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Abstract 

Water electrolysis represents a technology for converting surplus renewable 

energy generation into hydrogen energy.  With an increasing market penetration of 

intermittent renewable energy generation, the need for energy storage is more apparent.  

Options for hydrogen via water electrolysis include injection into the natural gas grid, 

refuelling of fuel cell vehicles and conversion back into the electricity grid via fuel cell 

when a deficit in supply/demand chain exists. 

Industrial on-demand hydrogen generating alkaline electrolysers were 

electrochemically characterised and analysed on an internal combustion engine.  These 

electrolysers exhibited low efficiencies, low gas flowrates and subsequently zero change 

in engine emissions due to the poor design and build.  An improved alkaline electrolyser 

was designed, built and tested, and exhibited improved efficiency and gas output 

compared to the industrial electrolysers and an improved reduction in engine emissions. 

The increased power consumption of the electrolyser results in a rise in electrode 

degradation which is responsible for the decrease in electrode lifetime.  A method for 

prolonging the electrode lifetime is proposed through a metallic “oxygen-getter”.  This 

implementation of an oxygen-getter has shown to prevent corrosion of the electrode 

material and thus reduces oxide content on the surface.  The electrode lifetime in an 

alkaline electrolyser was proven to increase, but the commercial trend is shifting towards 

the more attractive PEM technology for electrolysis due to higher current densities, ability 

to handle variable input loads and non-caustic liquid requirement. 

PEM electrolysis is a rapidly evolving newly commercial electrolyser technology 

which uses a solid polymer membrane to split pure water into hydrogen and oxygen.  The 
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disadvantages of the technology are high cost due to the expensive PGM electrocatalyst 

and the ultrapure water requirement, with the latter the source of minimal research.  The 

impact of water quality on two different membranes (Nafion® and Fumea®) performance 

was compared and tolerance to domestic tap water was highlighted. 

The cations present in varying grades of water were measured and systematically 

added to ultrapure water.  This cation targeting demonstrated the limitations of specific 

cations in ultrapure water and the subsequent effect they had on MEA lifetime.  The 

efficiency and degradation characteristics were analysed between alkaline and PEM 

technology and PEM technology was proven to show better performance and robustness 

over prolonged operation, along with the other advantages highlighted previously. 

A commercial on-demand PEM electrolyser was then tested and system designed 

for integration with an existing hydrogen refuelling station at the University of 

Birmingham.  This mimicked the case for a distributed hydrogen system where the 

hydrogen is produced onsite for fuel cell vehicles resulting in a carbon neutral fuel. 
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"Yes, my friends, I believe that water will one day be employed as fuel, that hydrogen and 

oxygen which constitute it, used singly or together, will furnish an inexhaustible source 

of heat and light, of an intensity of which coal is not capable….water will be the coal of 

the future".                      Jules Verne – Mysterious Island 1874 
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1. .............. Introduction 
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1.1.  Project Motivation 

There is growing global emphasis on the increase of greenhouse gases (GHGs), including 

carbon dioxide (CO2), in the Earth’s atmosphere (Figure 1.1).  Many believe it is 

responsible for global warming and is leading to climate change [1].  This change in the 

Earth’s atmosphere is thought to be due to man-made processes.   

 

Figure 1.1: Atmospheric CO2 Concentration Levels [2] 

 

A large proportion of GHG emissions are from the extraction, processing and utilisation 

of fossil fuels for global energy requirement.   Endeavours to reduce GHG emissions are 

in progress through methods such as carbon capture and storage (CCS) and amine 

scrubbing [3].  These processes however are not a sustainable solution and are seen as a 

temporary step to reducing GHG emissions.   



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 3 - 

 

 

Figure 1.2: The 'Peak Oil' Concept [4] 

 

Fossil fuels are not a sustainable source for energy supply.  Crude oil reserves are 

expected to be exhausted within the next 30-50 years, which will shortly lead to ‘peak 

oil’ (Figure 1.2), here demand is greater than supply [4].  This will lead to a large rise in 

the price of oil.  The search for a renewable and sustainable energy source is currently a 

major focus area in research institutions.  Ideally the energy source would be carbon 

neutral.  This means there would be zero GHG emissions from the energy production 

lifecycle resulting in no adverse effects on the planet us humans inhabit. 

 

Hydrogen is being proclaimed as a future energy source, ideally for transportation 

applications, where the energy contained in hydrogen is utilised in hydrogen fuel cells 

(HFCs) (Figure 1.3).  Compared to gasoline (transportation fuel), hydrogen has a higher 

gravimetric energy density (gasoline = 48.6 MJ/kg; hydrogen = 140.4 MJ/kg) [5]. 
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HFCs produce water and electricity, with no GHG emissions, hence if the hydrogen 

supplied to the fuel cells is made from carbon neutral sources, then the entire process of 

energy extraction to utilisation is GHG free [6].  This is the hydrogen cycle (Figure 1.4). 

 

Figure 1.3: Diagram of a Hydrogen Fuel Cell [7] 

 

Hydrogen required for a HFC does not occur naturally on our planet, even though it is 

abundant in the universe.  It is naturally found joined in compounds to other atoms e.g.  

water (H2O) and methane (CH4).  Hydrogen is consequently known as a secondary energy 

source or energy ‘vector’ [8]. 
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Figure 1.4: The Hydrogen Cycle 

This introduction examines the various production pathways for producing hydrogen with 

an emphasis on water electrolysis as the future for large scale zero-carbon hydrogen 

production. 

 

1.2.  Hydrogen Production Overview 

There are currently 50 million tonnes of hydrogen produced annually [9].  This figure is 

expected to rise over the coming decades with the growth of a hydrogen economy.  This 

hydrogen is currently used in industry to produce ammonia, hydrogenation of fats and 

pharmaceutical manufacture (Figure 1.5) [4, 10].   
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Figure 1.5: Representation of Uses of Hydrogen [4, 10] 

 

These industries will continue to use this feedstock of hydrogen gas, so a huge increase 

in the volume of hydrogen produced each year will be required for a growing hydrogen 

economy. 

 

If a future hydrogen economy is to succeed, hydrogen would need to be sourced from 

more than one single production pathway.  Each production pathway has unique benefits 

and disadvantages, such as cost of production and the purity of hydrogen produced.  As 

a result for new sustainable methods of producing hydrogen more research is required in 

the optimisation and commercialisation. 
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Of current hydrogen production, 96% comes from fossil fuel sources (Figure 1.6) [10].   

The feedstocks to these processes are finite and produce GHGs which is unsustainable 

and undesirable for the vision of a long term hydrogen economy. 

 

Figure 1.6: Current Processes for Producing Hydrogen [10].    

 

Currently water electrolysis contributes only 4% of global hydrogen production [10].  

This is due to the high economic cost compared to fossil fuel derived hydrogen.  

Hydrogen produced from water electrolysis currently supplies niche applications, which 

require a higher purity hydrogen than that produced by fossil fuel derived hydrogen [11].   

 

An example of this type of applications is for Proton Exchange Membrane Fuel Cells 

(PEMFCs).  PEMFCs require an ultra-high purity of hydrogen i.e.  no impurities.  This 

reduces the chance of poisoning the highly expensive platinum based catalyst, which 

would decrease the performance of the PEMFC irreversibly. 
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1.3.  Hydrogen Production Methods 

1.3.1.  Fossil Fuel Derived 

1.3.1.1.  Steam Methane Reforming 

Hydrogen production from methane is a well-established technology which produces 

almost half of all hydrogen produced today.   When compared to other fossil fuels, 

methane (natural gas) is the most desirable, since it’s widely available, relatively cheap 

and easy to handle [12].  Methane also has a high hydrogen-carbon ratio (4:1) of all fossil 

fuels (oil = 2:1; coal = 0.5:1). 

 

The reaction mechanism for producing hydrogen from SMR is to pass methane and steam 

over a nickel based catalyst at approximately 900oC, and high pressure (3-4 MPa) (see 

Eq.  1.1) [5]. 

 CH4 + H2O ↔ CO + 3H2 Eq.  1.1 

 

The hydrogen and carbon monoxide produced is commonly known as synthetic gas or 

‘syngas’, because it is used to prepare various organic chemicals such as methanol and 

formaldehyde [9].  The reaction is endothermic and requires 252 kJ per mole of methane 

(under standard temperature and pressure (25oC; 1atm). 

Hydrogen yield can be enhanced further, through the water-gas shift reaction which 

oxidises carbon monoxide to carbon dioxide (see Eq.  1.2) [5]. 

 CO + H2O ↔ CO2 + H2 Eq.  1.2 
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This reaction takes place in two stages at a much lower temperature than the initial 

reaction mechanism.  First, the high temperature water-gas shift reaction takes place at 

400oC where the CO content is reduced to < 2 volume%, and secondly the low 

temperature water-gas shift reaction takes place at 200oC where the CO content is reduced 

to < 0.2 volume% [5]. 

 

Simplifying the two reactions above, the complete reaction mechanism is: 

 CH4 + 2H2O ↔ CO2 + 4H2 Eq.  1.3 

A diagram illustrating the basic process for hydrogen production from steam methane 

reforming is illustrated in Figure 1.7. 

 

 

Figure 1.7: Process Flow Diagram for SMR 
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1.3.1.2.  Partial Oxidation 

Partial Oxidation (POX) is a process that is used to convert heavy liquid hydrocarbons 

e.g.  oils and residues, to hydrogen.  This process is similar to that of SMR, but involves 

the use of oxygen gas instead of steam to react the hydrocarbons with [13].  The reaction 

mechanism is outlined below (see Eq.  1.4) [4]. 

 2CaHb + aO2  2aCO + bH2 Eq.  1.4 

 

The minimum amount of oxygen required to oxidise the carbon to carbon monoxide is 

used, whilst leaving behind elemental hydrogen, which gives rise to the name ‘partial 

oxidation’ [13].  The reaction is exothermic and produces syngas which undergoes water-

gas shift reaction and then the CO2 and H2 are separated.  The reaction is carried out at 

1250 oC -1500oC and 3-13 MPa [5].  This high temperature and pressure removes the 

requirement for a catalyst.  The typical thermal efficiency is 60-75% for methane fuel 

based on the higher heating values [8].  This process is illustrated in Figure 1.8. 

 

Figure 1.8: Process Flow Diagram for POX 
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A disadvantage of POX when compared to SMR, is the hydrogen-carbon ratio.  When 

comparing the SMR and POX for pre-water-gas shift reactions we find the ratios are 3:1 

and 2:1-1:1 respectively (depending on the feedstock used).  An advantage of POX is that 

the reaction is highly exothermic, so no external heat source is required, whereas for SMR 

the reaction is endothermic and requires additional heat [9].   

1.3.1.3.  Coal Gasification 

With supplies of natural gas being depleted, coal is expected to be the preferred 

technology to meet our electrical energy needs for the future (there are estimated 150 

years of coal reserves compared to estimated 50 years of natural gas) [8].   

 

By definition, gasification is a process which converts solids into combustible gases in 

the presence of oxygen/air at high temperatures > 700oC [3].  This reaction, where coal is 

the solid feedstock, produces, as with SMR and POX, syngas.  The reaction mechanisms 

are detailed below (see Eq.  1.5 to Eq.  1.10) [5].  

Gasification C + 0.5O2  CO Eq.  1.5 

 C + H2O  CO + H2 Eq.  1.6 

 CO + H2O ↔ CO2 + H2 Eq.  1.7 

Water-Gas Shift CO + H2O ↔ CO2 + H2 Eq.  1.8 

Purification CaO + CO2  CaCO3 Eq.  1.9 

 CaO + H2S  CaS + H2O Eq.  1.10 

The syngas is then placed under water-gas shift reactions to produce a suitable yield of 

hydrogen.  Purification involves the use of lime (CaO), to separate carbon from the 

hydrogen [14]. 
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There are three types of gasification reactor, entrained flow reactors, fixed bed reactors 

and fluidised bed reactors.  Entrained flow reactors are the most aggressive form of 

gasification where concurrent flows of preheated coal and oxygen are reacted together.  

The operating temperature of reaction is 1500oC and operating pressure of 2-3 MPa.  The 

feed consists of dried, milled coal and this reacts with oxygen and steam to produce 

syngas [4].   

 

Fixed bed reactors are the oldest form of gasification technology.  The reactor resembles 

a blast furnace, where coal is lowered into the furnace on a grate into the furnace.  Steam 

and oxygen enter at the bottom of the furnace where the temperature is approximately 

2000oC [15].  The syngas produced is removed from the reactor near the top of the furnace 

where the temperature is lower at 450oC.  The solid waste (slag) at the bottom of the 

reactor is removed and the pressure in the reactor is approximately 2-3 MPa.  The 

residence time of coal gasification in this reactor is between 30 minutes and one hour.  

These long residence times result in a slow throughout of coal and are therefore limited 

in industrial applications [8]. 

 

A fluidised bed reactor is currently the most commonly used gasification reactor and 

involves the suspension of fine particles in the reactor through the flow of steam/oxygen 

upwards until the mixture behaves like a fluid [3].  This reaction is carried out at             

900-1100oC and 2-3MPa.  This type of reactor gives rise to high mass and heat transfer 

rates between the coal and the gas.  The syngas produced is removed from the reactor 

where it undergoes water-gas shift reaction to increase the hydrogen produced [15].   
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A diagram illustrating the basic process for hydrogen production from coal gasification 

is illustrated in Figure 1.9. 

 

Figure 1.9: Process Flow Diagram of Coal Gasification  

 

Coal gasification produces hydrogen at a faster rate than SMR and POX, but the capital 

costs are greater due to the pre-treatment required on the coal (milling, desulphurising) 

and the increased number of particulates in the syngas produced [5].  These cleaning 

processes are a vital component of the gasification process, since the restriction of catalyst 

poisoning in the reactor, and the purity of syngas produced are of vital importance to meet 

the preset requirements. 
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1.4.2.  Biologically Derived 

Hydrogen is primarily produced from fossil fuel sources, and research is growing into 

hydrogen derived from biological sources, because of its attractive sustainability value.  

These methods are discussed here. 

1.3.2.1.  Anaerobic Digestion 

Anaerobic Digestion is the breakdown of microorganisms in the absence of oxygen to 

produce a biogas consisting of methane and carbon dioxide [16].  This methane then 

undergoes reformation in the presence of steam to produce hydrogen and carbon 

monoxide (syngas) [13].  The high temperature and low temperature water-gas shift 

reaction converts the remaining CO to CO2 and is then removed, through a process such 

as pressure swing adsorption [5]. 

 

1.3.2.2.  Pyrolysis 

Pyrolysis is a process similar to thermolysis for organic materials, from which biomass 

undergoes thermal decomposition to produce bio-oils in the absence of oxygen [17].  This 

bio oil is then partially oxidised in a reformer with the addition of steam to produce 

syngas.  This syngas then goes through the similar water-gas shift reactions and 

purifications processes to produce hydrogen [5].  The partial oxidation of the bio-oil 

results in a lower hydrogen-carbon ratio than biogas produced from anaerobic digestion 

of biomass [17].   
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1.3.2.3.  Fermentation 

Fermentative Hydrogen production consists of biomass producing ethanol through 

distillation from organic substrates.  This reaction involves the use of a group of bacteria 

using various enzyme systems to produce ethanol [18].  The ethanol produced is then 

reformed with steam to produce hydrogen, carbon monoxide & carbon dioxide [19].  The 

water-gas shift reactions convert the CO to CO2, and this is then separated from the 

hydrogen.  The reaction is similar to that of anaerobic digestion and pyrolysis, since 

hydrogen is produced in the absence of oxygen (air).  There are two main types of 

fermentation, dark fermentation which does not require light to produce H2, and 

photofermentation which does require light [5].   

 

1.3.2.4.  Photolysis 

Photolysis is a process for producing hydrogen from solar energy through photosynthesis.  

The process utilises energy from the Sun to split water and produce hydrogen [20].  The 

reaction occurs in the thylakoid membrane in the chloroplast [20].  This is where the 

energy in the light is converted to chemical energy.  Water molecules oxidise to produce 

hydrogen and oxygen gases, and the electrons are transferred through a membrane to 

Adenosine Triphosphate (ATP).  This passes chemical energy in the cells for metabolism.  

This ATP then undergoes hydrolysis to produce orthophosphate (PI) which is an 

inorganic phosphate [5].  The reaction mechanism is illustrated in the diagram            

(Figure 1.10). 
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Figure 1.10: Reaction Mechanism for Photolysis 

 

1.3.2.5.  Photocatalysis 

Similarly to photolysis, photocatalysts for splitting water directly to produce hydrogen 

have been considered.  The photocatalysts absorb light from the Sun and generate free 

electrons and free holes, which are capable of performing reduction and oxidation (redox) 

reactions [8].  The electrons are transferred from the water to oxygen gas reaction to the 

hydrogen evolution reaction.  Many catalysts have been researched which include TiO2, 

RuO2, CdS2 and cobalt.  These catalysts continue to be an active area of research and as 

of yet are not commercially viable to produce hydrogen on a large-scale [5].  The reaction 

mechanism is illustrated in Figure 1.11.   
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Figure 1.11: Reaction Mechanism of Photocatalysts 

 

These bio-derived sources of hydrogen provide a sustainable feedstock of ‘fuel’ to 

produce hydrogen and are seen by many as a likely method for producing hydrogen once 

the fossil fuel feedstocks for hydrogen production have been depleted. 

1.3.3.  Thermally Derived 

This section describes processes for producing hydrogen which require high temperatures 

and have potential to be coupled with nuclear power generation. 

1.3.3.1.  Thermolysis 

Water is a very stable molecule, which gives rise to a high temperature requirement to 

split it into its constituent atoms.  Steam enters the reactor and temperatures of between 

2000-3000oC are required to thermally split the water molecules [7].  These high 

temperatures are very limited in industry, so the coupling of this technology with nuclear 
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power generation (which produces heat in this temperature range), could be a beneficial 

use of this waste heat [10].  

 

1.3.3.2.  Chemical Looping 

Commonly researched in the nuclear industry, the sulphur-iodine cycle has been studied 

extensively since the 1970s [10].  It promotes the oxidation of S(IV) to S(VI) through I2.  

The reaction mechanism is below (see Eq.  1.11 to Eq.  1.13). 

 I2 + SO2 + 2H2O  2HI + H2SO4 Eq.  1.11 

 H2SO4  SO2 + H2O + 0.5O2 Eq.  1.12 

 2HI  I2 + H2 Eq.  1.13 

The first reaction (Eq.  1.11) is exothermic, whilst the other two reactions (Eq.  1.12 & 

Eq.  1.13) which see the decomposition of the sulphuric acid and hydrogen iodide are 

endothermic and require heat for the reaction to proceed.  The sulphur and iodine are 

continuously looped through the reactors, with hydrogen and oxygen being removed from 

the endothermic reactors and water inserted in the Bunsen reactor.  The Bunsen reaction 

occurs at 120oC, the sulphuric acid decomposition occurs at 850-900oC, and the hydrogen 

iodide decomposition occurs at 300-450oC [4].  The process is illustrated in Figure 1.12. 
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Figure 1.12: Process Flow Diagram for Chemical Looping 

 

1.3.4.  Electrically Derived 

Electrolysis is defined as applying an electrical current to split compounds [21].  Water 

splitting occurs when a direct current is passed between an anode and a cathode 

submerged in water separated by a solid electrolyte or a aqueous electrolyte to transport 

ions and complete the electrical circuit [22]. 

 

If the electrical energy is supplied from renewable resources, ‘Green’ hydrogen i.e.  

greenhouse gas emission free, is produced.  Water is also in limitless supply, there are 

approximately 1.26 x 1021 litres of water on Earth [23].  It is not geographically limited 

either, which could lead to the fall of energy poverty globally. 
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Water is a very stable molecule with a heat of formation of -285.83 kJ/mol under standard 

conditions [24].  To enhance the conductivity of the water based solution, electrolytes, 

which consist of ions with high mobility, are added.  This increases the electrical 

conductivity of the solution. 

 

The purity of hydrogen produced from electrolysis is very high (> 99.999%), this requires 

less gas-cleaning processes than fossil fuel derived hydrogen needs.  For applications that 

require ultra-pure hydrogen, such as polymer electrolyte membrane fuel cells (PEMFCs), 

electrolysis is currently the only method of hydrogen production that can meet this 

requirement.  Fuel cells are predicted to play a vital role in the future automotive industry, 

portable and stationary power sectors, therefore a supply chain of high purity hydrogen 

is required to fuel these electrochemical devices. 

 

It is important to remember that hydrogen is a form of energy storage, not a primary 

energy source.  An application for electrolysis is in energy storage.  During electricity 

generation at power stations, nuclear power plants, renewable energy sources (wind 

turbines, photovoltaic power station) there may be an excess in electrical energy than is 

required by the grid.  In this case, instead of wasting the electricity, it could be converted 

to hydrogen through electrolysis and stored.  This hydrogen can then be put back into the 

grid via fuel cells to produce electricity when the consumer demand is higher, or sold off 

by the energy company.  This is discussed in more detail later. 
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There are three main types of electrolysers; alkaline, polymer electrolyte membrane 

(PEM), and solid oxide (SO).   

 

1.3.4.1. Alkaline Electrolysis 

Alkaline Electrolysis is an established technology, with the first concepts of electrolysis 

carried out using acid/alkaline electrolytes.  Alkaline solutions are the preferred 

electrolyte in modern systems due to less corrosion caused to the electrodes, which acidic 

solutions cause [25].  A schematic of alkaline electrolysis is illustrated in Figure 1.13. 

 

Figure 1.13: Schematic of Alkaline Electrolysis 

 

The main electrolytes used are potassium hydroxide (KOH) and sodium hydroxide 

(NaOH), and usually consist of 25-30 weight% in industrial electrolysis units [23].  The 

liquid electrolyte enables the conduction of ions between the electrodes in the solution 



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 22 - 

 

and is not consumed in the reaction.  Concentrations of up to 50 weight% can be used, 

but this results in faster rates of electrode degradation [5].   

 

The most commonly used materials of electrodes for alkaline electrolysis are nickel and 

stainless steel; due to their high conductivity and low cost [24, 26].  The operating 

temperature during electrolysis is approximately 80oC and can go up to 150oC.  

Temperatures higher than this can result in rapid degradation of electrodes from the 

caustic solution.  Alkaline electrolysers can operate and produce hydrogen at 5-30 bar 

pressure [27].   

 

Alkaline electrolysers typically operate with current densities (current per surface area) 

between 100-4000 mA/cm2 [24].  Efficiencies of these electrolysers are typically 64-70%, 

and production ranges from 10-100 m3/hour [24].   

The reaction mechanisms are 

Cathode 4H2O + 4e-  2H2 + 4OH- Eq.  1.14 

Anode 4OH-  O2 + 2H2O + 4e- Eq.  1.15 

Overall 2H2O  2H2 + O2 Eq.  1.16 

   

1.3.4.2.  Polymer Electrolyte Membrane (PEM) Electrolysis 

PEM electrolysis technology uses a solid polymer electrolyte (SPE) membrane to split 

water into its constituent elements [28].  As a consequence no liquid electrolyte is required 

which enables safer handling of the electrolyte for the end user [29]. 
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The membrane is non-electrically conductive and proton conducting.  The standard 

membrane material used in PEM electrolysis is Nafion® 117 which is produced by 

DuPont [30].  Nafion® (chemical structure in Figure 1.14) is a co-polymer of 

perfluorinated vinyl-ethersulfonyfluoride and tetrafluorethylene.   Perfluorinated sulfonic 

acid (PFSA) membranes have proved to be highly resistant to the oxidative nature of 

oxygen [30]. 

 

Figure 1.14: Chemical Structure of Nafion® 

 

The PEM is part of the membrane electrode assembly (MEA) which consists of highly 

expensive platinum catalyst layers on either side of the PEM [31].  Platinum is highly 

susceptible to poisoning from cation impurities commonly found in natural water [32].  

As a result ultrapure water, (minimum 10 MΩ) is a vital requirement for long term PEM 

electrolysis [23].  Poisoning of the catalyst layer results in an irreversible drop in 

electrochemical performance and the high cost of platinum makes degradation 

undesirable [21].  A schematic of PEM electrolysis is illustrated in Figure 1.15. 
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Figure 1.15: Schematic of PEM Electrolysis 

 

At the anode catalyst layer, water is split into oxygen, electrons and protons by applying 

a direct current (DC) [33].  The oxygen gas evolved leaves to the atmosphere above the 

anode.  The electrons pass through the external circuit to the cathode and the protons pass 

through the PEM [22].  On the cathode electrocatalysts the electrons from the external 

circuit and protons passed through the membrane recombine to produce hydrogen gas 

[34].   

 

PEM electrolysers operate with current densities of > 1600mA/cm2 and efficiencies of 

55-85% [35].  Nafion® membranes suffer from degradation at high temperatures, 

therefore the operating temperature of PEM electrolysis has to be kept <100oC [36].   
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The reaction mechanisms are 

Cathode 4H+ + 4e-  2H2 Eq.  1.17 

Anode 2H2O  O2 + 4H+ + 4e- Eq.  1.18 

Overall 2H2O  2H2 + O2 Eq.  1.19 

   

1.3.4.3.  Solid Oxide (SO) Electrolysis 

Solid oxide electrolysis, also known as steam electrolysis, introduces the concept of 

electrolysis at higher temperatures (700-1000oC) than alkaline and PEM electrolysis.  

This enables a more efficient electrolysis system, since heat supplies a proportion of the 

energy required to split water [5].  In addition to this, overpotential is also reduced as a 

direct result of the higher temperature [37].  One of the main disadvantages of electrolysis, 

as a production pathway for large scale hydrogen production, is the high electrical energy 

consumption.  The decrease in electrical energy requirement provides a more 

economically realistic process.  This makes steam electrolysis thermodynamically and 

kinetically more favourable than its low temperature counterparts [23]. 

 

Steam electrolysis uses an oxide conducting electrolyte to split steam into hydrogen and 

oxygen.  Steam enters the electrolyser on the cathode side of the cell and reacts with 

electrons from the external circuit to produce hydrogen and oxide ions.  The oxide ions 

transport through the electrolyte to the anode where the oxide ions are oxidised to oxygen 

gas and electrons, which are transported through the external circuit to the cathode.  A 

schematic of SO electrolysis is illustrated in Figure 1.16. 
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Figure 1.16: Schematic of Solid Oxide Electrolysis 

 

Oxide conducting electrolytes are usually zirconia (ZrO2) stabilised by Y2O3, CaO or 

MgO [38].  The electrode materials for the cathode are usually nickel (Ni) based yttria 

stabilised zirconia (YSZ), and the anode material is lanthanum strontium manganate 

(LSM) [5]. 

 

Small scale SO electrolysis cells have been produced, which have demonstrated hydrogen 

production efficiencies of 70-90% [5].  This is much higher than its low temperature 

(alkaline and PEM) electrolyser equivalents.    
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A method of decreasing the electrical energy requirement for steam electrolysis even 

further is through the use of methane.  In this process, the air on the anode side is replaced 

by methane, which reduces the open-circuit voltage and therefore the electrical energy 

consumption [39]. 

 

The reaction mechanism is 

Cathode 2H2O + 4e-  2H2 + 2O2- Eq.  1.20 

Anode 2O2-  O2 + 4e- Eq.  1.21 

Overall 2H2O  2H2 + O2 Eq.  1.22 

   

1.3.5.  Summary of Technologies 

A summary of the various hydrogen technologies including their feedstocks, efficiencies 

and maturities is shown in Table 1.1. 

Table 1.1: Summary of Hydrogen Production Technologies (Reproduced from [8]) 

Technology Feedstock Efficiency Maturity 

Steam Methane 

Reforming 

Hydrocarbons 70-85% a Commercial 

Partial Oxidation Hydrocarbons 60-75% a Commercial 

Biomass Gasification Biomass 35-50% a Commercial 

Photolysis Sunlight + Water 0.5%  b Long Term 

Dark Fermentation Biomass 60-80% c Long Term 

Photo Fermentation Biomass + 

Sunlight 

0.1% d Long Term 

Thermochemical 

Water Splitting 

Water + Heat N/A Long Term 

Photoelectrochemical 

Water Splitting 

Water + Sunlight 12.4% e Long Term 

Alkaline Electrolysis Water + Electricity 50-60% f Commercial 

PEM Electrolysis Water + Electricity 55-70% f Near Term 

Solid Oxide 

Electrolysis 

Water + Electricity 

+ Heat 

40-60% g Medium Term 
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a Thermal efficiency, based on the higher heating values. 

b Solar to hydrogen via water splitting and does not include hydrogen purification. 

c Percent of 4 mole H2 per mole glucose theoretical maximum. 

d Solar to hydrogen via organic materials and does not include hydrogen purification 

e Solar to hydrogen via water splitting and does not include hydrogen purification 

f Lower heating value of hydrogen produced divided by the electrical energy to the 

electrolysis cell. 

g High temperature electrolysis efficiency is dependent on the temperature the electrolyser 

operates at and the efficiency of the thermal energy source.  For example, SOEC operating 

from advanced high temperature nuclear reactors may be able to achieve up to 60% 

efficiency.  If thermal energy input is ignored, efficiencies up to 90% have been reported 

[40]. 

 

1.4.  Project Rationale 

The increasing growth of a hydrogen economy requires an increased capacity of hydrogen 

generation.  This coincides with the increasing rollout of hydrogen refuelling stations to 

supply fuel cell vehicles. The objective of the research completed herein is to investigate 

and produce solutions to common problems associated with alkaline and PEM 

electrolysis. 
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On demand hydrogen production is highly desirable as it eliminates the need for storage 

which has safety implications (codes and regulations) and is costly.  Hydrogen cannot be 

produced on demand from SOECs due to the high heat energy requirement, which cannot 

be instantaneously provided. 

 

There are currently numerous on-demand hydrogen generators available on the market, 

which promote unfeasibly high efficiencies and gaseous production rates using the mature 

alkaline technology.  A sample of these generators will be analysed and then one will be 

redesigned using electrochemical, thermodynamic and kinetic principles to improve 

productivity, efficiency and lifetime for their predetermined applications.   

 

The plan of the thesis is given in Figure 1.17.  Chapter 1 gives an introduction to 

motivation and rationale of the research completed.  Chapter 2 explains the scientific 

principles of water electrolysis and the theory which will be utilised throughout the thesis.  

Chapter 3 explains the scientific measurement techniques undertaken in this work and the 

materials used.   

 

Chapter 4 investigates the performance of commercial on-demand oxyhydrogen alkaline 

electrolysers on the bench and through integration in an internal combustion engine (ICE) 

to reduce exhaust emissions and increase engine efficiency through a more complete 

combustion. The integration of hydrogen in ICEs could be considered a stepping stone to 

a fully-fledged hydrogen economy.  
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Chapter 5 then redesigns one of these commercial alkaline electrolysers and characterises 

a prototype of this new design electrochemically and through integration with an ICE.  

Chapter 6 investigates the degradation mechanisms of the electrodes in an alkaline 

environment and a process for the reduction of this is analysed. 

 

The newly commercial PEM technology will also be analysed and developed to reduce 

cost and convenience to the consumer, through the adaptability to impure water supplies.  

The integration of an on-demand hydrogen generator with a hydrogen refuelling station 

has no standard at this time and a system will be designed for said application. 

 

Chapter 7 analyses the modern PEM electrolysis technology as an alternative for on 

demand hydrogen generation and quantifies the impact of water quality on the 

performance characteristics.  Finally in Chapter 8, the integration of a commercial PEM 

electrolyser with an existing hydrogen refuelling station for fuel cell vehicles is designed 

and analysed for a ‘zero carbon’ supply of compressed hydrogen gas.   
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Figure 1.17: Thesis plan 

 

 

Chpt 1

• Global Warming and Fossil Fuel Depletion

• Hydrogen Production Technologies

Chpt 2

• Principles of Water Electrolysis

• Fundamentals of Alkaline and PEM Electrolysis

Chpt 3

• Experimental Methods used to Conduct the Analysis

• Experimental Materials used to carry out the Investigations

Chpt 4

• Analysis of Existing Industrial Alkaline Electrolysers

• Quantification of Engine Performance with HHO Addition

Chpt 5
• Design of State-of-Art Alkaline Electrolyser based on fundamental principles

• Electrochemical Analysis of Electrolyser and Engine Performance Analysis

Chpt 6

• Reduction in Degradation of Electrodes in Alkaline Electrolyser through use of 
Titanium Oxygen Getter

Chpt 7

• Adaptability of PEM Electrolysers to impure water supplies

• Electrochemical and Microscopy Analysis of MEAs subjected to impure water

Chpt 8

• Integration of PEM Electrolyser with Existing Hydrogen Refuelling System

• Electrochemical Analysis, System Design & Control System Philosophy
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Chapter 2 

2. .............. Low 

Temperature Electrolysis 

for Hydrogen Production 
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2.1.  Principles of Water Electrolysis 

2.1.1.  Thermodynamic Principles 

The overall reaction of the water electrolysis is shown in Eq.  2.1.  This is in the format 

of Eq.  2.2 using the heat capacities of the reactants and products.  The equation shows 

positive signs for products (hydrogen and oxygen) and negative for reactants (water) with 

definitions for ΔB, ΔC & ΔD.  Table 2.1 shows the thermodynamic properties for 

constants A,B, C & D [41]. 

