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Abstract 

Infrastructure monitoring, and specifically pipeline monitoring (e.g. water supply 

systems), is becoming crucial in order to achieve improved asset management and a 

more sustainable future. A vast amount of research has been carried out in the field of 

pipeline monitoring and various pipeline monitoring/assessment techniques have been 

developed. However, different drawbacks in each of these methods have prevented 

them from being widely used on water distribution systems. In this research a 

comprehensive review of the current state-of-the-art in pipeline monitoring is 

presented and the advantages and disadvantages of each of these methods are 

discussed in detail. The main disadvantages of current pipeline monitoring systems 

are their invasive nature (access to the inside of the pipe), their unsuitability for 

continuous, long-term monitoring and the lack of redundancy. Thus, an ultra-low 

power Wireless Underground Sensor Network (WUSN) has been carefully 

researched, designed, developed and presented as part of this project. The sensor 

system consists of discrete nodes with associated sensors communicating with each 

other and to more sparsely placed mother nodes. The power consumption of the nodes 

was minimised through multiple iterations of software and hardware design in order 

to achieve a long operational lifetime. A data management system was designed and 

developed in order to sort the data coming from the nodes and upload them to an 

internet server, which enables the data to be readily accessible from any internet 

connected device.  

In addition, a novel non-invasive (to the pipe) relative pressure sensor assembly has 

been designed, modelled and developed based on Force Sensitive Resistors (FSR). 

The performance of this sensor is validated by comparison with commercial pressure 

sensors, and both laboratory and field trials. In these field trials the FSR-based 
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pressure sensor assemblies were used in conjunction with the developed sensor node 

to measure daily pressure variations and induced leaks. RF transmission through the 

soil is one of the main challenges in the field of WUSNs, particularly for buried 

pipelines, where data needs to be transmitted through the soil between nodes and to 

the ground surface. Various parameters affect RF signal attenuation in soil (i.e. 

transmission frequency, burial depth, soil dielectric properties, etc.). In this research 

existing models for RF transmission are reviewed and compared with measurements 

from field trials. In addition a modification to an existing method of extracting real 

and imaginary parts of permittivity is proposed in order to improve the accuracy of 

the existing RF propagation models.  

The key achievements of the research therefore are: 

• An ultra-low power sensor node developed specifically for buried pipeline 

monitoring. 

• A novel non-invasive relative pressure sensor assembly based on Force 

Sensitive Resistors (FSR), validated by both laboratory and field trials. 

• Successful burst detection based on non-absolute (relative) pressure 

measurements in laboratory tests and field trials. 

• Improved model for approximation of RF signal attenuation in soil. 
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Chapter overview 

This chapter provides a brief introduction to the background of smart wireless sensor 

networks for pipeline monitoring. In addition the motivation for the work is described and the 

aim and objectives of the research are identified. This is followed by a description of the 

layout of this thesis. 
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1.1 Background and motivation  

Ageing infrastructures and a greater move towards sustainability have created new challenges 

for asset owners and operators. This has made the monitoring of critical structures such as 

water distribution networks crucial for the asset owners. 

Transportation of vital commodities such as water, oil and gas is commonly done by means of 

pipeline networks. Faults in these pipes can create major financial implications and possible 

environmental catastrophes. During the period of 2009-2010 in England and Wales, more 

than 3 Giga litres of water were lost every day1 due to faults in water pipelines (Department 

for Environment Food and Rural Affairs, 2011). Although the economic value of water is 

significantly lower than oil or gas in the UK and it is not usually harmful for the environment, 

the financial implications of these losses are not only limited to the value of the water that is 

lost but also include damage to other assets/properties and large repair costs. Additionally, in 

some cases pipeline failure could cause disruption to the service; which will negatively 

impact on the water suppliers’ public image. 

Technological advances and reductions in the cost of electrical components have made the 

monitoring of large infrastructures more feasible. Moreover, the proliferation of the Internet 

has opened up new applications for the “Internet of Things”; and for the Internet to serve as a 

backbone for infrastructure monitoring. 

Currently, buried pipelines are either only monitored at key points, which can be spaced 

several kilometres apart, or are inspected in sections with survey based (non-permanent) 

techniques (i.e. ground penetrating radar). A continuous monitoring system with a higher 

                                                
1 Combined loss of distribution and supply networks. 
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spatial resolution would not only provide operators with a better understanding of 

their network, but also will have a higher reliability and a faster response to faults. 

Various methods are used in order to detect and locate leaks in pipes (Liu and Kleiner, 2013; 

Al-Barqawi and Zayed, 2006; Misiunas, 2005). The main methods for pipe monitoring are 

acoustic measurements; pressure measurements; vision-based systems; Ground Penetrating 

Radar (GPR) based systems; fibre optic monitoring and multimodal systems. 

One of the main issues in continuous infrastructure monitoring is power consumption and 

power availability. Most monitoring systems with an exception of passive systems (i.e. fibre 

optics and Radio-Frequency Identification, RFID tags) require a power supply in order to 

operate. The large scale of pipeline networks, their long operational life and lack of a long-

term, easily accessible power source below ground, make the power supply and power 

consumption of continuous pipeline monitoring systems a crucial factor towards their 

successful implementation. 

Another main challenge for pipeline monitoring is their sensing technology. The performance 

of the sensing technology used in a monitoring system directly affects its overall performance 

characteristics; such as power consumption, ease of installation, cost and reliability.  

Wireless Sensor Networks (WSN) are a group of individual nodes that are capable of sensing 

their environment via application specific sensors, process the recorded data locally and 

transfer the packaged data to a central server (Akyildiz and Vuran, 2010). WSNs can be 

generally divided into single–hop and multi-hop networks. In the single-hop networks each 

node directly communicate with a designated master node (server) while in the multi-hop 

networks data can be relayed by other nodes multiple times before it reaches the master node 
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(server). The focus of this research was on the single-hop (star network) WSN for pipeline 

monitoring.   

Any monitoring system, which is used for pipeline monitoring, is part of a larger system of 

pipeline networks, which contain many other sub-systems (for example logging, maintenance 

and operational control systems). In order for the pipeline monitoring system to be successful 

it needs to be designed with a holistic approach considering requirements and limitations of 

the overall system and other sub-systems.   

The “SmartPipes” research project was jointly funded initially by UK Water Industry 

Research (UKWIR), Water Research Foundation (WRF, USA) and the University of 

Birmingham in 2006, in order to study the feasibility of a continuous smart pipeline 

monitoring system and its associated challenges. The second phase of this research project 

was also jointly funded by UKWIR and the University of Birmingham in 2010, following the 

success of the initial phase (Metje et al., 2011). 

The second phase of the “SmartPipes” project was divided into two research projects. One of 

these research projects was focused on researching and developing a long-life power supply 

suitable for buried pipeline monitoring systems. The other aspect of the second phase of this 

project was focused on the research, design and development of ultra low-power wireless 

(long operational life) monitoring systems for pipeline monitoring and their associated 

sensors. This thesis presents the latter aspect of the project. 

1.2 Aim and objectives 

The principal aim of this research is to design and manufacture a long-term, ultra low power, 

continuous condition assessment monitoring system for buried water pipelines. Due to the 

multidisciplinary nature of the project a holistic (systems engineering) approach was chosen 
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in order to tackle the challenges in this research.  The following objectives were identified in 

order to achieve this aim: 

• To conduct a critical review of the literature related to current infrastructure 

monitoring systems, specifically underground monitoring technologies for pipeline 

monitoring. 

• To investigate the main requirements of a long-term continuous pipeline monitoring 

system and to identify the limitations imposed by the environment on wireless 

monitoring systems for underground pipeline monitoring. 

• To identify the parameters affecting the power consumption of underground wireless 

sensor nodes.  

• To design and manufacture an ultra-low power wireless sensor node for pipeline 

monitoring based on commercially available components. 

• To minimise the power consumption of the node through hardware and software 

optimisation. 

• To design and develop non-invasive sensors for pipeline monitoring systems and 

assess their performance via laboratory tests and analytical and numerical models 

(finite element analysis). 

• To assess the performance of the node and sensors through laboratory tests and long-

term field experiments and to assess leak detection capabilities of the system in 

laboratory and field trials. 

• To investigate the effect of soil on Radio Frequency (RF) signal propagation and 

comparison of existing models with results from field trials. 

Therefore, the research hypothesis is that Wireless Sensor Networks (WSN) can be adapted 

with a holistic approach (using commercially available components) for the long-term 
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monitoring of buried pipelines despite the challenging conditions. In addition, it is 

hypothesised that RF communication through soil based on commercially available and 

permitted frequency bands is limited by the range of reliable communication. 

1.3 Thesis layout 

This thesis is composed of seven chapters, detailing the research, design and development of 

smart wireless sensor networks for pipeline monitoring.  

A detailed and critical review of the current state of the art in pipeline monitoring is presented 

in Chapter 2. This chapter also includes a critical review of the current research in 

underground wireless sensor networks and the challenges associated with them. It concludes 

by highlighting the main gaps in the literature. 

Chapter 3 describes the design and development of smart wireless sensor networks for 

pipeline monitoring. The hardware and software design iterations of the node and the efforts 

expended in minimising their power consumption are described in detail in this chapter. 

Chapter 4 of this thesis reports on the design, theory of operation and development of a novel 

non-invasive relative pressure sensor. The behaviour of these sensors is described using 

analytical and numerical models. Additionally, the laboratory tests used for the validation and 

comparison of the proposed sensor with a commercial pressure sensor are presented and the 

results from these tests are illustrated and discussed in this chapter.  

Leak detection and the localisation capabilities of the Force Sensitive Resistor (FSR) based 

relative pressure sensor were studied via laboratory tests and extended field trials and are 

described in detail in Chapter 5. This chapter also describes the methodology used in both the 
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field and laboratory tests. Additionally, the performance of the nodes tested during the field 

trials is analysed in this chapter.  

Chapter 6 reports on the effect of soil on the RF transmission through soil. The methodology 

used for the RF attenuation field trials is described and results from these trials are presented 

and discussed in this chapter. A modification to method of extraction of real and imaginary 

parts of permittivity from TDR waveform for use in prediction of RF attenuation in soil is 

proposed. Results of the proposed method are compared with the existing methods and the 

measurement from the field trials. 

Finally, the thesis is concluded in Chapter 7. This includes recommendations for future work. 
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2 LITERATURE REVIEW 
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Overview of the chapter 

In this chapter a brief introduction to the structure of water pipelines is given initially and 

common processes of deterioration and failure are discussed. This is followed by a critical 

review of current pipeline condition assessment and failure detection and monitoring 

techniques.  Wireless sensor networks and their application in infrastructure monitoring are 

discussed and challenges in underground wireless sensor networks are identified. Finally this 

chapter is concluded by identifying gaps in the knowledge in the field of wireless sensor 

networks for pipeline monitoring. 
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2.1 Pipeline systems 

Water, sewerage, oil and gas are all vital parts of our every day life.  Delivery and disposal of 

these mediums are mainly done by the means of pipeline networks. This makes pipelines one 

of the most important urban infrastructures. Pipeline networks are commonly large and 

complicated systems, which have evolved through decades. As the pipeline networks 

gradually develop, pipes used in these networks age. This ageing results in pipeline 

deterioration and eventually pipes failure. The introduction of new pipe materials tries to 

minimise this issue, however often more complex coupling is required for these pipes which 

can result in early life failures due to human errors during installation. As was mentioned in 

Chapter 1, pipe failures can potentially have catastrophic financial and environmental effects.  

2.1.1 Water supply network structure 

The main objective of any water distribution pipeline network regardless of its location or 

layout is to transport untreated water from its source (for example reservoirs, lakes, wells and 

rivers) to the treatment facility and to transport the treated water to the customers (domestic, 

commercial and industrial). One of the other purposes of water pipeline networks is to 

provide supply for fire fighting services via fire hydrants. Water pipeline networks can be 

divided into two main sections of transmission and distribution networks (Misiunas, 2008; Al-

Barqawi and Zayed, 2006). Transmission networks are the part of the water pipeline systems 

that is responsible for transportation of large quantities of water between major processing or 

storage facilities. This part of the network usually consists of large diameter pipes (>300mm) 

that can stretch several kilometres (Misiunas, 2005). Distribution networks, as the name 

implies, are responsible for the distribution of the water to the consumers. These pipes are 

usually of a smaller diameter compared to the transmission networks and have more complex 

networks. The topology of the distribution networks depends on the topology of the cities 
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they serve and is composed of a mixture of branch and loop configurations. The office of 

Water Services (OFWAT) divides UK leakage statistics for water supply systems into 

distribution losses and supply losses, where distribution losses are loss of drinkable water 

between the treatment facility and the highway boundary and supply losses are classified as 

loss of water from the customers’ pipe from the highway boundary to the stop tap.  

2.1.2 Pipe materials and age 

A variety of pipe materials have been used over time in the gradual development of pipeline 

networks. The material of a specific water pipe usually depends on when it was installed 

(Misiunas, 2005). The distribution of pipe materials used in a water network largely depends 

on the country and overall age of the network. Regulations and health and safety concerns 

also play a major role in the distribution of the pipe materials in different countries. In the UK 

firmer regulation on the amount of lead in pipe (Drinking Water Inspectorate, 2013) has 

pushed water suppliers to rehabilitate their networks in order to meet the standards.  These 

have led to replacement or relining of some of the existing pipe materials such as lead pipes 

and asbestos cement pipes. Pipe material distribution data for different countries already exist 

in the literature (Weimer, 2001; Pelletier et al., 2003). Pipe material distribution for UK water 

pipelines is published by Saul et al., (2003).  Overall summary of pipe material distribution in 

13 different European countries is published by Rajani and Kleiner, (2004). These data are 

shown in Figure 2.1. 
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Figure 2.1 Pipe material distribution in 13 European countries (Rajani and Kleiner, 2004) 

As can be seen in Figure 2.1, cast iron is the main pipe material used in water pipeline 

systems. However this can vary based on the age of the network and environmental factors in 

different countries as in Finland over 70% of water network pipes are plastic (due to the 

colder environment and younger network), while in the UK over 80% of pipes are metallic. 

The distribution presented in Figure 2.1 is changing towards a more plastic based network as 

currently plastic pipes are being nearly exclusively used for replacing and expanding existing 

water networks.   

Pipeline systems like other infrastructures are subject to ageing (Rogers and Grigg, 2009). 

History of the first urban water networks goes back to more than five hundred years (1500) 

(Misiunas, 2005). As was mentioned earlier different pipe materials were introduced into 

pipeline networks during the last century. The average age of water pipeline networks is 

estimated to be approximately 50 years (Misiunas, 2005).  
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2.2 Pipeline deterioration process and failure  

During their lifetime water pipes are exposed to harsh environmental and operational 

conditions. This exposure results in water pipes gradually deteriorating and eventually failing. 

Moreover, the ageing of the pipes negatively affects their structural condition and decreases 

their hydraulic capacity and performance; for example internal tuberculation in cast iron pipes 

can highly affect the internal diameter of the pipes and therefore affect their hydraulic 

capacity, while structural degradations of asbestos cement pipes can lead to reduction of their 

pressure rating and therefore limit their maximum operating pressure (Al-Barqawi and Zayed, 

2006; Rajani and Kleiner, 2004).  

Rajani and Kleiner (2004) divided the deterioration of pipes into two main categories: 

structural and internal deterioration. Structural deteriorations negatively affect the structural 

integrity of the pipe to withstand operational and environmental loads, while internal 

deteriorations affect the hydraulic performance and water quality (Al-Barqawi and Zayed, 

2006).  

The life cycle of the pipe can be divided into three main phases of “Burn in”, “In usage” and 

“Wear out” (Rajani and Kleiner, 2004; Rogers and Grigg, 2009; Berardi et al., 2008). Figure 

2.2 illustrates the bath tub life cycle of a pipe. 
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Figure 2.2 Bathtub lifecycle of a pipeline. (Adapted from Rajani and Kleiner, 2004) 

The “Burn in” phase is the initial phase after installation of the pipe. In this phase failures are 

mainly caused by human error and other installation issues or manufacturing defects. With 

increase in complexity of the installation of the pipes due to new pipe materials this phase is 

becoming more important in the life cycle of pipes. After issues in the “Burn in” phase are 

resolved and the condition of the pipes are stabilised pipes enter the second phase of their life 

cycle which is the “In-usage” phase. Pipes enjoy a low rate of failure during this phase of 

their life. Failures during this phase are usually due to extreme operational/environmental 

conditions or external interferences.  This phase is usually the longest phase of the pipes’ life 

cycle. The length of this phase is highly dependent on the pipe material and its 

operational/environmental conditions. After this phase pipes enter the “Wear out” phase in 

which they exhibit higher failure rate due to corrosion and degradation leading to total failure 

of the pipe. 

Pipe deterioration leading to pipe failure is usually a very gradual process. This process is 

divided by Rajani and Kleiner (2004) into four stages of (1)“Initiation of corrosion” (2)“crack 
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or hole before leak” (3)“Leak and scour begin” and (4) “Break  or failure”. Figure 2.3 

illustrates the stages of development of pipe failure. 

 

Figure 2.3 Stages of deterioration of the pipe (Rajani and Kleiner, 2004) 

This classification of the deterioration is widely used in the literature (Rizzo, 2010; Misiunas, 

2008). However, not all pipes follow the deterioration pattern described in Figure 2.3 and the 

development of the failure and the sequence in which the deterioration stages happen highly 

depends on the pipe material. Some pipes leak before they fail (for example ductile iron and 

steel pipes) while others break before they leak (more brittle material for example concrete 

pipes) (Sñgrov et al., 1999). Makar (2000) also shows that in grey cast iron pipes the final 

cracking of the pipes leading to its failure can happen in a multi-stage process with significant 

time between the stages. Factors affecting the deterioration process of water pipelines are 

divided by Kleiner and Rajani (2002) into three main categories of static, dynamic and 

operational factors. Static factors do not change (or can be assumed to not change) over the 

lifetime of the pipe (for example pipe material, geometry, and joining method).  

Environmental factors affecting the deterioration of the pipes are classified as dynamic 

factors. These factors change over the lifetime of the pipe (for example pipe age, soil 

moisture, soil and water temperature).  Finally, operational factors are those depending on the 
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maintenance and operation parameters of the pipeline networks (for example use of cathodic 

protection, network pressure and transients). A more detailed classification and example of 

factors affecting the deterioration of the pipes is published in Al-Barqawi and Zayed (2006). 

As was shown in Figure 2.3 the end result of the deterioration process is pipe failure. 

However, pipe failure is not only caused by deterioration. Causes of failure of pipes can be 

divided into four main categories of corrosion, excessive forces, manufacturing faults and 

human error (Misiunas, 2005). 

In the literature corrosion is identified as the main reason for metallic pipes failure (Al-

Barqawi and Zayed, 2006; Makar and Kleiner, 2000). The corrosion process of metallic pipes 

is highly affected by the specific material properties (corrosion resistance) of the pipe and the 

environment in which a pipe is laid.  Aggressive soil around a pipe can significantly speed up 

the process of corrosion and shorten the lifetime of pipes. Other pipe materials such as cement 

based pipes and concrete pipes also deteriorate due to destructive chemical processes between 

the pipe and the surrounding soil. This is particularly dangerous in AC (asbestos cement) 

pipes as the weakened pipes can potentially release harmful particles into the drinking water 

(Al-Barqawi and Zayed, 2006). Plastic pipes are more resilient to the process of corrosion, 

however they can still be negatively affected by organic chemicals such as solvent and 

gasoline (e.g. PVC pipes) (Al-Barqawi and Zayed, 2006). Plastic pipes are relatively new 

therefore there is not enough research regarding degradation mechanisms which can affect 

them (Frank et al., 2009). Existing lifetime estimations for plastic pipes (i.e. PE pipes) are 

commonly based on extrapolation of empirical models developed from shorter duration of 

tests (Hoàng and Lowe, 2008).  
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Another important reason for failure of pipes is the exertion of excessive forces on them. This 

excessive force can be applied to the pipe via various mechanisms, for example, traffic, 

surrounding soil movements, third party interferences, and large temperature variations.  

Forces exerted on the pipes based on temperature variations are highly dependent on the pipe 

materials due to difference in their thermal expansion coefficients. In addition freezing 

conditions can exert an indirect force on the pipes via expansion of freezing water in the 

surrounding soil (BenSaleh et al., 2013). 

Similar to any other product, pipes also suffer from flaws in production. Porosity, inclusions, 

micro cracks and variations in thickness are some of the manufacturing faults, which can lead 

to pipe failure (Misiunas, 2005). More rigorous quality control and inspection of the pipes 

before installation can reduce this type of pipe failure.  

Human errors can affect pipelines at various stages of their life (Hurst et al., 1991). Human 

errors causing pipe failures can be divided into three stages of design, installation and 

operational errors. Errors in the design stage of the networks (incorrect rating and extreme 

hydraulic loadings) can significantly reduce the lifetime of the pipes.  The installation phase 

of pipelines is affected by human errors considerably more than any other stage of pipeline 

life. Damage to the pipe during transportation, poor joining of pipes, and damage to the 

external coating of the pipes are examples of some of the common problems that can affect 

the pipes during the installation phase. For example this is especially important as plastic 

pipes usually require more complex joining methods such as electrofusion joining techniques. 

These techniques require a skilled operator and the joining surfaces of the plastic pipes to be 

free from inclusion during the joining process, which can lead to poor joining and increase of 

failure if not available (Bowman, 1997; Stokes, 1989). 
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After installation of the pipes operational human errors such as incorrect valve operations 

causing large pressure transients (water hammer effect) can shorten the life of the pipe or 

force already deteriorated pipes to fail (Schmitt et al., 2006).  Moreover, the large negative 

pressure peaks created during these transients create a potential portal for entry of 

contaminants into the distribution pipes via weak fittings or joints which can pose a potential 

health risk for the consumers (LeChevallier et al., 2003).  

Pipe failures are categorised into burst and leaks. It is very hard to identify a clear boundary 

between bursts and leaks and which factors can be used to categorise a failure into one of 

these two categories (Misiunas, 2005). Most commonly an arbitrary flow rate can be used to 

distinguish bursts from leaks, however this method is extremely subjective and depends on 

other factors such as overall hydraulic capacity of the pipe. Based on the International Water 

Association (IWA) guidelines (Lambert and Hirner, 2002) losses in water distribution systems 

are divided into three categories of background losses, reported bursts and unreported bursts. 

The flow rate of losses in the networks can significantly vary from a dripping tap (10 l/h) to 

large water main bursts (10,000 l/h) (Lambert, 1994). An arbitrary threshold of 0.129 l/s (500 

l/h) is suggested by Lambert (1994) to distinguish between leaks and bursts. Due to the 

vagueness mentioned in distinguishing leaks from bursts, in this thesis losses which are 

caused by a sudden failure of pipe are classified as bursts, while existing losses and losses 

which grow and develop over time are classified as leaks. This method of classification is 

independent from the flow rate of the failure or size of the pipes and therefore can be applied 

more easily to the whole pipeline network. 

2.2.1 Costs of failure and failure management 

Failures in a pipe cause loss of the medium being transported by the pipe. This imposes a 

direct cost to the asset owner based on the value of that medium. However, the cost caused by 
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pipe failure is not only limited to the losses associated with the value of the medium the real 

cost of pipe failure is composed of various indirect and direct costs associated with the failure. 

Makar and Kleiner (2000) and Rajani and Kleiner (2004) divided the losses associated with a 

pipe failure in a water pipeline into three main categories of direct, indirect and social costs. 

Figure 2.4 illustrates these three categories and their subcategories. 

 

Figure 2.4 Categories of water pipe failure cost to asset owners 

While it is possible to quantify direct costs in monetary terms it is more difficult to estimate 

indirect and social costs (Rajani and Kleiner, 2004). Although total costs of a failure depend 

on its severity they also increase with time (before it is fixed) (Misiunas, 2005). Figure 2.5 

illustrates the increase in total pipe failure costs with time.  
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Figure 2.5 Growth of total failure costs with time (Misiunas, 2005) 

As shown in Figure 2.5 repair costs will not necessarily increase with time after the failure, 

however other costs such as those associated with loss of water, damage to other 

infrastructure and liabilities increase rapidly with time. The rate of growth of these costs is 

determined by the severity of the failure and sensitivity of the environment and other assets 

close to the pipe. It can also be shown from Figure 2.5 that damage to other assets and 

properties would be the main component of the total cost of failure if the failure is not 

detected at its early stages.  

Various techniques can be used to detect leaks or asses the condition of pipes. The total cost 

of failure management for water pipeline networks depends on the cost of the method used for 

condition assessment and leak detection. This can vary largely from inexpensive methods 

such as visual inspection by asset owner staff to expensive techniques such as fibre optic 

monitoring and other high-tech techniques. The cost of the failure detection system generally 

depends on the stage at which it can detect the failure (earlier stage detection methods are 

commonly more complex and therefore more expensive) (Misiunas, 2008).  Figure 2.6 

illustrates the total cost of leak management (leak detection costs and failure costs) for 

transmission and distribution pipelines as a function of time. 
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Figure 2.6 Total cost of failure management for (a) distribution and (b) transmission water 
pipeline as a function of time (Misiunas, 2008). 

As can be illustrated by Figure 2.6 the cost of failure in transmission pipelines increases more 

rapidly compared to distribution pipelines due to  the larger loss of water and potentially 

greater indirect costs. Therefore it is more economical to use more expensive leak detection 

and condition assessment techniques for transmission lines in order to detect failures before 

they reach the total failure stage, whereas in distribution pipelines these systems might not be 

economically justified due to the lower cost of failure. In these pipelines usually a reactive 

leak detection approach based on water on the surface or loss of pressure is used by asset 

owners.  Other industries in which the medium transported by the pipe has a higher value or is 

hazardous (i.e. oil and gas pipelines) take a very different approach to failure monitoring. In 

these pipelines total failure could potentially have extremely high indirect and direct costs 

therefore it is more economical to detect failures at their early stages despite the higher 

inspection costs. Various pipeline condition assessment and monitoring techniques aim to 

provide cost effective solutions for detection of pipeline failures and deterioration in the water 

pipelines. The next section of this chapter reviews the existing techniques for pipeline 

condition assessment and failure monitoring in the water pipelines. 
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2.3 Pipeline condition assessment and failure monitoring techniques 

Failure management strategies can be divided into two main categories of passive and active 

techniques. In passive techniques the failure is identified based on consumer complaints (low 

pressure and discoloured water) or reports of water on the surface, while active techniques are 

intended to detect the failure before it reaches the stage in which it can be detected by passive 

techniques (Misiunas, 2008, 2005).   

Active failure management techniques are commonly referred to as Non-Destructive Testing 

(NDT) (Al-Barqawi and Zayed, 2006; Rajani and Kleiner, 2004). NDTs are also referred to as 

Non-Destructive Inspection (NDI) methods and Non-Destructive Evaluation (NDE) methods. 

For the purpose of this thesis the term NDE is used to refer to these methods. Active 

condition assessment and failure detection techniques can be further divided into two main 

categories of direct and indirect methods (Misiunas, 2005). Methods in the first category are 

based on monitoring/assessing direct parameters related to the pipeline (i.e. pressure, 

structural integrity) while indirect methods are based on the measurement and analysis of 

indicators which are indirectly related to the condition of the pipes (i.e. soil properties, 

historical and statistical failure data).  

Passive failure detection techniques and indirect active methods are not further discussed in 

this thesis. Therefore, the focus of the following sections of this chapter is on a review of the 

state of the art active failure management techniques. 

