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Abstract 

The increasing spread of antimicrobial resistant bacteria and the decline in the 

development of novel antibiotics have incited exploration of other avenues for 

antimicrobial therapy. One option is the use of antibiotics that enhance beneficial 

aspects of the host’s defences to infection. This study explores the influence of 

antibiotics on the innate immune response to bacteria. The aims were to investigate 

antibiotic effects on bacterial viability, innate immune cells (neutrophils and 

macrophages) in response to bacteria and interactions between bacteria and the 

host. Five exemplar antibiotics; ciprofloxacin, tetracycline, ceftriaxone, azithromycin 

and streptomycin at maximum serum concentration (Cmax) and minimum inhibitory 

concentrations (MIC) were tested. These five antibiotics were chosen as they are 

commonly used to treat infections and represent different classes of drug. Salmonella 

Typhimurium was chosen as the model pathogen as it is an intracellular organism, 

and as such the effect of antibiotics on entry and survival could be assessed. SL1344 

was chosen because it is the wild type pathogenic S. Typhimurium strain and is 

routinely used in tissue culture infection assays. Following incubation of S. 

Typhimurium SL1344 with Cmax concentrations of ceftriaxone bacterial viability was 

undetectable, ciprofloxacin reduced bacteria, while tetracycline, azithromycin and 

streptomycin did not alter bacteria viability. When S. Typhimurium was incubated with 

antibiotic treated neutrophils, there was reduced bacteria viability for ceftriaxone and 

ciprofloxacin. Neutrophils treated with ciprofloxacin had reduced ability to 

phagocytose Escherichia coli, while oxidative burst was increased following exposure 

to ceftriaxone.  
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Adhesion of S. Typhimurium SL1344 to J774 macrophage monolayers was 

increased when the macrophages were pre-exposed to Cmax and MIC of ciprofloxacin 

and ceftriaxone, but only Cmax concentrations of azithromycin and streptomycin. 

Bacterial adhesion was not altered when macrophages were pre-exposed to 

tetracycline. Invasion of the less invasive SL1344 tolC::aph was greater in 

macrophages exposed to antibiotics. Unlike the murine macrophages, antibiotics had 

no effect when S. Typhimurium was used to infect human cells (THP-1 and monocyte 

derived macrophages).  

Expression of IL-1β and TNFα mRNA was greater in SL1344 infected macrophages 

which had been pre-exposed to ciprofloxacin or ceftriaxone, than in macrophages 

exposed to antibiotics alone or SL1344 alone.  

In conclusion, it was found that clinical relevant concentrations of certain antibiotics 

enhance the response of immune cells and their interaction with bacteria, by 

increasing phagocytosis and killing in neutrophils, increasing bacterial adhesion to 

macrophages and increased cytokine production. These immunomodulatory 

potentials of antibiotics can be harnessed and exploited for broader therapeutic use. 
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1 Introduction 

1.1 Immune system overview 

The immune system comprises a vast network of mechanisms that work hand in 

hand to protect an organism from invading pathogens. Each arm of the immune 

system contributes in recognition and elimination of pathogens (Iwasaki and 

Medzhitov, 2010). In order to achieve this, the host depends on the immune system’s 

ability to distinguish between host cells and invading pathogens by virtue of unique 

structural patterns, allowing the host to clear pathogens without causing damage to 

self-tissues. Cells of the immune system originate from hematopoietic stem cells 

found in the bone marrow (Chaplin, 2006). Haematopoiesis occurs at different 

anatomical locations during the developmental stages of an organism. Changes in 

anatomical sites of haematopoiesis indicate the different functional status of the stem 

cells and the changing needs of the developing organism. Haematopoiesis during the 

embryonic stage occurs in two stages: primitive and definitive haematopoiesis. 

Primitive haematopoiesis occurs in the yolk sac, aorta-gonad-mesonephros and 

placenta, before the development of the fetal liver. The yolk sac is the earliest site 

where macrophages, erythrocytes and megakaryotes are found. Definitive 

haematopoiesis occurs in the embryo after the development of the liver. At 14-20 

weeks post gestation until post natal stages, haematopoiesis occurs in the liver and 

spleen, while haematopoiesis occurs exclusively in the bone marrow in adults 

(Mosaad, 2014). The stem cells make their way through the blood and lymph, 

forming microstructures in lymphoid organs, and eventually permeate body tissue 

(Alberts et al., 2002). This circulation through the blood and permeation of tissues is 

the crux of an effective immune response against invading pathogens. 
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Recognition of the distinctively unique structural patterns on pathogens,  employs two 

host mechanisms; 1) The innate immune system, an evolutionarily conserved system 

that recognises a wide range of pathogen-associated molecular patterns (PAMP) 

within hours of infection (Janeway and Medzhitov, 2002). This is achieved using 

pattern recognition receptors (PRR) such as Nod-like receptors (Inohara, 2001) and 

Toll-like receptors (Hoffmann, 1999) and provides a rapid ‘first aid’ response against 

invading microbes. 2) The adaptive immune system which constitutes cells with 

exquisite specificity for individual microbial molecular structures that frequently 

undergo mutation to change the recognised structures to avoid being detected by the 

immune system. The primary adaptive immune response is triggered after the innate 

immune system but produces a long lived response (years) and immune memory in 

the event of a re-infection or a second challenge. Although classified separately, 

activities of these two systems overlap and contribute effectively in combating 

infections and was described by Chaplin (2006) as “complementary and 

cooperating”. 

The hallmark of the immune response is immunological recognition; the ability to 

distinguish between self and non-self (Medzhitov and Janeway, 2000). Without this, 

cells of the immune system could react against host own tissues leading to 

development of autoimmune diseases. This function is expressed in both the innate 

and adaptive immune system and is discussed subsequently. 

1.1.1 Innate immune response 

Pathogens gain entry into the host through various routes. The innate immune 

system sits at the frontline of a host defence system. It encompasses physical 

barriers; epithelial cells of the skin, mucosal linings of the respiratory tract, 

gastrointestinal tract and upper respiratory tract, and the epithelial cilia that ensure 
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that inhaled particles are swept away from the lungs. Beneath the epithelial surfaces 

lie phagocytes that engulf and digest invading pathogens. Although described as 

primitive and limited, studies have illustrated that in the absence of an adaptive 

immune system, these phylogenetically conserved mechanisms offer protection 

against fatal pathogens (Melotto et al., 2006, Kunze et al., 2004).  The mammalian 

innate immune system not only recognises pathogens, but primes and modulates the 

clonal expansion of antigen-responsive cells by the adaptive immune system 

(Medzhitov et al., 1997, Gururajan et al., 2007).  

1.1.1.1 Activation of Innate Immunity. 

The cellular component of the innate immune system (basophils, eosinophils, 

macrophages/monocytes, neutrophils, natural killer (NK) cells and dendritic cells) 

depend on a number of soluble factors and receptors for the generation of a non-

specific immune response. Using an activation program, these cells are able to 

sense the presence of an infection, damage to host cells and tissues.  

1.1.1.1.1 Activation of innate immunity by Pattern Recognition Receptors 

(PRRs) 

The innate immune system recognises conserved molecular patterns, Pathogen-

associated molecular patterns (PAMP) shared by large groups of pathogens, using 

PRRs. PAMPs include peptidoglycans and lipoteichoic acid (LTA) (in Gram positive 

bacteria), lipopolysaccharide (in Gram negative bacteria), mannans, glucans, double 

stranded RNA and bacterial DNA (Figure 1.1). PRRs have been classified into 1) 

humoral proteins, 2) endocytic receptors and 3) signalling receptors (Franchi, 2006, 

Declue et al., 2012). Humoral proteins include mannose binding lectins, collectins 

and C-reactive proteins. These proteins identify the invading pathogen, bind to, and 
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opsonise them. Furthermore, they activate the complement system, which neutralises 

opsonised pathogens and eventually clears it from the hosts’ system. Endocytic 

receptors assist in the degradation of captured pathogens or damaged cells by 

facilitating their internalisation and transportation to the lysosomal compartment. 

They include scavenger receptors and c-type lectins (Sancho and Reis e Sousa, 

2013). Both the humoral proteins and the endocytic receptors have important 

functions activating antigen presentation, antigens are internalised into endosomes, 

degraded to peptides and presented on major histocompatibility complex II to T cells, 

subsequently inducing T cell responses (Malhotra et al., 2009, Burgdorf and Kurts, 

2008). The signalling receptors are the principal sensors of pathogens. They sense 

cell death and signal the up-regulation of immune response genes necessary for 

induction of effector cells and adaptive immune responses. Signalling receptors 

identified are Toll-like receptors (TLR), Nod-like receptors (NLR) and the retinoic acid 

inducible gene-I (RIG-I)-like receptors (RLR) (Creagh and O'Neill, 2006).      
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Figure 1.1 Pathogen associated molecular patterns. 

 

Figure 1.1 The unique pathogen associated molecular patterns that have been identified in different 

pathogens. For instance, RNA and DNA in viruses, lipoproteins (LP), lipoteichoic acid (LTA) and 

lipopolysaccharide (LPS) in Gram positive bacteria, LPS and flagella in Gram negative bacteria, 

zymosan in fungi and glycosylphosphatidylinositol (GPI) surface proteins in protists (Christmas, 2010). 

TLR control nuclear factor kappa beta (NF-κβ) signalling activity and influence 

expression of cell surface molecules and inflammatory cytokines. These molecules 

are germline encoded, found on a number of effector cells and are able to 

differentiate between self and non-self, making them less harmful to host cells. NLRs 

are primarily expressed in lymphocytes and antigen presenting cells such as 

macrophages and dendritic cells.  

Toll like receptors are the best characterized of the pathogen recognition receptors. 

They are typically expressed on the surface of immune cells such as macrophages, 
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dendritic cells and neutrophils (Hancock et al., 2012, Hayashi et al., 2003) In 

humans, there are 10 TLR members designated TLRs 1-10 while the TLR family 

consists of 13 members (Lee et al., 2014). The NLR family in humans consists of 22 

proteins and 33 proteins in mice. As in TLR signalling, NLR signalling is activated on 

recognition of PAMPs. Three major targets of NLR signalling after PAMP recognition 

are NF-ĸβ, mitogen activated protein kinase (MAPK) and caspase-1 (Chen et al., 

2009). 

Sansonetti (2006) argues that TLRs and NLRs not only respond to pathogenic 

molecular pattern but also respond to endogenous molecules (alarm signals) 

produced by damaged or injured cells and elicit an immune response (Sansonetti, 

2006). In other words, it could also mean that PAMPs and these endogenous alarm 

signals both share some commonalities and are ancient (Matzinger, 2007). It should 

be noted that expression of signalling receptors is not confined to cells of the immune 

system alone. Low expression of TLR2 and 4 has been reported in intestinal 

epithelial cells (Cario and Podolsky, 2000).  

1.1.1.1.2 Activation of innate immunity by cytokines. 

Cytokines are soluble low molecular weight proteins that are derived from many 

tissue sources (Janeway and Medzhitov, 2002). They function as chemical 

messengers where they relay information between cells, mediate effector cell 

differentiation and modulate immunological responses. The main cytokines of the 

innate immune system include interferon (IFN)-γ (secreted by NK cells) which 

activates macrophages, interleukin (IL)-15 and IL-12 (produced by dendritic cells and 

macrophages) which activates and regulates the proliferation of NK cells and IFN-γ 

(secreted by injured non immune cells) which activates both dendritic and NK cells 
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(Zhang et al., 2008, Harizi, 2013). Cells of the immune system have cytokine 

receptors with which they respond to these cytokines.  

1.1.1.2  Effector cells of the Innate Immune system.  

1.1.1.2.1 Macrophages  

Macrophages are derived from monocytes that migrate out of the circulation and 

undergo proliferation and differentiation in tissue. They are found at all mucosal 

surfaces and in specialised organs e.g. the lungs (alveolar macrophages), liver 

(Kuffer cells), bone (osteoblasts), central nervous system (microglia) and synovial 

membrane (type A synoviocytes). PPRs and fragment crystallisable receptors (FcRs) 

on antibody trigger the activation of macrophages, and they have a vigorous 

response to the presence of the cytokines IFN-γ leading to their activation.  

In the 1980s, van Furt and colleagues described the concept of mononuclear 

phagocyte system (MPS). MPS can be described as a group of cells that share a 

common bone marrow progenitor that differentiates into blood monocytes and gives 

rise to dendritic cells and tissue resident macrophages with the body (Hume, 2008). 

Geissmann et al., proposed two distinct murine monocyte subset based on their 

expression of Ly6C and CX3CR1 (Geissmann et al., 2003). Ly6Chigh monocytes 

express intermediate levels of chemokine receptors CX3CR1, CCR2 and the 

adhesion molecule CD62L (L-selectin). Ly6Chigh monocytes are referred to as 

inflammatory monocytes because they migrate to sites of inflammation, produce pro-

inflammatory cytokines and cause tissue damage as seen in various disease models 

(Serbina and Pamer, 2006, Getts et al., 2008). Ly6Clow monocytes are characterised 

by high levels of CX3CR1 and CD43, but no expression of CCR2 and CD62L. The 

Ly6Clow monocytes are referred to as tissue resident macrophages because they 
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were found both in resting and inflamed tissues (Geissmann et al., 2003). It is 

postulated that Ly6Clow monocytes scavenge the vascular system for dead cells, and 

lipid and blood-borne pathogens, hence they are said to exhibit patrolling behaviour 

(Auffray et al., 2007).  

Based on phenotype, morphology and cell surface molecule expression, circulating 

human blood monocytes are classified into CD14++CD16-, CD14+ CD16++ or 

CD14+CD16- monocytes (Ancuta et al., 2000). The CD14++CD16-, are the most 

prevalent subset and are referred to as the classical monocytes, while the CD14+ 

CD16++ and CD14+CD16- are referred to as the non-classical monocytes. The 

CD14++CD16- subset are similar to the mouse Ly6Chigh monocytes in their expression 

of CCR2highCX3CR1low chemokine. The non-classical CD14+ CD16++ and 

CD14+CD16- have similar expression of CX3CR1highCCR2low  as Ly6Clow murine 

macrophages which are suggested to be pro-inflammatory (Geissmann et al., 2003).  

Ingersoll and colleagues have shown close relationship between the classical human 

monocytes and the mouse Ly6Chigh in gene expression profiles where 130 genes are 

conserved between the two subsets (Ingersoll et al., 2010).  

Macrophages have been classified as either M1 or M2 macrophages, the M1 subsets 

being anti-inflammatory, while the M2 subset is tissue resident macrophages. 

Furthermore, depending on which cytokines induces their activation, the M2 class is 

sub classified into M2a (induced by IL-13 and IL-4), M2b (induced by agonists of 

TLRs, IL-1 and immune complexes) and M2c induced by glucocorticoid hormones 

and IL-10 (Mantovani et al., 2004). While the M1 class are microbicidal and 

inflammatory, the M2 class are poor microbicides but have immunomodulatory 

function. In other words, these findings suggest that macrophages could either be 

pro-inflammatory or anti-inflammatory in function. According to Porcheray et al, 
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(2005) activation of macrophages by bacterial infection is “plastic, rapid and fully 

reversible”. In essence, macrophages participate in mounting inflammatory 

responses and also aid in the dissolution of these responses (Porcheray et al., 2005). 

More recently, perspectives that challenge the concept that monocytes migrate out of 

circulation show that resident macrophages differentiate from foetal precursors. Yona 

et al, 2013 reported that resident macrophages were derived from the yolk sac and 

proliferate slowly in situ (Yona et al., 2013). However, it was shown that for certain 

tissues such as gut and skin that seeding from the blood may be relevant (Bain et al., 

2014). Finally, transcriptome analysis showed that designating macrophages as 

resident or inflammatory may be misleading and that cells form a spectrum of types 

based on microenvironment (Hume and Freeman, 2014).  

Macrophages respond to the presence of bacterial infection by up-regulating genes 

responsible for M1 polarisation. It was hypothesised that there is a common 

transcriptional activation programme that regulates the response of host cells 

exposed to various pathogens and that these common responses are regulated in 

the innate immune system (Jenner and Young, 2002). In support of this hypothesis, 

Nau showed that these common activation programs regulate the response of human 

monocyte derived macrophages to a broad range of bacteria (Nau et al., 2002). 

These genes encode the production of cytokines, cytokine receptors, chemokines 

and chemokine receptors. In addition, they also encode two enzymes involved in the 

microbicidal activities of macrophages via nitric oxide (NO) synthetase 2 and 

indoleamine-pyrole-2,3-dioxygenase as well as two co-stimulatory molecules CD80 

and CD86 (Jenner and Young, 2002).  
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M1 activated macrophages protect the host in the event of acute infections and 

provide resistance to infection. For example Listeria monocytogenes, which causes 

disease in pregnant women and immunocompromised patients, was shown to induce 

M1 activated macrophages to kill these bacteria in vivo and in vitro as well as 

deterring bacterial phagosomes from escaping into the host system (Shaughnessy, 

2007). Mice deficient in TNF and IFN-γ and the various receptors for these 

cytokines when challenged with these bacteria succumb to infection, as they have 

severely impaired ability to clear the infection. These two cytokines are “canonical 

markers of M1 macrophage activation” (Pfeffer et al., 1993).  

On the other hand, M2 responses are associated with chronic infections. They play a 

decisive role in the fate of chronic mycobacterial infections. Most tumour associated 

macrophages have phenotypic similarities to M2 macrophage (Saccani et al., 2006). 

Although macrophages control and resist the development of an acute infection, 

prolonged activation is dangerous to the host. In such cases there is a systemic 

immune inflammatory response, coupled with immune dysregulation which damages 

tissues and may lead to multiple organ failure (O’Reilly et al., 1999). Generally, M2 

macrophages are tilted towards Th2 reactions. They are involved in the 

encapsulation and killing of pathogen, progression of tumours, repair and re-

modelling of tissues (Wynn, 2004) as well as immuno-regulation  (Gordon, 2003). 

1.1.1.2.2 Neutrophils 

Polymorphonuclear neutrophils, (PMN) are the most abundant of the circulating white 

blood cells. They are rapidly produced by, and respond quickly to the presence of 

invading pathogens. They have a life span of about 5.4 days in circulation (Pillay et 
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al., 2010) and have a rapid turnover of  50-340 x 107 cell/kg/day equating to 

approximately 0.4-3 x 1011 cell/day in a 75-kg individual (Kobayashi, 2009).  

The rapid production, circulation and recruitment of neutrophils to tissues are highly 

important in innate immunity. The migration of neutrophils from the site of production 

to the extravascular milieu depends on signalling from soluble mediators and contact 

with the endothelial lining of capillary venules. L-selectin is a class of C–type lectin 

glycoprotein which is expressed on neutrophils and allows them adhere to, and roll 

along endothelial surfaces through low affinity interaction (Lawrence, 1991, 

Cummings and McEver, 2008). In the presence of inflammatory mediators activated 

neutrophils switch to high affinity adherence via β-integrins and intracellular adhesion 

molecules 1 and 2 (ICAM) 1 and 2. Once attached to these surfaces, neutrophils 

migrate through the endothelium into tissues and sites of infection in a process 

facilitated by neutrophil surface molecules such as CD31, CD44, CD47 and CD54 

(Khan et al., 2004, Cooper et al., 1995). Localisation of these cells to sites of 

infection is a key factor in innate immunity. This neutrophil localisation to infected 

tissue is known as chemotaxis. CXCL8 has been listed as one of the most potent 

chemoattractants in neutrophil chemotaxis (De Larco, 2004). In addition, leukotrienes 

and complement component C5a are all potent neutrophil chemoattractants 

(Ehrengruber et al., 1995). In addition to directing PMN to sites of infection, 

chemoattractants also prime the functionality of these cells. Since these neutrophils 

are antimicrobial in function and produce antimicrobial cytotoxic molecules, activities 

of these cells have been linked to inflammatory diseases as well as tissue injury 

(Edwards and Hallett, 1997). 
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Antimicrobial activity of Neutrophils 

The killing of pathogens by neutrophils occurs through a series of organised 

processes, resulting in the production of reactive oxygen species (ROS) as well 

fortification of the phagosome with cytotoxic molecules such as lysosomal proteases, 

defensins and myeloperoxidase. The ROS are derived from nicotinamide adenine 

dinucleotide phosphate (NADPH), an enzyme complex composed of seven proteins 

found in the cytosol (Quinn et al., 2006). NADPH catalyses the formation of 

superoxide which is further reduced to hydrogen peroxide. However, oxygen and 

hydrogen peroxide are weak microbicides. Maturation of the phagosome leads to the 

accumulation of myeloperoxidase within the phagosome. Myeloperoxidase catalyses 

the reaction of hydrogen peroxide and chloride to produce hypochlorous acid (HOCl), 

a bactericidal compound. Deficiencies in these oxygen species results in Chronic 

Granulomatous Disorder (CGD) with individuals suffering from recurrent infections 

due to the insufficient ROS (Quinn and Gauss, 2004). Although NADPH and 

hypochlorous acid are the key antimicrobial agents of neutrophils, (Rosen and 

Klebannof, 1979) demonstrated that deficiency of these factors does not correlate 

with morbidity during infections. Comparing neutrophils from MPO deficient and MPO 

competent individuals, show that neutrophils from MPO deficient individuals retain 

antimicrobial activity against microbes, but at a slower rate than in competent 

individuals. These findings suggest that the antimicrobial activities of neutrophils are 

multi-factorial. 

In addition to the phagocytic process, neutrophils have been shown to kill 

extracellularly. According to Tobias et al., when neutrophils are activated, they 

release web like structures consisting of chromatin and extracellular protein that 

capture and kill pathogens extracellularly. These structures are called Neutrophil 
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Extracellular Traps (NET) (Tobias et al., 2007). As the name suggest, this structure 

traps, disarms and destroys invading pathogens by exposure to high concentrations 

of antimicrobial effectors such as histones, enzymes e.g. MPO and neutrophil 

elastase, and proteins e.g. cathepsins and lactoferrin (Wang et al., 2009). NET trap 

released in response to bacteria is time and NADPH oxidase dependent (Riyapa et 

al., 2012), Because histones can disintegrate pathogen cell wall membranes, 

compromising pathogen viability (Mendez-Samperio, 2010), and NET associated 

proteases e.g. neutrophil elastase can inactivate and kill pathogens by cleaving their 

virulence factors (Brinkmann et al., 2004) NET are thought to be an effective 

antimicrobial mechanism. However, bacterial resistance to NET is reported in cystic 

fibrosis strains of S. pneumoniae (Beiter et al., 2006) and P. aeruginosa (Young et 

al., 2011). One of the proposed mechanisms for evasion of NET in S. pnuemoniae is 

through secretion of endonucleases that cleave DNA (Beiter et al., 2006). 

1.1.1.2.4 Complement system. 

The complement system consists of a tightly regulated cascade of soluble proteins 

(zymogens) in the blood that aid in the killing of bacteria by antibodies. Their role in 

host defence and inflammation is indispensable. They are a major factor in the 

opsonisation of bacteria by immune effector cells as well as in cell lysis. The action of 

complement is achieved through a plethora of responses that include chemotaxis of 

granulocytes and apoptosis of the target cell. There are three systems involved in the 

activation of complement; the alternative, classical and lectin pathways (Sarma and 

Ward, 2011). Proteins and lipids on surface of bacteria trigger the alternative 

pathway (Wu et al., 2009). Complement factor C3 is hydrolysed to C3b which then 

binds to bacteria. Factor B binds to the hydrolysed C3b, and then cleaved by factor D 
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forming the unstable C3bBb convertase. C3bBb is stabilised by properdin, a plasma 

protein secreted by neutrophils, macrophages and T cells (Flierl, 2008).  

The lectin pathway is initiated when Mannose-binding lectin (MBL) binds to 

carbohydrate molecules on the surface of invading bacteria. MBL forms complexes 

with MBL-associated proteins (MASP) with subsets 1, 2 and 3 binding to pathogens 

in the lectin pathway (Kemper and Atkinson, 2007). Binding to pathogens activates 

MASP2 which cleaves complement factor C4 to C4a and C4b. C4b is then attached 

to the surface of bacteria which in turn induces the attachment of complement factor 

C2. MASP2 again cleaves C2 to C2a and C2b. C4b and C2a together form the lectin 

pathway C3 convertase, C4bC2a (Figure 1.2) 

The classical pathway is activated upon antibody binding to bacteria. The C1 

complement factor is multimeric, and consists of three molecules C1q, r and s. C1q 

binds to the Fc portion of antibody IgG or IgM leading to the activation of C1r and 

C1s. C1s cleave both C4 and C2 to form the classical pathway C3 convertase 

C4bC2a (Sarma and Ward, 2011). From this point the pathways converge as C3 is 

cleaved by the C3 convertases releasing C3a and C3b. C3a is an opsonin that helps 

in phagocytosis of bacteria, and further amplification of complement activation. C3b 

binds to the C3 convertases to form C4bC2aC3b and C3bBbC3b, which are C5 

convertases, that cleave C5 to C5a and C5b. C5b binds to C6, C7, C8 and multiple 

C9 molecules resulting in formation of a membrane attack complex (MAC). The MAC 

forms pores in the invading pathogen, and inserts into their cells, resulting in the lysis 

of pathogenic cells (Figure 1.2) (Kondos et al., 2010).  
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Figure 1.2 Diagrammatic summary of the complement system 

 

 

The highly conserved complement system of the innate immune response. The figure summarises the 

three major pathways through which complement is activated. Classical pathway, activated by binding 

of complement protein C1q to antibody:antigen complexes,  the lectin pathway is activated by binding 

of serum mannose binding lectins to mannose expressed on the pathogen, and the alternative 

pathway does not depend on antigen binding complexes, but utilises the deposition of C3 complexes 

on target cells (Oksjoki et al., 2007) 

 

1.1.1.2.3 Other granulocytes 

Eosinophils are innate immune leukocytes characterised by specific granules found 

in their cytoplasm. They constitute 1-4% of circulating blood cells, are involved in 
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inflammatory responses and modulate the innate and adaptive immune system. They 

are triggered by activation of receptors for immunoglobulins, mainly IgE, cytokines 

and complement. Upon activation, they secrete an array of molecules including 

cationic granule proteins through degranulation. These proteins are cytotoxic to 

helminths, airway epithelium and have antimicrobial effects, regulate vascular 

permeability and modulate cellular trafficking across vascular membranes (Hogan S, 

2008). Eosinophils are involved in the immune response to allergens, helminthic and 

parasitic infections. Activation of these cells is primarily by type 2 cytokines (released 

by a subset of T-helper cells, Th2) IL-3, IL-5 and Granulocyte Macrophage- Colony 

Stimulating Factor (GM-CSF) (Yamaguchi et al., 1988, Asquith et al., 2008). 

Although much work on eosinophils focuses on their role in parasitic infections and 

allergy, there are data to show that they are also effective against bacteria. 

Antimicrobial killing of bacteria is carried out by the release of superoxide in an 

NADPH dependent manner (Persson et al., 2001). Experiments by Linch et al, 2009 

illustrated the in vitro anti-pseudomonal properties of mouse eosinophils. In 

transgenic mice secreting eosinophilic IL-5, improved clearance of Pseudomonas 

aeruginosa was observed (Linch, 2009). However in eosinophil-deficient mice, 

bacterial clearance was impaired; this improved upon transfer of eosinophils. Similar 

to neutrophils, eosinophils release extracellular trap efficient in trapping and killing 

bacteria (Yousefi, 2008).  

Mast cells are haematopoietic cells that are dispersed throughout most tissues. 

Beyond their role in allergic responses, there is growing knowledge about the role 

and function of mast cells in the recognition of pathogens and modulation of immune 

responses. At the initiation of infection, mast cells are able to directly recognise 

PAMPs through expression of TLRs and Fc receptors (FcRs). Lipopolysaccharide 
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triggers TLR4 response in rodent mast cells for instance, and increased production of 

TNFα, IL-1β, IL-6, and IL-13 while peptidoglycan triggers TLR2 response with the 

induction of TNFα, IL-4 IL-5 and IL-13 responses (Fatehi et al., 2013). Apart from 

cytokine production, mast cells undergo degranulation in response to exogenous 

stimuli that accompany pathogen injection 

1.1.1.2.5 Natural Killer (NK) cells. 

NK cells are large granular lymphocytes phenotypically characterised by their 

expression of the CD56 adhesion molecule. They are rapid responders to a variety of 

infections, secreting chemokines and cytokines especially IFN-γ (Lanier, 2000). 

Although most research has focused on NK cells with regard to their antitumor and 

anti-viral activities, it is also evident that these cells are effective against bacteria and 

are activated preferentially by IL-12 (Kelly et al., 2002). NK cells can also be 

activated directly by bacterial products such as lipopolysaccharide (LPS) (Kirby et al., 

2002) through recognition by TLRs, and by Gram-negative bacteria Salmonella 

enterica serovar Typhimurium, via specific glycolipids on the cell surface, including 

the glycosphingolipids; α-galacturonosylceramide and α-glucuronosylceramide (Brigl 

et al., 2003). This results in the induction of cytokines and co-stimulatory molecules, 

including IL-12 which stimulates IFN-γ production by NK cells.  

Activation of NK cells can occur upon stimulation from cytokines such as IL-2, IL-12, 

IL-15, IL-18, IFNα or activating receptors such as natural killer group 2D (NKG2D) 

and DNAX accessory molecule-1 (DNAM-1) (Chan et al., 2014). NKG2D activates 

NK cell mediated cytotoxicity following interaction with its ligands. In humans, the 

ligands for NKG2D are self-proteins related to MHC class 1 molecules and consist of 

the MHC class 1 chain-related protein (MIC) family and the UL-16 binding protein. 
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NKG2D ligands are generally expressed following cellular stress due to viral infection 

or malignant transformation and are absent on the surfaces of healthy cells. DNAM-1 

is expressed on NK cells, T cells macrophages. Ligands for DNAM-1 are also 

expressed on virus infected and transformed cells. DNAM-1 has been shown to 

promote adhesion of NK cells and increase their cytotoxity against their targets 

(Chan et al., 2014).  

 

1.1.2 Adaptive Immune Response 

In order to survive in a host, pathogens devise various means of going undetected by 

the immune system. They have the ability to mutate their PAMPs in such a way that 

recognition is limited. Since the innate arm of the immune system is limited in the 

number of PAMPs it can recognise (Mogensen, 2009), an adaptive immune system 

is essential (Cooper, 2006). In contrast to the innate immune system where the 

recognition cascade has been encoded in a fully functional form within the germline 

genome, the adaptive system is tailored to generate flexible and specific responses 

by means of somatic recombination of gene segments. These specific and flexible 

responses to pathogens persist for life within the host, offering immunological 

memory and a more competent response in the case of a re-infection.  

Effector mechanisms of the adaptive immune system include the T-cells and the B-

cells, which undergo maturation in the thymus and bone marrow, respectively. Most 

often, adaptive immune responses originate under signals provided by the innate 

immune system directly or indirectly through circulating pathogens or pathogen 

activated antigen presenting cells (APCs), which capture antigen at the site of 

infection and migrate to the spleen and lymph nodes, where they present antigens to 
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lymphocytes. Adaptive immune responses develop in these sites and with the help of 

an array of chemokines and adhesion molecules, activated cells leave and traffic to 

the sites of infection (Sanchez-Madrid and Sessa, 2010).  

1.1.2.1 T cells. 

T cells play a central role in defining the functional and developmental responses of 

the adaptive immune system. They have a high specificity for antigens, generate 

immunological memory and can be recalled in the event of subsequent reinfection. 

According to their functions, T cells are  classified into cytotoxic T cells (CTL), helper 

T cells (Th1, Th2, Th17, Tfh) and regulatory T-cells (Treg) (Hesslein et al., 2011). 

Based on their expression of either CD4 or CD8 co-receptors, cytotoxic T-cells are 

further classified as CD4+ T cells or CD8 + T cells. T cells recognise antigens in the 

form of peptides when displayed by major histocompatibility complexes (MHC) on the 

surface of antigen presenting cells (APCs). CD4 T cells recognise antigenic 

molecules displayed on the surface of MHC class II molecules, and the CD8 T cells 

recognise antigenic peptides from the cytosolic compartments displayed on MHC 

class I molecules. Activated CD8+ T cells induce the production of cytotoxic 

molecules including perforin and granzymes which enter target cells causing cell 

lysis.  CD4+ T cells, on the other hand, in relation to antibacterial defence, influence 

the activities of B cells, and increase the antibacterial activities of phagocytic cells. 

Th1 cells have been shown to play a central role in macrophage activation. These 

activated macrophages increase their antimicrobial activities among others, by 

production of superoxide and nitric oxide. Although these agents are effective 

antimicrobials, their activities are tightly regulated to avoid tissue destruction 
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(Duffield, 2003). T cells also have a role in responses to intracellular bacteria as well 

as in the induction of B cell responses.  

1.1.2.2 B  Cells. 

B cells are effective mediators of humoral responses in the immune system and 

account for approximately 15% of circulating leukocytes (Chaplin, 2006). 

Development of these cells occurs through a carefully regulated process that 

differentiates hematopoietic precursor cells into transitional and immature B cells. 

They migrate to the lymph nodes and spleen where they undergo maturation into 

antibody producing plasma cells and memory  B cells (Marcus et al., 2011).  

B cells are uniquely defined by their production of antibody that acts as the B cell 

receptor (BCR). When BCR recognise foreign antigenic protein, fragment or 

molecule, they internalise, process and present these antigens to CD4+ T-cells. This 

process promotes generation of plasma cells and development of a germinal centre. 

In this germinal centre, somatic recombination is up-regulated, leading to the 

development of a clonotypic B cell with increased affinity to the antigen. B cells at this 

point also undergo isotype switching. It has also been reported that engagement of 

bacterial LPS to B-cells tones up the capacity of these cells to produce the anti-

inflammatory cytokine IL-10. This cytokine enhances the proliferation, survival of and 

antibody production in B-cells (Zhang et al., 2007). 

Antibodies produced by B cells protect the host from pathogens in a number of ways; 

they neutralise the surface molecules of pathogens (toxins), preventing them from 

functioning effectively by binding to the toxins, neutralising their interaction with host 

cells. Antibody-antigen complexes are recognised and destroyed by macrophages. 

Since many bacteria have an outer membrane that is not recognised by the PRRs of 
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the innate immune system, they often evade the immune response such as TLR 

recognition. Antibodies coat these antigens in a process known as opsonisation, 

making them easily picked up and degraded by macrophages and neutrophils 

through FcR. 

1.2 Antibiotics 

The discovery and development of antibiotics is one of the major achievements of 

medicine and has greatly impacted on the quality of human lives. Antibiotics are an 

extremely important weapon in fighting infections. In animals and humans, the innate 

immune system produces its own antimicrobial peptides, which are evolutionarily 

conserved (Zasloff, 2002). Although by secreting antimicrobial peptides host defence 

mechanisms contribute to the elimination of certain bacteria, e.g. Staphylococcus 

aureus, Escherichia coli and Mycobacterium leprae (Izadpanah and Gallo, 2005), 

disease states arise where the host immune system becomes overwhelmed by the 

bacterial burden. Vaccines have been effective in reducing diseases that have 

affected humanity. However, the emergence of resistant strains of bacteria has 

increased the demand for development of more effective vaccines (Mortellaro and 

Ricciardi-Castagnoli, 2011). Though effective in generating protective immunity, 

treatment with vaccines has been associated with mild to severe side effects. 

Vaccines are generally very safe, but side effects from mild e.g. flu-like symptoms to 

severe e.g. Guillain-Barre syndrome following swine flu vaccination have been 

reported (Haber et al., 2009). Rare cases of reversion from attenuated strains to 

virulent forms lead to development of vaccine associated disease (Mills, 2009). 

The ultimate aim of any antimicrobial therapy is to reduce morbidity and mortality 

associated with the infection (Wispelway, 2005) and antibiotics are usually 

administered to treat an infection. Antimicrobial agents are used to prevent infection 
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(when vaccines are not available), termed antibiotic prophylaxis. This prophylactic 

therapy has had substantial public health impact by reducing the disease burden 

associated with bacterial infection (Prasad and Karlupia, 2007). Antibiotic prophylaxis 

is also an optimal strategy to reduce wound infections in surgery, also known as 

surgical site infections (SSI) (Sikora and Koziol-Montewska, 2010). Surgical site 

infections are a common occurrence in colorectal surgery, due to the presence of a 

dense microbial flora in the colon. Antibiotic prophylaxis reduces the emergence of 

surgical site infections following colorectal surgeries (Ho et al., 2011). For effectual 

antibiotic prophylaxis outcomes, the choice of antibiotics to be used, surgical 

procedure to be carried out, time of administration of antibiotic and mode of 

administration are to be considered (Tammer et al., 2011). The eventual outcome of 

the infectious process and antibiotic therapy are both functions of multiple variables; 

the host defence response to the invading pathogen, intrinsic mechanisms within 

bacteria that help circumvent host defence, and the activities of the antimicrobial 

agent within the host. The interaction between the host and the invading microbe, 

elicited by the use of antimicrobial therapy is either advantageous or detrimental to 

the outcome of the infection (Yim et al., 2006).  

 

1.2.1  Antibiotics and their therapeutic use. 

1.2.1.1 Sulphonamides  

These were the first class of antimicrobials, approved for the widespread treatment of 

infections in 1932 (Van de Velde et al., 2008). They are bacteriostatic and disrupt the 

synthesis of folic acid in bacteria. Sulphonamides are rapidly absorbed, metabolised 

and effectively excreted by the kidney (Reese and Betts, 1991). Sulphonamides are 
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derivatives of sulphanilamide, a compound similar to para-amino benzoic acid 

(PABA) found in bacteria. They target and inhibit the bacterial enzyme 

dihydropteroate synthetase (Figure 1.3) which catalyses the incorporation of PABA 

into dihydrofolic acid during folic acid synthesis. The sulphonamide is a competitive 

inhibitor and so reduces the amount of tetrahydrofolic acid, a co-factor in the 

synthesis of bacterial DNA (Patel et al., 2004). Sulphonamides are active against 

both Gram-positive and Gram-negative bacteria, including Streptococcus 

pneumoniae, Corynebacterium diphtheriae and Haemophilus ducreyi to mention a 

few. However, infections caused by Proteus mirabilis, Enterobacter aerogenes and 

Pseudomonas aeruginosa are no longer efficiently treated by sulphonamide 

antibiotics due to bacterial resistance to these agents (Eliopoulos and Huovinen, 

2001). 