Table 2.1: Constants for heat capacities of gases in ideal state and liquid water [41] 

 A B C D 

H2 3.249 0.422x10-3 0 0.083x105 

O2 3.639 0.506x10-3 0 -0.227x105 

H2O 8.712 1.25x10-3 -0.18x10-6 0 

    

 H2O  H2 + ½O2 Eq.  2.1 

 ΔA  AH2 + ½AO2 – AH2O Eq.  2.2 

The model (Eq.  2.3) determines the Gibbs free energy of reaction (ΔGo) from the specific 

heat capacity and gases in the ideal state [41]. 

 

∆G
o
=RT [

∆G0
o
-∆H0

o

RT0

+
∆H0

o
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+

1

T
∫

∆Cp
o
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dT-

T
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∫
∆Cp

o

R

dT

T

T

T0

] 
Eq.  2.3 

where ΔGo and ΔHo are the Gibbs energy and standard enthalpy of formation respectively, 

of liquid water at reference temperature T0.  When Eq.  2.3 is integrated, it takes into 

account the temperature dependency of the heat capacities of the reactants and products.  

These are shown in Eq.  2.4 & Eq.  2.5. 
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∫
∆Cp

o

R

dT

T
=∆A ln τ + [∆BT0+ (∆CT0

2+
∆D

τ2T0
2
) (

τ+1

2
)] (τ-1)

T

T0

 
Eq.  2.5 

where T is reaction temperature (K), T0 is the reference temperature (298K), tau (τ) is 

defined as τ=T/T0, and R is the universal gas constant (8.314 J mol-1 K-1). 

 

Gibbs free energy (ΔG) is defined as the net internal energy available to work, therefore 

less work is done by changes in temperature and pressure.  Enthalpy (ΔH) is an intrinsic 

property of a material that is a function of temperature and pressure [42]. 

 

In electrolysis, the energy is supplied to the cell by heat (Q) and electrical energy (Welec).  

The relationship between enthalpy, energy input and Gibbs free energy is shown in          

Eq.  2.6 [43]. 

 ΔH = Welec + Q = ΔG + TΔS Eq.  2.6 

where T is temperature and ΔS is change in entropy.  By considering the change in the 

functions above, the overall change in Gibbs free energy and the operating potential can 

be calculated. 

 

At standard temperature and pressure (S.T.P., 298K, 1atm), Gibbs free energy of 

formation represents the thermo-neutral voltage and is where hydrogen and oxygen are 

produced with 100% thermal efficiency.  To enable electrolysis mode the voltage must 
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be greater than the voltage corresponding to zero current (open circuit voltage (OCV)). It 

is determined by the variation in Gibbs free energy of formation between reactants and 

products.  As previously mentioned, Gibbs free energy varies with temperature and state 

(gas or liquid) [24].  Eq.  2.7 shows this relationship. 

 
  Eo=-

∆G
o

zF
 

Eq.  2.7 

where Eo is the theoretical minimum reversible potential of an electrolysis cell, z is the 

number of electrons transferred in the reaction and F is the Faraday constant               

(96,485 Coulomb mol-1). 

 

At S.T.P., the Gibbs free energy of formation of water is +237.2 kJ mol-1; therefore            

Eo = 1.23 V.  The minimum voltage required to split water.  Ignoring heat transfer in the 

system, the total enthalpy required must be provided by the inputted electrical             

energy [44].  In reality however, heat transfer does exist and the thermo-neutral potential          

(1.48 V) is required to enable the electrochemical reaction. 

 

The real potential (Ecell) needed to split water at a reasonable rate will require Ecell to be 

greater than Eo.  The difference between the two is known as overpotential, losses or 

polarisation [23].  The Nernst potential (Vn) accounts for the changes in the activity of 

the reaction and is shown in Eq.  2.8 [42]. 
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  Vn=Eo+
RT

2F
ln (

PH2
P

O2

1
2

PH2O

) 

 

Eq.  2.8 

where PH2, PO2 & PH2O, are the partial pressures of hydrogen, oxygen and water 

respectively.   

 

The partial pressure of water is determined from [42] and shown in the Eq.  2.9.  This 

equation enables the calculation from experimental data, since the temperature of water 

entering the electrolyser varies [23]. 

 
PH2O=610.78exp [

Tc

Tc+238.3
(17.2694)] 

Eq.  2.9 

where Tc is the temperature (oC) of water entering the electrolysis cell. 

 

The partial pressures of hydrogen and oxygen are calculated using measurements from 

the electrolysis cathode and anode (Eq.  2.10 & Eq.  2.11) [23]. 

 PH2
=Pc-PH2O Eq.  2.10 

 PO2
=Pa-PH2O Eq.  2.11 

where Pc and Pa are the partial pressures (atm) measured at the cathode and anode of the 

electrolysis cell respectively.   
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In practice however, as previously mentioned, hydrogen evolution does not occur at the 

reversible potential (1.23V).  This is the result of resistances (overpotential) in the 

electrolysis system.  These resistances in the process mean a higher potential is required 

to split water in order to overcome these barriers.   

 

An electrical circuit analogy can be used to illustrate the various resistances encountered 

during the electrolysis process (Figure 2.1) [45]. 

 

Figure 2.1: Electrical Circuit Analogy of Water Electrolysis 

 Rcell = R1 + R1
’+ Rbubble,O2 + Rbubble,H2 + Rions + Rmembrane + Ranode + 

Rcathode 

Eq.  2.12 

   

The three main types of resistance in the electrolysis cell are electrical, transport and 

electrochemical reaction resistances.   

 

Electrical resistances (R1 & R1
’) directly result in heat generation which points to waste 

electrical energy in the form of heat according to Ohm’s law.  In water electrolysis the 

resistances in electrical circuits.  The resistances of the electrodes and connecting circuits 

are determined by the material types and dimensions, preparation methods, and the 

conductivities of each component.  It can be expressed as follows (Eq.  2.13) [5, 45]: 
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R= ∑

1

Aκg

 
Eq.  2.13 

where κ is the electrical conductivity (Ω-1 m-1), subscript g represents each component of 

the circuit, which includes wires, connectors and electrodes.  These items can be 

improved by decreasing the length of wire, using a higher surface area of electrode and 

using a material with higher electrical conductivity.   

 

The ion transfer in the electrolyte is dependent on the electrolyte concentration (if liquid), 

membrane (if solid), and distance separating the cathode and anode [46].  The molar 

conductivity, which is different from the conductance rate in the metallic conductor, is 

used instead of conductivity.  It is illustrated in Eq.  2.14. 

 
Ʌ=

κ

C
 Eq.  2.14 

where Λ is the molar conductivity (m2 Ω-1 mol-1) and C is the electrolyte concentration.  

Molar conductivity is also a function of the mass transfer of ions and concentration. 

 

The presence of bubbles on the electrode surfaces creates resistances to the ionic transfer 

and thus the electrochemical reaction.  The study of the bubble effect in electrolytes is a 

wide area of research and Eq.  2.15 is most commonly accepted [45].   

 κg=κ(1-1.5f) Eq.  2.15 

where κ is the specific conductivity of the electrolyte (gas-free) and f is the volume 

fraction of gas in the electrolyte solution [47].  If bubble coverage (𝜃) is taken into 
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consideration, the electrical resistance caused by bubble evolution can be calculated using 

Eq.  2.16 [48]. 

 
ρ=ρ

0
(1-θ)-

3
2 

Eq.  2.16 

where ρ0 is the specific resistivity of the electrolyte (gas-free). 

 

Electrical resistances can also be calculated by Ohm’s Law  R = V/I, in which, when 

potential V is applied only at R1 or R1
’, current I is measured [45].  Alternatively, 

resistance can be calculated using R = L/(kA), where L is the length, k is the specific 

conductivity, and A the cross-sectional area of the conductor [5].   

 

Transport resistances (Rbubble,O2, Rbubble,H2, Rions & Rmembrane) are physical resistances such 

as gas bubbles covering the electrode surface, resistances to ionic transfer of species in 

the electrolyte, and due to resistance of ion flow in the membrane [23].  These losses are 

known as ohmic loss.   

 

Mass transfer, temperature distribution and bubble sizes, are determined by the viscosity 

and the flow field of the electrolyte.  Other parameters affected include: bubble 

detachment and rising velocity, of which all functions are transport related resistances.  It 

is important to note, that during electrolysis the concentration of electrolyte increases 

(since water is being consumed), and therefore the solution will become increasingly 

viscous; therefore resulting in a rise in transport related resistances [49]. 
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Figure 2.2: Potential Losses Contributions from Water Electrolysis [45] 

 

Current research trends in water electrolysis are to increase mass transfer on the electrode 

surfaces, but this could disadvantage the production rate of hydrogen.  Aiding mass 

transfer on the electrode surfaces will enable higher bubble formation, which would 

reduce the contact surface area between the electrode and the electrolyte, and 

consequently limit the availability of sites for nucleation.  Circulating the electrolyte 

through the electrolyser via pumps can mechanically remove gas bubbles from the surface 

quicker, and subsequently reduce bubble overpotential in the electrolyser [50]. 
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Electrochemical reaction resistances (Ranode and Rcathode), also known as activation losses, 

are overpotentials required to overcome the activation energies on the cathode and anode 

surface for the formation of hydrogen and oxygen respectively.  These are inherent energy 

barriers of the reactions and determine the reaction kinetics of the electrochemical 

reaction (Figure 2.2) [45]. 

 

2.1.2.  Overpotentials 

When equilibrium occurs at OCV, there are dynamic currents at both electrodes and are 

symbolic of electrode behaviour.  These dynamic currents at the cathode and anode is 

known as the exchange current density.  The exchange current density is defined as the 

rate of reduction at the cathode and oxidation at the anode.   

 

The exchange current density is defined as an electrode’s ability to transfer electrons and 

happens equally in both directions, culminating in zero change in electrode composition.  

A small exchange current density shows slow reaction kinetics and slow rate of electron 

transfer.  A large exchange current density exhibits the opposite behaviour [51]. 
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Figure 2.3: Temperature Effect on Cell Potential [45] 

 

It can be shown in Figure 2.3 that an increasing the cell temperature results in a drop in 

overpotential at the constant current density.  Overpotential is also a function of current 

density not only temperature.   

 

Figure 2.4 shows with increasing current density, the different types and overall cell 

overpotential increase [23].  It also illustrates that the overpotentials from the HER and 

OER are the main resistances to the electrochemical reaction.  Ohmic losses are the other 

main contributor to overpotential, and this includes bubble, membrane and ion resistance. 
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Figure 2.4: Overpotential Variation with Current Density [52] 

 

Activation Overpotential 

The initiation of an electrochemical reaction on an electrodes surface requires the 

overcoming of an energy barrier.  This energy barrier is more commonly known as 

activation energy and is the extra energy required to overcome energy barrier of the rate 

determining step of the electrochemical reaction to a value at which the reaction will 

proceed at a suitable rate [51].  It is known as an activation overpotential in the 

electrochemical reaction. Eq.  2.17 shows the Butler-Volmer equation, used for 

calculating activation overpotential. 

 
𝐼 = 𝐴 × 𝑗𝑜 {𝑒𝑥𝑝 [

𝛼𝑐𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸𝑒𝑞)] − 𝑒𝑥𝑝 [−

𝛼𝑎𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸𝑒𝑞)]} Eq.  2.17 
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Where I is the electrode current, A is the electrode active surface area, jo is the exchange 

current density, E is the electrode potential, Eeq is the equilibrium potential, T is the 

absolute temperature, n is the number of electrons in reaction, F is the Faraday constant, 

R is the universal gas constant, αc is the cathodic charge transfer coefficient, αa is the 

anodic charge transfer coefficient. 

 

These activation losses can also be calculated for the anode, ηa, and cathode, ηc and are 

presented in the Tafel Equations (Eq.  2.18 & Eq.  2.19) [23]. 

 
η

a
=

RT

αazF
ln (

i

ia,o

) 
Eq.  2.18 

 
η

c
=

RT

αczF
ln (

i

ic,o

) 
Eq.  2.19 

where αa and αc, are the electron transfer coefficients of the anode and cathode 

respectively, ia,o and ic,o are the exchange current densities (A cm-2) for the anode and 

cathode respectively, and I is the current density (A cm-2) of the electrolysis cell.   

 

Ohmic Overpotential 

Resistances in the electrolysis reaction that are ohmic losses, are the resistance to the flow 

of ions in the solution and membrane and the resistance to flow of electrons in the 

electrode materials [51].  As previously mentioned, these resistances can be calculated by 

Ohm’s law.  The ohmic overpotential, ηo, can be calculated using the electrolysis cell’s 

current density, i, membrane thickness (cm), φ, and the conductivity                             

(Siemen cm-1) of the cell, ω.  This is shown in Eq.  2.20 [23]. 
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η

o
=

φ

ω
i Eq.  2.20 

where ω takes into account the sum of membrane resistance, ion transfer resistance and 

electrical resistances of electrodes and interconnects if the cell is part of a stack. 

 

Other Overpotentials 

Other forms of overpotential include bubble overpotential, which arises from resistance 

caused by bubble evolution on the electrode surface, and thus limits the contact area of 

the electrode available for electrochemical reactions to occur [49].  This decreases the 

current density on the electrode.  The extra potential required to overcome this resistance 

is usually considered negligible. 

 

Another form of resistance in the electrolysis reaction is concentration overpotential.  This 

occurs due to the depletion of charge carriers at the electrode surface.  It is linked to 

bubble overpotential, in that bubble evolution at the electrode surface, prevents charge 

carriers making contact with the electrode surface for the triple phase boundary reaction 

to occur [49]. 

 

2.1.3.  Electrolysis Efficiencies 

In electrolysis, there are many forms of efficiency measurements.  This section presents 

descriptions and formulae for calculating these efficiencies. 
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The efficiency of an electrolysis cell is inversely proportional to the cell voltage, which 

is dictated by the current density.  The current density is also directly correlates to the 

hydrogen productivity per unit electrode surface area [23]. 

 

It is commonly seen that higher potentials result in higher rates of hydrogen production, 

however, this results in low efficiencies.  As a result of this, commercial electrolysers 

usually operate around 2 V, which maximises the electrolyser efficiency, where hydrogen 

output is not as important as the overall electrolysis efficiency [23]. 

 

The system efficiency (Eq.  2.21) can be calculated from the electrolysis cell energy and 

the ancillary losses.  The system efficiency uses the higher heating value (HHV) of 

hydrogen (39 kWh/kg), the energy used by the cell (kWh), the DC power supply 

efficiency, and the ancillary loads e.g.  pumps, values etc.  (kWh) [23].   

 
System Efficiency=

HHV

(

Cell Input Energy
Power Supply Efficiency

+Ancillary Losses

Hydrogen Produced
)

 
Eq.  2.21 

where HHV is measured in kWh/kg, cell input energy and ancillary losses are in kWh, 

and hydrogen produced is measured in kg. To calculate the cell efficiency, the Nernst 

equation as shown in Eq.  2.8 can be used to calculate the theoretical cell potential and 

then the cell efficiency can be calculated from Eq.  2.22 [23]. 

 
Cell Efficiency=

Theoretical Cell Potential

Actual  Cell Potential
 

Eq.  2.22 
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Voltage efficiency allows the measurement of effective voltage to split water in the total 

voltage applied to the whole electrolysis cell [23].  This is shown in Eq.  2.23. 

 
Voltage Efficiency= 

(Ea-Ec)

Ecell

 
Eq.  2.23 

where Ea and Ec are the potential of the anode and cathode respectively. 

 

Two other types of efficiency measurement of electrolysis reactions, which are based on 

energy changes in the system, are the Faraday Efficiency and the Thermal Efficiency.  

They used Gibbs free energy and enthalpy of the water splitting reaction respectively 

[45].  Both use the theoretical open-circuit energy requirement plus ancillary losses as the 

energy input. 

 
Faraday Efficiency=

∆G

∆G+Losses
=

E∆G

Ecell

 
Eq.  2.24 

 
Thermal Efficiency=

∆H

∆G+Losses
=

E∆H

Ecell

 
Eq.  2.25 

At S.T.P.  (25oC, 1 atm), these equations can be simplified further 

 
Faraday Efficiency (25

o
C)=

1.23 V

Ecell

 
Eq.  2.26 

 
Thermal Efficiency (25

o
C)=

1.48 V

Ecell

 
Eq.  2.27 

where EΔH and EΔG are the thermo-neutral and open-circuit potentials respectively, and 

Ecell is the cell potential. 
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The Faraday efficiency is the percentage of theoretical energy needed for water to 

decompose in the actual cell potential [49].  In contrast, the thermal efficiency defines 

that additional cell potential is required, above the open-circuit voltage, to maintain the 

thermal balance throughout the reaction.  Theoretically, this means that if the reaction is 

occurring endothermically, then the thermal efficiency may exceed 100% (heat being 

consumed from the environment) [45].   

 

The Faraday efficiency will always be less than 1, because there are always resistances 

(losses) in an electrochemical system.   Thermal efficiency can be higher than 1, if the 

cell potential is between the open-circuit voltage and the thermo-neutral voltage.   

Another type of efficiency calculation is the measurement of hydrogen gas output from 

the electrolysis cell in terms of the total electrical energy applied to the system (Eq.  2.28).  

These are with respect to the HHV of hydrogen and the hydrogen production rate [49].   

 Efficiency of

H2 Production Rate
= 

Productivity per unit Volume

∆E
=

V

Uit
 

Eq.  2.28 

where ΔE is the cell energy input (kJ), V is the hydrogen productivity per unit volume 

(m3/m3h), U is the cell potential (V), i is the current (A), and t is the time (s).    

Alternatively, the yield of hydrogen produced can be measured in terms of electrical 

energy input. 

 
Hydrogen Yield= 

Useable Energy

∆E
=

283.8

Uit
 

Eq.  2.29 

where 283.8 kJ is the HHV of one mole of hydrogen and time t, corresponds to the time 

required to produce one gram of hydrogen. 
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Lastly, energy efficiency can also be calculated by subtracting the energy losses (sum of 

resistances as mentioned in Eq.  2.12) from the energy input [45].  This is shown in           

Eq.  2.30. 

 
Net Efficiency=1-

Elosses

Einput

 
Eq.  2.30 

Applying Eq.  2.30 allows the identification of high resistance locations in the electrolysis 

cell, which need to be improved.  A method for increasing efficiency is to lower these 

resistances which contribute a significant amount to the overall resistance of the 

electrolysis cell.  This can include electrode materials with a lower activation 

overpotential, and the movement of electrodes together to reduce ohmic resistance [45]. 

 

 

Figure 2.5: Effect of Temperature on the Overpotential of the Cathode and Anode 
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Another way is to thermodynamically reduce the energy needed for water splitting, whilst 

maintaining a high hydrogen yield.  This can be achieved by increasing the temperature 

and/or pressure.  The temperature of reaction, electrolyte type and properties, as well as 

electrode materials, has huge implications on the performance of the electrolysis reaction 

(Figure 2.5) [45]. 

 

2.1.4.  Electrolysis Kinetics 

The reactions within electrolysis occur at the electrodes.  The electron flow through the 

contact between the electrode and the electrolyte enables the formation of hydrogen and 

oxygen gas to occur.  The rate of the electrode reaction is determined by the current 

density, and this depends on various parameters  [52]. 

 

Firstly, the material and any pre-treatment of the electrode surface affect the rate of 

reaction.  Secondly, the electrode potential impacts the flow of electrons through the 

electrolysis cell i.e.  higher potential results in a faster rates of reaction on the electrode 

surface and hence a higher current density [45].   

 

Finally, the rate of reaction on the surface of the electrode is dependent on the 

composition of the electrolyte solution next to the electrodes.  When under operation, 

these ions adjacent to the electrode undergo migration in the solution to form layers near 

the electrode surface.  This is known as the electrical double layer (Figure 2.6) [52]. 
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Figure 2.6: Schematic of Electrical Double Layer [45] 

 

When a current is forced to flow between two electrodes through an electrolyte, charge 

separation is created at each solid/liquid interface and two electrochemical capacitors are 

formed. In these capacitors at the electrode/electrolyte interface, dissolved ions in the 

bulk electrolyte are attracted to the electrode surface by an equal and opposite charge.  

 

It is considered that the behaviour at the interface is described in terms of a capacitor. It 

is a consequence of the “free charge” approach that when a continuous current flow is 

applied through the interface a strict distinction should be made between Faraday and 

non-Faraday currents. Faraday currents are responsible for charging of the double-layer 
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capacitor, while non-Faraday currents are the charge flow connected with the charge 

transfer processes occurring at the interface. An interface at constant pressure and 

temperature can be changed by varying the concentration of the components in the bulk 

phases. 

 

The accumulation of ions near the electrode forms two mobile layers.  The layer closest 

to the electrode is called the inner Helmholtz layer (IHL), where the ions are well ordered 

and aligned with one another.  The other layer is termed the outer Helmholtz layer (OHL), 

which consists of non-uniform ions adjacent to the IHL [52].  The ionic charges of the 

ions adjacent to the electrode surface are balanced by oppositely charged ions in the 

electrode itself.  The potential between the electrode and ions can be plotted against the 

distance from the electrode surface.  This is shown in Figure 2.7 [52].    

 

Figure 2.7: Effect of Distance on the Potential Between the Electrode and Ions [45] 
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Figure 2.7 shows that voltage exists between the electrode and electrolyte solution.  This 

is a direct result of the double layer.  The addition of inert electrolyte to the electrolysis 

process compresses (reduces the thickness of) the double layer and consequently the 

distance that the potential decays to zero is much shorter.  

 

The electrical double layer phenomenon leads to capacitive behaviour of the electrode 

reaction.  This principle of the electrical double layer acting as capacitor needs to be taken 

into account when considering electrode kinetics. 

 

Faraday’s laws are based quantitative relationships of electrode reactions during the 

process of electrolysis.  Faraday’s law states 

 
m= (

Q

F
) (

M

z
) 

Eq.  2.31 

where m is the mass (grams) of a substance liberated at the electrode, Q is the total 

electrical charge (coulombs) passed through the substance, F is the Faraday constant 

(96,485 Coulomb/mol), M is the molar mass of the substance, and z is the valency number 

of electrons transferred per ion.  This equation can be rearranged to form 

 
N=

Q

zF
 

Eq.  2.32 

where N is the number of moles of electrolysed species.  From this the rate of electrolysis 

can be defined as 
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Rate=

dN

dt
 

Eq.  2.33 

and dQ/dt can be expressed as electrical current (since Q=It).  When considering electrode 

kinetics, the surface area is vital parameter for the electrochemical reaction kinetics, and 

therefore should not be excluded from thought [53].  The rate of electrolysis can be 

rewritten as 

 
Rate=

I

nFA
=

j

nF
 

Eq.  2.34 

where j is the current density (A/cm2).  To calculate the reaction rate constant, the 

Arrhenius equation is used 

 
k=Ae

Ea
RT 

Eq.  2.35 

where Ea is the activation energy (kJ/mol), A is the pre-exponential factor, R is the gas 

constant (8.314 J/K mol), and T is the reaction temperature [53].   

 

The Butler-Volmer equation determines the link between the reaction rate and current 

flow, the corresponding reliance of current density on the electrode surface potential, and 

the composition of the electrolyte solution adjacent to the electrode surface [54].  The 

equation is adapted from the transition-state theory and presented in Eq.  2.36 & Eq.  2.37. 

 I=Icathode-Ianode Eq.  2.36 

 =FAk
0(C0(0,t)e-αf(E-Eo)-CR(0,t)ef(1-α)(E-Eo)) Eq.  2.37 

where A is the electrode surface area in contact with the electrolyte solution, k0 is the 

standard rate constant, C0(0,t) is the concentration of reaction species at the cathode/anode 
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in the oxidised state i.e.  for the cathode; the hydrogen ions (H+).  The (0,t) represents the 

distance from the electrode, and the specific time at which the current occurs, α is the 

transfer coefficient (value 0<α<1), f is the F/RT ratio, which is a constant.  CR(0,t) is the 

concentration of reaction product at the cathode/anode in the reduced state i.e.  for the 

cathode; the hydrogen gas (0.5H2). 

 

The transition-state theory, illustrated in Figure 2.8, shows the reaction path for the 

electrochemical reactions in terms of the Gibbs free energy of the reactions, and the 

position of coordinates in the reaction path [42].   

 

When the potential is increased by ΔE, as shown in Figure 2.8 (a), the decrease in Gibbs 

free energy is F(E-Eo).  As a result there is a reduction in Gibbs free energy of hydrogen 

ions in the HER by (1-α)(E-Eo), and the increase in Gibbs free energy of hydrogen gas by 

α(E-Eo).   
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Figure 2.8: Effect of potential change on Gibbs energy for (a) the relationship between energy change and state 

of reaction and (b) magnified picture of shaded area (a) [45] 

 

This proves that Butler-Volmer equation can be derived from the rate equations 

previously mentioned (Eq.  2.36), as long as there is no limitation to mass transfer during 
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the electrochemical reactions at the electrodes [42].  Using Figure 2.8 (b) the Butler-

Volmer Equation can be simplified to 

 i=i0(e-αfη-e(1-α)fη) Eq.  

2.38 

where as previously mentioned, io is the exchange current density.  From this equation 

we can derive overpotential for both electrodes [55].  This is the Tafel equation 

 η=a+b log i Eq.  2.39 

where a = (2.3RT)/(αF)log io and b = (-2.3RT)/(αF) 

The proportional relationship between the overpotential and the logarithm of current 

density is determined by exchange current density, io, and the slope b; known as the Tafel 

slope.  Both parameters are used to measure the reaction kinetics of electrodes for 

electrochemistry [56]. 

 

This analysis (Figure 2.9) shows that the rate of electrolysis can be expressed by the 

current density.  The current density can be mirrored by the exchange current density, 

which represents the current associated with the open-circuit potential, on the surface of 

the electrodes.  It is also dependant on the overpotential [57]. 
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Figure 2.9: Expression of Exchange Current Density for Hydrogen and Oxygen Overpotential [45] 

 

2.1.5.  Electrolyser Layout 

Traditionally, electrolysis cells do not produce a sufficient output of hydrogen for most 

applications.  Therefore, a number of electrolysis cells are electrically connected in series 

to produce a higher yield of hydrogen.  This is called stacking.  Most electrolysers 

produced consist of more than one cell, and are called the electrolysis, or electrolyser 

stack [4].   

 

There are two basic designs of these electrolyser stacks, unipolar and bipolar.  In the 

unipolar design, shown in Figure 2.10, the electrodes (cathode and anode) are held apart 
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by microporous separators which are alternatively suspended in a tank filled with the 

water-based solution.  The positive electrodes are all coupled together in parallel, as are 

the negatives [31]. 

 

Figure 2.10: Unipolar Electrolyser Layout [45] 

 

It is the oldest design of electrolysis stacks, due to its simplicity and it requires relatively 

few parts.  Any damage to individual electrolysis cells can be easily located, removed and 

repaired, before being inserted back into the stack.  The remaining cells can continue 

operation while the maintenance is occurring, since the electrical energy supply and gas 

remove is separate for each individual cell [31].  
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The unipolar stack, due to its design, does limit the electrochemical performance of the 

stack.  This design suffers from low current densities however it can operate at lower 

temperatures [58].   

 

The bipolar (filter-press) design, shown in Figure 2.11, consists of alternative layers of 

electrodes (cathode and anode), and separation membranes that are clamped together.  

This configuration uses metal sheets (bipoles) to join adjacent cells.  These bipoles make 

one face of the metal sheet act as the negative electrode, and the other face, the positive 

electrode.  The electrolysis cells are connected in series to produce higher stack potentials.   

Therefore, only the end plates of the stack are connected to the positive and negative DC 

power supply [58].   

 

These cells are relatively thin, so have a smaller footprint that the unipolar design [23].  

The bipolar design also operates at higher current densities, and has the capability to 

produce higher pressure gas.  When a problem with the stack arises however, the whole 

stack is under shutdown i.e.  the individual cell(s) cannot be repaired without servicing 

the whole stack [58].   

 

The main differences between the two designs are that, in the unipolar design, each half 

reaction takes place on both sides of the electrode [31].  Whilst with the bipolar design, 

the HER takes place on one side of the electrode, and the OER takes on the other side 
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simultaneously.  This happens on all electrodes which are not connected to the DC power 

supply.   

 

Figure 2.11: Bipolar Electrolyser Layout [45] 

 

The cell operation potential for the designs differs also.  For the unipolar design the stack 

usually operates at 2.0 V, whereas for the bipolar design the stack operates, for the same 

input potential as the unipolar design, 2.0 x (n-1) Volts, where n is the number of 

electrodes [23]. 
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The design, build and testing of prototype alkaline electrolysers herein has been carried 

out in a unipolar configuration due to its simplicity and cost of manufacture, ease of 

identifying damaged cells whilst the remaining cells continue to function, and the non-

requirement of product gas separation. 

 

2.1.6.  Bubble Dynamics 

The key purpose of water electrolysis is to produce hydrogen and oxygen gases.  These 

gases evolve in the form of bubbles on the surfaces of the cathode and anode respectively.  

The bubbles maintain contact on the electrode surface until the bubble grows large enough 

to produce a buoyancy force, greater than the interfacial tension holding the bubble to the 

electrode.  When this occurs, the bubble discharges from the surface of the electrode, rises 

to the surface the water-based solution, and the bubble collapses to release the hydrogen 

or oxygen gas. 

 

The attachment of bubbles to the electrode surface adds resistance to the electrolysis 

process (the bubble overpotential).  The bubble formation reduces the contact area 

between the electrodes and electrolyte.  This is turn limits the number of active sites on 

the surface of the electrodes available for electron transfer, and hence can be characterised 

as a transportation issue and thus is an ohmic loss [54].   

 

Attempts to reduce these resistances include the addition of surfactants to the water-based 

solution that decrease the surface tension between the bubbles and the electrode surface.  
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Other methods include, as previously mentioned, the mechanical removal of bubbles from 

the electrode surface through continuous circulation of the water-based solution through 

the electrolysis cell, and modifications to the surface of the electrode which make it less 

favourable for bubble formation to occur [47].  This could however, reduce the 

productivity of hydrogen and oxygen gas evolution reactions.   

 

Figure 2.12: Schematic of Three Phase Boundary [53] 

 

The theory behind the dynamics of bubble behaviour is vital to gain an understanding of 

the specific reaction conditions required for a bubble to leave the electrode surface.  

Figure 2.12 shows the three phase boundary and interfacial tensions between the electrode 

and bubble, γsv, the electrode and liquid solution, γsl, and the bubble and liquid solution, 

γlv.  The contact angle between γsl and γlv, θ, is finite and an important characteristic for 
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measuring the thermodynamic properties of bubbles.  Young’s equation (Eq.  2.40) 

expresses the contact angle in terms of the three different interfacial tensions [53]. 

 
cos θ =

γ
sv

+γ
sl

γ
lv

 
Eq.  2.40 

The change in Gibbs free energy, ΔG, associated with the displacement of the 

solid/interface, with the electrode/bubble interface [59]. 

 ∆G=γ
lv

(cos θ -1) Eq.  2.41 

The rate of bubble removal on the electrode surface is determined by the displacement of 

the water-based solution at the electrode/solution interface [54].  This is known as 

wettability.   

 

Wetting is the ability of a liquid solution to maintain contact with a solid surface.  It is a 

measure of adhesion and cohesive forces.  Table 2.2 shows what degree of wetting the 

contact angle produces, and how strong the corresponding force between the adhesive 

and cohesive forces are [52]. 

Table 2.2: Different Types of Wetting & Properties 

Contact Angle Degree of Wetting Strength of Solid/Liquid Interface 

θ = 0 Perfect Wetting Strongest 

0 < θ < 90o High Wettability Strong 

90o < θ < 180o Low Wettability Weak 

Θ = 180o Non-Wetting Weakest 

Treatment of electrode surfaces can make them more or less attractive to water.  These 

are called hydrophilic and hydrophobic.  An electrode surface that has a tendency to mix 

with water is hydrophilic, whilst hydrophobic surfaces repel water [54].  Since 
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hydrophilic surfaces are more likely to accept water, therefore they are more likely to 

reduce bubble coverage on the electrode.   

 

Reducing the resistance caused by bubble evolution is an active area of research, and 

many more detailed studies are required to investigate and quantify bubble phenomena in 

water electrolysis. 

 

2.2.  Alkaline Electrolysis 

2.2.1.  Electrodes 

The choice of material for the electrode is governed by numerous factors.  The desired 

requirements are good electrical conductance, high corrosion resistance and minimum 

overvoltage [60, 61].  The cathode and anode materials in alkaline systems are usually 

made of nickel or nickel plated metal on which a catalyst can be applied.  The catalyst 

can be noble metals like platinum, rhodium or iridium, but a large selection of non-noble 

catalysts is also available [27, 49, 51]. 

 

The application of precious-metal catalysts, such as platinum, enhances the electrode 

processes considerably and allows it to proceed more rapidly than on just nickel, but the 

extra cost of the precious metal is usually not considered justified [45, 62].  When 

platinum is used, a large surface area can be obtained by the use of platinum black, a 

finely divided powder of platinum metal particles which can be coated on the electrode 

surface [45, 63]. 
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2.2.2.  Electrolytes 

2.2.2.1.  Solid Electrolyte 

A new design of an alkaline electrolyser is the implementation of a zero-gap electrode 

system with an OH- conducting membrane.  In this the electrodes are joined to either side 

of membrane surface which acts to reduce the potential drop between the cathode and 

anode [64].  Zero-gap cells with a porous separator can be constructed but they are 

predicted to have a larger voltage drop leading to lower current density operation and 

subsequently larger electrolysis systems [65]. 

