with applications much
beyond that. It would be interesting to understand the compatibility of continuity with
univalence in the context of intensional Martin-Löf type theory, e.g. to contribute to the
computational understanding of univalence.

9.2 A constructive variation of the topological topos

As discussed in Chapter 3.1, Johnstone’s treatment of the topological topos in [48] is non-
constructive. To build the topological topos, one starts with the monoid of continuous
endomaps of the one-point compactification N∞ of the discrete natural numbers, and then
takes sheaves for the canonical topology of this monoid considered as a category. In order
to obtain an explicit description of the canonical coverage, [48, §3] uses arguments by
contradiction or case analysis via excluded middle.

In Chapter 3 we develop a variation of the topological topos within a minimalistic,
constructive meta-language. The first difference is that we take the monoid C of uniformly
continuous endomaps of the Cantor space 2N. The second one is that we consider a
subcanonical coverage J , consisting of covering families {conss}s∈2n for all n ∈ N, where
conss : 2N → 2N is the concatenation map α 7→ sα. Our model is the category of sheaves
on the site (C,J). This sheaf topos is suitable for constructively modelling (UC) as
illustrated in Chapters 5 and 6, and retains the “topological” character. However, in
this thesis we explore only the aspects of the topos that are necessary for the purpose of
modelling (UC).

The concrete sheaves in our topos can be described as sets equipped with a suitable
continuity structure, which we call C-spaces, and their natural transformations can be
regarded as continuous maps. The idea is to “topologize” a set X by choosing a designated
collection of maps 2N → X, which we call probes. In this thesis, we mainly work with
C-spaces as they have sufficient structure, as discussed in Chapter 3.3 and below, to give
a computational interpretation of the uniform-continuity principle.

C-spaces form a (locally) cartesian closed category, as proved in Chapter 3.3.2. The
constructions are the same as those in the category of sets, with suitable C-topologies.
For example, to get products of C-spaces we “C-topologize” the cartesian products, and
to get exponentials of C-spaces we “C-topologize” the sets of continuous maps. The
category of C-spaces also has a natural numbers object, which is the set of natural numbers
equipped with all uniformly continuous maps 2N → N as probes. The Yoneda Lemma,
specialized to our topos, amounts to that the continuous maps 2N → X are in one-to-one
correspondence with the probes on X. Thus, any continuous map 2N → N amounts to
a uniformly continuous map. This allows us to define a functional fan: (2N → N) → N
which continuously computes moduli of uniform continuity of maps 2N → N.

We emphasize that all the above development of C-spaces can be formulated within

103

intensional MLTT as discussed in Chapter 7, which we formalized in Agda notation (see
Chapter 8) and are available at [77].

Further work 2. Find an alternative coverage for the topos: We are also interested
in sharper information about uniform continuity, in the sense that a finite part of the
input, not necessarily an initial segment, decides the output. For this, we may consider
an alternative coverage based on overwriting maps

overwrite(n, b) : 2N → 2N,

where n ∈ N and b ∈ 2 indicate that the nth bit of the input sequence is to be overwritten
to value b. This is also expected to reduce some computations from exponential to linear
time, but this is left for future investigation.

9.3 A constructive manifestation

of the Kleene–Kreisel continuous functionals
Our C-spaces are analogous to limit spaces which correspond to concrete sheaves in the
topological topos. More precisely speaking, limit spaces can be fully embedded in the
category of C-spaces, as proved in Chapter 4.2. Any topological space X becomes a limit
space by equipping its underlying set with all continuous maps N∞ → X as its convergent
sequences, and becomes a C-space by equipping with all continuous maps 2N → X as its
probes. Thus N∞ is a C-space in our topos, and 2N is a limit space in the topological
topos. Given a limit space X, if we take all continuous maps 2N → X (in the sense of
limit spaces) to be the probes, then X becomes a C-space. This gives the full embedding
of limit spaces into C-spaces. Moreover, limit spaces form an exponential ideal of the
category of C-spaces, because the embedding has a left adjoint, mapping a C-space X
to a limit space by taking the continuous maps N∞ → X (in the sense of C-spaces) as
convergent sequences, which preserves finite products.

When restricted to the Kleene–Kreisel objects in the category of limit spaces, the above
embedding becomes an equivalence. Hence, the Kleene–Kreisel spaces can be calculated
within C-spaces, by starting from the discrete space of natural numbers and iterating
products and exponentials. We emphasize that the proof of this fact is non-constructive.
For example, the definitions and proofs of the above embedding and its reflector (left
adjoint) contain arguments by case analysis via excluded middle. And the proof that the
natural numbers objects in the two categories coincide uses an argument by contradiction.
But we also emphasize that Chapter 4.2 is the only part of our work that contains non-
constructive arguments.

As mentioned in the previous section, our development of C-spaces, including the carte-
sian closed structure and the fan functional, is constructive. Thus our C-spaces provide
a classically equivalent substitute for the traditional manifestations of the Kleene–Kreisel
spaces, which constructively validates the uniform-continuity principle, as discussed in
the section below.

