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Abstract 

 

Polycyclic aromatic hydrocarbons (PAHs) play an important role in urban air quality due to the toxic 

and carcinogenic hazard they present. A class of pollutants receiving increasing interest from 

researchers are oxygenated (OPAH) and nitrated (NPAH) derivative compounds. There is a need 

for an improved understanding of the sources, concentrations, behaviour and fate of these 

pollutants as they can pose a similar public health risk as PAHs and can enter the environment 

both from primary combustion emissions and secondary formation from atmospheric reactions. 

This study investigates the airborne concentrations of PAH, OPAH and NPAH compounds in U.K. 

atmosphere at heavily trafficked and urban background sites. Sampling campaigns were 

conducted to assess the spatial and temporal trends, primary and/or secondary sources, gas-

particle phase partitioning and atmospheric degradation of PAHs, NPAHs and OPAHs. Differences 

in atmospheric concentrations between trafficked sites and the urban background site indicate a 

variable influence of road traffic emissions between different PAH, OPAH and NPAH compounds. 

Seasonal, diurnal and temporal patterns as well as positive matrix factorisation (PMF) source 

apportionment provide evidence of the key influencing factors governing the concentrations of 

PAHs, OPAHs and NPAHs in the urban atmosphere, in addition to the strength of road traffic 

emissions. For example, specific non-traffic sources are identified at these sites including 

combustion sources such as domestic and non-domestic wood combustion, and non-combustion 

sources such as temperature-driven volatilisation from surfaces. Evidence for the occurrence of 

PAH reactivity and atmospheric formation of NPAH and OPAH compounds between traffic and 

background sites is also observed, with the relative rates of atmospheric degradation shown to 

play a key role influencing the observed concentrations at these sites. It is also indicated that 

emissions of NPAHs from road traffic relative to PAHs have increased substantially in the last 20 

years, consistent with the increased proportion of diesel passenger vehicles in the U.K. traffic fleet.  
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Chapter 1 : Introduction 

 

1.1. Polycyclic aromatic hydrocarbons (PAHs), urban air quality and public health  

1.1.1. Urban air quality and public health  

Air pollution is a major threat to public health and failure to adequately tackle this problem could 

have significant socio-economic consequences (POST, 2014). Poor ambient air quality is projected 

to be the leading environmental cause of mortality by 2050 (OECD, 2012). In the UK, the potential 

economic impact of poor air quality is considered to be comparable to that resulting from smoking 

or obesity, potentially reducing life expectancy on average by 6 months, and costing around £16.4 

billion per year (Defra, 2010). This highlights the importance of monitoring major air pollutants in 

the U.K. atmosphere, in order to improve our understanding of the risks they present and how to 

reduce these risks.  

A specific class of pollutant of considerable interest due to its potential adverse health effects is 

particulate matter (PM) (Anderson et al., 2012). Indeed, both short-term and long-term exposure to 

ambient levels of PM is associated with respiratory and cardiovascular illness and mortality 

(AQEG, 2005). It is estimated that exposure to PM caused up to 51 000 deaths in the U.K. in 2008 

(COMEAP, 2010). It is suggested that the harmful effects of PM are predominantly associated with 

combustion-derived components (AQEG, 2005).  

Indeed, Harrison et al. (2004) indicated the presence of specific trace metal and organic pollutants 

such as polycyclic aromatic hydrocarbons (PAHs) may be primarily responsible for lung cancers 

associated with PM2.5. PAHs are therefore an important class of organic pollutants that require 

careful monitoring and investigation to understand their concentrations, behaviour and fate in the 

environment.  

Due to the widespread presence of PAHs in the environment, and their potential contribution to 

poor ambient air quality and public health, these compounds have been the subject to a 
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considerable amount of research by both toxicologists and atmospheric scientists for over a 

century. This project focuses on the atmospheric concentrations, behaviour and fate of PAHs as 

well as their oxygenated (OPAH) and nitrated (NPAH) derivative compounds in the urban 

atmosphere.  

 

1.1.2. The chemical and physical properties of PAHs, OPAHs and NPAHs  

PAHs comprise a large group of persistent organic compounds containing two or more fused 

aromatic (benzene) rings. These compounds display a wide range of molecular weights (MWs) 

from 2-ring structures (e.g. naphthalene) to 6+ ring structures (e.g. coronene). Over 100 individual 

PAH compounds have been identified in urban air (Seinfeld and Pandis, 1998), however research 

commonly focuses on 16 priority PAHs defined by the USEPA based on their known health risks 

and environmental occurrence. PAHs are now considered to have a ubiquitous presence in the 

ambient atmosphere. The names, abbreviated terms (as used throughout this thesis) and 

structures of the compounds studied in this investigation are presented in Table 1.1.  

PAHs are typically generated as by-products from the incomplete combustion and pyrolysis of 

fossil fuels and wood as well as the release of petroleum products. The physical and chemical 

properties of PAHs vary considerably between different compounds but are generally 

characterized by their relatively low water solubility and high lipophilicity (Choi et al., 2010) .  In 

general, their volatility, water solubility and biodegradability decrease with increasing molecular 

weight. Due to their ‘semi-volatile’ nature, PAHs can be present in the environment in both the gas-

phase and associated with particulate matter (EPAQS, 1999).  

A range of compounds receiving increasing interest in atmospheric science are PAH derivative 

compounds such as oxygenated (OPAH) and nitrated (NPAH) polycyclic aromatic hydrocarbons. 

OPAHs consist of PAH compounds with one or more hydroxyl or carboxylic oxygen groups 

attached to the aromatic ring e.g. ketone or quinone compounds. NPAH can be defined as a class 

of aromatic compounds with one or more nitro- (NO2) functional groups attached to the aromatic 
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ring. OPAHs and NPAHs are typically characterized by higher molecular weight and lower vapour 

pressure than their parent PAH, which indicates a stronger tendency to sorb to particulate matter  

(Walgraeve et al., 2010).  

Understanding the atmospheric chemistry of PAHs, OPAHs and NPAHs is particularly important as 

this will influence the atmospheric lifetime and ultimate distribution of these compounds in the 

environment and the level of risk posed to human health and wider ecosystems. Individual PAHs, 

OPAHs and NPAHs vary considerably in their sources, physiochemical properties and 

environmental behaviour/fate. This is further complicated by the fact that these compounds 

typically occur in complex, non-uniform mixtures, the composition of which also displays spatial 

and temporal variations (Albinet et al., 2008a,b).  

This introductory section outlines the primary sources, health risks, occurrence, behaviour 

(temporal, seasonal, phase-partitioning, transport) and environmental fate (deposition, photolysis, 

chemical reactivity) of PAH, OPAH and NPAH compounds and highlights how the understanding of 

these processes can be enhanced by studies involving atmospheric measurements.   

 

1.1.3. Policy issues  

Due to their toxic, persistent and bioaccumulative properties, a number of legislative measures, at 

national and international levels have been established in an attempt to minimise the levels of 

PAHs in the atmosphere. The U.K. is a signatory of the 1998 UNECE Protocol on Persistent 

Organic Pollutants (UNECE, 1998). The protocol contains obligations to reduce emissions of PAHs 

to below 1990 levels and assess the long-range transport of four specified PAHs (BbF, BkF, BaP 

and IPy). 

The World Health Organisation (WHO) has recommended concentrations for PAH corresponding 

to a carcinogenic slope factor. These guidelines indicate concentrations of BaP producing excess 

lifetime cancer risks of 1/10 000, 1/100 000 and 1/1 000 000 are 1.2, 0.12 and 0.012 ng m-3, 

respectively (WHO, 2000). 
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Table 1.1. Names, formulas and structures of the PAH, OPAH and NPAH compounds 

investigated in this study. 

 

Compound Name Abbrev 
Empirical 
Formula 

Chemical Structure 
Molecular 

Weight 
(g mol-1) 

 
CAS Number 

 
 
 

 
PAHs 

 

Naphthalene  
 

Nap 
 

C10H8 

 

 
 

128.2 91-20-3  

Acenaphthylene Acy C12H8 

 

 
 

152.2 208-96-8 

Acenaphthene Ace C12H10 

 

 
 

154.2 83-32-9 

Fluorene Flo C13H10 

 

 
 

166.2 86-73-7 

Phenanthrene Phe C14H10 

 

 
 

178.2 85-01-8 

Anthracene Ant C14H10 

 

 
 

178.2 120-12-7 

Fluoranthene Flt C16H10 

 

 
 

202.3 206-44-0 

Pyrene Pyr C16H10 

 

202.3 129-00-0 

Benzo(a)anthracene BaA C18H12 

 

 
 

228.3 56-55-3 
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Chrysene Chr C18H12 

 

228.3 218-01-9 

 
Retene  

 
(7-Isopropyl-1-

methylphenanthrene) 

 
 
 

Ret 
 
 

 
C18H18 

 

 
 

 
234.3 

 
483-65-8 

Benzo(b)fluoranthene BbF C20H12 

 

 
 

252.3 205-99-2 

Benzo(k)fluoranthene BkF C20H12 

 

 
 

252.3 207-08-9 

Benzo(e)pyrene BeP C20H12 

 

 
 

252.3 192-97-2 

Benzo(a)pyrene BaP C20H12 

 
 

 
 
 

252.3 50-32-8 

Indeno[1,2,3-cd]pyrene IPy C22H12 

 
 

 
 
 

276.3 193-39-5 

Benzo(g,h,i)perylene Bpy C22H12 

 

 
 

276.3 191-24-2 

Dibenz(a,h)anthracene DBA C22H14 

 

 
 

278.4 53-70-3 

CH3

H3C

CH3



6 
 

 
 
 