 

2.2.2.2.  Liquid Electrolyte 

Most commercial electrolysers use alkaline solutions (potassium or sodium hydroxide) 

as the electrolyte.  Energy consumption during water electrolysis can be significantly 

reduced by adding acidic/basic compounds which consist of ionic activators which reduce 

the resistivity of water [27].  Ionic liquids which are organic compounds are liquids solely 

made up of cations and anions and as a result possess excellent ionic conductivities and 

stability [45]. 

 

In industrial electrolyser applications, these parameters can be met by the use of a strong 

acid (e.g.  sulphuric acid) or a strong alkali (e.g.  potassium hydroxide).  The majority of 

salts decomposed under electrolysis at voltages typical in an electrolyser cell.  Acid 

electrolytes present the problems of severe corrosion and are not often selected for 

electrolysers [66].  As a result most industrial electrolysers operate with an alkaline 

electrolyte solution.  High conductivity occurs in KOH solutions at approximately 30% 

concentration and this is the industrial standard concentration used [45]. 
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2.2.3.  Separators 

A separator is positioned between the cathode and anode and prevents the electrodes from 

contacting each other and causing an electrical short.  It also keeps the product hydrogen 

and oxygen gases separate inside their separate half-cell chambers.  The separator must 

consist of a porous diaphragm or matrix through which the electrolyte solution can pass 

allowing an ionic conducting path from the anode to the cathode.  These pores must 

remain full of liquid at all times so the product gases cannot penetrate them.  Additionally, 

the separator material must be corrosion resistant to the electrolyte in the presence of 

hydrogen or oxygen gas and it must be structurally stable for the operational lifetime of 

the cell so that the pores do not collapse [45, 67]. 

 

In order to keep the ionic resistance of the cell low, the separator is usually in the form of 

a thin sheet, in which the thickness is determined by mechanical strength and gas 

crossover limitations.  Asbestos has commonly been used for the separator material in 

alkaline electrolysers.  Woven asbestos cloth and matted asbestos fibres are both utilised 

in commercial cells [67]. 

2.3.  PEM Electrolysis 

An MEA consists of the solid polymer electrolyte coated on either side with 

electrocatalyst to form a catalyst coated membrane (CCM) pressed between two porous 

current collectors.  As well as acting as an electrolyte the MEA acts as a barrier between 

the half-cell reactions as only protons are conducted through it.  This ensures that 

hydrogen and oxygen do not recombine to form water [68]. 
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2.3.1.  Electrocatalysts 

It is important that the electrodes are resistant to corrosion as well as resist attack from 

the gases produced and water.  Since the gases need to be expelled from the electrodes 

they must be built with a large surface area.  They need to have a porous matrix with a 

low pressure drop and must have a high electrical conductivity to prevent undesired heat 

being produced and to avoid an imbalanced current flow.  The cost and durability of the 

electrode must be considered to compromise between the capital cost and suitable 

longevity of the electrolyser cell [31, 69-71]. 

2.3.1.1.  Hydrogen Evolution Reaction 

At the cathode hydrogen evolution reactions take place (HER).  Platinum black was the 

catalyst first used but future development found this catalyst to provide too small a surface 

area which led to the requirement of finding greater platinum concentration [31, 72, 73].  

The most commonly used catalyst for HER is platinum particles on a carbon black support 

[21, 74, 75].  Platinum a good electrocatalyst for PEM electrolysis as it is resistant to 

acidic corrosion and is capable of withstanding high temperatures and voltages which are 

used [31, 33, 60, 69, 76]. 

 

The carbon black support is powder based which provides a large surface area to volume 

ratio and subsequent large number of active sites for adsorption.  Chemisorbed functional 

groups of quinones, carboxyls, hydroxyls and phenols are present as a result and leads to 

an increased platinum adsorption.  The platinum nanoparticles are distributed over the 

active sites of the carbon black (Pt/C) and surface areas of up to 1500 m2/g can be 

achieved [44, 77, 78].  Pt/C exhibits high mass transfer and also sustains good osmotic 
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balance to reduce flooding in the cell.  The catalytic performance of the metals: platinum, 

palladium, rhenium, iridium, osmium, ruthenium and nickel; have been studied and 

discovered that platinum showed the best electrochemical catalyst behaviour irrespective 

of it being highly expensive and in short supply [79]. 

 

Since OER is rate determining it is most effective to reduce the amount of platinum in the 

cathode rather than the electrocatalyst on the anode.  This is due to the higher ratio of 

H+/H2 at the cathode compared to the ratio of H2O/O2 at the anode [21, 77, 78].  

Combining platinum with cheaper PGMs such as palladium to make a Pt/Pd alloy, gives 

rise to significant reductions in the cost of the catalyst without reducing the efficiency.   

2.3.1.2.  Oxygen Evolution Reaction 

At the anode oxygen evolution reactions (OER) takes place.  The reaction is divided into 

adsorption, charge transfer and desorption stages. It has been reported that the adsorption 

and desorption rates are determined by the bond strength between metal and oxide [80]. 

A strong metal-oxide bond gives rise to fast adsorption and slow desorption, whilst a 

weak metal-oxide bond strength gives rise to the opposite. A middle ground is required 

to gain a transitional bond strength that favours each of the reaction steps.  A high charge 

transfer rate is reliant on a high density of electron states at the Fermi level (top electron 

energy levels at absolute zero temperature) on the overlapping of active sites and the 

adsorbed species. 

 

On first conception platinum was used as the electrocatalyst for the anode also, but as 

shown in more recent research that iridium exhibited a higher rate of oxygen evolution 
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[81].  Platinum obstructed the OER as it formed an oxide film that would decrease 

catalytic performance [66].  Iridium exhibited desirable characteristics as an anode 

catalyst compared to that of palladium, ruthenium, platinum, gold, rhenium and niobium.  

Better catalysts could be manufactured using mixtures of iridium and other noble metals 

as well as oxides derivatives of each [71].   

 

Iridium oxide and ruthenium oxide are sometimes used as the catalyst but both metal 

oxides suffered from corrosion.  This led to the use of an iridium-ruthenium alloy that 

would be used as a catalyst on a carbon black support [82, 83]. 

 

Figure 2.13: Volcano-plot of electrocatalytic activity of different oxides is acidic (white spheres) and alkaline 

(black spheres) electrolyte solutions [84] 
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The rate of reaction of the anode surface is the resultant on the material properties of the 

surface species at the electrode surface. Figure 2.13 compares the different 

electrocatalytic activities of the metal oxides used at the anode. 

 

 It shows that IrO2 and RuO2 display the best catalytic properties, with a lower anodic 

overpotential when compared to the other metal oxides studied [80, 85-88]. The 

electrocatalytic activity is measured by overpotential on the anode and is related to the 

enthalpy for the oxides to form a higher oxidation state from a lower one, which is directly 

related to metal-oxide bond strength. 

 

2.3.2.  Ionomer & Proton Exchange Membrane 

In recent years PEM electrolysis cells are manufactured through the CCM process and 

they have a layer of ionomer present with ionic transport properties (e.g.  Nafion® 

solution) applied to the electrocatalytic layers [29, 58, 89, 90].  The ionomer layer has 

three main functions [91]: 

1. It acts as a conductor to promote proton transport from the bulk of the catalyst 

layer to the membrane.  This results in decreased Ohmic losses and so enhance 

the overall efficiency of the electrolyser. 

2. It acts as a binder to provide a mechanically stable 3D structure for the catalyst 

layer with gas channels which enhances durability. 

3. It acts as a hydrophilic agent to retain moisture within the catalyst layer and reduce 

mass transport out of the catalytic layer. 
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A layer (50-250μm thick) of proton conducting membrane is used as a solid polymer 

electrolyte (SPE).  Nafion®, which is manufactured by Du Pont®, is the commercial 

standard membrane and it has been widely researched [64, 92-94].  Its chemical structure 

is based on perfluorinated phosphonic acid copolymer (see Figure 1.14).  Protons are 

conducted between adjacent acidic groups (-SO3-) attached to the perfluorinated polymer 

backbone with a proton solvent as a carrier (H2O-H3O
+) [95, 96]. 

 

Nafion® is a popular structure for a membrane due to its high conductivity, good 

mechanical strength and high chemical and thermal stability which prevents corrosion by 

evolved oxygen [97-99].  The main drawback of Nafion® membranes is that they are 

expensive to purchase and its disposal can be expensive due to the fluorine content [94].  

Also they are restricted to operating temperatures below the boiling point of water [100, 

101].  They are dependent on water to act as a bridge between acidic groups for proton 

transfer so ionic conductivity is lost at temperatures above 100°C.   

 

The proton conductivity in Nafion® is highly linked to its nanostructure and water 

content. Low water content results in not all acid sites being dissociated and the 

interaction among water molecules through hydrogen bonding is low. This results in low 

rate of proton transfer and a low dielectric constant, which is limited to the surface region, 

providing very low conductivity [102]. High water content means the properties of water 

in Nafion® approach those of bulk water. Consequently, the two different water 

environments in Nafion® have usually been easily distinguishable. The water in the 

middle region of the pore is referred to as bulk water through which the mobility of 
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protons is fast, and the water near the pore surface along the array of SO3
- groups is 

referred to as surface water and the proton mobility through the surface is considerably 

smaller than that in the bulk, due to the strong electrostatic attraction of SO3
- groups [102].  

 

It has been proved that the transport of protons in Nafion® is carried out through a surface 

diffusion mechanism occurring close to the pore wall or under low water activity, for 

example in a layer 1nm from the pore wall and a bulk diffusion mechanism. In the bulk, 

proton diffusion is dominated by the Grotthuss mechanism, but the H3O
+ ion also 

undergoes traditional mass diffusion [102]. 

 

The Grotthuss mechanism is the process by which excess protons diffuse through a 

hydrogen bond network of water molecules, hence the why it is important in PEM 

electrolysers and fuel cells to keep the membrane hydrated and enables proton transport 

to occur. Also known as proton-hopping, this mechanism exists in Nafion® where 

protons hop from one sulfonic acid group to another thus allowing protons to pass through 

pores from the anode to the cathode [102]. 

  

If electrolysis could be operated at higher temperatures electrode kinetics would be 

enhanced and the process would require less energy due to a reduction in the activation 

energy barriers [103, 104].  Research groups have been focusing on producing better, less 

expensive membranes.  These include hydrocarbon membranes [105], 

polybenzimidazoles (PBI), poly(ether ether ketones), (PEEK), poly(ether sulfones) (PES) 
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and sulfonated polyphenyl quinoxaline (SPPQ) [34, 106], as well as further development 

of Nafion®. 

 

2.3.3.  Current Collectors 

Porous current collectors (PCC) are metallic plates which transfer electrical current from 

the separation plates to the electrochemical interfaces the electrolysis cell.  They must be 

highly conductive and highly corrosion resistant to the acidic electrolyte, production of 

oxygen and high overpotentials.  PCCs must have high mechanical strength to give 

structure to the cell.  Mass transfer also takes place across the current collectors [68]; 

gases must be easily expelled from the current collector and they must allow water to be 

transported to the catalytic sites through the membrane [71].  Current collectors are 

generally fabricated from sintered spherically shaped titanium powder [94].  Carbon 

based materials are not suitable as they cannot withstand the corrosive conditions.   

 

These mass transfer considerations are particularly important at high current densities 

when mass transfer is the limiting factor.  Large porosity enables easy removal of gases, 

but electron transfer is limited (increasing Ohmic resistance) and less water will be 

transported to the catalytic layer [68].  At low porosity gas removal is obstructed and 

channels within the current collector will be blocked, limiting mass transfer [94].  

Research previously conducted into the optimisation of porosity showed plate thickness 

and pore size of sintered titanium current collectors.  The authors empirically proved that 

for current densities from 0-1 A/cm2 an optimum pore size of 20 microns is required [68]. 
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2.3.4.  Separator Plates 

Separator plates provide the electrolysis cell with structure, which help maintain its 

stability in varying operating conditions.  They also create a pathway for thermal and 

electron conduction and provide separation between the half-cell reactions.  They are 

highly expensive and are responsible for 48% of the overall electrolysis stack cost as they 

are manufactured from expensive materials (titanium or graphite) and aren’t produced on 

a large scale [71].  At high current densities they are responsible for a large contribution 

to the Ohmic losses, resulting in higher required cell voltages [71]. 

 

Titanium is one of the most commonly used materials for plates due to its low initial 

resistivity, high initial thermal conductivity and low permeability.  However over time 

the titanium corrodes which causes the performance of the cell to decay [107-109].  

Graphite is also frequently used due to its high conductivity.  However, it is expensive, 

has high corrosion rates and has low strength [109].  To overcome the high costs of 

titanium and graphite stainless steel has been developed for use as a base material.  It has 

low corrosion resistance so must be coated to resist the acid environment [110]. 

 

2.4.  PEM Electrolyser Impurities 

Proton transportation in aqueous media is much faster than that of other cations. This is 

because protons are transported by structural diffusion, also known as the Grotthuss 

mechanism, whereas other ions are transported by mass diffusion. Structural diffusion of 

protons is based on electrolytic joining of adjacent water molecules, resulting in only an 
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electron has to move. Mass diffusion is the actual movement of a charged particle, thus 

including both charge and mass transport. Ensing has shown experimentally that proton 

transport in Nafion® membranes is equally slowed down by the Nafion® environment as 

the transport of sodium ions, even at low water contents [111]. The results of the research 

suggest that structural diffusion is equally dependent on the porous Nafion® as mass 

diffusion, and that the Grotthuss mechanism holds in the Nafion® environment, even at 

low water contents.  

 

Over prolonged operation time, degradation in the performance of PEM electrolysers 

occurs.  The main cause is the irreversible degradation of the MEA.  Degradation is 

proportional to temperature and duration of operation.  At high currents, hot spots and 

uneven swelling occurs within the polymer membrane.  Platinum nanoparticles on the 

cathode coalesce or are released into the circuitry, causing electrical efficiency losses.  

Electrochemical surface area is slowly and irreversibly reduced [31].  Another cause is 

the purity of the water supplied to the electrolyser.  Metallic cations within the water feed 

can poison the membrane and/or catalysts.   

 

Ion exchange processes take place as metal cations in water have a higher affinity for the 

sulfonic acid group sites contained within the membrane than the protons.  Cations 

displace protons and enter the SPE, resulting in reduced proton conductivity and an 

increased ohmic drop in the membrane [112-114].  Under potential deposition of cation 

monolayers on electro-catalysts occurs at potentials much higher than the Nernst 

potential, meaning that poisoning is possible at working potentials [115].  Deposition on 
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electrode surfaces and the membrane prevent ion transfer and electrochemical reactions 

[116].  Cation poisoning leads to a gradual decrease in current density at a constant stack 

voltage [31, 115] and increased electrode overpotentials [116].   

 

Research has been carried out on water purity in PEM fuel cells, which use similar 

membranes and electrocatalysts to PEM electrolysis.  Research has confirmed that 

Nafion® exhibits a high affinity for cations (Ca2+, Na+, Fe2+ and Fe3+) added to the water 

feed, resulting in a decrease in conductivity [117-121].   

 

Very few publications exist related to water purity in PEM electrolysis.  Millet et al.  

introduced NiSO4 to the water feed of a PEM electrolyser and a monolayer of nickel was 

deposited on the surface of the cathode.  This resulted in a higher cathodic overpotential 

than on bare platinum and a steady decrease in current density [122].  Andolfatto et al.  

introduced a thin layer of Cu2+ ions to a platinum cathode which caused an overpotential 

increase [115].  Millet et al.  found that even small concentrations of cations in the feed 

(Fex+,Nix+ & Crx+) will poison the SPE as the ions are trapped and concentrated within 

the membrane [116].   

 

Zhang et al.  researched the effect of Na+ poisoning on water electrolysis by adding 

sodium sulphate to the water feed.  Na+ ions were found to have a worse effect when 

supplied to the anode of the cell compared the cathode [114].  Millet et al.  suggested that 

using an online de-ioniser would give a more stable cell voltage but the use of high 
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operating pressures and temperatures would be limited [122].  Current PEM electrolysers 

are designed for use with ultrapure water which has been de-ionised to remove ions 

present and subsequently prevent membrane poisoning. 

 

Napadensky studied the proton conductivity of novel cation exchanged sulfonated 

polymer membranes. The investigation found that levels of solvent absorbed into the 

membranes varied depending on the cation exchanged, with a valence difference resulting 

in the most dramatic changes [123].  The amount of water absorbed by cation-containing 

membranes decreased by 50%–95% (as compared to acid form). Whilst swapping H+ ions 

in sulfonated polymer membranes with cations did make the membranes stronger due to 

crosslinking effects, swollen membranes still exhibited detrimental electrochemical 

performance [123]. 

 

Izquierdo-Gil et al. investigated water uptake and salt transport through Nafion® cation-

exchange membranes with different thicknesses [124]. The importance of membrane 

thickness and the effect the electrolyte has on the permeability of the membrane were 

researched. Membrane characteristics are influenced by the type of electrolyte in the 

solutions which allowed for salt diffusion [124]. Cation transport numbers were measured 

for the various different membranes and electrolytes, and from those values the membrane 

apparent permselectivity was determined. Thicker membranes exhibit increased 

permselectivity with increasing size of cation. Results have shown that the integral 

permeability coefficient decreases with membrane thickness [124]. 
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Stenina et al. looked into the various characteristics of ion transportation in PFSA 

(specifically Nafion-117) membranes [125]. Ion mobility and transport numbers in 

Nafion® membranes are highly dependent on counter-ion and co-ion mobility in the 

membrane, which in turn is highly dependent on the electrolytes present. The study found 

the transport of anions in the salt forms of the PFSA membrane increases with the 

increasing size of corresponding cations and increasing electrolyte concentration [125]. 

 

Young et al. saw the determination of ion-exchange in various counter-ion Nafion® 

membranes using prompt gamma neutron activation analysis (PGAA) [126]. This 

technique was used to quantify trace ion content and water content via the detection of 

hydrogen in the membranes. The research purpose was to identify contamination, 

effectiveness of treatments to remove contamination, and extent of ion-exchange in 

membranes. Received membranes contained trace quantities of residual potassium 

contamination which was removed [126]. Ion-exchange levels for membranes in excess 

ion solutions varied from 94-100% which subsequently increased with valency. Partial 

exchange levels were achieved using monovalent, divalent, and trivalent cations 

introduced in ion-starved solutions. The study also indicated that ion-exchange can be 

used to decrease residual potassium contamination in new membranes [126]. 

 

Kienitz researched the effects of cation contamination on polymer electrolyte membrane 

fuel cells (PEMFCs) [127]. This can significantly reduce the performance and durability 

of PEMFCs. Cationic impurities such as Na+, Ca2+, Cs+ and other metal cations compete 

with protons for the sulfonic acid sites in the polymer electrolyte membrane. These 
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impurities can be present in the hydrogen feed stream e.g. ammonia is often a byproduct 

of steam methane reforming most commonly used to produce hydrogen.  

 

Contaminating cations can also access the system from the air feed: sodium in coastal 

environments or calcium in deicing agents. The cations can also be present in the system 

from the corrosion of bipolar plates and other stack/piping equipment. The cations 

produced by the corrosion of metal bipolar plates have been studied and have shown many 

different cations present [128, 129]. 

 

The problem of cationic contamination is the low amount of contaminant needed to affect 

an MEA e.g. a 50μm Nafion® 1100 membrane has approximately 9 μmol of sulfonic acid 

sites per cm2. To displace all these protons requires approximately 206 μg of sodium ions, 

155 μg of ammonia, or 62 μg of lithium ions per cm2 [129]. Whilst there are typically 

>25cm2 of active area in any fuel cell, these small quantities of cations show how low 

levels of corrosion or contamination have a major impact on fuel cell performance [128]. 

 

When cations replace protons in the fuel cell ionomer it is highly undesirable since 

cationic contaminants have a higher affinity for the sulfonate sites than protons do. 

Cations which have accessed the membrane affect water management and decrease ionic 

conductivity [130]. They also hinder the ORR on the fuel cell cathode through reducing 

the number of actives sites on the platinum catalyst [130]. 
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Minimal research has been carried out on cationic contamination. This may be because 

in earlier fuel cells have often caused device failure before cation contamination could 

noticeably degrade performance. Fuel cells tested in a research environment use higher 

quality hydrogen feedstocks and newer components less prone to corrosion since cost is 

not a limiting factor. Studying cationic contamination becomes increasingly important as 

the durability and marketability of PEM fuel cells and electrolysers increases. 

Understanding exactly how and to what extent cationic contamination effects MEA 

performance will allow for the development of methods to recover fuel cell and 

electrolyser performance. 

 

The two ends of Nafion® structure are finished with a sulfonic acid site. Both of these 

end sulfonic acid sites are required to be paired with a cation counter-ion to enable electro-

neutrality [131]. As shown in other studies any cation can be replaced in these sites 

through an cation exchange process. Nafion® and other PFSA membranes show a 

preference to some cations over others. The change in electrostatic field strength of the 

anionic exchange site is directly influenced by the hydration energy of the cation counter-

ion and is seen to be the main factor in determining cation selectivity. Cations with 

smaller hydration energies are preferred to cations with larger hydration energies [132].  

 

The exchange of the cations within a Nafion® membrane does not occur instantaneously. 

An equilibrium is steadily achieved but this process takes time since cations have to 

diffuse to interact with the sulfonate sites [133]. 
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Once cationic contaminants displace protons in the ionomer they are difficult to remove. 

The research shows that higher molecular weight cations have a higher affinity for 

occupying sulfonate sites in the membrane [127]. Also, multivalent cations have a higher 

affinity than monovalent cations. Higher affinity is a result of larger cations having, in 

general, greater amounts of electrostatic interaction with the sulfonate sites [127]. 

 

The conductivity of protons in MEAs is much higher than any other cation. Other cations 

have at least four times less mobility than protons. The mobility of multivalent cations is 

lower than monovalent cations, but this is due to the fact that multivalent ions have at 

least one more charge per molecule [127]. 

 

Efficient water management in a fuel cell or electrolyser system is vital for performance. 

Water is a fundamental requirement for conduction of ions in the membrane but too much 

water causes flooding in fuel cells [127]. Flooding decreases the amount of gases that can 

reach the nucleation sites resulting in extra mass transport losses. Larger cations reduce 

the amount of water in the membrane and carry more water per molecule due to electro-

osmotic drag. Membranes contaminated with cations could result in an over 50% decrease 

in water content [127].  

 

Degradation effects similar were seen when 1.0M NaCl was injected in the air stream of 

a PEMFC at 1 ml/min [134]. The fuel cell cathode was exposed to a solution of NaCl 

with sufficient sodium to displace all protons in the membrane every 15 seconds. Minimal 
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degradation was observed for the first 24 hours of operation. After 100 hours of operation 

the cell experienced a 33% loss in current density at 0.6 V. This loss was not restored 

when the contaminated cathode feed was replaced with clean air for 3 days. The 

performance continued to decrease for 10 hours after exposure to contaminant was 

ceased.  

 

The slow loss in performance and sustained drop in performance after NaCl was no longer 

supplied to the system implying long residence times of sodium in the cathode. Once a 

cation is in the membrane it will move across the membrane quickly, but it may be more 

difficult for foreign cations to enter at the cathode side due to the half-cell potential or as 

a result of water generation on the cathode.  

 

Wakizoe et al. researched the impact of calcium ion contamination on single membrane 

cells. The study saw membranes be contaminated with between zero and eleven percent 

of protons replaced [135]. This researched showed that even replacing only 0.5% of 

protons in the membrane resulted in a high level of cell performance degradation 

especially at high current densities. Membranes with 11% of the protons replaced 

exhibited a 67% decrease in current density at 0.6 V compared to an uncontaminated 

baseline sample. Resistance of the cells increased as a function of contamination level.  

 

Calcium contamination has also been studied with calcium hydroxide solutions, 

consisting of 10, 50 and 500 ppm, supplied to the anode side of a fuel cell [136]. During 
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operation, the performance decreased as exposure time increased. Impedance data was 

analysed that suggested that the exchange current density had increased. The location of 

the calcium in the cell was analysed using electroprobe microanalysis. The analysis found 

that no calcium was located in the GDL, only within the membrane and electrodes. This 

analysis validated the theory that cations (more specifically calcium ions in this case) 

replace protons in the ionomer.  

 

2.5.  Effect of Hydrogen Addition to Diesel Engines 

The application of these HHO generators is for use with internal combustion engines 

(ICEs) as a fuel additive.  Traditionally, hydrogen and oxygen are generated, on demand, 

from water, using an electrolyser stack attached to an alternator.  The hydrogen and 

oxygen gas can be inserted into the ICE through the air inlet pipe, resulting in higher rates 

of ignition and corresponding propagation of flames across the combustion range. 

 

The enhancement of flame initiation and subsequent flame propagation decreases the 

ignition delay and combustion time in both petrol and diesel engines.  The resultant 

reaction aided by the presence of hydrogen and oxygen causes a simultaneous ignition of 

all the petrol/diesel fuel present.  As all the fuel ignites at the same time, no ignition front 

can exist and without it there is zero pressure wave to create knock in the ICE. 

 

Unburned hydrocarbons, CO and NO, in the exhaust are either removed or decreased and 

at the same RPM the engine produces more torque from less fuel in theory.  The lack of 
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carbon monoxide and un-burnt hydrocarbons confirms a complete and much quicker burn 

of fuel.  Colder exhaust temperatures prove that more work is completed throughout the 

power stroke.  Higher torque from reduced fuel at identical engine speeds concludes that 

higher pressure from a quicker burn, combusting through a longer power stroke, produces 

higher torque and consequently more power from less fuel. 

 

The enhanced mixture of fuel, air and HHO combusts up to 10 times faster but this rapid 

combustion is so fast that the resultant power stroke and exhaust stroke is much cooler, 

resulting in much less nitrous oxides (NOx) [137].  Decreasing hydrocarbons and CO 

emissions causes a rise in the percentage of CO2. As less fuel is used, the actual quantity 

of CO2 produced decreases by the same ratio as the reductions in fuel usage [138]. NOx 

gas is nearly eliminated and GHG emissions are decreased in proportion to the reduction 

in fuel usage. 

 

Previous studies on hydrogen injection into ICEs have shown varying effects on engine 

performance. Throughout history, many studies regarding hydrogen as a fuel in ICEs have 

been undertaken. Reverend Cecil in England planned to use hydrogen as fuel in 1820. 

Rudolf Erren conducted studies with the hydrogen engine in Germany in 1920 and 

research carried out by Ricardo in 1924 achieved high efficiency when working with 

hydrogen in an engine [139]. 
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Saravanan et al. investigated the hydrogen mixed with air induction in a diesel engine. 

The findings showed a 27.9% efficiency was achieved without knocking over the entire 

load range with 30% hydrogen enrichment [140]. Saravanan also found that fuel 

consumption decreased with increasing hydrogen percentage over the operational range 

[140]. Saravanan also carried out research on hydrogen as a dual fuel for diesel engine 

system using the exhaust gas recirculation (EGR) technique [141]. The investigation 

demonstrated that the specific fuel consumption decreased without EGR with a hydrogen 

flowrate of 20 LPM and it was concluded that the reason for reduction in fuel 

consumption is the result of the operation of a hydrogen fuelled engine in lean burn 

conditions [141]. 

 

Adnan et al. investigated a hydrogen injection rate of 20 LPM into the air induction pipe 

at standard temperature and pressure doubled NOx emission at 1500 RPM in a 7.4kW 

diesel engine, with a compression ratio of 19.3:1 [142]. The cylinder peak pressure 

increased by 11% and indicated a power increase of 33% at 1500 RPM. This results in a 

fuel consumption reduction at fixed load conditions. Consequently however, If the 

hydrogen was produced on-demand by an electrolyser at 4.4 Wh/L then the added load 

would be 5.3kW, leaving around 29% of the engines power for useful work, and most 

likely dramatically increasing diesel consumption [142]. 

 

Saravanan et al. investigated optimising manifold injection in a direct injection diesel 

engine with varying hydrogen flowrates. Conclusion showed that from manifold 

injection, the optimised engine condition included the injection of hydrogen at top dead 
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centre (TDC) with injection with a hydrogen flow rate of 7.5 LPM. The brake thermal 

efficiency increased by 9% compared to normal fuel conditions. CO emissions varied 

from 0.03 to 0.12 vol% compared to 0.08-0.14 vol% in a diesel fuel investigation [143]. 

 

Bose et al. researched varying load conditions on a diesel engine injected with 27.8 LPM 

of hydrogen and EGR gas into a 5.2 kW, 17.5:1 compression diesel engine. Brake thermal 

efficiency increased 28%, and NO2 emissions increased by 70% at 20% load and 90% at 

40% load due to hydrogen injection [144]. The efficiency of the engine increased due to 

the increased flame speed from the presence of hydrogen in the combustion process.     

27.8 LPM of hydrogen is a high production rate of gas if provided from an electrolyser 

and the power needs to be supplied from the engine itself. It was found that the 

electrolyser would require 4.4Wh/L of hydrogen produced. As a result the added load of 

the electrolyser is 7.34kW which is 41% greater than the engines rated power in this study 

[144]. 

 

Miyamoto et al. injected hydrogen at varying flowrates into a single cylinder diesel engine 

with a 16.7:1 compression ratio operating at 1500 RPM. The engine had varying diesel 

injection timing, and the coolant and air temperature were maintained at a constant level. 

Diesel injection timing was from 12° to 0° before top dead centre (BTDC). Hydrogen 

injection in this experimentation caused NOx exhaust emissions to drop 24% at 12° 

BTDC to make identical NOx emissions with no hydrogen injection [145].  
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Bari et al. operated a 4 litre diesel engine generator at three loads at 1500 LPM, supplying 

up to 32 LPM of HHO supplied by an externally powered electrolyser. The purpose was 

to determine whether an on-board electrolyser can reduce fuel consumption in a diesel 

engine. It was reported 14-15% reduction in fuel energy consumption (diesel and 

hydrogen energy both included) across a range of loading conditions and HHO injection 

rates [146]. It was also found HHO is best utilised in small ratios, up to 4% concentration 

since up to this injection rate HHO acts as an additive rather than a full diesel replacement 

fuel. NOx emissions increased up to 27% with an increasing rate of HHO engine 

injection, the same as found for tank hydrogen injection [146]. 

 

From the literature reviewed above it has been proven that NOx emissions increase with 

load and hydrogen and/or HHO injection rate. The small increases in engine fuel economy 

from hydrogen/HHO injection is not sufficient to offset the energy required to make the 

required flowrate of hydrogen/HHO by electrolysis of water utilising the power supplied 

from the engine alternator or 12V battery. The research has shown on-board HHO 

generation increases diesel consumption, and subsequently decreases the engine power 

available to primary function. 

 

To this end, the research conducted herein will be investigating reducing exhaust 

emissions in engine idle conditions to meet emission requirements for EURO 5 & 6 zones, 

irrespective of an anticipated increase in diesel fuel consumption, as requested by the 

project sponsor.  

 



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 89 - 

 

2.6.  Summary 

The principles and theory of water electrolysis discussed are used through this research 

to quantify and analyse the results produced from the electrolysers characterised.  The 

fundamental scientific principles are a vital part of the design and build of a new state of 

the art alkaline electrolyser, which reduces overpotentials, increases the reaction kinetics 

and operating efficiency when compared to the electrolyser’s predecessor. 

 

The developments in alkaline electrolysis materials has been analysed and this enabled 

the development of an alkaline electrolyser using cost effective materials for the 

electrodes, electrolytes and additives. 

 

Analyse of current research trends in PEM electrolysis highlighted a huge focus on the 

reduction in PGM electrocatalyst loading and utilisation, with very little on the impacts 

of water feed quality, which is limiting factor on the lifetime of PEM electrolysers. 

 

This chapter has introduced the scientific background and theory of electrolysers which 

serves as the backbone to the basis of the research in the following chapters.  The 

methodology behind the research and materials used to complete this is discussed. 
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Chapter 3 

3. Methods and Materials 
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3.1.  Methods 

The analytical techniques used to quantify the electrochemical performance, gas 

productivity and composition, microscopic surface analysis, water composition and 

engine integration testing are described in this section.   

 

3.1.1.  Electrolyser Polarisation 

The performance of an electrolyser is governed by its polarisation curve.  This type of 

performance curve shows the current per unit area (current density) of the electrode 

flowing from the anode to the cathode as function of the voltage being applied by the 

external power supply.  This is shown in Figure 3.1. 

 

Figure 3.1: Conceptual Electrolyser Polarisation Curve 
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The curve and losses associated as previously described in the literature survey show the 

electrochemical efficiency of the electrolyser at any operating potential.  The voltage 

(potential) across the electrolyser was varied and the subsequent current flow was plotted 

for each potential. Electrons will not flow with an applied potential below 1.48V (thermo-

neutral voltage). 

 

3.1.2.  Gas Measurement 

The gas evolution rate from the electrolyser is a vital parameter when determining the 

efficiency of the electrolyser.  This was completed throughout using a 100ml glass 

measuring cylinder and a stopwatch. The gas evolution rate from an electrolyser is 

expected to increase with the potential across the cell (Figure 3.2). 

 

Figure 3.2: Conceptual Electrolyser Gas Evolution Curve 
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An identical trend is shown in Figure 3.1 and Figure 3.2 This is the validation of Faraday’s 

First Law of Electrolysis.  It states that the mass of a substance altered (evolved) at an 

electrode during electrolysis is directly proportional to quantity of electricity transferred 

at that electrode.  An example plot of an electrolysis cell obeying this law is shown in 

Figure 3.3. 