We also constructively prove an equivalence of the Kleene–Kreisel continuous hierarchy
(within C-spaces) and the full type hierarchy, by assuming the Brouwerian principle that
all set-theoretic functions 2N → N are uniformly continuous (Chapter 4.3). The crucial
but obvious fact is that, under this assumption, the C-space N becomes indiscrete, i.e. all

104

maps into N are continuous. Since the category of indiscrete C-spaces is equivalent to the
one of sets, and products and exponentials preserve indiscreteness, we obtain the desired
equivalence of simple-type hierarchies. It is interesting that other Brouwerian axioms are
not needed in the proof. This result is also related to Fourman’s recent work [39] on the
principle of predicative reflection.

9.4 Constructive validations of (UC)

in intuitionistic type theories
C-spaces have sufficient structure to model intuitionistic type theories, as mentioned
above, in which the uniform-continuity principle (UC) is validated.

Firstly, C-spaces form a cartesian closed category with a natural numbers object N
(Chapter 3.3), and thus give a model of Gödel’s system T (Chapter 5.1). Specifically,
the term language of system T is modelled as follows: a type is interpreted as a C-space,
a context as the product of the interpretations of types in it, and a term in context as
a continuous map from the interpretation of its context to the one of its type. Because
quantifiers are absent from system T, we introduce a constant fan : ((N→ 2)→ N)→ N,
and then skolemize the formula of (UC) with the aid of fan as follows:

f :(N→2)→N, α :N→2, β :N→2 ` α =fan(f) β ⇒ f(α) = f(β).

Since this additional constant is interpreted as the fan functional, we easily show that the
above formula is validated in the model of C-spaces (Theorem 5.1.4), using the definition
of the fan functional.

With the same interpretation of the term language of system T, in Chapter 5.2 we
define a sort of realizability semantics of HAω. We firstly associate to each HAω formula φ
a T type |φ|. In particular, universal quantifications are associated with function types,
and existential quantifiers with product types. Then a realizer of φ is an element in the
C-space which interprets the type |φ|. This time, the principle (UC) can be directly
formulated with quantifiers as follows:

` ∀(f :(N→2)→N). ∃(m :N). ∀(α :N→2). ∀(β :N→2). α =m β ⇒ f(α) = f(β).

Again we use the fan functional to realize the above HAω formula (Theorem 5.2.2).
Moreover, the category of C-spaces is locally cartesian closed (Chapter 3.3) and thus

also gives a model of dependent types. In Seely’s model [67] of (extensional) MLTT in
a locally cartesian closed category C, a type Γ ` A is interpreted as an object, i.e. a
C-morphism Ā → Γ̄, in the slice category C/Γ̄, and a term Γ ` u : A as a section of
the interpretation of its type. In particular, Π-types are interpreted by right adjoints
to pullback functors, Σ-types by left adjoints to pullback functors, and identity types
by equalizers. In the locally cartesian closed category of C-spaces, the Curry–Howard
formulation of (UC)

` Π(f :(N→2)→N). Σ(m :N). Π(α :N→2). Π(β :N→2). α =m β → f(α) = f(β)

is interpreted as the unique continuous map [[UC]]→ 1 for some C-space [[UC]]. Then we
show that the above type is validated by constructing an inhabitant of [[UC]] using the

105

fan functional (Theorem 6.2.1), which is equivalent to saying that the interpretation of
the above type has sections.

Seely’s interpretation has a well-known coherence issue, caused by interpreting sub-
stitutions via pullbacks [25]. Nevertheless, the above proof still makes sense, because
locally cartesian closed categories (LCCCs) and categories with families (CwFs) [29], that
is a refined notion of Seely’s model, are biequivalent [17], and thus a type is inhabited in
an LCCC if and only if it is inhabited in the corresponding CwF. Instead of using one
direction of the biequivalence, which amounts to Hofmann’s construction [42], we directly
give a CwF structure to the category of C-spaces in Chapter 6.4. The idea of this model
is that each context is (interpreted as) a C-space, while a type on a context Γ consists
of a family of sets indexed by the elements of Γ and a family of C-topologies indexed
by the probes on Γ. We also give a CwF structure to the supercategory of sheaves in
Chapter 6.5, following Coquand’s construction of presheaf models [21].

Further work 3. Model (UC) in the CwF of sheaves: In order to interpret universes,
we have to work with the supercategory of sheaves, because universes in sheaf toposes do
not correspond to spaces [34]. To validate (UC) using sheaves, we have to understand
the behaviour of a fan functional in the category of sheaves. One possible approach is to
apply the inclusion functor C-Space→ Shv(C,J) to the fan functional in the category
of C-spaces, and then investigate the resulting natural transformation.

Further work 4. Generalize the method to other principles: As discussed in Chapter 1,
sheaf models have been employed to study other non-classical principles, e.g. other forms
of continuity principles and Bar induction. We are interested in generalizing our methods
to investigate such principles in type theory for the purposes of computation.