Therapeutic use 

Sulphonamide drugs are effective antimicrobial therapy for the treatment of 

uncomplicated, acute urinary tract infections. Single doses of a sulphamethoxazole- 

trimethromprim (a synthetic antibiotic and inhibitor of bacterial hydrofolate reductase) 

combination has been effective in treating women with cystitis (Nicolle, 2003).  
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Figure 1. 3 Sulphonamides are competitive inhibitors of dihydropteroate 

synthetase 

 

 

                                 

This combination is available commercially as co-trimoxazole, and is used in the 

prophylactic treatment of urinary tract infection and pneumonia (Garnero et al., 

2010). Co-trimoxazole contains trimethoprim and sulphamethoxazole in a ratio of 1:5 

(Aronson, 2006). The two compounds are less active alone, but in combination they 

work together in enhancing the activity of each other. Mechanism of action of 

trimethoprim involves inhibiting microbial reductases but its efficacy is improved in 
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the presence of a sulphonamide (Hitchings, 1973). The most common therapeutic 

use of co-trimoxazole is in the treatment of urinary tract infection (UTI) where it is  

administered as single-dose or conventional therapy i.e. 4 regular strength tablets 

(containing 80mg of trimethoprim and 400mg sulphamethoxazole) or two regular 

strength tablets twice daily, respectively. In severe cases of lower UTI and 

pylonephritis, co-trimoxazole is administered intravenously (Connor, 1998). Orally 

administered co-trimoxazole is effective in the treatment of respiratory tract 

infections, pneumonia and in cases of acute and chronic bronchitis, and is the drug of 

choice in the treatment of lung infections caused by opportunistic bacteria 

Pneumocystis carinii. The World Health Organisation and the Joint United Nations 

programme on HIV/AIDS in 2000 recommended co-trimoxazole prophylaxis for 

immunosuppressed patients and children born of HIV positive mothers (WHO, 2006, 

Sibanda et al., 2011). Co-trimoxazole is also recommended in prophylactic treatment 

of travellers’ diarrhoea (Vila et al., 2001), a disease caused predominantly by E. coli, 

shigellosis and as a second line drug for salmonellosis.  

In combination with erythromycin, sulphonamides are also used in treating acute and 

recurrent cases of otitis media caused by strains of Haemophilus influenzae, 

(Erramouspe and Heyneman, 2000), prophylactic treatment of meningococcal 

diseases (Connolly and Golden, 2011), as well as Chlamydia trachomatis infections, 

which is an intracellular pathogen. The WHO recommends co-trimoxazole for 

prevention of opportunistic bacterial infections and Pneumocystis jirovecii (WHO, 

2014). The wide spread use of co-trimoxazole is correlated to resistance to this drug. 

Cornick and colleagues reported 92% resistance to co-trimoxazole in Malawians 

registered for co-trimoxazole preventive therapy (CPT) and have recommended the 
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re-evaluation of the prophylactic use of this drug against pneumococcal infections in 

HIV/AIDS patients in sub-Saharan Africa (Cornick et al., 2014). 

1.2.1.2 Quinolones  

The quinolone group of antibiotics have been used in clinical practice since the 

1960s after the introduction of the first quinolone, nalidixic acid, in 1962. Traditionally, 

quinolones were used in treating infections arising from Gram-negative organisms, 

but the compounds have been modified and new agents are used for the treatment of 

specific infections with Gram-positive organisms (Oliphant and Green, 2002).  

The quinolones act by inhibiting the synthesis of bacterial DNA. They cleave bacterial 

DNA in the DNA gyrase-type IV topoisomerase complex, resulting in the rapid death 

of bacteria (Hooper, 2000b). Quinolones kill bacteria in a concentration dependent 

manner. At about 30 times their minimum inhibitory concentration (MIC), the efficacy 

of these drugs is more pronounced, reducing bacterial activities by inhibiting the 

synthesis of RNA and proteins (Piddock, 2006). The quinolones unlike other 

antibiotic classes are not predictably synergistic when used in combination with other 

classes of antibiotics (Hooper, 2000b). In terms of absorption, administration of a 

quinolone orally is comparable to intravenously dosing (Walker, 1999). Quinolones 

are well absorbed with food, however, in the presence of cations such as 

magnesium, iron, calcium and aluminium, quinolones are chelated reducing their 

bioavailability, absorption, serum concentration and penetration (Turnidge, 1999). 

They have exceptional tissue penetration and also penetrate well into neutrophils and 

macrophages.  

Quinolone antibiotics are classified into four groups according to their antimicrobial 

activity (Owens and Ambrose, 2000). The first group are the first-generation 
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quinolones, used less often as they have minimal systemic distribution and are only 

active against Gram negative bacteria. This group includes nalidixic acid, cinoxacin, 

and oxolinic acid (Skyrianou et al., 2011). The second-generation quinolones have 

extended activity for Gram negative bacteria, but are still limited in their activity for 

Gram positive bacteria. This second group is further sub-divided into class I 

(norfloxacin, enofloxacin, lomefloxacin and ciprofloxacin) and the class II 

(ciprofloxacin and ofloxacin). Class I differs from Class II in terms of tissue and 

intracellular tissue concentration (Oliphant and Green, 2002). Class II achieve higher 

drug concentrations in bacteria and are effective against atypical pathogens such as 

Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila 

(Blasi, 2004). Third generation quinolones (e.g. levofloxacin) retain Gram negative 

activity and have an improved spectrum of activity against Gram positive bacteria. 

The fourth-generation quinolones (e.g. moxifloxacin) are effective against Gram 

negative bacteria, have improved Gram positive activity and are active against 

anaerobic bacteria (Ambrose et al., 1997, Oliphant and Green, 2002, Owens and 

Ambrose, 2000). 

Therapeutic use 

Quinolones are effective in the treatment of uncomplicated urinary tract infections 

caused by Escherichia coli. Quinolones such as ciprofloxacin, lomefloxacin and 

levofloxacin have greater renal concentration and high renal clearance, hence, they 

are recommended for the treatment of complicated UTI such as catheter related 

infections, obstructive uropathies or stones due to Candida species, Gram positive 

and Gram negative pathogens (Hooper, 2000b, Johnson, 2002, Emonet et al., 2011). 

Since quinolones effectively penetrate prostatic tissue, they are recommended for the 

treatment of infection associated prostatitis, where the success rate in a four to six 
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week therapy is between 67-91% (Sabbaj et al., 1986). In first-line treatment of 

prostatitis, levofloxacin is recommended, however, in resistant Gram negative cases 

of prostatitis, enterococcal and pseudomonal prostatitis, ciprofloxacin  is 

recommended as it has higher activity against enterococci and P. aeruginosa 

(Oliphant and Green, 2002). Quinolones have also been indicated for the treatment 

of acute bacterial sinusitis and community acquired pneumonia caused by 

Streptococcus pneumoniae, Staphylococcus aureus and Haemophilus influenzae. 

Pelvic inflammatory disease, a polymicrobial disease is also treated with quinolones. 

Ciprofloxacin is also considered in the treatment of Neisseria gonorrhoeae infections, 

enteric typhoid fever and travellers’ diarrhoea (Hooper, 2000a). Though the 

quinolone class of antibiotics are highly successful, development of resistance has 

become a common outcome (Takahashi et al., 2003). Hence, it is recommended that 

quinolone antibiotics should not be used as first-line treatment for infections, as this 

strategy minimises the potential for development of resistance (Oliphant and Green, 

2002).  

1.2.1.3 Macrolides 

Macrolide antibiotics are a group of antimicrobials whose activities are due to the 

presence of a macrocyclic lactone nucleus to which sugars are attached. The type 

and position of the sugar as well as the changes in the point of attachment determine 

the level of antimicrobial activity (Strausbaugh et al., 1976). Macrolides use dates 

back to the 1950s when erythromycin A was discovered as an alternative for the 

beta-lactams (Shinkai et al., 2008). Macrolides act by inhibiting the biosynthesis of 

bacterial proteins, via inhibition of ribosomal translocation, as well as preventing 

peptidyl transferase from adding the peptide in the tRNA to the next amino acid 

during the process of protein synthesis (Gaynor and Mankin, 2003). Macrolides also 
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reduce flagellin expression required for motility in P. aeruginosa (Kawamura-Sato et 

al., 2001). 

Therapeutic use 

Macrolides are used in the treatment of airway infective diseases. Diffuse 

panbronchiolitis (DPB) is a complex pulmonary disease affecting populations of 

Japan and Korea. It is characterised by chronic, progressively inflammatory and 

restrictive pulmonary function, sputum expectoration, dyspnea, and in severe cases 

bronchiectasis, (Bush and Rubin, 2003) and in most cases patients are infected with 

P. aeruginosa (Krishnan et al., 2002, Takeda et al., 1989, Kadota et al., 2003). 

Macrolides also exert unconventional effects on microorganisms such as P. 

aeruginosa where they inhibit twitching motility and inhibit biofilm formation (Bush 

and Rubin, 2003). Azithromycin is used in the treatment of Mycoplasma genitalium 

and single dosing is reported to be the best treatment of choice for this sexually 

transmitted infection (Jernberg et al., 2008). However, a recent publication has 

suggested that an extended regimen may be more effective in treatment of M. 

genitalium infections (Weinstein and Stiles, 2011). Clarithromycin and azithromycin 

are used for the treatment of Helicobacter pylori-associated peptic ulcer disease, 

sexually transmitted diseases and respiratory tract infections (Zuckerman et al., 

2011).  

1.2.1.4 Beta-lactams 

Βeta-lactam antibiotics are a broad class of antimicrobials, characterised by the 

presence of a beta-lactam ring in their chemical structure. They are the most widely 

used class of antimicrobials because they are effective against a wide range of 

bacteria, and have an excellent safety profile (Danziger and Neuhauser, 2011). 
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These antibiotics can be administered orally, parenterally or as inhaled dosage 

formulations. Beta-lactams include the penicillins, monobactams, cephalosporins, 

penems and carbapenems. They are active against anaerobic organisms, Gram-

positive and Gram-negative bacteria (Mandell and Perti, 1996). Beta-lactams act by 

interfering with the cross linking of peptidoglycans which is needed for the structural 

formation of bacterial cell wall (Holten and Onusko, 2000). Due to their efficient 

absorption post oral administration, beta-lactams are very useful in the out-patient 

setting. 

Therapeutic uses. 

The penicillin group of beta-lactams still maintain their clinical relevance in the 21st 

century as haemolytic Streptococci, Pneumococci and oral anaerobes remain 

susceptible to penicillin. Benzylpenicillin is still the first choice antibiotic for the 

treatment of community acquired aspiration pneumonia, pneumococcal pneumonia, 

as well as streptococcal pharyngitis (Williams, 1993).  

Cephalosporins were introduced for the treatment of staphylococcal infections but did 

not gain much favour against the penicillins. Incorporation of new side-chains into the 

chemical structure of these beta-lactams antibiotics improved their spectrum of 

antimicrobial activity against Gram-negative bacteria to include Moraxella, 

Haemophilus, Pseudomonas spp and Enterobacteriaceae (Williams, 1993). 

Beta-lactams are more effective when they maintain a concentration above the 

minimum inhibitory concentration (MIC) of the invading pathogen. Once the 

antibiotics concentration drop to sub-MIC concentrations, the bacteria begin to 

proliferate rapidly (Vogelman et al., 1988). A common mechanism of resistance to 

beta-lactams is mediated by bacterial beta-lactamases. These enzymes attack the 
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beta-lactam ring, break it open, and thereby render the antibiotic properties of the 

drug inactive (Jovetic et al., 2010). Hence, beta-lactams are co-administered with 

clavulanic acid, a beta-lactamase inhibitor. 

1.2.1.5 Linezolid 

Linezolid belongs to the oxazolidinone class of antibiotics. Other members of this 

group include tidezolid, used for the treatment of acute skin infections, cycloserine, 

used in treating tuberculosis and posizolid under investigation for the treatment of 

Staphylococcus aureus, coagulase-negative staphylococci, Enterococcus spp., 

Streptococcus pneumonia (Wookey et al., 2004). Linezolid was developed at the 

Upjohn Company in the United States in a bid to meet the needs for newer 

antimicrobial agents. Linezolid has been used for the treatment of Gram-positive 

bacterial infections in the UK since 2000 (Gould, 2011). It works by inhibiting the 

synthesis of bacterial proteins. It is a highly effective antibiotic and  competes 

favourably with vancomycin (Leach et al., 2011). Linezolid is indicated in the 

treatment of infections caused by Streptococcus pneumonia, vancomycin-resistant 

Enterococcus faecium and methicillin-resistant Staphylococcus aureus (Leach et al., 

2011).  

1.2.2 Efficacy of antibiotics in vivo vs. in vitro? 

Routine antibacterial susceptibility testing methods, such as the determination of the 

minimum inhibitory concentration (MIC) of antibacterial dugs, have been used to test 

the activity of antibacterial agents on growing bacteria in vitro (Andrews, 2001, 

Matuschek et al., 2013, Hombach et al., 2011). Tissue culture and animal models 

have been used to understand and correlate in vitro activities of antibacterial drugs to 

in vivo activities. However, it is unclear whether anti-microbial activities observed in 
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vitro or in tissue culture accurately reflect activity in vivo (Brook, 1991). There are 

also discrepancies between the views of bacteriologists and immunologists in the 

context of how the terms ‘in vitro’ and ‘in vivo’ are used. For the purpose of this 

chapter, ‘in vitro’ refers to experiments not involving eukaryotic cells, ‘in vivo’ refers to 

experiments carried out in animal/humans and ‘ex vivo’ refers to experiments 

involving cells or samples obtained from animals or humans.  

The effect of five antibacterial drugs (dicloxacillin, cefuroxime, gentamicin, 

azithromycin and rifampicin) on MSSA (E19977) was studied both in vitro (using time 

kill curves) and in vivo in a mouse peritonitis/sepsis model, using the maximum 

serum concentrations (Cmax) of each drug. In vitro experiments showed that 

gentamicin incubated with 106 CFU/ml of S. aureus was most effective, achieving a 

four-log decrease in bacterial numbers after four hours of exposure. A slower, but 

more persistent effect was observed for rifampicin compared to cefuroxime and 

dicloxacillin. Azithromycin had the smallest bactericidal effect, but showed a 

bacteriostatic effect for the first eight hours. After twelve hours, bacterial re-growth 

occurred with all five antibacterial drugs tested. In the in vivo peritonitis mouse 

model, mice were challenged with bacteria (106 CFU/ml) and subsequently treated 

with antibacterial drugs two hours post bacterial challenge. Azithromycin showed 

poor antibacterial effects both in vitro and in vivo. Rifampicin, dicloxacillin, cefuroxime 

and azithromycin showed similar effects between their in vitro and in vivo studies, 

while gentamicin was most effective in vitro but less effective in vivo (Sandberg et al., 

2009). Moreover, dicloxacillin was shown to be more effective against S. aureus in an 

ex vivo (THP-1 cell model) model than in an in vivo mouse peritonitis model. It was 

suggested that the reduced in vivo effect was due to processes such as the general 

elimination of the drug from the site of the infection and protein binding of the 
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antibacterial drug, and that the hostile in vivo environment could slow bacterial 

growth rate, leading to reduced anti-bacterial activity of dicloxacillin as it is only 

effective against actively dividing bacterial cells (Sandberg et al., 2010).  

Considering that macrolides are known to accumulate to high levels within eukaryotic 

cells, a high intracellular effect may be expected (Carryn et al., 2003). Azithromycin 

has an accumulation level (the ratio of the intracellular concentration to the 

extracellular concentration (Cc/CE)) of 40 to 300 at equilibrium compared to other 

macrolides with accumulation levels of between 4 to 50 (Van Bambeke et al., 2006). 

However, the same is not true for all antibacterial drugs. Although lower levels of 

accumulation within eukaryotic cells (e.g. macrophages) have been reported for beta-

lactam drug such as penicillin, cefuroxime was effective against intracellular S. 

aureus, as the reduction in the viable count of bacteria was the same as in vitro. 

These findings suggests that the efficacy of an antibacterial drug in vitro is not always 

correlated to in vivo activity and may not always predict in vivo efficacy (Lin and Lu, 

1997). 

A number of factors are responsible for the increased efficacy of antibacterial drugs 

in vitro compared to ex vivo and in vivo. These include the drugs being located in 

different sub-cellular locations in eukaryotic cells such as macrophages or 

neutrophils and impaired intracellular activity of the antibacterial drug leading to 

bacterial resistance (Sandberg et al., 2009).  

In vitro models are important because they help to translate research from the 

laboratory to clinical settings. In the in vitro model, bacterial number can be 

controlled, bacteria – antibacterial drug contact time regulated and the influence of 

environmental factors such as temperature, pH and oxygen standardised. However, 
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in vitro and ex vivo models do not closely mimic in vivo conditions as they do not 

account for host growth factors, proteases, antimicrobial peptides and fluctuations of 

the drug concentration due to tissue distribution and protein binding. Furthermore, 

bacteria behave differently in vivo, ex vivo and in vitro, hence this can account for the 

differences in the efficacy of antibacterial therapy under these different conditions (de 

Araujo et al., 2011). 

1.2.3 Effects of antibiotics on immune cells 

Antibiotic therapies target processes in bacteria, inhibiting their growth and eventually 

causing bacteria death. Ideally, antimicrobial agents should target invading microbes 

and have no effect on mammalian cells. However, it is inevitable that some 

antimicrobial agents that target processes including bacterial DNA and protein 

synthesis may affect similar processes in mammalian cells. Direct effects of 

antibiotics on immune responses and processes have been noted and studied for 

over 15 years (Tauber and Nau, 2008). Although described as “undesired effects” 

(Pasquale and Tan, 2005), reports have highlighted the therapeutic relevance of 

these antibiotic interactions with the immune system (Parnham, 2005). 

Antibiotics can have immunomodulatory, immunosuppressive or neuroprotective 

effects (Lai and Todd, 2006). Pomorska-Mol and Pejsak described the 

immunomodulatory effects of antibiotics as “heterogeneous, contradictory or 

insufficient” as one antibiotic or class of antibiotic can have opposing effects when 

investigated using different methods or techniques (Pomorska-Mol and Pejsak, 

2012). Of the studied effects, the immunomodulatory activities of antibiotics have 

been investigated most intensively, especially those of macrolides and quinolones. 

This is because these agents penetrate and accumulate in mammalian cells. 

Nonetheless, there is some evidence that other classes of antibiotics are potential 
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immune modulators (Gomez-Lus et al., 1997). Recently, the immunomodulatory 

ability of collistin in a nematode infection model was illustrated (Cai et al., 2014). It 

was reported that prophylactic administration of collistin protected Caenorhabditis 

elegans against infections from Pseudomonas aeruginosa and Yersinia Pestis by 

activating a conserved immune pathway, p38/PMK-1, in the intestines and 

transcription factors DAF-16 and SKN-1 required for resistance to pathogen infection 

(Cai et al., 2014). The effects of antibiotics on the immune response is discussed in 

the below, and a number of selected effects have been highlighted in Table 1.1.  

1.2.3.1 Macrolides 

Macrolide antibiotics are highly concentrated in the intracellular compartments of 

inflammatory and phagocytic cells. In the case of azithromycin for instance, 

accumulation of the antibiotic in innate immune cells enables delivery to the sites of 

infection (Parnham et al., 2014). Interest in the immunomodulatory activities of 

macrolides began in the 1960s, when their ability to complement corticosteroids in 

suppressing the immune response was observed after being administered to patients 

with severe asthma (Shinkai et al., 2008). In 2007, Piacentini et al., reported the 

ability of macrolides to reduce and regulate neutrophilic inflammation in patients 

whose asthma had been sustained by severe infections and patients with chronic 

steroid-resistant asthma. Short doses of azithromycin reduced airway infiltration of 

neutrophil, and bronchial hyper-responsiveness (Piacentini et al., 2007).  

Macrolides decrease leukocytes adhesion to endothelial surfaces. Adhesion of 

leukocytes to endothelial surfaces is an essential step in the inflammatory process. 

This movement of leukocytes to sites of infections is mediated by chemotactic 

factors. Macrolides down-regulate this process by inhibiting the expression of 
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adhesion molecules on leukocytes. Sanz et al., carried out studies where 

lipopolysaccharide (LPS) infected rats were treated with erythromycin (30mg/kg) for a 

week. They showed that erythromycin significantly reduced the accumulation of 

elastase and neutrophils in the bronchiolar fluid produced in response to bacterial 

lipopolysaccharide (Sanz et al., 2004). Erythromycin also prevented the up-regulation 

of intracellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 

(VCAM-1) in the vascular endothelium of mice in response to airway challenge with 

LPS. This inhibition of leukocyte infiltration was time dependent. Azithromycin 

decreased expression of adhesion molecules in untreated epithelial cells, but 

decreased expression of this molecule in epithelial cells or neutrophils stimulated 

with LPS. (Millrose et al., 2009, Parnham et al., 2014). Macrolides do not inhibit 

infiltration of blood leukocytes early in the inflammation process, rather cells that are 

primed by cytokines at the site of infection are restricted by this antibiotic and so 

ultimately contribute to the control of inflammation and prevent inflammatory damage 

to infected tissue (Culic et al., 2002).  

Erythromycin affects interaction of bacteria with the host. Adherence of P. aeruginosa 

to Type 4 basement membrane collagen on acid-injured mouse tracheal epithelia 

was decreased when exposed to erythromycin (Tsang et al., 2003). Macrolides 

hindered the production of guanosine diphospho-D-mannose dehydrogenase (GMD) 

in the GMD cycle. This cycle allows for production of exopolysaccharide alginate and 

other virulence factors by P. aeruginosa (Wozniak and Keyser, 2004). Pre-incubation 

of human macrophages with erythromycin and roxithromycin decreased the 

phagocytosis of Staphylococcus (Carlone et al., 1989). Conversely, pre-treatment of 

S. aureus with macrolide drugs increased bacterial uptake by human macrophages. 

Beneficial anti-inflammatory activities of tilmocosin, a macrolide antibiotic used in the 
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treatment of bovine pneumonia, were reported with increased apoptosis of 

neutrophils, and phagocytosis by macrophages (Chin et al., 2000). Low doses of 

macrolides decreased bacterial LPS-induced production of IL-8 and granulocyte 

macrophage-colony stimulating factor (GM-CSF) by human bronchial epithelial cell 

line BET-1A (Desaki et al., 2004). In studies focusing on cellular immunity, 

macrolides also suppressed IFN-γ production by Th1 T cells and inhibits Th2 T cell 

functions in concanavalin A stimulated human T cells (Morikawa et al., 2002), as well 

as enhance regulatory T cell functions in a mice model of smoke induced lung 

inflammation (Bai et al., 2012, Altenburg et al., 2011). Further, azithromycin was also 

effective in modulating the increase in production of cytokines (interleukin [IL]-1beta 

(β), IL-6, IL-8, IL-10, and tumor necrosis factor-alpha (TNFα) in chlamydial infections 

associated with infertility (Srivastava et al., 2009). Azithromycin has been shown to 

reduce pulmonary exacerbations in patients with cystic fibrosis after six months 

administration of the drug (Southern et al., 2012). The immunomodulatory effects 

exhibited by macrolide antibiotics especially azithromycin contribute to the resolution 

of acute infections and ameliorate the exacerbations in chronic airway diseases such 

as chronic obstructive pulmonary disease (COPD), cystic and non-cystic fibrosis 

(Parnham et al., 2014). 

1.2.3.2 Fluoroquinolones 

The first commercially available fluoroquinolone, norfloxacin was launched in 1980, 

and soon after that, its ability to modulate host immune responses was reported 

(Roche et al., 1987). Since these antibiotics accumulate within the host cell, they are 

able to attenuate virulence and pathogenicity of intracellular bacteria such as S. 

Typhimurium, S. aureus and M. fortuitum by preventing their proliferation (Dalhoff, 

2005).  
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In human peripheral blood lymphocytes (PBL) stimulated with LPS, ciprofloxacin 

hindered the production of IL-1α and IL-1β (Bailly et al., 1990). These first generation 

fluoroquinolones influence the cytokine responses in leukocytes, but the type of 

fluoroquinolone, the concentration of the drug administered and the origin of the cells 

tested are important factors in determining the effect of fluoroquinolone antibiotics on 

leukocytes. Ciprofloxacin and rufloxacin are both inactive against Bacteriodes fragilis 

in vitro. By comparison, treatment of an intra-abdominal mouse model of infection 

with these antibiotics resulted in elimination of B. fragilis in 66.6% and 63.6% of 

animals, respectively. When TNFlevels were assayed, it was found that TNF was 

lower in untreated mice than those administered with antibiotics (Gollapudi et al., 

1993).  

Chlamydia pneumoniae infections are marked by high inflammatory response, with 

increased levels of TNFα, MCP-1, IL-1, IL-8, and IL-6 (Vardhan et al., 2009, Kothe et 

al., 2000). Moxifloxacin is bactericidal against C. pneumoniae and modulates 

inflammatory responses via the NF-κB protein complex by inhibiting the degradation 

of IҡBα, hence reduction in the production of inflammatory cytokines (Dalhoff, 2005). 

Moxifloxacin and sparfloxacin quinolones also increased IFN-γ levels in Listeria 

monocytogenes infections. IFN-γ is necessary for the activation of macrophages that 

phagocytose and clear these bacteria (Carryn et al., 2002). Furthermore, Webster et 

al., reported that in a granuloma model ciprofloxacin also caused a dose dependent 

inhibition of protein kinase C (PKC). This inhibition accounted for the activity of these 

drugs when administered to patients with inflammatory acne (Webster et al., 1994). 

Recently, Kalghatgi et al., showed that ciprofloxacin (as well as other bacteriostatic 

antibiotics such as ampicillin and kanamycin) increased  intracellular reactive oxygen 

species (ROS) in human mammary epithelial cells by disruption of the electron 
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transport chain (ETC) (Kalghatgi et al., 2013). It was previously demonstrated in 

bacteria that exposure to bactericidal antibiotics led to production of lethal ROS by 

disruption of the tricarboxylic acid (TCA) cycle and ETC, which increases mutation 

rate hence giving rise to multi-drug resistant (MDR) bacteria (Kohanski et al., 2007, 

Kohanski et al., 2010). However, this ROS model has been challenged and disputed 

by various independent authors. For instance, Ricci et al., confirmed that 

ciprofloxacin exposure produced ROS in S. Typhimurium (L664 and SL1344) but did 

tender data to show that ROS production leads to selection of MDR strains (Ricci et 

al., 2012). Secondly it was shown that antibiotics were effective at killing bacteria but 

there was no evidence of oxidative stress (Liu and Imlay, 2013). Ezraty et al., 

suggested that cell membrane permeability other than oxidative was responsible for 

the selection of MDR and not ROS production (Ezraty et al., 2013). These studies 

show that ciprofloxacin exposure causes production of ROS in eukaryotic cells and in 

bacteria but does not promote the development of MDR bacteria.  

In immunocompromised conditions such as HIV, patients are prone to infections such 

as salmonellosis. Both S. Typhimurium and HIV are intracellular pathogens and can 

replicate within monocytes and macrophages, although HIV replicate mainly in T 

cells. S. Typhimurium enhances the replication of HIV by inducing the production of 

TNFα. TNFα activates HIV-1 replication on T cells via translocation of NF-κβ to the 

nucleus and activation of HIV DNA long terminal repeat. Following ciprofloxacin 

treatment, intracellularly available ciprofloxacin causes bacterial death, reducing the 

numbers of S. Typhimurium within the cell. This effect leads to the inhibition of TNFα 

synthesis and subsequently hinders the replication of HIV virus within the 

macrophages (Andreana et al., 1994). 
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1.2.2.3 Tetracyclines 

Tetracyclines display several activities on immune cells. Collagenase activities are 

induced during an immune response by cytokines and unregulated activity of these 

enzymes indirectly leads to tissue damage (Suomalainen et al., 1992). Tetracyclines 

also inhibit the zinc-dependent activity of metalloproteinase enzymes by chelating 

zinc from their active sites. Doxycycline in an in vitro experiment, inhibited leukocyte 

function and adhesion via divalent cation binding (Tauber and Nau, 2008). 

Tetracyclines enhanced survival of mice undergoing LPS-induced septic shock, by 

inhibiting inflammatory cytokines such as TNFα and interleukin-1 alpha (IL-α) 

produced by peritoneal macrophages. Tetracyclines inhibit the p38 mitogen-activated 

protein kinase (MAPK) and NF-κB pathways which are important in controlling the 

expression of proinflammatory mediators. Apart from immunomodulation, tetracycline 

is also involved in immunosuppression as well as neuroprotection. Minocycline 

delays the onset of neurodegenerative disease and slows its progression by 

preventing microglial activation, reducing induction of caspase 1 and decreasing 

levels of IL-1β a pro-inflammatory cytokine (Kriz et al., 2002). 

In a C57BL/10 mouse model of Chlamydia infection, doxycycline intervention was 

very effective in rapidly reducing shedding and in eradication of the infection. 

However, on assessing the effect of doxycycline on antibody responses in the sera 

and vaginal washes of antibiotic treated mice, more IgG responses were found in the 

washes of untreated mice while anti-chlamydial IgA antibodies were undetectable in 

treated mice. There was also a reduction in IFN- and IL-10 production by CD4+ Th1 

cells in treated mice than untreated mice. This suggests that the although 

doxycycline negatively affected development of antibody and cell mediated immunity, 

this antibiotic maintained its efficacy against Chlamydia (Su et al., 1999).  
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1.2.3.4 Beta-Lactams 

Relatively little data exist about the immunomodulatory activities of beta-lactams and 

these agents seem to lack anti-inflammatory activities (Tauber and Nau, 2008). 

Cefaclor is probably the most widely studied antibiotic in this group. It has been 

shown to enhance phagocytosis and potentiate bactericidal activities by shifting the 

immune response towards the Th1 responses (Periti, 1998). To study the effect of 

beta-lactams on IFN-γ activity, the lung epithelial cell line A459, was incubated with a 

range of concentrations of benzylpenicillin, D-penicillinamine, ampicillin, 

phenoxymethylpenicillin, cefotaxime, cefaloridine, cefoxitin, ceftriaxone, aztreonam, 

merepenem and clavulanic acid for 1 or 4 days. IFN-γ activity was measured by its 

ability to induce the expression of the cell surface phosphatase CD54 (ICAM-1) on 

human epithelial cells. Results showed that clavulanic acid, cefoxitin and cefaloridine 

had the greatest inhibitory effect on IFN-γ activity while penicillin and aztreonam had 

the least effect. The inhibitory effects of these antibiotics were time dependent, such 

that when IFN-γ was co-incubated with antibiotics from 1 to 4 days, the influence  of 

the drugs became more pronounced (Brooks et al., 2005).  

Mor and Cohen (2012) reported that experimental autoimmune encephalomyelitis 

and adjuvant arthritis were more severe in mice treated with oral cefuroxime. 

Transcriptome analysis showed genes involved in Th2 and T regulatory cell 

differentiation were reduced by cefuroxime, but up regulated in the presence of 

ampicillin (Mor and Cohen, 2012). Antibacterial drugs can not only affect the immune 

cells directly, but change to the gut microbiome alters the outcome of autoimmune 

diseases. Administration of broad spectrum antibacterial drugs (ampicillin, 

vancomycin, neomycin and metronidazole), that reduce gut microflora of C57BL/6 

mice impaired the development of experimental autoimmune encephalomyelitis 
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(EAE) (Ochoa-Reparaz et al., 2009). Reduction in severity of EAE was associated 

with a reduced production of pro-inflammatory cytokines and increased production of 

IL-10 and IL-13 and increased production of certain B cell subpopulation e.g. CD5+ B 

cells. Transfer of these B cells to non-antibacterial treated EAE mice induced a shift 

from Th1/Th17 type responses towards anti-inflammatory Th2 type responses such 

as enhanced production of IL-10 and IL-13, and reduced production of IL-17 and IFN-

ү (Ochoa-Reparaz et al., 2009, Ochoa-Reparaz et al., 2010). The difference in the 

observations in these studies was attributed to the binding of beta-lactam antibiotics 

including cefuroxime and penicillin to albumin. Transcriptome analysis showed that 

the expression of several genes was altered, in particular in the TGF-β pathway, 

which is involved in the signalling of both pro-inflammatory Th17 and anti-

inflammatory Tregs. The half-life of penicillin bound to albumin was 7 days compared 

to 42 minutes for free penicillin, therefore Mor and Cohen postulated that any effects 

of bound albumin would be sustained (Mor and Cohen, 2012). However, why certain 

beta-lactams induce inflammation and others such as ampicillin are protective is not 

yet understood. 

Finally, exposure of mice challenged with EL4 lymphoma, MC38 colon carcinoma 

and B16 melanoma cells to antibacterial drugs that clear the gut microbiota induced a 

down regulation of genes related to inflammation, antigen presentation, phagocytosis 

and adaptive immune responses. Genes related to cancer, tissue development and 

metabolism were upregulated in mice treated with antibacterial drugs. Antibacterial 

treatment led to a poor response to anti-tumour therapy than in untreated mice (Iida 

et al., 2013). These findings suggest that the normal gut microbiota is essential for 

optimal immune responses, and modulation of the microflora by exposure to 

antibacterial drugs may be detrimental to the outcome of some cancer treatments. 
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Antibacterial drugs also affect other mammalian cells by altering cellular functions 

such as mitochondrial production of reactive oxygen species (ROS). In a recent 

study, clinically relevant concentrations of four antibacterial drugs of different classes 

(ciprofloxacin, tetracycline, ampicillin and kanamycin) induced dose dependent 

increases in ROS production in a human mammary epithelial cell line (MCF10), 

human mammary epithelial cells (HMEC), human gut epithelial cells (CACO-2), and 

porcine aortic endothelial cells (PAEC) in tissue culture (Kalghatgi et al., 2013).  
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Table 1.1 Selected effect of antibiotics on the immune response. 

Antibiotic class Effect on immune cells 

Macrolide Inhibited neutrophilic inflammation in patients with severe infection and steroid resistant asthma 
(Piacentini et al., 2007), enhanced neutrophil killing (Labro et al., 1993) 
Improved clinical symptoms of acute sinusitis by decreasing nasal fluid IL-8, and serum levels of IL-1, 8 
and c-reactive proteins (Labro, 1998). 

 Inhibited the expression of adhesion molecules intracellular adhesion molecule-1 (ICAM-1), vascular 
adhesion molecule-1 (VCAM-1) on leukocytes (Sanz et al., 2004). 

 Reduced phagocytosis in erythromycin treated mice (Carlone et al., 1989) 
Reduced number of neutrophils and inflammatory cells (Yamada et al., 2013) 
Ameliorated LPS induced inflammation in a rat model of acute conjunctivitis (Fernandez-Robredo et al., 
2013). 
Reduction in LPS induced inflammatory cytokines and plasma kynurenine (Hao et al., 2013) 

 Modulate the production of (interleukin [IL]-1beta (β), IL-6, IL-8, IL-10, and tumor necrosis factor-alpha 
(TNFα)in response to Chlamydia 

Fluoroquinolones Inhibited IL-1α and IL-1 β(Bailly et al., 1990), induced overexpression of efflux transporters in J774 
macrophages (Caceres et al., 2013) 

 TNFα, MCP-1, IL-8, and IL-6 in Chlamydia infection 
Reduced inflammatory cytokine in human bronchial epithelial cells (Tsivkovskii et al., 2011) 
Inhibited intestinal inflammation in an IL-10 dependant manner (Gustot, 2014) 

  Induced increases in intracellular reactive oxygen species (ROS) in human mammary epithelial cells 
(Vardhan et al., 2009, Kothe et al., 2000, Kalghatgi et al., 2013)  

Tetracyclines Inhibited both collagenases and metalloproteinase (Suomalainen et al., 1992, Kriz et al., 2002, Tauber 
and Nau, 2008, Su et al., 1999). 

 Inhibited leukocyte function and adhesion 

  Hindered development of antibody and cell mediated immunity 
Beta-lactams Clavulanic acid, cefoxitin and cefaloxidine inhibit  IFN-γ activity (Brooks et al., 2005) 

Increased oxidative burst in neutrophils in response to P. aeruginosa (Labro et al., 1988) 
  Facilitated the development of EAE and increased arthritis scores in mice (Mor and Cohen, 2012) 
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1.3 Antibiotics: better in the immunocompetent host or less so in the 

immunocompromised? 

An immunocompromised patient is one who is unable to resist infection in a normal 

manner as a result of impaired host defences (Rolston, 2004). Infections are one of 

the major causes of death in immunocompromised individuals (Greenberg, 2002, 

Neumann et al., 2013). Defects in any aspect of the host defence leads to increased 

susceptibility to invading pathogens (Algar and Novelli, 2007). A compromised 

immune system can be due to congenital deficiencies (in neutrophils e.g. chronic 

granulomatous disease, antibody e.g. glycerol kinase deficiency, complement or T-

cell deficiencies e.g. DiGeorge Syndrome), or acquired including administration of 

immunosuppressive drugs in patients undergoing organ/tissue transplantation, anti- 

TNF therapy, chemotherapy or radiotherapy in cancer patients and disease states 

such as HIV infection. 

The types of infections that are predominant in immunocompromised patients are 

usually reflective of the underlying immunodeficiency as defence against a particular 

microbe or microbial species is often dependent on a particular arm of the immune 

response. For instance, infections in neutropenic patients are commonly caused by 

S. aureus, P. aeruginosa and S. pyogenes. HIV patients are usually predisposed to 

infection caused by Salmonella species, S. pneumoniae and Mycobacterium species. 

(Shenep, 1998, Algar and Novelli, 2007). Bacterial pathogens which commonly 

cause infections in immunocompromised conditions are listed in Table 1.2.  

Notwithstanding the small number of patients, it can be inferred from studies on 

patients with granulocyte deficiencies that the state of the immune system affects the 

outcome of antibacterial therapy. Administration of antibacterial prophylaxis reduced 

infection and early death in these patients as compared to administration of 
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antibacterial therapy once an infection was established (Drayson, 2011). Studies on 

linezolid (an oxazolidone antibacterial drug) in clinical trials investigated the efficacy 

and safety for the treatment of infections in cancer patients with neutropenia.  

 

Table 1.2 Common infective pathogens associated with immune defects 

Immunodeficiency Bacterial species that 

commonly cause infections. 

References 

Neutropenia (due 

to chemotherapy) 

Staphylococcus aureus, 

Escherichia coli, Streptococcus 

pyogenes, Pseudomonas 

aeruginosa, Klebsiella species. 

(Donowitz et al., 2001, 

Rolston, 2004) 

Organ/tissue 

transplantation  

 

Listeria monocytogenes, 

Mycobacterium tuberculosis,  

Nocadia asteroides, Salmonella 

species, Legionella specie, 

Campylobacter  jejuni. 

(Fishman and Rubin, 

1998, Singh and 

Paterson, 1998) 

(Ampel and Wing, 

1990, Dhar et al., 

1991, Holden et al., 

1980, Wilson et al., 

1989) 

 

HIV Salmonella species, 

Mycobacterium species, 

Streptococcus pneumoniae, 

pneumocystis carinii, 

Cryptosporidium species.  

