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Abstract

Information leakage occurs when a system exposes its secret information to an unau-

thorised entity. Information flow analysis is concerned with tracking flows of informa-

tion through systems to determine whether they process information securely or leak

information.

We present a novel information flow model that permits an arbitrary amount of

secret and publicly-observable information to occur at any point and in any order in

a system. This is an improvement over previous models, which generally assume that

systems process a single piece of secret information present before execution and pro-

duce a single piece of publicly-observable information upon termination. Our model

precisely quantifies the information leakage from secret to publicly-observable values

at user-defined points — hence, a “point-to-point” model — using the information-

theoretic measures of mutual information and min-entropy leakage; it is ideal for

analysing systems of low to moderate complexity.

We also present a relaxed version of our information flow model that estimates,

rather than computes, the measures of mutual information and min-entropy leakage

via sampling of a system. We use statistical techniques to bound the accuracy of the

estimates this model provides. We demonstrate how our relaxed model is more suit-

able for analysing complex systems by implementing it in a quantitative information

flow analysis tool for Java programs.
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1
Introduction

What do the following events have in common?

(a) In June 2014, the American telecommunications company AT&T was legally

obliged to reveal that the names, Social Security numbers, dates of birth and

call activity of an undisclosed number of their customers had been accessed illic-

itly two months previously. AT&T claimed that the details had been exposed to

three employees of a third-party contractor who were using an internal system

for obtaining unlock codes for mobile devices connected to AT&T’s network. The

company claimed that the intrusion was intentional (Forbes, 2014).

(b) In March 2012, an individual breached a web server operated by the British Preg-

nancy Advisory Service (BPAS). The charity’s web site was defaced, but BPAS

stressed that the personal information of those who had contacted the charity

seeking advice on contraception, pregnancy and abortion was not at risk dur-

ing the attack. Two years later, in March 2014, it transpired that the names,

telephone numbers and dates of birth of thousands of people who had tele-

phoned the charity were retrieved by the individual, who threatened to publish

the names before being arrested days later. BPAS claimed that it was unaware

that a vulnerability in its web site code made it possible for the individual to re-

cover the information surreptitiously (Information Commissioner’s Office, 2014).
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(c) In April 2011, an attacker gained unauthorised access to a web application server

responsible for serving content to users of Sony’s PlayStation Network (PSN).

The attacker was able to retrieve the names, addresses, dates of birth, telephone

numbers and potentially credit card information of subscribers to the service

from a PSN database server, bypassing two firewalls in the process. A week later,

Sony publicly confirmed the occurrence of the data breach. With the personal

details of 77 million subscribers affected by the intrusion, it ranks as one of the

largest data breaches in history (CNET, 2011).

The connection between these incidents is that they all feature significant information

leaks.

1.1 What is Information Leakage?

Technology is ubiquitous in society; computers are consequently expected to store and

process rapidly increasing amounts of data, and it is inevitable that some of this data

will be divulged to other entities. It is important not only that this data is shared with

explicitly authorised entities, but also that those entities are not able to access more

data than their authorisation permits; the disclosure of information to entities that do

not have explicit permission to access it is known as information leakage.

The consequences of information leakage can be severe. The most noticeable vic-

tims are the data subjects themselves: obvious potential outcomes include financial

loss if electronic payment information is disclosed to those with the means of abus-

ing it (as was potentially the case with the credit card details of 77 million PSN sub-

scribers), and identity theft if personally identifiable information is revealed (as was

the case with the Social Security numbers of AT&T’s affected customers, in an era when

Social Security numbers are de facto authenticators for US citizens). There are often

less obvious, more sinister outcomes for affected data subjects. The individual who

compromised BPAS’s web server intended to publicise the names of women who had
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contacted the charity seeking abortion advice; given the highly personal and sensi-

tive nature of such a procedure, this information could have been used to blackmail

them. Similarly, the employees of AT&T’s third-party contractor could have used the

telephone call metadata they illicitly obtained to infer much more information about

the daily activities of the subscribers — one of the greatest revelations of the global

surveillance agency disclosures of 2013 is the extent to which such metadata readily

reveals details about the private lives of its subjects (Stanford Report, 2014).

It is easy to forget, however, that the data controllers themselves are often also vic-

tims. Again, financial loss is a concern: while Sony and the FBI investigated the PSN

data breach, the service was temporarily taken offline and remained closed for almost

a month, causing an enormous loss of revenue for Sony; in total, the episode cost the

company approximately $171 million (CBS News, 2011). Similarly, AT&T offered to

pay for one year of free credit monitoring for all subscribers affected by their data

breach. Regulatory frameworks may also punish infringing data controllers: organi-

sations are often compelled to report the occurrence of information leaks under threat

of fines or legal action, and may yet be punished even if leaks are declared: two years

after the attack on their server, BPAS were fined £200,000 by the Information Commis-

sioner’s Office, the UK’s national data protection authority, for improper storage of per-

sonal data. A much longer-lasting risk is reputational damage: consumers may think

carefully before conducting business with companies that have previously disclosed

their customers’ personal information to attackers, and women seeking abortion ad-

vice may be less inclined to contact a charity with a public track record of accidentally

leaking information about those who ask it for help.

Clearly, then, it is in the best interests of all concerned that information leaks do

not occur.
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1.2 Preventing Information Leakage

Denning and Denning (1979) were amongst the earliest to recognise the importance of

preventing or mitigating the effects of information leakage. They identify four meth-

ods of safeguarding sensitive data: access control, cryptographic control, inference

control, and information flow control.

Access control is the most widely used method of safeguarding data. As the name

implies, access to sensitive data is restricted to those entities (i.e. users or programs)

authorised to access it; an entity must authenticate themselves (i.e. prove their identity),

at which point their request to access the data is either accepted or rejected depending

on whether they have the authorisation to access it. However, as Hedin and Sabelfeld

(2011) argue, in many cases access control is not fine-grained enough to provide ade-

quate information security guarantees: access to the data is either completely allowed

or completely forbidden; entities that are granted access to the data must therefore be

trusted not to leak any sensitive information.

Cryptographic control uses encryption to protect sensitive data during transmission

or storage. This prevents unauthorised entities from being able to read the data by

eavesdropping on or intercepting communications between the system protecting the

data and its authorised entities. However, as with access control, it is not possible to

restrict what entities do with the data after it has been revealed to them: trust must

be placed in the entity not to leak sensitive information after it has been decrypted.

Additionally, if cryptography is used incorrectly to protect sensitive data, it may be

possible for an unauthorised entity to intercept the encrypted data and decrypt it,

thus bypassing cryptographic controls entirely.

Inference control prevents unauthorised entities from consolidating and applying

their prior knowledge of data they have the authorisation to access to infer information

about more sensitive data that they do not (an inference attack). This is a particularly

desirable safeguard for a database: the ideal is that wide-ranging statistics provided
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by aggregate queries should not leak information about any sensitive data that was

used to construct those statistics. In practice, however, perfect inference control is

unachievable; Denning and Denning argue that a more appropriate use of inference

control is to determine how expensive it would be for an unauthorised entity to launch

a successful inference attack against sensitive data, and to design the system so that

this expense is prohibitively great.

A stronger safeguard is information flow control, which monitors how sensitive data

moves (or flows) through a system. Systems implementing information flow controls

have a security policy imposed on them that specifies where and how sensitive data

is permitted to flow; systems are considered insecure if sensitive data that should be

inaccessible to an unauthorised entity flows into data that the entity is authorised to

read. This is a fundamentally different safeguard to the previous three: as Smith (2007)

states, they ensure that sensitive information is not released, whereas information flow

control ensures that it is not propagated. Of the four safeguards we have discussed,

it is perhaps the most satisfactory for achieving the goal of eliminating information

leakage.

This thesis therefore focuses on detecting information leaks through information

flow analysis.

1.3 Information Flow Analysis

Information flow analysis considers how systems (typically programs) can be statically

or dynamically analysed to determine the flows of information that occur in them.

For such an analysis to be meaningful, a formal definition of “information flow” is

required. This involves defining an information flow model consisting of three compo-

nents:

(a) a system model, a theoretical abstraction or encoding of the system being anal-

ysed;
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(b) an attacker model, an encoding of the capabilities and goals of an unauthorised en-

tity trying to violate the security of the system (as defined by the system model),

typically specifying whether the entity has prior knowledge of the system’s be-

haviour or its sensitive information and whether the entity is able to provide

input to (or otherwise interact with) the system while it is executing; and

(c) a security policy, a precise definition of where sensitive information may flow

when it is processed by the system.

Thus, we state that a system is secure if and only if the model of the system satisfies the

given security policy, given the presence of an attacker with the capabilities defined by

the attacker model. This also implies that the quality of an information flow analysis

depends largely on how accurately the information flow model reflects the reality of

the system and its attackers.

The task of encoding a system as a system model and performing an information

flow analysis on it to verify its security could be performed manually, but given the

complexity of modern systems it is much more desirable for the entire process to be

automated. Finding the best way of achieving this is an active field of research in

computer security; current work falls into one of two branches.

Qualitative information flow analysis typically focuses on the compartmentalisation

of information: similarly to real-world governmental information classification sys-

tems, the system model sorts the processed information into categories and arranges

these categories in a hierarchy, which can be represented as a lattice; the security policy

defines the directions in which information may and may not flow. For instance, a sys-

tem model may consist of the classifications “top secret”, “confidential” and “unclas-

sified” arranged in a linear hierarchy, and the accompanying security policy may state

that information can only flow upwards in the hierarchy: no “top secret” information

may flow into the “confidential” or “unclassified” categories, and no “confidential” in-

formation may flow into the “unclassified” category. (Systems that satisfy this security

policy are said to have the noninterference property — but we shall show in Chapter 3
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that it is unrealistic to expect all but the most trivial of systems to have this property.)

A successful qualitative information flow analysis answers the question “does this

system leak information?”. While it is helpful to know the answer to this question, it

does not give a particularly convincing security guarantee; as we shall see in Chap-

ter 3, many programs must leak at least a small amount of information to provide

their intended functionality. The canonical example is a password-checking program:

even the most secure implementation of such a program will still leak a very small

amount of its secret information (i.e. the correct password) to an attacker — specif-

ically, whether or not the password they provided was valid. When discussing the

security of a system, it is therefore often more useful to speak not in terms of whether

it leaks information, but instead how much information it leaks.

This is the approach taken by quantitative information flow analysis; it provides

bounds on the amount of sensitive information that is leaked to an attacker. A quan-

titative security policy, therefore, is not just a statement of where sensitive information

may flow, but also how much of it may flow there before the system is deemed insecure.

In quantitative information flow models, the severity of information leaks is usually

measured using information theory (Shannon, 1948), a branch of mathematics and

computer science concerned with quantifying information; one of the most common

metrics for measuring information leakage is the mutual information of (i.e. the amount

of information shared between) the system’s secret data and the data accessible by an

attacker when both types of data are treated as individual variables with their own en-

tropy (i.e. uncertainty in their possible value from the perspective of an attacker). Many

other metrics are available; for example, min-entropy leakage quantifies the vulnerabil-

ity of a system’s secret data to an attacker with the ability to make a single attempt at

correctly guessing the secret data after observing the data they are permitted to access

— this metric is becoming increasingly popular because of the security guarantees it

provides in a setting where an unauthorised entity only has one opportunity to attack

the system, e.g. because a single incorrect guess triggers an alarm (Smith, 2011).
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As far as the practical application of these information flow models is concerned, a

particular weakness in most of the existing models in the literature — both qualitative

and quantitative — is that they feature system models that make unrealistic assump-

tions about the manner in which programs typically process secret information and

produce output visible to attackers. Many assume that all of the secret information

processed by a program is present just before it begins executing, and that all of the

information visible to an attacker is present just after it terminates. Additionally, some

models (sometimes the same models) assume that only individual pieces of secret and

observable information are processed by a program. In reality, programs often exhibit

much more complex behaviour: some produce output before and after processing se-

cret information, some may process multiple types of secret information in different

stages, the secret information being processed may itself be modified during execu-

tion, etc. It is prohibitively difficult to model real and complex systems in these system

models, and consequently many theoretically sound information flow models simply

cannot realistically be used to analyse the types of programs that commonly exist in

the real world.

A related secondary weakness is that few existing information flow models feature

system models that can be integrated into real-world programming languages; this is

problematic because a requirement for programmers to transform their programs into

a formal model in order to perform an information flow analysis on them will in all

likelihood simply lead to the analysis being considered too difficult or time-consuming

and thus not being performed at all, leading to an ever-increasing number of programs

being vulnerable to information leakage.

1.4 Contributions of this Thesis

This thesis makes two significant contributions to the information flow analysis liter-

ature.
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The first is a novel “point-to-point” quantitative model of information flow, with a

system model based upon CH-IMP, a probabilistic imperative language with basic fea-

tures found in all modern programming languages: variable assignment and scoping,

branching and looping. Provided that a system can be modelled in CH-IMP, our infor-

mation flow model is able to analyse it. CH-IMP’s information flow model differs from

existing quantitative information flow models in that it does not restrict the occurrence

of secret or publicly-observable information at all: either type of information may oc-

cur anywhere in a program, including inside complex code structures such as nested

branches or loops or blocks of code that are only executed with a low probability.

CH-IMP’s most novel feature is the addition of two commands, secret and observe,

that signify the occurrence of secret and publicly-observable values respectively at spe-

cific points in the program code — hence a “point-to-point” model that answers the

question “what does an attacker learn about these secret values at these specific points

in the program by observing these publicly-observable values at these other specific

points?”. We show that CH-IMP has a sound basis by formally defining the execu-

tion of a CH-IMP program in terms of a discrete-time Markov chain (DTMC), a well-

understood probabilistic model; the secret and publicly-observable information that

occurs during execution of a program is defined in terms of a discrete joint probability

distribution, from which a great number of information-theoretic leakage measures can

be derived (although in this thesis we focus on mutual information and min-entropy

leakage). With the aid of many motivating examples and two in-depth case studies,

along with a software implementation of our information flow model, we demonstrate

that CH-IMP is capable of analysing the flows of information that occur in typical sys-

tems and is particularly suited to analysing probabilistic programs and protocols of

low to moderate complexity.

Due to the DTMC-based semantics of CH-IMP program execution, however, this

information flow model is ill-suited to analysing complex systems that contain too

many paths of execution to be analysed precisely in polynomial time — although this
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is a limitation of any model that explores the entire state space of a probabilistic pro-

gram, rather than of ours specifically. Our second significant contribution is a relaxed

form of this information flow model, in which there can be some margin of error in the

joint probability distribution of the secret and publicly-observable information. Using

results from the statistics literature, we show that the information-theoretic leakage

measures of mutual information and min-entropy leakage can still be computed from

this approximate joint probability distribution, and that good bounds on their accu-

racy can even be derived. Given that this distribution need only be an approximation

of the true distribution, this frees us from analysing systems in CH-IMP’s formal sys-

tem model for precisely computing the true distribution; we show that this estimated

joint probability distribution can be derived via the sampling of a program and record-

ing of the secret and publicly-observable information that occurs during execution. We

present new algorithms for determining when the sample size is large enough for mu-

tual information and min-entropy leakage estimates to be computed, thus minimising

the amount of time taken to perform a successful information flow analysis of the pro-

gram.

Finally, with the help of three more detailed case studies, we demonstrate that this

relaxed model and sampling method can be used to estimate the size of information

flows in realistic programs written in Java, a real-world programming language, and

present a second software tool for automatically performing quantitative information

leakage analyses on Java programs.

1.5 Thesis Structure

The thesis is structured as follows.

Part I addresses existing research on information flow analysis. In Chapter 2 (p. 29)

we provide definitions and theorems from probability theory and information theory

that form the foundations of the research area. In Chapter 3 (p. 51) we review the in-
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formation flow analysis literature, and inspect some existing information flow models

and analysis tools. We identify features of existing models that preclude them from

analysing flows of information that typically occur in complex systems, and thus mo-

tivate the creation of a new model.

Part II presents our new quantitative information flow model. In Chapter 4 (p. 89)

we introduce the probabilistic CH-IMP language and define our point-to-point model

of information flow; we show how the mutual information and min-entropy leakage

measures of information leakage can be derived from the DTMC induced by the execu-

tion of a CH-IMP program. In Chapter 5 (p. 125) we demonstrate an implementation

of the CH-IMP language and information flow model in a software tool, chimp, and in

Chapter 6 (p. 159) we show how chimp can be used to verify information security poli-

cies in two realistic case studies of low to moderate complexity. The example programs

we present in this chapter are easily expressed in CH-IMP but difficult to express in

the system models of other information flow models, underlining one of our major

contributions to the qualitative information flow analysis literature.

Part III investigates how a relaxed version of our information flow model can be

used to analyse more complex systems. In Chapter 7 (p. 185) we demonstrate that,

with the aid of the statistics literature, the information leakage measures that can be

computed from CH-IMP’s analysis of a probabilistic program can instead be estimated

from samples of the secret and publicly-observable information that occurs during

execution of the program. We present leakiEst, a tool and Java library for estimating

information leakage measures from probabilistic system samples. We also show how

this technique can be automated in a real-world programming language by presenting

LeakWatch, a quantitative information flow estimation tool for Java. In Chapter 8

(p. 217) we provide three further case studies demonstrating that our method is viable

for quantifying the information leakage of complex Java programs.

Finally, we make our closing remarks in Part IV: in Chapter 9 (p. 239) we conclude

and present ideas for future work in this research area.
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2
Definitions

2.1 Probability Theory

In Chapter 4 we define our new point-to-point information flow model for probabilis-

tic programs, in Chapter 5 we compare this model with another that can also quantify

the information leakage that occurs from probabilistic programs, and in Chapter 7 we

present techniques for estimating quantitative measures of information leakage; all of

these topics require knowledge of probability theory, and it is therefore a prerequisite

for most of what follows in this thesis. The definitions provided in this section are all

standard and can be found in any introductory text for probability theory (e.g. Freund,

1973).

Probability theory is concerned with experiments and the outcomes of those experi-

ments; in this field, an experiment is typically the execution of a program to observe

how it behaves, and the outcome of interest is typically the occurrence of a particular

type of information during execution; e.g., “when executing program P , what secret

information S does it process?”.

The sample space Ω of an experiment is the set of all possible outcomes o of the

experiment; in this thesis, we are concerned only with discrete sample spaces; i.e., we

assume that the outcomes from an experiment are countable. An event E is a subset

of the sample space (i.e. a set of outcomes) to which a probability has been assigned;
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the probability of an event occurring is denoted P (E), and defines the likelihood of

an experiment ending in a particular way. The probability of an event occurring is

formally defined as follows:

Definition 2.1 (probability of an event)

If the event E in a discrete sample space is comprised of the outcomes o1, o2, . . . , on,

the probability of E occurring is

P (E) =
n∑
i=1

P (oi).

We often need to combine multiple events; we use standard set theory notation and

terminology when referring to the subset E ⊂ F, the union E ∪ F (i.e. the outcomes of

Ω that are members of E or F), the intersection E ∩ F (i.e. the outcomes of Ω that are

members of both E and F), and the complement E (i.e. the outcomes of Ω that are not

members of E).

Formally, the probability measure P must satisfy Kolmogorov’s axioms of probability:

Theorem 2.1 (Kolmogorov’s axioms of probability)

First axiom. The probability of an event occurring is a non-negative real num-

ber:

∀E ⊂Ω P (E) ∈R, P (E) ≥ 0.

Second axiom. The probability that an event in the sample space will occur is

equal to 1:

P (Ω) = 1.

Third axiom. If E1,E2, . . . ,En is a sequence of mutually exclusive events, the
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probability of one of the events occurring is

P (E1 ∪E2 ∪ . . .∪En) =
n∑
i=1

P (Ei).

Kolmogorov’s third axiom requires that the events are mutually exclusive, but the

general addition rule permits the addition of events that are not:

Theorem 2.2 (general addition rule)

If E,F ⊂ Ω are two events in a discrete sample space, the probability of one of

these events occurring is

P (E ∪F) = P (E) + P (F)− P (E ∩F).

Kolmogorov’s third axiom is a special case of the general addition rule, since, for mu-

tually exclusive events, P (E ∩F) = 0.

Kolmogorov’s axioms of probability have the following consequences:

Theorem 2.3 (consequences of Kolmogorov’s axioms)

Monotonicity. If E,F ⊂Ω and E ⊂ F, then P (E) ≤ P (F).

Probability of the empty set. ∀Ω P (∅) = 0.

Bounds on probability. ∀E 0 ≤ P (E) ≤ 1.

Complementary events. If E and E are complementary events in Ω, then P (E) =

1− P (E).

In this field, we are often concerned with the dependence of events: if one event

occurs, what is the probability that another event occurs? This is quantified by condi-

tional probability.
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Definition 2.2 (conditional probability of events)

If E,F ⊂Ω are two events in a discrete sample space, and the probability of event

E occurring is non-zero, the conditional probability of F given E is

P (F | E) =
P (E ∩F)
P (E)

.

A consequence of Definition 2.2 is the multiplication rule of probability.

Definition 2.3 (multiplication rule of probability)

If E,F ⊂Ω are two events in a discrete sample space, and the probability of event

E occurring is non-zero, the probability of an outcome in both E and F occurring

is

P (E ∩F) = P (F | E) · P (E)

or alternatively, if the probability of event F occurring is non-zero,

P (E ∩F) = P (E | F) · P (F).

From Definition 2.2, we can derive Bayes’ theorem, which relates P (E | F) to P (F | E).

Theorem 2.4 (Bayes’ theorem)

If E,F ⊂Ω are two events in a discrete sample space, and the probability of event

E occurring is non-zero,

P (F | E) =
P (F) · P (E | F)

P (E)
.

Two events are independent if the occurrence of one does not affect the occurrence

of the other.
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Definition 2.4 (independence of events)

If E,F ⊂Ω are two events in a discrete sample space, they are independent if and

only if

P (E ∩F) = P (E) · P (F).

A discrete random variable is a variable whose value varies though chance; i.e., the

exact value it assumes from some countable set of possible values is subject to some

probability. Formally, it is defined as a function:

Definition 2.5 (discrete random variable)

A discrete random variable X is a real-valued function defined over the observa-

tions of a sample space Ω.

It is conventional to denote a random variable with an upper-case letter, and one of its

possible corresponding values with the equivalent lower-case letter; i.e., “the random

variable X assuming the value x” is denoted with X = x. We follow this convention in

this thesis, denoting random variables with the letters X, Y and Z.

A discrete probability distribution is a function that describes the probabilities as-

sociated with the occurrence of possible values of a discrete random variable; it must

satisfy Kolmogorov’s first and second axioms (Theorem 2.1, p. 30) in a similar manner

to probability measures.

Definition 2.6 (discrete probability distribution)

The probability distribution PX of a discrete random variable X is a function such

that PX(x) = P (X = x), provided that

∀x ∈ dom(X) PX(x) > 0

and ∑
x∈dom(X)

PX(x) = 1.
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In this thesis, to avoid confusion of probability measures with probability distribu-

tions, we denote probability distributions with a subscript signifying the random vari-

able whose probabilities the distribution defines; e.g., PX is the probability distribution

for the random variable X.

The mean of a probability distribution is its expected average value.

Definition 2.7 (mean of a discrete probability distribution)

The mean of a discrete probability distribution PX is given by

µX =
∑

x∈dom(PX )

x · PX(x).

The variance of a probability distribution, informally, is a measure of how much the

probability distribution diverges from its mean.

Definition 2.8 (variance of a discrete probability distribution)

The variance of a discrete probability distribution PX is given by

σ2
X =

∑
x∈dom(PX )

(x −µX)2 · PX(x).

There are two probability distributions that shall be of interest to us when we re-

view related work from the literature on the statistical estimation of information leak-

age measures in Sections 3.3.1 and 3.3.2 (pp. 75 and 79) and present our own advances

in the practical estimation of these measures in Chapter 7; they are the normal distribu-

tion and the χ2 distribution. We will also encounter the uniform distribution, in which

each outcome occurs with equal probability.

Definition 2.9 (uniform distribution)

A discrete probability distribution PX with k outcomes that occur with a non-zero
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probability is uniform if and only if

∀x ∈ dom(PX) PX(x) =
1
k

.

As mentioned earlier, we shall often be concerned with the dependence between

events; a joint probability distribution defines the relationship between multiple ran-

dom variables (although in this thesis we shall mostly concern ourselves with the re-

lationship between two random variables). It defines the probability that n random

variables will assume n given values simultaneously.

Definition 2.10 (joint probability distribution)

The joint probability distribution PX1,...,Xn of n discrete random variables

X1, . . . ,Xn is a function such that

∀x1 ∈ dom(X1), . . . , xn ∈ dom(Xn) PX1...Xn(x1, . . . ,xn) = P (X1 = x1∩ . . . ∩Xn = xn).

Again, to avoid confusion with probability distributions, we denote joint probability

distributions with a subscript signifying the random variables whose joint probabili-

ties the distribution defines; e.g., PXY is the joint probability distribution for the ran-

dom variables X and Y .

Using Definition 2.10, we can derive PXY from the probability distributions PX and

PY ; we can remove the influence of either PX or PY from PXY through a process known

as marginalisation:

Definition 2.11 (marginal probability distributions)

The joint probability distribution PXY of two discrete random variables X,Y is
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marginalised thus:

PX(x) =
∑

y∈dom(Y )

PXY (x,y);

PY (y) =
∑

x∈dom(X)

PXY (x,y).

Note that this allows us to “recover” both PX and PY from PXY , a fact we rely upon

heavily when we quantify information leakage in our model in Section 4.5 (p. 118).

A conditional probability distribution quantifies causality: it relates the occurrence

of a past event with the probability of the occurrence of a future event, and is defined

similarly to the conditional probability of two events (Definition 2.2, p. 32).

Definition 2.12 (conditional probability distributions)

If PXY is the joint probability distribution of two discrete random variables X,Y ,

and PX and PY are the marginal probability distributions of X and Y respectively

(see Definition 2.11), the conditional probability distribution PX |Y of X given that

Y = y is given by

PX |Y (x | y) =
PXY (x,y)
PY (y)

provided that PY (y) > 0, and the conditional probability distribution PY |X of Y

given that X = x is given by

PY |X(y | x) =
PXY (x,y)
PX(x)

provided that PX(x) > 0.

Finally, we can use the definition of independence for events (Definition 2.4, p. 33)

to formally state a definition of independence for random variables:
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Theorem 2.5 (independence of discrete random variables)

If PXY is the joint probability distribution of two discrete random variables X,Y ,

and PX and PY are the marginal probability distributions of X and Y respectively

(see Definition 2.11), X and Y are independent if and only if

∀x ∈ dom(X), y ∈ dom(Y ) PXY (x,y) = PX(x) · PY (y).

Note that Theorem 2.5 is a qualitative measure: either two random variables are de-

pendent, or they are independent. In computer security, it is often much more useful

to consider how much two quantities are related — this is the case for information flow

analysis, as we shall argue in Chapter 3. We will see how to quantify the dependence

of two random variables when we define mutual information in Section 2.3.1 (p. 40).

2.2 Discrete-Time Markov Chains

In this thesis, we primarily concern ourselves with the execution of programs that

exhibit probabilistic behaviour. In Chapter 4, we shall define the execution of a pro-

gram written in our own probabilistic language in terms of a discrete-time Markov chain

(DTMC). We shall also review related work that makes use of DTMCs in Section 3.2.8

(p. 69).

A discrete-time Markov chain is a process that transitions randomly between states.

Because DTMCs are random processes, probability theory is used to describe their

behaviour.

Definition 2.13 (Discrete-time Markov chain)

A discrete-time Markov chain is a tuple D = (S, s̄,P) where:

• S is a (countable) set of states;

• s̄ ∈ S is an initial state;
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• P : S × S → [0,1] is a transition probability matrix, a discrete probability dis-

tribution such that
∑
s′∈S P(s, s′) = 1 for all s ∈ S.

All processes that can be modelled with a DTMC begin in some initial state s̄, and tran-

sition into other states in S with some probability; the matrix P encodes the probability

of transitioning from one state s into a succeeding state s′. Note that the probability of

transitioning into a succeeding state depends only on the current state, and not on any

previous states; this is known as the Markov property.

We use the term accepting state to denote a state in a DTMC in which it is not

possible to transition into any other state (note that, given the definition of P in Defi-

nition 2.13, a self-transition must therefore exist).

Definition 2.14 (accepting state of a DTMC)

An accepting state s of a discrete-time Markov chain D is a state s ∈ S such that

P(s, s) = 1, and P(s, t) = 0 for all t ∈ S such that s , t.

Thus, an accepting state in a DTMC is analogous to an accepting state in (e.g.) a finite-

state automaton. The set of all accepting states in a DTMC is denoted with S.

A path of a DTMC is a sequence of successive states from the initial state to some

other state that occurs with a non-zero probability.

Definition 2.15 (path of a DTMC)

A path ω of a discrete-time Markov chain D is a finite sequence of states

〈s0, s1, . . . , sn〉 such that s0 = s̄ and P(si , si+1) > 0 for all i ≥ 0.

The set of all paths that occur in a DTMC is denoted with ΩD. Since a path is a finite

sequence of states, and transitions occur between states with some probability, the

probability of a particular path occurring can be computed by multiplying together

the probabilities of each transition occurring:
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Definition 2.16 (probability of a path of a DTMC occurring)

The probability P (ω) of a path ω = 〈s0, s1, . . . , sn〉 of a discrete-time Markov chain

D occurring is

P (ω) =
n−1∏
i=1

P (si , si+1).

Thus, the probability of entering a given accepting state can be computed by mul-

tiplying the probability of each transition that occurs between the path’s initial and

accepting states:

Definition 2.17 (probability of entering an accepting state of a DTMC)

The probability P (s) of a discrete-time Markov chain entering an accepting state

s is

P (s) =
∑

ω=〈s0,s1,...,sn〉∈{ΩD |sn=s}
P (ω).

In this thesis, we shall assume that a DTMC always eventually enters an accepting

state; i.e., we assume that paths are not infinitely long and that the final element in

every path ω ∈ΩD is an accepting state.

In Section 4.2 (p. 93) we shall define the execution of a terminating probabilis-

tic program in terms of a DTMC, and in Section 4.5 (p. 118) we shall show how the

probability of entering each accepting state of the DTMC can be used to quantify the

program’s information leakage in an intuitive manner.

2.3 Information Theory

In Section 3.2 (p. 60) we shall present some related publications from the literature

on the topic of quantitative information flow analysis. Each publication uses one of

several information-theoretic measures — mutual information, a derivative of mutual

information, or min-entropy leakage — as a quantitative information flow measure.

Therefore, to understand this work, some knowledge of information theory is required.
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Information theory, developed by Shannon (1948), is a large field in its own right;

it is primarily concerned with quantifying the reliability of data transmission along

communication channels that accept some input, defined by a random variable, and

produce some corresponding output, defined by another random variable. In this sec-

tion, we restrict ourselves to defining the quantities required to understand both the

related work presented in Section 3.2 and our own contributions to the literature.

2.3.1 Definitions for Mutual Information

We ended our introduction to probability theory with a qualitative definition of the

independence of two random variables X and Y (Theorem 2.5, p. 37). We suggested

that this definition is somewhat unsatisfactory: rather than simply stating that there

exists a dependency between two random variables, it would be much more useful to

state how much of a dependency exists. Mutual information is such a measure of the

dependency between two random variables; it is a quantity that relates the amount of

uncertainty that exists when the random variables assume their values separately to

the amount of uncertainty that exists when they assume their values jointly.

As with the probability theory presented in Section 2.1, these definitions are all

standard and can be found in any introductory text for information theory (e.g. Cover

and Thomas, 2006).

Shannon entropy (or commonly just entropy) is a measure of the unpredictability

associated with a random variable.

Definition 2.18 (Shannon entropy of a random variable)

The Shannon entropy of a random variable X is given by

H(X) = −
∑

x∈dom(X)

PX(x) · log2 PX(x).

The entropy of a random variable is a measure of its expected information content,
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and is often measured in bits.1 For example, the entropy of a random variable de-

scribing the rolling of a fair die (where the probability of rolling each value is 1/6)

is
∑
x∈{1,...,6}

1
6 log2

1
6 ≈ 2.58 bits. If the die were weighted heavily so that a six were

guaranteed to be rolled (i.e. the probability of rolling a six were 1 and the probabil-

ity of rolling any other number were 0), the entropy of its random variable would be

(
∑
x∈{1,...,5}0log2 0) + (

∑
x∈{6}1log2 1) = 0 bits:2 it would be purely deterministic; there

would be no unpredictability in its value.

Joint entropy is a measure of the unpredictability associated with two random vari-

ables; it is defined in terms of their entropies.

Definition 2.19 (joint entropy of random variables)

The joint entropy of two random variables X and Y is given by

H(X,Y ) = −
∑

x∈dom(X)
y∈dom(Y )

PXY (x,y) · log2 PXY (x,y).

The joint entropy of two random variables is therefore a measure of their combined

expected information content. The joint entropy of two independent random variables

is the sum of their entropies; since there cannot be more uncertainty in two random

variables’ values than there is when they occur independently, H(X,Y ) ≤H(X) +H(Y )

for all random variables X and Y .

Conditional entropy measures the unpredictability of one random variable given

that another random variable has already assumed a value. It is defined in terms of

the joint entropy of both random variables and the entropy of the random variable

whose value is known.

1If this is the case, logarithms are taken with respect to base 2, as in Definition 2.18 (p. 40). For
the remainder of the thesis, we will measure Shannon entropy and other related information-theoretic
quantities in bits.

2Strictly, this is false: log2(k) is undefined at k = 0. However, given that limk→0+ k · log2(k) = 0, and
that k is a probability (i.e., 0 ≤ k ≤ 1), we assume that 0 · log2(0) = 0 so that entropy can be computed.
Similar assumptions are made when computing the other information-theoretic measures defined in
this thesis.
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Definition 2.20 (conditional entropy of a random variable)

The conditional entropy of the random variable X given the random variable Y

is given by

H(X | Y ) =H(X,Y )−H(Y )

=
∑

x∈dom(X)
y∈dom(Y )

PXY (x,y) · log2
PX(x)

PXY (x,y)
.

The greater the conditional entropy of two random variables, the smaller the depen-

dency between them. If the two random variables are independent, the conditional

entropy H(X | Y ) is simply the entropy of X: H(X | Y ) = (H(X) +H(Y ))−H(Y ) = H(X);

i.e., knowledge of the behaviour of Y reveals nothing about that of X.

Mutual information is a measure of the information gained about the behaviour of

one random variable by observing the behaviour of another; it is defined in terms of the

random variables’ conditional entropy and the entropy of the random variable whose

value is being observed.

Definition 2.21 (mutual information of random variables)

The mutual information of the random variables X and Y is given by

I(X;Y ) =H(X)−H(X | Y )

=H(Y )−H(Y | X)

=
∑

x∈dom(X)
y∈dom(Y )

PXY (x,y) · log2
PXY (x,y)

PX(x) · PY (y)
.

As suggested by the fraction in the third equation in Definition 2.21, the mutual infor-

mation of two random variables is the weighted ratio of the probability of them assum-

ing two values simultaneously to the probability of them assuming the same two values

independently. Therefore, if two random variables are independent, log2
PXY (x,y)
PX (x)·PY (y) =

log2(1) = 0 and they have 0 bits of mutual information; if they are dependent, their
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mutual information will be a real number in the interval (0,min(H(X),H(Y ))].

A related measure is conditional mutual information, the mutual information of two

random variables given that a third random variable has already assumed a value.

Definition 2.22 (conditional mutual information of random variables)

The conditional mutual information of the random variables X and Y given the

value of the random variable Z is given by

I(X;Y | Z) = I(X;Y ,Z)− I(X;Z)

=
∑

x∈dom(X)
y∈dom(Y )
z∈dom(Z)

PXYZ(x,y,z) · log2
PZ(z) · PXYZ(x,y,z)
PXZ(x,z) · PYZ(y,z)

.

Finally, the capacity of a communication channel is the maximum amount of infor-

mation that can be transmitted along it.

Definition 2.23 (capacity of a communication channel)

The capacity of a communication channel whose inputs are defined by the ran-

dom variable X and whose outputs are defined by the random variable Y is given

by

C = max
PX

I(X;Y )

where PX is the probability distribution of X that maximises the mutual informa-

tion of X and Y .

Mutual information is a commonly-used measure of information leakage (e.g. Wit-

tbold and Johnson, 1990; Gray, 1991) because it can be used to quantify the correlation

between the occurrence of a collection of values that an attacker may observe (e.g. the

publicly-visible output from a program) and the occurrence of a collection of hidden

values of interest to the attacker (e.g. some secrets processed by the program): if the

program’s output reveals nothing about its secrets, the mutual information is 0; if the

program’s output reveals everything about its secrets, the mutual information is the
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Shannon entropy of the random variable whose value is a collection of the program’s

secrets.

As a measure of information leakage, mutual information does not distinguish be-

tween situations where a small amount of secret information is leaked with a high

probability and those where a large amount of secret information is leaked with a

small probability — instead, it measures the information leakage that occurs in the av-

erage case; consequently, mutual information is an appropriate measure for modelling

an attacker with no prior knowledge of the secret information. We argue that this

average-case leakage measure is sometimes preferable to a worst-case leakage measure

that apportions a large amount of information leakage to programs that leak informa-

tion about their secrets in unlikely situations.