9.5 Construction of the model in type theory and

the Agda formalization
The main aim of the thesis is to extract computational content from type-theoretic proofs
that use Brouwer’s axiom of uniform continuity. We achieved this by reasoning construc-
tively, as in Chapters 3–6, and by formalizing the development in Martin-Löf type theory
(in Agda notation), as in Chapters 7 and 8.

Due to the absence of function extensionality and the presence of proof relevance in
MLTT, some issues arise in the formulation of the model construction and in the proofs
of the theorems, e.g. in the verification of the sheaf condition for exponentials and in the
continuity witness of the fan functional.

To overcome the difficulty of proof relevance, we adjusted the notion of uniform con-
tinuity, by requiring the existence of a least modulus, to make it a proposition (that is, a
type with at most one element). If two uniformly continuous maps 2N → N are pointwise
equal, then they have the same least modulus of uniform continuity and hence yield the
identical morphism in the model.

To address the issues caused by the lack of function extensionality (funext), we devel-
oped the following approaches:

1. Use setoids. This approach works without requiring extension of type theory. But
it gives a long formalization that obscures the essential aspects of the constructions
and proofs.

106

2. Postulate (funext). This simplest approach gives a clean formalization. But it
destroys the computational content of formal proofs, which defeats the main aim of
the thesis.

3. Postulate (funext) within a computationally irrelevant field. This approach makes
use of Agda’s irrelevant fields to attempt to verify the conjecture that the usage
of (funext) has no computational content. To make it work, an additional probe
axiom has to be introduced, which results in a slightly different model. Moreover,
it requires the non-standard extension of type theory with such irrelevant fields.

4. Postulate the double negation of (funext). This approach was motivated by the
observation that the only property of irrelevant fields we used in the previous ap-
proach is that they form a monad T with T∅ → ∅. Though the model it produces
is only classically equivalent to the one explained in Chapter 3.3, it provides the
same interpretation to simple and dependent types. More importantly, it does not
destroy computational content, because the postulated axiom is in a negative form.

In practice, we confine ourselves to a fragment of Agda corresponding to intensional
MLTT, with extensions corresponding to the above approaches. Our Agda implementa-
tion, which is available at [77], has over 16,000 lines split into 85 modules.

Further work 5. Implement the work in cubical type theory: In addition to the above
approaches, we can also develop the model in a variation of MLTT in which (funext) is
available. Such a choice could be cubical type theory [9] which has a Haskell implementa-
tion [19] with a syntax highly close to the one of Agda. Since cubical type theory is an
implementation of Voevodsky’s univalence axiom, developing our model in it would be
also an approach to investigate the consistency of continuity with univalence.

Further work 6. Internalize the syntax and the models of type theory: There are a
number of benefits of implementing the syntax and models in type theory, e.g. for the
purposes of formal verification and of algorithm abstraction. However, as mentioned in
Chapter 7.3, this problem remains open in the community of type theory [15, 27, 29, 76].

9.6 Universes in sheaf models
This section discusses preliminary and further work on a notion of universes in sheaf
models that is suitable for type-theoretic development.

Following Coquand’s construction of the (first) universe in presheaf models [21] (in
the sense of Dybjer’s categories with families), we attempt to interpret universes in our
sheaf model which has been developed in Chapter 6.5. However, the resulting “universe”
has two problems regarding its development in Martin-Löf type theory:

1. The underlying type family of the “universe” is not proposition-valued.

The underlying type of a (pre)sheaf has to be a proposition (i.e. a type with at most
one element) and hence the underlying type family of a type has to be proposition-
valued, when the equations of (pre)sheaves and of types are interpreted using inten-
sional identity types (see Chapter 7.3.2).

2. The amalgamation of any family of elements of the “universe” is unique only up to
isomorphism.

107

The existence of amalgamations is required to be unique up to equality. And the
uniqueness is necessary, for instance, when verifying the sheaf condition for expo-
nentials of sheaves.

We remark that the above problems in fact occur in any sheaf topos when performing
Coquand’s construction.

Recall that a universe (à la Tarski [43]) is a type U whose elements are regarded as
names of types. Each type can be encoded as an element of U, i.e. for each type A, there
is an element |A| : U. And each element of U can be decoded to a type, i.e. for T : U,
there is a type El(T). The computation rules of U include

A = El(|A|) T = |El(T)|

for any type A and any element T : U.
Based on Coquand’s presentation of universes in his note [21], we define an additional

structure on categories with families (CwFs) to interpret universes. The definition of
CwFs and the structures of Σ-types, Π-types and identity types have been introduced in
Chapter 6.3. A category with families C supports the universe if and only if

• for any context Γ we have a type U ∈ Type(Γ),

• for any type A ∈ Type(Γ) we have a term |A| ∈ Term(Γ,U), and

• for any term T ∈ Term(Γ,U) we have a type El(T) ∈ Type(Γ),

such that the following equations hold:

El(|A|) = A |El(T)| = T

U[σ] = U |A|[σ] = |A[σ]| (El(T))[σ] = El(t[σ]).