 

(Crump et al., 2011, 

Lawn et al., 2005, 

Dayan et al., 1998)  

Complement  S. pneumoniae, Haemophilus 

influenzae, Neisseria 

meningitides. 

 

(Ram et al., 2010) 
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In immunocompromised adults with cancer, the efficacy of linezolid was 79%-86% 

(Smith et al., 2003). In immunocompromised children (average age, 2.2 years) with 

cancer (lymphoblastic leukaemia, brain tumour, multi-organ Langerhans cell 

histiocytosis, rhabdomyosarcoma, Burkitt's lymphoma and ovarian tumour), it was 

100% (Moschovi et al., 2010). However, the efficacy of linezolid in children with 

bacterial infection was similar to immunocompromised children with cancer at 90% 

(Wang and Hsueh, 2009). These data suggest that linezolid was more effective in 

immunocompromised children with cancer than in immunocompromised adults. 

Notwithstanding the possibility  that a greater number of infections in 

immunocompromised children were by pathogens susceptible to linezolid,  contrary 

to the long-held assumption that a competent immune system is required for 

antibacterial drugs to be effective, these findings suggest that antibacterial drugs are 

capable of resolving an infection with or without a competent  immune system.  

1.4 Immunomodulatory antibiotics for treatment of bacterial infections; the 

way forward?  

With the rate of discovery of new antibacterial drugs declining and the global 

increase in resistant bacteria (Piddock, 2012), the ability of antibacterial drugs to 

modulate immune responses either by suppression or enhancement may be a useful 

therapeutic strategy to be exploited for the treatment of infectious diseases (Hancock 

et al., 2012, Hawn et al., 2013). Focus needs to be drawn to promote the use of 

therapies that minimise the selection of resistant bacteria and agents that can be 

used alone or in a combination to  moderate elements of the host response to reduce 

bacterial survival (Spellberg et al., 2013). 

Several pre-clinical research programmes have demonstrated that by blocking the 

host’s microbial receptors or signalling pathways, control of bacterial infection can be 
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achieved. One study for instance, demonstrated how the combined use of 

antibacterial drugs, and calcium and potassium ion flux inhibitors or a phenothiazine 

(an anti-psychotic drug) to target Mycobacterium tuberculosis infected macrophages 

enhanced the ability to kill internalised bacteria (Martins et al., 2008). They 

suggested that targeting the host’s immune response could reduce the prevalence of 

multi-drug resistance tuberculosis (MDR-TB) and extensively-drug resistant 

tuberculosis (XDR-TB) (Martins, 2011). Additionally, it was shown that -

galactosylceramide activated invariant natural killer T cells reduced replication of M. 

tuberculosis in mouse peritoneal macrophages and prolonged survival of infected 

mice. Apart from modulation of the immune response, it was shown that a 

combination therapy of -galactosylceramide and isoniazid had a synergistic effect in 

controlling bacterial growth (Sada-Ovalle et al., 2010).  

Toll-like receptors (TLR) recognise pathogen associated molecules and several 

immunomodulatory therapies that target TLR signalling are currently under 

investigation. A recent study in mice showed that administration of a broad spectrum 

antibacterial drug combination (metronidazole, neomycin and vancomycin) led to 

increased colonisation of the gut when challenged with vancomycin-resistant 

Enterococcus (VRE) due to reduced production of RegIIIγ, a secreted antibacterial C-

type lectin which acts selectively on Gram-positive bacteria. Following administration 

of TLR4 ligand, lipopolysaccharide, RegIIIγ expression was restored in treated mice 

and the number of viable VRE in the gut was reduced. Similarly, administration of the 

TLR5 ligand flagellin to mice also reduced the viability of VRE in the gut, and may 

even be a better therapeutic option to LPS, as it does not induce a severe 

inflammatory response. These data suggest that mucosal resistance to bacteria can 
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be enhanced by agents that boost mucosal immunity. (Brandl et al., 2008, Kinnebrew 

et al., 2010).  

The use of combined antibacterial therapy with enhancers of the innate immune 

system has been proposed (Sparo and Sánchez Bruni, 2012). One study 

demonstrated the improved therapeutic effect (80%) of Mycobacterium phlei cell wall 

extract (MCWE) which targets the TLR pathway, in combination with the 

fluoroquinolone enrofloxacin, in Streptococcus zooepidemicus infected mares who 

have previously failed treatment with MCWE alone (Fumuso et al., 2004). Such an 

approach involved recognising components of the immune response e.g. phagocytes 

as drug delivery vessels to sites of infection.  

Jareoncharsri et al., (2003) showed that administration of two oral doses of Luviac®, 

a bacterial lysate agonist for TLR2 which contains antigens of seven bacteria 

common in respiratory tract infections (S. aureus, Streptococcus mitis, S. pyogenes, 

S. pneumoniae, Klebsiella pneumoniae, Moraxella catarrhalis, Haemophilus 

influenzae) over a four month period to patients with recurrent respiratory tract 

infection effectively reduced severity and duration of infection. Increased production 

of T lymphocytes (CD4, CD8 and CD45RO+ memory cells), higher levels of specific 

IgA, and a rise in serum levels of IL-1β and IL-6 was noted in healthy volunteers 

treated with Luviac® (Jareoncharsri et al., 2003).  

By comparison, Toll like receptors can also be modulated using antagonists that 

block the signalling cascade. OPN-305, a TLR2 antagonist developed by Opsona 

Therapeutics has been shown to block TLR2, thereby reducing TLR2 mediated pro-

inflammatory cytokine production during myocardial ischemia/reperfusion injury 

(Connolly and O’Neill, 2012). OPN-305 was successful in Phase I clinical trials and 
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the company is currently recruiting participants for Phase II trials (Reilly et al., 2013). 

Phase II clinical trials of eritoran (E5564), an antagonist that inhibits endotoxin 

interaction with TLR4 developed for the treatment of sepsis (severe inflammatory 

response to infection, commonly bacterial infections), revealed that eritoran was well 

tolerated in volunteers (Tidswell et al., 2010). Phase III clinical trials however 

revealed that eritoran did not perform better than pre-existing anti-sepsis therapy and 

clinical trials were halted (Opal et al., 2013). A more recent study illustrated that 

eritoran prevented influenza lethality in wild type C57BL/6J mice, suggesting a novel 

approach in the treatment of influenza infection (Shirey et al., 2013). The used of 

TLR targeted therapeutics, both agonists and antagonists, for the treatment of 

infections, cancers and allergic disease has been extensively reviewed (Connolly and 

O’Neill, 2012).  

Innate immune cells such as leukocytes and epithelial cells produce 

immunomodulatory and anti-infective compounds known as innate defence regulator 

(IDR) peptides (Hancock et al., 2012). One such peptide is hLF1-11 derived from the 

N-terminus of human lactoferrin, with potential clinical application in the prevention of 

infections caused by methicillin-resistant S. aureus (MRSA), Listeria monocytogenes 

and antibacterial resistant Acinetobacter baumannii in immunocompromised patients 

(Velden et al., 2009). Exposure of human monocytes to hLF1-11, during GM-CSF-

driven differentiation, increased responsiveness to microbial structures such as 

lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and enhanced efficacy against 

MRSA and C. albicans. hLf1-11 was shown to bind to, and penetrate human 

macrophages, and subsequently inhibited the production of myeloperoxidase in the 

macrophages (van der Does et al., 2010, van der Does et al., 2012). However, there 

is no evidence that this drug advanced to clinical trial 
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(http://clinicaltrials.gov/show/NCT00430469). In addition to designing therapeutics 

that target specific pathways/molecules in bacteria, antibacterial drug adjuvants can 

be designed to target components of the host-pathogen relationship (Nathan, 2012). 

Since pathogens often require host factors for their persistence, an antibacterial drug 

that has the potential to inhibit the expression and action of such factors (e.g. kinases 

and phosphatases) might constitute an adjunct anti-infective therapy.  

It has been reported that the absence of dsRNA-dependent protein kinase R (PKR) 

benefits the intact mammalian host during infection with M. tuberculosis. Mice 

deficient in PKR had a sustained reduction in the number of infecting bacteria and 

lung pathology compared to wild type mice. This protective effect of PKR deficiency 

was accredited to two mechanisms: (1) PKR deficiency enhanced apoptosis in 

macrophages infected with M. tuberculosis; and (2) PKR induces the expression of 

IL-10, a macrophage deactivating cytokine. In a PKR deficient environment, 

macrophage activation in response to interferon-γ (IFN-γ) enhanced the production of 

protective reactive nitrogen intermediates (RNI) compared to wild type mice (Napier 

et al., 2011, Wu et al., 2012). Treatment of mice with a protein kinase inhibitor, 

imatinib, pre- and post-infection reduced the growth of M. tuberculosis over one 

month. In addition to the functions stated above, PKR is an important signalling 

molecule involved in diverse physiological processes such as response to stress, 

cytokines, lack of nutrients and osteoblast mediated calcification (Sadler and 

Williams, 2007). Therefore, it is important to consider these other processes if 

administration of a drug that enhances the inhibition of PKR is proposed in a clinical 

setting.  

Manipulation of intracellular signalling molecules derived from fatty acids may also be 

beneficial to an infected host (Nathan, 2012). This was illustrated  in a C57BL/6J 

http://clinicaltrials.gov/show/NCT00430469
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mouse peritoneal  model of E. coli infection,  where there was increased survival of 

the mice following treatment with ciprofloxacin supplemented with anti-inflammatory 

metabolites of ω-3-eicospentaenoic acid or docosahexaenoic acid (resolvins and 

protectins) (Chiang et al., 2012). In addition to intracellular signalling fatty acid 

molecules, pro-resolvin lipid mediators have been shown to have immunomodulatory 

activities. Molecules such as resolvins, lipoxin, protectins and maresins are agonists 

of resolution, with the potential to limit infiltration of neutrophils and enhance the 

uptake of apoptic cells by macrophages and microbial clearance (Serhan, 2014).  

Together these studies illustrate that targeting host responses lowers the 

requirement for, and dependence on, antibacterial drugs that directly target bacteria, 

hence providing an alternative approach to address antibacterial resistance. 

Understanding the complex relationship between the effect of antibiotics on bacteria 

and immune cells provides an opportunity to develop novel therapies. By combining 

these effects we can potentially tailor the immune response to pathogens while 

inhibiting growth of the bacteria. This would lead to reduced antibiotic use and 

therefore less opportunity for resistance to develop, giving such drugs a longer 

therapeutic life. 

1.5 Models of the immune response to infection. 

Handel et al., (2008) proposed four mathematical models for the design of 

experimental tests. Handel and colleagues based their analysis on in vitro studies 

and mouse models of infection (Campion 2005 and Chung 2006). These studies 

modelled neutrophil and CD8+ T cell responses to bacterial infection. With regards to 

humans, the basic concepts outlined should remain the same, though, differences in 

metabolism may alter the specific parameters of the models (Craig, 1998). However, 

while preclinical data from murine experiments have been used to define treatment of 
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human patients, the assessment of risk should be more fully addressed (Lamontagne 

et al., 2010). The models were based on the following assumptions: (1) that immune 

responses are triggered at the onset of an infection and these responses saturate 

when they attain maximum strength to tackle the infection, (2) that immune 

responses against bacteria saturate as the bacterial load increases, as observed 

experimentally in  neutrophils (3) that immune responses to an infection are 

proportional to bacterial growth and these responses deteriorate at a constant rate, 

for instance in cytokine responses and (4) a combination of assumptions (2) and (3) 

(Figure 1.4) (Handel et al., 2008). This was exemplified in animal studies such as the 

non-neutropenic mouse thigh models of Pseudomonas aeruginosa and methicillin-

sensitive Staphylococcus aureus (MSSA) infections. Drusano et al., (2010) showed 

that granulocytes kill bacteria up to a given saturability, above this the bacterial load 

cannot be controlled. For P. aeruginosa, a bacterial challenge of 1 x 106 CFU/ml 

resulted in stasis (i.e. net granulocyte kill with no bacterial growth or death) whereas 

when challenged with 3 x 106 CFU/ml there was uncontrolled growth after 24 hours. 

For S. aureus infection a bacterial challenge of 3 x 106 CFU/ml resulted in 

bacteriostasis; when challenged with 1 x 107 CFU/ml there was bacterial growth 

(Drusano et al., 2010). The existence of a granulocyte killing saturability, therefore, 

increased the need for antibacterial chemotherapy to control bacterial growth, since 

unchecked bacterial growth caused severe damage morbidity and mortality. 

However, although these models are helpful in designing experimental strategies, 

they might not be directly applicable to animal models or people with impaired 

immune function which may also contribute to the development of resistance to 

antibacterial drugs during an infection (Handel et al., 2008, Borody et al., 2002).  
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Animal and in vitro models have been used to simulate in vivo conditions when 

studying immunity and how it affects antibacterial therapy. Bakker-Woudenberg et 

al., 1979 demonstrated the importance of the host’s immune response during 

antibacterial therapy by administering penicillin to rodents with a selectively impaired 

immune system. Their experiments were carried out in a rat model of impaired 

phagocytosis induced by complement depletion, challenged with a Streptococcus 

pneumoniae type III strain and intramuscular administration of penicillin. Their results 

showed faster recovery from pneumococcal infection with penicillin therapy in rats 

with an intact complement system (100%) compared to complement-depleted rats 

(43%) (Bakker-Woudenberg et al., 1979). Dalhoff (2005) investigated the activity of 

two fluoroquinolone drugs, ciprofloxacin and moxifloxacin, against a clinical isolate of 

P. aeruginosa (308039) and a laboratory generated strain of P. aeruginosa (19397) 

in a pharmacodynamic mouse model devoid of host defence factors such as 

polymorphonuclear neutrophils (PMNs). The results showed that introduction of 

immunocompetence into the system by addition of J774 macrophages or by an ex 

vivo sponge soaked in inflammatory exudates caused an increase in bacterial killing. 

However, it was difficult to determine whether J774 macrophages increased the 

bactericidal activity of the drug or the J774 cells prevented re-growth of bacteria 

(Dalhoff, 2005).   

The penetration, intracellular accumulation and distribution properties of antibacterial 

drugs such as macrolides and fluoroquinolones, improved their activities especially 

when infections by intracellular pathogens such as S. aureus were examined 

(Tulkens, 1991). Although it was disputed that S. aureus is an intracellular pathogen, 

it has been shown that S. aureus invades non-phagocytic cells such as epithelial 

cells, endothelial cells and fibroblasts (Garzoni and Kelley, 2009, Fraunholz and 
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Sinha, 2012).  The effect of antibacterial therapy on macrophage engulfing S .aureus 

was explored in a J774 macrophage tissue culture model exposed to fluoroquinolone 

drugs (ciprofloxacin, levofloxacin and moxifloxacin) and subsequently infected with S. 

aureus. The results showed that macrophages exposed to these drugs had fewer 

engulfed bacteria than untreated (Seral et al., 2005). McDonald and Pruul suggested 

that macrolide drugs such as azithromycin work in synergy with the immune system 

and have potent immunomodulatory activities (McDonald and Pruul, 1992). Similarly, 

dirithromycin, another macrolide drug, reportedly enhanced phagocytic activity of 

neutrophils (Labro et al., 1993). Conversely, three macrolides (erythromycin, 

azithromycin and clarithromycin) were shown to inhibit the ability of neutrophils to 

generate reactive oxygen species. It was hypothesized that the clinical relevance of 

this inhibition would be the control of inflammatory processes in chronic respiratory 

diseases, especially if high concentrations of the drug accumulate in tissues 

(Wenisch et al., 1996, Sugihara, 1997). 
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Figure 1.4  Models of the immune response as proposed by Handel et al (2008). 

 

    

 

    

 A.  Model 1: The immune response is triggered at the onset of an infection.  Bacterial killing is directly proportional to the strength of the immune response. 

This applies to neutrophils and CD8 cells and bacteria B. Model 2: The rate of bacterial killing saturates at a maximum level as bacterial load increases. 

This has been observed experimentally in neutrophil response to bacteria. C. Model 3: The immune response increases with bacterial load at a fixed rate 

e.g. in the cytokine response to bacterial infection. D. This model combines the saturated killing of model 2 and the dynamic of model 3. 

 

A.  Model 

1 

B.  Model 

2 

C.  Model 

3 

D.  Model 

4 



 

58 

 

1.6  Immune responses to Salmonella infection 

Salmonella enterica serovar Typhimurium belongs to a class of enteropathogenic 

bacteria, responsible for a number of diseases. These diseases range from local 

gastroenteritis, to systemic life-threatening disease such as, typhoid fever (Fierer and 

Guiney, 2001).  Salmonella is a facultative anaerobic, rod-shaped Gram-negative 

bacteria belonging to the family of Enterobacteriaceae. Within the Salmonella genus 

there are two known species; Salmonella enterica and Salmonella bongori (Dougan 

et al., 2011) each harbouring multiple serovars, distinct variations found within the 

subspecies of a bacteria, and are usually classified based on the surface antigens 

they possess (Tindall et al., 2005). Salmonella has evolved to have a long standing 

association with its host, especially in vertebrates. Biological  niches for these 

bacteria include gastrointestinal tracts of pigs (Boyen et al., 2008), rodents 

(Valdezate et al., 2007) and poultry (Gast, 2007) as well as in amphibians such as 

frogs (http://www.cdc.gov/salmonella/water-frogs-0411/, 2011).  

1.6.1 Route of Infection 

Naturally, Salmonella is acquired when food or water containing the bacteria is 

ingested orally or through contact with an infected carrier. Salmonella is equipped 

with an adaptive acid tolerance response that is vital for its survival in the stomach 

(Muller et al., 2009). A portion of the infecting dose survives the low pH in the 

stomach and is transported to the small intestine where it forms colonies and 

establishes an infection. Salmonella encodes a ShdA protein that enhances its ability 

to colonise the intestine (Kingsley et al., 2003). Microfold (M) cells are located within 

the follicle-associated epithelium (FAE) of the Peyer’s patch (PP). They are 

preferentially exploited by Salmonella, and are the primary sites of infection. The M 



 

59 

 

cells sample the gut for antigens which they transport to lymphoid tissues (Jepson 

and Clark, 2001) (Figure1.5). In the lymphoid tissue, Salmonella is taken up by 

dendritic cells (Wick, 2002) and other cells expressing CD11c for processing and 

presentation to immune cells. (Tam et al., 2008).  

   

Figure 1.5 Diagrammatic representation of Salmonella entry into the host 

 

 

 

 

 

 

 

 

The diagram illustrates the entry of Salmonella into M cells and that survival in 

macrophages is a key step in the dissemination of Salmonella in the host (Haraga et 

al., 2008).   

 

1.6.2 Pathogenicity of Salmonella. 

Generally, Salmonella are classified as invasive and intracellular bacteria, infecting 

immune cells such as neutrophils, macrophages and dendritic cells to survive and 

proliferate within them. These microbes have the ability to modify membrane bound 
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compartments within the cells they infect (especially macrophages), creating for 

themselves a niche known as ‘Salmonella-containing vacuole’ (SCV) (Szeto et al., 

2009). To live successfully within the SCV, Salmonella encodes multiple systems that 

enable it to interact with the mucosal epithelia and penetrate through this barrier.  

Virulence of Salmonella is encoded in genes harboured in a genomic locus called 

Salmonella Pathogenicity Island (SPI). These genes are also associated with survival 

and fitness of the bacteria, with guanine-cytosine (GC) content different from the rest 

of the genome (Wisner et al., 2012). In Salmonella, about 21 SPI have been 

identified. Within the SPI are the type three secretion systems (TTSS) that are 

responsible for Salmonella invasiveness and persistence. The SPI-1 TTSS transfers 

effector proteins into the host cells. These proteins induce physiological and 

structural changes that enable the bacteria to be taken up into the host cells. Within 

the cells, Salmonella then expresses the SPI-2 TTSS. The SPI-2 TTSS regulates the 

internal SCV processes and interactions between the SCV and endosomal trafficking 

processes (Guiney and Fierer, 2011).  

Salmonella enters the host by two mechanisms. The first mechanism is through 

phagocytic uptake by phagocytic cells such as macrophages, while the second 

involves SPI-1 TTSS action on non-phagocytic cells. When Salmonella is bound to 

epithelial cells, Salmonella secretes effector proteins into the host’s cell triggering 

membrane ruffling and inducing the reorganisation of the cell cytoskeleton (Figure 

1.6). Once within the epithelial cells, these effector proteins switch off and the cells 

are returned to their original state. The trapped bacteria are encased within the SCV. 

Unlike many other intracellular pathogens that leave the vacuolar space and migrate 
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to the cell cytoplasm, Salmonella remains within the SCV (Ibarra and Steele-

Mortimer, 2009, Wisner et al., 2012, Bhavsar et al., 2007).  

Toll like receptors (TLR) recognise Salmonella and trigger the appropriate immune 

response. As shown by Arpaia et al., (2011) activation of TLR 2, 4 and 9 contributes 

to acidification of the SCV leading to increased bacterial replication. (Arpaia et al., 

2011). This reduced acidity and hindered SPI-2 induction, results in 3 major 

consequences; bacteria is released from the SCV into the macrophage cytoplasm, 

the vacuole fuses with the lysosome causing bacterial death, irregularly shaped 

bacteria and hence reduced bacterial survival (Buckner and Finlay, 2011). From their 

work, it can be argued that TLR signalling in Salmonella infection is more beneficial 

to the bacteria than to the host.  
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Figure 1.6 Salmonella induced membrane ruffling by SPI-1 TTSS effector 

protein is an important step in the invasion of Salmonella to host cells, Haraga 

et al., (2008) 

 

The diagram illustrates Salmonella induced ruffling of the cell membrane that 

faciliates entry of bacteria into the host cell. The internalised bacteria are located 

within the phagosome which fuses with the lysosome to form the Salmonella 

containing vacoule. Within the SCV, the Salmonella pathogenicity island 2 (SPI2) 

type III secretion system (T3SS) secretes effector proteins such as SifA and PipB 

through the microtubules.  

 

1.6.3 Salmonella Infections 

In a review by Griffin and McSorley, Salmonella infections were broadly classified 

under three categories: 

 Localised intestinal infection otherwise known as gastroenteritis 

 Systemic infection of an otherwise healthy host, also known as typhoid 
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 Systemic infection of an immunocompromised or susceptible host also known 

as non-typhoidal Salmonellosis (Griffin and McSorley, 2011).  

 

Figure 1.7 Salmonella isolates in England and Wales, 2000-2012. From 

https://www.gov.uk/government/publications/salmonella-by-

serotype/salmonella-by-serotype-2000-to-2010  

 

 

Salmonella infection results in various clinical syndromes (Figure 1.7). In fact, one 

isolate of this bacterium can lead to different clinical manifestations in different hosts 

(Table 1.3). The outcome of interaction between Salmonella and the host depends 

on a number of factors such as infecting dose, gut flora, host species and 

immunological competence of the host (Gordon, 2008). Figure 1.7 shows the number 

of reported cases of Salmonella isolates in England and Wales between 2000 and 

2012. The figure also indicates that there has been a decrease in the number of S. 

Enteritidis isolates and total Salmonella. This is mainly due to decreased episodes of 
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Salmonella Enteritidis, as a result of greatly improved and monitored food safety and 

chicken breeding conditions (O'Brien, 2013).  

 

Table 1.3 Salmonella infections 

S. entrica serovar Host Salmonellosis Symptoms and diseases 

Typhi, Paratyphi Human 
(restricted) 

Typhoidal Fever, enteric fever, 
abdominal pain, 
constipation, transient 
diarrhoea,  maculopapular 
rash 

Typhimurium, 
enteritidis 

Broad 
range 

Non-typhoidal Gastroenteritis, abdominal 
pain, vomiting, inflammatory 
diarrhoea  

 

 

1.6.4 Innate Immune Responses to Salmonella 

The initial immune response to Salmonella infection is marked by the activation of 

phagocytic activities and production of inflammatory cytokines (Mäkelia and 

Hormaeche, 1997). Macrophages and neutrophils are essential at this stage of the 

infection in that they control the growth of bacteria by exerting both bactericidal and 

bacteriostatic activities (Grant et al., 2008). Nitric oxide modulates anti-Salmonella 

activities at later stages of the infection. Mastroeni (2002), showed that both NADPH 

oxidase and inducible nitric oxide synthase (iNOS) are required for host resistance to 

Salmonella in experiments using iNOS-deficient and wild type mice challenged with 

avirulent LT2 strain of S.enterica serovar Typhimurium (Alam et al., 2002). iNOS 

mice succumbed to infection while wild type mice survived. Reactive oxygen 

intermediates (ROI) mediate clearance of Salmonella. ROI do not act directly on 
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intracellular Salmonella but induce a Cathelicidin-related antimicrobial peptide 

(CRAMP) (Mastroeni, 2002). At this early phase of an infection, sphingomyelinase, a 

constitutive acid in macrophages, mediates NADPH- oxidase killing of Salmonella 

(McCollister et al., 2007). In chronic granulomatous disease, (CGD) where cells of 

the immune system are defective in their ability to form reactive oxygen species, 

patients are susceptible to periodic microbial infections such as Salmonellosis (Mouy, 

1989). In genetically modified TNFα knockout mice, protective multicellular lesions do 

not properly formed, leading to the rapid spread of Salmonella within liver tissues 

suggesting that TNFα is a major requirement in Salmonella infection (Everest et al., 

1998). 

Dendritic cells (DCs) respond to Salmonella infection by up-regulating major 

histocompatibility complex class II (MHC-II) expression, as well as expression of co-

stimulatory molecules CD40, CD80 and CD86 (Kalupahana et al., 2005). These 

processes enhance the ability of DCs to present Salmonella antigens to CD4, and 

CD8 T cells and B cells, serving as a bridge between the innate and adaptive 

immune system in Salmonella infection (McSorley  et al., 2002). Neutrophils check 

the spread of Salmonella from the point of infection to systemic tissues. 

Consequently, a higher risk of bacteraemia is observed in neutropenic patients 

during infection with NTS (Conlan, 1996). 

On infection, macrophages secrete IL-12 and IL-18 that stimulate NK cells to produce 

IFN Mice deficient in IFN-γ receptor or mice treated with anti-IFN-γ antibodies and 

challenged with a 5 x 105 dose of SL3261 strain of Salmonella were impaired in their 

ability to clear the bacteria and finally succumbed to infection (Mastroeni et al., 2000). 
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1.6.5 Adaptive Immune Responses to Salmonella. 

Early phases of Salmonella infection lead to the activation of the innate immune 

response. Though successful at checking growth and spread of the bacteria at this 

stage, it does not offer full protection to the host and makes the adaptive immune 

response essential for fighting Salmonella infection (Hughes and Galan, 2002). This 

stage does not require T cell or B cell responses. In T-cell knockout mice as well as 

in CD 4+ or CD 8+ deficient mice, the immune system is still able to suppress growth 

and spread of Salmonella in its early phase of infection (Hess, 1996). 

To achieve full and effective control of Salmonella infection, Salmonella-specific T-

cell responses must be developed and recruited to sites of infection. Although B cells 

appear dispensable in the later phases of Salmonella infection, T-cells are needed 

for their maturation and isotype switching to produce antibodies specific for 

Salmonella cell wall antigens. Srinivasan and his team (2004) have suggested that T-

cells offer protection to the host by attacking infected cells containing the SCV, while 

bacteria that have escaped through the cells to establish infection in different tissues 

are targeted by antibodies (Srinivasan et al., 2004). CD8+ T cells that mature into 

cytotoxic T lymphocytes contribute to protection against Salmonella when they 

liberate these bacteria from infected macrophages by induction of apoptosis. T cells 

activate Salmonella-infected macrophages via IFNγ production leading to increased 

killing of intracellular bacteria. However, bacteria that escape from infected cells are 

targeted by antibodies, produced by B cells via Th2 cell help. Th17 T cells express 

the cytokines IL-17A, IL17-F and IL-22, which coordinate mucosal immune 

responses to invading Salmonella by activating the expression of chemokines and C-

type lectins (Liu et al., 2009).  
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The effector responses of Salmonella-specific CD4 T cells have been studied in both 

resistant and susceptible mice. Upon infection, these cells expand and acquire Th1-

effector functions. These effector functions up-regulate their secretion of IL-2, IFN-γ 

and TNFα (Johanns et al., 2010). This expansion occurs within lymphoid tissue (see 

Figure 1.8), after which activated CD4 T cells acquire the ability to home to sites of 

infection. Stimulation of activated Salmonella-specific CD4 T cells occurs either 

through ligation of T cell receptors (TCR) or is initiated by microbe associated 

molecular patterns (MAMPs) such as bacterial LPS. However, there are insufficient 

data to show whether this stimulation is achieved by recognition of PAMP directly by 

activated T cell or via inflammatory mediators IL-12, IL-18, IFN-γ and TNFα (Griffin 

and McSorley, 2011).  

In HIV infection, where there are profound immunosuppressive effects on both T-cell 

and macrophage mediated immune response, the importance of T-cell mediated 

immunity is emphasised. Deficiency in these immune responses increases a patient’s 

susceptibility to Salmonella infection (Celum, 1987). 

S. Typhi infects humans and other higher primates, exclusively; to cause a systemic 

infection called typhoid fever. For this reason, there is no small animal model of 

infection with S. Typhi, instead S. Typhimurium infection in mice is used. S. 

Typhimurium causes a similar systemic ailment in mice, usually short-lived, 

superficial gastroenteritis.  Data from human and mouse studies have shown similar 

immune response with a major dependence on IFN production to activate 

macrophages. In humans antibody production can provide long-lasting protection, a 

response that cannot be modelled in the mouse. 
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Figure 1.8 Expansion of CD4 T cells during Salmonella infection. From Griffin & 

McSorley, (2011). Inflammatory responses are a key tool in the immune 

system’s anti-Salmonella responses. Most effector cells required in this 

response are activated by inflammatory cytokines. 

 

1.6.6 Resolution of Salmonella infection. 

Resolution of Salmonella primary infection is mainly a combination of both innate and 

adaptive immune responses as shown in Figure 1.9. The B cells and antibody also 

contribute in controlling infection in both murine and human Salmonella infection. 

Antibody up-regulates the anti-microbial functions of reactive oxygen species and 

Salmonella uptake through Fc receptors (Menager et al., 2007). Mice lacking the 

micro RNA mir155 have impaired B cell functions and are poor producers of antibody 

against invading bacteria (Baltimore et al., 2008). Genetically engineered mir155 

knockout mice show a defective protective response to Salmonella on both primary 

and secondary challenge of avirulent Salmonella. Apart from production of anti-
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Salmonella antibodies, B cells to anti-Salmonella Th1 cell expansion, Th1 protective 

response to S. enterica is only partially developed when B cells are absent (Barr et 

al., 2010).  

Figure 1.9 A brief diagrammatic representation of arms of the innate and 

adaptive immune response involved in response to Salmonella. 

Immune response to 
Salmonella

Innate immune 
response 

Adaptive immune 
response

Macrophages

Neutrophils

Dendritic cells 

Inflammatory 
cytokines 

T cells

B cells

 

Immunodeficient disorders in humans have also been associated with a high risk of 

Salmonella infection. In individuals with X-linked agammaglobulinemia, where 

mutations in tyrosine kinase Btk profoundly impair B cell development, persistent 

recurrence of diarrhoea caused by Salmonella was reported (Kaku et al., 2002). 

Common variable immunodeficiency (CVID), characterised by abnormal cell 

mediated immunity and  hypogammaglobulinemia, also predisposes sufferers to 

increased risk of Salmonella infections (Leen et al., 2006). In individuals with X-linked 
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hyper IgM syndrome, mutations occur in the gene coding the CD40 ligand expressed 

on activated T Cells. CD40 ligand on T cell binds to CD40 on B cells following 

contact with antigen, which induces B cell proliferation, immunoglobulin switching 

and antibody secretion (Wykes, 2003). IgA, IgE, and IgG levels in such individuals 

are markedly low but they have elevated IgM levels. These variant cells result in 

weak interactions between T cells and B cells. Isotype switching and generation of 

immune memory is compromised as a result. Salmonella infections have been 

described in a number of these patients (Levy et al., 1997).  

1.7 Hypothesis 

The hypothesis tested in this project was that during antimicrobial therapy, exposure 

to antibiotics impacts on the immune system, providing a beneficial response that will 

alter the immune response to bacterial infection, and ultimately, the outcome of such 

therapy.  

1.8 Aim  

To explore the above hypothesis, the aims of the project were to systematically 

examine the effect of antimicrobial drugs at concentrations mimicking the maximum 

serum concentrations (Cmax) and minimum inhibitory concentrations (MIC) on; 

 Bacteria – function and survival. 

 The innate immune response of the host to bacteria. 

 The interaction between bacteria and the host.
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2 Materials and Methods 

2.1 Bacterial Strains 

 
This project used a variety of isogenic strains derived from wild type S. Typhimurium 

SL1344 (Table 2.1). The strains were stored on Protect™ beads (Technical Service 

Consultants Ltd., UK) at 20°C. Bacteria strains were resuscitated from beads on 

Luria-Bertani (LB) agar plates (Sigma-Aldrich Ltd, UK) and incubated at 37°C for 24 

hours. The plates with bacterial colonies were stored at 4°C for two weeks. The 

strains were identity checked by gram stain and PCR. Overnight cultures of bacteria 

were grown by inoculating the appropriate volume of LB broth (Sigma-Aldrich, UK) 

with a single colony and incubating overnight at 37°C in a shaking incubator 

(200rpm). 

 

2.2 Effect of antibiotics on viability of bacteria growing in vitro in liquid 

culture 

The antibiotics used in this study were chosen as they are commonly used to treat 

infections and represent different classes of drug. To determine the effect of the 

antibiotics on bacterial viability in the absence of immune cells, bacterial strains were 

grown overnight in 10 ml of LB broth at 37°C with shaking. From the overnight 

culture, 200µl was sub-cultured into 10 ml of fresh LB broth and incubated with 

shaking at 37°C until the OD675 was approximately 0.2-0.3. This gave approximately 

1 x 108 CFU/ml.  

Appropriate volume of stock antibiotics corresponding to the desired concentration 

needed for the experiment was added to the bacteria culture. A 100µl aliquot was 

removed and denoted as T0. The bacteria cultures were further incubated at 37°C 
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with shaking.  Further aliquots of bacterial suspension were taken after 30 and 60 

minutes. The viable count was determined by serially diluting the aliquot of the 

bacterial suspension in sterile distilled water. Twenty microlitres of each of the 

dilution sub-cultured to LB agar plates and incubated overnight at 37°C overnight. 

The number of colonies was counted afterward and colony forming units of the 

original suspension was determined.  

 

2.3 Effect of antibiotics on the functional activities of human neutrophils 

2.3.1 Subjects 

Volunteers for this study comprised healthy individuals between the ages of 24 and 

34, who were not under any medication. Venous blood was collected using the 

Vacutainer™ system of blood collection into lithium heparin tubes (Grenier Bio-one 

UK). Two tests were carried out because I investigated two key neutrophil defence 

mechanisms against bacterial infections. Phagotest quantifies neutrophil 

phagocytosis by determining the percentage of phagocytes which ingest 

fluorescently labelled bacteria, while phagoburst quantifies neutrophil oxidative burst 

by determining the percentage of neutrophils which oxidise the fluorogenic substrate 

dihydrohodamine (DHR) 123. (Hirt et al., 1994).  
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Table 2.1 Salmonella Typhimurium strains 

Lab code Genotype Relevant 

characteristics 

Description Reference 

L354 Wild type  Virulent 

strain 

Wray and Sojka, 
1978  
 

 

L109 SL1344 

tolC::aph 

transduced 

from a 

tolC::aph 

strain into a 

wild type 

background 

Kanamycin 

resistant 

Defective in  

efflux and is 

avirulent 

Buckley et al., 2006  

 

L730 ∆aroA from 

SL1344 

Auxotrophic 

Kanamycin 

resistant 

Defective in 

aromatic 

amino acid 

synthesis is 

avirulent in 

tissue 

culture and 

mice 

(Hoiseth and Stocker, 

1981) 

L1449 SL1344 SPI-

1::aph 

Kanamycin 

resistant 

The two 

ends of SPI1 

locus is 

separated by 

an aph gene 

cassette. 

Schechter et al., 

1999 

 

Note: the control strains SL1344 tolC::aph, SL1344 ∆aroA and SL1344 SPI-1::aph 

were only to distinguish invasion and phagocytosis and are not pathogenic strains of 

Salmonella. We concentrate on the virulent strain SL1344. 
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Table 2.2 The details of the exemplar antibiotics used in this study 

Antibiotic Concentration  

useda 

Solvent Source 

Ciprofloxacin 0.5 µg/ml 

(Cacchillo and 

Walters, 2002) 

SDWb + drop of 

acetic acid 

Fluka 

BioChemika 

(17850)  

Tetracycline 2 µg/ml 

(Agwuh and 

MacGowan, 2006) 

SDW Sigma (T3383) 

Ceftriaxone 82 µg/ml 

(Patel et al.) 

SDW Sigma (C5793) 

Azithromycin 2.93 µg/ml 

(Kroboth et al., 1982) 

SDW + drop of 

EtOH 

Sigma (E5389) 

Streptomycin 30 µg/ml SDW Sigma S9137 

aCmax: maximum concentration achieved in human serum 
bSDW:   sterile distilled water. 

2.3.2 Neutrophil phagocytosis assay (Phagotest assay) 

For the determination of the effect of antibiotics on the phagocytic activities of 

neutrophils, assays were carried out using PHAGOBURST® (10-0100) and 

PHAGOTEST® (10-0200) kits (Glycotope Biotechnology), following the instructions. 

Incubation period, temperature and volumes were strictly adhered to. 

One hundred microlitres of heparinised whole blood were added directly to four 5ml 

polypropylene round-bottom FACs tubes (BD Biosciences). This was done neatly, 

ensuring that blood was not smeared on the side wall of the tubes.  Twenty 

microlitres of FITC labelled opsonised E. coli containing ~ 1 x 107 bacteria were 

added to tubes containing heparinised whole blood. The tubes were grouped into 
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two. The first set of tubes was incubated on ice, while the second set was incubated 

in a pre-warmed water bath set at 37°C, both for 10 minutes. The tubes incubated on 

ice served as the negative control. 

After the 10 minutes incubation, the tubes incubated at 37˚C were stacked on ice to 

stop phagocytosis. One hundred microlitres of ice-cold quenching solution was 

added to each tube and mixed by vortexing. The quenching solution suppresses the 

fluorescence of any bacteria not phagocytosed by the leukocytes. To each tube, 3 ml 

of ice-cold wash solution was added and centrifuged at 250 x g for 5 minute at 4°C, 

and the supernatant discarded. This washing step was repeated twice. Two millilitres 

of lysis solution at room temperature was added to each of the samples. The 

samples were vortexed and incubated at room temperature for 20 minutes. On 

return, samples were centrifuged at 250 x g for 5 minutes at 4°C and the supernatant 

discarded. The washing step was repeated as described above. For the DNA 

staining, 200 µl of DNA staining solution was added to each sample, vortexed and 

incubated on ice (in a light protected ice box) for up to 60 min. 

