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Abstract 

Stimuli-responsive surfaces that can regulate specific biomolecular interactions are 

enabling novel functionalities and new device designs for a variety of biological and 

medical applications. While substantial attention has been directed to construction 

and performance of biological switchable surfaces in simple biological systems, less 

effort has been directed to developing and understanding surfaces capable of 

switching under more practical biological applications. In this study, a merged 

approach was taken to produce well-defined self-assembled monolayers (SAMs) that 

prevent non-specific binding with the ability to electrically switch the SAM to allow 

control over biomolecular interactions under complex biological matrixes. This SAM 

system, based on switchable oligopeptides, can be dynamically modulated by an 

electrical potential under different commonly used biological media, ranging from 

Dulbecco's Modified Eagle Medium (DMEM) to DMEM supplemented with fetal 

bovine serum (FBS) and zwitterionic buffering agents such as HEPES.  

The electrically switchable mixed SAMs, which are shown to be capable of 

exposing and concealing the RGD cell adhesion motif, can dynamically regulate the 

adhesion of immune macrophage cells under complex biological conditions. 

Macrophage cell adhesion to biomaterial surfaces plays a key role in mediating 

immune response to foreign materials. Thus, development of such dynamic in vitro 

model systems that can control macrophage cell adhesion on demand is likely to 

provide new opportunities to understand adhesion signalling in macrophages and 

develop effective approaches for prolonging the life-span of implantable medical 

devices and other biomaterials. This system is one of the first examples of a material 

surface system that can control macrophage cell adhesion on demand. Hence, this 
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study will be useful in developing more realistic dynamic extracellular matrix models 

and is certainly applicable in a wide variety of biological and medical applications. 
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Chapter 1: Introduction to Cell Adhesion and Self-Assembled 

Monolayers 

Abstract: This chapter provides a background to cell adhesion, nonspecific and 

specific protein binding, followed by a brief introduction to self-assembled 

monolayers (SAMs) and the recent developments in the field of SAM based stimuli-

responsive surfaces also known as switchable surfaces. 

 

1.1 Introduction to Cell Adhesion 

 Cell adhesion is facilitated by the extra-cellular matrix (ECM) via cell-surface 

receptor proteins known commonly as integrins.1,2 Integrins are proteins that mediate 

cell adhesion to the ECM via peptide ligands on the surface, which promote 

signalling between the cell and the ECM.3,4 Cells adhere via specific proteins such 

as fibrinogen,5 vitronectin,6 collagen,7 fibronectin8,9 and the RGD ligand.2 Adherence 

to these ligands allows for the regulation of a number of cellular processes including 

adhesion, migration, growth, secretion and apoptosis all of which can be influenced 

by the ECM.10-13 Cells are also able to interact on surfaces in a variety of methods 

including hydrophobic/hydrophilic, specific and nonspecific interactions however, a 

lack of adhesion to surfaces can cause apoptosis.3  

The ECM acts as a structural support and allows the transfer of signals to 

adhering cells using specific cell recognition proteins which are identified by 

transmembrane cellular receptors such as integrins. The attachment of cells on a 

surface is followed by integrin clustering which leads to the formation of focal 

adhesions where integrins link to intracellular cytoskeletal complexes and bundles of 
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actin filaments. These complexes in addition to connecting the cytoskeleton to the 

matrix, also serve as a framework for the association of signalling proteins that 

regulate transduction pathways leading to integrin-induced changes in cell 

behaviour.1,14  

The discovery of a tripeptide motif Arginine-Glycine-Aspartic acid (RGD) in 

1984 was shown to be the minimum peptide sequence required for a cell recognition 

site.15 The peptide sequence arginine-glycine-aspartate (RGD) found in fibronectin, 

vitronectin, type I collagen, and other extracellular matrix proteins has been widely 

studied as an immobilised cell adhesion ligand specific for integrin-mediated cell 

adhesion.16-18 These peptides play not only a major role as anchoring molecules but 

are also important in processes like embryogenesis, cell differentiation, immune 

response, wound healing and haemostasis.18 For these reasons, the development of 

smart interfaces between cells and substrates has been directed towards the RGD 

peptide and its capacity to undergo on–off switching when tethered to dynamic 

surfaces using external stimuli.19,20 Furthermore, the RGD tripeptide unit benefits 

from the ability to be easily synthesised and handled, although small changes in the 

conformation or addition or subtraction of amino acids to the RGD motif has 

profound effects on cell adhesion.21  

The RGD surface density required for cell adhesion was shown been to be in 

the region of 10 x 10-15 mol/cm2.22 When adhering cells to a RGD functionalised 

surface it is important to consider RGD ligand to ligand spacing which is essential in 

fabricating a cell adhesive surface, as the presence of RGD ligand clustering on the 

surface can be a cause of significant reduction in the ligand density as well as cell 

adhesion.23 In recent literature it has been shown that a critical RGD ligand-ligand 
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inter-distance of approximately 60-70 nm24 is required for optimal cell adhesion and 

the formation of focal adhesions (FA). FAs are formed due to the clustering of 

integrin receptors after the initial attachment of the cells. Ligands with a spacing 

above 70 nm have been shown to restrict cellular attachment and spreading due to 

the lack of integrin clustering (Figure 1.0).25 

 

 

 

Figure 1.0 Sketch of integrin clustering and subsequent focal adhesion formation 

regulated by RGD-thiol ligand nanopatterns. (a) A spacing of < 70 nm between two 

neighbouring RGD thiol ligands results in effective integrin clustering and focal 

adhesion complex formation, followed by the formation of the F-actin cytoskeletal 

network. (b) In contrast, a spacing of > 70 nm results in neither integrin clustering nor 

FA complex formation. 
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1.2 ECM Substratum models based on self-assembled monolayers 

Fabricating surfaces that can replicate some of the characteristics of the 

actual ECM will offer new ways to study how cells sense, integrate and respond to 

changes in the environment.16 Surfaces able to reproduce an environment similar to 

an ECM will provide more systematic research methods than in the past. In addition 

to being an essential part of cellular studies the new generation of ECM also impacts 

the field of tissue engineering and medicine regeneration.26 

Creating novel ECM models using self-assembled monolayers (SAMs) allows 

for cell attachment and migration via a specific, well-defined and controlled method. 

Using SAMs in ECM models has a number of advantages for example, the ability to 

control and fine-tune important parameters of the SAM environment such as 

thickness and distance between ligands. The high level of precision that SAMs offer 

enables isolated study of specific biomolecular or cellular interactions. Herein follows 

a brief description of SAMs and some of the characteristics that make SAMs a 

feasible option for recreating ECM modelled surfaces. 

 

1.2.1 Self-Assembled Monolayers (SAMs) 

 SAMs can be defined as highly ordered films that adsorb spontaneously onto 

solid surfaces from liquids or gases via an active surfactant molecule.27 One of the 

earliest reports of monolayer formation was made by Nuzzo and Allara, whom 

observed that thiol groups form strong non-covalent bonds with gold surfaces 

resulting in the formation of thiolates on gold-coated surfaces.28 This important 

discovery lead the way for extensive study and the characterisation of SAMs on gold 
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and numerous other surfaces such as glass or silicon, indium tin oxide (ITO) and 

also 3D nanoparticles.29-32 

The ability to synthesize a range of functional groups to specifically control 

surface properties such as hydrophobicity, charge, biomolecular and cellular 

interactions, have allowed for SAMs to serve as a platform for research in a range of 

diverse applications.19,20,33 In addition SAMs offer numerous advantages over other 

types of scaffolds for the fabrication of dynamic surfaces such as: i) structurally well-

defined, ii) characterisable via numerous analytical techniques, iii) chemically flexible 

for the introduction of organic functionalities on surfaces through simple organic 

reactions, iv) stable in contact with air and water and suitable for biological studies 

and v) compatible with diverse external stimuli for induction of dynamicity.19 

 

1.2.1.1 Surfactant 

The basic molecular structure of SAMs can be divided into three components: 

the headgroup, the backbone and the endgroup (Figure 1.1).34 The headgroup acts 

as the anchor and binds the surfactant to the substrate surface via chemisorption. 

The choice of headgroup will ultimately depend upon the substrate being used, as 

different headgroups vary in their affinities towards substrates. The most widely 

studied headgroup-surface interactions include alkanethiolates on gold32,34,35 and 

silane derivatives with hydrolysable head groups on silicon oxides.29 

The backbone, in addition to connecting the headgroup and endgroup, has a 

number of important characteristics which can affect the molecular orientation, 
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degree of order within the monolayer and intermolecular distances. For example the 

length of the backbone has an effect on the molecular ordering of the SAM. 

 The endgroup is essential in determining the surface properties of the SAMs. 

A large variety of functional groups can be introduced in the SAMs via the end group 

that can influence surface properties such as wettability,36 charge,37 bio-molecule 

activity,38-42 thus allowing for a whole range of potential applications. 

 

Figure 1.1 Schematic representation of a surfactant molecule. 

 

1.2.1.2 Thiol SAMs 

SAMs of thiol headgroup derivatives are well known to have a high affinity for 

a range of metal surfaces including gold surfaces, silver, copper and platinum. 

However, gold has been the most studied due to its stablity and 

biocompatibility.27,31,32 Long-chain alkanethiols with unsaturated and unbranched 

alkyl chains are known to self-assemble both rapidly and spontaneously to form 

densely packed, well-ordered monolayers on gold surfaces thus displacing other 
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materials adsorbed on the surface. (Figure 1.2).27,31,32 The sulphur atoms and alkyl 

chains promote stability and regular packing of the monolayers via the sulphur-gold 

bond and van der Waals intermolecular forces.43-45 The formation of thiols on gold 

can be carried out either by gas vapour deposition or by immersing in a solution of 

SAMs. Thus, the ease of preparation of SAMs on gold and their relatively high 

stability under normal atmospheric conditions make thiol SAMs an excellent option 

for bio-interface research. Other advantages for using thiols include the ability to 

characterise the monolayers using numerous surface characterisation techniques 

such as: ellipsometry, contact angle and x-ray photoelectron spectroscopy. 

Furthermore the flexibility to synthesise alkanethiols with various functional end 

groups allows for the presentation of a wide variety of ligands for tailored surface 

properties.30-32  

 

 

Figure 1.2 Schematic of a monolayer of dodecanethiol SAMs on a gold substrate. 
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1.2.1.3 Silane SAMs 

 Alkylsilane derivatives such as trichlorosilanes and other hydrolysable silane 

head groups are used to functionalise substrates bearing hydroxyl groups most 

commonly silicon oxide (SiO2).29 The reactive nature of the silane head groups also 

allow for the introduction of other groups on the surface, similar to alkanethiols. The 

formation mechanism of alkylsilanes has been widely disputed, however it is known 

that water has an important role, in which organosilanes are hydrolysed via 

condensation reactions with OH groups resulting in the formation of a multilayer of 

organosilanes via Si-O-Si bonds (Figure 1.3).29  

 

 

 

Figure 1.3 Schematic representation of a monolayer of organosilanes on silicon. 

 

Silane SAMs also have some limitations for example the choice of functional group is 

more limited, as the chosen head group should be unreactive to silane head groups. 

However, silane SAMs are more chemically and thermally stable than thiols on gold, 

due to the formation of a polymerised network of molecules, which are all covalently 

bonded to the surface.46 Despite the greater stability of silane SAMs, the process of 
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producing high-quality silane SAMs has proven difficult due to the need to control the 

amount of water in solution and temperature.47 On the other hand the absence of 

water results in incomplete formation of monolayers.48 For the purpose of this thesis, 

only thiol SAMs on gold will be further discussed. 

 

1.2.1.4 SAM Formation 

The adsorption of thiol on gold is a two-step kinetic adsorption process, which 

begins with the initial physisorption, followed by a stronger chemisorption step 

leading to complete monolayer formation.46,47 The initial physisorption step occurs 

rapidly, requiring a few minutes to reach almost 90% of the final thickness and 

surface coverage.44 In this first step small monolayer islands of disoriented thiols 

begin to form in the laying position on the surface of gold substrates (Figure 

1.4a).48,49 The chemisorption step (Figure 1.4b) occurs after the physisorption step 

and takes from a few hours to a few days to reach completion, after which the SAMs 

reach their final thickness (Figure 1.4c).44,50 In the final process alkyl chains 

rearrange, undergoing inter-chain van der Waals interactions to form closely packed 

monolayers (Figure 1.4c). The alkyl chains are found to be tilted from the 

perpendicular on the gold surface, resulting in an angle between 26 and 28o. The 

rate at which the initial SAMs form and the order of the SAMs varies according to the 

length of the alkanethiol.27,44  
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Figure 1.4 Schematic of SAM formation on gold where a) shows the initial 

physisorption step followed by b) the chemisorption step which leads to more 

ordered monolayers and finally c) fully formed SAMs 

 

1.2.1.5 Mixed thiol SAMs 

The formation of mixed SAMs is a more complex process than forming a 

single SAM, which involves the combination of two or more different surfactants.51 

One of the uses for mixed monolayers is in creating a greater spatial distribution 

between SAM molecules, hence they are being used increasingly for purposes such 

as the immobilisation of biomolecules. For example specific molecular bio-

recognition systems have been successfully produced using mixed biotin-

functionalised monolayers to immobilise proteins such as neutravidin and 

streptavidin onto biotin binding sites.52,53 These systems have been pivotal in the 

development of protein immobilisation on surfaces and as immunosensors.53,54 

Mixed SAMs can be achieved by selectively changing the endgroup 

functionality subsequent to SAM formation or by co-adsorbing two or more species 
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onto the substrate during SAM formation. Co-adsorption is more widely used as it is 

still possible to control the final molecular composition and order of the SAM.44 It is 

important to note that the ratio of two components in a solution of mixed SAMs is 

usually not identical to the SAM on the surface, due to preferential adsorption of one 

component over the other.55 Other factors that can influence the composition and 

surface coverage of the monolayer include intermolecular interactions, the solvent 

and the surface during SAM formation.52,56  

 

1.2.2 Nonspecific protein adsorption and protein inert surfaces 

SAM surfaces with biomolecular recognition units can be immensely useful for 

carrying out measurements for specific binding interactions. However, a significant 

challenge for these biological systems is the problem of nonspecific adsorption, 

which is the unwanted adsorption of molecules on to the substrate surface other than 

the specific binding sites. This form of adsorption can dramatically decrease the 

functionality of interfaces potentially considered for biorecognition purposes, by 

producing either a high degree of background noise or “false positives.”57 Thus, in 

order to produce materials that can be used for biotechnological applications, a 

requirement for the design of these bio-interfaces is that they must provide high 

specific binding with reduced nonspecific binding.  

Significant research effort has gone into finding molecules that prevent non-

specific binding of proteins, which has led to the usage of oligoethylene glycol 

(OEG)-terminated SAMs. OEGs have been used for numerous biological 

applications due to their ability to resist protein adsorption.54 It has been shown that 

OEG SAMs have high surface coverage and are able to prevent nonspecific protein 
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adsorption.57 Thus, OEG terminated SAMs are used commonly in diluting protein 

immobilisation surfactants, i.e. by the formation of mixed monolayers of OEG and a 

surfactant that has a reactive site that interacts with a specific moiety of the proteinto 

be immobilised. By diluting the surface it is possible to control the overall spatial 

distribution of proteins on the surface. Thus, a sufficiently spatially distributed surface 

will mean that the immobilisation of proteins is specific and not affected by any 

neighbouring protein molecules. A primarily protein-inert surface will allow for 

proteins to be immobilised in an accurate manner and thus, it is possible to study the 

desired cell protein interactions.16 Furthermore OEG alkanethiol assemblies of HS-

(CH2)11-(OCH2CH2)n-OH (EGn), where n= 3 or 6 have been studied extensively and 

shown to suppress protein adsorption. However shorter EGn chains were found to be 

ineffective.54,58 In the case of mixed SAMs, in order to prevent protein adsorption, a 

surface should be composed of a high proportion of EGn (>50%) and where n ≥ 3. 

The protein resistant characteristics of OEGs are generally attributed to hydrogen 

bonding between the EGn units and water, thus forming a hydrophilic monolayer that 

prevents protein adsorption.59,60 

The usefulness of OEG surfaces partly depends on their protein inert 

properties, but in order for these surfaces to have practical application, it is essential 

that specific protein binding can still take place.  

 

1.2.2.1 Specific protein adsorption on surfaces 

The ability to specifically detect the binding of proteins on surfaces modified 

with receptor ligands which act as specific binding sites is essential to better 

understand protein affinity on surfaces. One of the systems that has been widely 
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studied is the biotin-bound protein complexes, which have been used in a wide 

variety of bioanalytical applications, such as biochip sensor fabrication,61-66 

immunoassays,67,68 and targeted drug delivery and screening.69 In many of these 

applications proteins are often used to bind to a biotin tethered to the surface by 

taking advantage of the high affinity and specificity of biotin-bound proteins such as 

avidin,65,66,68,70 streptavidin69,71-73 and neutravidin.62,63 The avidin protein is a tetramer 

with four identical subunits, each of which consists of one binding site for biotin 

(Figure 1.5). Furthermore, avidin has an extremely high binding affinity to biotin (Ka ≈ 

1015 M-1) and forms a stable complex over a range of temperature and pH values.74 

Although avidin is an excellent candidate for the study of specific adsorption, it has a 

major drawback; high nonspecific adsorption.74 The positively charged avidin protein 

can bind to negatively charged surfaces such as cell membranes74 or silica based 

substrates.75 The cause of avidin’s high nonspecific binding can be attributed to its 

basic isoelectric point (pI ~10)74 and its carbohydrate groups, which are made up of  

four mannose residues and three N-acetylglucosamine residues per subunit.76 

 

 

Figure 1.5 Schematic of avidin tetramer with four biotin binding sites and biotin 

molecule. 
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In order to counter the high nonspecific binding of avidin, alternative biotin-

bound protein complexes such as streptavidin and neutravidin have been used and 

shown to have high affinity and specificity for biotin.62,63,70,73,77 Streptavidin is a 

nonglycosylated protein with a slightly acidic pI of ~5-6.74 Neutravidin is a 

deglycosylated form of avidin with a more neutral pI of 6.3. Both streptavidin and 

neutravidin are commonly used in biosensing applications due to their nonspecific 

binding and high specific adsorption onto biotin functionalised SAM surfaces.70 

 

1.2.3 Dynamic switchable surfaces 

In the past, studies for cell adhesion were commonly carried out on glass or 

polystyrene substrates coated with an adsorbed protein layer.16 Although this 

method is very simple, it has a number of shortcomings, the most problematic being 

the lack of control of the orientation and conformation of the adsorbed protein layer 

on the surface.16 This can reduce reproducibility of experiments due to the 

differences in available binding sites, in addition to numerous other variables within 

the system such as protein-surface interactions.78 

The fabrication of tailored substrates capable of dynamically controlling 

biomolecular and cellular interactions has many advantages in improving the 

understanding of cell mechanisms for adhesion and migration. SAM based surfaces 

offer an effective approach to producing dynamic control over cell adhesion. More 

recently there has been an emphasis on dynamically controlled substrates which 

include an “on/off” mechanism via a range of external stimuli (Figure 1.6).  
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Figure 1.6 Schematic showing different external stimuli that can be applied to a 

surface resulting in a) conformational switching and b) chemical switching. 

 

By applying an external stimulus in the form of chemical, thermal, photo and 

electrical it has been shown that the conformation of molecules or chemical 

composition on the surface can be manipulated.33 Thus, concealing or exposing the 

binding ligands allowing for some degree of control over cell adhesion on surfaces.  
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1.2.3.1 Chemical and biological stimuli responsive surfaces 

 Surfaces showing smart responsive behaviour towards both chemical and 

biological stimuli have been fabricated with high sensitivity and shown to be re-

usable biosensors. One example is the development of electrochemical DNA (E-

DNA) sensors.79,80 These sensors work via chemical interactions by becoming 

fluorescent upon hybridisation with target DNA molecules. The  E-DNA sensor 

consists  of a surface-bound DNA stem-loop labelled with an electroactive sensing 

element in this case ferrocene (Fc), which is in close proximity to the electrode and 

produces large Faradaic currents. After hybridisation with target DNA, the DNA 

stem-loop becomes upright, significantly increasing the distance between the 

electroactive moiety and the electrode surface, thus resulting in a measurable 

reduction in current. This was known as a signal-off E-DNA sensor, due to the signal 

being generated when an “off signal” was recorded (Figure 1.7).  

 

Figure 1.7 Signal OFF E-DNA sensor based on a surface-confined stem-loop 

oligonucleotide that holds the Fc group into close proximity with the gold electrode, 

which allows for electron transfer from the redox group to the electrode. Upon 

hybridisation with the target DNA sequence, the distance between the Fc group and 

the electrode is altered, thus decreasing the electron transfer efficiency.80 
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The disadvantage of this E-DNA system is that the sensitivity is very limited 

(~10 pM) due to the mechanism of the sensor, as the signal can be no more than 

100% of the original signal. The original E-DNA sensor was further developed and 

improved to enable “signal on” sensors using a similar ferrocene moiety81 and a 

methylene blue electroactive probe with a significantly improved detection limit of 

400 fM82 upon hybridisation of the target DNA. More recently Chen and co-workers 

used the ferrocene attached to the DNA system as an electrochemical cell sensor to 

check the electron transfer efficiency before and after entering cells via cell 

transfection.83 These findings were then used as a basis to carry out quantitative 

studies to differentiate between tumour cells and normal cells.84 

Iqbal and co-workers reported an effective method of controlling spatial 

distribution of functional groups on surfaces using pH-switchable SAMs with surface-

appended pseudorotaxanes.85 The multi-step formation of the SAMs, involved the 

self-assembly in solution of a dendron containing crown and a dibenzylammonium 

(DBA) recognition site with fluorine end group and a thiol for surface tethering to 

gold. The dendron provides the SAM space for each pseudorotaxane occupied on 

the SAM. In the second step following SAM formation, the dendron was released 

from the surface by switching off the noncovalent interactions upon raising the pH. 