For example, consider Algorithm 2.1, a simple function that checks whether a given

four-digit PIN is the correct one associated with a given account number; assume that

the secret information is the correct PIN for the account number, and that the publicly-

observable information is whether the given combination of account number and PIN

is correct. It is true that, if the attacker manages to correctly guess the PIN for a given

account, the function leaks all log2(4) bits of the information it was tasked with keep-

ing secret. This appears catastrophic, but it overestimates the information leakage

Algorithm 2.1: checks whether a given PIN is valid for a given account number in a database

Input: db, a hash table mapping account numbers to correct PINs; account, the ac-
count number provided by the user; pin, the PIN provided by the user

Output: true if pin is the correct PIN for account; false otherwise
function IsCorrectPIN(db, account, pin)

correct← false
for all a ∈ keys of db do

if a = account and db(a) = pin then
correct← true

end if
end for
return correct

end function
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that occurs in the more likely scenario where the attacker has no prior knowledge of

the PIN and is simply guessing the PIN for a given account at random. In this case,

there is a 1/10000 probability that the attacker’s guess will be correct (resulting in total

leakage of the secret), and a 9999/10000 probability that the attacker’s guess will be incor-

rect (resulting in a minute leakage — namely, that the correct PIN is not the one the

attacker guessed), for an average-case leakage of just over 0.001 bits. Now consider

the effect of increasing the length of PINs to five digits: the average-case leakage of

the function decreases to just over 0.0001 bits, but the worst-case leakage increases to

log2(5) bits in the event that the attacker guesses the PIN correctly. We argue that the

second function is no less secure than the first, in the sense that it is no more likely

to leak information about its secret to an attacker lacking prior knowledge of the se-

cret, and that a worst-case leakage measure would be unrepresentative of the security

offered by the function.

We shall see some examples of mutual information and its derivatives being used

as information leakage measures when we review related work in Section 3.2 (p. 60).

2.3.2 Definitions for Min-Entropy Leakage

There are many information-theoretic measures of information leakage other than

those derived from mutual information. One of them — min-entropy leakage — is

a comparatively recent invention, but has amassed a strong following because of the

good operational security guarantees it provides (Smith, 2011). Given two random

variables X and Y , it quantifies the increase in the vulnerability of X to having its

value correctly guessed in a single attempt through the process of observing the value

assumed by Y ; unlike mutual information, this permits the modelling of an attacker

with prior knowledge of a system’s secrets, and is particularly well-suited to mod-

elling an attacker with the ability to make a single guess at the program’s secret values

by observing its publicly-visible outputs.

The vulnerability of a random variable is the probability that the value of the ran-
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dom variable is guessed correctly in a single attempt.

Definition 2.24 (vulnerability of a random variable)

The vulnerability of a random variable X is given by

V (X) = max
x∈dom(X)

PX(x).

This is intuitive: with no other knowledge of how (or even whether) X’s behaviour

relates to that of other random variables, an attacker’s best strategy to correctly guess

the value of X is simply to select the value that it assumes with the highest probability.

PX(x) is a probability, and therefore 0 ≤ V (X) ≤ 1; min-entropy represents this prob-

ability as an entropy measure that captures X’s unpredictability.

Definition 2.25 (min-entropy of a random variable)

The min-entropy of a random variable X is given by

H∞(X) = log2
1

V (X)

= − log2 max
x∈dom(X)

PX(x).

In cases where the behaviour of X is influenced by some other random variable Y ,

the conditional vulnerability ofX is the probability that the value of the random variable

is guessed correctly in a single attempt, given that the behaviour of Y is known.

Definition 2.26 (conditional vulnerability of a random variable)

The conditional vulnerability of the random variable X given the random vari-

able Y is given by

V (X | Y ) =
∑

y∈dom(Y )

PY (y) · max
x∈dom(X)

PX |Y (x | y)

=
∑

y∈dom(Y )

max
x∈dom(X)

PXY (x,y).
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Again, this is intuitive: if X and Y are correlated, an attacker’s knowledge of Y will in-

fluence their best strategy to correctly guess the value of X; certain values of Y (which

themselves will be assumed with different probabilities) may indicate a greater like-

lihood of X assuming certain values. Thus, conditional vulnerability represents the

weighted average probability of correctly guessing X’s value from a particular value of

Y across all possible values of Y .

As with the definition of vulnerability in Definition 2.24, 0 ≤ V (X | Y ) ≤ 1; condi-

tional min-entropy is the analogue of min-entropy, and quantifies the amount of unpre-

dictability that remains in X given that Y ’s behaviour is known.

Definition 2.27 (conditional min-entropy of a random variable)

The conditional min-entropy of the random variableX given the random variable

Y is given by

H∞(X | Y ) = log2
1

V (X | Y )

= − log2

∑
y∈dom(Y )

max
x∈dom(X)

PXY (x,y).

Finally, min-entropy leakage relates the two min-entropies: it is the difference be-

tween the a priori and a posteriori uncertainty about X with respect to Y .

Definition 2.28 (min-entropy leakage of a random variable)

The min-entropy leakage from the random variable X to the random variable Y

is given by

LXY =H∞(X)−H∞(X | Y )

= −
(
log2 max

x∈dom(X)
PX(x)

)
+

log2

∑
y∈dom(Y )

max
x∈dom(X)

PXY (x,y)

 .

Thus, the min-entropy leakage from a program’s collection of secrets to its publicly-

observable outputs quantifies the average amount of additional information about the
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program’s secrets that an attacker is able to guess correctly in one attempt by observ-

ing the program’s outputs. Ideally, an attacker would learn no additional information

about the secrets by observing the outputs, and therefore the most secure program

would have a min-entropy leakage of 0 bits; insecure programs would reveal informa-

tion about the secrets such that a min-entropy leakage of n bits would increase the

vulnerability of program’s secrets to single-attempt guessing attacks by a factor of 2n.

Smith (2009, 2011) provides further details about min-entropy leakage and the

quantities that define it, and presents a more detailed comparison of min-entropy leak-

age and mutual information as information leakage measures.







3
Previous & Related Work

In Chapter 2, we presented the basic definitions and theorems of probability theory

and information theory on which all of the work in the information flow analysis liter-

ature is based.

In this chapter, we introduce the two branches of information flow analysis — qual-

itative and quantitative — and present an overview of both the historical and the state-

of-the-art work in each field. Most of the publications we review in these sections

present a novel formal model of information flow in a hypothetical or real-world pro-

gramming language; some of them additionally feature an implementation of their

model. We argue that quantitative information flow models provide better security

guarantees than qualitative ones, and provide examples of insecure programs where

quantitative information flow analysis provides a much more satisfactory and convinc-

ing analysis of the program’s security. We discuss the shortcomings of the publications

we review, and in doing so we identify where our own contributions to the litera-

ture can be made; we motivate the creation of a new quantitative information flow

model, which we shall formally define in Chapter 4. We also review more recent work

on the statistical estimation of the information-theoretic measures we introduced in

Section 2.3 (p. 39), which we shall utilise when we develop an approximation of our

information flow model in Chapter 7.
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3.1 Qualitative Information Flow Analysis

The information flow analysis literature can be broadly grouped into two branches.

The first (and older) of these branches is qualitative information flow analysis. Qualita-

tive information flow models determine whether any secret information processed by a

system is ever revealed as publicly-accessible information in an unauthorised manner;

if it is, the system is deemed to be insecure. Note that this is a binary property: either a

system is secure or it is not; most of this work therefore focuses on defining the precise

properties a system requires to be deemed secure.

3.1.1 Security Lattices

Denning (1976) presents some of the earliest work on qualitative information flow

analysis; she considers the information security of programs that store and process

pieces of information of varying sensitivity in different memory locations. Her system

model consists of a set of security classes, discrete compartments to which these mem-

ory locations belong. The security classes are analogous to the real-world clearance

levels restricting classified information, with some security classes containing more

sensitive information than others. These security classes are arranged in a hierarchy,

thus defining a relationship between them; this hierarchy can be represented as a lat-

tice. Attackers are assumed to have access to some security classes but not others (it

is implied that they typically have access to the lowest security class in the hierarchy),

and the model’s security policy stipulates that secure information flow is achieved if

and only if information flows in directions permitted by the hierarchy.

Two examples presented by Denning are shown in Figure 3.1. In the simple case

depicted in Figure 3.1(a), the hierarchy is linear, and each security class — H (high-

security), M (medium-security), and L (low-security) — is a subset of the next highest

security class; this results in a linear ordered lattice, in which information may only

flow upwards into higher security classes.
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A more complex policy is depicted in Figure 3.1(b): here, the set of security classes

is the powerset of X = {x,y,z}. Information from one of these security classes A is

permitted to flow into another security class B if and only if A ⊂ B (so information may

flow from {x} to {x,z} but not to {y,z}). Denning argues that this is an effective method

of modelling attribute-based flow control: if X were perceived as a set of attributes

and the security classes as combinations of attributes, any information flow from a to

b would be disallowed by the security policy unless b were to have at least the same

attributes as a.

In any case, information flows that violate the hierarchy described by the lattice are

considered by the security policy to be unauthorised, and the program is thus deemed

to process information insecurely.

3.1.2 Noninterference

Goguen and Meseguer (1982) develop Denning’s information flow model further. They

present a requirement language for enforcing security policies on systems modelled as

Figure 3.1: two qualitative security policies represented as lattices

H

M

L

(a) a simple lattice
representing a linear
hierarchy of security
classes

{x,y,z}

{x,y} {x,z} {y,z}

{x} {y} {z}

∅

(b) a more complex lattice of
subsets of {x,y,z}
representing a non-linear
hierarchy of security classes
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finite-state automata. Their attacker model assumes that an attacker is able to ob-

serve execution traces of processes, and their security policy is based on the concept

of noninterference: it should not be possible for an attacker to distinguish between two

execution traces of a terminating process based on their low-security outputs if their

low-security inputs are identical, even if their high-security inputs differ.

Definition 3.1 (noninterference)

A process has the noninterference property if, for all initial states σ and termi-

nating states σ ′,

σ =L σ
′ ⇒ ~P �σ =L ~P �σ

′

where =L is a (binary) equality operator for the low-security information in its

operands.

Goguen and Meseguer additionally show that the noninterference property can be

modelled as a security lattice.

Volpano et al. (1996) formulate Denning’s security lattice as a type system and

prove its correctness using a hypothetical simple, deterministic language. It can be

verified statically that a program written in their language satisfies the noninterfer-

ence property: security classes in Denning’s lattice correspond to “security level” types

in Volpano et al.’s language, and a program is badly-typed if an unauthorised infor-

mation flow occurs between two security levels. Their type system also detects in-

formation leaks that arise due to implicit flow, where subtleties in the execution of a

sequence of instructions can cause information about their behaviour to be inadver-

tently leaked over a covert channel. The canonical example is a variable assignment

following a branch operation, as shown in Algorithm 3.1: if it is assumed that y is

stored in low-security memory, and x is stored in high-security memory and may only

contain the value 0 or 1, there is total leakage of the value of x even though no direct

assignment from x to y occurs. Volpano et al.’s type system defines different security

levels for the language’s expressions, variables and commands; detection of implicit
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flows is ensured by guaranteeing that a command C with security level cmd:τ is only

well-typed if every assignment that occurs in C is made to a variable of security level

var:τ or higher.

Ideally, all programs would satisfy the noninterference property, because no high-

security information may be leaked to low-security memory without violating the se-

curity policy. Practically, however, noninterference is all but unachievable, as it is

excessively strict: even the most trivial programs violate it, as shown by the password-

checking function in Algorithm 3.2 (p. 56). Assuming that p is stored in high-security

memory and that the function’s return value is written into low-security memory, it

could be argued that this function leaks the minimum possible amount of informa-

tion about p while still retaining its usefulness: an attacker observing the return value

learns either that p equals the string "mysecret" in the worst case (i.e. a total leakage

of p), or that p does not equal "mysecret" in every other case (i.e. a very small leakage

of p each time the function is called; the precise amount depends on the size of the

password space). This subtlety is not captured by noninterference.

Algorithm 3.2 indicates that for most programs to function as intended, some in-

formation must be leaked — it is therefore inappropriate to require programs to have

the noninterference property for them to be considered secure. Instead, it is usually

acceptable for the program to leak only the information necessary for its correct op-

eration, and no more. This raises questions about how to identify which information

may be leaked, how it is marked as such, and how it can be verified that a program

does not cause undesirable information leaks.

Algorithm 3.1: assignment based on the value of another variable, demonstrating an implicit
flow of information from x to y

if x = 0 then
y← 0

else
y← 1

end if
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3.1.3 Controlled Interference

A number of alternative, less strict information flow properties have been defined. Be-

vier et al. (1995) define a weaker property, controlled interference, that permits entities

to modify each others’ internal state, but only over explicitly-defined channels. An ex-

ample is shown in Figure 3.2: entities A, B and C are only permitted to communicate

across the channels specified by the arrows connecting them, so A may communicate

with C either by sending information from a4 over a channel that modifies internal

state c1, or by sending information from a3 over a channel that modifies c3. Notice

that channels are not implicitly bidirectional: C may not communicate with A over the

same channels.

Ferrari et al. (1997) propose a similar technique rooted in object-oriented systems,

with security policies containing restrictions and exemptions from noninterference

(known as waivers) at the method level within objects; they argue that this natu-

rally coincides with the core principles of object-oriented design (i.e. encapsulation

and modularity). Indeed, it could be argued that their technique suits (for example)

Java’s annotation framework, in which programmer-specified metadata can be affixed

to constructs of the language (classes, methods, variables, etc.) and is made available

for inspection at compile-time; the compiler could grant exemptions to methods to

which an appropriate annotation has been affixed. Their model does not, however, ac-

Algorithm 3.2: a simple login function that checks whether a given password p matches a
string, and returns an appropriate Boolean value; even this straightforward
example violates the noninterference property (Definition 3.1, p. 54)

function login(p)
if p = "mysecret" then

return true
else

return false
end if

end function
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count for information flows that may occur between local variables within methods, so

information leaks may still occur.

3.1.4 Waivers & Decentralised Labels

A different strategy, the decentralised label model, is employed by Myers and Liskov

(1998). All variables and channels in a system are annotated with labels that define

their owners (the sources of the data) and readers (entities that the owner permits to

access that data). Labels are acquired and forgotten as variables are passed over chan-

nels, with the security policy prohibiting flows to a variable or channel with a less

restrictive label than the original label. The model also permits selective declassifica-

tion, which allows a variable or channel to be relabelled with a less restrictive label by

its owner if necessary.

This model is implemented by Myers (1999) as an extension of the Java program-

ming language, in the form of Jif (“Java + Information Flow”), a compiler that acts as a

preprocessor for a standard Java compiler: if a Jif program satisfies the security policy

Figure 3.2: a system that satisfies the controlled interference property, showing the channels
across which the entities A, B and C are permitted to communicate; this example
is adapted from Bevier et al. (1995, Figure 1)

A

a1 a2

a3 a4

B

b1 b2

b3 b4

C

c1 c2

c3 c4
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by passing the type-checking stage, Jif will convert its input into standard Java syntax

suitable for compilation; otherwise, it will return an error. Jif is notable as it has been

used to analyse the information security of large software projects (Hicks et al., 2006).

A real-world example similar to the password-checking function in Algorithm 3.2

is shown in Listing 3.1. A class passwordFile with the owner root contains two member

variables: names (storing user names) and passes (storing passwords for the respective

user names, and also owned by root). The class contains a single method, check(), that

checks the validity of a given user name and password and returns a Boolean value

indicating whether the combination is valid. The return value of the method has the

implied label {user; password}, as these are the method’s parameters and are assumed to

be known to an attacker. After execution of the for loop, the Boolean variable match is

set to true if there is a matching combination, and false if there is not; since its value

will depend on both the user name and password passed as parameters to the method

and the values in passes, it is implicitly given the label {user; password; root:}. This is a

stricter label than the one the method is permitted to return, and if match were to be

returned by the method, Jif would identify it as the cause of an information leak. The

variable must therefore be declassified to the weaker policy before it can be returned;

accordingly, Jif finds no leaks in this class.

Since Jif is a type system built on Java, it necessarily introduces new syntax into an

existing programming language. This raises two important usability issues: in order to

use Jif, programmers must (a) commit to understanding the underlying information

flow model, and (b) heavily refactor any existing code to comply with the type system;

both of these factors potentially discourage its use. This issue is partially addressed

by Jifclipse (Hicks et al., 2007), an integrated development environment that supports

Jif’s syntax, although it is not developed alongside Jif and is not always compatible

with the latest version.
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3.1.5 Summary

In this section, we have reviewed a number of qualitative information flow models;

they primarily ensure that systems satisfy the noninterference property, or a relaxed

variant of it. One of these models — the decentralised label model — has a practical

implementation in a real-world programming language, meaning that programmers

are not required to formulate abstract representations of their programs in order to

analyse their information security.

A key weakness of the literature reviewed in this section is that it is only able to

confirm — with varying degrees of success — that information leakage occurs. McCa-

mant and Ernst (2008) consider the challenge of information flow analysis to be not

simply the detection of information flows, but the ability to correctly distinguish be-

tween unacceptable and acceptable flows. The boundary between unacceptable and

acceptable is unclear, especially in complex systems: the output from a program that

processes secret information often consists of an abbreviated or summarised version

of the secret information, which places a restriction on the assumptions an attacker

Listing 3.1: a Jif password-checking class, adapted from Myers (1999, Figure 4)

1 public class passwordFile authority(root) {
2 private String[] names;
3 private String{root:}[] passes;
4
5 public boolean check(String user, String password) where authority(root) {
6 boolean match = false;
7
8 for (int i = 0; i < names.length; i++) {
9 if (names[i].equals(user) && passes[i].equals(password)) {

10 match = true;
11 break;
12 }
13 }
14
15 return declassify(match, {user; password});
16 }
17 }
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can make about it. McCamant and Ernst’s examples include a web site that reveals the

last four digits of a customer’s 16-digit credit card number, and a censored document

that replaces sensitive text with a black rectangle. In the latter example, the black

rectangle may superficially appear to leak no information about the sensitive text, but

an attacker with knowledge of the font in which the censored text is set may be able to

guess the length of the text based on the width of the rectangle and the width of the

font’s glyphs; furthermore, if the font provides glyphs of differing widths, the attacker

may also be able to reconstruct some letters or words in the text.

Thus, rather than considering whether a system leaks information about its secrets,

it is perhaps more useful to consider how much information it leaks, a problem ad-

dressed by quantitative information flow analysis.

3.2 Quantitative Information Flow Analysis

Quantitative information flow analysis is the second, newer branch of information flow

analysis. Quantitative information flow models measure the amount of secret infor-

mation leaked by a system, and, instead of indiscriminately permitting or disallowing

communication between entities in a system (as is the case with qualitative information

flow analysis), a quantitative security policy imposes an upper bound on the amount of

information that may be leaked before it is deemed to be unsafe. We have already seen

one example where this would be desirable: the password-checking function in Algo-

rithm 3.2 (p. 56). The “false alarm” problem that occurs with this example would be

solved, since the programmer would be able to specify in the security policy the max-

imum amount of information that should be leaked by the function, and then confirm

that the function satisfies the security policy by leaking no more than that amount.

This raises the additional question of how information flows should be quantified;

this is one of the topics addressed by the quantitative information flow analysis lit-

erature. In Section 2.3 (p. 39) we described how information theory can be used to
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quantify the uncertainty in probabilistic systems; the literature we review here makes

heavy use of the definitions introduced in Section 2.3, although there is little consen-

sus in the literature about which information-theoretic measure is best for quantifying

information leakage. Indeed, it is suggested that the measure chosen should reflect

the attacker model: Clark et al. (2005) argue that mutual information (Section 2.3.1,

p. 40) best models an attacker with an interest in the system’s hidden secrets and the

ability to observe a system’s publicly-visible information, while Smith (2011) argues

that min-entropy leakage (Section 2.3.2, p. 45) best models an attacker with the ability

to make only a single attempt at guessing a system’s secret information after observing

its publicly-visible information. Others argue in favour of conditional mutual infor-

mation (e.g. Mu and Clark, 2009a) or channel capacity (e.g. Chen and Malacaria, 2009).

In this section we review the information flow models presented in a range of pub-

lications from the quantitative information flow analysis literature. Several of them

culminate in the development of information flow analysis tools, which we also briefly

review.

3.2.1 Entropy and Channel Capacity of State Transition Systems

Denning (1982, Section 5.1.3) was the first to suggest that information theory could be

used to quantify information flow; she describes the relationship between information

flow and state transitions in programs in terms of information theory. The fundamen-

tal observation is that the amount of information leaked by the flow of information

from a private variable x to a public variable y can be characterised as the reduction of

x’s entropy in successive states, and therefore that the maximum amount of informa-

tion leaked by the program can be characterised as the capacity of a communication

channel with a probability mass function describing values of x as the channel’s input

and a probability mass function describing values of y as the channel’s output.

Denning provides examples that illustrate how the information-theoretic defini-

tions of Section 2.3.1 can be applied to single lines or small blocks of pseudocode to
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detect undesirable information flows; one of the examples is similar to the implicit flow

scenario in Algorithm 3.1 (p. 55). Rather than requiring the programmer to merely ac-

knowledge the existence of this information flow and accept or reject it (as is the case

when performing a qualitative analysis of the program’s security), Denning shows that

information theory can be used to measure the leakage caused by this flow; the pro-

grammer may then decide for themselves whether an information flow of the given

magnitude constitutes a leak.

3.2.2 The Lattice of Information

Landauer and Redmond (1993) define the lattice of information as the complete lattice

over the equivalence relations on a set. Higher equivalence relations in the lattice cor-

respond to refinements of lower equivalence relations; i.e., the information provided

by the higher equivalence relations is finer-grained than the information provided by

the lower ones. If the set is the state space of a deterministic system containing a se-

cret value and an observable low-security value, and the equivalence relation is one

that equates all states in which the secret value cannot be distinguished solely from

the corresponding observable value, the lattice of information can be regarded as an

information flow model: the identity equivalence relation at one extreme of the lattice

relates every state to itself, thus indicating total leakage of the secret value to an at-

tacker observing the system’s low-security value, while the equivalence relation at the

other extreme relates every state to all of the system’s states, thus indicating that the

system possesses the noninterference property.

Of particular interest are the equivalence relations that fall between these extremes

in the lattice of information: while the extremes characterise a qualitative notion of in-

formation flow, the ordering over the remaining equivalence relations characterises

a quantitative notion of information flow. Landauer and Redmond establish the re-

lationship between the lattice of information and the capacity of a communication

channel whose input is the secret value and whose output is the observable value. Re-
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lationships have also been established between the lattice of information and many

other information-theoretic measures, including mutual information, conditional mu-

tual information and min-entropy leakage; Malacaria (2015) provides a more detailed

survey of this literature.

3.2.3 Quantitative Security Policies as Satisfiability Problems

Using the notion of quantitative information flow provided by Landauer and Red-

mond’s lattice of information, Heusser and Malacaria (2010) consider the information

flow that occurs in systems with high-security and low-security inputs in their ini-

tial states and low-security outputs in their final states. In their information flow

model, a quantitative security policy is represented as an upper bound on the num-

ber of classes in the equivalence relation that equates all states in which the value of

the high-security input cannot be distinguished solely from the corresponding low-

security outputs; a system is deemed to be insecure if the number of equivalence

classes exceeds some positive integer k, in which case the system is equivalent to an

information-theoretic communication channel with a capacity greater than log2 k bits.

Heusser and Malacaria encode the definition of a system as a function and a quan-

titative security policy as a driver function — consisting in part of a set of assump-

tions and assertions encoded in Boolean logic — whose purpose is to attempt to prove

that the number of resulting equivalence classes exceeds k. The driver function has a

standardised structure and can be generated automatically: the function defining the

system is called k times (each time consuming as its high-security input a different

output from a non-deterministic choice function), and it is assumed that the outputs

from the function defining the system are all unique; the function defining the system

is then called once more, and it is asserted that this final output is identical to one of

the previous outputs.

Verifying whether the driver function’s assumptions and assertions hold can be

construed as a satisfiability problem, and so a symbolic model checker can be used to
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efficiently verify whether the system violates the security policy. The model checker is

executed on the driver function, and it attempts to find a counterexample that violates

either one of the assumptions or the negation of the final assertion; if a counterexample

of either type is found, then by definition the number of classes in the equivalence

relation exceeds k, the system violates the security policy, and it is therefore deemed

insecure.

Heusser and Malacaria adapt their system model to functions written in the C

programming language, where a function’s arguments may be high-security or low-

security inputs and the return value and any pointer arguments to the function are

low-security outputs; driver functions are represented using separate code fragments.

They use a bounded model checker that encodes both the driver function and the C

function being checked for information leakage as a propositional formula that is only

satisfiable if there exists an execution trace that violates the security policy. A ben-

efit of the bit-level reasoning facilitated by the model checker is the ability to report

detailed information about a violation of the policy, e.g. the specific input values that

triggered it; this allows the authors to model attacker-controlled low-security input.

They show that their technique has practical value by uncovering information leakage

vulnerabilities in code from individual modules of the Linux kernel.

3.2.4 Min-Entropy Leakage of Java Bytecode via Symbolic Analysis

Phan et al. (2012) propose a practical method based on the work of Meng and Smith

(2011). Their information flow model provides an upper bound on the min-entropy

leakage from a single high-security value that occurs before a program begins execut-

ing to a single low-security value that exists when the program terminates. They adopt

a symbolic approach, in which the output of a program is represented as a sequence of

Boolean values corresponding to a bit vector; this allows multiple outputs with similar

bit-level representations (named bit patterns) to be grouped together for more efficient

model-checking. The model counts the number of possible bit patterns a program can
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produce as output, thus confirming whether or not the program leaks more than a

given number of bits of information. The authors note that this model is designed to

detect the presence of and verify the acceptability of small information leaks, rather

than quantify large ones.

Phan et al. develop their information flow model in a tool based on a model checker

that facilitates the verification of Java bytecode. The authors’ experimental tests of

the tool’s performance suggest that it provides more accurate upper bounds for min-

entropy leakage than Meng and Smith’s earlier work when analysing programs that

contain implicit flows — although this comes at a cost to the speed of the analysis —

and programs in which the output space is contiguous (e.g. where the range of possible

outputs is a list of consecutive integers).

3.2.5 Channel Capacity via Karush-Kuhn-Tucker Conditions

Chen and Malacaria (2009) present a method of quantifying information flow in prob-

abilistic systems. These systems are represented as communication channels, and, fol-

lowing Denning (1982, Section 5.1.3), they define information leakage in terms of the

capacity of the channel; this provides an upper bound on the amount of information

a system can leak, and therefore models its worst-case behaviour. A novel feature of

their work is the derivation of channel capacity using Karush-Kuhn-Tucker conditions,

which find the extrema of a function subject to some inequality constraints; this en-

ables them to analyse the security of systems in which the attacker’s a priori knowledge

of the secret information can be stated in terms of an inequality, e.g. “the secret pass-

word processed by the system is n times more likely to be a dictionary word than a

meaningless string of letters”. The authors prove that finding the capacity of the chan-

nel representing the system can be reduced to solving a system of equations.

Although they do not provide a tool that automatically analyses a representation of

a probabilistic system, Chen and Malacaria note that compatible techniques for deriv-

ing the relationship between the system’s secret input and observable output exist in
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the literature (e.g. Heusser and Malacaria, 2007; Backes et al., 2009), and that existing

numerical analysis tools are able to solve the systems of equations that define their

information leakage measure. However, a disadvantage of Heusser and Malacaria’s

technique is its assumption that the system is a program that contains a single se-

cret declared before execution and produces a single output; a similar disadvantage

of Backes et al.’s technique is the assumption that a program’s secret information is

present in its initial state.

Chen and Malacaria present two examples of their technique being used to quantify

the information leakage that occurs in probabilistic systems. The first models a simple

multithreaded program in which an information leak occurs depending on the order in

which the scheduler chooses to schedule the threads for execution; the second models

the high-level routing behaviour of an onion routing protocol and quantifies the loss

of anonymity that occurs in an onion network when the attacker controls one of its

nodes.

3.2.6 Conditional Mutual Information of Probabilistic Programs

Mu and Clark (2009a) analyse flows of information in a simple probabilistic language

with assignment, branching, looping and sequential composition constructs. They

combine Clark et al.’s (2007) static quantitative information flow analysis technique

with Malacaria’s (2007) looping construct semantics. This enables them to place tighter

bounds on the information leakage from loops that do not terminate, without requir-

ing the manual analysis of the loop’s behaviour beforehand.

Mu and Clark’s model allows for a single high-security and low-security variable to

be defined at the start of a program; there must also be a single low-security variable

that is treated as the program’s output. Following Clark et al. (2005), the informa-

tion leakage from the program is defined as the conditional mutual information of the

random variable describing the high-security variable’s value and the random vari-

able describing the low-security output variable’s value when the program terminates,
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given that the random variable describing the low-security input variable’s value is

known by the attacker.

Execution of programs with probabilistic semantics is known to become intractable

when the probability distributions on the variables’ values become too large. To ad-

dress this, Mu and Clark (2009b) present an abstraction technique that trades the ac-

curacy of the information leakage measure for the ability to analyse programs whose

execution would otherwise make such analysis intractable.

Mu and Clark (2011) present an implementation of both the concrete and abstract

models, with the same restrictions on high-security and low-security inputs and out-

puts. They acknowledge that both the language and the design of the tool make it

impractical for real-world use, and stress that its purpose is to demonstrate how their

models could be implemented.

3.2.7 Network Flow Capacity via Static and Dynamic Analysis

McCamant and Ernst (2008) take a different approach: rather than focusing solely

on the static analysis of the source code of programs, the authors combine static and

dynamic analysis to measure flows of information. They model a program as a directed

acyclic graph and calculate the flow of information from input values to output values

as statements are executed — nodes of the graph are operations that can be performed

on these values; edges of the graph represent the values themselves and are weighted

according to the amount of information about these values that can be transferred by

executing statements. The maximum amount of information leaked by the program

is the maximum flow from the graph’s “input nodes” to its “output nodes” (i.e. the

network flow capacity), which is equal to the weight of the graph’s minimum cut (the

smallest set of edges separating the input nodes from the output nodes), per the max-

flow min-cut theorem (Elias et al., 1956).

Accurate construction of the graph is complex, as demonstrated by the example

in Figure 3.3 (p. 68); this shows two possible graphs that could be generated from
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l1 = l2 = h1+h2 — a simple statement that adds together the values of two high-security

32-bit integer variables, assigns the result to a low-security variable, then assigns the

value of that variable to another low-security variable. Figure 3.3(a) overestimates the

worst-case information flow in this statement, as it allows 32 bits of information to flow

from h1 to l1 and another 32 bits to flow from h2 to l2; in fact there is an information

flow of at most 32 bits, as that is the size of the value returned by the addition operator.

Figure 3.3(b) correctly models the resulting information flow by inserting a dummy

node into the graph after the addition operation, thus clarifying that the statement

performs three separate operations in a particular order.

More complex blocks of code, such as loops, must be separated into enclosure re-

gions for the analysis to provide accurate bounds on the leakage; flows inside these

enclosure regions are measured as if they occur inside separate programs with their

own inputs and outputs. Although the enclosure regions can often be inferred auto-

matically as part of a preprocessing stage, it is sometimes necessary to annotate the

program’s source code with the correct enclosure regions manually; the authors esti-

Figure 3.3: two possible graph representations of the statement l1 = l2 = h1 + h2, resulting in
different quantities of information leakage; this example is adapted from McCa-
mant and Ernst (2008, Figure 1)
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mate that this is necessary in approximately 1 in 4 cases, and is more often required

when analysing complex programs that optimise their use of data structures for per-

formance reasons. McCamant and Ernst have implemented their model in a tool that

constructs graphs for programs written in C, C++ and Objective-C, and the authors

have tested their model with and found information leaks in major software projects

written in these languages.

3.2.8 Entropy of Discrimination Relations over Markov Chains

Biondi et al. (2013a) present a model that quantifies flows of information in a pro-

gram containing a single high-security variable, declared before execution, written in

a simple imperative language featuring deterministic and non-deterministic variable

assignment, branching and looping constructs.

A program written in the language is modelled as a Markov decision process (MDP)

whose states consist of the values of the high-security and low-security variables at that

moment. The attacker is modelled as an entity that potentially has prior information

about the value of the high-security variable and the ability to distinguish between

certain states in the MDP; the prior information about the high-security variable con-

stitutes the action in the definition of the MDP. The non-determinism in the MDP is

resolved by computing the probability distribution of the possible values of the high-

security variable in each state given the attacker’s prior knowledge, and the MDP is

thus reduced to a Markov chain (Section 2.2, p. 37).

Attackers are not assumed to be able to observe every state in the Markov chain:

states that the attacker cannot observe are termed “internal states”, and an observable

reduction is constructed in which these states are hidden. Three discrimination relations

are then constructed from the attacker definition and the observable reduction: the

observer discrimination relation (in which two states are in the same class if the attacker

cannot distinguish between them), the secret discrimination relation (in which two

states are in the same class if the attacker cannot distinguish between the values of
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the high-security variable in those states), and the joint discrimination relation (the

intersection of these two discrimination relations).

Given the Markov chains Do,Ds,Do∩s induced by these three discrimination rela-

tions respectively, the information leakage of the program is defined in terms of the

entropies of the Markov chains: H(Do) +H(Ds)−H(Do∩s).

Biondi et al. (2013b) present a tool, QUAIL, that quantifies the flow of information

from the high-security variable to the low-security variables in the program’s termi-

nating states in programs written in this imperative language. The authors provide

examples that demonstrate how the tool can be used to quantify leaks in small proba-

bilistic algorithms and security protocols.

3.2.9 Summary

The quantitative information flow models we have reviewed in this section improve

on the qualitative models of Section 3.1 by providing precise bounds on the amount

of information leaked by systems. There are, however, some limitations that prevent

them from being used to analyse arbitrary systems and programs.

Several of the models we have presented (Denning, 1982; Mu and Clark, 2009a;

Biondi et al., 2013a; Phan et al., 2012) assume that the system processes a single high-

security value, produces a single low-security value, or both. These models are theoret-

ically sound, but are uncharacteristic of the behaviour of most systems: it is more often

the case that multiple high-security values are processed, and multiple low-security

values are revealed to an attacker by the time the system finishes executing. It is un-

clear how these models can be used to quantify the information leakage that occurs in

such systems.

Furthermore, all of these models directly or indirectly assume that systems ei-

ther process some secret information they are given before execution, produce some

publicly-observable information after they terminate, or both. Again, these models

are sound, but they only characterise rather simple programs: in reality, secret and ob-



3.2. Quantitative Information Flow Analysis 71

servable information often occurs throughout the execution of a program, rather than

simply before execution and upon termination. Although it is possible to reformulate

any such program as one where all of its secrets are present before execution and all

of its outputs are produced upon termination, it is prohibitively difficult to do so in

the general case — and if programmers were required to perform this task manually,

it would certainly discourage them from analysing the security of their programs.

As a result of these restrictions, few quantitative information flow models have im-

plementations that can be used to analyse the security of real-world programs. The

notable exceptions reviewed in this section are Heusser and Malacaria’s and McCa-

mant and Ernst’s tools for analysing C programs — these are robust tools that have

been used to detect and quantify information leaks in existing code bases, although

Heusser and Malacaria’s tool focuses on computing the information leakage from func-

tions and McCamant and Ernst’s tool requires extensive annotation of large bodies of

code for accurate results.

One possible solution to the first two problems is to create a model that examines

the entire collections of secret and publicly-observable information that occur during

a program’s execution, disregarding all other aspects of a program’s state as irrelevant

to the goal of quantifying the flow of information in the program; thus, the collection

of pieces of secret information that occur throughout a program’s execution can be

viewed as a single random variable, and the collection of pieces of publicly-observable

information that occur can be viewed as another random variable. Using these ran-

dom variables and an information-theoretic measure defined in Section 2.3 (p. 39),

we could then quantify the leakage from a program’s secrets to its observations —

effectively answering the question “what does an attacker learn about the secret in-

formation that occurs at all of these specific points during the program’s execution

by inspecting the publicly-observable values that occur at all of these other specific

points?”. This would also free us from making restrictive assumptions about the at-

tacker’s abilities, because all of the data required to compute multiple information-
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theoretic measures would be available; e.g., we could compute the mutual information

of these two random variables to quantify the information leakage to an attacker with

an interest in the program’s secrets and the ability to observe the program’s public

outputs, or the min-entropy leakage from the former random variable to the latter to

quantify the leakage to an attacker with the ability to make only a single attempt at

guessing the program’s secrets after observing its public outputs.

Using the definitions of Section 2.3 requires that the probability distributions de-

scribing the behaviour of the two random variables are known. It is not difficult for

a formal model to compute these distributions if the program’s state space is small.

However, as Mu and Clark (2009b) indicate, precisely computing these probability

distributions becomes intractable when the program’s state space becomes too large,

essentially preventing us from using this model to quantify the information leakage

from complex systems. For complex systems with larger state spaces, rather than

defining these random variables by computing the probabilities in the distributions

describing their behaviour, we could instead estimate the probabilities; this would af-

fect the accuracy of the information leakage measure (and we would require some

method of quantifying that accuracy), but it would enable us to analyse the security of

more complex systems if the estimation process were computationally less expensive.

Estimating information-theoretic measures is therefore the final topic of our litera-

ture review.

3.3 Estimation of Information-Theoretic Measures via

Sampling

Recall that mutual information and min-entropy leakage are both defined in terms of

the random variables X and Y , or the discrete probability distributions PX and PY de-

scribing the values those random variables may take (Definitions 2.21 and 2.28, pp. 42

and 47). For many probabilistic systems, one possible technique for estimating these
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information-theoretic measures is to empirically determine either PX or PY by fixing

the value of X or Y (whichever is known) and repeatedly sampling the system to de-

termine the most likely distribution describing the corresponding unknown random

variable. This process produces an estimated probability distribution, denoted P̂X or

P̂Y respectively. The same process can be followed if neither PX nor PY are known,

instead giving the estimated joint probability distribution P̂XY , which in turn can be

marginalised to give the equivalent P̂X and P̂Y (Definition 2.11, p. 35). The estimated

probability distribution can be used to estimate the unknown random variable, and

both the known and estimated random variables can be used in turn to estimate the

mutual information measure Î(X;Y ) or the min-entropy leakage measure L̂XY . Pro-

vided that the system has been sampled a sufficient number of times, we will obtain a

good approximation of the true measure I(X;Y ) or LXY .