The corresponding GAT-presentation is given by the following typing rules:

Γ `
Γ ` U

Γ ` A
Γ ` |A| : U

Γ ` T : U
Γ ` El(T) Type

together with the same equations as above.
In Chapter 6.5 we develop a CwF-structure on the category of sheaves on the uniform-

continuity site, as well as the additional structures to interpret Σ- and Π-types, following
Coquand’s construction of presheaf model, within a meta-language of some form of con-
structive set theory. Here we attempt to extend his construction to interpret the (first)
universe.

We firstly construct a (large) set U∗ as follows: An element A ∈ U∗ is a C-indexed
family of sets together with restriction maps

• : At →
∏
r:C

A(t◦r)

for each t : C such that

(u1) a • 1 = a for all t ∈ C and a ∈ At,

108

(u2) (a • r) • r′ = a • (r ◦ r′) for all t, r, r′ ∈ C and a ∈ At,

(u3) for any t ∈ C, a0 ∈ At◦cons0 and a1 ∈ At◦cons1 , there is a unique amalgamation a ∈ At
such that a • cons0 = a0 and a • cons1 = a1.

Similarly to (s3) and (t3) in Chapter 6.5, we have the following logically equivalent con-
dition of (u3):

(u3’) for any t ∈ C, n ∈ N and {as ∈ At◦conss}s∈2n , there is a unique amalgamation a ∈ At
such that a • conss = as for each s ∈ 2n.

Then we define the universe Γ ` U to be the constant family consisting of U∗, i.e.

Uγ :≡ U∗

for all γ ∈ Γ, with the restriction map ∗ : U∗ → C→ U∗ defined by

(A ∗ t)r :≡ At◦r

for A ∈ U∗ and t, r ∈ C. It is routine to prove that A ∗ t satisfies (u1) to (u3), which
illustrates that the above restriction map is well-defined.

To be a type, the family U has to satisfy (t1) to (t3). The first two conditions are
clearly satisfied. For (t3) we only have the following:

Proposition 9.6.1. For any A0, A1 ∈ U∗, there exists A ∈ U∗ such that A ∗ consi = Ai

for each i ∈ 2. And A is unique up to pointwise isomorphism.

Proof. Given A0, A1 ∈ U∗, we construct A ∈ U∗ as follows: Given t ∈ C, let nt = lmodt(1).
By (†), for each s ∈ 2nt , there are is ∈ 2 and ts ∈ C such that t ◦ conss = consis ◦ ts. We
define At :≡

∏
s:2nt A

is
ts . Given t, r ∈ C and w ∈ At, we define w•r ∈ A(t◦r) as follows: Let

nt = lmodt(1) and let nr = lmodr(nt). Then, using (†) twice, we have, for each s ∈ 2nr ,

t ◦ r ◦ conss = t ◦ consss ◦ rs = consis ◦ ts ◦ rs (††)

for some ss ∈ 2nt , ts, rs ∈ C and is ∈ 2. Let n = lmodt◦r(1). For each s ∈ 2n, we have
is ∈ 2 and ts ∈ C such that t ◦ r ◦ conss = consis ◦ ts. Since n ≤ nr, for each s′ ∈ 2(nr−n),
we have

t ◦ r ◦ conss ◦ conss′ = consis ◦ ts ◦ conss′

and, using (††), we have sss′ ∈ 2nt , iss′ ∈ 2 and tss′ , rss′ ∈ C such that

t ◦ r ◦ conss ◦ conss′ = t ◦ r ◦ consss′ = consiss′ ◦ tss′ ◦ rss′ .

It is not difficult to prove that is = iss′ , and thus ts ◦ conss′ = tss′ ◦ rss′ . Therefore, for
each s ∈ 2n, we have a family {w(sss′) • rss′ ∈ Aists◦conss′

}s′∈2(nr−n) . By (u3’) of Ais , this

family has a unique amalgamation as ∈ Aists . We define (w • r)(s) :≡ as for each s ∈ 2n.
Then we show that A satisfies (u1) to (u3):

1. Given t ∈ C and w ∈ At, we have w • 1 = w because lmodt(1) = lmod(t◦1)(1).

2. Given t, r, r′ ∈ C and w ∈ At, it is routine to prove (w •r)•r′ = w • (r ◦r′) following
the definition of • on A and using the uniqueness of amalgamations.

109

3. Given t ∈ C, w0 ∈ At◦cons0 and w1 ∈ At◦cons1 , we define w ∈ At as follows: Let
nt = lmodt(1). (i) If nt = 0 then t = consi ◦ t′ for some i ∈ 2 and t′ ∈ C.
Moreover, we know lmod(t◦cons0) = lmod(t◦cons1) = 0, and thus w0(ε) ∈ Ait′◦cons0

and
w1(ε) ∈ Ait′◦cons1

. We define w(ε) to be the unique amalgamation of w0(ε) and w1(ε),
by (u3) of Ai. (ii) If nt = n+ 1 for some n, then n ≥ n0 ≡ lmod(t◦cons0)(1) and n ≥
n1 ≡ lmod(t◦cons1)(1). For each i ∈ 2 and s ∈ 2n, we define w(is) :≡ wi(s0) • conss1
where s0 ∈ 2ni and s1 ∈ 2n−ni such that s = s0s1. Then it is routine to check that
w • cons0 = w0 and w • cons1 = w1 hold pointwise in both (i) and (ii).