The vacant space was backfilled with a second SAM. Thus, producing a surface that 

can tailor both density and spatial distribution of functional groups on the surface 

(Figure 1.8). 
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Figure 1.8 Schematic representation of strategy for controlling density and spatial 

distribution of functional groups on surfaces using a pH-switchable supramolecular 

system.85 

 

1.2.3.1.1 Electrochemical stimuli responsive surfaces 

Surfaces functionalised with electroactive groups such as the hydroquinone 

(HQ) and benzoquinone (BQ) redox couple have been studied extensively and 

provide real-time molecular-level control between surfaces and biomolecular or 

cellular interactions.39,86-94 Mrksich and co-workers have pioneered a number of cell-

based sensors, demonstrating methods of molecular communication between cells 

via electroactive functionalised surfaces.39,40,91,95,96 An early example of 

electrochemical release was reported with SAMs formed on gold using ligands such 

as biotin and RGD peptide tethered to quinone ester groups.40,95 An electrical 

potential was then used to reduce the BQ to a HQ resulting in an intramolecular 

cyclisation reaction to give lactone, thus releasing the ligand and allowing for 

electrochemical control of specific binding of streptavidin and selectively releasing 

cells from substrates on demand (Figure 1.9a).40,95 
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Figure 1.9 Three examples of hydroquinone (HQ)/benzoquinone (BQ) presenting 

SAMs on gold surfaces, activated by electrical potential. a) Reduction of BQ to give 

HQ, which undergoes intramolecular cyclisation and the release of ligands.40,95  b) 

HQ is reduced to BQ, which is linked with a diene-tagged ligand via Diels-Alder 

reaction.39  c) An O-silyl-protected HQ is oxidised resulting in the cleavage of the O-

Si bond and conversion of HQ to BQ which is then used to immobilise diene-tagged 

molecules.96 

 

Another method for electrochemically controlling ligand immobilisation was 

introduced using SAMs presenting HQ, which were electrochemically oxidised to 

form BQ, upon which diene-modified molecules were immobilised via Diels-Alder 

cycloaddition (Figure 1.9b).39 The electrochemical oxidation method of converting 

the HQ to BQ was further developed to allow for two dynamic properties including: 

the release of one ligand and the immobilisation of another ligand (Figure 1.9c).96 

Yousaf et al. recently extended this work to demonstrate an electrochemical 
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switchable surface for controlling peptide structures to modulate between cell-

adhesive and a non-cell-adhesive state by grafting RGD peptide.97 Many of the HQ 

and BQ based systems require very specific potentials in order to trigger the 

electroactive group of interest, hence in most of the systems described PBS was 

used as the electrolyte of choice, whereas more complex culture media was avoided. 

Ciampi and co-workers developed the use of quinone chemistry further and 

reported a unique reversible method for an electrochemical switch using a  H-

terminated silicon surface (Si(100)) and hydrosilylation of alkynes followed by the 

attachment of other moieties via modular assemblies to control cell adhesion (Figure 

1.10).98 The Si(100) surfaces were shown to change from being resistant to cell 

adsorption to promoting cell adhesion. The SAM could be chemically switched to 

attach an oligo(ethylene oxide) (OEO), which was the cell resistant molecule. 

However, application of a reducing potential of -1800 mV caused the cleavage of the 

OEO molecule via a redox-sensitive quinone moiety making the surface amenable to 

cell adhesion. Once again PBS was opted over culture media for the electrolyte in 

this system probably in order to reduce any potential inference with the 

electrochemical switching mechanism. 
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Figure 1.10 Schematic for electrochemical switching of Si(100) modular 

assemblies. 

  

Another recent example of electrochemically controlled release of cells was 

demonstrated by An and co-workers using a supramolecular system, by using a 

RGDS functionalised with an N-terminal tryptophan-glycine-glycine (WGG) motif and 

cucurbit[8]uril (CB[8]), a macrocyclic host molecule capable of binding two aromatic 

guest molecules simultaneously (Figure 1.11).99 The WGG tripeptide was bound as 

a ternary complex in the cavity of a viologen CB[8] inclusion complex. The 

electroactive viologen was modified with an alkyl thiol group in order to bind to a gold 

surface. 
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Figure 1.11 Schematic showing a supramolecular system for the controlled 

electrochemical release of cells.  

 

Two ethylene glycol groups (EGOH and EG3OH) were initially formed on the 

gold surface followed by the formation of the ternary complex. Cells were then 

adhered to the surface in DMEM without serum. By applying a -0.5 V electrical 

potential to the surface the viologen could be reduced thus releasing the RGD 

ternary complex to dissociate. The dissociation mechanism of the ternary complex 

was then used to electrochemically control cell adhesion. Mouse myoblast cells were 

seeded for 1 h, after which an electrical potential of -0.5 V was applied for 200s and 

the surface was successfully shown to remove over 90% of the original adherent 

cells form the surface after washing with saline.  
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1.2.3.2 Thermo-responsive surfaces 

 The use of temperature as a stimulus is another well-known method to control 

biological properties on the surface. Reports of thermo-responsive surfaces have 

been primarily based on polymers designed for biomedical applications.100-102 

However, it has been shown by Balamurugan et al. that compositions of mixed 

SAMs of oligo(ethylene glycol) (OEG)- and methyl- terminated alkanethiols exhibit 

changes in their resistance to protein adsorption, bacterial cells used for attachment 

and wettability at room temperature and at 37 oC.103 Proteins were dissolved in PBS 

prior to exposure to surfaces whereas bacterial attachement took place using a 

chemostat culture in modified basal medium. 

Zareie and co-workers also reported temperature-responsive OEG SAMs 

which were shown to reversibly switch the wettability of the surface and more 

importantly control the binding of streptavidinto a biotinylated surface.104 In order to 

demonstrate the protein-resistant nature of the OEG, streptavidin dissolved in 

nanopure water was immobilised onto a mixed SAM of the OEG along with a shorter 

biotinylated disulphide. It was shown that at 23oC the biotin molecules were 

embedded in the OEG layer due to the difference in length. However, when the 

temperature was raised from 23 oC to 45 oC there was an increase in the adsorption 

of streptavidin by ~29 fold, which was attributed to the increased availability of the 

biotin molecules due to the collapse of the neighbouring OEG chains (Figure 1.12). 
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Figure 1.12 Schematic representations of the mixed SAM (OEG and biotinylated 

disulfide) and streptavidin binding onto the mixed SAM at 45°C, however at 23°C 

streptavidin is unable to bind due to the OEG chains masking the biotin. 

 

1.2.3.3 Photo-responsive surfaces 

 Numerous studies have successfully reported cell-material surfaces which are 

responsive to light. Nakanishi and co-workers reported a method to capture 

genetically tagged extracellular matrix protein in response to light on gold 

functionalised surfaces.105 The substrate was composed of mixed SAMs of three 

disulfide compounds including (i) a photocleavable poly(ethylene glycol) (PEG) (ii) 

nitrilotriacetic acid (NTA) and (iii) hepta(ethylene glycol) (EG7). The NTA group has a 

high affinity for oligohistidine tag (His-tag) sequences, however this interaction was 

suppressed due to the steric hindrance of the PEG brushes which prevented the His-

tag from binding to the NTA. Photoirradiation of the substrate in water released the 

PEG brushes thus, allowing for the capture of the His-tag proteins, while preventing 
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non-specific adsorption of non-His-tagged proteins via the the EG7. (Figure 1.13) 

Furthermore the same method was used to immobilise a His-tagged fibronectin 

fragment to irradiate patterned regions in order to selectively attach cells to the 

irradiated regions. These results provided a useful method for studying cellular 

behavior on specific extracellular matrix proteins in cell-culturing environments. 

 

 

 

Figure 1.13 Schematic of a dynamic substrate that prevents adsorption of any 

proteins prior to photoirradiation due to the PEG brushes (Left). However after 

photoirradiation the PEG brushes are released, the His-tagged proteins (protein A) is 

immobilised to the NTA group, while keeping adsorption of non-His-tagged proteins 

(protein B) blocked by the EG7 underbrushes. 

 

Liu and co-workers fabricated a photo-switchable RGD peptide SAM based 

on azobenzene, which displayed reversible control of cell adhesion (Figure 1.14).106 

This approach to controlling cell adhesion using an RGD containing switching moiety 
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was based on previous work carried out by Kessler and co-workers.107 The 

azobenzene unit acts as the switching mechanism through reversible cis-trans 

isomerisation. In the E isomer the RGD peptide is presented for the adhesion of cells 

in DMEM containing 10% FBS and can be switched by irradiation of UV light (λ = 

340-380 nm) to the Z isomer, which masks the RGD peptide in PEG-terminated 

SAMs to prevent cell adhesion. Reverse isomerisation occurs by the irradiation of 

visible light (λ = 450-490 nm). This study demonstrates clearly that small changes in 

conformation of the RGD peptide can offer effective dynamic control of cell adhesion. 

 

 

Figure 1.14 Schematic of a photoswitchable surface where he azobenzene moiety 

can be converted photochemically between the E and Z configurations to either 

present or mask the RGD ligand and hence modulate biospecific cell adhesion. 
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 Another method of using azobenzene SAMs to control cell adhesion was 

reported via host-guest complexation. The host-guest interactions between a 

GRGDS terminated azobenzene (azo-GRGDS) and α-cyclodextrin (α-CD) 

terminated silane SAM were utilised by Gong and co-workers108 to reversibly control 

cell adhesion (Figure 1.15). After the assembly of the azo-GRDGS to the α-CD, the 

azo-GRGDS could be released upon UV irradiation along with adherent cells (Figure 

1.15)

 

 

Figure 1.15 Schematic representation of a silane terminated α-CD which forms an 

inclusion complex via host-guest recognition with an azobenzene-GRGDS molecule. 

Hela cells adhere to the surface when the azobenzene is in the trans conformation. 

Upon UV irradiation at 365 nm the trans-azobenzene changes to cis-azobenzene, 

which results in the detachment of both the azo-GRGDS and cells from the 

substrate.108 
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1.2.3.4 Electrically responsive surfaces 

 Electrically responsive surfaces have been among the most studied in the 

field of switchable surfaces. Numerous electroactive groups have been successfully 

employed to switch functionalities in situ, thus offering the ability to manipulate the 

interactions of peptides,39,40,88,91,96,109 DNA,110-112 proteins41 and cells39,40,91,96 with 

surfaces. Recently a label-free method for analysing interactions of proteins with 

surface-tethered ligands was developed in which an electrical field was used to 

control the conformational switching of surface-bound negatively charged DNA 

levers tethered to Cy3 dyes (Figure 1.16).113  

 

Figure 1.16 Schematic representation of the DNA lever where a) shows the DNA 

lying on the surface due to an attractive +0.3 V applied potential, the DNA is repelled 

when a negative potential of -0.5 V is applied. b) When a protein is attached to a 

ligand at the top end of the DNA, the upward motion at a negative potential slows 

and lags behind the DNA lever. The blue circle represents the Cy3 fluorophore when 

the fluorescence emission quenched by the surface. The yellow circle represents a 

high fluorescence emission due to the lever being further from the surface. 
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 Application of an attractive +0.3 V applied potential caused the DNA to lie on 

the surface. Thus, in the lying down conformation the fluorescence emission from the 

Cy3 dyes attached at the distal end of the DNA was low, due to the proximity 

quenching effect of the metal substrate.114 However, when the electrical potential 

was switched from +0.3 V to -0.5 V, the DNA was repelled from the surface and 

pushed into a more vertical position, hence increasing the fluorescence emission 

due to the Cy3 dyes moving further away from the quenching surface. The 

fluorescence emission was an effective method to report the distance of the DNA’s 

top end to the gold surface. Thus, when a protein was bound to the DNA lever 

(Figure 1.16b), there was a lag behind the dynamics of the bare lever, attributed to 

the hydrodynamic drag that occurs when protein bind to the DNA’s top end. It was 

possible to measure the diameter of the protein with angstrom resolution by using 

time-resolved upward dynamics. In addition, this method revealed avidity effects and 

differentiation between analytes with one or more binding sites. 

Conventionally SAMs have been shown to be densely packed and so 

regulating conformational changes on surface-tethered molecules has not been 

possible. The development of low density SAMs115,116 has allowed for the design and 

fabrication of numerous novel SAMs for the dynamic control of protein adsorption 

and release under electrical stimuli.42,117 These surfaces display reversible switching 

via conformational changes of surface bound molecules in response to an applied 

potential. Changes in molecular orientation have been proven using different 

techniques such as sum-frequency generation (SFG)115,118 and atomic force 

microscopy (AFM).119 Lahann and co-workers demonstrated the possibility of using a 

low density SAM with reversible switchable properties by using a hydrophobic 
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mercaptohexadecanoic acid (MHA) chain capped by a hydrophilic carboxylate group 

(Figure 1.17).  

 

Figure 1.17 Schematic showing the formation of LD-SAMs by utilising a bulky 

head-group, thus creating a monolayer that switches between hydrophilic and 

hydrophobic states upon the application of an electrical potential.37 

  

A space-filling end group was used to provide sufficient spatial distribution for 

each molecule in order to undergo a conformational change between “straight” and 

“bent”. After SAM formation cleavage of the space-filling end group presented the 

low density SAM. Furthermore conformational change was confirmed due to the 

change in wettability of the surface from hydrophobic to hydrophilic upon the 

application of an electrical potential. Thus, clearly demonstrating reversible control of 

a low density SAM using an electrical stimulus. 

 Liu and co-workers further developed the low density 16-

mercaptohexadecanoic acid (MHA) SAMs to produce carboxylic-termintated and 

amino-terminated SAMs that could undergo conformational changes in response to 
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an electrical stimulus.120 A similar system was developed with carboxylic 

functionalised microfluidic chips and shown to control the adsorption and release of 

streptavidin and avidin proteins in PBS buffer due to conformational changes (Figure 

1.18).42  

 

 

Figure 1.18 Schematic representation of electrically controlled adsorption and 

release of avidin and streptavidin proteins. 

 

The positively charged avidin adsorbed to the surface under a negative 

potential, whereas the avidin was released when a positive potential was applied. 

Streptavidin, a negatively charge protein, was also used to show a similar adsorption 

and release with an amine-functionalised microchip under alternate potentials. 
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The concept of electrically switchable surfaces was developed further recently 

in our group121 in which an electrically switchable oligopeptide surface was 

fabricated. The surface consisted of a positively charged oligolysine backbone which 

has at one extremity a cysteine group able to anchor to a substrate and a bioactive 

molecular moiety at the other extremity, which act as functional components on 

switchable surfaces for controlling specific biomolecular interactions. The surface 

also had a neutral triethylene(glycol) thiol (TEGT) to provide sufficient space for the 

switching of the peptide.  

 

Figure 1.19 Schematic representations showing the biotin-4KC:TEGT electro-

switchable biological surfaces. Upon the application of a) +0.3 V applied potential the 

biotin group is exposed allowing for neutravidin binding and b) -0.4 V applied 

potential the biotin group is concealed preventing neutravidin binding.  
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The electro-switchable system is based upon the conformational switching of 

positively charged oligolysine peptides that are tethered to a gold surface, such that 

bioactive molecular moieties incorporated on the oligolysines can be reversibly 

exposed (bio-active state) or concealed (bio-inactive state) on demand, as a function 

of surface potential (Figure 1.19). Switching of the surfaces was determined by 

observing the binding events during two applied potentials of either +0.3 V and -0.4 

V. Fluorescence images were taken of the labelled neutravidin-biotin binding and 

were observed under fluorescence microscope, where higher fluorescence 

intensities were observed for +0.3 V whereas, minimal fluorescence was observed 

for -0.4 V. SPR experiments further confirmed the switching of the surface by 

showing a 90% reduction in neutravidin binding under PBS buffer conditions with a 

negatively applied potential. Further work carried on the biotin-4KC:TEGT mixed 

SAMs demonstrated the reversible conformational changes of the biotinylated 

peptide by using SFG118 and molecular dynamic simulations,122 which indicated that 

a negative applied potential caused a collapse of the oligopeptide backbone thus, 

masking the biotin binding sites. 

 Gooding and co-workers123 further developed the concept of regulating 

conformational change of molecules attached to the surface using electrical potential 

and designed two-component SAMs with the aim of controlling control cell adhesion 

using a 0.1% serum containing media. The two-component SAMs consisted of a 

protein-resistant backbone chain of hexa(ethylene glycol) (EG6), with a charged 

moiety at the distal end and the second component was RGD terminated to allow for 

cellular adhesion receptors to bind via integrins (Figure 1.20). Two SAM surfaces 

were prepared using different EG6 molecules, one with a sulfonate (anionic) distal 

moiety and the other with an ammonium (cationic) distal moiety. These components 
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could be switched depending on the potential applied to the surface. Thus, if the 

potential applied was the same polarity as the charged distal moiety, the EG6 

component would stretch out (Figure 1.20a and Figure 1.20c) to conceal the RGD 

moiety, producing a cell resistant surface. Whereas if the polarity of the applied 

potential was opposite (Figure 1.20b and 1.20d), the distal moiety would flip towards 

the surface, hence exposing the RGD peptide resulting in cell-adhesive properties. 

 

 

 

Figure 1.20 a) EG6-sulfonate mixed SAMs where the RGD is masked due to a 

negative potential repelling the negatively charged sulfonate group resulting in a cell 

resistant surface. b) Upon the application of a positive potential, the sulfonate group 

is attracted to the surface exposing the RGD group for cell adhesion. c) and d) 

display a positively charged ammonium terminated group that can also control cell 

adhesion by alternating potentials. 
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1.3 Concluding remarks 

The literature mentioned thus far has shown a number of successful 

switchable systems that can modulate surface properties via conformational or 

chemical switches. These stimuli-responsive surfaces can regulate specific 

biomolecular interactions enabling novel functionalities and new device designs for a 

variety of biological and medical applications. However, in order to realise the full 

potential of these surface-bearing responsive architectures, it is imperative to 

understand their operation under complex and realistic biological environments. A 

key challenge yet to be fully fulfilled by switchable surfaces is to regulate, and 

understand, specific biomolecular interactions that are driven by external stimuli in 

complex biological conditions. This will ensure that biological information and control 

generated through such tools mimic the natural biological environment. Biological 

systems are typically a complex mixture of inorganic salts, inorganic complexes, 

amino acids, peptides, and proteins.124 The majority of studies on stimuli-responsive 

surfaces reported thus far either rely on controlling non-specific interactions (i.e., 

hydrophobic/hydrophilic and electrostatic) of the biomolecules with the active 

surface,101,125-128 or have focused on demonstrating modulation of specific 

biomolecular interactions under simple biological conditions, typically water or buffer 

solutions.104,105,129  

To date, few studies have considered switching using more complex 

biological systems.99,107,123 As an example, very recently, Ng and co-workers123 

reported a route to control adhesion of bovine aortic endothelial cells on electrically 

switchable arginine–glycine–aspartate (RGD)-functionalised surfaces using 0.1% 

serum containing media. Although development of surfaces with switching functions 
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under complex biological conditions is highly desirable from the standpoint of 

biomedical applications, studies to such effect are scarce and more investigations 

are clearly needed to understand and develop molecular–based platforms to address 

solutions within the biomedical field. 

 

1.4 PhD Overview 

The aim of this PhD is to design and fabricate novel biological surfaces which 

are able to selectively control i) biomolecular interactions and ii) cellular interactions 

under more realistic complex biological conditions thus, could potentially lead to uses 

in medical and biological applications. The focus of this project will be on: 

 

i) Fabricating mixed SAMs to control biomolecular interactions under complex 

biological conditions, using an electrical stimulus. This study will aim to 

enhance the biotin-4KC:C3TEG (TEGT) switchable surface for switching 

under culture media. This will be a significant step in providing a better 

understanding of the relationship between different components within the 

culture media and switching efficiency.  



  P a g e  | 37 

 

Figure 1.21 Schematic showing the electro-switchable surface for control of 

biomolecular interactions under complex biological conditions. 

 

ii) Fabricating mixed SAMs to dynamically regulate immune cell interactions on 

the surface under complex biological conditions, using an electrical stimulus. 

This study will aim to selectively adhere immune cells to an electro-switchable 

RGD-terminated mixed SAM with an OEG group to prevent nonspecific 

binding from the culture media. It is expected that under open circuit 

conditions cells will adhere to the surface due to the RGD group being 

exposed for cell attachment. However, under an applied potential of -0.4 V 

cells are expected to be prevented from adhering to the surface due to the 

concealment of the RGD group and the protrusion of the OEGs.  
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Figure 1.22 Schematic showing the electro-switchable surface for controlling 

cellular interactions under complex biological conditions. 
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Chapter 2: Surface Characterisation Techniques 

Abstract: This chapter gives a brief summary and description of the various surface 

characterisation techniques available for the analysis of SAMs. In order to 

understand the chemical and physical properties of a SAM surface it is essential to 

piece together the characteristics of the surface via as many techniques as possible 

in order to ensure accurate analysis of the surface can be achieved. Thus, some of 

the most well known techniques are reviewed such as contact angle measurements, 

ellipsometry, X-ray photoelectron spectroscopy (XPS) and surface plasmon 

resonance (SPR). 

 

2.1 Contact Angle 

Contact angle is a simple but effective technique at measuring the static and 

dynamic angle of a surface. A typical contact angle consists of a syringe filled with a 

solvent, a fibre optic cable, which allows for the illumination of the surface of interest 

and a camera which is connected to a computer for analysis. To begin the contact 

angle measurement, the solvent is added dropwise onto the surface which is then 

recorded by the camera and analysed. 

The contact angle is determined using the Young’s equation130 (Equation 2.1) 

where γSV is the free energy between the solid and the vapour, γSL is the free 

energy between the solid surface in contact with liquid and γLV is the free energy of 

the liquid-vapour interface. 
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γSV ─ γSL  = γLV 

Equation 2.1 

 

When a water droplet is deposited on a hydrophobic surface there is lower 

surface energy and the droplet does not spread on the surface hence producing a 

higher contact angle (>900) (Figure 2.1a). However a water droplet on a hydrophilic 

surface results in the water spreading in order to minimise the free surface energy, 

which leads to a lower contact angle (Figure 2.1b). 