This process is feasible in the context of analysing information flows in probabilis-

tic programs: by assigning the sample space of X to be the secret information that can

be processed by a program and the sample space of Y to be the publicly-observable

information that can be produced by the program, we can fix the secret information

processed by the program for a particular execution — according to the probability of

each particular piece of secret information occurring, if those probabilities are known

— and sample repeatedly to determine the possible corresponding observable infor-

mation that the program produces. We can then use the estimated measure as an

approximation of the amount of information that leaks from the program.

Chatzikokolakis et al. (2010) identify the many advantages of this technique for

quantifying the information that leaks from complex programs, rather than, for in-

stance, building a formal model of the program and analysing it using a model-checker,

as in Section 3.2.3 (p. 63): many complex systems have an enormous number of inter-

nal states that produce no observable output visible to an external attacker, so much

of the effort spent building the model satisfies the means and not the end; and even if

it is possible to produce a formal model of the program within a reasonable time —
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which is not always the case, given that the state space of the system often explodes

exponentially — there is also no guarantee that existing model-checkers are capable

of exploring the state space within a similarly reasonable time in order to compute

the program’s information leakage. Additionally, one must also assume that the trans-

lation of the program into a formal model has been performed correctly, and even if

it has, the resulting model cannot be used to detect information leaks that occur as a

result of faults in the implementation itself (which is often the case).

There is, however, no guarantee that an estimate of one of these measures is an

accurate reflection of the true measure: as Chatzikokolakis et al. indicate, perform-

ing a numerical analysis on data derived from sampling of a system does not neces-

sarily produce results that are meaningful. It is possible that the numerical analysis

could produce a false result because of statistical errors present in the sample, and it

would be unclear whether any purported information leakage arose because informa-

tion actually flowed between X and Y , or simply because the probability distributions

describing the random variables insufficiently modelled the behaviour of the system.

There is therefore a need to be able to (a) distinguish between scenarios where the

sample indicates the existence of a statistically significant flow of information in the

system and scenarios where, for example, the system has been sampled an insufficient

number of times to draw any meaningful conclusions about its behaviour, and (b) state

the accuracy of the numerical analysis, i.e. state with a given confidence how far the

estimated measure falls from the true measure, and thus place bounds on the true

measure in terms of the estimated measure.

In this section, we review results from the literature on estimating and quantifying

the accuracy of these information-theoretic estimates. The need to analyse complex

probabilistic systems does not only occur in the field of computer security: in the

case of mutual information, finding dependencies between two potentially unknown

random variables has applications elsewhere, including machine learning, statistics,

signal processing and neuroscience, and many of the results we summarise in this



3.3. Estimation of Information-Theoretic Measures via Sampling 75

section are drawn directly or indirectly from the literature in these fields.

3.3.1 Estimating Mutual Information

The literature contains relevant results that address how to compute the accuracy of a

mutual information estimate; they define the estimated mutual information in terms

of the probability distribution from which the estimate is drawn, and the mean of that

distribution (Definition 2.7, p. 34) is defined in terms of the true mutual information.

We begin by considering scenarios where neither X nor Y are known, and both have

been estimated through sampling. In cases where there is information shared between

X and Y , Moddemeijer (1989) shows the following:

Theorem 3.1 (distribution of the mutual information of two related, unknown random

variables)

When the random variables X and Y are both unknown and the true mutual in-

formation of X and Y is non-zero (i.e. I(X;Y ) > 0), then, for a sufficiently large

value of n, the value 2n · Î(X;Y ) is drawn from a distribution with mean approxi-

mately

I(X;Y ) +
(#X − 1) · (#Y − 1)

2n
+O

( 1
n2

)
and variance approximately

1
n


∑

x∈dom(P̂X )
y∈dom(P̂Y )

P̂XY (x,y) log2
2

(
P̂XY (x,y)

P̂X(x) · P̂Y (y)

)

−


∑

x∈dom(P̂X )
y∈dom(P̂Y )

P̂XY (x,y) log2

(
P̂XY (x,y)

P̂X(x) · P̂Y (y)

)
2 + O

( 1
n2

)
.

Brillinger (2004) also states the following:
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Theorem 3.2 (distribution type of the mutual information of two related, unknown

random variables)

The probability distribution from which the value 2n · Î(X;Y ) is drawn in Theo-

rem 3.1 is an approximate normal distribution.

Brillinger additionally shows the following in cases where there is no information

shared between X and Y :

Theorem 3.3 (distribution of the mutual information of two unrelated, unknown ran-

dom variables)

When the random variables X and Y are both unknown and the true mutual

information of X and Y is zero (i.e. I(X;Y ) = 0), then, for a sufficiently large value

of n, the value 2n · Î(X;Y ) is drawn from an approximate χ2 distribution with

(#X − 1) · (#Y − 1) degrees of freedom, i.e. Î(X;Y ) is drawn from a probability

distribution with mean approximately

(#X − 1) · (#Y − 1)
2n

and variance approximately

(#X − 1) · (#Y − 1)
2n2 .

We now consider scenarios where one ofX or Y is known, and the other has been es-

timated through sampling. Using Moddemeijer’s and Brillinger’s results, Chatzikoko-

lakis et al. (2010) show the following:

Theorem 3.4 (distribution of the mutual information of related random variables, one

known and one unknown)

When the random variable X is known, the random variable Y is unknown and

the true mutual information of X and Y is non-zero (i.e. I(X;Y ) > 0), then, for
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a sufficiently large value of n, the value Î(X;Y ) is drawn from an approximate

normal distribution with mean approximately

I(X;Y ) +
(#X − 1) · (#Y − 1)

2n
+O

( 1
n2

)

and variance approximately

1
n

∑
x ∈dom(PX )

PX(x)

·

 ∑
y∈dom(P̂Y )

P̂XY (x,y)
PX(x)

log2
2

(
P̂XY (x,y)

P̂Y (y)

)
−

 ∑
y∈dom(P̂Y )

P̂XY (x,y)
PX(x)

log2

(
P̂XY (x,y)

P̂Y (y)

)
2

+ O
( 1
n2

)
.

Theorem 3.5 (distribution of the mutual information of unrelated random variables,

one known and one unknown)

When the random variable X is known, the random variable Y is unknown and

the true mutual information of X and Y is zero (i.e. I(X;Y ) = 0), then, for a suf-

ficiently large value of n, the value 2n · Î(X;Y ) is drawn from an approximate χ2

distribution with (#X −1) · (#Y −1) degrees of freedom, i.e. Î(X;Y ) is drawn from

a probability distribution with mean approximately

(#X − 1) · (#Y − 1)
2n

and variance approximately

(#X − 1) · (#Y − 1)
2n2 .

The authors demonstrate that these results collectively provide a framework for quan-

tifying the accuracy of any given mutual information estimate. For any combination
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of known or estimated random variables X and Y , it is possible to estimate the mutual

information between them and check whether this estimate is consistent with the true

existence of mutual information by testing for goodness of fit with either the χ2 or nor-

mal distributions, and, in cases where the estimate is found to fit the χ2 distribution

and not the normal distribution, use the confidence interval of the χ2 distribution to

place bounds on the accuracy of the estimate.

Chatzikokolakis et al. indicate that there are situations where their technique for

estimating mutual information is inappropriate.

One of the largest drawbacks is the requirement for a large number of data points1

n to produce meaningful statistics; this is necessary because the variance of the normal

distributions in Theorems 3.1 and 3.4 is of order O(1/n) on decreasing powers of n, and

this variance must be minimised in order to produce a sufficiently narrow confidence

interval. The required number of data points is in all cases a function of the size of the

sample spaces ofX and Y (i.e. #X ·#Y ), and, depending on the complexity of the system,

it may not be possible to perform enough sampling of the system in a reasonable time

to produce an estimate of any unknown random variables. Chatzikokolakis et al. argue

that one advantage is that, notwithstanding the requirement for a large amount of data,

the results become progressively more certain as n increases; i.e., the estimated mutual

information approaches the true mutual information as the number of data points

tends to infinity.

The statistical methods employed by Chatzikokolakis et al. require that the out-

puts from the system for a given input are independent and identically distributed

(i.i.d.): the output of the system must only depend on the provided input each time

the system is sampled. No other factor may have a statistically significant impact on

the output if it is not accounted for in the output of the system (and, as explained in

the sample size discussion above, such factors will cause an exponential increase in the

1We use the term “data point” when referring to the secret and publicly-observable information
gathered from a single execution rather than the more appropriate and widely-used “observation”, to
avoid confusion with other meanings of “observation” in this thesis.
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required number of samples if they are treated as outputs). It is worth noting that it is

permissible for external sources of randomness not to be accounted for in the output,

provided that they do not have a statistically significant effect on the distribution on

the possible outputs, i.e. they are truly random.

3.3.2 Estimating Min-Entropy Leakage

Chothia et al. (2014) present a method for calculating a confidence interval for min-

entropy leakage estimates obtained via sampling of a probabilistic system.2 They be-

gin by defining the min-entropy leakage estimate in terms of the estimated joint prob-

ability distribution P̂XY and the marginal probability distributions P̂X and P̂Y in the

expected way:

L̂XY = log2

∑
y∈P̂Y

max
x∈P̂X

P̂XY (x,y)− log2 max
x∈P̂X

∑
y∈P̂Y

P̂XY (x,y).

They also define the empirical joint frequency distribution ŝ and the empirical input fre-

quency distribution û from P̂XY and the sample size n:

ŝ(x,y) = P̂XY (x,y) ·n;

û(x) =
∑
y∈P̂Y

ŝ(x,y).

The authors then compute a confidence interval for the min-entropy leakage esti-

mate from the confidence intervals of the min-entropy H∞(X) (Definition 2.25, p. 46)

and conditional min-entropy H∞(X | Y ) (Definition 2.27, p. 47) — recall from Def-

inition 2.28 (p. 47) that min-entropy leakage itself is defined in terms of these two

quantities. The computation of these confidence intervals requires the experimen-

tal discovery of various empirical frequency distributions that fit the true frequency

2The author of this thesis is a co-author of this publication, but did not contribute significantly to the
min-entropy leakage estimation proofs; hence, they are presented here as previous work, rather than as
a contribution of the author as part of a later chapter.



80 Chapter 3. Previous & Related Work

distributions with greater than 95% confidence; the authors therefore use Pearson’s

(1900) χ2 tests to test for goodness of fit (below, χ2
α,k denotes the χ2 test statistic with

significance level α and k degrees of freedom).

Firstly, a 95% confidence interval for conditional min-entropy is computed as fol-

lows. From the empirical joint frequency distribution ŝ, find the joint frequency dis-

tribution smax that maximises the conditional vulnerability (Definition 2.26, p. 46)

amongst the joint frequency distributions that satisfy the following χ2 test statistic:

χ2
(0.05,#X·#Y−1) =

∑
x∈dom(X)
y∈dom(Y )

(ŝ(x,y)− smax(x,y))2

smax(x,y)
.

After finding smax, use it to compute the equivalent joint probability distribution P post
max :

P
post
max (x,y) =

smax(x,y)
n

.

Next, from the empirical joint frequency distribution ŝ, find the joint frequency distri-

bution smin that minimises the conditional vulnerability amongst the joint frequency

distributions that satisfy the following χ2 test statistic:

χ2
(0.05,#X·#Y−1) =

∑
x∈dom(X)
y∈dom(Y )

(ŝ(x,y)− smin(x,y))2

smin(x,y)
.

After finding smin, use it to compute the equivalent joint probability distribution P post
min :

P
post
min (x,y) =

smin(x,y)
n

.

The lower and upper bounds for the 95% confidence interval for conditional min-
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entropy can then be computed from P
post
max and P post

min :

H low
∞ (X | Y ) = − log2

∑
y∈P̂Y

max
x∈P̂X

P
post
max (x,y);

H
up
∞ (X | Y ) = − log2

∑
y∈P̂Y

max
x∈P̂X

P
post
min (x,y).

Secondly, a 95% confidence interval for min-entropy is computed as follows. From

the empirical input frequency distribution û, find the input frequency distribution

umax that maximises the vulnerability (Definition 2.24, p. 46) amongst the input fre-

quency distributions that satisfy the following χ2 test statistic:

χ2
(0.05,#X−1) =

∑
x∈dom(X)

(û(x)−umax(x))2

umax(x)
.

After finding umax, use it to compute the equivalent probability distribution P prior
max :

P
prior
max (x) =

umax(x)
n

.

Next, from the empirical input frequency distribution û, find the input frequency dis-

tribution umin that minimises the vulnerability amongst the input frequency distribu-

tions that satisfy the following χ2 test statistic:

χ2
(0.05,#X−1) =

∑
x∈dom(X)

(û(x)−umin(x))2

umin(x)
.

After finding umin, use it to compute the equivalent probability distribution P prior
min :

P
prior
min (x) =

umin(x)
n

.

The lower and upper bounds for the 95% confidence interval for min-entropy can then
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be computed from P
prior
max and P prior

min :

H low
∞ (X) = − log2 max

x∈P̂X
P

prior
max (x);

H
up
∞ (X) = − log2 max

x∈P̂X
P

prior
min (x).

Finally, the lower and upper bounds of the confidence intervals for conditional

min-entropy and min-entropy can be used to derive bounds for a greater than 95%

confidence interval for min-entropy leakage:

L̂low
XY =H low

∞ (X)−Hup
∞ (X | Y );

L̂up
XY =Hup

∞ (X)−H low
∞ (X | Y ).

Chothia et al. find that, in practice, both the min-entropy leakage estimate and the

confidence interval computed by this method have a higher variance than their mutual

information counterparts; this is because Moddemeijer’s (1989) and Brillinger’s (2004)

earlier work determines the precise distribution from which mutual information es-

timates are drawn and so a precise confidence interval can be computed, but this is

not the case when estimating min-entropy leakage. The authors also experimentally

identify a small negative bias in the min-entropy leakage estimate when compared

with the true min-entropy leakage measure, but for the same reason cannot correct

for it in the same way that Chatzikokolakis et al. correct their mutual information

estimate. The authors indicate that the variance of the min-entropy leakage estimate

depends greatly on the system being sampled: some systems, particularly those con-

taining unique maximum probabilities in the estimated joint probability distribution

P̂XY , generate samples that produce estimates with a wider variance with this method

than others.
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3.3.3 Summary

Our review of the literature in this section indicates that the estimation of information-

theoretic measures is practical. The results of Moddemeijer (1989), Brillinger (2004)

and Chatzikokolakis et al. (2010) show that excellent confidence intervals can be de-

rived for mutual estimation estimates, and the results of Chothia et al. (2014) show

that acceptable confidence intervals can be derived for min-entropy leakage estimates.

This is a viable technique we can use to overcome the problem of being unable to anal-

yse flows of information in complex probabilistic systems, provided that the amount

of sampling required to produce the estimate relative to the amount of secret and

publicly-observable information that occurs in the program is not prohibitively large.

Clearly, this would also limit the types of system we would be able to analyse, but it

would enable us to partially achieve our goal of analysing more complex systems.

3.4 Summary of the Literature

In this chapter, we have reviewed publications in both branches of the information

flow analysis literature — qualitative and quantitative. We found that, while all of the

information flow models we reviewed are sound, few of them are equipped to anal-

yse complex or real-world systems: qualitative models either have security policies

requiring compliance with excessively restrictive properties (e.g. noninterference), or

give less satisfactory guarantees about the security of the system; quantitative models,

while providing bounds on the amount of information leaked by a system, generally do

not model the types of interaction between secret and publicly-observable information

seen in typical systems (e.g., they assume that secret or publicly-observable informa-

tion only occurs before the system executes or after it terminates, when in reality both

types of information occur throughout execution).

We have identified one possible solution: a new information flow model that disre-

gards most of a system’s behaviour and instead examines only the collections of secret
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and publicly-observable information that occur during its execution, computing the

discrete probability distributions on the collections of secret and publicly-observable

information that occur. This model would be able to analyse more complex prob-

abilistic systems and use the information-theoretic measures of mutual information

and min-entropy leakage to answer questions of the form “what does an attacker learn

about the secret information that occurs at all of these specific points during the pro-

gram’s execution by inspecting the publicly-observable values that occur at all of these

other specific points?”. However, this “point-to-point” information flow model would

eventually encounter the same problem as all information flow models that measure

information flow from discrete probability distributions: precisely computing these

probability distributions becomes intractable when the program’s state space becomes

too large.

To solve this problem, we could estimate information leakage measures via sam-

pling of the system; this would affect the accuracy of the measure, but would allow us

to analyse more complex systems with larger state spaces. We have reviewed statis-

tical results from the literature that derive confidence intervals for estimates of both

mutual information and min-entropy leakage, allowing us to place bounds on the ac-

curacy of the estimates (and, in the case of mutual information, apply a correction to

the bias in the estimate). The main drawback is the large sample size required rel-

ative to the number of unique pieces of secret and publicly-observable information

that occur for acceptable mutual information confidence intervals to be derived, a size

that is even larger when deriving min-entropy leakage confidence intervals; however,

provided that a sufficient sample can be assembled, good results can be achieved.
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4
A Probabilistic Point-to-Point

Information Flow Model

In our review of the quantitative information flow analysis literature in Chapter 3, we

identified two particular weaknesses of existing information flow models. The first

concerns the amount of secret or publicly-observable information the models permit:

all of the models we reviewed restricted programs to either containing a single secret

value, a single publicly-observable value, or both. The second concerns the locations

where this information may occur: the models assume either that secret information

is present before programs execute, that publicly-observable information occurs only

when the program terminates, or both. We argued that neither of these restrictions are

appropriate when modelling the behaviour of most typical programs — it is often the

case that both types of information occur throughout the program’s execution. In order

to analyse information flows that occur in these programs, a new model is required

that accurately represents how they store and process secret and publicly-observable

information.

In this chapter, we present CH-IMP, a programming language with a probabilis-

tic semantics; the execution of a CH-IMP program is formally defined in terms of a

discrete-time Markov chain (Section 2.2, p. 37). A novel feature of CH-IMP is the ad-

dition of two commands, secret and observe, that record the occurrence of secret and
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publicly-observable information respectively. The purpose of these commands is to

identify that the values stored in certain variables at particular moments are “special”:

the secret V command indicates that the value stored in the variable V at this instant

is secret, and the observe V command indicates that the value stored in V at this in-

stant can be observed by the attacker. The use of either command is unrestricted —

they may occur in complex structures such as loops and branches, or in blocks of code

that are only executed with a small probability; the model quantifies the amount of in-

formation that flows from the secret values at certain arbitrary points to the publicly-

observable values at other arbitrary points — hence a point-to-point information flow

model. This could be considered a generalisation of Alvim et al.’s (2010) interactive

system model, in which programs may contain interleaving secret and observable la-

bels, but only in alternating order along each possible path of execution through the

program.

The CH-IMP attacker model assumes that the behaviour of a CH-IMP program is

known to a passive attacker (e.g., it is assumed that the attacker knows the program’s

source code); because CH-IMP assigns values to variables probabilistically, and be-

cause secret information arises from variables at defined points, this implies that the

attacker knows the range of possible secret values that could occur at each point, but

cannot necessarily correlate particular secret values and particular publicly-observable

values that arise from the program.

If the attacker’s goal is simply to learn as much information as possible about the

specific secret values that occur during execution, the Shannon entropy of the secret

information is a good measure of the attacker’s uncertainty about the program’s secret

information, and therefore the mutual information of the secret and observable infor-

mation that occurs in the program is a good measure of the amount of information it

leaks; if the attacker’s goal is instead to correctly guess the program’s secret values en

masse in a single attempt, the min-entropy of the secret information is a better measure

of the attacker’s uncertainty about the program’s secret information, and therefore the
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min-entropy leakage from the secret information to the publicly-observable informa-

tion is a more appropriate measure of the program’s information leakage. In either

case, the model does not constrain the selection of information leakage measure, and

in fact any measure that is a function of the joint probability distribution of the secret

and observable information can be computed, adding flexibility to CH-IMP’s attacker

model.

Initially, we present a version of CH-IMP without an information flow semantics;

i.e., we formally define the behaviour of all commands in the language except for secret

and observe. We then consider a number of insecure CH-IMP programs, and contem-

plate how much secret information they leak; at the end of this process, we find that

a particular semantics for secret and observe naturally arises, as well as formal defini-

tions of “secret information” and “publicly-observable information”. We then present

a version of CH-IMP with an information flow semantics based on these intuitions, and

show how the two information leakage measures we highlight can be derived from the

secret and publicly-observable information that is recorded during execution of the

program.

The contents of this chapter are based primarily on one of our contributions to the

literature (Chothia et al., 2013b).

4.1 CH-IMP: A Probabilistic Language

We begin by defining the syntax of CH-IMP, a probabilistic language featuring arith-

metic and Boolean expressions and the ability to store integer values in variables. It

is syntactically similar to Winskel’s (1993, Chapter 2) IMP, a non-probabilistic im-

perative language that forms part of an introduction to operational semantics, and is

semantically similar to Kozen’s (1981) probabilistic language (on which Mu and Clark

(2009a) also base their own probabilistic language for information flow analysis).

The syntax of CH-IMP is defined as follows:
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Definition 4.1 (CH-IMP grammar)

A CH-IMP program is a command C conforming to the grammar

C ::= new V := ρ
| V := ρ
| if (B) { C } else { C }
| while (B) { C }
| C; C
| start; C; end
| secret V
| observe V

ρ ::= { F }

F ::= A→ p
| F, F

B ::= true
| false
| A == A
| A < A
| A > A
| not B
| B and B
| B or B

A ::= n
| V
| A + A
| A - A
| A * A
| A / A
| A mod A

where V ranges over the variable names V , n ranges over the integers Z, p is a

probability (i.e. a real number such that 0 ≤ p ≤ 1), and ρ is a discrete probability

distribution (Definition 2.6, p. 33).

As is the case in other probabilistic languages, variables in CH-IMP are not assigned

values using the declaration and assignment commands according to the evaluation of

a single arithmetic expression, but are instead assigned values according to a discrete

probability distribution ρ on arithmetic expressions; thus, the command

new i := { 0→ 0.5, 1→ 0.5 }

declares a new variable i and assigns to it the value 0 with probability 1/2, 1 with prob-

ability 1/2, and all other integers with probability 0. For ρ to be a discrete probability

distribution, the probabilities must sum to 1 (Definition 2.6, p. 33); we consider pro-

grams that do not meet this requirement to be badly-formed. To simplify the formal

definition of variable scoping in Section 4.2 (p. 93), we also require that variables are

declared with unique names for a CH-IMP program to be well-formed.
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Although the grammar requires declarations and assignments to be made accord-

ing to a probability distribution on arithmetic expressions, we will nevertheless use

new i := A as syntactic sugar for new i := { A→ 1 } for brevity.

4.2 A Basic Semantics for the CH-IMP Language

We shall now formalise the execution of a CH-IMP program without an information

flow semantics — i.e. with the secret and observe commands omitted — in terms of a

discrete-time Markov chain, following Definition 2.13 (p. 37).1 This allows us to fo-

cus initially on defining the behaviour of the core language. The secret and observe

commands will be motivated and formally defined later, and thus provide a full infor-

mation flow semantics for CH-IMP.

We begin by defining three operations on sequences and functions.

Definition 4.2 (function and sequence operations)

Sequence partition. i0 :: Ir partitions a sequence I = 〈i0, i1, . . . , in〉 into its first

element i0 and another sequence consisting of its remaining elements Ir =

〈i1, . . . , in〉; Ir :: in partitions I into its last element in and another sequence

consisting of its remaining elements Ir = 〈i0, . . . , in−1〉.

Function comprehension. fp ∪ fq produces a new function f by merging the

functions fp and fq; if i appears in the domain of both functions, f (i) = fp(i).

Function sequence remapping. f ⊕ 〈f0, f1, . . . , fn〉 produces a new sequence of

functions 〈f ′0 , f
′

1 , . . . , f
′
n〉, where f ′i is defined as follows for all i functions

1The definition of information flow that we provide later in this chapter can only be computed if
each path in the DTMC induced by a CH-IMP program’s execution ends in an accepting state; therefore,
we shall assume that CH-IMP programs always terminate.
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in the new sequence:

f ′i =


f ∪ fi if dom(f ) ⊂ dom(fi);

fi otherwise.

These operators simplify the semantic rules governing the behaviour of CH-IMP com-

mands: as we shall see shortly, the sequence partition operator will be used to both

insert and remove elements in sequences between states of a CH-IMP program, and

the function comprehension and function sequence operators simplify the formal def-

initions of variable scoping.

The semantic rules for evaluating the arithmetic and Boolean expressions in Defi-

nition 4.1 are shown in Figure 4.1. Variable scope is maintained using a finite sequence

σ of scope frames o, functions mapping variable names to values; the narrowest scope

frame is the first element in the sequence, and the global scope frame is the last. The

operators are conventional, and their semantics are unsurprising; the only pitfall is the

division operator, which returns the integer quotient of its operands (since all variable

values and evaluations of arithmetic expressions in CH-IMP are integers).

Using the rules from Figure 4.1 and the definition of a DTMC from Definition 2.13,

we define the semantics of the version of CH-IMP without the secret and observe com-

mands as follows.

Definition 4.3 (CH-IMP execution without information flow semantics)

The execution of a CH-IMP program P without an information flow semantics is

formalised as a discrete-time Markov chain (DTMC) D = (S, s̄,P) with states S :

C × σ , where

• C is a finite sequence of commands to be executed (i.e. an expression de-

rived from the grammar in Definition 4.1 (p. 92), except for secret V and

observe V ),
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Figure 4.1: the semantics of arithmetic and Boolean expressions in CH-IMP

ConstInt
~n �(σ )→ n

ConstTrue
~ true �(σ )→ true

V ∈ dom(o)
VarInScope

~V �(o :: σ )→ ~V �(o)

~A1 �(σ )→ n1 ~A2 �(σ )→ n2
Add

~A1 + A2 �(σ )→ n1 +n2

~A1 �(σ )→ n1 ~A2 �(σ )→ n2
Sub

~A1 - A2 �(σ )→ n1 −n2

ConstFalse
~ false �(σ )→ false

V < dom(o)
VarNotInScope

~V �(o :: σ )→ ~V �(σ )

~A1 �(σ )→ n1 ~A2 �(σ )→ n2
Mult

~A1 * A2 �(σ )→ n1 ×n2

~A1 �(σ )→ n1 ~A2 �(σ )→ n2Div
~A1 / A2 �(σ )→ bn1/n2c

~A1 �(σ )→ n1 ~A2 �(σ )→ n2
Mod

~A1 mod A2 �(σ )→ n1 mod n2

~A1 �(σ )→ n1 ~A2 �(σ )→ n2 n1 = n2EquTrue
~A1 == A2 �(σ )→ true

~A1 �(σ )→ n1 ~A2 �(σ )→ n2 n1 , n2EquFalse
~A1 == A2 �(σ )→ false

~A1 �(σ )→ n1 ~A2 �(σ )→ n2 n1 < n2LessTrue
~A1 < A2 �(σ )→ true

~A1 �(σ )→ n1 ~A2 �(σ )→ n2 n1 ≮ n2
LessFalse

~A1 < A2 �(σ )→ false

~A1 �(σ )→ n1 ~A2 �(σ )→ n2 n1 > n2GreatTrue
~A1 > A2 �(σ )→ true

~A1 �(σ )→ n1 ~A2 �(σ )→ n2 n1 ≯ n2
GreatFalse

~A1 > A2 �(σ )→ false

~B1 �(σ )→ t1 ~B2 �(σ )→ t2
And

~B1 and B2 �(σ )→ t1 ∧ t2
~B1 �(σ )→ t1 ~B2 �(σ )→ t2Or
~B1 or B2 �(σ )→ t1 ∨ t2

~B �(σ )→ t
Not

~ not B �(σ )→¬t
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• σ : N→ o is a finite sequence of variable scope frames (with the narrowest

scope frame at the start of the sequence), and

• a variable scope frame o : V → Z is a function mapping variable names to

values;

the initial state s̄ = (P ,〈{}〉); and the transition probability matrix P defined ac-

cording to the following semantic rules:

Decl
(new V := ρ; C,o :: σ )

ρ(n)
−−−→ (C, ({V → n} ∪ o) :: σ )

Assign

(V := ρ; C,σ )
ρ(n)
−−−→ (C, {V → n} ⊕ σ )

~B �(σ )→ true
IfTrue

(if (B) { CT } else { CF }; C,σ )
1−→ (start; CT ; end; C,σ )

~B �(σ )→ false
IfFalse

(if (B) { CT } else { CF }; C,σ )
1−→ (start; CF ; end; C,σ )

~B �(σ )→ true
WhileTrue

(while (B) { CW }; C,σ )
1−→ (start; CW ; end; while (B) { CW }; C,σ )

~B �(σ )→ false
WhileFalse

(while (B) { CW }; C,σ )
1−→ (C,σ )

ScopeIn
(start; C,σ )

1−→ (C, {} :: σ )
ScopeOut

(end; C,o :: σ )
1−→ (C,σ )

Accept
(〈〉,σ )

1−→ (〈〉,σ )

The sequence σ in the tuple defining a CH-IMP program’s state is responsible for

storing the variables that are in scope at any given moment during execution, along

with the values they have been assigned. In the initial state s̄, this sequence contains

a single empty scope frame, i.e. a function whose domain is the empty set. This scope
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frame represents the program’s global scope; it will never be destroyed. The start and

end commands maintain the program’s variable scope per the ScopeIn and ScopeOut

rules. These commands are not to be used directly: they are inserted into the list of

commands C by the IfTrue, IfFalse and WhileTrue rules to create a new, empty narrow-

est scope frame and destroy the current narrowest scope frame in σ respectively. This

ensures that variables declared in CT , CF and CW go out of scope when their com-

mands have finished executing. Although variable scoping is not a strictly necessary

feature of the language (since any CH-IMP program could be rewritten using only

globally-scoped variables), it minimises the number of bound variables in any given

state of a program, thus minimising the time complexity of a test for the equality of

two instances of the sequence σ . We shall see why this is valuable when we describe

our implementation of the semantics of CH-IMP in Chapter 5.

The Decl and Assign rules define the behaviour of variable declaration and assign-

ment. A new variable V is declared with a name and a probability distribution ρ on

its value; for each integer n, with probability ρ(n) the DTMC transitions into a new

state where the narrowest scope frame in σ contains a new mapping from the variable

name to the value n. The Assign rule is similar, but replaces the mapping for V in

the scope frame in which it was declared rather than inserting a new mapping for V

into the narrowest scope frame. Decl and Assign are the only rules whose behaviour

is probabilistic: all other rules cause the DTMC to transition into a single succeeding

state with probability 1.

The remaining rules cause state transitions in a typical manner: IfTrue evaluates

an if command if its guard — a Boolean expression — evaluates to true according

to the rules in Figure 4.1, thus executing CT ; otherwise, the command is evaluated

with the IfFalse rule, thus executing CF . If the guard in a while command evaluates

to true, the body of the while command CW is executed once and the guard is re-

evaluated; if it evaluates to false, execution continues from C. Finally, the Accept rule

defines the DTMC’s behaviour when there are no more commands remaining to be
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executed: to satisfy the formal definition of a DTMC’s probability transition matrix

(Definition 2.13, p. 37), it enters an accepting state, i.e. a self-transition with probabil-

ity 1.

4.3 Toward An Information Flow Semantics for CH-IMP

We must complete the definition of CH-IMP by defining the behaviour of the secret

and observe commands; in doing so, we shall define its information flow model.

Recall from the introduction to this chapter (p. 89) our intuitions about these two

commands: secret V indicates that the value of V at this point should be considered a

secret, and observe V indicates that an attacker will be able to observe the value of V

at this point. In both cases, we do not concern ourselves with the value of V before or

after the command executes, even though its value may not change: we are interested

in the value stored inside a particular memory cell at a given moment, rather than

the memory cell itself. Additionally, we do not wish to restrict occurrences of either

command to particular locations within the program: it should be possible for both

secret and observe to occur any number of times anywhere in the program, including

inside branches of if commands and bodies of while loops. Permitting both secret and

observable information to occur at arbitrary points in programs complicates the in-

formation flow model: unlike in previous work, where the same secret information

exists throughout the execution of a program and the publicly-observable information

is present upon termination, it may not be immediately clear when — or even whether

— secret and observable information occurs, and how the amounts of each type of

information should be quantified.

CH-IMP’s attacker model assumes that the attacker (a) is passive, (b) has prior

knowledge of the behaviour of the program (although not necessarily the specific path

of execution it takes), and (c) has the ability, after termination, to observe the val-

ues of all variables that were operands of an observe command at the points at which
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the observe commands were evaluated. Note that, since CH-IMP is a probabilistic

language, prior knowledge of the program’s behaviour confers knowledge about the

range of values that could be assigned to a particular variable at the point at which its

value is marked as secret, but does not guarantee that the attacker is able to correlate

the occurrence of particular observable values with the occurrence of particular secret

values. However, if the program is insecure, the observable information revealed to

the attacker potentially narrows the range of possible values that could be assigned to

variables whose values are marked as secret; this is therefore the source of information

leakage in a CH-IMP program.

If the attacker’s goal is simply to learn as much information as possible about the

secret values that occur during execution, the Shannon entropy (Definition 2.18, p. 40)

of the secrets is a good measure of the attacker’s uncertainty about those secrets; this

suggests that the mutual information (Definition 2.21, p. 42) of the secret and observ-

able values that occur during execution is a good measure of the amount of information

leaked by the program. (In the examples that follow in this section, we shall use Shan-

non entropy and mutual information as uncertainty and information leakage measures

respectively to motivate our information flow model.) However, many other leakage

measures can be computed using the same information about the program’s execu-

tion, and different ones can be chosen to model attackers with different capabilities

and goals; for instance, if the attacker’s goal is instead to correctly guess the program’s

secret values en masse in a single attempt, the min-entropy (Definition 2.25, p. 46) of

the secret values is a better measure of the attacker’s uncertainty, and therefore the

min-entropy leakage (Definition 2.28, p. 47) from the secret values to the observable

values is a more appropriate measure of the program’s information leakage.

To gain further intuition about the desired behaviour of secret and observe, we now

consider six CH-IMP programs that contain secret and observable information; we ar-

gue that each example contains an information leak, reason about the attacker’s knowl-

edge of the secret information, quantify each leak, and use the example to inform our
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formal definition of CH-IMP with an information flow semantics.

4.3.1 Reversing a Bitwise XOR Operation

Listing 4.1 shows a simple CH-IMP program in which a bitwise XOR operation occurs.

The value of rand at the point of declaration on line 1 is chosen from a uniform proba-

bility distribution, as is the value of sec on line 3. The value of a third variable on line

5, out, is the bitwise XOR of these two values.

The program produces two values that may be observed by an attacker, indicated

by the use of the observe command: the value of rand on line 2, and the value of out

on line 6. The use of the secret command on line 4 indicates that the value of sec is

sensitive at that particular point; its value on line 4 is 0 or 1 with equal probability, so

there is 1 bit of Shannon entropy in its value and therefore 1 bit of secret information

present.

Table 4.1 shows the joint probability distributions of various subsets of secret val-

ues and observable values that occur in this program. The mutual information of sec

and rand (Table 4.1(a)) is 0 bits: the attacker cannot distinguish between the two val-

ues of sec by observing rand alone. The same is true for sec and out (Table 4.1(b)).

However, information is shared between the value of sec and the values of rand and

out collectively (Table 4.1(c)): the attacker is able to reverse the xor operation on line

5 by observing both of these values, since bitwise XOR is a reversible function given

the function’s output and one of its inputs. The mutual information in this case is 1

bit, which represents a reduction in entropy of sec’s value by 1 bit and thus a complete

Listing 4.1: a CH-IMP example in which an attacker observes the output and half of the input
of a bitwise XOR operation; the second half of the input is secret

new rand := { 0→ 0.5, 1→ 0.5 };
observe rand;
new sec := { 0→ 0.5, 1→ 0.5 };
secret sec;
new out := sec xor rand;
observe out

1
2
3
4
5
6
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leakage of the program’s secret information.

To detect information leaks such as the one described above, the “observable infor-

mation” that occurs in a program should therefore be defined as the collection of all

values that are observed along a particular path of execution, including those that are

observed before other values are marked as secret.

4.3.2 Equality of Secrets

Another bitwise XOR operation occurs in the program in Listing 4.2 (p. 102). This

time, there are two pieces of secret information: on line 3 the value of sec1 (which at

this point is 0 or 1 with equal probability) and on line 4 the value of sec2 (which, again,

is 0 or 1 with equal probability) are both marked as secret; there are therefore four pos-

sible combinations for the values of sec1 and sec2 at these points. These combinations

all occur with the same probability; there are therefore 2 bits of Shannon entropy in

the program’s secret information.

An attacker may observe a single value in this program: the value of out on line 6,

Table 4.1: three possible joint probability distributions of secret values and observable values
for the program shown in Listing 4.1

(a) sec and rand

rand

sec 0 1

0 0.25 0.25
1 0.25 0.25

(b) sec and out

out

sec 0 1

0 0.25 0.25
1 0.25 0.25

(c) sec, and rand and out collectively

rand, out

sec 0, 0 0, 1 1, 0 1, 1

0 0.25 0 0 0.25
1 0 0.25 0.25 0



102 Chapter 4. A Probabilistic Point-to-Point Information Flow Model

which is the bitwise XOR of the values of sec1 and sec2 on line 5.