Therefore, A is an element of U∗.
The above A is an “amalgamation” of A0 and A1: for each i ∈ 2, we have

(A ∗ consi)t = Aconsi◦t (by the definition of ∗ on U)
=

∏
s∈20 Ait (by the definition of A and the fact lmod(consi◦t)(1) = 0)

= Ait

for any t ∈ C.
Finally we show that A is unique up to isomorphism: Suppose we are given B ∈ U∗

such that B ∗ consi = Ai for each i ∈ 2. Given t ∈ C, we let n = lmodt(1) and for each
s ∈ 2n have t ◦ conss = consis ◦ ts for some is ∈ 2 and ts ∈ C. We have Bt

∼= At:

(⇒) Let b ∈ Bt. For each s ∈ 2n we have b • conss ∈ Bt◦conss . Because Bt◦conss = Aists the
tuple consisting of all b • conss is an element of At.

(⇐) Let w ∈ At. For each s ∈ 2n we have w(s) ∈ Aists . Because Bt◦conss = Aists we have a
family {w(s) ∈ Bt◦conss}s∈2n . Using (u3’) of B, it has a unique amalgamation in Bt.

Clearly the composites of the above operations are identity.

Suppose that, in the meta-theory, isomorphisms of sets yield equalities. Then the
above proof does construct amalgamations of elements in U∗. We carry on the construction
of the first universe, including the coding operator | − | and the decoding operator El, in
our sheaf model. Given a type Γ ` A, we define a term Γ ` |A| : U by

|A| :
∏
γ:Γ

Uγ (|A|(γ))t :≡ Aγ·t

and the map • is defined by, for any a ∈ (|A|(γ))t and r : C,

a • r :≡ a ∗ r,

where ∗ is the restriction map of A. We skip the routine proof that |A| is well defined.
Given a term Γ ` T : U, we define a type Γ ` El(T) by (El(T))γ :≡ (T (γ))1 for each
γ ∈ Γ. The restriction maps of El(T) are defined by, for γ ∈ Γ, a ∈ (El(T))γ and t ∈ C,

a ∗ t :≡ a • t,

where • is the restriction map on T (γ). It is routine to prove that El(T) is a well
defined term. It remains to verify the required equations as presented above, which is
also routine.

110

Further work 7. Refine the notion of universe in sheaf models: As shown above, when
extending Coquand’s construction of the universe in presheaf models to the one in our
(or any) sheaf model, the amalgamation of any family of elements of the “universe” is
unique only up to isomorphism. Streicher [71] constructs universes in a presheaf topos
and then sheafifies them to get the ones in sheaves. However, his construction, e.g.
sheafification, does not seem suitable for development in predicative intuitionistic type
theories. It remains open to develop a notion of universes in sheaf toposes that is suitable
for type-theoretic development.

111

Bibliography

[1] Agda Community. The Agda Wiki – The Agda reference manual. Available at:
http://wiki.portal.chalmers.se/agda/ReferenceManual.TOC.

[2] S. Awodey and A. Bauer. Propositions as [types]. Journal of Logic and Computation,
14(4):447–471, 2004.

[3] J. C. Baez and A. E. Hoffnung. Convenient categories of smooth spaces. Transactions
of the American Mathematical Society, 363(11):5789–5825, 2011.

[4] I. Battenfeld, M. Schröder, and A. Simpson. Compactly generated domain theory.
Mathematical Structures in Computer Science, 16(2):141–161, 2006.

[5] A. Bauer, L. Birkedal, and D. S. Scott. Equilogical spaces. Theoretical Computer
Science, 315(1):35–59, 2004.

[6] A. Bauer and A. Simpson. Continuity begets continuity. Presented at Trends
in Constructive Mathematics in Frauenwörth, Chiemsee, Bavaria, Germany.
Slides available at: http://math.andrej.com/2006/08/15/continuity-begets-

continuity-frauenworth-slides/, 2006.

[7] M. J. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, 1985.

[8] Y. Bertot, P. Castéran, G. Huet, and C. Paulin-Mohring. Interactive theorem proving
and program development : Coq’Art : the calculus of inductive constructions. Texts
in theoretical computer science. Springer, Berlin, New York, 2004.

[9] M. Bezem, T. Coquand, and S. Huber. A model of type theory in cubical sets.
Preprint, March 2014.

[10] E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.

112

http://wiki.portal.chalmers.se/agda/ReferenceManual.TOC
http://math.andrej.com/2006/08/15/continuity-begets-continuity-frauenworth-slides/
http://math.andrej.com/2006/08/15/continuity-begets-continuity-frauenworth-slides/

[11] A. Bove and P. Dybjer. Dependent types at work. Lecture Notes for the LerNet
Summer School, Piriápolis, Uruguay, 2008.