 

Figure 2.1 Illustration representing a sessile liquid drop on a solid surface which 

forms a contact angle (θ). a) hydrophilic surface with a high contact angle (θ >900) 

and b) hydrophilic surface (θ < 300). 

 

There are two primary methods of measuring the contact angle; static contact angle 

and dynamic contact angle. Static contact angle is measured by a droplet of a 

measured volume on the surface which remains constant. Dynamic contact angle is 
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measured by the addition and withdrawal of the droplet through a needle, where the 

addition produces the advancing contact angle (θa) and withdrawal of the droplet 

produces the receding contact angle (θr). 

 

Figure 2.2 Illustration representing a) advancing and b) receding contact angle 

when a droplet is added or withdrawn from the surface. 

 

The differences between the advancing and receding contact angles is called the 

contact angle hysteresis (Δθ = θa ─ θr). A small hysteresis (<50) indicates a 

homogenous and well ordered surface, whereas a large hysteresis suggests the 

surface is contaminated, non-homogenous and/or relatively rough.131 

 

2.2 Ellipsometry 

 Ellipsometry is a non-destructive optical technique that can calculate the 

change in polarisation of light upon reflection in order to give valuable information 

about the formation of SAMs via thickness measurements up to 1000 Å.132 
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Ellipsometry works by the use of a plane-polarised light, which interacts with a 

surface at an angle. The light can be considered to comprise two components 

denoted s- and p-polarised.27 The two components are then reflected from the 

surface with a different phase and amplitude. Finally when the s-and p- polarised 

light are combined once again they result in elliptically polarised light. This process 

allows ellipsometry to measure the thickness between the surface of a substrate and 

air due to the ratio r between rp and rs, which are the reflection coefficients of the p- 

and s- polarised light respectively (Figure 2.3). 

 

 Source        Detector 

          

 Polariser   Compensator 

  

  

 

Figure 2.3 Schematic of the mechanism of an ellipsometer. Polarised light 

interacts with the target surface at an angle. The light is then split into s- and p- 

polarised light. The s- and p- polarised light beams are then combined resulting in 

the elliptically polarised light, which is the then reflected off the surface at different 

times due to the refraction through the organic thin film. Thus, the amplitude and 

phases of both components are changed.133 
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The thickness value of SAMs is based on the model of the air/SAM/solid in which the 

SAMs are assumed to be free of defect (homogeneous) and with a refractive index 

of 1.50.133 This model is based on the Cauchy equation, which consider the SAMs as 

a transparent layer, where the thickness is obtained using multi guess iterations and 

provides a thickness result with the lowest χ2 (chi-square distribution). 

 

2.3 Surface Plasmon Resonance 

 The earliest documented observation of surface plasmons was made by 

Wood in 1902.134 Wood reported the appearance of dark and light bands in reflected 

light in the diffracted spectrum of metallic gratings illuminated with polychromatic 

light. This phenomenon, which Wood referred to as an anomaly, was later explained 

in terms of surface plasmon resonance (SPR) in 1968 by several researchers135-137 

whom observed the optical excitation of surface plasmons.  

 The method of detection of SPR consists of a monochromatic and polarised 

light source, a glass prism, a thin metal film (usually 50 nm of gold) in contact with 

the glass prism and a photodetector.137 SPR works by the interaction of polarised 

light with a surface interface, when the angle of incidence is above the critical angle 

as shown in Figure 2.4. The critical angle is the angle of incidence beyond which 

total internal reflection of the incident light occurs, below this angle there is both 

reflection and refraction. Total internal reflection results in an evanescent field138 

which extends from the prism into the metal film. This evanescent field couples to an 

electromagnetic surface wave, known as a surface plasmon, at the metal/liquid 

interface. Coupling is achieved at a specific angle of incidence, known as the SPR 

angle.139 At this angle, the reflected light intensity goes through a minimum due to 
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the surface plasmon resonance. The position of the SPR angle depends on the 

optical properties of the prism, the metal, the medium in contact with the metal 

(usually a liquid), the metal film thickness, and the wavelength of the light source 

used.  

 

Figure 2.4 Schematic of the mechanism of surface plasmon resonance. Polarised 

light shines onto the back of the sensor chip and the reflected light intensity is 

measured in the photodetector. θi is the angle of incidence, where the excitation of 

surface plasmon occurs inducing a reduction of the intensity of the reflected light. θr 

is the angle of refractive light, a change in the refractive index at the gold surface 

causes a shift of the intensity of the reflected light thus an analyte is detected.  

  

 The SPR angle is highly sensitive to changes in the refractive index of a thin 

layer adjacent to the metal surface which is sensed by the evanescent wave. Thus, 

changes in refractive index to the surface can be measured within ~200 nm from the 

surface of the sensor immersed in solution in order to monitor the kinetics of 

adsorption of target molecules (Figure 2.5a).140 For example when a protein layer is 

adsorbed on the metal surface, the SPR angle shifts to larger values (Figure 2.5b). 

The binding kinetics of target molecules on the surface is presented in the form of a 

SPR sensogram (Figure 2.5c), which can be split into three different phases: 
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baseline, association and dissociation. The baseline phase occurs prior to the 

injection of the analyte and usually a buffer solution such as phosphate buffer saline. 

Association is the phase where the analyte is injected, then flows over the surface of 

the sensor chip and binding occurs between the ligand and analyte. Depending on 

the binding kinetics and experimental condition the interactions may or may not 

reach a plateau, which is an indication that the interactions have reached 

equilibrium. Finally, dissociation is the phase after the injection is completed and the 

initial buffer is used againto rinse off any unbound molecules from the surface. 

 

Figure 2.5 a) Schematic representation of an SPR sensor equipped with suitable 

surface functionalised biorecognition element which can be used as an SPR 

biosensor. Biological analytes labelled biomolecules are shown to interact with the 

biorecognition elements labelled as the SAM. b) A change in the refracted light 

intensity is observed from θA to θB after the biomolecules are bound to the surface. c) 

A typical sensogram displaying the three sensogram phases. 
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2.4 X-ray photoelectron spectroscopy (XPS) 

 XPS is a technique that can analyse the elemental composition on a surface 

by irradiating the sample with a photon of energy (ℎ𝑣), which penetrates the surface 

and excites a core level electron. Upon excitation the core level electron exceeds the 

binding energy (𝐸𝐵), the atom then emits an electron, which is detected by the 

electron spectrometer. The conducting sample is in electrical contact with the 

spectrometer such that both the sample and spectrometer have a common reference 

for measuring electron energy, called the Fermi level. By analysis of the kinetic 

energy (𝐸𝐾) involved in the emission of an electron the following equation can be 

derived141: 

𝑬𝑲 + ø = 𝒉𝒗 − 𝑬𝑩 

Equation 2.2 

Where ø is the work function of the spectrometer and remains constant, ℎ𝑣 refers to 

the photon energy usually in the form of monochromatic x-rays, 𝐸𝐾 is the kinetic 

energy of the electron and 𝐸𝐵  is the binding energy of the electron. The binding 

energy provides an elemental identification of the surface, thus the number of 

ejected electrons is proportional to the number of atoms that are on any given 

surface. Photoelectrons are generated via ejection from the solid surface upon 

excitation of core level orbitals by a photo source: 

𝑨 + 𝒉𝒗 → 𝑨+∗ + 𝒆− (photoelectron) 

Equation 2.3 
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Where A is a neutral atom or molecule, A+* is the excited ion and e─ is the ejected 

photoelectron. The photoionisation process is illustrated in Figure 2.6. The relatively 

non-destructive nature of XPS can be attributed to the fact that only the ejection of 

electrons is required for analysis. The atomic nuclei that are examined during 

electron spectroscopic measurements remain unchanged. However, it is important to 

note that this does not include samples which may be sensitive to decomposition 

from exposure to an X-ray source.142 
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Figure 2.6 Schematic of the XPS process, showing the photoionisation of an atom 

by the ejection of a core electron. 

  

XPS is sensitive up to a detection limit of 0.1% of a monolayer and can detect 

most elements except H and He. In well-calibrated XPS systems, the precision of the 
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quantitation measurements are typically within ±5%; thus, XPS is suited for both 

quantitative and qualitative elemental analysis.142 An XPS spectrum consists a plot 

of the number of electrons detected versus the binding energy. Each element has a 

set of characteristic peaks with certain binding energy values, which aids in the 

identification of the element after a sample is analysed. The binding energy differs 

from atom to atom and hence it determines the positions of the XPS peaks. Figure 

2.7 shows an example of a typical XPS S 2p spectrum for an alkanethiol designated 

CnSH where n = 16. The S 2p spectra for this SAM has a doublet structure due to 

the presence of the S 2p3/2 and S 2p1/2 peaks. The binding energy of the S 2p3/2 peak 

is at 161.9 eV which is in agreement with previous reports of sulphur atoms bound to 

a gold surface as a thiolate species.143 The spectrum was fitted using a 2:1 peak 

area ratio and a 1.2 eV splitting. 

 

 

Figure 2.7 XPS spectrum of an alkanethiol CnSH where n = 16. C16SH thiol 

peaks were fitted using one Sp2 doublet with a 2:1 are ratio and a splitting of 1.2 eV. 
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Chapter 3: Switching Specific Biomolecular Interactions on 

Surfaces under Complex Biological Conditions 

This chapter is based on two manuscripts, “Switching Specific Biomolecular 

Interactions on Surfaces under Complex Biological Conditions” by M. Lashkor, F. J. 

Rawson, J. A. Preece, P. M. Mendes, Analyst, 2014, 139, 5400 and partially on 

“Modulation of Biointeractions by Electrically Switchable Oligopeptide Surfaces: 

Structural Requirements and Mechanism” by C. L. Yeung, X. Wang, M. Lashkor, E. 

Cantini, F. J. Rawson, P. Iqbal, J. A. Preece, J. Ma, P. M. Mendes, Advanced 

Materials Interface, 2014, 1, 1300085. 

 

Abstract: This chapter discusses the development and characterisation of an 

electrically switchable mixed self-assembled monolayer system based on 

oligopeptides, followed by an in-depth study for their suitability in achieving control 

over biomolecular interactions in the presence of complex biological conditions. This 

model system, a biotinylated oligopeptide tethered to gold within a background of 

tri(ethylene glycol) thiol, excels in both switching specific protein interactions in highly 

fouling media while still offering the non-specific protein-resistance to the surface. 

Furthermore, the work demonstrated that the performance of the switching on the 

electro-switchable oligopeptide is sensitive to the characteristics of the media, and in 

particular, its protein concentration and buffer composition, and thus such aspects 

should be considered and addressed to assure maximum switching performance. 

This study lays the foundation for developing more realistic dynamic extracellular 

matrix models and is certainly applicable in a wide variety of biological and medical 

applications. 
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3.1 Introduction 

Stimuli-responsive surfaces that are capable of modulating their biological 

properties in response to an external stimuli, including temperature,144,145 light,146 

magnetic field147 and electrical potential,41,121,148 are of growing interest for a variety 

of biological and medical applications.33 Switchable surfaces that can be controlled 

on-demand are playing an increasingly important part in the development of highly 

sensitive biosensors,79,81,149-152 novel drug delivery systems153-156 and highly 

functional microfluidic, bioanalysis, and bioseparation systems.157-160 Additionally, 

dynamic, synthetic surfaces that can control the presentation of regulatory signals to 

a cell are expected to have a significant impact in the field of tissue engineering and 

regenerative medicine. This will provide unprecedented opportunities in fundamental 

studies of cell biology.26,161  The availability of sophisticated and functional switchable 

surfaces is expected to emulate more complex, in vivo like extracellular 

environments and provide a powerful means to probe and control the dynamic 

interactions between the cell and its external environments.  

Previously,121 the operation of switchable oligopeptides on mixed SAMs on 

gold surfaces was tested, in order to control biomolecular interactions under only 

very limited biological conditions (i.e. phosphate buffer saline – PBS) using an 

electrical potential as an actuator. These SAMs have been shown to regulate the 

binding between the biotin ligand on the surface and neutravidin from solution. 

Switchable SAMs used to control biomolecular interactions via an electrical stimulus 

are particularly appealing because of their fast response times, ease of creating 

multiple individually addressable switchable regions on the same surface, as well as 

low-driven voltage and electric fields that are compatible with biological systems.123 
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These inherent properties, along with the diversity of bioactive molecular entities 

which can be chemically attached to the oligopeptide, make these oligopeptide 

SAMs excellent candidates to realize high performance electrical switchable 

surfaces for complex biological conditions. 

To address the challenge of developing and understanding new switchable 

surfaces a detailed study was conducted, using electrochemical surface plasmon 

resonance (SPR) spectroscopy, on the influence of the characteristics of complex 

biological medium (both its chemical and protein composition and its inherent 

physicochemical properties) on the switchable properties of an oligopeptide SAM 

model system (Figure 3.1). The switchable oligopeptide SAM model system was 

composed of two molecular components: (i) a positively charged 4-mer of lysine (K) 

that is functionalized at one end with biotin, which recognises the neutravidin protein, 

and at the other end with a cysteine (C) for binding to gold substrates via the thiol 

group (biotin-4KC), and (ii) an ethylene glycol-terminated thiol (C3TEG, C11TEG 

and C11HEG). The ethylene glycol molecules to be used in the formation of the 

mixed SAM are known to have protein resistant properties, however as mentioned in 

Section 1.2.2, the EGn chain has an effect on the protein resistant properties of a 

surface. Hence it is hoped that by testing three ethylene glycol molecules, the 

optimal monolayer for specific binding of protein and the effective prevention of 

nonspecific adsorption from complex media can be achieved. 

The interaction of the neutravidin proteinto the surface appended biotin ligand 

was chosen for these studies because it can be easily monitored and quantified by 

SPR, allowing for facile evaluation of the switching performance under various 

biological conditions. 
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3.1.1 Objectives 

1) To optimise the composition of the oligopeptide mixed SAM to resist 

nonspecific protein adsorption, by comparing the nonspecific binding on 

three different ethylene glycol groups: C3TEG, C11TEG and C11HEG.  

 

2) To fully characterise the mixed SAMs via XPS, contact angle and 

ellipsometry. 

 

3) To use computer modelling to better understand how the switchable 

oligopeptide SAM controls the neutravidin-biotin interactions.  

 

4) To evaluate the switching properties of the electrically switchable 

oligopeptide mixed SAMs in three commonly used biological media, namely 

Dulbecco’s Modified Eagle Medium (DMEM), DMEM with 10% fetal bovine 

serum (DMEM-FBS) and DMEM-FBS with 24 mM HEPES buffer (DMEM-

FBS-HEPES). 
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Figure 3.1 Schematic showing proposed mechanism for switching a biotinylated 

peptide in complex biological conditions. Under no applied electrical potential, 

neutravidin binds specifically to the biotin headgroup while non-specific binding from 

complex media is prevented. Under an applied negative potential no binding is 

observed from neutravidin and the complex media. 
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3.2 Results and Discussion 

3.3 Formation and characterisation of mixed SAMs on gold substrates 

3.3.1 Formation of mixed biotin-4KC:OEG SAMs 

 Cleaned gold surfaces were functionalized with a two-component mixed 

SAM of biotin-4KC peptide with either C3TEG, C11TEG or C11HEG as shown in 

Figure 3.2. The biotin-4KC peptide consists of a cysteine group, four lysines and a 

biotin functional group. The oligopeptide will be immobilised to the gold surface via 

the cysteine group, which contains a thiol moiety that binds to gold. The four lysine 

groups provide a flexible backbone, which provides ample manoeuvrability to 

switch conformations between the on and off states as shown previously.121 The 

main role of the OEG groups, in addition to providing spatial distribution for the 

biotin-4KC peptide to switch, is to prevent non-specific binding from complex 

media.

 

Figure 3.2 Schematic of the formation of a) biotin-4KC:C3TEG b) biotin-

4KC:C11TEG and c) biotin-4KC:C11HEG mixed SAMs. 
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3.3.2 XPS Characterization of the oligopeptide mixed SAMs with different 

OEGs 

The next critical issue was to choose oligopeptide mixed SAMs with a surface 

ratio that offers switching properties while providing high specific binding to 

neutravidin without interference from non-specific interactions. The biotin-

4KC:C3TEG mixed SAM was previously characterised by XPS121 and it was 

demonstrated that the biotin-4KC:C3TEG had a surface ratio of 1:16 ± 4 from a 

solution ratio of 1:40, which allows for excellent switching properties while offering 

optimum binding capabilities. Thus, a similar surface ratio was sought for the other 

mixed SAM systems consisting of the biotin-4KC with either the C11TEG or 

C11HEG components. By using the same 1:40 solution ratio as previously shown,121 

biotin-4KC:C11TEG and biotin-4KC:C11HEG mixed SAMs were formed over 24 

hours for XPS analysis.  

XPS analysis revealed the presence of the elemental species S, N, C and O 

on the biotin-4KC:C11TEG SAM (Figure 3.3), confirming thus the formation of the 

mixed SAM. The S 2p spectrum (Figure 3.3a) consists of two doublet peaks, with 

one doublet peak at 163.2 eV (S 2p1/2) and 162.0 eV (S 2p3/2), indicating that the 

sulphur is chemisorbed on the gold surface.162 The second doublet peak can be 

observed at 163.8 eV and 165.0 eV, which is assignable to the S-C bond in the biotin 

moiety.163,164 The N 1s spectrum (Figure 3.3b) can be deconvoluted into two peaks, 

which support the presence of the peptide on the surface. The first peak centred at 

400.5 eV is attributed to amino (NH2) and amide (CONH) moieties. The second peak 

centred at 402.3 eV is ascribed to protonated amino groups.165 The C 1s spectrum 

(Figure 3.3c) can be deconvoluted into three peaks, which are attributed to five 
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different binding environments. The peak at 285.1 eV is attributed to C-C bonds,166 

while the peak at 286.4 eV corresponds to C 1s of the three binding environments of 

C-S, C-N and C-O.166 The third and smaller peak (288.7 eV) is assigned to the C 1s 

photoelectron of the carbonyl moiety, C=O.166 The O 1s spectrum (Figure 3.3d)  is 

de-convoluted into two different peaks, corresponding to two different binding 

environments, arising from the C-O (533.2 eV) and C=O (532.0 eV) bonds.166  

 

 

 

Figure 3.3 XPS spectra of the a) S 2p, b) N 1s, c) C 1s and d) O 1s peak regions 

of biotin-4KC:C11TEG mixed SAMs at a 1:40 solution ratio. 
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 XPS analysis was also carried out for the biotin-4KC:C11HEG revealing the 

presence of the elemental species S, N, C and O (Figure 3.4), confirming the 

formation of the mixed SAM. The S 2p spectrum (Figure 3.4a) consists of two 

doublet peaks, with one doublet peak at 163.8 eV (S 2p1/2) and 162.6 eV (S 2p3/2), 

indicating that the sulphur is chemisorbed on the gold surface.162 The second 

doublet peak can be observed at 164.3 eV and 165.5 eV, which is assignable to the 

S-C bond in the biotin moiety.163,164 The N 1s spectrum (Figure 3.4b) can be 

deconvoluted into two peaks, which support the presence of the peptide on the 

surface. The first peak centred at 400.9 eV is attributed to amino (NH2) and amide 

(CONH) moieties. The second peak centred at 402.4 eV is ascribed to protonated 

amino groups.165 The C 1s spectrum (Figure 3.4c) can be deconvoluted into three 

peaks, which are attributed to five different binding environments. The peak at 285.6 

eV is attributed to C-C bonds,166 while the peak at 287.4 eV corresponds to C 1s of 

the three binding environments of C-S, C-N and C-O.166 The third and smaller peak 

(288.6 eV) is assigned to the C 1s photoelectron of the carbonyl moiety, C=O.166 The 

O 1s spectrum (Figure 3.4d) is de-convoluted into two different peaks, 

corresponding to two different binding environments, arising from the C-O (533.7 eV) 

and C=O (532.0 eV) bonds 166  

Furthermore, from integrating the area of the S 2p and N 1s peaks and taking 

into consideration that the biotin-4KC oligopeptide consists of 11 N atoms and 2 S 

atoms and both OEGs (C11TEG and C11HEG) have no N and 1 S atom only. The 

Equation 3.1 was formulated to calculate the number of C11TEG and C11HEG 

molecules per peptide on the surface.  
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𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝟏𝟏𝑻𝑬𝑮 = (𝑵𝒐. 𝒐𝒇 𝑵 𝒑𝒆𝒓 𝒑𝒆𝒑𝒕𝒊𝒅𝒆 ×
𝑺 𝒂𝒓𝒆𝒂

𝑵 𝒂𝒓𝒆𝒂
) − 𝑵𝒐. 𝒐𝒇 𝑺 𝒑𝒆𝒓 𝒑𝒆𝒑𝒕𝒊𝒅𝒆 

Equation 3.1 

From this equation it was possible to infer that the ratio of biotin-

4KC:C11TEG on the surface was 1:8 ± 4 and the ratio of biotin-4KC:C11HEG on 

the surface was 1:11 ± 6.These ratios are lower but still within the error margins of 

that obtained for the previous biotin-4KC:C3TEG (1:16 ± 4),121 and hence suitable 

to carry out the switching studies.  

 

Figure 3.4 XPS spectra of the a) S 2p, b) N 1s, c) C 1s and d) O 1s peak regions 

of biotin-4KC:C11HEG mixed SAMs at a 1:40 solution ratio. 
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3.3.3 Contact angle and ellipsometry analysis of mixed SAMs 

The formation of the mixed SAMs was analysed by means of contact angle 

and ellipsometry (Table 3.1). As expected, the water advancing (Adv) and receding 

(Rec) contact angles for the biotin-4KC:C3TEG, biotin-4KC:C11TEG and biotin-

4KC:C11HEG SAMs revealed hydrophilic monolayers, exhibiting contact angles in 

between those observed for pure monolayers of either components.  

Ellipsometry analysis confirmed the formation of C3TEG, C11TEG and 

C11HEG SAMs with an increasing trend of thickness values, which reflects the 

increase in molecular length of each OEG respectively. Furthermore, the thicknesses 

of the three mixed SAMs: biotin-4KC:C3TEG, biotin-4KC:C11TEG and biotin-

4KC:C11HEG were all within the thickness ranges observed between the pure 

C3TEG, C11TEG, C11HEG and biotin-4KC monolayers within error. 