The main purpose of NDE methods is to evaluate the deterioration stage of the pipe without 

causing damage or affecting its properties. Different NDE techniques exist with varying 

degree of complexity. Detailed reviews of NDE techniques are presented in Liu and Kleiner 

(2013); Rajani and Kleiner (2004); Sinha et al. (2003); Sinha and Knight (2004) and Sonyok 
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et al., (2008). Figure 2.7 illustrates different categories of direct NDE methods and their main 

subcategories. 

 

Figure 2.7 Non-destructive evaluation methods for water pipeline evaluation and monitoring 

(adapted from Al-Barqawi and Zayed, 2006) 

As can be seen form Figure 2.7 NDE methods can be categorised into seven main categories 

of acoustic, electromagnetic, ultra spectrum, physical, fibre optic, visual, and multi-sensor 

systems. Each of these methods has its specific advantages and disadvantages that are 

discussed in this section. Moreover specific technologies used in some of these methods make 

them only usable on a certain type of pipe. 
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2.3.1 Acoustic based methods 

Acoustic correlation is the most common technology used for failure detection and 

localisation in pipes. A large number of publications regarding the use of acoustic based 

technologies for pipeline failure detection exist in the literature (Hieu et al., 2011; Ozevin and 

Yalcinkaya, 2013; Gao et al., 2005; Khulief et al., 2012; Ahadi and Bakhtiar, 2010; 

Muggleton and Brennan, 2004; Muggleton et al., 2006). These methods are based on the 

detection of the acoustic emissions caused by a leak in the pipe. The frequency and magnitude 

of these signals depend on pipe pressure, leak diameter and type of fluid inside the pipe (Hieu 

et al., 2011). These signals are detected by hydrophones or accelerometers placed at fixed 

location along the pipe (Gao et al., 2005). The location of the leak can then be calculated by 

cross-correlation methods applied on the signals measured by sensors at different locations. 

This is based on the principle that travel time of the waves to each sensor would be different 

based on the distance of the sensor from the leak. Leak detection performance of acoustic 

systems is also affected by the type and sensitivity of the sensor (accelerometer/hydrophone) 

used for detection of acoustic signals. Sensors with higher sensitivity and lower noise floor 

will be able to detect weaker acoustic signals from smaller leaks (Gao et al., 2005). Although 

these systems look promising they have some disadvantages, which make them currently not 

suitable to be deployed as a buried wireless sensor network system. Measuring the acoustic 

signal requires a high sampling rate (>1KHz), which makes the system consumes more power 

and lasts a shorter amount of time on the limited power supply available. Moreover these 

systems are best suited for metallic pipes as detection of vibrations in plastic pipes could be 

challenging due to the higher attenuation of acoustic waves (Muggleton et al., 2006). Figure 

2.8 illustrates a schematic of acoustic correlator systems. 
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Figure 2.8 Schematic of an acoustic cross correlation leak detection system (Gao et al., 2005). 

The SAHARA method described by Bond et al., (2004) is also based on the detection of 

acoustic emission from the leaks. However, in this system unlike the correlation-based 

methods, the hydrophones are not fixed at one location. In the SAHARA method the 

hydrophone is inserted into the pipe with an umbilical cord via a conventional 50mm tap and 

records the acoustic signal as it travels through the pipe. An over-ground location detection 

module is used to track the movement of the hydrophone in the pipe and help pinpoint the 

leak. The SAHARA system can also be equipped with cameras in order to provide visual 

feedback to the operator on the surface. Figure 2.9 illustrates the schematic of the SAHARA 

system and its components. 

 

Figure 2.9 SAHARA method and its components (Bond et al., 2004). 
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The limitation of SAHARA method is its necessity of travel through the pipe. This is not 

always desirable as it can potentially jeopardise safety of the water supplies. Although it can 

operate in live pipes without disruption to service, the SAHARA system is limited by the 

diameter of the pipes in which it can effectively operate (>300mm) and is not suitable for 

smaller diameter water pipe. Due to the tethered nature of SAHARA, the technique is limited 

to 1850m of range per survey.  

2.3.2 Electromagnetic based methods 

Ground Penetrating Radar (GPR) is widely used for the inspection and localisation of buried 

assets (Hunaidi and Giamou, 1998; Misiunas, 2005; Crocco et al., 2009; Nakhkash, 2004). In 

the GPR method, pulses of radio frequency signals are transmitted into the ground via 

antennas placed on the surface. These signals are then reflected by different layers of soil, 

voids and other objects in the ground due to the difference in their electromagnetic properties. 

These reflections are then recorded by the receiver and analysed by the GPR unit on the 

surface. Leaks in pipes are detected by GPR via detection of voids created by leaking water in 

the ground or abnormalities in the measured depth of the pipe due change of the soil 

attenuation due to change in local water content of soil (Liu and Kleiner, 2013). Although this 

method has been successfully used to detect the location of pipes and leaks, its application 

and reliability is limited in more attenuative soils (i.e. saturated clay) or deep assets due to a 

reduction in penetration depth of the signals. Another drawback of GPR technology is the 

difficulty of interpreting the GPR measurements dictating the need for a skilled operator. GPR 

measurements also require another form of verification to distinguish similar assets (water 

and gas pipes) due to the similar GPR signature of these assets (Costello et al., 2007). 

Magnetic Flux Leakage (MFL) is one of the main methods used in the detection of corrosion 

and defects in metallic pipes, especially oil and gas pipes. In this method the pipe wall is 
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magnetised using strong permanent magnets. A fault in the pipe (i.e. a corrosion pit) will 

cause a magnetic flux leakage at the point of defect. This can be detected by sensors inside the 

pipe to localise the fault.  For the MFL method to work, a very good contact is required 

between the pipe interior and the magnets. This makes this method unsuitable for older water 

pipes due to their tubercular interior surface (Rajani and Kleiner, 2004). Necessity of close 

contact between the pipe and the magnets impose another problem for usage of the MFL 

method in water pipes due to the potential damage to the lining of the pipe by the contacts 

used in these system (Costello et al., 2007).  These limitations make this method only suitable 

for clean steel pipes without interior lining (Costello et al., 2007; Liu and Kleiner, 2013). The 

principles of the MFL method are illustrated in Figure 2.10. 

 

Figure 2.10 Schematic of the principal of Magnetic Flux Leakage (MFL) method (Liu and 

Kleiner, 2013). 

The Remote Field Eddy Current (RFEC) technique presented in Jiles (1990) and Atherton 

(1995) is based on  diffusion measurements of a low frequency electromagnetic signal at the 

remote field zone travelling through the pipe wall. This system consists of excitation and 

detection coils which are placed inside the pipe. The low frequency alternating current signal 

is generated by the exciter coil and is measured by the detector coil placed approximately two 
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pipe diameters away from the exciter coil (Atherton, 1995). The electromagnetic signal is 

rapidly attenuated through the direct path (inside the pipe) and travels through the pipe wall 

with small attenuation (Liu and Kleiner, 2013). Therefore any change in the wall thickness of 

the pipe shows itself as a change in the measured signal at the detector coils. Figure 2.11 

illustrates a schematic describing the principles of the remote field eddy current method. 

 

Figure 2.11 Schematic of the principles of the remote field eddy current measurement method 

(Liu and Kleiner, 2013). 

Although in this method the sensors do not require a close contact with the pipe wall, it can 

only be used with ferromagnetic pipes or pipe with ferromagnetic components in them. There 

is also limited information in the literature assessing the reliability of this method (Liu and 

Kleiner, 2013).   

2.3.3 Ultra spectrum based methods 

In the ultrasonic testing method a beam of high frequency sound is transmitted in the medium 

of the pipe commonly via a piezo transducer. As the sound wave travels through different 

materials it is reflected and scattered based on their densities (i.e. pits, corrosions and voids). 

These reflections are measured and compared with a baseline measurement (Li et al., 2012). 

Tuberculation of metallic pipes will cause the signal to be scattered and therefore can be 

detected easily by this method. Ultrasonic methods are usually used in conjunction with other 
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methods such as smart Pipe Inspection Gauges (PIGs). Ultrasonic methods can also be 

classified as an acoustic method, however in ultrasonic methods the wave is induced by the 

monitoring system while in acoustic correlation methods the wave is induced by the leak. The 

ultrasonic inspection methods require access to the interior of the pipe and are mostly suited 

to metallic pipes due to the higher attenuation of the waves in the plastic pipes. Figure 2.12 

illustrates the schematic of an ultrasonic inspection system. 

 

Figure 2.12 Schematic of the ultrasonic pipe inspection method (Misiunas, 2005).  

Another approach to ultrasonic inspection of pipes using guided ultrasonic waves (Lamb 

wave) propagation and reflection is presented by Lowe et al. (1998) and more recently by 

Galvagni and Cawley (2012) and Jin and Eydgahi (2008). In this method a wave is induced in 

the pipe via transducers and travels through the pipe wall. Defects in the geometry and 

consistency of the pipe (rust patches) cause reflections of this wave. These reflections are then 

studied and analysed in order to detect defects and their locations. This method is mostly 

suited to metallic pipes, as the transduced waves attenuate rapidly in plastic or aged asbestos 

cement pipes, reducing the effective inspection range. Figure 2.13 illustrates the schematic of 

a guided ultrasonic wave inspection of pipes. 
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Figure 2.13 Schematic of guided ultrasonic wave inspection method (Lowe et al., 1998) 

Moreover Cawley et al. (2003) identified the coherent noise due to reflections from opposite 

directions and propagation of multiple modes of waves as the main challenges when using 

medium to long range guided wave inspection. In addition, the effectiveness of these systems 

is lost when defects in the pipe are small and therefore the magnitude of their reflections is 

smaller than noise bed of the system. Multiple overlapping reflections from similar features 

can also limit the effectiveness of this technique (Galvagni and Cawley, 2012). 

Infrared thermography is a totally non-contact inspection method used for detecting leaks in 

pipelines. This method is based on the detection of abnormalities in temperature of the soil 

around the pipe caused by the leakage of the medium being transferred by the pipe (i.e. water, 

oil) (Hunaidi, 2000; Costello et al., 2007). The temperature difference between the medium 

leaking out and the surrounding soil will cause local hot/cool spots. In these systems a 

sensitive thermal imaging camera is used to capture the thermal profile of the soil and detect 

the local abnormalities. The performance of thermography based methods highly depends on 

the condition (moisture content) and properties of the soil, surface material, ambient 

temperature, wind and solar radiation (Costello et al., 2007; Misiunas, 2005).  
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2.3.4 Physical methods 

The impact echo pipeline inspection method is based on generating controlled impact acoustic 

waves (i.e. pneumatic hammer) and measuring the propagated waves via geophones attached 

to the pipe wall. These measurements are then analysed in the frequency domain to identify 

defects in the pipes (Costello et al., 2007; Rajani and Kleiner, 2004).  However, for this 

method to perform effectively, the pipe needs to be dewatered and the internal surface of the 

pipes needs to be cleaned (Rajani and Kleiner, 2004).  

Tracer gas leak detection of pipes is a practice in which a low density (lower than air), non-

toxic and water insoluble gas is injected into an isolated section of the pipe. In the case of a 

defective pipe the gas will leak out from the pipe and travel upwards (due to its low density) 

through the ground and reach the soil surface. The marker gas can then be detected on the 

surface by sensitive gas detectors (Heim, 1979).  High direct and indirect cost of this type of 

inspection makes it not widely used in the water industry (Misiunas, 2005). 

2.3.5 Fibre optic based methods 

Fibre optic technology has been extremely promising for large-scale civil infrastructure 

monitoring (López-higuera et al., 2011). A vast amount of research exists in the literature on 

the usage of fibre optics for tunnel, reservoir, bridge and other infrastructure monitoring 

(Mohamad et al., 2011; Cheung et al., 2010; Li et al., 2004; Yan and Chyan, 2010; Nikles, 

2009; Myles, 2011; López-higuera et al., 2011; Metje et al., 2008).  Superior performance 

characteristics of fibre optic monitoring have made fibre optics amongst the most suitable 

techniques for permanent monitoring of pipelines. The main advantages of fibre optic based 

systems are their passive operation (no need for local power supply), large monitoring range 

(few kilometres), high spatial resolution, electromagnetic interference immunity and multi-

parameter sensing capabilities (Sonyok et al., 2008).  Environmental parameters and 
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stimulations affect the geometrical (size and shape) and optical (mode conversion and 

refractive index) properties of fibres (Li et al., 2004). In the communication industry these 

effects are minimised in order to establish a clean communication between two points.  

However, in sensing applications these changes are used to measure the desired parameters 

along the fibre optic cable. Optical fibres commonly consist of a fibre core, cladding and a 

jacket. Fibre optic sensing systems can be generally divided into three main categories of (Li 

et al., 2004; Sonyok et al., 2008): 

• Local (Point) Fibre optic systems. In these systems the desired parameters are 

measured at a discrete point along the fibre optic cable. These systems are usually 

more suited for small-scale sensing, as each sensor needs a separate channel.  

• Quasi-distributed system. In these systems the desired parameter is measured at 

multiple (commonly up to 64) discrete positions along the pipe. The most common 

type of quasi-distributed systems is Fibre Bragg Grating (FBG) sensors. These 

systems have been successfully used in large-scale multipoint measurement systems 

(Li et al., 2004).  

• Distributed systems. In these systems the whole fibre optic cable is used as the sensor. 

Therefore the desired parameter can be interrogated at any point along the pipe (within 

a spatial resolution of approximately 1m). Two main types of distributed fibre optic 

sensing systems are Raman and Brillouin optical time domain reflectometry. These 

systems are best suited for large scale infrastructure monitoring such as pipelines. 

These have been successfully used in long-distance pipeline monitoring and leak 

detection (Myles, 2011; Sonyok et al., 2008; Tanimola and Hill, 2009; Rajeev et al., 

2013) .  
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In these system parameters related to the pipe (for example vibration, strain or 

temperature) are used in order to assess the integrity of the pipe, monitor third party 

interference or detect pipe failures. Moreover FBG based sensors can be used to monitor 

operating parameters such as pressure and flow (Li et al., 2004). The most common type 

of pipeline monitoring by fibre optic technology is based on detection of local temperature 

difference created by the leaking medium in surrounding soil (Myles, 2011). 

A schematic of these three systems is illustrated in Figure 2.14. 

 

Figure 2.14 Schematic of different types of fibre optic monitoring systems. a) Local b) Quasi-

distributed c) Distributed (adapted from López-Higuera et al., 2011) 

Despite their good performance characteristics fibre optic monitoring of water pipelines has 

not been widely adopted by asset owners due to two main drawbacks of fibre optic methods. 

The main drawback of these systems is their inherent lack of redundancy. If for any reason a 

section of the pipeline is required to be replaced (due to damage or renewal) or the fibre 
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optics are damaged (third party interference), a large section of the fibre optic monitoring 

network could become non-functional or blind spots could be created in the system. Another 

drawback of fibre optics is their complex installation. Fibre optic networks are commonly 

required to be installed while the pipe is being constructed and retrofitting of them (in case of 

damage or for existing pipelines) can be difficult and uneconomic (Myles, 2011). 

2.3.6 Visual (imaging) based methods 

Closed circuit television (CCTV) is the most common visual based inspection method used in 

pipeline monitoring. In this method a camera travels through the pipe and records/transmits 

video footage of the pipe interior. Images from the camera are analysed by a skilled operator 

in order to detect visible defects or degeneration signs in the pipe (Misiunas et al., 2005; Liu 

and Kleiner, 2013). Figure 2.15 shows an example of a CCTV system used for pipeline 

inspections and an image of the cracked pipe captured by this method. 

 

Figure 2.15 a) CCTV pipeline inspection system b) Example of interior image of a cracked 

pipe (via Sinha and Knight, 2004, Courtesy of Telespec Ltd). 
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These systems suffer from three major drawbacks. Firstly, CCTV inspection of large 

networks is very labour intensive and costly due to the required skilled operator and the time 

the survey takes (Misiunas, 2005). The second drawback of this method is its inability to 

detect defects or faults that do not have visual signs or are not visible in the CCTV footage 

due to obstructions. The third main disadvantage of these systems is their high dependency on 

the operator skills and consistency. Results from the interpretation of the CCTV images are 

commonly inconsistent due to human error (Kingajay and Jitson, 2008). The process of 

analysing images from the CCTV can be automated by means of computer vision and image 

processing algorithms to overcome the labour related issues (Costello et al., 2007; Kingajay 

and Jitson, 2008). However this itself introduces other issues into the system such as the need 

for high processing power and complex algorithms which result in an increase in cost.  

Laser scanning systems (laser profilers) are based on scanning the interior of the pipes with a 

laser beam and analysing the results to create a highly accurate profile of the pipe interior. 

Unlike CCTV methods, laser profilers are capable of detecting smaller defects and are more 

consistent. The profile of the pipe processed by an automated algorithm can be usually 

viewed by the operator in real-time.  Kingajay and Jitson, (2008) propose a method of 

combining the laser-profiling method with the CCTV inspection technique in order to 

increase the accuracy of fault detection by providing contour profiles of the pipe interior. 

Main disadvantage of this method is that it only can operate in de-watered pipes. Performance 

reliability of laser based systems are however not studied fully and further research is required 

to validate their performance (Liu and Kleiner, 2013).  Figure 2.16 illustrates the proposed 

system by Kingajay and Jitson (2008). 
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Figure 2.16 Hybrid (Laser and CCTV) based method. a) Inspection device b) sample of pipe 

profile output (Kingajay and Jitson, 2008). 

Vision based systems also suffer from few common drawbacks. They all require access to the 

interior of the pipe, which is not desirable by asset owners due to risk of contamination, and 

most commonly they can only operate in empty pipes, which can cause interruption to 

service. 

2.3.7 Multi-sensor systems 

Smart Pipe Inspection Gauge (PIG) systems are based on instrumenting conventional PIGs in 

order to inspect the condition of the pipes or detect defects. Conventional PIGs are used in the 

water industry to clean the interior of pipes. The addition of sensors and a locating mechanism 

(i.e. inertial navigation) to the PIG enables it to inspect the interior of the pipe and locate 

faults. In this method the smart PIG is inserted into the pipe through an opening (i.e. fire 

hydrant) and then travels through the pipe while recording its location and inspection data. 

Following retrieval of the PIG these data are analysed in order to detect faults. In some cases 

the PIG is attached via an umbilical cord to the above ground base which analyses the data in 

real-time. 
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A successful example of a multi-sensor PIG based system is the Smart Ball™ (Pure 

Technologies, USA). The Smart Ball consists of multiple sensors such as accelerometers, 

acoustic sensors, temperature sensors and magnetometers encapsulated alongside a battery 

and other essential electronics in an aluminium core. The aluminium core is then covered by a 

foam shell in order to protect the core, facilitate the movement of the ball in the pipe and 

reduce the noise it creates while it travels (Fletcher and Chandrasekaran, 2008; Liu and 

Kleiner, 2013; Metje et al., 2011). The Smart Ball is capable of inspecting pipes with a range 

of a few kilometres and the detection of faults with a resolution of 1m (Liu and Kleiner, 

2013). However, the drawback of this method similar to vision based methods and the 

SAHARA method (discussed earlier) is that it requires access to the interior of the pipes and 

also cannot be used in smaller diameter (<150mm) pipes. 

Wireless Sensor Networks (WSN) are increasingly becoming the commonplace technology 

for infrastructure monitoring (Stajano et al., 2010). Advances in sensor technologies, wireless 

communications and electronics have significantly increased the capabilities of these systems 

while reducing their footprint and cost (Akyildiz et al., 2002; Deivasigamani et al., 2013; Li 

and Liu, 2007).  Furthermore increase in the proliferation rate of the Internet has created a 

great opportunity for the Internet to act as a backbone for wireless sensor networks and 

connected infrastructures (Christin et al., 2009; Atzori et al., 2010). However, further research 

is required for WSN to become a robust solution for civil infrastructure monitoring. Stajano et 

al. (2010) provides guidelines and identify main challenges for robust implementation of 

WSN for infrastructure monitoring. Common wireless sensor networks comprise multiple 

nodes with sensors attached to them based on the different applications. These nodes read the 

sensors’ output based on a predefined schedule or as a reaction to an event. These data are 

then partially processed and packaged by the node. The packaged data are then transmitted 
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wirelessly to a central node. According to the topology of the network, data from one node 

could be directly transmitted to the central node (single hop) or being relayed multiple times 

by other nodes (multi-hop) before it reaches the central node (Maraiya et al., 2011).  

Wireless Underground Sensor Networks (WUSN) can be used in a range of applications such 

as precision agriculture (Balachander et al., 2013), mine monitoring (Hancke, 2012; Li and 

Liu, 2009), oil and gas monitoring, soil condition monitoring (Bogena et al., 2010) and 

pipeline monitoring (Stoianov et al., 2007). WUSN for pipeline monitoring can be divided 

into two subcategories of internal systems and external systems. In internal systems nodes are 

placed inside the pipe while in external systems the nodes are usually fixed on the pipe (i.e. at 

an access chamber). Various wireless sensor network systems for pipeline monitoring exist in 

the literature, which are reviewed in the next section. 

2.4 Wireless underground sensor networks for pipeline monitoring 

2.4.1 External systems 

PIPENET is a fixed WSN system for pipeline monitoring. This system utilises acoustic, water 

level, water quality and pressure sensors (via tapping) at a high sampling rate (up to 600Hz) 

in order to identify, quantify and pinpoint faults in large diameter (transmission) water 

pipelines (Stoianov et al., 2007). In order to identify the faults data from the sensors are 

compared with a long-term historic base reading and correlated with other nodes (Kim, 2011). 

The PIPENET system uses an Intel Mote platform (as the node) to collect and analyse the 

data from its sensors. Figure 2.17 illustrates an overview of the PIPNET system. 
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Figure 2.17 Overview of the PIPENET system (Stoianov et al., 2007). 

The short battery life of 50-62 days on a 6V 12Ah battery is the main drawback of the 

PIPENET system (Stoianov et al., 2007) which prohibits this system to be widely used in long 

term (>1 year) pipeline monitoring. 

The WaterWise platform manages and analyses the pressure (via direct pressure sensors), 

acoustic and water quality readings obtained by a network of smart nodes in order to predict 

the hydraulic demands and identify faults within the pipeline network. The custom designed 

hardware of this platform is based on an ARM Cortex M3 processor (Whittle et al., 2013). 

Figure 2.18 shows the WaterWise system. 
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Figure 2.18 WaterWise system a) Multi parameter probe head b) installed WaterWise probe 

(Whittle et al., 2013). 

Due to the long internode distance (500-1500m) in this platform nodes directly communicate 

with the central base (single hop) via 3G connections. Time synchronisation of the nodes is 

achieved via a GPS receiver. Similar to the PIPENET system, the WaterWise platform also 

suffers from high power consumption (0.036W-4.500W) and needs to be regularly recharged 

via an AC line or Solar panels. 

PipeTect proposed by Shinozuka et al. (2010) is a WSN system for the detection and 

localisation of leaks by using vibration measurements (MEMS accelerometers) on the surface 

of the pipe. This system uses wire connections for underground communication (CAN bus) 

and wireless communication (ZigBee and Wi-Fi) for overground communications. The 

system is capable of detecting leaks in a laboratory setup however lacks field trial validation 

to understand the effect of the underground environment on the vibration of the pipe. The 

main drawback of this system is the need for wiring for the underground communications.  
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MISE-PIPE is a WUSN system for pipeline monitoring based on magnetic induction 

waveguides (Sun et al., 2011). This system aims to provide real-time leak detection and 

localisation for underground pipes via different types of sensors located both inside and 

outside of the pipe. Sensors placed inside the pipe are placed at access chambers and valves 

and are responsible for measuring pressure (via direct pressure sensor), flow and acoustic 

vibrations. These nodes have high power consumption due to their higher computation 

capacity compared to sensors placed outside of the pipe. The sensors which are placed outside 

of the pipe however are low-powered and responsible for measuring temperature, humidity 

and soil properties around the pipe (Sun et al., 2011). These sensors are densely deployed 

along the pipeline in order to provide a high spatial resolution for leak detection.  Figure 2.19 

illustrates the overall schematic of the MISE-PIPE system. 

 

Figure 2.19 Overall schematic of the MISE-PIPE system (Sun et al., 2011). Where MI stands 

for magnetic induction. 

Soil is a very lossy environment for electromagnetic (EM) signals. The MISE-PIPE system 

uses the Magnetic Induction (MI) technique to overcome this issue. Sun et al. (2011) claim 

that MI can provide more reliable and efficient wireless underground communication, as they 
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are not affected by soil properties. However this claim is only valid for non-magnetic soils. A 

main intrinsic drawback of magnetic waves compared to EM waves is that their intensity 

drops with distance significantly faster than EM waves. MISE-PIPE uses a series of passive 

waveguide relays in the form of relay coils along the pipe to overcome this issue and increase 

the transmission range (36m by using 10 relay coils). However, this significantly increases the 

cost of installation due to extra excavations required for the relay coils to be fitted along the 

pipe and makes the system only economically viable for newly laid pipes. In addition, the 

high-energy consumption of the inner pipe sensors limits the locations that they can be 

deployed. 

2.4.2 Internal systems 

The TriopusNet system (Lai et al., 2012) comprises nodes which are deployed into the pipe 

via an inlet and are carried along the pipe via the flow of water. Each node is equipped with 

inertial modules in order to calculate its movement and position along the pipe. When the 

nodes reach their predefined location they latch to the pipe via three motorised arms with 

suction pad at their ends (BenSaleh et al., 2013). Figure 2.20 shows the prototype of the 

TriopusNet node. 
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Figure 2.20 Prototype of the TriopusNet node (Lai et al., 2012). 

When all the nodes are in their allocated place they will measure pressure and other 

parameters and act as a normal WSN. The TriopusNet location tracking system is adapted 

from the PipeProbe system (Chang et al., 2009; Lai et al., 2010) which is a mobile node 

system based on inertial and pressure measurements for identifying the pipeline 3D layout. A 

common drawback in both of these systems is their lack of accuracy of the tracking 

information due to errors caused by rotation, change in speed, and vibrations (Kim, 2011). 

Another intrinsic drawback of the TriopusNet system is that, if one of the nodes fails or needs 

to be replaced all the nodes downstream of it also need to be flushed due to size of the nodes 

(Lai et al., 2012). The TriopusNet system is a new technology and more research is required 

to minimise its size in order to facilitate flushing and make it possible to overcome the 

mentioned issues.  
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2.4.3 RF propagation in soil 

WSN are commonly used in environments where the communication path between the nodes 

is not lossy (i.e air). However, WUSN nodes are buried under the surface and therefore their 

communication path is partially or in some cases completely through the ground.  Soil is a 

lossy medium for electromagnetic waves (Trinchero et al., 2009) and therefore EM waves are 

attenuated in soil significantly more compared to air.  Soil is also a complex material and 

many of its properties such as composition, mineralogy, density and water content directly 

affect its dielectric properties, which in turn affect the EM propagation and attenuation. 

Additionally soil is a very dynamic medium. Soil conditions such as water content can 

significantly change (i.e. after a rainfall). Soil composition also can vary significantly within a 

short space. Another complexity is that dielectric properties of soil vary based on the EM 

wave frequency. This complex and dynamic nature of soil makes predicting the attenuation of 

EM signals very complicated. Creating an efficient and reliable underground wireless 

communication link is one of the main challenges faced by WUSNs. Therefore, understanding 

the EM wave propagation in soil is essential for the development of a successful wirelesses 

underground sensor network for pipeline monitoring. 