 

Figure 3.3: Conceptual Faraday 1st Law of Electrolysis Graph 

 

Figure 3.3 illustrates that the quantity of gas evolved at the electrode is directly 

proportional to the current flow per unit electrode surface area.  This demonstrates the 

electrolyser is operating in electrolysis mode, and the steeper the gradient, the more 

efficient the electrolyser is. 
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3.1.3.  Electrical Efficiency 

The efficiency of an electrolyser is an important factor when characterising an 

electrolyser and ultimately quantifies the energy content of the hydrogen produced as a 

function of the electrical energy supplied the electrolysis process.   

The equation used to calculate the efficiency is:    

 
Efficiency (%)= 

ρ.HHV.100

EvolH2

 
Eq.  3.1 

 

where ρ is the density of hydrogen (0.08988 kg/m3), HHV is the higher heating value of 

hydrogen (142 MJ/kg) and EvolH2 (MJ/m3) is the energy supplied per unit volume of 

hydrogen.  A typical electrical efficiency plot for an electrolyser is shown in Figure 3.4. 

 

Figure 3.4: Conceptual Electrolyser Electrical Efficiency Curve 
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The efficiency is at its highest at low potentials when there is minimal resistance in the 

electrolyser, and then drops as the ohmic overpotential increases in the cell and then drops 

off when the high bubble overpotential is limiting gas evolution in the electrolyser whilst 

the energy input is still increasing.  The most desirable efficiencies for electrolysis cells 

are found at low potentials and these cells are then connected in series to form an 

electrolysis stack with high hydrogen gas production rates and reduced electrical energy 

input. 

 

3.1.4.  Electrochemical Degradation 

In real world scenarios the voltage is fixed across the electrolyser.  As a result the current 

flow between the electrodes remains constant theoretically, however, in reality the current 

decreases (degrades) over time. 

 

Figure 3.5: Schematic of Standard Electrochemical Degradation of an Electrolyser 
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Figure 3.5 shows a typical measurement of current vs. time for electrolysis systems. This 

is also known as chronoamperometry. The current is related to the slope of the 

concentration-distance profile at the electrode surface.  

 

The current spike that follows the potential step is due to electrolysis of the molecules 

adjacent to the electrode surface (capacitive charging effect). Once these molecules have 

been electrolysed the rate of current flow is determined by the rate at which molecules 

arrive at the electrode surface, which is decided by the diffusion rate. The decay in the 

current that follows the spike emphasises the decrease in the rate of arrival of molecules 

at the electrode surface as the region near the electrode becomes depleted. The molecules 

have to travel further to reach the electrode as the experiment proceeds. 

 

The change in current over time can be determined by the Cottrell equation in 

chronoamperometry. When a potential step change is applied the equation calculated the 

current flow as a function the diffusion of electrolyte to the electrode.  

 

3.1.5.  Scanning Electron Microscopy 

The operating principle involve imaging the surface of samples by scanning it with a 

high-energy beam of electrons.  The electrons interact with the atoms in the sample 

emitting signals about the samples surface composition, topography and electrical 

conductivity [147].  The process is shown in Figure 3.6. 
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An SEM produces a range of signals including secondary electrons, back-scattered 

electrons (BSE), characteristic X-rays, specimen current and transmitted electrons.  The 

signals result from interactions of the electron beam with atoms at or near the surface of 

the sample [147].   

 

 

Figure 3.6: SEM Process & Schematic Reproduced from [147] 

 

Secondary electron imaging (SEI) is the most common detection mode and it produces 

very high-resolution images of a sample surface.  The narrow nature of the electron beam 
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results in a large depth of field from SEM micrographs subsequently producing a three-

dimensional image which is useful for understanding the surface structure of a sample.  

An SEM allows a range of magnifications from about 10 times to more than 500,000 

times.  This is approximately 250 times the magnification ability of the best light 

microscopes [147].   

 

BSE are electrons that are reflected from the sample by elastic scattering.  These are 

usually seen in analytical SEM along with X-rays.  The intensity signal of the BSE is a 

function of the atomic number (Z) of the sample, which results in BSE plots that can 

supply information about the distribution of differing elements on the sample surface.  X-

rays are emitted when the electron beam clears an inner shell electron from the sample, 

causing a higher energy electron to fill the shell and subsequently release energy.  The 

produced X-rays allow identification of the surface composition and measure the 

abundance of elements in the sample [147]. 

 

3.1.6.  Energy-Dispersive X-Ray Spectroscopy (EDX) 

EDX is carried out simultaneously with SEM analysis and is available due to the SEMs 

ability to generate and analyse X-rays in order to study the surface chemical composition 

more thoroughly.  The sample surface is hit with electrons causing the surface atoms to 

eject an electron.  This vacancy is filled by another electron coming from a higher state 

and the energy difference is balanced through the release of an X-ray (shown in          

Figure 3.7).   
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Figure 3.7: The Principles of EDX Reproduced from [148] 

 

These various X-rays are separated into the corresponding signals of different elements 

enabling spectra to be produced. 

 

3.1.7.  X-Ray Photoelectron Spectroscopy (XPS) 

XPS (also called Electron Spectroscopy for Chemical Analysis, ESCA) is a method of 

analysis to characterise surface composition of a sample.  The sample is situated in a high 

vacuum chamber and then irradiated with photons enabling electrons to be emitted from 

an atom or molecule as shown in Figure 3.8.   

 

The kinetic energy in this electron is quantified by the spectrometer and is dependent on 

the binding energy and the energy of the photon used and Eq.  3.2 shows this relationship. 
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Figure 3.8: The Principles of XPS Reproduced from [149] 

 hv = EB+ EK Eq.  3.2 

where ℎ𝑣 = Incident x-ray/electron energy, 𝐸𝐵 = Binding energy of the electron at a 

certain energy level, 𝐸𝐾 = Kinetic energy of released photon. 

 

The binding energy can be determined once the kinetic energy has been established, as 

the incident x-ray/electron energy is known, and then the elemental composition can be 

identified on the sample surface. 

 

3.1.8.  Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) 

ICP is inductively heated ionised plasma completed with an electrical coil and contains a 

concentration of ions and electrons to make the gas electrically conductive [150].   
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Integrating with mass spectrometry enables the ions from the plasma to be extracted 

through a series of cones into a mass spectrometer, usually a quadrupole.  The ions are 

then separated on the basis of their mass-to-charge ratio and a detector receives an ion 

signal proportional to the concentration [150]. 

 

The equipment used for this analysis is an Agilent Technologies ICP-MS 7500ce Series 

and its operating principle is shown in Figure 3.9. 

 

Figure 3.9: Operating Principle of ICP-MS Reproduced from [151] 

 

Inductively couple plasma mass spectroscopy can detect elements with a mass lower than 

fluorine, which enables the detection of the major cations ions found in water, including 

sodium, potassium, calcium and magnesium.  These are of interest because cations have 

higher affinity than protons for the sulfonic acid group sites and replace protons in accord 

with normal ion exchange processes in the ionomer phase.  Subsequently, these reduce 
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the conductivity of the membrane and reduce water content in the fully hydrated 

membranes by replacement of protons in the Nafion® membranes.   

 

3.1.9.  Total Organic Carbon (TOC) Analysis 

Total organic carbon (TOC) is defined as the amount of carbon within an organic 

compound and is a common indicator of water quality.  Specific analysis for TOC 

measures the total carbon (TC) present, representing the content of dissolved carbon 

dioxide and carbonic acid salts, and the inorganic carbon (IC) present [152].   

 

A Shimadzu ASI-V TOC Analyser was used to conduct this analysis and the standard 

operating principle is shown in Figure 3.10. 

 

Figure 3.10: Operating Principle of TOC Analysis Reproduced from [153] 

 

Subtracting the IC from the total carbon calculates the TOC.  Removing the IC portion 

and then measuring the remaining carbon is common variant of TOC analysis.  This 
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involves purging an acidified sample with air or nitrogen before measurement, and so is 

more commonly known as non-purgeable organic carbon (NPOC) [152].   

 

Total organic carbon is another indicator of water quality, and can be measured by 

subtracting the total carbon content by the total inorganic carbon content in the sample.  

Organic carbon in the feed water for a PEM electrolyser represents impurities which will 

deactivate the PGM catalysts and subsequently accelerate the reduction in 

electrochemical performance of the electrolyser over time. 

 

3.1.10.  Internal Combustion Engine (ICE) Testing  

The objective of these tests was to measure the initial emission benefits of the unit when 

the output gases are introduced in the engine intake.  First, baseline tests without the use 

of the electrolyser were carried out and values for fuel consumption, brake thermal 

efficiency, carbon dioxide (CO2), water vapour (H2O), nitrogen oxides (NOX), total 

unburnt hydrocarbons (THC) and carbon monoxide (CO) were been recorded.   

 

Oxyhydrogen (HHO) gas from the electrolyser was added to the engine intake, and engine 

tests were carried out at the same engine operating conditions as the baseline tests.  A 

single cylinder experimental diesel engine without any aftertreatment device was used to 

evaluate the effects of the hydroxy gas produced from the electrolyser on engine 

performance and emissions.  A schematic for the engine testing procedure is shown in 

Figure 3.11 and the main engine specifications are given in Table 3.1.   
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Figure 3.11: Schematic of Engine Testing Experimental Setup (Image Courtesy of Jose Herreros [154]) 

 

The load for the engine was supplied from an electric dynamometer with motor and a 

load cell.  In-cylinder pressure traces were recorded by a Kistler 6125B pressure 

transducer mounted at the cylinder head and connected via a Kistler 5011 charge amplifier 

to a data acquisition board (National Instruments PCI-MIO-16E-4).   

 

The crankshaft position was characterised using a digital shaft encoder.  Other standard 

engine test rig instrumentation used to monitor intake air, temperatures (oil, air, inlet 

manifold and exhaust) and pressures were included in the test rig.  A Horiba MEXA 



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 105 - 

 

7100DEGR gas analyser was used to take measurements of CO2 and CO by Non-

Dispersive Infrared (NDIR), O2 by a magnetopneumatic method, NOx by 

chemiluminescence detection (CLD) and HC by flame ionisation detection (FID).  A 

MultiGas 2030, FTIR spectrometry based analyser was also used for the measurement of 

water vapour and gaseous emissions already measured with the Horiba MEXA 

7100DEGR. 

Table 3.1: Engine Specification for HHO Testing 

Engine Specification Data 

Number of Cylinders 1 

Bore/Stroke 98.4 mm/101.6 mm 

Connecting Rod Length 165 mm 

Displacement Volume 733 cm3 

Compression Ratio 15.5:1 

Rated Power (kW) 8.6@2500 rpm 

Peak Torque (Nm) 39.2@1800 rpm 

Injection System Three holes pump-line-nozzle 

Injection Timing (°bTDC) 22 

Engine Piston Bowl-in-piston 

The basic properties of diesel fuel used are given in Table 3.2.  The electrolyser product 

was introduced and mixed with the air before the intake manifold valve.  In the first part 

of the study four different engine operating conditions were studied (see Table 3.3).   

Table 3.2: Fuel Analysis for HHO Engine Testing 

Fuel Analysis Method 

Cetane number 53.9 ASTM D613 

Density at 15°C (kg m-3) 827.1 ASTM D4052 

Viscosity at 40°C (m2 s-1) 2.467 E-06 ASTM D445 

50% distillation (°C) 264 ASTM D86 

90% distillation (°C) 329 ASTM D86 

LCV (MJ kg-1) 42.6 N/A 

Sulphur (mg kg-1) 46 ASTM D2622 

 

The electrolysers had a 12 V potential applied across it (consistent with an alternator in a 

standard passenger vehicle) and a concentration of 1.0M KOH solution used as the 
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electrolyte in the electrolyser.  The engine settings for both electrolysers is shown in Table 

3.3. 

Table 3.3: Engine Operating Conditions for HHO Testing 

Engine Operating Conditions Mid Load High Load 

Engine speed (rpm) 1200 1500 

Indicated mean effective pressure (bar) 3 & 5 3 & 5 

 

3.2.  Materials 

3.2.1.  Electrolysers 

An overview, description and schematic for each electrolyser analysed is presented in this 

section.  All electrolysers are named accordingly to protect commercial impact. The 

materials, components and design of the commercial electrolysers supplied are the 

intellectual property of the suppliers and modification of these products is strictly 

prohibited. As a result redesign of a electrolysers has been completed.   

 

3.2.1.1.  Electrolyser A 

Electrolyser A is a 6 plate (80 mm x 80 mm) stainles steel 316 (SS316) alkaline 

electrolyser.  The total electrode surface area in the electrolyser is 384 cm2. 

 

The equipment was set up in a unipolar configuation as illustrated in Figure 3.12, and 

experiments were carried out to test the effect of varying the cell voltage across the 

electrolyser.  Different concentrations of potassium hydroxide (KOH) solution were 

investigated to characterise the polarisation of the electrolyser and the equivalent HHO 
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production rates.  A constant volume of 300 cm3 of electrolyte solution was used for each 

experiment. 

Two plastic tubes were connected from the fluid inlets/outlets of the electrolyser, to the 

underside of the larger plastic container.  The plastic container was placed at a greater 

height than the electrolyser during operation, thus enabling the KOH solution to flow into 

the electrolyser under gravity.   

  

Figure 3.12: Experimental Setup & Circuit Diagram of Electrolyser A 

 

During operation, the KOH solution flows into the electrolyser from the reservoir tank 

through down into the electrolyser.  Simultaneously, HHO gas is produced and exits the 

top of the electrolyser through the tubes connecting the reservoir tank to the electrolyser 

as shown in Figure 3.12.  The product gases exit the electrolyser against the flow of the 

KOH solution when the buoyancy force of the HHO gas in the electrolyser is greater than 

the force of gravity pushing the solution down into the electrolyser. 
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The purpose of the side tank is defined for HHO gas cooling.  However, it can be more 

suitably described as a pressure relief vessel.  If there was a surge of pressure in the 

system, it would be favourable that the smaller vessel, containing distilled water, ruptured 

than the larger vessel containing the alkaline solution.   The connection of the main 

reservoir with the side vessel enables this safety feature to function. 

 

3.2.1.2.  Electrolysers B & C 

Two unipolar electrolysers were supplied from the same company.  They were identical 

except in two differences.  The first variation Electrolyser C had an outlet on the underside 

of the electrolyser (which allowed the flow of pumped electrolyte solution through the 

electrolyser), whereas Electrolyser B does not.  The second difference was the use of two 

outlets on Electrolyser C (for the purpose of separating the product gases), whereas 

Electrolyser B has only one. 

 

Testing on Electrolyser B took place in a batch operation, which had the inlet on the 

underside of the electrolyser sealed to prevent any electrolyte leaving the cell.  The cell 

was then filled with a fixed volume (500 cm3) of KOH solution.  Electrolyser C was tested 

in a continuous operation mode, with a pump constantly pumping electrolyte from 

reservoirs through the electrolyser cell.  The pressure of the pumped electrolyte through 

the electroylser should help the membrane contract and reduce the crossover of hydrogen 

and oxygen gas.   
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The electrochemical behaviour of both cells was characterised at various KOH 

concentrations by measuring the current flow at set voltage intervals. The gas flowrate 

and gas produced out of each outlet on the top of the cell was also measured.   

Electrolyser B 

This electrolyser (Figure 3.13) has one gas outlet; no separation of hydrogen and oxygen 

gas.  It is a 6 plate SS316 electrolyser with a total electrode surface are of 4645 cm2.  

Electrolyser B will be operated in with no flowthrough of electrolyte i.e. a fixed volume. 

   

Figure 3.13: Schematic of Electrolyser B 

 

The electrolyser is filled to capacity with KOH solution and when an electrical current is 

applied the bouyancy of gases evolved bring them to the surface and then dissipate 

through the single outlet on the roof on the electrolyser. 
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Electrolyser C 

Electrolyser C (Figure 3.14) has two gas outlets.  The addition of the two gas outlets on 

the electrolyser is for the separation of the hydrogen and oxygen gases which is completed 

by a membrane.  It also is a 6 plate SS316 electrolyser with a total electrode surface are 

of 4645 cm2. 

   

Figure 3.14: Schematic of Electrolyser C 

 

Figure 3.15: Electrolyser C Experimental Setup  
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Whereas the Electrolyser B was operated in a batch mode, Electrolyser C was operated 

in a ‘continuous mode’ with electrolyte continuously pumped through the electrolyser as 

shown in the experimental setup in Figure 3.15.  The voltage of the pump was set to 4 V 

and two 10 L reservoirs were used to hold the electrolyte and product gases. 

 

3.2.1.3.  Electrolyser D 

It was proposed to use ultrasound combined with electrochemistry 

(Sonoelectrochemistry) for the production of hydrogen.  Sonoelectrochemistry is defined 

as a branch of electrochemistry which studies any electrochemical processes that are 

affected, assisted or promoted by power ultrasound [155].  Reports (in the form of papers, 

patents, etc.) on the subject have been examined from over the last 100 years to the present 

day to understand how this area of research has evolved. 

 

During operation, the collection of bubbles on electrode increases electrical resistance of 

the cell.  Ultrasonic irradiation causes “cavitation” of bubbles on electrode surfaces; these 

bubbles then coalesce to form larger gas bubbles that then implode and collapse, thus 

releasing dissolved gases (degassing effect).  This results in an increase in active sites on 

the electrode and hence increases the electrical efficiency and yield of the cell [156]. 

 

Ultrasound is a sound wave with a high pitch that cannot be heard by the human ear      

(>16 kHz) [157].  Above that frequency, the use of ultrasound in chemistry 

(Sonochemistry) is divided into two categories: high frequency or diagnostic ultrasound, 
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and low frequency or power ultrasound.  High frequency or diagnostic ultrasound 

operates at frequencies of 2 -10 MHz and is mainly used for medical applications.  Low 

frequency or power ultrasound operates at frequencies of 20 kHz – 2 MHz and this is 

where the cavitation phenomenon occurs [158, 159]. 

 

Figure 3.16: Electrolyser D Schematic & Experimental Setup (Image not to Scale) 

 

Electrolyser D (Figure 3.16) was designed and built inhouse for the purpose of improved 

hydrogen gas generation from alkaline electrolysis.  The cell consisted of a reaction vessel 

(diameter 10 cm, height 11 cm, volume 864 cm3) surrounded by an outer vessel, providing 

a continuous flow of water at 298 K (Tecam Water Bath & Techne Tempette TE-8A 

Heating Bath Circulator) to regulate a constant temperature in the inner vessel.  Two 

carbon electrodes (active area 7.61 cm2) were inserted into the inner vessel and an 
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electrical current was passed through these electrodes to the aqueous solution.  Gases 

produced were collected and measured by water displacement using a glass cylinder. 

 

Ultrasonic irradiation was provided by an ultrasonic horn (Sonics Ti Alloy, 47 mm in 

diameter connected to a Sonics VCX750 VibraCell operating at 20 kHz and maximum 

power of 750 W).  For the experimentation at 20 kHz, the ultrasonic power was               

20.7 W/cm2 unless otherwise stated.  The carbon electrodes used were manufactured by 

Morganite which had a diameter of 5 mm and a length of 300 mm. 

 

The custom glassware used was manufactured by Soham Scientific (reference 0210-

109e).  For all experiments the power was supplied by a Thurlby AC/DC PL320 32V-2A.   

 

3.2.1.4.  Electrolyser E 

Electrolyser E (Figure 3.17) is also a 6 plate (10 mm x 100 mm) SS316 electrolyser with 

a 600 cm2 electrode surface area in a unipolar configuation.  Five hand built electrolysers 

(E.1-E.5) were provided by the supplier. Experimentation was completed on units E.2, 

E.4 & E.5 and then the data of the best performing electrolyser is presented.  
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Figure 3.17: Schematic of Electrolyser E 

 

The equipment was set up as illustrated in Figure 3.18, and several experiments were 

carried out to test the effect of varying the cell voltage across the electrolyser. 

 

Figure 3.18: Electrolyser E Experimental Setup 
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Different concentrations of KOH solution were investigated to characterise the 

polarisation of the solution and the equivalent HHO production.  A constant volume of 

800 cm3 of aqueous solution was used for each experiment. 

 

Electrolyser E was setup identically to that of Electrolyser A, which consisted of 

connecting the electrolyser to a reservoir tank (with plastic tubing) which holds the KOH 

electrolyte solution.   

 

3.2.1.5.  Electrolysers F & G 

Electrolyser F 

The first electrolyser design took into account the need for no increase in electrolyser size 

and managed to build in the ability to hold up to 24 electrode plates (100 mm x 100 mm 

x 1 mm), with a 6 mm spacing between each plate.  These 24 plates represent up to 12 

electrolysis cells in the electrolyser stack in a unipolar configuation.   A CAD design of 

Electrolyser F is shown in Figure 3.19. 

 

The casing was built out of Perspex (10 mm thickness), which enabled visual insight 

(poor electrode connections, bubble evolution restrictions) at the reaction occurring in the 

electrolyser.  Precision slots were made, which allowed for ease of removal and 

modification of each electrode.  The plates were connected in parallel using two stainless 

steel (SS316) bars (150mm x 20mm x 1mm), which were connected to the electrodes 

using SS316 screws.  A circuit diagram on Electrolyser F is shown in Figure 3.20. 
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Figure 3.19: Electrolyser F CAD Design of 24 100mm x 100mm x1mm electrodes with 6mm spacing between 

electrodes 

 

 

Figure 3.20: Electrolyser F Circuit Diagram 
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At one end of each interconnect was a SS316 (4 mm diameter) screw soldered onto it for 

the electrical energy input to the electrolyser stack.  These were accompanied with two 

3/8’’ ID nylon nozzles which were placed symmetrically central in the electrolyser lid for 

the connection of the stack to the electrolyte reservoir.  Images of the constructed 

Electrolyser F are shown in Figure 3.21. 

  

Figure 3.21: Image of the Constructed Electrolyser F 

 

5.2.1.6.  Electrolyser G 

Electrolyser G differed from Electrolyser F, with the reduction of number of electrodes 

from 24 to 20 plates.  A CAD design of Electrolyser G is shown in Figure 3.22. This gave 

space for use of an additional electrical connection on each of the stainless steel 

interconnects.  A circuit diagram on Electrolyser G is shown in Figure 3.23 and an image 

of the constructed Electrolyser G in Figure 3.24. 
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This accompanied with the increase length (10 mm to 30 mm) and diameter (4 mm to       

6 mm) of the SS316 screws gives rise to better heat distribution through the electrical 

connections, especially considering the higher currents (> 200 A) expected and the 

corresponding heat produced. 

 

Figure 3.22: Electrolyser G CAD Design of 20 100mm x 100mm x1mm electrodes with 6mm spacing between 

electrodes 
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Figure 3.23: Electrolyser G Circuit Diagram 

An additional pair of nylon nozzles was added into the electrolyser lid, taking the total 

number to four.  This will aid flow of electrolyte solution and aid the removal of HHO 

gas formed from the stack, thus keeping the internal pressure at a minimum and reducing 

the risk of explosion.  Figure 3.24 shows the experimental setup for Electrolyser G. 
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Figure 3.24: Electrolyser G and Apparatus Setup 

 

3.2.1.6.  Electrolyser H & I 

Two electrolysers (Electrolysers H & I) were built in a Perspex casing consisting of six 

nickel (201) electrodes (100 mm x 100 mm x 1 mm) (total electrode surface area =       

1206 cm2) in a unipolar configuation with a fixed separation distance of 6 mm.  There is 

a clearance of 20 mm from the bottom of the Perspex vessel to the bottom of the nickel 

electrodes.  Electrolyser H is the above mentioned electrolyser stack without titanium 

(Grade I (ASTM B265)) chips, whilst Electrolyser I has the titanium chips in the bottom 

of the vessel.  An image and CAD of the electrolyser is shown in Figure 3.25. 
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Figure 3.25: Image and CAD of Electrolyser I (dimensions in mm) 

 

In this case titanium chips (10 mm x 10 mm x 1 mm) must be added (240 cm2 total surface 

area) to ensure that the electrode material is protected from corrosion.  The titanium chips 

will be held at the bottom of the reaction vessel under a nickel mesh to ensure they do not 

interact with the electrochemical reaction.  The specified dimensions were chosen for this 

feasibility study to maximise the surface area in the small volume available at the 

underside of the vessel, and if proven further research could be conducted on varying 

geometries and loadings of titanium in the system.  A larger size of titanium chips would 

limit the surface area of titanium available in the vessel and the subsequent 

electronegativity of the titanium.  The titanium does not participate in the electrochemical 

reaction and must be kept out of physic contact with the nickel electrodes. 

The potassium hydroxide (≥85% KOH basis, pellets) was mixed with a specific volume 

of Type II Deionised Water (Millipore Distilled Water Purification System (Rios Doi3)), 

to produce a predetermined concentration of KOH solution.  The potential was controlled 
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and the subsequent current measured using a direct current power supply (Thurlby 

Thandar Instruments QPX1200SP model). 

 

Following the electrolysis reaction, the electrodes were prepared for SEM (JEOL JSM-

6610LV), EDX (Oxford Instruments Inca 300 EDS system), and XPS (Thermo Scientific 

K-Alpha) analysis, and were washed thoroughly with Type I (18MΩ) water to remove 

any residual KOH solution, and then subsequently dried. 

 

3.2.1.7.  Electrolyser J 

Electrolyser J was leased to the University of Birmingham by commercial supplier of 

water electrolysers to produce hydrogen for fuel cell vehicle refuelling in April 2011.  

Before being implemented in the refuelling system, the electrolyser was continually tested 

in collaboration with the manufacturer.   

 

Figure 3.26: Image of Electrolyser J 
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Figure 3.27: P&ID of Electrolyser J 

 

Description of Process 

Start-up Sequence 

Upon operation, the control system opens valves V1 and V8 to fill the oxygen (O2) 

separation tower and hydrogen (H2) separation tower with water, stopped by closing the 

valves when the water reaches level sensors L4 and L2 respectively.  To ensure that no 

pressure head builds up whilst filling the H2 separation tower, V4 is opened (the O2 

separation tower is already open to the atmosphere).  A timer for each fill identifies any 

blockage in the water lines.  Pumps 1 and 2 are activated and the lines through the 

electrolyser stack are also filled with water. 
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The O2 separation tower is then emptied by opening V3 and activating pump 3 (again 

with a timer to identify any blockage in the drain line) and refilled back to the level of 

L4.  To empty the H2 separator, the electrolyser is briefly powered on with V4 now closed 

to create sufficient hydrogen head pressure (at 19 V to evoke a lower hydrogen production 

rate than full capacity at maximum potential) which when V7 is opened, causes water to 

drain from the H2 separation tower.  The H2 separator is then refilled back to the level of 

L2, then V7 is opened for 15 seconds to drop the water level in the H2 separation tower 

slightly below L2. 

 

System Pressure Check Sequence 

After the water purge, the voltage to the electrolyser stack is ramped up to approximately 

17-19 V where V6 is closed in order to build up pressure in the H2 separation tower.  At 

various pressures up to 13 bar, the power to the stack is stopped, and the pressure 

monitored for any change (due to a pressure leak).  The power is shut-down for 60 

seconds, whilst the pressure is measured using PT1, and presuming there is no change in 

the H2 pressure, power is reintroduced to the stack and the pressure increases again.  Once 

achieving 13 bar pressure and the 60 seconds pressure testing completed, the pressure is 

released by venting the gas through V5 (slow vent).  When the pressure is down to 0 bar, 

V5 shuts and the system is ready to start producing its H2 gas product. 
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Gas Generation 

The control system then moves into the operational mode and commences electrolysis 

and starts to pressurise the hydrogen system, whilst oxygen is vented to the atmosphere.  

The hydrogen produced in the electrolyser stack is channelled to the H2 separation tower 

along with the flowing water (used to provide cooling) and can be vented either through 

V4 or V5 (fast and slow vent respectively) or used to fill a vessel connected externally or 

provide a continuous flow of product hydrogen.  The pressure at which the product 

hydrogen exits the electrolyser is controlled by a back pressure regulator (BPR) at a 

pressure of up to 14 bar, as chosen by the user.  This will influence the pressure 

consistently seen by the H2 separation tower, pipes and hydrogen producing side of the 

electrolyser.  It is measured using PT1, a compact high pressure OEM pressure 

transmitter.  The prevent over-pressurisation, the separating vessel is fitted with a safety 

relief valve set at 18 bar.  Unless the system is shut down (see below), either by the user 

or automatically due to a fault, electrolysis will continue until the system pressure reaches 

a user defined target pressure (maximum 15 bar), at which the power supply will be turned 

off by the control system (when control logic is implemented), halting electrolysis and 

the system will remain in a standby state at pressure. 

 

Unless a shut-down is instigated, the electrolyser will produce hydrogen (or be in the 

standby state at its target pressure) in operational mode for a defined period of time – 

currently set at 24 hours.  After this time period, the system automatically enters a water 

purge mode, to replace the water in the system. 
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Water Circulation 

Under current operational parameters, the maximum temperature that can be reached by 

the water in the vessel is 60oC before stopping electrolysis.  When the temperature reaches 

50oC, a heat exchanger loop is activated to reduce the temperature. 

 

Water Repatriation 

During electrolysis, as protons migrate from the anode to the cathode, they drag water 

molecules with them.  This phenomenon is referred to as electro-osmotic drag, and results 

in a build-up of water in a hydrogen separator.  Whilst in operational mode and above 3.5 

bar, V2 is opened to return water to the O2 tower through a electro-osmotic drag water 

repatriation loop.  This creates a pressure drop that can be up to 1 bar, depending on the 

system pressure, with a frequency of up to 6 per hour.  Although the actual frequency 

depends on the system conditions, the frequency is relatively predictable and monitoring 

this can identify leaks in the system not picked up by the pressure transducer due to 

pressure loss. 

 

Depressurisation 

As above, the control system returns the hydrogen bearing components to ambient 

pressure at a slow rate (approximately 6.5 minutes from 15 bar to 1 bar) by opening the 

restricted vent V5 and finally V4, before the system stops at ambient pressure.  This can 

be caused by an error detected by the control system or by user intervention. 
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Operational Protocols 

As previously mentioned, the outlet pressure of H2 produced from Electrolyser J is 

controlled using a back pressure regulator (BPR).  This BPR is situated outside 

Electrolyser J itself, and is subject to changing environmental conditions (varying 

temperature (approx.  5-25oC)), unlike the electrolyser stack and separation towers which 

are contained within Electrolyser J and are maintained at moderate temperatures (approx.  

45-55oC). 

 

The change in temperature results in a variance of output pressure of H2 from the 

electrolyser.  BPR’s have a tendency to vary from the set point with varying temperature.  

Typically the set point pressure decreases with temperature decrease and vice-versa.   

 

3.2.2.  Electrolysis Single Cell Experimental Cell Setup 

A single cell PEM Electrolysis test rig (Figure 3.28) was supplied from ITM Power plc.  

This consisted of two separate water/gas reservoirs and cell end plates from which an 

MEA (8 cm2) can be placed into the cell for electrochemical characterisation. 

 

The acrylic cell halves start off by having a piston each inserted.  The meshes are placed 

on top of the piston with the sinter on top of that.  The MEA is then sandwiched between 

the two sinters.  The two half cells are then joined with screws and bolts (1 Nm force) to 

make the fully formed electrolysis cell ready for testing. 
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The cell is then connected to the 20 bar nitrogen supply to force the pistons towards one 

another and create a high pressure contact between the MEA, sinters and meshes.  The 

water lines can be connected in the bottom and top of each cell half as shown in Figure 

3.29.  The electrical wires from the direct current power supply can then be connected to 

and the cell is fully assembled. 

 

Figure 3.28: Single Cell PEM Electrolysis Test Rig 

Reservoirs 
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Figure 3.29: PEM Test Rig Schematic 

 

The cell contained titanium meshes and sinter for both the anode and cathode.  Once the 

cell was assembled the contact between the MEA, sinter and mesh was maintained by 

pistons subjected to 20 bar pressure of nitrogen gas (Figure 3.30). 

 

 

Figure 3.30: PEM Electrolysis Test Cell 

MEA 

Water In 

20 bar N2 

H2/Water Out 

 

End Plates 

Water In 

 

20 bar N2 

 

O2/Water Out 



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 130 - 

 

3.2.2.1.  Membranes 

Nafion®117 – Supplied by ITM Power (Figure 3.31) 

Perfluorosulfonic acid (PFSA) Nafion® membranes were supplied by ITM Power and 

are Nafion®117.  The membranes are circular with a diameter of 50 mm (8 cm2 active 

area).  The catalysts on the membrane consisted of for the cathode, 3 mg/cm2 platinum 

black and for the anode, 3 mg/cm2 of a commercially sensitive ruthenium/iridium mix.  

 

The CCMs are delivered in a dry state.  They are activated ex-situ in Type I deionised 

water for 24 hours at 60oC to humidify them fully.   

 

Figure 3.31: Nafion®117 based MEA (Cathode Face Up) 

The standard electrolysis polarisation for the MEAs supplied is shown in Figure 3.32. 
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Figure 3.32: Supplier Standard Polarisation for MEAs supplied with literature data provided from [71] 

 

This polarisation data supplied with the MEAs was compared with polarisations provided 

in literature [71]. It shows the standard polarisation is worse than the best polarisations in 

literature with a lower voltage which equivalent to more efficient electrolysis process. 

This is the result of the low catalyst loadings (affordable) on the MEA, which limits the 

efficiency of the electrolysis process. 

 

Fumea® EF-10 – BWT FuMA-Tech GmbH (Figure 3.33) 

Hydrocarbon (Fumea® EF-10) membranes were supplied by BWT FuMA-Tech GmbH.  