As expected the ellipsometric thicknesses of the mixed biotin-4KC:C3TEG, 

biotin-4KC:C11TEG and biotin-4KC:C11HEG SAMs also showed a gradual 

increase in thickness. The formation of the pure biotin-4KC SAM was also 

confirmed with an ellipsometric thickness of 1.7 ± 0.4 which is significantly lower than 

the theoretical length of 5.2 nm. This difference can be explained due to the pure 

biotin-4KC SAM displaying a slightly folded conformation under OC conditions,122 

thus exhibiting a much lower surface thickness than expected. It is important to note 

that the ellipsometric thickness of all pure formed SAMs is less than the theoretical 

molecular length of the molecules (Table 3.1). This discrepancy, between molecular 

length and SAM thickness, is expected, in agreement with the literature, and can be 

ascribed to both the tilt angle and density of the SAM surfactants.167  
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Table 3.1. Advancing and receding water contact angles and ellipsometric 

thickness for the different SAMs formed for 24 h. The theoretical molecular lengths 

were derived from ChemBio3D Ultra 12.0 in which the molecules were in fully 

extended conformations.  

SAM Contact Angle (0) Thickness (nm) 

 

Adv. Rec. Theor.  Exp. 

Biotin-4KC 43 ± 2 35 ± 3 5.2 1.7 ± 0.4 

C3TEG 34 ± 2 27 ± 1 1.7 1.3 ± 0.3 

C11TEG 29 ± 2 25 ± 3 2.6 1.7 ± 0.2 

C11HEG 35 ± 1 32 ± 1 3.9 2.5 ± 0.1 

Biotin-4KC:C3TEG 35 ± 3 32 ± 2 - 1.6 ± 0.1 

Biotin-4KC:C11TEG 39 ± 2 32 ± 3 - 1.7 ± 0.1 

Biotin4KC:C11HEG 40 ± 3 31 ± 5 - 2.0 ± 0.1 

 

The pure OEGs SAMs were also analysed by contact angle and ellipsometry. 

The C11TEG SAM has smaller hysteresis (θAdv -θRec) of 40 as compared with the 70 

obtained for the C3TEG SAM. C11HEG SAMs has a slightly smaller hysteresis (θAdv 

-θRec) of 30 than C11TEG, however all the pure OEGs showed hydrophilic properties. 

The pure biotin-4KC SAM also displayed hydrophilic properties and showed the 

biggest hysteresis (θAdv ─ θRec) of 80 suggesting a less ordered monolayer in 

comparison to the other pure OEG SAMs. From these results, it can be inferred that 

the longer hydrocarbon chain for the C11TEG and C11HEG has led to a lower 

hysteresis, both indicating the presence of a more close-packed monolayer.  
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3.4 Comparison of anti-fouling properties between different OEGs  

 Initial investigations were performed to elucidate the interactions of the 

different complex media – DMEM, DMEM-FBS, and DMEM-FBS-HEPES – with the 

pure biotin-4KC, C3TEG, C11TEG and C11HEG SAMs. In the SPR experiments, 

the pure biotin-4KC and OEG SAMs were exposed to a flow of phosphate buffer 

saline (PBS) solution, to establish the baseline, followed by an injection of either 

DMEM, DMEM-FBS or DMEM-FBS-HEPES media into the SPR flow cell for 30 min 

at a flow rate of 8 μl/min. The SPR flow cell was then flushed with PBS to remove 

any loosely adsorbed material (Figure 3.5) 

 

 

Figure 3.5 Schematic showing the injection and washing procedure of complex 

media during SPR experiments using a) pure biotin-4KC SAM and b) oligo(ethylene 

glycol) SAMs. 

 

Figure 3.6 shows SPR sensorgrams carried out on four surfaces where upon 

the injection of different media over the SAM surface, showed a rapid response due 

to differences in the refractive indices of the PBS buffer and media solution, followed 

by a slower increase as the media components adsorbed to the surface. On re-
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injection of PBS buffer into the flow cell, as indicated by the “washing” arrow, there 

was an immediate drop in the SPR signal due to the change from media solution 

back to PBS, which induces a change in the bulk refractive index. However, after the 

final washing, the signal remained elevated compared to the original baseline, in 

particular for both DMEM-FBS and DMEM-FBS-HEPES media.  

 The results shown in Figure 3.6a indicate that the pure biotin-4KC SAM does 

not prevent non-specific binding due to a high response of ~1600 response units. It 

is expected that charged molecules within the complex media including serum 

adsorb nonspecifically on the pure biotin-4KC SAM due to the presence of the 

charged lysine backbone. Thus, it is essential that any OEG used to form mixed 

SAMs for switching studies is long enough to mask the lysine backbone in order to 

minimise nonspecific binding from the complex media. 

The first OEG to be investigated for protein inert properties was C3TEG SAM, 

which produced high responses of 1000 response units. This result indicates that the 

C3TEG is ineffective at preventing nonspecific serum adsorption (Figure 3.6b), 

which is expected to be detrimental to the specificity and efficiency of the switching 

system. Furthermore, the nonspecific response would hinder the evaluation of the 

switching performance as the adsorption of serum on the SAM surface would lead to 

a nonspecific SPR response, which would be undistinguishable from the response 

resulting from specific biomolecular interactions of neutravidin-biotin. 

 The next task was to assess the non-fouling characteristics of the more 

ordered C11TEG and C11HEG terminated SAMs. As shown in the representative 

SPR sensorgrams in Figure 3.6c and 3.6d, the C11TEG and C11HEG SAMs 

showed much better performance with regard to limiting the non-specific signal 
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induced by either DMEM-FBS or DMEM-FBS-HEPES by a factor of 4-5 (see 

Appendix III), in comparison to the C3TEG SAM (Figure 3.6b). The C11TEG and 

C11HEG monolayers exhibited high resistance to non-specific adsorption from all 

three media, producing small SPR responses of less than 300 response units. The 

difference in nonspecific binding between the C3TEG (Figure 3.6b) and the two 

longer chain OEG SAMs can be viewed as a consequence of the better packing 

achieved with the C11TEG and C11HEG respectively (See Appendix III for 

response unit values for each sensogram trace) 

 

Figure 3.6 SPR sensorgram traces for the interaction of a) biotin-4KC b) C3TEG, 

c) C11TEG and d) C11HEG SAMs with different complex media – DMEM, DMEM-

FBS, and DMEM-FBS-HEPES. 
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The results observed in Figure 3.6b demonstrate that the C3TEG was not 

inhibiting non-specific serum-surface interactions. It is believed that oligo(ethylene 

glycol) (OEG)-terminated alkanethiolate SAMs resist protein adsorption from solution 

via two possible mechanisms:43,44 i) steric repulsion, resulting from compression of 

OEG chains as protein approaches the surface and ii) water barrier due to the 

formation of strong hydrogen bonds between the oxygen atoms in the ethylene oxide 

units and the hydrogen atoms in the water molecules. From these two proposed 

mechanisms, and as demonstrated by previous studies,168-172 the molecular 

conformation and spatial arrangement of the OEG moieties as well as OEG surface 

density play an important role in imparting protein resistance. For instance, OEG 

SAMs have been shown to adsorb proteins when their surface OEG densities were 

too high or too low, yet non-fouling at appropriate OEG densities.173 From the 

literature and the above contact angle and ellipsometry analysis (Table 3.1), it 

seems reasonable to infer that the presence of a short alkyl chain (i.e. C3) between 

the thiol group and the TEG moiety give rise to less ordered structures on the gold 

surface, implying lower surface packing density and coverage. This is perhaps not 

surprising, as previous studies174 have shown that the structure of short-chain n-alkyl 

thiol assemblies is more disordered than that of the longer chain (above C9) 

assemblies. Thus, a longer alkyl chain between the thiol group with the TEG and 

HEG moieties were utilised that could excel at limiting non-specific binding (Figure 

3.6c and 3.6d) but that would not be long enough that could interfere with the 

binding and switching ability of the oligopeptide. Taking these two factors into 

consideration, the tri(ethylene glycol)-terminated (C11TEG) and hexa(ethylene 

glycol)-terminated (C11HEG) alkanethiols with a 11 carbon chain were chosen for 

further study (Figure 3.1). 
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3.4.1 Neutravidin binding with oligopeptide mixed SAMs with different OEGs 

After assessing the ability of the OEGs in preventing nonspecific binding with 

different complex media, it was important to ensure that the C11TEG and C11HEG 

did not interfere with the neutravidin-biotin binding. Thus, biotin-4KC:C11TEG and 

biotin-4KC:C11HEG were prepared to confirm that the OEGs in these mixed SAMs 

still allowed for maximum specific binding to neutravidin. To demonstrate the 

‘uninhibited’ binding capacity (i.e. the binding capacity of the surface without 

proteins, amino acids, glucose and vitamins in the subphase) of biotin-

4KC:C11TEG and biotin-4KC:C11HEG mixed SAMs, SPR experiments were 

performed by injecting neutravidin in PBS (Figure 3.7a) to the mixed SAMs (1:40 

solution ratio), and monitoring the SPR response for 1800s (OC trace), before 

washing with PBS (arrow on right in Figure 3.7), noting only a small drop in the SPR 

signal upon washing. The binding capacity is defined as the difference in the SPR 

response units between the beginning of injection of protein and the end of washing 

with PBS.  

Focusing firstly on the specific binding of neutravidinto the biotin-

4KC:C11TEG SAM (1:40 solution ratio), a binding capacity of ~2700 RU was 

observed (Figure 3.7a red line). This response is slightly higher than the one 

previously121 observed for the biotin-4KC:C3TEG mixed SAM (~2195 RU), likely 

due to the higher amount of biotinylated peptide on the surface as determined by 

XPS analysis. More importantly, these results indicate that the longer C11TEG 

shielding component does not interfere significantly with the binding capacity of the 

biotin ligand. In contrast, the binding capacity of the biotin-4KC:C11HEG SAM (1:40 
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solution ratio) was very low at only 332 RU (Figure 3.7a biotin-4KC:C11HEG 

trace). 

In order to improve the low binding capacity of the biotin-4KC:C11HEG 

surface, the solution ratios of the C11HEG were varied between 1:10 and 1:100. 

However, Figure 3.7b clearly shows that varying the solution ratio does not increase 

the binding capacity significantly. For a solution ratio of 1:10 a response of 426 RU is 

observed, which is ~100 RU higher than the 1:40 ratio (332 RU). The increased 

response units observed in the biotin-4KC:C11HEG with a 1:10 ratio can be 

explained due to a higher ratio of biotin-4KC peptides, which was confirmed by XPS 

to give a surface ratio of 1:5 ± 1. The increased number of peptides present on the 

surface allows for slightly enhanced neutravidin binding. In contrast, the 1:100 

solution ratio of biotin-4KC:C11HEG only has 232 RU due to there being 

significantly fewer biotin-4KC peptides, which was also confirmed by XPS data and 

showed a biotin-4KC:C11HEG surface ratio of 1:19 ± 4. 

 

Figure 3.7 SPR sensorgram traces for a) neutravidin binding with mixed SAMs of 

biotin-4KC:C11TEG and biotin-4KC:C11HEG at a 1:40 solution ratio and b) 

neutravidin binding with biotin-4KC:C11HEG mixed SAMs at solution ratios of 1:10, 

1:40 and 1:100. 
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The overall low binding capacity observed with the biotin-4KC:C11HEG 

mixed SAMs over a range of solution ratios (Figure 3.7b) suggested that the 

C11HEG interferes with the neutravidin-biotin binding interactions due to the 

presence of the longer 6 ethylene glycol group, which does not occur in the shorter 

C3TEG and C11TEG. The ellipsometry thickeness of the biotin-4KC was 1.7 ± 0.4 

nm, whereas the C11HEG SAM was 2.5 ± 0.1 nm (as shown in Table 3.1), which 

supports the idea that the longer C11HEG is shielding the majority of neutravidin 

passing through the surface, thus not allowing sufficient access for the neutravidinto 

bind to the biotin binding sites. These findings were also supported by results 

obtained from molecular dynamic simulations (see Section 3.5.1) on the biotin-

4KC:C11HEG mixed SAMs. To conclude the results in this section clearly show that 

the C11HEG is not suitable for further studies with the oligopeptide in mixed SAMs 

due to interference with the neutravidin-biotin binding activity. 

 

3.4.2 Neutravidin binding under complex media conditions 

 The studies described above demonstrate that the oligo(ethylene glycol)-

terminated thiol, C11TEG, offers the best low fouling characteristics (Figure 3.6c), 

while still capable of optimal neutravidin binding (Figure 3.7a). Thus, at this stage, it 

was important to assess if the biotin-4KC:C11TEG mixed SAM was inert to non-

specific binding events while capable of maximum specific binding to neutravidin. 

Firstly, the resistance of the biotin-4KC:C11TEG mixed SAMs to non-specific 

adsorption was investigated by exposing them to the three media. In the SPR 

experiments, the surfaces were first exposed to PBS for 10 min, then a solution of 

either DMEM, DMEM-FBS or DMEM-FBS-HEPES was passed through the SPR flow 
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cell for 30 min, and finally the adsorbed layer formed on the mixed SAM was washed 

with PBS for 10 min. As evident in Figure 3.8a, the SPR responses following PBS 

rinsing for all three media was comparable to those of pure C11TEG SAMs (Figure 

3.6c), showing that the biotin-4KC:C11TEG can successfully act as a serum 

resistant surface. In order to evaluate the binding capacity of the biotin-

4KC:C11TEG mixed SAM under complex biological conditions, neutravidin binding 

to the biotin ligand on the mixed SAM was monitored in the presence of media 

(Figure 3.8b). 

 

Figure 3.8 SPR sensorgram traces for the interaction of biotin-4KC:C11TEG 

mixed SAMs with a) different complex media – DMEM, DMEM-FBS, and DMEM-

FBS-HEPES and b) with neutravidin (Nav) in either DMEM, DMEM-FBS or DMEM-

FBS-HEPES. After neutravidin binding for 30 min, the surfaces were washed with 

PBS for 10 minto remove any non-specifically adsorbed material. The two arrows in 

the graphs indicate the point of injection of neutravidin either in PBS or media and 

PBS washing buffer, respectively. 
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In the SPR experiments shown in Figure 3.8b, the mixed SAMs were 

exposed to a flow of PBS, to establish the baseline, followed by an injection of 

neutravidin in either DMEM, DMEM-FBS or DMEM-FBS-HEPES into the SPR flow 

cell for 30 min. The SPR flow cell was then flushed with PBS to leave only the 

specifically bound neutravidin on the biotinylated mixed SAM. Following rinsing with 

PBS, the final SPR signal associated with neutravidin and DMEM (~2500 RU) and 

neutravidin and DMEM-FBS-HEPES (~2600 RU) was comparable to the response 

associated with neutravidin in PBS (~2700 RU), whereas a decrease in neutravidin 

binding was observed when the mixed SAM was exposed to neutravidin in DMEM-

FBS (~1800 RU) (Figure 3.8b Nav+DMEM-FBS trace).  

The differences observed in the representative SPR sensorgrams suggest 

that the presence of FBS to some extent interfered with the binding of neutravidin. 

The serum proteins are most likely non-specifically adsorbing to the surface 

alongside the specific adsorption of the neutravidin, and hence block some of the 

biotin moieties, not allowing them to bind to the neutravidin. Interestingly, the 

presence of HEPES buffer in the DMEM-FBS-HEPES solution allowed more 

neutravidin to bind to the biotinylated surface, which correlates well with the earlier 

reports which state that protein adsorption depends upon, among other factors, the 

medium in which the protein is found.175 In this case the HEPES may be coating the 

serum proteins in the FBS, which in turn is inhibiting them from binding to the 

surface, and hence not blocking the biotins from binding to the neutravidin (Figure 

3.8b Nav+DMEM-FBS-HEPES trace). 
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3.5 Switching efficiency of biotin-4KC:C11TEG mixed SAMs 

The assays above demonstrated the efficacy of the biotin-4KC:C11TEG 

mixed SAM to excel at limiting non-specific adsorption and promoting specific 

biomolecule binding. Thus, switching efficiency was also assessed in terms of the 

biotin-4KC:C11TEG mixed SAM’s ability to control the binding events between the 

surface-appended biotin and the neutravidin from the ‘uninhibited’ PBS solution 

(Figure 3.9). Switching efficiency studies were conducted by analysing the 

neutravidin binding to the biotinylated SAM under open circuit (OC) conditions (i.e. 

no applied potential - bio-active “ON” state) or to which a negative potential was 

applied (bio-inactive “OFF” state). Previously, it was demonstrated that the bio-

inactive “OFF” state can be effected by application of –0.4 V, while not affecting the 

SAM integrity.121 The neutravidin in PBS was injected (arrow on left Figure 3.9 -0.4 

V trace) with the -0.4 V potential being applied for 30 min, after which the surface 

was rinsed with PBS. The switching efficiency (SE) was defined as the percent 

difference between the binding capacity at open circuit conditions (BCOC) and the 

binding capacity at –0.4 V (BC-0.4V) divided by BCOC:  

 

𝑆𝐸 = 100  
𝐵𝐶𝑂𝐶−𝐵𝐶−0.4𝑉

𝐵𝐶𝑂𝐶
    

Equation 3.2 

  

Thus, given the binding capacity of ~2700 RU was observed under OC 

conditions (Figure 3.9 OC trace), whereas a negative potential of −0.4 V induced a 
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large reduction in binding affinity, with the SPR response decreasing to ~800 RU 

(Figure 3.9 -0.4 V trace). The switching efficiency of the biotin-4KC:C11TEG mixed 

SAMs in PBS was very high at 70%, thereby demonstrating the suitability of the 

biotin-4KC:C11TEG mixed SAM for efficiently controlling specific biomolecular 

interactions.  

 

 

 

Figure 3.9 SPR sensorgram traces showing the binding of neutravidin (Nav) to the 

biotin-4KC:C11TEG mixed SAMs. a) The mixed SAMs were exposed to neutravidin 

under OC conditions and an applied negative potential (− 0.4 V). SPR switching 

studies were carried out in triplicates to get an average switching efficiency. 
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3.5.1 Using computational modeling to understand neutravidin-biotin 

interactions on biotin-4KC:C11HEG mixed SAMs 

While SPR offers a system to retrieve information such as binding ability and 

binding switching efficiency, atomic molecular dynamic simulations provide 

molecular insights into the electrical-induced conformational changes of the 

oligolysines within the SAM.  In this section molecular dynamics (MD) simulation was 

used for the biotin-4KC:C11HEG with collaborators from University of Nanjing, 

China to gain a better understanding of the neutravidin-biotin interactions on the 

surface under PBS like conditions. 

The performance of MD simulations depends mainly on the force field 

selected, and thus three different force fields were tested, namely cvff (consistent-

valence force field), compass (condensed-phase optimized molecular potentials for 

atomistic simulation studies) and pcff (polymer consistent force field (see Section 

5.2.6 for full details). The cvff force field performed best according to the test, and 

thus it was adopted in our simulations. The simulation models are shown in Figure 

3.10. Two dimensional rhombic periodic boundary condition and slab models were 

applied throughout the simulations. Water molecules and chloride ions were adopted 

to simulate the PBS solution. Detailed model parameters are summarized in Table 

5.1 in Chapter 5 Experimentals. External electric fields were applied to model the 

electric potentials used in the experiment. In order to consider the polarization 

caused by the electric field, density functional theory-derived partial charge was 

used. Simulations were carried out for biotin-4KC:C11HEG and pure biotin-4KC. 
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Figure 3.10 The surface models used in the MD simulations. The purple, blue and 

dark green parts of the biotin-4KC chain represent the biotin motif, lysine and 

cysteine residues, respectively. The orange dots, light green balls, yellow balls and 

short grey chains denote water molecules, chloride ions, gold atoms and TEGT, 

respectively. 

 

Experiments conducted on mixed SAMs comprising the biotin-4KC and the 

longer ethylene glycol thiol – C11HEG in (Figure 3.6) – led to a greatly reduced 

binding of neutravidinto the biotinylated surface. When biotin-4KC:C11HEG solution 

ratios were varied between 1:10 and 1:100, surface ratios between 1:5 ± 1 and    

1:19 ± 4 were observed respectively after XPS analysis (see Appendix I). The 

neutravidin binding amount was essentially independent of the surface ratio used, 

with SPR signals in the range of 232-426 response units for all the surfaces. Taking 

into consideration that the lengths of the biotin-4KC and C11HEG, in fully extended 

conformations, are 5.2 nm and 3.9 nm, respectively, to a certain extent the biotin 

functionalities are expected to protrude from a matrix of C11HEGs even if most likely 

both molecules adapt an unstretched form on the surface. Nevertheless, and based 
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on the SPR results observed in Figure 3.7, there is strong evidence that the biotin 

moieties were not accessible for binding. Therefore the suppression of biorecognition 

with the biotin-binding pockets of neutravidin is a result of the biotin moieties not 

standing further away from the C11HEG matrix, thus not allowing complete insertion 

of the biotin into the binding pockets. 

 This reasoning is in line with previous studies that showed that increasing the 

length of the biotin linker in a mixed SAM increased the protein binding efficiency.176 

Our hypothesis is also consistent with X-ray crystallographic analysis that revealed 

that the biotin is buried quite deeply inside the neutravidin barrel,177 indicating that 

the binding of biotin by neutravidin requires the complete insertion of the ligand into 

the binding pocket of the protein. C3TEG and C11TEG in a fully extended 

conformation exhibit a length of 1.7 nm and 2.6 nm respectively. The C3TEG has a 

theoretical length approximately three-fold shorter than the biotin-4KC and the 

C11TEG is half of that of the biotin-4KC in a fully extended conformation, allowing 

complete insertion of the biotin into the binding pocket and efficient binding of the 

neutravidinto the biotinylated monolayer. Although ellipsometric thickness indicates 

that both the C11TEG (1.7 ± 0.2 nm) and biotin-4KC (1.7 ± 0.4 nm) are very similar 

in length on the surface, this had no impact on the binding capacity of the 

neutravidin. 