Different empirical models exist in the literature which predict the dielectric properties of the 

soil based on its composition and water content (Peplinski et al., 1995a; Mironov and Dobson, 

2004; Mironov, 2004).  The dielectric properties of a soil can also be measured via Time 

Domain Reflectometry (TDR) or Vector Network Analyser (VNA) based techniques 

(Logsdon, 2005; Van-Dam et al., 2005; Topp et al., 2000). Empirical and semi-empirical 

models exist in the literature (Akyildiz et al., 2009; Ghazanfari et al., 2011; Chaamwe et al., 

2010; Bogena et al., 2009; Li et al., 2007) that aim to predict the attenuation of EM waves 

based on the dielectric properties of the soil. Two main models for the prediction of EM wave 
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attenuation in soil based on soil dielectric properties are the CRIM-Fresnel model proposed 

by Bogena et al. (2009) and the modified Friis model proposed by Li et al. (2007). In order to 

understand the propagation of EM waves in different media it is important to first understand 

how electromagnetic waves are propagated through free space. 

EM wave propagation in free space 

Friis, (1946) introduced a formula (Equation (2.1)) for calculation of the received power, 

!!(!) as a function of internode distance in free space for a transmitter receiver setup.  

 !!(!) =
!!!!!!!!
4! !!!  

(2.1) 

Where !! is the transmitter power, !! and !! are the transmitter and receiver antenna gains, 

and ! is the distance between the transmitter and receiver and ! is the wavelength of the EM 

wave in open space.   

EM wave propagation in soil based on modified-Friis model 

Akyildiz and Stuntebeck (2006) proposed a “link budget” formula based on the Friis 

transmission equation to act as a framework for EM wave propagation models in soil. This is 

given by Equation (2.2). In this model a correction factor is added to equation (2.1) in order to 

reflect the losses in soil medium. 

 !! = !! + !! + !! − !! − !! (2.2) 

Where !! is the path loss in soil (medium) due to material absorption and  !! is the path loss 

in free space and is given by Equation (2.3). 

 !! = 20!"# 4!"
!  

(2.3) 

Li et al. (2007) propose a model for the calculation of path losses in soil based on the “link 

budget” formula presented in Equation (2.2). In this model the path loss in the medium !! is 
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calculated considering three main differences between propagation of EM waves in soil 

compared to open space. Firstly, the EM wave propagation speed is different in soil compared 

to open space, which results in a different wavelength for the signal. Secondly, the attenuation 

of the amplitude of the signal is dependent on the frequency. Thirdly, correlation between 

phase velocity and signal frequency in soil causes colour scattering and delay distortion (Li et 

al., 2007). Based on this model the total path loss caused by the medium !! can be divided 

into the attenuation losses caused by the change in wavelength  !!!  and the attenuation 

losses caused by material absorption !∝   and is given by Equation (2.4): 

 !! = !!! + !∝ (2.4) 

Attenuation losses caused by a change in wavelength !!! is given by Equation (2.5) 

 !!! = 20!"#! !!!  
(2.5) 

Where the wavelength in free space is !! = !
! , (! = 3×10!!/! and ! is the signal frequency 

in Hz) and the wavelength of the signal in soil is ! = !!
!  where ! is the phase shifting 

constant. Therefore !!! is given by Equation (2.6): 

 !!! = 154 − 20 log ! + 20log!(!) (2.6) 

Losses due to attenuation !! is given by Equation (2.7): 

 !! = 8.68!! (2.7) 

Where !!is the attenuation constant. The combined total losses in soil !! is therefore given by 

Equation (2.8): 

 !! = !!! + !! + !! (2.8) 
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Substitution of the above mentioned parameters with their equations results in Equation (2.9), 

which calculates the overall path loss based on Modified-Friis model for EM wave 

propagation in soil. 

 !! = 6.4 + 20 log ! + 20log!(!) + 8.68!" (2.9) 

Where ! and ! are given by equations (2.10) and (2.11). 

 

 

(2.10) 

 

 

 

(2.11) 

 

Where ! is the angular frequency (! = 2!"), ! is the magnetic permeability and is assumed 

to be 1. Li et al. (2007) used Peplinski’s dielectric mixing formula published by Peplinski et 

al. (1995b)  in their research to calculate the real and imaginary parts of the complex 

permittivity value of soil in their paper and subsequent papers (Akyildiz et al., 2009; Vuran 

and Akyildiz, 2010). However, the mixing formula presented in these papers is incorrect and 

is based on a wrong formula initially published by Peplinski et al. (1995b) and shortly after 

corrected in (Peplinski et al., 1995a). For this reason comparison of the results from Akyildiz 

et al. (2009) and Vuran and Akyildiz (2010) are not presented in this thesis.  

EM wave propagation in soil based on CRIM-Fresnel model 

Bogena et al. (2009) propose a semi-empirical model based on a Complex Refractive Index 

Model (CRIM) to quantify signal attenuation in WUSN.  Similar to the Modified-Friis model 

CRIM-Fresnel model is also based on the link budget formula presented in Equation (2.2). In 

α =ω
µ !ε
2

1+ !!ε
!ε

"

#
$

%

&
'
2

−1
)

*

+
+

,

-

.

.

β =ω
µ !ε
2

1+ !!ε
!ε

"

#
$

%

&
'
2

+1
(

)

*
*

+

,

-
-



LITERATURE REVIEW 
 

 47 

this model losses due to signal reflection are included in the total attenuation of signals Atot 

(Yoon, 2013; Chaamwe et al., 2010; Bogena et al., 2009). However, the dielectric permittivity 

of soil is calculated based on the CRIM model, which takes into account the permittivity of 

soil !!, water !! and air !! at a specific EM wave frequency. Based on Bogena et al. (2009) 

the total attenuation losses Atot  is given by Equation (2.12). 

 !!"! = !!! + !! (2.12) 

Where !! is the attenuation due to material absorption from Dane and Topp (2002) and !! is 

the attenuation due to reflection. !! can be calculated using Equation (2.13). 

 !! = 10!"# 2!
1 + !  

(2.13) 

The reflection coefficient R, with an assumption that magnetic permeability can be neglected, 

is calculated by Equation (2.14). 

 
! = 1 − !

1 + !

!
 

(2.14) 

The authors of Bogena et al. (2009) claim that their proposed CRIM-Fresnel model is better 

suited for an initial approximation of EM waves propagation in soil compared to the 

Modified-Friis model proposed by Li et al. (2007) due to the fact that the dielectric mixing 

model used by that model (Peplinski et al., 1995a) is not supported by a large data base. 

However, the CRIM-Fresnel model presented in Bogena et al. (2009) is not validated by field 

trials and its authors acknowledge that field trials are required for furthur evaluation of the 

model. 

Comparison of existing RF propagation models in soil 

Attenuation of the EM signal based on the Modified-Friis and CRIM-Fresnel models are 

evaluated for frequencies of 100-300Hz in order to investigate the effect of frequency on 
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signal attenuation in soil. Figure 2.21 illustrates the total attenuation calculated by these two 

models. 

 

Figure 2.21 Comparison of the Modified-Friis and CRIM-Fresnel RF propagation models  

As can be seen from Figure 2.21, the signal attenuation increases with an increase in 

frequency in both models. Therefore higher operational frequencies will have a shorter range 

compared to lower operational frequencies given the same input power and receiver 

sensitivity. This is consistent with findings from Chaamwe et al. (2010). Additionally it can 

be shown from Figure 2.21 that there is a significant difference between the predicted values 

by these models, which increase at higher frequencies. 
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2.5 Summary and identified gaps in knowledge   

In this chapter water pipeline networks are introduced and the main causes of pipe 

deterioration and failure are identified and classified. Additionally the direct and indirect cost 

of failures for asset owners is analysed. The total cost of network management and 

relationship between the cost of failure and asset management are also analysed. These 

showed a real benefit for a low cost pipeline monitoring system that can detect failures in the 

network at the early stages of the failure process. State-of-the-art techniques for active 

pipeline failure monitoring (NDE methods) are categorised and critically reviewed. Table 2.1 

presents a summary of the reviewed NDE techniques and their limitations. 

Table 2.1 Comparison and limitations of NDE techniques for pipeline health assessment  
Category NDE method Internal access Other limitations 
Acoustic • Acoustic 

correlation 
• SAHARA 

Yes Performance is highly affected 
by pipe material and diameter. 
High power consumption. 

Electromagnetic 
method 
 
 

• Remote field 
inspection 

• Magnetic flux 
leakage 

• Ground 
Penetrating Radar 

 

Yes (with the 
exception of GPR)  

Performance characteristics 
and reliability of GPR highly 
depends on the soil type and 
conditions.  
GPR output is difficult to 
interpret. 
RFEC and MFL methods are 
only suited to metallic pipes.  

Ultra spectrum 
 
 

• Ultrasonic 
• Infrared 

thermography 

Yes (with the 
exception of infrared 

thermography) 

Ultrasound method is suited to 
metallic pipes. 
Infrared thermography can be 
affected by environmental 
conditions. 

Physical methods • Impact echo 
• Tracer gas 

 

Yes  High costs. 
For IE method the pipe needs 
to be emptied of its content. 

Fiber optic • Local 
• Quasi-distributed 
• Distributed 

No Lack of redundancy and need 
for continuity.  

Visual • CCTV 
• Laser scanning 

 

Yes Requires highly skilled 
operator. 
Pipe needs to be emptied from 
its content. 

Multi-sensor based • Smart PIGs 
• Wireless 

underground 
sensor networks 

Yes PIGS are not suitable for 
smaller diameter pipes. 
Reliable communication is 
challenging in WUSN. Nodes 
power consumption limits 
operational life of the system.  
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As is shown in Table 2.1 and discussed in the previous sections of this chapter, current NDE 

techniques for pipeline monitoring commonly suffer from high power consumption and a 

requirement to access the interior of the pipe. Moreover, most of these systems have a survey-

based design, which makes them unsuitable for continuous pipeline monitoring. This makes 

them unsuitable for long-term permanent monitoring of pipes.  In addition to the comparison 

of NDE techniques for pipeline monitoring, published WUSN systems were reviewed.  

WUSN pose as a suitable platform for pipeline monitoring due to the ability to be densely 

deployed, multi-sensor capabilities and the continuous monitoring nature of these system. 

Challenges of the underground environment for these systems were also identified and 

described in this chapter. The reviewed WUSN for pipeline monitoring are commonly based 

on commercially available sensor node platforms (i.e Intel Mote). This results in the power 

consumption of the nodes to be too high for long-term underground deployment. Based on the 

review carried out in this chapter the following gasps in knowledge were identified:  

• The existing NDE methods for pipeline monitoring are mainly survey-based 

techniques or are designed for specific type of pipes. WUSN are a suitable platform 

for continuous pipeline monitoring. 

• The existing WUSN for pipeline monitoring are commonly suffering high power 

consumption and therefore have a short operational life and cannot be deployed 

underground for long-term pipeline monitoring. An ultra low power WSN can solve 

this problem and enable WUSN to be used as a long-term (>10 years) monitoring 

system for pipelines. 

• The existing nodes for WUSN are either generic WSN nodes that are used for pipeline 

monitoring or are not designed for long-term (potentially permanent) underground 

deployment in the underground environment without the need for servicing (change of 
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battery or data retrieval). Moreover, these systems mostly communicate via high 

frequency transceivers (i.e. ZigBee and Wi-Fi) that reduce their range and reliability in 

underground environment.   

• The internal pressure of pipelines is one of their key operating parameters. To the 

knowledge of the author all existing pressure sensors used in the reviewed WUSN 

systems for pipeline monitoring are common commercial pressure sensors, which 

require access to the medium in the pipe via valves or tapings. A non-intrusive 

pressure measurement system can greatly benefit all types of pressure based 

monitoring systems as well as WUSN for pipeline monitoring. 

• Prediction of RF propagation in soil is critically important for the design of the 

WUSN. Multiple models have been published in the literature to achieve this aim, 

however they mainly lack field validations or performance analysis in varied soil 

compositions and conditions. Moreover, the performance of these models has not been 

compared in detail with each other and practical data. 

Research carried out during this project tries to address the gaps mentioned above. Additional 

specific reviews are presented in each chapter were required.  
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3 
3 DESIGN AND DEVELOPMENT OF WIRELESS 

UNDERGROUND SENSOR NETWORK FOR 
PIPELINE MONITORING 

 
Contents 

3.1 Introduction 
3.2 System structure 
3.3 Sensor node design  
3.4 Summary   
 

Overview of the chapter 

This chapter reports on the design and development of an ultra low power wireless sensor 

network for pipeline monitoring. Following an introduction to the available pipeline 

monitoring sensor networks, the main challenges in the design and development of a 

successful Wireless Underground Sensor Network (WUSN) are identified. The general node 

architecture (hardware and software) of the nodes is discussed in detail. Moreover, methods 

of reducing the power consumption of the nodes via hardware and software design are 

presented in this chapter.  
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3.1 Introduction 

As was mentioned in Chapter 2, wireless sensor networks have been used in a variety of 

applications (Stajano et al., 2010). The application and environment in which the sensor nodes 

are deployed imposes limitations and specific requirements on the sensor nodes’ architecture 

(Sun et al., 2011). Figure 3.1 illustrates the main limitations and requirements for a WUSN 

for pipeline monitoring systems. 

 

Figure 3.1 Limitations and requirements of WUSN for pipeline monitoring. 

High RF signal attenuation is a challenging issue for a WUSN as the RF characteristics of 

soils can vary dramatically between soil types and soil conditions (for example, water content, 

density and composition) (Akyildiz and Stuntebeck, 2006). These effects are discussed in 

more detail in Chapter 6 of this thesis. High attenuation of RF signals in soil results in a 

shorter transmission range, which in turn affects the overall architecture and spacing of the 

nodes.  

In pipeline monitoring, nodes are buried in the soil at the depth of the pipe. This makes them 

inaccessible for maintenance or replacement without re-excavation, which can be very costly. 
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Therefore nodes should be able to operate independently without the need for maintenance or 

replacement.  

The above-mentioned issue of accessibility imposes another limitation on the sensor node, 

which is the availability of power (Akyildiz and Stuntebeck, 2006). Power sources are very 

limited in the underground environment and traditional power supply methods such as solar, 

battery (replaceable) and mains power line are not feasible. Therefore nodes should have 

ultra-low power consumption in order to extend their operational life on batteries or allow 

them to use alternative low output energy harvesters (thermal, EM harvesters).  

Installing monitoring systems on existing pipelines often requires closure of roads, extensive 

documentation and permission, expensive excavation techniques and carries many potential 

risks (Misiunas, 2005). Therefore, the ease of installation is very important for Pipeline 

Monitoring Systems (PMS). An ideal PMS would require minimal operator skill, minimal 

calibration, and minimal excavation.  

The overall cost of the nodes has to be minimised in order for the WUSN based PMS systems 

to be adopted by industry. As was previously mentioned in Chapter 2 various factors should 

be taken into account in order to calculate the cost-benefit of the PMS systems; for example, 

the value of the medium transferred, cost of repairs, government incentives.  

Long operational life is one of the main requirements of the PMS. As mentioned, excavations 

and repairs are extremely costly; therefore a suitable PMS system should have a long 

operational life without the need for replacement. Furthermore, it should have a degree of 

tolerance to redundancy in case of an individual node failure. The operational life of the nodes 

is also closely related to the power consumption and power availability.  
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This chapter reports on the design and development of an ultra-low power node for pipeline 

monitoring and the research conducted into parameters affecting the power consumption of 

the nodes. 

3.2 System structure 

Wireless sensor networks can have various topologies and structure based on their application 

and environment. However, due to the linear nature of pipelines, the topology of a WUSN for 

pipeline monitoring is more limited than other applications. This limitation in topology is 

further reinforced by the poor RF transmission through soil, which imposes further 

boundaries on routing and topology of the network. Figure 3.2 illustrates the typical 

schematic of a wireless sensor network for pipeline monitoring. 

 

Figure 3.2 Schematic of a wireless sensor network for pipeline monitoring (Sadeghioon et al., 

2014a). 

The overall architecture of the WUSN for pipeline monitoring can be divided into four main 

levels of hierarchy: 
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• Sensor nodes 

• Master nodes 

• Cloud server 

• End user 

Each individual node measures multiple pipe environmental and operational parameters (for 

example, pipe temperature, soil temperature, pipe internal pressure and soil water content) 

from sensors attached to the pipe and in the pipe’s surroundings. These data are then 

processed by the nodes and compared to the historic values at that location to check for 

abnormalities or indications of a leak or failure. These data are then processed and stamped 

with node identifier (ID) and measurement ID into compressed packages and are transmitted 

to the neighbouring node or the master node. The master node then further processes and time 

stamps the data from all of the nodes in its territory and correlates them with each other and 

the historic data to check for leaks or faults. This is then uploaded to the control server (cloud) 

via an Internet connection. The end user (i.e. asset owners) can then access these data via any 

Internet connected device. Figure 3.3 shows a typical data flow in a WUSN for pipeline 

monitoring.  

 

Figure 3.3 Typical data flow in a WUSN between network layers 
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During this project a proof of concept data management system was developed using Labview 

visual programming language. The developed software was capable of sorting the received 

data from the nodes (up to 8 nodes) based on their ID and displaying individual parameters 

selected by user (i.e. relative pressure) and historic values in the form of charts. In addition 

the data management system was capable of logging the data locally and automatically 

uploading the sorted data from the nodes to an Internet server (Xively™ formerly known as 

COSM). Figure 3.4 shows a screen shot of the developed data management software. 

 

Figure 3.4 Screenshot of the developed data management software 

However this software was not used for any of the field trials as it was developed later in the 

project and therefore is not discussed in further detail in this thesis. An overview of the design 

of the nodes for WUSN is described in the next section. 

3.2.1 Node design overview 

Having established the overall structure of WUSN, this section investigates the design of the 

nodes used in WUSNs. As was mentioned in Chapter 2 existing WUSNs for pipeline 
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monitoring commonly use generic wireless sensor node platforms (i.e.Intel Mote), which 

limits their operational life due to the high power consumption of these platforms. Therefore, 

the nodes should be specifically designed based on their intended purpose in order to 

successfully deploy wireless sensor networks for long-term pipe monitoring. The design of 

the sensor nodes can be divided into two main categorises of hardware design and software 

(firmware) design. The main factors affecting the design of the nodes are hardware 

constraints, fault tolerance, scalability, overall cost, environment and power consumption. 

These constraints can affect the design of both the hardware and software of the nodes. 

The hardware of a WUSN node can be divided into four main subsystems: Microcontroller 

Unit (MCU), transceiver, power management and signal conditioning (Figure 3.5). Each of 

these subsystems is responsible for a specific task in the operation of the node.  

 

Figure 3.5 General schematic of the node and its subsystems (Sadeghioon et al., 2014a). 

The MCU subsystem is mainly responsible for gathering the data from the sensors, processing 

them into a usable form, running the leak detection algorithms and buffering them into the 

transceiver. This unit is usually composed of an ultra-low power microcontroller and its 

required circuitry. The MCU subsystem is also responsible for time keeping. An internal 
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timer (watchdog timer) or a real time clock (RTC) can be used for time keeping. The design 

of this subsystem can considerably affect the overall performance of the node.  

A transceiver subsystem is responsible for connecting the node to the other nodes/master 

node. The operational characteristics (for example, RF frequency, RF output power and 

power consumption) of the transceiver are highly dependent on the application of the node 

(i.e. lower frequency for highly attenuating environments) . 

Various types of power supply or energy harvester systems can be used to power the nodes 

and the power management circuitry is responsible for conditioning and managing the 

supplied power, in order to provide a usable power supply for different components of the 

board. The design of the power management system plays a major role in determining the 

power efficiency of the node as the majority of the losses happen during power conversion. 

Depending on the application of the WSN’s nodes, various types of sensors (MEMS 

accelerometers, temperature sensors, pressure sensors) can be connected to them. The output 

of these sensors can be in the form of digital output, voltage, change in resistance, etc. In 

order to interface these outputs with the input of the microcontroller, usually a form of 

conditioning (for example, amplification, bridge and step change) is required. The signal 

conditioning subsystem is responsible for this task. An efficient and robust design of this 

subsystem is crucial for obtaining high quality data from the sensors. 

In addition to the above mentioned aspects of the hardware and its design, the size of the node 

is also important, as the nodes should be small enough to be easily deployed on the pipes 

without a need for large excavation. 
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WUSNs are composed of a large number of individual nodes. These nodes can potentially fail 

due to hardware or software faults. These faults could be caused by various factors, such as 

individual component failure, software glitches, degradation due to the harsh environment or 

external damage caused by third parties. Fault tolerance of the sensor network is defined as 

the capability of remaining functional without any major disruption caused by node failure 

(Akyildiz and Vuran, 2010). Dense node deployment and higher standard components with a 

lower failure rate can potentially increase the fault tolerance of a WSN; however, they cause 

other problems, such as increase in cost of manufacturing and deployment. Other methods, 

such as systematic recovery algorithms, can be used to maintain the overall fault tolerance of 

the WSN (Akyildiz and Vuran, 2010). The desired fault tolerance of a network greatly 

depends on the criticality of the application, acceptable cost of manufacturing and 

deployment, and ease of deployment. In pipeline monitoring, the cost of dense deployment of 

the nodes on current pipes is high and infeasible. Therefore a suitable WUSN for pipeline 

monitoring should achieve high fault tolerance by improved node design and component 

selection. This is less critical for new pipes installation using conventional trenching 

techniques, as the nodes can be densely deployed without incurring major extra installation 

costs.  

Pipeline systems such as water distribution systems can extend to thousands of kilometres. 

This creates a scalability issue for the monitoring of these pipes using WUSN. These 

networks should be able to handle all the information generated by the nodes effectively and 

efficiently. This imposes certain constraints on the network and data management design of 

the WUSN.  
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As mentioned earlier in this chapter, low overall cost is one of the main requirements for any 

pipeline monitoring system. The overall cost can be divided into three main parts: 

manufacturing cost, deployment cost, and maintenance cost. Manufacturing costs are directly 

related to the hardware design and component selection. Although using high performance 

components can be beneficial in terms of fault tolerance and system performance, they could 

significantly increase the production cost of the nodes and make dense deployment of the 

system economically not feasible. On the other hand, using higher performance components 

could reduce the failure rates and therefore reduce the maintenance costs. This creates a need 

for careful hardware design of the nodes in order to minimise the overall cost of the network 

system. In pipeline monitoring, the deployment cost of the PMS on existing pipes is a major 

part of the overall cost of the PMS. Pipes are usually buried and deploying the PMS at the 

pipe level can be very costly; therefore the system should be designed with deployment in 

mind to reduce the overall cost. This can be achieved by designing the installation of the 

nodes to be carried out via keyhole vacuum excavation techniques without a need for tappings 

in the pipes. 

The environment of the nodes also greatly affects the design of the nodes. In underground 

pipeline monitoring, the environment of the nodes can be harsh and therefore the design and 

packaging of the nodes needs to be robust in order to survive for the desired lifetime. The 

underground environment also greatly affects the RF transmission of the nodes and they 

should be designed specifically for the underground environment in order to operate correctly. 

As mentioned, power consumption is one of the main challenges of any WSN. Power 

consumption is even more critical for wireless sensor networks in underground pipeline 

monitoring to due lack of access to the nodes. Various aspects of hardware and software 
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design are involved in reducing the power consumption. A power consumption goal of 10µW 

for one transmission per 8 hours was chosen for the purpose of this research based on an 

average theoretical lifetime of >50 years on 2 AA batteries (although it should be noted that 

the current shelf life of the batteries is significantly shorter than 50 years). Efforts to minimise 

the power consumption of the developed node through hardware and software design are 

further discussed in detail in the next section of this chapter. 

3.2.2 Power consumption 

Energy resources for wireless sensor networks are usually very limited and in some cases 

non-replenishable. This makes the power consumption efficiency of the nodes extremely 

critical in determining their operational life and therefore suitability for infrastructure 

monitoring. In particular low power consumption is crucial for WUSNs in pipeline 

monitoring.  

In multi-hop sensor networks, application level nodes can be divided into data generators and 

data routers (Akyildiz and Vuran, 2010). Data generators are solely responsible for data 

collection from the sensors at defined time intervals (or in the case of an interruption) and 

transmission of these data to the neighbouring/master node. In addition to the responsibilities 

of the data generators (data collection and transmission), data routers are also responsible for 

relaying the data from the neighbouring nodes forward to the next node/master node. This is 

crucial for WUSNs as the transmission range of the nodes is relatively short (approx. 3-5m). 

A complete understanding of the operation of the nodes and the power consumption of 

different components at different steps during the duty cycle of the node is required in order 

to be able to minimise the power consumption. A typical routine for a node in infrastructure 

monitoring can be divided into four or five modes (depending on their role in the network): 
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measurement, processing, receiving, transmission and sleep. During each of these modes 

certain components of the node are active, which makes the power consumption of these 

modes different from each other. Moreover, the duration of each mode is different and is 

dependent on design factors such as measurement frequency and processing speed. These 

modes and the major tasks undertaken at each mode are illustrated in Figure 3.6. 

 

Figure 3.6 WUSN operation modes and the major tasks undertaken at each mode. 

During the measurement period the MCU turns the sensors on, initialises them and reads their 

output, based on the output type via ADC/Digital communication. During this mode these 

values are stored as variables in the volatile memory of the MCU. The power consumption of 

this mode is mainly dependent on the power consumption of the sensors, settling time of the 

sensors and processing speed. Therefore, the power consumption of this mode can be reduced 

by choosing faster sensors with lower power consumption and optimising the MCU 

processing speed via firmware. The processing speed of the MCU should be optimised for the 

application, as higher processing speed will reduce the duration of the processing; however 

this will increase the power consumption of the MCU. During the processing stage, the MCU 

analyses the data from the sensors and compares it to the historic data. The processing speed 

is the main parameter affecting the power consumption and as mentioned, it should be 

optimised in order to achieve the lowest power consumption at this stage. The voltage at 
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which the MCU core is operating is also crucial in determining the power consumption of the 

MCU. The effect of operating voltage is further discussed in Section 3.3.4 of this chapter. The 

reception mode only exists in the data router nodes at this stage; the MCU turns on the 

receiver at a synchronised time and waits for data from the other nodes (based on the routing 

protocol). These data are then processed if necessary and stored in the volatile memory of the 

MCU. The power consumption at this stage is highly dependent on the power consumption of 

the transceiver in receive (RX) mode and the duration of time that the transmitter needs to be 

on. This duration is affected by time synchronisation accuracy, length of packets, bandwidth, 

start-up time of the transceiver and internal transfer speed (between the MCU and 

transceiver). In the transmission mode the MCU turns on the transmitter (in the case of the 

data generator) and transfers the processed data to the buffer of the transceiver; these data 

packets are then transmitted by the transceiver. Data router nodes append the data generated 

locally to the relayed data; therefore these will have a longer message length. The length of 

the message is proportional to the number of sensors/required data and number of relayed 

messages. Factors affecting the power consumption are similar to those of the reception 

mode. During the sleep mode the MCU turns off all the unnecessary components and internal 

modules of the node and solely performs the critical tasks required for the operation of the 

node. After entering the sleep mode, the MCU starts a timer in order to keep the time and 

wakes again based on the predefined synchronised duration or interrupts (which can be 

caused by sudden events). The power consumption in this mode is dependent on the time 

keeping method, the power consumption of the MCU during the sleep mode and the length of 

the sleep period. The length of the sleep period is determined by the measurement frequency. 

The power consumption of the node during sleep is very low compared to the other modes of 

operation; however, in pipeline monitoring nodes will spend most of their time in sleep mode 
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as the data is commonly only measured every 15 minutes and transmitted daily. Therefore, the 

total energy consumed during sleep can be significantly higher than the energy consumed 

during the other modes combined. This makes the measurement frequency a very important 

factor in overall power consumption of the node. Table 3.1 summarises factors affecting the 

power consumption of the node during each operational mode. 