Phagotest Flow cytometry analysis 

Approximately 10,000 cells per sample were collected and analysed by fluorescence 

activated cell sorting using blue-green excitation light (488nm argon-ion laser).  

Phagotest Data acquisition 

Flow cytometry data was acquired by CyAn™ ADP Analyzer and analysed using 

Summit software V4.3. Neutrophils were identified and gated on forward scatter 

(FSC) and side scatter (SSC) characteristics. The cell counts measured the 

percentage of neutrophils that had phagocytosed E. coli.  The mean fluorescence 
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intensity (MFI), i.e. the number of bacteria taken up per cell, was taken into account 

and used to calculate the phagocytic index. The data used in this analysis is 

expressed as the neutrophil phagocytic index.   

For calculation of phagocytic index, the following formula was applied: 

Phagocytic index =   

 

2.3.3 Neutrophil oxidative burst assay (Phagoburst Assay) 

One hundred microlitres of heparinised whole blood were carefully dispensed directly 

to the bottom of 5ml polypropylene round-bottom FACs tube (BD Biosciences).  The 

tubes were grouped into four sets. One set each for the four different stimuli was 

tested; wash solution, E. coli bacteria, N-formylmethionyl-leucyl-phenylalanine (fMLP) 

and phorbol-12-myristate-13-acetate (PMA). Each set was done in triplicate. 

To activate the assay, 20 µl of wash solution was pipetted into the first set of tubes 

containing blood samples. This served as the negative control. 20 µl of pre-cooled, 

vortexed E. coli bacteria was pipetted into the second set of tubes and this was the 

test sample. 20 µl of fMLP working solution was added to the third set of tubes, which 

served as the low stimulus while 20 µl of PMA working solution was added into set 4 

which served as high stimulus. The samples were vortexed and incubated at 37°C for 

10 minutes in a pre-heated water bath with lid.  

After 10 minutes of incubation, 20 µl of substrate solution was added to each tube 

and vortex thoroughly. The samples were incubated at 37°C for another 10 minutes.  
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To each samples, 2ml of lysis solution (at room temperature) was added. The 

samples were vortexed and incubated at room temperature for 20 minutes. On return 

samples were centrifuged at 250 x g for 5 minutes at 4°C and the supernatant 

discarded. The samples were washed by adding 3 ml of ice-cold wash solution, 

vortexed and centrifuged as above and the supernatant discarded. As with the 

Phagotest assay, 200 µl of DNA staining solution was added to each sample, 

vortexed and incubated for 10 minutes on ice (in a light protected ice box) for not 

longer than 60 minutes.  

Phagoburst Flow cytometry analysis 

Approximately 10,000 cells per sample was collected and analysed by fluorescence 

activated cell sorting using blue-green excitation light (488nm argon-jon laser).  

Phagoburst Data acquisition 

Flow cytometry data was acquired by CyAn™ ADP Analyser and analysed using 

Summit software V4.3. Live gate was set on the neutrophil cluster on the FCS vs. 

SSC. Reactive oxygen production by neutrophils as well as mean fluorescence 

intensity was analysed. 

2.4 Effect of antibiotics on killing of opsonised S. Typhimurium SL1344 wild 

type (L354), tolC::aph (L109) and aroA::aph (L730) by neutrophils. 

2.4.1 Neutrophil Isolation 

Two per cent dextran was added to heparinized whole blood at a ratio of 1ml of 2% 

dextran to 6ml blood. The mixture was given a gentle mix and incubated at room 

temperature for 30 minutes. After incubation, 5ml of a 56% Percoll® solution was 

added to 15ml falcon tubes. Using a fine tipped Pasteur pipette, 2.5 ml of 80% 
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Percoll® solution was then carefully layered underneath the 56% Percoll®, making 

sure that bubbles were avoided, and the 56% Percoll® layer was not disrupted. At 

this point the red blood cells had sedimented in the dextran-blood mixture leaving a 

‘buffy coat’ top layer containing the white blood cells. The buffy coat was aspirated 

from the mixture and carefully layered above the 56% Percoll®. The sample was 

centrifuged at 1100 rpm for 25 minutes at 5°C. 

After centrifugation, a layer of PBMCs appeared between the buffy coat and 56% 

Percoll®, while the layer of neutrophils appeared between the 56% Percoll® and the 

80% Percoll® layers. The layer containing neutrophils was pipetted carefully in a 

circular manner using a fine tipped sterile Pasteur pipette and washed in 10 ml of 

HBSS. Care was taken not to disrupt the layers during pipetting or contaminate the 

desired cells with infiltrates from the surrounding media. The isolated neutrophils 

were centrifuged at 1600 rpm for 10 minutes, re-suspended in HBSS and counted. 

Cells were used within 4 hours of collection. The isolated neutrophils were 

suspended in HBSS containing appropriate concentrations of antibiotics and 

incubated with opsonized bacteria at 37°C. 

2.4.2 Preparation of 20% human serum 

Blood was collected into an anti-coagulant free sterile tube and allowed to clot for 30 

min. The clotted blood was centrifuged at 3000 rpm for 10 minutes. The supernatant 

(serum) was aspirate using a Pasteur pipette into a sterile tube. Appropriate volume 

of HBSS was added to give a solution containing 20% human serum.  

2.4.3 Opsonisation of S. Typhimurium 

Overnight culture of S. Typhimurium grown in LB broth was centrifuged at 2200 rpm 

for 15 minutes. The pelleted cells were re-suspended in 10 ml sterile DPBS and 
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centrifuged as above. This was repeated twice to wash off any residual media. 

Opsonisation was carried out by incubating the bacteria in the prepared 20% human 

serum for 30 minutes. After opsonisation, the cells were harvested and washed in 10 

ml sterile PBS. 

For the killing assay, antibiotic treated or untreated neutrophils were incubated with 

the opsonized S. Typhimurium at 37°C. At 0, 30 and 60 minutes, an aliquot of the 

sample was taken out, lysed in sterile distilled water and plated out on LB agar 

plates. The plates were then incubated at 37°C for 24 hours in 5% CO2.  Single 

colonies that grew on the plates were counted. Statistical analysis was carried out 

using Excel for Windows.  

 

2.5 J774 tissue culture 

2.5.1 Resurrection of cells from liquid nitrogen and culture of monolayers 

J774.6 murine macrophages were previously stored in liquid nitrogen. A vial 

containing cells was removed from liquid nitrogen and the cells thawed quickly by 

incubation in a water bath at 37°C. The outside of the vial was cleaned with 70% 

ethanol and the suspension was transferred to a universal tube inside a biosafety 

cabinet. Ten millilitres of complete DMEM medium (Sigma UK, D5671) was added 

drop wise to the cells and swirled carefully to mix. Complete tissue culture medium 

(DMEM) comprises Dulbecco’s modified eagle medium containing 1% (v/v) non-

essential amino acids (NEAA) (Sigma UK, M7145), 1% (v/v) L-glutamine (Sigma UK, 

G7513) and 10% (v/v) fecal serum. The cells were then harvested by centrifugation 

at 1500 x g for 5 minutes. The supernatant was discarded and cells re-suspended in 

25ml of complete DMEM medium. The cell suspension was transferred to a 75cm2 
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flask (Corning®) and incubated in a 37°C humidified incubator until cells formed a 

monolayer and became confluent when viewed under an inverted microscope. 

Association and invasion assays were performed in 24 well plates. Each well of the 

plates were seeded with approximately 1 x 105 cells and incubated at 37°C with 5% 

CO2 for 48 hours. To prepare the monolayers for the assay, each well was washed 

with Hank’s Balanced Salt Solution (HBSS) by pipetting 1ml of HBSS to each well of 

the 24 well and removal three times to remove any floating cells or residual nutrient 

depleted medium. Association and invasion assays were carried out as described in 

Sections 2.8.2 and 2.8.3.  

To resurrect the THP-1 cells, a vial from liquid nitrogen was thawed by incubation in 

water bath at 37°C. The thawed cell suspension was transferred to 10 ml of pre-

warmed RPMI medium and harvested by centrifugation. The THP-1 cells were re-

suspended in 15 ml media and incubated at 37°C with 5% CO2 for 48 hours. 

Subsequently, the cells were activated by suspending in media containing 5 ng/ml of 

PMA (Sigma UK, P8139) at a concentration of 105 cells per ml. For association and 

invasion assays, 1 ml of the cells was added to individual wells of a 24 well plate and 

incubated as above for 2-3 days until they had adhered to the bottom of the wells. 

Association and invasion assays were carried out as described in Sections 2.8.2 and 

2.8.3.  
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2.6 Isolation and purification of human monocytes using Ficoll-paque and 

CD14 MicroBeads 

2.6.1 Sample collection  

50 ml peripheral human blood was collected from healthy volunteers using the 

VacutainerTM system of blood collection into lithium heparin tubes. Alternatively, 

blood was ordered from the Birmingham National Blood Service.  

2.6.2 Ficoll gradient isolation 

Human monocytes were isolated from peripheral blood by Ficoll density gradient 

centrifugation. The blood sample was diluted 1:1 with sterile PBS and mixed gently in 

50 ml FalconTM tubes. Fifteen millilitres Ficoll was added to 50 ml Falcon tubes. 

Twenty-five millilitre of the diluted blood was layered over the Ficoll layer, carefully 

not to disrupt the interface between the blood and the Ficoll layer. This was 

centrifuged for 30 minutes at 400 x g at room temperature and zero deceleration. 

After centrifugation the blood was separated into three distinct layers based on cell 

density; a layer of clear fluid above (the plasma), a layer of red blood cells below and 

a thin whitish layer in between containing the white blood cells known as the “buffy 

coat”.  

The buffy coat layer was carefully collected using a Pasteur pipette into universals 

containing 10 ml RPMI (serum free). The cells were washed with serum-free RPMI to 

get rid of the Ficoll by centrifugation for 8 minutes at 400 x g at room temperature. 

The cells were re-suspended in 8 ml of RPMI and centrifuged again as above.  

The counting chamber of the haemocytometer and coverslip were cleaned. Ten 

microlitres of the cell suspension was loaded onto the sample introduction point (at 
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the top of the coverslip) and the cell suspension was taken up by capillary action. 

The counting chamber was then placed on the microscope stage and the counting 

grid bought into focus with the 4x objective. The cells in each square were then 

systematically counted. The cells suspension was centrifuged again as above and 

the media decanted. 

2.6.3 CD14+ monocyte isolation. 

This method is based on the magnetic-activated cell sorting (MACS) technique 

developed by Miltenyi Biotech. For isolation of CD14+, the isolated monocytes were 

re-suspended in MACS buffer (1 x PBS + 0.5 % BSA + 2 mM EDTA) at a ratio of 80µl 

of MACs buffer per 107 cells. CD14 MACs MicroBeads (Miltenyi Biotec) were added 

at a ratio of 20ul of bead suspension per 107 cells. This was then incubated in the 

fridge for 15 minutes to allow the CD14 expressing monocytes to bind to the beads. 

Five millilitre of MACs buffer was added to the cell-bead suspension and washed by 

centrifugation for 8 minutes at 400 x g at room temperature. The resultant pellet was 

re-suspended in 500ml MACs buffer per 108 cells. The LS column adapter (Miltenyi 

Biotec) was inserted into the MidiMACSTM magnetic separator (Miltenyi Biotec). The 

column was primed by running 3 ml of MACs buffer through the column. The cell 

suspension was run through the column and unbound cells were collected in a 

universal. The column was washed three times with 3 ml MACs buffer and collected 

in a universal tube. 

To collect the bound CD14+ monocytes, the column was taken off the magnet and 5 

ml MACS was pipetted into the column. The contents of the column were expelled by 

firmly pushing the plunger (provided in the adaptor pack) into the column. The CD14+ 

monocytes were centrifuged for 8 minutes at 400 x g at room temperature. 
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The cells were counted and re-suspend at a density of 5 x 105 per ml in RPMI. One 

millilitre of the cell suspension was seeded to individual wells of a 24 well plate.  

2.6.4 Generation of M1 macrophages from CD14+ monocytes 

To generate M1 macrophages, GM-CSF (Life Technologies, PHC 2015) was added 

to the cell suspension to give a final concentration of 10 ng/ml respectively. One 

millilitre of the cell suspension was added to individual wells of a 24 well plate and 

incubated at 37°C with 5% CO2 for 72 hours in a humidified atmosphere. Post 72 

hours incubation, the media was removed and replaced with fresh pre-warmed media 

containing 10 ng/ml of GM-CSF. The cells were incubated for a further 72 hours at 

37°C and 5% CO2 in a humidified atmosphere.  

2.7 Mouse bone marrow derived macrophages (BMDM).  

Mouse tissue was obtained courtesy of Dr. Dalya Soond, Rheumatology Research 

Group, University of Birmingham. The donor mouse strain, C57BL/6J was used in all 

the experiments, aseptically handled, typically 10-12 months old. Using a pair of 

forceps and scalpel, muscles were detached from the femur and tibia to expose the 

bones. The bones were then cut at both epiphyses to create hollow tubing. To collect 

the bone marrow, the bones were placed in a 0.75 ml Eppendorf tube punctured at 

the bottom and inserted into a 2 ml Eppendorf tube. This was centrifuged in a bench 

centrifuge at 4 rpm for 3 minutes. The centrifugal force pushed the bone marrow 

through the hollow part of the bone into the Eppendorf tube. The bone marrow was 

re-suspended in 1 ml of complete media and made up to 50 ml in a Falcon tube. For 

differentiation to macrophages and adherence to tissue culture plates, M-CSF was 

added to the cell suspension to give a final concentration of 10ng/ml in 50ml. Ten 
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millilitres of the cell suspension was added to 90 mm tissue culture dishes and 

incubated at 37°C with 5% CO2 for 6 days.  

After incubation, the media was removed and the cells were washed twice with sterile 

pre-warmed PBS. To detach the adherent cells, 5 ml of pre-warmed non- enzymatic 

cell dissociation solution was added to the tissue culture plates and incubated at 

37°C with 5% CO2 for 15 minutes. Cells were lifted from the dish with a cell lifter and 

transferred to equal volume of pre-warmed fresh media. The cells were centrifuged at 

400 x g for 6 minutes. The cells were then re-suspended in media at a density of 5 x 

105 per ml, and 1 ml aliquots were added to individual wells of a 24 well plates. The 

plates were incubated at 37°C with 5% CO2 for 24 hours, for infection assay the next 

day. 

Both preparations for human M1 and murine bone marrow derived macrophages are 

extensively used and have been validated by flow cytometry in the laboratories of 

Piddock and Wallace. However, as this was not validated in the experiments 

described in this thesis it is possible that other cell types could have had an impact 

(Section 4.5 and 5.4). 

2.7.1 Cell viability assessment 

The trypan blue exclusion method was used. Ten microlitres of trypan blue (0.4% 

w/v) (Sigma, T8154) was mixed with 10 µl cell suspension cell suspension before 

inoculation with bacteria. This was left to stand for 2 minutes. The suspension was 

placed in a haemocytometer and viewed with a light microscope using an x10 lens. 

Clear cells were counted as viable, whereas cells stained blue were counted as non-

viable. 
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2.8 Tissue culture infection assays 

2.8.1 Preparation of bacteria for infection assays. 

The bacterial strains were grown in LB medium overnight at 37°C with shaking. The 

bacterial cells were harvested by centrifugation at 2200 x g in a universal tube for 10 

min at room temperature. The supernatant was discarded. The harvested cells were 

washed by re-suspending in 10 ml sterile phosphate buffered saline and re-

centrifuged as before. This was repeated three times to remove any residual broth. 

The cells were re-suspended in 5ml PBS once again and adjusted to an optical 

density of 1.23 at 540nm by addition of sterile PBS. This suspension contained 

approximately 1 x 107 CFU/ml of bacteria. This suspension was then diluted 1:20 by 

adding 0.5ml of bacteria solution to 9.5ml of inoculation media. Inoculation media 

consisted of DMEM supplemented with 1%NEAA (Sigma, UK) and 1% L-glutamine 

(Sigma, UK).   

2.8.2 Association assay 

This assay was carried out to determine the number of bacteria associated with the 

monocyte monolayer. One millilitre of the bacterial suspension was added to each of 

the wells of the 24 well plate and incubated at 37°C with 5% CO2 for two hours. The 

supernatant was carefully removed with a pipette and the monolayers washed with 

pre-warmed HBSS six times to remove the non-adherent bacteria. One milliliter of 

1% (v/v) Triton-X 100 and a sterile magnetic flea was added to each well. The 24 well 

plate was placed on a magnetic stirrer for 10 minutes to disrupt the monolayer. From 

the disrupted monolayer in each well of the 24 well plate, a series of 1:10 dilutions 

were made. Three 20 μl drops of each dilution were sub-cultured to LB agar plates 

and the plates incubated at 37°C overnight. The dilutions that had growth of separate 
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colonies were identified and colonies counted. This was used to determine the 

number of colony forming units per millilitre.  

 

2.8.3 Invasion assay. 

This assay was carried out to quantify the number of bacteria that invaded the 

eukaryotic cell layer. To the eukaryotic cell layer, 1 ml of the already diluted bacterial 

suspension was incubated at 37°C in 5% CO2 for two hours.  The supernatant was 

removed and the monolayers washed three times with pre-warmed HBSS. The 24-

well plate was gently tapped over an absorbent paper to blot away any residual 

media. To ensure that all the external bacteria were killed, 2 ml of inoculation media 

containing 100μg/ml gentamycin was added to each well and incubated at 37°C with 

5% CO2 for   two hours. Gentamicin does not damage or enter eukaryotic cells hence 

any intracellular bacteria are unharmed, while bacteria remaining outside the 

macrophage cells were killed, as judged by lack of colony formation. The antibiotic 

media was removed. The monolayers were then washed six times with HBSS. One 

millilitre of 1% (v/v) Triton-X100 and a sterile magnetic flea was added to each well 

and placed on a magnetic stirrer for 10 min to disrupt the monolayer. From the 

disrupted monolayer in each well of the 24 well plate, a series 1:10 dilutions was 

made. Three 20 μl drops of each dilution were sub-cultured to agar plates and the 

plates incubated at 37°C overnight. The dilutions that had growth of separate 

colonies were identified and colonies counted. This was used to determine the 

number of colony forming units per millilitres as previous paragraph. 

Each association and invasion assay was carried out with a minimum of three 

biological and three technical replicates giving 9 data points for each experiment. 
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Mean CFU/ml and standard deviation were calculated for each biological replicate 

using Excel software. Graphs were plotted with error bars ± one standard deviation.  

Adhesion level is calculated as the difference between the mean CFU/ml for 

association and the mean CFU/ml for invasion. The value and graphs were 

calculated and plotted on Excel software, (Windows, 2007).  Graphs were plotted 

with error bars ± one standard deviation. 

Comparison of adhesion and invasion of each strain of the bacteria to the wild type 

staring was carried out using a Student’s T-test. Also the Student’s T-test was used 

to analyze the differences between the results for invasion and adhesion for antibiotic 

treated and untreated macrophages. This was calculated on Excel software using the 

t-test function. Statistically significant values were taken at P ≤0.05. 

 

2.8.4 Effect of antibiotics on the adhesion to and invasion of bacteria in 

macrophage monolayers. 

To explore the effect of prior exposure to antibiotic upon adhesion and invasion of 

bacteria in the J774.6 macrophage confluent monolayers, the cell culture supernatant 

was removed from the eukaryotic cells which had been incubated for 48 hours at 

37°C in 5% CO2. The monolayers were washed three times with 2 ml HBSS. This 

was replaced by 2ml of fresh complete growth media containing the desired 

concentration of antibiotic. The cell culture was further incubated for 2 hours. The 2 

hour incubation period was chosen to mimic the time at which the maximum 

concentration (Cmax) of the antibiotics in this study is achieved in volunteer studies 

(Shah et al., 1999, Rebuelto et al., 2002, Agwuh and MacGowan, 2006, Liu et al., 

2011) and to distinguish the effects on the immune cells from the antibacterial 

treatment by the antibiotics. Post incubation, the macrophage monolayer was 
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washed three times with 2 ml of HBSS. The antibiotic-containing medium was then 

replaced with fresh medium. Procedures in section 2.8.2 and 2.8.3 were then 

followed for both association and invasion assays respectively. 

2.9 TLR RT-PCR array 

The RT2 Profiler PCR array was used to analyse the expression of a panel of 84 

genes central to the TLR signalling pathway of J774 murine macrophages.  This 

profiling technology constitutes a set of optimised real time PCR array primer assays 

on a 96 well plate, to which cDNA from the samples are added, and then run on a 

real-time PCR array cycling program. 

2.9.1 Isolation of RNA from antibiotic treated macrophages. 

RNA was isolated using SV Total RNA Isolation System kit from Promega (Z3100, 

Promega). Macrophages were cultured and seeded on to 24 well plates as described 

above (2.5.1). To lyse the cells, 175 µl of RNA lysis buffer was added to each of the 

wells. This solution was pipetted up and down to mix, then transferred to a 1.5 ml 

RNase-free microfuge tube (AM12400, Ambion). To each microfuge tube 350 µl of 

RNA dilution buffer was added and mixed by gentle pipetting. This was placed in a 

heat block for 3 minutes and centrifuged at 13,000 x g for 10 minutes on a bench top 

centrifuge.  Two hundred microlitres of 95% ethanol was added to the cleared lysate 

and mixed by gentle pipetting. The solution was transferred to the spin column 

assembly provided in the kit. This was centrifuged at 13,000 x g for 1 minute. The 

liquid in the collection tube of the spin column assembly was discarded. Six hundred 

microlitres of RNA wash solution was added to the columns and centrifuged as 

above. The DNase incubation mix was made up as described in the kit protocol. Fifty 

microlitres of the DNase incubation mix was added directly onto the membrane in the 
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spin column and incubated at 25 for 15 minutes. Two hundred microlitres of DNase 

stop solution was added to the spin column to stop the DNase activity. This was 

centrifuged at 13,000 x g for 1 min. The collection tube was emptied again. Six 

hundred microlitres of RNA wash solution was added to the column and centrifuged 

as above. Again, 250 of RNA wash solution was added to the column and 

centrifuged as before. The spin compartment was transferred to an elution tube. One 

hundred microlitres of nuclease free water was added to and centrifuged as above. 

The elution tube containing purified RNA was stored at -80 until the samples were 

measured for RNA and DNA content.  

2.9.2 Determination of RNA concentration and purity by UV 

spectrophotometry. 

The RNA concentration of the samples was measured using a Nanodrop ND-1000 

spectrophotometer. One microlitre of the RNA sample was loaded on the sample 

pedestal of the Nanodrop and absorbance measurement was taken at 260nm and 

280 nm. For assessment of purity, samples returning an A260:A280 ratio value of ~2.0 

and an A260:A230 ratio value of >1.7 were regarded as pure and used for RT-PCR 

experiments. 

2.9.3 Assessment of ribosomal band integrity. 

Ribosomal band integrity was assessed by running an aliquot of each of the RNA 

samples through an agarose gel. Agarose gels were prepared by adding 1 g of 

electrophoresis grade agarose (check) to 100 ml of 1% Tris Boric acid-EDTA (TBE). 

This suspension was heated in a 650 W microwave for 2 minutes to facilitate the 

dissolution of the agarose and left to cool. Midori Green (Nippon Genetics, Germany) 

was added to the molten agarose to give a final concentration of 0.1 µg/ml. the 
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solution was poured into a gel tray and allowed to set. The gel was immersed in 1% 

TBE in the gel tank. A loading buffer was diluted 1:5 by adding 2 µl to 8 µl of RNA 

sample. The resulting 10 µl was loaded unto the gel along with a DNA 1kb sizing 

ladder (Bioline). Electrophoresis was used to separate the proteins in the samples at 

100 volts for one hour. The quality of the 18s and 28s ribosomal RNA was visualised 

using gel images using Gene Tools (Syngene, U.K.). 

2.9.4 cDNA synthesis from RNA samples.  

cDNA was synthesized from RNA samples using RT2 HT Strand Kit following the 

manufacturers’ instructions. Buffers GE2 and BC4 transcriptase were removed from 

the -20°C storage and thawed on ice. Six microlitres of Buffer GE2 was added to 

nuclease free microfuge tubes. An 8 µl aliquot of the sample containing 0.5 µg total 

RNA was added to the Buffer GE2 in the microfuge tubes and gently mixed by 

pipetting up and down. The tubes were centrifuged at 1000 x g for 1 minute and 

incubated at room temperature for 10 minutes. After incubation, 6 µl of the BC4 

Reverse Transcriptase Mix was added to the tubes and centrifuged at 1000 x g for 1 

minute. The reverse transcription reaction was performed in a thermal cycler under 

the following conditions: 42°C for 15minutes, 95 °C for 5 minutes 4°C hold. The 

cDNA samples were stored at -20°C until required for RT-PCR.  

2.9.5 Analysis of gene expression using RT-PCR. 

The expression levels of genes in mouse macrophages in response to antibiotics or 

Salmonella was determined using RT-PCR. The cDNA template form reverse 

transcription was removed from the -20 C and thawed on ice.  For each sample, the 

20 µl cDNA was transferred to new tubes and re-suspended in 91 µl of RNase-free 

water. One hundred and two microlitres of this cDNA solution was added to 1350 µl 
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of 2x RT2 SYBR Green Mastermix (SABiosciences, 330502) and 1248 µl of RNase-

free water to make the PCR components mix in a loading reservoir (SABioscience, 

338162). Twenty-five microlitres of the PCR components mix was dispensed into the 

Mouse Toll-Like Receptor Signalling Pathway RT-PCR array plate using an 8-

channel multi pipette. The plate was sealed with an optical adhesive film and 

centrifuged at 1000 x g at room temperature to remove bubbles. The plate was 

placed on ice until the cycling conditions were set up in the Bio-Rad CFX96 real-time 

PCR cycler. The instruction for setting up the Bio-Rad CFX96 RT-PCR cycler was 

downloaded from www.SABiosceinces.com/pcrarrayprotocolfiles.php and strictly 

adhered to.  The following cycling conditions were used; initial denaturation at 95°C 

for 10 minutes followed by 40 cycles of denaturation at 95°C for 15 s and 

annealing/extension at 60°C for 1 minutes. The RT-PCR array plate was placed in 

the real-time cycler and transcription reaction was carried out.  

2.9.6 Data analysis 

The PCR reactions were performed in triplicate for each treatment group. Data 

analysis was carried out using the SABiosciences web based PCR array data 

analysis. The RT-PCR data in the form of cycle thresholds (CT) from the Bio-Rad 

software was exported to Microsoft Excel spread sheet. The CT value represents a 

point at which the fluorescent intensity generated in the PCR reaction reaches a set 

threshold above background signal. The SABiosciences data analysis website 

provided a template to which the CT data was transferred. The template was then 

uploaded on the website and the data was analysed using an integrated web based 

software package. Relative gene expression was calculated by ∆∆CT method 

http://www.sabiosceinces.com/pcrarrayprotocolfiles.php
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normalised against the CT values of 5 housekeeping genes (Actb, B2m, Gapdh, 

Gusb and Hsp90ab1) and expressed as fold change.  

2.10 Determination of production of cytokines by J774 macrophages in the 

presence and absence of antibiotics using enzyme-linked immunosorbent 

assay (ELISA).  

J774 macrophages were seeded onto 24 well tissue culture plates at a concentration 

of 1 x 105 cells per well and incubated at 37°C for 48 hours until they formed a 

monolayer. The media was removed and the monolayers were washed with HBSS 

three times to remove residual media. The macrophages were then incubated with 

fresh media alone  for 2 hours or with media containing either Cmax concentration of 

antibiotics (5 µg/ml of ciprofloxacin or 82 µg/ml of ceftriaxone), or wild type S. 

Typhimurium (SL1344). Another set of cells was incubated with antibiotics for 2 hours 

then washed and incubated with media containing SL1344.  The cell culture 

supernatant were then collected in a 1.5 ml Eppendorf tube and stored at -20°C for 

analysis of cytokine content under the different conditions. 

The Mouse TNFα (88-7064-22) and IL-1β (88-7013-22) Ready-Set-Go® kits 

(eBiosciences UK) were used to measure protein concentration of TNFα and IL-1β 

IL-6 by ELISA analysis. The kits were used in accordance with the manufacturer’s 

specified protocol. Fifty microlitres of the capture antibody re-suspended in the 

Coating Buffer was added to each well of a Nunc Immuno™ 96 Microwell™ Plate. 

The plate was sealed and incubated overnight at 4°C. The next day, the contents of 

the wells were aspirated and washed three times with PBS Tween 20 (0.05%). The 

wells were then blocked with Assay Diluent and incubated for one hour at room 

temperature. The wells were washed again as above. Serial dilutions of the assay 
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standard were prepared to make a standard curve of 8 points. Fifty microlitres of the 

standard solutions were added to indicated wells in triplicates. Fifty microlitres of cell 

culture supernatant was also added to designated wells and incubated for 2 hours at 

room temperature. The wells were then aspirated and washed as above. Fifty 

microlitres of the detection antibody were added to the wells and incubated at room 

temperature for 1 hour. After incubation with detection antibody, the wells were 

aspirated and washed three times. Fifty microlitres of the detection antibody diluted in 

the Assay Diluent were added and incubated at room temperature for 30 minutes. 

The wells were aspirated and washed six times. Fifty microlitres of the substrate 

solution (tetramethylbenzidine, TMB) were added to the wells and left to incubate at 

room temperature for 15 minutes. The enzyme substrate reaction was stopped by 

adding 50 µl of stop solution (2N H2SO4) into each well. The plate was then read on a 

spectrophotometer (BioTek® Synergy HT, UK) using 450 nm as the primary 

wavelength within 5 minutes of adding the stop solution. The OD values for individual 

samples were calculated using a standard curve created by GraphPad Prism® 

software (GraphPad Software Limited, USA). 
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3 Effect of the maximum serum concentrations of antibiotics on 

Salmonella in liquid media (broth) in vitro. 

3.1 Background 

The therapeutic effect of antibiotics is dependent on administration schedules as well 

as the maximum available concentration of the drug attained in serum (Cmax) during 

antibiotic therapy. For antibiotics to be effective at sites of infections they have to be 

present at concentrations above the minimum inhibitory concentration (MIC) or 

mutant prevention concentration (MPC)  of the infecting pathogen (for susceptible 

pathogens) (Wise, 2003). MIC is the lowest concentration of an antimicrobial that will 

inhibit the visible growth of a microorganism following an overnight incubation 

(Andrews, 2001), while MPC describes the concentration of an antimicrobial drug 

necessary to prevent emergence of isolates that have undergone first step mutation 

and acquired low level resistance (Boothe, 2006).  However, administration of 

antibiotics is only one aspect of the elimination of bacteria from the host during an 

infection. In this chapter, the effect of clinically relevant concentrations of five 

antibiotics, (ciprofloxacin, ceftriaxone, tetracycline, azithromycin and streptomycin) 

alone on Salmonella enterica serovar Typhimurium growing in liquid media was 

determined. The above mentioned antibiotics are exemplar drugs, each representing 

a different class of antibacterial agents. More specifically, ciprofloxacin, ceftriaxone 

and azithromycin were chosen because they are used in the treatment of Salmonella 

infections (Sirinavin and Garner, 2000, Wong et al., 2014). 
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3.2 Hypothesis: 

Antibiotics of different classes at Cmax vary in their efficacy against Salmonella in 

liquid broth. 

3.3 Aim: 

To investigate the effect of five antibiotics, representing different classes, at clinically 

relevant concentrations, on the viability of Salmonella Typhimurium grown in liquid 

broth, and in the absence of the immune cells. 

3.4 Results of experiments to investigate the effect of antibiotic 

concentration in liquid media (broth). 

The effect of five antibiotics (ciprofloxacin, tetracycline, ceftriaxone, azithromycin, and 

streptomycin) was determined at different concentrations reflecting one-tenth of the 

MIC, the MIC and the Cmax concentrations of each antibiotic. Viable counts were 

determined after 30 and 60 minutes of exposure to antibiotics. For these 

experiments, three strains of Salmonella Typhimurium were used; wild type SL1344 

(L354), tolC mutant (SL1344 tolC::aph, L109) and aroA mutant (SL1344 ∆aroA, 

L730). The strains containing mutations in the tolC and aroA genes were chosen as 

controls for because they have previously been shown to be less virulent and less 

invasive than SL1344, making them suitable controls for use in subsequent tissue 

culture infection assays.  

The MICs of two of the antibiotics (ciprofloxacin and tetracycline) against SL1344 

(L354) and SL1344 tolC::aph (L109) was previously determined (Blair et al., 2009) 

and used for these assays. The remainder of the MIC were determined and detailed 

in Table 3.1. The Cmax values for all five antibiotics have previously been published in 

the literature (Chapter 2, Table 2.2) and were replicated in these assays.   
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Table 3.1 MICs of the range of the five antibiotics against the three strains of 

bacteria used in these experiments. 

 
MIC µg/ml 

  Cip Tet Cef Azi Str 

SL1344 (L354) 0.015 0.5 8 2 8 

SL1344 tolC::aph (L109) 0.015 0.5 8 1 8 

SL1344 aroA∆ (L730) 0.015 0.5 8 2 8 

 

When bacteria were exposed to 0.015 µg/ml of ciprofloxacin (MIC) there were no 

changes in the viability of Salmonella observed at either time points (Figure 3.1a). 

However when exposed to 5µg/ml (Cmax) of ciprofloxacin after 30 minutes, there was 

three fold decrease in the number of bacterial colony forming units from all three 

strains. After 60 minutes antibiotic exposure, there was a > 4-log reduction in viable 

counts of both SL1344 tolC::aph (L109) and SL1344 ∆aroA (L730). When exposed to 

5 µg/ml of ciprofloxacin, the colony forming units of wild type SL1344 (L354) were 

reduced 2 and 4 fold after 30 and 60 minutes, respectively (Figure. 3.1b). 

After 30 minutes of exposure to 8 µg/ml of ceftriaxone (MIC) there was a 1-log 

reduction in the viability of the strains (Figure 3.2a). There was no further significant 

reduction in viability of the three strains after 60 minutes of exposure to 8 µg/ml of 

ceftriaxone. Following exposure to 82µg/ml of ceftriaxone (Cmax), no viable bacteria 

were retrieved for any strains after 30 or 60 minutes post antibiotic exposure. 

There was no effect on the viability of wild type SL1344 (L354), SL1344 tolC::aph 

(L109), and SL1344 ∆aroA (L730) strains on exposure to both 0.5 (MIC) and 2 µg/ml 

(Cmax) of tetracycline. Statistical analysis showed that after 30 and 60 minutes 

exposure to antibiotics, the number of viable cells for all three strains was the same 

as at time zero (Figure 3.3a and b).  
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As with tetracycline, when incubated with azithromycin at both MIC and Cmax 

concentrations (2.0 and 1.43 µg/ml, respectively), there was no inhibition of growth 

for the three strains of Salmonella. Furthermore, there were no differences in the 

number of colony forming units of both SL1344 tolC::aph (L109) and SL1344 ∆aroA 

(L730) after 30 and 60 minutes of exposure (Figure 3. 4a and b). 

There were no changes in the viability of (wild type) L354, SL1344 tolC::aph (L109) 

and SL1344 ∆aroA (L730) after 30 minutes incubation with 8µg/ml (MIC) 

streptomycin. However, after 60 minutes exposure, a non-significant decrease in the 

number of viable bacteria was observed for SL1344 ∆aroA (L730). The viability of 

SL1344 tolC::aph (L109) and wild type SL1344 (L354) was not affected at the Cmax 

concentration of 30µg/ml. There was no inhibition of growth or reduction in the 

number of viable bacteria after 30 and 60 minutes of streptomycin exposure (Figure 

3.5a and b).  

 

 

 

 

 

 

 

 

 

 

 



 

100 

 

Figure 3.1 The effect of ciprofloxacin at MIC and Cmax on Salmonella in liquid 

broth.  

a. Growth of Salmonella in broth with ciprofloxacin at 0.015 μg/ml (MIC) 

 

 

b. Growth of Salmonella in broth with ciprofloxacin at 5 μg/ml (Cmax)  

 

The data presented in the charts are means of three individual experiments 

performed in triplicate (+/- SD). The blue, red and green bars represent colony 

forming units at 0, 30 and 60 minutes antibiotic exposure respectively. A Student’s t-

test was carried out to compare viable counts at the start of the experiments and at 

30 and 60 minutes. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n=3. 
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Figure 3.2 The effect of ceftriaxone at MIC and Cmax on Salmonella in liquid 

broth. 

 a. Growth of Salmonella in broth with ceftriaxone at 8μg/ml (MIC) 

 

 

b. Growth of Salmonella in broth with ceftriaxone at 82 μg/ml (Cmax) 

 

The data presented in the charts are means of three individual experiments 

performed in triplicate (+/- SD). The blue, red and green bars represent colony 

forming units at 0, 30 and 60 minutes antibiotic exposure respectively. A Student’s t-

test was carried out to compare viable counts at the start of the experiments and at 

30 and 60 minutes. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n=3. 
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 Figure 3.3 The effect of tetracycline at MIC and Cmax on Salmonella in liquid 

broth. 

 a. Growth of Salmonella in broth with tetracycline at 0.05 μg/ml (MIC) 

 

 

b. Growth of Salmonella in broth containing tetracycline 2.0μg/ml (Cmax) 

 

The data presented in the charts are means of three individual experiments 

performed in triplicate (+/- SD). The blue, red and green bars represent colony 

forming units at 0, 30 and 60 minutes antibiotic exposure respectively. A Student’s t-

test was carried out to compare viable counts at the start of the experiments and at 

30 and 60 minutes. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant (p>0.05) n=3. 
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Figure 3.4 The effect of azithromycin at MIC and Cmax on Salmonella in liquid 

broth.  

a. Growth of Salmonella in broth with azithromycin at 2.0 µg/ml (MIC) 

 

 

b. Growth of Salmonella in broth with azithromycin at 1.43 μg/ml (Cmax) 

 

The data presented in the charts are means of three individual experiments 

performed in triplicate (+/- SD). The blue, red and green bars represent colony 

forming units at 0, 30 and 60 minutes antibiotic exposure respectively. A Student’s t-

test was carried out to compare viable counts at the start of the experiments and at 

30 and 60 minutes. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n=3.  
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Figure 3.5 The effect of streptomycin at MIC and Cmax on Salmonella in liquid 

broth 

a. Growth of Salmonella in broth with streptomycin at 8 μg/ml (MIC) 

 

 

b. Growth of Salmonella in broth with streptomycin at 30 μg/ml (Cmax) 

 

The data presented in the charts are means of three individual experiments 

performed in triplicate (+/- SD). The blue, red and green bars represent colony 

forming units at 0, 30 and 60 minutes antibiotic exposure respectively. A Student’s t-

test was carried out to compare viable counts at the start of the experiments and at 

30 and 60 minutes. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n=3.  
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Table 3.2 Summary of effects of five antibiotics at MIC and Cmax concentrations 

on three strains of Salmonella Typhimurium. 