In the case of biotin-4KC:C11HEG (Figure 3.11), the ethylene glycol chains 

were long enough to partially cover the biotin in the OC conditions (d < 0.5 nm). The 

biotin-4KC chain would extend to about 5.2 nm (using ChemDraw 3D) and reach 

neutravidin only when the Ez field was applied (d > 1.4 nm). This finding supports the 

interpretation that low neutravidin binding to the biotin-4KC:C11HEG mixed SAM is 
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an effect related with the biotin moieties standing too close to the ethylene glycol 

matrix thus, sterically shielding the biotin and making it inaccessible to the 

neutravidin. 

 

Figure 3.11 The conformational changes of biotin-4KC:C11HEG (up) and pure 

biotin-4KC (down) under different electric fields, along with the MD simulation 

snapshots. L is defined as the gap distance variation between the biotin and gold 

surface. 

The oligopeptide density was also shown to affect the switching mechanism, 

and as a consequence, the binding switching efficiency. From Figure 3.11, it is 

noticeable that for the pure biotin-4KC SAM, the chains were closely packed on the 

surface and insufficient space was left for the chains to collapse. The biotin heads 

were always exposed, which would lead to a constant bioactivity. It can be inferred 

from these findings that a basic criterion in the design of the switching surfaces is to 

provide sufficient freedom for conformational transitions of surface confined 

oligopeptide chains. 
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3.5.2 Effects of electrical potential on complex media  

Prior to carrying out switching studies under complex media, it was essential 

to ensure that the biotin-4KC:C11TEG surface does not display any artificial 

increase in protein adsorption from the complex media due to a negative potential as 

this could be detrimental to the effectiveness of the switching system. Complex 

media (DMEM-FBS-HEPES) was injected to the biotin-4KC:C11TEG surface under 

both OC conditions and -0.4 V applied potential as shown in Figure 3.12, thereafter 

the surface was washed with PBS (as shown by the arrow in Figure 3.12). A drop off 

in signal was observed representing a change in refractive index and the removal of 

serum proteins under both OC conditions (Figure 3.12 blue line) and -0.4 V applied 

potential (Figure 3.12 red dashed line). Thus, indicating that the application of a 

potential does not artificially increase serum adsorption on the surface, likely due to 

the highly protein inert properties of the C11TEG, hence providing a sound basis for 

testing switching efficiency under complex media. 

 

Figure 3.12 SPR sensorgram traces showing the interaction of DMEM-FBS-HEPES 

on the biotin-4KC:C11TEG mixed SAMs under OC conditions and -0.4 V 
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3.5.3 Effects of complex media on switching efficiency 

The biotin-4KC:C11TEG mixed SAMs were further studied with respect to 

the switching efficiency in the presence of the three different media (Figure 3.13a). A 

similar efficiency to PBS was reached when DMEM was employed as the control 

media (~67%), whereas the presence of DMEM-FBS and DMEM-FBS-HEPES 

during the switching process had induced a drop off in efficiency to values close to 

45%. The different behaviour observed for DMEM-FBS and DMEM-FBS-HEPES 

(Figure 3.13a) indicates that both FBS and HEPES might have an effect in the 

switching ability of the electrically switchable SAM surface (please see Section 4.5.1 

for a detailed discussion on the components of complex media including DMEM, 

FBS and HEPES buffer). 

 

 

Figure 3.13 Switching efficiency, as determined by SPR analysis under OC 

conditions and an applied negative potential (− 0.4 V), on biotin-4KC:C11TEG 

mixed SAMs which were exposed to neutravidin in a) DMEM, DMEM-FBS, DMEM-

FBS-HEPES as well in b) FBS and HEPES. Error bars show standard deviations 

among three different substrates. 
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Thus, in order to further delineate the respective roles of FBS and HEPES in 

the switching process, SPR switching studies were performed with these two 

individual components (Figure 3.13b). FBS and HEPES solutions in PBS were used 

at the same concentration as in the DMEM-FBS and DMEM-FBS-HEPES (i.e. 10% 

FBS and 24 mM HEPES). As before, the baseline for the biotin-4KC:C11TEG 

mixed SAM-modified gold chip was established using PBS, following which the 

neutravidin in either of the solutions mentioned above (i.e. 10% FBS and 24 mM 

HEPES) was introduced for 30 min. Subsequently, the surfaces were washed in 

PBS. These SPR experiments were conducted under OC conditions and -0.4 V in 

order to calculate the binding switching efficiency as described above using 

Equation 3.2. The binding switching efficiencies of the biotin-4KC:C11TEG mixed 

SAM in the presence of these 10% FBS or 24 mM HEPES are summarised in 

Figure 3.13b. 

Interestingly, the switching behaviour of the mixed SAM on 10% FBS has led 

to efficiencies around 15%, indicating that the switching effect was largely absent. 

Remarkably, these values can be significantly enhanced, rising to ~45%, if the 

switching is performed using such FBS concentrations in the presence of HEPES as 

shown in Figure 3.13a. Nevertheless, it is clear that the presence of a significant 

amount of protein results in the partial inhibition of the switching process. This 

behaviour might be attributed to the interference of the FBS with the conformation 

changes in the oligopeptide. This reasoning is in line with the decreased specific 

binding capacity when the biotin-4KC:C11TEG mixed SAM was exposed to 

neutravidin in the presence of DMEM-FBS (Figure 3.8b), showing that non-specific 

interactions between FBS and the oligopeptide mixed SAM caused interference with 

the specific binding between neutravidin and the surface-appended biotin. From the 
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HEPES experiments, some valuable information can also be gathered. The 

switching efficiency is also affected by the presence of HEPES, which has led to 

efficiencies values of ~40%. It is therefore reasonable to presume that either the 

presence of FBS and/or HEPES in the DMEM solution had adversely affected the 

switching ability of the oligopeptide.   

 

3.5.3.1 Effects of diluted complex media on switching efficiency 

 In order to adequately represent the factors influencing the switching ability, 

the oligopetide mixed SAMs were tested using the three media (i.e. DMEM, DMEM-

FBS and DMEM-FBS-HEPES) at different dilutions in PBS buffer. Interestingly, a 

dilution in PBS to 10% of the different media had no effect on the switching efficiency 

of DMEM, while it had improved the efficiency of the DMEM-FBS and DMEM-FBS-

HEPES systems at different rates. As seen in Figure 3.14a, switching efficiency 

increased roughly 35% as the DMEM-FBS concentration decreases from 100% to 

10%, whereas the same decrease in concentration for the DMEM-FBS-HEPES has 

led to no differences in efficiency within the error. The analysis of the effect of 

concentration on the switching efficiency of the biotin-4KC:C11TEG mixed SAMs 

also indicate that 1% media solutions have negligible effect on the switching 

efficiency, with all three media showing values similar to those observed for PBS, i.e. 

of approximately 70%. At this point, it should be stressed that even though the 

switching is partly compromised when compared to more diluted media (i.e. 1%) or 

pure PBS buffer, the level of switching in 10% and 100% media is still relatively high 

and in all instances is higher than 45% (See Appendices IV-VIII for SPR sensogram 

representations). 
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Figure 3.14 Switching efficiency, as determined by SPR analysis under OC 

conditions and an applied negative potential (− 0.4 V), on biotin-4KC:C11TEG mixed 

SAMs which were exposed to neutravidin in a) DMEM, DMEM-FBS, DMEM-FBS-

HEPES as well in b) FBS and HEPES. The switching efficiency of the different media 

was tested at different dilutions in PBS buffer. Error bars show plus or minus one 

standard deviation of the mean among three different substrates. 

  

Similar dilution studies were carried out with FBS and HEPES solutions in 

PBS at the same concentration as in the DMEM-FBS and DMEM-FBS-HEPES (i.e. 

10% FBS and 24 mM HEPES), as well as diluted to 10% and 1% of the original 

concentrations. The FBS solutions are designated as 10% FBS, 1% FBS and 0.1% 

FBS, while the HEPES solutions are denominated as 24 mM HEPES, 2.4 mM and 

0.24 mM HEPES. The switching behavior of the mixed SAM on 10% FBS differed 

strikingly from that observed on 1% and 0.1 % FBS (Figure 3.14b). Switching 

efficiency was pronounced for 1% and 0.1% FBS, with values in the range of 60-
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65%, which are comparable to those observed for PBS. (See Appendices VII-VIII 

for SPR sensogram representations). 

 The HEPES buffer dilutions showed that the switching efficiency is strongly 

dependent on the concentration of HEPES, which by decreasing from 24 mM to 0.24 

mM has led to a marked augmentation in switching efficiency from 35% to more than 

75%. No major differences were found between 24 mM and 2.4 mM HEPES, which 

remained in the range of 35%-45%. HEPES contains both a very strong acid 

(sulfonic acid) and a relatively weak base (amine) and they are particularly prone to 

the formation of hydrogen bonds and electrostatic interactions with proteins as is 

seen in several protein crystal structures.178,179 From the aforementioned results, and 

on the basis of the previous literature of the interactions of the zwitterionic HEPES 

with proteins, it could be suggested that the ability of the HEPES molecule to form 

stable intermolecular interactions with the peptide might restrict the oligopeptide from 

electrostatically interacting with the negatively charged gold surface and change its 

conformation, resulting in a decrease in switching efficiency. The noted protein-

HEPES interactions can also explain the reduction in non-specific FBS adsorption 

(Figure 3.8b) when HEPES was present in the media. Thus, HEPES interactions 

with FBS might prevent nonspecific interactions between FBS and biotin-

4KC:C11TEG mixed SAM. Taken together, these results clearly show the 

importance of selecting a buffer that has a minimal impact on the switching ability of 

the oligopeptide. Careful control of the media composition ensures that the switching 

can achieve levels of efficiency as high as 70%.  
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Figure 3.15 Schematic showing that the characteristics of the media influence the 

performance of the switching of the electro-switchable oligopeptides. DMEM exhibits 

similar switching behaviour as PBS, whereas DMEM-FBS-HEPES induces a drop in 

switching efficiency. However, the switching ability is higher than when only FBS is 

used. We propose that the presence of HEPES in the DMEM-FBS-HEPES media 

allows for the formation of hydrogen bonds and electrostatic interactions between 

HEPES and the serum proteins, leading to a decrease in the interactions between 

the serum proteins and the switchable surface. High concentrations of HEPES also 

inhibit to a certain extent the switching of the oligopeptides likely as a result of 

intermolecular interactions between HEPES and the oligopeptides. Not to scale (see 

Figure 3.1 for the description of the cartoons). The oligo(ethylene glycol) thiols have 

been removed for clarity. 
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3.6 Conclusion 

 While substantial attention has been directed to construction and performance 

of biological switchable surfaces in simple biological systems, less effort has been 

directed to developing and understanding surfaces capable of switching under more 

practical biological applications. This is the first study to investigate and address 

such scientific issues and challenges associated with the underpinnings of biological 

switchable surfaces. In this work, a combined approach was taken for producing 

well-defined SAMs that prevent non-specific binding with the ability to electrically 

switch the SAM to allow control over biomolecular interactions under complex 

biological matrixes. Particularly, this SAM system can be dynamically modulated by 

an electrical potential under different commonly used biological media, ranging from 

DMEM to DMEM supplemented with FBS and HEPES. The work demonstrated that 

the performance of the switching on the electro-switchable oligopeptide is sensitive 

to the characteristics of the media, and in particular, its protein concentration and 

buffer composition. For instance, these studies demonstrated that higher 

concentrations of non-specific proteins affect the conformations changes of the 

oligopeptide and thus reduce the switching efficiency. The design of electrical 

stimuli-responsive surfaces and their operation under complex biological conditions 

must properly take these issues into account to assure maximum switching 

performance. However, it is important to point out that even though the switching is 

partly compromised when compared to very diluted media (i.e. 1%) or pure buffer, 

the level of switching in 10% and 100% DMEM is still relatively high and in all 

instances is higher than 45%.  
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Chapter 4: Regulating Cellular Interactions on Surfaces under 

Complex Biological Conditions 

This chapter is based on the manuscript, “Electrically-driven modulation of surface-

grafted RGD peptides for manipulation of cell adhesion” by M. Lashkor, F. J. 

Rawson, J. A. Preece, P. M. Mendes, Chemical Communications, 2014, 50, 15589. 

 

Abstract: The ability to regulate cellular interactions on surfaces via an external 

stimulus is important in providing a greater understanding of the processes that take 

place between the cell and the ECM during cell adhesion and migration. The 

development of such surfaces has practical implications in biological and medical 

applications. This chapter reports a switchable surface that relies on electrically-

induced conformational changes within surface-grafted arginine-glycine-aspartate 

(RGD) oligopeptides as the means of modulating cell adhesion. 

 

4.1 Introduction 

Switchable surfaces have been scarcely used, thus far, to control 

biomolecular interactions on more complex systems such as those involving 

modulation of cell responsiveness.99,107,123,180 Jonkheijm and co-workers have 

reported a cucurbit[8]uril-based SAM system to electrochemically control the release 

of cells. Charged end groups on SAM surfaces have been exploited to electrically 

control the early stages of bacterial cell adhesion180 and form patterned surfaces with 

two independent dynamic functions for inducing cell migration.123 In spite of these 
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efforts, given cellular complexity and diversity, such studies are very limited in 

number, as are the opportunities to further understand and control the complex 

interplay of events and interactions occurring within living cells.  

The fundamental work carried out in Chapter 3 provided useful insight into 

the switching mechanism and the interaction of biotin-4KC:C11TEG monolayer 

under complex biological conditions. This chapter follows on from the previous 

chapter wherein, a stimuli-responsive surface is reported that relies on electrically-

induced conformational changes within surface grafted arginine–glycine–aspartate 

(RGD) oligopeptides as the means of modulating cell adhesion. RGD, which is 

present in most of the adhesive ECM proteins (e.g. fibronectin, vitronectin, laminin 

and collagen) and is specific for integrin-mediated cell adhesion,18 is used here to 

dynamically regulate the adhesion of immune macrophage cells. The stimuli-

responsive surface is fabricated on a gold surface and comprises a mixed SAM 

consisting of two components (Figure 4.1): i) an oligopeptide containing a terminal 

cysteine for attachment to the gold surface, three lysine residues as the main 

switching unit, and a glycine–arginine–glycine–aspartate–serine (GRGDS) as the 

recognition motif for cell adhesion – GRGDS-KKKC, and ii) an ethylene glycol-

terminated thiol (C11TEG) space out the oligopeptides. Since the charged backbone 

of the oligopeptide can be potentially harnessed118,122 to induce its folding on the 

surface upon an application of an electrical potential, it was reasoned that such 

conformational changes can be employed to selectively expose under open circuit 

(OC) conditions (bio-active state) or conceal under negative potential (bio-inactive 

state) the RGD to the cell and dynamically regulate cell adhesion. 
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The RGD peptide will act as the bioactive moiety that promotes cell adhesion 

through binding of the cell integrin receptors, when exposed during the bio-active 

state (OC conditions).181 Moreover it is expected that there will be a reduction in cell 

adhesion upon the application of -0.4 V electrical potential by the concealment of the 

RGD moiety in the bio-inactive state (Figure 4.1). The RGD motif has been well 

documented as the minimum peptide sequence required for cell recognition and has 

been used in number of previous systems which were successfully able to control 

cell adhesion properties.20,99,106,123  

The second component is the C11TEG, which has two key roles: 1) to act as 

a spacer group to provide sufficient spatial distribution for the conformational 

switching of the GRGDS-KKKC peptide and 2) to prevent non-specific binding of 

proteins from complex media as demonstrated in Chapter 3. The switching of the 

peptide will be monitored primarily through optical microscopy by comparing 

differences in cell counts on the surfaces under an applied electrical potential (-0.4 

V) and OC conditions. The protein resistant component (C11TEG) on the surface is 

essential for surfaces that manipulate cell adhesion properties. In this case surfaces 

will be incubated under complex media containing an array of proteins as well as the 

adherent cells. If the antifouling properties of the surface are not sufficiently protein 

resistant then proteins within the media could adsorb on the surface with ease. The 

adsorption of proteins on the surface could potentially hinder cell adhesion or 

artificially increase cell adhesion due to the presence of additional motifs.16 In 

addition the ethylene glycol molecules provide the required spacing for 

conformational switching, thus when the target ligand is switched off it will be 

masked by the ethylene glycol molecules which act as a protein and cell resistant 

surface. 
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The cells chosen for this chapter were RAW 264.7 macrophages. This cell 

line was established from a murine (Mus musculus) tumour induced by Abelson 

murine leukaemia virus (A-MuLV). The cells’ semi-adherent nature to surfaces 

provides a good platform to carry out switching studies, where it will be easily 

distinguishable whether or not the cells have adhered to the surface. It is expected 

that the RAW 264.7 cell line will also adhere preferentially to RGD functionalised 

surfaces via cell integrin receptors.182 Macrophage cell adhesion to biomaterial 

surfaces plays a key role in mediating immune response to foreign materials.183 

Thus, development of dynamic in vitro model systems that can control macrophage 

cell adhesion on demand are likely to provide new opportunities to understand 

adhesion signalling in macrophages184 and develop effective approaches for 

prolonging the life-span of implantable medical devices and other biomaterials.185  
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4.1.1 Objectives 

1) To fabricate low density mixed SAMs using GRGDS-KKKC peptide and 

C11TEG to prevent non-specific binding and provide sufficient space for 

switching of the positively charged oligolysine chain in order to conceal 

RGD moiety. 

 

Figure 4.1 Schematic showing gold substrate functionalised with GRGDS-

KKKC:C11TEG mixed monolayer and the structure of each component. 

2) To compare the extent of cell adhesion of RAW 264.7 cells on both RGD 

and non-RGD functionalised surfaces and to ensure the C11TEG is 

effective at preventing non-specific binding. 

 

 

Figure 4.2 Schematic showing the different surfaces that will be used to examine 

cell adhesion. 
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3) Investigate the switching properties of the mixed SAMs by monitoring the 

interactions between the cells and the RGD functionalised surface upon 

the application of a negative electrical potential.  

 

Figure 4.3 Schematic representation of the GRGDS-KKKC:C11TEG mixed SAMs 

and the attachment of cells on electro-switchable oligopeptide surfaces. Depending 

on the electrical potential applied, the peptide can expose or conceal the RGD 

domain and regulate its binding to integrin receptors on cells. 

 

4) To carry out control studies by comparing the attached number of cells under -0.4 

V applied potential and OC conditions with a pure C11TEG monolayer and 

GRGDS-HEGC and C11TEG mixed SAMs. GRGDS-HEGC (Figure 4.4) will be 

used as a substitute to GRGDS-KKKC by replacing the positively charged lysine 

backbone with six non-switchable ethylene glycols. Thus, it is expected that cells 

will adhere under both OC conditions and a negatively (-0.4 V) applied potential. 
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Figure 4.4 Schematic representation of two control monolayers: GRGDS-

HEGC:C11TEG mixed SAM and C11TEG SAM. 

5) To test for reversible switching with the mixed SAMs, by varying the 

surface potential from off-on and on-off. 

a)  

 

 

 

 b) 

 

 

Figure 4.5 a) ON-OFF switching and b) OFF-ON switching where “ON” represents 

a cell adhesive state and “OFF” represents a cell resistant state. 
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The advantages of using GRGDS-KKKC:C11TEG as a switchable surface to 

control cell adhesion over other surfaces include the surfaces ability to prevent non-

specific binding in the presence of complex media in which there are many proteins 

that have the potential to non-specifically bind to the surface. In addition, it is well 

established that the positively charged oligolysine chain can switch upon the 

application of a negative potential, thus allowing for an efficient switching 

mechanism. It is expected the switching mechanism will occur similar to that of the 

computational model mentioned in Chapter 3, whereby a collapse of the positively 

charged lysine chain occurs due to the application of an electrical potential which in-

turn conceals the RGD binding ligands from cell receptors thus, preventing cell 

attachment.  
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4.2 Results and Discussion 

4.3 Formation and characterisation of mixed SAMs on gold substrates 

4.3.1 Formation of mixed GRGDS-KKKC:C11TEG SAMs 

Cleaned gold surfaces were functionalized with a two-component mixed SAM 

of GRGDS-KKKC peptide and C11TEG as shown in Figure 4.6.The RGD peptide 

consists of a cysteine group, three lysines and a RGD functional group. The RGD 

peptide will be immobilised to the gold surface via the cysteine group, which contains 

a thiol moiety that binds to gold. The three lysine groups provide a flexible backbone, 

similar to the biotin-4KC peptide, which provides ample manoeuvrability to switch 

conformations between the on and off states. The main role of the C11TEG, in 

addition to providing spatial distribution for the GRGDS-KKKC peptide to switch, is 

to prevent non-specific binding from complex media and cells.  

 

 

Figure 4.6 Schematic of the formation of GRGDS-KKKC:C11TEG mixed SAMs. 
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Our previous work carried out with biotin-4KC:TEGT and biotin-

4KC:C11TEG mixed SAMs indicated that the optimal solution ratio for switching was 

1 biotin-4KC peptide to  40 TEGT molecules. In order to fabricate novel mixed 

SAMs using a peptide with a RGD functional group (GRGDS-KKKC) and C11TEG 

molecules, solution ratios from our previous studies with biotin-4KC:TEGT and 

biotin-4KC:C11TEG were used as a guide. Hence, the solution ratio chosen to form 

a mixed SAM of GRGDS-KKKC:C11TEG was 1:40. From previous studies it was 

assumed that 1:40 would provide sufficient spatial distribution and allow for efficient 

switching of the GRGDS-KKKC peptide. However, as suggested in the literature,55 

the two components in a solution ratio are rarely similar to the ratio of the SAM 

formed on the surface. Thus, surface characterisation techniques such as 

ellipsometry, contact angle and XPS were used to determine the surface ratio and 

characteristics of the SAM. 