[12] A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda—a functional language
with dependent types. In Theorem proving in higher order logics, volume 5674 of
Lecture Notes in Computer Science, pages 73–78. Springer, 2009.

[13] D. Bridges and F. Richman. Varieties of Constructive Mathematics. Cambridge
University Press, 1987.

[14] J. Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure
and Applied Logic, 32(0):209–243, 1986.

[15] J. Chapman. Type theory should eat itself. Electronic Notes in Theoretical Computer
Science, 228(0):21–36, 2009.

[16] P. Clairambault. From categories with families to locally cartesian closed categories.
M1 report on categorical models of type theory, 2006.

[17] P. Clairambault and P. Dybjer. The biequivalence of locally cartesian closed cat-
egories and Martin-Löf type theories. In Typed Lambda Calculi and Applications,
volume 6690 of Lecture Notes in Computer Science, pages 91–106. Springer Berlin
Heidelberg, 2011.

[18] J. Cockx, D. Devriese, and F. Piessens. Pattern matching without K. In Proceedings
of the 19th ACM SIGPLAN International Conference on Functional Programming,
pages 257–268. ACM, 2014.

[19] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. Implementation of univalence
in cubical sets. Available at https://github.com/simhu/cubical.

[20] T. Coquand. Pattern matching with dependent types. In Proceedings of the Workshop
on Types for Proofs and Programs, pages 66–79, 1992.

[21] T. Coquand. Sheaf model of type theory. Unpublished note, 2013.

[22] T. Coquand, N. A. Danielsson, M. H. Escardó, U. Norell, and C. Xu. Negative
consistent axioms can be postulated without loss of canonicity. Unpublished note,
2013.

113

https://github.com/simhu/cubical

[23] T. Coquand and G. Jaber. A note on forcing and type theory. Fundamenta Infor-
maticae, 100(1-4):43–52, 2010.

[24] T. Coquand and G. Jaber. A computational interpretation of forcing in type theory.
In Epistemology versus Ontology, volume 27, pages 203–213. Springer Netherlands,
2012.

[25] P.-L. Curien. Substitution up to isomorphism. Fundamenta Informaticae, 19(1/2):51–
85, 1993.

[26] P.-L. Curien, R. Garner, and M. Hofmann. Revisiting the categorical interpretation
of dependent type theory. Theoretical Computer Science, 546(0):99–119, 2014.

[27] N. Danielsson. A formalisation of a dependently typed language as an inductive-
recursive family. In Types for Proofs and Programs, volume 4502 of Lecture Notes in
Computer Science, pages 93–109. Springer Berlin Heidelberg, 2007.

[28] E. Dubuc. Concrete quasitopoi. In Applications of Sheaves, volume 753 of Lecture
Notes in Mathematics, pages 239–254. Springer Berlin / Heidelberg, 1979.

[29] P. Dybjer. Internal type theory. In Types for proofs and programs (Torino, 1995),
volume 1158 of Lecture Notes in Computer Science, pages 120–134. Springer, 1996.

[30] M. H. Escardó. Synthetic topology of data types and classical spaces. Electron. Notes
Theor. Comput. Sci., 87:21–156, 2004.

[31] M. H. Escardó. In intensional Martin-Löf type theory, if all functions (N→ N)→ N
are continuous then 0=1. Note with an informal proof and with formal proof in Agda,
2013.

[32] M. H. Escardó. Infinite sets that satisfy the principle of omniscience in any variety
of constructive mathematics. Journal of Symbolic Logic, 78(3):764–784, 2013.

[33] M. H. Escardó, J. Lawson, and A. Simpson. Comparing Cartesian closed categories of
(core) compactly generated spaces. Topology and its Applications, 143(1-3):105–145,
2004.

[34] M. H. Escardó and T. Streicher. The universe is indiscrete. Submitted for publication,
2013.

114

[35] M. H. Escardó and C. Xu. A constructive manifestation of the Kleene–Kreisel con-
tinuous functionals. Accepted for publication in Annals of Pure and Applied Logic,
2015.

[36] M. H. Escardó and C. Xu. The inconsistency of a Brouwerian continuity principle
with the Curry–Howard interpretation. Accepted for TLCA’2015, 2015.

[37] M. P. Fourman. Notions of choice sequence. In The L. E. J. Brouwer Centenary
Symposium Proceedings of the Conference held in Noordwijkerhout, volume 110, pages
91–105, 1982.

[38] M. P. Fourman. Continuous truth I, non-constructive objects. In Proceedings of Logic
Colloquium, Florence 1982, volume 112, pages 161–180. Elsevier, 1984.

[39] M. P. Fourman. Continuous truth II: reflections. In Workshop on Logic, Language,
Information and Computation, volume 8071 of Lecture Notes in Computer Science,
pages 153–167. Springer Berlin Heidelberg, 2013.

[40] M. Hedberg. A coherence theorem for Martin-Löf’s type theory. J. Functional Pro-
gramming, pages 413–436, 1998.