The membranes are circular (32 mm diameter) with an external gasket extending the 

overall dimensions to 50 mm in a square geometry.   The catalysts consist of 0.5 mg/cm2 

platinum cathode & 2 mg/cm2 iridium anode.  The method of catalysts coating the 

membranes is proprietary of the supplier.   
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The CCM is delivered in a dry state.  For optimum performance and minimal resistance, 

the CCM must be activated in-situ in the cell.  The manufacturer states that the activation 

period takes 16-48 hours of net operation time according to the temperature and working 

current density of the cell.   

 

Figure 3.33: Fumea® EF-10 based MEA (Cathode Face Up) 

The CCMs were activated with an applied potential across the cell of 2.0V at ambient 

temperature for a period of 24 hours.  After 24 hours of operation the current density 

remains constant and therefore the CCM is now activated. 
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Figure 3.34: Supplier Standard Polarisation for MEAs supplied with literature data provided from [71] 

 

The standard electrolysis polarisation for the MEAs supplied is shown in Figure 3.34. 

This polarisation data supplied with the MEAs was compared with polarisations provided 

in literature [71]. It shows the MEA performance is vastly inferior to others tested in 

literature. This is the result of the low catalyst loadings (affordable) on the MEA, which 

limits the efficiency of the electrolysis process. 

 

3.3.2.2.  Current Collectors 

The current collectors were supplied by ITM Power plc and are platinum coated titanium 

sinter (Figure 3.35 (a)).  The purpose of the current collector is to manage the flow of 

water to the electrocatalyst layer on the CCM, and the flow of evolved gases (hydrogen 

from the cathode catalyst layer and oxygen from the anode electrocatalyst layer) away 
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from the CCM to the gas outlets [24, 160, 161].  They are also there to maintain a 

distributed flow of electrical current through the electrolysis cell [28, 99]. 

 

Along with the sinter, platinum coated backing meshes were also provided with the cell 

(Figure 3.35 (b)).  This aids the current distribution through the cell and the dispersion of 

bubbles from the sinter surface, thus creating a reduction in bubble overpotential. 

    

Figure 3.35: Platinum coated Titanium (a) Sinter and (b) Mesh 

 

3.2.3.  Ancillary Equipment 

Peristaltic Pump 

The flowrate of deionised water from the reservoirs to the electrolysis cell and back to 

the reservoir was controlled with a peristaltic pump (Cole-Parmer Masterflex L/S). 
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DC Power Supply 

The potential was controlled and the subsequent current measured using a direct current 

power supply (Thurlby Thandar Instruments QPX1200SP model). 

 

Millipore Rios-DI Pure Water Supply 

One of the most important parameters for a PEM Electrolyser is the water supply.  The 

water needs to be very pure de-ionised water.  The water supply system selected was a 

Millipore RiOs-DI 3 Water Purification System.  This produces Type 2 ASTM Water 

(10MΩ), which provides the substantially low conductivity of the water required. 

 

Water Acidity & Conductivity Testing 

Measurements were taken of the water conductivity and pH systematically to monitor the 

quality and purity of the de-ionised water.  A Hanna Instruments Checker pH Tester (HI 

98103) and a Hanna Instruments Pure Water Tester (HI 98308) were used to ensure the 

water in Electrolyser J was > pH 4 and the ion content in the water (conductivity) was 

keeping to the ASTM Type II Water.  Monitoring these parameters will ensure the water 

entering the electrolyser is not damaging the membranes of the electrolyser which can be 

susceptible to long term failure with poor water quality. 
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4. Characterisation & 

Analysis of Industrial 

Electrolysers  

 

 

 

 

 

 

This research has been published in 4th European PEFC and H2 Forum Conference 

Proceedings, 2013, Chapter 10, Section A12, p17-27. 
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This chapter investigates the performance and efficiency of Electrolysers A - E through 

polarisation characterisation, gas productivity and engine performance when integrated 

with ICEs. 

 

The companies that manufacture Electrolysers A – E state that when these are integrated 

into an ICE reductions in exhaust emissions of up to 80% and improvements in fuel 

economy of up to 50% are achievable [162], which is unfathomable. These values quoted 

do not take into account external influences on engine behaviour (driver behaviour, 

engine load variation), which could contribute to an increase in fuel economy. 

Subsequently, these electrolysers are tested on a static engine, which removes these 

variables so the change in engine performance is the result of the HHO addition only.   

 

Each of the electrolysers tested herein are connected to a 12V power supply (from the 

engine alternator in real world application). To verify claims of engine efficiency increase 

and exhaust emission reduction, testing with take place at 12V also. This 12V applied to 

the unipolar alkaline electrolysers will result in high degradation and energy loss, but the 

external suppliers believe is necessary to produce sufficient yields of HHO gas. This 

chapter will analyse these claims.  

 

This chapter will characterise these commercial electrolysers and then test them on a static 

engine to quantify any reduction in fuel consumption and exhaust emissions. 
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4.1.  Electrochemical Characterisation 

All four electrolysers underwent electrochemical analysis to characterise current flow, 

gas productivity, and system efficiencies.  All alkaline electrolyser experiments were 

completed using 0.1M KOH solution. 

 

4.1.1.  Polarisation Analysis 

The electrochemical characterisation analysis for each electrolyser was completed and 

subsequent current densities are presented in Figure 4.1. 

 

Figure 4.1: Polarisation for all Electrolysers at 25oC, 0.1V scan rate, 0.1M KOH, 1 atm pressure 
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Figure 4.1 shows both modes of the Electrolyser D demonstrates the highest polarisation 

as a function of electrode surface area.  This is a result of the very small electrode surface 

area and the use of carbon electrodes, which the other electrolysers do not have.  

Electrolyser E exhibits good electrochemical performance, achieving 0.02 A/cm2 at 12V 

operating potential, when compared to Electrolysers A-C.  Electrolysers A, B & C exhibit 

poor current densities with increasing potentials which is the result of low current flows 

(high overpotentials) and large surface areas. 

 

4.1.2.  Gas Productivity 

As well as analysing the electrochemical performance, the gas evolution rate must be 

analysed as it is vital performance parameter of an electrolyser.  Figure 4.2 shows the gas 

productivity rates as a function of cell voltage. 

 

Figure 4.2: Gas Productivity Curves for all Electrolysers at 25oC, 0.1V scan rate, 0.1M KOH, 1 atm pressure 
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Figure 4.2 shows Electrolyser E has the highest gas production rate as a function of cell 

potential when compared to the other electrolysers.  This is expected to be the result of 

either reduced bubble overpotential from increased electrolyte flow through the cell 

removing bubbles from the electrode surfaces or improved build quality of the 

electrolyser.  Both Electrolysers B & C have low gas productivity rates as a function of 

surface area and is likely to be the result of increased electrode spacing (ohmic 

overpotential), since it’s the largest electrolyser of all. This cannot be confirmed though. 

 

Electrolyser A only begins to exhibit gas production at higher potentials and is reflected 

by the low electrochemical performance, as shown in Figure 4.1, up to 8 V.  Electrolyser 

D exhibits very low quantities of gas evolution, which is a direct result of the very small 

electrode surface area, in spite of its very impressive electrochemical performance as 

shown in Figure 4.1.   

 

4.1.3.  Faradays 1st Law of Electrolysis 

The electrochemical performance and the gas productivity of the electrolysers can be 

compared and analysed as a function of each other, which is Faraday’s First Law of 

Electrolysis.  Figure 4.3 shows the data for each electrolyser tested. 
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Figure 4.3: Faraday Plots for all Electrolysers 

 

Figure 4.3 shows Electrolyser A demonstrates the highest gas output per unit surface area 

as a function of current flow in the electrolysers.  This is a desirable trend in electrolysers, 

as it shows a high gas yield from a low electrical energy input.  Electrolysers B, C & E 

exhibit slightly lower rates of gas evolution for current flow, and Electrolyser D is the 

lowest rate of them all (<0.001 ml/s/cm2) so has poor gas productivity per unit surface 

area as a function of electrical current flow per unit electrode surface area. 

 

4.1.4.  Electrical Efficiency 

The electrical efficiency of the electrolysers was calculated using Eq.  3.1.  Figure 4.4 

shows these efficiencies for each electrolyser as function of cell potential. 
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Figure 4.4: Electrical Efficiency Curves for Electrolysers at 25oC, 0.1V scan rate, 0.1M KOH, 1 atm pressure 

 

Figure 4.4 shows Electrolyser B exhibits the best efficiency values for an electrolyser 

when compared to the others.  It exhibits textbook electrical electrolyser efficiency 

behaviour as a function of voltage [22, 27, 45, 65, 163], along with Electrolyser E 

electrolyser which has slightly lower efficiency values.  Electrolyser D shows poor 

efficiency (< 10%) in both modes, which is the result of low gas evolution rates per unit 

surface area from the electrolyser at 12 V potential.   

 

Electrolyser A exhibits uncharacteristic behaviour with an increasing electrical efficiency 

as a function of cell voltage, achieving an efficiency of approx.  65% at 12 V.  The same 

can be said for Electrolyser C, except this only increases as high as approx.  20% 

efficiency, but goes against the expectant trend of a decreasing electrical efficiency with 
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increasing cell potentials. Literature has shown efficiencies of commercial electrolysers 

as 50-80% [25, 27, 45-47, 49, 61, 64, 163, 164], which only Electrolysers B & E achieve. 

The performance of the remaining commercial electrolysers is not up to this standard. 

 

4.2.  Engine Testing 

Electrolysers C & E underwent testing on an ICE to quantify the improvements in 

performance and reduction in exhaust emissions as contractually obliged by the project 

sponsors.  Testing these two electrolysers under identical operating conditions (12 V fixed 

potential, 0.1M KOH electrolyte solution) will show the difference in effect on the ICE 

performance as a result of its introduction the combustion system. All research 

experiments on the ICE were operated for 30 minutes before measurements or until a 

constant engine power and emissions reached a constant value for 15 minutes. 

 

4.2.1.  Electrolyser C 

Electrolyser C was connected to the ICE as shown in Figure 3.11.  The operating 

parameters for this engine performance analysis are shown in Table 4.1. 

Table 4.1: Engine Operating Parameters for Electrolyser C Engine Testing 

Engine speed (rpm) Imep (bar) Air Intake flow rate (l/min) 

1500 3 517 

 

4.2.1.1.  Instability without the water trap 

Water (moisture) is undesirable in an ICE as it will decrease the engine temperature and 

subsequently reduce the engine efficiency and exhaust emissions in steady state 
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conditions. As shown in Figure 4.5 it is believed small quantities of water is carried into 

the ICE from the electrolysis product gas, which has an adverse effect on the oxidation 

of NO to NO2. The adverse effect of water in ICEs has been well documented in literature 

and the essential nature to remove has been recorded [142, 143, 145, 146, 165, 166]. 

 

Figure 4.5: Engine H2O Instability without Water Trap 

 

The electrolyser was activated 180 seconds into the experiment.  Within a minute of this, 

there is a visible increase in H2O content in the exhaust emissions, which further increases 

to 11.5 mass% in the exhaust. As a result a water trap was added between the electrolyser 

gas outlet and the air intake pipe.  This water trap as shown in Figure 4.6 collects moisture 

from any gases that pass through it and the results from the identical operation of the 

engine as shown in Figure 4.7.   
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Figure 4.6: Image of commercially supplied water trap made up of Silica spheres 

 

The electrolyser was again activated at 3 minutes into the experiment and the NO2 

emissions increase as expected from the oxidation of NO and NOx to NO2 (due to added 

oxygen from HHO in the engine).   

 

This experiment with the water trap integrated keeps the H2O content fixed at 4 mass% 

through 25 minutes of operation, thus proving the water trap is eliminating water vapour 

from reaching the engine from the electrolyser.  The water trap after the experiment is 

shown in Figure 4.8. 
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Figure 4.7: Engine H2O Levels with Water Trap 

 

 

Figure 4.8: Water Trap after Engine Integration with Red Line marking Water Level 
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4.2.1.2.  Combustion Properties 

Figure 4.9 shows the variance in cylinder pressure and rate of heat release with the 

electrolyser in off and on mode.  This is an important characteristic of an ICE because it 

will show any variation in liquid fuel replacement (fuel input reductions), with the only 

variable in the system being the quantity of HHO injected into the ICE. 

 

Figure 4.9: Liquid Fuel Replacement for Electrolyser C at 3 bar pressure and 1500 rpm  

 

Figure 4.9 shows no significant difference on pressure and rate of heat release in the ICE 

through varying the crankshaft angle degree (CAD).  This shows the introduction of an 

electrolyser to the system is having no effect on the combustion properties of the ICE. 
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4.2.1.3.  Brake thermal efficiency 

Brake thermal efficiency is defined as brake power of a heat engine as a function of the 

thermal input from the fuel.  It is used to evaluate how well an engine converts the heat 

from a fuel to mechanical energy.  Figure 4.10 shows the variance in brake thermal 

efficiency with the electrolyser in off and on mode. 

 

Figure 4.10: Brake Thermal Efficiency for Electrolyser C 

 

Figure 4.10 shows Electrolyser C is having negligible effect on the brake thermal 

efficiency, which is mimics the data shows for liquid fuel replacement in the ICE.   

 

4.2.1.4.  CO2 and H2O emissions 

The exhaust emissions of CO2 and H2O were analysed for the standard engine setup and 

with the electrolyser integration.  The percentage composition for both of these emissions 

is shown in Figure 4.11. The results show no significant effect on H2O and CO2 emissions 

as a result of adding the electrolyser into the system.   
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Figure 4.11: CO2 & H2O Engine Emissions for Electrolyser C 

 

4.2.1.5.  NO, NO2 and NOx emissions 

The nitrous oxide exhaust emissions are a suitable indicator of the presence of hydrogen 

in the combustion process.  When hydrogen is present, it is expected to show a drop in 

NO emissions and an increase in NO2 emissions due to the high flammablility of the 

combustion process which results in a more complete combustion of NO to NO2.  Figure 

4.12 shows the emissions changes for the electrolyser in off and on mode. 

 

Figure 4.12 shows a small decrease in NO emissions when the electrolyser is operational, 

which shows a small quantity of hydrogen is present in the combustion chamber of the 

ICE.  This is further evident by the small increase NO2 emissions when the electrolyser 

is on.  The overall NOx exhaust emissions have no change with the two variations in NO 

and NO2 emissions cancelling each other out. 
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Figure 4.12: NO, NO2 & NOx Engine Emissions for Electrolyser C 

 

4.2.1.5.  THC and CO emissions 

The total unburnt hydrocarbon (THC) and CO emissions were measured and with 

hydrogen present in the combustion chamber, the higher combustability of the fuel/air 

mixture should result in less unburnt hydrocarbon.  Figure 4.13 shows the variance in 

these exhaust emissions for the two experimental set ups. 

 

Figure 4.13: THC & CO Engine Emissions for Electrolyser C 
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Figure 4.13 shows no significant effect on THC between the two sets of data and the CO 

slightly decreases (around 2%) with the implementation of an electrolyser to an engine. 

 

4.2.1.6.  Conclusions 

The engine testing results from integration of Electrolyser C shows negligable of effect 

on the engine performance and exhaust emissions.  This is a result of low HHO flowrate 

from the electrolyser as shown in Figure 4.2 and is much lower to those found in literature 

[137, 138, 162].  Electrolyser E will now be tested on an ICE, because as shown in Section 

4.1.2 it has a higher gas ouput than Electrolyser C. 

 

4.2.2.  Electrolyser E 

Electrolyser E was connected to the ICE as shown in Figure 3.11.  The operating 

parameters for this engine performance analysis are shown in Table 4.2.  Two engine 

speeds and two Imeps were tested for this electrolyser.  All experiments were carried out 

at 12 V fixed potential across the electrolyser and used 0.1M KOH electrolyte solution. 

Table 4.2: Engine Operating Parameters for Electrolyser E Testing 

Engine speed (rpm) Imep (bar) Intake flow rate (l/min) 

1200 3 402 

1200 5 402 

1500 3 517 

1500 5 517 

 

4.2.2.1.  Combustion 

Figure 4.14 shows the variance in cylinder pressure and rate of heat release with the 

electrolyser in off and on mode for (a) 1200 rpm and (b) 1500 rpm.  Experiments have 
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been completed on Electrolyser E with a 4 V potential supply (equivalent to 0.06 LPM 

HHO flowrate) and a 12 V potential supply (equivalent to 0.2 LPM HHO flowrate). 

 

Figure 4.14 shows a maximum 2.25% saving for Electrolyser E using a 12V voltage 

supply compared to 0.5% fuel saving when the electrolyser is operated at 4V supply.  This 

shows the introduction of an electrolyser to the system is having a small effect on the 

combustion properties of the ICE. 

 

Figure 4.14: Liquid Fuel Replacement Analysis for Electrolyser E 

 

4.2.2.2.  Brake thermal efficiency 

Figure 4.15 shows the variance in brake thermal efficiency with the electrolyser in off 

and on mode for both engine speeds and Imep. It shows between 0.6-1% increase for 

break thermal efficiency when the electrolyser is activated for both engine speeds and 
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Imep.  At low load, there is no improvement in thermal efficiency and at high load there 

is a slight improvement (less than 1%). 

 

 

Figure 4.15: Brake Thermal Efficiency for Electrolyser E 

 

4.2.2.3.  CO2 and H2O emissions 

The exhaust emissions of CO2 and H2O were analysed for the standard engine setup and 

with the electrolyser integration.  The percentage composition for both of these emissions 

is shown in Figure 4.17 for all engine settings. 

 

Figure 4.16 shows CO2 slightly decreases (≤ 2% for all engine conditions).  This is much 

smaller quantity of CO2 exhaust emission savings as currently reported in industry.  

Figure 4.17 shows no significant effect on H2O for all engine speeds and Imep.   
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Figure 4.16: CO2 Engine Emissions for Electrolyser E 

 

 

Figure 4.17: H2O Engine Emissions for Electrolyser E 
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4.2.2.4.  NO, NO2 and NOx emissions 

Figure 4.18 shows the NO, NO2 and NOx emissions changes for the electrolyser in off 

and on mode for all varying engine operating parameters. 

 

 

 

Figure 4.18: NO, NO2 & NOx Engine Emissions for Electrolyser E 
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Figure 4.18 shows that NO decreases and NO2 increases for all engine conditions.  These 

changes however have no net effect on NOx emissions (no penalty on NOx emissions).  

These reductions in NO and increase in NO2 emissions are greater than for Electrolyser 

C, which is to be expected from the higher input of HHO gas in the air intake pipe from 

Electrolyser E. 

 

4.2.2.5.  THC and CO emissions 

Figure 4.19 shows the variance in THC and CO exhaust emissions for the electrolyser off 

and on modes as well as the four different engine settings. 

 

Figure 4.19: THC & CO Engine Emissions for Electrolyser E 

 

The results in Figure 4.19 show no significant effect on THC content in the exhaust 

emissions from the introduction of Electrolyser E to the system.  The CO emissions 
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slightly decrease (up to 5% for all engine conditions) with the introduction of HHO gas 

into the air intake pipe.  This is the result of a higher oxygen content in the combustion 

chamber (from the HHO) oxidising CO to CO2. 

 

4.2.2.6.  Engine Testing Conclusions 

The results in Section 4.2.2.3 & 4.2.2.5 show very small reductions in CO and CO2 

emissions for Electrolyser E, but the reductions are greater than that seen with 

Electrolyser C (Section 4.2.1.3 & 4.2.1.5) in the same experimental procedure.  The 

greater decrease in NO emissions in Electrolyser E than Electrolyser C is further evidence 

that more hydrogen is present during the combustion process and therefore larger HHO 

productivity rates are needed to reduce these gaseous exhaust emissions further. 

 

4.3.  Chapter Conclusions 

The electrochemical performance of 4 different commercial electrolysers was analysed.  

The analysis of these electrolysers has found low efficiencies and subsequent low gas 

production rates from every electrolyser tested.  These are summarised in Table 4.3 for a 

12V input which is consistant with a engine alternator. 

Table 4.3: Summary of Electrolyser Performance 

Electrolyser Current Density 

@ 12V (A/cm2) 

Gas Flowrate @ 

12V (ml/s) 

Efficiency @ 12V 

(%) 

A 0.006 1.2 68 

B 0.002 4.0 50 

C 0.0035 3.9 25 

D 0.028 0 10 

E 0.02 5.2 48 
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Electrolysers C & E were tested on a static ICE and showed no change in efficiency and 

exhaust emissions.  This is the result of the low HHO gas flowrates generated by the 

commercial electrolysers characterised.  A higher flowrate of HHO gas into the ICE is 

required to observe a change in engine characteristics. 

 

Electrolyser E was redesigned, built and characterised electrochemically before analysis 

on an ICE to quantify any improvement in engine efficiency and exhaust emissions. 
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The aim of this project (continuing on from Chapter 4) was to improve the reductions in 

exhaust emissions. This can be achieved, as shown in literature, through the application 

of a higher flowrate of HHO gas. The end user  has Electrolyser E to be utilised on a static 

engine on a wood-chipper, used 40 hours a week, which is supplied with a 12 V potential 

from the engine alternator.   

 

As shown in literature, flowrates of > 20 LPM of hydrogen into diesel combustion engines 

have utilised to achieve reductions in NOx emissions by approximately 25%. The fixed 

size and dimensions of the electrolyser designed herein, as well as the fixed 12 V potential 

input from the engine alternator limit the design parameters for this. 

 

The expensive cost and limited timeframe for engine testing allowed only testing of the 

Electrolysers C and E in the first instance, and then finally for Electrolyser I. In ideal 

circumstances (with time and cost not a factor) engine testing would have been conducted 

on bottled hydrogen and oxygen gas at varying flowrates to determine the peak 

requirement to maximise reduction in engine emissions. 

 

This chapter redesigns Electrolyser E to an identical footprint and minimal economic cost, 

whilst increasing the production rate of HHO gas at 12V operation.  Firstly areas of 

potential electrochemical improvement in the electrolyser need to be identified, which 

includes the material, geometry and spacing of the electrodes.  The purpose of this study 

is to identify sources of resistance in the electrolyser which can be reduced/eradicated, 
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and consequently increase the electrochemical performance.  The re-engineering of this 

electrolyser should result in increased reaction kinetics and high HHO gas yield for 

injection into an ICE. 

 

Once an improvement in electrochemical performance has been found in a single cell, an 

electrolyser stack will be constructed with the number of cells maximised to fit in the 

desired footprint and at reasonable economic cost.  This prototype electrolyser will then 

be characterised electrochemically and be tested on an ICE under identical conditions as 

shown in Section 4.2. 

 

The results of the engine testing will be directly compared to those shown in Section 4.2.2 

with varying flowrates and with synthetic/baseline (bottled) hydrogen gas.  This will 

identify the necessity of oxygen (which already exists in the air intake flow) in the HHO 

gas, and whether direct addition of hydrogen into the air intake pipe is more worthwhile 

in terms of reducing the exhaust emissions from the ICE. 

 

5.1.  Materials Development 

5.1.1.  Electrodes 

The activation overpotential is a source of resistance in electrolysis from the need for the 

energy input requirement to be greater than the activation energy on the electrode surface.  

The lower this activation energy the more efficient the process is.  As a result research on 
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varying materials was conducted to see which metals have the lowest activation 

overpotential.  There are two methods for characterising this activation overpotential. 

 

The first method uses linear sweep voltammetry (LSV).   This involves the use of three 

electrodes (working, counter and reference electrode).   The working electrode is the 

material of choice for which we are trying to calculate the activation overpotential.   The 

counter electrode, consisting of platinum produces the opposite charge to the working 

electrode, thus enabling a current to flow between them.   The reference electrode is a 

stable electrode consisting of a material that has a well-known electrode potential.  This 

is shown in Figure 5.1. 

 

Figure 5.1: Equipment Setup for Linear Sweep Voltammetry (LSV)  
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The experiments would be carried out in 25 cm3 0.1M KOH solution, and for a fixed 

current density (since overpotential varies with current density), the activation 

overpotential can be characterised for that electrode material. 

 

A second method for characterising activation overpotential is to calculate the 

decomposition potential for each electrode material in 0.1M KOH solution.   This is much 

more economical and practical for the project and an example is shown in Figure 5.2. 

 

Figure 5.2: Schematic for measurement of decomposition potential from polarisation curve for various 

electrode materials 

 

The value where the gradient intersects the x axis can be subtracted from the OCV 

(1.23V) to give the resultant overpotential.   The separation distance between the two 

electrodes will be kept constant at 10 mm, therefore keeping the value of ohmic 
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overpotential constant throughout all the experiments.   A reference point of platinum 

wire will be used.   The change in overpotential values for different electrode materials 

will then only be as a result of the activation overpotential.   

 

A list of materials for experimentation is in Table 5.1, along with its corresponding real-

world trading material cost (based on data from Metalexchange.com as of 1st February 

2015). The metals with a cost < £100/kg (except platinum) will undergo further 

characterisation due to their excellent conductive properties as well as evidence of use in 

electrolytic processes in literature.   

Table 5.1: Raw Material Costs 

Material Cost 

(Metal 

Exchange) 

Electrical Conductivity 

from Literature 

(x106 Siemens/m) [167] 

Purchase 

Options 

References 

Platinum £29049/kg 9.3 Biologic [63, 72, 73] 

Palladium £18231/kg 9.5 Biologic [73, 168] 

Gold £28304/kg 44.2 Biologic [45, 169] 

Iron £2.81/kg 10.1 Biologic, 

Mini-Science 

[51, 73] 

Silver £390/kg 62.1 Biologic [51, 72] 

Nickel £9.85/kg 14.3 Biologic, 

Mini-Science 

[27, 49] 

Graphite £1.64/kg 5.9 Biologic, 

Mini-Science 

[170-172] 

Lead £1.24/kg 4.7 Mini-Science [51] 

SS316 £1.82/kg 1.32 Mini-Science [49, 72] 

Magnesium £3.01/kg 10 Mini-Science [45, 51] 

Titanium £12.48/kg 2.4 Min-Science [173] 

Copper £3.61/kg 58.5 Mini-Science [45, 51, 63, 

72, 73, 168, 

169] 

Aluminium £1.31/kg 36.9 Mini-Science [49, 72] 

Tin £11.98/kg 8.7 ScienceComp

any 

[45, 72] 

Zinc £1.41/kg 16.6 Mini-Science   [51] 
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This was completed using a simple experimental procedure as shown in Figure 5.3.  The 

electrodes of choice were placed 10 mm apart for each experiment, thus keeping the 

ohmic resistance constant.  The concentration was kept constant at 0.1M KOH for each 

experiment which kept the concentration overpotential constant. 

 

Figure 5.3: Experimental setup for various electrodes to be tested in 0.1M KOH solution at standard 

temperature and pressure  

 

5.1.2.  Electrode Material Cost-Benefit Analysis 

From the objectives of this work it was paramount to use an electrode material which had 

excellent electrochemical properties and had a good resistance to corrosion from 

persistent contact with an alkaline environment.  As well as this, the material of choice 

had to be cost effective; therefore an evaluation of cost versus electrochemical 

performance was carried out. 
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The electrochemical performance was then plotted as a function of material cost 

(decomposition potential / raw material cost (in £/kg) as shown in Table 5.1) for each 

electrode material.  This is shown in Figure 5.4. 

 

From calculating the decomposition potential for each electrode from their respective 

current-voltage curve and then plotting this as a function of the material cost, we can see 

that relatively cheap metals such as zinc, iron and brass exhibit good cost effective 

electrochemical behaviour.   

 

Figure 5.4: Decomposition Potential as a function of raw material cost for various electrode materials 

 

This method of analysis represents a crude evaluation of electrode materials which will 

be operating at high efficiencies (low potentials), but in reality these materials will be 
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operated at a 12V potential supplied from the engine alternator.  Each electrode material 

had a potential of 12V applied across it and the current per unit area (current density) was 

recorded.  This is shown in Figure 5.5. 

 

This shows that silver exhibits a high current flow at 12V.  Silver, however is extremely 

expensive (£717.83/kg) and is not economically viable for this electrolyser design.  The 

next three materials which exhibit good current flow are iron (mild steel), nickel and 

stainless steel (SS316).  As well as having high current flow when 12 V is supplied to the 

electrodes, all three materials have economical unit costs which make them suitable 

towards meeting the project objectives. 

 

Figure 5.5: Current Density for Various Materials at 12V Operation 
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These three potential electrode materials have been selected for further testing due to their 

electrochemical properties as just mentioned and will undergo degradation testing to 

characterise their resistance to a caustic alkaline environment. 

 

5.1.3.  Electrolytes 

There are many available electrolytes available for water electrolysis.   They are in either 

liquid or solid form.   Since the objective is to produce an alkaline electrolyser, a liquid 

electrolyte will be used. Acids and salts can be also be used as electrolytes, but the 

disadvantage of using acidic electrolytes is the rapid degradation and corrosion of the 

electrodes, which is undesired.    

 

The use of salts, such as sodium chloride, can produce chlorine gas on the anode as a 

result of a more favourable (lower) half-cell potential.  For this electrolyser, we want to 

produce hydrogen and oxygen respectively, therefore choices of electrolyte will mainly 

be focused on basic solutions.    

 

In Table 5.2 is a list of potential electrolytes, their cost and the anodic product from the 

electrolysis reaction. 
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Table 5.2: Electrolyte Costs (SA – Sigma Aldrich 1st February 2015) 

Electrolyte Electrolyte Cost Anode Product References 

NaOH £26.30/kg (SA) Oxygen [27, 45] 

KOH £19.80/kg (SA) Oxygen [27, 45] 

KNO3 £1730/kg (SA) Oxygen N/A 

Urea £47.80/kg (SA) N2 & CO2 [174] 

LiOH £212/kg (SA) Oxygen [175] 

RbOH £1000/kg (SA) Oxygen N/A 

CsOH £1250/kg (SA) Oxygen N/A 

Ca(OH)2 £6380/kg (SA) Oxygen N/A 

Sr(OH)2 £628/kg (SA) Oxygen N/A 

Ba(OH)2 £69/kg (SA) Oxygen N/A 

NH3 £1511/kg (SA) Nitrogen [174] 

Na2CO3 £3960/kg (SA) O2 & CO2 N/A 

Mg(OH)2 £37.20/kg (SA) Oxygen N/A 

 

From the list of electrolytes above, the cost per kg of the electrolyte does not make it 

economically feasible for the majority of electrolytes to be used.  For the purpose of this 

study only two electrolytes will be tested.  They are sodium hydroxide (NaOH) and 

potassium hydroxide (KOH) which are the most commonly used in industry. 

 

Polarisation on a 25cm3 solution of 0.1M NaOH and 0.1M KOH was conducted with the 

use of platinum electrodes (surface area 5.93cm2) and a fixed electrode separation 

distance of 10mm.   
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Figure 5.6: Polarisation at 25oC, 0.1V scan rate, 0.1M KOH, 1 atm pressure 

 

Figure 5.6 shows that a KOH solution of the same concentration of NaOH solution has a 

higher polarisation and shall consequently be used throughout the rest of the 

experimentation since the only variance in the experimental procedure was the 

electrolyte. 

 

5.1.4.  Comparison of Experimental Results to Literature 

The electrodes and electrolytes tested herein will be ranked in performance and compared 

to that in the literature. Table 5.3 shows the ranking of electrodes/electrolytes based on 

that in literature and based on the current density values measured from experimentation. 
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Table 5.3: Conductivity Comparison of Experimental and Literature Data 

Electrodes & 

Electrolytes 

Literature 

Conductivity 

Ranking (minus 

unused metals) 

Experimental 

Conductivity 

Ranking 

Platinum 10th  N/A 

Palladium 9th N/A 

Gold 3rd N/A 

Iron 7th (5th) 2nd 

Silver 1st (1st) 1st 

Nickel 6th (4th) 3rd 

Graphite 12th (8th) 7th 

Lead 13th (9th) 5th 

SS316 15th (11th) 4th 

Magnesium 8th (6th) 11th 

Titanium 14th (10th) 10th 

Copper 2nd (2nd) 6th 

Aluminium 4th  N/A 

Tin 11th (7th) 8th 

Zinc 5th (3rd) 9th 
   

NaOH 2nd 2nd 

KOH 1st 1st 

 

There is a difference in ranking of conductivity for electrodes tested and that present in 

literature. The experimental rankings are close to the values in literature in the majority 

of cases, however SS316 performed much better experimentally than has been suggested, 

and, copper and zinc performed worse in the experimentation than provided in literature.  

 

5.1.5.  Electrolyser Stack Development (Electrolysers E & F)  

From the predefined goals after the analysis of Electrolyser E, the objective was to design 

a new state of the art electrolyser of the same footprint (size) of the existing electrolyser 

(2000 cm3).  Since the electrical input to the electrolyser would need to remain constant 

(12 V), it was clear that the surface area of electrodes would need to increase.   
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From redesigning the electrolyser and utilising the full volume of the electrolyser it has 

been possible to increase the electrode surface area from 600 cm2 to 5000 cm2.  This has 

been achieved by removal of ‘neutral’ plates which were found in Electrolyser E, which 

served no purpose in the electrolyser and were a source of unnecessary resistance. 

 

Two prototypes (Electrolysers F & G) were designed and built for subsequent testing and 

analysis.  Details of both are found in Section 3.2.1.5. 