As before, Table 4.2 shows the joint probability distributions of various subsets

of the secret values and observable values that occur. An attacker with the ability to

observe out is unable to directly distinguish between the two possible values of sec1

(Table 4.2(a)) or sec2 (Table 4.2(b)). The mutual information of the values of sec1 and

out, and of sec2 and out, is therefore 0 bits. However, by observing the value of out,

the attacker learns some information about the values of sec1 and sec2: because the

XOR of any integer with itself equals 0, the attacker learns whether the values of sec1

and sec2 are equal. This narrows down the combinations of the values of sec1 and

Listing 4.2: a CH-IMP example in which an attacker observes the bitwise XOR of two secrets

new sec1 := { 0→ 0.5, 1→ 0.5 };
new sec2 := { 0→ 0.5, 1→ 0.5 };
secret sec1;
secret sec2;
new out := sec1 xor sec2;
observe out

1
2
3
4
5
6

Table 4.2: three possible joint probability distributions of secret values and observable values
for the program shown in Listing 4.2

(a) sec1 and out

out

sec1 0 1

0 0.25 0.25
1 0.25 0.25

(b) sec2 and out

out

sec2 0 1

0 0.25 0.25
1 0.25 0.25

(c) sec1 and sec2 collectively, and out

out

sec1, sec2 0 1

0, 0 0.25 0
0, 1 0 0.25
1, 0 0 0.25
1, 1 0.25 0
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sec2 from four to two, the precise combinations depending on the observation that the

attacker makes (Table 4.2(c)). This equates to a reduction of 1 bit in the entropy of

the program’s secret information, and there is therefore 1 bit of mutual information

between it and the program’s observable information.

This example is a counterpart to the program in Listing 4.1, but for secret infor-

mation: it demonstrates that to detect such information leaks, the “secret informa-

tion” that occurs in a program should be defined as the collection of all values that are

marked as secret along a particular path of execution, including those that are marked

as secret before other values are observed.

4.3.3 Secret Information inside a Loop

So far, we have considered only secret and publicly-observable information that oc-

curs in the global scope frame. Listing 4.3 (p. 104) shows a more complex program,

where secret and observe commands occur inside a while loop whose body is executed

three times. A new value — an integer chosen uniformly from the interval [0,2] — is

assigned to the variable sec once on every iteration of the loop, on line 6; therefore,

from Definition 2.18 (p. 40), there are −3 · 1/3 log2
1/3 ≈ 1.58 bits of Shannon entropy in

each value of sec. Each value is marked as a secret on line 7. The three assignments

to sec happen unconditionally and the probability distribution on the possible values

remains constant, so there is no information shared between the values of sec that may

occur during execution of the program; consequently, there are 3·(−3·1/3 log2
1/3) ≈ 4.75

bits of secret information in this program.

There is also an observe command in the loop body, on line 5; an attacker may

therefore observe three values of the variable out, one during each iteration of the

loop. The value of out is always 0 at the first and second points at which it is observed;

however, an if command that evaluates to true in the second iteration of the loop causes

the execution of code that copies the current value of sec into out. Therefore, on the

final iteration of the loop, the value of out entirely leaks the value of sec that was
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assigned in the previous iteration.

So far, we have established that a program’s “secret information” and “observable

information” should be defined as all of the secret and observable values that are en-

countered along a particular path of execution respectively; now that we are consider-

ing more complex flows of information, we must be more precise about these defini-

tions.

Table 4.3 shows the joint probability distributions of various subsets of the secret

values and observable values that occur in the program in Listing 4.3. By limiting the

domains of the joint probability distributions to the values that occur inside a single

iteration of a while loop (Table 4.3(a)), the program does not appear to leak information:

because the value of out is unrelated to that of sec in any given iteration, each value of

out is equally likely to occur given a particular value of sec, and the mutual information

of sec and out is 0 bits. However, when considering the entire collection of values

previously marked as secret on line 7 and the entire collection of values previously

marked as observable on line 5 (i.e. the secret and observable information that occurs

over all iterations collectively, as in Table 4.3(b)), the joint probability distribution is no

longer uniform: there is a correlation between the second value of sec that is marked

as secret and the third value of out that is marked as observable, which corresponds

with the leak that occurs on line 9 during the second iteration of the loop. Here, the

Listing 4.3: a CH-IMP example containing a while loop with secret and publicly-observable
information in its body

new i := 0;
new out := 0;
new sec := 0;
while (i < 3) {

observe out;
sec := { 0→ 1/3, 1→ 1/3, 2→ 1/3 };
secret sec;
if (i == 1) {

out := sec
};
i := i + 1

}

1
2
3
4
5
6
7
8
9

10
11
12
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Table 4.3: two possible joint probability distributions of secret values and observable values
for the program shown in Listing 4.3

(a) sec and out in each
iteration of the while loop

out

sec 0 1 2

0 1/9 1/9 1/9
1 1/9 1/9 1/9
2 1/9 1/9 1/9

(b) sec and out across all iterations
of the while loop

out

sec 0, 0, 0 0, 0, 1 0, 0, 2

0, 0, 0 1/27 0 0
0, 0, 1 1/27 0 0
0, 0, 2 1/27 0 0
0, 1, 0 0 1/27 0
0, 1, 1 0 1/27 0
0, 1, 2 0 1/27 0
0, 2, 0 0 0 1/27

0, 2, 1 0 0 1/27

0, 2, 2 0 0 1/27

1, 0, 0 1/27 0 0
1, 0, 1 1/27 0 0
1, 0, 2 1/27 0 0
1, 1, 0 0 1/27 0
1, 1, 1 0 1/27 0
1, 1, 2 0 1/27 0
1, 2, 0 0 0 1/27

1, 2, 1 0 0 1/27

1, 2, 2 0 0 1/27

2, 0, 0 1/27 0 0
2, 0, 1 1/27 0 0
2, 0, 2 1/27 0 0
2, 1, 0 0 1/27 0
2, 1, 1 0 1/27 0
2, 1, 2 0 1/27 0
2, 2, 0 0 0 1/27

2, 2, 1 0 0 1/27

2, 2, 2 0 0 1/27
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mutual information of sec and out is approximately 1.58 bits, or the Shannon entropy

of the second value of sec that is leaked by the program.

As with the example in Listing 4.2, this example demonstrates that, because in-

formation leaks may occur across iterations of a loop, the “secret information” and

“observable information” that occurs in a program should be defined as the collections

of all values marked as secret and observable respectively along a particular path of

execution, including those stored in variables defined in non-global scope frames and

after the variables that once stored their values are destroyed.

4.3.4 Different Secret Information in Different Paths of Execution

The previous examples only consider situations in which the program processes secret

information stored inside a single variable, or in which the secret information arises

from a sequence of variables that is identical along each path of execution of the pro-

gram. We have not considered information leaks that occur when the path of execution

taken determines either the number of variables whose values are treated as secret in-

formation, the variables from which secret information arises, or the order in which

the values are marked as secret information — or, indeed, whether these situations

should be considered information leaks at all.

Some programs may only process secret information under certain conditions. The

true branch of the if command in the example shown in Listing 4.4 is executed with

probability 1/2, and marks the value of the variable sec as secret and then immediately

Listing 4.4: a CH-IMP example that may contain secret information, depending on which
branch of an if command is executed

new rand := { 0→ 0.5, 1→ 0.5 };
if (rand == 1) {

new sec := { 0→ 0.5, 1→ 0.5 };
secret sec;
observe sec

} else {
observe rand

}

1
2
3
4
5
6
7
8
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discloses it to the attacker (on lines 4 and 5 respectively). The false branch contains

no occurrences of secret information, and instead always discloses the value 0 on line

7. Thus, the program may or may not contain secret information depending on which

path of execution is followed.

Table 4.4 (p. 107) shows two possible joint probability distributions of the secret

and observable values that could be used to quantify the information leakage from

this program. By only considering paths of execution containing secret information

(Table 4.4(a)), we conclude that the program contains 1 bit of secret information (i.e.

the value of sec on line 4) and there is 1 bit of mutual information between it and the

program’s observable values, resulting in a total leakage of the program’s secret infor-

mation. However, this is an overstatement of the amount of information the program

leaks: an attacker observing the value 0 in this program cannot be sure whether it was

caused by the true branch being executed and the value of sec being 0 (an event that

occurs with probability 1/3 when the attacker observes the value 0), or the false branch

Table 4.4: two possible joint probability distributions of secret values and observable values
for the program shown in Listing 4.4

(a) the secret and observable values that occurred along paths of
execution containing secret information

Observable values

Secret values 0 1

sec = 0 1 0
sec = 1 0 1

(b) the secret and observable values that occurred along all paths of
execution; ⊥ denotes that no secret values occurred

Observable values

Secret values 0 1

sec = 0 0.25 0
sec = 1 0 0.25
⊥ 0.5 0
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being executed and no secret information occurring at all (an event that occurs with

probability 2/3 when the attacker observes the value 0); these events are not distin-

guishable from each other in Table 4.4(a), which assumes that an attacker observing

the value 0 always learns the value of sec. To make them distinguishable and thus avoid

the overstatement, we must consider all paths of execution through the program, and

not just those containing secret information; by doing this (Table 4.4(b)), we instead

find from Definition 2.18 (p. 40) that there are 1.5 bits of secret information processed

by the program, and from Definition 2.21 (p. 42) that there are approximately 0.81 bits

of information shared between it and the observable information.

Some programs may process different types of secret information depending on the

path of execution taken through the program; Listing 4.5 contains an example of this

scenario. The true and false branches of the if command beginning on line 5 each de-

clare a variable and mark the occurrence of secret information in that variable, but the

variables have different names in each branch (and, given that CH-IMP variable names

must be unique at declaration, are therefore different pieces of secret information); the

branch that is executed depends on the value of rand that is assigned on line 1. An

attacker is able to observe the value of rand on line 2 and, because rand’s value does

not change between this observation and the evaluation of the Boolean expression in

the if command on line 5, also learns which branch of the if command is executed. The

attacker does not directly learn any other information about either of the variables

Listing 4.5: a CH-IMP example containing different secret information in each branch of an if
command

new rand := { 0→ 0.5, 1→ 0.5 };
observe rand;
new sec1 := { 0→ 0.5, 1→ 0.5 };
new sec2 := { 0→ 0.5, 1→ 0.5 };
if (rand == 0) {

secret sec1
} else {

secret sec2
}

1
2
3
4
5
6
7
8
9
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whose values are marked as secret (sec1 on line 6, and sec2 on line 8).

Table 4.5 shows some possible joint probability distributions of the secret and ob-

servable information in the program given in Listing 4.5. Table 4.5(a) shows the joint

probability distribution that occurs when only the values of variables marked with the

secret command are treated as secret information; from this distribution, we see that

the program contains 1 bit of secret information (i.e. whether the secret value that oc-

curred was either 0 or 1), and that the observable information reveals nothing about

this secret information: the value of rand reveals nothing to the attacker about the value

of either sec1 or sec2. However, this is an understatement of what the attacker learns:

although the program reveals nothing about the value of either variable, it does reveal

the name of the variable that contained the value that was marked as secret, and so the

attacker learns which piece of secret information was processed by the program. To

correct this understatement, we must also consider the names of variables from which

the secret values arise to be secret information in their own right by including them in

Table 4.5: two possible joint probability distributions of secret values and observable values
for the program shown in Listing 4.5

(a) the secret values that occurred in each if branch, and rand

Observable values

Secret values 0 1

0 0.25 0.25
1 0.25 0.25

(b) all secret values that occurred (including the names of the
variables containing their values), and rand

Observable values

Secret values 0 1

sec1 = 0 0.25 0
sec1 = 1 0.25 0
sec2 = 0 0 0.25
sec2 = 1 0 0.25
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the joint probability distribution (Table 4.5(b)): now we see that, although the attacker

cannot distinguish between situations where the secret value equals 0 or 1, the attacker

can distinguish between situations where the secret value arose from the variable sec1

or sec2. This introduces an extra 1 bit of secret information into the program, and

from Definition 2.21 (p. 42) we find that there is 1 bit of information shared between

it and the observable information (specifically, the name of the variable that stored the

secret value); the understatement of the program’s information leakage is therefore

corrected.

4.4 An Information Flow Semantics for the CH-IMP

Language

In Section 4.3, we provided five examples of CH-IMP programs that we consider to

leak information, listed plausible joint probability distributions of the secret and ob-

servable information for each program, and argued which best quantified the informa-

tion leakage from the program (using mutual information as our leakage measure). In

this way, we provided intuitions about the nature of a program’s “secret information”

and “observable information” and the intended behaviour of CH-IMP’s secret and ob-

serve commands. To summarise:

(a) A program’s “observable information” is the collection of all values that are ob-

served along a particular path of execution of the program, including those that

are observed before other values are marked as secret (Section 4.3.1, p. 100).

(b) A program’s “secret information” is the collection of all values that are marked as

secret along a particular path of execution of the program, including those that

are marked as secret before other values are observed (Section 4.3.2, p. 101).

(c) To quantify information flows from secret to observable values that occur as a

result of executing control flow commands, a program’s “secret information” and



4.4. An Information Flow Semantics for the CH-IMP Language 111

“observable information” are the collections of all secret and observable values

respectively along a particular path of execution of the program, including those

stored in variables defined in non-global scope frames and after the variables

that once stored their values are destroyed (Section 4.3.3, p. 103).

(d) To avoid overstating information flows from secret to observable values when

the branching behaviour of a program causes a varying number of values to be

marked as secret, all paths of execution through the program should be factored

into the joint probability distribution, rather than just those containing a specific

number of secret values (Section 4.3.4, p. 106).

(e) To avoid understating information flows from secret to observable values when

the branching behaviour of a program causes secret information to arise from

different variables, the program’s “secret information” should include the names

of variables whose values are marked as secret (Section 4.3.4, p. 106).

We now formalise these intuitions by providing a concrete definition for a pro-

gram’s “secret information” (which we denote with S) and its “observable information”

(which we denote with O).

4.4.1 Formal Definitions for Secret and Observable Information

In Section 4.3.2 we informally defined a program’s “secret information” as the collec-

tion of all secrets that occur along a particular path of execution, regardless of whether

they occurred before other observable values. This naturally gives rise to the following

definition of secret information:
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Definition 4.4 (secret information in a CH-IMP program)

A program’s secret information S is a finite sequence of variable name/value tu-

ples that occur along a path of execution:

S :N→ (V ×Z).

Similarly, in Section 4.3.3 we emphasised the need to collect all secret values that

occur in a CH-IMP program, regardless of whether the variables that stored those val-

ues are still in scope. The same principle is applied when formally defining a program’s

“observable information”, per the informal definition in Section 4.3.1, with one impor-

tant difference. The second example in Section 4.3.4 demonstrates the importance of

tracking variable names associated with particular secret values to avoid understating

information flows; it is not necessary to treat observable values in the same way, and we

argue that it would be unrealistic to do so: real-world programs simply output infor-

mation (e.g. by displaying the final four digits of a credit card number on a web page)

without explicitly revealing anything about how that information was stored (e.g. the

memory address where the final four digits of the credit card number were stored just

before they were displayed). Thus, our attacker model also assumes that the attacker

is able to inspect observable values that occur in a program, but not the names of the

variables from which they arise:

Definition 4.5 (observable information in a CH-IMP program)

A program’s observable information O is a finite sequence of variable values that

occur along a path of execution:

O :N→Z.

Note that Definition 4.4 models an attacker with the ability to distinguish between

scenarios where the same secret values arise from the same variables, but in a different

order. This is demonstrated by the example in Listing 4.6: the variables sec1 and sec2
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are marked as containing secret information in a different order in each branch of an

if command, and the attacker is able to observe the value of rand, which determines

which branch of the if command is executed. Using the above definitions of “secret

information” and “observable information”, we obtain the joint probability distribu-

tion shown in Table 4.6; it shows that the program contains log2(8) = 3 bits of secret

information and that, when the value of rand is disclosed to the attacker, the secret and

observable values contain 1 bit of mutual information. Thus, the attacker learns which

of the two variables sec1 and sec2 had its value marked as secret first, but does not

learn anything about either of the variables’ values.

Listing 4.6: a CH-IMP example where secret information occurs in a different order in each
branch of an if command

new rand := { 0→ 0.5, 1→ 0.5 };
observe rand;
new sec1 := { 0→ 0.5, 1→ 0.5 };
new sec2 := { 0→ 0.5, 1→ 0.5 };
if (rand == 0) {

secret sec1;
secret sec2

} else {
secret sec2;
secret sec1

}

1
2
3
4
5
6
7
8
9

10
11

Table 4.6: the joint probability distribution of secret values and observable values for the pro-
gram shown in Listing 4.6, given the definition of “secret information” in Defini-
tion 4.4

Observable values

Secret values 0 1

sec1 = 0, sec2 = 0 1/8 0
sec1 = 0, sec2 = 1 1/8 0
sec1 = 1, sec2 = 0 1/8 0
sec1 = 1, sec2 = 1 1/8 0
sec2 = 0, sec1 = 0 0 1/8
sec2 = 0, sec1 = 1 0 1/8
sec2 = 1, sec1 = 0 0 1/8
sec2 = 1, sec1 = 1 0 1/8
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This is a strong attacker model, and it could be argued that it is too strong for simple

programs such as the one in Listing 4.6. However, we argue that real-world programs

are significantly more complex than this, and the order in which secret information

occurs may be useful information for an attacker to learn. Nevertheless, if so desired,

minor modifications can be made to the definition of S to weaken the attacker model;

for instance, by defining S as a function mapping a variable name to the finite sequence

of secret values that have arisen from that variable (i.e. S : V → (N→Z)), it is possible

to model an attacker that is unable to distinguish between scenarios that only differ by

the order in which secret variable names occur.

4.4.2 Secret and Observable Information in CH-IMP’s Basic Semantics

In Section 4.3.3 (p. 103), we emphasised the importance of tracking all secret and ob-

servable values that occur along a particular path of execution of a program. Now that

we have established formal definitions of a program’s “secret information” and “ob-

servable information”, we must modify our formal definition of a CH-IMP program

(Definition 4.3, p. 94) to ensure that this information is correctly recorded during the

program’s execution.

Because the secret and observable information that occurs in a program may differ

along different paths of execution, each state of the DTMC must record the secret and

observable information that has occurred so far along the current path. This requires

the definition of DTMC nodes representing a CH-IMP program’s state to be modified

to

S : C × σ ×S ×O

where S and O are the definitions of secret and observable information in Defini-

tions 4.4 and 4.5 (p. 112) respectively. Empty sequences for S and O must also be

added to the DTMC’s initial state s̄, since a program contains no secret or observable
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information when it begins executing:

s̄ = (P ,〈{}〉,〈〉,〈〉).

Definition 4.3 contains nine semantic rules that define a DTMC’s transition prob-

ability matrix P; each rule modifies at least one element in the tuple that constitutes

a state in the DTMC in order to produce a succeeding state with a given probability.

We must therefore also redefine the nine semantic rules listed in Definition 4.3 to ac-

count for the addition of secret and observable information to states, but because none

of these rules process secret or observable information, it is sufficient for the rules to

simply “carry forward” both S and O into the succeeding states without modification.

For example, the Decl rule, which declares a new variable in the narrowest scope frame,

would be rewritten in the following way:

Decl

(new V := ρ; C,o :: σ,S ,O)
ρ(n)
−−−→ (C, ({V → n} ∪ o) :: σ,S ,O)

Since declaration of a variable has no direct effect on a program’s secret or observ-

able information, it is unnecessary to modify either S or O in the succeeding states.

The same principle holds for the other eight rules.

Now that we have modified the semantic rules to track secret and observable infor-

mation that occurs during a program’s execution, we are ready to complete the defini-

tion of CH-IMP by formally stating the behaviour of its secret and observe commands.

4.4.3 Formalising CH-IMP’s Information Flow Commands

Recall:

(a) from Section 4.3.2 (p. 101) that all secret values that occur along a particular path

of execution of a program must be recorded;
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(b) from Section 4.3.4 (p. 106) that the variable names associated with particular se-

cret values and the order in which secret values occur are both secret information

in their own right; and

(c) from our informal definition of the secret command in the introduction to Sec-

tion 4.3 (p. 98) that a value marked as secret with the secret command should be

considered secret at the point at which the secret command is evaluated.

The semantic rule defining the behaviour of the secret command therefore evaluates

the given variable as an arithmetic expression and appends a tuple consisting of the

variable name and the result of the evaluation to the sequence of tuples that constitute

the program’s secret information along this path of execution:

Sec
(secret V ; C,σ ,S ,O)

1−→ (C,σ ,S :: (V ,~V �(σ )),O)

Similarly, recall:

(a) from Section 4.3.1 (p. 100) that all observable values that occur along a particular

path of execution of a program must be recorded, and

(b) from our informal definition of the observe command in the introduction to Sec-

tion 4.3 that a value marked as observable with the observe command should be

considered observable at the point at which the observe command is evaluated.

The semantic rule defining the behaviour of the observe command therefore simply

evaluates the given variable as an arithmetic expression and appends the result to the

sequence of values that have been observed along this path of execution:

Obs
(observe V ; C,σ ,S ,O)

1−→ (C,σ ,S ,O :: ~V �(σ ))
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These rules ensure that, in any given state in the DTMC, any secret or observable

information that has occurred along that path of the program’s execution is recorded.

Finally, by combining the now-modified semantic rules in Definition 4.3 (p. 94)

and the semantic rules for the secret and observe commands above, we arrive at the

following definition of CH-IMP with information flow semantics:

Definition 4.6 (CH-IMP execution with information flow semantics)

The execution of a CH-IMP program P with an information flow semantics is

formalised as a discrete-time Markov chain (DTMC) D = (S, s̄,P) with states

S : C × σ ×S ×O, where

• C is a finite sequence of commands to be executed (i.e. an expression de-

rived from the grammar in Definition 4.1 (p. 92)),

• σ : N→ o is a finite sequence of variable scope frames (with the narrowest

scope frame at the start of the sequence),

• a variable scope frame o : V → Z is a function mapping variable names to

values,

• the secret information S :N→ (V ×Z) is a finite sequence of secret variable

name/value tuples that have occurred, and

• the observable information O : N → Z is a finite sequence of observable

values that have occurred;

the initial state s̄ = (P ,〈{}〉,〈〉,〈〉); and the transition probability matrix P defined

according to the following semantic rules:

Decl
(new V := ρ; C,o :: σ,S ,O)

ρ(n)
−−−→ (C, ({V → n} ∪ o) :: σ,S ,O)

Assign
(V := ρ; C,σ ,S ,O)

ρ(n)
−−−→ (C, {V → n} ⊕ σ,S ,O)
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~B �(σ )→ true
IfTrue

(if (B) { CT } else { CF }; C,σ ,S ,O)
1−→ (start; CT ; end; C,σ ,S ,O)

~B �(σ )→ false
IfFalse

(if (B) { CT } else { CF }; C,σ ,S ,O)
1−→ (start; CF ; end; C,σ ,S ,O)

~B �(σ )→ true
WhileTrue

(while (B) { CW }; C,σ ,S ,O)
1−→ (start; CW ; end; while (B) { CW }; C,σ ,S ,O)

~B �(σ )→ false
WhileFalse

(while (B) { CW }; C,σ ,S ,O)
1−→ (C,σ ,S ,O)

ScopeIn
(start; C,σ ,S ,O)

1−→ (C, {} :: σ,S ,O)

ScopeOut
(end; C,o :: σ,S ,O)

1−→ (C,σ ,S ,O)

Sec
(secret V ; C,σ ,S ,O)

1−→ (C,σ ,S :: (V ,~V �(σ )),O)

Obs
(observe V ; C,σ ,S ,O)

1−→ (C,σ ,S ,O :: ~V �(σ ))

Accept
(〈〉,σ ,S ,O)

1−→ (〈〉,σ ,S ,O)

4.5 Quantitative Security Policies for CH-IMP Programs

Now that we have a formal definition of CH-IMP with an information flow semantics,

we can consider how to use a DTMC induced by the semantics to quantify the informa-

tion leakage that occurs from a CH-IMP program and how to define a security policy

for a CH-IMP program.

Recall that the purpose of a security policy is to determine whether the amount

of information leaked by a system is acceptable. In this section we define the infor-

mation leakage from a CH-IMP program as the mutual information of its secret and

observable values, or alternatively as the min-entropy leakage from its secret values
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to its observable values. A CH-IMP security policy, then, states an upper bound on

the acceptable amount of information a program may leak, given a particular leakage

measure; e.g., “the mutual information of the secret and publicly-observable informa-

tion in the program must not exceed 2 bits”. (This definition of “security policy” is

similar to Heusser and Malacaria’s (2010), in that the security policy is a numerical

upper bound on a particular leakage measure beyond which the program is deemed

insecure.)

By executing a terminating CH-IMP program according to Definition 4.6, we ob-

tain a DTMC with a structure similar to that depicted in Figure 4.2; this is the DTMC

induced by executing the bitwise XOR-reversing example shown in Listing 4.1 (p. 100).

The branching behaviour in the DTMC is caused by the new commands: the first by the

declaration of rand (generating two succeeding states), and the second by the declara-

tion of sec (generating two succeeding states for each of the previous two succeeding

states). As explained in Section 4.4.3 (p. 115), S and O are either populated by the

evaluation of the secret and observe commands respectively, or “carried forward” to

succeeding states by the evaluation of all other commands. After the final observe

command is executed, an accepting state is entered, signifying that that particular

path of execution has ended.

Note that each of the accepting states in the DTMC is of the form (〈〉,σ ,S ,O), and

that S and O contain the secret and observable information that has occurred along

the path of execution from the initial state to that accepting state. We denote the set of

all sequences of secret information that occur in the accepting states of a DTMC with

S, and the equivalent for all sequences of observable information with O.

From Definition 2.16 (p. 39), the probability of the DTMC entering a given accept-

ing state can be computed by multiplying the probability of each transition that occurs

between the path’s initial and accepting states; this allows us to compute the probabil-

ity of some secret information S and some observable information O occurring simul-

taneously — thus defining a joint probability distribution, which we denote with PSO.
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Because multiple accepting states may contain the same secret and observable infor-

mation, the probability of particular sequences of secret and observable information

occurring jointly must be computed over all possible accepting states:

Definition 4.7 (joint probability distribution of secret and observable values in a ter-

minating CH-IMP program)

The joint probability distribution PSO of the secret and observable values that

occur in a terminating CH-IMP program is given by

PSO(S ,O) =
∑

s=(C,σ ,s′ ,o′)∈{S |s′=S∧o′=O}
P (s).

From the joint probability distribution PSO, we can compute the probability distribu-

tions of the secret information PS and of the observable information PO by marginalis-

ing PSO, per Definition 2.11 (p. 35):

Figure 4.2: an overview of the DTMC induced by Definition 4.6 (p. 117) by executing the
program shown in Listing 4.1 (p. 100)
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Definition 4.8 (probability distributions of the secret values and observable values

in a terminating CH-IMP program)

The probability distributions PS of the secret values and PO of the observable

values that occur in a terminating CH-IMP program are given by

PS(S) =
∑
O∈O

PSO(S ,O);

PO(O) =
∑
S∈S

PSO(S ,O).

Now that PS, PO and PSO are defined, we are able to compute the mutual information

of the secret and observable information using Definition 2.21 (p. 42):

I(S;O) =
∑
S∈S

∑
O∈O

PSO(S ,O) log2
PSO(S ,O)

PS(S) · PO(O)
.

Using the same probability distributions, we are able to compute the min-entropy leak-

age from the secret information to the observable information using Definition 2.28

(p. 47):

LSO = − log2 max
S∈S

∑
O∈O

PSO(S ,O) + log2

∑
O∈O

max
S∈S

PSO(S ,O).

Alternatively, as mentioned in the introduction to this chapter, any other information

leakage measure that is a function of PSO can also be computed.

Note that, ultimately, the purpose of executing a CH-IMP program is to obtain the

joint probability distribution PSO — which is derived from the secret and observable

information that occurs along each path of execution of the program, and the proba-

bility of each of these paths occurring — in order to compute an information leakage

measure that is a function of PSO. Our approach is therefore comparable to executing a

CH-IMP program using a probabilistic trace semantics, where the traces are restricted

to the distinct sequences of secret and observable information that occur during exe-

cution, and computing the information leakage measure from the probability distri-
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bution over the resulting traces.

4.6 Summary

This chapter presents a formal definition of a novel quantitative point-to-point in-

formation flow model in CH-IMP, a probabilistic language; it quantifies the amount

of information that flows from secret information that occurs at defined points to

publicly-observable information that occurs at other points, with an attacker model

that assumes a passive attacker with prior knowledge of the program’s behaviour. We

have demonstrated how the information collected from the execution of a terminating

CH-IMP program can be used to formulate a quantitative security policy; any informa-

tion leakage measure that is a function of the joint probability distribution of the secret

and publicly-observable information, including mutual information and min-entropy

leakage, may be used.

The novelty of this information flow model is twofold: it permits the unrestricted

occurrence of secret and publicly-observable information in programs, and permits

any (positive) number of pieces of secret and publicly-observable information to occur.

This is an advance in the field of quantitative information flow analysis, as existing

models heavily restrict where and how often each type of information may occur in

the program. Ours is the first such model to relax these common restrictions.







5
An Implementation of the

Information Flow Model

In Chapter 4 we presented a quantitative point-to-point information flow model for

CH-IMP, a probabilistic language, and showed that the information flow model can

be used to quantify the information leakage that occurs from CH-IMP programs in

terms of the information-theoretic measures of mutual information and min-entropy

leakage. In this chapter we shall demonstrate that the CH-IMP information flow model

is practical, and can be used to analyse the security of real-world systems and protocols

(albeit of limited complexity), by presenting chimp: a concrete implementation of both

the CH-IMP language and its accompanying information flow model.

chimp’s implementation of CH-IMP’s information flow semantics (Definition 4.6,

p. 117) does not naively store the entire discrete-time Markov chain representation of

the program’s states in memory; most of the information in the DTMC is irrelevant

to the final information flow analysis stage where the information flow from the se-

cret values to the observable values is quantified, and can in fact be discarded while

the DTMC is still being explored. Instead, chimp operates on a data structure that we

term an environment function, which tracks only the states of the discrete-time Markov

chain that are or could become accepting states at a given moment. By discarding in-

formation that is not necessary for the final computation of the program’s information
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flow, chimp is able to analyse programs efficiently, in terms of both analysis time and

memory usage.

We evaluate the performance of chimp and QUAIL, another quantitative informa-

tion flow analysis tool from the literature. We shall see that chimp’s performance is

comparable to QUAIL’s in terms of both total analysis time and peak memory usage

when they are tasked with analysing the same probabilistic system; we shall also see

that chimp scales slightly better than QUAIL when analysing probabilistic systems of

increasing complexity. Nevertheless, there are limitations on our tool’s (and, by im-

plication, CH-IMP’s) ability to efficiently analyse programs; we shall consider what

causes these limitations to arise.

As with Chapter 4, the contents of this chapter are based primarily on one of our

contributions to the literature (Chothia et al., 2013b).

5.1 An Overview of the chimp Tool

chimp is an implementation of the CH-IMP language and its information flow seman-

tics, per Definition 4.6 (p. 117); it is written in the OCaml programming language.

An overview of chimp’s structure is shown in Figure 5.1. A tokeniser and parser for

the CH-IMP syntax allows programs to be written in the grammar defined in Defini-

tion 4.6, and produces an abstract syntax tree representing the sequence of commands

C. The state space of the DTMC that is induced by executing C is then explored by

chimp, and the values of S and O in each accepting state are used to compute the joint

probability distribution PSO (Definition 4.7, p. 120) when all of the accepting states

have been discovered. Afterwards, chimp can use PSO to compute a number of infor-

mation leakage measures, including mutual information and min-entropy leakage, as

outlined in Section 4.5 (p. 118).
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Figure 5.1: an overview of the chimp tool
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5.1.1 Executing a CH-IMP Program

Although the execution of a CH-IMP program is formally defined in terms of a DTMC,

chimp does not actually store the DTMC’s entire state space for two reasons:

(a) The commands in C are executed sequentially, and since the CH-IMP grammar

does not contain a command ordering the program to terminate, either a com-

mand in C will eventually be executed along a particular path of execution of

the program, or there will be no accepting state along that path of execution (i.e.

because an infinite loop occurs).

(b) As noted in Section 4.5, only the secret information S and observable information

O that occur when each path of execution ends are required to compute PSO. It

is therefore only necessary for chimp to track the states that could be accepting

states at any given time: because DTMCs have the Markov property (Section 2.2,

p. 37) — for any given state, the probability of transitioning into a succeeding

state is determined only by the current state — as soon as a state transitions into

a state that is not itself, the previous state can be discarded.

Thus, instead of operating on states of a DTMC, chimp operates on the sequence of com-

mands C and an environment function E : e → p mapping an environment e : (σ,S ,O)

to the probability p of the environment occurring as part of an accepting state in the

DTMC. Informally, an environment function can be viewed as a collection of the in-

formation stored by states that are or could potentially become accepting states, along

with the probability of each of these collections of information occurring were the

program to terminate at that instant. The advantage of exploring the state space in

this manner is its improved efficiency over a naive exploration of all of the DTMC’s

states: memory is not wasted storing information about states that are not required for

the goal of computing PSO, and processor time is not wasted needlessly iterating over

them.
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After tokenising and parsing, chimp proceeds to execute a CH-IMP program as fol-

lows. Beginning with an initial environment — consisting of a sequence of scope frames

σ containing a single scope frame with no bound variables, and no secret or observable

information — that occurs with probability 1, chimp removes the first command c from

the sequence of commands C and executes it in the following manner:

• If c is any command other than an if or while command, chimp performs the neces-

sary modifications to σ , S and O in each environment in the environment func-

tion. If the command performs a variable declaration or assignment, previously

unseen environments may occur with a non-zero probability, and the probabili-

ties of the environment function are modified accordingly.

• If c is an if command, environments in the environment function are partitioned

according to whether the guard B in the if command evaluates to true or false; the

partitions are referred to as EB and E¬B respectively. Execution of the program

proceeds in parallel: the sequence of commands in the true branchCT is executed

using EB as the environment function, and the sequence of commands in the

false branch CF is executed using E¬B as the environment function. When both

branches finish executing, their terminating environment functions are merged,

and execution of the sequence of commands C continues using the merged envi-

ronment function.

• If c is a while command, environments in the environment function are parti-

tioned according to whether the guard B in the while command evaluates to true

or false, as with the if command; again, the partitions are referred to as EB and E¬B

respectively. The sequence of commands in the body of the while command CW is

executed using EB as the environment function, and when it finishes executing,

its terminating environment function is merged with E¬B and execution of the

sequence of commands C continues using the merged environment function.
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The same procedure is followed for the next command in C, and so on until C is an

empty sequence (at which point, each path of execution of the program has ended, the

DTMC’s state space has been fully explored, and all of its accepting states have been

discovered).

chimp implements environment functions using the following data structures:

• a scope frame is a list of pairs whose first component is the name of a variable

declared within this level of scope and whose second component is the (integer)

value of that variable,

• a sequence of scope frames σ is a list,

• the secret information S is a list of pairs whose first component is the name of

a variable with a value that has previously been identified as secret and whose

second component is the variable’s (integer) value at that moment (i.e., it has

same structure as a scope frame),

• the observable informationO is a list of (integer) values that have previously been

identified as observable,

• an environment e is a 3-tuple, and

• an environment function E is a pair whose first component is the 3-tuple repre-

senting an environment e and whose second component is a floating-point num-

ber representing the probability of e occurring as part of an accepting state in the

DTMC.

chimp must ensure that each environment in the domain of E (i.e. the first component

in each element of the list representing E) is unique. Executing a command may cause

several previously distinct environments to become identical (e.g. when they differ

only by the value of a single variable V and a new value is assigned to V with prob-

ability 1); therefore, when constructing the succeeding environment function while
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executing a command that may cause such behaviour, the probabilities to which du-

plicate environments are mapped must be summed. Given the data structures outlined

above, this summing operation must perform a number of list, pair and tuple compar-

isons to determine which environments are identical; the speed of this operation, and

therefore the execution speed of commands causing this behaviour in chimp, is a func-

tion of the number of variables currently in scope (as well as of the number of values

that have been identified as secret or observable). CH-IMP’s variable scoping feature

improves the efficiency of this operation: by declaring variables inside an if branch or

while loop when those variables are only accessed within the scope of that branch or

loop (as opposed to declaring them inside a broader scope frame), the list representing

σ remains as small as possible throughout execution of the program, thus avoiding

unnecessarily large list comparisons when testing the equality of two instances of σ in

two environments during the summing operation.

5.1.2 Executing an Example CH-IMP Program

To show how the chimp tool executes a CH-IMP program, we demonstrate the proce-

dure from Section 5.1.1 being applied to the program in Listing 5.1 — a simple ex-

ample in which an information leak may occur depending on the random value of a

variable — and the initial environment function E0:

Listing 5.1: a CH-IMP program containing a potential information flow from the secret value
of sec to the observable value of out

new sec := { 0→ 0.5, 1→ 0.5 };
new out := 0;
new rand := { 0→ 0.25, 1→ 0.75 };
secret sec;
if (rand == 0) {

out := sec
} else {

out := 0
};
observe out

1
2
3
4
5
6
7
8
9

10
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E0 = {
(〈{}〉,〈〉,〈〉)→ 1

}

The program is transformed into a sequence of commands C, and the first com-

mand in this sequence is applied to E0; it declares a new variable sec with a value

of 0 or 1 with equal probability. chimp generates two succeeding environments with

the appropriate modifications made to σ in each environment, and adjusts the prob-

abilities of each of them occurring as appropriate: both are given a probability of

P (environment in E0 occurring)× P (assignment occurring) = 1× 1/2 = 1/2. Note that the

probability of the initial environment now being an accepting state in the DTMC is 0;

it is therefore not shown in the modified environment function E1.