 

4.3.2 XPS analysis of mixed GRGDS-KKKC:C11TEG SAMs on gold substrates 

XPS was used to investigate the surface ratio of the GRGDS-KKKC:C11TEG 

monolayer in a 1:40 solution ratio. Gold substrates were cleaned by piranha solution, 

then rinsed with UHQ water, HPLC ethanol and finally immersed in a mixed SAM 

solution of GRGDS-KKKC (0.1 mM) and C11TEG (0.1 mM) for 24 h to allow the 

formation of the monolayers. The mixed SAM solution also contained 3% (v/v) 

N(CH2CH3)3, which prevents multilayer formation between NH2 functional groups of 

the adsorbed thiolate peptide on the surface and the free thiol peptide in the bulk 

solution.186 After 24 h had elapsed, the SAM functionalised gold substrates were 

rinsed initially with an ethanolic solution with acetic acid to rinse any N(CH2CH3)3 that 
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may have remained on the surface. Thereafter, the substrates were rinsed further 

using HPLC grade ethanol and finally dried under argon gas. The substrates were 

then stored under an argon gas atmosphere prior to XPS analysis. 

XPS analysis confirmed the formation of the GRGDS-KKKC:C11TEG mixed 

monolayer and displayed signals from S, N, C and O. The chemical state of the 

sulfur atom was probed using the XPS spectra of the S 2p emission (binding energy 

range of 160 eV to 170 eV) (Figure 4.7a). The S 2p spectrum (Figure 4.7a) consists 

of two doublet peaks, with one doublet peak at 163.2 eV (S 2p1/2) and 162.0 eV (S 

2p3/2), indicating that the sulphur is chemisorbed on the gold surface.162 The second 

doublet peak can be observed at 163.8 eV and 165.0 eV, which is assignable to the 

S-H bond indicating a small presence of unbound sulphur.  

The N 1s spectrum (Figure 4.7b) can be deconvoluted into two peaks, which 

support the presence of the peptide on the surface. The first peak centred at 400.5 

eV is attributed to amino (NH2) and amide (CONH) moieties. The second peak 

centred at 402.8 eV is ascribed to protonated amino groups.165 The C 1s spectrum 

(Figure 4.7c) can be deconvoluted into three peaks, which are attributed to five 

different binding environments. The peak at 285.0 eV is attributed to C-C bonds,166 

while the peak at 286.7 eV corresponds to C 1s of the three binding environments of 

C-S, C-N and C-O.166 The third and smaller peak (288.6 eV) is assigned to the C 1s 

photoelectron of the carbonyl moiety, C=O.166 The O 1s spectrum (Figure 4.7d)  is 

de-convoluted into two different peaks, corresponding to two different binding 

environments, arising from the C-O (533.3 eV) and C=O (532.0 eV) bonds.166  
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Figure 4.7 XPS spectra of the a) S 2p, b) N 1s, c) C 1s and d) O 1s peak regions 

of GRGDS-KKKC:C11TEG mixed SAMs at a 1:40 solution ratio. 

 

Furthermore, by taking into consideration that the GRGDS-KKKC 

oligopeptide consists of 15 N atoms and 1 S atom and C11TEG has no N and 1 S 

atom only, the number of C11TEG molecules per GRGDS-KKKC peptide on the 

surface was calculated by integrating the area of the S 2p and N 1s peaks. Thus, it 

was possible to infer that the ratio of GRGDS-KKKC:C11TEG on the surface is 1:10 

± 2 using Equation 3.1. 

In comparison to the biotin-4KC:C11TEG mixed SAM (1:8 ± 4), the ratio for 

the GRGDS-KKKC:C11TEG (1:10 ± 2) is very similar and within the error. Thus, the 

surface ratio for  the GRGDS-KKKC:C11TEG (1:10 ± 2) is  within the error margins 
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of that obtained for the original biotin-4KC:C3TEG monolayer (1:16 ± 4),121 and 

therefore remains favorable to carry out switching studies.  Thus, the mixed 

monolayer solution ratios being used in this chapter have been chosen on the basis 

of optimising the switching capacity of the monolayer. 

 

4.3.3 GRGDS-KKKC:C11TEG contact angle and ellipsometry analysis 

Analysis by contact angle and ellipsometry also supported the formation of the 

GRGDS-KKKC:C11TEG mixed SAM. C11TEG SAMs as mentioned in Section 

3.2.2 has a small hysteresis (θAdv -θRec) value of 40 indicating a hydrophilic, closely-

packed monolayer. The overall contact angle for the pure GRGDS-KKKC monolayer 

is hydrophilic in accordance with previous reports of RGD terminated SAMs.187 Pure 

GRGDS-KKKC SAMs has a hysteresis contact angle of 8o indicating the monolayer 

is less ordered than the C11TEG SAM. However, in the GRGDS-KKKC:C11TEG 

mixed SAM has a hysteresis value of 190, which indicates a less ordered and more 

sparsely packed monolayer, which is understandable due to the presence of the 

larger RGD headgroup and lysine backbone with charged amine groups. 

The ellipsometric thickness of the pure monolayers is less than the theoretical 

molecular length of the molecules (Table 4.1). This discrepancy, between molecular 

length and SAM thickness, is expected, in agreement with the literature, and it is 

ascribed to both the tilt angle and density of the SAM surfactants.30,188 The thickness 

measurements acquired using ellipsometry for the GRGDS-KKKC:C11TEG mixed 

SAMs was 2.0 ± 0.1 nm which is between the thickness of the pure monolayers of 

both components. This suggests the successful formation of the GRGDS-

KKKC:C11TEG mixed SAMs.  
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Table 4.1 Contact angle and ellipsometry measurements of Pure GRGDS-KKKC, 

C11TEG monolayers and GRGDS-KKKC:C11TEG mixed SAMs at a 1:40 solution 

ratio. 

SAM Contact Angle (0) Thickness (nm) 

  Adv. Rec. Theor. Exp. 

GRGDS-KKKC 21 ± 1 13 ± 3 4.7 2.3 ± 0.1 

C11TEG 29 ± 2 25 ± 3 2.6 1.7 ± 0.2 

GRGDS-

KKKC:C11TEG 
40 ± 3 21 ± 0.5 

- 
2.0 ± 0.1 

 
 

4.4 Antifouling properties of GRGDS-KKKC:C11TEG mixed SAM 

The antifouling properties of the mixed monolayer were examined using SPR 

by measuring the amount of non-specific binding from two types of complex media 

onto a mixed SAM of GRGDS-KKKC:C11TEG. A high level of non-specific binding 

would indicate the mixed SAMs have insufficient antifouling properties, which may 

impede cell adhesion due to adsorption of other proteins from within the cell 

suspension. The lack of antifouling properties could artificially increase cell adhesion 

due to the presence of additional motifs.189 Furthermore, a protein layer could be 

responsible for differences in cell adhesion behavior,58,190 which could give false 

positives. The importance of fabricating a surface with effective antifouling properties 
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will determine the effectiveness of switching as it is essential to observe a clear 

difference between the bio-active and bio-inactive states. 

Figure 4.8 shows the response of GRGDS-KKKC:C11TEG mixed SAM with 

two complex media solutions: supplemented DMEM (Dulbecco's Modified Eagle 

Medium, 10% FBS, 24 mM HEPES and 1% pen/strep) and DMEM. Surfaces were 

incubated in the respective media for 30 minutes then rinsed with PBS for 10 

minutes to remove any remaining media on the surface.The incubation of DMEM on 

the RGD functionalised surface showed low levels of non-specific binding at 46.5 

RIU, which correlates well with previous data from Chapter 3 where minimal non-

specific binding was also observed on the biotin-4KC:C11TEG monolayer. In the 

case of the supplemented DMEM non-specific binding significantly increased on the 

surface giving a response unit of 496 RIU after the final PBS rinse. The increase in 

non-specific binding primarily due to the presence of high levels of protein from FBS 

within the supplemented DMEM. The low level of non-specific binding observed for 

DMEM on GRGDS-KKKC:C11TEG mixed SAMs (Figure 4.8) provides support for 

using DMEM as an electrolyte during switching studies. Supplemented DMEM is 

important in the culturing of cells, however evidence from Figure 3.13 in Chapter 3 

suggests that during switching experiments, a complex media of only DMEM allows 

for efficient switching in the region of 67%. Thus during the short duration of 

switching experiments (1-2 h), it is expected that DMEM would provide sufficient 

nutrients to support cell adhesion. 
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Figure 4.8 SPR sensograms showing the comparison of non-specific binding of 

supplemented DMEM and DMEM to an GRGDS-KKKC:C11TEG mixed SAM. 

 

4.5 Cell adhesion studies 

4.5.1 Passaging and preparation of RAW 264.7 macrophages for cell adhesion 

The supplemented DMEM used to culture RAW 264.7 cells consisted of a 

number of components, similar to those mentioned in Chapter 3, including DMEM, 

10% FBS, 1% penicillin and streptomycin (pen/strep) and 24 mM of HEPES buffer. 

DMEM, the primary component of most cell cultures, contains all the required 

essential nutrients for cells to survive in-vitro conditions. FBS contains growth 

supplements and other proteins, with a typical cell culture containing 10% FBS. 

Pen/strep is added as an antibiotic to help prevent bacterial growth, however 

excessive amounts can inhibit cell growth thus, 1% pen/strep is commonly used.191 

HEPES buffer is a well-known buffering reagent used to maintain the physiological 
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pH of medium between pH 7.2 and 7.6 of the culture media even if there are 

changes in the carbon dioxide concentration.  

RAW 264.7 cells are known to adhere to tissue culture plastic through integrin 

receptors192 and are extremely sensitive to lipopolysaccharides (LPS) endotoxin193 

from gram-negative bacteria, therefore, only sterile disposable tissue culture ware 

and solutions, buffers, and media with endotoxin tested distilled deionized water 

were used. RAW 264.7 macrophage cells were grown in supplemented DMEM for 2-

3 days at 370C in 5% CO2 atmosphere, reaching approximately 80% confluency. For 

experiments, cells were harvested from tissue culture flasks then re-suspended in 

supplemented DMEM, checked for viability and counted. Finally cells were diluted 

with supplemented DMEM to yield a solution of 1 x 106 cell/mL and adhered to 

surfaces (See Chapter 5 for cell culture method). 

 

4.5.2 Cell adhesion on RGD and non-RGD functionalised surfaces 

It has been well documented in literature that cells are well known to adhere 

preferentially to RGD peptides via integrins receptors in cells, due to the cellular 

recognition properties of RGD.2,15,18 In order to demonstrate that the RAW 264.7 cell 

line displays preferential cell adhesion towards RGD peptides, an initial study was 

carried out by attaching cells to a number of different surfaces with and without RGD. 

The surfaces used were: bare gold, pure C11TEG, GRGDS-KKKC:C11TEG mixed 

SAM and a pure GRGDS-KKKC which was used to normalise the cell counts. 

Substrates were rinsed with HPLC ethanol after monolayer formation, dried 

with Argon gas and placed in sterile petri dishes. The Petri dishes containing the 
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substrates were then taken to a sterile hood and immersed in supplemented DMEM. 

Finally, a cell suspension of 1 x 106 cell/mL was added to the Petri dishes containing 

the substrates, which were then allowed to incubate for 24 h at 37.50C and 5% CO2. 

Care was taken to ensure all work involving the transfer and incubation of cells was 

carried out under sterile conditions to prevent contamination. An incubation time of 

24 h was selected in order to allow sufficient time for cell attachment and 

proliferation. 

Supplemented DMEM was chosen to culture the RAW 264.7 cells on 

substrates, in preference to other complex media such as DMEM and DMEM-FBS in 

order to provide optimal conditions for the formation of focal adhesions and cell 

proliferation on the surfaces. It is expected that there will be similar levels of non-

specific binding from proteins present within the supplemented DMEM in relation to 

Figure 4.8, which is low enough to overlook at this stage as we are primarily 

concerned with the adhesion of cells. However, the effects of non-specific binding of 

proteins will be more important to consider when carrying out switching studies. 

After 24 h of incubation, substrates with adhered cells were then removed 

from the supplemented DMEM and rinsed with DMEM to remove loosely adhered 

cells on the surface. Prior to rinsing, DMEM was warmed to 37.50C to prevent 

accidental cell death due to sudden changes in culture medium and temperature.58 

Thereafter, substrates were mounted on microscope slides and observed via an 

optical microscope to determine if preferential cell adhesion to surfaces 

functionalised with RGD peptide could be observed. Surfaces were prepared in 

triplicates and images were taken at a 20x magnification at 5 random spots on each 

substrate. Cell counts shown in Figure 4.9, were normalised to a pure GRGDS-
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KKKC monolayer in order to make the cell densities of different surfaces 

comparable. 

Figure 4.9 clearly indicates that cells adhere preferentially to RGD 

functionalised SAMs. In the case of GRGDS-KKKC:C11TEG mixed SAMs at a 

solution ratio of 1:40 the number of cells that adhere was only 15% less than the 

pure RGD surface. A 15% decrease in cell adhesion in the mixed SAM is consistent 

with the presence of ethylene glycol molecules, causing a reduction in the number of 

RGD binding sites on the surface. In both the mixed SAM and pure RGD SAM 

numerous cases of cell proliferation can be observed as labelled in Figure 4.9. 

However, in the case of bare gold and pure C11TEG surfaces there were fewer 

adherent cells and cell proliferation was rare, which can be attributed to the lack of 

cell-specific binding sites. Cell adhesion was lowest in the pure C11TEG monolayer 

with 60% less cells when compared to the pure GRGDS-KKKC monolayer. This was 

in agreement with previously reported behavior of cells in response to EG-based 

monolayers58,194-197 and indicates that the C11TEG monolayer decreases overall cell 

adhesion. The bare gold surface had 50% less adherent cells compared to the pure 

GRGDS-KKKC monolayer. These results agree with previous reports190 and confirm 

that cells are able to adhere to bare gold due to the secretion of proteins which form 

part of the extra-cellular matrix (ECM). 
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Figure 4.9 Normalized density of cells for 24 h cell adhesion on pure C11TEG 

SAMs, bare gold, GRGDS-KKKC:C11TEG mixed SAMs and pure GRGDS-KKKC 

SAMs. The density was normalized against the density of cells adherent onto pure 

GRGDS-KKKC SAMs.  

 

The cell counts observed on the two RGD functionalised monolayers provides 

sufficient evidence to suggest that the GRGDS-KKKC peptide was present and had 

an active role in promoting cell adhesion on the surface. Thus, we can conclude that 

increased cell adhesion occurred due to cellular recognition of the monolayers 

containing RGD peptides. The difference in cell counts observed in the mixed SAMs 

compared to the pure GRGDS-KKKC peptide monolayer shows a >95 % confidence 
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level using a t-test. This indicates that the amount of cell adhesion on the mixed 

SAMs shows a significant difference compared to the pure GRGDS-KKKC 

monolayer which can be attributed to the presence of C11TEG in the mixed SAMs. 

It should be noted that the relative surface ratio of GRGDS-KKKC to C11TEG 

will contribute to the inter-distance spacing of RGD cell binding sites thus, directly 

impacting cell adhesion. It has been shown that RGD ligand-ligand inter-distance is 

an essential part of cell adhesion.198 From the cell count data in Figure 4.9 we can 

deduce that the high cell counts observed in the two RGD functionalised SAMs (pure 

GRGDS-KKKC and GRGDS-KKKC:C11TEG) are due to the RGD ligands being 

sparsely packed providing sufficient spacing for integrin receptors to access the 

RGD binding sites. If however the pure GRGDS-KKKC SAM had been a very 

densely packed monolayer, this would have hindered the ability of cells to bind via 

the integrin receptors and a low overall cell count would have been observed.199  

 

4.6 Cell adhesion kinetic studies  

A kinetic time study was carried out in order to better understand the optimum 

incubation time of the GRGDS-KKKC:C11TEG monolayers and the length of time 

required for cell spreading. GRGDS-KKKC:C11TEG functionalised substrates were 

immersed in supplemented DMEM (Figure 4.10) followed by 1 x 106cells for 45 min, 

3 h, 6 h, 12 h, 24 h, 48 h. 
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Figure 4.10 Schematics showing the method of incubating functionalised 

substrates in cells. 

 

The results obtained from the cell adhesion time study shown in Figure 4.11 

indicates a clear trend of increased cell adhesion from 45 min to 24 h. Cell adhesion 

peaks at 24 h of incubation with an average of 1615 ± 51 cells/mm2. Thereafter the 

number of adhered cells decreases to 795 ± 75 cells/mm2 after 48 h of incubation. 

From this data we can deduce that the optimal incubation time to gain the highest 

cell adhesion at 1 x 106 cells is 24 h. It has been commonly reported that 24 h is the 

amount of time required for cell spreading to take place. After 24 h the supplemented 

DMEM requires replacement due to cells utilizing the contents of the DMEM. Hence 

it is assumed that due to the lack of fresh DMEM, a significant drop in cell adhesion 

is observed at 48 h. It is important to note here that the differences in the overall 

number of cells throughout this work can be attributed to batch to batch variations. In 

order to make reliable conclusions, the necessary controls for each set of 

experiments were all done in the same day with the same batch of cells. 
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Figure 4.11 Cell density based on a kinetic study of cell adhesion times between 45 

minto 48 h on GRGDS-KKKC:C11TEG functionalised substrates at 1:40 ratio. 

 

4.7 Switching studies of GRGDS-KKKC:C11TEG mixed SAMs after 24 h cell 

adhesion time 

In order to investigate the switching properties of the GRGDS-KKKC:C11TEG 

mixed SAM, cells were adhered to GRGDS-KKKC:C11TEG mixed SAMs (1:40 

solution ratio) in DMEM at a -0.4 V negative potential and OC conditions. The 

electrolyte selected for the switching experiments was DMEM, based on previous 

results in Chapter 3 which resulted in high switching efficiency and low non-specific 

binding via SPR (Figure 4.8). Firstly, cells were adhered to functionalised GRGDS-

KKKC:C11TEG substrates over a 24 h incubation in supplemented DMEM. The 

substrates with adhered cells were then exposed to a surface potential of -0.4 V for 
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30 min. Thereafter, surfaces were rinsed with PBS to remove any unattached cells. 

Cell binding activity, as a result of switching induced by electrical potential, was 

observed by an optical microscope.  

High cell counts were observed under OC conditions as expected with an 

average cell count of 1753 ± 49 cells/mm2 (Figure 4.12). In the case of an -0.4 V 

applied negative potential, the cell count remained high at 1764 ± 102 cells/mm2. 

The high cell counts observed for both OC conditions and -0.4 V indicate that after 

substrates have been incubated for 24 h, cells cannot be detached by means of 

switching with a negative potential. The lack of cell detachment after an applied 

negative potential can be explained by one of two reasons: 1) the GRGDS-KKKC 

peptides are unable to switch due to the cells secreting proteins that inhibit the 

switching or 2) the binding of the adhered cells cannot be disrupted once they are 

attached due to the strength of multiple RGD ligands and integrin receptor 

interactions mediating cell adhesion.200 Other factors that could be causing the lack 

of cell detachment maybe due to the proteins within the supplemented DMEM that 

may have deposited over the 24 h period, in effect nullifying the antifouling properties 

of the surface. 
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Figure 4.12 Cell densities of GRGDS-KKKC:C11TEG mixed SAMs under OC 

conditions and -0.4 V after 24 h incubation in cells. 

 

It has been well documented that cells secrete proteins as part of the ECM on 

surfaces.201,202 Thus, the possibility of cells not detaching from the surface due to an 

electric potential appears very likely. These results are not surprising as there has 

until now been no reports of any switchable surfaces that can detach cells once they 

have been adhered. All literature of switchable surfaces working with cells have only 
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reported switching from concealed to exposed systems or antifouling to fouling 

states. Although Liu et al.106 fabricated a photochemically switchable SAMs which 

appears reversible. However, this system is ultimately an off-on system and cannot 

use switching as a mechanism for cell detachment. Instead Liu et al. relied on the 

use of a soluble RGD peptide solution to remove cells from the surface. 

Furthermore, Ng et al. also reported a similar lack of cell detachment after adhesion 

had taken place using an electrical potential as a stimulus.123  

 

4.7.1 Testing mechanical detachment of cells and re-adhesion on substrates 

The purpose of this study was to test the re-usability of the mixed SAMs. Cells 

were adhered onto a GRGDS-KKKC:C11TEG monolayer after a 24 h incubation. 

The adhered cells were then removed by forcefully rinsing with UHQ water. The 

substrates were then sterilized with 70% HPLC Ethanol. Finally the substrate was re-

immersed in a new batch of cells and incubated again for a 24 h period in order to 

promote cell adhesion for a second time. The results shown in Figure 4.13 illustrate 

that after cells have been removed by rinsing with 70% Ethanol and UHQ water, cell 

adherence for a second time on the same RGD functionalised substrate is reduced 

almost 80%. This indicates that it is not possible to re-use functionalised substrates 

with a GRGDS-KKKC:C11TEG monolayer. Thus, once cells have been removed 

from the substrate surface this renders the surface void of repeated usage for cell 

adhesion. This can be explained by considering that the cells secrete proteins as 

part of the ECM formed on a surface.201,202 Removal of the cells does not necessitate 

the removal of secreted proteins, which are non-specifically bound to the surface, 

hence the remaining protein residues maybe an obstacle to repeated cell adhesion. 
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In addition it can be assumed that due to the nature of cell interactions the quality of 

the monolayer may have been compromised, further hindering repeated attempts of 

cell adhesion on the same surface. 

 

 

Figure 4.13 a) GRGDS-KKKC:C11TEG functionalised substrate after a 24 h 

incubation in cells showing normal cell adhesion and b) after removal then re-

adhesion of cells to the surface. 

 

4.8 GRGDS-KKKC:C11TEG cell adhesion and ratio optimisation study for    

1 h incubation 

After confirming the unfeasibility of cell detachment from mixed SAMs via the 

application of a negative potential after a 24 h incubation, an alternative method for 

controlled cell adhesion was investigated. The chosen route to achieve a viable 

switchable surface, from the “ON” state (OC conditions) to the “OFF” state (-0.4 V 

potential), was to reduce the incubation time to 1 h. By reducing the incubation time 
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to 1 h, cells would still have sufficient time to attach on the surface in the cell 

adhesive “ON” state which would then be compared to a substrate in the cell 

resistant “OFF” state. A lower cell count from the substrate in the “OFF” state would 

indicate that successful switching has occurred with additional control surfaces. 