 

5.2.  Experimental Results & Analysis 

5.2.1.  Stack Electrochemical Characterisation 

5.2.1.1 Polarisation Analysis 

This was conducted for SS316 and nickel plates, since iron is known to have high 

degradation characteristics [176].  Each electrode material was analysed as new 

(unpolished) and with pre-cleaned surfaces (polished).  The polishing technique is 

explained in Section 5.2.2.1.  The results were then compared plotted with the results 

from Electrolyser E from Section 4.1.  Figure 5.7 shows that for the same electrolyser 

size (an important parameter of the project objectives) there has been an increase in 

current flow for the same potential.  When 4 V is applied to the stack, there has been a 

1500% increase from the commercial electrolyser to the improved design presented here. 
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This does not take into account the surface area of the electrodes, where in this case this 

analysis is carried out for Electrolyser F (24 x SS316 plates) and Electrolyser G (20 x 

nickel plates).  This drastic increase in current flow has been attributed to the increase in 

the surface area of electrode (600  5000 cm2).   

 

Figure 5.7: Polarisation as a function of Current at 25oC, 0.1V scan rate, 0.1M KOH, 1 atm pressure 

 

To analyse this further, we can electrochemically characterize the electrolyser stacks as a 

function of the electrode surface area (current density).  This is shown in Figure 5.8. 

 

Figure 5.8 shows a smaller enhancement in terms of current density at a fixed potential.  

At a 4 V stack voltage, there is a 267% increase in performance from the commercial 
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electrolyser to the new design for both electrode materials.  This enhancement observed 

can be attributed to the decrease in resistance in the electrolyser system.   

 

Figure 5.8: Polarisation as a function of Current Density at 25oC, 0.1V scan rate, 0.1M KOH, 1 atm pressure 

 

It is believed the reduction in resistance is a result of the smaller separation distance 

between the electrodes (reducing the ohmic resistance), and the removal of ‘neutral’ 

plates in the electrolyser, but increased the resistance in the commercial electrolyser. 

 

5.2.1.2.  Gas Productivity 

Figure 5.9 shows the comparison in gas productivity from Electrolyser E to the new 

design.  This increase at 4 V from ≈ 0.5 ml s-1 to 5 ml s-1 is a 10-fold increase.  It also 

shows the polished electrode surfaces exhibit a higher gas production rate than the 
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unpolished electrode surfaces.  This is a result of decreased surface tension (smoother 

electrode surfaces from a polishing process) which results in the removal of the oxide 

layer of the electrode, resulting in the increase in the electrode surface area for bubble 

nucleation.   

 

Figure 5.9: Electrolyser HHO Production Rate at 25oC, 0.1V scan rate, 0.1M KOH, 1 atm pressure 

 

The increase in gas productivity from electrode surface polishing can also be attributed 

to oxide layer removal.  These increase the resistance in the electrolyser, since it limits 

the number of active reaction sites available for bubble nucleation and slows kinetics 

depending on the thickness of the non-conductive layer. 
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5.2.1.3.  Faraday’s 1st Law of Electrolysis 

Current flow per unit surface area is directly proportional to the rate of gas evolution.  

This is Faraday’s first law of electrolysis.  Figure 5.10 shows this relationship as recorded 

from the improved electrolysers, for both electrode materials and surface characteristics.  

The graph shows the directly proportional relationship between current density and gas 

productivity.  To accomplish a higher gas productivity for effective catalytic behaviour 

in the combustion engine, a large current density is required to achieve these flow rates.  

This can be achieved by increasing the number of charge carriers, which conversely 

increases the rate of electrode degradation, by increasing the potential applied to the 

electrolyser or increasing the electrode surface area further. 

 

Figure 5.10: Current Density vs Gas Productivity per surface area at 25oC, 0.1M & 0.2M KOH, 1 atm pressure 
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The rate of HHO gas evolution can be quantified as a result of current flow through the 

electrolyser.  Figure 5.10 shows a production rate of 2.66 ml/sHHO/A for 0.1M KOH  

and 1.41 ml/sHHO/A for 0.2M KOH. 

 

5.2.1.4.  Performance Projections 

Equipment limitations meant that the operating current was restricted to 50 A.  As a result, 

the operating potential has only been able to achieve 4 V.  An experimental measurement 

from the application of a 12V to the electrolyser during engine testing, produced a 200 A 

current (green x on Figure 5.11) demonstrating a linear relationship between voltage and 

current and gas productivity, the data can be extrapolated up to 12 V and a projection can 

be made on the resultant current and HHO gas production.  This is shown in Figure 5.11. 

 

Figure 5.11: Performance Projections at 25oC, 0.1V scan rate, 0.1M KOH, 1 atm pressure 
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Assuming the electrolyser obeys Faraday’s 1st law of electrolysis the HHO gas flow rate 

from a 12 V applied potential is approximately 3.5-4 LPM. 

 

5.2.2.  Degradation Studies 

The lifetime of the electrolyser needs to be maintained, so it achieves the specified 2500 

hour operation.  To analyse this rates of degradation were studied in in-situ (in electrolysis 

mode), and ex-situ (material degradation in the absence of electrolysis).  One process uses 

the application of metal polish to the electrodes to increase electrode kinetics, and the 

current degradation analysis of the electrolyser over a fixed period of time. 

 

5.2.2.1.  In-situ Analysis 

This research uses the application of metal polish to the electrodes to remove/decrease 

the thickness of the non-conducting layer. Stack polarisation and current degradation at 

fixed potential are measured over time. 

 

Stack Lifetime 

To analyse the performance of the electrolyser lifetime, the current variation can be 

measured at a fixed potential over time.  Figure 5.12 shows the current degradation in the 

electrolyser for SS316 and nickel for a period of 7 hours. 

 



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 179 - 

 

This shows that there is a decrease in current flow over the seven hours of operation, seen 

by the negative gradient for the two electrode materials.  The current decreases by 11% 

for the SS316 and 3% for the nickel over the seven hours. 

 

Using the gradient of the data points, we could approximate the time it takes until zero 

current occurs assuming that rate of degradation remains constant.  For SS316 this is 

approximately 53 hours and for nickel this is 242 hours.  A fivefold lifetime extension 

can be found for using nickel electrodes instead of SS316. 

 

Figure 5.12: Current Degradation Analysis for SS316 and Nickel, at 25oC, 4V, 0.1M KOH, 1 atm pressure with 

fixed electrode surface area of 100cm2 for both SS316 and nickel. 
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Electrode Surface Cleaning 

To increase the lifetime of the electrolyser the surfaces of the electrodes were cleaned 

after use.  The hand polishing of a solution (ingredients: C8-10 

alkane/cycloalkane/aromatic hydrocarbons, quartz, kaolin, C12-20 saturated and 

unsaturated monobasic fatty acids, aqua and ammonium hydroxide) for 15 minutes to the 

plates should remove the oxide content on the plates, thus reducing the resistance in the 

electrolyser unit.  The cleaner surface is expected to give rise to a higher rate of bubble 

evolution as a result of a higher utilisation of electrode surface area.  Analysis of the effect 

that polishing the plates has on nickel is presented in Figure 5.13.   

 

It shows for two concentrations that polishing the plates increases the flow of current 

between the plates, and subsequently increases the rate of HHO gas production for 

varying potentials Figure 5.14.   

 

From these figures we can detect the enhancement in polarisation as a result of electrode 

surface cleaning.  This is subsequently mimicked by the increase in HHO gas evolution 

rate as a result of the increase in electrolyte concentration and resultant increase in current.   
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Figure 5.13: Polarisation of Polished and Unpolished Nickel Electrodes at 25oC, 0.1V scan rate, 1 atm pressure 

 

 

Figure 5.14: Gas Evolution Rate of Nickel Electrodes at 25oC, 0.1V scan rate, 1 atm pressure 
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The effect of surface polishing can be further characterised by mimicking how the 

electrolyser would be operated in the outside world.  This involves conducting a current 

degradation evaluation over an eight hour period, then deactivating the electrolyser and 

leaving the KOH solution in the electrolyser overnight (16 hours and consistent with real 

world operation), and then turning the turning the power on for another three hours 

(mimicking usage the next morning).  After this duration, the electrodes are polished and 

the current degradation at a fixed potential continued for a further three hours.  This was 

completed for two fixed potentials and is shown in Figure 5.15. 

 

Figure 5.15: Electrochemical Degradation of Nickel Plates at 4 V & 3.5 V, 25oC, 0.1M KOH, 1 atm pressure 
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Figure 5.15 shows the long term electrolytic behaviour of the electrolyser incorporating 

electrode cleaning and systematic ‘no power’ periods to simulate real world utilisation of 

the electrolyser in industry. 

 

In the first phase of the experiment, the data shows a steady increase in current over time 

during start up.  At the end of the first phase the electrolyser is shutdown and left in 

solution for 3 hours.  In the second phase, a decrease in current is observed upon start up 

due to the now cold electrolyte temperature.  This current flow increases at a slower rate 

than previously stated due to the presence of the recently increased oxide content on the 

surface, and the increase in electrolyte temperature and is carried out for three hours. 

 

At the end of the second phase of experimentation, the electrolyser is left for 15 hours in 

shutdown mode, and electrolyte present in the electrolyser, the expected increase in the 

quantity of the oxide content on the surface should result in a decrease in current flow.  

This is shown in the third part of Figure 5.15.  The starting current is lower than seen in 

the first phase of the experiment, but once again rises over time due to the decreasing 

resistance as a result of temperature increase in the electrolyte. 

 

Figure 5.15 shows the electrochemical behaviour of an electrolyser in application which 

includes an eight hour working day, on/off cycles and an inactive period in the time 

outside the normal working day.   Reducing the evolution of the oxide content on the 

electrode is imperative to the lifetime and electrochemical performance of the alkaline 

electrolyser. 
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5.2.2.2.  Ex-situ Analysis 

As well as analysing the degradation rates of the electrodes whilst electrolysis is in 

progress, there are significant periods of time (at least two thirds of a day) when 

electrolysis will not be happening.  During this period of time, the electrodes are in contact 

with caustic electrolyte, causing corrosion to them.  This degradation is characterised and 

methods of corrosion reduction are discussed in order to increase electrode lifetime. 

 

The first analysis involved selecting three electrode materials from the initial 

electrochemical material testing, which had a beneficial electrochemical performance and 

sufficient cost analysis for this electrolyser to be economically viable.  The three metals 

that were selected were mild steel, SS316 and nickel. 

 

Each of these metals was subject to three different concentrations of potassium hydroxide 

(KOH), two different temperatures, and each of these for four varying experimental 

durations.  These are shown in Table 5.4. 

Table 5.4: Degradation Analysis Experimental Parameters 

 

 

Each sample for each experiment would undergo scanning electron microscopy (SEM) to 

observe any defects/damage to the metallic surface of the electrode.  This would be 
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expected to show that an increase in electrolyte concentration, electrolyte temperature, 

and exposure duration, increases the rate of electrode degradation. 

 

Scanning Electron Microscopy (SEM) 

For each metallic sample a timeline of SEM images can be displayed for increasing 

durations, concentrations and operating temperatures.  This will show the rate of electrode 

surface degradation. 

 

Figure 5.16 shows the surface degradation for mild steel.  The control sample (start of 

experiment), shows a very uniform smooth surface, whereas after 10 days subjected to 

1M KOH at 25oC, iron leaching is evident on the surface of the sample which is localised.  

After 20 days this leaching is evident with a much larger surface coverage in the same 

concentration and temperature.  This leaching after 20 days of being subject to 

concentrated KOH solution makes mild steel unsuitable as a material of choice for an 

alkaline electrolyser. 
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Initial 

 

10 Days 
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20 Days 

Figure 5.16: SEM Images of Iron Electrode Surface 

 

Figure 5.17 shows the surface degradation for stainless steel.  The control sample (start 

of experiment), shows a uniform smooth surface with the grain boundaries clearly 

defined.  After 10 days of being subjected to 1M KOH at 25oC, minor iron leaching is 

evident on the surface of the sample.   

 

After 20 days this leaching is visible on the surface in the same concentration and 

temperature.  This is not as severe as seen on the surface of the mild steel, but this leaching 

after 20 days of being subject to concentrated KOH solution makes stainless steel 

unsuitable as a material of choice for an alkaline electrolyser. 
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Initial 

 

10 Days 
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20 Days 

Figure 5.17: SEM Images of SS316 Electrode Surface 

 

Figure 5.18 shows the surface degradation for nickel.  The control sample (start of 

experiment), shows a uniform smooth surface.  After 10 days of being subjected to 1 M 

KOH at 25oC, no surface corrosion is evident on the surface of the sample.   

 

After 20 days leaching is still not visible on the surface in the same concentration and 

temperature, unlike on the mild steel and stainless steel. This resilience to 

corrosion/leaching after 20 days of being subject to concentrated KOH solution makes 

nickel a suitable material of choice for an alkaline electrolyser, when compared to the 

degradation properties of mild and stainless steel. 
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10 Days 
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20 Days 

Figure 5.18: SEM Images of Nickel Electrode Surface 

 

5.2.3.  Engine Testing 

The engine testing procedure is in Section 3.1.11.  The analysis shows data from the 

Original Unit (Electrolyser E) at 0.1 & 0.3 LPM HHO output (Section 4.2.2.) and 

compares this from the engine analysis of Improved Unit (Electrolyser G) at                         

0.1 & 0.3 LPM HHO output.  The analysis also compares the HHO from the Original and 

Improved Electrolyser against bottled (simulated) hydrogen from a gas cylinder (Material 

Number 290631-L-C).  The gas inlet characteristics are shown in Table 5.5.  In the 

extended study from Chapter 4, experiments were performed at a constant engine speed 

of 1500rpm and the engine load of 3bar indicated mean effective pressure (Imep), 

representing 40% maximum load. 
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Table 5.5: Engine Experimental Fuel Additives 

 HHO Flowrate 

(LPM) 

H2 Flowrate 

(LPM) 

H2 Intake 

Concentration 

(ppm) 

Electrolyser Off 0 0 0 

Electrolyser E 

0.06 LPM H2 

0.1 0.066 120 

Electrolyser E  

0.2 LPM H2 

0.3 0.2 400 

Electrolyser G 

0.4 LPM H2 

0.6 0.4 800 

H2 simulated    

0.4 LPM H2 

- 0.4 800 

H2 simulated       

1 LPM H2 

- 1 2000 

Electrolyser G    

5 LPM H2 

7 5 10000 

H2 simulated       

5 LPM H2 

- 5 10000 

 

5.2.3.1.  Liquid Fuel Replacement 

The reductions in the mass of the injected liquid diesel fuel when HHO was inducted are 

shown in Figure 5.19.  This liquid fuel replacement is a direct effect of the hydrogen 

contained in the HHO flow as it has been previously reported in [137] and [138] for spark 

ignition engines and in [162] for compression ignition engines.  Liquid fuel replacement 

was less than 1% when the power to run the electrolyser was 10% of the engine output 

power.  When the energy input to the electrolyser was increased up to reach a similar 

power to the engine output power (i.e.  100% fuel penalty), the HHO flow from the 

electrolyser also increased, but still the liquid fuel replacement was limited to 2-3%.  At 

medium engine load the liquid fuel replacement was slightly higher than that at high load 

as a result of the lower engine fuel consumption, while the HHO flow was kept constant.  

These reductions were calculated without including the fuel/power needed to produce the 

hydrogen in the electrolyser.  In any case the liquid fuel replacement was small to justify 
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the significantly high electrical power used in the electrolyser.  Further improvements in 

the electrolyser are needed in order to obtain acceptable power consumption and HHO 

production (i.e.  improved efficiency).   

 

Figure 5.19: Liquid Fuel Replacement 

 

The results of Electrolyser E are also shown in Figure 5.19.  Liquid fuel replacements 

were higher than Electrolyser E.  In the case of the improved unit the liquid fuel 

replacement of around 3% was obtained when the electricity to run the electrolyser was 

around 10% of the engine output power.  When the electrolyser input power was increased 

up to the limits of the unit (i.e.  similar to the engine output power) an 8% liquid fuel 

replacement was obtained.  As in the case of the original unit, the power needed to 

calculate liquid fuel replacement was not considered.   
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5.2.3.2.  Brake Thermal Efficiency 

This liquid fuel replacement resulted in shorter liquid fuel injection duration and hence 

shorter combustion duration.  In addition, the high flame speed, low ignition energy and 

wide flammability limits of hydrogen favoured mixture oxidation, reduced combustion 

duration, [177-180] and allowed more combustible mixture to be converted to useful 

work.  The shorter combustion duration also resulted in reduced time available for heat 

transfer to the cylinder wall and thus may reduce heat loss which in turn would increase 

the thermal efficiency (Figure 5.20) [181].  The increase in brake thermal efficiency is 

limited to 1%, even though the energy required to produce HHO in the electrolyser was 

not considered in the calculations.  The overall brake thermal efficiency will consequently 

be lower.   

 

Figure 5.20: Brake Thermal Efficiency 
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Brake thermal efficiencies using HHO and synthetic hydrogen were compared for the 

same intake hydrogen concentrations.  It is suggested that this is a result of the oxygen 

content within the HHO, even though it has to be noted that the oxygen flow within the 

HHO was much lower than the oxygen flow in the air intake.  In the case of synthetic 

hydrogen, the increase in brake thermal efficiency due to hydrogen was partly 

compensated by a reduction in the volumetric efficiency as a result of the intake air 

replacement by hydrogen.  In the case of HHO, the intake air replacement was higher 

compared to synthetic hydrogen (for the same intake hydrogen concentration) but the 

monoatomic HHO increased the combustibility of the fuel-air mixture.   

 

Therefore, it is believed that in HHO a double benefit was obtained (hydrogen and oxygen 

benefits) in comparison with synthetic hydrogen.  It should be noted that the oxygen 

effects within the HHO are limited as the HHO flow was very small in comparison with 

the air intake. 

 

5.2.3.3.  CO2 & H2O Emissions 

Another advantage of using hydrogen is the decrease in CO2 engine out emissions which 

is the most abundant greenhouse gas.  In the case of Electrolyser G, as hydrogen 

concentration was increased, CO2 engine out emissions were further reduced as a result 

of the reduction in carbon through liquid fuel replacement by hydrogen (Figure 5.21).  

Therefore, the reductions in CO2 emissions were higher when more liquid fuel was 

replaced.   
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A maximum CO2 reduction of around 8% was reached corresponding to the maximum 

HHO flow from the electrolyser unit.  As in the case of liquid fuel replacement, the CO2 

benefits are limited by the HHO flow which can be efficiently produced in the device.  It 

has to be noted that the CO2 produced to operate the electrolyser was not included in these 

calculations.  It is clear that the overall CO2 emissions will be higher. On the other hand 

H2O emissions increased as hydrogen was replacing the liquid fuel.   

 

 

Figure 5.21: CO2 & H2O Emissions Analysis 

 

5.2.3.4.  NO, NO2 & NOx Emissions 

In terms of NO and NO2 distribution, it can be seen from Figure 5.22 that in overall, the 

addition of HHO and hydrogen into the engine significantly reduced the NO while 

increased the NO2 engine emissions compared to diesel fuel.  Despite increasing NO2, the 

large drop in NO emissions contributed to the reduced NOx emissions.  As shown by 

[182], small addition of H2 reduced the NOx due to its combustion characteristics [165, 
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166].  However, it is also widely reported that high hydrogen concentrations or the 

application of hydrogen at high load can increase NOx emissions.   

 

This has been studied in the case of 5 bar imep with Electrolyser E and when 1%              

(i.e. 5 LPM) synthetic hydrogen intake concentration was used at 3 bar imep with the 

Electrolyser G.  Therefore, hydrogen addition should be limited in terms of NOx 

emissions.  NOx emissions were similar for HHO and synthetic hydrogen for the same 

hydrogen concentration, even though the oxygen content of HHO.  In this case the effect 

of the oxygen within the HHO was negligible in comparison with the oxygen of the 

intake. 

 

Figure 5.22: NO, NO2 & NOx Emissions Analysis 

 

The increase of NO2 with hydrogen addition was via the oxidation of NO with HHO 

[183].  Therefore, the introduction of hydrogen present in the reformate increased the 

HHO level, as shown experimentally in [184] and numerically in [185] which in turn 

resulted in the increase in the NO2 emissions.  As NO2 has a higher soot oxidation 
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potential at low temperature (150ºC-400ºC) than oxygen [186], the increase in the engine 

out NO2/NOx ratio with HHO could be considered an additional potential benefit of the 

HHO addition in the case of diesel particulate filter passive regeneration [187]. 

 

5.2.3.5.  THC & CO Emissions 

The CO and THC emissions are shown in Figure 5.23.  The addition of HHO decreased 

CO emissions because the hydrogen replaced some of the liquid fuel in the combustion 

process.  The CO reductions for Electrolyser G are higher than for Electrolyser E as a 

result of the higher HHO flow. 

 

Figure 5.23: THC & CO Emissions Analysis 

 

The CO reductions in the case of HHO were higher than in the case of synthetic hydrogen 

when the same hydrogen intake concentration is compared.  In contrast to hydrogen 
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addition HHO did not reduce the oxygen intake concentration which could lead to 

incomplete combustion when a high fraction of hydrogen is applied especially at high 

load [145].  Therefore, it is suggested that the emission benefits of HHO not only were 

due to the beneficial combustion properties of hydrogen but also to the oxygen effect 

resulting in lower CO engine out emissions.  In any case the CO reductions were limited 

(around 20-25%) due to HHO flow which was produced by the electrolyser unit.  In terms 

of THC, there was not a clear effect of HHO and synthetic hydrogen.  It is suggested that 

the quantity of HHO and hydrogen additions in all the conditions was not enough to 

significantly reduce THC emissions. 

 

5.2.3.6.  Engine Testing Conclusions 

The addition of HHO gas produced by an electrolyser in compression ignition engines 

has been shown to partly replace non-renewable conventional diesel fuel and has slightly 

improved engine brake thermal efficiency.  In addition, potential emission benefits in 

terms of carbonaceous gaseous emissions (especially CO and CO2) and NOx have also 

been obtained.  These benefits were higher than those obtained using synthetic hydrogen 

due to the monoatomic structure of HHO i.e. there was not any atomic bonds needed to 

be broken (in H2 and O2) before combusting into water.  

 

The hydrogen and oxygen never go into a diatomic state. Consequently HHO gas had 

more energy as these bonds never formed. This unstable state of H2O vapour, more energy 

is achieved compared to hydrogen combusting with oxygen. The oxygen atoms evolving 
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with hydrogen results in a lower auto-ignition temperature than that of diatomic 

hydrogen. 

 

In any case the benefits were restricted by the level of the HHO flow which can be 

efficiently produced by the unit in terms of the needed energy to operate the electrolyser.  

It is suggested that higher HHO flows will result in further increases in liquid fuel 

replacement and brake thermal efficiency and reductions in CO and THC emissions as a 

result of the hydrogen combustion benefits and the incorporation of oxygen in the HHO.  

On the other hand, these higher HHO concentrations could result in an increase in NOx 

emissions and a considerably higher fuel/energy penalty to produce HHO in the 

electrolyser. 

 

5.3.  Conclusions 

This chapter explained the development and characterisation of an alkaline electrolyser 

for on demand hydrogen generation.  Its objective was to produce at least 4 LPM of HHO 

gas, using cost effective materials, whilst not increasing the footprint of the device. 

 

Three metals (mild steel, stainless steel and nickel) were analysed using electrochemical 

and electron microscopy techniques to determine the best electrochemical performance 

and least surface degradation impacts.  Iron exhibited poor resistance to degradation, with 

iron leaching evident from the microscopy analysis.  Stainless steel exhibited moderate 

resistance to a caustic environment with minor iron leaching found.  It and nickel both 
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exhibited good electrochemical performance, with the latter exhibiting no visual surface 

degradation when subjected to an alkaline environment. 

 

An alkaline electrolyser was built using nickel plates (Electrolyser G), which was 

characterised up to a potential of 4V for bench testing, and projections were made for 

electrochemical performance at 12V, which was expectant to be between 200-250A but 

in fact was closer to 400A; a one hundred-fold increase from the initial unit in Chapter 3. 

 

This improved performance in engine mode was achieved with notable results on the 

effectiveness of HHO in internal combustion engines.  The objective of producing an 

alkaline electrolyser which produces a higher HHO yield at similar economic cost to the 

original Electrolyser E was achieved and this subsequently decreased CO and CO2 

exhaust emissions. 

 

Electrochemical performance testing over extended periods of time indicated a non-

conductive layer on the surface of the electrodes, and the degradation in current flow over 

time was quantified.  A method for removal of the oxide content and subsequent 

characterisation of the electrodes with and without the oxide highlighted the increased 

electrochemical performance when the oxide was removed. 
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It is also worth considering the high voltage applied to the nickel electrodes (12V) may 

change the phase and composition of the nickel. Pourbaix diagrams for nickel, which 

maps out the phases of an aqueous electrochemical system, show that for an applied 

voltage above 2 V in an alkaline system (pH >10) exists nickel oxide hydroxide (NiOOH). 

 

 Future research is needed in this field to determine what effect this phase has on the 

electrolyser performance and suggests, given no financial constraints, a bipolar alkaline 

electrolyser with a lower operating voltage per electrolysis cell would reduce degradation.  

 

The high current flow in the electrolyser, when 12 V is applied, will drastically increase 

the rate of degradation of the electrodes in the electrolyser even though nickel has a 

reasonable resistance to corrosion from an alkaline environment [46, 176].  As a result of 

this the mechanisms for the degradation of nickel electrodes in an alkaline solution will 

be researched and methods to lower the rate of electrode degradation investigated.  
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Chapter 6 

6. ............. Reduced 

Degradation of Nickel 

Electrodes using an 

Oxygen-Getter in Alkaline 

Electrolysers 

 

This research has been published in Materials for Renewable and Sustainable Energy, 

Volume 27 (3), 2014.  DOI: 10.1007/s40243-014-0027-4   
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This chapter focuses on reducing the high degradation rates of electrodes existent in 

alkaline electrolysers.  As shown in Chapter 5, the real-world application of Electrolyser 

G has an operating power of 2.5kW (given 12V power supply). Reduction of this 

subsequent electrode degradation will increase the lifetime and cost-effectiveness of 

operation and is of paramount research priority in industry [23, 188-192]. 

 

The mechanisms and characteristics of electrode degradation is a vastly researched area, 

especially in the field of alkaline electrolysis [45, 61, 62, 189-194].  These involve the 

reduction of electrolyte concentration and the use of electrocatalysts on the electrode 

surface to maintain high levels of electrochemical performance [62, 194-197]. 

 

One potential method of degradation reduction which has not until this moment been 

utilised in the field of electrolysis is the use of an ‘oxygen getter’.  An example of an 

oxygen-getter is titanium or an alloy of it in the form of either sponge or chips.  The 

purpose of the oxygen-getter is to provide sacrificial protection (having a higher affinity 

to oxygen) to the electrode material from the alkaline solution during electrolysis [198]. 

 

The utilisation of an oxygen-getter already exists in the manufacture of turbine blades.  

These turbine blades, made of a nickel based super alloy, have a ceramic core to create 

the air flow channels for cooling when in operation and require removal after casting.  

The ceramic core is dissolved from the inside of the turbine blade by high temperature 

(approx. 200oC), pressure (400 bar) and concentration (> 10 weight%) potassium 
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hydroxide (KOH) solution [198].  This caustic KOH solution would ordinarily degrade 

the nickel based superalloy, thus compromising its integrity. The prevention of damage 

to the turbine blades has been achieved by the introduction of titanium to the system, 

which stops the cast metal from undergoing corrosion from the caustic KOH solution.   

 

This principle will be applied for testing in an alkaline electrolyser to draw oxide 

formation away from nickel electrodes to the sacrificial titanium, which has no 

involvement in the electrolysis reaction. Alkaline electrolysers similarly operate in high 

temperatures (40-90oC), pressures (< 30 bar) and concentrations (20-30 weight%), 

making a feasibility study appropriate [71]. 

 

Figure 6.1: Schematic of Electronegativity Principle for an Oxygen Getter 

 

Titanium exhibits a strong affinity to oxygen compared to nickel as it has a much lower 

electronegativity χ, hence it attracts electrons more freely.  Electronegativity is the 

measure of an atom to attract a bonding pair of electrons.  Titanium will protect the 
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electrodes from oxide layer formation in the alkaline solution (Figure 6.1).  This enables 

the concentration and temperature of the aqueous solution to be increased, which in turn 

will increase the rate of electrolysis, without corroding the electrode itself [198]. 

 

6.1.  Experimental Results & Analysis 

This section is divided into two parts for determine the performance variation between 

Electrolysers H & I.  The first section compares the differences in electrochemical 

performance, and the second compares the surface characteristics between the two 

electrolysers. 

 

6.1.1.  Electrochemical Characterisation (Polarisation) 

The voltage was varied and the current flow recorded to characterise the electrochemical 

performance of the electrolysers. This analysis was completed for various concentrations 

(0.2M-1M) of KOH solution.  Figure 6.2 and Figure 6.3 shows the polarisation and gas 

evolution rates for both Electrolysers H & I which are identical, thus proving that the two 

electrolysers are identical in electrochemical performance. 
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Figure 6.2: Electrolyser H Polarisation at 25oC, 0.1V scan rate, 1 atm pressure 

 

 

Figure 6.3: Electrolyser H Gas Productivity at 25oC, 0.1V scan rate, 1 atm pressure 
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Using the same methodology for 0.2M-1.0M KOH solution, the gas production rates were 

measured to quantify the enhancement in the polarisation of the electrolyte solution and 

the corresponding production of hydrogen and oxygen (HHO) gas. 

 

6.1.2.  Electrochemical Degradation 

The aim was to test both cells for a total of 10 days (two weeks), to mimic real world 

utilisation of an electrolyser (8 hours x 5 days a week).  Figure 6.4 shows the performance 

for both electrolysers for the 10 day duration at constant voltage (4 V).  Note that the 

electrolyte solution (0.1M KOH solution) was not changed throughout testing of each 

electrolyser, and were left in solution and in standby mode for two days between Days 5 

& 6 (weekend). 

 

Figure 6.4: Two Week Current Degradation at 25oC, 4V, 0.1M KOH, 1 atm pressure 
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As discussed in Section 3.1.4 the potential step change is linked to the capacitative 

charging of the electrode and then the subsequent change in current over time is 

determined by the Cottrell equation. In Figure 6.4, the general trend shows that the current 

reduces over time and is an expected result due to the degradation of the nickel electrodes.   

 

Throughout the testing, Electrolyser I, the modified cell, shows degradation to a lesser 

extent than Electrolyser H and the current is consistently higher, although taking into 

account potential errors in analysis give rise to the possibility that the performance is no 

superior.  Although no definitive (due to possible error), it gives hope to the hypothesis 

that the titanium oxygen getter concept could be used in this application to help protect 

the nickel electrodes due to possessing a higher affinity for oxygen from degradation. 

 

The biggest difference that the titanium chips in Electrolyser I, have appeared to make is 

between Days 5 and 6 where the electrodes were left in the KOH solution for 2 days to 

simulate the operators two rest days they are entitled to a week to mimic industrial use.  

After the two days of no use, the Electrolyser I current was 0.3A higher than Electrolyser 

H.  This further supports the hypothesis showing that titanium has protected the nickel 

electrodes even when there is no current flow. The equations of the electrochemical 

degradations are: 

Electrolyser H : y = -0.0322x +21.927 

Electrolyser I : y = -0.03x + 22.037 
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This shows they originate within 0.11A of each other, illustrating the identical nature of 

both electrolysers initially.  Electrolyser H exhibits a current degradation rate of              

32.2 mA/hour, whilst Electrolyser I shows a 30 mA/hour degradation rate. This represents 

a 7.3% reduction in current degradation rate. This does not take into account any error 

analysis data which if measured at the extremes could disprove the hypothesis stated.    

 

Although in reality electrolysers operate for much longer than two weeks, the variation 

in electrochemical performance between Electrolysers H & I is evident after two weeks 

operation.  Surface characterisation and analysis will aid discussion on the accuracy of 

the hypothesis and will support a better understand of the electrochemical data.  

 

6.1.4.  Scanning Electron Microscopy (SEM) 

Analysis of the nickel electrode surface is important to quantify any oxide evolution on 

the surface.  The nickel and titanium from the electrolysers will undergo image 

spectroscopy and surface composition spectroscopy to analyse and quantify any reduction 

in oxide formation as a result of introducing titanium to the electrolysis environment. 

 

The metallic samples were split into 5 categories: Raw Nickel; Nickel from Electrolyser 

H; Nickel from Electrolyser I; Raw Titanium; Titanium from Electrolyser I.  These were 

each analysed by the before mentioned techniques. 
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6.1.4.1.  Raw Nickel 

SEM images of the raw nickel were taken to provide a control sample against which the 

used electrode surfaces could be compared to see how the action of the electrolysis 

reaction affects the nickel surface.  It is clear to see that from Figure 6.5, the raw nickel 

is clean and smooth, bar a few minor surface defects. 

 

Figure 6.5: Surface image (raw nickel) 

 

6.1.4.2.  Electrolyser H Nickel 

On Figure 6.6 there are a series of white deposits on the surface, each approximately        

50 μm in length (to be identified by the surface chemistry characterisation).  These large 

deposits are also surrounded by many smaller deposits of < 5 μm.  The face also no longer 

shows the thin vertical pin-striping seen on Figure 6.6 (a&b).  Instead, clear horizontal 

lines are seen, as well as some contouring of the surface.   
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(a) 

 

(b) 

Figure 6.6: Electrolyser H (a&b) nickel surface image 
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6.1.4.3.  Electrolyser I Nickel 

On the flat face of the nickel from Electrolyser I (Figure 6.7 (a&b)), there are once again 

many solid crystalline deposits on the surface, although the main deposits are smaller but 

more numerous; the largest of those being 25 μm.  The horizontal lines on this sample are 

more defined than on Electrolyser H. 