[41] M. Hofmann. Extensional concepts in intensional type theory. PhD thesis, University
of Edinburgh, 1995. Technical report ECS-LFCS-95-327.

[42] M. Hofmann. On the interpretation of type theory in locally cartesian closed cate-
gories. In Computer science logic (Kazimierz, 1994), volume 933 of Lecture Notes in
Computer Science, pages 427–441. Springer, 1995.

[43] M. Hofmann. Syntax and semantics of dependent types. In Semantics and Logics of
Computation, pages 79–130. Cambridge University Press, 1997.

[44] M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In In
Venice Festschrift, pages 83–111. Oxford University Press, 1996.

[45] J. M. E. Hyland. Filter spaces and continuous functionals. Annals of Mathematical
Logic, 16:101–143, 1979.

[46] J. M. E. Hyland. The effective topos. In The L.E.J. Brouwer Centenary Symposium
(Noordwijkerhout, 1981), volume 110 of Studies in Logic and the Foundations of
Mathematics, pages 165–216. North-Holland, 1982.

115

[47] M. Hyland. Function spaces in the category of locales. In Continuous lattices, volume
871 of Lect. Notes Math., pages 264–281, 1981.

[48] P. T. Johnstone. On a topological topos. Proceedings of the London Mathematical
Society, 38(3):237–271, 1979.

[49] P. T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 1, vol-
ume 43 of Oxford Logic Guides. The Clarendon Press Oxford University Press, 2002.

[50] S. C. Kleene. Countable functionals. In A. Heyting, editor, Constructivity in Math-
ematics, pages 81–100. North-Holland, 1959.

[51] N. Kraus, M. Escardó, T. Coquand, and T. Altenkirch. Generalizations of Hedberg’s
theorem. In Typed Lambda Calculi and Applications, volume 7941 of Lecture Notes
in Computer Science, pages 173–188. Springer Berlin Heidelberg, 2013.

[52] N. Kraus, M. Escardó, T. Coquand, and T. Altenkirch. Notions of anonymous
existence in Martin-Löf Type Theory. Submitted for publication, 2014.

[53] G. Kreisel. Interpretation of analysis by means of constructive functionals of finite
types. In A. Heyting, editor, Constructivity in Mathematics, pages 101–128. North-
Holland, 1959.

[54] G. Kreisel. On weak completeness of intuitionistic predicate logic. J. Symbolic Logic,
27:139–158, 1962.

[55] J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic. Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, 1988.

[56] J. Longley and D. Normann. Higher-Order Computability. Springer, 2015. To appear
in the Computability in Europe series.

[57] J. R. Longley. Notions of computability at higher types. I. In Logic Colloquium 2000,
volume 19 of Lecture Notes in Logic, pages 32–142. The Association for Symbolic
Logic, 2005.

[58] J. R. Longley. On the ubiquity of certain total type structures. Mathematical Struc-
tures in Computer Science, 17(5):841–953, 2007.

116

[59] S. Mac Lane. Categories for the Working Mathematician. Springer, 2nd edition,
1998.

[60] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction
to Topos Theory. Springer, 1992.

[61] P. Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and
S. J. C., editors, Logic Colloquium 1973, pages 73–118. North-Holland, 1975.

[62] P. Martin-Löf. Intuitionistic type theory. Studies in proof theory. Bibliopolis, 1984.
Notes by Giovanni Sambin of a series of lectures given in Padua, June 1980.

[63] M. Menni and A. Simpson. Topological and limit-space subcategories of countably-
based equilogical spaces. Mathematical Structures in Computer Science, 12:739–770,
2002.

[64] U. Norell. Dependently typed programming in Agda. In Proceedings of the 4th
international workshop on Types in language design and implementation, TLDI ’09,
pages 1–2, 2009.

[65] D. Normann. Recursion on the countable functionals, volume 811 of Lecture Notes
in Mathematics. Springer, 1980.

[66] D. Normann. Computing with functionals - computability theory or computer sci-
ence? Bulletin of Symbolic Logic, 12(1):43–59, 2006.

[67] R. A. G. Seely. Locally cartesian closed categories and type theory. Mathematical
Proceedings of the Cambridge Philosophical Society, 95(1):33–48, 1984.

[68] G. F. Simmons. Introduction to Topology and Modern Analysis. Pure and applied
mathematics. McGraw-Hill, 1963.

[69] E. H. Spanier. Quasi-topologies. Duke Mathematical Journal, 30(1):1–14, 1963.

[70] T. Streicher. Investigations into intensional type theory. Habilitationsschrift, LMU
München, 1993.

[71] T. Streicher. Universes in toposes. In From sets and types to topology and analysis,
volume 48 of Oxford Logic Guides, pages 78–90. Oxford University Press, 2005.

117

[72] M. B. Symth. Topology. In S. Abramsky, D. M. Babbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume I, pages 641–761. Clarendon
Press, 1993.

[73] The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. Institute for Advanced Study, 2013.

[74] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics : An Introduction.
North-Holland, 1988.