Thus, 1 h is a more suitable incubation time in testing the ability of the GRGDS-

KKKC:C11TEG mixed SAMs to control cell adhesion via an applied negative 

potential (See section 4.9).  

Prior to carrying out switching studies under a 1 h incubation period, a ratio 

study was carried out with the GRGDS-KKKC:C11TEG mixed SAM in order to 

compare the number of cells attached on a 1:10, 1:20 and 1:40 ratio. A pure 

GRGDS-KKKC substrate was used to normalise the cell densities. As mentioned in 

previous literature,203 ratios of RGD ligand to ethylene glycol groups have a 

significant impact on the number of cells that attach on a surface. The results in 

Figure 4.9 showed that a pure RGD monolayer gives the highest cell count on a 

surface. Hence the primary aim for carrying out this ratio study was to understand 

how ratios between pure RGD and 1:40 mixed SAMs would affect cell attachment.  

Surfaces for each mixed SAM ratio were prepared in triplicates and incubated 

for 1 h in RAW 264.7 cells. The substrates were then rinsed with DMEM and placed 

under a microscope to observe the number of attached cells. Images were taken at a 

20x magnification at 5 random spots on each substrate. Cell counts shown in Figure 

4.14, were normalised to a pure GRGDS-KKKC monolayer in order to make the cell 

counts between surfaces easily comparable. 

Figure 4.14 shows that the pure GRGDS-KKKC monolayer has the highest 

cell density, which is in agreement with results from Figure 4.9. Interestingly a clear 



  P a g e  | 112 

trend of increased cell counts appears from the 1:10 to the 1:40 ratio. In comparison 

to the pure RGD monolayer, the 1:40 ratio had a reduced cell count of 32%, whereas 

the 1:10 and 1:20 ratio had a 60% and 54% reduction in cell count respectively. The 

lower cell counts on the 1:10 and 1:20 surfaces can be attributed to the increased 

number of RGD ligands which form a more ordered monolayer in the presence of 

ethylene glycol molecules. As a result a more ordered mixed monolayer could 

reduce the spacing between RGD ligands which, negatively impacts the ability of cell 

integrins to bind to the specific RGD binding sites thus, a lower cell count is 

observed for the 1:10 and 1:20 ratios. In the case of the 1:40 mixed SAM, the RGD 

ligands are fewer in number and can be said to be more sparsely packed, which is in 

agreement with the contact angle data, thus allowing for more integrin receptors to 

access the RGD binding sites. This data further reinforces the need to take into 

consideration RGD ligand spacing and solution ratio in order to ensure optimal cell 

adhesion.198  

 

Figure 4.14 Normalised cell densities of GRGDS-KKKC:C11TEG mixed SAMs at 

solution ratios of 1:10, 1:20, 1:40 and pure GRGDS-KKKC  
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4.9 Effects of electrical potential on GRGDS-KKKC:C11TEG mixed SAMs 

and cells after 1 h cell adhesion time  

In order to demonstrate that the GRGDS-KKKC:C11TEG mixed SAMs can 

support or resist cell adhesion on demand, the macrophage cells were cultured on 

the GRGDS-KKKC:C11TEG mixed SAM in DMEM medium under OC conditions 

and applied negative (-0.4 V) potential for a period of 1 h. In contrast to the 

procedure carried out in section 4.7 cells were not pre-adhered to the GRGDS-

KKKC:C11TEG monolayer. By reducing the incubation time to 1 h, cells were still 

given sufficient time to attach to the surface in the “ON” state under OC conditions. 

In the “OFF” state a negative potential (-0.4 V) was applied on the surface in order to 

switch the GRGDS-KKKC peptide in real time during the 1 h cell incubation. 

Incubation of substrates under a -0.4 V potential (OFF state) would indicate if the 

RGD peptide could be switched and therefore prevent cell adhesion. Switching 

experiments were carried out by pre-conditioning SAM functionalised substrates with 

a negative potential of -0.4 V for 10 min under a DMEM electrolyte, chosen for its 

high switching efficiency and low non-specific binding. The -0.4 V potential was then 

continued for 1 h with the addition of cells (Figure 4.15). A similar procedure was 

carried out for OC conditions without electrical potential.  
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Figure 4.15 Schematic of experimental setup for incubating cells during 1 h 

switching. 

 

Focusing firstly on GRGDS-KKKC:C11TEG functionalised substrates under 

OC conditions where the RGD head group remained exposed allowing for cell 

adhesion. The number of adhered cells was 1421 ± 103 cells/mm2 as shown in 

Figure 4.16a. In contrast when surfaces were poised at -0.4 V, such that RGD 

ligands were concealed, the number of adhered cells decreased significantly to 432 

± 102 cells2 (Figure 4.16b), which equates to a switching efficiency of 70%.  

Although the incubation time of cells on substrates was reduced to 1 h, due to the 

higher density of cells per substrate in the Teflon cell (2 x 106 cells) it was possible to 

induce sufficient cell binding to clearly distinguish between the “ON” and “OFF” 

states. These findings implied that conformational changes occurred at the gold 

surface, and that the cells sensed the presence or the absence of the RGD moieties 

to the extent that cell adhesion can be reduced to 70% of its bioactive state (Figure 

4.17).  
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In the bio-inactive state the RGD headgroup remained concealed from 

adherent cells thus, exposing the anti-fouling properties of the C11TEG present 

within the mixed SAM. Furthermore, the C11TEG masks the RGD headgroup 

rendering the surface cell resistant and unavailable for cell attachment. As a result, 

the majority of cells were unable to adhere during the 1 h incubation period. The 

remaining cells on the surface were either adhered via non-specific interactions or 

specific interactions through RGD ligands which were unable to switch due to 

unequal spatial distribution possible due to island formation.51 Island formation is a 

known phenomenon in mixed SAMs and can occur due to the presence of clusters of 

peptide binding sites. 

 

Figure 4.16 Schematic of the GRGDS-KKKC:C11TEG mixed SAMs during a) cell 

adhesive “ON” state under OC conditions and b) cell resistant “OFF” state under -0.4 

negative potential. 
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It is important to also consider the effects of an electrical potential on cell viability, 

as they are living organisms and may be affected by such stimuli. Thus, one of the 

factors that may be causing the removal of cells is the influence of electrical potential 

directly on the cells. Previous researchers such as Ng et al. and Mrksich et al. 

showed that it was perfectly safe to apply potentials between ±300 mV and ±500 mV 

without affecting the cells.39,40,109,204  

In order to verify that the changes in adhesion upon application of a negative 

surface potential occur due to changes in the conformational orientation of the RGD 

instead of cell repulsion or cell damage due to the presence of an electrical potential, 

control mixed SAMs were also prepared using C11TEG and a peptide where the 3 

lysine residues as the switching unit were replaced by 6 non-switchable ethylene 

glycol units – GRGDS-HEGC. Figure 4.17 demonstrates that cells adhered in similar 

numbers to the C11TEG and GRGDS-HEGC:C11TEG mixed SAMs under OC 

conditions and an applied negative potential. These results provide strong evidence 

that control over cell adhesion using the GRGDS-KKKC:C11TEG mixed SAM is due 

to a conformational behaviour of the lysine-containing oligopeptide that can either 

expose or conceal the RGD moiety. 

The overall low cell counts observed for the C11TEG SAM under OC 

conditions and a negatively applied potential (Figure 4.17) indicate that C11TEG has 

good anti-fouling properties and the applied potential does not affect cell adhesion. 

In the case of the GRGDS-HEGC:C11TEG mixed SAM cell counts were between 

20-30% less than the GRGDS-KKKC:C11TEG mixed SAMs under OC conditions. 

XPS data for the GRGDS-HEGC:C11TEG showed that a solution ratio of 1:40 

translated to a 1:6 ± 1 ratio on the surface (see Appendix II), which is less than the 
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1:10 ± 2 surface ratio observed for the GRGDS-KKKC:C11TEG mixed SAMs. The 

lower ratio observed in GRGDS-HEGC:C11TEG suggests an increase in RGD 

ligand density which may provide insufficient spacing for cells to bind efficiently to 

integrins in the cell membrane.198 

 

 

Figure 4.17 Density of adhered cells on GRGDS-KKKC:C11TEG mixed SAMs, 

pure C11TEG and GRGDS-HEGC:C11TEG mixed SAMs that were incubated with 

cells for 1 h under OC conditions and -0.4 V applied potential. 

 

Previous studies have shown that small conformational and orientational 

changes in proteins and peptides modulate the availability and potency of the active 

sites for cell surface receptors.205-207 Thus, in a similar manner, small changes in the 

conformation/orientation of the RGD peptide on the surface induced by application of 

an electrical potential are able to affect the binding activity of the peptide. Based on  
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previous theoretical and experimental studies aimed at understanding the switching 

mechanism of these electrically switchable oligopeptide surfaces,118,122 it can be 

assumed that when a negative potential is applied to the surface, the oligopeptide 

chain adopts a collapsed conformation on the surface and the RGD binding motif is 

partially embedded on the C11TEG matrix, thus showing no bioactivity (“OFF” state). 

In order to determine the percentage of cells that were viable after switching 

in this system, trypan blue solution, which is commonly used to detect cell viability, 

was used on cells attached to the substrates after a 1 h applied potential. Uptake of 

the trypan blue would indicate cells were dead, and a lack of uptake of the blue dye 

would indicate cells were still alive (Figure 4.18). Results suggested that cell viability 

was above 98%, which indicates that the application of a negative potential did not 

affect cell viability.  

 

 

 

Figure 4.18 Image of cells adhered to a RGD functionalised surface after an 

application of a -0.4 V negative potential. Uptake up Trypan blue indicates cell death 

as shown by the arrows. 
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4.10 Reversible switching studies of GRGDS-KKKC:C11TEG mixed SAMs  

The question of whether the GRGDS-KKKC:C11TEG surfaces could be 

switched between different cell adhesive states (cell-resistant and cell-adhesive 

states) was then addressed. To begin with, we investigated the switching from a cell-

adhesive state to a cell-resistant state, and the possibility to detach the cells from the 

substrate upon the application of a negative potential. Cells were incubated in the 

GRGDS-KKKC:C11TEG mixed SAMs for 1 h under OC conditions, thereby 

exposing the RGD moiety and allowing for cell attachment. This step was followed 

by the application of a potential of -0.4 V for 1 h in order to detach the cells from the 

surface, by concealing the RGD moieties.  

Cell counts showed no significant differences between the OC and OC to -0.4 

V samples (Figure 4.19 OC green bar and OC to -0.4 V red bar) suggesting that 

the electrostatic force generated by the applied negative electrical potential might not 

be sufficient to disrupt the RGD-integrin interactions. Thus, indicating that after cells 

adhere to the GRGDS-KKKC:C11TEG mixed SAMs after a 1 h incubation under OC 

conditions, cells cannot be detached from the substrate. These results were to a 

certain extent expected since adherent cells are able to withstand strong detachment 

forces due to the adhesion being mediated by multiple RGD-integrin bonds in 

parallel.200 The reference substrate in which a -0.4 V potential was applied (Figure 

4.19 OC blue bar) still showed a reasonable switching efficiency and displayed 60% 

reduction in cell adhesion compared to the OC and OC to -0.4 V substrates. 
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Figure 4.19 Microscopic images and density of adhered cells on GRGDS-

KKKC:C11TEG mixed SAMs that were incubated with cells for 1 hour under OC 

conditions and subsequently under an applied -0.4 V potential for 1 hour.  The 

density was normalized against the density of cells adherent onto GRGDS-

KKKC:C11TEG mixed SAMs that were incubated with cells in OC conditions for 1 

hour. 

In contrast, a reversal of the switching sequence demonstrated that the 

surfaces can be dynamically switched from a non-adhesive to cell-adhesive state 
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(Figure 4.20). Cells were incubated in the GRGDS-KKKC:C11TEG mixed SAMs for 

1 h while holding the potential at –0.4 V for 1 h making the RGD peptide inaccessible 

for recognition by the corresponding integrin. The number of adherent cells when a 

negative potential of –0.4 V was applied was 70% lower (Figure 4.20 -0.4 V blue 

bar) than that adhered to the GRGDS-KKKC:C11TEG mixed SAMs under OC 

condition (Figure 4.20 OC green bar). By then shifting to open circuit conditions for 

1 h, a dramatic increase of 67% in adherent cells was observed as a result of the 

exposure of the RGD moiety to the cells (Figure 4.20 -0.4 V to OC red bar). These 

values were similar to those obtained for the samples that were only incubated for 1 

hour under OC conditions (Figure 4.20 OC green bar), indicating that the surfaces 

were highly effective at switching from a non-adhesive to cell-adhesive state. 

In order to gauge the effectiveness of the GRGDS-KKKC:C11TEG mixed 

SAM switchable system it is important to compare it with other switchable surfaces. 

The electrically switchable oligopeptide surface developed by Yeung et al. displayed 

a switching efficiency of ca. 90% in the OFF state, where the binding site was 

concealed, in comparison to the ON binding state. This high switching efficiency can 

be attributed to the fact PBS was used as the electrolyte for switching and proteins 

were used as opposed to cells used in this system.121 The photoswitchable surfaces 

developed by Kessler et al. exhibited ca. 50% switching efficiency between the 

fouling and antifouling states.107 This system outperforms Kessler’s photoswitchable 

system which may be due to the lack of antifouling component. Building on from 

Kessler’s system, Liu et al. introduced an antifouling component into their switchable 

system to which was also controlled by different wavelengths of light. Liu’s system 

significantly increased the switching efficiency reaching 90%. However, Liu’s system 

does not take into consideration the effects of media culture and uses a system that 
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relies on prolonged periods of irradiation of light. Hence, it can be argued this system 

still has a high switching efficiency and switching experiments can be carried out with 

observable results within a significantly shorter period of time.  

 

Figure 4.20 Microscopic images and density of adhered cells on GRGDS-

3KC:C11TEG mixed SAMs that were incubated with cells for 1 hour while applying - 

0.4 and subsequently in OC conditions for 1 hour.  The density was normalized 

against the density of cells adherent onto GRGDS-3KC:C11TEG mixed SAMs that 

were incubated with cells in OC conditions for 1 hour. 
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Ng et al. were able to control cell adhesion via an electrical potential resulting in 

switching efficiencies of 85%.123 The charged groups on the distal moeity of the 

sulphonate and ammonium SAMs used as the switching mechanism introduces the 

possibility that these charged groups will interfere with cellular interactions which 

depend on for example cationic interactions.192 The system used in this current study 

significantly reduces the risk of interference of nonspecific cellular interactions with 

charged groups in a SAM by instead utlilising a charged backbone as the switching 

mechanism rather than a distal moiety. The backbone is masked by the C11TEG 

antifouling component at all times further reducing the risk of non-specific cell 

adhesion. In addition the GRGDS-KKKC:C11TEG system retains the benefits of 

using C11TEG as an antifouling component to reduce nonspecific binding, while 

maintaining a high switching efficiency of 70%, which is more than sufficient to 

distinguish between the antifouling and fouling states.  

 

4.11 Conclusion 

In summary, we have successfully fabricated a switchable surface capable of both a 

cell adhesive and cell resistant state, which prevents cell adhesion under an applied  

-0.4 V potential due to the exposure of the antifouling components of the mixed 

SAMs masking the RGD binding moiety. Further switching studies were carried out 

to test the ability of the surface to change between cell adhesive and cell resistant 

states. It was shown that when going from a cell adhesive state to a cell resistant 

state, cells cannot be removed once adhered due to the strength of multiple integrin 

receptors binding to numerous RGD ligands. However, experiments carried out 

testing a cell resistant to cell adhesive state showed that cells are still able to adhere 
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to the surface as the RGD moiety is exposed and thus, allows for controlled cell 

adhesion. Ratio studies of the GRGDS-KKKC:C11TEG mixed SAMs also provided 

important insight into the effects of ratio on cell adhesion and that the ratio of any 

RGD functionalised surface must take into consideration the inter-distance of RGD 

ligands which if too sparsely packed or too densely packed may hinder optimal cell 

adhesion. This study will no doubt be useful in developing more realistic dynamic 

extracellular matrix models and is certainly applicable in a wide variety of biological 

and medical applications.  
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Chapter 5: Experimental Procedures and Protocols 

Abstract: This chapter describes the materials, methods and different experimental 

techniques used during the work carried out for this projects. Experimental protocols 

and data analysis by various types of equipment have also been described. 

 

5.1 Materials and Methods 

5.1.1  Gold substrates 

Polycrystalline gold substrates were purchased from George Albert PVD, Germany 

and consisted of a 50 nm gold layer deposited onto glass covered with a thin layer (5 

nm) of chromium as the adhesion layer. Polycrystalline gold substrates employed in 

SPR were purchased from Reichert Technologies, USA, consisted of 49 nm gold 

with 1 nm chromium. 

 

5.1.2  Chemicals and Materials  

 Commercially available chemicals and solvents were purchased from Aldrich 

Chemicals and Fisher Chemicals and were used as received. The oligopeptide 

biotin-4KC, GRGDS-KKKC:C11TEG and GRGDS-HEGC:C11TEG were 

synthetised by Peptide Protein Research Ltd. (Wickham, UK) to > 95% purity and 

verified by HPLC and mass spectrometry. The (3-mercaptopropyl)tri(ethylene glycol) 

(C3TEG) was prepared as previously described.121 The (11-

mercaptoundecyl)tri(ethylene glycol) (C11TEG), (11-mercaptoundecyl)hexa(ethylene 

glycol) (C11HEG), Fetal Bovine Serum (FBS) and 4-(2-hydroxyethyl)-1-
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piperazineethanesulfonic acid (HEPES) buffer (1 M) were purchased from Sigma 

Aldrich and used as received (Figure 5.1). Neutravidin and DMEM were obtained 

from Invitrogen Life Technologies. Phosphate buffered saline (PBS) solution was 

prepared from a 10× concentrate PBS solution (1.37 M sodium chloride, 0.027 M 

potassium chloride, and 0.119 M phosphate buffer) from Fisher BioReagents.  

DMEM-FBS contains DMEM with 10% (v/v) FBS. DMEM-FBS-HEPES contains 10% 

FBS and 24 mM HEPES. Polycrystalline gold substrates were purchased from 

George Albert PVD, Germany and consisted either of a 50 nm gold layer deposited 

onto glass covered with a thin layer of chromium as the adhesion layer (used for 

contact angle and XPS analysis) or 100 nm gold layer on 100-4 inch-silicon wafer, 

precoated with titanium as the adhesion layer (for ellipsometry analysis). SPR gold 

chips were purchased from Reichert Technologies, US. 

 

 

Figure 5.1 Structure of HEPES buffer 

 

5.2 Experimental procedures 

5.2.1  Preparation of Mixed Self-Assembled Monolayers (SAMs) 

 The gold substrates were cleaned by immersion in piranha solution (3:1, 

H2SO4 :30% H2O2) at room temperature for 10 min, rinsing with Ultra High Pure 

(UHP) H2O and then HPLC grade EtOH thoroughly for 1 min. (Caution: Piranha 
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solution reacts violently with all organic compounds and should be handled with 

care).  For the preparation of the pure biotin-4KC SAMs, the clean gold substrates 

were immersed for 24 h in ethanolic 0.1 mM solution of  biotin-4KC containing 3% 

(v/v) N(CH2CH3)3. For the preparation of the biotin-4KC:C3TEG, biotin-

4KC:C11TEG, biotin-4KC:C11HEG, GRGDS-3KC:C11TEG or GRGDS-

HEGC:C11TEG mixed SAMs, solutions of the oligopeptide (0.1 mM) and either 

C3TEG or C11TEG or C11HEG (0.1 mM) were prepared in HPLC EtOH containing 

3% (v/v) N(CH2CH3)3, and mixed at the volume ratio of 1:40. Subsequently, the clean 

gold substrates were immersed in the mixed solutions for 24 h to form the mixed 

SAMs on the gold surfaces. The substrates were rinsed with HPLC EtOH, an 

ethanolic solution containing 10% (v/v) CH3COOH, and UHP H2O. Note that the 

mixed SAMs were deposited in the presence of N(CH2CH3)3 to prevent the formation 

of hydrogen bonds between the NH2 functional groups of the bound thiolate peptide 

on gold and that of free thiol peptide in the bulk solution.208 The pure C3TEG or 

C11TEG SAMs were prepared by immersing the clean gold substrates in ethanolic 

0.1 mM solution of the respective ethylene glycol thiols for 24 h, followed by rinsing 

with HPLC EtOH. After 24 h of immersion in either mixed SAMs or pure SAM that 

gold substrate was dried 

 

5.2.2  X-ray Photoelectron Spectroscopy (XPS) 

 The gold substrates approximately 0.5 cm by 0.5 cm were prepared as 

mentioned in Section 5.2.1. Thereafter, the substrates were rinsed further using 

HPLC grade ethanol and finally dried under argon gas. The substrates were then 

stored in a petry dish sealed with parafilm under an argon gas atmosphere prior to 
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XPS analysis. The gold substrates were adhered to a plate with carbon tape prior to 

insertion into the XPS. XPS spectra were obtained on the VG Escalab 250 

instrument based at University of Leeds EPSRC Nanoscience and Nanotechnology 

Facility, UK. XPS experiments were carried out using a monochromatic Al K α X-ray 

source (1486.7 eV) and a take-off angle of 15°. High-resolution scans of N 1s and S 

2p were recorded using a pass energy of 150 eV at a step size of 0.05 eV. Fitting of 

XPS peaks was performed using the Avantage V 2.2 processing software. Sensitivity 

factors used in this study were: S 2p, 2.08; N 1s, 1.73; C 1s, 1.00; O 1s 2.8; Au 4f 

7/2, 9.58 and Au 4f 5/2, 7.54. The averages and standard errors reported were 

determined from at least four different XPS measurements. 