Salmonella Typhimurium SL1344 

Antibiotic MIC effect Cmax effect 

Ciprofloxacin = ↓ 

Tetracycline = = 

Ceftriaxone ↓ ↓ 

Azithromycin = = 

Streptomycin = = 

 
Salmonella Typhimurium SL1344 tolC::aph (L109) 

Antibiotic MIC effect Cmax effect 

Ciprofloxacin = ↓ 

Tetracycline = = 

Ceftriaxone ↓ ↓ 

Azithromycin = = 

Streptomycin = = 

 
Salmonella Typhimurium SL1344 ∆aroA (L730) 

Antibiotic MIC effect Cmax effect 

Ciprofloxacin = ↓ 

Tetracycline = = 

Ceftriaxone ↓ ↓ 

Azithromycin = = 

Streptomycin ↓ = 

 
↓represents decrease in CFU/ml of bacteria compared to t = 0 min. 

= represents no change in CFU/ml of bacteria compared to t = 0 min. 
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3.5 Discussion. 

In the experiments described in chapter three, antimicrobial activities of the five 

antibiotics were tested against bacteria in the absence of immune cells. To establish 

the direct effect of these antibiotics at this time point, the experiments described in 

this chapter were carried out under similar conditions as in the neutrophil killing 

assay (section 5.5). Therefore, in future experiments with peripheral blood 

neutrophils, any observation would be due to an effect on the immune cells. Within 

the 2 hour incubation period, ciprofloxacin and ceftriaxone had either cidal or static 

effects on the numbers of viable Salmonella grown in liquid broth, whereas 

azithromycin, tetracycline and streptomycin had no effects on bacterial viability.  This 

was expected as the short incubation time is insufficient to show the effect of all 

antibiotics tested, as antimicrobial effects are usually observed over a 16 – 24 hour 

incubation period. The 2 hour incubation period was used to mimic the Tmax of the 

antibiotics in vivo. These experiments were done in parallel to those described in 

chapters 5, section 5.5 but were presented in separate chapters in order to simplify 

presentation and interpretation of data for the reader. 

The experiments described herein were carried out to determine the interaction 

between antibiotics (at clinically relevant concentrations) and bacteria alone. Apart 

from antibiotic concentration, temperature was regulated. Usually the average 

temperature of the human body is 37˚C and as the antibiotics tested are stable at this 

temperature, the assays were carried out at this temperature. 

The infectious dose of Salmonella in humans is reported to be between 105 and 1010 

colony forming units (Blaser and Newman, 1982). Georgiade (1983) also reported 

that infections occur when populations of bacteria reach 105 CFU of bacteria units 
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per gram of tissue (Georgiade, 1983). In line with this, a bacterial concentration of 

105 CFU was used in these experiments. In MIC experiments, time of exposure to 

antibiotics is ~18 hours. However, in the human body, the time to reach peak serum 

concentration (Tmax) for the antibiotics tested range from 1-2 hours, hence 60 minutes 

exposure period was used in these assays (Lubasch et al., 2000, Rebuelto et al., 

2002, Yang et al., 2007). 

The killing of Salmonella Typhimurium by five classes of different experiments was 

assessed by in vitro experiments determining the viable counts after antibiotic 

exposure and in liquid broth to understand the effects of antibiotics on bacteria in the 

absence of immune cells. The Cmax concentration of antibiotics was selected because 

this is the concentration of antibiotics that bacteria are exposed to following 

administration of the drug in the human host. 

Antimicrobial agents such as ciprofloxacin and ceftriaxone are effective against 

Salmonella Typhimurium (Brunner and Zeiler, 1988, Bryan et al., 1985) and are used 

in the treatment of infections caused by this organism. Other antibiotics such as 

azithromycin, tetracycline and streptomycin have also been tested for their activity 

against strains of Salmonella (Lugo-Melchor et al., 2010, Butler and Girard, 1993). 

However, tetracycline is not used clinically to treat infections caused by Salmonella 

Typhimurium due to bacterial resistance to this drug (Brunelle et al., 2013, Kariuki et 

al., 1993). Although azithromycin is used as an alternative for the treatment of 

typhoid fever in cases of decreased susceptibility to ciprofloxacin (Vlieghe et al., 

2012), it did not show efficacy against Salmonella in vitro in the experiments reported 

herein in after 60 minutes. The MIC of azithromycin for Salmonella isolates (in vitro 

after 18 hours is 4 – 16 µg/ml (Sjolund-Karlsson et al., 2011).  The lack of detectable 
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antibacterial effect after two hours exposure is not uncommon for macrolides 

(Schachter, 1991). This therefore allowed investigation of the effect of this agent 

upon the response of specific immune cells to Salmonella challenge, independent of 

their antibacterial effects. Moreover, data was obtained under similar conditions as 

described in chapter 5.5 (albeit in the absence of any immune cell). Growth kinetics 

curves from assays investigating the effect of azithromycin on Salmonella, showed 

that azithromycin did not inhibit the growth of Salmonella at 30 or 60 minutes of 

incubation (data not shown). Future work should include determining the viable 

counts of Salmonella at longer periods of incubation with azithromycin. There was no 

decrease in viability of SL1344 exposed to tetracycline and streptomycin as within 

the time points investigated, bacteria are (Leung and Finlay, 1991) not susceptible to 

these antibiotics. 

Compared to tetracycline, azithromycin and streptomycin, Salmonella was killed by 

ciprofloxacin at 5 µg/ml (Cmax) only and ceftriaxone at 8 µg/ml (MIC). Ceftriaxone was 

also bactericidal at 82 µg/ml (Cmax). This is in agreement with work by Luster et al., 

(1997) where they showed that ceftriaxone exhibited bactericidal activity in a time 

and concentration dependent manner, though against Streptococcus pneumonia 

(Lutsar et al., 1997). Similarly, when Tang et al., (2011) compared killing kinetics of 

tigecycline (belonging to the glycylcycline class of antibiotics; a derivative of the 

tetracyclines), ceftriaxone and ciprofloxacin against two Salmonella isolates S129-42 

and S129-25, they showed that ceftriaxone (8 µg/ml) and ciprofloxacin (1 µg/ml) had 

greater bactericidal activity than tigecycline (2 µg/ml).  

Traditionally, ciprofloxacin and ceftriaxone are recommended for treating Salmonella 

infections. Not surprisingly, of the five antibiotics tested, ciprofloxacin and ceftriaxone 
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killed more bacteria. Overall, the data show that at the Cmax concentration of 

ciprofloxacin and ceftriaxone inhibited the growth of the strains although after 60 

minutes exposure they did not completely eradicate all Salmonella.  

The limitations of these experiments carried out in liquid broth include that in vitro 

experiments do not exactly replicate what takes place in a host as they do not 

account for; 

a. Growth factors, proteases, antimicrobial peptides. 

b. Fluctuations of the drug concentration at different sites in the host.  

c. Increases in body temperature during an infection. 

Bacteria also behave differently in vivo and in vitro, for instance due to altered 

bacterial metabolism and growth rate. This may account for the differences in the 

efficacy of antibiotics under both conditions (de Araujo et al., 2011). 

3.6 Key findings 

1. Ciprofloxacin was more effective at killing bacteria at the Cmax concentration 

than at the MIC. 

2. Ceftriaxone was the most bactericidal agent tested (Table 3.1). 

3. Tetracycline, azithromycin and streptomycin did not alter the viability of the 

bacterial strains.  
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4 The adhesion to and invasion of Salmonella Typhimurium in antibiotic 

pre-treated murine macrophages.  

4.1 Background. 

Within the host, the innate immune system provides the first line of defence against 

invading Salmonella. Cells of the innate immune system such as neutrophils and 

macrophages cooperate in the rapid recognition and elimination of invading 

Salmonella through processes such as phagocytosis-mediated killing and induction 

of inflammation (Broz et al., 2012).  

Macrophages are important in Salmonella pathogenicity as adhesion to and invasion 

of these cells and adaption of these bacteria to life within the host cells are key steps 

in the dissemination and progress of infection (Shi and Casanova, 2006). As was 

shown from data described in Chapter 3, antibiotics at concentrations corresponding 

to the peak serum concentration (Cmax) in the host did not completely inhibit the 

growth of Salmonella after 60 minutes of exposure in liquid broth. Therefore, in vitro 

infection assays of macrophages were carried out to investigate whether the same 

antibiotic concentrations influence the interaction between Salmonella and these 

cells. 

4.2 Hypothesis. 

Adhesion to and invasion of Salmonella to macrophages is influenced by the 

presence of antibiotics. 
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4.3 Aim.  

To investigate if the ability of Salmonella to adhere to and invade cell line (J774) and 

murine primary macrophages (bone marrow derived macrophages) is altered by 

exposure of macrophages to antibiotics prior to infection with bacteria. 

4.4 Adhesion to and invasion of Salmonella in antibiotic treated J774 mouse 

macrophages.  

The data described herein are based on infection assays, which have been used 

widely to study the adhesion and invasion of host cells by bacterial pathogens 

(Edwards and Massey, 2011, Dibb-Fuller et al., 1999). In these experiments, 

bacterial adhesion is a measure of the number of bacteria that have attached to host 

cell surfaces while invasion measures the number of bacteria that have entered the 

cells.  

The abilities of wild type SL1344 (L354), SL1344 tolC::aph, (L109), SL1344 ∆aroA, 

(L730) and SL1344 SPI-1::aph (L1449) to adhere to, and invade, J774 macrophages 

after exposure to ciprofloxacin, tetracycline, ceftriaxone, azithromycin and 

streptomycin was investigated. As in Chapter 3, the strains in which the tolC and 

aroA genes were inactivated or deleted were chosen as controls because they have 

been previously shown to be less virulent and less invasive than wild type SL1344, 

making them suitable for use in these tissue culture infection assays (Section 3.4). 

The fourth strain, SL1344 SPI-1::aph (L1449) was included as it has been previously 

shown that SPI-1 mutants have impaired ability to invade host cells (Pavlova et al., 

2011). Using these strains allows discrimination between invasion levels of 

Salmonella in the presence or absence of antibiotics.  
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Data from experiments measuring adhesion and invasion of Salmonella into J774 

macrophages in this chapter were analysed using Graphpad Prism software, and 

confirmed to be normally distributed.  

4.4.1  Ciprofloxacin 

When macrophages were pre-treated with 0.015 µg/ml of ciprofloxacin (MIC), there 

was a significant increase in the CFU/ml of wild type SL1344 and SPI-1::aph (L1449) 

that adhered to the macrophages (Figure 4.1a). However, adhesion was not altered 

for either SL1344 tolC::aph (L109) or SL1344 ∆aroA (L730) (Figure 4.1a). In the 

absence of antibiotic pre-exposure, there was no difference in the number of SL1344 

or SL1344 SPI-1::aph that invaded J774 macrophages. However, consistent with 

published data, SL1344 tolC::aph invaded poorly (Blair et al., 2009).  Compared with 

no antibiotic treatment, greater numbers of SL1344 tolC::aph invaded ciprofloxacin 

treated macrophages than untreated macrophages. The numbers of SL1344 ∆aroA 

that invaded the ciprofloxacin treated macrophages was significantly lower than non-

antibiotic treated macrophages (Figure 4.1b), while invasion of SL1344 SPI-1::aph 

was not altered in both ciprofloxacin treated or untreated macrophages. 

When J774 macrophages were pre-treated with 5 µg/ml of ciprofloxacin (Cmax), 

compared to untreated macrophages there was a significant increase in the number 

of SL1344 that adhered to macrophages. However, there was a decrease in 

adhesion of SL1344 SPI-1:aph to ciprofloxacin treated macrophages. There was no 

difference in the numbers of SL1344 tolC::aph and SL1344 ∆aroA that adhered to 

ciprofloxacin treated macrophages (Figure 4.2a). The numbers of SL1344, SL1344 

∆aroA and SL1344 SPI-1::aph that invaded the 5 µg/ml ciprofloxacin pre-treated 

macrophages was significantly lower than untreated macrophages (Figure 4.2b). 
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However, greater numbers of SL1344 tolC::aph invaded macrophages pre-exposed 

to 5 µg/ml of ciprofloxacin than in non-ciprofloxacin exposed macrophages. 
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Figure 4.1 Effect of 0.015 µg/ml ciprofloxacin (MIC for SL1344) on adhesion to 

and invasion of wild type S. Typhimurium SL1344 (L354), SL1344 tolC::aph 

(L109), SL1344 ∆aroA (L730) and SL1344 SPI-1::aph (L1449) in murine J774 

macrophages. 

A 

 

 

B 

 

The data presented in the charts are means of at least three individual experiments performed in 

triplicate (+/- SD). The blue bars represent colony forming units of bacteria that adhered to or invaded 

untreated macrophages while red bars represent bacteria that adhered to or invaded ciprofloxacin 

treated macrophages. A Student’s t-test was carried out to compare viable counts for treated and 

untreated macrophages for each strain. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant (p>0.05), n>3. 
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Figure 4.2 Effect of 5 µg/ml ciprofloxacin (Cmax) on adhesion to and invasion of 

wild type S. Typhimurium SL1344 (L354), SL1344 tolC::aph (L109), SL1344 

∆aroA (L730) and SL1344 SPI-1::aph (L1449) in murine J774 macrophages. 

 

A 

 

B 

 

The data presented in the charts are means of at least three individual experiments performed in 

triplicate (+/- SD). The blue bars represent colony forming units of bacteria that adhered to or invaded 

untreated macrophages while red bars represent bacteria that adhered to or invaded ciprofloxacin 

treated macrophages. A Student’s t-test was carried out to compare viable counts for treated and 

untreated macrophages for each strain. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n>3. 
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4.4.2  Ceftriaxone 

Compared with no antibiotic treatment, significantly higher numbers of SL1344 and 

SL1344 ∆aroA adhered to macrophages treated with 8 µg/ml of ceftriaxone (Figure 

4.3a). However, adhesion of SL1344 tolC::aph was reduced, while adhesion of 

SL1344 SPI-1::aph was not altered in macrophages pre-treated with the same 

concentration of ceftriaxone. The numbers of SL1344 tolC::aph that invaded 

ceftriaxone treated macrophages was significantly greater than untreated 

macrophages. However, invasion of SL1344 and SL1344 ∆aroA was decreased in 

macrophages pre-treated with 8µg/ml of ceftriaxone, while adhesion of SL1344 SPI-

1::aph was not altered in both treated and untreated macrophages (Figure 4.3b). 

In J774 macrophages pre-treated with 82 µg/ml of ceftriaxone (Cmax), there was a 

significant increase in the CFU/ml of wild type SL1344 and SL1344 ∆aroA that 

adhered to macrophages than in non-antibiotic treated macrophages. Adhesion of 

SPI-1::aph was decreased while adhesion of SL1344 tolC::aph was not changed in 

the ceftriaxone treated or untreated macrophages (Figure 4.4a). However, invasion 

of SL1344, SL1344 ∆aroA and SL1344 SPI-1::aph to J774 macrophages was not 

altered in ceftriaxone pre-treated (82 µg/ml) or untreated macrophages (Figure 4.4b). 

Greater numbers of SL1344 tolC::aph invaded macrophages treated with 82 µg/ml of 

ceftriaxone than in untreated macrophages.  
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Figure 4.3 Effect of 8 µg/ml ceftriaxone (MIC for SL1344) on adhesion to and 

invasion of wild type S. Typhimurium SL1344 (L354), SL1344 tolC::aph (L109), 

SL1344 ∆aroA (L730) and SL1344 SPI-1::aph (L1449) in murine J774 

macrophages. 

A 

 

B 

 

The data presented in the charts are means of at least three individual experiments performed in 

triplicate (+/- SD). The blue bars represent colony forming units of bacteria that adhered to or invaded 

untreated macrophages while red bars represent bacteria that adhered to or invaded ceftriaxone 

treated macrophages. A Student’s t-test was carried out to compare viable counts for treated and 

untreated macrophages for each strain. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n>3. 
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Figure 4.4 Effect of 82 µg/ml ceftriaxone (Cmax) on adhesion to and invasion of 

wild type S. Typhimurium SL1344 (L354), SL1344 tolC::aph (L109), SL1344 

∆aroA (L730) and SL1344 SPI-1::aph (L1449) in murine J774 macrophages. 

A. 

 

B. 

 

The data presented in the charts are means of at least three individual experiments performed in 

triplicate (+/- SD). The blue bars represent colony forming units of bacteria that adhered to or invaded 

untreated macrophages while red bars represent bacteria that adhered to or invaded ceftriaxone 

treated macrophages. A Student’s t-test was carried out to compare viable counts for treated and 

untreated macrophages for each strain. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n>3. 
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4.4.3  Tetracycline 

When macrophages were pre-treated with 0.5 µg/ml of tetracycline (MIC), there was 

a significant increase in adhesion of all strains, except SL1344 (Figure 4.5a). There 

was an increase in the number of SL1344 tolC::aph that invaded tetracycline treated 

macrophages than untreated macrophages. However, there were no changes 

between the numbers of bacteria that invaded tetracycline treated and untreated 

macrophages for SL1344, SL1344 ∆aroA and SL1344 SPI-1::aph (Figure 4.5 b). 

There was no significant difference between the numbers of SL1344, SL1344 ΔaroA 

or SL1344 SPI-1::aph that adhered to either tetracycline (2 µg/ml) pre-treated 

macrophages or untreated macrophages (Figure 4.6a). However, compared with 

untreated macrophages, lower numbers of SL1344 tolC::aph adhered to 

macrophages treated with 2 µg/ml of tetracycline (Cmax). The numbers of SL1344 

tolC::aph that invaded macrophages treated with tetracycline was significantly higher 

than in untreated macrophages. The invasion numbers of SL1344, SL1344 ∆aroA 

and SL1344 SPI-1::aph was not altered in tetracycline treated (2 µg/ml) compared 

with untreated macrophages (Figure 4.6b).  
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Figure 4.5 Effect of 0.5 µg/ml tetracycline (MIC for SL1344) on adhesion to and 

invasion of wild type S. Typhimurium SL1344 (L354), SL1344 tolC::aph (L109), 

SL1344 ∆aroA (L730) and SL1344 SPI-1::aph (L1449) in murine J774 

macrophages. 

A 

 

B 

 

The data presented in the charts are means of at least three individual experiments performed in 

triplicate (+/- SD). The blue bars represent colony forming units of bacteria that adhered to or invaded 

untreated macrophages while red bars represent bacteria that adhered to or invaded tetracycline 

treated macrophages. A Student’s t-test was carried out to compare viable counts for treated and 

untreated macrophages for each strain. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n>3. 
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Figure 4.6 Effect of 2 µg/ml tetracycline (Cmax) on adhesion to and invasion of 

wild type S. Typhimurium SL1344 (L354), SL1344 tolC::aph (L109), SL1344 

∆aroA (L730) and SL1344 SPI-1::aph (L1449) in murine J774 macrophages.  

A. 

 

B. 

 

The data presented in the charts are means of at least three individual experiments performed in 

triplicate (+/- SD). The blue bars represent colony forming units of bacteria that adhered to or invaded 

untreated macrophages while red bars represent bacteria that adhered to or invaded tetracycline 

treated macrophages. A Student’s t-test was carried out to compare viable counts for treated and 

untreated macrophages for each strain. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n>3. 
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4.4.4 Azithromycin 

Adhesion of all four strains to macrophages pre-treated with 2 µg/ml of azithromycin 

was significantly lower than in untreated macrophages (Figure 4.7a). When 

macrophages were treated with azithromycin, there was a significant decrease in the 

CFU/ml of SL1344 and SL1344 ∆aroA that invaded these macrophages. However, 

there was no significant difference between the CFU/ml of SL1344 tolC::aph and 

SL1344 SPI-1::aph that invaded azithromycin pre-treated or untreated macrophages 

(Figure 4.7b). 

When macrophages were pre-treated with 1.4 µg/ml of azithromycin, greater 

numbers of SL1344 adhered than in untreated macrophages. There was no 

difference in the numbers of SL1344 tolC::aph, SL1344 ∆aroA and SL1344 SPI-

1::aph that adhered to azithromycin treated and untreated macrophages (Figure 

4.8a). There was significant decrease in the numbers of SL1344, SL1344 ∆aroA and 

SL1344 SPI-1::aph that invaded azithromycin treated macrophages but not in 

SL1344 tolC::aph (Figure 4.8b). 
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Figure 4.7 Effect of 2 µg/ml azithromycin (MIC for SL1344) on adhesion to and 

invasion of wild type S. Typhimurium SL1344 (L354), SL1344 tolC::aph (L109), 

SL1344 ∆aroA (L730) and SL1344 SPI-1::aph (L1449) in murine J774 

macrophages. 

A. 

 

B. 

 

The data presented in the charts are means of at least three individual experiments performed in 

triplicate (+/- SD). The blue bars represent colony forming units of bacteria that adhered to or invaded 

untreated macrophages while red bars represent bacteria that adhered to or invaded azithromycin 

treated macrophages. A Student’s t-test was carried out to compare viable counts for treated and 

untreated macrophages for each strain. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n>3. 
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Figure 4.8 Effect of 1.4 µg/ml azithromycin (Cmax) on adhesion to and invasion 

of wild type S. Typhimurium SL1344 (L354), SL1344 tolC::aph (L109), SL1344 

∆aroA (L730) and SL1344 SPI-1::aph (L1449) in murine J774 macrophages. 

A. 

 

B. 

 

The data presented in the charts are means of at least three individual experiments performed in 

triplicate (+/- SD). The blue bars represent colony forming units of bacteria that adhered to or invaded 

untreated macrophages while red bars represent bacteria that adhered to or invaded ceftriaxone 

treated macrophages. A Student’s t-test was carried out to compare viable counts for treated and 

untreated macrophages for each strain. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n>3. 
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4.4.5 Streptomycin 

Exposure of macrophages to 8 µg/ml of streptomycin did not alter the adhesion of 

SL1344, SL1344 ΔaroA and SL1344 SPI-1::aph.  However, adhesion of SL1344 

tolC::aph was significantly lower in streptomycin treated macrophages than untreated 

macrophages (Figure 4.9a). The numbers of SL1344 and SL1344 SPI-1::aph that 

adhered to J774 macrophages was not altered when the macrophages were  pre-

treated with 8 µg/ml of streptomycin. Further, the invasion of SL1344 tolC::aph and 

SL1344 SPI-1::aph was significantly greater in macrophages pre-treated with 8 µg/ml 

of streptomycin (Figure 4.9b).  

In macrophages treated with 30µg/ml of streptomycin (Cmax), there was significantly 

increased adhesion of the wild type SL1344, SL1344 ∆aroA and SL1344 SPI-1::aph 

strains. Adhesion of SL1344 tolC::aph was not affected by treatment of macrophages 

with 30 µg/ml of streptomycin (Figure 4.10a). Invasion of SL1344 tolC::aph was 

significantly higher in streptomycin treated macrophages than in non-treated 

macrophages. Streptomycin treatment did not alter invasion numbers of SL1344, 

SL1344 ∆aroA and SL1344 SPI-1::aph (Figure 4.10b). 
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Figure 4.9 Effect of 8 µg/ml streptomycin (MIC for SL1344) on adhesion to and 

invasion of wild type S. Typhimurium SL1344 (L354), SL1344 tolC::aph (L109), 

SL1344 ∆aroA (L730) and SL1344 SPI-1::aph (L1449) in murine cell line J774 

macrophages. 

A. 

 

B. 

 

The data presented in the charts are means of at least three individual experiments performed in 

triplicate (+/- SD). The blue bars represent colony forming units of bacteria that adhered to or invaded 

untreated macrophages while red bars represent bacteria that adhered to or invaded streptomycin 

treated macrophages. A Student’s t-test was carried out to compare viable counts for treated and 

untreated macrophages for each strain. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n>3. 
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Figure 4.10 Effect of 30 µg/ml streptomycin (Cmax) on adhesion to and invasion 

of wild type S. Typhimurium SL1344 (L354), SL1344 tolC::aph (L109), SL1344 

∆aroA (L730) and SL1344 SPI-1::aph (L1449) in murine cell line J774 

macrophages. 

A. 

 

B. 

 

The data presented in the charts are means of at least three individual experiments performed in 

triplicate (+/- SD). The blue bars represent colony forming units of bacteria that adhered to or invaded 

untreated macrophages while red bars represent bacteria that adhered to or invaded streptomycin 

treated macrophages. A Student’s t-test was carried out to compare viable counts for treated and 

untreated macrophages for each strain. The * indicates a significant difference (p<0.05), all other 

comparisons were considered non-significant, n>3. 
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4.5 Adhesion to and invasion of Salmonella in antibiotic treated bone 

marrow derived macrophages.   

The experiments described in section 4.4, comparing adhesion and invasion of four 

Salmonella strains to antibiotic treated macrophages, typically showed increased 

bacterial adhesion to antibiotic treated macrophages than untreated counterparts. 

Ciprofloxacin and cefriaxone were the two antibiotics that most frequently affected 

bacterial adhesion to antibiotic treated J774 macrophages. Hence, these two 

antibiotics were further investigated for their effect on adhesion and invasion of 

Salmonella to mouse bone marrow derived macrophages (BMDMs). Although J774 

macrophage cell line is a well-established model system in cell biology and 

immunology, they are cell lines that have been immortalised and maintained by 

genetic manipulation. Hence to validate the findings from infection assays with these 

cells (Section 4.4), mouse bone marrow derived macrophages (BMDMs) were 

isolated and used in the same tissue culture infection assays as the J774 

macrophages cells of murine origin, and allowed assessment of the effects of the 

antibiotics reported in using murine J774 cells in tissue culture. The BMDMs were 

treated with ciprofloxacin and ceftriaxone at Cmax concentrations i.e. 5 and 82 µg/ml 

respectively.  Only the wild type SL1344 was used to infect the BMDMs because with 

this strain, there was consistent increased adhesion to J774 macrophages pre-

exposed to ciprofloxacin and ceftriaxone at both concentrations (Table 4.1).  

Treatment of macrophages with ciprofloxacin and ceftriaxone significantly increased 

bacterial adhesion to these cells (Figure 4.11a). Conversely, there was a significant 

decrease in the invasion of SL1344 to ciprofloxacin and ceftriaxone treated 

macrophages than in untreated controls (Figure 4.11).  
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Figure 4.11 Effect of 5 µg/ml of ciprofloxacin and 82 µg/ml ceftriaxone (Cmax) on 

adhesion to and invasion of wild type S. Typhimurium SL1344 (L354) in bone 

marrow derived mouse macrophages.  

A 

 

B 

 

The data presented in the charts are means of three individual experiments performed in triplicate (+/- 

SD). The blue, green and purple bars represent colony forming units of bacteria that adhered to or 

invaded untreated, ciprofloxacin and ceftriaxone treated macrophages respectively. A Student’s t-test 

was carried out to compare viable counts for treated and untreated macrophages for each strain. The 

* indicates a significant difference (p<0.05), all other comparisons were considered non-significant, 

n=3. 
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Compared to wild type parent strain, there were no significant differences in the 

adherence of the strains used to distinguish between adherence and invasion by the 

bacteria versus phagocytosis by the macrophages (SL1344 tolC::aph and SL1344 

∆aroA) to non-antibiotic treated macrophages. However, the SPI-1 mutant strain 

adhered in significantly higher numbers than all other strains (Figures 4.1a - 4.10b, 

blue bars).  

There was a consistent increase in the adhesion of wild type pathogenic SL1344 to 

antibiotic pre-treated macrophages with both concentrations of ciprofloxacin and 

ceftriaxone. Adhesion of this strain was also increased when macrophages were pre-

treated with Cmax concentrations of azithromycin and streptomycin. However, lower 

numbers of SL1344, adhered to macrophages treated with MIC of azithromycin. 

There were no changes in the number of adhered bacteria for macrophages treated 

with tetracycline and at the MIC of streptomycin (Table 4.1).   

Consistent with published work by Blair et al, (2009), SL1344 tolC::aph had 

significantly deceased ability to invade non-antibiotic treated J774 macrophages 

compared with the wild type parent strain, SL1344 (Figures 4.1a - 4.10b, blue bars), 

while adhesion was not altered.  However, except azithromycin, when macrophages 

were pre-exposed to antibiotics, there were significant increases in the numbers of 

SL1344 tolC::aph that invaded the cells compared with untreated macrophages 

(Table 4.1).  

Unlike the SL1344 tolC::aph mutant, the abilities of SL1344, SL1344 ∆aroA or 

SL1344 SPI-1::aph to adhere to, or invade, antibiotic pre-exposed macrophages 

varied between the antibiotics at MIC and Cmax. Notably, for the wild type SL1344 

there was increased adhesion when macrophages were pre-exposed to Cmax and 
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MIC concentrations of ciprofloxacin (0.015 and 2 µg/ml, respectively) and ceftriaxone 

(8 and 82 µg/ml respectively). Similarly, more SL1344 SPI-1::aph adhered to 

macrophages pre-exposed  to Cmax and MIC of ciprofloxacin, while more SL1344  
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Table 4.1 Summary table of data for adhesion to and invasion of Salmonella in antibiotic treated J774 macrophages. 

Antibiotic pre-treatment Adhesion Invasion 

 SL1344 
 

SL1344 
tolC::aph 

SL1344 
∆aroA 

SL1344 SPI-
1::aph 

SL1344 
 

SL1344 
tolC::aph 

SL1344 
∆aroA 

SL1344 SPI-
1::aph 

Ciprofloxacin 0.015 µg/ml ↑ = = ↑ = ↑ ↑ = 

Ciprofloxacin 5 µg/ml ↑ = = ↑ ↓ ↑ ↓ ↓ 

Ceftriaxone 8 µg/ml ↑ ↓ ↑ = ↓ ↑ ↓ = 

Ceftriaxone 82 µg/ml ↑ = ↑ ↓ = ↑ = = 

Tetracycline 0.5 µg/ml = ↑ ↑ ↑ = ↑ = = 

Tetracycline 2 µg/ml = ↑ = = = ↑ = = 

Azithromycin 2 µg/ml  ↓ ↓ ↓ ↓ ↓ = ↓ = 

Azithromycin 1.4 µg/ml  ↑ = = = ↓ = ↓ ↓ 

Streptomycin 8 µg/ml = ↓ = = = ↑ ↑ = 

Streptomycin 30 µg/ml ↑ = ↑ ↑ = ↑ ↓ = 

↑ represents significant (p<0.05) increase in CFU/ml of bacteria compared to no antibiotic treatment. 

↓ represents significant (p<0.05) decrease in CFU/ml of bacteria compared to no antibiotic treatment. 

= represents no change in CFU/ml of bacteria compared to no antibiotic treatment.
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4.6 Discussion 

My experiments have shown that pre-treatment with antibiotics influence the 

interaction between immune cells such as macrophages and pathogens e.g. 

Salmonella. Antibacterial agents influence phagocyte-pathogen interactions in two 

major ways; (i) by interfering directly with phagocytes and (ii) by acting on the 

pathogen in a manner that makes them more immunogenic or prone to activities of 

phagocytes (van den Broek, 1989). Pathogens that survive within phagocytes are 

killed by antibacterial agents that can penetrate these cells, but are difficult to kill by 

agents that do not penetrate (Mandell and Coleman, 2001). It was suggested by 

Gemmell, (1993) that β-lactam antibiotics would have no effect on host defences, 

tetracyclines would dampen the immune response, and fluoroquinolones and certain 

macrolides would display synergy with the host immune system (Gemmell, 1993).  

For these infection assays, wild type SL1344 and three isogenic strains containing 

mutations in the tolC, aroA and SPI-1 genes were used.  The tolC mutant was 

constructed in a previous study by disrupting the tolC gene through insertion of a 

kanamycin resistance cassette (Buckley et al., 2006). This strain was used as a 

control in the infection assays because it is less invasive and less virulent compared 

to the wild type SL1344, as it has previously been established that Salmonella 

containing mutations in tolC have decreased ability to adhere to and invade 

macrophages (Baucheron et al., 2005, Buckley et al., 2006). The tolC strain used in 

my assays served as a good control for the experiments as has a reduced ability to 

adhere to, and invade tissue culture cells. Hence, any significant increases in the 

properties can be attributed to pre-exposure of the macrophages to antibiotics. 
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aroA is involved in the biosynthesis of chorismic acid. This protein is a common 

precursor for the biosynthesis of multiple important metabolites such as aromatic 

amino acids (example phenylalanine, tyrosine, tryptophan, benzoid and naphtoid 

coenzymes, folate cofactors and siderospores (Dosselaere and Vanderleyden, 

2001).  aroA mutants are less virulent in animal infections models, hence its use as a 

vaccine strain (Shata et al., 2000). Although growth of aroA mutants in intracellular 

compartments may be affected by the limitation of exogenous aromatic metabolites, 

this mutation does not affect the ability of bacteria to adhere or invade cultured cells 

(Chatfield et al., 1992, Lowe et al., 1999). Hence in using this strain that does not 

have any impairment in adhesion and invasion of host cells as a control, changes in 

the levels of adhesion or invasion can be attributed to antibiotic effect on the 

macrophages. 

The SPI-1 locus is a 40 kb stretch of DNA located on the Salmonella chromosome; it 

contains genes that encode the type three secretion system (TTSS) responsible for 

the translocation of virulence proteins from Salmonella into the host. These proteins  

reorganises the host cell and triggers invasion of bacteria into the host cell (Dieye et 

al., 2009). SPI-1 promotes invasion of Salmonella into host cells especially non-

phagocytic cells, such as epithelial cells, and also drives the initiation of the 

inflammatory responses (Dieye et al., 2009).  

It has been reported that ciprofloxacin enhances the activities of monocytes and 

neutrophils by for instance potentiating the killing of microorganism by neutrophils 

and modulating of cytokines (Bounds et al., 2000, Cacchillo and Walters, 2002, 

Bamberger et al., 1991). The efficacy of quinolone drugs to penetrate and 

accumulate within host cells is beneficial in the treatment of infections caused by 
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intracellular bacteria (Easmon and Crane, 1985). Fluoroquinolones such as 

ciprofloxacin are widely used due to their broad spectrum of activity for Gram-

negative (including Salmonella) and Gram-positive bacteria, and their ability to 

permeate tissues and cells such as macrophages and neutrophils. It has been 

routinely observed that neutrophils and mononuclear phagocytes take up 

fluoroquinolones so effectively that the intracellular concentration of the drug 

sometimes exceeds the extracellular plasma concentration (Easmon et al., 1986, 

Garraffo et al., 1991).  

Ciprofloxacin penetrates immune cells through both simple diffusion or uptake via 

activation of protein kinase C (Briones et al., 2008). Nonetheless, it is also important 

to note that cellular accumulation of the antibiotic is not always predictive of the 

intracellular antimicrobial activity and penetration of phagocytes by antibiotics does 

not guarantee effective therapeutic activity against the intracellular pathogen. Despite 

reaching intracellular concentrations (which are often much higher than extracellular 

concentrations) contrasting views may arise when considering the effect of antibiotics 

on the immune response to invading pathogen. Van Bambeke et al., (2006) have 

attributed these divergent views to factors such as impairment of antimicrobial activity 

when the fluoroquinolone gets to various sub-cellular locations and changes in 

responsiveness of bacteria to antimicrobial agents within the cells. 

I have shown that ceftriaxone enhanced bacterial adhesion of wild type, aroA mutant 

and tolC mutant S. Typhimurium to pre-treated macrophages but not the SPI-1 

mutant. Ceftriaxone is a third generation cephalosporin (a class of beta-lactam 

antibiotics) used to treat Salmonella infections (Frenck et al., 2000). It is also used in 

the treatment of otitis media (Gauthier et al., 2009) and in combination with 
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macrolides such as azithromycin for the treatment of acute pneumonia (Tamm et al., 

2007). Beta-lactams lack the ability to accumulate in phagocytic cells (Prokesch and 

Hand, 1982, Forsgren and Bellahsene, 1985, Jacobs et al., 1986). According to 

Carryn et al., (2002) even if beta-lactams can pass through the membranes, they are 

prevented from accumulating in cells because the cell cytosol is more acidic than the 

extracellular milieu and may be destroyed. Extrusion of beta-lactams through 

eukaryotic efflux pumps can cause lack of accumulation within cells and so their 

activity against intracellular bacteria may be compromised (Carryn et al., 2002).  

Macrolides are a class of antibiotics that possess a characteristic macrocyclic lactone 

ring. By extensive chemical modifications of the natural compound erythromycin A, 

other semisynthetic derivatives with increased antibacterial spectra and bioavailability 

have been developed (Bright et al., 1988). Macrolides possess interesting beneficial 

features, which include accumulation in cells and tissues at high concentrations. 

Penetration of macrolides into phagocytic cells is by simple diffusion (Briones et al., 

2008), or by active uptake mechanism which is mediated by transporter proteins 

(Parnham et al., 2014). According to Bosnar et al., 2005, this accumulation is 

beneficial in the treatment of intracellular pathogens and also in the delivery of the 

drug to sites of infection (Bosnar et al., 2005).  Macrolides are also used in short term 

treatment to enhance phagocytic activities, but their long term use leads to 

immunosuppression (Minic et al., 2009). Uptake of azithromycin into phagocytic cells 

is rapid and unsaturable, and it is retained in high amounts in pre-loaded cells. In 

experiments using two phagocytic cell lines; RAW 246.7 and THP-1 cell lines, it was 

shown that when extracellular azithromycin was discontinued, the drug was not 

extruded out of the cell. Three hours post incubation in azithromycin (10 µg/ml), 75% 
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of the drug still remained cell associated and active (Briones et al., 2008). The data in 

Figure 4.7a show significant decreases in bacterial adhesion to macrophages pre-

exposed to 2 µg/ml of azithromycin, while there was increased adhesion of wild type 

SL1344 only in macrophages pre-exposed to 1.4 µg/ml of azithromycin. The numbers 

of wild type, aroA mutant and SPI-1 mutant Salmonella that invaded macrophages 

exposed to 1.4 µg/ml of azithromycin was significantly lower than in untreated 

macrophages. These decreases could be attributed to antimicrobial activities of the 

cell associated azithromycin. The results for wild-type SL1344 antibiotic treatment 

indicate increased adhesion and decreased or no effect on invasion. As such, the 

potential for phagocytosis and destruction of bacteria via phagocytosis would be 

increased by antibiotic exposure of immune cells. 