E1 = {
(〈{sec→ 0}〉,〈〉,〈〉)→ 1/2,
(〈{sec→ 1}〉,〈〉,〈〉)→ 1/2

}

The next command in the list declares another variable out; chimp again makes the

appropriate modifications to σ in each environment in E1. The value assigned to out

during declaration is always 0, so no changes to the probabilities in E2 are necessary.

E2 = {
(〈{sec→ 0,out→ 0}〉,〈〉,〈〉)→ 1/2,
(〈{sec→ 1,out→ 0}〉,〈〉,〈〉)→ 1/2

}

Another variable, rand, is declared; its value is 0 with probability 1/4, and 1 with proba-

bility 3/4. chimp generates four succeeding environments for E2 with the variable bind-

ing for rand added to σ . As before, the adjusted probability given to a particular en-

vironment in the new environment function E3 is P (environment in E2 occurring) ×

P (assignment occurring); e.g., for the environment in which sec equals 0 and the new

variable rand equals 1, the probability is 1/2× 1/4 = 1/8.
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E3 = {
(〈{sec→ 0,out→ 0, rand→ 0}〉,〈〉,〈〉)→ 1/8,
(〈{sec→ 0,out→ 0, rand→ 1}〉,〈〉,〈〉)→ 3/8,
(〈{sec→ 1,out→ 0, rand→ 0}〉,〈〉,〈〉)→ 1/8,
(〈{sec→ 1,out→ 0, rand→ 1}〉,〈〉,〈〉)→ 3/8

}

On line 4, the value of sec is marked as secret. In each environment, chimp evaluates

sec in σ by searching the sequence of scope frames from left to right for a mapping

from sec to some value n; chimp then stores a permanent copy of this mapping in S .

E4 = {
(〈{sec→ 0,out→ 0, rand→ 0}〉,〈sec→ 0〉,〈〉)→ 1/8,
(〈{sec→ 0,out→ 0, rand→ 1}〉,〈sec→ 0〉,〈〉)→ 3/8,
(〈{sec→ 1,out→ 0, rand→ 0}〉,〈sec→ 1〉,〈〉)→ 1/8,
(〈{sec→ 1,out→ 0, rand→ 1}〉,〈sec→ 1〉,〈〉)→ 3/8

}

On line 5, a branching operation occurs: the environments in E5 are therefore parti-

tioned according to whether the guard B (rand == 0) evaluates to true or false. Execution

of the true branch of the if command continues using the environment function consist-

ing of those environments E5B in which B evaluates to true, and execution of the false

branch continues using the environment function consisting of those environments

E5¬B in which B evaluates to false. Note that the probabilities in each environment

function are not scaled up so that the sum of the probabilities equals 1: the functions

will be merged when the commands in the true and false branches have been executed,

so this is unnecessary.

E5B = {
(〈{sec→ 0,out→ 0, rand→ 0}〉,〈sec→ 0〉,〈〉)→ 1/8,
(〈{sec→ 1,out→ 0, rand→ 0}〉,〈sec→ 1〉,〈〉)→ 1/8

}

E5¬B = {
(〈{sec→ 0,out→ 0, rand→ 1}〉,〈sec→ 0〉,〈〉)→ 3/8,
(〈{sec→ 1,out→ 0, rand→ 1}〉,〈sec→ 1〉,〈〉)→ 3/8

}
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chimp now applies the true branch to E5B . The list of commands in this branch

begins with an implicit start command, per the IfTrue semantic rule in Definition 4.6

(p. 117); this inserts a new variable scope frame as the first element in each environ-

ment’s σ :

E6pre
= {

(〈{}, {sec→ 0,out→ 0, rand→ 0}〉,〈sec→ 0〉,〈〉)→ 1/8,
(〈{}, {sec→ 1,out→ 0, rand→ 0}〉,〈sec→ 1〉,〈〉)→ 1/8

}

Next, the only command explicitly stated in the branch is executed: the value of sec

is copied into out with probability 1. In each environment, chimp evaluates sec (pro-

ducing the integer m), searches the sequence of scope frames from left to right for a

mapping from out to some value n, and overwrites n with m. Note that this requires

the modification of only one of the environments in E6.

E6 = {
(〈{}, {sec→ 0,out→ 0, rand→ 0}〉,〈sec→ 0〉,〈〉)→ 1/8,
(〈{}, {sec→ 1,out→ 1, rand→ 0}〉,〈sec→ 1〉,〈〉)→ 1/8

}

The list of commands in the true branch ends with an implicit end, again inserted

by the IfTrue semantic rule; this causes the narrowest variable scope frame — i.e. the

first element in each environment’s σ — to be destroyed (although, since no variables

were declared in the true branch, no variables are actually unbound). This requires

the probabilities of environments in E6 that differ only by their first element in σ to be

summed, but that is not necessary in this case because the environments also differ by

other elements in σ and by their values of S .

E6post
= {

(〈{sec→ 0,out→ 0, rand→ 0}〉,〈sec→ 0〉,〈〉)→ 1/8,
(〈{sec→ 1,out→ 1, rand→ 0}〉,〈sec→ 1〉,〈〉)→ 1/8

}

Having executed the true branch of the if command, chimp now applies the false

branch to E5¬B . Again, an implicit start is executed first:
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E8pre
= {

(〈{}, {sec→ 0,out→ 0, rand→ 1}〉,〈sec→ 0〉,〈〉)→ 3/8,
(〈{}, {sec→ 1,out→ 0, rand→ 1}〉,〈sec→ 1〉,〈〉)→ 3/8

}

This is followed by the overwriting of the value of out with the integer 0 with probabil-

ity 1; note that this requires no modifications to any of the environments in E8, since

out already evaluates to 0 in all of them.

E8 = {
(〈{}, {sec→ 0,out→ 0, rand→ 1}〉,〈sec→ 0〉,〈〉)→ 3/8,
(〈{}, {sec→ 1,out→ 0, rand→ 1}〉,〈sec→ 1〉,〈〉)→ 3/8

}

Finally in the false branch, the implicit end command is executed (again, causing the

unbinding of no variables):

E8post
= {

(〈{sec→ 0,out→ 0, rand→ 1}〉,〈sec→ 0〉,〈〉)→ 3/8,
(〈{sec→ 1,out→ 0, rand→ 1}〉,〈sec→ 1〉,〈〉)→ 3/8

}

Now that both branches of the if command on line 5 have been executed, the fi-

nal environment functions from each branch — E6post
from the true branch and E8post

from the false branch — must be merged to form the function that will be used in

the execution of line 10. As with scope frame destruction, this involves summing the

probabilities of the environments that occur in both E6post
and E8post

with a non-zero

probability; in this example, however, this is not necessary because no environments

occur in both functions with a non-zero probability.

E9 = {
(〈{sec→ 0,out→ 0, rand→ 0}〉,〈sec→ 0〉,〈〉)→ 1/8,
(〈{sec→ 0,out→ 0, rand→ 1}〉,〈sec→ 0〉,〈〉)→ 3/8,
(〈{sec→ 1,out→ 1, rand→ 0}〉,〈sec→ 1〉,〈〉)→ 1/8,
(〈{sec→ 1,out→ 0, rand→ 1}〉,〈sec→ 1〉,〈〉)→ 3/8

}
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The final command of the program causes the value of out to be revealed to the at-

tacker; chimp evaluates out in σ in each environment and stores its current value (but

not the name of the variable itself) in O.

E10 = {
(〈{sec→ 0,out→ 0, rand→ 0}〉,〈sec→ 0〉,〈0〉)→ 1/8,
(〈{sec→ 0,out→ 0, rand→ 1}〉,〈sec→ 0〉,〈0〉)→ 3/8,
(〈{sec→ 1,out→ 1, rand→ 0}〉,〈sec→ 1〉,〈0〉)→ 1/8,
(〈{sec→ 0,out→ 0, rand→ 1}〉,〈sec→ 1〉,〈1〉)→ 3/8

}

The sequence of commands C is now empty; by following the algorithm described

in Section 5.1.1, chimp has identified the information that would be contained in the

set of accepting states S of the DTMC that would be induced if the program shown in

Listing 5.1 were executed using the formal definition of CH-IMP with information flow

semantics (Definition 4.6, p. 117), along with the probability of the DTMC entering

each of these accepting states.

We now consider how the final environment function — in this example, E10 — may

be used to compute the joint probability distribution PSO of the secret and publicly-

observable information that occurs in the program, and thus verify whether the pro-

gram conforms to a particular quantitative security policy.

5.1.3 Verifying a CH-IMP Program’s Security Policy

We have seen that, by executing the algorithm described in Section 5.1.1, chimp mutates

an environment function that maps environments — the sequence of variable scope

frames σ , secret information S and observable information O that occur in a state

in the DTMC representation of a CH-IMP program’s execution — to the probability of

each of those environments occurring. When this algorithm terminates, CH-IMP is left

with the final environment function: the environments in this function are the (σ,S ,O)

tuples that exist in each accepting state s in the DTMC, and the probability to which

each environment is mapped is the probability of the DTMC entering that accepting
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state (i.e. the probability of a particular path of execution of the program ending in

that state). We now consider how chimp can compute the joint probability distribution

PSO from this final environment function, and use this distribution to verify whether a

CH-IMP program’s security policy is satisfied.

Recall from Section 4.5 (p. 118) that, by multiplying the probability of each tran-

sition that occurs between a path’s initial and accepting states, we can compute the

probability of the secret and observable information present in the accepting state

occurring simultaneously; i.e. we can compute PSO(S ,O). Since this information is

already stored in the final environment function, chimp can construct the joint proba-

bility distribution PSO of the secret and observable information present when the pro-

gram terminates by stripping the sequence of scope frames σ from each environment

in the domain of the final environment function and mapping the remaining (S ,O)

tuple to the probability of that tuple occurring. Superficially, this may appear to be

simply equal to the probability of the environment occurring, but since two environ-

ments in the final environment function may differ only by their value of σ , chimp must

sum over the probability of all environments in which both S and O occur to compute

PSO(S ,O).

When this process has been performed on each environment in the final environ-

ment function, chimp is left with the joint probability distribution PSO. Internally, chimp

represents this as a two-dimensional hash table: the “outer” hash tableHSO maps each

sequence of secrets S that occurs with a non-zero probability to an “inner” hash ta-

ble HS→O that maps each sequence of observable values O (that occurs simultaneously

with S with a non-zero probability) to the probability of both S and O occurring si-

multaneously in the final environment function. Note that it is possible for some secret

information S to occur with some non-zero probability, but for some observable infor-

mation O not to occur simultaneously with S . In these cases, the “inner” hash table

HS→O will not contain a mapping for O; since this is equivalent to PSO(S ,O) = 0 in the

joint probability distribution, chimp uses the implicit probability 0 whenever a lookup
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fails in an “inner” hash table.

From the two-dimensional hash tableHSO representing PSO, chimp can construct the

(one-dimensional) hash tablesHS andHO representing the probability distributions PS

and PO respectively; this is analogous to the marginalisation of a discrete probability

distribution (Definition 2.11, p. 35). Both HS and HO can be constructed in a single

iteration over each of the hash tables in HSO, as demonstrated in Algorithm 5.1.

Now that chimp has representations of the probability distributions PS, PO and PSO,

a number of information leakage measures can be computed, and it is possible to ver-

ify whether the CH-IMP program conforms to a particular quantitative information

policy. For instance, chimp can apply Algorithm 5.2, derived from the mutual infor-

mation equation in Definition 2.21 (p. 42), to compute the mutual information of the

Algorithm 5.1: given the hash table HSO representing PSO, generates the hash tables HS and
HO representing PS and PO respectively

function ComputeMarginalDistributions(HSO)
HS← the empty hash table
HO← the empty hash table
for all s ∈ keys of HSO do

h←HSO(s) . h is the “inner” hash table for s
for all o ∈ keys of h do

p← h(o) . p is the joint probability of s and o
. Increase probability of s occurring by p
if s ∈ keys of HS then

HS(s)←HS(s) + p
else

HS(s)← p
end if
. Increase probability of o occurring by p
if o ∈ keys of HO then

HO(o)←HO(o) + p
else

HO(o)← p
end if

end for
end for
return HS,HO

end function
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secret and observable information in the CH-IMP program, or Algorithm 5.3 (p. 140),

derived from the min-entropy leakage equation in Definition 2.28 (p. 47), to compute

the min-entropy leakage from the secret information to the observable information;

this can be compared with the acceptable upper bound defined by the security policy

to verify whether or not the program is secure.

5.1.4 Verifying an Example CH-IMP Program’s Security Policy

We now show how the procedures and algorithms described in Section 5.1.3 can be

applied to verify whether the program shown in Listing 5.1 (p. 131) conforms to a

particular quantitative security policy. In this instance, we shall assume that the secu-

rity policy states that no information may flow from the value of sec on line 4 to the

publicly-observable values, otherwise the program is deemed to be insecure.

Recall that we computed the final environment function E10 by executing the pro-

gram using the procedure described in Section 5.1.1:

Algorithm 5.2: computes the mutual information of the secret and observable information of
a program, given the hash table HSO representing PSO

function MutualInformation(HSO)
HS,HO← ComputeMarginalDistributions(HSO)
l← 0
for all s ∈ keys of HS do

h←HSO(s) . h is the “inner” hash table for s
for all o ∈ keys of HO do

. Denominator in the mutual information equation must be > 0
if HS(s) > 0 and HO(o) > 0 then

l← l + h(o)× log2(h(o)÷ (HS(s)×HO(o)))
end if

end for
end for
return l . l is the mutual information of S and O

end function
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Algorithm 5.3: computes the min-entropy leakage from the secret information to the observ-
able information of a program, given the hash table HSO representing PSO

function MinEntropyLeakage(HSO)
hts← the empty hash table
hlo← the empty hash table
for all s ∈ keys of HSO do

h←HSO(s) . h is the “inner” hash table for s
for all o ∈ keys of HO do

if s ∈ keys of hts then
hts(s)← hts(s) + h(o)

else
hts(s)← h(o)

end if
if o < keys of hlo or h(o) > hlo(o) then

hlo← h(o)
end if

end for
end for
. hts is the sum of the probabilities in HSO for a given S ∈ S
. hlo is the largest probability in HSO for a given O ∈O
v← 0
for all ts ∈ keys of hts do

if hts(ts) > v then
v← hts(ts)

end if
end for
. v is the vulnerability of S
cv← 0
for all lo ∈ keys of hlo do

cv← cv + hlo(lo)
end for
. cv is the conditional vulnerability of S given O
l← log2(cv ÷ v)
return l . l is the min-entropy leakage from S to O

end function
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E10 = {
(〈{sec→ 0,out→ 0, rand→ 0}〉,〈sec→ 0〉,〈0〉)→ 1/8,
(〈{sec→ 0,out→ 0, rand→ 1}〉,〈sec→ 0〉,〈0〉)→ 3/8,
(〈{sec→ 1,out→ 1, rand→ 0}〉,〈sec→ 1〉,〈0〉)→ 1/8,
(〈{sec→ 0,out→ 0, rand→ 1}〉,〈sec→ 1〉,〈1〉)→ 3/8

}

To compute the joint probability distribution PSO, we strip the sequence of variable

scope frames σ from each environment and sum the probabilities over the remaining

(S ,O) tuples, giving the following joint probability distribution:

Observable values

Secret values 0 1

sec = 0 1/2 0
sec = 1 3/8 1/8

To compute the mutual information of the secret and observable information, we

apply Algorithm 5.2. First, we compute the marginal probability distributions PS and

PO:

S PS(S)

sec = 0 1/2
sec = 1 1/2

O PO(O)

0 7/8
1 1/8

Then for each (S ,O) pair in PSO we compute PSO(S ,O) · log2
PSO(S ,O)
PS(S)·PO(O) and sum the

results:

I(S;O) = 0.5 · log2
0.5

0.5 ·0.875 + 0 · log2
0

0.5 ·0.125

+ 0.375 · log2
0.375

0.5 ·0.875 + 0.125 · log2
0.125

0.5 ·0.125

≈ 0.14 bits.

To compute the min-entropy leakage from the secret information to the observable

information, we apply Algorithm 5.3. We first compute, in a single iteration over PSO,

the marginal probability distribution PS and the largest probability in PSO for each O:
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S PS(S)

sec = 0 1/2
sec = 1 1/2

O maxS∈S PSO(S ,O)

0 1/2
1 1/8

Next, we compute the vulnerability of S, which is the largest probability in the range

of PS (in this case, 1/2), and the conditional vulnerability of S given O, which is the sum

of the largest probability in PSO for each O:

V (S |O) = 0.5 + 0.125

= 0.625.

Finally, we compute the min-entropy leakage from S to O:

LSO = log2
0.625

0.5

≈ 0.32 bits.

The program therefore contains an information flow from the secret information to the

publicly-observable information; regardless of which information leakage measure we

compute, the program exceeds the 0 bits permitted by the security policy we defined

and thus the program is deemed to be insecure.

Further manual analysis of the program reveals why it leaks information. The in-

formation leakage occurs as a result of the assignment to out on line 6: if the value of

rand equals 0, the secret value of sec is copied into out, which is later observed by the

attacker on line 10. However, the attacker is hindered from knowing the secret value of

sec with certainty by two factors: (a) their uncertainty about the value of rand, which

controls which branch of the if command is executed, and (b) the fact that the value

of out is hardcoded to 0 in the false branch, which prevents the attacker from distin-

guishing between the less likely scenario where sec equals 0 and the secret value was

leaked completely, and the more likely scenario where they are observing the hard-

coded value. Therefore, from I(S;O), 0.14 bits of the 1 bit of secret information in

the program are shared with the information that is observable by the attacker; from
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LSO, sec is on average 20.32 ≈ 11/4 times more vulnerable to having its value deduced

correctly in one attempt by the attacker.

5.2 Performance Evaluation

chimp is not the only quantitative information flow analysis tool: some of the quantita-

tive information flow models we reviewed in Section 3.2 (p. 60) have implementations

of their own. We shall now compare chimp with QUAIL (Biondi et al., 2013b), the Java-

based implementation of Biondi et al.’s (2013a) information flow model; we briefly re-

viewed both the model and tool as part of our literature review in Section 3.2.8 (p. 69).

QUAIL was chosen over other tools described in Chapter 3 for this comparison for

several reasons: (a) like chimp, its system model is based on Markov chains, (b) it is

readily available,1 and (c) the authors have demonstrated in the literature how the tool

can be used to quantify leaks in small probabilistic algorithms and security protocols.

We begin with a short review of QUAIL’s information flow model and an overview

of the tool itself.

5.2.1 An Overview of QUAIL and its Information Flow Model

In QUAIL, programs consist of the declaration of one or more variables followed by

any number of commands according to the grammar of a custom imperative language

(Biondi et al., 2013b, Appendix B). The core commands in the language perform de-

terministic variable assignment, probabilistic variable assignment (which assigns the

value 0 to a variable with some user-specified probability p and the value 1 with proba-

bility 1−p), branching, and jumping to other user-specified commands in the program.

Although the language does not formally feature a looping construct, the authors indi-

cate that programs containing loops can be transformed into equivalent commands in

the core language; this feature is provided in the tool, with the program being trans-

1In this section we evaluate version 1.0 of QUAIL, available at https://project.inria.fr/quail/.
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formed into in the core grammar in a preprocessing stage. As in CH-IMP, all variables’

values are integers. Unlike CH-IMP, QUAIL also supports high-level data types such

as arrays; these are also transformed into constructs in the core grammar in the same

preprocessing stage.

A key difference between QUAIL’s and CH-IMP’s information flow models is their

treatment of high-security and low-security information: in QUAIL, variables are ex-

plicitly labelled as “secret”, “public” or “observable” at declaration-time, and these

labels persist throughout execution of the program; an attacker can inspect the value

of an observable variable at any time, while the values stored inside public variables

are shielded from the attacker. As we have shown in Chapter 4, CH-IMP has a more

generalised information flow model: any number of variables can have their values

marked as either “secret” or “observable” at arbitrary points in a program, and in any

order; those markings persist for only as long as the command is executed, however,

and CH-IMP does not prevent a variable whose value was once marked as secret from

being marked as observable at some later point.

QUAIL is based on a Markov decision process (MDP) semantics similar to CH-IMP’s

DTMC semantics: states in the MDP are (pc,L,H) tuples, where pc is the program

counter (i.e. a pointer to the command currently being executed), L is a function map-

ping public variable names to their current values, and H is the range of potential val-

ues that the secret variable could have; these ranges may be partitioned further either

due to the attacker’s prior knowledge of the program’s behaviour or the knowledge

they gain as the program executes. QUAIL’s attacker model thus assumes an attacker

with partial information of the program’s state: the program’s variables are partitioned

according to their secrecy level, and the attacker is only able to discriminate between

states in the MDP by knowing the value of H in those states. This symbolic approach

is the largest difference between the information flow models of QUAIL and CH-IMP,

and it allows QUAIL to quantify information flows in programs with a very large secret

space, something that CH-IMP would be unable to achieve in polynomial time.
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When QUAIL programs terminate, the MDP enters an absorbing state analogous to

CH-IMP’s notion of an accepting state. Non-determinism in the MDP is resolved (and

the MDP is thus transformed into a Markov chain) by computing probability distribu-

tions over the possible values of the secret variable in each state using the attacker’s

prior knowledge of the program. QUAIL then “hides” states in the Markov chain that

the attacker is unable to observe by removing them from the Markov chain’s probabil-

ity transition matrix and redistributing their probabilities amongst their succeeding

states; this “hiding” procedure is usually applied to all but the initial and absorb-

ing states, and Biondi et al. estimate that the resulting observable reduction usually

consists of fewer than 10% of the states of the original Markov chain. Three discrim-

ination relations — observer, secret and joint — are computed, as described earlier in

Section 3.2.8 (p. 69); these are themselves Markov chains derived from the observable

reduction, and the program’s information flow is defined in terms of the entropies of

these Markov chains.

Although QUAIL and chimp have different information flow models, we can bench-

mark each tool and compare their performance by selecting an appropriate program

that (a) is proven not to leak information and (b) contains some parameter that al-

ters the complexity of the program; by varying this parameter, we can compare how

quickly and efficiently each tool verifies that the program is secure. A DC-net imple-

mentation is a good example of such a program, and we shall use one as part of our

comparison (indeed, Biondi et al. themselves offer a DC-net implementation as a case

study for QUAIL); we first describe the purpose of and security guarantees provided

by DC-nets.

5.2.2 The Dining Cryptographers Problem and DC-Nets

The dining cryptographers problem was first posed by Chaum (1988), and investigates

how anonymity can be guaranteed during secure multi-party computation. It is often

informally described as follows: a group of cryptographers dine at a restaurant, and
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at the end of the meal the waiter informs them that the bill has already been paid.

The cryptographers notice a national security agent sitting at an adjacent table, and

wonder whether the bill was surreptitiously paid by him. They do not wish to discuss

the matter publicly with the agent or each other, but still want to know whether the

bill was paid by one of their own; how do the cryptographers collectively discover

whether one of them paid the bill while respecting their fellow cryptographers’ right

to anonymity?

The DC-net is a solution to the dining cryptographers problem; it provides uncon-

Figure 5.2: the four stages of the DC-net protocol; in this demonstration, the cryptographer
C2 is the bill-payer
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ditional sender and recipient untraceability. The cryptographers all participate in the

DC-net, and together execute the following four-stage protocol, depicted in Figure 5.2:

1. Each cryptographer individually generates a random bit visible only to them and

the cryptographer to their left, giving each cryptographer sight of two separate

randomly-generated bits (Figure 5.2(a)).

2. Each cryptographer computes the XOR of their own bit and the bit shown to

them by the cryptographer to their right (Figure 5.2(b)).

3. Each cryptographer in turn announces the result of this XOR computation pub-

licly to the other cryptographers — except for the bill-payer (if any), who an-

nounces the inverse of their XOR computation (Figure 5.2(c)).

4. The XOR of all of the announcements allows each cryptographer to indepen-

dently verify whether one of the cryptographers paid the bill: if the XOR result

is 1, one of the cryptographers paid; if it is 0, nobody claimed to have paid — and

therefore the cryptographers know that the national security agent paid instead

(Figure 5.2(d)).

Given that the DC-net is an anonymity protocol whose purpose is to protect its

bill-paying participant (if any), the secret information in a DC-net is the identity of

the bill-paying cryptographer, and its security policy states that no information about

the bill-paying cryptographer’s identity should flow to any message that is broadcast

to the rest of the DC-net; if this happens, the DC-net is insecure. (Since the national

security agent does not participate in the four-stage protocol described above, the DC-

net does not protect the national security agent’s anonymity in the event that they paid

the bill; however, given that the cryptographers’ announcements themselves reveal

whether or not the national security agent paid, this lack of protection is intentional

and therefore not considered to be an information leak.) Provided that the generation

of bits in stage 1 is truly random, the security policy is satisfied: it is not possible for
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any of the participating cryptographers or any external entity (such as the national

security agent) to discover the identity of a cryptographer who announced the inverse

of their XOR computation in stage 3. This anonymity property holds regardless of the

number of cryptographers who participate in the DC-net.

DC-net implementations are ideal for benchmarking QUAIL and chimp: by increas-

ing the number of cryptographers participating in the DC-net, the complexity of the

protocol increases, but the information flow from the bill-payer’s identity to the col-

lection of announcements by the cryptographers remains constant (i.e., there is none).

We shall therefore compare the performance of both QUAIL and chimp by providing

them with implementations of DC-nets with increasing numbers of cryptographers.

5.2.3 Verifying the Security of DC-Nets in QUAIL and chimp

Listing 5.2 shows an implementation of a three-cryptographer DC-net in QUAIL; List-

ing 5.3 (p. 150) shows the equivalent implementation in chimp. Both implementations

assume that the bill-payer is one of the cryptographers, and that each cryptographer

is equally likely to pay the bill from the perspective of a passive observer. This could

be construed as the scenario in which the national security agent, who has no prior

knowledge of the likelihood of each cryptographer paying the bill, chose not pay the

bill themselves — and therefore knows that one of the cryptographers must have —

and is interested in learning the identity of the bill-paying cryptographer by observing

the execution of the four-stage DC-net protocol.

The number of cryptographers participating in the DC-net is set on line 1. (By vary-

ing this integer, the complexity of the DC-net can be modified: larger DC-nets contain

more cryptographers, and thus more private communication between and public an-

nouncements by cryptographers.) Next, the bill-payer’s identity is selected from a

uniform probability distribution; this is the only secret that occurs in either program.

In the chimp program, the value of the variable storing the bill-payer’s identity is ex-

plicitly marked as a secret at this point; in the QUAIL program, the secrecy of the



5.2. Performance Evaluation 149

Listing 5.2: a QUAIL implementation of a three-cryptographer DC-net

1 const cryptographers := 3;
2 secret int32 billpayer := [1,cryptographers];
3 public int1 mybit := 0;
4 public int1 theirbit := 0;
5 public int1 firstbit := 0;
6 public int32 i := 1;
7 observable array [cryptographers] of int1 announcements;
8 random firstbit := randombit(0.5);
9 assign mybit := firstbit;

10 while (i < cryptographers) do
11 random theirbit := randombit(0.5);
12 assign announcements[i] := mybit ^ theirbit;
13 if (billpayer == i) then
14 if (announcements[i] == 0) then
15 assign announcements[i] := 1;
16 else
17 assign announcements[i] := 0;
18 fi
19 fi
20 assign i := i + 1;
21 assign mybit := theirbit;
22 od
23 assign theirbit := firstbit;
24 assign announcements[0] := mybit ^ theirbit;
25 if (billpayer == i) then
26 if (announcements[0] == 0) then
27 assign announcements[0] := 1;
28 else
29 assign announcements[0] := 0;
30 fi
31 fi
32 return;
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Listing 5.3: a chimp implementation of a three-cryptographer DC-net

1 new cryptographers := 3;
2 new billpayer := { 1 -> 1/3, 2 -> 1/3, 3 -> 1/3 };
3 secret billpayer;
4 new firstbit := { 0 -> 0.5, 1 -> 0.5 };
5 new mybit := firstbit;
6 new theirbit := 0;
7 new i := 1;
8 while (i < cryptographers) {
9 theirbit := { 0 -> 0.5, 1 -> 0.5 };

10 new announcement := mybit xor theirbit;
11 if (i == billpayer) {
12 if (announcement == 0) { announcement := 1; }
13 else { announcement := 0; }
14 }
15 observe announcement;
16 i := i + 1;
17 mybit := theirbit;
18 }
19 theirbit := firstbit;
20 new finalannouncement := mybit xor theirbit;
21 if (i == billpayer) {
22 if (finalannouncement == 0) { finalannouncement := 1; }
23 else { finalannouncement := 0; }
24 }
25 observe finalannouncement;
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variable’s value forms part of its type at declaration-time. The programs then iter-

ate over the cryptographers, performing stages 1–3 of the DC-net protocol described

in Section 5.2.2 for each cryptographer in a single iteration: the cryptographer’s own

randomly-generated bit is assigned to the variable mybit, and the bit ostensibly gener-

ated by the cryptographer to their immediate right is assigned to the variable theirbit

(before the next iteration, the value of theirbit is copied into mybit). In the chimp

program, the result of the XOR computation (or the inverse, if the cryptographer is

the bill-payer) is announced using the observe command, revealing the value to the

attacker; in the QUAIL program, the value is written to an index of the announcements

array, whose contents are visible to the attacker at all times.

To evaluate the performance of each tool, the number of cryptographers was varied

between 3 and 14 in each implementation; QUAIL and chimp were then tasked with

verifying that no information flows from the identity of the bill-payer to the public

announcements by the cryptographers in each DC-net. Each execution of each tool2

was profiled for its total execution time (in wall-clock seconds) and its peak memory

usage (specifically, the maximum resident set size of the process). Upon termination,

both tools verified that the information flow from the secret values to the observable

values in each DC-net was 0 bits; both tools therefore provided the expected results.

A comparison of the total time taken for both tools to verify each DC-net is shown

in Figure 5.3(a) (p. 152). For small DC-nets (i.e. those containing up to six cryptog-

raphers), the performance of both tools is reasonable: they both verify that each DC-

net is secure in under two minutes. For DC-nets containing more than six cryptogra-

phers, there is a larger difference in performance: QUAIL’s execution time increases

sharply as the exponential increase in the MDP’s state space becomes more significant;

this is consistent with the findings of Biondi et al. (2013b, Section 4), who state that

QUAIL’s analysis becomes computationally expensive for DC-nets containing more

than 7 cryptographers. In our evaluation, it was unable to verify the security of an 11-

2Both tools were benchmarked on a 64-bit Linux system with a quad-core 3.2GHz processor and 4GB
of memory; each was given full use of the system’s resources.
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Figure 5.3: the time taken by QUAIL and chimp to analyse DC-nets containing varying num-
bers of cryptographers
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cryptographer DC-net in under 100 hours. chimp exhibits similar behaviour, although

at a slower rate; it can efficiently analyse the anonymity of DC-nets of up to 13 cryp-

tographers, failing to verify the anonymity of a 14-cryptographer DC-net within 100

hours.

Figure 5.3(b) offers some insight into why this might be the case; this graph shows

the amount of time taken by each tool to (a) execute the DC-net program by explor-

ing its state space until it terminates, (b) compute the three discrimination relations

(for QUAIL only), and (c) quantify the information flow that occurs in the program.

While both tools take an exponentially long time to execute the program, chimp is able

to quantify the information flow that occurs in the program using the algorithms of

Section 5.1.3 (p. 136) exceptionally quickly. In contrast, QUAIL takes almost as much

time to quantify the information flow from the discrimination relations as it does to

execute the program, and our evaluation shows that, for DC-nets containing more than

8 cryptographers, it is likely to take more time; the computation of the discrimination

relations themselves is a similarly long process. Each of the three stages of QUAIL’s

analysis takes longer to complete than the entirety of chimp’s analysis.

A comparison of the peak memory usage of each tool when verifying each DC-net

is shown in Figure 5.4 (p. 154); in all cases, chimp consumes significantly less memory

than QUAIL. This is likely to be due to QUAIL’s need to store its observable reduction

and three discrimination relations in memory simultaneously; CH-IMP’s algorithms

discard all but the necessary information to quantify the information flow of the pro-

gram while it executes.

As described in Section 5.1.1 (p. 128), chimp implements the environment function

as a list. Whenever two previously-partitioned environment functions are merged (i.e.

following the execution of an if or while command), chimp must iterate over both lists

and sum the probabilities of environments that appear in both lists when constructing

the succeeding environment function, a process that is similar to the summing opera-

tion for environment-modifying commands described in Section 5.1.1. This is a costly
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process when the partitions are large, as they are likely to be when the DTMC repre-

sented by the environment function contains many states. The semantic rules in the

formal definition of CH-IMP (Definition 4.6, p. 117) make it clear that the number of

unique states of the program (i.e. the number of secret values, observable values and

variables in scope) is determined by the number of probabilistic declarations and as-

signments that occur, because only those commands cause the “branching” behaviour

in the DTMC’s state space; the limiting factor of the tool (and CH-IMP itself), there-

fore, is not the length of the program being analysed, but the number of probabilistic

declarations and assignments that are made in it. This explains chimp’s poor perfor-

mance when analysing larger DC-nets: an exponentially greater number of environ-

ments of an ever-increasing size must be processed when the partitioned environment

functions are merged on lines 14, 18 and 24 of Listing 5.3 (p. 150).

We stated the differences between QUAIL’s and CH-IMP’s information flow mod-

els in Section 5.2.1 (p. 143), and in particular we emphasised that QUAIL’s symbolic

approach allows it to analyse programs with enormous secret spaces (something that

Figure 5.4: the peak memory usage of QUAIL and chimp while analysing DC-nets containing
varying numbers of cryptographers

4

8

16

32

64

128

256

512

1024

3 4 5 6 7 8 9 10 11 12 13

Pe
ak

m
em

or
y

u
sa

ge
(M

B
)

Number of cryptographers

QUAIL chimp



5.2. Performance Evaluation 155

chimp would be incapable of doing within a reasonable time). The purpose of perform-

ing this evaluation is not to argue that chimp is a better information flow analysis tool

— after all, it is trivial to find an example that QUAIL would successfully analyse and

chimp would not — but that chimp’s performance is comparable to that of a contempo-

rary information leakage analysis tool from the literature when given an example that

can be analysed by both tools.

5.2.4 Improving the Performance of chimp

Although chimp’s performance is acceptable, it could be optimised to further improve

its execution time or memory usage. We propose two such optimisations.

A CH-IMP security policy states an upper bound on the amount of information that

it is acceptable for a program to leak. The information leakage measures we utilise in

this thesis — mutual information and min-entropy leakage — are non-decreasing as

execution proceeds. This fact could be exploited to improve the speed with which

chimp can verify whether a program conforms to a given security policy: after exe-

cuting a secret or observe command (thus triggering a modification to S or O respec-

tively), chimp could compute the desired information leakage measure using the al-

gorithms described in Section 5.1.3 (p. 136) and immediately terminate the program

if the measure were to exceed the upper bound imposed by the security policy, be-

cause the amount of information leaked by the program could never fall below the

upper bound at a later point during execution and once again satisfy the security pol-

icy. Clearly, this optimisation would be particularly valuable in situations where the

program exceeds the upper bound early in its execution. However, given that the time

complexity of the algorithms of Section 5.1.3 is a function of the number of unique

secret and observable values that have occurred during execution, it may not be bene-

ficial to perform this operation after the execution of every secret and observe command

if the path of execution contains a large amount of secret or observable information.

The time complexity of the probability-summing operation on environment func-
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tions described in Section 5.1.1 (p. 128) is a function of the number of bound variables

at the point at which the operation occurs. Although this operation is made more

efficient with the appropriate use of CH-IMP’s variable scoping feature (which min-

imises the number of bound variables at any given point during execution), its effi-

ciency could be improved further by automatically removing variable bindings from

σ when it can be ascertained that they are no longer required; this could be achieved

with the addition of a CH-IMP command that removes a particular variable binding

from all environments in the current environment function, along with a pre-execution

static analysis of the program in which instances of this command are inserted at ap-

propriate points in order to destroy dead variables. This optimisation is reminiscent of

the data-flow analyses performed by contemporary programming language compilers,

and has the potential to significantly improve the execution time and memory usage of

CH-IMP programs containing variables that are defined in long-lived scope frames and

whose values are only used shortly after the scope frame is created. However, extreme

care would need to be taken when implementing this optimisation: a naive implemen-

tation would most likely be detrimental to execution time, since the act of removing a

variable binding would itself require the environments in the environment function to

be enumerated; indiscriminately destroying variable bindings shortly before the scope

frame containing them would have been destroyed anyway would counteract the bene-

ficial effects of eliminating dead variables from the environment function, particularly

if the domain of the environment function were very large.

5.3 Summary

In this chapter, we have presented chimp, an implementation of the quantitative point-

to-point information flow model we introduced in Chapter 4. chimp shows that our

information flow model is practical: probabilistic programs and protocols can be writ-

ten in the CH-IMP syntax and successfully analysed with the tool, as we demonstrated
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with the DC-net example in Section 5.2.3 (p. 148). We shall analyse the security of

some more complex CH-IMP programs in the following chapter.

Furthermore, we have compared chimp with QUAIL, an implementation of Biondi

et al.’s (2013a) information flow model, by encoding a DC-net in each tool’s language

and verifying how quickly and efficiently each tool confirms that there is no flow of in-

formation from the identity of the bill-paying cryptographer to the public announce-

ments made by the cryptographers; by varying the number of cryptographers in the

DC-net, we can determine the performance of each tool as the size and complexity of

the system model scales up. We have shown that chimp’s performance is comparable to

that of QUAIL.