Coronene 
 
 

 

 
 
 

Cor 

 
 
 

C24H12 

 

 
 

 
300.4 

 
 
 

191-07-1 

 
NPAHs 

 

1-Nitronaphthalene 1NNap C10H7NO2 

 

 
 

173.2 86-57-7 

2-Nitronaphthalene 2NNap C10H7NO2 

 

 
 

173.2 581-57-7 

2-Nitrofluorene 2NFlo C13H9NO2 

 
 

 
 

211.2 607-57-8 

9-Nitroanthracene 9NAnt C14H9NO2 

 

 
 

223.2 3586-69-4 

1-Nitrofluoranthene 1NFlt C16H9NO2 

 

 
 

247.3 13177-28-1 

2-Nitrofluoranthene 2NFlt C16H9NO2 

 

 
 

247.3 13177-29-2 

3-Nitrofluoranthene 3NFlt C16H9NO2 

 

 
 

247.3 892-21-7 

4-Nitropyrene 4NPyr C16H9NO2 

 

247.3 57835-92-4 
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1-Nitropyrene 1NPyr C16H9NO2 

 
 

247.3 5522-43-0 

2-Nitropyrene 2NPyr C16H9NO2 

 

    
 

247.3 789-07-1 

7-Nitrobenz(a)anthracene 7NBaA C18H11NO2 

 

 
 

273.3 20268-51-3 

6-Nitrochrysene 6NChr C18H11NO2 

 

 
 

273.3 7496-02-8 

 
OPAHs 

 

9-Fluorenone 9F C13H8O 

 

 
 

180.2 486-25-9 

9,10 Anthraquinone AQ C14H8O2 

 

 
 

208.2 84-65-1 

2-Methyl-Anthraquinone MAQ C15H10O2 

 

 
 

222.2 84-54-8 

Benzo(a)anthracene-7,12-
dione 

BaAQ C18H10O2 

 
 

 
 
 

258.3 2498-66-0 
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The European Community’s fourth Air Quality Daughter Directive (2005/107/EC) set a legally 

binding target value of 1 ng m-3 for the annual mean concentration of BaP as a marker for total 

PAH levels. BaP is typically used as a representative PAH as it typically constitutes a substantial 

proportion of the total carcinogenic potential of the PAH mixture present (Delgado-Saborit et al., 

2011). It is estimated that 20-29% of the urban population of the EU is exposed to BaP levels 

higher than the 1 ng m-3 EU limit and 93-94% is exposed to levels higher than the 0.12 ng m-3 

WHO guide level (EEA, 2012).  

The National Air Quality Strategy (Defra, 2007) in the U.K. includes an Air Quality Objective for 

PAHs, stating a maximum annual air concentration average of 0.25 ng m-3 BaP (EPAQS, 1999). In 

order to ensure compliance with the policy drivers described, the levels and trends of PAHs need 

to be regularly measured and monitored, especially in areas where pollution levels are likely to be 

highest e.g. busy roads. 

No specific obligations or targets are currently in place for OPAHs and NPAHs. However, there is 

growing concern these compounds may pose a similar threat to public health as their ‘parent’ PAH 

compounds.  This highlights the need to improve our understanding of the levels and behaviour of 

PAHs as well as their OPAH and NPAH derivatives in the atmosphere, in order to inform policy 

makers of new or growing risks relating to these compounds and the potential need for new or 

amended policies to reduce their negative effects on public health.  

 

1.2. Sources of PAHs, OPAHs and NPAHs  

1.2.1. Sources of PAHs 

PAHs predominantly result during the burning of fossil fuels and are also found in coal tar, crude 

oil, creosote and roofing tar, as well as being used in manufacturing dyes, plastics and pesticides 

(Ravindra et al., 2008). Their specific sources can be divided into the following categories (WHO, 

2000 ; Choi et al., 2011 ; Ravindra et al., 2008 and references therein) :  
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i) Natural  e.g. non-anthropogenic fires caused by lightning strikes, volcanic emissions, diagenesis 

of sedimentary organic material and biosynthesis by microbes and plants.   

ii) Accidental e.g. spillage of petroleum products.  

iii) Domestic e.g. burning of wood, coal and other fuels for space heating and cooking.   

iv) Mobile e.g. exhaust emissions from vehicles including automobiles, trains, ships, aircraft, and 

machinery.   

v) Industrial and power plants e.g. aluminium production, coke production (e.g. in iron and steel 

works), creosote and wood preservation,  cement production,  incineration of waste, fossil fuel and 

biomass burning for commercial heat and electricity production.  

vi) Agricultural e.g. open burning of agricultural or forest residues.   

 

A global emissions inventory for PAH has been produced by Zhang and Tao (2009) with total 

emission of the 16 USEPA PAHs in 2004 estimated to be ~4 kg km-2 yr-1. Biomass burning and 

wildfires are the two key contributing sources (57% and 17% respectively) with smaller 

contributions from traffic (5%), domestic coal combustion (4%) and agricultural waste burning (3%) 

(Zhang and Tao, 2009).  

For the U.K., a preliminary source inventory was provided by  Wild and Jones (1995) which 

suggests the majority of PAH result from anthropogenic activity with negligible contribution from 

natural sources. Data regarding individual sources of PAHs (both total and individual compounds) 

in the U.K. are provided by the National Atmospheric Emissions Inventory (NAEI), funded by Defra. 

Estimated PAH emissions in the U.K. from key combustion sources are presented in Figure 1.1.  

It is shown that PAH emissions in the U.K. declined by ~88% between 1990 and 2012. This has 

resulted due to the almost complete reduction of PAH emissions from anode baking for aluminium 

production, as a result of production plant closure and improved abatement technologies (Murrells 

et al., 2010). Emissions reductions have also resulted from reduced domestic coal combustion and 
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the phasing out of burning agricultural wastes. These changes have resulted in a substantial shift 

in the relative source contributions for PAHs in the U.K. over this time (see Figure 1.2).  

 

 

Figure 1.1. Estimated emissions of total PAH from key anthropogenic combustion sources, 

as provided by the NAEI (http://naei.defra.gov.uk). The following distinctions are made 

regarding these source categories : 

 Power stations/industrial emissions  – dominated by coal burning for public heat and 

electricity generation, but also includes emissions associated with petroleum refining and 

manufacturing.  

 Transport emissions –  dominated by gasoline and diesel-fuelled road vehicles.  

 Domestic combustion (other) –  includes combustion of oil, peat and charcoal  

 Metal production – includes anode baking in aluminium production as well as sinter 

production in iron and steel plants. 

 Agricultural burning – for example, the field burning of wheat residues.  

 Other emissions – includes incineration of waste, accidental fires, emissions from 

November 5th celebration bonfires, fugitive emissions from coke production and bitumen 

use in road paving.  
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a  

b  

Figure 1.2. Relative contributions of different anthropogenic combustion sources to total 

U.K. PAH emissions, as estimated by the NAEI (http://naei.defra.gov.uk) in 1992 (a) and 2012 

(b).  
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The key contributor of PAHs nationally in the U.K. is domestic combustion of wood (~48%) 

however vehicular traffic and regional-specific industries frequently dominate in urban and 

suburban areas (Keyte et al., 2013; WHO, 2000). Indeed, it has been estimated that motor vehicle 

emissions account for between 46 and 90% of total PAHs in ambient PM in urban areas (Nikolaou 

et al., 1984). 

 

It should be noted that emissions inventories are likely to be subject to considerable uncertainty 

and may not be applicable in specific urban areas, where traffic has been shown to be a more 

dominant source (Harrison et al., 1996; Lim et al., 1999; Nielsen, 1996). Furthermore, emission 

inventories do not consider evaporative ‘recycling’ of PAH from vegetation, soils or impermeable 

surfaces, which can be an important factor and is not possible to quantify (Prevedouros et al., 

2004a). It is also noted that certain sources display seasonality (e.g. domestic burning, natural 

fires), while some do not (e.g. industrial emissions, petroleum refining, road traffic).  

 

It is suggested therefore, that in order to assess the sources of PAH  influencing urban or suburban 

areas, and the processes driving their long- and short-term variability, physical sampling data on 

atmospheric levels need to be obtained with careful assessment and/or modelling of these data.  

 

1.2.2. Source of OPAHs and NPAHs 

OPAHs and NPAHs also result from primary combustion emissions. A comprehensive overview of 

primary combustion sources for individual OPAH and NPAH compounds is provided in the 

supplementary information of the Keyte et al. (2013) review paper. Compared with ‘parent’ PAHs, 

relatively little data are available on primary sources of OPAH and NPAH, and no source inventory 

or quantitative emission estimates from different sources at national or global scales have yet been 

provided.  

OPAHs can result from  burning of domestic waste (Sidhu et al., 2005);  coal combustion (Bi et al., 

2008; Simoneit et al., 2007),  biomass burning (Hays et al., 2005; Iinuma et al., 2007; Shen et al., 
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2012) , diesel and gasoline vehicle exhaust  (Cho et al., 2004; Fraser et al., 1998a; Hays et al., 

2005; Iinuma et al., 2007; Jakober et al., 2007; Oda et al., 1998; Rogge et al., 1993a; Shen et al., 

2012; Strandell et al., 1994; Zielinska et al., 2004b) ; brake wear from vehicles (Rogge et al., 

1993b) ; domestic wood combustion (Fine et al., 2002; Fitzpatrick et al., 2007; Rogge et al., 1998) ; 

and domestic natural gas burning in home appliances (Rogge et al., 1993c) 

NPAH have been measured in vehicular emissions (Dimashki et al., 2000; Gibson, 1982; 

Hayakawa et al., 1994; Karavalakis et al., 2009; Ratcliff et al., 2010) and are primarily associated 

with diesel exhaust (Campbell and Lee, 1984; Ciccioli et al., 1989; Draper, 1986; Hayakawa et al., 

1994; Murahashi and Hayakawa, 1997; Schuetzle et al., 1981; 1982; Zhu et al., 2003) but have 

also been observed in gasoline vehicle emissions (Ciccioli et al., 1989; Hayakawa et al., 1992; 

IARC, 1989) but generally at much lower levels (Zielinska et al., 2004b).  