Table 3.1 Main factors affecting the power consumption during different operational modes 
of each node. 

Operation mode Factors affecting the power consumption 
Measurement • Sensors’ consumption 

• Sensors’ settling time 
• Processing speed 

Processing • Core voltage 
• Processing speed 

Reception • Transceiver power consumption in RX mode 
• Synchronisation accuracy 
• Number of hops 
• Length of message 
• Bandwidth 

Transmission • Transceiver power consumption in TX mode 
• Bandwidth  
• Length of message 
• Buffering speed 

 
Sleep • MCU power consumption during sleep 

• Length of sleep period (measurement frequency) 
 

The average power consumption of the node !!" depends on the power consumption and 

duration of all of the operational modes of the node. This can be calculated using Equation 

(3.1). All units are in seconds and Watts. 

 !!" =
(!!×!!) + !!"×!!" + ((!!"!#$ − !!" − !!)×!!"##$)

!!"!#$
 

(3.1) 

Where !! is the duration of measurements and processing, !! is the power consumption of 

the node during measurement and processing, !!" is the duration for which the transmitter is 
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on, !!" is the power consumption of the node during transmission mode, !!"##$ is the power 

consumption of the node during sleep mode and !!"!#$ is the transmission interval.  

As mentioned earlier, the measurement frequency plays a major role in determining the 

overall power consumption of the unit. As the measurement frequency decreases, the 

percentage of the time in which the node spends in sleep mode increases and therefore the 

overall average power consumption decreases, until the point that the average power 

consumption is mainly determined by the power consumption of the nodes in sleep mode. 

Figure 3.7 illustrates the theoretical average power consumption of a node based on the 

measurement frequency. 

 

Figure 3.7 Theoretical power consumption of the node based on measurement frequency 

Based on the assumed power consumption during sleep of 3.3µW and operational power 
consumption of 75mW (operational duration of 500ms). 

As can be clearly seen from Figure 3.7, the measurement and transmission frequency greatly 

affect the overall power consumption of the node. This effect is especially significant at small 

measurement intervals (<1 hour). In this region an increase in the measurement and 

transmission internal results in a sharp decline in power consumption. Moreover it can be 
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seen from this figure that the effect of measurement and transmission frequency on power 

consumption is significantly reduced at longer measurement intervals. In these regions the 

average power consumption is mainly based on the power consumption of the node during 

sleep mode. In pipelines, faults usually develop slowly; this enables the pipeline monitoring 

system to operate at lower measurement frequencies. If more frequent measurements are 

required, the node can measure at a different rate to the transmission rate. This will increase 

the sampling frequency without affecting the power consumption significantly. In this 

measurement regime the node will take measurements at a more frequent rate than its 

transmission rate, store the data in its memory and transmit all the information 

simultaneously. This provides a major saving in power consumption of the node, compared to 

transmitting at the same time as the measurement is taken. However, this will also increase 

the message length at the time of transmission, which will increase the transmission duration 

and increase power consumption. Equation (3.1) can be modified to incorporate the effect of 

this regime on power consumption. Equation (3.2) can be used for calculating the average 

power consumption of the node based on different transmission and measurement rates. 

!!" =
(!!×!!×!) + (!!" + !×!!)×!!" + ((!!"!#$ − (!!" + !×!!) − (!!×!))×!!"##$)

!!"!#$
 

(3.2) 

 

Where !! is the extra time burden on the transmitter caused by each measurement and n is the 

number of measurements being taken between each transmission intervals, which can be 

calculated by Equation (3.3), where !!" is the measurement interval. 

 ! = !!"!#$
!!!

− 1 (3.3) 

The measurement frequency and transmission interval are determined in the firmware of the 

node and need to be set based on the application requirement. Figure 3.8 illustrates the effect 
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of the measurement frequency on power consumption based on Equation (3.2) for different 

transmission intervals.  

 

Figure 3.8 Effect of measurement interval on average power consumption 

As can be seen from this figure, the effect of the measurement interval on power consumption 

is very similar to the effect of the transmission interval. The overall power consumption of the 

node is greatly affected by shorter transmission interval and is less affected by longer 

intervals (>2hours). It can also be seen from this figure that higher measurement frequencies 

are achievable without affecting the power consumption by increasing the transmission 

interval. The node consumes approximately 14µW at a transmission interval of 1 hour and 

measurement interval of 52 minutes, but by increasing the transmission interval to 2 hours the 

measurement interval can be decreased significantly to 19 minutes. The choice of 

measurement and transmission interval is highly affected by the application in which the 

nodes are deployed (for example, power availability and criticality.). In this research a 

transmission interval of 8 hours with a measurement interval of 30 minutes is selected for 
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pipeline monitoring, due to the mentioned scarcity of power and slow changing nature of the 

pipes.  

In addition to understanding the effect of measurement and transmission intervals on the 

average power consumption of the node, it is also important to analyse and compare the 

power consumption of the node at each of its operational modes during one cycle. It is also 

important to analyse the total energy consumed by the node at each mode. This will assist in 

identifying the big consumers (components) and the modes with the highest energy 

consumption. Figure 3.9a, illustrates the power consumption of the node during each mode, 

while Figure 3.9b illustrates the total energy consumed by the node during each mode for one 

full cycle (2 hour transmission interval). 

 

Figure 3.9 (a) Power consumption of the node during each mode, (b) Total energy consumed 

by the node during each mode for one full cycle (2 hour transmission interval). 

As can be seen from this Figure 3.9a, The “Transmission and Reception” mode has the 

highest power consumption compared to the other modes of operation and the  “Sleep” mode 

has the lowest power consumption (<1%). However, as it is shown in Figure 3.9b, the “Sleep” 

mode consumes the highest energy for a full cycle. This is due to the fact that the nodes spend 

most of their time in the “Sleep” mode compared to the other operational modes. For the 

purpose of increasing efficiency and decreasing power consumption of the node, the overall 
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energy consumption of the nodes should be considered. The overall energy consumed by the 

nodes can be minimised by reducing the duration and decreasing the power consumption of 

the node during each mode. As mentioned previously, this can be done via the hardware and 

software design of the nodes. This is discussed further in the following sections in this 

chapter. 

3.2.3 Hardware design 

During this research an ultra-low power wireless sensor node was designed specifically for 

monitoring a water distribution pipeline. Throughout the design process of the node, all of the 

mentioned requirements and limitations were taken into account in order to produce a suitable 

system for this application. The design and development of the node went through four 

iterations, with each iteration improving the performance characteristics of the node. The 

main objective of the design was: 

• Ultra-low power consumption (<10µW) 

• Good RF performance (min 0dBm) and flexibility in operational frequency 

• Adequate connectivity (for interfacing sensors) 

• Low cost 

• Small size 

Table 3.2 shows the main limitations and improvements of each of the iterations of the node. 

Versions 0.5 and 1.0 of the node are described briefly in the following sections of this 

chapter, as they were not used in field trials. However, the design and development of 

versions 1.5 and 2.0 are described in detail as these were used extensively during the research. 
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Table 3.2 Comparison of the limitations and improvements made for each of the iterations of 

the node 

 Version 0.5 Version 1.0 Version 1.5 Version 2.0 
Main 
Objective 

Proof of concept PCB based and more 
tailored to the application 

Smaller size and 
lower RF frequency 

Field ready node 

Limitations • High power 
consumption 

• Not reliable 
• High RF 

frequency 
• High 

operating 
voltage 
 

• High RF frequency 
• Low number of 

input/output 
terminals 

• Size 
• Poor RF performance 

• Not ruggedized 
• Poor analogue 

performance 
• Rigid 

management  

• Average 
analogue 
performance 

• Difficult 
assembly 

Improvements 
over previous 
version 

N/A • Significantly lower 
power consumption 

• More reliable PCB 
based circuit 
 

• Lower RF 
frequency range 

• Smaller 
dimensions 

• Better RF 
performance 

• External 
antenna 
connector 

• Lower power 
consumption 

• Flexible power 
management 

• Improved 
analogue 
performance 

• Increased 
reliability 

 

Version 0.5 

This was an initial prototype and was used as a proof of concept to help establish the required 

processing performance and connectivity requirements of the node. This node was solely used 

for laboratory tests. The design of this node was based on the mbed platform, which is a 

development board based on NXP LPC1768 (Cortex-M3 core) microcontroller. A 2.4 GHz 

transceiver module (RFD21733) was used as the transceiver of the node (for a photo of this 

version of the node see Appendix A). Table 3.3 shows the specification of version 0.5 of the 

node. 
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Table 3.3 Specification of version 0.5 of the node 

Specification   

Microcontroller NXP LPC1768 

Speed  96 MHz (32-bit) 

Ram  32 KB 

Program memory 512 KB 

A/D ports 6 

A/D resolution  12 bit 

Interface USB, 2×SPI, 2×I2C, 3×UART, CAN 

Transceiver  RFD21733 

RF frequency 2.4 GHz 

RF output power 0dBm  

Antenna/Antenna gain SMD, 2.5 dBi 

Input voltage/ MCU voltage 4.5-9V/3.3V 

Average power consumption 300 mW 

 

The power consumption of this module was significantly higher than the target of 10µW due 

to the high power consumption of the mbed module and lack of deep sleep mode in the 

firmware. In addition, the program memory and Ram were both higher than the requirements 

of the node for conducting the basic functions mentioned in previous sections. The transceiver 

module of this node was solely tested in open air and found to be suitable for the purpose of 

the nodes. However, based on the literature, lower frequencies of transmission were preferred 

(Chaamwe et al., 2010). The inability of the mbed to operate in voltage ranges lower than 

4.5V was another limitation of this node. The power consumption of the node is greatly 

affected by the voltage at which it operates; this makes lower voltage circuitry more 

favourable in designing the node. However, the operating voltage of individual components, 

such as the microcontroller, sensors and transceiver, limits the minimum voltage at which the 

nodes can operate. The subsequent version of the node was designed and developed based on 

findings from this version of the node and is discussed in the following section. 



DESIGN AND DEVELOPMENT OF WIRELESS UNDERGROUND 
SENSOR NETWORK FOR PIPELINE MONITORING 

 

 73 

Version 1.0 

Version 1.0 of the node was the first design that was developed on a PCB. This version of the 

node was a major step change from the previous version in various aspects of performance 

and specification (for a photo of this version of the node see Appendix A). This version was 

designed based on the requirements of a node for monitoring pipelines, which were 

mentioned earlier in this chapter. Minimising the sleep power consumption of the node was 

one of the main objectives for the design of this node. As mentioned earlier, the 

microcontroller of the node plays a major role in the overall power consumption and 

performance of the node. Table 3.4 shows the specification of version 1.0 of the node.  

Table 3.4 Specifications of version 1.0 of the node 

Specification   

Microcontroller Microchip 16LF1933 (XLP) 

Speed  32 MHz (8-bit) 

Ram  256 Bytes 

Program memory 7 KB 

A/D ports2 4 

A/D resolution  10 bit 

Interface 2×SPI, 2×I2C, 1×UART 

Transceiver  RFD21733 

RF frequency 2.4 GHz 

RF output power 0dBm  

Antenna/Antenna gain SMD, 2.5 dBi 

Input voltage/MCU voltage 3.3-6V/3.3V 

Average power consumption 87.4 µW 

 

                                                
2 This is the number of A/D channels which are accessible based on the design of the node 
and does not reflect the total number of the A/D channels of the microcontroller 
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In this version of the node a low power 8-bit Microchip MCU was used for its low power 

consumption during active and sleep mode. This MCU features Microchip nanoWatt XLP 

technology. This enables the MCU unit to have very low power consumption (<1µA @1.8V) 

during sleep mode with an active watchdog timer. As was mentioned earlier in this chapter, 

during the sleep mode, due to its very low duty cycle required for pipeline monitoring, the 

MCU cuts the power to all the unnecessary components (transceiver and sensors) in order to 

conserve energy. In this version of the node a MOSFET switching circuitry was used to 

control the power to the transceiver module.  

Another source of loss of energy is the power conversion circuitry. As the node spends most 

of its time in sleep mode it is crucial that the power management circuitry of the node has low 

quiescent current. In this version of the node a low quiescent current CMOS low dropout 

(LDO) voltage regulator was used in order to regulate the voltage from the power supply to a 

fixed 3.3V for the MCU and other components. The limitations of this version of the node 

were its size, reliability, fixed RF frequency, fixed power management regime and low 

number of Input/output terminals. These issues are addressed in the next iteration of the node, 

which is described in the following section of this chapter.  

Version 1.5 

Limitations of the previous version (Ver.1.0) of the node, such as relatively high power 

consumption, high fixed RF transmission frequency and low number of I/O, prevented it from 

being deployed for initial trials at the University of Birmingham (described in Chapter 4). 

Version 1.5 of the node was designed to improve on these limitations. This version of the 

node was designed based on a single layer PCB. However components were placed on both 

sides of the board in order to reduce its dimensions. Additionally, using a mixture of surface 
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mounted and through-hole components drastically reduced the physical dimensions of the 

node. Reduction in size, made the ruggedized packaging of the nodes easier and in turn made 

them more suitable for the initial trials. The PCB of this version of the node was fabricated 

using the wet etching technique. Figure 3.10 illustrates the development stages of node 

version 1.5 and the completed node. 

 

Figure 3.10 Node version 1.5’s development stages a) photoresist development b) copper 

etching c) photo resist removal d) finished node 

The transceiver used in the previous versions of the node had limitations such as high 

transmission frequency, low RF power, lack of connectivity to an external antenna and 

narrow operating voltage. For version 1.5 of the node a new family of transceiver module 

(ER400TRS and ER900TRS) was selected to address some of these limitations. The main 

features in choosing the new transceiver were availability of the module in multiple frequency 

ranges and good RF performance. The possibility of attaching an external antenna (max 50Ω 

load) was also another improvement compared to the previous version of the node. This 
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capability significantly improved the RF performance of the node and made it feasible to be 

used in initial trials, which are discussed in later chapters. Table 3.5 illustrates the 

specifications of version 1.5 of the node. 

Table 3.5 Specification of version 1.5 of the node 

Specification   

Microcontroller Microchip 16LF1933 (XLP) 

Speed  32 MHz (8-bit) 

Ram  256 Bytes 

Program memory 7 KB 

A/D ports3 6 

A/D resolution  10 bit 

Interface 2×SPI, 2×I2C, 1×UART 

Transceiver  ER400TRS-02/ER900TRS-02 

RF frequency 433-4 MHz/868-9 MHz 

RF output power +10dBm/0dBm 

Antenna/Antenna gain External/ 2.5 dBi 

Input voltage/MCU voltage 3.6-6V 

Average power consumption 42 µW 

 

Another improvement in the design of this version of the node was an increase in the number 

of I/O ports. This improvement allowed multiple sensors to be attached to the node 

(temperature sensors and pressure sensors). Additionally, the power consumption of this 

version of the node was significantly reduced (≈50% less than in the previous version), due to 

lower power consumption of parts, ability to turn external components completely off and 

firmware optimisation, which is described in detail in Section 3.34. 

                                                
3 This is the number of A/D channels which are accessible based on the design of the node 
and does not reflect the total number of the A/D channels of the microcontroller. 
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Despite all the improvements in this version of the node during initial trials some limitations 

were found to still persist, which meant there was a need for a further version of the node to 

address them. The main limitations of this version of the node were power consumption, 

limited input voltage range and reliability for the field trials. Version 2.0 of the node was 

designed and developed to address these issues and is discussed in detail in the next section of 

this chapter. 

Version 2.0 

This was the final version of the node developed during this research. The main objective 

during the design process of this version of the node was to develop a node that was capable 

of being deployed in the field trials. Table 3.6 illustrates the specification of this version of 

the node. 

Table 3.6 Specification of version 2.0 of the node 

Specification   

Microcontroller Microchip 16LF1827 (XLP) 

Speed  32 MHz (8-bit) 

Ram  384 Bytes 

Program memory 7 KB 

A/D ports4 6 

A/D resolution  10 bit 

Interface 2×SPI, 2×I2C, 1×UART 

Transceiver  ER400TRS-02/ER900TRS-02 

RF frequency 433-4 MHz/868-9 MHz 

RF output power +10dBm/0dBm 

Antenna/Antenna gain External/ 2.5 dBi 

Input voltage/MCU voltage 1.8-16V 

Average power consumption 2.2 µW 

                                                
4 This is the number of A/D channels which are accessible based on the design of the node 
and does not reflect the total number of the A/D channels of the microcontroller. 
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One of the issues of the previous node was the lack of a robust antenna connector. In the 

design of this version of the node, an SMA antenna connector was added to the node to 

address this issue. This enabled the node to connect to various types of antenna (50Ω load) in 

order to improve its RF performance and range. In addition, this enabled the antenna to be 

placed at a different location to the node (for example at the ground surface).  

The analogue performance and noise-related issues were another limitation of the previous 

versions of the node. A ground plane was included in the design of this version to reduce the 

noise due to cross talk and interference. In addition to reduction in noise, ground planes 

facilitated routing of the PCB by providing immediate access to the ground terminal and 

eliminating the need for complicated routing for the ground pins of the components. 

Programming the MCU of the nodes required access to five of the MCU pins5; in the previous 

version of the node these pins were connected to a straight pin header, which allowed the 

programmer to be directly connected to the node. This proved to be adequate for the purpose 

of the laboratory trials. However, the exposed nature of the pin header and lack of rigidity in 

this method of connection made it unsuitable for this version of the node, which was focused 

on field trials and reliability. Therefore, a mini USB port was adopted to connect the 

programmer to the MCU of the node. This allowed the programmer to be easily connected to 

the node and is significantly more reliable than the open pin header connectors. 

It was apparent from initial experiments on the previous version of the node that in order for it 

to be suitable for field trials, the PCB of the node needed to be more reliable and rugged. 

Therefore, the manufacturing process of this version of the PCB was outsourced to a 

commercial PCB manufacturing facility. (The researcher carried out all other stages of the 

                                                
5 MCLR,VDD,VSS, 
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design, development and assembly of the node.) This made more complex routing and 

layering (4 layered PCB) feasible for this version of the node; which in turn allowed the node 

to have more features and components without affecting its footprint. The PCBs of this 

version of the node also have a protective layer over the conductive traces (solder mask), 

which made the nodes more reliable and suitable for field trials by providing more resistance 

towards corrosions environmental damage. Figure 3.11 illustrates the version 2.0 of the node. 

 

Figure 3.11 Different views of version 2.0 of the node. a) front, b) back without transceiver, 
c) back with transceiver   

The main change in the design of this version of the node compared to previous versions was 

the design of the power management module. In previous versions of the node a fixed LDO 

was used to regulate the input power from the source (i.e. battery). The total power 

consumption of the node is directly related to the operating voltage of the MCU and other 

components of the node. For this version of the node a multi-step power regulator module was 

designed and used. The power regulator of this version has four subsystems; each of the 

subsystems was capable of a range of input voltage and a single/dual fixed output voltage. A 

switch on the back of the node allowed the selection of each of these subsystems based on the 

application and available power source. Figure 3.12 illustrates the schematic of the power 
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management module of this version of the node. The flexibility of the power management 

module in this version of the node allowed it to be adapted to various power supplies in order 

to maintain high efficiency.  

 

Figure 3.12 Schematic of the power regulator module for version 2.0 of the node 

Mode 1 of the power regulator module was designed to be connected to input voltages 

between 2.0-5.5V. In this mode the regulatory circuit was composed of a 1.8V LDO voltage 

regulator and basic ripple smoothing circuitry. In this mode the MCU of the node operated at 

1.8V, which enabled the node to have low power consumption during the sleep mode. The 

minimum operating voltage of the sensors and the transceiver of the node was higher (3.3V); 

therefore in this mode they will not be able to operate from the voltage supplied by the 

regulator. Therefore, the power for the transceiver and other sensors was supplied directly by 

the power source (i.e. battery). Mode 1 was mostly suited to low voltage power supplies (3.3-

5V), for example Li-Ion batteries and solar cells. 

The design of mode 2 of the power regulator was similar to mode 1 with a different set 

voltage output. In this mode the node was capable of accepting input voltages of 3.3-16.0V. 
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The output voltage of the regulator was fixed at 3.3V and all the components of the node were 

powered via the output of the regulator. This version was mostly suited to power supplies 

with a higher input voltage (5.5-16.0V), for example piezoelectric harvesters. 

In mode 3 of the power management module the power was directly supplied via the power 

input terminals. In this mode the node only performed passive smoothing (shunt capacitors) 

on the input power supply to make it more stable. This mode allowed the power management 

to be carried out externally and was mostly suited to power supplies with integrated power 

managements or special power management requirement, for example, thin film batteries. 

Mode 4 of the power regulator was designed to provide two constant voltage supplies of 1.8V 

and 3.3V. This enabled the MCU to operate at its lowest operating voltage while providing a 

stable output voltage for the sensors and transceiver. In this mode the input supply could be in 

the range of 2.5-16.0V. This enabled the node to operate with higher voltage power supplies 

while maintaining low power consumption during sleep. A drawback of this mode compared 

with mode 1 was an increase in the total power consumption of the node due to an increase in 

quiescent consumption of the additional LDO used in this mode. 

 

3.2.4 Firmware design 

Hardware components of the node greatly affect overall power consumption and 

performance; however, another main component of the nodes’ design that can greatly 

improve the performance is their firmware. The firmware of the nodes is the program that is 

stored in the MCU. It contains a set of instructions to control different components of the 

nodes and process the data gathered by the node. During this research the firmware of the 

nodes, with an exception of node version 0.5, were compiled by MikroC Pro compiler 
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(MikroElektronika, Belgrade), which is a dedicated C compiler for the PIC microcontroller 

family. The firmware of node version 0.5 was developed using an online C compiler, which is 

specifically designed for mbed processors.  

The design of the firmware of the nodes was highly dependent on the specification of the 

hardware components and their performance. Digital sensors communicate with the node via 

different digital protocols, for example I2C, UART, SPI and one wire serial. Therefore, the 

firmware of the node will change based on the types of the sensors which are connected to the 

node. The MCU of the node and its capabilities also greatly affect how the firmware is 

designed and developed. Processing power, sleep instructions and communication speed are 

the main MCU parameters which affect the firmware design and performance. These are 

further discussed in the later parts of this chapter. 

As was shown in Figure 3.6 the node goes through each of the main operational modes and 

performs the tasks required at each mode linearly and then repeats the cycle. The firmware of 

the node is responsible for the order and duration of each of the operations. A detailed 

description of each of the steps carried out by the firmware of the node is as follows: 

1. When the node is initially powered, the clock frequency, I/O settings, A/D settings and 

interrupts are set up based on the firmware requirements. 

2. Global variables and counters used in the program are defined and initialised. 

3. A sequence of 5 blinks is performed on the green heartbeat LED to indicate the correct 

initialisation of critical parameters. 

4. Temperature and pressure sensors connected to the node are powered up via a 

MOSFET. 

5. Settling time is allowed for the sensors to reach a stable state. 
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6. Measurements from the sensors are taken by the MCU based on the communication 

type between the node and sensor (Analogue/Digital). 

7. All sensors are powered down to conserve energy. 

8. Data conversion and calibration is carried out on the data from the sensors in order to 

transform the sensors’ raw output into a usable form. 

9. The results are compared with the adaptive thresholds for each parameter and flags are 

set if necessary. 

10. The results and flags are packaged together with the node’s unique identifier and 

transmission identifier. 

11. The UART module of the MCU is initialised. 

12. The transceiver module is powered on. 

13. A short delay is allowed for the transceiver and the UART module to stabilise. 

14. The transceiver stays in listening mode for a set period of time waiting for data from 

other nodes (only applicable for data router nodes). 

15. The received data is processed and if required (in case of major flags) is packaged 

with local data (only applicable for data router nodes). 

16. The packaged data is transferred to the buffer of the transceiver.  

17. Data is transmitted by the transceiver. 

18. The transceiver is powered down completely to conserve energy. 

19. A Watch Dog Timer (WDT) registry is set for the desired period of time and the timer 

counter is cleared. 

20.  All unnecessary internal modules of the MCU are disabled. 

21. Sleep instructions are performed in order to put the MCU in deep sleep with a WDT 

wake up. 
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22. The MCU is woken up from deep sleep by the WDT. 

23. The timer counter is checked; if the correct sleep time is reached the program goes to 

step 4, if not, the counter is increased and the program goes to step 21. 

Reduction in overall “ON” time and the accuracy of timings in order to maintain 

synchronization with other nodes are the two main challenges in the design of the firmware 

for WUSN. There are also other challenges in the design of the firmware of the nodes, for 

example, efficient data processing algorithms and data security; however they are out of the 

scope of this research. A study into the parameters affecting the duration of “ON” time and 

the steps taken to minimise them, a comparison of different timing methods for node 

synchronisation and the design, development of the proposed timing method are described in 

the next section of this chapter. 

Sleep power consumption and timing 

As mentioned previously, nodes spend most of their time in the “Sleep” mode. Therefore the 

energy consumed at this mode is a large proportion of the total energy consumed by the node 

and reduction in sleep power can greatly affect the overall power consumption of the node. 

The main factors affecting the power consumption during the sleep mode are the method of 

timing and the voltage of the power supply. 

The timing accuracy of the nodes is one of the main challenges in the design of the firmware. 

In order for the whole network to be able to communicate efficiently a timing mechanism is 

required to synchronise all, or a section of, the nodes in the network together. This allows the 

node to wake up from sleep at a certain time and wait for the transmission from its 

neighbouring node. Various methods can be used for synchronization of the nodes (Akyildiz 

and Vuran, 2010). The main methods used for time synchronisation between the nodes are: 
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real-time clock, “Wake on Radio”, RC timing circuits, GPS, MSF radio signal and internal 

timers. These methods have very different properties, which makes them suitable or 

unsuitable for a specific application, and are discussed below.  

Real-time clocks (RTC) are an accurate timing method used in many time-sensitive 

applications. In this method extra timer circuitry is responsible for absolute time keeping. The 

node is activated from deep sleep on the occurrence of the predefined alarm produced by the 

RTC. Some MCU units contain an internal real-time clock, which removes the need for 

external circuitry. However, RTCs are most commonly in a separate integrated circuit (IC) 

form factor. In addition to the requirement of extra circuitry, usage of RTCs will increase the 

power consumption of the node during sleep as all the RTC circuitry needs to be active in 

order to keep time. 

“Wake on radio” is another method of synchronisation and timing used in WSN (Akyildiz and 

Vuran, 2010). In this method the nodes enter the sleep mode and will wake up upon receiving 

a signal via its transceiver. Unlike the RTC method “Wake on radio” based nodes do not need 

extra circuitry. However, in order for the transceiver to be able to receive the signal and wake 

up the rest of the system from sleep, it needs to be in a semi-active mode (powered but not 

transmitting). This results in a significant increase in power consumption during the sleep 

period compared to other methods.  

A resistor capacitor (RC) circuit can be used to control the timing of the sleep period and  

provide an interrupt for the MCU to wake it up from sleep (Microchip Technology Inc., 

2009). In this method the duration required for the capacitor to charge/discharge is used for 

relative timing (timing restarts every cycle) of the sleep period. This duration is mainly 

determined by the resistivity and capacity values of the circuit. Circuitry for this method 
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solely contains passive components (resistors and capacitors) and therefore can potentially 

have very low power requirements. However, inaccuracies in capacitance and resistivity 

values of the parts (commonly 1-10% part to part variation) can lead to large inaccuracies in 

timing. 

A GPS time stamp can be used in order to synchronise wireless sensor nodes with high 

accuracy (Elson and Römer, 2003). However for the node to be able to receive the GPS signal 

they need to be equipped with GPS modules and have a separate GPS antenna. These 

requirements can significantly increase the power consumption and the cost of the nodes. 