There are, however, limitations to chimp’s ability to analyse probabilistic programs.

Improvements can be made to the execution speed of CH-IMP programs in chimp, but,

regardless of the efficiency of the implementation, the execution time of chimp is still

ultimately exponential; we saw that it was unable to analyse a DC-net containing 14

cryptographers within 100 hours. This is due to the exponential number of states that

exist in a probabilistic program as more probabilistic declarations and assignments are

made. Thus, while chimp is ideal for analysing probabilistic programs and protocols of

low to moderate complexity, it is not well-suited to analysing highly-complex systems

in which enormous numbers of events occur with minute probabilities.





6
CH-IMP Case Studies

We have thus far presented CH-IMP, our quantitative information flow model for

probabilistic systems, and chimp, an implementation of this model as a software tool

for analysing CH-IMP programs. Although it is clear that the CH-IMP language is

not suitable for general-purpose programming, provided that a system or protocol can

be encoded using the CH-IMP syntax, chimp may nevertheless be used to analyse the

information flows that occur in systems where the state space does not explode expo-

nentially, as in the larger DC-nets we saw in Section 5.2.3 (p. 148). In this chapter, we

present two such probabilistic systems that leak information, and analyse them using

the chimp tool.

In the first case study, a DC-net in which the cryptographers’ bit generation pro-

cedure is not truly random (e.g. as a result of accidental poor practice on behalf of all

cryptographers in the DC-net) causes some leakage of a bill-paying cryptographer’s

identity to a passive attacker observing the public communication that occurs in the

DC-net. We shall see that the precise amount of information leaked depends on the

unfairness of the cryptographers’ bit generation procedure. We shall also show, how-

ever, that a single rogue cryptographer attempting to force poorly-randomised bits

upon other cryptographers to violate the DC-net’s anonymity ab intra is unable to

compromise the bill-paying cryptographer’s anonymity, provided that the bit gener-

ation procedure used by the remaining cryptographers is completely fair.
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In the second case study, we investigate the use of a pseudorandom number gener-

ation algorithm known as the linear congruential generator in a two-player playing card

game, and see how the poor design of such an algorithm may lead to low-quality ran-

domness and thus significant information leaks about the game’s state to individual

players. We demonstrate how the CH-IMP information flow model makes it conve-

nient to model players with different levels of knowledge about the game’s state, and

how the chimp tool can be used to precisely quantify the information leaks that may

bias the game in favour of or against particular players.

The presentation of both of these case studies follows a common structure: we

introduce the scenario, present a CH-IMP program that models the protocol or system

being analysed, and compute the information flow from its secrets to its observable

information using chimp. We characterise this flow of information using the measures

of mutual information and min-entropy leakage. We then vary different parameters in

the CH-IMP program to investigate how they affect the flow of information.

It is important to note that, in both of these case studies, chimp quantifies the flow of

information between arbitrary numbers of secret and observable values, but does not

indicate why this information flow occurs. It is the role of chimp’s user to determine

why a CH-IMP program appears to leak information — although chimp contains addi-

tional features that make this task easier, including providing a tabular representation

of the joint probability distribution of the secret and observable values that occur dur-

ing execution of the program, similar to the ones we constructed manually for our

examples motivating CH-IMP’s information flow model in Section 4.3 (p. 98).

As with Chapters 4 and 5, the case studies presented in this chapter are based

primarily on one of our contributions to the literature (Chothia et al., 2013b), although

we describe them in much greater depth in this chapter.
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6.1 Violating the Anonymity of DC-Nets

In Section 5.2.2 (p. 145), we motivated and described the behaviour of the DC-net, a

four-stage communication protocol facilitating the multi-party computation of one bit

of information using the XOR function, providing unconditional sender and recipient

untraceability. We briefly mentioned that the random bit generation by each cryptog-

rapher in the first stage must be truly random, otherwise a passive attacker may be

able to compromise the anonymity of a bill-paying cryptographer. Making the same

assumptions that we made in Section 5.2.2 — specifically, that the bill-payer is one of

the cryptographers and that each cryptographer is equally likely to pay the bill from

the perspective of a passive observer — we now use chimp to measure the reduction in

the bill-payer’s anonymity that occurs when the bits are not truly randomly generated

for a variety of reasons. We use mutual information to quantify what a passive at-

tacker learns about the bill-payer’s identity when observing the announcements made

by the cryptographers, and min-entropy leakage to quantify how likely it is that, hav-

ing observed these announcements, their best strategy for guessing the identity of the

bill-payer in a single attempt will succeed.

6.1.1 Faulty Random Bit Generation

A DC-net provides complete anonymity to the bill-payer because, from the perspective

of each cryptographer, all of the other cryptographers are equally likely to announce

0 or 1 as the result of their XOR computation. Each cryptographer generates a ran-

dom bit (containing 1 bit of Shannon entropy) and XORs it with the random bit of

another cryptographer (containing another 1 bit of Shannon entropy); the value of

each randomly-generated bit is known only by two cryptographers, and each cryptog-

rapher is the only one with first-hand knowledge of the two input bits to their own

XOR function, so there is always 1 bit of Shannon entropy in the XOR output — when

the bill-payer negates the value of this bit before announcing it publicly, there is there-
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fore no externally observable indication that the negation has taken place. However,

if others have some knowledge of the two input bits to another cryptographer’s XOR

function, the bill-payer’s act of negating their XOR output becomes more noticeable,

because there is no longer 1 bit of entropy in their XOR output; the severity of the

compromise depends on the others’ precise knowledge of the two XOR input bits.

The program shown in Listing 6.1 — based on the program shown in Listing 5.3

(p. 150) — models a DC-net consisting of four cryptographers where each cryptogra-

pher is equally likely to be the bill-payer (thus giving the program’s secret 2 bits of

Shannon entropy), but all of the bits generated by the cryptographers are biased to-

ward 0 with some probability p. Implementing this bias requires minimal changes to

be made to Listing 5.3: whenever values are assigned to the variables mybit and theirbit,

Listing 6.1: an incomplete CH-IMP DC-net implementation in which the cryptographers gen-
erate random bits that are biased toward 0 with a chosen probability p; the pro-
gram can be completed by fixing a value of p, and setting to p and to (1− p)

new cryptographers := 4;
new billpayer := { 1→ 0.25, 2→ 0.25, 3→ 0.25, 4→ 0.25 };
secret billpayer;
new firstbit := { 0→ , 1→ };
new mybit := firstbit;
new theirbit := 0;
new i := 1;
while (i < cryptographers) {

theirbit := { 0→ , 1→ };
new announcement := mybit xor theirbit;
if (i == billpayer) {
if (announcement == 0) { announcement := 1 }
else { announcement := 0 }

};
observe announcement;
i := i + 1;
mybit := theirbit

};
theirbit := firstbit;
new finalannouncement := mybit xor theirbit;
if (i == billpayer) {

if (finalannouncement == 0) { finalannouncement := 1 }
else { finalannouncement := 0 }

};
observe finalannouncement
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the probability distributions simply need to be weighted appropriately. The secret and

observable information remain the same: the secret is the identity of the bill-payer

on line 3, and the observable values are the XOR computation results announced by

each cryptographer on lines 15 and 25. CH-IMP therefore measures the information

flow from the bill-payer’s identity to the public announcements made by the cryptog-

raphers.

Figure 6.1 graphs the information leakage from the bill-payer’s identity to the cryp-

tographers’ announcements in this program, in terms of both mutual information and

min-entropy leakage. When the generation of bits is fair (i.e. p = 0.5), there is no in-

formation shared between the bill-payer’s identity and the cryptographers’ announce-

ments; however, as the variables’ values become progressively more biased in favour

of 0, it becomes much more likely that a non-paying cryptographer will announce

0 ⊕ 0 = 0 and the bill-payer will announce 0 ⊕ 0 ⊕ 1 = 1. The same is true as the

bias moves in favour of 1, making the graph symmetrical: non-paying cryptographers

are more likely to announce 1 ⊕ 1 = 0, and bill-payers are more likely to announce

Figure 6.1: the information leakage from the program in Listing 6.1 for various probability
distributions over the values of mybit and theirbit
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1⊕ 1⊕ 0 = 1. Both leakage measures converge on 2 bits as generation of the random

bits becomes increasingly deterministic: if the DC-net contains the bill-payer, it is

guaranteed that their announcement will be the inverse of the others.

The attacker is only able to observe the announcements made by each cryptogra-

pher, but given that CH-IMP’s attacker model also assumes that the attacker knows

the behaviour of the system, they also know the bias present in the bit generation; the

attacker’s best strategy, therefore, is to identify the cryptographer whose announce-

ment disagrees with those made by the others and assume that this cryptographer is

the bill-payer. This strategy quickly begins to pay off: when p = 0.65 the amount of

mutual information is only 0.03 bits, but the min-entropy leakage measure reveals that

the vulnerability of the bill-payer’s identity to this guessing attack increases by a factor

of around 11/4.

6.1.2 Insider Attacks on DC-Nets

So far we have only considered external passive attacks against the DC-net: the at-

tacker has only been able to observe the announcements by the cryptographers. If

the attacker is one of the non-paying cryptographers, and thus has the ability to di-

rectly influence one of the random bits used by another cryptographer, are they able

to compromise the anonymity of the DC-net?

We can model this scenario in CH-IMP by making minor changes to Listing 6.1.

Assuming that the bill-payer is the first cryptographer to announce the result of their

XOR computation, we (a) assign the value 1 a probability of 0 in the declaration of

billpayer on line 2 and uniformly redistribute the other probabilities, indicating that

the first cryptographer is never the bill-payer (reducing the entropy of the secret infor-

mation in the program from 2 to around 1.59 bits); (b) assign the value 0 to firstbit in its

declaration on line 4, to make the malicious cryptographer’s bit deterministic (this bit

will later be used by the second cryptographer); and (c) mark the values of firstbit on

line 4 and theirbit on line 6 as observable using the observe command, since the cryptog-
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rapher knows both the bit they generated and the bit generated by the cryptographer

to their right. Listing 6.2 contains the updated CH-IMP code.

Initially, we assume that the bits generated by the other cryptographers are truly

random. Figure 6.2 (p. 166) depicts the DC-net from the perspective of the malicious

cryptographer. It is clear that they do not have enough information to violate the

anonymity of the bill-payer: that would require some knowledge of the private bits

generated by the cryptographers other than the one to their immediate right, who ex-

poses their own private bit to the malicious cryptographer anyway. The mutual infor-

mation of the bill-payer’s identity and the values observed by the malicious cryptog-

Listing 6.2: an incomplete CH-IMP DC-net implementation in which the first cryptographer
is an insider attempting to violate the anonymity of the DC-net by forcing a cho-
sen bit onto the second cryptographer, and in which the other cryptographers
generate random bits that are biased toward 0 with a chosen probability p; as
with Listing 6.1 (p. 162), the program can be completed by fixing a value of p,
and setting to p and to (1− p)

new cryptographers := 4;
new billpayer := { 2→ 1/3, 3→ 1/3, 4→ 1/3 };
secret billpayer;
new firstbit := 0;
new mybit := firstbit;
new theirbit := 0;
observe firstbit;
observe theirbit;
new i := 1;
while (i < cryptographers) {

theirbit := { 0→ , 1→ };
new announcement := mybit xor theirbit;
if (i == billpayer) {

if (announcement == 0) { announcement := 1 }
else { announcement := 0 }

};
observe announcement;
i := i + 1;
mybit := theirbit

};
theirbit := firstbit;
new finalannouncement := mybit xor theirbit;
if (i == billpayer) {

if (finalannouncement == 0) { finalannouncement := 1 }
else { finalannouncement := 0 }

};
observe finalannouncement
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rapher is 0 bits; therefore, when the other private bits are truly randomly-generated,

DC-nets are fault-tolerant in the presence of a single malicious cryptographer.

We now consider the scenario in which the bits generated by the other cryptogra-

phers are biased toward 0 with some probability p. The malicious cryptographer’s best

strategy for identifying the bill-payer remains the same as the passive attacker’s strat-

egy in Section 6.1.1: assume that the bill-payer is the cryptographer whose announce-

ment disagrees with those made by the others. However, since one of the private bits

— the one under the control of the malicious cryptographer — is already deterministic,

the DC-net leaks information more quickly as p diverges from 0.5.

Figure 6.3 graphs the information leakage that occurs from the program as p is

varied between 0 and 1. As in Figure 6.1 (p. 163), the mutual information varies be-

tween 0 bits when generation of the bits is fair (i.e. p = 0.5) and its maximum possible

value when generation of the bits is deterministic (i.e. their values are guaranteed to

be either 0 or 1). However, as the random bit generation becomes even slightly biased,

the malicious cryptographer’s knowledge of the bill-payer’s identity increases much

faster than that of the passive attacker in Section 6.1.1: for instance, when p = 0.6, the

first derivative of the continuous function representing the mutual information with

respect to p is 0.3 in Figure 6.1, but 1.1 in Figure 6.3. The strategy is therefore much

Figure 6.2: a DC-net containing a malicious cryptographer C1, with C2 as the bill-payer; the
information exposed to the malicious cryptographer is shown in black, and the
information concealed from them is shown in grey
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more effective for the malicious cryptographer than it is for the passive observer, as

indicated by the min-entropy leakage plot in Figure 6.3: when p = 0.6, the identity

of the bill-payer is already 1.3 times more vulnerable to a correct first-attempt guess,

compared with 1.1 times for the bill-payer’s identity in Section 6.1.1.

This case study demonstrates that DC-nets provide perfect anonymity for all par-

ticipants — even if one of them is malicious — in the presence of passive attackers

with knowledge of the system’s behaviour and the ability to observe information ex-

changed over public channels, provided that the (honest) participants can draw upon

true randomness when generating their private bits. As this randomness decreases,

and the participants’ private bits become more deterministic, the anonymity provided

by the DC-net also decreases; the rate at which the anonymity decreases is more severe

when the attacker becomes a participant in the DC-net.

Figure 6.3: the information leakage from Listing 6.2 for various probability distributions on
the values of mybit and theirbit
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6.2 Pseudorandom Number Generation

A pseudorandom number generator (PRNG) is an algorithm for deterministically gener-

ating sequences of numbers that are not, but nevertheless appear to be, random. They

are of importance in fields such as cryptography, where they are commonly used in

the generation of nonces and keys; in these security-critical situations, a PRNG must

additionally pass the next-bit test (Yao, 1982): it should not be possible for an attacker

armed only with knowledge of the first n bits of output from the PRNG to predict the

n+1th bit of output in polynomial time. A PRNG that satisfies this additional property

is known as a cryptographically secure PRNG.

6.2.1 Linear Congruential Generators

The linear congruential generator (LCG) is an example of a PRNG algorithm, imple-

mented using modulo arithmetic. A particular instance of an LCG is defined by the

recurrence relation

Ln ≡ (Ln−1 · a+ c) mod m

where m, a and c are preselected, fixed parameters: m is the modulus, a positive inte-

ger; a is the accumulator, an integer in the interval [2,m) that is designed to make the

output of the multiplication operation much larger thanm, thus triggering the modulo

operation; and c is the constant, an integer in the interval [0, a). Each output Ln of the

LCG is defined in terms of the last using this recurrence relation; the special value L0 is

the seed, an integer in the interval [0,m) that is used to initialise the LCG. Given a par-

ticular combination of m, a, c and L0, it is possible to reconstruct the entire sequence

of integers outputted by the LCG; m, a and c are static and it is assumed that they are

known to an attacker if the design of the system using the LCG is known, so the seed

is the only variable determining the sequence produced by the LCG and it is therefore

crucial that it is selected uniformly from the interval [0,m).
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LCGs are widely used to implement pseudorandomness because they are easily

understood (and therefore simple to implement), can have their state stored efficiently

in memory, and because their use of modulo arithmetic allows them to generate se-

quences quickly on many computer architectures. Indeed, the rand() function avail-

able in the standard library of many programming languages is implemented using an

LCG, and there is often an srand() function for setting the LCG’s seed. For instance,

the java.util.Random class in the Java API implements an LCG with the parameters

m = 248, a = 25214903917 and c = 11; the seed L0 is an optional argument to the class’s

constructor. When a java.util.Random object is called upon to produce a pseudoran-

dom number, the succeeding state Ln+1 is generated and the highest 32 bits of the

succeeding state are returned to the caller.

LCGs must be designed and used with care, however: if the LCG parameters are not

chosen carefully for the task at hand, or if the LCG’s output is misused, the detrimen-

tal effect on the system’s security can be enormous. To demonstrate this, we present a

simple application of a linear congruential generator as a means of providing pseudo-

randomness: a playing card game, whose players will naturally be prepared to exploit

any information they obtain in order to beat the other players.

6.2.2 A Playing Card Game

In this case study, the game is played with two players — Alice first, and Bob second —

and proceeds as follows. A standard, shuffled 52-card deck of playing cards is revealed

to both players; for the purposes of this game we assume that the order of cards in

the deck is public information. The dealer privately communicates the position of

a random card in the deck to each player in turn; each player should be assigned a

different card in the deck, so the dealer must ensure that a different position in the deck

is communicated to each player. The players may then choose to bet on the likelihood

of the face value of their card being higher than that of the other player’s card. If both

players choose to bet, the dealer reveals the position of the card in the deck assigned
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to each player; the one with the card having the highest face value wins the game (and

the other player’s wager).

Clearly, it is advantageous for one player to place a bet only when they can be rea-

sonably confident of the face value of the other player’s card; since the ordering of the

deck is assumed to be public, it is therefore crucial that the two positions selected in

the deck by the dealer are unrelated. It should also be noted that, even in the best-case

scenario, each player will of course always learn some information about the other’s

card: specifically, that it is not the card at the position assigned to them by the dealer.

The dealer must therefore ensure both that the method by which the deck positions

are chosen passes the next-bit test, and that the generated numbers are used correctly.

For any given position of Alice’s card in the deck, the ideal implementation of this

game would ensure that the position of Bob’s card is uniformly distributed over all 51

remaining positions, producing the joint probability distribution sketched in Table 6.1.

The mutual information of the two deck positions would be 52 · 51 · ( 1
2652 log2

1/2652
1/52·1/52

) ≈

0.0280 bits — each player’s knowledge that the position of their opponent’s card in

the deck is not the same as their own. The min-entropy leakage LXY from the position

of each player’s card to that of their opponent’s card would be log2
1/51
1/52
≈ 0.0280 bits;

since the program would leak the minimum amount of information, each player’s best

Table 6.1: the joint probability distribution of the secret and observable values that occur in
the ideal implementation of the playing card game

Observable value

Secret value 0 1 2 · · · 49 50 51

0 0 1/2652 1/2652 · · · 1/2652 1/2652 1/2652

1 1/2652 0 1/2652 · · · 1/2652 1/2652 1/2652

2 1/2652 1/2652 0 · · · 1/2652 1/2652 1/2652
...

...
...

...
. . .

...
...

...
49 1/2652 1/2652 1/2652 · · · 0 1/2652 1/2652

50 1/2652 1/2652 1/2652 · · · 1/2652 0 1/2652

51 1/2652 1/2652 1/2652 · · · 1/2652 1/2652 0
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strategy for correctly guessing the position of their opponent’s card in one attempt

would be to select one of the remaining positions at random, a strategy that would

succeed on average once every 1
2LXY /52

= 51 attempts.

We now examine a CH-IMP implementation of this game in which an LCG deter-

mines the face value of each player’s card. We shall see how a lack of care in selecting

appropriate LCG parameters and correctly using the output of the LCG causes a catas-

trophic effect on the game’s fairness.

Listing 6.3 is a CH-IMP program modelling the card selection phase of the playing

card game described above, as seen from the perspective of Alice; from her point of

view, the observable information is the position of her own card in the deck (acard) and

the secret information is the position of Bob’s card (bcard). This implementation gen-

erates positions in the deck pseudorandomly using an LCG with parameters m = 213,

a = 789, and c = 366, and chooses a seed l0 uniformly from the set of all possible seeds

(the expression [ nl .. nh ] on line 4 is a convenient syntax for specifying the uniform

probability distribution over the integers in the interval [nl ,nh]). The first pseudoran-

dom number l1 is generated by the LCG, and a simple modulo operation maps this

random number to a position in the deck; this position (acard) is communicated to

Alice on line 8. The second pseudorandom number l2 is then generated, and a more

Listing 6.3: CH-IMP implementation of the card selection phase of the playing card game,
played from Alice’s point of view: the observable information is Alice’s card
(acard), and the secret information is Bob’s card (bcard)

new m := 8192;
new a := 789;
new c := 366;
new l0 := [ 0 .. 8191 ];

new l1 := (a * l0 + c) mod m;
new acard := l1 mod 52;
observe acard;

new l2 := (a * l1 + c) mod m;
new bcard := (acard + 1 + (l2 mod 51)) mod 52;
secret bcard

1
2
3
4
5
6
7
8
9

10
11
12
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complex modulo operation maps it to a different position in the deck by mapping it to

an integer in the interval [1,51] and adding the result to the position of Alice’s card,

modulo 52. This second position is that of Bob’s card (bcard), and is identified as a

secret of interest to Alice on line 12. By measuring the flow of information from the

position of Bob’s card in the deck to that of Alice’s card and computing the amount of

information shared between the two positions, we can evaluate the suitability of this

particular implementation for selecting random deck positions.

chimp reveals that there are around 3.1706 bits of information shared between the

Figure 6.4: a heat map representing the (very unevenly distributed) joint probability distri-
bution of the values of acard and bcard in the program in Listing 6.3
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positions of Alice’s and Bob’s cards in the deck in the program shown in Listing 6.3;

this is significantly worse than the 0.0280 bits of mutual information in the ideal im-

plementation, and therefore this implementation clearly has disastrous effects on the

game’s fairness. The joint distribution of the values of acard and bcard in this sce-

nario, depicted in Figure 6.4, is very unevenly distributed: for a given value of acard,

only between six and nine corresponding values of bcard occur with a non-zero prob-

ability; e.g., when the value of acard is 48, the value of bcard is drawn from one of

{10,12,27,29,44,46}, as opposed to being drawn from one of the remaining 51 values

as in the ideal implementation. Even worse, the values of bcard that do occur with a

non-zero probability are themselves unevenly distributed; e.g., when the value of acard

is 48, the value of bcard is 44 with probability around 0.08, but is 22 with probabil-

ity around 0.25. This uneven distribution makes it much easier for Alice to guess the

position of Bob’s card in the deck based on the position of her own: the min-entropy

leakage of around 3.4075 bits from acard to bcard reveals that Alice is on average ap-

proximately 10.6 times more likely to correctly guess the position of Bob’s card in the

deck in a single attempt in this implementation when compared to the ideal imple-

mentation.

We can see the same game being played from Bob’s perspective by exchanging the

locations of the secret and observe commands in Listing 6.3: line 8 becomes secret acard,

and line 12 becomes observe bcard. The mutual information is the same as it is from

Alice’s perspective — unsurprising, given that mutual information is symmetric —

but the min-entropy leakage of around 3.7165 bits from the position of Bob’s card in

the deck to the position of Alice’s reveals that Bob is around 13.1 times more likely

to guess Alice’s card correctly in a single attempt. This implementation of the game’s

card selection phase is therefore deeply flawed, and gives Bob an unfair advantage over

Alice when the players decide whether to place a bet.
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6.2.3 Maximising the Period of a Linear Congruential Generator

It is worth considering precisely what makes the program in Listing 6.3 leak so much

information. We saw in the ideal implementation of the playing card game that neither

player learns more information about the deck position of the other’s card than they

do by observing their own — what property of this program causes it to leak more

information than the minimum amount?

One flaw in the program’s implementation of the game’s card selection phase is

that an LCG is used to select cards from random positions in the deck, but LCGs are

not cryptographically secure PRNGs. The arithmetic in the recurrence relation is per-

formed modulo m, meaning that any integer i outputted by an LCG must fall in the

interval [0,m), and an LCG with fixed parameters m, a and c will always produce the

same succeeding state Ln+1 for a given current state Ln; an LCG is therefore a periodic

function (i.e. it repeats its output sequence after a certain interval), meaning that the

sequence generated by an LCG must be finite. The period of an LCG is an important

factor in determining the quality of the randomness it generates: long periods make

the output sequence less predictable and thus provide better-quality (although not

true) randomness, whereas short periods make the output sequence more predictable

and thus provide poor-quality randomness.

We must therefore maximise the period of the LCG in the program to make its

output as unpredictable as possible. Since 0 ≤ Ln < m, the period of an LCG is at most

m, but this maximum period is not guaranteed for all LCGs; Hull and Dobell (1962)

prove the existence of a relationship between the period of an LCG and its parameters

m, a and c. They show that, to maximise the period of an LCG for all possible seeds

0 ≤ L0 < m, the values of m, a and c must be chosen such that:

(a) for every prime number p dividing m, (a− 1) is a multiple of p;

(b) if m is a multiple of 4, (a− 1) is a multiple of 4; and

(c) c is relatively prime to m; i.e., there must be no positive integer greater than 1



6.2. Pseudorandom Number Generation 175

that divides both c and m.

For any combination of m, a and c that does not fulfil these criteria, the period will not

be maximised for all possible seeds.

Are the values of m, a and c used in Listing 6.3 consistent with Hull and Dobell’s

theorem? We can check: m = 8192 has only one distinct prime factor (2), and (a− 1) =

788 is a multiple of 2, so the first condition is satisfied, and both 8192 mod 4 = 0 and

788 mod 4 = 0, so the second condition is also satisfied. However, 8192 and c = 366

are both even and thus they clearly have a common divisor of 2; the third condition is

not satisfied, so the period of an LCG with these parameters is shorter than m = 213; it

therefore provides poor-quality randomness.

Now that we know these LCG parameters are poor, we can tweak them to find

values that satisfy Hull and Dobell’s theorem. Keeping the modulus m = 8192 the

same, we find a value (a − 1) that is a multiple of both 4 and all of m’s distinct prime

factors; since m has only the distinct prime factor 2, any multiple of 4 will suffice.

We shall choose 2048, meaning that a = 2049. Next, we must find a coprime integer

of 8192; again, there are many to choose from, and we shall select c = 8141. These

parameters guarantee that the period of the LCG is 8192 for all possible seeds; we can

now test the effect they have on the fairness of card selection.

Listing 6.4: a fairer CH-IMP implementation of the card selection phase of the playing card
game described in Section 6.2.2; greater fairness is achieved by selecting better
values for the LCG parameters m, a and c

new m := 8192;
new a := 2049;
new c := 8141;
new l0 := [ 0 .. 8191 ];

new l1 := (a * l0 + c) mod m;
new acard := l1 mod 52;
observe acard;

new l2 := (a * l1 + c) mod m;
new bcard := (acard + 1 + (l2 mod 51)) mod 52;
secret bcard

1
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Listing 6.4 (p. 175) is a modified version of Listing 6.3 that implements an LCG with

these optimal parameters. Again, the program models the game being played from

Alice’s perspective: the value of acard on line 8 is observable, and the value of bcard

on line 12 is secret. Using chimp, we find that the mutual information of the positions

of Alice’s and Bob’s cards in the deck is now around 0.067 bits. The joint probability

distribution of the values of acard and bcard, depicted in Figure 6.5, reveals a much

more even distribution of card positions: for any given value of acard, all 51 possible

values of bcard occur with a non-zero probability. However, the 51 values of bcard are

still unevenly distributed in favour of the values close to acard; e.g., when acard is 30,

the values of bcard between 25 and 48 occur with a higher probability (around 0.025)

than the values of bcard between 3 and 21 (around 0.013). The min-entropy leakage of

around 0.3785 bits from bcard to acard shows that Alice is on average 1.3 times more

likely to correctly guess the position of Bob’s card in the deck.

However, by exchanging the positions of the secret and observe commands to see the

game being played from Bob’s perspective, we see that he still has a small advantage

over Alice because of the slight asymmetry of the two joint probability distributions:

the min-entropy leakage of around 0.3967 bits from acard to bcard shows that Bob is on

average 1.3165 times more likely to correctly guess the position of Alice’s card in the

deck. This implementation is therefore an enormous improvement on the one shown

in Listing 6.3, but is still not quite as fair as the ideal implementation. How can it be

perfected?

6.2.4 Choosing Appropriate LCG Parameters for a Given Program

There is one remaining flaw in Listing 6.4, and it relates to the way in which the LCG

output is used on lines 7 and 11. The LCG parameters are optimal, so the LCG will

output an integer evenly distributed over the interval [0,8191]; however, these integers

are reduced modulo 52 on line 7 and modulo 51 on line 11. Because neither 52 nor 51

divide 8192 evenly, the residue of neither modulo operation is uniformly distributed
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Figure 6.5: a heat map representing the (slightly unevenly distributed) joint probability dis-
tribution of the values of acard and bcard in the program in Listing 6.4
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over either the interval [0,51] or [0,50]: it is biased toward the integers closer to 0. This

affects both the selection of acard (whose value is more likely to be closer to 0) and the

offset from acard used in the computation of bcard (whose value is more likely to be

nearer to acard’s value).

To resolve this flaw, we must choose a modulusm such that this bias does not occur;

i.e., we must choose m to be a multiple of 52 ·51. We shall choose m = 52 ·51 ·3 = 7956.

We must also ensure that Hull and Dobell’s theorem is satisfied, so we select values of

a and c using the same process as in Section 6.2.3. The distinct prime factors of 7956

are 2, 3, 13 and 17, so we must choose a value of (a − 1) that is a multiple of all of

them; m mod 4 = 0, so we must also choose a value of (a − 1) that is a multiple of 4.

The simplest solution is to multiply all of these integers, giving 2 · 3 · 4 · 13 · 17 = 5304;

therefore, a = 5305. Finally, we must choose a coprime integer of 7956 to be c; again,

there are many to choose from, and we shall select 7819.

These LCG parameters are used in Listing 6.5; note the updated line 4, which se-

lects a seed uniformly from the interval [0,7955]. chimp verifies that this is equivalent

to the ideal implementation of the card selection phase of the playing card game, even

though it does not use a cryptographically secure PRNG: the joint distribution of the

values of acard and bcard is perfectly distributed apart from the cases where acard ,

Listing 6.5: a completely fair CH-IMP implementation of the card selection phase of the play-
ing card game described in Section 6.2.2: Alice learns only that the value of bcard
is not the value of acard; the same is true for Bob’s knowledge of Alice’s card

new m := 7956;
new a := 5305;
new c := 7819;
new l0 := [ 0 .. 7955 ];

new l1 := (a * l0 + c) mod m;
new acard := l1 mod 52;
observe acard;

new l2 := (a * l1 + c) mod m;
new bcard := (acard + 1 + (l2 mod 51)) mod 52;
secret bcard

1
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Figure 6.6: a heat map representing the (ideally distributed) joint probability distribution of
the values of acard and bcard in the program in Listing 6.5
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bcard, as shown in Figure 6.6 (p. 179). The mutual information of the values of acard

and bcard is around 0.0280 bits — as it is in the ideal implementation described at

the beginning of this section — and the min-entropy leakage in both directions is also

around 0.0280 bits, indicating that neither Alice nor Bob gain any particular advantage

when attempting to guess the position of the other player’s card in the deck.

This case study demonstrates that extreme care must be taken when choosing pa-

rameters for a linear congruential generator, and underlines why they should not be

used to provide randomness for arbitrary cryptographic applications.

6.3 Summary

In this chapter, we have presented two examples of CH-IMP’s point-to-point informa-

tion flow model being used to quantify the information leakage from various proba-

bilistic protocols and systems. We have shown that both the CH-IMP model and chimp

tool offer practical benefits to those seeking to analyse the flow of information in prob-

abilistic systems of low to moderate complexity.

The first collection of systems modelled both secure and insecure DC-nets, and we

used chimp to analyse how modifications to the DC-net protocol affected the anonymity

of a bill-paying cryptographer. In doing so, we discovered what makes a DC-net

secure, and how this security can be violated by contaminating the sources of ran-

domness drawn upon by the participants; we found that the protocol is anonymity-

preserving in the presence of a single malicious participant intent on disclosing the

sender’s identity, although the protocol leaks information at a faster rate to this mali-

cious participant than to a passive observer as the source of randomness becomes more

contaminated. A future designer of anonymity protocols could use chimp in a similar

manner, to ensure that their protocol does not inadvertently leak information, and to

discover the limits of the anonymity offered by the protocol.

The second case study involved the modelling of a two-player playing card game
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in CH-IMP, and discovering what made the implementation unfair. This was a long

and complex case study that involved non-trivial mathematical concepts (cf. Hull and

Dobell’s (1962) proof of the maximum period theorem introduced in Section 6.2.3).

CH-IMP is able to abstract away all of this complexity, instead focusing on answering

simple questions of interest to an analyst of the system: “what does Alice learn about

the position of Bob’s card in the deck based on that of her own?”; “how successful is

Bob’s strategy for correctly guessing the face value of Alice’s card in a single attempt?”;

“which of these linear congruential generators provides the best results for this par-

ticular program?”. We were able to analyse the fairness of the game from different

players’ perspectives simply by moving around secret and observe commands in the

program’s source code; the information flow models from the literature that we re-

viewed in Chapter 3 are incapable of analysing systems in this simple way, and it is

this simplicity that makes CH-IMP’s information flow model so appealing.
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Estimating Information

Leakage from Programs





7
An Information Leakage

Estimation Tool for Java

In Chapter 4 we motivated the creation of a new point-to-point information flow model,

and in Chapter 5 we presented an implementation of this model in a software tool

that enables the precise computation of information leakage from programs written in

CH-IMP, a simple probabilistic imperative language. By providing a semantics for our

information flow model we have demonstrated its soundness, and by providing two

detailed case studies (and several smaller examples) of its usage we have shown its

usefulness in precisely quantifying the information leakage in systems and protocols

of low to medium complexity.

The execution of CH-IMP programs is defined in terms of discrete-time Markov

chains; this allows for easily-understood definitions of both program execution and in-

formation flow. However, this simplicity comes with a cost: as with other DTMC-based

system models, and as we alluded to in Section 5.2.3 (p. 148), it is computationally in-

feasible to analyse complex programs using CH-IMP due to the explosion of the state

space that occurs in such programs. It is also infeasible to represent programs written

in real-world programming languages in our system model (i.e. by transforming them

into CH-IMP programs): to do so would require the modelling of (i.e. defining a formal

semantics for) complex features found in modern programming languages in CH-IMP,
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such as socket-based communication and inter-process communication; since every

programming language implements these features differently, the transformation pro-

cess would be prohibitively difficult, requiring a different translation semantics for

each source language. Additionally, even if this translation were practical, many infor-

mation leakage vulnerabilities in programs are in fact caused by programmers erro-

neously implementing theoretically secure algorithms and protocols (Chatzikokolakis

et al., 2010); transforming a given program into a CH-IMP program would therefore

likely leave information leaks in the original implementation undetected.

Clearly, it is desirable to quantify the flow of information in programs that cannot

be represented in our system model; we therefore now consider a slightly different

approach.

Recall the three components of our information flow model: the system model (i.e.

a CH-IMP program), the attacker model (i.e. a passive attacker with knowledge of the

system’s behaviour), and the security policy (i.e. a statement of the maximum amount

of information that may flow from the system’s secret values to its observable values,

defined in terms of an information leakage measure such as mutual information or

min-entropy leakage). To determine whether the security policy is satisfied, we com-

pute the joint probability distribution of the secret and observable values from the

system model and compute the leakage measure from this distribution. One solution

to the state space explosion problem that would conveniently also allow us to anal-

yse programs in languages other than CH-IMP would be to relax the system model:

rather than deriving the exact joint probability distribution from the execution of a

CH-IMP program modelled as a DTMC, we could instead derive an approximation of it

from the repeated execution of a program written in another language, collecting the

secret and observable values that occur during each execution; provided that enough

executions were performed with respect to the number of possible secret/observable

value pairs that could occur, this approximate joint distribution would be an accu-

rate estimate of the true joint distribution. A quantitative security policy would then
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state approximately the amount of information that could flow from a program’s secret

values to its observable values before being deemed insecure, defined using the same

information-theoretic leakage measures.

Being free of the state space explosion constraints of DTMCs, this approach would

indeed allow us to analyse the security of more complex programs, but it causes other

problems. One is that, by constructing the joint probability distribution by repeatedly

executing a program and collecting the secret and observable values that occur, we

have no guarantee of the similarity of the estimated distribution and the true distri-

bution: how could we be sure that any purported flow of information were not due

to noise in the data we collected? Another is that the leakage measures of mutual in-

formation and min-entropy leakage that we have relied upon thus far require that the

random variables on which they operate are known (i.e., the probabilities in the proba-

bility distributions describing the random variables are exact): how do we account for

variance in the sample when we compute the leakage measure to verify whether the

security policy is satisfied?

In this chapter, we solve these problems using the statistics results from the litera-

ture that we reviewed in Section 3.3 (p. 72). We show how this new approximation of

our information flow model can be applied to Java programs (although similar tech-

niques can be applied to programs written in any language). We investigate some

of the engineering challenges involved in doing so, and present novel techniques for

overcoming them. This culminates in the development of leakiEst, a Java library for

estimating information leakage from samples of probabilistic systems, and a second

software tool, LeakWatch, for estimating the information leakage that occurs in Java

programs.

This chapter incorporates content from two of our publications in the literature

(Chothia et al., 2013a, 2014).
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7.1 Sample-Based Estimation of Information-Theoretic

Measures

We begin by demonstrating how the two information-theoretic measures we employed

as information leakage measures in Chapter 4 can be estimated from a sample. Re-

call from Section 2.3.1 (p. 40) that mutual information is defined as the amount of

information gained about one random variable, X, by observing another, Y , and from

Section 2.3.2 (p. 45) that min-entropy leakage is defined as the average amount of ad-

ditional information aboutX that can be guessed correctly in one attempt by observing

Y .