NPAHs are also detected in emissions from carbon electrode manufacture (Liberti and Ciccioli, 

1986), stack gases from aluminium smelters and coal-fired power plants (IARC, 1989) as well as 

emissions of kerosene heaters, fuel gas and liquefied petroleum gas (LPG) burners and coal-

fuelled stoves (Tang et al., 2002; WHO, 2000).   

However, in addition to these primary combustion emissions, OPAHs and NPAHs can have a 

secondary input from photochemical atmospheric reactions of PAH (see Section 1.5.3).  

1.2.3. Emissions from road traffic  

PAHs can be emitted from road vehicles by a number of different pathways (Collier et al., 1995) : 

i) PAHs that survive the combustion process are emitted with unburned fuel components.   

ii) PAHs are formed via pyrolytic or pyrosynthetic reactions of other fuel components in the high 

temperature, oxygen deficient conditions of the vehicle engine.  

iii) PAHs are emitted via the ‘leakage’ of unburned fuel into the lubricating oil on the engine walls.  
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It has been suggested survival of unburned fuel is dominant route of PAH in both gasoline and 

diesel emissions (Collier et al., 1995; Marr et al., 1999; Tancell et al., 1995a; Williams et al., 1986; 

1989). For example, (Tancell et al., 1995b) indicated that fuel survival during combustion was the 

principal source of BaP in diesel emissions with a lower (<20%) resulting from pyrosynthesis or 

lubricating oil.  

However, studies also indicate the potential importance of PAH formation from aliphatic 

compounds (Cole et al., 1984) or methyl-PAH (Rhead and Pemberton, 1996) or formation of HMW 

PAH from LWM PAH during combustion (Williams et al., 1989). Potentially high contribution from 

lubricating oil has also been indicated (Pedersen et al., 1980; Williams et al., 1989).  

For example, Rhead and Pemberton (1996) indicated that 24% of Nap emissions from diesel 

vehicles resulted from unburned fuel and 76% resulted from pyrosynthesis, possibly from 

dealkylation from methyl-Nap compounds. Additionally, Westerholm and Egebäck (1994) 

discussed the key parameters governing the extent and nature of PAH emissions from vehicles 

and indicated that >50% of PAH emitted are formed during combustion.  

For all internal combustion engines of gasoline and diesel vehicles, the emissions may vary 

considerably. The magnitude of PAH emissions from vehicle exhausts and the relative 

contributions of these formation mechanisms will be a function of the engine operating conditions 

(type, load, age, speed and temperature); fuel type (gasoline, diesel), quality (e.g. aromatic 

content, air/fuel ratio) and mode (direct or indirect injection system) (Collier et al., 1995; Marr et al., 

1999; Ravindra et al., 2008; Schauer et al., 2002; Westerholm and Egebäck, 1994; Westerholm 

and Li, 1994).  

Emissions of NPAH from diesel emissions is shown to be much higher than from gasoline 

emissions (Gibson, 1982; Gorse et al., 1983; Hayakawa et al., 1994; Westerholm and Egebäck, 

1994; Westerholm and Li, 1994; Zielinska et al., 2004b) and this route is  considered to be the 

principal source of NPAH in the urban environment (Ciccioli et al., 1989).  
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More than 200 NPAH have been detected in the diesel exhaust gases and it is  suggested that 

NPAHs are formed via reaction of PAH with NO2 and/or HNO3 in the combustion chamber or 

exhaust system (Fiedler and Mücke, 1991). For example, Sjogren et al. (1996) observed a 

negative correlation between 1NPyr emission rates and the concentrations of  NOx and pyrene, 

suggesting 1NPyr results from the reaction between pyrene and NOx. 

However, it is suggested that NPAHs are not formed in the engine chamber, but rather in the 

exhaust system where PAH, NOx and catalytic acid species will be present together under high 

temperature and low oxygen conditions (Rosenkranz and Mermelstein, 1983). It is suggested that 

NOx present in diesel exhaust contains a higher proportion (30%) of NO2 compared with gasoline 

exhaust (<1%), resulting in greater emission of NPAH from diesel-fuelled vehicles relative to 

gasoline-fuelled vehicles (Schuetzle and Perez ,1983). 

 

1.3. Health effects of PAHs, OPAHs and NPAHs  

 

The exposure, toxicokinetics and health effects of PAHs, OPAHs and NPAHs have been widely 

discussed and reviewed in the literature (see Finlayson-Pitts and Pitts, 2000 ; WHO, 2000; Choi et 

al., 2012; IARC, 1983, 1989, 2010; Walgraeve et al., 2010).  

1.3.1. Exposure to PAHs 

Humans are exposed to PAHs, OPAHs and NPAHs though various routes including consumption 

of contaminated food or water, inhalation of air and/or re-suspended dust or soil, cigarette 

smoking, and dermal contact (Choi et al., 2012). It is considered that food ingestion is the principal 

exposure route for non-smokers, depending on specific diet and cooking mode used (WHO, 2000 ; 

Choi et al., 2012 and references therein).  

For example, the inhalation daily dose of BaP for non-smokers in the homes of industrialised 

counties has been estimated to be 0.15-21 ng/day compared with estimated dietary intake of 4.2 – 
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320 ng/day in various European studies (Choi et al., 2012 and referenced therein). However, a 

significant exposure contribution from outdoor air pollution could occur in heavily polluted urban 

and industrial areas (WHO, 2000).  

 

1.3.2. The metabolism and toxicity mechanism of PAHs, NPAHs and OPAHs 

Gas-phase pollutants are likely to be inhaled and exhaled more easily and will tend to associate 

with the mucus lining of the lung, while PM is more likely to settle on the lung surface and be 

absorbed more readily.  Hence it is suggested that HMW PAH, associated predominantly with 

particulates, will pose the greater health risk (Finlayson-Pitts and Pitts, 2000). Upon absorption into 

the body from the lungs, gut or skin, PAHs can deposit in fatty tissues and have been observed in 

most internal organs (WHO, 2000). 

PAHs are shown to exert toxic effects through oxidative metabolic transformation by enzymes to 

more polar reactive intermediate species, which can bind covalently to nucleophillic sites in DNA 

bases to form DNA adducts (Shimada, 2006; WHO, 2000; Xue and Warshawsky, 2005). Three 

principal enzymatic routes leading to the metabolic activation of PAHs have been proposed 

(Shimada, 2006; Xue and Warshawsky, 2005) : i)  via the formation of diol-epoxide metabolites 

(see Figure 1.3) ; ii) via radical cation formation (Figure 1.4 ; and iii) via PAH quinone formation 

(Figure 1.5. DNA adducts can interfere with DNA replication and repair, causing mutations that are 

fixed after cell division possibly leading to tumour development in various organs including lung, 

liver, skin and mammary tissues (Choi et al., 2012 and references therein).  

NPAH and OPAH can also exert cytotoxicity, immunotoxicity and cacinogenisis, and are a 

particular concern due to their direct acting mutagenicity (i.e. not requiring external enzymatic 

activation)  (Bolton et al., 2000; Fiedler and Mücke, 1991). 

It is expected that NPAH will also undergo metabolism via reduction of the NO2-group followed by 

a sequence of reactions that can form N-hydroxylamines or nitrenium ions which yield reactive 
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DNA-binding species or alternatively to toxic acetylamine species (see Figure 1.6) (Fiedler and 

Mücke, 1991 ; WHO, 2000).   

OPAH quinones can undergo enzymatic and non-enzymatic redox cycling with their semiquinone 

radicals, leading to the formation of reactive oxidative species (ROS) including superoxide, 

hydrogen peroxide and ultimately the hydroxyl radical (see Figure 1.7) (Bolton et al., 2000; 

Kumagai, 2009). ROS can cause severe oxidative stress in cells and cause DNA damage 

(Walgraeve et al., 2010 and references therein). Kumagai (2009) also details the potential for 

quinones to cause arylation of cellular proteins resulting in protein adduct formation.   

 

1.3.3. Heath effects of PAHs  

Data from in vitro and in vivo bioassays using non-mammalian (e.g. bacteria), mammalian non-

human (e.g. rodent) and human cells have demonstrated the mutagenicity, immunotoxicity, 

genotoxicity and carcinogenicity of PAH, OPAH and NPAH exposure (Busby et al., 1994a; 1994b; 

1995; Deutschwenzel et al., 1983; Durant et al., 1996; Enya et al., 1997; IARC, 1983 1989; 

Rosenkranz and Mermelstein, 1983; Ross et al., 1995; Sato et al., 1986; Tokiwa et al., 1987; Wei 

et al., 1993).  

The most significant health effect expected from inhalation exposure to PAHs is excess risk of lung 

cancer (WHO, 2000). However, PAH exposure is also associated with numerous other negative 

human health effects including bronchitis, asthma, heart disease and reproductive toxicity (Choi et 

al., 2012).  