Moreover GPS time synchronisation is mainly suited for terrestrial WSN due to signal 

reception issue in covered areas.  

MSF time synchronisation method is based on a highly accurate, low frequency (60 kHz) time 

signal that is broadcasted throughout the UK and large sections of northern and Western 

Europe. Similar to GPS time synchronisation, in this method nodes require a special receiver 

module in order to be able to lock their timer to the broadcasted signal (Ikram et al., 2010; 

Chen et al., 2011). Due to lower carrier frequency of the MSF signals they penetrate into 

buildings and covered areas easier than GPS signals. 

Internal timers can potentially be used for the purpose of timing and synchronisation in WSNs 

(Microchip Technology Inc., 2009). Microcontrollers commonly have multiple internal timers 

running at different frequencies. These timers are mainly used within the firmware of the 

MCU to control time related tasks (for example pulse generation/detection, delay timing and 

baud rate control). The accuracy of these timers greatly depends on the MCU’s manufacturing 

specifications and the operational conditions of the MCU (for example temperature and 

voltage stability). A Watchdog timer (WDT) is a type of timer that is mainly used for fault 
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detection (also known as Computer Operating Properly, COP timer) in microcontroller-based 

systems. WDTs are commonly controlled by two separate registers (configuration and counter 

value). The configuration register is used for setting the timer duration and turning the WDT 

ON/OFF. The counter register holds the value of the counter and resets every time the WDT 

is cleared or the maximum value is reached. When a WDT is used for fault detection within 

the system, the MCU regularly resets the WDT before it reaches its maximum value. A WDT 

generates a system reset if a fault happens in the system and the MCU is not capable of 

resetting the WDT before it reaches its maximum value. This will ensure that software-related 

problems (freezes and timing issues) are solved automatically. This feature is extremely 

important in applications where the system is not easily accessed and therefore cannot be reset 

manually. The WDT feature of an MCU usually has a lower power requirement compared to 

other internal timers and can run during the sleep mode. In this research a method of relative 

timing based on an internal Watchdog timer of the MCU is proposed for WUSNs. A 

Watchdog timer can be configured to control the duration of the sleep period. In this method 

the duration of the WDT is initially set to a short period (for example 1s) for the “Active” 

period of the node and is later cleared and set to the desired duration of the sleep period just 

before the node enters the sleep mode. This results in the WDT operating as a fault detection 

timer during the “Active” period and as a sleep timer during the sleep period. During the sleep 

period, the MCU will not be able to clear the WDT counter register and therefore the WDT 

will generate a reset signal at the end of its predefined duration. This reset signal, however, 

will only bring the MCU out of sleep mode and not completely reset the MCU. This will 

allow the firmware to continue its normal operation from before the point that it had entered 

the sleep period. Although some of the MCUs feature extended Watchdog timers, the 

maximum duration of these timers are commonly shorter (approximately 4 minutes) than the 
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required sleep period for a WUSN (15 minutes). Creating a counter and loop in the firmware 

and re-entering the “Sleep mode” until the desired duration of sleep is reached can solve this 

issue. This method can provide adequate accuracy for a single-hop network, as the incoming 

data is time stamped by the mother node at the time of logging.  

Another factor which greatly affects the power consumption of the node during the sleep 

period is the supply voltage. The sleep power consumption of version 2.0 of the node at 

different supply voltages was measured in order to understand the relationship between the 

supply voltages and the sleep power consumption. Due to the extremely low currents during 

the sleep mode a precision desktop multi-meter was used to measure the power consumption 

of the node. Figure 3.13 illustrates the effect of the supply voltage during the sleep period. 

 

Figure 3.13 Effect of supply voltage on power consumption during sleep for version 2.0 of the 

node 

As can be seen from this figure, power consumption of the node during the sleep period is 

highly dependent on the voltage of the power supply to the node. Doubling the supply voltage 
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from 2.5V to 5.0V will result in more than a seven times increase in the power consumption 

of the node. The sleep power consumption is independent from the operating frequency as the 

MCU is always operating at the lowest possible clock frequency (32KHz) during the deep 

sleep mode. 

Power consumption saving through “ON” duration reduction 

The duration of each of the firmware steps is dependent on: the processing power of the 

MCU, the settling time required for individual components, the internal communication speed 

between different modules and sensors, and the size of the data that is being processed and 

transmitted (which is also related to the number of sensors/readings). Although an increase in 

the processing speed of the MCU will result in a shorter processing time, it will also increase 

the instantaneous power consumption of the node. Similarly higher internal communication 

speed requires higher processing speed, which will in turn increase the instantaneous power 

consumption while reducing the time of that step. For the nodes to be able to operate 

efficiently a balance between these parameters is required. In this research, the effects of and 

relationships between these parameters on the performance of the node were carefully studied 

in order to determine efficient settings for the intended application of the nodes.  

Version 2.0 of the node is used in this research in order to measure the instantaneous power 

consumption and duration of each step of the firmware. In order to solely focus on the effect 

of the firmware on power consumption, mode 3 of the node was used during the measurement 

of power consumption of the nodes at different firmware settings. This is due to the fact that 

each of the modes of the power regulation had its own quiescent power consumption and 

efficiency, which was independent of the power consumption of the node (affected by the 

firmware). The node was powered by a regulated adjustable power supply, VS through a low 
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value (4Ω) resistor, R. Voltage across this resistor, VR was measured and stored by a “Labjack 

U6 PRO” data acquisition device (10KHz and 20KHz sampling rate). Figure 3.14 illustrates a 

schematic of the test circuit used for measuring the power consumption of the nodes. 

 

Figure 3.14 Schematic of the circuit used for power consumption measurements 

The total current of the circuit it can then be calculated by !!! . The supply voltage at the node 

Vn can be calculated by !! = !! − !! . The expected current of the circuit is small, 

consequently; it can be assumed that !! ≪ !!  and therefore, !! ≅ !! . Based on this 

assumption, the power consumption of the node Pn can be given by Equation (3.4). 

 !! ≅
!!
! ×!! (3.4) 

Equation 3.1 shows that the power consumption of the node is directly related to the supply 

voltage. Figure 3.15 illustrates the power consumption profile of the node (operating at 

!! = 3.5!) during one transmission cycle.  
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Figure 3.15 Power consumption profile of the node during one cycle (operating at 3.5V & 
0.5MHz) 

It can be seen in Figure 3.15 that the main steps of the firmware are clearly visible in the 

power consumption profile of the node. Moreover, the power consumption profile of the node 

helps to identify the most power hungry steps of the firmware. From this figure it can be seen 

that the transceiver buffering stage of the firmware consumes the most amount of energy 

compared to other stages of the firmware during the “ON” mode. This is greatly affected by 

the internal transfer speed and operational frequency of the node. 

Operational frequency of the MCU greatly affects the duration of the processing related 

stages. An increase in this frequency will result in shorter processing times and shorter steps. 

However, it will also increase the instantaneous power consumption of that step. In addition, 

an increase in frequency will allow higher transfer speeds between the MCU and the 

transceiver; which consequently reduces the duration of buffering (step 16 of the firmware). 

The power consumption of the node was measured at six different MCU frequencies, settings 

of 0.5, 1, 2, 4, 8, 16 MHz. The baud rate of the node at each MCU frequency setting was set 
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to the maximum stable baud rate that was achievable by the node. Table 3.7 shows the 

maximum baud rate at each frequency settings. 

Table 3.7 Internal baud rate setting at each MCU frequency step 

Test 
group 

MCU 
frequency 

MHz 

Max. stable 
baud rate 

1 0.5 2400 bps 
2 1 4800 bps 
3 2 9600 bps 
4 4 19200 bps 
5 8 38400 bps 
6 16 38400 bps6 

 

At each frequency mode the node power supply was varied from 2.5-5.0V in 0.5V steps in 

order to investigate the effect of the supply voltage on the power consumption.  Figure 3.16 

illustrates the effect of the voltage (Vs) on the power consumption profile of the node (MCU 

operating at 0.5 MHz). 

 

Figure 3.16 Comparison of the power consumption profile of the node at different operating 
voltages 

                                                
6 The maximum baud rate achievable at this frequency is limited by the maximum baud rate 
of the transceiver (38400 bps) 
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it can be seen from Figure 3.16 that the increase in supply voltage affected the power 

consumption of each step of the firmware differently (during the “ON” period). An increase 

in the supply voltage of the node mainly affects the power consumption of the stages related 

to the transceiver (initialisation, buffering and transmission) and the sensor measurement 

stage. This is mainly due to an increase in power consumption of the individual components 

(sensors and transceiver module). The supply voltage to the node largely affects the power 

consumption of the node during the sleep period. However, this is not visible from Figure 

3.16 due to the big difference in the amplitude of the power consumption during “ON” and 

“Sleep” periods.  

For the purposes of this research the total energy consumed during one transmission cycle 

(with an overall duration of one second) is used in order to compare the effects of different 

factors on the power consumption of the nodes. This is obtained by calculating the area under 

the power profile of the node during one cycle. Figure 3.17 illustrates the relationship 

between total energy consumed at each cycle and the supply voltage to the node.  

 

Figure 3.17 Total energy consumed during "ON" period vs. supply voltage at different 

operating frequencies 
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Figure 3.17 shows that supply voltage has a moderate effect on the total energy consumed by 

the node during the “ON” period. However, this effect is less significant than the effect shown 

in Figure 3.13 (sleep power consumption). In addition, the energy consumed by the node 

during the “ON” period is affected more by the supply voltage at lower operational 

frequencies compared to higher frequencies. This is because an increase in Vs will mainly 

increase the power consumption of the node during transmission and the measurement related 

steps of the firmware. However, the duration of these steps reduces as the operational 

frequency increases. Figure 3.18 illustrates the effect of the operation frequency on the power 

consumption profile of the node (Vs=3V). 

 

Figure 3.18 Effect of operating frequency on the power profile of the node 

Figure 3.18 shows that the total “ON” period duration of the node is significantly decreased as 

the operating frequency increases; this is due to faster processing capabilities of the MCU and 

a higher internal baud rate between the MCU and the transceiver. It can also be shown from 

Figure 3.18 that the instantaneous power consumption of the node during each step is 

marginally increased. This is mainly due to greater power requirements by the MCU at a 
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higher processing speed. The duration of the processing related stages of the firmware (sensor 

measurement, data processing) are greatly affected by the operational frequency of the node. 

The duration of the buffering stage of the firmware (step 16) is also indirectly affected by the 

operating frequency of the MCU; as the processing speed increases the maximum stable baud 

rate achievable between the MCU and the transceiver increases, which will reduce the 

required buffering time. This significantly affected the overall energy consumption of the 

node as this stage of the firmware has the second highest amplitude of instantaneous power 

consumption. In contrast to other steps (during the “ON” period) of the firmware, the duration 

of step 17 of the firmware (transmission of data through air) is fixed (approximately 50ms). 

This is due to the fact that this duration is only dependent on the over the air baud rate of the 

transceiver module (determined by manufacturer) and the length of the transmitted message 

(fixed in all tests). Figure 3.19 illustrates the relationship between the MCU frequency and the 

duration of the “ON” period. 

 

Figure 3.19 Active period duration vs. operational frequency 
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Figure 3.19 shows the total duration of the “ON” period is greatly affected by the operational 

frequency in the range of 0.5-4.0MHz. However, an increase in the MCU frequency beyond 

4.0MHz has a smaller effect on the duration of the “ON” period compared to lower frequency 

MCU ranges. This is due to the fact that as the MCU frequency increases, the fixed length 

steps of the firmware become the dominant proportion of the overall active duration. 

 Figure 3.20 illustrates the relationship between the total energy consumed during one test 

cycle and the MCU frequency at various supply voltages. 

 

Figure 3.20 Total energy consumed during “ON” period vs. operational frequency of the node 
at different supply voltages. 

Figure 3.20 shows that the total energy consumed by the node drops rapidly as the operational 

frequency of the node increases from 0.5MHz-4.0MHz. This is due to the reduction in 

duration of the buffering and other stages of the firmware. Energy savings from these 

reductions are a large percentage of the overall energy consumed and therefore have a great 

effect on the total energy reduction. It can also be seen from this figure that the effect of 

operational frequency on the total energy consumed is significantly reduced in a higher 



DESIGN AND DEVELOPMENT OF WIRELESS UNDERGROUND 
SENSOR NETWORK FOR PIPELINE MONITORING 

 

 97 

frequency range (4-16MHz). As mentioned previously, this is due to the fact that the total 

energy consumed is dominated by the “fixed length” steps of the firmware (stabilisation 

delays and transmission), and the energy savings based on the reduction in duration of other 

stages are a small percentage of the total energy consumed. The energy saving is especially 

small from 8Mhz-16MHz due to the fact that the internal baud rate between the MCU and the 

transceiver is limited at 38400 bps (at 8Mhz) and cannot be increased any further at 16MHz to 

reduce the buffering time.  

Figure 3.21 visualises the combined effect of operational frequency and supply voltage on the 

“ON” period energy consumption of the node. This helps to fully understand the effect of 

supply voltage and operational frequency and identify the most efficient firmware parameters 

for the node. 

 

Figure 3.21 Relationship between supply voltage, operating frequency and energy consumed 
during the "ON" period. 
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Figure 3.21 shows that the active energy consumption can be reduced by lowering the supply 

voltage and increasing the operational frequency of the node. The node consumes 

approximately 3.7mJ during the active mode at a supply voltage of 2.5V and operating 

frequency of 16Mhz. This is significantly lower than the maximum energy consumption of 

the node (32.8mJ) and further shows the importance of the firmware on the overall power 

consumption of the node. 

The power consumption of the node based on the results from these tests can be calculated for 

different measurement and transmission intervals. Figure 3.22 shows the average power 

consumption of the node at different measurement and transmission intervals (Vs=2.5 and 

MCU frequency at 16MHz). 

 

Figure 3.22 Actual average power consumption of node version 2.0 based on measurement 
interval 

Figure 3.22 shows the achieved average power consumption of the node is significantly lower 

than the objective of the research (10µW for 360 minutes interval). The node on average 
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consumes 5.25 µW for one measurement with a transmission every 15 minutes (a common 

time interval used in the water industry) and consumes only 1.31 µW for a transmission and 

measurement at 360 minutes interval. This ultra-low power consumption allows it to 

theoretically operate for over 100 years on the energy stored in two AA batteries7. This 

creates opportunities for new energy harvesting methods, which were conventionally not 

powerful enough for WUSNs to be feasible. 

3.3 Summary 

In this chapter the structure of the WUSN is described and the limitations that are imposed on 

them due their environment (underground) were identified. The most desirable specification 

for a successful WUSN for pipeline monitoring, based on these limitations and their final 

application, is identified as: 

• Ease of installation  

• Low cost 

• Long operational life (low power consumption) 

• Non-invasive to the structure of the pipe 

Low power consumption is the critical requirement of a WUSN for pipeline monitoring 

(Akyildiz and Stuntebeck, 2006; Akyildiz and Vuran, 2010). In order to fulfil this 

requirement, the hardware and software of the node has gone through four iterations. The 

process for designing and developing a WUSN for pipeline monitoring and the key features of 

each version of the node has been explained in this chapter. 

The sleep mode was identified as the main consumer of the total energy amongst different 

modes of the node. Using XLP microchip MCUs and a flexible power management system 

                                                
7 Typical battery capacity of 2000mAh and 1.5V 
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significantly reduced the sleep power consumption of the node. The effect of the supply 

voltage and operating frequency of the node on the overall power consumption was analysed. 

Results from these tests further validated the importance of firmware design and operational 

parameters on the power consumption of the node. These results showed that an increase in 

the operational frequency of the MCU will result in a reduction of the ON duration and 

consequently a reduction in overall power consumption. The final version of the developed 

node (version 2.0 with the latest firmware) for a WUSN had an extremely low average power 

consumption of 5.25 µW for one measurement and transmission every 15 minutes and 1.31 

µW for one measurement and transmission every six hours. This allows the node to have a 

long operational life on limited power sources or to be able to continuously operate 

continuously by harvesting energy from the pipe, the medium inside the pipe or the 

surrounding of the pipe. Ye and Soga (2012) present various methods of harvesting energy 

from water distribution systems. 

The next chapter of this thesis describes the design and development of sensors for pipeline 

monitoring based on the requirements of a WUSN. Additionally, the design and development 

of the data management systems for the collection and processing of the data are also 

described in the next chapter. 
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Overview of the chapter 

This chapter reports on the design and development of a non-intrusive pressure measurement 

system based on Force Sensitive Resistors (FSR). The theory of the FSR-based pressure 

measurement system is described and analysed using both analytical and numerical 

techniques. Moreover, a Finite Element Analysis (FEA) of the sensor assembly is presented 

and compared with the analytical technique. The proposed sensing system is also compared 

with a commercial pressure sensor in order to validate its performance. The feasibility of 

using temperature sensors in pipeline monitoring is also studied by conduction of laboratory 

trials.



DESIGN AND DEVELOPMENT OF NON-INTRUSIVE SENSORS FOR 
PIPELINE MONITORING 

 

 102 

4.1 Introduction 

Numerous parameters can be measured in order to monitor the structural and operational 

integrity of pipeline networks; such as pressure, soil water content, temperature, strain and 

corrosion. As mentioned previously, easy and non-intrusive installation (to the pipe) and 

adequate accuracy are the main characteristics of a suitable sensor for pipeline monitoring. In 

addition, due to the inaccessibility of the buried pipeline the sensors should have a long 

operational lifetime, similar to that of the pipe itself. The pipe internal pressure is one of the 

main parameters in pipeline monitoring, as any fault in the pipeline such as leaks, bursts or 

blockages will affect the internal pressure of the pipe (Misiunas, 2005). Various methods can 

be used to measure the internal pressure of a pipe; however, most of these methods require 

access to the medium inside the pipe via a valve (Misiunas, 2005; BenSaleh et al., 2013). This 

poses major limitations in the deployment of these pressure sensors, as they are more difficult 

to install and can potentially affect the structural integrity of the pipe. Pressure data can be 

used to provide useful information for leak detection in pipeline monitoring. An ideal pressure 

sensor for pipeline monitoring should have the following characteristics: 

• Be capable of measuring the pipes’ internal pressure fluctuation 

• Be easy to install (without need for complex tools or skills) and manufacture 

• Be non-intrusive to the structure of the pipe. 

In addition to the above-mentioned characteristics, a suitable pressure sensor should also be 

able to easily integrate with existing data loggers and sensor nodes. To achieve this, the 

output signal from the sensor should be in one of the common forms (analogue / standard 

digital) of sensor signals.  
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Following the above-mentioned characteristics, a novel non-intrusive relative pressure sensor 

assembly for pipeline monitoring was designed and developed. The theory of the operation, 

analysis and validation of the sensor are described in the following sections of this chapter. In 

addition, the feasibility of temperature measurement for assessing pipeline operational 

parameters (for example flow rate) and environmental parameters (surrounding temperature 

and pipe wall temperature) is studied and analysed in this chapter. 

4.2 Theory of operation of relative pressure sensor assembly 

The medium inside the pipe is often pressurised in order to provide a higher hydraulic head to 

transport the liquid across the network and ensure no foreign ingress into the pipe, which 

might contaminate the liquid inside. This will cause all pipes to expand to some extent, 

depending on the structural properties of the pipe. Moreover, any change in flow through 

obstruction, failure or pressure management will cause the pipe to expand or contract.  

Although this expansion or contraction is normally small it can be measured and used in order 

to monitor the pressure changes inside the pipe. Pressurised pipes can be modelled as thin 

walled pressure vessels with open ends. Hoop (circumferential) stress in the pressurised pipe 

when modelled as a thin walled cylinder can be calculated using Equation (4.1):  

 

0

0.=
t
rP

Hσ
 

 (4.1) 

Where Hσ  is the Hoop stress; P  is the internal pressure; 0r  is the initial radius of the pipe 

and 0t  is the initial pipe thickness. The corresponding Hoop strain Hε  can then be calculated 

by Equation (4.2), where E  is the Young’s modulus of the pipe material. 
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Since Hε  is the change in circumference ( Cδ ) divided by the initial circumference (C ), the 

change in circumference, Cδ  and radius, rδ , can be found by Equations (4.3) and (4.4).  
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From Equation (4.4) it can be shown that Et
r
.0

2
0

 is constant and therefore a change in pressure 

causes a linear change in radius. By attaching a restraining clip around the pipe this change in 

radius can be converted to contact pressure which then can be measured by a force sensor (i.e. 

Force Sensitive Resistor, FSR). The force sensor is attached to the pipe with a high strength 

stainless steel clip (i.e. Jubilee clip). The pressure inside the pipe causes it to expand and 

induces a contact force between the pipe and the clip. Figure 4.1 shows a schematic of the 

sensor arrangement when attached to the pipe. 
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Figure 4.1 Schematic of the pressure sensor assembly 

This contact pressure can be modelled as two concentric pressurised shells with open ends. 

Since the clip and the pipe are in contact, the radial expansion of the pipe and the clip are 

equal. Equations (4.5) and (4.6) can be used to calculate the contact pressure of two 

concentric pipes (clip and pipe). 
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Where CP  is the contact pressure between the pipe and the clip; jr  and pr  are the radii of the 

clip and the pipe; jE  and PE  are the respective material’s Young’s modulii of elasticity of 

the clip and pipe and jt  and pt  are the thickness of the clip and pipe respectively.  
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This contact pressure translates to a contact force on the force sensor sensor. This contact 

force CF  can be calculated using Equation (4.7); where SA  is the sensing area of the sensor 

and K  is a constant between 0 and 1, which indicates the ratio of the total contact pressure 

that is applied to the sensor. 

 SCc APKF ..=  (4.7) 

The force sensor can be installed when there is no pressure inside the pipe and an initial 

contact force can be applied to the sensor by tightening the clip. At this stage, the output 

signal of the force sensor can be measured and used as a reference for further measurements.  

A variety of methods can be used to measure the pipe strain or contact force between the pipe 

and clip mentioned in Equation (4.7). An ideal sensor for this application should have the 

following characteristics: 

• Large dynamic range 

• High sensitivity 

• High signal to noise ratio 

• Minimal signal conditioning requirement 

• Easy to install 

• Low cost 

Strain gauges are the most common type of sensor used in strain measurements. However 

these sensors require special installation (glued to the pipe) and complex signal conditioning 

circuits. This makes them not suitable for the purpose of pipeline monitoring. In order to 

overcome these issues other alternatives for measurement of strain or the contact force caused 

by expansion of the pipe were investigated. Interlink FSR® 402 was selected for the purpose 
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of this research based on its ease of installation, minimal signal conditioning circuitry, low 

cost price and larger sensing area, compared to the alternative options.  

Basic FSR sensor construction can be described as two membranes that are separated by a 

spacer ring creating an air gap (Interlink Electronics, 2010). One of the membranes is coated 

with FSR ink. The other membrane has two separate electrical tracks printed on it; as the FSR 

sensor is compressed these tracks come in contact with the FSR ink. The FSR ink creates a 

short between the two tracks with a resistance based on the force applied (Interlink 

Electronics, 2010). Figure 4.2 illustrates the schematic of the construction of the FSR sensor.  

 

 

Figure 4.2 Schematic of the FSR construction (Interlink Electronics, 2010) 

In order to understand the construction of the FSR, a sample sensor was delaminated to study 

each layer separately. The main layer, which is responsible for the sensing characteristics of 

the sensor, is the FSR layer, which is coated with carbon based ink (FSR ink). Surface 

Electron Microscopy (SEM) was used to study the structure of this layer. Figure 4.3 illustrates 

an SEM image of the FSR layer with 250 times magnification. 
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Figure 4.3 SEM image of the FSR layer 

As can be seen from Figure 4.3 the surface of the FSR layer is covered by small conductive 

particles, which as the sensor is compressed, come into contact with the conductor comb, 

which in turn creates a connection between the terminals of the FSR. As the pressure on the 

comb’s membrane increases, more of these cubes come into contact with the combs, reducing 

the resistance between the terminals of the FSR. 

A simple voltage divider circuit can be used to convert the change in resistance of the FSR, 

(due to pressure change), into a change in voltage (analogue signal). This can be easily 

measured by the WSN node or data acquisition device. This voltage can be related to a 

absolute internal pressure of the pipe, by calibration with respect to a direct reference pressure 

sensor. However the aim of the proposed pressure sensor is to determine relative pressure 

changes and thus there is no need to convert the output of the sensor to absolute pressure 

values. Figure 4.4 illustrates the schematic of the signal conditioning circuitry used in the 

proposed relative FSR based pressure sensor assembly. 
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Figure 4.4 Schematic of the signal conditioning circuit used in FSR based pressure sensor 

assembly (Sadeghioon et al., 2014b). 

This simple passive signal conditioning allows the sensor to operate at a very low power 

consumption (due to lack of active components).  Power consumption of the FSR sensors and 

their signal conditioning circuit depends on the supply voltage and the overall resistance of 

the circuit.  Moreover, continuous response nature of the FSR sensors and their passive output 

conditioning circuit allows the sensors to be sampled at high resolution and sampling rates 

(limited by the acquisition device). 

4.3 Sensor assembly analysis  

The working domain of the sensor assembly can be calculated from Equations (4.6) and (4.7). 

It is crucial to analyse this domain carefully in order to fully understand the response of the 

sensor assembly in different operational conditions (i.e. different pipe materials and clips) and 

identify the most suitable design parameters for the sensor assembly (clip material and 

thickness) for each specific parameter. 
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4.3.1 Analytical modelling  of pressure sensor assembly 

A MATLAB script was used to calculate the resultant force on the FSR sensor for different 

pipe dimensions at 1kPa of internal pressure for two different pipe materials based on 

Equation (4.7). The resultant force for the MDPE ( Ep =1GPa ) and the cast iron pipe 

(Ej=100GPa) are respectively illustrated in Figure 4.5(a) and Figure 4.5(b). The dimensions 

and material properties of the clips are assumed to be constant ( t j =1mm ,Ej =190GPa ). 

 

Figure 4.5 Calculated resultant forces on the FSR based on 1kPa of internal pressure for 

different pipe dimensions and materials a) MDPE pipe b) cast iron pipe 

As was shown in Figure 4.5 the resultant force on the FSR sensor is significantly higher in the 

MDPE pipe than in the cast iron pipe. This is due to fact that the Young’s modulus of the 

MDPE is lower than the cast iron pipe, which results in the plastic pipe expanding more 

compared to the metallic pipe and causing higher contact pressure between the pipe and the 

clip at each internal pressure. It can also be seen that the profile of the resultant contact force 

on the FSR at different pipe dimensions is different in MDPE compared to cast iron. In cast 

iron pipes the resultant contact force drops rapidly with the increase in the pipe wall’s 

thickness as the pipe becomes stiffer. However an increase in the pipe wall’s thickness has a 
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significantly smaller effect on the resultant contact force in MDPE pipes (except at very small 

pipe radii), compared to cast iron pipes. Additionally it can be seen from Figure 4.5 that the 

radius of the pipe has a bigger effect on the resultant force in MDPE pipes compared to cast 

iron pipes. The model illustrated in Figure 4.5, based on Equation (4.7), indicates that the 

proposed sensor is more suitable for indirect relative pressure measurement in plastic pipes 

compared to metallic pipes, if the clip material and dimensions are the same. Design 

parameters (dimensions and material) of the clip of a FSR based sensor assembly can be 

modified to overcome this limitation and increase the resultant contact force on the FSR on 

metallic pipes. Thickness of the clip and the Young’s moduli of the material used in the clip, 

are the two parameters that can be modified to increase the contact force on metallic pipes. A 

change in the geometry of the clip is a more feasible option compared to a change of the clip 

material, as materials with very high Young’s moduli can be significantly more expensive to 

source and harder to manufacture. Figure 4.6 illustrates the effect of the clip thickness on the 

contact force between the pipe and the clip for different pipe dimensions (cast iron pipe). 
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Figure 4.6 Effect of clip thickness on the contact force 

As can be seen from Figure 4.6, an increase in the thickness of the clip results in an increase 

in the contact force between the pipe and the clip. This effect combined with an increase in 

the Young’s modules of the clip, can be used to increase the usability of the FSR relative 

pressure measurements in pipes.  However this relationship is not linear and follows the 

Equations (4.5) and (4.6).  