 

5.2.3  Elipsometry 

 The thickness of the deposited monolayers was determined by spectroscopic 

ellipsometry using gold on silicon substrates with a gold thickness of 50 nm. A Jobin-

Yvon UVISEL ellipsometer with a xenon light source was used for the 

measurements. The angle of incidence was fixed at 70⁰. A wavelength range of 280–

820 nm was used. The DeltaPsi software was employed to determine the thickness 

values and the calculations were based on a three-phase ambient/SAM/Au model, in 

which the SAM was assumed to be isotropic and assigned a refractive index of 1.50. 

The thickness reported is the average of six measurements, with the errors reported 

as standard deviation. 
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5.2.4  Contact Angle 

 Gold-glass substrates were prepared with a glass cutter approximately 1 cm 

by 1 cm. A black marker pen was used to mark the side of the gold substrate facing 

the camera in order to better determine the surface from the water droplet. Contact 

angles were determined using a home-built contact angle apparatus, equipped with 

a charged coupled device (CCD) KP-M1E/K camera (Hitachi) that was attached to a 

personal computer for video capture. The dynamic contact angles were recorded as 

a micro-syringe was used to quasi-statically add liquid to or remove liquid from the 

drop. The drop was shown as a live video image on the PC screen and the 

acquisition rate was 4 frames per second. FTA Video Analysis software v1.96 (First 

Ten Angstroms) was used for the analysis of the contact angle of a droplet of UHP 

H2O at the three-phase intersection. The averages and standard errors of contact 

angles were determined from five different measurements made for each type of 

SAM. 

 

5.2.5  Surface Plasmon Resonance (SPR) 

 SPR switching experiments were performed with a Reichert SR7000DC Dual 

Channel Spectrometer (Buffalo, NY, USA) at 25 °C using a three-electrode 

electrochemical cell (Figure 5.2) and a Gamry PCI4/G300 potentiostat. The SAMs 

prepared on Reichert gold sensor chips served as the working electrode, the counter 

electrode was a Pt wire, and a standard calomel electrode (SCE) was used as the 

reference electrode. Prior to the binding studies, the sensor chips were equilibrated 

by flowing degassed PBS at 50 μl/min, followed by application of – 0.4 V or open 

circuit conditions for 10 min while passing degassed PBS through the 
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electrochemical cell at a flow rate of 50 μl/min. While still applying a potential, 

neutravidin (500 μL, 54.4 μg/mL) or neutravidin with DMEM, DMEM-FBS or DMEM-

FBS-HEPES were injected over the sensor chip surface for 10 sec at 1500 μl/min 

and then 30 min at 8 μl/min (the decrease in flow rate from 1500 to 8 μl/minto ensure 

that sufficient exposure time was provided for binding to occur between the biotin on 

the surface and neutravidin in solution). In order to remove any unbound material, 

the sensor chips were washed with degassed PBS for 10 sec at a flow rate of 1500 

μl/min, followed by 10 min at a flow rate of 50 μl/min while still applying a potential to 

the chips. The same procedure was used for OC experiments without applying a 

potential. 

 

 

 

Figure 5.2 Shows the experimental setup for a) an image of the electrochemical 

SPR using a Reichert custom designed electrochemical cell and b) a diagram 

showing a side view of the electrochemical SPR cell during experiments. 
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5.2.6  Force field test 

Since the conformational switching of biotin-4KC chains mainly results from the 

rotation of the C-C bonds, the energy scan for biotin-4KC molecule with different C1-

C2-C3-C4 dihedrals (Figure 5.3) was carried out by both force field methods and 

density functional theory (DFT) calculations with the B3LYP functional and 6-31G(d) 

basis set. Three kinds of force fields, cvff, compass and pcff were tested. The result 

is shown in Figure 5.3. The cvff force field shows the best performance. Although it 

overestimates the energies compared to the DFT result, it displays the right shape of 

the energy curve. In contrast, both compass and pcff force fields result in a 

significant deviation from the DFT result. So the cvff force field was adopted 

throughout our simulations. 

 

Figure 5.3 The energy scanning for biotin-4KC molecule with different C1-C2-C3-C4 

dihedrals, obtained by both force field methods and DFT calculations. 
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Table 5.1 Parameters for the surface models used in the simulations. 

Surface chains 
Solvent molecules 

(H2O) 

Ions 

(Cl-) 
Cell parameters (Å3) 

Biotin-4KC/15(TEGT) 2115 4 34.60 × 34.60 × 77.42 

Biotin-4KC/15(HEGT) 1974 4 34.60 × 34.60 × 77.42 

9(Biotin-4KC) 1982 36 34.60 × 34.60 × 77.42 

 

 

5.2.7  Computational details 

Five layers of gold atoms cut from the Au(111) surface were adopted to model the 

gold substrates used in the experiment and they were fixed during the simulations. 

All MD simulations were performed in the canonical (NVT) ensemble using the cvff 

force field. The temperature was set to 298 K by using the Andersen thermostat. [3] 

The equations of the motion were integrated using the velocity Verlet algorithm[4] with 

the time step of 1fs. The atomic charges for the biotin-4KC molecules were updated 

every 100ps by DFT calculations, at the M06-2X/6-31G(d,p) level of theory. The 

Discover module in the Materials Studio package[5] was employed to run all the MD 

simulations. All DFT calculations were carried out with the Gaussian 09 program 

package.[6] 
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5.2.8  Cell culture 

Cryovials of RAW 264.7 macrophage cells (ATCC# TIB-71) were taken out from the 

liquid nitrogen following standard operating procedure for liquid nitrogen. After 

thawing for 3 minutes in a water bath at 37oC, the cell suspension was then 

transferred from the cryovial to a 50mL centrifuge tube with 10 mL of supplemented 

DMEM (10% FBS, 1% penicillin/streptomycin and 24 mM HEPES buffer) and 

centrifuged twice at 1500 rpm for 5 minutes at a time. The cell pellet was re-

suspended in 10 mL of fresh supplemented DMEM and transferred into a Corning 

tissue culture flask. Cells were cultured at 370C, 5% CO2 and in humidified 

atmosphere. When cells reached approximately 80% confluency (Figure 5.4), they 

were ready to be sub-cultured.  

 

 

 

Figure 5.4 Optical images of RAW 264.7 cells showing a) low density and b) high 

density. 

 



  P a g e  | 134 

The procedure to sub-culture cells required some of the used medium to be 

aspirated using a cell culture vacuum pump and some medium to remain in the 

culture flask (approximately 2 mL). The cells were dislodged from the flask with a cell 

scraper and aspirated using a pipette. Appropriate aliquots of the cell suspension 

were added to new tissue culture flasks and cells were sub-cultured with 5 mL of 

new supplemented DMEM for every ~1 x 106 cell/mL. The cell culture medium was 

replaced every 2 to 3 days or until cells reached 80% confluency. All cell sub-

culturing procedures were carried out inside a sterile laminar flow hood to minimise 

any possible contamination from exposure to the atmosphere. 

 

5.2.9  Counting cells using a haemocytometer 

Cells were dislodged from tissue culture flasks using a cell scraper after 

reaching 80% confluency as mentioned in section 5.2.8. Cells were then transferred 

to a 50 mL centrifuge tube and suspended in sufficient supplemented DMEM. The 

cell suspension was mixed by gentle agitation of the tube in order to ensure cells 

were distributed evenly in the suspension. A 20 µL aliquot of the cell suspension was 

then pipetted into a vial and mixed with an additional 60 µL of trypan blue to check 

cell viability. Uptake of the trypan blue dye indicates cells are nonviable (dead) and 

non-uptake of the blue dye indicates cells are viable (alive).  

The cells were then counted using a haemocytometer, which was first cleaned 

using 70% ethanol and dried using tissue. The shoulders of the haemocytometer 

were slightly moistened to affix the coverslip with gentle pressure. A 20 µL sample of 

the cell suspension and trypan blue mixture was pipetted into either side of the 

coverslip on the haemocytometer. The haemocytometer was then placed on a 
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microscope stage and the grid lines of the haemocytometer were brought into focus 

using an inverted microscope at a 10x magnification. The four sets of 16 corner 

squares were counted using a manual cell counter (Figure 5.5). Only live cells that 

looked healthy (unstained by trypan blue) were counted. Cells were counted within 

the square and any position on the right hand or bottom boundary line. Dead cells 

which were stained blue were counted separately for viability counts. The 

haemocytometer is designed so that the number of cells in one set of 16 corner 

squares is equivalent to the number of cells x 104/mL. To convert this cell count into 

cells/mL, the total cell count from four sets of 16 corner squares was: 

1. Divided by 4 to get an average cell count for each set of 16 corner squares. 

2. Then multiplied by 4 to adjust for the 1:4 dilution in trypan blue. 

3. Multiplied by 104/mL to give number of cells/mL. 

Finally, the initial cell suspension in the 50 mL centrifuge tube was diluted with 

supplemented DMEM yielding a solution of 1 x 106 cells/mL. 

 

 

Figure 5.5 Standard haemocytometer chamber used for counting cells. 
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5.2.10  Cell adhesion on different SAMs 

Gold substrates were prepared using a glass cutter to approximately 1 cm by 1 cm. 

The pure C11TEG and GRGDS-3KC:C11TEG mixed SAMs and bare 

gold substrates were prepared in triplicates and placed in sterile Petri dishes. The 

substrates were then immersed in 4 mL of supplemented DMEM using a pipette. An 

aliquot with 1 mL of RAW 264.7 cell suspension at 1 x 106 cells/mL was then added 

to the Petri dishes to give a final cell suspension of 2 x 105 cells/mL in each Petri 

dish. The substrates were incubated for 24 h at 370C in 5% CO2 to allow time for cell 

adhesion. Substrates were then rinsed in DMEM (warmed to 370C) to ensure loosely 

bound cells were removed. Substrates were then mounted on a microscope slide 

and the cells were counted using an optical microscope (see Section 5.2.12). 

 

5.2.11  Cell switching studies 

Electrical potentials were applied to the SAM functionalised gold substrates using a 

Gamry PCI4/G300 potentostat with a custom designed Teflon cell, equipped with the 

functionalised gold substrate as the working electrode, a Pt wire as the counter 

electrode and a SCE as the reference electrode as shown in Figure 4.15. For the 

bio-inactive state (cell resistant state), an electrical potential of -0.4 V was applied for 

10 min on the gold substrate in 4 mL of DMEM, followed by adding a RAW 264.7 cell 

suspension of 2 x 106 cells/mL, whilst maintaining the -0.4 V potential for a further 1 

h. The substrates were then placed in a petry dish and immersed in DMEM warmed 

to 370C to gently rinse loosely bound cells were removed. Thereafter, cell viability 

was checked under a microscope to ensure an applied potential of -0.4 V was not 

causing cell death. A drop (~0.1 mL) of trypan blue was pipetted onto the surface of 
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the substrate that had undergone switching and was left for 1-2 minutes. The 

substrate was then rinsed again by immersing in a petri dish with DMEM to remove 

the trypan blue from the surface in preparation for cell counting under a microscope. 

For the bioactive state (cell adhesive state), the same procedure was used but under 

OC conditions with no applied potential. 

 

5.2.12  Counting cells on gold substrates 

Gold substrates that had cells adhered for 24 h or had undergone switching 

experiments were taken out of the petri dish containing DMEM using tweasers and 

attached to a microscope slide using a double sided adhesive. The microscope slide 

with the gold substrate was then placed on the microscope stand and cells were 

visualised with an optical microscope (Zeiss SM-LUX) using 20x objective lens. It 

was essential for the gold substrates to remain moist after being removed from 

DMEM in order for cells to be observed clearly using the microscope. Images were 

collected with a Canon Powershot G5 monochrome camera. Cell numbers were 

quantified using cell counts on the remaining cells per field of view at 5 random 

locations on each substrate. A microscope scale bar was used to measure the area 

of each image in µm2 which was then converted to cells/mm2. 
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Chapter 6: Conclusion and Future Work 

6.1 Conclusion 

 The work carried out in this thesis provides new insights into the switchablility 

of surfaces under complex biological conditions. Chapter 3 focused on the 

optimisation of mixed SAMs to prevent nonspecific adsorption, which were still 

capable of displaying high switching efficiencies. It was shown that the combination 

of electro-switchable oligopeptide SAMs with ethylene glycols (EG3) of an 

appropriate length, high levels of switching efficiency can be achieved under 

complex biological conditions, utilising the biotin-neutravidin interactions. A shorter 

chain ethylene glycol molecule (C3TEG) was shown to be ineffective at preventing 

nonspecific adsorption. SPR sensorgrams provided evidence to confirm that longer 

EG chains (EG6) are advantageous in preventing nonspecific binding, however they 

can be detrimental to specific protein binding due to interference and shielding of the 

binding sites. These results were confirmed using theoretical models via molecular 

dynamic simulations, thus proving that the EG6 chain does not allow neutravidin to 

bind to biotin due to the biotin being partially concealed in the EG6 matrix.  

 Dilution studies provided further information about the switching efficiency of 

the oligopeptide mixed SAMs. At highly concentrated media solutions of DMEM-

FBS-HEPES, DMEM-FBS, DMEM only, FBS only and HEPES only, switching 

efficiency was shown to be much lower reaching between 15-45%. However, 

dilutions down to 1% of the original media solutions can increase the switching 

efficiency up to 70%. The presence of FBS and HEPES appeared to cause a partial 

inhibition in switching. FBS has high protein content and hence displayed high 

nonspecific binding to surfaces, which was understood to be the primary reason for 
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the occurrence of compromised switching. Similarly it was shown that HEPES buffer 

also affects the switching, which may be due to its strong sulfonic acid and weak 

base that can form hydrogen bonds with proteins. 

 In Chapter 4 the discussion was based around controlling macrophage cell 

adhesion under complex media. The knowledge gained from Chapter 3 was used to 

design and fabricate electrically switchable RGD terminated mixed SAMs in order to 

adhere and repel cells via an electrical stimulus. After characterising the surfaces, 

initial studies were carried out to ensure cells were adhering preferably to the RGD 

functionalised surfaces as opposed to nonspecific adhesion to non-RGD 

functionalised surfaces. The results indicated that cells were capable of recognising 

surfaces functionalised with RGD. Thereafter, switching studies were carried out by 

applying a -0.4 V potential to cell adhered surfaces, in order to determine the 

possibility of detaching cells via switching. However, it was shown that the cell 

integrin receptor interactions were such that it was not possible to detach cells from 

a suface after an incubation period of 24 h. 

Subsequently, the experimental setup was re-designed with the aim of testing 

switching under an incubation time of 1 h. Under OC conditions the RGD group was 

exposed for cell adhesion, resulting in high cell counts, thus generating a cell 

adhesive surface. Alternatively, by applying a negative potential to the surface the 

positively charged lysine chains were attracted to the surface thus partially 

concealing the RGD. As a result the cell count was significantly reduced and an 

overall switching efficiency of 70% was achieved, indicative of an effective cell 

resistant surface. The system was also shown to change between cell resistant and 

cell adhesive states allowing for a significant degree of control over cell adhesion. 
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6.2 Future work 

 The next step of this project would be to further optimise switching conditions 

by varying concentrations of culture media and fine-tuning the applied potentials on 

the surface. For example switching capacity of the GRGDS-3KC:C11TEG mixed 

SAMs could be investigated under 1-100% dilutions of different medium to find out if 

switching efficiency can be improved from the current 70%. In addition, tweaking the 

the potentials applied to the surface could also improve the switching efficiency 

significantly. One possibility would be to use a positively applied potential of +0.3 V, 

which could alter the configuration of the positively charged oligolysine chain to a 

stretched out conformation. Thus, further enhancing cell adhesion due to the 

increased availability of RGD sites in comparison to OC conditions. However, the 

application of such potentials and their effects on cells would also need to be 

considered to ensure cells are not being adversely affected. In addition, changing the 

length of the switchable lysine chain of GRGDS-3KC to include 4-6 lysine units, in 

order to improve switching efficiency could also be a possible route for further 

investigation. 

 These studies could contribute to significant work in cell signaling in addition 

to cell adhesion due to the ability of the RGD functionalised surface to modulate 

surface ligand availability in real-time in a spatially controlled manner. For instance, 

intracellular signaling mediated by specific cell surface receptors could also be used 

to monitor the interaction of controlled ligands and surface receptors, in real-time 

using a fluorescent reporter for Ca2+ flux. 

 Other alternative routes to this project could be to replace the RGD 

headgroup with other bioactive moieties such as progesterone to form novel 
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switchable surfaces. In such a system the application of an electrical potential could 

regulate the progestrone moeity and thus be used to investigate the stimulus 

activated signal in human sperm cells for determining the quality of human sperm 

cells and also the potential to study human infertility. Another important line of study 

could be to use bioactive moieties such as boronic acids capable of detecting 

glucose and other saccharides to facilitate the development of diagnostic tools for 

the early detection of diabetes. 

The fabrication of a new generation of well-defined surfaces consisting of 

multiple ligands could offer more selective and precise methods for controlling 

specific cellular interactions in addition to more biologically relevant biomolecules 

such as glycoproteins. For example in an “ON” state the surface could bind to cells, 

however in an “OFF” state the cells would be unable to bind due to specifically 

bound biomolecules to the surface preventing cell adhesion. Some of the key 

aspects that would need to be considered in assembling a well-defined multi-ligand 

switchable surface are: the bioactive moieties, ligand length, EGn components for 

preventing nonspecific binding and electrically active chains required for the 

switching mechanism. The binding of biomolecules could be detected via SPR, 

whereas the presence of cells on the surface could be observed by utilising 

fluorescently labelled cells via a confocal microscope. SFG could also be used to 

further investigate the ways in which each ligand is affected by an electrical stimulus. 

 A key application for these dynamic surfaces could be the development of 

more selective capture and release of cells and also controlling the location of cell 

adhesion on surfaces. Furthermore a detailed analysis of cell function, precise 

manipulation of cell response and monitoring of intracellular processes via the 
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uptake of nanomaterials such as carbon nanotubes would be of great interest to cell 

biologists. The fabrication of surfaces that can mimick the natural environment will 

provide new insights into the pathway through which cells sense, adapt and respond 

to changes to their surroundings. Surfaces that can be dynamically controlled in this 

manner have the huge potential to be developed into simple and efficient diagnostic 

tools for the early detection of many diseases such as cancer, immunodeficiency 

diseases and diabetes. 

Finally one of the novel features of this research project was to use an RGD 

functionalised surface to regulate the adhesion of macrophage cells. It is well known 

that macrophages form an integral part of the immune system, which mediates 

immune response to foreign materials. Thus, development of such novel dynamic in 

vitro systems to control macrophage cell adhesion in particular could provide new 

insights into macrophage cell signaling and aid the advancement of implantable 

devices and other biomaterials in order to prolong their lifespan. 
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Appendix I 

 

Solution ratio (Biotin-
4KC:C11HEG) 

N area S area S/N 
No. of 

C11HEG 

1:10 a 0.00689 0.00526 0.763 6.397 

1:10 b 0.00678 0.00973 0.635 3.722 

1:40 a 0.00268 0.00421 1.570 15.279 

1:40 b 0.00391 0.00636 1.030 7.276 

1:100 a 0.00383 0.00643 1.678 16.467 

1:100 b 0.00330 0.00685 2.075 20.833 

 

Table 6.1 XPS data of biotin-4KC:C11HEG SAMs at different solution ratios. 

 

Solution ratio (Biotin-
4KC:C11HEG) 

No. of C11HEG Average Error 

1:10 a 6 
5 1 

1:10 b 4 

1:40 a 15 
11 6 

1:40 b 7 

1:100 a 16 
19 4 

1:100 b 21 

Table 6.2 Average C11HEG SAMs per biotin-4KC at different solution ratios. 
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Appendix II 

 

Solution ratio 
GRGDS-

HEGC:C11TEG) S N S/N 

No. of 
C11TEG 

1:40 a 0.00603 0.00789 0.764 6.647 

1:40 b 0.00869 0.01192 0.729 6.296 

1:40 c 0.00540 0.01085 0.497 3.977 

 

Table 6.3 XPS data of GRGDS-HEGC:C11TEG SAMs at different solution ratios. 

 

 

Solution ratio GRGDS- 
HEGC:C11TEG) 

No. of C11TEG Average Error 

1:40 a 7 

6 1 1:40 b 6 

1:40 c 4 

 

Table 6.4 Average C11TEG SAMs per GRGDS-HEGC at different solution ratios. 
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Appendix III 

 

 
Response Units of Complex media 

SAMs DMEM DMEM-FBS 
DMEM-FBS-

HEPES 

Biotin-4KC 376.2 1639.8 1541.9 

C3TEG 98.7 1005.1 854.6 

C11TEG 39.3 344.7 180.3 

C11HEG 4 3.5 183.3 
 

Table 6.5 Showing the response unitrs or different complex media on the 

following pure SAMs: Biotin-4KC, C3TEG, C11TEG and C11HEG. 
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Appendix IV 

 

 

Figure 6.1 Representative SPR sensorgram traces for the OC (black trace) and -

0.4 V applied potential (red trace) interactions of dilutions of DMEM with biotin-

4KC:C11TEG at a) 1%, b) 10% and c) 100%.  
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Appendix V 

 

 

Figure 6.2 Representative SPR sensorgram traces for the OC (black trace) and    

-0.4 V applied potential (red trace) interactions of dilutions of DMEM-FBS with 

biotin-4KC:C11TEG at a) 1%, b) 10% and c) 100% 
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Appendix VI 

 

 

Figure 6.3 Representative SPR sensorgram traces for the OC (black trace) and    

-0.4 V applied potential (red trace) interactions of dilutions of DMEM-HEPES-FBS 

with biotin-4KC:C11TEG at a) 1%, b) 10% and c) 100%  
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Appendix VII 

 

 

Figure 6.4 Representative SPR sensorgram traces for the OC (black trace) and    

-0.4 V applied potential (red trace) interactions of dilutions of FBS with biotin-

4KC:C11TEG at a) 1%, b) 10% and c) 100%. 
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Appendix VIII 

 

 

Figure 6.5 Representative SPR sensorgram traces for the OC (black trace) and    

-0.4 V applied potential (red trace) interactions of dilutions of HEPES with biotin-

4KC:C11TEG at a) 1%, b) 10% and c) 100%. 