As in Chapter 4, we assume that the sample space of X is the possible secret infor-

mation that occurs in a program, and the sample space of Y is the possible publicly-

observable information that occurs; thus, our measures of information leakage quan-

tify the information shared between the secret and observable values, and the vulner-

ability of the secrets to single-attempt guessing attacks by attackers capable of view-

ing the observable information. Each data point in the sample represents a single

execution of the program, and consists of the secret and observable information that

occurred during that execution; thus, the sample defines the estimated probability dis-

tribution P̂XY described in Section 3.3 (p. 72). This distribution can be marginalised

to give P̂X and P̂Y , which can in turn be used to estimate X and Y respectively. We

are therefore assuming that neither X nor Y is known (i.e., the probability of a partic-

ular piece of secret or observable information occurring is not exact); it is reasonable

to make this assumption for complex programs, where it may not necessarily be easy

to identify how likely it is that each of the possible collections of secret or observable

values could occur during execution.
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7.1.1 Estimating Mutual Information

We have already seen in Section 3.3.1 (p. 75) how to estimate the mutual information of

two random variables if neither are known; we use the findings of Moddemeijer (1989)

and Brillinger (2004) to identify whether the estimated mutual information Î(X;Y )

is a good approximation of the true mutual information I(X;Y ), and thus determine

whether there is a statistically significant amount of mutual information between the

secret and observable information that occurs in the generated sample.

As we are estimating both X and Y , the relevant tests are derived from Brillinger’s

χ2 distribution for zero mutual information (Theorem 3.3, p. 76) and Moddemeijer’s

normal distribution for non-zero mutual information (Theorem 3.1, p. 75). To test

for the presence of a statistically significant information leak in the sample, we check

whether our mutual information estimate Î(X;Y ) is consistent with the 95% confidence

interval of the distribution defined in Theorem 3.3. If it is, we conclude that the sample

does not contain statistically significant evidence of mutual information; if it is not, we

conclude that the sample does contain statistically significant evidence of mutual infor-

mation. If we conclude from this first test that there is evidence of information leakage

in the sample, we compute both the expected true mutual information by accounting

for the bias in the estimate from the definition of the mean using Theorem 3.1, and the

95% confidence interval of the normal distribution to give the estimated range of the

true mutual information.

In Section 3.3.1 we discussed some of the disadvantages of estimating mutual in-

formation in this manner. One of these disadvantages was the large number of data

points n required to produce meaningful statistics, relative to the number of unique

pieces of secret (#X) and observable (#Y ) information; in particular, a large value of

n is required to minimise the variance in the normal distribution described in Theo-

rem 3.1, from which the 95% confidence interval is derived, and an insufficient value

of n results in a confidence interval that is too wide to produce a useful estimated range
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for the true mutual information. There is, however, a penalty associated with sampling

the program more than is necessary to derive a sufficiently narrow confidence interval:

one data point in the sample represents the information recorded from a single execu-

tion of the program being analysed, and since our goal is to estimate the information

leakage that occurs from complex programs that may take some time to terminate, we

must minimise the number of executions performed. Chatzikokolakis et al. provide

an algorithm for determining whether the sample is large enough to conclude whether

there is evidence of information leakage in the sample — it involves testing whether

the estimate is consistent with the 95% confidence intervals of both distributions, or

neither of them, and a larger sample must be generated if either is the case — but the

authors do not provide an equivalent algorithm for determining when the sample size

is sufficient both to perform a correction to the mutual information estimate and to

provide accurate bounds on the true mutual information. We therefore present the

following algorithm for doing so; it determines an approximate checkpoint at which

the sample size should be sufficient.

We note that the mean and variance of the normal distribution described in The-

orem 3.1 are both defined in terms of Taylor series (Moddemeijer, 1989). Computing

the sum of the Taylor series in the variance definition is impractical: the sums over

P̂X , P̂Y and P̂XY in each term make it computationally expensive to evaluate more than

the first term for large sample spaces of X or Y , which is often the case for complex

programs. We therefore evaluate only the first term in each series and consider it an ap-

proximation of the series’ sum, and empirically determine how much error the absence

of the remaining uncomputed terms introduces into the approximation by indirectly

observing its effect on the mean, which is much more efficient to compute.

We begin by collecting 400 data points (followed by the initial checkpoint), and

then a further 100 data points (followed by a second checkpoint). We then test whether

all of the following conditions are met:

(a) #X and #Y are both positive (otherwise the estimated joint probability distri-
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bution P̂XY is undefined, and a mutual information estimate Î(X;Y ) cannot be

computed for the final condition);

(b) #X and #Y remained constant between the previous two checkpoints (otherwise

the values in the final condition cannot be compared meaningfully);

(c) at least 4 ·#X ·#Y data points have been collected; and

(d) the value Î(X;Y )− (#X−1)·(#Y−1)
2n did not change beyond a given tolerance ε between

the previous two checkpoints (otherwise the higher-order terms in the Taylor se-

ries are non-negligible, and are still affecting the estimation of the distribution’s

mean).

If these conditions are met, we stop collecting data points; if not, we collect another

100 or #X · #Y data points (whichever is greater), followed by another checkpoint at

which we again test whether the conditions are satisfied. By the time the algorithm

stops collecting data points, the value of n should be large enough such that the O(1/n2)

and higher-order terms in both series are orders of magnitude smaller than the first

term, and the first term is a good enough approximation of the series’ sum to produce

an accurate approximation of the true mutual information with a reasonable 95% con-

fidence interval.

We have experimentally verified the quality of the samples generated by this al-

gorithm; it proves to be a useful heuristic for generating samples that produce accu-

rate mutual information estimates and confidence intervals for programs containing

both small and large amounts of unique secret and observable information. Requir-

ing a minimum of 100 data points to be collected before each subsequent checkpoint

prevents the algorithm from stopping prematurely when generating samples for pro-

grams that contain very small amounts of unique secret and observable information

(e.g. those where #X + #Y < 10) due to the low value of #X ·#Y in these situations, and

requiring a maximum of #X · #Y data points to be collected before each subsequent

checkpoint allows the algorithm to scale with the amount of secret and observable
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information that occurs. The tolerance ε is a parameter of the algorithm, and can be

fine-tuned depending on the program being sampled; a reasonable initial value is 0.01,

although programs containing very subtle information leaks sometimes require lower

values of ε (e.g. 0.001) in order to generate samples that can detect those leaks. We

have implemented this algorithm in both leakiEst and LeakWatch using a default

tolerance of ε = 0.01 (although this can easily be modified by the user).

7.1.2 Estimating Min-Entropy Leakage

In Section 3.3.2 (p. 79) we summarise Chothia et al.’s (2014) method of computing

a greater than 95% confidence interval for min-entropy leakage estimates. Unlike

Chatzikokolakis et al.’s (2010) work on mutual information estimation, this work does

not attempt to correct any bias that may be present in a sample that would affect the

min-entropy leakage estimate; we therefore assume that the sample contains statisti-

cally significant evidence of information leakage if the lower bound of the confidence

interval is greater than 0 bits, and contains no evidence of information leakage other-

wise.

Chothia et al. also present iterative algorithms for experimentally finding smax and

smin, the joint frequency distributions that maximise and minimise the conditional

vulnerability respectively, and umax and umin, the input frequency distributions that

maximise and minimise the vulnerability respectively. The maximising distributions

are found from the equivalent empirical distributions by increasing the maximum fre-

quencies, decreasing the other frequencies at the same rate, and testing the effect on

the vulnerability or conditional vulnerability; the inverse is performed to find the min-

imising distributions. We use the algorithms presented by Chothia et al. as-is to find

these frequency distributions.

The authors use Pearson’s (1900) χ2 tests to determine whether various joint fre-

quency distributions derived from the sample follow the expected joint frequency dis-

tributions. Pearson’s χ2 test makes several assumptions about the sample to which it is
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applied: (a) data points are sampled randomly, and are independent of each other (we

make the same assumptions when estimating mutual information), (b) at least 80%

of the frequencies in the joint frequency distribution are greater than 5, and none are

equal to zero, and (c) the sample is sufficiently large to avoid false negatives in the test

results. If these assumptions are not met, the test results are unreliable; as with mu-

tual information estimation, we must therefore ensure that the sample is sufficiently

large for the tests to produce reliable results. We present the following algorithm for

doing so; it is similar to the equivalent algorithm for mutual information described in

Section 7.1.1, in that it determines an approximate checkpoint at which the sample size

should be sufficient.

We begin by collecting 1,000 data points (followed by the initial checkpoint), and

then a further 1,000 data points (followed by a second checkpoint). We then test

whether all of the following conditions are met:

(a) #X and #Y are both positive (otherwise the joint frequency distribution is unde-

fined);

(b) #X and #Y remained constant between the previous two checkpoints (otherwise

the program has evidently not been sampled a sufficient number of times to cap-

ture the range of possible pieces of secret and publicly-observable information

that truly occur);

(c) at least 10 ·#X ·#Y data points have been collected;

(d) at least 80% of the frequencies in the joint frequency distribution are greater than

5 (an assumption of the χ2 tests); and

(e) none of the frequencies in the joint frequency distribution are equal to zero (an-

other assumption of the χ2 tests).

If these conditions are met, we stop collecting data points; if not, we collect another

1,000 or #X · #Y data points (whichever is greater), followed by another checkpoint at
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which we again test whether the conditions are satisfied. By the time the algorithm

stops collecting data points, the value of n should be large enough for the χ2 tests to

succeed, and therefore the confidence interval for the min-entropy leakage estimate

should indicate whether or not there is any statistically significant evidence of min-

entropy leakage from the secret information to the observable information.

Chothia et al. note that the number of data points required for a reliable min-

entropy leakage estimate is significantly larger than the number required for a reliable

mutual information estimate, and this is factored into the algorithm: note that subse-

quent checkpoints occur after collecting a minimum of 1,000 data points, compared

with 100 in the mutual information variant of the algorithm. In practice, we find that

this algorithm is an effective heuristic for collecting a sample that produces a “stable”

min-entropy leakage estimate (i.e., by collecting more data points than this algorithm

states is necessary, the min-entropy leakage estimate varies only slightly from the esti-

mate provided by the algorithm). The confidence intervals derived from samples gen-

erated by this algorithm are much wider than their mutual information counterparts,

but this is understandable given that the precise distribution from which mutual in-

formation estimates are drawn is known and thus a precise confidence interval can

be computed, whereas Chothia et al.’s algorithm determines the min-entropy leakage

confidence interval experimentally; in any case, the confidence interval is sufficient to

determine whether the sample contains any statistically significant evidence of min-

entropy leakage from the secret information to the observable information.
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7.2 leakiEst: A Sample-Based Information Leakage

Estimation Tool

Based on the information leakage measure estimation results from both the litera-

ture and Section 7.1, we have developed leakiEst, a freely-available1 quantitative

information-theoretic measure estimation tool and library. leakiEst can be used both

as a command-line tool and as a Java API that exposes information leakage measure es-

timation functionality, as well as general information-theoretic functionality, to third-

party Java software.

leakiEst is system-agnostic: rather than estimating the information leakage from

a program directly, it operates on a dataset — essentially a sample of a system’s se-

cret and observable information generated via repeated, independent and identically

distributed (i.i.d.) executions. This affords leakiEst a great deal of flexibility: it can

be used to estimate the information leakage of any system that accepts its secret data

and outputs its observable data in a predictable manner; for example, it is possible to

automatically generate leakiEst-compatible datasets for cryptographic hardware such

as that embedded in electronic passports (Chothia and Smirnov, 2010), and programs

whose source code is unavailable, such as closed-source firmware distributed in binary

format. The requirement for i.i.d. executions is a prerequisite of the statistical tests of

Chatzikokolakis et al. (2010), and was discussed in Section 3.3.1 (p. 75); leakiEst does

not perform any statistical tests to check whether the data points are i.i.d., leaving the

responsibility of doing so to the user.

Several dataset formats are supported; the two most commonly-used are a simple

“secret/observation” file format, where each line represents a single data point from a

sample (i.e. the secret and corresponding observation that occurred during a single ex-

ecution of the system), and the more structured attribute-relation file format (ARFF)

1
leakiEst is available at https://www.cs.bham.ac.uk/research/projects/infotools/leakiest/, and is

licensed under version 3 of the GNU General Public License.
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initially developed for use with the machine learning tool Weka (Hall et al., 2009).

Given a dataset in a supported format, leakiEst computes the estimated joint proba-

bility distribution of the system’s secrets and observations, and performs the statisti-

cal tests described in Section 7.1 to compute an accurate estimate of an information-

theoretic measure of the user’s choice. By modifying a probabilistic program so that it

writes its secrets and observations to a file in a format supported by leakiEst, we can

use leakiEst to estimate the information leakage of the program; we shall investigate

how this can best be automated for Java programs in Section 7.3 (p. 202).

The focal point of leakiEst’s API is the Observations class, which represents a

parsed dataset (i.e. its unique secrets and observations, and the probability of each

secret and observation occurring simultaneously); other classes perform the statistical

analysis required for estimating the mutual information and min-entropy leakage of

the secrets and observations represented in Observations objects using the algorithms

described in Section 7.1. Notably, leakiEst implements the “sufficient sample size” al-

gorithms described in Sections 7.1.1 and 7.1.2, and will therefore stop parsing a dataset

when it detects that the number of data points it has read is sufficient to compute an

accurate leakage estimate.

7.2.1 Analysing Random Number Generation Programs with leakiEst

Figures 7.1 and 7.2 (pp. 198 and 199) demonstrate how leakiEst processes datasets

that are generated by programs that repeatedly execute a given block of code and write

the secrets and observations that occur in leakiEst’s “secret/observation” dataset for-

mat. The two Java programs that generated these datasets are shown in Listings 7.1

and 7.2 (p. 200). They are similar to the CH-IMP programs in the linear congruential

generator (LCG) case study from Chapter 6: two random integers in the interval [0,9]

are generated consecutively and treated as observable and secret values respectively.

The difference between the programs lies in how they randomly generate their inte-

gers: the first program uses the LCG-based Random class from the Java API, and the



7.2. leakiEst: A Sample-Based Information Leakage Estimation Tool 197

second uses the cryptographically-secure SecureRandom class from the Java API; both

are seeded with a random integer in the interval [0,199] that is generated using the

same class. A single data point in each dataset therefore consists of a pair of integers,

e.g. ("2","9").

As we saw in Section 6.2 (p. 168), LCGs provide poor-quality randomness un-

less properly designed for specific applications: their output is otherwise easily pre-

dictable, especially when the numbers they generate are mapped onto a smaller range,

and we would therefore expect there to be a correlation between the two integers in

each data point in the Random dataset. Figure 7.1(a) verifies that this is the case: after

processing 600 data points, leakiEst confirms that the random variable defined by the

estimated joint probability distribution P̂XY is no longer consistent with the χ2 distri-

bution for zero mutual information (Theorem 3.3, p. 76), and that there is evidence of

an information leak from the secrets to the observations in the dataset. Figure 7.1(b)

confirms the presence of a statistically significant min-entropy leakage from the sec-

ond integer to the first after processing 2,000 data points.

Cryptographically secure PRNGs, however, provide much higher-quality random-

ness; we would therefore expect there to be no correlation between the two integers

in each data point in the SecureRandom dataset. Figure 7.2(a) confirms that this is the

case: at no point during processing of the second dataset does leakiEst find that the

random variable defined by the estimated joint probability distribution is inconsistent

with the χ2 distribution for zero mutual information, and leakiEst states that there is

no evidence of information being shared between the secrets and observations in the

dataset after reading 700 data points. Again, leakiEst correctly identifies that there

is no statistically significant min-entropy leakage from the second integer to the first

after reading 2,000 data points.
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Figure 7.1: leakiEst processing datasets derived from repeatedly executing two Java pro-
grams that generate two consecutive random integers between 0 and 9 inclu-
sive using the Java API’s Random class; the first integer is the program’s publicly-
observable information, and the second is its secret information
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Figure 7.2: leakiEst processing datasets derived from repeatedly executing two Java pro-
grams that generate two consecutive random integers between 0 and 9 inclusive
using the Java API’s SecureRandom class; the first integer is the program’s publicly-
observable information, and the second is its secret information
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Listing 7.1: the Java program that generated the dataset for Figure 7.1

1 import java.util.Random;
2
3 public class LowEntropyRandom {
4
5 public static void main(String[] args) {
6 for (int i = 0; i < 3000; i++) {
7 Random genSeed = new Random();
8 Random gen = new Random(genSeed.nextInt(200));
9

10 int obs = gen.nextInt(10);
11 int sec = gen.nextInt(10);
12
13 System.out.println("(" + sec + "," + obs + ")");
14 }
15 }
16
17 }

Listing 7.2: the Java program that generated the dataset for Figure 7.2

1 import java.nio.ByteBuffer;
2 import java.security.SecureRandom;
3
4 public class LowEntropySecureRandom {
5
6 public static void main(String[] args) {
7 for (int i = 0; i < 3000; i++) {
8 SecureRandom genSeed = new SecureRandom();
9 long seed = genSeed.nextInt(200);

10 byte[] bytes = ByteBuffer.allocate(8).putLong(seed).array();
11 SecureRandom gen = new SecureRandom(bytes);
12
13 int obs = gen.nextInt(10);
14 int sec = gen.nextInt(10);
15
16 System.out.println("(" + sec + "," + obs + ")");
17 }
18 }
19
20 }
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7.2.2 Performance Evaluation

leakiEst reaches each of the conclusions of Section 7.2.1 after around a wall-clock sec-

ond of dataset processing.2 The dashed vertical line in each graph illustrates the point

at which leakiEst stops reading data points from the dataset because of its confidence

that the data points it has read are sufficient to produce an accurate estimate. As can

be seen from the trend beyond these lines, the algorithm from Section 7.1.1 correctly

identifies when the corrected mutual information estimate has stabilised (i.e. when

the higher-order terms in the mean and variance equations in Theorem 3.4 (p. 76) are

infinitesimal), and therefore does not process an unnecessarily large number of data

points from the dataset in order to make a conclusive final estimate. The algorithm

from Section 7.1.2 also correctly identifies when the min-entropy leakage estimate has

stabilised, although the estimate is less precise than the mutual information estimate

because the confidence interval is much wider than its mutual information equivalent

(for all the reasons we discussed in Section 7.1.2); however, it still correctly identifies

the existence of an information leak in the dataset.

leakiEst must iterate over each unique combination of secret and observation to

compute the joint probability distribution for a given dataset, which is computation-

ally expensive for large numbers of unique secrets and observations. Rather than ex-

plicitly storing the joint probability distribution of the unique secrets and observa-

tions that occur in a dataset and recomputing it every time a new data point is read,

an Observations object instead stores a two-dimensional frequency table (the first di-

mension for secrets and the second for observations), along with the total number of

data points read so far from the dataset; it is much more efficient to update these data

structures when new data points are processed than it is to recompute the entire joint

probability distribution. The joint probability distribution can then be constructed

from this information only when it is needed rather than each time a new data point

2This benchmark — and the other benchmarks described in the rest of this chapter — was performed
on the same computer as the chimp and QUAIL benchmarks in Section 5.2.3 (p. 148).
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is processed, meaning that leakiEst scales excellently for datasets containing small

to moderate numbers of unique secrets and observations and very large numbers of

data points: leakiEst is capable of processing a dataset containing 10 unique secrets,

10 unique observations and 500 million data points3 in under 3 minutes. leakiEst

scales less impressively for datasets containing large numbers of unique secrets and

observations, because of the need to derive a joint probability distribution from the

two-dimensional frequency table; nevertheless, leakiEst is able to process a dataset

containing 214 unique secrets and observations in under 10 seconds and a dataset con-

taining 220 unique secrets and observations in around 24 hours.

7.3 LeakWatch: Automated Information Flow Analysis for

Java Programs

leakiEst estimates the information leakage that occurs from secrets to observations in

arbitrary probabilistic systems, and we have shown that it can be used to accurately es-

timate both the mutual information and min-entropy leakage of programs when given

a dataset consisting of the secrets and observations that occur during executions of the

program.

leakiEst allows us to estimate the flow of information in more complex systems,

but it would not be easy to analyse programs with leakiEst: datasets would have to

be generated by repeatedly executing the program (which would undoubtedly require

extensive modification of source code to ensure that it only produces output that con-

forms to a leakiEst dataset format) and ensuring that all executions of the program are

i.i.d., and a framework would have to be created for automatically providing input to

the program if and when it expected it. These additional steps are all non-trivial, and

3We acknowledge that it is highly unlikely that a dataset of this size would be required to accurately
estimate either mutual information or min-entropy leakage for a system containing 20 unique secrets
and observations — especially given the good performance of our “sufficient sample size” algorithms —
unless evidence of a particularly subtle information leak were being sought. This dataset was generated
for the purpose of benchmarking leakiEst’s Observations class.
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would discourage programmers from using leakiEst to analyse the security of their

programs.

We have therefore developed a second software tool, LeakWatch, which operates

directly on Java programs rather than on datasets generated from programs, and pro-

vides the following additional functionality not offered by leakiEst:

(a) the automated collection of secret and observable information from Java pro-

grams via simple API calls, similar to the secret and observe commands in the

CH-IMP language, requiring the user to insert only a single line of Java source

code to record the occurrence of a secret or observable value;

(b) the sandboxing of programs running inside the same Java virtual machine (JVM)

— a feature prohibited by default due to the JVM’s design — allowing for the

rapid yet statistically independent execution of Java programs, thus enabling

multiple copies of the program to be executed simultaneously using multithread-

ing; and

(c) the automatic provision of input to Java programs that read from the standard

input stream in a way that does not violate either the semantics of the point-to-

point information flow model on which LeakWatch is based, or the prerequisites

for a meaningful statistical analysis of the program’s behaviour.

LeakWatch thus not only makes it possible to perform a point-to-point quantitative

information flow analysis of some types of real-world programs, but also significantly

simplifies the process from the perspective of the user.

Like chimp and leakiEst, LeakWatch is freely available.4

4
LeakWatch is available at https://www.cs.bham.ac.uk/research/projects/infotools/leakwatch/,

and is licensed under the Simplified BSD License.
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7.3.1 Automated Collection of Secret and Observable Information

One of the largest barriers to leakiEst’s adoption as an information flow analysis tool is

its processing of datasets, rather than programs. Programs typically provide output to

users via one of the standard streams (i.e. standard out or standard error), and suppress-

ing all of that output temporarily in order to output secret and publicly-observable in-

formation in a specific format for the purposes of information flow analysis is disrup-

tive for the programmer, is likely to lead to an unmaintainable code base, and may in

fact introduce information leakage bugs into the code in cases where the programmer

forgets to remove the statements that output the secret information to the standard

streams.

LeakWatch removes the need for programmers to perform this time-consuming

and error-prone task by providing its own API — the LeakWatchAPI class — consist-

ing of specific methods for recording the occurrence of secret and publicly-observable

information at points in the program chosen by the programmer. The LeakWatchAPI

class provides two methods, analogous to commands in the CH-IMP language (Sec-

tion 4.1, p. 91): secret(), which allows the programmer to record the occurrence of

a secret value and the name of the variable with which the value was associated at

that point during execution, and observe(), which allows the programmer to record

the occurrence of a publicly-observable value at that point during execution. These

methods serve the same purpose in LeakWatch as they do in CH-IMP’s information

flow model: when the program terminates, all data that was passed to LeakWatchAPI

via the secret() and observe() methods is converted into the unique string represen-

tations s and o respectively; s and o are then stored as a single data point in a leakiEst

Observations object. leakiEst then computes the estimated joint probability distribu-

tion of the secrets and observations and performs its statistical analysis.

An example of LeakWatch being applied to a familiar piece of code is shown in

Listing 7.3. This is the code from Listing 7.1 that estimates the mutual information
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of two integers generated via Java’s Random class, with two notable changes: (a) the

line outputting the values of sec and obs to the standard output stream for the gener-

ation of a leakiEst dataset has been removed — calls to the LeakWatch API methods

have instead been inserted on lines 11 and 13, indicating the occurrence of secret and

publicly-observable information at those points; and (b) the for loop surrounding the

contents of the main() method has been removed — LeakWatch will automatically

execute the program’s main() method the number of times necessary to compute an

accurate information leakage estimate, with no further interaction required on behalf

of the programmer.

The programmer compiles the code in Listing 7.3 with a standard Java compiler

and runs LeakWatch, providing it with the name of a target class (in this example,

Listing 7.3: the Java code from Listing 7.1 (p. 200), with statements for generating leakiEst

datasets replaced with simpler calls to the LeakWatch API

1 import bham.leakwatch.LeakWatchAPI;
2 import java.util.Random;
3
4 public class LowEntropyRandom {
5
6 public static void main(String[] args) {
7 Random genSeed = new Random();
8 Random gen = new Random(genSeed.nextInt(200));
9

10 int obs = gen.nextInt(10);
11 LeakWatchAPI.observe(obs);
12 int sec = gen.nextInt(10);
13 LeakWatchAPI.secret("sec", sec);
14 }
15
16 }

Listing 7.4: the output from LeakWatch after it estimates the mutual information of the se-
cret and observable information in the program shown in Listing 7.3

1 Stopped after 600 executions: corrected leakage: 0.44 bits
2 There IS evidence of an information leak (estimated range: 0.35 - 0.52 bits).
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LowEntropyRandom). LeakWatch loads the target class (and any other classes it refer-

ences), locates and executes its main() method repeatedly to gather execution data via

the LeakWatchAPI class, and creates a leakiEst Observations object consisting of the se-

cret and observable values that were gathered; finally, it produces the output shown in

Listing 7.4 (p. 205). The result is consistent with the output from leakiEst itself (Fig-

ure 7.1(a), p. 198), but no action other than identifying the occurrences of the secret

and observable information was required of the programmer in order to estimate the

information leakage that occurs from the target class’s main() method.

7.3.2 Ensuring the Statistical Independence of Program Executions

We saw in Section 7.2 that leakiEst facilitates the information flow analysis of many

different types of system, including those for which source code is unavailable; pro-

vided that a dataset can be generated from the system’s behaviour, and that enough

data points can be collected, it can be analysed successfully. This usually requires

the repeated execution of the system, providing a range of secrets and recording the

corresponding observations that occur. While it is also possible for programmers to

generate datasets from their Java programs in this way, it is inefficient: a new JVM

must be started for every execution of the program, and the JVM startup speed is rel-

atively slow; this problem is compounded by the large number of data points (relative

to the number of unique secrets and observations that occur) that are required for the

successful analysis of a system using leakiEst.

A naive solution would be to modify the Java program’s main() method so that the

code contained within it is executed a fixed number of times. This eliminates the

need to start up a new JVM to collect each data point. In many cases, this technique

will work: in Listing 7.1 (p. 200), the main logic of the program and the statement

that produces the output for the dataset are enclosed within a for loop whose body

is executed 2,000 times to produce the dataset. This is still not an optimal solution:

Figure 7.1(a) shows that only around 600 data points are required for a successful
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statistical analysis of this program; the remaining 1,400 executions of the program

were therefore performed unnecessarily.

There are additional cases where this technique will subtly fail to produce reliable

datasets due to dependencies between executions. Consider the code in Listing 7.5;

this program chooses an index of an 8-element integer array at random (which is

treated as secret information), overwrites the integer at this position with the inte-

ger 0, and reveals the modified array to an attacker. There is clearly an information

leak in this program: our information flow model assumes that the attacker knows the

program’s source code, and because the attacker knows that none of the elements in

the array are initially 0, they can locate the position of the 0 in the array revealed to

them to find which of the eight array indices is the program’s secret. By executing this

program repeatedly to generate a dataset, leakiEst estimates after processing around

400 data points that there are approximately 2.92 bits of mutual information between

the secret array index and the array observed by the attacker, 0.08 bits short of the

Listing 7.5: a program that leaks information about the secret array index that is chosen at
random due to an operation performed on the integer at that index

1 import java.util.Arrays;
2 import java.util.Random;
3
4 public class ChooseInt {
5
6 private static int[] ints = { 1, 2, 3, 4, 5, 6, 7, 8 };
7
8 public static void main(String[] args) {
9 // Choose a random index of the "ints" array

10 int randIndex = new Random().nextInt(ints.length);
11
12 // Overwrite the integer at this index with 0
13 ints[randIndex] = 0;
14
15 // The secret is the index we chose; the observable is the array after the
16 // overwrite operation
17 System.out.println("(" + ints[randIndex] + "," + Arrays.toString(ints) + ")");
18 }
19
20 }
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log2(8) = 3 bits of mutual information that genuinely exist. However, if a dataset were

to be generated by surrounding the contents of the main() method with a for loop and

executing the program once, as in Listing 7.1, a different result would be obtained:

leakiEst would state that the dataset contains no evidence of an information leak oc-

curring. This is because the ints array is a static member variable: all iterations of the

for loop operate on the same copy of the array, and over time it would increasingly

be the case that all of the elements in the array were 0. Under these circumstances

the attacker would indeed not learn any information about the secret array index, but

the dataset being generated would no longer be an accurate reflection of the program’s

original behaviour. This naive solution may therefore accidentally introduce depen-

dencies between executions: they may no longer be i.i.d., and leakiEst’s statistical

analysis may draw incorrect conclusions about the behaviour of the program.

This is analogous to a situation that arises in LeakWatch when it executes a target

class’s main() method. The JVM loads classes into memory on-demand; the task of

locating the bytecode that defines a class, parsing the bytecode, and returning a refer-

ence to the new class to the caller is performed by a classloader, itself a Java class. A

key restriction is that a class with a given name may be loaded only once by a given

classloader. The JVM contains three classloaders by default, arranged in a hierarchy:

the bootstrap classloader loads the core Java classes (i.e. those whose names begin with

java.), the extensions classloader loads Java extension classes (e.g. classes that ship with

many JVMs that perform cryptographic operations), and the system classloader loads

other classes. This hierarchy is strictly enforced; for example, the system classloader

delegates the loading of java.lang.String to the extensions classloader, which in turn

delegates it to the bootstrap classloader. By default, this means that LeakWatch’s

classes and the target class (and any class it references) are loaded by the system class-

loader.

LeakWatch runs the target class by invoking its main() method and waiting for it

to return; this may involve the loading of other classes referenced by the target class.
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If one of these classes contains static member variables — as is the case in Listing 7.5

— having the system classloader load it would cause the same problem as the one de-

scribed above: LeakWatch would not be able to “reset” the values of static member

variables before invoking the target class’s main() method again, so some state may be

preserved between executions. As we have shown, this potentially violates the inde-

pendence of executions of the target class.

LeakWatch solves this problem by loading the target class with its own classloader,

positioned in the hierarchy between the system classloader and any classloaders used

by the target class (Figure 7.3). Before each invocation of the target class’s main()

method, a new LeakWatch classloader is initialised, defining only the target class. As

the main() method executes, the LeakWatch classloader creates a new instance of any

class referenced by the target class; subsequent requests for the class with that name

will return this instance of the class, rather than the instance that would usually be

returned by the system classloader. When the main() method returns, LeakWatch

destroys this classloader (and therefore any class loaded by it), ensuring that earlier

invocations of the main() method cannot interfere with future invocations. This guar-

antee even holds when multiple instances of the LeakWatch classloader exist con-

Figure 7.3: LeakWatch’s classloader hierarchy, allowing the (mostly) sandboxed execution of
multiple copies of the target class’s main() method inside the same JVM
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currently, allowing LeakWatch to perform multiple isolated invocations of the target

class’s main() method at the same time using multithreading; this can significantly

reduce the time taken to collect the number of data points necessary for leakiEst to

perform its statistical analysis.

The JVM’s classloader hierarchy prevents the full sandboxing of the target class if

it references classes that are usually loaded by either the bootstrap or extensions class-

loaders: in the JVM’s security framework the LeakWatch classloader must delegate

the class-loading request to them. This means, for instance, that all executions of the

target class’s main() method reference the same copy of the Java API classes, since the

JVM requires that those classes are loaded by the bootstrap classloader. Although this

could reintroduce statistical dependencies between executions, it is only possible with

methods in a handful of classes (e.g. java.lang.System’s setProperty() method), and

verifying whether those methods are called is achievable via static analysis.

7.3.3 Sound, Automated Provision of Input to Java Programs

Programs often accept and process user input; however, the process of prompting and

waiting for the user to supply input interrupts the program’s execution. This is another

barrier to analysing real-world programs: the secret and publicly-observable informa-

tion that occurs in a program cannot be collected dynamically if the program’s exe-

cution is blocked. We now consider how LeakWatch can automatically provide user

input to Java programs that expect it, in a way that is both consistent with CH-IMP’s in-

formation flow model and compliant with leakiEst’s prerequisites for statistical anal-

ysis.

It is possible to extend the CH-IMP model to include a formalism of user input

(Chothia et al., 2013b),5 whereby a CH-IMP program can accept input that is cho-

sen from a predefined, fixed range according to the observable information that has

5The author of this thesis is a co-author of this publication, but did not contribute to the user input
extension of CH-IMP; hence, it is introduced here rather than in the description of CH-IMP’s formal
model in Chapter 4.
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occurred so far during execution; the process of deciding which input should be sup-

plied to the program is an input strategy, of which there may be one and only one for a

given execution of the CH-IMP program. A CH-IMP program that accepts user input

can be reduced to the DTMC defined in Definition 4.6 (p. 117). For the purposes of

automatically providing input to Java programs with LeakWatch, the key finding of

this work is the following theorem:

Theorem 7.1 (information leakage from input-consuming CH-IMP programs)

For any CH-IMP program, there exists an input strategy that makes the program

leak information if, and only if, the program leaks information for an input strat-

egy that chooses inputs with a uniform distribution.

Given that LeakWatch adopts CH-IMP’s information flow model, this theorem has

the following implication for estimating the information leakage from Java programs

that accept user input: provided that a single input strategy is followed for every exe-

cution (making the executions identically distributed), and that the inputs chosen dur-

ing one execution do not depend on those chosen during another execution (making

the executions statistically independent), we can satisfy leakiEst’s i.i.d. prerequisite

for performing a statistical analysis on the secret and observable information collected

from the program and detect flows of information in that data simply by supplying

inputs uniformly from a predefined, fixed range whenever the program prompts for

input.

Input can be provided to Java programs in many ways (e.g. via keyboard or mouse

interaction with GUI elements, over network sockets, or from files). We focus our

attention on input provided via the standard input stream, a universal method of sup-

plying data to software; in Java, this stream is accessed via the static member variable

System.in of type java.io.InputStream, whose read() method returns the next byte

from the input buffer. Operating systems provide a single standard input stream to

a process; this means that all classes loaded by a particular JVM read from the same

System.in stream. This is problematic because LeakWatch’s classes and the target class
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all execute within the same JVM; even though LeakWatch sandboxes each execution

of the target program using its own classloader, all instances of the target class will

share (and therefore read from) the same input stream. This is most noticeable when

using multithreading to perform multiple concurrent executions of the target class’s

main() method: two instances of the main() method reading 20 bytes of input from

System.in will conflict, each using the read() method to read approximately 10 bytes

from the same stream. This leaves both instances of the program with meaningless

input, and violates the i.i.d. prerequisite for executions of the main() method.

We solve both problems by transforming every class loaded by LeakWatch’s class-

loader that reads from the standard input stream to instead read from an input driver,

a mock object that mimics System.in. When using LeakWatch to analyse a program

that reads from the standard input stream, the programmer must also write an appro-

priate input driver to supply input when it is required. The purpose of the input driver

is to implement an input strategy, as defined above: like System.in, it is a subclass of

java.io.InputStream, but its read() method may consult the observable information

that has been encountered so far during execution — although this is optional, given

the implication of Theorem 7.1 — and returns a stream of bytes comprising the se-

lected input to the caller. When classes are loaded by LeakWatch’s classloader, their

bytecode is dynamically transformed using the ASM library (Bruneton et al., 2002) so

that all references to System.in are replaced with references to the programmer’s input

driver. The loading of the input driver is also performed by LeakWatch’s classloader,

so each execution of the target class believes it alone is reading from the standard input

stream; this means that multiple concurrent executions of a Java program that reads

from the standard input stream can be analysed successfully using LeakWatch.

7.3.4 Performance Evaluation

The graph in Figure 7.4 shows the amount of time LeakWatch takes to estimate the

information leakage that occurs from increasingly large DC-nets implemented in Java,
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broken down into the time taken by LeakWatch to collect the sample and the time

taken by leakiEst to inspect the sample for evidence of information leakage. The im-

plementation contains a leak caused by biased random bit generation (a 0 is generated

with probability 3/4, rather than 1/2), making it similar to the CH-IMP DC-net example

we investigated in Section 6.1 (p. 161).

Figure 7.4 shows that, as more cryptographers are added to the DC-net, the amount

of time LeakWatch takes to collect a sample that is sufficient to compute an accurate

leakage estimate increases exponentially; this is consistent with the performance eval-

uation of chimp, where an exponential amount of time was required to formally verify

the security of DC-nets containing increasing numbers of cryptographers. The sta-

tistical estimation method employed by LeakWatch therefore ultimately suffers from

the same complexity problems as the formal verification approach of CH-IMP. How-

ever, the graph shows that the major advantage of statistical estimation over the formal

verification approach is its improved scalability: LeakWatch is able to collect a sam-

Figure 7.4: the performance of LeakWatch when analysing a biased DC-net with a varying
number of cryptographers
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ple large enough to successfully analyse a DC-net containing 12 cryptographers in 3

minutes (compared to the 41/2 hours taken by chimp to analyse the same system for-

mally), and LeakWatch successfully analyses a 14-cryptographer DC-net in around

15 minutes, something that chimp was unable to do within 100 hours. The amount

of time required for leakiEst to quantify the flow of information in the sample also

increases exponentially, but remains comparatively very small (less than a second for

DC-nets containing fewer than 14 cryptographers), indicating that the vast majority of

LeakWatch’s time is spent collecting a sufficient sample, and not computing leakage

estimates.