4.3.2 Finite element analysis of the pressure assembly 

A finite element analysis (FEA) is carried out on the sensor node assembly in order to further 

validate the response of the proposed sensing method in different conditions and the 

analytical model. SolidWorks simulation package is used for the purpose of finite element 

analysis in this research. Results from the FEA study were also compared with the results 

from the MATLAB script for further validation of the MATLAB model. In these studies, the 

width of the pipe and clip was assumed to be 200mm. This is due to inaccuracies of the FEA 

model in calculation of the contact pressure at the edges of the clip. Therefore the clip is 
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assumed to have the same width as the pipe in order to minimise the effect of errors in 

calculation of contact pressure at the edges of the clip on the overall average contact pressure 

between the pipe and the clip. The pipe and the clip are assumed to be fixed at one side 

(restricting lateral and axial movement of the clip in relation to pipe). This will also create an 

error in the calculated contact pressure at the edge of the pipe (where it is assumed to be 

fixed). However, this effect is assumed negligible, as the area that it affects is significantly 

smaller than the total area of the contact pressure. Moreover the boundary between the pipe 

and the clip is assumed to be “non penetrable”. The contact pressure is calculated by 

averaging the contact pressure of all of mesh elements on the internal surface of the clip. The 

mesh size was set to maximum “finest” setting, which resulted in 44706 mesh elements (4 

points Jacobean).  These assumptions have been made to simplify the FEA study in order to 

reduce computational requirements of the model and create a comparable model to the model 

used in the MATLAB script. Figure 4.7 illustrates the FEA model and its study parameters 

used in this study. 

 

Figure 4.7 The meshed FEA model and its boundary conditions 
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A mesh analysis was also carried out on the FEA model to independently validate its results. 

During this analysis the mesh size used in the FEA model was changed from “Coarse” to 

“Fine” setting (20.86-5.21mm) and the results from the contact pressure at each mesh setting 

were recorded. A convergence in these results can be used to validate the stability of the FEA 

model and to identify the minimum number of mesh elements (maximum element size) 

required. Figure 4.8 illustrates the results from the mesh analysis (at 0.1 MPa pressure). 

 

Figure 4.8 Effect of mesh size on the resultant contact pressure between the clip and the pipe. 

As can be shown from Figure 4.8, results from the mesh analysis showed a good convergence 

in the results from the FEA analysis which validates the  FEA model.  

In order to further investigate the performance of the analytical analysis presented in Equation 

(4.6) the results from this equation were compared with the FEA analysis (using “fine” mesh 

settings). In this study the contact pressure was calculated for a HDPE (Ep =1GPa ) plastic 

pipe with 90mm diameter and 10mm wall thickness at pressures in the range of 0.1-1.0 MPa 
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(in 0.1 MPa steps). The jubilee clip is assumed to be a simple collar made from stainless steel 

Ej =100GPa  with a thickness of 1mm. A comparison of the results from the MATLAB 

model and the FEA is presented in Figure 4.9. 

 

Figure 4.9 Comparison of the analytical model and FEA model 

As can be shown from Figure 4.9 the MATLAB model correlates closely with the FEA 

model. The results of this study showed a constant error of 4.29% between the contact 

pressure calculated by the FEA model and Equation (4.6). This further verifies the use of 

Equation (4.6) for approximate calculation of the contact pressure for the FSR sensor 

assembly at different geometrical and operational parameters. 

4.4 Comparison and validation tests and results 

In order to further validate the proposed sensor assembly, its response was compared with a 

direct commercial pressure sensor. Both the static and dynamic responses of the FSR based 
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pressure sensor were tested and a correlation study was carried out on the results to validate 

the usability of the proposed sensor for indirect relative pressure measurements. 

In these tests a section of a PVCU pipe (150mm diameter) was used to test the response of the 

pressure sensor assembly. Both ends of the pipe were flanged off and two inlet/outlet valves 

were attached to the end plates. The pipe was pressurised up to 0.4 MPa (4 bar) via one of the 

valves using compressed air. The commercial direct pressure sensor (Impress sensors and 

systems, UK) was attached to the other valve in order to measure the pressure inside the pipe. 

The FSR sensor assembly was attached via a stainless steel jubilee clip to the pipe. A LabJack 

U3 data acquisition device was used to record the data from both of the sensors at a sampling 

rate of 100Hz. During the tests the internal pressure of the pipe was cycled between 0-0.3 

MPa (0-3 bar). Figure 4.1 illustrates a photo of the test setup. 

 

Figure 4.10 Experimental setup of comparison test between FSR based and direct pressure 

sensor (Sadeghioon et al., 2014b) 
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Focuses of the static tests were mainly on linearity and sensitivity of the FSR sensor in 

comparison with the direct pressure sensor. During these tests pressure in the pipe was 

gradually increased (via a pressure controlled valve connected to a compressor) in multiple 

steps in order to remove the effect of the rate of pressure change on the results. Data from 

both of the sensors were measured (after pressure was stabilised) at each of these steps for 

further analysis.   

Dynamic comparison tests were carried out in order to analyse the effects of rate of pressure 

change on the response of the FSR based pressure sensor and investigate hysteresis, 

repeatability and rate dependence error of the FSR based relative pressure sensor. During 

these tests the pipe was pressurised by fully opening the inlet valve (pressure controlled) 

which was connected to a pressure controlled compressor; this resulted in rapid pressurisation 

of the pipe up to the predefined pressure of 0.3 MPa. When the maximum pressure was 

achieved the outlet valve was gradually opened to release the internal pressure of the pipe. 

This resulted in a lower rate of pressure change during the de-pressurisation compared to the 

pressurisation step. This cycle was repeated multiple times to ensure repeatability.  

The output from the direct pressure sensor during static tests is plotted against the output of 

the FSR based pressure sensor in Figure 4.11 and a first degree polynomial was fitted to these 

data, to measure the linearity and performance of the FSR based pressure sensor.  
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Figure 4.11 FSR based pressure sensor versus direct commercial reference pressure sensor 

(CPS) during static tests (Sadeghioon et al., 2014b) 

It can be shown from Figure 4.11 that the FSR based pressure sensor closely correlates with 

the data from the reference direct pressure sensor. Additionally the R2 value of the linear fit 

showed a highly acceptable linear fit (R2=0.9905). The ratio of applied contact pressure, K 

(Equation 4.7) is estimated by calculation of the total contact pressure using Equation (4.6) 

and comparison of the output with the response of the FSR sensor at each step of internal 

pressure. These calculations showed that the ratio of applied contact pressure was stable 

(K=0.845±0.073) over the range of tested internal pressures. The value of K and the stability 

of it can be used to analyse the performance of the clip mechanism. Values of K closer to 1 

indicate that the majority of the total contact pressure is applied to the sensor, which shows a 

better fit between the clip and pipe. This can be achieved by using an attaching mechanism 

with adequate tensile strength and flexibility to form a uniform contact (without gaps) 

between the pipe wall and the clip.  In addition stability of the value of K in a pressure range 
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shows that the fit between the pipe and clip is stable and also can be used as means of testing 

the repeatability of installation. 

For the dynamic tests, the output of the FSR based pressure sensor is plotted against the direct 

reference pressure sensor in Figure 4.12 for both stages of pressurisation and de-

pressurisation.  

 

Figure 4.12 FSR pressure sensor output versus direct reference pressure sensor during 

dynamic tests (Sadeghioon et al., 2014b) 

It can be seen from Figure 4.12 that the linearity of the FSR based pressure sensor is greatly 

affected by the rate of change of the internal pressure of the pipe. As can be shown from 

Figure 4.12 the output of the FSR sensor was less linear during the pressurisation stage 

compared to the de-pressurisation stage. This is due to the higher rate of pressure change 

during this stage. Although results from this study show that the linearity and error of the of 

the FSR based pressure sensor is rate dependent, this will not affect the end usability of these 

sensors for pipeline monitoring as the pressure changes in the systems are not usually 
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extremely rapid (excluding pressure transients). It can also be seen from Figure 4.12 and 

Figure 4.11 that the FSR sensors exhibited a total system error of approximately 10kPa when 

compared to the commercial pressure sensor. This error is intrinsic to the FSR sensor 

structure and the measurement equipment and defines the minimum detectable change in the 

internal pressure. It is important that this error is taken into account in applications where the 

sensor assembly is required to measure the absolute value of the change in the pressure. In 

these applications the minimum detectable change in the pressure is defined by the total 

system error. Therefore, the range of change in the pressure should be larger than this error in 

order for the measurements to be reliable. 

The time domain response of the FSR based pressure sensor was also compared with the 

direct pressure sensor to study the correlation between these two methods. Figure 4.13 

illustrates the normalised response of the FSR pressure sensor and direct reference pressure 

sensor during three cycles. 



DESIGN AND DEVELOPMENT OF NON-INTRUSIVE SENSORS FOR 
PIPELINE MONITORING 

 

 121 

 

Figure 4.13 Time domain normalised response of the FSR based sensor compared with the 

direct reference sensor (Sadeghioon et al., 2014b) 

As can be shown from Figure 4.13 the output of the FSR based sensor highly correlated with 

the reference direct pressure sensor. A statistical correlation study was also carried out on the 

data. Results from this study showed a correlation factor of 0.9928, which also indicates a 

high correlation between the two sensors. The rate dependency of the FSR based pressure 

sensor at high pressure change rates is also shown in Figure 4.13, as the FSR based sensor has 

a small delay to reach the maximum value compared to the reference sensor during the 

pressurisation stage. This is caused the rate dependence error in the output of the FSR sensor. 

The rate dependent error is assumed to be caused by the mechanical structure of the sensor 

assembly and the interaction between the pipe and the clip as the pipe expands (i.e. friction 

and slippage between the pipe wall and inner surface of the clip). However, further study is 

required to fully understand the source of this error. As was mentioned in Chapter 3, values 

from sensors in pipeline monitoring are commonly measured every 15 minutes. Therefore this 
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issue will not jeopardise the application of FSR based pressure sensors for pipeline 

monitoring. 

The sensitivity of the FSR sensor assembly (mV/bar) is an important aspect in analysing its 

usability for pressure monitoring. Sensitivity of the overall assembly is dependent on the 

geometrical and material properties of the pipe and the clipping mechanism. The supply 

voltage to the voltage divider circuitry used for measuring the FSR sensor also linearly affects 

the over sensitivity of the sensor assembly. Therefore the sensitivity of the FSR based 

pressure sensor should be calculated specifically based on the operational parameters of the 

application in which it is been used. For the test setup, which was mentioned previously, the 

sensitivity of the FSR sensor was 115mV/bar (based on a supply voltage of 5V).  

The resolution of the FSR based pressure assembly is dependent on the measurement 

equipment used for measuring the output of the FSR, as the FSR sensor itself has a 

continuous response to force. As an example, using a 12 bit A/D convertor with an input 

range of 0-5V will result in a sensitivity of approximately 0.01bar, while using a 16 bit 

convertor can increase the resolution to approximately 0.0007 bar for this specific example. 

Although the FSR sensors are not required to be precisely calibrated during the installation, 

care should be should be taken when they are installed on existing pipes to avoid foreign 

materials (i.e. grit and lumps of soil) being trapped between the clip and the pipe. Existence of 

such foreign objects between the clip and the pipe can result in poor contact between the clip 

and pipe, which can reduce the ratio of the total contact pressure (k) that is applied on the 

FSR sensors.  In addition, these particles can potentially cause inconsistency in the results and 

cause unexplained changes (i.e. when they collapse or move) in the measured relative 

pressure. Therefore, prior to the installation of the sensor assembly on existing pipes the 
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surface of the pipe should be cleaned and after the installation the sensor assembly should be 

inspected to confirm that no particle is trapped between the clip and the pipe, in order to 

ensure repeatability and consistency of the results.  

The location in which the sensor assembly is installed can also affect its performance. For 

example, concrete walls of a chamber that the pipe passes through and connection flanges can 

potentially limit the expansion of the pipe at their proximity, which will affect the 

performance of the sensors. The level of confinement caused by these can also change as the 

external loadings change or with ageing (for example creep of repair clamps with time) 

Therefore, installation of the sensor assembly at the proximity (<200mm) of these 

confinements should be avoided where possible.   

 

4.5 Temperature sensors for pipeline monitoring 

Temperature is one of the key parameters of any physical system. Variations in environmental 

temperature can potentially affect the performance of the pipe material and joints in the long 

term. An example of this is an increase in the number of leaks/bursts during the cold seasons 

of the year in water supply pipelines (Kleiner and Rajani, 2002). Moreover, the temperature 

of the pipe varies based on the temperature of the medium it carries and its flow rate. A faster 

flow rate will reduce the residence time of the medium in the pipe and in turn reduce warming 

up/cooling down of the pipe (dependent on the temperature difference between the medium 

around the pipe and inside the pipe). The wide application of temperature sensors in various 

fields has led to these sensors being readily commercially available in a wide range of 

specifications and variations. For the purpose of this research, an analogue output temperature 
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sensor (LM-35) with typical accuracy of 0.5°C was used for temperature monitoring of the 

pipe and its surroundings.  

This sensor can easily be connected to any of the versions of the node through the A/D ports. 

Initial laboratory trials were carried out to study the feasibility of the temperature monitoring 

of pipes. In these tests two temperature sensors were attached to the version 1.5 of the node to 

measure the temperature of the pipe wall and the environment around the main cold water 

supply pipe to the Mechanical/Civil Engineering building at the University of Birmingham. 

This pipe is easily accessible as it is passing through a maintenance room of the building. 

These tests were designed to investigate the functionality of the sensors and to investigate the 

effect of the flow rate on the temperature difference between the pipe and its surrounding. 

One of the temperature sensors was placed on to the pipe (under a thermal insulator layer) in 

order to measure the temperature of the pipe wall and the other temperature sensor was placed 

200mm away from the pipe in order to measure the temperature of the room. The node was 

powered by four batteries (size C). Sensors were measured every 34 seconds and data were 

transmitted wirelessly to a laptop placed in a separate room in proximity of the node 

(approximately 40m away from the node), where they were time stamped and logged on a 

laptop. Figure 4.14 illustrates a photo of the node and temperature sensors attached to the 

pipe. 
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Figure 4.14 Temperature sensor trials on the cold water supply to the Mechanical/Civil 

engineering building at the University of Birmingham 

A FSR based pressure sensor was also installed on the pipe during this test. However, due to 

the geometrical parameters of the pipe and lack of pressure variation in the pipe, no 

fluctuation in relative pressure was measured. Figure 4.15 illustrates the temperatures of the 

pipe and its surroundings for a duration of seven days. 
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Figure 4.15 Temperature readings of water supply pipe wall and its surrounding for a period 

of seven days 

As shown in Figure 4.15 the temperature of the pipe wall fluctuated in a cyclic pattern while 

the temperature of the room did not fluctuate in the same pattern and was approximately 

constant during each day. It can further be shown from Figure 4.15 that the temperature of the 

pipe was higher during the night compared to the temperature in the mornings. This is mainly 

due to the increase in flow during the daytime (this building is a commercial property). 

Reduced flow at night results in higher residence time for the water in the pipe, therefore it 

has a lesser cooling effect on the pipe and the pipe becomes warmer (room temperature was 

higher than the pipe). This effect was especially prominent during the weekends (the last two 

days in Figure 4.15), where the usage of water was minimal as the building was occupied by 

only a few people. Therefore the residence time of the water in the pipe was high, which 

resulted in a higher pipe wall temperature.  
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4.6 Summary 

In this chapter sensor requirements for pipeline monitoring were identified. Non-invasive 

installations, ease of installation and adequate accuracy were the main requirements for 

sensors used in pipeline monitoring.  

Pressure and temperature of the pipe were identified as the main two parameters that can be 

used to identify leaks or potential defects in pipes. A sudden dramatic change or a gradual 

change in the steady pressure of a pipeline during night (nightline pressure) can potentially be 

used to detect bursts or developing leaks in distribution networks. Similarly temperature can 

be used to detect local temperature abnormalities caused by leaks or to monitor the 

environment of the pipe (avoid freezing). 

Common pressure sensors used for pipeline pressure monitoring require access to the medium 

inside the pipe via a tapping or a valve. This can potentially damage the structural integrity of 

the pipe and increase the cost and complexity of the installation. In this chapter a novel non-

invasive relative pressure sensor based on FSR technology was designed, developed and 

validated. The operational domain and parameters affecting the performance of the proposed 

pressure sensing method were identified and analysed. Furthermore, FEA analysis was carried 

out to verify the developed analytical model (Equation (4.6)). Results from this study showed 

a high correlation between the FEA model and the analytical model. A series of tests were 

also carried out to compare the performance of the FSR based pressure sensor assembly. 

These tests showed a high linearity in the response of the FSR based pressure sensor in the 

static test. In the dynamic test the results from the FSR based pressure sensors closely 

correlated with the reference direct pressure sensor. The FSR sensor exhibited rate dependant 

error when it was subjected to rapid pressure changes. However this does not affect the final 
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intended application of these sensors (i.e. daily pressure change monitoring). The feasibility 

of the temperature sensors for pipeline monitoring by measuring the pipe wall temperature 

and surrounding environment of the pipe was studied and analysed in this chapter. Results 

from laboratory trials showed that the difference in temperature between the pipe and its 

surroundings can be used as an indication of flow in the pipe. This in conjunction with 

relative pressure measurements can be potentially used to detect faults and abnormalities in 

the distribution network. 

The next chapter of this thesis describes the application of the sensors developed in this 

chapter for detecting leaks in pipes. The leak/burst detection capabilities of the FSR based 

pressure sensor were studied in the laboratory and in field trials. Additionally, the potential of 

temperature data combined with pressure data to detect abnormal pressure changes from 

normal daily variations is demonstrated in the next chapter. 
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5 
5 PIPELINE FAILURE DETECTION USING WUSN 

 
Contents 

5.1 Introduction 
5.2 Laboratory trials 
5.3 Field trials  
5.4 Summary   
 

Overview of the chapter 

The focus of this chapter is on the use of the FSR relative pressure sensor (and temperature 

sensors) for pressure monitoring and burst detection in pipelines. During the research 

described in this chapter burst detection capabilities of the FSR based relative pressure sensor 

were studied via laboratory tests and extended field trials. Nodes designed in this research 

were also deployed during these trials in order to study their performance. The experimental 

setup and methodology used in both of these tests are described in detail in this chapter. The 

long-term field trials are also described and the performance of the node and the FSR based 

pressure sensor during these trials are analysed and described in this chapter. 
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5.1 Introduction 

In order for the WUSN developed in this research to be feasible for use in pipeline 

monitoring, its sensors should be capable of detecting leaks/bursts in the pipeline. 

Additionally, a successful implementation of a WUSN should also have the capability to 

localise the detected defect to facilitate maintenance or repairs.  

During this research, capabilities of the sensors and nodes developed were tested and analysed 

in laboratory and field trials. A laboratory based test setup was designed and developed in 

order to test the capabilities of the FSR based relative pressure sensor for burst detection and 

localisation. Furthermore, nodes developed during this research (version 2.0) were connected 

to a FSR based pressure sensor assembly and temperature sensor and were deployed in an 

industrial leak test facility, where they monitored the pressure and temperature for a period of 

approximately 6 months. Both of the mentioned tests (laboratory and field trials) are 

discussed in detail in the following sections of this chapter.  

 

5.2 Laboratory trials 

The pressure sensing capabilities of the FSR sensors were validated separately via tests 

described in Chapter 4 of this thesis. However, in order for them to be suitable for pipeline 

motioning, their leak detection and localisation were also required to be tested and analysed 

under controlled laboratory conditions. 
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5.2.1 Experimental setup 

As a part of this research a laboratory based test bed was designed and developed to simulate 

leaks/bursts in pipes. This test rig was a 10m long U shaped water pipe made from five 2m 

long, 40mm diameter PVC pipes with 1.9mm wall thickness (Figure 5.1a). Water was 

circulated in the pipe by an electric pump connected to the pipe section via a common 

hosepipe. Water was also discharged from the pipe section to a storage bin via a hosepipe; 

from here it was pumped back into the system. The pump used for these tests was capable of 

producing up to 3 bar of pressure. A hole with a diameter of 10mm was placed in the middle 

of the U section of the system in order to act as a simulated sudden leak/burst. This hole was 

plugged with a rubber insert, which would pop out after a random amount of time, resulting in 

a simulated leak/burst in the system (Figure 5.1b). The experimental setup used for the leak 

detection tests and its main components are shown in Figure 5.1a and Figure 5.1b. 

 

Figure 5.1 a) Experimental setup used for laboratory leak tests and its components b) Close-
up of the leak with rubber insert. 

As can be shown in Figure 5.1a five FSR sensors were also installed on the pipe at 1, 3, 5, 7 

and 9 metres along the pipe. Sensors 1, 2 and 3 were placed upstream of the leak and sensors 

4 and 5 were placed downstream of the leak. This helped to analyse the effect of the location 
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of the leak on the output of the FSR based pressure sensors, which potentially could be used 

to locate the leak. A stainless steel Jubilee clip with a thickness of 2mm was used to fix the 

FSR sensors on the pipe. The FSR sensors were connected to a voltage divider circuitry with 

a source voltage of 5V and a fixed reference resistance of 300Ω. A Labjack data acquisition 

device (Labjack U3) was used to record the output signal from the voltage divider circuit at a 

sampling rate of 1kHz. The high sampling rate in these tests was used to identify the 

capabilities of the FSR sensor at a wide range of sampling rates. The WUSN nodes developed 

in this research were not used during these tests in order to isolate the leak detection 

capabilities of the FSR based relative pressure sensors from the performance characteristics of 

the node. 

 

5.2.2 Results and discussions 

Leak detection tests were repeated multiple times (minimum 5 repeats) in order to ensure 

repeatability and reliability of the results. Data from all of the sensors attached to the pipe 

were successfully measured during the tests. As mentioned previously in Chapter 4, the 

proposed leak detection method is intended for relative pressure measurement; therefore, 

measurements taken from the FSR based sensors are normalised based on their maximum 

stabilised pressure and baseline (zero pressure) values. The relative nature of the readings 

removes the need for precise calibration of the sensor, which in turn will result in easier and 

lower cost installation. However, a rough calibration at the time of installation by means of 

adjusting the clips’ initial tension is required to ensure that the outputs of the sensors are in 

the range of the analog to digital converter (normally 0-5V). Figure 5.2 illustrates an example 

of the normalised output of the sensors during a leak test (more examples are presented in 

Appendix B).  
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Figure 5.2 Example of the normalised relative pressure output from the five sensors during a 

leak test 

Four main stages of the experiment (pump on, stabilisation, leak/burst and pump off) are 

clearly visible from the output of the sensors. It can be clearly seen in Figure 5.2 that the 

pressure increased in the pipes from the baseline as the pump was started. The burst/leak 

event is also clearly visible in the data, as the relative pressure suddenly dropped as the rubber 

insert was forced out of the hole due to pressure. Finally, the drop in pressure due to 

switching off the pump is shown in the output of the sensors. Figure 5.2 clearly shows that the 

simulated burst/leak can be detected from the output of the sensor. The location of the 

simulated leak is not clearly determinable from Figure 5.2 as all sensors seem to respond 

similarly to the leak. However, further analysis of the data at the time of the leak showed that 

sensors 1, 2 and 3, which are upstream of the leak, have a different pressure profile compared 

to sensors 4 and 5 during the leak incident. Figure 5.3 shows a close up of the output of the 

sensors during the leak event (taken from Figure 5.2).  
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Figure 5.3 The close up of the normalised pressure at the time of leak taken from Figure 5.2. 

As can be seen from Figure 5.3 sensors 4 and 5 show a more gradual drop in the relative 

pressure compared to sensors 1, 2 and 3; which show a rapid drop in relative pressure as the 

rubber insert is forced out of the hole. This difference can be used to locate the zone in which 

leak had happened (i.e. between sensors 3 and 4). The first derivative of the relative pressure 

output of the sensors can be used to compare rate of change in the output of the sensors. 

Figure 5.4 illustrates the average of minimum value of the first derivative of the normalised 

relative pressure for the sensors 1-5 based on five repetitions (Appendix B). Error bars in 

Figure 5.4 are based on the standard deviation of the results from these repetitions. 
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Figure 5.4 Maximum rate of change in normalised pressure 

As can be seen from Figure 5.4 the rate of pressure drop is higher in sensors upstream of the 

leak (sensors 1, 2 and 3) compared with sensors downstream of the leak (sensors 4 and 5). 

Moreover it can be seen from Figure 5.4 that the rate of change in sensor 3 (closest sensor to 

the leak) is higher than the rate of change in the other sensors. This is to be expected as sensor 

3 was placed very close to the burst and is affected by the localised pressure drop in addition 

to the systematic pressure drop caused by the burst. However from Figure 5.4 there appears to 

be no trend between the amplitude of the pressure drop and distance for the sensors 

downstream of the leak. However time analysis of the data during the leak event showed that 

the order in which the sensors respond to the burst depends on their distance from the leak. 

Figure 5.5 shows the normalised relative pressure output of the sensors at the time of the leak 

and the delay of each sensor responding to the leak based on their location. 
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Figure 5.5 Delay of the output of the sensors depending of their location 

As can be seen from Figure 5.5 as expected sensor 3 (closest to the leak) responded to the 

leak first followed by sensor 2 (≈20ms delay) and sensor 1 (≈30ms delay). Sensors 4 and 5 

had a much slower response to the leak at ≈50ms delay and ≈90ms delay respectively. This 

shows that it is feasible to detect the location of the leak based on response time difference 

between the sensors where a high sampling rate (≥100Hz) is possible.  These tests were 

repeated multiple times (see Appendix B) to investigate the repeatability of the results. All of 

the repeat tests showed similar trends to ones presented in Figure 5.4 and Figure 5.5. In 

addition, Li (2014) carried out these tests on a similar test rig and obtained similar results to 

ones presented in this thesis.  A hybrid sampling rate can be used where a high sampling rate 

is not feasible. In this method an interrupt is configured to react to the drop in the output of 

the sensors and activate a higher sampling rate. Based on the reaction time of the interrupt an 

initial section of the pressure drop profile will be lost. However this partial pressure drop 

profile can still be used to detect difference between the response of the sensors based on their 

location. 
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5.3 Field trials 

The performance and capabilities of the nodes and sensors developed in this research were 

evaluated by deploying them in a near real life condition on an industrial leak test training 

facility. Version 2.0 of the node, FSR based relative pressure sensors and temperature sensors 

were deployed in the field trials. These field trials were also used to study other parameters 

affecting the overall reliability and performance of the systems in real life conditions, such as 

corrosion, ease of installation and water proofing. The methodology, experimental setup, 

results and  discussion regarding these tests are described in the following sections of this 

chapter. 

 

5.3.1 Test facility 

A water industry1 leak test and training facility was used for the purpose of field trials in this 

research. Some of the main advantages of this facility were its live connection to the mains 

water supply network, availability of multiple pipe dimensions and materials, and facility to 

control the pressure and create known leaks in the system. Figure 5.6 shows an aerial 

photograph of the test facility used in this research, with the pipe and sensor nodes locations 

noted. 