 

(a) 
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(b) 

Figure 6.7: Electrolyser I (a&b) nickel surface image 

 

6.1.4.4.  Raw Titanium 

Similarly to the nickel, a raw titanium sample was imaged to have a control sample 

against which the used titanium could be compared.  The face of the raw titanium      

(Figure 6.8) shows some scarring and a few minor crystal structures on the surface. 
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Figure 6.8: Surface image (raw titanium) 

 

6.1.4.5.  Electrolyser I Titanium 

The face view (Figure 6.9) is noticeably more scarred than the raw titanium and shows 

deeper cervices in the surface. Any variation in surface composition will be identified by 

EDX. 
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Figure 6.9: Surface image (Electrolyser I titanium) 

 

6.1.5.  Energy-Dispersive X-Ray Spectroscopy (EDX) 

 

6.1.5.1.  Nickel (1, 2 & 3) 

For all nickel samples, analysis carried out at x500 magnification focused on the planar 

surface of each sample.  Damage to the surface from the electrolysis process may have 

allowed other metals to be present on the surface and any deposits found (predominantly 

after use) would be investigated to see if this was a large increased build-up of oxide 

layer.  The atomic% for nickel, titanium and oxygen for the nickel samples is shown in 

Table 6.1. 

 



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 217 - 

 

Table 6.1: EDX Elemental Composition of Nickel Samples 

Sample 
Atomic% 

Nickel Titanium Oxygen Carbon Silicon Nitrogen 

Raw Nickel 0.40 0.00 18.2 50.08 25.03 6.29 

Electrolyser H 0.21 0.00 31.1 42.27 21.14 5.28 

Electrolyser I 0.27 0.01 25.9 45.40 22.71 5.71 

 

When comparing the flat surface spectra data for the control sample, Electrolysers H & I, 

the main differences are the levels of nickel and oxygen.  A 12.9 atomic% increase in 

oxygen content appears on Electrolyser H nickel compared to the unused sample, which 

coincides with 0.19 atomic% decrease in nickel content between the two samples. 

 

There is a 5.2 atomic% decrease in oxygen content on the nickel surface of Electrolyser 

I compared to Electrolyser H showing that the presence of the titanium has reduced the 

quantity of oxide layer formation, helping to reduce the rate of nickel electrode 

degradation.  This is further evident with the increase of 0.06 atomic% nickel content on 

the Electrolyser I nickel relative to Electrolyser H nickel. 

 

6.1.5.2.  Titanium (4 & 5) 

The EDX data for raw and used titanium is shown in Table 6.2.   

Table 6.2: EDX Elemental Composition of Titanium Samples 

Sample 
Atomic% 

Nickel Titanium Oxygen Carbon Silicon Nitrogen 

Raw Titanium 0.00 0.22 27.5 44.48 22.23 5.57 

Electrolyser I 0.01 0.19 32.2 41.80 20.70 5.10 
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Electrolyser I titanium shows an increase in oxygen content when compared to the control 

sample (4.7 atomic%).  This shows that an oxygen layer is present, which is consistent 

with titanium having a higher affinity for oxygen than nickel.  Analysis on the used 

titanium content of the samples shows a 0.3 atomic% decrease, consistent with the 

increased oxygen content on the titanium Electrolyser I sample. 

 

6.1.6.  X-Ray Photoelectron Spectroscopy (XPS) 

To support the EDX evidence provided, the samples (1-5) also underwent XPS analysis 

for further verification of the surface composition.  Both nickel (1-3) and titanium (4-5) 

samples were analysed for nickel, titanium and oxygen content on the samples.  The peaks 

were then integrated to determine the surface elemental composition in atomic%.  This is 

shown in Table 6.3. 

Table 6.3: XPS Elemental Composition of Nickel and Titanium Samples 

Sample 
Atomic% 

Nickel Titanium Oxygen Carbon Silicon Nitrogen 

Raw Nickel 0.36 0.01 15.0 52.12 26.02 6.49 

Electrolyser H 

Nickel 
0.19 0.02 29.5 43.25 21.63 5.41 

Electrolyser I 

Nickel 
0.26 0.02 24.5 46.32 23.17 5.73 

Raw Titanium 0.01 0.12 25.0 46.01 23.07 5.79 

Electrolyser I 

Titanium 
0.02 0.09 29.5 43.32 21.66 5.41 

 

Table 6.3 shows a 94% increase in oxygen concentration on the nickel surface from raw 

nickel to nickel in Electrolyser H and then a 17% decrease in when compared to nickel 
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from Electrolyser I.  This is consistent with the analysis shown in the SEM and EDX 

analysis. 

 

The metallic composition shows a 43% decrease in nickel content on the Electrolyser H 

nickel compared to the raw nickel samples and a 25% increase in nickel content of 

Electrolyser I compared to Electrolyser H nickel.  The titanium content on the titanium 

samples decreases by 23% on the Electrolyser I titanium when compared to the raw 

titanium sample; consistent with the hypothesis of this paper. 

 

6.2.  Conclusions 

The research in this chapter has analysed the effect of introducing titanium to the alkaline 

electrolysis system as a sacrificial metal.  The electrochemical performance of 

Electrolyser H decreased at a faster rate than Electrolyser I, specifically after a 2 day 

stationary period mimicking real world operation.  The only difference between the cells 

is the titanium; therefore this is the determining factor in the improved electrochemical 

performance of Electrolyser I when compared with Electrolyser H. 

 

The conclusions drawn from the electrochemical analysis is backed up with the findings 

from the surface analysis.  This also points towards a decrease in oxide layer formation 

on the nickel electrode in Electrolyser I when compared to Electrolyser H.  The elemental 

composition of the surface of nickel and titanium from Electrolysers H & I has shown an 

increased presence of oxygen on the electrode surface. It is concluded that the presence 



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 220 - 

 

of titanium as a sacrificial metal in an alkaline electrolysis system with nickel electrodes, 

increases the electrical efficiency and decreases the rate of electrode degradation over two 

weeks of operation.   

 

Future work in this field will investigate the use of metals which are more oxyphilic than 

titanium as they may yield better long term electrolyser performance. Research should 

also look at different titanium geometries, for example sponges, plates and spheres, and 

the effect that varying titanium loadings has on the thickness of oxide layer formation on 

nickel electrodes in an alkaline electrolyser. The potential utilisation of a sacrificial metal 

to the electrolysis system could reduce the degradation, but will not remove it.  Alkaline 

electrolysis is the most established water electrolysis technology, but is not ideal for 

future wide scale commercialisation of electrolysers due to the degradation implications 

as discussed here and the usage of harmful caustic solutions.   

 

PEM electrolysis technology represents a more attractive alternative to alkaline 

electrolysis with ultrapure water input, modular design and ability to handle variable 

loads (critical when linked to renewable energy sources).  This technology is currently 

more expensive than the previous (alkaline), but the cost is reducing with decreasing 

PGM electrocatalyst being used.  Another disadvantage to PEM electrolysis is the 

requirement for ultrapure water, which is another energy consuming process.  There is 

very little research on the effect of water quality on PEM electrolysis and this investigated 

in the next chapter. 
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Chapter 7 

7. ..... PEM Electrolysis – 

Feed Water Analysis & 

Optimisation 

 

  



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 222 - 

 

PEM Electrolysis is a commercial technology that uses a solid polymer electrolyte (SPE) 

and ultrapure water (instead of alkaline solution) for splitting water.  The use of this SPE 

makes the electrolyser adaptable for managing varying loads (from renewable resources), 

and the use of water instead of a caustic solution makes it more end-user friendly [61, 

199-202].  PEM technology can meet short term goals/expectations from an electrolyser. 

 

The disadvantages of PEM electrolysis are the high cost of the platinum group metal 

(PGM) which are used as catalysts to split water into hydrogen and oxygen [26, 61, 71, 

200].  The high cost is down to the rarity of these platinum group metals and highlights a 

major problem towards the mass commercialisation of this technology.  The cost of these 

catalysts will only increase with growing demand for them [28]. 

 

The use of the PGMs is a factor in the requirement of ultrapure water (inconvenient for 

domestic commercialisation).  The impurities in conventional tap water deactivate the 

catalysts and rapidly reduce the lifetime of the system [33, 61, 71, 99, 160, 161, 199].  

The purification of water is an additional cost process in the system, and an electrolyser 

which could operate efficiently with tap water the only input is much more appealing to 

the general public.  As a result, this could see the use on non-PGMs in the electrolysers 

and subsequently reduce the cost substantially [24, 203].   
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The work examines the performance of identical Membrane Electrode Assemblies 

(MEAs) with varying purities of water to analyse the electrochemical performance and 

the microscopic properties after experimentation. 

 

7.1.  Feed Water Properties 

For the various water qualities used, samples were taken and analysed to identify elements 

present in solution (ICP-MS), the organic carbon content (TOC) and the quantity of ions 

present in solution (conductivity).  Five samples were tested, including the four in Table 

7.1 from which the tap water therein is taken from our laboratory in Birmingham, U.K., 

and an additional tap water sample from London, U.K. was analysed.  This shows the 

variance in water composition dependant on two different geographical locations.   

Table 7.1: Basic Properties of Different Grades of Water [204] 

Water Properties ASTM (D1193-91) 

Contaminant Parameter Type I Type II Type III  Type IV 

Ions 

Resistivity at 25oC / MΩ.cm 18 10.0 4.0 0.2 

Conductivity at 25oC / 

μS.cm-1 

0.056 0.1 0.25 5.0 

Acidity pH at 25oC - - - 5.0-8.0 

Organics TOC / max ppb (μg/l) 10 50 200 No Limit 

Sodium  ppb < 1 < 5 < 10 < 50 

Chloride ppb < 1 < 5 < 10 < 50 

Colloids Total Silica / (μg/mL) < 3 < 3 < 500 No Limit 
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7.2.  MEA Characterisation & Analysis 

7.2.1.  System Optimisation 

7.2.1.1.  Piston Pressure 

The pressure exerted by the pistons forces together and compresses the MEA, titanium 

sinter and mesh.   The various polarisation curves from 1.5V to 3.5V for varying piston 

pressures is shown in Figure 7.1.   

 

Figure 7.1 shows that the polarisation of the MEA improves with increasing piston 

pressure.  This increasing pressure is reduces the contact resistance between the power 

connection, the mesh, sinter and surface of the MEA, subsequently reducing the 

resistance.  For the remaining experimental procedures the piston pressure was 

maintained at 20 bar pressure to ensure good MEA/electrode contact surface area.     

 

Figure 7.1: Polarisation for Varying Piston Pressure with Type I Water and 80 ml/min water flow, at 25oC, 

0.1V scan rate, 1 atm pressure 
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7.2.1.2.  Feed Water Flowrate 

The feed water held in the reservoirs is pumped through the electrolysis cell as show in 

Figure 3.28 and exited the electrolysis cell along with the gas evolved to the reservoir 

vessels.  The constant flow of the water to the cell keeps the MEA hydrated and enables 

the mechanical removal of bubbles from the electrode surfaces.  The water flowrate was 

varied to optimise the performance and the data shown in Figure 7.2. 

 

Figure 7.2 shows no change with in polarisation from 20 ml/min to 80 ml/min.  Fluid 

velocities below 20 ml/min exhibit decreased performance due to occupancy of bubbles 

on the MEA nucleation sites.  All future experiments from here on were supplied with a 

constant 80 ml/min of feed water to ensure sufficient flow velocity through the 

electrolysis cell to keep the MEA hydrated and operational efficiency high.   

 

Figure 7.2: Polarisation Varying Water Flow with Type I Water and 20 Bar Piston Pressure at 25oC, 0.1V scan 

rate, 1 atm pressure 
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7.2.2.  Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) 

Figure 7.3 shows the quantity of the cations present in each water sample.  The data shows 

no measurable cation content in 18 MΩ and 10 MΩ water; therefore suitable for long 

term operation in current PEM electrolysis technology.  Water with a resistance of 1 MΩ 

shows small quantities of sodium and calcium ions present, which will hinder the long 

term performance of a PEM electrolyser using this grade of water as the feedstock. 

 

The tap water samples show a significantly different cation content for tap water accessed 

in differing geographical locations.  Shown here by the significantly higher cation content 

in tap water obtained in London, U.K.  and Birmingham, U.K.   

 

Figure 7.3: ICP-MS Analysis for 5 different water qualities 
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7.2.3.  Total Organic Carbon (TOC) Analysis 

Figure 7.4 shows the non-purgeable organic carbon (NPOC) for the five different water 

samples.  The data shows a very low NPOC for 18 MΩ & 10 MΩ water making it suitable 

for use in current PEM electrolysis technology.  Increasing the conductivity of the water 

to 1 MΩ results in an increase in TOC to 6.7 mg/L, which is less desirable for use with 

current PEM technology as the presence of the organic carbon will degrade the 

performance of the electrolyser over time (build-up of carbons on the nucleation sites will 

irreversibly decrease the performance). 

 

Figure 7.4 shows the two tap water samples exhibit much higher quantities of NPOC than 

the purified water samples which is to be expected.  The high presence of organic carbons 

in the water makes it incompatible with current PEM technology, and if applied would 

reduce the performance of the electrolyser in a very short period of time. 

 

Figure 7.4: NPOC Analysis for 5 different water qualities 
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The analysis complied in this section on the quality of various water sources will be 

further investigated through the experimentation of a PEM electrolysis cell with these 

different water qualities.   

 

7.2.4.  Membrane #1 - Nafion®117 

7.2.4.1.  Polarisation 

The MEAs were characterised in various grades of water as mentioned previously.  The 

voltage across the PEM electrolysis cell was varied and the subsequent current flow 

measured and converted to current density (A cm-2).  This is shown in Figure 7.5. 

 

Figure 7.5: Nafion®117 based MEA Polarisation at 25oC, 0.1 V scan rate, 1 atm pressure, 20 bar piston 

pressure, 80ml/min water flowrate 

 

The purified water samples show similar electrochemical behaviour which expected due 

to the low ion content in the water and haven’t been subjected to prolonged exposure with 
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ions in the water.  This exposure will decrease the electrochemical performance over time, 

whereas this experiment was only a 30 minute polarisation. The polarisation with 18MΩ 

deionised water mimics that provided from the supplier and is outside of the PEM 

electrolyser performance recorded in literature, due to the low catalysts loadings [22, 31, 

71, 91, 92, 201, 205-207]. 

 

Figure 7.5 showed a decreased polarisation with tap water.  This is believed to be the 

result of cation build up subsequently blocking the nucleation sites and increasing the 

resistance in the electrolysis cell.  This will later be confirmed in the microscopy analysis. 

 

7.2.4.2.  Electrical Efficiency 

With the data collected during the polarisation, an electrical efficiency calculation for 

each potential and water quality was calculated.  This is shown in Figure 7.6. 

 

The data presented in Figure 7.6 shows a decrease in electrical efficiency as the applied 

potential across the electrolysis cell increases, i.e.  the actual hydrogen gas evolution rate 

at the cathode is producing less than the theoretical production rate of hydrogen.  

 

The efficiency across all four different grades of water are similar considering the 

variation in cation and organic carbon content, although degradation in electrolysis 

performance is not expected to be observed until after longer testing. 
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Figure 7.6: Efficiency of Nafion®117 based MEA at 25oC, 0.1 V scan rate, 1 atm pressure, 20 bar piston 

pressure, 80 ml/min water flowrate 

 

7.2.4.3.  Electrochemical Degradation 

After initial characterisation, the electrolysis cells underwent long term degradation 

where the potential applied across the cell remained constant and the current flow varied 

with time.  The purpose of this experiment is to quantify any degradation in 

electrochemical performance for the varying grades of water used in each experiment.  

The results are shown in Figure 7.7. 

 

Figure 7.7 shows the water with a conductivity of equal to or greater than 1 MΩ 

maintained good electrochemical performance over the 8 hours of experimentation, with 

the current flow maintained with a current change with a positive gradient. 
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Figure 7.7: Degradation of Nafion®117 based MEA at 25oC, 2 V, 1 atm pressure, 20 bar piston pressure,        

80 ml/min water flowrate 

 

In contrast the performance of the electrolysis cell in the tap water system is very poor.  

Peak voltage is achieved after 40 minutes of experimentation, from which the current 

decreases throughout the rest of the eight hour period.  This rate of electrochemical cell 

degradation is unacceptable for commercial electrolysis and emphasises the scale of the 

problem with regards to enabling PEM electrolysis cells to function with tap water as the 

input. These results support those found in literature that cation poisoning of Nafion® 

MEAs hinders fuel cell/electrolyser performance [111, 114, 127, 135]. 

 

7.2.4.4.  Scanning Electron Microscopy (SEM) 

Microscopic analysis of the MEA is important to quantify degradation and anomalies on 

the surface.  Cation build up on the Nafion® membrane limits the number of nucleation 
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sites available for proton exchange to occur, thus reducing the efficiency of the 

electrolyser.  The MEAs from the electrolysis process will undergo image spectroscopy 

and surface composition spectroscopy to analyse any cation blockage of the porous 

membrane and impurity deposition on the MEA surface. 

 

500x Pt 

The lowest level of magnification on the MEAs show a planar smooth surface for the 

unused MEA and the 18MΩ MEA.  The 10MΩ MEA shows evidence of roughness on 

the surface and the 1MΩ MEA exhibits increased roughness and the evolution of 

widening pores and cracks on the MEA.  When observing the Tap Water MEA the surface 

roughness has increased hugely when compared to the other MEAs.  The rigidness of the 

surface could be the result of corrosion or foreign species existent on the MEA.  This will 

be investigated by EDX analysis in the next section. 
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(a) 

 

(b) 
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(d) 
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(e) 

Figure 7.8: SEM 500x Magnification images of Nafion®117 cathode of (a) Unused MEA 

(b) 18 MΩ MEA (c) 10MΩ (d) 1 MΩ (e) Tap Water MEA 

 

2500x Pt 

When magnifying the previous images five times further, the surfaces of the MEAs 

appear much rougher than shown in a lower magnification.  This undulating surface is 

characteristic of the catalyst layer which has been ultrasonically sprayed on the membrane 

surface.  In this case the platinum black particles are the cause of the unevenness of the 

surface, but there is increased roughness on the Tap Water MEA when compared to the 

others could be the result of foreign ions on the MEA surface.  
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(d) 
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(e) 

Figure 7.9: SEM 2500x Magnification images of Nafion®117  cathode of (a) Unused 

MEA (b) 18 MΩ MEA (c) 10MΩ (d) 1 MΩ (e) Tap Water MEA 

 

5000x Pt 

Upon further magnification of each MEA, the particulates scattered over the membrane 

become individually identifiable.  Although minimal variation can be seen amongst the 

SEM images, the increase in coagulation of what is believed to be platinum particles is 

evident as the purity of the water used in experimentation decreases.   

 

To analyse this images further, they will all undergo EDX analysis to identify the element 

composition of the MEA cathode surfaces. 
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(a) 

 

(b) 
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(e) 

Figure 7.10: SEM 5000x Magnification images of Nafion®117  cathode of (a) Unused 

MEA (b) 18 MΩ MEA (c) 10MΩ (d) 1 MΩ (e) Tap Water MEA 

 

7.2.4.5.  Energy-dispersive X-ray spectroscopy (EDX) 

At the lowest magnification (500x) the original elements existent in the MEA, the carbon, 

oxygen and fluorine from the membrane and ionomer, and the platinum from the catalyst, 

were analysed to measure their atomic% composition on the SEM images. 

Axis Label Corresponding MEA Sample  

#1 Reference (Unused) MEA 

#2 18 MΩ.cm 

#3 10 MΩ.cm 

#4 1 MΩ.cm 

#5 Tap Water MEA 
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Figure 7.11 shows little change in composition of these elements, with an approximate    

5 atomic% decrease in carbon with decreasing water resistivity and an approximately    

3.5 atomic% increase in oxygen content with decreasing water resistivity. 

 

Figure 7.11: Atomic% of constituent elements found on cathode (500x) of Nafion® based MEA 

 

Figure 7.12: Atomic% of cations present on the cathodes of Nafion® based MEAs at all magnifications 
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The composition of cations (Na+, K+, Ca2+, Mg2+) typically present in impure water will 

be analysed to see if any of these are present on the MEA cathode surfaces (Figure 7.12). 

The analysis shows zero cation atomic% present on the cathode surface for the unused, 

18 MΩ, 10 MΩ & 1 MΩ MEAs.  Upon analysing the tap water MEA there is a sudden 

increase in cation composition on the cathode surface with all the cations specified present 

in at least one magnification. 

 

Taking the surface composition from the tap water MEA only and measuring the cation 

atomic% for each magnification of the cathode surface yields the following graph.  The 

analysis shows increasing presence of sodium and calcium with a decrease in 

magnification.  Less than 0.1 atomic% of magnesium is present at all magnifications and 

the evidence of potassium decreases dramatically with increasing magnification of the 

MEA surface. 

 

Figure 7.13: Atomic% of cation composition on Tap Water Nafion® based MEA at various magnifications 
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The EDX analysis has shown there to be cations present on the cathode surface of MEA 

subjected to tap water.  The MEAs subjected to differing grades of purified water show 

no presence of cations commonly found in water. 

 

7.2.5.  Membrane #2 - Fumea® EF-10 

7.2.5.1.  Polarisation 

The Fumea® MEAs were characterised in various grades of water as mentioned 

previously.  The voltage across the PEM electrolysis cell was varied and the subsequent 

current flow measured and converted to current density (A cm-2).  This is shown in     

Figure 7.14. The purified water samples show similar electrochemical behaviour which 

expected due to the low ion content in the water and haven’t been subjected to prolonged 

exposure with ions in the water.  This exposure will decrease the electrochemical 

performance over time, whereas this experiment was only a 30 minute polarisation. 

 

The polarisation showed a decreased polarisation with tap water.  This is believed to be 

the result of cation build up subsequently blocking the nucleation sites and increasing the 

resistance in the electrolysis cell.  This will later be confirmed in the microscopy analysis. 

The higher polarisation with 18MΩ water supply is still below the benchmark PEM 

electrolysis standard as shown in Figure 3.32 and literature [22, 31, 58, 208]. 
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Figure 7.14: Fumea® based MEA Polarisation at 25oC, 0.1V scan rate, 1 atm pressure, 20bar piston pressure, 

80ml/min water flowrate 

 

7.2.5.2.  Electrical Efficiency 

With the data collected during the polarisation, an electrical efficiency calculation for 

each potential and water quality was found.  This is shown in Figure 7.15.  At low 

potentials the resistances (overpotentials) are lower than at higher potentials and as shown 

in Figure 7.15 the efficiency decreases with an increase in energy input as a result of 

increasing resistances in the electrolysis process. 
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Figure 7.15: Efficiency of Fumea® based MEA at 25oC, 0.1V scan rate, 1 atm pressure, 20bar piston pressure, 

80ml/min water flowrate 

 

7.2.5.3.  Electrochemical Degradation 

After initial characterisation, the electrolysis cells underwent long term degradation 

where the potential applied across the cell remained constant and the current flow varied 

with time.  The purpose of this experiment is to quantify any degradation in 

electrochemical performance for the varying grades of water used in each experiment.  

The results are shown in Figure 7.16. 

 

Figure 7.16 shows the water with a conductivity of equal to or greater than 1 MΩ.  It 

maintained a good electrochemical performance over a period of 8 hours of 

experimentation, when the current flow was maintained showing a positive gradient of 

just above 0.  In contrast the performance of the electrolysis cell in the tap water system 
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is very poor.  Peak voltage is achieved after 40 minutes of experimentation, from which 

the current decreases throughout the rest of the eight hour period.  This rate of 

electrochemical cell degradation is unacceptable for commercial electrolysis and 

emphasises the scale of the problem with regards to enabling PEM electrolysis cells to 

function with tap water as the input. 

 

Figure 7.16: Degradation of Fumea® based MEA at 25oC, 2V, 1 atm pressure, 20bar piston pressure, 

80ml/min water flowrate 

 

7.2.5.4.  Scanning Electron Microscopy (SEM) 

Microscopic analysis of the MEA is important to quantify degradation and anomalies on 

the surface.  Cation build up on the Fumea® membrane limits the number of nucleation 

sites available for proton exchange to occur, thus reducing the efficiency of the 

electrolyser.  The MEAs from the electrolysis process will undergo image spectroscopy 

and surface composition spectroscopy to analyse any cation blockage of the porous 

membrane and impurity deposition on the MEA surface. 
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500x Pt 

The lowest level of magnification on the MEAs show a planar smooth surface for the 

unused MEA and the 18MΩ MEA.  The 10MΩ MEA shows evidence of roughness on 

the surface and the 1MΩ MEA exhibits increased roughness and the evolution of 

widening pores and cracks on the MEA.  When observing the Tap Water MEA the surface 

roughness has increased hugely when compared to the other MEAs.  The rigidness of the 

surface could be the result of corrosion or foreign species existent on the MEA.  This will 

be investigated by EDX analysis in the next section. 

 

 

(a) 
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(c) 
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(d) 

 

(e) 

Figure 7.17: SEM 500x Magnification images of Fumea® cathode of (a) Unused MEA 

(b) 18 MΩ MEA (c) 10MΩ (d) 1 MΩ (e) Tap Water MEA 
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2500x Pt 

When magnifying the previous images further, the surfaces of the MEAs appear much 

rougher than shown in a lower magnification.  This undulating surface is characteristic of 

the catalyst layer which has been ultrasonically sprayed on the membrane surface.  In this 

case the platinum black particles are the cause of the unevenness of the surface, but the 

increased roughness shown on the Tap Water MEA when compared to the others could 

be the result of foreign ions on the MEA surface.  

 

 

(a) 
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(c) 
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(d) 

 

(e) 

Figure 7.18: SEM 2500x Magnification images of Fumea® cathode of (a) Unused MEA 

(b) 18 MΩ MEA (c) 10MΩ (d) 1 MΩ (e) Tap Water MEA 
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5000x Pt 

Upon further magnification of each MEA, the particulates scattered over the membrane 

become individually identifiable.  Although minimal variation can be seen amongst the 

SEM images, the increase in coagulation of what is believed to be platinum particles is 

evident as the purity of the water used in experimentation decreases.   

 

To analyse this images further, they will all undergo EDX analysis to identify the element 

composition of the MEA cathode surfaces. 

 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 

Figure 7.19: SEM 5000x Magnification images of Fumea® cathode of (a) Unused MEA 

(b) 18 MΩ MEA (c) 10MΩ (d) 1 MΩ (e) Tap Water MEA 
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7.2.5.5.  Energy-dispersive X-ray spectroscopy (EDX) 

At the lowest magnification (500x) the original elements existent in the MEA, the carbon, 

oxygen and fluorine from the membrane and ionomer, and the platinum from the catalyst, 

were analysed to measure their atomic% composition on the SEM images. 

 

Figure 7.20: Atomic% of constituent elements found on cathode of Fumea® based MEA 

 

The analysis shows little change in composition of these elements, with a decrease in 

carbon of 5 atomic% from 1MΩ to tap water.  This corresponds with an increase of              

5 atomic% of fluorine content for the same samples.  This could be the result of damage 

to the catalyst layer from the tap water and the exposure of fluorine containing membrane.    

 

The composition of cations (Na+, K+, Ca2+, Mg2+) typically present in impure water was 

analysed to see if any of these are present on the MEA cathode surfaces. This analysis 

found zero cations present on the cathode surface for all the MEA samples.  This is 
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surprising considering the degradation in electrochemical performance from the use of 

tap water as shown in Figure 7.16.  Relating to Figure 7.20 the exposure of membrane 

material through gaps in the catalyst layer may be the result of the decreased 

electrochemical performance as shown in Figure 7.16.  This is highlighted in Figure 7.21 

which shows the crack in the surface of the cathode. 

 

The exposure of the membrane explains the increase in fluorine content on the EDX 

analysis.  With a lack of expectant cations on the cathode, an analysis of the cation ion 

content on the anode of the Fumea® based MEAs was conducted (Figure 7.22). 

 

Figure 7.21: Crack in catalyst layer of Cathode of Fumea® based MEA 
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Figure 7.22: Atomic% of cation composition on Tap Water Fumea® based MEA anode  

 

Figure 7.22 shows small quantities of sodium ion present at varying magnifications, but 

the shortage of potassium and especially calcium cations which are consistent in tap water 

give support to the hypothesis that the degradation in electrochemical performance on the 

Fumea® based MEAs is not a result of cation poisoning.  The decrease in electrochemical 

performance is more likely to be a result of  cracking of the MEA (Figure 7.21). 

 

7.2.6.  Comparison of Membranes 

The two membrane materials have differing properties and performance related to the 

electrochemical reaction kinetics that occur on the MEA surface.  This section shall 

compare the polarisation, hydrogen yield, electrical efficiency and degradation rates of 

both membranes in ultrapure (Type I) and domestic tap water. 
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Figure 7.23: Polarisation of Nafion® and HC Membranes for Pure & Tap Water at 25oC, 0.1V scan rate, 1 

atm pressure, 20bar piston pressure, 80ml/min water flowrate 

 

Figure 7.23 shows the variation in electrochemical performance for Nafion® and HC 

membranes for ultrapure and tap water.  There is a widening deterioration of 

electrochemical performance for a Nafion® membrane subjected to tap water compared 

to an ultrapure water feedstock.  Whereas there is only a small reduction in polarisation 

for HC membranes when subjected to tap water compared to ultrapure water. 
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Figure 7.24: Hydrogen production rate of Nafion® and HC Membranes for Ultrapure and Tap Water at 25oC, 

0.1V scan rate, 1 atm pressure, 20bar piston pressure, 80ml/min water flowrate 

 

Similarly to the polarisation analysis previously, the hydrogen yield from the electrolyser 

exhibits very familiar characteristics (Figure 7.24).  There is a widening decrease in 

hydrogen production for Nafion® membranes in tap water than ultrapure water.  

Identically, the HC membrane shows minimal change in hydrogen yield for tap water and 

ultrapure water feedstock.     

 

Figure 7.25 illustrates the variations in electrical efficiency for the two membranes in 

each grade of water.  The graph shows no change in electrolysis efficiency as a result of 

deteriorating water quality.  This is due to the fact the hydrogen yield is kept in line with 

the change in polarisation of the electrolysis cell.  Any variation in electrochemical 

performance as a result of the quality of the feed water is best observed over time. 
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Figure 7.25: Electrical Efficiency of Nafion® and HC Membranes for Ultrapure and Tap Water at 25oC, 0.1V 

scan rate, 1 atm pressure, 20bar piston pressure, 80ml/min water flowrate 

 

Figure 7.26 highlights the major limitations of water quality on the long term performance 

of a PEM electrolyser.  With an ultrapure water supply, both Nafion® and HC membranes 

exhibit good robustness and show zero electrochemical degradation over the 8 hour 

duration of the experiment.  The current flow is still increasing for both membranes over 

the timeframe. 
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Figure 7.26: Degradation of Nafion® and HC Membranes for Ultrapure and Tap Water at 25oC, 2V, 1 atm 

pressure, 20bar piston pressure, 80ml/min water flowrate 

 

Meanwhile, the membranes subjected to tap water suffer extremely poor long term 

performance.  The Nafion® membrane has a peak current at 35 minutes and the HC 

membrane at 3 minutes into the experiment, after which the dy/dx becomes negative and 

the current decreases over time. 

 

The build-up of cations on the cathode surface limits the reaction kinetics and after the 

cations have been adsorbed onto electrode surface and the current flow is limited.  This 

is consistent with the characteristics of electrical double layer resistance as discussed in 

the literature survey. 
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Whilst the cations in tap water are shown to be responsible for the deterioration in long 

term electrochemical performance, identification of which cations specifically are 

responsively and their quantity limits are scarcely researched.  These cations in tap water 

shall be separately added to a PEM water electrolysis system to achieve this objective.   

 

7.3.  Cation Targeting 

The impact of tap water containing several main cations on PEMs has shown to be highly 

detrimental to its performance.  The transportation of H+ ions through the proton 

conducting membrane attracts the cations previously mentioned.  The larger particle size 

of these cations compared to a proton results in the blocking of the pores on the cathode 

side of the electrolysis cell.  The resultant blockage limits proton transportation and 

subsequently reduces the efficiency and the lifetime of the electrolyser. 

 

The identification of the four main cations present in tap water and its approximate 

composition are shown from the ICP-MS analysis in Figure 7.3.  The aim of this section 

is to identify the cation(s) directly responsible for the degradation in electrolyser 

performance.  A specific quantity of a selected cation will be added to 2 litres of Type I 

water and be electrochemically characterised at a fixed potential for an 8 hour duration. 

 

The cations with the highest concentration are calcium and sodium and these are the focus 

of this research.  For each cation the initial quantity will be consistent with that found in 

the tap water samples and then subsequently reduced to calculate the acceptable limit of 
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cation content in water in order to sustain sufficient electrolyser operation over an 8 hour 

period. Although the experimentation is limited by an 8 hour duration, the gradient of the 

data can be measured to determine the current degradation rate for a fixed voltage (2 V). 

 

It is vital that the addition of these cations is completed without the addition of any 

additional cations/anions which could influence the performance of the MEA.  This rules 

out the use compounds such as NaCl and CaCO3.  The cations were added in hydroxide 

form to the Type I water in which they dissociate into solution.  With the other 

components of the compounds being oxygen and hydrogen (already present in water), the 

cations are the only new addition to the Type I water used for the electrolysis process, 

which is ideal for the objectives of this research.     