The nature and magnitude of health effects caused by PAHs varies between individual compounds 

and their presence in the atmosphere as mixtures, of varying composition, means evaluating 

health risks and influence of specific components in the environment is complex (Keyte et al., 

2013). The IARC has categorised various PAH and NPAH compounds according to their 

carcinogenicity (see Table 1.2).  
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Figure 1.3. Metabolic diol epoxide formation from PAHs via cytochrome P450 enzymes 

(CYP450) and epoxide hydrolase (EH) enzymes (Shimada, 2006). 
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Figure 1.4. Metabolic formation of o-quinones from PAHs via dihydrol dehydrogenase (DD) 

enzymes (Xue and Warshawsky, 2005). 
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Figure 1.5. Metabolic cation radical formation from PAHs via cytochrome P450 enzymes 

(CYP450) and peroxidase enzymes.  

 

 

1.3.4. The role of PAHs in the health effects of urban air  

The carcinogenic and/or mutagenic potential of PM in urban air samples has been widely 

demonstrated (Bayona et al., 1994; Hannigan et al., 1997; Kawanaka et al., 2004; Pitts et al., 

1977; Pitts et al., 1982; Tokiwa et al., 1987) and many proven or potentially mutagenic or 

carcinogenic PAHs, OPAHs and NPAHs are observed in urban air of many countries (see Keyte et 

al., 2013 for full details).  
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Figure 1.6. Mechanism for the formation of reactive oxygen species from OPAH quinones 

(Bolton et al., 2000).  

 

Numerous studies have suggested PAHs, OPAHs and NPAHs can contribute significantly to the 

observed carcinogenicity and/or mutagenicy of ambient air (Bethel et al., 2001; Durant et al., 1998; 

Gupta et al., 1996; Hannigan et al., 1998; Pedersen et al., 2004; 2005; Tuominen et al., 1988; 

Umbuzeiro et al., 2008; Wang et al., 2011a)  and primary combustion emissions such as diesel 

exhaust (Arey et al., 1988; Ball and Young, 1992; Bethel et al., 2001; Durant et al., 1998; Enya et 

al., 1997; Gupta et al., 1996; Hannigan et al., 1998; Hayakawa et al., 1994; IARC, 1989; Pedersen 

et al., 2004; 2005; Pitts et al., 1982; Rappaport et al., 1980; Salmeen et al., 1982; 1984; Tuominen 

et al., 1988; Umbuzeiro et al., 2008; Wang et al., 2011a).  For example, it has been proposed that 
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PAHs are a principal contributor to the carcinogenic potential of PM in urban air (Bonfanti et al., 

1996; Harrison et al., 2004).  

Pedersen et al. (2004; 2005) investigated the mutagenicity of individual PAH compounds present 

in collected airborne PM samples. They indicated that PAH compounds accounted for 13-22% of 

the mutgenicity potential of the total PM extract, with key contributing compounds including  BaP, 

BbF, BkF, IPy, BPy as well as OPAH ketone 6H-benzo(cd)pyren-6-one.  

 

 

Figure 1.7. Mechanism for the formation of toxic intermediate species from NPAH 
compounds (Fiedler and Mücke, 1991).  
 
 

However, a number of studies have indicated that semi-polar fractions or atmospheric PM extracts 

(likely to contain OPAH and NPAH compounds) display higher direct acting mutagenicity than non-

polar extracts (likely to contain PAH compounds) (Lewtas et al., 1990; Nishioka et al., 1985; 
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Pedersen et al., 2004; Umbuzeiro et al., 2008; Wang et al., 2011a). Furthermore, it has also been 

demonstrated that ROS generation in airborne PM samples correlates with measured 

concentrations of OPAH quinones (Chung et al., 2006).  

These studies suggest that NPAH and OPAH may pose more toxic hazard in the urban 

environment than PAH. However it is noted that a significant proportion of compounds potentially 

responsible for the observed mutagenicity of PM have not yet been identified (Pedersen et al., 

2005).  

1.3.5. The role of atmospheric PAH reactions on toxic effects  

Gas-phase LMW PAHs e.g. Phe, Flo, Pyr and Flt typically dominate the total atmospheric burden 

of PAHs. While these compounds do not appear to cause significant mutagenicity or 

carcinogenicity (Durant et al., 1996; Finlayson-Pitts and Pitts, 2000) they may act as precursors to 

powerful mutagens. PAHs can be transformed in the atmosphere to a wide range of different 

products including OPAH and NPAH via gas-phase or heterogeneous reactions (see Section 

1.5.3). 

 Albinet et al. (2008a) indicate that formation of secondary NPAH from chemical reactions could 

significantly increase the carcinogenic risk of PM for people exposed far from original sources of 

direct emissions. For example, 2NFlt is a potent human cell mutagen (Durant et al., 1996 ; 

Pedersen et al., 2004; 2005) and is typically present in air samples at levels that may contribute to 

human cell mutagenicity in many areas of the world (Finlayson-Pitts and Pitts, 2000).  

Furthermore, it has been demonstrated that products from the OH-initiated reactions of 2-3 ring 

PAHs such as NPAHs, NPAH lactones and nitrodibenzopyranones identified in experimental gas 

chamber studies can contribute significantly to the observed mutagenicity of ambient air samples 

(Helmig et al., 1992a; 1992b; 1992c; Sasaki et al., 1997a). 
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Table 1.2. Mutagenic and/or carcinogenic categorisation of PAH, OPAH and NPAH 

compounds studies in the present investigation.  

      
Human cell 

mutagenicitya 
IARC 

classificationb 
Relative human cell 

mutagenicity (ratio to BaP)a 
Acy (+) ND 0.00056 
Ace ND ND n/a 
Flo ND ND n/a 
Phe (-) ND n/a 
Ant ND ND n/a 
Flt (-) ND n/a 
Pyr (-) ND n/a 
BaA (+) 2B 0.082 
Chr (+) 3 0.017 
BbF (+) 2B 0.25 
BkF (+) 2B 0.11 
BeP (+) 2B 0.0017 
BaP (+) 2B 1 
IPy (+) 2B 0.31 
BPy (+) 2B 0.19 
DBA (+) 2A 0.29 
Cor (-) ND n/a 

1NNap (-) 3 n/a 
2NNap (-) 3 n/a 
2NFlo (+) 2B n/a 
9NAnt (+) 3 0.0032 
1NFlt ND ND n/a 
2NFlt (+)c ND n/a 
3NFlt (+) 3 0.0026 
4NPyr ND 2B n/a 
1NPyr (+) 2B 0.025 
2NPyr (-) ND n/a 
7NBaA ND ND n/a 

1,3-DNP (+) ND 0.031 
1,6-DNP (+) 2B 0.28 
1,8-DNP (+) 2B 0.046 
6NChr (+) 2B n/a 

9F ND ND n/a 
AQ (-) ND n/a 

MAQ (+) ND n/a 
BaAQ (-) ND n/a 

a – Durant et al. (1996) - (+) indicates compound is mutagenic; (-) indicates compound is not 
mutagenic at the doses tested; ND indicates the compound was not tested.  

b – IARC (1983, 1989, 2010) : 1 = carcinogenic to humans ; 2A = probably carcinogenic to humans 
; 2B = possibly carcinogenic to humans ; 3 = not possible to classify ; ND = not determined  

c – Pedersen et al. (2005) 
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Gupta et al. (1996) demonstrated that ambient concentrations of NNap and MNNap compounds, 

known to form from atmospheric reactions  (Phousongphouang and Arey, 2002,2003b) contributed 

18% and 32% of daytime and nighttime vapour phase mutagenicity respectively.  

It has also been indicated from sampling in urban and ‘receptor’ sites that changes in PAH burden 

are ‘mirrored’ by changes in observed mutagenicity of the collected PM, (Atkinson and Arey, 1994 

and references therein). Indeed, Feilberg et al. (2002) indicated that the ratio of BaP concentration 

to measured mutagenicity of air samples taken in Central Europe rapidly decreased as a function 

of photochemical age in urban areas. These studies therefore suggest the potential importance of 

mutagens formed via atmospheric reactions such as OPAH and NPAH.  

Jariyasopit et al. (2014) also indicated the direct acting mutagenicity of aerosol increased upon 

laboratory formation of NPAH from PAHs on collected PM exposed to NO2/NO3/N2O5 in a study 

simulating long range atmospheric transport.  

It is clear that the overall health risk posed by PAH, OPAH and NPAH in urban air will be 

influenced not only by source strength of primary emissions but also on the atmospheric processes 

influencing their phase-partitioning, and the secondary input of potentially mutagenic reaction 

products as well as seasonal, spatial and meteorological variations (Finlayson-Pitts and Pitts, 

2000).   

This demonstrates the importance of improving our understanding of these processes and the 

need for interaction between atmospheric chemists and toxicologists in order to provide adequate 

risk assessments regarding the possible human health effects of PAH, OPAH and NPAH in urban 

areas (Finlayson-Pitts and Pitts, 2000).  
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1.4. Occurrence and behaviour of PAHs in the atmosphere  

1.4.1. Occurrence in the environment   

1.4.1.1. PAHs in the environment  

A preliminary budget for PAHs in the U.K. between different environmental compartments was 

described Wild and Jones (1995). This estimates a total PAH burden (sum of 12 compounds) of 

~53 000 tonnes, the vast majority (>90%) of which is found in soils with the bulk of the remainder 

associated with freshwater sediments (3-5%) (see Figure 1.8).  

 

 

Figure 1.8. The distribution of total PAH burden in the U.K between different environmental 

compartments (tonnes) as estimated by Wild and Jones (1995).   

 

While only a relatively small (<0.1%) proportion of the total PAH burden is predicted to be present 

in the atmosphere at a given time, this environmental compartment is important as combustion 

sources typically emit directly to the atmosphere (Ravindra et al., 2008). The subsequent 
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atmospheric processing of PAHs will dictate their overall environmental fate and/or transfer to other 

environmental compartments. For example Jones et al. (1989) indicated the PAH concentration in 

the upper soil level (top 0-23 cm) increased by around four-fold from the 1880s to the 1980s, and 

attributed this to increased emissions to the atmosphere and subsequent deposition over this time.  