It is hypothesized that because of their polar aminoglycosides do not penetrate 

eukaryotic cells nature (Carryn et al., 2002). However, in contradiction, streptomycin 

is used to treat infections due to intracellular pathogens such as tuberculosis, 

brucellosis and tularaemia (Maurin and Raoult, 2001). Aminoglycosides are taken up 

by cells into intracellular compartments through pinocytosis, a process by which cells 

take up small particles by invagination of the cell membrane, leading to formation of 

small vesicles within the cell. (Donowitz, 1994).  My data showed that streptomycin at 

8 µg/ml did not affect the adhesion of any of the strains to macrophages; however 

invasion of SL1344 tolC::aph and SL1344 SPI-1::aph to streptomycin treated 

macrophages was significantly increased compared to control macrophages. 

When in vitro infection assays were performed using primary macrophages (BMDMs) 

instead of J774 macrophage cell line, wild type SL1344 adhered to and invaded 

antibiotic treated primary macrophages (BMDMs) in a similar pattern as seen with the 
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J774 macrophages. Adhesion of SL1344 to ciprofloxacin and ceftriaxone treated 

macrophages were significantly increased compared to untreated macrophages, 

while invasion decreased in antibiotic treated macrophages than in untreated 

controls. This illustrates that Salmonella interacts in a similar way in both cell line and 

primary immune cells. The demerits of using primary cells in infection assays are that 

primary cells, for instance neutrophils, have a short life span and proliferate quite 

slowly compared to macrophage cell lines, which can be cultured for weeks. Further, 

primary cells derived from different individuals behave differently depending on age, 

genetics, and tissue of origin or the presence of an underlying disease.  

There are a number of caveats to the interpretation of my data by measuring 

adhesion and invasion. It cannot be easily distinguished if the differences in invasion 

for instance, were due to impaired ability of the strains to invade efficiently, a defect 

in intracellular survival in macrophages, or antibacterial effect of residual antibiotics 

within the macrophages. However, this can be countered by estimating the number 

of invaded bacteria over a time course, with and without antibiotics to determine 

bacterial numbers at different points in the experiments. Other factors such as 

phagocytosis by the macrophages could also influence the invasion results, giving 

amplified invasion results for strains that have impaired invasive abilities. This could 

be countered by exposing the macrophages to cytochalasin B a known phagocytosis 

inhibitor (Finlay et al., 1991).  

Further, I investigated whether the observed increase in bacterial adhesion and 

decrease in invasion, for S. Typhimurium SL1344 was due to any residual antibiotics 

in the macrophages. I quantified cell associated ciprofloxacin concentration in J774 

macrophages which were previously incubated with this drug using previously 
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described methods (Michot et al., 2005). The results (data not shown) revealed that 

cell associated ciprofloxacin concentration was <100 times less than the MIC of the 

drug for SL1344. Hence changes in the number of viable bacteria that invaded and 

adhered to J774 macrophages were not due to cell associated antibiotic. 

The innate immune system recognises the presence of bacterial lipopolysaccharide 

(LPS) through the expression of toll like receptor (TLR). In macrophages, recognition 

of S. Typhimurium is largely mediated by TLR2, TLR4 and TLR5. These TLRs elicit 

down steam signalling pathways that trigger immune responses such as activation of 

the inflammatory response. Arpaia et al., (2011) show that TLRs are not only useful 

in the recognition and attachment to pathogen associated molecular patterns, but are 

necessary for the survival of Salmonella in macrophages. They showed that 

activation of these TLRs enhances the acidification of the Salmonella containing 

vacuoles. This further induces the expression of SP1-2 genes and translocation of 

bacterial effector molecules into the macrophage. This results in a more conducive 

replicative environment in the host and increase in bacterial numbers. Hence, they 

hypothesized that Salmonella exploits host TLR signalling during the infection (Arpaia 

et al., 2011). It can be extrapolated from their findings that Salmonella induces the 

expression of TLRs which in turn causes more adhesion to the host. It is however 

unknown if expression of these TLRs are altered in the presence or absence of 

antibiotics.   

The increased numbers of SL1344 tolC::aph that invaded the cells was an interesting 

finding, as it is known that inactivation of tolC in S. Typhimurium leads to decreased 

ability to adhere to, and invade host cells (Blair et al., (2009). This suggests that pre-

exposure to the antibiotics affected the macrophages in a manner that either altered 
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macrophage surface structure making SL1344 tolC::aph more able to invade, 

increased survival of this strain intracellularly or increased macrophage ability to 

phagocytose the tolC mutant strain. Although the SL1344 tolC::aph is not the strain 

of focus, the mechanisms behind this observation could be explored in the future for 

better understanding of the mechanisms behind this observation.  

Increased adhesion of bacteria to antibiotic (ciprofloxacin and ceftriaxone) treated 

macrophages could be potentially beneficial for antibiotic therapy. This implies that 

more attached bacteria are recognised, internalised and destroyed by immune cells 

such as macrophages. The decrease in bacterial invasion following antibiotic 

exposure can be potentially beneficial in the treatment of infections by intracellular 

bacteria such as Salmonella which require intracellular survival in host immune cells. 

The reduced ability of bacteria to invade macrophage cells treated with azithromycin 

will result in fewer bacterial reproductive niches within the cell, hence reduced 

dissemination and spread of the infection to other tissues. 

Salmonella invades immune cells via type III secretion systems that deliver bacteria 

into Salmonella containing vacuoles (SCV).  This process occurs rapidly and takes 

only a few minutes. In macrophages, similar processes are involved and increased 

adhesion on the cell surface may be associated with delayed entry and increased 

phagocytosis and decreased invasion into SCV  (Stones and Krachler, 2015, Finlay 

and Falkow, 1997). This is the case with Cmax concentrations of ciprofloxacin, 

ceftriaxone and azithromycin, where increased bacterial adhesion was observed 

(Table 4.1). Interestingly, azithromycin at 2mg/ml decreased both adhesion and 

invasion. However the link between adhesion and invasion and Salmonella infection 

are complex. Kaiser et al, (2014) reported that high-dose ciprofloxacin treatment 
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efficiently reduced bacterial loads in most organs. However, cecum draining lymph 

node, the gut tissue, and the spleen retained surviving bacteria in dendritic cells, 

which remained genetically susceptible to ciprofloxacin, and were sufficient to 

reinitiate infection after the end of the therapy, displaying an extremely slow growth 

rate. The slow growth was sufficient to explain recalcitrance to antibiotic treatment 

and relapse. Targeting the innate immune system increased bacterial clearance 

(Kaiser et al., 2014). Further, when human monocyte-derived macrophages isolated 

from peripheral blood of human volunteers were cultured in vitro for macrophage 

differentiation, infected with S. Typhi strains, ceftriaxone inhibited bacterial growth in 

these cells (Ekinci et al., 2002).  Azithromycin affects human M1 macrophage 

activation, while enhancing M2 differentiation. Importantly azithromycin, down 

regulated the TLR4 pathway, a response linked to increased S. Typhimurium 

susceptibility in a murine model (Arpaia et al., 2011, Vrancic et al., 2012). These 

studies support the continued use of ceftriaxone, ciprofloxacin and azithromycin for 

S. Typhimurium infection, but further work on the influence of these drugs on 

adhesion and invasion, the relation to bacterial stasis and killing, and the 

maintenance of infection in tissues and antibiotic resistance is required (Wong et al., 

2014).  

4.7 Key findings: 

1. A general pattern of increased bacterial adhesion to antibiotic treated 

macrophages than in untreated macrophages, especially in the wild type 

SL1344 strain.  

2. Antibiotics at varying concentrations (Cmax and MIC) have different effects on 

interaction between Salmonella and immune cells. 



 

143 

 

3. There was no defined trend of effect of antibiotics on wild type virulent 

Salmonella invasion; however for the tolC mutant strain, there was increased 

bacterial invasion to macrophages pre-exposed to all antibiotics except 

azithromycin. 

4. Interaction between bacteria and macrophages pre-treated with antibiotics is 

strain dependent as different stains adhered to and invaded differently even 

when exposed to the same concentration of antibiotics. 

5. Similar effect of increase in adhesion of virulent Salmonella was observed in 

both cell line and primary mouse macrophages exposed to antibiotics. 

4.8 Further work 

My data showed that there was increased bacterial adhesion to macrophages pre-

treated with ciprofloxacin and ceftriaxone. Investigating the effect of antibiotics on 

TLR signalling involved with recognising and attaching to conserved bacterial 

molecular patterns therefore forms the basis of the next chapter. 
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5 The effect of antibiotic pre-treatment on the functions of human immune 

cells. 

5.1 Background. 

The results presented in Chapter 4 (Sections 4.4 and 4.5) illustrate that adhesion to, 

and invasion of, wild type Salmonella SL1344 and three isogenic strains to antibiotic 

pre-treated immune cells of murine origin; J774 macrophages (cell line) and bone 

marrow derived macrophages (BMDMs, primary cells), is altered after antibiotic 

exposure. My experiments showed that ciprofloxacin and ceftriaxone most frequently 

affected bacterial adhesion to both cell types. Hence, in this chapter, the effects of 

these two antibiotics on bacterial adhesion to, and invasion of, human immune cells; 

THP-1 and monocyte derived macrophages (MDMs), were considered. THP-1 cells 

were chosen because they are a monocytic cell line of human origin that can be 

differentiated into mature macrophages in the presence of phorbol 12-mistate 13-

acetate (PMA). Hence, they are suitable for comparison with primary cell i.e. 

monocyte derived macrophages from peripheral whole blood.  

Further, the effects of antibiotic pre-exposure on neutrophils (from human peripheral 

whole blood) functions in vitro were evaluated. Phagocytosis and oxidative burst are 

key elements of neutrophil activity against bacteria. The effect of the antibiotics 

(excluding streptomycin) used in the preceding chapters on neutrophil phagocytosis 

and oxidative burst was analysed using flow cytometry, while neutrophil killing was 

assessed by determining the viability of bacteria, post incubation with antibiotic 

treated neutrophils.  
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5.2 Hypothesis. 

To build upon data obtained in Chapter 4, it was hypothesized that pre-exposure of 

human macrophages to ciprofloxacin and ceftriaxone would affect bacterial adhesion 

and invasion in the same manner as for murine macrophages. It was also 

hypothesized that antibiotic pre-treatment makes neutrophils more effective at 

generating oxidative burst, phagocytosis and killing of bacteria.  

5.3 Aims. 

1. To determine the adhesion to and invasion of, Salmonella to antibiotic pre-

exposed THP-1 and primary human macrophages.  

2. To investigate the effects of pre-exposure to antibiotics (Cmax) on the activities 

of human peripheral neutrophils in vitro.  

 

5.4 Adhesion to, and invasion of, Salmonella to antibiotic treated human 

THP-1 macrophages. 

Data shown in Figure 5.1 show the results obtained for invasion and adhesion of S. 

Typhimurium SL1344 to THP-1 macrophages pre-treated with ciprofloxacin and 

ceftriaxone at concentrations mimicking the human Cmax for 2 hours. Pre-exposure of 

THP-1 macrophages to ciprofloxacin and ceftriaxone (represented as CIP and CRO 

(internationally recognised abbreviations for these antibiotics) in Figures 5.1 and 5.2) 

did not significantly alter bacterial adhesion compared to non-treated controls (Figure 

5.1a). 

Similarly, there was no significant difference in the CFU/ml of bacteria that adhered 

to, or invaded, ciprofloxacin or ceftriaxone treated human MDMs (Figure 5.2). 

Interestingly, there was a decrease in the ability of SL1344 to invade antibiotic 
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treated THP-1 macrophages (~102 CFU/ml of bacteria; Figure 5.1b) compared to 

human MDMs (~104 CFU/ml of bacteria; Figure 5.2b) where bacterial invasion of 

antibiotic treated macrophages was not altered.  
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Figure 5.1 Adhesion to, and invasion of, S. Typhimurium SL1344 to antibiotic 

treated human THP-1 macrophages. 

a. 

 

b. 

 

 

 

The data presented in the charts are the means of three individual experiments performed 

in triplicate (+/- SD). The blue, green and purple bars represent colony forming units of 

bacteria that adhered to or invaded untreated, ciprofloxacin and ceftriaxone treated 

macrophages respectively. A Student’s T-test was carried out to compare viable counts 

between treated and untreated macrophages for each strain. The * indicates a significant 

difference (p<0.05), all other comparisons were considered non-significant, n=3. 
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Figure 5.2 Adhesion to, and invasion of, S. Typhimurium SL1344 in antibiotic 

treated human MDMs. 

a. 

 

b. 

 

 

 

The data presented in the charts are the means of three individual experiments performed 

in triplicate (+/- SD). The blue, green and purple bars represent colony forming units of 

bacteria that adhered to or invaded untreated, ciprofloxacin and ceftriaxone treated 

macrophages respectively. A Student’s T-test was carried out to compare viable counts 

between treated and untreated macrophages for each strain. The * indicates a significant 

difference (p<0.05), all other comparisons were considered non-significant, n=3. 
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5.5 Effect of antibiotics on killing of opsonised wild type S. Typhimurium 

SL1344 and SL1344 tolC::aph by human peripheral blood neutrophils. 

Neutrophils were isolated from peripheral whole blood of healthy volunteers and 

incubated with 1/10 x MIC, MIC and Cmax concentrations of antibiotics for 15 minutes 

at 37ºC prior to addition of bacteria.  

Pre-exposure of neutrophils to 0.0015 (1/10 x MIC) and 0.015 µg/ml (MIC) of 

ciprofloxacin for 30 and 60 minutes of incubation did not significantly affect their 

ability to kill S. Typhimurium SL1344. However, there was a slight but not significant 

decrease in the viability of SL1344 retrieved after 60 minutes of incubation with 

neutrophils pre-treated with 5 µg/ml (Cmax) of ciprofloxacin (Figure 5.3). Similar to 

SL1344 (Figure 5.3a), when neutrophils were pre-treated with 5 µg/ml of 

ciprofloxacin, there was a slight but not significant decrease in the numbers of viable 

SL1344 tolC::aph 60 minutes post incubation (Figure 5.3b). 

When neutrophils were pre-treated with 0.8 µg/ml of ceftriaxone (1⁄10 x MIC for 

SL1344) compared to untreated neutrophils, there was no difference in their ability 

to kill SL1344 or SL13444 tolC::aph at 30 and 60 minutes incubation. However, in the 

presence of 8 and 82 µg/ml of ceftriaxone after 30 and 60 minutes incubation, 

neutrophils killed significantly more SL1344 than untreated neutrophils (Figure 5.4a). 

Neutrophils pre-treated with 8 and 82 µg/ml of ceftriaxone also killed significantly 

more SL1344 tolC::aph than untreated neutrophils at both time points. There were no 

differences at either time points in the numbers of SL1344 tolC::aph killed by 

neutrophils pre-treated with 0.8 µg/ml of ceftriaxone (Figure 5.4b). Neutrophils killing 

were unaltered by pre-treatment with tetracycline, azithromycin or streptomycin 

(Figures 5.5 – 5.7).  
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Figure 5.3 Viable count of S. Typhimurium SL1344 and SL1344 tolC::aph after 

incubation with ciprofloxacin pre-treated neutrophils. 
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b. SL1344 tolC::aph  
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The data presented in the charts are the means of three individual experiments 

performed in triplicate (+/- SD). The “0” represents no antibiotic treatment. The red bars 

indicate bacteria viability after 30 minutes while green bars represent bacteria viability 

after 60 minutes. Statistical significance was analysed by a two-tailed Student’s T-test. 

The * indicates a significant difference (p<0.05), all other comparisons were considered 

non-significant (p>0.05), n=3. 



 

152 

 

Figure 5.4 Viable count of S. Typhimurium SL1344 and SL1344 tolC::aph after 

incubation with ceftriaxone pre-treated neutrophils. 
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The data presented in the charts are the means of three individual experiments performed 

in triplicate (+/- SD). The “0” represents no antibiotic treatment. The red bars indicate 

bacteria viability after 30 minutes while green bars represent bacteria viability after 60 

minutes. Statistical significance was analysed by a two-tailed Student’s T-test. The * 

indicates a significant difference (p<0.05), all other comparisons were considered non-

significant, n=3. 
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Figure 5.5 Viable count of S. Typhimurium SL1344 and SL1344 tolC::aph after 

incubation with tetracycline pre-treated neutrophils. 
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b. SL1344 tolC::aph 
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The data presented in the charts are the means of three individual experiments performed 

in triplicate (+/- SD). The “0” represents no antibiotic treatment. The red bars indicate 

bacteria viability after 30 minutes while green bars represent bacteria viability after 60 

minutes. Statistical significance was analysed by a two-tailed Student’s T-test. The * 

indicates a significant difference (p<0.05), all other comparisons were considered non-

significant, n=3. 
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Figure 5.6  Viable count of S. Typhimurium SL1344 and SL1344 tolC::aph after 

incubation with azithromycin pre-treated neutrophils. 

a. SL1344 
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b. SL1344 tolC::aph 
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The data presented in the charts are the means of three individual experiments performed 

in triplicate (+/- SD). The “0” represents no antibiotic treatment. The red bars indicate 

bacteria viability after 30 minutes while green bars represent bacteria viability after 60 

minutes. Statistical significance was analysed by a two-tailed Student’s T-test. The * 

indicates a significant difference (p<0.05), all other comparisons were considered non-

significant, n=3. 
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Figure 5.7  Viable count of S. Typhimurium SL1344 and SL1344 tolC::aph after 

incubation with streptomycin pre-treated neutrophils. 
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b. SL1344 tolC::aph 
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The data presented in the charts are the means of three individual experiments performed 

in triplicate (+/- SD). The “0” represents no antibiotic treatment. The red bars indicate 

bacteria viability after 30 minutes while green bars represent bacteria viability after 60 

minutes. Statistical significance was analysed by a two-tailed Student’s T-test. The * 

indicates a significant difference (p<0.05), all other comparisons were considered non-

significant, n=3. 
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5.6 The effect of Cmax concentrations of antibiotics on phagocytosis and 

oxidative burst activity of neutrophils. 

Phagocytic capacity of neutrophils was assessed using FACS by measuring the 

uptake of FITC labelled bacteria, while oxidative burst after phagocytosis of bacteria 

was estimated by the amount of  fluorescence produced following oxidation of 

dihydrorhodamine (DHR)-123.  

Ciprofloxacin 

When neutrophils were pre-exposed to Cmax concentration of ciprofloxacin (5 µg/ml), 

there was a significant decrease in their ability to phagocytose bacteria (Figure 5.8a). 

However, oxidative burst activity was unaltered in neutrophils pre-treated with 5 

µg/ml of ciprofloxacin and stimulated with either fMLP, PMA or bacteria (Figure 5.8b)  

Ceftriaxone 

Pre-treatment of neutrophils with 82 µg/ml of ceftriaxone (Cmax) also did not result in 

any significant changes in the phagocytic ability of these cells (Figure 5.9a). 

However, compared to untreated neutrophils exposure of neutrophils to the same 

concentration of ceftriaxone resulted in a significant increase in oxidative burst 

activity (Figure 5.9b).   
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Figure 5.8 Effect of ciprofloxacin (5 µg/ml; Cmax) on phagocytosis and oxidative 

burst of neutrophils. 

 

a. Phagocytosis 

 

b. Oxidative burst 

 

 

 

 

The data presented in the charts are the means of three individual experiments 

performed in triplicate (+/- SD). Phagocytosis or oxidative burst in CIP treated 

neutrophils (red bars) was compared against non-antibiotic treated neutrophils (blue 

bars). The * indicates a significant difference (p<0.05), all other comparisons were 

considered non-significant, n=3. 
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Figure 5.9 Effect of ceftriaxone (82 µg/ml; Cmax) on phagocytosis and oxidative 

burst of neutrophils 

 

a. Phagocytosis 

 

b. Oxidative burst 

 

 

 

 

The data presented in the charts are the means of three individual experiments 

performed in triplicate (+/- SD). Phagocytosis or oxidative burst in CRO treated 

neutrophils (red bars) was compared against non-antibiotic treated neutrophils (blue 

bars). The * indicates a significant difference (p<0.05), all other comparisons were 

considered non-significant, n=3. 
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Tetracycline  

There was no significant difference between the phagocytic abilitiy of neutrophils pre-

exposed to 2 µg/ml of tetracycline compared to untreated neutrophils (Figure 5.10a). 

Further, there was no significant difference in the oxidative burst in tetracycline 

treated or untreated neutrophils stimulated with fMLP or bacteria. However, exposure 

to tetracycline reduced oxidative burst of neutrophils stimulated with PMA was 

(Figure 5.10b).  

Azithromycin  

Pre-exposure of neutrophils to 1.4 µg/ml of azithromycin had  no significant affect on 

phagocytosis compared to untreated neutrophils (Figure 5.11a). Similarly, the 

oxidative burst in azithromycin pre-treated neutrophils stimulated with fMLP, PMA or 

bacteria was not significantly different from non-antibiotic treated neutrophils (Figure 

5.11b). 
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Figure 5.10 Effect of tetracycline (2µg/ml; Cmax) on phagocytosis and oxidative 

burst of neutrophils 

a. Phagocytosis 

 

 

b. Oxidative burst 

 

 

 

 

The data presented in the charts are the means of three individual experiments 

performed in triplicate (+/- SD). Phagocytosis or oxidative burst in TET treated 

neutrophils (red bars) was compared against non-antibiotic treated neutrophils (blue 

bars). The * indicates a significant difference (p<0.05), all other comparisons were 

considered non-significant, n=3. 
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Figure 5.11 Effect of azithromycin (1.4 µg/ml; Cmax) on phagocytosis and 

oxidative burst of neutrophils. 

a. Phagocytosis 

 

b. Oxidative burst 

 

 

 

 

The data presented in the charts are the means of three individual experiments 

performed in triplicate (+/- SD). Phagocytosis or oxidative burst in AZI treated 

neutrophils (red bars) was compared against non-antibiotic treated neutrophils (blue 

bars). The * indicates a significant difference (p<0.05), all other comparisons were 

considered non-significant, n=3. 
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5.7 Summary of the effects antibiotics on adhesion to, and invasion of, 

Salmonella in human macrophages, and neutrophil functions.  

Compared to non-treated macrophages, adhesion of Salmonella was not altered in 

THP-1 and MDM macrophages pre-exposed to 5 µg/ml of ciprofloxacin (Cmax). 

Similarly, pre-exposure of macrophages to 82 µg/ml  of ceftriaxone did not alter 

adhesion of Salmonella. However, there was significant decrease in invasion of 

Salmonella to THP-1 and MDMs pre-exposed to ceftraixone (Table 5.1).  

Phagocytosis and killing was significantly higher following neutrophil pre-exposure to 

ciprofloxacin but not in neutrophils pre-exposed to ceftriaxone,  tatracycline or 

azithromycin.  

Table 5.1 Summary table of data for adhesion to, and invasion of Salmonella in 

antibiotic pre-treated human macrophages 

  THP-1s MDMs 

Antibiotic treatment (Cmax) Adhesion Invasion Adhesion  Invasion 

Ciprofloxacin (5 µg/ml) - ↓ - - 

Ceftriaxone (82 µg/ml) - ↓ - - 

 

Table 5.2 Summary table of data for the effect of antibiotics on neutrophil 

phagocytosis, oxidative burst and killing 

  Neutrophil function 

Antibiotic treatment (Cmax) Phagocytosis Oxidative burst  Killing  

Ciprofloxacin (5 µg/ml)  ↓ - ↑ (L109, after 60 
minutes) 

Ceftriaxone (82 µg/ml) - ↑ - 

Tetracycline (2 µg/ml) - - - 

Azithromycin (1.4 µg/ml) - - - 
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5.8 Discussion 

Further to the experiments described in Chapter 4, the experiments in this chapter 

sought to determine whether antibiotic pre-treatment of human THP-1s and MDMs 

altered bacterial adhesion to, and invasion of, these cells. Data obtained from murine 

macrophages (J774 and BMDMs) showed that pre-exposure to maximum serum 

levels (Cmax) of ceftriaxone and ceftriaxone for two hours increased bacterial 

adhesion to these cells. However, the same was not found with the human 

macrophages where antibiotics did not significantly alter the adhesion to, or invasion 

of SL1344, in human derived macrophages (MDMs).   

Interestingly, SL1344 was less able to invade antibiotic treated THP-1 macrophages 

in comparison to the MDMs. This observation could be because THP-1 cells are an 

immortalised cell line or to changes in cell morphology of the cells during maturation 

with PMA, making it more difficult for bacteria to invade. In addition to changes in cell 

morphology, it has been shown that treatment of mature THP-1 cells with PMA, 

induces increased phagocytic ability of the cell, as well as cytokine expression similar 

to that of human MDMs during TLR responses (Daigneault et al., 2010). It is possible 

that pre-treatment of THP-1 cells with ciprofloxacin and ceftriaxone cause 

intracellular changes in the macrophages, making them less tolerable for SL1344 

survival, hence the lower number of bacteria retrieved from invasion assays. To 

confirm this, it would be worthwhile investigating whether exposure to antibiotics or 

intracellular accumulation of antibiotics causes changes in the internal organelles of 

the cells, and subsequently the survival of Salmonella. 

Although bacterial adhesion to, and invasion of, antibiotic treated THP-1 and MDM is 

not extensively discussed in the literature, infection assays by Carryn et al., (2002) 
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showed that THP-1 cells exposed to ciprofloxacin had reduced activity against 

intracellular bacteria (Listeria monocytogenes) in comparison to ciprofloxacin only in 

liquid medium (Carryn et al., 2002). The effect of antibiotics on other processes such 

as cytokine production and phagocytosis has been outlined. In 1991, Simon et al., 

showed that exposure of THP-1 cells to tissue culture medium (RPMI) containing 

5µg/ml of ciprofloxacin did not greatly alter the level of TNFα secretion compared to 

β-lactam antibiotics such as ceftazidime and cefotaxime (Simon et al., 1991).  

Neutrophils are a crucial component of the host’s immune response and form the first 

line of defence against invading organisms. Their main functions include ingestion 

and killing of bacteria and other pathogens such as fungi yeast and parasites. During 

infection, neutrophils play a key role because of their ability to phagocytose bacteria 

as well as generate reactive oxygen species. Neutrophils also release cytokines and 

chemokines such as IL-17 and CXCL8 which attract other immune cells to the sites 

of infection (Khader and Cooper, 2008). In addition, neutrophils extrude extracellular 

fibrillary networks known as neutrophil extracellular traps (NETs), which capture 

microorganisms and facilitate their interaction with neutrophils (Zawrotniak and 

Rapala-Kozik, 2013).  

The interaction between neutrophils and the antibacterial agents may affect the fate 

of bacteria ingested by immune cells, especially by the phagocytes. This interaction 

has the potential to be beneficial in the treatment of infectious diseases. However, 

the effect of antibiotics on neutrophil function is the subject of conflicting reports.  

While my data shows no alteration in the ability of ciprofloxacin pre-treated bacteria 

to kill wild type S. Typhimurium, Cacchillo and Walters (2002) however demonstrated 

that in neutrophils pre-exposed to ciprofloxacin at 0.5 µg/ml, there was enhanced 
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killing of Actinobaccillus actinomycetemcomitans (a pathogen implicated in 

aggressive periodontitis), compared to non-treated neutrophils. In vitro studies by 

Canton et al., (1999) also showed that at a ciprofloxacin concentration of 1µg/ml, 

90% of phagocytosed S. Typhi were killed by ciprofloxacin treated neutrophils after 

30 min (Canton et al., 1999). At the same concentration of ciprofloxacin in a similar 

study, 90% of phagocytosed Staphylococcus aureus, Streptococcus pyogenes, and 

Corynebacterium group D2 was killed by ciprofloxacin treated neutrophils (Peman et 

al., 1994). Again, in vivo studies by Easmon et al., (1886) showed that ciprofloxacin 

was successful in treating murine systemic infection with S. Typhimurium, and 

hindered the progression of the disease in mice lacking natural immunity (Easmon et 

al., 1986).  

Further, Boogearts et al, (1986) investigated the immunomodulatory effect of four 

fluoroquinolones (ciprofloxacin, ofloxacin, pefloxacin and norfloxacin). Ciprofloxacin 

did not induce any significant effect on neutrophil functions at concentrations of 0.1, 

1. 5 and 10 µg/ml (Boogaerts et al., 1986). Some authors argued that the antibiotic 

effect is not directly on the immune responses but on the bacteria, making them more 

susceptible to killing by the immune system (Forsgren and Bergkvist, 1985). It is also 

reported that ciprofloxacin improves neutrophil functions such as intracellular killing 

oxidative burst activity in both healthy volunteers and in type 2 diabetes mellitus 

patients with deteriorating immune system (Rayaman et al., 2013). The mechanism 

behind this is not clearly understood.  

From data presented in this thesis, the decreased phagocytosis by neutrophils after 

ciprofloxacin exposure could be due to the potent effect of this antibiotic on bacteria 

viability as seen at the 2 hour time point (Figure 3.1), while the increased oxidative 
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burst following ceftriaxone treatment during an infection enhances the antibacterial 

oxidative killing mechanisms of neutrophils. Together these findings support a 

synergistic effect of antibiotic treatment of bacteria and immune cells in increasing 

bacterial killing and potentially reducing the spread of infection and are potentially 

useful in clinical conditions in which neutrophil function is compromised. However, 

the complex nature of such responses is clear.  

Carreer et al., (1998) investigated the effect of beta-lactams (ceftazidime, ceftriaxone 

and cefuroxime) on stimulated human polymorphonuclear neutrophils and showed 

that none of these antibiotics had an effect on the oxidative mechanism in neutrophils 

(Carreer et al., 1998). Further, the effects of ceftriaxone and ceftodizine on 

neutrophils from patients with severe bacterial infections show that daily 

administration of 50mg of ceftriaxone per kg for 10 days improved phagocytic 

functions compared to pre-therapy. Although the underlying factors for this effect 

were not stated, it was suggested from this publication that the antibiotics enhance 

the reactive oxygen production capacity of neutrophils. They suggest that in 

treatment of immunocompromised patients with severe bacterial infections, 

antibiotics that enhance the phagocytic activity of neutrophils should be used 

(Wenisch et al., 1995).  

In neutrophils, tetracyclines inhibit the synthesis of reactive oxygen species (Minic et 

al., 2009). Hence, tetracyclines are anti-inflammatory and immunomodulatory (Kuzin 

et al., 2001). Their ability to suppress neutrophil oxidative activities is because they 

are able to cross the cell’s plasma membrane (Gabler, 1991).The immunomodulatory 

properties of tetracycline include inhibition of host-derived (neutrophil) collagenases 

and other matrix metalloproteinases (Suomalainen et al., 1992). In early studies, 
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where in vivo and in vitro effects of tetracycline on human monocytes and 

lymphocytes were tested, no significant changes in monocyte functions was 

observed. However, this was refuted by subsequent work by Walters (2006) where it 

was shown that despite its low absorbability and affinity, tetracycline at clinically 

relevant levels (1-4µg/ml) accumulate within neutrophils at relatively high 

concentrations. Further, it was proposed that this accumulation would be beneficial in 

enhancing the killing of intracellular bacteria. (Walters, 2006).  

To understand how azithromycin activities affect the functions of neutrophils, a study 

involving the administration of a 3-day standard antibacterial dose (500mg) of 

azithromycin on healthy volunteers was carried out (Culic et al., 2002). They tested 

the effects of azithromycin on neutrophil functions such as neutrophil oxidative burst, 

apoptosis, degranulation, and circulating chemokines. These experiments were 

carried out 2.5h, 24h and 28 days post antibiotic treatment.  

 In contrast to their work, incubation of neutrophils with azithromycin did not affect 

either phagocytosis or oxidative burst in my study. My data did not show any 

significant difference between bacterial killing in azithromycin pre-treated and non-

azithromycin treated neutrophils. By contrast, and using similar neutrophil killing 

experiments, it was shown that neutrophils pre-treated with macrolide antibiotic, 

clarithromycin (a 14- membered ring macrolide) killed significantly more bacteria than 

non-treated neutrophils (Iskandar and Walters, 2010). Recent studies have shown 

that pre-treatment of mice with azithromycin for two hours before challenge with 

lipopolysaccharide, reduced neutrophil numbers and inflammatory markers in 

bronchial lavage fluid, and induced tolerance to endotoxin challenge in BALB/cJ 

mice. (Bosnar et al., 2009, Bosnar et al., 2013, Bosnar et al., 2011). The authors 
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identified mechanisms such as macrophage mediated inhibition of activator protein-1 

(AP-1) and IL-1β. This is at variance with data presented in this thesis. The reasons 

for the discrepancies may be that Bosnar and colleagues used animal models in their 

experiments, while tissue culture models of infection was used in this study. Also, 

although the mice were exposed to azithromycin 2 hours prior to LPS challenge, 

there were still circulating levels of antibiotics. Reduced cell numbers in infected 

tissue could prevent excessive tissue damage, in neutrophil-dominated inflammatory 

diseases (Erakovic Haber et al., 2014). However, this does not rule out an effect of 

azithromycin on the function of the neutrophils that enter tissues.  

It is important to note that the half-life of circulating neutrophils in circulating blood is 

8- 10 hours (Akgul et al., 2001) and neutrophil life span is 5.4 days (Pillay et al., 

2010). Therefore, data by Culic et al., (2002) represents a cumulative activity since 

the neutrophils are produced, circulate, undergo antimicrobial functions and 

eventually apoptosed.  Therefore, measurement of these parameters at 24h and 28 

days post antibiotic administration may not offer an ideal interpretation neutrophil 

function in the presence of azithromycin. 

5.9 Key points: 

 Of the four antibiotics tested, only ciprofloxacin reduced the capacity of 

neutrophils to phagocytose bacteria.  

 Phagocytosis was not altered in the presence of ceftriaxone, tetracycline or 

azithromycin. 

 There was an increased oxidative burst in neutrophils pre-treated with 

ceftriaxone but not ciprofloxacin, tetracycline or azithromycin. 
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 Neutrophils pre-treated with ceftriaxone at all concentrations above 8 µg/ml 

showed significant reductions in the viability of bacterial up to 60 minutes after 

bacteria incubation. 

 Compared to untreated neutrophils, following ciprofloxacin, tetracycline, 

streptomycin and azithromycin pre-treatment, the ability of neutrophils to kill 

Salmonella was not altered.  

5.10 Future work 

Further to these experiments, future work should include;  

 Identifying the sub-cellular locations of ciprofloxacin and ceftriaxone in 

neutrophils using confocal microscopy with fluorescently labelled antibiotics 

(Denamur et al., 2011), and if accumulation of these drugs affect neutrophil 

metabolism. 

 Exploring which mechanisms (such as inhibition of protein kinase C (PKC)) in 

neutrophils are altered following antibiotic exposure, leading to decreased 

phagocytosis (in ciprofloxacin exposed neutrophils) and increased oxidative 

burst (in ceftriaxone exposed neutrophils). PKC activity in cytosolic and 

membrane fractions of antibiotic treated neutrophils can be measured using a 

PKC-selective peptide substrate which has been previously described 

(Chakravarthy et al., 1991). 
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6 Effect of antibiotic pre-treatment on TLR gene expression in J774 

macrophages.   

6.1 Introduction. 

In Chapter 4, it was shown that there was increased adhesion of Salmonella to 

ciprofloxacin and ceftriaxone pre-treated murine cell line (J774 macrophages) and 

primary murine bone marrow derived macrophages (BMDM) compare to untreated 

macrophages. The mechanism of increased adhesion of Salmonella to antibiotic 

treated macrophages is unknown.  

Immune cells such as macrophages and neutrophils recognize and bind to 

conserved microbial patterns e.g. lipopolysaccharide (LPS) using Pathogen 

Recognition Receptors (PRR) (Hayashi et al., 2003). Toll like receptors (TLR), a 

family of the PRR, are primary sensors of pathogens and are the most studied of the 

pathogen recognition receptors (Creagh and O'Neill, 2006). Each PRR binds to a 

specific ligand, initiates an innate immune response and subsequently activates an 

adaptive immune response (Lavelle et al., 2010). TLR4 for instance is involved in 

recognition of endotoxin released from Gram-negative bacteria such as Salmonella 

(Arpaia et al., 2011, Broz et al., 2012); it also triggers phagocytosis of pathogens, as 

well as eliciting the induction of inflammatory cytokines. The NOD like receptors 

(NLR) are another family of PRR and sense conserved microbial patterns inside 

immune cells. The NLR are made up of five proteins; NOD1, NOD2, NLRC3, NLRC4 

and NLRC5 (Antosz and Osiak, 2013). Both NLR and TLR play important roles in the 

immune response to microbial infections. 

It is known that some antibiotics such as ciprofloxacin, ceftriaxone, tetracycline and 

azithromycin have immunomodulatory properties that affect the immune response to 
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bacteria or bacterial ligands such as LPS, (Katsuno et al., 2006, Bode et al., 2014, 

Tai et al., 2013). However little is known about the underlying mechanism by which 

antibiotics affect TLR signaling and function in response to Salmonella. This chapter 

examined the effects of ciprofloxacin and ceftriaxone at their respective maximum 

serum concentrations (Cmax) on the expression of genes on the TLR signaling 

pathway in response to Salmonella. Antibiotics were selected for further study in this 

chapter based on those with the most observed effects in prior assays, as described 

in previous chapters of this thesis. 

6.2 Hypothesis. 

It was hypothesised that pre-exposure to antibiotics increases the expression of TLR 

leading to increased recognition of, and binding to the Salmonella LPS, hence 

increased adhesion. Since TLR signaling also affects the induction of cytokines, the 

production of cytokines by antibiotic pre-treated macrophages was also investigated. 

6.3 Aims.  

 To investigate the mRNA expression of genes in the TLR pathway in the 

presence or absence of ciprofloxacin and ceftriaxone. 

 To determine if mRNA expression of genes in the TLR signaling pathway 

translated to protein expression using ELISA. 

 

6.4 Results 

6.4.1 Assessment of RNA purity 

Using good quality RNA is crucial in obtaining reliable gene expression data. For this 

reason, RNA integrity was assessed spectrophotometrically via Nanodrop and by 
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visual inspection of the 18S and 28S ribosomal RNA bands via denaturing agarose 

gel electrophoresis (Figure 6.1 and 2).  

Intact non-degraded RNA is represented by clear distinct 28S and 18S RNA bands 

after gel electrophoresis, ensuring that pre-exposure to antibiotics (ciprofloxacin and 

ceftriaxone) or Salmonella did not affect J774 macrophage RNA integrity.  

 

6.4.2 RT-PCR analysis of gene expression in the TLR signaling J774 

macrophages following antibiotic treatment. 