                                                
1 Severn Trent Water, Lake House test facility 
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Figure 5.6 Aerial photograph1 of the test facility with the location of the pipes and sensor 
nodes shown 

As can be seen in Figure 5.6 a section of MDPE pipe with a diameter of 90mm and a section 

of ductile iron pipe with a diameter of 100mm were selected for these trials. The pressure of 

these pipes could be regulated by a pressure release valve (PRV). The developed WUSN 

nodes (version 2.0) and their associated sensors were installed at four locations on the pipes 

(points A to D in Figure 5.6). The mother node and logging equipment were placed in the 

building close to the nodes. Operating service taps, which are noted in Figure 5.6, could be 

used to simulate leaks in the system. This facility is mainly used for valve training and these 

service taps are used during this training. The relevance of this will become apparent when 

the data is presented later in this chapter. 

As mentioned earlier, the pipe network in this facility is connected to the mains water supply 

network. This was beneficial for the purposes of this research, as daily pressure variation due 

                                                
1 Google earth, Google, USA 
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to variation in demand by the commercial and residential properties nearby were present on 

the system, which made these trials closer to a real life application.  

 

5.3.2 Nodes setup and installation 

Version 2.0 of the node was used for the purpose of these trials. Two temperature sensors1 

(same as ones used in tests described in Chapter 4) and one FSR based relative pressure 

sensor were connected to each node. One of the temperature sensors was placed in contact 

with the pipe (with a plastic wire tie) to measure the pipe wall temperature, while the other 

temperature sensor was placed approximately 30cm away from the pipe in order to measure 

the temperature of the soil surrounding the pipe. For both the plastic and metallic pipes the 

FSR sensors were attached to the pipe via a stainless steel jubilee clip. Figure 5.7 shows a 

photograph of one node, C, being installed on the metallic pipe. 

 

Figure 5.7 Installation of node C and its sensors on the metallic pipe 

                                                
1 LM35, analog temperature sensors 
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The holes required for accessing the pipes and installing the sensors and nodes were created 

by a dry vacuum excavation technique using a specialist company. The non-invasive nature of 

this technique ensured that the existing pipes and tree roots were not damaged during the 

installation. Figure 5.8 shows the vacuum excavation process. 

 

Figure 5.8 a) Vacuum excavation technique used during the field trials, b) Installations 

The nodes were installed in two different variations. Three of the nodes (nodes A, B and D) 

were placed above the ground with an umbilical cord connecting them to their sensors 

attached to the pipe under the ground; while one of the nodes (node C) was attached to the 

pipe via plastic wire ties. This enabled the performance of the sensors to be separately 

analysed and monitored from the performance of the nodes. Additionally, placing some of the 

nodes above ground ensured that a potential failure of the nodes would not result in total 

failure of the experiment; as the nodes can be replaced, repaired or modified when required. 

Placing one of the nodes in the ground enabled the performance of the nodes in an 

environment that would be closer to their final application to be studied. Batteries could not 

be buried with the nodes due to health and safety and environmental considerations such as 

danger of build up of hydrogen gas in the battery enclosure and potential harm to the 

environment in case of leakage of battery chemicals in the ground. Therefore, a lithium 
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polymer battery was placed above ground (in an enclosure) to power each node. A 80mm x 

100mm, 1W solar panel with a charging circuitry was used to charge the batteries. Figure 5.9 

shows a schematic of the above ground and underground sensor node arrangements and a 

photograph of the node installed in the field. 

 

Figure 5.9 a) Schematic of the over ground and underground node arrangements, b) Installed 
node in the field  

Each node was programmed to measure all of the sensors attached to it and the voltage of its 

battery every 1,027 seconds (approximately 17 minutes) and transmit them wirelessly to the 

mother node. Each message from the nodes contained their node ID (same as location ID) and 

data ID (message counter), followed by the four measured parameters (comma separated).  

Data received from the nodes at the mother node were time stamped and stored locally on the 

hard drive of the laptop connected to the mother node. The laptop was also connected to the 

Internet via a 3G mobile broadband connection. This allowed the laptop to be remotely 

accessed via the Internet (TeamViewer) and also backup the data in the Cloud (Dropbox).  
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Due to the transmission range issues caused by poor transmission through soil, node C could 

not directly communicate with the mother node. Therefore, a commercially available 

(Logomatic SD) local SD card data logger was attached to an RF transceiver and was placed 

inside the battery enclosure of node C to record the data from this node. Figure 5.10 shows 

the setup for the mother node. 

 

Figure 5.10 Setup of the mother node used in the field trials 

One of the main challenges for the deployment of the nodes and sensors was protecting them 

from the harsh environment (for example, corrosion and water damage). Standard 

waterproofing techniques such as low-pressure moulding, potting and epoxy dipping are 

commonly used for ruggedisation of electronics in harsh environments. However, these 

techniques cannot be used for waterproofing the FSR sensors, as they will interfere with their 

operation. A suitable waterproofing method for the FSR sensor should be able to protect it 

from environment while maintaining its operational characteristics such as its flexibility and 

the ability to transfer the contact pressure on to the sensor part of the FSR. The method used 

should also maintain the low thickness of the FSR sensor in order for it to have minimal 
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impact on the contact pressure distribution between the clip and the pipe. For the purpose of 

the field trials, the FSR sensors are ruggedized by a process of lamination. This method 

satisfies both the low thickness and flexibility requirements which are essential for the 

operation of the FSR sensors. During this process the FSR sensor was laminated by two 

layers of clear plastic (thermal lamination). The exit point for the wires attached to the FSR 

sensor was also sealed with epoxy in order to stop water penetrating into the sensor through 

the surface of the cables. Figure 5.11 shows a laminated FSR sensor used in the field trials.  

 

Figure 5.11 Laminated FSR 

The temperature sensors used in the field trials were ruggedized by covering their contacts 

with epoxy. Node C, on the pipe (underground), was sealed and ruggedized by placing it into 

an IP65 box and sealing the lid with silicon sealant. Multiple humidity absorber sachets were 

also placed into the box to avoid condensation of the humidity in the box damaging the node 

(Figure 5.12). The other nodes, which were placed above ground, were sprayed with multiple 

layers of sealant and were placed in the above ground container (post) to protect them from 

the environment. 
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Figure 5.12 Sealing of node C 

5.3.3 Results and discussion 

During the field trials, the nodes on both the metallic and plastic pipes were able to 

successfully monitor the relative pressure and temperature data and transmit them to the 

mother node (with the exception of node C, where its data was stored locally).  

The nodes and their sensors were installed on 16th -18th of June 2013 and the logging of the 

nodes started on 3rd of July 20131. Despite efforts in waterproofing and ruggedisation, during 

the monitoring period some of the nodes/sensors failed due to corrosion or water damage. 

Damaged nodes were repaired/replaced where possible; however, damaged sensors could not 

be repaired, as re-excavation of the site was not possible. Additionally, for a period of 

approximately four weeks (09/08/2013-11/09/2013) data were not recorded on the laptop due 

to a power cut to the laptop and the mother node. Due to a fault in the local logger of node C, 

data from this node were not time stamped. The SD logger also ceased to operate six weeks 

after installation. For these two reasons the results from node C are not presented in this 

                                                
1 As of 9th July 2014 the FSR sensors were still operational, however all of the nodes and 
temperature sensors have ceased functioning. 
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thesis. All data from all the other nodes are presented and discussed in this section. The 

transmission success rate of the nodes was calculated without accounting for the physical 

failures of the node or the issue with the laptop. This is done by calculating the ratio between 

the number of missing packets (calculated via packet counter ID) and total packets received 

from each node. Figure 5.13 illustrates the data collected by node A (attached to the MDPE 

pipe).  

 

Figure 5.13 Data collected by node A attached to the MDPE pipe 

As shown in Figure 5.13, the temperature sensors connected to the node became unreliable 

after approximately 4 weeks; this was mainly due to corrosion of the node’s temperature 

sensors and their contacts. However, the FSR sensor was not affected by corrosion and 

performed without any issues during the monitoring period with an exception of a week 

(25/07/2013-02/08/2013) where the contacts of the FSR were disconnected from the node due 

to corrosion. It can also be seen from Figure 5.13 that the proposed relative pressure sensor 

successfully recorded pressure fluctuation and systematic pressure changes in the system. In 
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addition node A had a high transmission success rate of 98.61%. These data are further 

analysed in detail later in this section. Figure 5.14 illustrates the data from node B (attached to 

the ductile iron pipe). 

 

Figure 5.14 Data collected by node B attached to the ductile iron pipe 

As shown in Figure 5.14, the temperature sensors attached to node B were damaged by 

corrosion shortly after installation and before logging began. This also indicated an issue with 

the sealing method used for the temperature sensors. However, the FSR sensor attached to the 

node was not affected by corrosion and performed without any issue during the monitoring 

period. The node itself suffered from a failure (due to corrosion of the MCU pins) for a period 

of approximately two weeks (11/07/2013-24/07/2013) this resulted in a gap in the data for 

that period. Furthermore node B had a significantly lower (48.28%) transmission success rate 

compare to node A. This was potentially due to the fact that Node B was the furthest node 

from the mother node (Figure 5.6). 
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Data captured from sensor node D attached to the MDPE pipe during the monitoring period 

are presented in Figure 5.15. 

 

Figure 5.15 Data collected by node D attached to the MDPE pipe 

Node D exhibited issues in the power supply unit (V supply) early on after installation, which 

was related to its solar panel charging circuitry. This issue was resolved on 24/07/2013 by 

replacing the charging circuit and battery of the node. The temperature sensors were also 

damaged due to corrosion before the start of logging, similar to node B. Despite initial 

problems of node D it had the highest transmission success rate (98.64%) amongst the nodes. 

As shown in Figure 5.13 and Figure 5.15 relative pressure data from both of these nodes 

showed multiple systematic step changes in the internal pressure of the pipes. Figure 5.16 

shows the comparison between the normalised pressure values from node A and node D. 
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Figure 5.16 Comparison of measure relative pressure from node A and node D 

As shown in Figure 5.16 relative pressure readings from node A and node D correlate with 

each other and the systematic pressure change (before and after the gap in the data) was 

registered by both of the nodes.  In addition both nodes had a similar normalised response to 

the pressure changes. It is also shown in Figure 5.16 that both of the sensors registered large 

negative spikes in the data. These were caused by large transients and systematic 

depressurisation of the pipes. 

Corrosion of the nodes was one of the main challenges during the field trials. Figure 5.17 

shows an example of the corrosion on the sensor nodes despite the protective layer. 
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Figure 5.17 Example of corrosion of the nodes 

 It can be seen from Figure 5.17, that the contacts on the node are completely damaged by 

corrosion. The nodes ceased to operate after approximately 9 months. They were not 

repaired/replaced by new nodes due to a failure of the majority of the sensors and difficulties 

in accessing the site. However, the FSR sensors attached to the pipe were investigated on 9th 

July 2014, separately from the node. This investigation showed that despite damage to the 

node and temperature sensors, all of the FSR sensors attached to nodes were fully functional.  

Data from the nodes were also studied in more detail to assess the capabilities of the FSR 

based relative pressure sensor for leak detection. Valve training was carried out on the test 

facility during the monitoring period of the field trials. During these training sessions, service 

taps were opened and closed, which simulated random leaks in the system. These leaks were 

visible in the data collected by the nodes. Figure 5.18 illustrates the normalised pressure data1 

and temperature readings from node A (attached to the MDPE pipe) for a duration of 20 days. 

                                                
1 Relative pressure data are filtered using default  “rloess” filter in Matlab to remove outliers. 
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Figure 5.18 Relative pressure and temperature readings for a period of 20 days 

As can be seen in Figure 5.18, daily pressure variations due to fluctuations in demand are 

clearly visible from the output of the relative pressure sensor."The relative pressure data 

identified a sudden systematic pressure drop approximately on 10th July 2013. Later, after 

contact with the site supervisor, this pressure drop was identified as being introduced by the 

site staff in order to carry out maintenance. This was very encouraging as it illustrated that the 

relative pressure sensors were able to clearly identify the systematic pressure drop in the 

pipes. The pressure was restored to the normal state after seven days, which was also 

registered by the sensor node system. During the period presented in the Figure 5.18 daily 

fluctuations of normalised relative pressure had an average peak-to-peak range of 0.12. 

Additionally, it can be seen in Figure 5.18 that the relative the pressure sensor showed 

pressure drops outside of the mentioned average daily fluctuation limit. These were later 

identified to be the valve training, which simulated leaks in the system. Figure 5.19 illustrates 
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pressure and temperature readings for a five-day period, where during the first three days, 

valve training was carried out at the test facility.  

 

Figure 5.19 Correlation between relative pressure drop and pipe wall temperature for node A 
(Sadeghioon et al., 2014a) 

It can be seen from Figure 5.19 that the simulated leaks during the valve training are 

detectable in the relative pressure readings as abnormal pressure drops out of daily pressure 

variation limits (0.40-0.95). In addition, the pipe wall temperature readings also showed a 

drop in pipe temperature at the same time as the drop in relative pressure, which were not 

present in the soil temperature readings. In contrast, this temperature drop was not present in 

the data for the last two days, despite a drop in relative pressure values (daily fluctuations) as 

it was a weekend and no leak tests were carried out.  This effect was also evident in other 

periods in which valve training was carried out. Figure 5.20 illustrates pressure and 

temperature readings for a three-day period, where during the last day, valve training was 

carried out at the test facility. 
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Figure 5.20 Correlation between relative pressure drop and pipe wall temperature during leak 
training for node A   

It can be seen from Figure 5.20 that similar to measurements presented in Figure 5.19, the 

leak created on the last day (15/07/2013) during valve training was registered as an abnormal 

pressure drop out of the daily limit. In addition, similar to Figure 5.19 the leak in the pipe 

caused a rapid drop in the pipe wall temperature, which were not present in the soil 

temperature readings. 

The rapid change in the pipe wall temperature was caused by a sudden change in the flow rate 

of water in the pipe. As mentioned previously in Chapter 4, a change in the flow rate of the 

water inside the pipe results in a change in its residence time. A sudden increase in the flow 

results in a higher cooling rate and therefore reduces the temperature of the pipe wall. As the 

soil is not a good heat conductor (compared to a pipe), this rapid change in pipe wall 

temperature is not apparent in the temperature of the soil. This shows a potential for relative 

pressure readings in combination with temperature readings to be used to detect leaks and 

differentiate them from normal pressure variations. In addition, long lasting small leaks can 
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potentially change the daily temperature profile of the surrounding soil compared to other 

locations, which could be detected by the temperature sensors at the proximity of the leak. 

Temperature readings can also help suppliers (i.e. water companies) with proactive asset 

management of their pipeline network during colder seasons.  

5.4 Summary  

In this chapter, the capabilities of an FSR based relative pressure sensor for leak detection are 

studied by means of laboratory and field trials. In addition to the proposed relative pressure 

sensors, the feasibility of using temperature readings and temperature differential (between 

pipe wall and surrounding) for leak detection were tested and analysed in the field trials.  

A closed loop pressurised test bed (10m length) in the laboratory was developed in order to 

test the leak detection and localisation capabilities of the FSR based relative pressure sensor. 

Five FSR sensors were installed on the test bed (at 2m intervals). A leak was simulated in the 

pipe (at 5m) at a random time and the outputs of all the FSR sensors were measured 

simultaneously via a data acquisition device. Based on the results from these tests, it was 

shown that the FSR sensors were capable of measuring the pressure changes in the pipe 

during all stages of the test. The pressure drop caused by the simulated leak was clearly 

identifiable from the output of the FSR sensors under these test conditions. Further 

investigation of the output of the FSR sensors at the exact time of the leak event showed a 

more gradual drop in pressure for sensors downstream of the leak, compared to those that 

were placed upstream of the leak. The difference in the pressure profile can potentially be 

used to locate the leak zone (i.e. between two nodes).  
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The developed node (version 2.0), FSR based relative pressure sensors and temperature 

sensors were deployed in an industrial test facility. These field trials were carried out in order 

to test their individual performance as well as the performance of the complete system in a 

realistic environment. Four nodes were installed during the field trials. Each node was 

connected to two temperature sensors and an FSR based relative pressure sensor. Data from 

the nodes were transmitted to a mother node in a building close to the nodes. The mother node 

was responsible for time stamping and logging the data from the nodes.  

One of the main challenges in deployment of the nodes in field trials was waterproofing and 

ruggedisation of the nodes. A method of waterproofing FSR sensors was developed based on 

a laminating technique. This proved to provide adequate protection for the FSR sensors while 

maintaining their flexibility and low footprint. The temperature sensors were waterproofed by 

epoxy encapsulation. However, this technique proved unable to provide the required 

protection for the sensors, as all the temperature sensors failed within 2 months after 

installation. During the field trials some of the nodes failed due to corrosion and required 

repair/replacement, despite being protected by multiple layers of sealant.  

Results from the field trial showed that the system overall was able to successfully monitor 

the required parameters for an extended period of time. Node A and D exhibited high 

transmission success rates of 98.61% and 98.64%, while node B had a significantly lower 

success rate of 48.28%. The FSR sensors successfully registered systematic pressure changes 

and daily pressure fluctuation in the pipes. The FSR sensor also registered abnormal pressure 

fluctuations caused by leaks created during valve training (blind test). This further validated 

the use of the relative pressure measurement for leak detection in pipes. Additionally, the pipe 

wall temperature readings also showed a clear drop at the time of the leak training, which was 

not present in the soil temperature readings. This is very promising as temperature differential 
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measurements could be used to distinguish pressure drops caused by leaks from the normal 

pressure fluctuations. 

As indicated in this chapter and Chapter 2, RF transmission through soil is challenging. The 

next chapter of this thesis describes an improved model for approximating RF signal 

attenuation in soil. This model is compared with existing models. In addition, multiple field 

tests are carried out in order to investigate the performance of the proposed and existing 

models for estimating RF propagation in soil.  
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6 
6 RF PROPAGATION IN SOIL 

 

Contents 
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6.2 RF propagation field trials  
6.3 Results and discussion 
6.4 Summary   
 

Chapter overview 

The focus of this chapter is to study the RF propagation in soil. In this chapter, the 

methodology used for the RF transmission trials are described and the results from these trials 

are presented. In addition a modification to the existing method for the extraction of the real 

and imaginary parts of the complex permittivity from the TDR waveform is proposed. These 

results are also discussed and compared with existing models for RF transmission through 

soil.  
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6.1 Introduction 

WUSN are a subcategory of common WSN. As was mentioned in Chapter 2, WUSN have 

potential for a variety of applications such as precision agriculture, mine monitoring, and 

pipeline monitoring. Environmental differences between WUSN and common WSN impose a 

variety of challenges on successful implementation of WUSN. In terrestrial WSN, 

communication between nodes mainly happens through air, while in WUSN, Underground-

to-Underground (UG2UG) communication is entirely through the ground. Drastic differences 

between the dielectric properties of air and the ground creates a need for a completely 

different wave propagation model for WUSN. Previously due to the high attenuation (shorter 

range) of RF signals in soil, WUSN with UG2UG communication paths were considered not 

feasible (Silva, 2010). However, a sharp decrease in price of electronics due to rapid advances 

in this field and the mass production of the devices with similar technologies have made 

dense deployment of WUSN technically and economically more feasible.  As was mentioned 

in Chapter 2 there is a large discrepancy between existing models for prediction of RF 

attenuation in the ground. In addition an accurate model for the prediction of attenuation of 

RF signals in ground is essential for the design of the WUSN (i.e. node spacing).   

Vuran and Silva (2009) classifies underground communication in WUSN, based on their 

application and environment, into two main categories of wireless communication networks 

for mines and tunnels and wireless communication in buried WUSN. Although wireless 

communication in mines and tunnels sometimes need to partially travel through the ground, 

most of the time the travel path is completely through air. This makes the attenuation model 

for wireless communication in mines and tunnels similar to those of above ground networks 

(Silva, 2010).  
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Silva and Vuran (2009) additionally categorise buried WUSN based on their burial depth in to 

two subcategories of topsoil WUSN  (0-300mm depth) and subsoil WUSNs (>300mm depth). 

This categorisation is necessary due to the difference in soil parameters between these regions 

and the effect of the soil-air boundary (surface of the soil) on the signal path and its 

attenuation. The distance to the surface of the soil (burial depth) greatly affects the attenuation 

of the signal, as at shallower depths the effects of reflected signals are stronger (Silva, 2010). 

Generally underground RF communication is composed of direct path (node to node) and 

reflected path (reflected from the ground surface).  An increase in the burial depth of the 

nodes will significantly reduce the effect of the reflected path on the overall signal 

attenuation. Therefore the signal can be assumed to follow a direct path (Akyildiz et al., 

2009). Figure 6.1 shows the schematic of the direct path and reflected path and their total 

length. 

 

Figure 6.1 Schematic of direct path and reflected path and their total length. 

The focus of this thesis and this chapter, however, will be on attenuation of the RF signals in 

the subsoil region as the majority of the water pipelines are deployed in this region (0.5-

1.0m).  Although internode communication in WUSN for pipeline monitoring is entirely 
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through soil, at some point these data packets are required to be transmitted to the surface to 

be relayed to the user therefore some of the nodes (i.e. mother nodes) use the Underground-

to-Aboveground (UG2AG and AG2UG) communication channel. Therefore, based on the 

location of the nodes, communications in WUSN for pipeline monitoring can be divided into 

two main categories of AG2UG (or UG2AG) and UG2UG paths.  Attenuation of RF signals 

in both of these paths is highly dependent on the dielectric properties of soil. 

6.1.1 Dielectric properties of soil 

Craig, (2004) defines soil as “any uncemented or weakly cemented accumulation of mineral 

particles formed by the weathering of rocks, the void space between the particles containing 

water and/or air.”. Soil therefore can be classified as a complex mixed dielectric medium, 

which consists of air, water (bound and free) and bulk soil (Silva, 2010). Models which are 

used to predict the attenuation of the EM signals in soil rely on three key dielectric parameters 

of soil, which are complex dielectric permittivity, electrical conductivity and magnetic 

permeability of soil. 

Dielectric permittivity is a complex value which represents the ability of the dielectric 

medium to permit an electric field and is defined by Equation (6.1) (Van-Dam et al., 2005; 

Curioni, 2013). 

 !∗ = !� − !"�� (6.1) 

 

Where !∗ is the complex dieelectric prermitivity, !! is the real part of complex permittivity 

(storage of energy), !!!  is the imaginary part of complex permittivity (relaxation and 

dispersive losses) and ! = −1. The permittivity of a medium is commonly described by 

relative permittivity !!, which is the ratio of the real part of permitivilty to the permittivity of 
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free space. The permittivity of soil is mainly dependent on the frequency of the EM wave, soil 

water content, electrical conductivity, and soil composition. Various models have been 

proposed in the literature to estimate the permittivity of soil based on other measurable 

parameters (Peplinski et al., 1995a, 1995b; Van-Dam et al., 2005; Mironov and Dobson, 

2004). As was mentioned earlier attenuation of EM signals in soil is highly affected by its 

complex permittivity and therefore the accuracy of these models ultimately affects the 

accuracy of the propagation estimation models. A comprehensive review of the methods used 

for the prediction of soil dielectric properties was produced by van Dam et al. (2005). A 

common method of extraction of the real and imaginary parts of the complex permittivity 

from time domain reflectometry waveform (TDR) was introduced by Topp et al. (2000). This 

method is based on estimation of the effective frequency of the TDR in soil (Curioni, 2013).  

In this method, the effective frequency is estimated based on the rise time of the signal at the 

end of the TDR (Topp et al., 2000). Figure 6.2 shows a typical TDR waveform and rise time tr 

and travel time t1 of the signal. 

 

Figure 6.2 An example of Time Domain Reflectometry (TDR) waveform showing rise time tr 
and travel time t1 of the signal 
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However in practice multiple reflections at the end of the probe makes choosing the top line 

for calculating the rise time very difficult. This issue was also pointed out by Curioni (2013) 

and Evett and Parkin (2005). In order to overcome this issue it is proposed that the steady 

state value of the waveform after the reflections have levelled out be used for the calculations 

of the rise time. This method can potentially eliminate inaccuracies caused by the multiple 

reflections of the waveform at the end of the probe and provide a robust method for 

calculation of the rise time. The mentioned steady state value is commonly used for 

calculation of Bulk Electrical Conductivity (BEC) of the soil (Curioni, 2013). Figure 6.3 

illustrates a typical waveform with end reflections and proposed method of calculation of the 

rise time. In this figure apparent length was calculated assuming that the velocity of the signal 

was equal to the velocity of light in a vacuum.  

 

Figure 6.3 An example of TDR waveform with end reflections, showing the proposed steady 
state reflection line for calculation of rise time tr and travel time t1 of the signal 
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The performance of the proposed method for estimation of the real and imaginary parts of the 

complex permittivity of the soil as an input for modified Friis model is investigated in section 

6.3 of this chapter.  

Another main dielectric parameter of the soil is its electrical conductivity. The electrical 

conductivity of a medium can be described as the capability of the material to conduct 

electrical current (Curioni, 2013) and is represented by !. Similar to permittivity, electrical 

conductivity is also dependent on frequency. Static electrical conductivity !!" affects the 

imaginary part of the complex permittivity and the relation between the !!! and !!" is given 

by Equation (6.2) (Robinson et al., 2003). 

 !!! ! = !!!! ! + !!"
2!"!!

 (6.2) 

Where !!!!  is the dipolar losses due to relaxation, !  is the frequency (Hz) and !!  is the 

permittivity of free space. 

The magnetic permeability of a medium is described as the magnetisation capability of that 

material when it is exposed to a magnetic field. Similar to permittivity it is also a complex 

value and it is commonly expressed as a ratio to the magnetic permeability of free space and 

is called relative magnetic permeability (Curioni, 2013). The relative magnetic permeability 

of soil is considered to be 1 for the most common types of soil (Chaamwe et al., 2010), 

although some soil types (i.e. iron-oxide rich soils) have higher magnetic permeability. 

6.2 RF propagation field trials 

During this research two RF propagation field trials were carried out at different locations in 

order to evaluate the performance of existing models for RF propagation in a closer to real life 

environment. Moreover, despite the potential of WUSN, very few field trials have been 
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carried out in order to investigate underground communications (Silva and Vuran, 2010). 

During tests presented in this thesis only the UG2UG communication (in the subsoil region) 

of the nodes was investigated. The methodology and setup of these trials is described in detail 

in the following sections of this chapter. 

6.2.1 Test arrangement 

The first set of RF propagation trials was carried out in an area adjacent to an agricultural 

farm in the Leighton Buzzard area and the second set of tests were carried out in an open area 

in the test facility (Severn Trent Water, Lake House) described in Chapter 5. For ease of 

referencing these locations are referred to as locations A and B respectively in the later parts 

of this chapter. Differences in composition, condition and properties of the soil in these two 

locations were used to investigate the propagation of RF signals transmitted by the nodes and 

the results were compared with the previously described (Chapter 2) RF propagation models. 