[75] G. van der Hoeven and I. Moerdijk. Sheaf models for choice sequences. Annals of
Pure and Applied Logic, 27(1):63–107, 1984.

[76] V. Voevodsky. HoTT is not an interpretation of MLTT into abstract homotopy
theory. Post available at http://homotopytypetheory.org/2015/01/11/hott-is-
not-an-interpretation-of-mltt-into-abstract-homotopy-theory/, 2015.

[77] C. Xu. A continuous computational interpretation of type theories, developed in
Agda. Available at http://cj-xu.github.io/ContinuityType/, 2015.

[78] C. Xu and M. H. Escardó. A constructive model of uniform continuity. In Typed
Lambda Calculi and Applications, volume 7941 of Lecture Notes in Computer Science,
pages 236–249. Springer Berlin Heidelberg, 2013.

118

http://homotopytypetheory.org/2015/01/11/hott-is-not-an-interpretation-of-mltt-into-abstract-homotopy-theory/
http://homotopytypetheory.org/2015/01/11/hott-is-not-an-interpretation-of-mltt-into-abstract-homotopy-theory/
http://cj-xu.github.io/ContinuityType/

Index

C-space, 29
discrete-, 32
indiscrete-, 44

C-topology, 29
discrete-, 33
indiscrete-, 44

action, 24
amalgamation, 25

category with families, 56
continuous realizability semantics, 49
continuous realizer, 49
continuous functional, 38
continuous map

of C-spaces, 30
of limit spaces, 38
of quasi-topological spaces, 29

coproduct
of C-spaces, 31

coverage
axiom, 23

dependent function, 52
dependent pair, 52

exponential
of C-spaces, 31
of limit spaces, 39
of sheaves, 26

function extensionality, 73

generalized algebraic theory, 55

Heyting arithmetic over finite types, 49

initial object
of C-spaces, 31

limit structure, 38
limit space, 38
local constancy, 32

modulus of-, 32
logical relation, 47

Martin-Löf type theory, 51

natural transformation, 24

presheaf, 24
concrete-, 28
condition, 30
extensional-, 28

principle
of continuity, 12
of uniform continuity, 12

probe, 29
axioms, 29

product
of C-spaces, 31
of limit spaces, 39
of sheaves, 26

proof relevance, 73
proposition, 15
propositional truncation, 15

quasi-topological space, 29
quasi-topology, 29

setoid, 78
sheaf, 25

concrete-, 28
condition, 30
extensional-, 28

simple object, 38
system T, 46

formulas of-, 47
the term language of-, 46

119

terminal object
of C-spaces, 31
of sheaves, 26

topological topos, 20
type

Π-, 52
Σ-, 52
identity-, 53

type hierarchy
extended-, 45
full-, 44

uniform-continuity
coverage, 23
site, 24

uniform continuity, 23
modulus of-, 24

universe, 108

Yoneda
embedding, 25
lemma, 34

120

	Introduction
	Summary of contributions
	Summary of related work
	Prerequisites
	Organization

	The formulation of continuity principles in type theory
	The Curry--Howard interpretation of (Cont)
	Relationship between , and , in a topos
	The Curry--Howard interpretation of (UC)
	Discussion

	A variation of the topological topos
	Johnstone's topological topos
	Our variation of the topological topos
	The uniform-continuity site
	Subcanonicity of the uniform-continuity coverage
	The cartesian closed structure of Shv(C,J)
	Concrete and Extensional sheaves

	C-spaces and continuous maps
	Concrete sheaves as a variation of quasi-topological spaces
	The (local) cartesian closed structure of C-Space
	Discrete C-spaces and natural numbers object

	The representable sheaf is the Cantor space
	The fan functional in the category of C-spaces

	The Kleene--Kreisel continuous functionals
	The Kleene--Kreisel continuous functionals
	The Kleene--Kreisel spaces as a full subcategory of C-spaces
	The Kleene--Kreisel and full type hierarchies

	Modelling simple types in C-spaces
	A continuous model of Gödel's System T
	A continuous realizability semantics of HA

	Modelling dependent types in sheaves
	Martin-Löf type theory
	Modelling (UC) via the LCCC of C-spaces
	Categories with families
	A continuous model of dependent types
	A sheaf model of dependent types

	Construction of the model in type theory
	Function extensionality and proof relevance
	Construction via different approaches
	Construction by postulating (funext)
	Construction by using setoids
	Construction by adding a probe axiom
	Construction by postulating (funext)

	Models of dependent types in intensional MLTT
	The CwF of types
	The CwF of presheaves
	The CwF of C-spaces

	Construction of the model in Agda
	Brief introduction to Agda
	Excerpts of the Agda implementation
	Sample computations of least moduli of uniform continuity
	Overview of the Agda implementation

	Summary and further work
	Continuity principles in type theory
	A constructive variation of the topological topos
	A constructive manifestation of the Kleene--Kreisel continuous functionals
	Constructive validations of (UC) in intuitionistic type theories
	Construction of the model in type theory and the Agda formalization
	Universes in sheaf models

	Bibliography
	Index