To determine the effect of antibiotics on TLR signaling, in three separate 

experiments, J774 macrophages were incubated with or without maximum serum 

concentrations of antibiotics (ciprofloxacin, 5 µg/ml; ceftriaxone, 8 µg/ml) for 2 hours 

prior to infection or no infection with Salmonella. The expression of eighty-four genes 

in the TLR signaling pathway was monitored by RT-PCR after 2 hours incubation. 

The tested antibiotics conferred differential TLR gene expression. The magnitude of 

difference between gene expression in antibiotic treated and untreated macrophages 

was measured in fold change. 

The online RT2 profiler PCR Array Data Analysis Software v3.5 by SABiosciences 

was used to evaluate fold change in gene expression between antibiotic treated and 

non-treated macrophages. Relative gene expression was calculated by ∆∆CT 

method normalised against the CT values of 5 housekeeping genes (Actb, B2m, 

Gapdh, Gusb and Hsp90ab1) and expressed as fold change (section 2.9.6). Fold-

change values >1 indicate increased expression of the genes, while values <1 

indicate decreased expression. 
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Figure 6.1 RNA integrity of ciprofloxacin treated macrophages. 

 

 

Lane M is 1kb RNA marker. Lanes 1 – 3 (black) contain RNA samples from non-antibiotic treated non-

infected macrophages. Lanes 4 – 6 (blue) contains RNA samples from macrophages pre-treated with 

5 µg/ml of ciprofloxacin. Lanes 7 – 9 (red) contain RNA samples from macrophages pre-treated with 5 

µg/ml of ciprofloxacin and infected with SL1344. Lanes 9 – 12 (green) contain RNA samples from non-

antibiotic treated SL1344 infected macrophages.  

 

Figure 6.2 RNA integrity of ceftriaxone treated macrophages. 

 

 

Lane M is 1kb RNA marker. Lanes 1 – 3 (black) contain RNA samples from non-antibiotic treated non-

infected macrophages. Lanes 4 – 6 (blue) contains RNA samples from macrophages pre-treated with 

82 µg/ml of ceftriaxone. Lanes 7 – 9 (red) contain RNA samples from macrophages pre-treated with 

82 µg/ml of ceftriaxone and infected with SL1344. Lanes 9 – 12 (green) contain RNA samples from 

non-antibiotic treated SL1344 infected macrophages.  

 
A comprehensive list of fold change in gene expression levels of the 84 genes on the 

RT-PCR array is presented in Appendix 2.  

M     1     2     3     4     5     6     7      8     9   10   11   12 

M       1    2    3        4    5   6        7    8    9      10  11  12 

← 28S 

← 18S 

← 18S 

← 28S 
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Since the purpose of these experiments was to determine whether antibiotic pre-

treatment causes an increased expression of TLR, leading to increased bacterial 

recognition and binding, the focus was on the genes encoding the expression of 

TLR1-9 (Table 6.1 and 6.2) and the inflammatory response to Salmonella. 

Ciprofloxacin 

In comparison to non-antibiotic treated macrophages, in macrophages pre-exposed 

to 5 µg/ml of ciprofloxacin there was no change in expression of any of the genes of 

interest (Table 6.1).  

Salmonella SL1344 

In non-antibiotic treated macrophages infected with SL1344, there was increased 

expression of genes encoding IL1β, IL6 and TNFα by 38, 43 and 21 fold, respectively 

(p= 0.0001, 0.002 and 0.002 respectively). Expression of TLR1 and TLR2 was 

increased 1.5 and 1.6 fold, respectively, while expression of TLR 3-9 was decreased 

(Table 6.1). 

Ciprofloxacin and SL1344 

However when macrophages were pre-treated with ciprofloxacin (5µg/ml) and 

infected with Salmonella SL1344, there was increased expression of IL1β and IL6 by 

118 and 143 fold respectively (p= 0.0001, 0.00002), while TNFα was increased by 6 

fold, a reduction of SL1344 challenged macrophages alone and 0.000338). 

Expression of TLR1 and TLR2 was increased 1.4 and 1.6 fold respectively, 

(p=0.0014 and 0.0106 respectively), while expression of TLR3–9 was decreased.  

Compared to macrophages infected with SL1344, in ciprofloxacin pre-exposed 

macrophages infected with SL1344, there was a 3-fold increase in expression of both 

IL1β and IL6 (Table 6.1). Expression of TNFα was decreased 3.5 fold. TLR 3, 4 and 

5 expression was decreased in both ciprofloxacin treated and untreated SL1344 
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infected macrophages. TLR 8 expression was decreased 2.3 fold in ciprofloxacin and 

SL1344 treated macrophages compared to non-antibiotic treated macrophages 

infected with SL1344.  

Ceftriaxone 

Pre-treatment of macrophages with 82 µg/ml of ceftriaxone, increased the expression 

of TLR6 2 fold (p= 0.0369), compared to untreated macrophages. In non-antibiotic 

treated macrophages infected with SL1344, expression of genes encoding TLR 3, 4, 

5 and 8 was reduced, compared to non-treated macrophages (Table 6.2). 

Salmonella SL1344 

 When macrophages were treated with ceftriaxone and infected with Salmonella, 

there was increased IL1β expression (127-fold), 3-fold increase in IL6 expression, 

and a 32-fold increase in TNF expression compared to untreated macrophages. 

TLR2 expression was increased 5.5 fold in Salmonella infected macrophages that 

had been pre-exposed to ceftriaxone compared to non-treated macrophages (Table 

6.2).  

Ceftriaxone and SL1344 

Comparison of data obtained for non-antibiotic pre-treated macrophages infected 

with SL1344 and ceftriaxone treated macrophages infected with SL1344 revealed an 

8 fold increase in IL1β and a 4 fold increase in IL6 expression in ceftriaxone treated 

macrophages infected with SL1344 (Table 6.2). By comparison, TNFα expression 

was not further increased. TLR 3, 4, 5 and 8 expression was equally decreased in 

both ciprofloxacin treated and untreated, SL1344 infected macrophages (Table 6.2).  

Consistent with the fold change data, clustergram analysis shows low expression of 

IL1β and IL6 (green squares) in untreated macrophages and in macrophages pre-

treated with ciprofloxacin and ceftriaxone. In non-antibiotic treated macrophages 
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infected with Salmonella, there was moderate gene expression (dark green squares). 

However, there was high expression (red squares) of these genes in ciprofloxacin or 

ceftriaxone pre-treated macrophages that were infected with Salmonella (Figure 6.3 

and 6.4).  

 

Comparison of data obtained for the macrophages pre-treated with antibiotics and 

macrophages pre-treated with antibiotics and infected with Salmonella (Table 6.1 and 

6.2) revealed that there was greater expression of IL1β and IL6 in the antibiotic pre-

treated macrophages infected with Salmonella. Therefore, it was inferred that the 

increased expression of these genes was due to the pre-exposure of the 

macrophages to antibiotics. In contrast, there was greater reduction of expression of 

TNFα in Salmonella infected macrophages pre-treated with antibiotics than in 

Salmonella infected non-antibiotic pre-treated macrophages.  
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Table 6.1 Fold change in gene expression of J774 macrophages following pre-treatment with ciprofloxacin (CIP) at Cmax 

concentrations (5 µg/ml) compared to untreated macrophages 

  

 
Fold change (comparing to non-antibiotic treated macrophages) 

Macrophage + CIP Macrophage + SL1344 Macrophage + CIP + SL1344  

Fold change p-value Fold change p-value Fold change p-value 

C04 Il1b 0.9659 0.746852 38.9600* 0.000120 118.6044* 0.000995 

C07 Il6 0.9330 0.946741 43.0059* 0.002224 143.4968* 0.000015 

F08 Tlr1 0.9794 0.941391 1.5630* 0.031977 1.4701* 0.001421 

F09 Tlr2 0.8409 0.324562 1.6411* 0.045088 1.6328* 0.010690 

F10 Tlr3 0.7631 0.156827 0.3643* 0.000065 0.5526* 0.008224 

F11 Tlr4 0.8448 0.663734 0.2006* 0.000377 0.1837* 0.000241 

F12 Tlr5 0.9908 0.979696 0.1014* 0 0.1009* 0 

G01 Tlr6 0.8467 0.598306 0.6297* 0.085823 0.6154* 0.047654 

G02 Tlr7 0.9548 0.781408 0.5681* 0.015783 0.4802* 0.003251 

G03 Tlr8 0.8706 0.721758 0.0503* 0.000063 0.1165* 0.000135 

G04 Tlr9 0.8746 0.455856 0.6850* 0.085542 0.6114* 0.006805 

G05 Tnfα 0.9013 0.507896 21.5995* 0.002455 6.9990* 0.000338 

 
 
The data summarized in the table illustrate fold changes in the expression level of genes in the TLR signaling pathway of J774 
macrophages pre-exposed to ciprofloxacin. The p values are calculated based on a Student’s t-test of the triplicate 2^ (- Delta Ct) 
values for each gene in the control group and treatment groups, and p values less than 0.05 are denoted by *. Increased fold 
changes are printed in red, while decreased fold changes are printed in blue.  
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Table 6.2 Fold change in gene expression of J774 macrophages following pre-treatment with ceftriaxone (CRO) at Cmax 

concentrations (82 µg/ml) compared to untreated macrophages. 

  

 
Fold change (comparing to non-antibiotic treated macrophages) 

Macrophage + CRO Macrophage + SL1344 Macrophage + CRO + SL1344  

Fold change p-value Fold change p-value Fold change p-value 

C04 Il1b 1.0410 0.668593 15.5050* 0.001923 127.1405* 0.000003 

C07 Il6 1.0410 0.668593 0.8461 0.692434 3.6846* 0.027510 

F08 Tlr1 0.6204 0.076409 1.3110 0.181982 1.2705 0.246214 

F09 Tlr2 0.9126 0.283665 6.5604* 0.000007 5.5229* 0.000009 

F10 Tlr3 0.9000 0.488461 0.4400* 0.033508 0.4138* 0.009230 

F11 Tlr4 1.0032 0.940031 0.4271* 0.003028 0.4894* 0.002215 

F12 Tlr5 1.4320* 0.038840 0.2359* 0.002290 0.1835* 0.000007 

G01 Tlr6 2.1307* 0.036946 1.7881 0.150742 1.7905 0.139938 

G02 Tlr7 0.7061 0.189922 0.8317 0.102753 0.6790* 0.041310 

G03 Tlr8 0.8693* 0.023528 0.2061 0 0.2072* 0.000003 

G04 Tlr9 0.7293 0.350244 1.5225 0.143896 1.4636 0.054219 

G05 Tnfα 0.8534 0.761438 27.4123* 0.002340 32.7072* 0.000197 

 
 
The data summarized in the table illustrate fold changes in the expression level of genes in the TLR signaling pathway of J774 
macrophages pre-exposed to ceftriaxone. The p values are calculated based on a Student’s t-test of the triplicate 2^ (- Delta Ct) 
values for each gene in the control group and treatment groups, and p values less than 0.05 are denoted by *. Increased fold 
changes are printed in red, while decreased fold changes are printed in blue.
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In these experiments, the RT-PCR assays were carried out in two separate groups, 

one with ciprofloxacin and the one with ceftriaxone, and performed on different days. 

Data obtained shows that the same genes were either over expressed or under 

expressed in both sample groups with the exception of I6 which was not increased in 

the ceftriaxone treatment group (Table 6.3). This difference is potentially due to 

sample to sample variations between replicates used in the different experiments, 

particularly ceftriaxone treatment of macrophages where there is one clearly different 

response (Figure 6.4).  

 
Table 6.3 Fold change in gene expression of J774 macrophages following 

infection with SL1344 compared to non-infected macrophages. 

  

Macrophage + SL1344 
(CIP experiment) 

Macrophage + SL1344  
(CRO experiment) 

Fold change P-value Fold change P-value 

C04 Il1b 38.9600* 0.000120 15.5050* 0.001923 

C07 Il6 43.0059* 0.002224 0.8461 0.692434 

F08 Tlr1 1.5630* 0.031977 1.3110 0.181982 

F09 Tlr2 1.6411* 0.045088 6.5604* 0.000007 

F10 Tlr3 0.3643* 0.000065 0.4400* 0.033508 

F11 Tlr4 0.2006* 0.000377 0.4271* 0.003028 

F12 Tlr5 0.1014* 0 0.2359* 0.002290 

G01 Tlr6 0.6297* 0.085823 1.7881 0.150742 

G02 Tlr7 0.5681* 0.015783 0.8317 0.102753 

G03 Tlr8 0.0503* 0.000063 0.2061 0 

G04 Tlr9 0.6850* 0.085542 1.5225 0.143896 

G05 Tnfα 21.5995* 0.002455 27.4123* 0.002340 

 
 
Bonferroni correction assessed by dividing a significance level (0.05) by the number 

of genes tested (84) gave 0.05/84 = 0.000595 which is approximately 0.0006, so any 

p-values you have below 0.0006 are evidence of a difference at the 5% significance 

level, in which case most aresults would lose significance. The process assumes that 

the genes being tested are independent, which they are probably not, hence it is very 

likely to be conservative. For fold change of genes of interest, further validation by 

qPCR is required. 



 

181 

 

Figure 6.3 Clustergram of expression of genes in ciprofloxacin (5 µg/ml) pre-
treated J774 macrophages. 
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Figure 6.3 Clustergram of expression of genes in ciprofloxacin (5 

! g/ml) pre-treated J774 macrophages. 

 

Cluster gram showing the effect of ciprofloxacin on expression levels of genes in the TLR 
signaling pathway. Data are representative of three replicates for each treatment group. Data 

were median centered using RT! Profiler™ PCR Array Data Analysis software by SABiosciences.  

#

 

Cluster gram showing the effect of ciprofloxacin on expression levels of genes in the TLR 

signaling pathway of J774 macrophages. Data are representative of three replicates for each 

treatment group. Data were median centered using RT² Profiler™ PCR Array Data Analysis 

software by SABiosciences. Green squares indicate low expression of genes (fold change <1), 

while red squares indicate high expression of genes (fold change >1).  
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Figure 6.4 Clustergram of expression of genes in ceftriaxone (82 

! g/ml) pre-treated J774 macrophages. 

 

 
 
 
 
 

Cluster gram showing the effect of ceftriaxone on expression levels of genes in the TLR 

signaling pathway. Data are representative of three replicates for each treatment group. Data 
were median centered using RT! Profiler™ PCR Array Data Analysis software by 

SABiosciences.  

#

Cluster gram showing the effect of ceftriaxone on expression levels of genes in the TLR 

signaling pathway of J774 macrophages. Data are representative of three replicates for each 

treatment group. Data were median centered using RT² Profiler™ PCR Array Data Analysis 

software by SABiosciences. Green squares indicate low expression of genes (fold change <1), 

while red squares indicate high expression of genes (fold change >1). 

 

Figure 6.4 Clustergram of expression of genes in ceftriaxone (82 µg/ml) pre-

treated J774 macrophages. 
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6.4.3 Analysis of IL-1β and TNFα cytokine protein expression in J774 

macrophages following antibiotic pre-treatment. 

 

To confirm whether gene expression changes of IL1β, and TNFα translated to altered 

protein expression, ELISA analysis using tissue culture supernatant obtained from 

macrophages in tissue culture experiments (Section 6.4.2) was carried out.  

IL-1protein production 

Production of IL-1β was higher in macrophages infected with SL1344 (121 pg/ml) 

than in non-antibiotic treated, non-infected macrophages (13 pg/ml). Production 

increased further in ciprofloxacin pre-treated macrophages infected with SL1344 361 

pg/ml (Table 6.4 and Figure 6.5). Conversely, IL-1β production was lower in 

ceftriaxone pre-treated macrophages infected with SL1344, (3 pg/ml) than in 

ceftriaxone pre-treated, non-SL1344 infected macrophages, 50 pg/ml (Table 6.4 and 

Figure 6.5). 

TNF protein production 

Compared to untreated macrophages, there was higher expression of TNFα in non-

antibiotic treated macrophages infected with SL1344 (872 pg/ml) than in non-

antibiotic treated, non-infected macrophages (25 pg/ml). Similarly, in ciprofloxacin 

and ceftriaxone pre-treated macrophages infected with SL1344, TNFα protein 

expression was higher compared to antibiotic treated non-infected macrophages 

(Table 6.4, Figure 6.6). Similar to gene expression data, compared to non-antibiotic 

treated macrophages there was no difference in the level of TNFα produced in 

macrophages infected with SL1344 (Figure 6.6).  

When compared with fold change data in the level of IL1β mRNA for antibiotic treated 

or untreated macrophages, the fold change in protein expression was not consistent. 
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However, the fold change of TNFα mRNA expression in non-antibiotic treated 

macrophages infected with SL1344 was similar to the fold change in protein 

expression for this protein compared to non-antibiotic treated, non-infected 

macrophages (24.5  fold for mRNA vs. 34 fold for protein expression) (Table 6.5).  

 

Table 6.4 Expression of IL-1β and TNFα protein in ciprofloxacin and ceftriaxone 

treated J774 macrophages. 

 
Protein (pg/ml) 

Sample IL-1β TNFα 

Macrophage only 13.3995 25.6062 

Macrophage + SL1344 120.9990 871.8641 

Macrophage + CIP 32.3380 71.7853 

Macrophage + CRO 50.7265 31.0034 

Macrophage + CIP + SL1344 361.9135 705.6677 

Macrophage + CRO + SL1344 2.9540 1002.1006 

 

Table 6.5 Comparison of fold change in mRNA and protein expression in 

ciprofloxacin and ceftriaxone treated J774 macrophages. 

Fold change compared to non-antibiotic treated macrophages 

 
IL-1β TNFα 

Sample mRNA Protein mRNA Protein 

Macrophage + SL1344 27.2325* 9.0301 24.5059* 34.0489 

Macrophage + CIP 0.9659 2.4134 0.9013 2.8034 

Macrophage + CRO 1.0410 3.7857 0.8534 1.2108 

Macrophage + CIP + SL1344 118.6044 27.0095 6.9990 27.5584 

Macrophage + CRO + SL1344 127.1405 0.2205 32.7072 39.1350 

 

* Macrophage + SL1344 mRNA results are an average of fold change data from 

samples from both days of the experiment  
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Figure 6.5 IL-1β protein production in J774 macrophages pre-treated with 

ciprofloxacin (5 µg/ml) or ceftriaxone (82 µg/ml). 
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Capture ELISA analysis of IL-1β in response to SL1344 in J774 macrophages pre-treated with 

ciprofloxacin or ceftriaxone for 2 hours. Data represents means of three experiments performed in 

triplicate. Standard error represents error between 3 biological replicates and 3 technical replicates. A 

student’s T test was carried out to compare cytokine expression in antibiotic pre-treated and non-

treated macrophages challenged with Salmonella. The * indicates a significant difference (p<0.05), all 

other comparisons were considered non-significant, n=3. 
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Figure 6.6 TNFα protein production in J774 macrophages pre-treated with 

ciprofloxacin (5 µg/ml) or ceftriaxone (82 µg/ml). 
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Capture ELISA analysis of TNFα in response to SL1344 in J774 macrophages pre-treated with 

ciprofloxacin or ceftriaxone for 2 hours. Data represents means of three experiments performed in 

triplicate. Standard error represents error between 3 biological replicates and 3 technical replicates. A 

student’s T test was carried out to compare cytokine expression in antibiotic pre-treated and non-

treated macrophages challenged with Salmonella. The * indicates a significant difference (p<0.05), all 

other comparisons were considered non-significant, n=3. 
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6.5 Discussion 

The hypothesis investigated in the experiments described in this chapter was that 

under antibiotic, pre-treatment of macrophages leads to increased expression of TLR 

leading to increased microbial binding of Salmonella by TLR, hence explaining the 

increased adhesion in the tissue culture model of Salmonella infection. There is 

currently no available literature that elucidates how antibiotics affect TLR signaling in 

response to Salmonella. Therefore, cellular and molecular mechanisms for the effect 

of antibiotics on TLR are still poorly understood. My data showed decreased fold-

change expression of TLR in Salmonella infected antibiotic treated, or untreated, 

J774 macrophages. However, activation of TLR in response to Salmonella is 

characterized by increased production of cytokines such as IL-1β, IFN-γ and IL-6 

(Huang, 2009, Svensson et al., 2001, Sebastiani et al., 2002, Cronin et al., 2012). In 

agreement with these authors, my data also showed increased expression of IL1β, 

IL6 and TNFα when macrophages were infected with Salmonella. My data further 

reveals that ciprofloxacin pre-treatment caused greater expression of IL1β and IL6 

than in non-ciprofloxacin treated macrophages. Similarly, ceftriaxone pre-treatment 

increased the expression of IL1β by 112 fold, and slightly increased the expression of 

IL6. Additionally, my data showed that both ciprofloxacin was able to reduce 

expression of TNFα in pre-treated macrophages infected with Salmonella. These 

findings support those obtained by Gogos et al., (2004) who showed that 

ciprofloxacin inhibited the production of TNFα, but not IL-6, in the sera of patients 

suffering from sepsis (Gogos et al., 2004). Although not at gene level, it has been 

shown that ciprofloxacin inhibited the production of TNFα, IL-1β and IL-6 in LPS 

stimulated mouse peritoneal macrophages pre-treated with ciprofloxacin for 1 hour 
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(Ogino et al., 2009). These authors suggest that the ability of ciprofloxacin and other 

fluoroquinolone antibiotics to modulate the immune response is due to the presence 

of cyclopropyl group at the N1 position or piperazinyl at the C7 position  of a tricyclic 

benzoxazine nucleus (Ogino et al., 2009).  

A limitation of the current study is that certain experiments gave contradictory results, 

such as ceftriaxone treatment of macrophages alone. Therefore these results must 

be considered preliminary until further studies are performed to confirm the effects of 

antibiotics on the TLR pathway at the gene, but also at the protein level, where the 

kinetics of the response may differ. 

TLR are important for induction of the innate immune response and cytokine 

expression. Consistent with reduced induction of innate immune response, it has 

been shown that deficiency in TLR2 and TLR4 in mice is correlated to increased 

susceptibility to S. Typhimurium infection (Arpaia et al., 2011). 

Despite being important effector mechanisms for recognition of pathogens, TLR are 

exploited by pathogens in establishing and maintaining infection in the host. TLR 

signaling induces acidification of the Salmonella-containing phagosome (Arpaia et 

al., 2011). In this acidified environment, there is increased expression of Salmonella 

type three secretion systems (TTSS) encoded by SPI-2, whereas genes encoding 

the secretion of TTSS by SPI-2 are disrupted in a non-acidic environment (Cirillo et 

al., 1998). Since SPI-2 is required for replication of and systemic infection by 

Salmonella in the host and TLR signaling facilitates the expression of SPI-2, TLR 

signaling is beneficial as well as detrimental to the host. Hence identification of 

antibiotics that are able to modulate TLR signaling is vital in treating infections where 

TLR signaling is a key immune response.  
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Previous reports have stated that in response to Salmonella infection, TLR2, TLR4 

and TLR5 signaling are required (Seibert et al., 2010). However, activation of these 

receptors occurs at different points in the immune system’s encounter with 

Salmonella, i.e. TLR responses to bacteria are sequentially activated.  For instance, 

Weiss et al., (2004) showed that although TLR4 is required for initial cytokine 

production and killing of Salmonella, it is also required for the downstream response 

such as induction of myeloid differentiation factor 88 (MyD88), a TLR adaptor protein 

involved in the activation of transcription factor NF-ҡB (Weiss et al., 2004). Data from 

my experiments showed that after 2 hours, infection of antibiotic pre-treated or 

untreated macrophages with Salmonella failed to up regulate the expression of TLR 

encoding genes. As these genes are transiently expressed, it is possible that these 

genes had been “switched on” and later “switched off” in course of the 2 hour 

infection period, and so affecting the data obtained.  

In the presence of Salmonella, ciprofloxacin inhibited the expression of TLR4. 

Further, reduced expression of TNFα was seen in Salmonella infected ciprofloxacin-

treated macrophages. A similar result was obtained in work by Katsumo et al., (2006) 

using human monocytes, where at concentrations ranging from 0.1 to 100 µg/ml, 

ciprofloxacin suppressed the expression of TLR4 and the production of TNFα. 

Further, they reported that ciprofloxacin at the same concentration range also 

inhibited the expression of intracellular adhesion molecules ICAM-1, B7.1, B7.2 and 

CD14 (Katsuno et al., 2006). ICAM-1 is involved in cell to cell signaling and 

transmigration into tissues (Grasso et al., 2014). These authors hypothesized that 

inhibition of interaction between monocytes via reduction in the expression of ICAM 

and CD14 by ciprofloxacin may be responsible for the reduced expression of TNFα in 

monocytes.  
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In the THP-1 human macrophage cell line, Bode et al., (2014) also illustrated the 

differential effects of antibiotics on TLR gene expression, cytokine production and 

phagocytosis after 24 hour incubation.  Their data showed increased expression of 

TLR1, TLR2, TLR4, TLR6, IL1β and IL6 genes when macrophages were pre-treated 

with the beta-lactam antibiotic piperacillin (100µg/ml), and stimulated with LPS from 

E. coli. However, pre-treatment with the tetracycline antibiotic, doxycycline (8ug/ml) 

or the aminoglycoside, gentamicin (5 µg/ml) reduced mRNA expression of TLR1, 

TLR4, TLR6, and IL1β. In peripheral blood mononuclear cells from patients with a 

systemic inflammatory response who had undergone surgery, differential effects of 

antibiotics in modulating expression of TLR and cytokine genes were observed (Bode 

et al., 2014). More specifically in the presence of LPS, the fluoroquinolone antibiotic 

moxifloxacin increased mRNA levels of TLR2, but decreased expression levels of 

TLR1. However, in the absence of LPS, expression of IL1β was increased while 

expression of TLR4 and TLR6 was decreased. Other antibiotics have also been 

recently shown to interfere with expression of immune response genes. For instance, 

erythromycin and rifampicin prevented the over expression of TLR4, TLR2, CD18 

and IL8r in response to LPS, and also suppressed the expression of TNFα genes in 

human polymorphonuclear leukocytes (Mu et al., 2014). However, the mechanisms 

underlying these findings have not been elucidated. 

It is has been shown that TLR signaling is required for the production of pro-IL-1β, 

which is cleaved into IL-1β (Martinon et al., 2002, Dinarello, 2007). Although my data 

shows that expression of TLR genes was not increased in response to SL1344 or 

antibiotics in J774 macrophages, it is hypothesised that TLR are constitutively 

expressed in these cells and are up regulated in response to Salmonella and then 

switched off thereafter. Hence, measuring expression of these genes 2 hours after 
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infection with Salmonella may not give a true representation of expression of these 

genes. Foster et al., (2007) suggested that TLR can be transiently expressed, after 

which they induce the expression of pro-inflammatory mediators and priming of 

antimicrobial functions (Foster et al., 2007). Although infection with of macrophages 

with Salmonella for 2 hours is suitable for measuring invasion and adhesion (Dibb-

Fuller et al., 1999), there are some caveats to the use of this method for measuring 

gene expression. For instance, it may be possible that transient expression of TLR 

genes occurred when macrophages were infected with SL1344. Therefore, further 

work should include monitoring of the expression of these TLR genes upon infection 

with Salmonella and at shorter time points after infection.    

The effect of antibiotics in modulating the immune response, especially pathogen 

recognition and cytokine production has various clinical implications. Some reports 

have highlighted TLR as new therapeutic targets for the treatment of infections 

(Roger et al., 2009, Savva and Roger, 2013). Furthermore, several classes of 

antibiotics, currently used in treatment against bacterial infections modulate the 

immune response, especially the expression of TLR and pro-inflammatory cytokines 

(Bode et al., 2014). These immunomodulatory effects vary between antibiotics of 

various classes. Antibiotics belonging to the same class can also affect the immune 

response in different ways. For instance cefuroxime and ampicillin, both beta-lactam 

antibiotics have opposing effects on immune related gene expression in human T 

cells. Cefuroxime increased the expression of genes involved in Th2 and Treg 

pathways, ampicillin increased the expression of genes in the TH1 pathway (Mor and 

Cohen, 2012),  while macrolide immunomodulatory mechanisms are mainly in the 

regulation of inflammation and neutrophil activities (Shinkai et al., 2008).  These 
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findings suggest that antibiotics differentially affect the immune response, and these 

effects vary in the presence or absence of bacteria.  

In summary, my work shows that ciprofloxacin and ceftriaxone, at the concentration 

and time of exposure to antibiotics replicating the Cmax and Tmax respectively, 

influence TLR mRNA expression and cytokine response to SL1344 at both gene and 

protein level in J774 macrophages. My data showed that the antibiotics, ciprofloxacin 

and ceftriaxone further increased the expression of genes that were previously over 

expressed when macrophages were infected with S. Typhimurium SL1344, but did 

not alter genes with repressed expression following infection with SL1344. These 

findings indicate that antibiotics have higher ability to influence the immune response 

in the presence of an infection but less so in the absence of an infection. Further, the 

ability of antibiotics to modulate expression of cytokines may be useful in minimising 

tissue damage during infection. Increased TNFα production is a ‘double-edged 

sword’ as it is involved in increased migration of immune cells from the blood and 

activation of macrophages to fight infection (Behnsen et al., 2015). However, in 

severe infections such as during sepsis, there is an increase in TNFα which causes 

tissue damage while, on the other hand, it is proangiogenic in vivo. During the 

inflammatory process, TNFα can inhibit its own activities by producing soluble 

receptors. TNFα will also drive production of IL-10 in neutrophils. IL-10 keeps 

inflammation under control by selectively inhibiting the cell recruitment to sites of 

infection. IL-1 also increases expression of adhesion factors on endothelial cells to 

enable transmigration into tissues. Moreover, IL-1 affects the activity of the 

hypothalamus, which leads to a rise in body temperature, one of the cardinal signs of 

inflammation, vasodilation and hypotension. It should be stated that the differences 



 

193 

 

seen in cytokine production with different antibiotics would need to be confirmed at 

different (optimal) time points for each drug.  

6.6 Key points: 

 

 Pre-exposure to antibiotics altered mRNA levels of genes in the TLR signaling 

pathway of J774 macrophages.  

 Pre-treatment of macrophages with ciprofloxacin and ceftriaxone alone did not 

affect cytokine production or TLR signaling in J774 macrophages. 

 Expression of IL-1β and TNFα mRNA was greater in SL1344 infected 

macrophages which had been pre-exposed to ciprofloxacin or ceftriaxone, 

than in macrophages exposed to antibiotics alone or SL1344 alone.  

 mRNA expression for TLR 3, 4, 5, and 8 was decreased in both non-antibiotic 

treated macrophages infected with SL1344 and in ciprofloxacin or ceftriaxone 

pre-treated, SL1344 infected macrophages. 

 Production of IL-1b cytokine in ciprofloxacin and ceftriaxone pre-treated 

macrophages in response to SL1344 was not consistent with mRNA 

expression, where the fold change in production of this cytokine was lower 

than the fold change in its mRNA expression.  

 Compared to non-antibiotic treated macrophages infected with SL1344, 

mRNA levels of TNFα were decreased in ciprofloxacin treated macrophages 

infected with SL1344 but, increased in ceftriaxone treated macrophages 

infected with SL1344. However, this did not correlate with protein expression 

of this cytokine in ceftriaxone treated macrophages.  
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6.7 Future work: 

 

 Based on data obtained in chapter 4 where there was increased adhesion to 

antibiotic treated macrophages, it was hypothesised that increased adhesion 

of Salmonella to macrophages in in vitro tissue culture experiments was due to 

increased expression of TLR in the macrophages. However, mRNA 

expression 2 hours after incubation with Salmonella did not correlate with this 

hypothesis. Some antibiotics such as azithromycin show time dependent 

effects on immune cells because they persist within the body for weeks. 

Circulating levels of such antibiotics can initially enhance immune functions 

immediately after administration of the drug (Culic et al., 2002), and can 

reduce inflammatory responses days after administration (Parnham et al., 

2014). Therefore, gene expression of the TLR genes at short time intervals 

e.g. at the time of Salmonella infection and every 10 minutes after for a longer 

time course (beyond 2 hours) should be determined. 

 Since IL-1β is highly expressed by antibiotic treated macrophages, activation 

of the inflammasome in response to Salmonella, in the antibiotic treated or 

untreated macrophages should be determined. 

 Using a protein transport inhibitor (e.g. Brefeldin A), investigate intracellular 

production of cytokines within macrophages in response to antibiotic pre-

treatment and SL1344 infection. 
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7 Overall discussion and conclusion 

7.1 Discussion 

The emergence of antibiotic resistance has become a serious problem as infections 

are becoming more difficult to treat, and so alternative approaches for the treatment 

of bacterial infections are being sought. There is increasing evidence to suggest that 

the immunomodulatory properties of some antibiotics are beneficial for the treatment 

of infections, and studies are beginning to examine the combined action of 

antibacterial agents and the immune response in clearing infections. As reviewed by 

Nathan et al., antibacterial therapy targeting infections at the host level must fulfil one 

of two requirements i) enhancing the host’s immunity, or ii) blocking aspects of the 

host immune system that the pathogens exploit to cause disease (Nathan, 2012).  

The aim of this study was to investigate the effect of antibiotic therapy upon the 

innate immune response to bacteria. This was achieved by exploring the effect of 

antibacterial agents on i) bacteria in the absence of immune cells, ii) neutrophil 

functions such as phagocytosis, oxidative burst and killing and iii) on the interaction 

between macrophages and Salmonella by measuring bacterial adhesion and 

invasion, and expression of genes in the TLR signalling pathway.  

I investigated the effect of antibiotics on the growth of three isogenic strains of 

Salmonella enterica serovar Typhimurium wild type SL1344 (L354), SL1344 

tolC::aph (L109) and SL1344 ∆aroA (L730). At concentrations mimicking the 

maximum human serum levels of the drug, and in the absence of immune cells, two 

antibiotics ciprofloxacin and ceftriaxone reduced the viable counts of all three strains, 

30 and 60 minutes post antibiotic exposure. The SL1344 tolC::aph and SL1344 

∆aroA stains were more susceptible to these antibiotics than wild type SL1344. Cmax 
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concentrations of azithromycin, tetracycline and streptomycin had no effect on the 

viability of bacteria. At MIC concentrations of the ceftriaxone, SL1344 tolC::aph and 

SL1344 ∆aroA, but not wild type SL1344, were susceptible to antibiotic exposure. 

Ciprofloxacin, tetracycline, azithromycin and streptomycin at MIC concentrations did 

not alter viability of any of the three strains. Next, using a neutrophil killing assay, I 

further investigated if the presence of neutrophils enhances the efficacy of bacterial 

killing by these antibiotics. Neutrophil experiments were carried out using previously 

described protocols with slight modifications (Cacchillo and Walters, 2002, Iskandar 

and Walters, 2010). The results of these experiments showed that at bacteria to 

neutrophil ratios of 100:1 (for all three strains of bacteria), pre-exposure of 

neutrophils to the Cmax concentration of ceftriaxone enhanced the killing of S. 

Typhimurium, while pre-exposure to ciprofloxacin, tetracycline, azithromycin or 

streptomycin did not alter killing of S. Typhimurium by neutrophils. It has previously 

been demonstrated that at bacteria to neutrophil ratios of 30:1, it is difficult for 

neutrophils to clear bacterial infections (Cacchillo and Walters, 2002). Hence, the 

increased efficiency of neutrophils to kill bacteria at an even higher bacteria to 

neutrophil ratio of 100:1 observed in this study is attributed to the effect of ceftriaxone 

on the neutrophil making them more efficient at killing bacteria.  

It has been speculated that the ability of some antibiotics to accumulate inside 

neutrophils supplements the capacity of the neutrophils to kill bacteria (Cacchillo and 

Walters, 2002). Although ceftriaxone accumulates poorly in neutrophils (Gemmell, 

1993), exposure to this antibiotic enhanced the ability of neutrophils to kill S. 

Typhimurium compared to neutrophils that had not been exposed to the drug. In 

contrast, my findings showed that ciprofloxacin, which efficiently accumulates within 
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neutrophils and increases their antibacterial activity (Girish et al., 2013), did not alter 

neutrophil ability to kill Salmonella. This finding is supported by previous authors who 

posit that intracellular accumulation alone does not increase an antibiotic’s propensity 

to enhance the immune response (Hand and King-Thompson, 1986, Lin and Lu, 

1997). Other beta-lactam antibiotics such as cefuroxime, penicillin and ampicillin 

have also been shown to alter the activities of immune cells such as T cells (Mor and 

Cohen, 2012). Genes involved in T helper 2 (Th2) and T regulatory (Treg) 

differentiation were down-regulated in T cells treated with cefuroxime. It was 

suggested that these immune modulatory activities of the beta-lactam antibiotic were 

due to covalent binding to cellular albumin (Mor and Cohen, 2012). This observation 

may give some insight into the ability of ceftriaxone to alter neutrophil activities as 

reported in my study, despite its inefficient accumulation within these cells. If 

ceftriaxone binds to neutrophil cellular albumin, it may be possible that when in 

contact with the neutrophils, bacteria are exposed to albumin bound drug, hence the 

increased killing found in ceftriaxone treated neutrophils. As suggested by Mor and 

Cohen (2012), binding of ceftriaxone to albumin greatly extends the half-life of this 

antibiotic and therefore compared to unbound antibiotic, it will have a longer time to 

activate neutrophils. This may in turn prolong any antibiotic induced effect such as 

increased bacterial killing by neutrophils. Albumin is a blood protein produced by the 

liver and is involved in maintaining osmotic pressure in the vascular system but also 

serves as a carrier for a variety of blood molecules and drugs (Evans, 2002). Since 

there is limited literature on albumin production by immune cells, further investigation 

to determine whether albumin is produced by neutrophils, and to investigate whether 

ceftriaxone for instance, binds to the albumin should be carried out in order to 

evaluate its implications for the modulation of neutrophil response to bacteria. It is 
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also suggested that the protein binding capacity of antibiotics increases the potential 

of such drugs to reach infected compartments, especially for infections localised in 

compartments with low immune defences such as the CSF (Van Bambeke and 

Tulkens, 2009).  

I also investigated phagocytosis and oxidative burst in antibiotic treated or untreated 

neutrophils to determine whether these processes were enhanced in the presence of 

antibiotics. My results show that neutrophil phagocytosis in response to FITC labelled 

opsonised E. coli was impaired in ciprofloxacin pre-treated neutrophils. It has been 

established that ciprofloxacin accumulates within neutrophils and other phagocytic 

cells (Rispal et al., 1996, Lemaire et al., 2011, Michot et al., 2005). However, 

following accumulation, the effect of this antibiotic on the cellular functions of these 

eukaryotic cells has not been defined. There were no observed changes in 

phagocytosis for neutrophils pre-exposed to tetracycline, streptomycin or 

azithromycin. Moreover, neutrophil superoxide production in response to the 

opsonised E. coli was significantly higher in ceftriaxone pre-treated neutrophils than 

in untreated cells. Some of the results of previous studies describing the effect of 

antibiotics on immune response to bacterial challenge are inconsistent and 

conflicting. While some studies showed that ciprofloxacin enhanced killing of S. 

aureus by pre-treated neutrophils but did not affect phagocytosis (Forsgren and 

Bellahsene, 1985), other authors showed that ciprofloxacin failed to enhance killing 

of S. epidermidis (Pascual et al., 1989). However, my data showed that phagocytosis 

and killing of Salmonella was impaired in neutrophils pre-treated with ciprofloxacin.  