Total PAH concentrations in the atmosphere typically range from low (<1 to 10) ng m-3 values in 

remote rural locations to high (10 to >100) ng m-3 values in heavy urban and traffic locations, 

depending on the specific location, nature and strength of primary sources and ambient conditions 

(Finlayson-Pitts and Pitts, 2000; Liu et al., 2006a; Mastral et al., 2003a; Prevedouros et al., 2004a).  

PAHs are typically found within the ultrafine (aerodynamic diameter  <0.1 μm) or accumulation 

(aerodynamic diameter  0.1 to 1 μm) fraction of the particle mass size distribution (Keyte et al., 

2013). In urban and rural locations, the median diameter is predominantly found in the 

accumulation mode, however PAHs may be more associated with the ultrafine mode in closer 

proximity to primary combustion emissions (Baek et al., 1991; Cancio et al., 2004; Chrysikou et al., 

2009; Kawanaka et al., 2004; Kawanaka et al., 2009; Kiss, 1996; Miguel et al., 2004; Schnelle et 

al., 1995; Venkataraman and Friedlander, 1994).  

 

1.4.1.2. OPAHs and NPAHs in the atmosphere  

The presence of NPAHs in air samples has been reported in wide range of urban, suburban, rural 

and trafficked locations in the U.K. (Dimashki et al., 2000); Continental Europe (Albinet et al., 

2006,2007a; 2008a; Bayona et al., 1994; Cecinato, 2003; Di Filippo et al., 2010; Feilberg et al., 

2001; Marino et al., 2000; Niederer, 1998; Nielsen, 1984; Ringuet et al., 2012c; Tsapakis and 

Stephanou, 2007) ; North America (Arey et al., 1987; Arey et al., 1989a; Bamford and Baker, 2003; 

Ramdahl et al., 1986; Reisen and Arey, 2005; Wilson et al., 1995); South America (Sienra and 

Rosazza, 2006; Valle-Hernandez et al., 2010); Asia (Dimashki et al., 2000; Hien et al., 2007; 

Kakimoto et al., 2000; 2001; Murahashi and Hayakawa, 1997; Tang et al., 2002; 2005; Wang et 

al., 2011a; Wei et al., 2012); Africa (Nassar et al., 2011).  
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Atmospheric concentration of NPAHs are typically reported to be generally 10-100 times lower 

than concentrations of PAH (Albinet et al., 2008a; Bamford and Baker, 2003; Feilberg et al., 2001), 

while  OPAHs are typically observed in ambient air at similar concentrations to their parent PAHs 

(Albinet et al., 2007,2008a; Walgraeve et al., 2010, references and supplementary material 

therein).  

OPAHs have been reported in ambient sampling studies in the U.K. (Alam et al., 2013; 2014; 

Delgado-Saborit et al., 2013; Harrad et al., 2003; Lewis et al., 1995) ; Continental Europe (Albinet 

et al., 2006,2007a; Albinet et al., 2008a; Andreou and Rapsomanikis, 2009; Castells et al., 2003; 

Delhomme et al., 2008; Liu et al., 2006b; Neususs et al., 2000; Schnelle-Kreis et al., 2007; 

Shimmo et al., 2004b; Valavanidis et al., 2006) ; North America (Allen et al., 1997; Cho et al., 

2004; Chung et al., 2006; Eiguren-Fernandez et al., 2008a; Wilson et al., 1995) ; South America 

(Sienra, 2006; Tsapakis et al., 2002) ; Asia  (Lee et al., 2012; Park et al., 2008; Wang et al., 2011a; 

Wingfors et al., 2001); Africa (Yassaa et al., 2001). 

However, relatively few studies have measured both PAH and OPAH or NPAH derivative 

compounds in the same environmental samples, despite this being necessary in order to gain a 

clearer understanding of the atmospheric processing of these compounds (Alam et al., 2014).   

The majority (>85%) of OPAH and NPAH are shown to be associated with particles with an 

aerodynamic diameter <0.25 μm (Albinet et al., 2008b; Di Filippo et al., 2010; Kawanaka et al., 

2004; 2009; Ringuet et al., 2012c). For example, the mass size distribution of a number of NPAH 

and OPAH was assessed in various urban, trafficked, suburban and rural locations in France by 

Albinet and co workers.  Albinet et al. (2008b) indicated that 60-90% of OPAH and NPAH are 

associated with the fine (aerodynamic diameter >1.3 μm) mass fraction in both summer and winter. 

However, Ringuet et al. (2012c) noted that, while NPAH compounds are observed in both ultra fine 

and accumulation mass fractions, OPAHs are predominantly found in the ultra fine mode at traffic 

(77%) and suburban (64%) sites.  
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As with unsubstituted PAHs, OPAH and NPAH particle mass size distribution is shown to exhibit 

seasonal and spatial variations. For example, the extent of particle aging between urban and 

suburban or rural sites can result in a shift in mass size distribution towards coarser particles 

(Albinet et al., 2008b; Allen et al., 1997; Ringuet et al., 2012c).  

Albinet et al. (2008b) indicated fractions in the finest particles (aerodynamic diameter <0.39 μm) 

were higher for OPAH (56%) and NPAH (63%) than for PAHs (45%)  therefore suggesting that 

these derivative compounds can pose a more toxic threat than PAH as they will penetrate deeper 

into the human respiratory system (Ringuet et al., 2012c; Walgraeve et al., 2010).  

 

1.4.2. Gas-particle partitioning of PAH, OPAH and NPAH compounds  

1.4.2.1. Phase partitioning of PAHs 

The wide range of physiochemical properties between compounds mean PAHs can exist in both 

the free vapour phase and associated with atmospheric particulate matter. In the atmosphere, 

PAHs range from relatively small 2-ring species (e.g. Nap) that exist almost entirely in the vapour-

phase to relatively large molecules with 6 or more rings (e.g. Cor) compounds which are present 

almost entirely in the particulate phase.  

However, the majority of PAH compounds, especially those with 3-4 rings are considered to be 

semi-volatile and can hence undergo a significant degree of partitioning between these two phases 

in the atmosphere (Keyte et al., 2013). The dynamics and factors influencing PAH phase 

partitioning has previously been discussed by Keyte et al. (2013) and Finlayson-Pitts and Pitts 

(2000).  

Phase partitioning of PAH can be quantified by defining a gas-particle partitioning coefficient : 

 

Kp = Cp / (Cg x Cm)          (1.1) 

where :   
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Kp = partitioning coefficient (m3 μg-1) 

Cp = concentration in the particulate phase (μg m-3) 

Cg = concentration in the gas phase (μg m-3)  

Cm = particulate matter mass concentration (μg m-3) 

 

The value of Kp can be influenced by the extent and nature both adsorption and adsorption 

processes and is strongly temperature dependent (Baek et al., 1991; Yamasaki et al., 1982) and 

can exhibit a pronounced seasonal variation (Baek et al., 1991; Halsall et al., 1993; Keller and 

Bidleman, 1984; Smith and Harrison, 1996; Yamasaki et al., 1982). The degree of gas-particle 

partitioning can also be influenced by sampling artefacts (see Sections 2.1.6 and 4.4).  

Quantitative analysis suggests PAH phase partitioning can be described by the sum of absorbtive 

(characterised by the octanol-air partitioning coefficient) and adsorptive (characterised by the soot-

air partitioning coefficient) contributions (Keyte et al., 2013 and references therein) :  

 

Kp = 10-12 [fOM/oct Koa + fBC/BC (SBC/Ssoot) Ksoot-air]      (1.2) 

where : 

fBC  and fOM = the mass fraction of soot (black carbon) and organic matter in particulate matter 

respectively  

Ksoot-air = the soot-air partitioning coefficient 

Koa = the octanol-air partition coefficient 

oct and BC  = the densities of octanol and soot, respectively 

SBC and Ssoot = available specific surface areas 

 

The extent of gas-particle partitioning of PAHs is influenced by a number of physical and chemical 

factors. As discussed by Baek et al. (1991) phase partitioning is a function of : i) the molecular 
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weight and associated vapour pressure of the compound at ambient temperature; ii) the 

concentration and nature (e.g. organic matter content) of particulate matter and the available 

surface area for PAH adsorption ; iii) the affinity of the compound for the organic matrix within 

particulate matter ; iv) the state of the compound upon emission (e.g. gas-phase, adsorbed at 

particle surface, or contained within the core particle); v) the reactivity and/or stability of the 

compound ; vi) meteorological conditions (e.g. temperature, humidity, and precipitation).  

1.4.2.2. Phase partitioning of OPAHs and NPAHs  

Experimental data regarding the phase partitioning of NPAH and OPAH is relatively lacking 

compared with unsubstituted PAHs as only a relatively small number of studies have conducted 

atmospheric measurements in both particulate and vapour phases (Albinet et al., 2007a; Albinet et 

al., 2008a; Bamford and Baker, 2003; Eiguren-Fernandez et al., 2008a; Lintelmann et al., 2006; 

Wilson et al., 1995).  

OPAH and NPAH typically exhibit higher molecular weight and lower vapour pressures than their 

‘parent’ PAHs, which may lead to a higher tendency to sorb to atmospheric PM (Walgraeve et al., 

2010). 