6.2.1.1 Location A trials 

These tests can be divided into two sections of vertical and horizontal tests. In the vertical 

tests, a hole with a diameter of approximately 300mm and depth of 500mm was created using 

a hydraulic post borer. The latest version of the node (version 2.0) was used as a transmitter 

(at two operational frequencies of 868MHz and 433MHz). The node was placed at the bottom 

of the hole. The hole then was backfilled (via manual compaction plate) and a handheld RF 

spectrum analyser was place on top of the hole and was covered by the topsoil  and grass 

which was removed prior to digging the hole. The handheld RF spectrum analyser 

(RFExplorer 3G-Combo) was used to measure the strength of the signal transmitted by the 

node. This procedure was repeated for all burial depths of 200, 400 and 600 mm and 

measurements taken for both transmission frequencies. Figure 6.4 illustrates the schematic of 

the setup of these tests. 
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Figure 6.4 Schematic of the vertical test setup at location "A" 

In the horizontal tests the RF spectrum analyser (same unit as the vertical tests) was buried at 

a depth of 500mm and the senor node was buried at a same depth with horizontal spacings of 

2.50m, 3.75m and 5.00m from the spectrum analyser. The transmitter (same unit as the 

vertical tests) was initially placed at the 5m distance and was moved closer to the transmitter 

at each stage in order to avoid disturbance caused in the soil by the prior holes affecting the 

measurements. These tests were only carried out at 433MHz operating frequency due to the 

damage caused to the 868MHz transmitter during vertical tests. Figure 6.5 illustrates a 

schematic of the horizontal test setup. 
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Figure 6.5 Schematic of the horizontal RF tests at location "A" 

In both of tests (vertical and horizontal) data from the spectrum analyser was transferred to a 

laptop on the surface via a shielded USB cable. 

6.2.1.2 Location B trials 

The overall setup of these trials was similar to the horizontal tests at location “A” with a few 

differences. For these tests six holes with approximately 600mm spacing between them were 

created in the ground using a dry vacuum excavation technique. Additionally, these tests were 

carried out for two different depths of 500mm and 900mm with both the transmitter (node) 

and the receiver at same depth. Two different spectrum analysers were used for measurement 

of signal intensity in these trials. These spectrum analysers were connected to the receiver 

antenna placed in the ground via a shielded coaxial cable. Figure 6.6 illustrates the schematic 

of the setup used in these trials. 
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Figure 6.6 Test setup schematic for location "B" 

6.2.2 Soil characterisation 

During all of the RF field trials soil samples were taken from each hole location and at 

multiple depths to further analyse the characteristics of the soil and their effect on RF 

propagation. The key parameters tested were moisture content, particle size distribution, 

permittivity and conductivity. The dry sieving method based on British Standard 1377-2 (BSI, 

1990) was used in order to obtain a distribution profile of the sample.  The gravimetric water 

content (GWC) of the samples was measured by the oven drying method. The volumetric 

water content, permittivity and conductivity of the samples were obtained using Time Domain 

Reflectometry (TDR) methods described in Curioni (2013) and  Topp et al. (2000).  Results 

of the characterisation tests are given in section 6.3 of this chapter. 

6.2.3 Factors affecting the field trials 

Due to the complex nature of RF propagation in soil it is important that factors negatively 

affecting the results from the field trials are identified in order to minimise their effect (Silva, 
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2010; Silva and Vuran, 2010). The main factors affecting field trials carried out during this 

research are: 

• Antenna orientation 

• Excavation process (soil disturbance) 

• Instrumentation characteristics 

In terrestrial WSN, the orientation of the antennas does not significantly affect the 

communication (in short range), however in WUSN the high attenuation of signals compared 

to air makes the orientation of the antennas crucial (Silva and Vuran, 2010). For the purpose 

of this research during all the trials the antennas of the transmitter and the receiver were 

placed in the soil parallel to each other (0 degrees). This ensured that the results from the 

trials are not affected by change in the orientation of the antenna and their comparability is 

not jeopardised. 

The excavation process was the most time consuming and labour intensive stage of the trials. 

During the field trials the transmitter and receiver were required to be buried and retrieved 

multiple times at various depths (up to 900mm).  This makes manual excavation of the holes 

not feasible. During the initial set of RF field trials (location “A”) a hydraulic post borer was 

used to create the holes necessary for burial of the instruments. Figure 6.7 illustrates a 

photograph of the posthole borer used for these tests. 
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Figure 6.7 Hydraulic posthole borer used at location "A" 

However, this method exhibited some drawbacks. The main issue was that the maximum hole 

depth achievable by this method was limited to 600m which made testing the RF transmission 

at a normal depth of water distribution pipelines not possible. In addition, due to the invasive 

nature of this method instruments were damaged during the process of retrieval. The final 

issue was that the excavation process using the hydraulic posthole borer required significant 

physical effort due to the weight of the equipment and the soil. A vacuum excavator was used 

in the field trials at location “B” in order to overcome these issues. This method allowed 

deeper holes to be excavated and did not pose any risk to the instruments.  Figure 6.8 shows a 

photograph of the vacuum excavator used for the field trials and the holes created for the RF 

transmission tests. 
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Figure 6.8 Vacuum excavator used for the trials at location "B" and the holes created for the 

RF tests. 

Regardless of the method used for excavation, some considerations should be taken into 

account during the excavation process to ensure repeatability and reliability of the results. 

Any form of excavation will disturb the soil; therefore it is crucial that the soil excavated from 

the holes is compacted back on top of the instruments in order to reflect the initial conditions 

of the soil as closely as possible. During the field trials a compaction plate was used after 

refilling the holes to restore the initial density of the soil. As was mentioned earlier, soil is a 

complex medium and is composed of multiple layers. The properties and composition of the 

soil can vary significantly with depth (layers) therefore it is important that digging process is 

carried out in multiple stages in order to avoid mixing the layers during backfilling and 

potentially affecting the result. 

The characteristics of the instruments used in the field trials also greatly affected the 

reliability and comparability of the results. An ideal RF measurement instrument will have no 

measurement error however in reality this is not the case.  Measurement errors, and tolerances 
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of each of the components used in the trials will affect the end results. Part-to-Part error is one 

of the main issues that can affect the results. Due to manufacturing tolerances, similar parts 

such as antennas and transceivers will exhibit small differences in their performance 

characteristics (i.e. sensitivity, gain or output power). In order to avoid these variations 

affecting the comparability of results, the same instruments (for example antennas and nodes) 

were used in all the trials where possible1.  

Results from the measurements at both of the locations and comparison with the existing 

models are presented together in the next section of this chapter. 

6.3 Results and discussion  

6.3.1 Results from Location “A” 

During the field trials at location “A” each signal intensity reading was repeated 5 times to 

investigate the reliability of the measurement. The classification of the soil at location “A” 

based on the results from the particle size distribution tests (Appendix C) and the results from 

the water content test and dielectric values of the soil samples taken from this location are 

presented in Table 6.1.  

Table 6.1 Location "A" soil characteristics 

Location Classification GWC ε' ε'’ σDC (mS/m) 

A Gravelly SAND, 
CU=2.00, CK=0.99 

12.97% 7.14 1.31 2.32 

 

                                                
1 The RF Spectrum analyser used in the first set of trials was damaged by the posthole borer 
during retrieval and was replaced by another spectrum analyser for the rest of the tests. 
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Figure 6.9 illustrates the signal intensity measurements with respect to depth (vertical tests) at 

location “A”1.  

 

Figure 6.9 Received signal strength for the vertical tests, location "A" 

 The offset that can be seen in Figure 6.9 is caused by the difference between the transmission 

power of the 433MHz (10dBm output) and 868MHz (0dBm output) radio module. The 

attenuation values for the vertical tests are calculated based on using the signal intensity at 

200mm depth as a reference. These are presented in Figure 6.10 (433MHz) and Figure 6.11 

(868 MHz) and are compared with the CRIM-Fresnel, the modified-Friis model and the 

modified-Friis model (based on values from proposed TDR method). 

                                                
1 The error bars in this figure represent the standard deviation in the readings. 
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Figure 6.10 Comparison of the measured attenuation with the propagation models at 433MHz 
(location "A") 

As shown from Figure 6.10 none of the models perfectly fit the measured data. The CRIM- 

Fresnel model especially underestimates the attenuation of signal (RMSE=13.59), while the 

modified Friis model performs significantly better (RMSE=3.06). However the modified-Friis 

model based on the proposed TDR method had the best performance (RMSE=2.85) amongst 

the compared methods.   
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Figure 6.11 Comparison of measured attenuation with propagation models at 868MHz 

(location "A") 

As can be seen from Figure 6.11, and similar to Figure 6.10, none of the models provided an 

accurate estimation of the signal attenuation for the 868 MHz signal. In addition similar to the 

results at 433MHz signal frequency CRIM-Fresnel was less accurate (RMSE=14.87) than 

modified Friis model (RMSE=8.76). However unlike the result at 433MHz the proposed 

modified-Friis method had a higher error (RMSE= 10.04) in estimation of the attenuation of 

the signal in soil. 

Unfortunately, due to damage caused by the posthole borer on the spectrum analyser, the 

results from the horizontal test proved to be unreliable and are not presented in this thesis.  
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6.3.2 Results from Location “B” 

Based on the results from Location “A” and the damage caused to the spectrum analyser, two 

higher performance spectrum analysers (Antritsu MS2721A and TTi-PSA2702) with higher 

accuracy and repeatability were chosen for the RF measurements at location “B”. The RF 

measurements at each position were taken by both the RF spectrum analysers and were 

repeated 3 times. These results are then logarithmically averaged for use in the further 

analysis. Moreover, multiple reference measurements by both the spectrum analysers (in air) 

were used to ensure comparability of the results from these devices (as a calibration reference 

for the results). The TTi spectrum analyser exhibited a higher noise bed compared to the 

Antrisu, therefore measurements with values lower than -99 dBm were only carried out using 

Anritsu spectrum analyser. 

During trials at location “B” multiple soil samples were taken from both depths of 500mm 

and 900mm. These samples were analysed using the same techniques used in characterisation 

of soil samples from location “A”. Results these test are presented in Table 6.2. 

Table 6.2 Classification and properties of the soil at location "B" 

Location Classification GWC ε' ε'’ σDC (mS/m) 

B(500mm depth) Gravelly SAND, 
CU=9.43, CK=0.42 

17.02% 11.78 1.96 3.74 

B(900mm depth) Gravelly SAND, 
CU=7.87, CK=0.51 

20.18% 19.30 4.33 7.61 

 

As can be seen from Table 6.2 the soil samples at 900mm depth had a higher GWC compared 

to 500mm depth. Figure 6.12 illustrates the measured signal intensity at different horizontal 

distances from the transmitter for the 500mm and 900mm depths. Despite the similar 

classification of the samples from 500mm and 900mm depth, the particle size distribution 

tests showed a difference between the compositions of the soil at these depths, with the 
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samples from 900m depth showing a higher cumulative percentage of finer particles 

compared to the samples from 500m depth (see Appendix C). These differences in the water 

content and composition of the soil result in higher permittivity values for the soil at 900mm 

depth compared to 500mm depth. Figure 6.12 shows the measured signal strength at different 

horizontal distances for burial depth of 50 and 90cm. 

 

Figure 6.12 Received signal strength for 50cm and 90cm depths at different horizontal 
distances 

As can be shown from Figure 6.12, the measurements shows a higher attenuation rate for the 

signal when the transmitter is buried at 90 cm compared to 50cm. This is mainly due to the 

previously mentioned difference in the soil moisture content and higher permittivity values. 

The relative attenuation of the signal is calculated for signal transmissions at 50cm and 90cm 

with the first measurement used as a reference. Figure 6.13 and Figure 6.14 illustrates the 

attenuation of the signal at 90cm and 50cm depth compared with the predicted values by the 

CRIM-Fresnel, modified-Friis model and modified-Friis model based on proposed TDR 

method. 
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Figure 6.13 Measured attenuation of transmission at a depth of 90cm at location “B” 

 

Figure 6.14 Measured attenuation of transmission at a depth of 50cm at location “B” 

As can be seen from Figure 6.13 and Figure 6.14 all of the RF propagation models failed to 

provide an acceptable prediction (R2 >0.95) for the attenuation of the signal in the soil. 
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However, the modified-Friis model provided a better approximation (RMSE50cm=7.00, 

RMSE90cm=4.97) for signal attenuation at both depths compared to the CRIM-Fresnel model 

(RMSE50cm=12.31, RMSE90cm=7.56). However, at both depths the modified-Friis model based 

on the proposed TDR method had the best performance (RMSE50cm=4.19, RMSE90cm=3.82) in 

estimation of the signal attenuation. In addition the linear estimation provided by the CRIM-

Fresnel model was not inline with the trend of the measured values at both depths. 

6.4 Summary 

In this chapter the main RF propagation models for the prediction of signal attenuation in soil 

are compared with measured attenuations during field trials and a new modification to the 

modified-Friis model is proposed. 

Due to the multilayer nature of the soil and possible significant variation between the 

dielectric parameters of the soils in each layer, buried WUSN can be divided into two main 

categories of subsoil and topsoil networks.  

The main dielectric properties of the soil which affect RF propagation in soil are permittivity, 

electrical conductivity and magnetic permeability. Methods for estimation and calculation of 

the dielectric properties of soil (i.e. permittivity) are described. A new modification to the 

method of the extraction of the real and imaginary parts of the complex permittivity from 

TDR waveform for usage in a modified-Friis attenuation model is proposed. The link budget 

formula for transmission modelling is described. The modified Friis and CRIM-Fresnel 

models are the main techniques used for estimation of RF attenuation in soil. 

The RF propagation through soil was tested at two locations with different soil compositions 

and conditions in order to investigate the accuracy of the existing RF propagation models. 

The process of excavation proved to be the most challenging aspect of the trials. Two 



RF PROPAGATION IN SOIL 
 

 178 

different techniques (hydraulic post hole borer and vacuum excavation) were used for creating 

the holes necessary for burial of the nodes and antennas. The hydraulic post borer proved not 

to be suitable due to its operational limitation and invasiveness. Vacuum excavation proved to 

be the more suitable technique and was used exclusively at location “B”. 

Factors that could potentially negatively affect the results from the trials were thought to be 

antenna orientation, excavation process (soil handling) and instruments characterises. 

Measures were taken in order to minimise effect of these and ensure reliability of the results. 

Comparison of the measured attenuation of the signal in the soil with the predicted values 

calculated from the CRIM-Fresnel and modified-Friis models showed that neither are these 

models provide an accurate estimation of signal attenuation, which is inline with (Yoon, 

2013). However, the modified-Friis model provided more accurate estimations compared to 

the CRIM-Fresnel model. Comparison of the measured attenuation values with the new 

proposed modification to the modified-Friis model showed improvements in estimation 

accuracy of the modified-Friis model in three of the tests conditions (total of 4 test 

conditions). 

The next chapter of this thesis concludes the research carried out during this project and 

summarises the key findings presented in this thesis. Additionally, recommendations for 

future work are presented in the next chapter. 
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Chapter overview 

This chapter presents conclusions and key findings of the research carried out during this 
project. Additionally recommendations for future work are presented in this chapter. 
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7.1 Conclusions 

This thesis presented the design, development and trials of a non-invasive WUSN for pipeline 

monitoring. Based on the review of the literature concerning NDE methods for pipeline 

monitoring, it was apparent that none of the existing methods is suitable for long-term 

permanent monitoring of pipelines due to their high power consumption or their survey based 

design. Amongst the reviewed NDE techniques, WUSN were identified as a suitable platform 

for pipeline monitoring. However, review of the current state of the art in WUSN for pipeline 

monitoring showed that due to their high power consumption and use of invasive sensors 

none of the existing systems provide a non-invasive long-term monitoring solution for 

pipeline monitoring. Power consumption, non-invasive sensing and underground connectivity 

(lack of requirement to access the interior of the pipe) are the main challenges for a successful 

WUSN for pipeline monitoring. 

Due to the multi-disciplinary nature of this problem a holistic approach was chosen to address 

these challenges.  Figure 7.1 shows the main challenges of this research and outlines the key 

outcomes of this project.  
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Figure 7.1 Main aspects of the project and the key outcomes of each of the sections 

A custom wireless sensor node was designed and developed by the author based on design 

requirements identified for long-term pipeline monitoring. The design of the hardware and 

software of the node were refined during multiple stages of design, prototyping and testing in 

order to achieve ultra-low power consumption (<10µW1) while maintaining the functionality 

of the nodes.  Pressure is one of the main parameters in pressurised pipeline monitoring. 

Commonly, pressure sensors require access to the medium inside the pipe (i.e. via tapings). In 

order to remove this requirement a novel non-invasive relative pressure sensor was designed 

and developed as a part of this research.  The non-invasive nature of this sensor combined 

with its ease of installation (lower costs) makes it a more suitable option for use in WUSN. 

The performance of the proposed relative pressure sensor was investigated by comparing its 

response to a conventional direct pressure sensor.  A laboratory pipe test bed with the ability 

                                                
1 Based on one transmission every 6 hours 
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to simulate pipe failure was developed in order to investigate the leak detection and 

localisation capabilities of the proposed pressure sensor. The complete WUSN developed 

during this research was tested at an industrial leak training test facility where pipelines were 

monitored continuously for a period of 6 months. In addition, existing models for the 

prediction of RF propagation in the soil, as one of the main challenges in WUSN, were 

reviewed and investigated via two separate field trials. A new modification to the method of 

the extraction of the real and imaginary parts of the complex permittivity from TDR 

waveform for usage in the modified-Friis model is proposed in order to increase its accuracy 

for the prediction of EM wave attenuation in soil. The key findings from the research 

presented in this thesis are summarised below: 

• The frequency of measurements and transmission (duty cycle) of the nodes was 

identified as the main factor in reducing the power consumption of the nodes. A lower 

system duty cycle allows the nodes to spend more of their time in “sleep” mode which 

in turn greatly reduces the overall power consumption as power consumption in 

“sleep” mode is significantly lower than other stages of the operation. Based on the 

results from the power consumption tests on the final version of the node, reducing the 

duty cycle from every 5 minutes to every 6 hours decreased the power consumption of 

the node by over 90%. However, the relationship between the duty cycle of the node 

and the average overall power consumption is not linear and at longer sleep periods 

the overall power consumption of the node is dominated by the energy consumed 

during “sleep” period and any further increase in the “sleep” period does not have a 

significant effect on the overall power consumption of the node. Therefore a reduction 

in power consumption of the nodes in “sleep” mode is crucial in order to reduce the 

overall power consumption of the node. PIC microcontrollers with nanoWatt 
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technology were chosen in this research for their ultra-low power consumption during 

“sleep” mode, while maintaining the ability to wake up based on a watchdog timer.  

• The effect of the operating parameters (supply voltage and operating frequency) of the 

nodes on their overall power consumption was investigated by laboratory tests on the 

final version of the node (version 2.0). Based on these tests the supply voltage directly 

affects the overall power consumption of the node during both the “sleep” and “on” 

periods. In contrast, the MCU clock frequency inversely affects the power 

consumption of the node during the “on” period by reducing computation time and 

therefore shortening the length of time that the node spends at this stage. Based on the 

results from the power consumption tests the latest version of the node had a power 

consumption of 5.25µW for one measurement and transmission every 15 minutes and 

1.31µW for one measurement and transmission every six hours. This ultra-low power 

consumption was achieved by careful component selection during the hardware design 

stage and an efficient firmware design. This achievement makes it possible for the 

nodes to use low output harvesting techniques for continuous operation, or have a long 

operational lifetime (>15 years) on batteries. 

• A non-invasive novel relative pressure sensor based on measurement of change in 

contact pressure between a clip and the pipe, caused by change in internal pressure 

was designed and developed. The material properties and geometry of the pipe and 

clip were identified as the main parameters affecting the response of the pressure 

sensors. The results from an analytical evaluation of the sensor node assembly showed 

that the proposed sensor has a larger operational domain when applied to plastic pipes 

compared to metallic pipes due to the lower Young’s Moduli of plastic pipes 

compared with metallic pipes. However, the geometry and material of the clip can be 
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modified in order to compensate for the change in the material properties of the pipes. 

An FEA model was developed in order to investigate the response of the sensor 

assembly for different geometrical and material properties. The results from this 

model were compared with the analytical model and showed an acceptable accuracy 

for the analytical model (95.71%). 

• Static and dynamic pressure tests were carried out to compare the output of the 

proposed sensor with a direct commercial pressure sensor. The results from these tests 

showed a high correlation between the sensors with R2>0.95 for both tests. Based on 

the static tests the FSR sensors exhibited a linear response to pressure, however the 

dynamic tests showed a rate dependent error caused by large pressure changes. This, 

however, does not negatively affect the performance of the proposed sensor for its 

final application as it will be used to measure at lower sampling rates. 

• A closed loop pipe test bench was developed during this project in order to investigate 

the leak detection and localisation capabilities of the FSR sensor. The results from 

these tests showed that the FSR sensor was capable of detecting the pressure drop 

caused by the simulated failure event. Moreover, these results demonstrated that the 

FSR sensors upstream of the simulated burst had a more sudden pressure drop profile 

compared to the ones downstream of the burst. This information can be used to detect 

the zone in which the pipe has failed. 

• The use of temperature sensors for pipeline monitoring was investigated during this 

project. The results from the trials at the University of Birmingham and long-term 

monitoring at the leak test facility showed that a temperature difference between the 

pipe wall and its surroundings can be used to extract useful information regarding the 

flow in the pipe. An increase in the flow of the water in the pipe results in shorter 
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residence time of water, which in turn changes the cooling or heating effect of the 

water in the pipe based on the temperature of the water compared to the temperature 

of pipe environment.  

• The developed WUSN and FSR based relative pressure sensors were deployed in a 

leak test facility for a period of 6 months in order to investigate the performance of the 

system in a more realistic environment.  Based on the results from these trials, the 

WUSN were successfully able to monitor the sensors (FSR relative pressure and 

temperature) associated to them. The ruggedisation and waterproofing of the 

temperature sensors and nodes proved to be challenging as some of the nodes were 

needed to be replaced during the monitoring period due to corrosion, despite the water 

proofing efforts. In addition, the temperature sensors also suffered from rapid 

corrosion in the soil and failed shortly after installation (approximately 8 weeks), 

which further highlighted the importance of ruggedisation. However, the FSR sensors, 

and the method recommended in this research for their waterproofing, proved to 

perform successfully and therefore FSR sensors were not affected by corrosion 

problems. During this research a star network (single-hop) configuration was used 

during trials. Additional research is required to optimise the communication protocols 

for underground wireless communication in order to increase the reliability of 

connections while maintaining low power consumption and to enable multi-hop 

networks with longer range and reliability. 

• The results from the field trials showed that the proposed system was capable of 

monitoring daily pressure fluctuations in the pipe that were caused by changes in 

demand on the network. In addition, systematic changes to the pressure of the network 

(i.e. due to maintenance) were also registered by the proposed WUSN system and the 
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relative pressure sensors. Furthermore, the proposed relative pressure sensors 

successfully registered abnormal pressure drops caused by leaks in the system during 

valve training sessions. 

• The temperature data from the field trials showed a difference between the pipe’s wall 

and its surrounding soil (on average≈1°C). In addition, the results showed a drop in 

the temperature of the pipe wall (i.e. increase in temperature difference up to 4°C) 

during the leak tests due to an increase in flow. It is suggested that temperature drop 

could be used in combination with the relative pressure readings in order to detect 

failures in the pipe by separating abnormal pressure drops from normal pressure 

variations in the pipe network. 

• A comparison of the existing models for RF propagation in soil (modified-Friis and 

CRIM-Fresnel) showed a high discrepancy between the predicted values of 

attenuation obtained from these models. Moreover, mistakes in the published literature 

regarding the Modified-Friis model decreased the reliability of the published results 

on the validation of this model. In order to address these issues two field trials were 

carried out to investigate the performance of these models. The results from these 

trials showed that neither of the existing models was able to predict the attenuation of 

the signal in soil with an acceptable accuracy (>95%) when compared to the measured 

attenuation. The modified-Friis model (with corrected equations), however, had a 

better accuracy compared to the CRIM-Fresnel model.  

• A modification to the method for extracting real and imaginary parts of permittivity by 

TDR is proposed in this thesis. It was also proposed to replace the dielectric mixing 

formula (Peplinski) used in the Modified-Friis method with the values extracted by 

TDR. The results from the two trials showed an improvement in the accuracy of the 
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Modified-Friis model by adaptation of the proposed method. However, the proposed 

modifications to the method of extracting the permittivity values from the TDR 

waveforms were tested on limited soil samples. In order to validate this method further 

tests are required on an extended range of soil compositions and conditions. 

• Underground RF communication was thoroughly researched and it is found to be not 

appropriate as a means of data transmission for buried WSNs. This is largely due to 

the high absorption of EM signals in soil which results in short internode distances 

(range) and therefore increases in cost of deployment due to the higher number of 

required nodes and excavations. In addition, variations in soil conditions and 

compositions can significantly affect the absorption of EM signals, which also makes 

reliable communication for WUSNs nodes challenging. These variations need to be 

considered in calculations of the range, which results in further reductions of the 

internode distance. 

7.2 Recommendations for future work 

A number of recommendations are identified in this section based on the research presented in 

this thesis.  

• Any permanent buried monitoring system for water pipelines is expected to have a 

long operational life due to high costs of excavations and replacements. Therefore the 

longevity of the electronics and the effects of ageing on the sensors needs to be 

studied further. 

• The temperature measurements of the pipe wall and the surrounding soil presented in 

this thesis covered a short period of time (4 weeks). Longer-term monitoring of the 

pipe wall and its surrounding soil temperatures (>1 year) would provide useful 
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information on seasonal changes of the temperature differential between the pipe and 

its surrounding soil. This, in conjunction with monitoring of flow and pressure in the 

pipe, could also be used to further investigate the feasibility and reliability of using 

temperature differentials for leak detection. 

• The novel relative pressure sensor presented in this thesis was only tested on limited 

pipe diameters and materials (four combinations in total), therefore further tests on 

different pipe materials and dimensions is recommended in order to investigate and 

validate the performance of the proposed relative pressure sensors. 

• The results from the dynamic pressure tests showed a rate dependency error in the 

output of the proposed pressure sensor. More controlled dynamic tests with various 

rates of pressure change need to be carried out to further characterise this error. These 

tests can potentially help to further understand the operational domain and capabilities 

of the FSR sensors. 

• The attenuation of electromagnetic signals increase in soils with an increase in 

frequency, therefore, WUSN can benefit from a low frequency transceiver 

(<100MHz). This will increase the internode range, which can result in lower overall 

system adaptation cost for suppliers due to lower equipment and excavation costs. In 

addition, more research needs to be carried out on alternative non-invasive methods of 

communication in WUSN for pipeline monitoring such as acoustic communication 

through the pipe wall.  

• The performance of the existing RF propagation models and the new proposed 

modification to the Modified-Friis model in soil were tested on two different soil 

types. It is recommended to extend these trials by testing the performance of these 

models in more soil types with varying conditions (i.e. water content). This will help 
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to better understand the attenuation of EM signals in soil.  This will also benefit the 

design of WUSN (i.e internode distance prediction). In addition, this can provide 

useful information for other NDE techniques based on electromagnetic signals (for 

example GPR) by providing better prediction of the behaviour of these methods in 

different soil types and conditions (i.e. prediction of effective depth of GPR 

measurements). 
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APPENDICES 
Appendix A: Sensor nodes 

Figure A.1 Version 0.5 of the node 

 

 

Figure A.2 Version 1.0 of the node. 
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Appendix B: Laboratory leak test 

The following are more examples of the normalised pressure readings during laboratory leak 

tests described in Section 5.2: 

Figure B.1 Normalised output of the FSR sensor during leak test example1 

 

 

Figure B.2 Normalised output of the FSR sensor during leak test example2 
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Figure B. 3 Normalised output of the FSR sensor during leak test example 3 

 

 

Figure B.4 Normalised output of the FSR sensor during leak test example 4 
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Appendix C: Particle size distribution curves 

 

Figure C.1 Particle size distribution curve for samples from location A and B 

 

 

 

 

 

 

 

 

 

 

 

 