7.4 Summary

In this chapter, we have shown how the theoretical statistical results for estimating

information-theoretic leakage measures that we presented in Section 3.3 (p. 72) were

used to create LeakWatch, a fully-automated quantitative information flow analysis

tool for Java. LeakWatch approximates CH-IMP’s system model by estimating the

joint probability distribution of the secret and publicly-observable information that

occurs in the Java program by executing it an appropriate number of times and col-

lecting the secret and observable information that occurs during each execution; it

can therefore be used to verify whether an approximate security policy (i.e. “does the

program leak less than approximately this amount of information?”) is satisfied. We

have shown how LeakWatch’s design allows it to analyse multiple copies of the same

Java program concurrently and independently, even if it consumes user input from the

standard input stream; this can greatly reduce the amount of time taken to collect a

sufficiently large sample to analyse the program.

The primary limitation of this approach is the requirement to execute the program

a large number of times relative to the unique number of pieces of secret and publicly-

observable information that occur. We acknowledge that this prevents LeakWatch
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from being used to analyse Java programs that contain very large amounts of secret

and publicly-observable information. However, if a program meets the requirements

for a successful statistical analysis with LeakWatch — the ability to repeatedly execute

a program with a small to moderate number of unique secrets and observations, while

being able to guarantee the independent and identical distribution of the executions

— it is certainly possible to sacrifice a small amount of accuracy in the information

leakage measure for the ability to successfully analyse the program.





8
LeakWatch Case Studies

In Chapter 7 we presented leakiEst, an information theory library and sample-based

quantitative information leakage analysis tool, and LeakWatch, an automated quanti-

tative information flow analysis tool for Java.

In this chapter, we present three examples of LeakWatch being used to analyse

insecure Java programs. We begin by revisiting a familiar topic — the security of DC-

nets — and show how poor implementations of provably secure protocols can never-

theless lead to the breakdown of the security of those implementations. We then use

LeakWatch to analyse a proprietary cryptographic stream cipher, and show how its

behaviour reveals a surprising amount of information about its design, even though its

creators intended for the design to be secret. Finally, we investigate how a misunder-

standing of the security guarantees offered by OpenPGP, a data encryption standard,

can lead to the compromise of a message recipient’s identity.

In all three case studies, we show how a programmer can use LeakWatch to dis-

cover inadvertent information leakage vulnerabilities in the code, fix (or mitigate) the

vulnerabilities, and verify that the modifications result in the eradication (or reduction

in the size of) the information leak that occurs. In each case study, we provide the ap-

proximate time1 taken by LeakWatch to perform its analysis as a means of benchmark-

ing LeakWatch’s real-world performance. As with the CH-IMP case studies presented

1All benchmarks described in this chapter were performed on the same computer as the chimp,
QUAIL, leakiEst and LeakWatch benchmarks from Chapters 5 and 7.
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in Chapter 6, it is important to note that LeakWatch will not explain why information

leaks arise, e.g. by automatically locating the blocks of code that cause them; it will

only answer questions of the form “approximately how much information flows from

the secrets at these points in the code to the values at these other points in the code?”.

The narrative we provide for each of these case studies describes the procedure that we

would expect a security-minded programmer to follow in order to verify the security

of their own code, e.g. as part of quality assurance.

All of these case studies use an external source of randomness (namely, the java.

security.SecureRandom class in the Java API) to provide probabilistic behaviour; this

class’s output does not have a statistically significant effect on the probability distri-

bution describing the observable information that occurs in the programs, and thus it

is unnecessary to identify its output as observable information in its own right, as we

explained in Section 3.3.1 (p. 75).

Given the realistic nature of these case studies, they contain significantly more

source code than the CH-IMP case studies presented in Chapter 6, and it cannot all

be reproduced as part of this chapter. The full source code listings are therefore avail-

able on the LeakWatch web site,2 and we highlight the relevant parts of the code in

this chapter.

All of these case studies were first published in the literature as part of the publi-

cation presenting LeakWatch (Chothia et al., 2014).

8.1 A Poorly-Implemented DC-Net

We demonstrated in Section 6.1 (p. 161) that the anonymity guarantees provided to

participants in DC-nets hold — even in the presence of a single malicious participant

in the DC-net itself — as long as the remaining participants generate truly random

bits. As the bits they generate become biased in favour of either 0 or 1, the DC-net

2The source code listings can be found in the “Examples” section of the web site at https://www.cs.
bham.ac.uk/research/projects/infotools/leakwatch/examples/.
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begins to leak information about a bill-paying cryptographer: because a bill-paying

cryptographer announces the negation of the XOR of the two random bits they know,

and because both of those bits are likely to have the same value, a passive attacker

observing the announcements can become increasingly sure that the participant whose

announcement differs from the others’ announcement is the bill-payer. High-quality

randomness, therefore, is crucial to the secure operation of a DC-net.

However, it is not enough merely for the DC-net (or any other security protocol,

for that matter) to be theoretically secure: any implementation must also execute the

protocol correctly, and, crucially, must not introduce any vulnerabilities of its own

that undermine the security of the protocol. In this case study, we see how a poor

implementation of the DC-net protocol in a more complex program erodes the theo-

retical security provided by the protocol. (As in Section 6.1, we shall assume that the

bill-payer is one of the cryptographers participating in the DC-net, and that each cryp-

tographer is equally likely to pay the bill from the perspective of a passive observer.)

The program in question implements a multithreaded, object-oriented DC-net in

Java. It consists of four classes:

(a) Diner, a participant in the DC-net with the ability to communicate privately with

individual Diners;

(b) Table, the provider of a communication channel shared by one or more Diners;

(c) Waiter, an entity assigned to a Table that is responsible for collecting the payment

details of the bill-paying Diner;

(d) DiningCryptographers, the class that creates instances of all of the others and se-

lects a random Diner to be the bill-payer (this class also contains the program’s

main() method, and thus is the class whose name is given to LeakWatch when

the program is analysed).

All instances of the classes run in separate threads, and communicate with each other
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via sockets using the Socket and ServerSocket classes in the java.net package of the

Java API.

The program begins with an initialisation process, a fragment of which is shown in

Listing 8.1. The DiningCryptographers class creates a number of Diner objects chosen

by the user (for consistency with previous DC-net examples, we choose four), and

one each of Table and Waiter. The DiningCryptographers class seats the Diners at the

Table by disclosing to them the port number of a ServerSocket on which the Table is

listening; each Diner connects via their own Socket, opens a ServerSocket of their own

for private communication with other Diners, and reports this private port number to

the Table. The Table then sends to each Diner the private port number of the Diner

to their “left”, so each Diner knows which other Diner should receive their randomly-

generated bit. As part of this initialisation process, the DiningCryptographers class also

randomly selects one of them to be the payer; since the identity of the payer is the DC-

net’s secret, it is marked as such with the LeakWatch API’s secret() method on line

16. The bill-paying Diner is additionally informed of the port number of the Waiter’s

ServerSocket.

Listing 8.1: a fragment of the DC-net initialisation procedure, taken from the
DiningCryptographers class; the program’s secret is identified with a call to
the LeakWatch API’s secret() method on line 16

1 // Create the Waiter and Table
2 Waiter waiter = new Waiter();
3 Table table = new Table(totalDiners, waiter);
4
5 // Create the Diners, and seat them at the Table
6 Diner[] diners = new Diner[totalDiners];
7 for (int i = 0; i < totalDiners; i++) {
8 Diner diner = new Diner(i + 1);
9 diner.sitAt(table);

10 diners[i] = diner;
11 }
12
13 // Choose a Diner at random to be the bill-payer, and mark their identity as a secret
14 int dinerToPay = new SecureRandom().nextInt(totalDiners);
15 diners[dinerToPay].orderToPay();
16 LeakWatchAPI.secret("dinerToPay", dinerToPay);
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The Diners then concurrently execute the DC-net protocol (Figure 8.1): they pri-

vately exchange their randomly-generated bits with each other over their private com-

munication channels, and the payer sends their payment details to the Waiter over an-

other private channel. The Diners then announce the results of their XOR computation

to the Table; since the messages sent over the Table’s shared channel are considered

to be publicly visible, they are marked as observable with a call to the LeakWatch

API’s observe() method (on line 14 of Listing 8.2 (p. 222)). LeakWatch thus answers

the question “what does a passive attacker learn about the identity of the bill-paying

Diner by watching the messages sent over the Table’s shared communication channel?”.

LeakWatch takes around 2 minutes to perform 4,700 executions of the main()

method in the DiningCryptographers class, and leakiEst takes around 300ms to com-

pute a leakage estimate. LeakWatch estimates that there are approximately 1.15 of

a possible 2 bits of information shared between the identity of the bill-payer and the

messages the Diners send over the Table’s communication channel. The min-entropy

Figure 8.1: an overview of the Java DC-net implementation, in which Diner 2 pays the bill;
the final result is 1, indicating that one of the Diners paid
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Listing 8.2: the Table class’s asynchronous run() method, which handles incoming socket
connections from Diners and marks their XOR computation announcements as
publicly-observable information with a call to the LeakWatch API’s observe()

method on line 14

1 @Override
2 public void run() {
3 synchronized (dinerAnnouncements) {
4 try {
5 BufferedReader in = new BufferedReader(
6 new InputStreamReader(client.getInputStream())
7 );
8
9 // Connecting Diners are expected to send one message to the Table, in the

10 // following format:
11 // [id]: [0|1]
12 // After receiving this message, the Table will close the connection
13 String dinerResult = in.readLine();
14 LeakWatchAPI.observe(dinerResult);
15 dinerAnnouncements.add(
16 dinerResult.replaceFirst("\\d+: ", "").equals("1")
17 );
18
19 in.close();
20 client.close();
21 } catch (IOException e) {}
22 }
23 }
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leakage is estimated to be 1 bit after 12,000 executions; 6 minutes were spent perform-

ing these executions, and 220ms were spent computing the leakage estimate. Although

the messages themselves reveal no information about the identity of the bill-payer (be-

ing a faithful implementation of the provably-anonymous DC-net protocol), the order

in which they are sent does: the additional time taken by the bill-payer to send their

payment details to the Waiter while executing the protocol means that, more often than

not, they are one of the last Diners to announce the result of their XOR computation

to the Table. An attacker can therefore assume that the first and second (and prob-

ably third) Diners to announce are not the bill-payer, a strategy that leads to a more

successful single-guess attempt at identifying the bill-payer.

This leak can be eliminated in several ways; the easiest is to modify the Diner class

so that each Diner waits a short period of time (e.g. 100ms) between performing their

XOR operation and sending their announcement to the Table. Assuming that it takes

the bill-payer under 100ms to send their payment details, this padding makes it more

likely that the Diners’ messages will arrive at the Table in an arbitrary order. After

performing 7,200 executions of a DC-net implementation containing this patch (tak-

ing around 13 minutes), LeakWatch confirms that there is no longer any information

shared between the bill-payer’s identity and the Diners’ announcements.

8.2 Analysing the Design of Stream Ciphers

Crypto-1 is a proprietary stream cipher used to encrypt transmissions in several com-

mercial RFID tags. The design of Crypto-1 is confidential, and its inventors intended

for it to remain a secret, but cryptanalysis by Garcia et al. (2008) revealed that the ci-

pher consists of a 48-bit linear feedback shift register (LFSR) and three Boolean func-

tions. Each keystream bit is generated by tapping 20 bits from the LFSR and passing

groups of four of these bits as input into one of two Boolean functions (fa, fb), which

each produce one bit of output; these five output bits are in turn passed into the third
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Boolean function (fc), whose output is used to compute the next bit of the cipher’s

keystream. In this case study, we show that a considerable amount of detail about this

structure is revealed when performing a simple black-box analysis of the cipher using

LeakWatch.

We assume that we are given the JVM bytecode — but not the Java source code

— of an implementation of the Crypto-1 cipher in a class named Crypto1, and that

we know nothing about the class’s structure other than that its constructor accepts a

single parameter, an array encoding a 48-bit key that is used to initialise the LFSR’s

state, and that it exposes a method, keyStreamBit(), that returns successive bits of the

keystream. This scenario is realistic, given that Crypto-1 is a proprietary (and there-

fore closed-source) cipher, and demonstrates that LeakWatch can be used to estimate

the information leakage from programs whose source code is not necessarily available,

Listing 8.3: part of the Crypto1BitFlip class, which drives the Crypto1 bytecode that imple-
ments the Crypto-1 stream cipher

1 // Generate a random 48-bit key
2 boolean[] key = new boolean[48];
3 SecureRandom rnd = new SecureRandom();
4 for (int i = 0; i < key.length; i++) key[i] = rnd.nextBoolean();
5
6 // Use the key as the initial state for a Crypto-1 cipher
7 Crypto1 cipher = new Crypto1(key);
8
9 // Observe first bit of the keystream

10 LeakWatchAPI.observe(cipher.keyStreamBit() ? "1" : "0");
11
12 // Flip the nth bit of the key with probability 0.5: the secret is whether the bit was
13 // flipped between initialisations of the cipher
14 if (rnd.nextBoolean()) {
15 key[n] = key[n] ? false : true;
16 LeakWatchAPI.secret("flipped" + n, true);
17 } else {
18 LeakWatchAPI.secret("flipped" + n, false);
19 }
20
21 // Use the key as the initial state for another Crypto-1 cipher
22 cipher = new Crypto1(key);
23
24 // Observe first bit of the keystream of this second cipher
25 LeakWatchAPI.observe(cipher.keyStreamBit() ? "1" : "0");
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usually because it is legally unobtainable and challenging to reverse-engineer from

bytecode.

Information about the structure of the cipher is revealed by loading different initial

states into the LFSR and observing the output from the final Boolean function fc. We

begin by creating a class, Crypto1BitFlip, that drives the Crypto1 class and tests the

effect that the bit at index i in the LFSR has on the cipher’s output; the salient part

of this class’s source code is shown in Listing 8.3. It begins by creating an instance of

the Crypto1 class with a randomly-generated initial state, and obtains the cipher’s first

output bit from fc. The value of this bit is marked as observable using the LeakWatch

API’s observe() method on line 10. Another Crypto1 object is created with the same

initial state as before, but with the value of the bit at index i flipped with probability 1/2

— the decision about whether or not this bit is flipped is marked as secret information

using the LeakWatch API’s secret() method on lines 16 and 18. It then obtains the

output from fc for this second Crypto1 object, and its value is also marked as observable

using the LeakWatch API’s observe() method on line 25. Thus, the question being

asked of LeakWatch is “what is the correlation between the bit at index i in the LFSR

being flipped and the output of fc changing?”; if the output bit changes when the bit

at index i is flipped, clearly the bit at that index has some effect on the cipher’s output,

and therefore must be one of the tapped bits.

By analysing the Crypto1BitFlip class with LeakWatch 48 times, each time using

a different value of i between 0 and 47, we can estimate the influence of every index

in the LFSR on the behaviour of the cipher. As one would expect, LeakWatch reveals

which indices of the LFSR are tapped and passed as input to the Boolean functions in

the cipher: the indices on the x axis that fall above the upper bound for zero leakage in

Figure 8.2 (p. 226) correlate with the tapped bits of the LFSR, as identified by Garcia

et al.’s reverse-engineering of the cipher (Figure 8.3, p. 226). LeakWatch takes a total

of 56 seconds to collect the 48 samples, and leakiEst takes a total of 530ms to analyse

these samples and produce the 48 leakage estimates; each execution of LeakWatch
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collects a sample of up to 700 data points from Crypto1BitFlip’s main() method to

perform a successful analysis.

By collecting more than the minimum number of data points required for a suc-

cessful analysis, it is possible to use LeakWatch to learn more about the structure of

Crypto-1. Recall the question that LeakWatch answers of the Crypto1BitFlip class:

“what is the correlation between the bit at index i in the LFSR being flipped and the

output of fc changing?”. This is a quantitative measure, rather than a qualitative one;

informally, it can be seen as the influence of the bit at index i on the cipher’s keystream.

If it can be estimated precisely enough, the amount of influence each bit has over the

keystream may therefore reveal more information about the cipher’s structure.

Figure 8.2: the influence over the first bit of the keystream of each bit in the 48-bit secret
initial state for Crypto-1, with LeakWatch collecting the minimum sample sizes
necessary for a successful analysis of each initial state bit
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Figure 8.3: the structure of the Crypto-1 stream cipher (with the feedback function omitted),
as reverse-engineered by Garcia et al. (2008)
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The graph in Figure 8.4 shows the results of the same experiment performed again,

but with the sample size for each execution of LeakWatch increased to 3,000 data

points. Again, by reading off the indices on the x axis that fall above the upper bound

for zero leakage, we see which bits are tapped to produce the keystream; the most no-

ticeable difference is the narrower confidence interval for each point compared with

Figure 8.2, owing to the increased sample size. However, notice also how the relative

vertical distances between the points for each group of four indices now reveal two dis-

tinct patterns — marked with dashed lines — that were not obvious before. These pat-

terns characterise the Boolean functions fa and fb: the pattern for groups {9,11,13,15}

and {33,35,37,39} represents fa, and the pattern for {17,19,21,23}, {25,27,29,31} and

{41,43,45,47} represents fb (cf. the inputs to these functions in Figure 8.3). It is there-

fore possible to “see” which indices are tapped by each of these functions. Moreover,

the slight variation in the groups’ distances from the x axis reveals information about

the third Boolean function fc, into which the output from the other Boolean functions

is passed; it is clear, for instance, that the fourth bit passed as input to fc (i.e. the out-

put from the second fa function) has a greater influence over the keystream bit than

Figure 8.4: the influence over the first bit of the keystream of each bit in the 48-bit secret
initial state for Crypto-1, with LeakWatch collecting a sample of size 3,000 for
each initial state bit; the relative vertical distances between the points characterise
the Boolean functions fa and fb, as marked by the dashed lines
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the others, given that the corrected mutual information for all bits in that group is

higher.

This case study shows that just the first bit of Crypto-1’s keystream leaks a signif-

icant amount of information about the cipher’s structure: not only does the analysis

identify which bits of the cipher’s LFSR are tapped to produce the keystream, it also

quantifies the influence of each of these bits over the keystream. This, in turn, dis-

closes the arrangement of other components in the cipher’s supposedly secret design.

LeakWatch can be used in a similar manner to analyse the structure of other propri-

etary LFSR-based stream ciphers, such as Hitag-2 (Verdult et al., 2012).

8.3 Recipient Disclosure in OpenPGP Encrypted Messages

OpenPGP, as defined in RFC 4880 by Callas et al. (2007), is a widely-used data encryp-

tion and authentication standard based on public-key cryptography. RFC-compliant

encrypted OpenPGP messages commonly contain three types of packet:

(a) Public-Key Encrypted Session Key (PKESK) packets, containing a symmetric ses-

sion key randomly generated by the sender of the message and encrypted with

the public key of one of the recipients (one of these packets is present in the en-

crypted message for each recipient, although they all share the same symmetric

session key);

(b) Symmetrically Encrypted Integrity Protected Data (SEIPD) packets, containing the

sender’s message encrypted under the symmetric session key that was generated

for each of the PKESK packets; and

(c) Modification Detection Code (MDC) packets, allowing recipients to detect any ev-

idence of tampering with the SEIPD packet.

Although OpenPGP provides message confidentiality (via the PKESK and SEIPD pack-

ets) and integrity (via the SEIPD and MDC packets), it does not guarantee recipient
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confidentiality, as this case study demonstrates.

In this program, two principals (represented as Person objects) attempt to commu-

nicate securely using OpenPGP while concealing their identities from a passive at-

tacker with the ability to read messages sent over the communication medium. There

are six principals in total, each with a different name and their own OpenPGP public

key. Their details are listed in Table 8.1.

The first principal — the sender, represented as a Person object — is chosen ran-

domly from the pool of six principals, and a second — the recipient, represented as

another Person object — is chosen from the remaining five (Listing 8.4). These ob-

Table 8.1: the names and PGP public key fingerprints of the principals

Name Public key fingerprint

Alice 1CE2 5A83 C3B6 97EA 180B 279F 82BA 4CE5 B015 A803

Bob 4199 49B7 BBA5 19BF FBEB 1C17 821F 3204 A7BD A788

Charlie 1540 A4C9 FD86 30CC D4FD 909E 28B5 4831 1115 A81C

Dan 551A 1C3F 95D6 5AE7 7850 1C39 4467 76C2 8E24 D2A1

Elvis FF93 8431 AAD4 6FDE E008 5524 B84D A82C A2D6 ABCA

Fred 6EEC 72E0 7CCD 8F26 C455 AF69 05FF 36DE 5074 321D

Listing 8.4: the random selection of two principals from the pool of six shown in Table 8.1;
the first will attempt to securely send a message to the second

1 // Choose a person at random to be the sender, and mark their identity as a secret
2 Person sender = new Person(
3 Name.values()[rand.nextInt(Name.values().length)]
4 );
5 LeakWatchAPI.secret("sender", sender.getName());
6
7 // Choose a different person at random to be the recipient, and mark their identity as a
8 // secret too
9 Person recipient;

10 do {
11 recipient = new Person(
12 Name.values()[rand.nextInt(Name.values().length)]
13 );
14 } while (recipient.getName().equals(sender.getName()));
15 LeakWatchAPI.secret("recipient", recipient.getName());
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jects store both the public and private OpenPGP key for each principal. The identi-

ties of both sender and recipient are marked as secret information using calls to the

LeakWatch API’s secret() method on lines 5 and 15. Next, the BCPG Java library3

is used to encrypt a message from sender to recipient greeting the recipient by name

("Hello, [recipient]") using OpenPGP (Listing 8.5). The encrypted message there-

fore consists of a PKESK packet encrypted under the recipient’s OpenPGP public key,

which, when decrypted by the recipient using their OpenPGP private key to reveal the

enclosed symmetric key, can be used to decrypt the contents of the following SEIPD

packet encrypted under the symmetric key to retrieve the sender’s message.

Two features of the encrypted message — its first 96 bits, and its total length in

bytes — that would be known to a passive attacker observing the communication

medium are marked as observable information using calls to the LeakWatch API’s

observe() method on lines 13 and 16 of Listing 8.5. Recall that the CH-IMP informa-

tion flow model assumes that an attacker knows the source code of the program; thus,

3BCPG is a third-party OpenPGP library for Java; it is available from https://www.bouncycastle.org/
java.html and is licensed under the MIT License.

Listing 8.5: a greeting from sender to recipient is encrypted using OpenPGP and sent over an
insecure communication medium, allowing a passive attacker to observe both the
start of the encrypted message and its entire length in bytes

1 // Use the OpenPGP API to encrypt "Hello, <recipient’s name>" with the recipient’s public
2 // key
3 byte[] encryptedMessage = sender.encryptMessageFor(
4 recipient, "Hello, " + recipient.toString()
5 );
6 StringBuilder encryptedString = new StringBuilder();
7 for (byte b : encryptedMessage) {
8 encryptedString.append(String.format("%02X", b));
9 }

10
11 // Mark part of the Public-Key Encrypted Session Key Packet as observable by the passive
12 // attacker
13 LeakWatchAPI.observe(encryptedString.toString().substring(0, 24));
14
15 // Mark the length of the encrypted message, in bytes, as observable by the attacker
16 LeakWatchAPI.observe(encryptedString.toString().length());
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in this example, LeakWatch answers the question “how much information does an

attacker with knowledge of the principals’ OpenPGP public keys and the structure of

the plaintext message learn about the chosen principals’ identities by observing these

two features of the encrypted message?”.

Assuming the two principals are selected randomly, there are approximately 4.9

bits of secret information present: around 2.6 bits from the sender’s identity, and

around 2.3 bits from the recipient’s identity. After executing this program around

1,200 times (taking 12 seconds to collect the sample and 300ms to produce the leak-

age estimate), LeakWatch reveals that there are approximately 2.52 bits of mutual

information between the principals’ identities and the features of the encrypted mes-

sage observable by the attacker. A closer reading of RFC 4880 (Callas et al., 2007,

Section 5.1) explains why: a PKESK packet contains the key ID (i.e. the lowest 64 bits

of the SHA-1 hash) of the OpenPGP public key that was used to encrypt the packet’s

contents, as shown by Table 8.2. According to the RFC, this is so that a recipient’s

OpenPGP implementation can quickly locate the correct PKESK packet in messages

that were encrypted for many recipients, rather than being forced to speculatively de-

crypt each PKESK packet in turn (a process which would fail for all but one of the

Table 8.2: the first 128 bits of OpenPGP encrypted messages sent between various principals;
the recipient’s key ID inside each encrypted message is highlighted

Sender Recipient OpenPGP encrypted message

Charlie Fred 85010C03 05FF36DE5074321D 010800BA. . .

Charlie Elvis 85010C03 B84DA82CA2D6ABCA 0107FE39. . .

Fred Charlie 85010C03 28B548311115A81C 0107FE29. . .

Dan Elvis 85010C03 B84DA82CA2D6ABCA 010800C9. . .

Fred Alice 85010C03 82BA4CE5B015A803 010800AE. . .

Fred Charlie 85010C03 28B548311115A81C 0108008B. . .

Alice Fred 85010C03 05FF36DE5074321D 0107FE37. . .

Dan Charlie 85010C03 28B548311115A81C 0107FF64. . .

Bob Fred 85010C03 05FF36DE5074321D 0107FF5B. . .

Dan Bob 85010C03 821F3204A7BDA788 010800C5. . .

Elvis Bob 85010C03 821F3204A7BDA788 0107FE3F. . .
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PKESK packets). Because our attacker model assumes that the attacker knows the

OpenPGP public keys of all of the principals — a realistic assumption, given that

OpenPGP public keys are widely published on online key servers — the attacker is

able to corroborate the key ID in the PKESK packet with the identity of the owner of

that key. There is therefore a complete leakage of the recipient’s identity, and a further

leakage of around 0.2 bits of the sender’s identity, because the attacker also knows that

the sender is not the recipient.

Some OpenPGP implementations mitigate this leakage of the recipient’s identity;

for example, when encrypting a message using GnuPG’s4 command line interface, the

-R option replaces the key ID in PKESK packets with a string of null bytes; this is

permitted by RFC 4880, which states that such “wild card” key IDs may be used to

thwart analysis of encrypted messages (Callas et al., 2007, Section 5.1). BCPG’s output

can be patched in a similar way by overwriting the 8 bytes beginning at byte offset 4

in the encrypted message, as in Listing 8.6.

After applying this patch, the mutual information decreases to approximately 1.79

bits, which LeakWatch verifies after around 900 executions of the patched program.

The recipient’s identity is no longer leaked completely via the key ID in the PKESK

packet, but the length of the SEIPD packet still reveals some information about the re-

cipient’s identity: longer recipient names produce longer ciphertexts when encrypted,

and the attacker knows the format of the plaintext message being sent to the recipient;

the attacker can therefore use the total length of the encrypted message to deduce the

length of the plaintext message, and therefore the length of the recipient’s name. In

4GnuPG, the GNU Privacy Guard, is a free implementation of the OpenPGP standard; it is available
at https://www.gnupg.org.

Listing 8.6: a patch that removes the key ID from the first PKESK packet in messages en-
crypted with BCPG, partially fixing the information leak

1 // Replace the key ID in the Public-Key Encrypted Session Key packet with null bytes
2 encryptedString.replace(8, 24, "0000000000000000");
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some cases, the attacker can guess the recipient’s identity in a single attempt (e.g. an

encrypted message with a length of 340 bytes must be intended for a recipient with

a seven-character name, and only Charlie fits this description); in others, the attacker

may require multiple attempts to guess the recipient’s identity (e.g. if the length is 338

bytes, the recipient’s name must be five characters long — a description matched by

both Alice and Elvis). LeakWatch determines the min-entropy leakage of the patched

program to be around 2 bits after 8,000 executions (taking approximately 20 seconds

to collect the sample and 200ms to compute the leakage estimate); the attacker is there-

fore approximately four times more likely to correctly guess the identity of both the

sender and recipient in a single attempt after observing the length of the patched en-

crypted message.

Our analysis assumes that the first 96 bits of the encrypted message are observable

by the attacker. Realistically, the attacker can observe all of the bits in the encrypted

message, but LeakWatch is unable to analyse entire encrypted messages of around

340 bytes: some of these bytes are defined (i.e. static) or range-limited by the RFC,

but most of them comprise the encrypted session key in the PKESK packet and the

plaintext message encrypted under this session key in the SEIPD packet. A successful

analysis of the entire encrypted message space using LeakWatch would therefore re-

quire the enumeration of every possible PKESK and SEIPD packet for every possible

combination of sender and recipient — this would require at least 4 · 6 · 5 · 2256 execu-

tions of the program for a successful analysis (or more, if the symmetric cipher chosen

to encrypt the session key were to use a key length greater than 256 bits), which is

clearly infeasible.

Figure 8.5 (p. 234) shows how increasing the number of bits in the message that

are observable by the attacker affects LeakWatch’s execution time. Predictably, it re-

veals a result consistent with the LeakWatch performance evaluation in Section 7.3.4

(p. 212): as the length of the observable part of the encrypted message increases, the

amount of time required for LeakWatch to perform the number of executions required
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to estimate the program’s information leakage increases exponentially (around 6 hours

when the length of the observable part of the encrypted message reaches 132 bits). The

amount of time required to estimate the size of the information leak from the dataset,

however, remains comparatively very small (around 1.5 seconds when the length of the

observable part of the encrypted message reaches 132 bits), as it does in Section 7.3.4.

8.4 Summary

In this chapter, we have presented three detailed case studies demonstrating that

LeakWatch can be used to estimate the amount of information leaked by some com-

plex Java programs. In each one, we demonstrated that LeakWatch quickly and cor-

rectly generates a sample that can be successfully analysed for information flows. It

would be infeasible to perform this analysis in a system model such as CH-IMP’s,

which requires the precise joint probability distribution of the secret and publicly-

Figure 8.5: the performance of LeakWatch when analysing the program in the OpenPGP case
study, with a varying number of bits in the encrypted message marked as observ-
able
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observable information to be known: even though some of the code we provide in this

chapter is reasonably short, there is still an enormous amount of complexity behind

the calls to various Java APIs and third-party libraries used by the code; encoding all

of this in a formal model would be prohibitively difficult. By relaxing CH-IMP’s sys-

tem model and instead approximating the joint probability distribution of the secret

and publicly-observable information that occurs in a program, we are able to mean-

ingfully analyse the flow of information in many complex programs that we otherwise

could not.

The main advantage of LeakWatch’s information flow model is its “point-to-point”

property inherited from CH-IMP’s information flow model: because it answers ques-

tions of the form “approximately how much information does a passive attacker learn

about secret values at these points by observing the values at these other points?”, exist-

ing code can be analysed simply by inserting one-line calls to methods in LeakWatch’s

API for identifying secret and observable information, similarly to how CH-IMP pro-

grams can be analysed simply by inserting calls to the language’s secret and observe

commands: no further annotation or refactoring of code is necessary.

We have investigated the practical extent to which LeakWatch is able to analyse

programs, and found that it is poor at analysing programs that contain a large amount

of entropy in their secret and publicly-observable information (e.g. when a program’s

output is the ciphertext of a symmetric cipher). This prevents LeakWatch from being

able to analyse all types of complex programs automatically — as we have seen, to

successfully analyse these programs it is necessary to divide the secret or observable

information into smaller, lower-entropy segments. However, provided that the pro-

gram’s secret and observable information can be divided in this way, LeakWatch is a

convenient tool for analysing the information security of complex Java programs.





IV
Closing Statements





9
Future Work & Conclusions

9.1 Future Work

We conclude the thesis by suggesting possibilities for future directions that this re-

search could take.

9.1.1 Narrower Bounds for Min-Entropy Leakage Estimates

In Section 3.3.2 (p. 79), during our review of the literature for estimating information-

theoretic measures, we described work by Chothia et al. (2014) on computing min-

entropy leakage estimates from samples of systems. The authors describe a method

of deriving greater than 95% confidence intervals for these estimates, thus placing

bounds on their accuracy. However, we saw in Section 7.1.2 (p. 192) that these con-

fidence intervals are much wider than the ones for mutual information estimates for

samples of an equivalent size (Section 7.1.1, p. 189); consequently, a much larger sam-

ple is required to place accurate bounds on the min-entropy leakage of a system. This is

a side-effect of Chothia et al.’s method using Pearson’s χ2 test for goodness of fit, which

requires larger samples for reliable results. Finding this distribution would remove the

need to experimentally determine an empirical frequency distribution’s goodness of fit

with the expected frequency distribution using Pearson’s χ2 tests, and would lead to



240 Chapter 9. Future Work & Conclusions

the ability to derive much narrower confidence intervals for min-entropy leakage.

A forthcoming publication by Boreale and Paolini (2014) presents a technique for

deriving narrower confidence intervals for min-entropy leakage in deterministic sys-

tems. They show that, when the probability distribution defining the system’s inputs is

relaxed slightly (i.e. allowing for the probabilities to be inexact), an estimator that pro-

vides excellent lower bounds on the confidence interval can be used; it also provides

very good upper bounds if the input distribution induces an approximately uniform

output distribution. To choose the input distribution, the authors rely upon random

sampling using the Metropolis Monte Carlo method and another method based on

rejection sampling. Our relaxed information flow model operates on probabilistic sys-

tems and does not sample a subset of the inputs, and it is unclear whether a technique

similar to Boreale and Paolini’s could be used to derive accurate bounds on the min-

entropy leakage in such systems, but it is worthy of investigation.

9.1.2 Automated Identification of Publicly-Observable Information

Both the original and relaxed information flow models presented in this thesis require

that the occurrence of a program’s publicly-observable information is clearly marked

(i.e. with CH-IMP’s observe command, or the LeakWatch API’s observe() method). It

is often possible to infer where this information occurs in real-world programs; e.g.,

in Java programs, information printed to the standard output stream (via System.out)

or written to the OutputStream of a File or Socket object is typically observable. Locat-

ing these occurrences is achievable efficiently with a static analysis of the program’s

bytecode (similarly to how we identified the occurrence of input to a program via the

standard input stream in Section 7.3.3 (p. 210) by analysing its bytecode for references

to System.in). Provided that the parameters passed to these objects’ methods were not

too high-entropy to preclude a successful statistical information flow analysis of the

program, LeakWatch could automatically infer that these method calls were points

where information becomes observable, with the parameters being the observable in-
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formation that occurs.

9.1.3 Explaining why Information Flow Occurs in Programs

In the introductions to Chapters 6 and 8 (pp. 159 and 217) we emphasised that our

information flow model identifies only that a flow of information occurs, but cannot

explain why it occurs. To partially address this shortcoming, it may be possible to

use feature selection algorithms from the machine learning literature to automatically

identify which subset of the publicly-observable information maximises the chosen in-

formation leakage measure. This would require modifications to the information flow

model; e.g., to determine precisely which variables belong to the set of variables whose

values maximise the flow of information in the program, it would be necessary to track

the names of variables from which publicly-observable information arises. Given mu-

tual information’s popularity as a filter metric in the machine learning literature, there

is a large body of existing work that could be applied directly to our model if mutual

information were the chosen information leakage measure, but it is not clear how much

of this work would be applicable to min-entropy leakage (or other measures).

9.2 Thesis Summary

This thesis has presented several advances in the field of quantitative information flow

analysis.

Our primary contribution is the development of a novel “point-to-point” quanti-

tative information flow model with a system model in which the occurrence of secret

and publicly-observable information is unrestricted. This is an improvement over pre-

vious information flow models, whose system models generally make unsatisfactory

assumptions about the behaviour of real systems: that they contain single pieces of

high-security and low-security information, process high-security information pro-

vided before execution and output low-security information upon termination, or a
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combination of these restrictions.

Our model quantifies the amount of information learned about a system’s secrets

by an attacker with knowledge of the system’s behaviour and the ability to inspect the

publicly-observable output it produces. This is achieved by modelling the execution of

a system as a discrete-time Markov chain (DTMC) and computing the joint probability

distribution of the secret and observable information that occurs in each accepting

(i.e. terminating) state of the DTMC. This joint probability distribution can be used

to compute a wide range of information-theoretic leakage measures to quantify the

flow of information in the system; in this thesis we have focused on computing the

min-entropy leakage from the system’s secret information to its publicly-observable

information and the mutual information of these two collections of information —

different measures model attackers with different abilities and goals, and one can be

chosen that best reflects the desired attacker model. We have demonstrated via many

examples that our model is ideal for analysing the flow of information in small or

medium-sized probabilistic programs and protocols, and have produced a software

tool for doing so.

Given that this system model is based on DTMCs, and that execution of a system

is characterised as the exploration of a DTMC, we eventually encounter the usual state

space explosion problem; this prevents us from analysing complex systems using this

information flow model. Our second contribution is a relaxed variant of our initial

information flow model, in which the joint probability distribution of the secret and

publicly-observable information that occurs in a system is estimated via sampling.

This introduces the usual complications of sampling that would impede a meaningful

information flow analysis of the system: ensuring that a sufficiently-sized sample has

been collected, accounting for noise in the sample, etc. With the help of theoretical

results from the statistics literature, we show that it is possible (and feasible) to accu-

rately approximate the mutual information and min-entropy leakage measures from

samples of systems; our technique is limited by the required sample size relative to
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the amount of unique secret and publicly-observable information that occurs in the

sample, but provided that a sufficiently large sample can be collected, it gives credible

results. We have demonstrated that this relaxed model can be used to analyse the flow

of information in much more complex programs, and have presented a software tool

for doing so automatically for programs written in Java.
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