Albinet et al. (2008a) reported PM associated fractions of a wide range of OPAH and NPAH as a 

function of molecular weight and sampling season in a French Alpine valley region. It was indicated 

that 2-3 ring compounds are mainly present in the gas-phase (>50%), while 4+ ring compounds 

are mostly (>90%) associated with PM. Similar observations have been reported by Liu et al., 2006  

and Delgado-Saborit et al. (2013).  

 

As with ‘parent’ PAH, the fraction of OPAH and NPAH in the particle-phase is strongly dependent 

on the specific physiochemical properties of the molecule e.g.  molecular weight and associated 

vapour pressure, meteorological factors e.g. temperature, and the concentration of particles.  

 

It is indicated that, especially in winter these compounds have a stronger tendency to sorb to PM 

and the seasonal effects on the extent of gas-particle partitioning is more pronounced for OPAH 
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and NPAH than for parent PAH (Albinet et al., 2008a). However, the specific partitioning behaviour 

observed is shown to be highly dependent on sampling site and methodology (Albinet et al., 

2008a; Delgado-Saborit et al., 2013; Walgraeve et al., 2010).  

 

Improving the understanding of gas-particle partitioning behaviour is important as this process will 

influence the extent and nature of potential loss mechanism for PAH, OPAH and NPAH such as 

chemical reactivity and deposition.  

 

1.4.3. Atmospheric transport of PAHs 

Relatively slow photochemical degradation and limited deposition rates can allow PAHs to undergo 

relatively long range atmospheric transport (LRAT) from their source region (typically the more 

polluted mid-latitudes in the Northern Hemisphere) to more remote high latitude locations (Keyte et 

al., 2013 and references therein).  

Evidence for LRAT has come from numerous observations of PAHs in air and 

precipitation/deposition samples at remote  continental and mountain sites (Albinet et al., 2008a; 

Delgado-Saborit et al., 2013; Fernandez et al., 2002; Halse et al., 2011; Klanova et al., 2009; 

Lammel, 2010; Primbs et al., 2008; Van Drooge et al., 2010; Walgraeve et al., 2010; Xiao et al., 

2010) ; marine sites (Ding et al., 2007; Nizzetto et al., 2008; Tsapakis and Stephanou, 2005) and 

Arctic or Antarctic sites (EMEP, 2011; Halsall et al., 1997; Halsall et al., 2001; Hung et al., 2005; 

Jaffrezo et al., 1993; Patton et al., 1991) where local sources are expected to be minimal.  

Numerical multimedia modelling has also assessed and in some cases quantified the extent of 

LRAT (Aulinger et al., 2007; Gusev et al., 2011; Halsall et al., 2001; Prevedouros et al., 2004b; 

Silibello et al., 2012).  

However, investigation of PAH LRAT is hindered by a lack of data on atmospheric processes such 

as PAH reactivity and volatilisation from surfaces, which are not incorporated into these models 

(Keyte et al., 2013). For example, volatilisation is estimated to contribute >10% of total global 



33 
 

emissions of Ant and Flt, therefore the gas exchange with vegetation, soils, and surface waters 

could therefore enhance the LRAT of PAHs (Lammel et al., 2009).  

The potential importance of PAH reactivity during long-range transport on the formation of NPAHs 

and OPAHs has been indicated in ambient sampling (Eiguren-Fernandez et al., 2008b) and 

experimental (Jariyasopit et al., 2014) studies. However the LRAT behaviour of OPAH and NPAH 

compounds has not been widely investigated (Yaffe et al., 2001).  

 

1.4.4. Long-term concentration trends 

In most developed countries a substantial decline in PAH concentrations has been reported over 

the last 40 years (WHO, 2000). This downward trend has been observed for most U.K. monitoring 

sites at urban and suburban locations (Brown et al., 2013; Meijer et al., 2008; Prevedouros et al., 

2004a) and at sites in North America (Cortes et al., 2000; Sun et al., 2006) ; Europe (Holoubek et 

al., 2007) and the Arctic (Becker et al., 2006).  

Brown et al. (2013) reported than BaP concentrations from monitoring stations in the U.K. have 

fallen significantly in the last 20 years and that this decline correlates strongly with changes in 

NAEI-estimated primary emissions (see Figure 1.1). Indeed, a reported decrease in PAH 

concentrations in Birmingham was attributed to a reduction in emissions  as a result of more 

stringent legislation and cleaner industrial technologies and power generation  (Smith and 

Harrison, 1996).   

Specifically, lower PAH concentrations have been linked to the introduction and increased use of 

catalytic converters for motor vehicles, reduction in coal combustion as an energy source with an 

increased movement towards oil and natural gas as well as the elimination of emissions from 

agricultural burning and aluminium production (Murrells et al., 2010; Smith and Harrison, 1996).  

There are currently no available data on the long-term concentration trends for OPAH and NPAH 

compounds in atmospheric samples.  
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1.4.5. Short term concentration variations  

1.4.5.1. Seasonal patterns  

PAH, OPAH and NPAH typically exhibit seasonal variations in atmospheric concentration. PAHs 

have been found at higher concentrations in winter months at urban, suburban and rural sites, 

particularly for HMW compounds (Brown et al., 2013; Dimashki et al., 2001; Halsall et al., 1993; 

Harrison et al., 1996; Meijer et al., 2008; Prevedouros et al., 2004a; Smith and Harrison, 1996).  

Higher atmospheric concentrations during winter compared to summer at urban sites have also 

been observed for OPAHs (Albinet et al., 2008a; Andreou and Rapsomanikis, 2009; Brown et al., 

2013; Dimashki et al., 2001; Halsall et al., 1993; Harrison et al., 1996; Meijer et al., 2008; 

Prevedouros et al., 2004a; Schnelle-Kreis et al., 2007; Sienra, 2006; Smith and Harrison, 1996; G 

Wang et al., 2007) and NPAHs (Albinet et al., 2008a; Bamford and Baker, 2003; Marino et al., 

2000; Sienra and Rosazza, 2006; Wei et al., 2012).  

Higher winter concentrations can be attributed to increased primary emissions during the colder 

months when domestic combustion of solid fuels for space heating is expected to be higher (Brown 

et al., 2013).  

The height of the atmospheric boundary layer (ABL) has an important influence on the 

concentrations of urban air pollutants as this will dictate the extent of dispersion and dilution of 

atmospheric species (Williams, 2001 ; Holloway and Wayne, 2010). For example, a lower 

boundary layer will result in pollutants being confined at a higher concentration close to the surface 

rather than being diluted throughout the free troposphere (Holloway and Wayne, 2010).  

It is suggested the colder months will exhibit reduced vertical mixing due to temperature inversion 

and/or lower atmospheric boundary layer (ABL) height resulting in reduced atmospheric dispersion 

(Bamford and Baker, 2003; Reisen and Arey, 2005) ; and slower rate of chemical degradation 

processes (Barbas et al., 1996; Kamens et al., 1989; Prevedouros et al., 2004a).  
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However, in some instances, higher concentrations of LMW PAHs have been observed in summer, 

particularly at more remote sites, attributed to local sources due to volatilisation from soil or 

vegetation sources or sea outgassing (Prevedouros et al., 2004a; Meijer et al., 2008 and 

references therein). Furthermore, seasonality of NPAH and OPAH concentrations can be 

influenced by secondary input due to PAH reactivity in the atmosphere (see Section 1.5).  

A number of sampling studies have observed enhanced concentrations of NPAH or OPAH 

compounds at locations downwind of major urban areas, which is more pronounced during 

summer, suggesting the concentrations of these compounds can increase in the warmer months 

when levels of atmospheric oxidants (e.g. OH, NO3, O3) are higher (Bamford and Baker, 2003; 

Eiguren-Fernandez et al., 2008a; Reisen and Arey, 2005).   

 

1.4.5.2. Diurnal patterns  

Diurnal or nocturnal patterns of PAH, OPAH and NPAH concentrations have been studied in 

various environments. The diurnal variation of parent PAHs is likely to reflect direct source 

emission signals e.g. from domestic combustion, biomass burning or road traffic  and modification  

by reactive and/or deposition loss processes as well as the relative height of the ABL  (Lee et al., 

1998; Reisen and Arey, 2005; Ringuet et al., 2012a; Souza et al., 2014). 

In contrast, OPAH and NPAH compounds may display distinct diurnal patterns from those of 

parent PAH due to the influence of secondary input, for example due to daytime OH and/or 

nighttime NO3 reactions, and/or differences in dominant primary sources or photodegradation 

processes (Arey et al., 1989a; Hien et al., 2007; Reisen and Arey, 2005; Souza et al., 2014; 

Tsapakis and Stephanou, 2005).  

Studies of diurnal patterns commonly focus on 12 hourly ‘daytime’ and ‘nighttime’ sampling (Arey 

et al., 1989a; Hien et al., 2007; Souza et al., 2014). Relatively few studies have investigated 

shorter-term sampling frequency (Reisen and Arey, 2005 ; Lee et al., 1998 ; Tsapakis and 
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Stephanou, 2005, which means identifying factors influencing short-term variations in 

concentration is more difficult. Diurnal sampling over higher resolution time scales is clearly 

required.   

 

1.4.6. Ambient sampling of PAH in the U.K. atmosphere  

1.4.6.1. PAH monitoring in the U.K.  

Air sampling campaigns in different locations and over different time scales can provide valuable 

information regarding the sources, behaviour and fate of PAHs as well as key long-term, short-term 

and seasonal trends in their concentrations. In the U.K., regular measurements of PAHs have been 

carried out since 1991, when the Toxic Organic Micropollutants (TOMPS) program was established 

(Brown et al., 2013).  