 

Calcium ions showed a concentration of up to 100ppm in the tap water samples analysed 

in Figure 7.3.  Figure 7.27 shows the performance analysis of the electrolysis cell with 

varying concentrations of Ca2+ in it starting with 100ppm. 
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Figure 7.27: Electrolyser Degradation Performance with Calcium cation at 25oC, constant 2V, 1 atm pressure, 

20bar piston pressure, 80ml/min water flowrate 

 

The data in Figure 7.27 shows the electrochemical degradation of the PEM electrolysis 

cell with 20ppm of calcium cations and less.  All experiments with at least 3.125ppm of 

calcium cations in exhibited degradation in electrochemical performance over the 8 hour 

duration. 

Table 7.2: MEA lifetime for varying quantities of Ca2+ 

Calcium Concentration (ppm) Current Degradation 

(Amps / Hour) 

0.02 0 

3.125 0.07 

6.25 0.08 

12.5 0.10 

25 0.15 

50 0.35 

100 0.71 
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Assuming the rate of degradation remains constant, the rate of degradation between 7 and 

8 hours was measured and then the current degradation to rate measured. Table 7.2 shows 

MEA lifetime increases with decreasing Ca2+ concentration in the electrolysis feedwater.  

Sodium ions showed a concentration of up to 20ppm in the tap water samples analysed 

in Figure 7.3.  Figure 7.28 shows the performance analysis of the electrolysis cell with 

varying concentrations of Na+ in it starting with 20ppm. 

 

Figure 7.28: Electrolyser Degradation Performance with Sodium cation at 25oC, constant 2V, 1 atm pressure, 

20bar piston pressure, 80ml/min water flowrate 

 

The data in Figure 7.28 shows the electrochemical degradation of the PEM electrolysis 

cell with 20ppm of sodium cations and less.  All experiments with 2.5ppm of sodium 

cations in exhibited degradation in electrochemical performance over the 8 hour duration. 
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Assuming the rate of degradation remains constant, the rate of degradation between 7 and 

8 hours was measured and then the current degradation rate was calculated.   

Table 7.3: MEA lifetime for varying quantities of Na+ 

Sodium Concentration (ppm) Current Degradation 

(Amps / Hour) 

0.01 0 

2.5 0.03 

5 0.05 

10 0.16 

20 0.37 

 

Table 7.3 shows MEA lifetime increases with decreasing Na+ concentration in the 

electrolysis feedwater.  The analysis highlights the need to reduce cation content of 

sodium and calcium in order to allow the electrolyser lifetime requirement to increase.  

The ICP-MS measurement of 0.01ppm sodium and 0.02ppm in Type I water shows the 

minimum cation content in the purist water. 

 

7.4.  Performance Comparison to Alkaline Electrolysis 

This thesis has discuss the potential of alkaline and PEM electrolysers for on demand 

hydrogen systems, whether this be for mobile applications (HHO generator for ICE 

improvement) or stationary applications (hydrogen refuelling station). 

 

The alkaline electrolyser prototype (Electrolyser I) and the PEM electrolyser is this 

chapter will be compared for polarisation, hydrogen yield, electrical efficiency and long 

term performance.  All alkaline electrolysis data is representative of 0.1M KOH solution 
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and polished nickel electrodes.  The total electrode surface area is 4150cm2.  The PEM 

electrolysis data is representative of Nafion® based MEAs consistent with Section 

7.2.4.1.  The feed water used was Type I (18MΩ). 

 

Figure 7.29: Polarisation of Alkaline and PEM Electrolysers at 25oC, 0.1V scan rate, 1 atm pressure, 0.1M 

KOH (for alkaline electrolyser), and 20bar piston pressure, 80ml/min water flowrate (for PEM electrolyser) 

 

Figure 7.29 shows the difference in electrochemical performance of the two water 

electrolysis technologies per unit electrode surface area.  The alkaline electrolyser 

achieves 0.005 A cm-2 at 3V applied potential whereas the PEM electrolyser has                 

1.6 A cm-2 at 3 V.  The PEM electrolyser has a platinum catalyst which enables the higher 

current density comparatively.  The economic cost of the PEM electrolyser is far greater 

than the alkaline electrolyser as a result. 
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Figure 7.30 shows the hydrogen yield from the alkaline and PEM electrolysers per unit 

electrode surface area.  The alkaline electrolyser exhibits an identical trend as the 

polarisation with the gas produced per unit surface area significantly below that of the 

PEM electrolyser.   

 

Figure 7.30: Hydrogen Productivity per unite surface area of Alkaline and PEM Electrolysers at 25oC, 

Alkaline Electrolyser - 0.1V scan rate, 1 atm pressure, 0.1M KOH, PEM Electrolyser - 20bar piston pressure, 

80ml/min water flowrate 

 

Figure 7.31 shows the electrical efficiency of the alkaline and PEM electrolyser from a 

1.5 to 3 V input potential.  The data shows a similar performance for both water 

electrolysis technologies.  PEM electrolysis achieves approximately 90% efficiency at 

1.6 V and maintains a higher efficiency than the alkaline electrolyser until 2.5 V where 

the efficiencies are almost identical up to 3 V. 
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Figure 7.31: Electrical Efficiency of Alkaline and PEM Electrolysers at 25oC, Alkaline Electrolyser - 0.1V scan 

rate, 1 atm pressure, 0.1M KOH, PEM Electrolyser - 20bar piston pressure, 80ml/min water flowrate 

 

The electrolysis process is most efficient at low applied voltages as this is where 

overpotentials are at a minimum.  The 90% efficiency at 1.6 V for the PEM electrolyser 

is highly desirable along with the non-hazardous feedstock required.   

 

The long term performance for the electrolyser technologies needs to be analysed as well 

as the simple characterisation data presented previously.  Figure 7.32 shows the long term 

performance data for the alkaline and PEM electrolysers. 
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The analysis shows that both alkaline and PEM electrolysers can support 8 hours of 

operation without any reduction in electrochemical performance.  Whilst 8 hours is a very 

short period of time in reality, this research has shown the degradation in electrochemical 

performance possible when reaction conditions are pushed outside the comfort zone. 

 

Figure 7.32: Degradation of Alkaline & PEM Electrolyser at 25oC, Alkaline Electrolyser - 1atm pressure, 0.1M 

KOH, constant 4V potential, PEM Electrolyser - 2V potential 20bar piston pressure, 80ml/min water flowrate 

 

As has been previously shown (Chapter 4) alkaline electrolysis suffers from degradation 

when subjected to high electrolyte concentrations and high power input.  The PEM 

electrolyser in this chapter has been shown to suffer performance deterioration when 

impure water feedstock is used. 
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The balance of power is shifting and the use of the new PEM electrolysis technology is 

becoming more desirable for the above reasons and the high hydrogen production rates 

per unit electrode surface area. 

 

7.5.  Conclusions 

Feed water contamination was researched in a PEM electrolyser. Water with a resistance 

down to 1 MΩ has shown no electrochemical degradation over an 8 hour period for both 

membrane materials.  The use of domestic tap water has shown very poor electrochemical 

performance from the PEM electrolyser with both membrane materials. 

 

Microscopy studies of the tap water MEA after experimentation showed increased surface 

roughness and the presence of cations (Na+, K+, Ca2+, Mg2+)  present on the cathode of 

the Nafion® based MEAs.  This cation presence resulted in blockage of 

nucleation/activation sites on the MEA. The Fumea® based tap water MEA exhibited a 

lesser drop in electrochemical performance compared to the Nafion® based tap water 

MEA.  The microscopy analysis of the Fumea® based tap water MEAs detected no cation 

presence on the cathode, but had a highly cracked surface.  EDX analysis showed a drop 

in carbon and increase in fluorine content.  This is consistent with cracking of the catalyst 

layer and the subsequent breaching of the membrane itself which contains fluorine. 

 

The analysis of the data produced in this chapter supports the hypothesis of poor 

electrochemical performance due to cation poisoning in MEAs as previously research in 
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literature has shown [32, 96, 111, 113, 114, 118, 123, 127, 128, 133, 135], but the 

individual targeting of cations present in domestic tap water has not been previously 

investigated. 

 

Calcium and sodium ions were analysed as they have the highest ppm content in domestic 

tap water as soon in the ICP-MS analysis.  Calcium cations showed a limit of less than 

3.125 ppm for an 8 hour performance consistent with Type II water.  Sodium cations 

showed a limit of less than 2.5 ppm for an 8 hour performance consistent with Type II 

water.  The research has shown the calcium and sodium cation content must be kept below 

these quantities to maintain sufficient long term performance of the PEM electrolyser. 

 

Two water electrolysis technologies (alkaline and PEM) have been analysed in this 

research and the PEM electrolysis performance in this chapter has been compared with 

that of the alkaline electrolyser manufactured and tested in Chapter 4.  The analysis 

highlights the improved electrochemical performance of a PEM electrolyser over an 

alkaline electrolyser as a function of electrode surface area. 

 

PEM technology offers many advantages over the older alkaline technology and the 

marketplace for these commercial PEM electrolysers is growing in size.  The ability to 

work at high pressures, low temperatures and with varying load conditions make them 

suitable for many applications which are currently in existence. Commercially available 

PEM electrolysers are available for integration into systems for vehicle refuelling, 
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synthetic methane gas injection and grid balancing.  The University of Birmingham 

carried out a first field test of a commercial PEM electrolyser in 2011 and the next chapter 

details the testing of this electrolyser and its proposed integration of an onsite hydrogen 

production system with an existing hydrogen refuelling station.    
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Chapter 8 

8. PEM Electrolyser 

System Integration 

 

 

 

 

This research has been published in: 

 

Energy Procedia, Vol.  29, 2012, p.  606-615.  DOI: 10.1016/j.egypro.2012.09.070  

 

& 

 

International Journal of Hydrogen Energy, Volume 39 (14), p7460-7466.  DOI: 

10.1016/j.ijhydene.2014.03.003   
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PEM technology represents an attractive future for low temperature electrolysis for 

hydrogen fuel generation.  This is more so than alkaline technology, because PEM 

technology has shown to have higher efficiencies, is highly adaptable to varying input 

loads, and has pure water as the only input which is much more attractive to the end user 

than handling caustic alkaline solutions. 

 

The PEM electrolyser itself cannot be used to produce hydrogen fit for fuel cell vehicles 

(FCVs).  Ancillary equipment such as a compressor and storage tanks must be integrated 

into a controlled system to deliver this hydrogen to refuelling stations.  The options 

available for this process are to have the hydrogen produced at a centralised facility, 

which has high capital costs, low variable costs and high delivery costs.  The alternative 

option to this would be to have the hydrogen produced onsite next to the refuelling station 

(distributed network). 

 

Attractiveness of onsite hydrogen generation for vehicle refuelling represents zero carbon 

emissions and high financial incentives (no delivery cost) towards a 

decentralised/distributed energy network. 

 

This chapter details the first field trial of Electrolyser J at University of Birmingham.  

This incorporated testing Electrolyser J in a lab which is considered to be a harsh 

operating environment (no central heating and historically an inconsistent electrical 

power supply).   
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As well as trialling the electrolyser, the end goal of the project was to design and 

implement an infrastructure for supplying the existing hydrogen refuelling station with 

hydrogen produced from Electrolyser J.  The design of this proposed system is shown 

herein. 

 

8.1.  Experimental Results & Analysis 

8.1.1.  Water Analysis 

Figure 8.1 contains recent measurements taken from the water used in the electrolyser.  

The three measurements are taken from the de-ionised water supply itself, the hydrogen 

tank in Electrolyser J (which is at up to 15 bar pressure), and the oxygen tank (shown in 

the P&ID of Electrolyser J in Figure 3.27).  Figure 8.1 and shows the variation in pH and 

conductivity from the three sampling locations over time. 

 

Figure 8.1: Water pH/Conductivity Analysis 
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The data presented shows little variation in conductivity for the three samples over time, 

with a conductivity of 0.1μS expected from the deionised (ASTM Type II) water. 

 

8.1.2.  Electrolyser J Testing Data 

The electrolyser that was chosen to produce the high purity hydrogen was Electrolyser J 

(Figure 3.26).  This electrolyser uses PEM technology to separate water into hydrogen 

and oxygen.  Electrolyser J produces 10 litres per minute (LPM) of hydrogen at up to      

15 bar pressure.  This equivalent to approximately 1kg of H2 produced per day.  The PEM 

electrolyser does not use commercially common Nafion®, but uses the suppliers own 

membrane technology, which is a hydrocarbon based membrane, whereas Nafion® is a 

perfluorinated sulfonic acid (PFSA) membrane. 

 

For the duration Electrolyser J was operational, data was collected and analysed.  A 

sample of the data measured has been analysed.   The data in Figure 8.2 can be used to 

analyse Electrolyser J performance.  The potential (measured on the secondary y-axis) is 

maintained at approximately 20 V (10 cells at 2 V per cell), and when there are variations 

in the potential across the electrolyser stack, the current flow and H2 and O2 temperatures 

adjust as a direct result.  When there is a decrease in potential (approximately 0.5 V), the 

current reduces by approximately 15 A (since the two electrochemical parameters are 

dependent on each other).  The decrease in current flow results in a decrease in H2 and O2 

temperature, visible in Figure 8.2 are due to reduction in power in the electrolyser stack 

and therefore the heat produced. 
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Table 8.1: Electrolyser J Testing Analysis 

Run No. Duration of 

Operation 

(Hours) 

Notes 

Electrolyser J #1 Stack #1 

1 114.5 Water Leak Shutdown  

Piston Pressure Decrease Observed 

Electrolyser J #1 Stack #2 

2 168 Power Loss during Weekly Purge  

New Fuse Inserted 

3 150 Water Leak Shutdown 

No Leak Visible 

4 80 H2 Tank Low Shutdown During Purge – 

Reset fixed Problem. 

Pressure Leak Shutdown 

Possible explanation: H2 Pressure 14.9bar 

just before shutdown 

5 96 Pressure Leak Shutdown 

Possible explanation: H2 Pressure 14.9bar 

just before shutdown 

Electrolyser J #1 Stack #3 

6 480 New Stack; Updated Software; No Dryer 

Present 

7 597 Blown Fuses 

Electrolyser J #2 Stack #1 

8 401 External Power Failure 

9 171 External Power Failure 

10 362 UoB Estates Shut Off; Electrolyser Stack 

Frozen 

Total Operation Hours 2619.5 

Total Hours Available 5400 

Electrolyser J Utilisation 48.5% 

Hydrogen Produced ≈ 109 kg 
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Figure 8.2: Data from Electrolyser J scenario Run 2 

 

The data presented in Figure 8.3 shows two momentary power losses to the electrolyser 

stack, which stopped the flow of current and ceased the production of hydrogen.  This 

power input deficit was only temporary and the power supply to the electrolyser stack 

recommenced. 

 

It was concluded that this ten minute loss in power was when the system was going 

through its weekly water purge cycle, in which power to the electrolyser stack is stopped.    
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Figure 8.3: Data from Electrolyser J scenario Run 7 

 

Figure 8.4: Data from Electrolyser J scenario Run 3 
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The data presented in Figure 8.4 shows a manual shutdown by the user.  When 

Electrolyser J is shutdown manually using front display, power to the electrolyser stack 

is stopped; thus producing no current in the process.  This ceases the production of output 

hydrogen. 

 

With no current flow in the electrolyser stack and thus no heat production, the temperature 

in the electrolyser drops across all three temperature sensors until it reaches room 

temperature. 

 

8.1.3.  Refuelling Infrastructure Design 

8.1.3.1 Project Introduction 

In April 2008, The University of Birmingham launched the first permanent hydrogen 

refuelling station in England, U.K.  This enabled the refuelling of the only fleet of (five) 

hydrogen fuel cell vehicles (HFCV) in the U.K at the time.  The “green” hydrogen for the 

refuelling station was supplied off site.  The ultra-high purity (99.9995%) hydrogen is a 

vital requirement for the polymer electrolyte membrane fuel cells (PEMFCs).  This is 

because membrane electrode assemblies (MEAs) are susceptible to poisoning from low 

concentrations of impurities (carbon monoxide, sulphur etc.), and will decrease the 

performance and lifetime of the fuel cell irreversibly.  The University aims to be the first 

campus in the U.K.  that is carbon neutral and this project scopes to produce “green” 

hydrogen on-site to power the fleet of HFCVs.   
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Hydrogen was previously supplied from Green Hydrogen, a division of Green Gases Ltd 

based in Cambridgeshire, U.K.  Figure 8.5 illustrates the process used to achieve high 

purity hydrogen gas. 

 

Figure 8.5: Existing Hydrogen Supply Chain at University of Birmingham, U.K. 

 

This process oversees the conversion of municipal waste to hydrogen through an aerobic 

digester to produce synthetic gas (a mixture consisting of mainly carbon monoxide and 

hydrogen), then this combusted in a combined heat and power engine to produce electrical 

energy which is then used in an alkaline electrolyser to produce the high purity hydrogen 

gas.  The gas is produced at approximately 10-15 bar, and then it is compressed to           

200 bar and put into K-Type gas cylinders before transportation [209]. 

 

This process produces low levels of greenhouse gas emissions, apart from the method of 

transporting the cylinders to the University of Birmingham, from which a carbon footprint 

can be attached to the hydrogen. 
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Electrolysis is currently the only commercial method for producing ultra-high purity 

hydrogen.  Electrolyser J has been purchased to produce hydrogen on-site (up to             

1.25 kgH2/day).  Electrolyser J uses PEM technology, which eliminates the need for 

hazardous alkaline substances, to produce hydrogen.  The input requirements are ASTM 

Type 2 de-ionised (DI) water and 240V power supply.  Hydrogen is produced from the 

electrolyser at pressures up to 15 bar.  However there is a need to integrate this unit within 

the existing hydrogen infrastructure.  A system flow diagram of the proposed hydrogen 

refuelling system is illustrated in Figure 8.6. 

 

Figure 8.6: Proposed Hydrogen Supply Chain for University of Birmingham Refuelling Station 

 

The system design involves the use of needle valves, check valves, pressure transducers, 

and pressure relief valves.  The whole system would be controlled by a PLC control 

system, regulating the needle valves from the various pressure transducers in the system.    

 



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 286 - 

 

Within the HFCV, hydrogen is stored in a compressed gas tank (350bar).  The Air 

Products Series 100 refuelling station has a built in compressor that compresses hydrogen 

from 200 bar (from storage, and capable of utilising the supply down to 20bar) to 400 bar 

(delivery).   Therefore an additional compressor (Haskel International Inc.) is required to 

compress hydrogen from 15 bar to 200 bar. 

 

The 200 bar hydrogen is stored in K-Type Gas Cylinders, thus by using existing cylinders 

no changes to the infrastructure are required.  These cylinders would then be detached 

from the electrolyser setup and be relocated to the refuelling infrastructure, supplying   

200 bar hydrogen to the Air Products Refuelling Station.  

 

8.1.3.2 System Components 

Photovoltaic Cells 

Photovoltaic panels of peak rating 4kW were purchased and placed on the roof of the 

building (Figure 8.7).  These panels were not directly coupled to the electrolyser due to 

the intermittency of solar energy.  This 4kW is sufficient to offset the peak energy 

requirement of the electrolyser and the ancillary equipment. 
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Figure 8.7: Photovoltaic Panels Reproduced from [210] 

 

DI Water Supply 

See Section 3.2.3. 

 

Electrolyser – Electrolyser J 

See Section 3.2.1.7. 

 

Buffer Storage 

Once the hydrogen is produced in electrolyser it is placed in a 15 Bar H2 Buffer Storage.  

This consists of sixteen K-Type Cylinders, each with an internal volume of 50 litres at 

standard temperature and pressure.  The total H2 capacity at 15 bar pressure for all sixteen 

cylinders is 0.8kg.  This buffer store will be permanently fixed in place.   
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Hydrogen Compressor 

Once the buffer storage of H2 at 15 bar pressure is full, a compressor is required to 

pressurise the H2 up to 200 bar pressure.  The compressor that is used is a Haskell Gas 

Booster Pump.  It is an air driven compressor that requires a compressed air supply of      

7 bar pressure.  The minimum inlet pressure for the compressor is 10 bar pressure and the 

maximum outlet pressure is 200 bar pressure.  The compression rate is approximately 

10.2 litres per minute (LPM), which means that the compressor operates at the same rate 

as the production rate of Electrolyser J.  The pressure relief valve is set at 10% higher 

than operating pressure which is at 220 bar pressure.   

 

High Pressure Storage 

Once the hydrogen is compressed to 200 bar pressure, it is transported to four K-Type 

cylinders each with an internal volume of 50 litres.  These four cylinders have a combined 

hydrogen storage capacity of 3.0 kg at 200 bar pressure. Once these four cylinders are 

full, they are disconnected from the compressor supply line and are attached to the 

existing hydrogen refuelling infrastructure to provide hydrogen to the Air Products 

Refuelling Station. 

 

8.1.3.3.  Health and Safety Aspects 

Before the proposed system can be implemented and integrated into the existing system, 

the various health and safety documentation must be completed to ensure all precautions 
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necessary are taken to avoid risk and minimise the dangers associated with the hydrogen 

refuelling system. 

 

Hydrogen requires special safety measures and handling precautions, since has many 

hazards.  These include: 

• Hydrogen burns with an invisible flame 

• Vapours can spread and ignite 

• Hydrogen displaces breathing oxygen in the air and so presents a risk of 

asphyxiation at high concentrations 

All Health & Safety Information including Risk Assessments and HAZOPs are in 

Appendix B. 

 

8.1.3.4.  Infrastructure Planning and Piping & Instrumentation Diagram (P&ID) 

The system layout is illustrated in the satellite image (Figure 8.8) and shows the Hydrogen 

& Fuel Cells Research Laboratories at the University of Birmingham.  Shown on here is 

the existing location of the Air Products Hydrogen Refuelling Station, Gas Cylinder 

Storage and existing infrastructure.  The blue represents the existing air compressor and 

its gas line connection to the Refuelling Station. 



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 290 - 

 

 

Figure 8.8: Satellite View of Proposed Hydrogen Infrastructure 

 

The location of the new equipment is shown in green, which includes the electrolyser, 

gas cylinder packs, and the hydrogen compressor.  The red line represents the new gas 

pipes (SS316 6mm ID) that are going to be implemented to connect the new equipment 

together.  The blue hashed line shows the extension needed on the compressed air line 

required to supply not only the Air Products Refuelling Station, but also the hydrogen 

compressor, which is air-driven.  What is not shown on the aerial image is the detailed 

use of valves, actuators, and control system, which are shown in the P&ID (Figure 8.9). 
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System Control Philosophy 

The system operates with the electrical input to Electrolyser J and DI water provided on-

demand.  This produces H2 at 10LPM up to 15 bar pressure.  V1 is a manual shut off 

valve which is normally open, unless Electrolyser J shut off fails.  H2 fills the buffer 

storage when V2 is closed, and this valve opens when PT1 records a pressure of 15 bar.  

When V2 is open, the program logic controller (PLC) automatically opens V5, which 

allows compressed air to the compressor (CMP1) to compress the hydrogen from low 

pressure to high pressure (200 bar).  This high pressure hydrogen then passed through V3 

(manual shut off, normally open), and V4, which is our high pressure valve which allows 

us to fill the gas cylinders.  To fill the high pressure cylinders takes approximately            

2.5 days.  Once PT2 records 200 bar pressure in the cylinder pack, V5 is closed, thus 

stopping supply of compressed air to the compressor, therefore halting the compression 

process.  V4 can be manually closed, the cylinders detached and replaced with empty 

ones, and then V5 can open again once PT2 registers minimal pressure in the cylinders. 

 

The cylinders containing 200 bar pressure hydrogen can be manually moved and 

connected to the existing hydrogen infrastructure to supply the refuelling station. 
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Figure 8.9: P&ID of Proposed Hydrogen Infrastructure 
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8.2.  Conclusions 

The rollout of a hydrogen refuelling infrastructure would see the implantation of onsite 

generation systems such as the one designed here.  Rollout plans for hydrogen refuelling 

infrastructure are underway for U.K.  (UKH2Mobility), Germany (H2Mobility), France 

(Mobilité Hydrogène France) and U.S.A.  (H2USA).  An hydrogen infrastructure 

implementation plan conducted by the author and other students at the University of 

Birmingham, U.K., for the North-east U.S.A. to support FCEVs has won joint 1st place at 

the annual Hydrogen Student Design Contest and is found at www.hydrogencontest.org. 

 

The results show the operation and testing of a PEM electrolyser in the first field trial of 

Electrolyser J with the end goal to have the hydrogen produced, supplied to existing 

hydrogen refuelling station at University of Birmingham, U.K.  The electrolyser exhibited 

excellent performance under steady state (fixed load) conditions.  

 

What is obvious from the data collected is the struggle of the electrolyser to cope with the 

external harsh environment the electrolyser was placed in.  This laboratory had no central 

heating got very cold in the middle of winter.  This along with the intermittent electrical 

supply to the laboratory highlighted the vulnerability of this new technology to non-ideal 

conditions for operating the electrolyser in. As a result of the circumstances surrounding 

this field trial and the data collected, it is evident that robustness in PEM electrolysers 

requires improvement for commercial rollout of such technology, thus becoming more 

versatile to cold temperatures and impure water supplies. 

http://www.hydrogencontest.org/
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Chapter 9 

9. ............. Conclusions and 

Recommendations 
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Two routes for on-demand hydrogen systems have been addressed.  These are through 

the mature alkaline electrolysis technology for mobile applications and the more recently 

established PEM electrolysis, which is ideal for on-demand hydrogen in stationary 

applications. 

 

9.1.  Alkaline – Mobile Applications 

Chapter 4 addressed the existing alkaline electrolyser marketplace and characterised four 

commercial alkaline electrolysers which are used in the generation of HHO gas for 

addition to ICEs to supposedly improve engine efficiency and decrease GHG exhaust 

emissions.  The main findings were: 

 Alkaline electrolysers, most commonly sold under the general umbrella of “water 

to fuel” systems, exist in the public domain available for purchase which do not 

perform or meet the required standards to achieve the stated demands of 

improvement in performance. 

 Major design flaws exist in the alkaline electrolysers analysed and subsequently 

exhibit inefficient electrochemical performance compared to that stated in public 

documentation. 

 Electrolyser E exhibited small reductions (< 0.2%) in CO and CO2 emissions, 

whilst Electrolyser C exhibited no reductions in CO and CO2 emissions during 

ICE testing.   

 Electrolyser E exhibited higher reductions (< 50ppm) in NO emissions than 

Electrolyser C (< 20ppm), highlighting the effect of increased hydrogen quantity 

composition in the ICE. 



Development of On-Demand Low Temperature Electrolysers and their Systems 

- 296 - 

 

 One of these electrolysers will be redesigned and built to demonstrate improved 

performance using the same footprint and economic cost. 

 

Chapter 5 addressed the poor performance of Electrolyser E, evaluated the reasoning 

behind this and then redesigned (Electrolyser I) the system accordingly to maximise HHO 

output with an unchanged system footprint and economic cost.  The main findings were: 

 Electrochemical data shows improvement in performance up to 12V operation.  

200A was measured across the electrolyser during operation and the approximate 

flowrate of HHO gas is estimated to be 4 LPM.   

 Consequently improved performance in engine mode achieved with notable 

results on the effectiveness of HHO in internal combustion engines. 

 8% increase liquid fuel replacement, 8% reduction in CO2 emissions was 

achieved. 

 The presence of oxygen as well as hydrogen as a fuel additive improves 

performance since the monoatomic form of HHO (unstable water vapour) results 

in a quicker combustion than using diatomic hydrogen which requires more 

energy to break the atomic bonds. 

 

Chapter 6 investigated the high degradation rates suffered by nickel electrodes in 

industrial alkaline electrolysers.  Low degradation rates are vital for sufficient electrolyser 

lifetime and the subsequent cost-effectiveness of the system.  The feasibility of an 
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‘oxygen-getter’ was researched in an alkaline electrolyser to measure any improvements 

in electrode degradation.  The main findings were: 

 Improved electrochemical performance (8% lifespan increase) from introduction 

of oxygen-getter to the system, although further repeatability is required to reduce 

error margins in analysis. 

 Surface analysis of the electrode highlight reduced oxide content on the electrodes 

(approx.  17% reduction in oxygen atomic% on nickel electrode surfaces) 

supporting electrochemical data found. 

 Scope for further research into ‘oxygen-getter’ concept in alkaline electrolysers 

to reduce electrode degradation, including specific quantity/location/geometry of 

getter material with the aim of clearly proving any improvement in long term 

alkaline electrolysis performance. 

 

9.2.  PEM – Stationary Applications 

Chapter 7 addressed the benefits of PEM electrolysis over the historic alkaline 

technology.  The need for ultrapure water for PEM technology is an added energy 

requirement in the system and is undesirable for when the mass commercialisation of this 

technology.  A PEM electrolysis cell was tested with varying grades of water purity to 

analyse performance degradation and the subsequent mechanisms.   The main findings 

were: 
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 Performance of PEM electrolyser degraded rapidly when introduced to impure 

(tap) water.  This was up to 95% after 8 hours operation for the Nafion® 

membrane and 66% for Fumea® membrane. 

 Identification of high levels of cations in the water (Na+, K+, Ca2+, Mg2+) 

identified from ICP-MS.  The presence of these cations resulted in blockage of 

nucleation/activation sites on MEA from microscopy and surface analysis. 

 Attractiveness of cations to the vacancies in Nafion® structure make it 

incompatible with impure waters containing high levels of cations. 

 Fumea® exhibits less performance degradation (66% vs.  95%) than Nafion® 

when subjected to tap water, which makes it more desirable for future commercial 

integration. 

 A comparison of PEM and alkaline experimentation was shown.  PEM is more 

suitable for future commercial electrolyser with increased polarisation (approx.  

99.9%) and electrolyser lifetime (approx.  96%), although further research 

required in reducing electrocatalyst quantity and cost.   

 Established PEM electrolysers are available for integration into systems for 

vehicle refuelling, synthetic methane gas injection and grid balancing.  A first 

field test of a PEM electrolyser will be undertaken. 

 

Chapter 8 addressed the integration of a commercial PEM electrolyser with a newly 

designed system to supply hydrogen to an existing hydrogen refuelling station at the 

University of Birmingham, U.K.  On-site production of hydrogen represents a carbon-

neutral energy generation process which leads towards a future decentralised/distributed 

energy network.  The main findings were: 
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 Excellent performance of PEM electrolyser under steady state conditions.  This 

includes the constant current flow despite a variation in ambient room 

temperature.   

 External harsh environment highlighted the vulnerability of this new technology 

and this was evident from the difficulty of cold start up and the consequent regular 

replacement of stacks. 

 Robustness in PEM electrolysers requires improvement for commercial rollout, 

so they become more susceptible to cold temperatures and impure water supplies. 
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9.3.  Future Work 

The research completed herein has achieved the majority of goals set out at the beginning 

and brought about a greater understanding of scientific principles in the process of HHO 

injection into ICEs, the use of materials to reduce electrode degradation in alkaline 

electrolysis, and the durability of MEAs in a domestic tap water environment. 

Further work from that carried out in this thesis should include: 

 Testing of electrolysers in 1000s/10000s of hours to test long term durability 

consistent with industrial operation of electrolysers to determine the mechanisms 

for eventual failure and ways to deter these processes.  

 Analysis of non-PFSA membranes with regards to long term electrochemical 

performance with tap water feedstock.  This includes SPEEK and PBI membranes 

which could pave the way for cost reduction of PEM electrolysers and ease the 

process of mass market commercialisation if operable with domestic tap water. 

 Cyclic testing of alkaline and PEM electrolysers to test tolerance to change in 

input load.  A regular occurrence when an electrolyser is coupled to renewable 

energy power sources.  This is a vital requirement for the market penetration of 

electrolyser as an energy storage medium to produce hydrogen from intermittent 

renewable energy sources. 

 Anion targeting in PEM electrolysis.  This would identify any effect that anions, 

such as chlorides and sulphates have on the electrolysis reaction.   

 Investigation of the use of zero gap electrodes in an alkaline electrolyser.  This is 

in the form of an anion exchange membrane (AEM), which is only allows the 
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conductance of OH- anions through it.  This would be a suitable comparison with 

a liquid caustic electrolyte used in the alkaline electrolysis process carried out. 

 Varying quantities of hydrogen, oxygen and hydroxy (HHO) gas should be 

injected into an ICE environment to determine the optimum level flowrate 

requirement of these gases and then on-demand electrolysers can be sized and 

built accordingly to meet this. 

 Experiments on H2, O2 and HHO gases in an ICE should also take into account 

varying engine load conditions, and then the engine control unit (ECU) be 

programmed accordingly to communicate directly with the electrolyser to produce 

the optimum amount of HHO dependant on the current engine load. 

 Materials and methods for improving the tolerance of MEAs to cations and anions 

present in domestic tap water are highly desired to remove the need water 

purification for the water feedstock. The removal of this process would improve 

the energy efficiency of the overall hydrogen generation system and subsequently 

the cost of the system.  

 This research topic could look further at the durability of these electrolysers to sea 

water feedstock.  This would make the technology unrestricted geographically and 

could theoretically be utilised in coastal areas, and in maritime and sea based 

military applications. 

 The above aspirations of improved water electrolysis technology are required to 

push towards a sustainable, indefinite, non-geographically limited, cost effective 

fuel to power the planet in a new age of energy supply and generation. 
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