Perhaps, the use of different bacterial strains, immune cells from different animals or 

mice strains, the type of antibiotics, and the technique used contributes to the 



 

200 

 

inconsistencies associated with investigating antibiotic effects on host responses to 

bacterial infection. Labro et al., (1987) further showed that the effect of ceftriaxone on 

neutrophil phagocytosis and killing varied between neutrophils in suspension and 

adherent neutrophils, with ceftriaxone decreasing bacterial phagocytosis and killing in 

adherent neutrophils but having no effect on neutrophils in suspension.  

One caveat to the experiments for exploring the killing of bacteria by antibiotic treated 

and untreated neutrophils is the maintenance of the antibiotics in the medium. Since 

these antibiotics are capable of inhibiting bacterial growth, this makes it difficult to 

distinguish between the effects of the antibiotics on the neutrophils vs. the effects on 

the bacteria (Root et al., 1981). However, the rationale behind my experimental 

design was to mimic the in vivo situation where the antibiotic is in contact with the 

immune system and bacteria are also exposed to concentrations of the drug in serum 

or in tissue. Cacchillo and Walters also explained that within in vitro experimental 

protocols antibiotics are maintained in the culture medium, as removal of the 

antibiotic promotes efflux of the agent (Cacchillo and Walters, 2002). 

Since macrophages are central to the systemic spread of Salmonella within the host, 

I also investigated the interaction between Salmonella and macrophages pre-

exposed to antibiotics. Gog et al., lists four key mechanisms that are essential for 

Salmonella to establish an infection in the host, these are: adhesion, invasion, 

survival and proliferation. This study examined two of the four mechanisms; adhesion 

and invasion (Gog et al., 2012).   

The tissue culture model of Salmonella infection was chosen because this is an 

established model that allows investigation and understanding into the molecular 

mechanisms of Salmonella infection and host responses to infection  (Hurley and 
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McCormick, 2003). This model has been previously used in the Piddock Laboratory 

where it was shown that the MOI (100:1) and the time scale relevant for the 

experiment does not cause any toxicity to the macrophage cells (Buckley et al., 2006, 

Blair et al., 2009). In order to measure the effect of antibiotics using this model, 

adherent macrophage cells (J774s, mouse bone marrow derived macrophages, 

THP-1 and human monocyte derived macrophages) were pre-exposed to Cmax 

concentrations of the various antibiotics for 2 hours prior to infection of the cells with 

Salmonella. To the best of my knowledge, there is no previous literature describing 

adhesion to, or invasion of, Salmonella to antibiotic pre-treated macrophages. 

Overall, my data showed that bacterial adhesion to antibiotic pre-treated J774 

macrophages was significantly higher than in non-treated macrophages. Comparison 

of adhesion and invasion data for non-antibiotic treated macrophages with previously 

published work by Blair et al., (2009) showed similar levels of adhesion of SL1344, 

but not invasion, with the results in this study. Adhesion of wild type SL1344 to 

macrophages pre-treated with ciprofloxacin, ceftriaxone, azithromycin and 

streptomycin was enhanced, but not when macrophages were treated with 

tetracycline. Invasion of SL1344 was only increased by tetracycline. It has previously 

been established that inactivation of tolC reduced the ability of Salmonella to adhere 

to, or invade host cells (Blair et al., 2009). The SL1344 SPI-1::aph strain was used 

because it is a less virulent and invasive strain, with an impaired SPI locus 

responsible for translocation of virulence proteins in the invasion process. Hence, 

any significant changes in the adhesion to, or invasion of, macrophages by these two 

strains can be attributed to pre-exposure of the macrophages to antibiotics. The 

SL1344 ∆aroA strain was used as a control because although it is a less virulent 

strain, it does not have any impairment in adhesion and invasion of host cells. 
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Therefore, any changes in the levels of adhesion or invasion can be attributed to 

antibiotic effect on the macrophages. Adhesion of SL1344 tolC::aph did not vary 

between antibiotic pre-treated and non-treated macrophages, but surprisingly 

invasion of antibiotic treated macrophages was generally increased. Antibiotic pre-

treatment of macrophages had varying effects on the invasion and adhesion of 

SL1344 ∆aroA and SL1344 SPI-1::aph. Generally, this showed that when 

macrophages have been pre-exposed to antibiotics, adhesion of wild type SL1344 is 

enhanced but not the other isogenic strains SL1344 tolC::aph, SL1344 ∆aroA, and 

SL1344 SPI-1::aph while invasion was enhanced for the less virulent tolC mutant 

strain. This observation poses questions; i) is increased adhesion of Salmonella to 

macrophages advantageous or detrimental to the progression of Salmonella 

infection? ii) are there mechanisms within the macrophages that are altered when 

exposed to antibiotics which makes a less virulent bacterium more able to invade or 

persist in the cell? Increase in bacterial adhesion to immune cells such macrophages 

could suggest that there will be increased phagocytic activity of the macrophages, 

and the infection cleared faster. Uncontrolled phagocytic activities on the other hand 

might elicit inflammatory responses which are detrimental to host tissues. Future 

studies investigating how bacterial adhesion to immune cells such as macrophages 

can be modulated by antibiotics should be considered.  

I hypothesised that the antibiotics, ciprofloxacin and ceftriaxone altered expression of 

TLR on macrophages, increasing binding of Salmonella to TLRs hence the increased 

adhesion of Salmonella. Therefore, to investigate the mechanism behind the 

increased adhesion of bacteria to antibiotic exposed macrophages and its 

implications for the progression of Salmonella infection, expression of genes in the 
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TLR signalling pathways of J774 macrophages in response to Salmonella was 

investigated using quantitative RT-PCR assay on mRNA from macrophages. The 

major TLR association for Salmonella is TLR5 through binding of flagellin, while 

TLR4 recognises Salmonella LPS (Arpaia et al., 2011). The gene expression data 

showed higher expression of genes encoding TLR2 in macrophages treated with 

ceftriaxone. Although further investigation is required to validate these data, they 

suggest a link between expression of TLR2 genes under ceftriaxone exposure and 

adhesion of Salmonella. This could include several TLR and potentially other pattern 

recognition receptors (Arpaia et al., 2011, O'Donnell and McSorley, 2014). The 

cytokine genes IL1β and IL6 were more highly expressed in antibiotic pre-treated 

macrophages compared to untreated macrophages following Salmonella infection. In 

contrast, TNFα gene expression was repressed in antibiotic pre-exposed 

macrophages. IL1β and IL-6 are important in bacterial infections as they activate the 

recruitment of neutrophils to sites of infection, induce the activation of endothelial 

adhesion molecules, cytokines and chemokines and stimulate T cell responses 

(Sahoo et al., 2011, Scheller et al., 2011).  Interestingly, findings of the RT-PCR 

assays showed genes encoding the expression of TLR 1-9 were less expressed after 

infection with Salmonella. This can be explained by the findings of O’Mahony et al., 

(2008) and Juarez et al., (2010) which suggested that TLRs are constitutively 

expressed; hence the gene expression profile is not altered in the presence or 

absence of antibiotics (O'Mahony et al., 2008, Juarez et al., 2010). IL-1β is important 

against bacterial infection as it is an activator of neutrophils and macrophages, 

leading to the phagocytosis of the invading pathogen and release of oxygen and 

nitrogen radicals by these cells. Further, IL-1β activates the release of pro-

inflammatory cytokines such for instance TNF and IL-6 (Netea et al., 2010). 
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An important factor in these experiment using J774 macrophages is that these are 

phagocytic cell lines. Although these macrophages were not pre-activated prior to 

Salmonella infection, the possibility that some of the bacteria may have been 

phagocytosed was not excluded. Hence, I carried out experiments where 

macrophages were pre-treated with cytochalasin D at 10 µg/ml hour to inhibit 

phagocytosis (Bosedasgupta and Pieters, 2014). The data obtained showed no 

significant difference in bacterial adhesion and invasion between the cytochalasin 

treated and untreated groups in the presence or absence of antibiotics.  

One interesting observation in the tissue culture infection assays was the variations 

between bacterial adhesion to antibiotic pre-treated murine macrophages and 

antibiotic pre-treated human macrophages (primary and cell line). Data shown in 

Chapter 4 revealed that there was increased bacterial adhesion to ciprofloxacin and 

ceftriaxone treated J774 macrophages and murine BMDMs but not in THP-1s or 

human MDMs when challenged with S. Typhimurium, which causes enteric fever in 

mice but not in humans. This observation draws attention to the need to reassess the 

use of mouse models for simulating infections and other disease conditions in 

humans. The use of mouse models of human diseases has been the object of recent 

debate. Seok et al., (2013) argue that mouse models poorly correlate with genomic 

responses in human conditions and should not be relied on for studying human 

diseases. Their findings were however refuted by Takao and Miyakawa, (2014) who 

demonstrated that gene expression patterns in mouse models showed significant 

correlations with those of human conditions, and argued that the failure to detect 

correlation resulted from inappropriately biased methodologies they used (Seok et 

al., 2013, Takao and Miyakawa, 2014). Although the mouse immune system is 
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related to the human immune system, they are not the same. For instance, in mouse 

macrophages, iNOS and NO expression is induced by TLR and IFN- signalling but 

not in human MDMs (Schneemann and Schoeden, 2007, Mestas and Hughes, 

2004). These variations could be due to genetic or environmental factors, which are 

more controlled in murine cells than in human cells. Translating findings of in vitro 

experiments into the context of an animal model and subsequently to human disease 

remains a difficult challenge for any disease process. All the gene expression 

experiments in this study were carried out using murine macrophages. In order for 

these findings to be clinically validated, it is important to consider the already existing 

differences between the murine immune system and the human immune system 

when extrapolating results from mice to humans. It is possible that other factors such 

as efficiency of expression of receptors can influence the outcome of the infection 

assay. Previous studies have indicated that efficiency of expression of receptors 

such as Fc and the efficacy of phagocytosis are a function of the macrophage cell 

cycle (Luo et al., 2006). Therefore, adhesion and invasion, as well as expression of 

TLR should be investigated at different stages of the cell cycle in the presence or 

absence of antibiotic treatment.  

Altogether, my data showed antibiotic-dependent effects upon immune cell functions 

(Table 7.1). Tetracycline had no effect on neutrophil functions and did not affect 

adhesion to, or invasion of, Salmonella SL1433 to J774 macrophages. Azithromycin 

had no effect on the neutrophil response to bacteria but increased Salmonella 

SL1344 adhesion to J774 monolayers at concentrations below the Cmax, whereas 

above the Cmax it decreased invasion. Ciprofloxacin and ceftriaxone showed the most 

consistent effects in the experiments. Although ceftriaxone had no effect on 
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neutrophil phagocytosis, there was an increased oxidative burst in neutrophils 

exposed to this drug. It is possible that this ability of ceftriaxone to enhance 

neutrophil oxidative burst explains the increased killing of Salmonella when incubated 

with ceftriaxone pre-treated neutrophils (Section 5.5). In contrast, ciprofloxacin 

reduced neutrophil ability to phagocytose bacteria, but did not affect the oxidative 

burst. This inhibition of phagocytosis could explain its lack of effect on neutrophil 

ability to kill Salmonella. Streptomycin increased adhesion of Salmonella SL1344 to 

J774 macrophages at Cmax concentration. 

My research is the first to systematically analyse the effect of commonly used 

antibiotics on the responses of neutrophils and macrophages to Salmonella 

Typhimurium infection. Whilst further studies are now warranted, data presented in 

this thesis shows that ceftriaxone had the most consistent effect on macrophage and 

neutrophil interaction with bacteria. Increased bacterial oxidative burst correlated with 

enhanced bacterial killing in ceftriaxone treated neutrophils, while enhanced 

expression of gene encoding TLR2 could be associated with increased bacterial 

adhesion to ceftriaxone treated macrophages. 

Based on the findings of this thesis, the use of ceftriaxone is recommended for 

treatment of Salmonella infections as it has shown consistent effects not only in 

reducing bacteria viability but also in enhancing neutrophil and macrophage 

response to Salmonella infection. This is also further supported by super array data 

showing increased expression of TLR 2 in ceftriaxone treated macrophages in 

response to Salmonella infection. However, resistance to ceftriaxone due to beta-

lactamases poses a challenge to ceftriaxone administration. This raises the need for 

development of new antibiotics with potent anti-beta lactamase activity.   
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7.2 Conclusion 

In conclusion, using different models, my data show that administration of antibiotics 

can modulate the immune response to bacteria, in addition to their antibacterial 

properties. Antibiotic therapy is the basis of modern day medicine (Piddock, 2012), 

and the use of antibiotics impacts on various medical procedures such as cancer 

treatment, organ transplant, knee and hip replacement surgeries. However, 

successful antibacterial therapy is threatened by resistant bacterial strains. With the 

prevalence of resistant bacteria increasing and the decline in the rate of discovery of 

new antibiotics, alternative approaches such as host directed anti-infective therapy, 

the use of antibacterial agents that exhibit synergism with the immune response or 

the use of adjuvant or combination antibiotic therapy should be exploited (Anuforom 

et al., 2014). However, one caveat to the use of antibacterial immunomodulatory 

agents is the need to discover a balance that not only generates an immune 

response sufficient to supress infection, but also capable of limiting any inflammatory 

response that can damage the host. Antibiotics that can modulate expression of TLR 

may also drive an exacerbated inflammatory response (Bode et al., 2014, O'Neill et 

al., 2009). It will be necessary for detailed mechanistic studies to be carried out to 

provide a better understanding of the dynamics of any such therapy (Hussell, 2012) .  
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Table 7.1 Summary of findings for effects of antibiotics on innate immune cells functions +/- infection by pathogenic wild type 
Salmonella SL1344 

Effect of antibiotics on; 

 Salmonella in liquid 
medium  

Salmonella 
Adhesion 

Salmonella 
Invasion 

Phagocytosis Oxidative 
burst 

Bacterial 
killing 

TLR gene 
expression 

Cytokine 
gene 
expression 

Ciprofloxacin Reduced viability of 
Salmonella at Cmax 
concentration 

Increased 
adhesion 

Decreased at 
Cmax 

Decreased No effect No effect Decreased 
expression 
of TLR 
3,4,5,8 

Increased 
expression of 
IL1b, IL6 and 
TNFα 

Ceftriaxone Inhibited growth of 
Salmonella at Cmax 
concentration 

Increased 
adhesion 

Decreased at 
MIC 

No effect Increased Concentration 
dependent 
increased 
killing 

Decreased 
expression 
of TLR 
3,4,5,8. 
Increased 
expression 
of TLR 2 

Increased 
expression of 
IL1b, IL6 and 
TNFα 

Tetracycline No effect No effect No effect at 
both 
concentrations 

No effect No effect No effect  

Azithromycin No effect Increased 
adhesion at 
Cmax, 
decreased 
adhesion at 
MIC 

Increased at 
MIC, 
decreased at 
Cmax 

No effect No effect No effect 

Streptomycin No effect Increased 
adhesion at 

No effect at 
both 

  No effect 
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Overall, my findings have shown that antibiotics are able to influence four processes during bacterial interaction with the host; 

neutrophil phagocytosis and oxidative burst, bacterial adhesion and invasion, as well as expression of genes in the TLR signalling 

pathway. The findings of my thesis illustrate that beyond their conventional use, antibiotics can alter the host’s innate immune 

responses to, and interaction with bacteria. This additional property of antibiotics can be explored and optimised for increased 

efficacy of antimicrobial therapy.   

 

 

 

 

 

 

Cmax concentrations 
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7.3 Key findings of research 

 In response to bacteria, neutrophil oxidative burst was increased when 

neutrophils were exposed to ceftriaxone, with a corresponding increase in 

bacterial killing of SL1344. This confirms previous findings by Wenisch et al., 

(1995), where they reported improved phagocytic function in neutrophils 

following ceftriaxone treatment. 

 Phagocytosis was decreased in neutrophils exposed to ciprofloxacin, although 

this had no effect on the killing of Salmonella by these cells. This is 

contradictory to a previous study that shows that ciprofloxacin did not induce 

any significant effect on neutrophil functions (Boogearts et al., 1986).  

 My data is the first study to show an increase in adhesion and invasion levels 

for Salmonella SL1344 to antibiotic treated J774 and murine bone marrow 

derived macrophages, compared to untreated macrophages. However, 

antibiotic treatment did not induce an increase in invasion of Salmonella 

SL1344 to J774 macrophages.  

 This is the first study to show dissimilarities between adhesion numbers of S. 

Typhimurium to human macrophages compared to murine macrophages. My 

findings show that while bacterial adhesion to human macrophages was not 

altered in antibiotic pre-treated or untreated macrophages, murine 

macrophages responded with increased adhesion following treatment. This is 

in line with current debate on the use of mouse models on the study of human 

disease, and the challenge in translating findings of in vitro experiments to 

animal models and to human diseases (Seok et al., 2013).  
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 My data is the first to show that expression of genes encoding TLR signalling 

and cytokine production of J774 macrophages was not altered when 

macrophages were exposed to ciprofloxacin or ceftriaxone alone. TLR gene 

expression was generally decreased or unaffected with only TLR2 expression 

showing an increase, a response that was not further affected by antibiotic 

treatment. Bode et al shown similar results with moxifloxacin down regulating 

TLR4 and TLR6, but no effect on TLR2 expression in THP-1 cells stimulated 

with LPS for 24 hours. Therefore although the methodology was significantly 

different similar results were shown.  

 The current study is one of the first to investigate antibiotic pre-treatment of 

immune cells to determine the effect of S. Typhimurium challenge. Several 

studies have reported in vivo effects of antibiotic pre-treatment, resulting in 

intestinal infection. However, this was due to changes to the gut microbiome 

and effects on immune cells were not described (Barthel et al., 2003, 

Hapfelmeier and Hardt, 2005) 

7.4 Suggested further work 

The results presented in this thesis demonstrate that antibiotics can alter the 

interactions between innate immune cells and bacteria. Further studies to investigate 

the underlying mechanisms by which antibiotics affect this interaction should be 

exploited. These include identifying the subcellular localisation and distribution of 

antibiotics in the various compartments of neutrophils and macrophages, following 

exposure to these agents and investigate how subcellular functions of immune cells 

are influenced by the presence of these antibiotics using fluorescently labelled 

antibacterial agents. As S. Typhimurium causes less severe disease in humans, 
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further work investigating adhesion and invasion of the human adapted S. Typhi to 

human immune cells should be carried out to understand whether the discrepancies 

between bacterial adhesion to THP-1 cells and monocyte derived macrophages used 

in this study are S. Typhimurium specific.  

This study investigated the effects of antibiotics on the TLR signalling pathways of 

J774 macrophages in response to S. Typhimurium infection and antibiotic treatment 

showed that some antibiotics altered expression of genes responsible for TLR 

signalling and cytokine production. To better understand whether these results are 

comparable for human infections, studies should be carried out to explore the gene 

expression profile using human adapted S. Typhi on human macrophage cells. 

Furthermore, while gene expression data in this study provides some insight into the 

effect of antibiotics on specific signalling pathway, I would like to have carried out 

metabolomic profiling of macrophages in response to Salmonella infection and 

antibacterial exposure for a holistic understanding of the complete changes in the 

physiology of immune cells.  

I showed that IL-1β mRNA expression was increased in Salmonella infected 

macrophages pre-treated with ciprofloxacin. As IL-1β is produced downstream of the 

inflammasome activation through TLR signalling in response to bacterial LPS, 

binding of TLR to TLR ligands such as LPS activates the transcription of pro-IL-1β. 

Activation of Caspase-1 cleaves pro IL-1β to mature IL-1β, which is secreted out of 

the cell. I would like to have investigated the effect of ciprofloxacin on activation of 

the inflammasome by measuring the effect of this drug on the activation of Caspase-

1. My data also showed that IL-1β protein production was not consistent with its 

mRNA expression. This may be due to reasons such as pro IL-1β not cleaved to 
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mature IL-1β or that although this cytokine may be produced, it is not secreted out of 

the cell. Hence, it would be interesting to investigate and quantify intracellular 

production of cytokines within macrophages in response to antibiotic pre-treatment 

and SL1344 infection using a protein transport inhibitor (e.g. Brefeldin A), which 

prevents proteins from being exported out of the cell. 
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Appendix 1. Conference presentations associated with this thesis 

Anuforom, O., Wallace, G.R. and Piddock, L.J.V. Antibiotics of different classes 

influence the immune response to bacteria. 24th ECCMID, Barcelona, 2014, abstract 

reference no: ECCMI-0631. 

Anuforom, O., Wallace, G.R. and Piddock, L.J.V. Antibiotics of different classes 

influence the immune response to bacteria. University of Birmingham Post Graduate 

Research Conference, June 2014. 

Anuforom, O., Wallace, G.R. and Piddock, L.J.V. Do antibiotics affect the immune 

response? Institute of Microbiology and Infection (IMI) Forum, University of 

Birmingham, September 2013 

Publications 

Anuforom, O., Wallace, G.R. and Piddock, L.J.V. 2014 The immune response and 

antibacterial therapy. Medical Microbiology and Immunology, DOI 10.1007/s00430-

014-0355-0. 

Original article in preparation 

Anuforom, O., Wallace, G.R. and Piddock, L.J.V. Effect of antibiotic exposure on the 

TLR signalling pathway of J774 macrophages in response to Salmonella 

Typhimurium infection. 

 

 

 



 

215 

 

Appendix 2. Fold change data  

Fold change in expression of genes in the TLR signalling pathway for ciprofloxacin treated and untreated macrophages 

infected with Salmonella. 

 
  

Fold Change (comparing to control group) 

Macrophage + Cip 
Macrophage + Cip 

+SL1344 Macrophage + SL1344 

Fold Change Comments Fold Change Comments Fold Change Comments 

A01 Agfg1 0.781 OKAY 0.7303 OKAY 0.8736 OKAY 

A02 Btk 0.839 OKAY 0.3264 OKAY 0.3043 A 

A03 Casp8 0.9096 OKAY 0.4611 OKAY 0.3812 OKAY 

A04 Ccl2 0.8971 OKAY 2.7897 OKAY 2.4384 OKAY 

A05 Cd14 1.1173 OKAY 1.1362 OKAY 1.0075 OKAY 

A06 Cd80 1.021 B 16.1219 OKAY 8.5199 OKAY 

A07 Cd86 1.0353 OKAY 1.5962 OKAY 1.6312 OKAY 

A08 Cebpb 0.8487 OKAY 1.5136 OKAY 1.9321 OKAY 

A09 Chuk 0.9352 OKAY 0.7617 OKAY 0.7821 OKAY 

A10 Clec4e 0.9417 OKAY 2.0965 OKAY 2.2179 OKAY 

A11 Csf2 0.727 B 4.4147 A 3.6035 B 

A12 Csf3 0.933 C 26.5795 A 47.9172 A 

B01 Cxcl10 0.6659 OKAY 6.36 OKAY 4.9049 OKAY 

B02 Eif2ak2 0.839 OKAY 0.6691 OKAY 0.4379 OKAY 

B03 Elk1 0.8198 B 0.3707 OKAY 0.3754 OKAY 

B04 Fadd 0.772 OKAY 0.241 A 0.2296 A 

B05 Fos 0.8971 OKAY 0.336 OKAY 0.4099 A 

B06 Hmgb1 0.9571 OKAY 0.4798 OKAY 0.47 OKAY 
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B07 Hras1 0.8467 OKAY 0.3494 OKAY 0.2637 OKAY 

B08 Hspa1a 0.933 C 0.7089 C 1.0678 C 

B09 Hspd1 0.7492 OKAY 0.5452 OKAY 0.5419 OKAY 

B10 Ifnb1 0.9159 B 11.3296 A 10.5055 A 

B11 Ifng 0.933 C 0.7089 C 1.0678 C 

B12 Ikbkb 0.8048 OKAY 0.4788 OKAY 0.445 OKAY 

C01 Il10 0.8746 B 3.2615 A 1.268 B 

C02 Il12a 0.933 C 0.7089 C 1.0678 C 

C03 Il1a 0.9772 B 96.6715 A 32.5392 A 

C04 Il1b 0.9659 B 118.6044 A 38.96 A 

C05 Il1r1 0.6958 B 0.5286 OKAY 0.7963 B 

C06 Il2 0.933 C 0.7142 B 1.0678 C 

C07 Il6 0.933 C 143.4968 A 43.0059 A 

C08 Il6ra 0.8123 OKAY 0.1822 A 0.1645 A 

C09 Irak1 0.8236 OKAY 0.4564 OKAY 0.4578 OKAY 

C10 Irak2 0.8685 OKAY 1.6887 OKAY 2.0759 OKAY 

C11 Irf1 0.7614 OKAY 0.8778 OKAY 0.3543 OKAY 

C12 Irf3 0.9482 OKAY 0.4655 OKAY 0.4664 OKAY 

D01 Jun 0.9287 OKAY 0.5316 OKAY 0.8817 OKAY 

D02 Lta 0.933 C 1.4404 B 2.0122 B 

D03 Ly86 1.0968 OKAY 0.4849 OKAY 0.4658 OKAY 

D04 Ly96 0.8566 OKAY 0.6308 OKAY 0.6003 OKAY 

D05 Map2k3 0.8293 OKAY 0.4155 OKAY 0.3717 OKAY 

D06 Map2k4 0.8428 OKAY 0.6282 OKAY 0.6414 OKAY 

D07 Map3k1 0.8255 OKAY 0.5255 OKAY 0.717 OKAY 

D08 Map3k7 0.8085 OKAY 0.4796 OKAY 0.5698 OKAY 

D09 Mapk8 0.8104 OKAY 0.5731 OKAY 0.6739 OKAY 
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D10 Mapk8ip3 0.6926 B 0.7225 OKAY 0.6831 OKAY 

D11 Mapk9 0.8685 OKAY 0.4658 OKAY 0.4907 OKAY 

D12 Muc13 0.933 C 0.7089 C 1.0678 C 

E01 Myd88 0.683 B 0.512 B 0.4656 OKAY 

E02 Nfkb1 0.837 OKAY 1.5247 OKAY 1.7483 OKAY 

E03 Nfkb2 0.7354 B 1.3306 OKAY 1.2918 OKAY 

E04 Nfkbia 0.9885 OKAY 4.12 OKAY 4.8747 OKAY 

E05 Nfkbib 0.5932 B 1.1638 B 1.5302 B 

E06 Nfkbil1 0.722 OKAY 1.0694 OKAY 0.9446 OKAY 

E07 Nfrkb 0.8827 OKAY 0.5173 OKAY 0.5265 OKAY 

E08 Nr2c2 0.9138 OKAY 0.3724 OKAY 0.4293 OKAY 

E09 Peli1 0.8566 OKAY 2.7146 OKAY 2.7796 OKAY 

E10 Pglyrp1 0.7304 B 0.4171 OKAY 0.5016 B 

E11 Ppara 0.933 C 0.7089 C 1.0678 C 

E12 Ptgs2 0.8566 OKAY 15.1029 OKAY 23.2809 OKAY 

F01 Rel 0.8746 OKAY 2.2657 OKAY 3.231 OKAY 

F02 Rela 0.8141 OKAY 0.5105 OKAY 0.6538 OKAY 

F03 Ripk2 1.0023 OKAY 2.6774 OKAY 3.5605 OKAY 

F04 Tbk1 0.8217 OKAY 0.4387 OKAY 0.5904 OKAY 

F05 Ticam1 0.7492 B 1.0158 A 1.9092 A 

F06 Ticam2 0.9682 B 1.6423 OKAY 2.1599 OKAY 

F07 Tirap 0.816 OKAY 0.4144 A 0.3256 A 

F08 Tlr1 0.9794 A 1.4701 A 1.563 A 

F09 Tlr2 0.8409 OKAY 1.6328 OKAY 1.6411 OKAY 

F10 Tlr3 0.7631 OKAY 0.5526 OKAY 0.3643 A 

F11 Tlr4 0.8448 OKAY 0.1837 OKAY 0.2006 OKAY 

F12 Tlr5 0.9908 B 0.1009 OKAY 0.1014 OKAY 
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G01 Tlr6 0.8467 B 0.6154 OKAY 0.6297 B 

G02 Tlr7 0.9548 OKAY 0.4802 OKAY 0.5681 OKAY 

G03 Tlr8 0.8706 OKAY 0.1165 A 0.0503 A 

G04 Tlr9 0.8746 OKAY 0.6114 OKAY 0.685 OKAY 

G05 Tnfα 0.9013 OKAY 6.999 OKAY 21.5995 OKAY 

G06 Tnfaip3 0.8566 A 4.952 OKAY 6.09 OKAY 

G07 Tnfrsf1a 0.9117 OKAY 0.4242 OKAY 0.5201 OKAY 

G08 Tollip 0.839 OKAY 0.5627 OKAY 0.7504 OKAY 

G09 Tradd 1.0546 OKAY 0.5064 OKAY 0.4375 OKAY 

G10 Traf6 0.9704 OKAY 0.8382 OKAY 0.9201 OKAY 

G11 Ube2n 0.7236 OKAY 0.4915 OKAY 0.4115 OKAY 

G12 Ube2v1 0.8665 B 0.4695 OKAY 0.7493 B 

H01 Actb 0.8726 OKAY 0.6401 OKAY 0.8936 OKAY 

H02 B2m 1 OKAY 1 OKAY 1 OKAY 

H03 Gapdh 0.9244 OKAY 0.8551 OKAY 1.0958 OKAY 

H04 Gusb 0.837 OKAY 0.5249 OKAY 0.5837 OKAY 

H05 Hsp90ab1 0.8274 OKAY 0.5692 OKAY 0.6793 OKAY 

H06 MGDC 0.933 C 0.7089 C 1.0678 C 

H07 RTC 1.0595 B 1.2052 B 1.6746 B 

H08 RTC 1.1975 B 1.3572 B 2.0878 B 

H09 RTC 1.0187 B 0.9211 B 1.4695 B 

H10 PPC 0.8606 OKAY 0.6391 OKAY 0.9523 OKAY 

H11 PPC 0.8992 OKAY 0.6736 OKAY 1.0297 OKAY 

H12 PPC 0.9013 OKAY 0.6931 OKAY 1.0218 OKAY 
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Fold change in expression of genes in the TLR signalling pathway for ceftriaxone treated and untreated macrophages 

infected with Salmonella. 

 
  

Fold Change (comparing to control group) 

Macrophage + Cef 
Macrophage + SL1344 + 

Cef Macrophage + SL1344 

Fold Change Comments Fold Change Comments Fold Change Comments 

A01 Agfg1 0.8397 B 0.8011 A 1.1244 A 

A02 Btk 1.1794 B 0.7002 OKAY 0.6996 OKAY 

A03 Casp8 0.9535 A 0.581 OKAY 0.6088 A 

A04 Ccl2 1.0291 OKAY 3.7472 OKAY 1.7275 OKAY 

A05 Cd14 0.7045 OKAY 1.7738 OKAY 1.4294 OKAY 

A06 Cd80 1.041 C 3.017 OKAY 2.3023 OKAY 

A07 Cd86 1.1551 OKAY 1.9834 OKAY 1.4755 OKAY 

A08 Cebpb 1.2553 OKAY 3.3291 OKAY 3.6045 OKAY 

A09 Chuk 0.9557 OKAY 0.9549 OKAY 0.8595 OKAY 

A10 Clec4e 0.8187 B 4.511 A 4.9695 A 

A11 Csf2 0.9624 B 2.6877 OKAY 1.1266 B 

A12 Csf3 1.041 C 0.5278 B 0.6672 C 

B01 Cxcl10 1.549 B 44.4955 A 25.2362 A 

B02 Eif2ak2 0.9317 B 0.475 OKAY 0.4864 OKAY 

B03 Elk1 1.0802 B 0.7774 B 0.6503 B 

B04 Fadd 1.3177 B 0.6605 OKAY 0.6085 OKAY 

B05 Fos 1.2495 B 0.5513 B 0.7272 B 

B06 Hmgb1 1.0172 OKAY 0.7946 OKAY 0.7565 OKAY 

B07 Hras1 1.1183 OKAY 0.6864 OKAY 0.6326 OKAY 
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B08 Hspa1a 1.041 C 0.4293 C 0.6672 C 

B09 Hspd1 0.9803 OKAY 0.8375 OKAY 1.0834 OKAY 

B10 Ifnb1 0.9513 B 1.2016 B 0.6789 B 

B11 Ifng 1.041 C 0.4293 C 0.6672 C 

B12 Ikbkb 1.4722 B 1.2602 OKAY 1.277 B 

C01 Il10 1.041 C 0.4293 C 0.6672 C 

C02 Il12a 1.041 C 0.4293 C 0.6672 C 

C03 Il1a 1.041 C 21.051 A 2.2159 B 

C04 Il1b 1.041 C 127.1405 A 15.505 OKAY 

C05 Il1r1 1.041 C 0.4293 C 0.6672 C 

C06 Il2 1.041 C 0.4293 C 0.6672 C 

C07 Il6 1.041 C 3.6846 OKAY 0.8461 B 

C08 Il6ra 1.1794 B 0.4499 OKAY 0.546 B 

C09 Irak1 1.4621 OKAY 0.99 B 1.0856 B 

C10 Irak2 0.7481 B 4.321 A 4.4982 A 

C11 Irf1 1.3864 B 1.5508 OKAY 1.3515 B 

C12 Irf3 1.1524 OKAY 0.7335 OKAY 0.6913 OKAY 

D01 Jun 0.7516 OKAY 0.8305 OKAY 1.2813 OKAY 

D02 Lta 1.041 C 0.4293 C 0.6672 C 

D03 Ly86 0.9736 OKAY 0.6894 OKAY 0.5278 OKAY 

D04 Ly96 1.1631 B 0.7827 A 0.7809 B 

D05 Map2k3 1.0777 B 0.9611 A 0.8001 B 

D06 Map2k4 1.0338 B 0.9909 B 0.9566 B 

D07 Map3k1 1.2437 B 0.8655 B 1.339 OKAY 

D08 Map3k7 1.2238 B 0.9582 A 0.9767 B 

D09 Mapk8 0.7908 OKAY 0.8413 OKAY 0.8793 OKAY 

D10 Mapk8ip3 1.1209 B 0.7764 B 0.8924 B 
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D11 Mapk9 0.7889 B 0.6817 A 0.6826 OKAY 

D12 Muc13 1.041 C 0.4293 C 0.6672 C 

E01 Myd88 1.611 B 1.4829 B 1.3497 B 

E02 Nfkb1 1.0629 OKAY 2.5791 OKAY 2.2653 OKAY 

E03 Nfkb2 1.041 B 1.4823 B 1.4184 B 

E04 Nfkbia 0.5401 A 7.1466 OKAY 6.0066 OKAY 

E05 Nfkbib 0.8339 B 0.5951 B 0.7158 B 

E06 Nfkbil1 0.9826 B 1.9298 OKAY 1.2753 B 

E07 Nfrkb 1.0978 B 0.834 B 1.0407 B 

E08 Nr2c2 1.0928 B 0.7869 B 0.8555 B 

E09 Peli1 0.9382 B 3.3431 A 2.4109 A 

E10 Pglyrp1 0.813 B 0.3644 OKAY 0.521 B 

E11 Ppara 1.041 C 0.4293 C 0.6672 C 

E12 Ptgs2 1.2437 B 32.5202 A 30.0742 A 

F01 Rel 1.1313 B 7.4563 A 7.7482 A 

F02 Rela 1.0953 B 1.9331 OKAY 1.7899 OKAY 

F03 Ripk2 0.5592 OKAY 2.8201 A 3.028 A 

F04 Tbk1 0.9469 B 1.116 B 1.0627 B 

F05 Ticam1 1.5743 B 2.8455 OKAY 1.9318 OKAY 

F06 Ticam2 0.9513 B 1.4097 B 1.4287 B 

F07 Tirap 1.4453 OKAY 0.9835 B 0.9379 B 

F08 Tlr1 0.6204 B 1.2705 B 1.311 B 

F09 Tlr2 0.9126 B 5.5229 A 6.5604 A 

F10 Tlr3 0.9 B 0.4138 OKAY 0.44 OKAY 

F11 Tlr4 1.0032 B 0.4894 OKAY 0.4271 OKAY 

F12 Tlr5 1.432 OKAY 0.1835 OKAY 0.2359 OKAY 

G01 Tlr6 2.1307 OKAY 1.7905 B 1.7881 B 
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G02 Tlr7 0.7061 A 0.679 OKAY 0.8317 OKAY 

G03 Tlr8 0.8693 A 0.2072 A 0.2061 A 

G04 Tlr9 0.7293 B 1.4636 A 1.5225 B 

G05 Tnfα 0.8534 B 32.7072 A 27.4123 A 

G06 Tnfaip3 1.0728 B 15.7419 A 15.7667 OKAY 

G07 Tnfrsf1a 0.9 B 0.7325 B 0.6086 B 

G08 Tollip 1.1524 A 1.0114 A 0.9919 A 

G09 Tradd 1.1157 OKAY 0.6445 OKAY 0.6533 OKAY 

G10 Traf6 0.8436 B 1.1097 B 1.1143 B 

G11 Ube2n 1.0777 B 0.6246 B 0.6713 B 

G12 Ube2v1 1.041 C 0.5237 B 0.7469 B 

H01 Actb 0.9361 OKAY 1.0365 OKAY 0.9715 OKAY 

H02 B2m 0.8187 OKAY 1.0236 OKAY 0.9793 OKAY 

H03 Gapdh 1.0196 OKAY 1.0858 OKAY 1.0459 OKAY 

H04 Gusb 1.2153 OKAY 0.89 OKAY 0.9022 OKAY 

H05 Hsp90ab1 1.0531 OKAY 0.9753 OKAY 1.1139 OKAY 

H06 MGDC 1.041 C 0.4293 C 0.6672 C 

H07 RTC 0.4913 B 0.1356 B 0.8669 B 

H08 RTC 0.5039 B 0.2327 B 0.912 B 

H09 RTC 0.5489 OKAY 0.2805 OKAY 1.4991 B 

H10 PPC 1.1578 OKAY 0.453 OKAY 0.634 OKAY 

H11 PPC 1.0243 OKAY 0.0046 OKAY 0.6052 OKAY 

H12 PPC 0.9339 OKAY 0.3985 OKAY 0.5325 OKAY 
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