The TOMPS network began with four sampling locations, but the growing focus and concern over 

PAHs in the atmosphere led to an expansion of the program in the interceding years, eventually 

resulting in the establishment of a separate ‘PAH Network’, funded by the UK Government 

Department of Farming, Environment and Rural Affairs (Defra). In 2011 there were a total of 36 

monitoring sites taking regular measurements of PAHs (Brown et al., 2013), covering a range of 

location types (including urban, rural, industrial, trafficked and background sites).  

These monitoring data have been used to produce publications assessing the concentrations, 

seasonality, long-term temporal trends and source profiles of PAHs in the UK atmosphere (Jang et 

al., 2013; Meijer et al., 2008; Prevedouros et al., 2004a) and have been augmented by a number 

of additional individual sampling studies measuring PAHs (Alam et al., 2013; 2014; Baek et al., 

1991; Delgado-Saborit et al., 2013; Dimashki et al., 2000; 2001; Harrad et al., 2003; Harrad and 

Laurie, 2005; Jang et al., 2013; Jones et al., 1992; Meijer et al., 2008; Prevedouros et al., 2004a; 

Smith and Harrison, 1996).   
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Only a very limited data are available for OPAHs and NPAHs in the U.K. atmosphere and no 

regular or long-term monitoring has been undertaken for these compounds. There is therefore a 

lack of knowledge regarding the sources, behaviour and fate of OPAH and NPAH in the U.K. 

atmosphere, or the long- or short-term trends in their atmospheric concentrations.  

 

1.4.6.2. PAHs from road traffic   

Road traffic is shown to be a key source of PAHs, OPAHs, NPAHs in urban areas (Fraser et al., 

1998a; Jakober et al., 2007; Lim et al., 1999; Oda et al., 1998; Rogge et al., 1993a; Staehelin et 

al., 1998; Zhu et al., 2003). There is therefore a need accurately assess emission factors of these 

compounds from vehicle exhausts and to estimate the relative and overall contribution of road 

traffic to the concentrations of different PAHs, OPAHs and NPAHs present in the ambient urban 

atmosphere in relation to other combustion sources (e.g. industrial emissions, domestic burning) 

and influencing factors (e.g. chemical reactivity, volatilisation from surfaces). 

However, accurately measuring on-road vehicular emissions of PAHs, OPAHs and NPAHs is 

complicated by the mixture of engine and fuel types and emission control technologies present. 

Sampling in road tunnels can provide a more realistic traffic profile than using dynamometer tests 

(Oda et al., 2001; Wingfors et al., 2001). Experimental studies in a laboratory will only yield data on 

specific vehicles, engine characteristics and/or fuel formulations, whereas a tunnel will contain a 

realistic range of different vehicles. Additionally, repeated monitoring in a tunnel environment can 

assess changes in PAH emission profiles in response to changes in fuel usage or emission control 

measures (Ravindra et al., 2008).  

Road tunnels provide an ideal environment to assess traffic emission profiles as tunnels are 

assumed to have : 

 High traffic density 

 Realistic distribution of on-road vehicles 
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 Relatively low dispersion rate 

 Relatively low sunlight and chemical reactivity 

 Lack of inputs from other primary sources  

 

1.5. Fate of PAHs, OPAHs and NPAHs in the atmosphere  

1.5.1 Wet and dry deposition of PAHs 

PAHs can be lost from the atmosphere via direct settling to the surface (dry deposition) or via 

precipitation in rain droplets or snow fall (wet deposition). This can occur either in the gas-phase or 

by loss of particulate matter to which the PAH compounds are associated (Bidleman, 1988). The 

wet and dry deposition processes are discussed in detail by Keyte et al. (2013).  

The relative rates of wet or dry deposition of PAHs from the atmosphere is dependent on the 

physiochemical properties of the PAH (solubility in water, Henry’s Law constant, vapour pressure), 

degree of phase partitioning, meteorological parameters (rainfall levels, temperature) and 

concentration and composition of particulate matter (Keyte et al., 2013).  

Wet deposition of PAHs is not expected to be an efficient process unless the substance is 

associated with PM (Bidleman, 1988; Ligocki et al., 1985). The removal rate of PAH at a Central 

European site ranged between <2 weeks and >2 weeks for dry and wet deposition respectively 

(Skrdlikova et al., 2011) indicating dry deposition as the potentially more important process.   

Modelling predictions of the relative loss rates of PAHs to various loss processes in the U.K. were 

made by Prevedouros et al. (2004b). The relative percentage loss rates for a number of PAHs 

predicted are shown in Figure 1.9, which indicate that for LMW (3-4 ring) PAH, wet and dry 

deposition are minor loss processes relative to OH radical reactivity. However, for HMW (5+ ring) 

PAHs, which are associated primarily with PM, wet and dry deposition is indicated to be a more 

important process.  
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1.5.2. Photolysis  

1.5.2.1. Photolysis of PAHs 

Direct photolysis is not expected to be a significant sink for PAHs in the gas phase (Atkinson and 

Arey, 1994 and references therein). However, PAH adsorbed on PM may be susceptible to 

photolysis due to the wide electron delocalization of PAHs, enabling them to absorb solar radiation 

and undergo photooxidation (Vione et al., 2006). The chemistry (rates, products and mechanisms) 

of direct photolytic PAH decomposition has been investigated for PAHs associated with organic 

aerosols, inorganic substrates, and the air-ice interface (please see Keyte et al., 2013 for full list of 

references; the reader is directed to Finlayson-Pitts and Pitts, 2000 and Vione et al., 2006 for  

discussion of PAH photolysis reactions). 

Half lives of PAH compounds towards photolysis on various substrates measured by (Behymer 

and Hites, 1985,1988) are shown in Table 1.3. Degradation rates are influenced strongly by 

substrate type with relatively faster rates observed on mineral surfaces (e.g. silica gel) than on 

carbonaceous particles (e.g. fly ash and carbon black). A number of PAHs (e.g. Ace, Acy, Ant, 

BaA, BaP) are shown to display relatively fast (<5 hr) photolysis on silica and alumina (Behymer 

and Hites, 1985;1988) while other compounds appear to degrade slowly on all substrates.  

It is indicated that PAHs associated with carbonaceous particles (fly ash or carbon black) are less 

susceptible to photooxidation (Behymer and Hites, 1985,1988; Korfmacher et al., 1980; Yokley et 

al., 1986) due to higher carbon content and darker colour of the substrate.  Kamens et al. (1988) 

also demonstrated that rate of PAH photodegradation is influenced by solar intensity, humidity and 

pressure.   

The ability for carbonaceous particles to shield radiation, means that photo-degradation of PAHs is 

believed to be minimal relative to gas-phase reaction with OH or NO3 radicals (Vione et al., 2006). 

However, it is noted that relatively rapid sensitised photolysis processes can be initiated by 

compounds such as PAH quinones and carbonyls, either present in direct emissions or partially 

derived from PAH photooxidation (Vione et al., 2006). 
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a   b  

 

c   d  

 

e   f  

Figure 1.9. Predicted contribution of different loss mechanisms for PAH compounds in the 

U.K. based on modelled flux rates for a) Flo, b) Phe, c) Flt, d) Pyr, e) BaP and f) BPy 

(Prevedouros et al., 2004b).  
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Table 1.3. Half lives (hours) of PAH compounds absorbed on various substrates; carbon 

back (CB), fly ash (FA), silica gel (SG) and alumina (AL), as reported by Behymer and Hites 

(1988) for PAH absorbed at 25 μglg.  

 
 

CB FAa FAb FAc FAd SG AL 

Acy 166 1000 70 89 17 0.6 1.5 

Ace nm 1000 105 76 18 1.6 1.4 

Flo 1000 1000 332 500 38 245 55 

Phe 1000 1000 500 500 244 268 44.5 

Ant 313 608 132 51 19 1.6 0.4 

Flt 1000 1000 437 235 330 99.1 22.5 

Pyr 1000 1000 357 201 119 35.5 22.5 

BaA 651 1000 201 137 19 2.4 1.6 

Chr 688 1000 172 334 500 101 59.5 

BeP 1000 1000 163 409 338 64.5 79.1 

BaP 574 805 125 213 28 2.7 1 

IPy 1000 1000 120 304 492 62 38.9 

BPy 1000 1000 119 373 224 10.5 20.4 

Cor 1000 1000 115 335 487 97.1 104 

a – black fly ash, high (59% bulk) carbon content  

b – black fly ash, low (22% bulk) carbon content  

c – grey fly ash 

d – white fly ash  

 

 

1.5.2.2. Photolysis of OPAH and NPAH  

 

Photolysis of NPAHs has been indicated as a potentially important loss process for both gas-phase 

and particle-associated compounds (WHO, 2003). The gas-phase N-Nap compounds are shown to 

be highly susceptible to photolysis with an atmospheric lifetime of  <1 to 2 hrs (Atkinson et al., 

1989; Feilberg and Nielsen, 2000; Niu et al., 2005; Phousongphouang and Arey, 2003a). For 

example, Atkinson et al. (1989) noted atmospheric lifetimes for NNap compounds due to photolysis 

were ~38 and ~28 times lower respectively than for their corresponding gas-phase reaction with 

OH.  
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Photolysis of NPAHs associated with particles has been studied to assess the mechanisms, 

products and atmospheric significance of this process (Arce et al., 2008; Chapman et al., 1966; 

Fan et al., 1995; Fan et al., 1996a; Feilberg and Nielsen, 2000; Healy et al., 2012; Holloway et al., 

1987; Ioki, 1977; Kameda, 2011; Pitts, 1983; Stark et al., 1985).  

 

While Holloway et al. (1987) noted relatively long photolysis half lives for 1NPyr and 3NFlt of 1.2 to 

6 days and 12.5 to >20 days respectively, other studies suggest this process can be a potentially 

significant atmospheric sink for particle-bound NPAHs.  Fan et al. (1996a) derived half-lives due to 

photolytic decay for 1NPyr, 2NFlt and 2NPyr on diesel soot and wood smoke in an outdoor 

chamber of 0.8 to 1.2 hr with faster reaction noted for 1NPyr on wood smoke particles. 

 

Photolysis of OPAH has received comparatively little attention in the literature. It is indicated that 

gas-phase compounds such as 1,4-naphthoquinone are degraded at a comparable rate to gas-

phase NNap compounds (Atkinson et al., 1989). However, particle-associated OPAHs are believed 

to be relatively stable towards solar irradiation (Kamens et al., 1989).  

 

1.5.3 Atmospheric reactivity of PAHs 

Chemical reactions represent a key atmospheric loss process for both gas-phase and particle-

phase PAH and can be an important secondary source for a number of OPAH and NPAH 

compounds (Atkinson and Arey, 1994; 2007; Finlayson-Pitts and Pitts, 2000). The reaction 

kinetics, mechanisms and OPAH or NPAH formation products of gas-phase and heterogeneous 

PAH reactions has been reviewed by Keyte et al. (2013). Included here is a summary of key points 

discussed in the review. For a more detailed discussion the reader is directed to the specific 

sections of the review paper.  
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1.5.3.1. Gas-phase PAH reactions  

Atmospheric reactions of gas phase PAHs with key atmospheric oxidants (OH, NO3 and O3) and 

the relative importance of these processes in the removal of PAHs from the atmosphere and 

conversion to derivative compounds have been widely investigated in laboratory experiments (Arey 

et al., 1986; 1989b; Atkinson and Aschmann, 1986; Atkinson et al., 1987a; 1988; 1990a; 1990b; 

1994; Brubaker and Hites, 1998; Helmig and Harger, 1994; Kwok et al., 1994a,1997; 

Phousongphouang and Arey, 2002,2003b; Reisen and Arey, 2002).  

Rate coefficients have been derived for the gas phase reaction of OH, NO3 and O3 with 2-4 ring 

PAHs (Table A1, A2 and A3 in Appendix 1 respectively) in laboratory investigations. Reactions of 

PAHs with OH proceed up to 5 orders of magnitude faster than the corresponding reactions with 

NO3, suggesting that OH-initiated reactions represent a more important degradation process for 

PAHs than reactions with NO3. 

There is shown to be considerable variability in reactivity and hence the expected atmospheric 

lifetime of different PAHs. Acy and Ant are shown exhibit the fastest reactivity towards OH. The 

rate and products of the reactions are dependent upon the precise reaction mechanism and can be 

influenced by factors such as steric hindrance of reactive sites (Brubaker and Hites, 1998) and the 

number and type of substituted groups. For example, the presence of alkyl-groups on Nap and Phe 

has been shown  to increase reactivity towards OH and NO3 relative  to parent PAH, following  

general order of reactivity dimethyl-PAH > ethyl-PAH > methyl-PAH > PAH (Lee et al., 2003; 

Phousongphouang and Arey, 2003b).  

OH-initiated PAH reactions are considered to be important only during daytime due to the 

photolytic nature of atmospheric OH formation (Atkinson and Arey, 2007; Krol and Lelieveld, 2003; 

Prinn et al., 2005). NO3 radicals are formed via the sequential reactions of NO and NO2 with O3 

(Atkinson and Lloyd, 1984; Atkinson et al., 1986; Atkinson et al., 1990b; Geyer et al., 2001; Geyer 

et al., 2003) : 
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NO + O3 → NO2 + O2          (1.3a) 

NO2 + O3 → NO3 + O2          (1.3b) 

 

NO3 can be removed from the troposphere via photolysis by solar radiation (Atkinson and 

Aschmann, 1986; Atkinson et al., 1990a; Graham and Johnston, 1978) or via reaction with NO. 

 

NO3 + hv → NO + O2          (1.4a) 

NO3 + hv → NO2 + O (3P)         (1.4b) 

NO3 + NO → 2 NO2`         (1.4c) 

 

Atmospheric reactions with NO3 are therefore only expected to occur during evening and night time 

hours when photolysis is absent and NO levels are low (Atkinson et al., 1984; Atkinson and Arey, 

1994; 2007). The reactions of PAHs with OH radicals are shown to proceed via the same initial 

mechanism, initiated via two pathways (Figure 1.10); (1) OH radical interaction with substituent 

groups either through H-atom abstraction from C-H groups (1a), or, in the case of Acy which 

contains an unsaturated cyclopentafused ring, addition to the >C=C< bond of this substituent (1b) ; 

or (2) OH addition to the aromatic ring, forming an initially energy-rich PAH-radical adduct radical 

intermediate, which can further react with NO2 or O2, to form products (Atkinson and Arey, 1994).  

For OH reactions, the radical-addition mechanism is shown to dominate at room temperature, 

while at elevated temperatures, H-atom abstraction from the C-H bonds will become increasingly 

import (Ananthula et al., 2006,2007; Atkinson et al., 1987a; Goulay et al., 2005; Lee et al., 2003; 

Lorenz and Zellner, 1983). It is suggested that reactions of the PAH-OH adduct with NO2 and O2 

may be competitive for NO2 mixing ratios down to 60 ppbV (Nishino et al., 2008). 
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1a.  

 

 

 

1b.  

 

 

 

1c. 

 

Figure 1.10. Mechanism for the reaction of gas-phase PAHs with OH radicals ; a) H-atom 

abstraction; b) OH addition to substituent groups; c) OH addition to the aromatic ring 

(Atkinson and Arey, 1994). Originally presented in Keyte et al. (2013).  
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It is indicated that the NO3 reaction proceeds via an analogous radical addition or H-atom 

abstraction mechanism as the OH reaction. The competing reaction pathways of the NO3-addition 

mechanism are depicted in Figure 1.11. As discussed by Atkinson and Arey (2007), studies 

investigating PAH reaction kinetics with NO3 radicals have used N2O5 as a precursor for NO3 

radicals, which will also result in the formation of NO2 in these systems. Measured second order 

rate coefficients for the reactions of NO3 radicals with naphthalene and alkyl-naphthalenes (see 

Appendix 1) have been shown to be proportional to the NO2 concentration (Atkinson, 1991), with 

the rate of reaction described as :  

 

−d[PAH]/dt = kobs[PAH][NO3][NO2]        (1.5) 

 

The reaction rate of the NO3 reaction can therefore be defined in terms of the reactions routes in 

Figure 1.11. (Atkinson and Lloyd, 1984; Atkinson et al., 1994; Pitts et al., 1985a; Wallington et al., 

1987) : 

 

−d[PAH]/dt = ka(kc[NO2] + kd[O2] + ke) [PAH] [NO3] / (kb + kc[NO2] +kd[O2] + ke)   (1.6) 

 

where : 

 

ka  = rate coefficient of of PAH-NO3 adduct formation  

kb = rate coefficient  of PAH- NO3 adduct dissocation  

kc = rate coefficient  of PAH- NO3 adduct reaction with NO2 to form products 

kd = rate coefficient  of PAH- NO3 adduct reaction with O3 to form products 

ke = rate coefficient  of PAH- NO3 unimolecular decomposition to form products  
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Figure 1.11. Potential pathways for the reaction of PAHs with NO3 (Atkinson and Arey, 
2007). Originally presented in Keyte et al. (2013). 

 

 

It is indicated from experimental data (Atkinson et al., 1987a; Atkinson et al., 1990b; Atkinson, 

1991; Atkinson et al., 1994; Kwok et al., 1994a; Phousongphouang and Arey, 2003b; Pitts et al., 

1985c), that under conditions used in reaction studies and in the ambient troposphere : 

 

kb >> (kc[NO2])   and kc[NO2] >(kd[O2] + ke) 

 

Hence : 

−d[PAH]/dt = ka kc[NO2][PAH][NO3]/kb       (1.7) 

 

The observed second order rate coefficient (kobs) for the reactions of LMW PAHs with NO3 (as 

presented in Appendix 1) can therefore be derived by simplified equation (Atkinson and Arey, 

2007) : 

 

kobs = ka kc  / kb          (1.8) 
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The rate coefficient of PAH reactions with NO3 will therefore be proportional to NO2 concentration, 

if the reaction involves formation of the PAH-NO3 adduct. (Atkinson et al., 1994) indicate the 

reaction Nap-NO3 adduct with NO2  is expected to dominate relative to the reaction with O2 down to 

a NO2 mixing ratio of at least 80 ppbV and possibly much lower (Atkinson and Arey, 2007). 

Both ring-retaining compounds (e.g. hydroxy-PAHs, NPAHs and OPAHs such as quinones and 

ketones) and ring-opened products (e.g. 2-formlycinnamaldehyde, phthalic acic and 

phthaladehyde) have been identified from OH and NO3 reactions of PAHs (Arey et al., 1986; 

1989b; Atkinson et al., 1987a,1990a; Bunce et al., 1997; Kautzman et al., 2010; Kwok et al., 1997; 

Lee and Lane, 2009; Nishino et al., 2008; Reisen and Arey, 2002; Sasaki et al., 1997b; L Wang et 

al., 2007a) . 

Several studies have proposed reaction pathways for the formation of these products. For 

example, Qu and co workers conducted theoretical predictions for the mechanism of Nap-OH and 

Nap-NO3 adducts reactions with NO2 and/or O2 using molecular orbital calculations. Pathways to 

NPAH and OPAH from OH- and NO3 PAH adducts were derived (see Figure 1.12 and 1.13 

respectively; further examples in Keyte et al., 2013). 

 

Reactions of NO3 with a number of PAHs (e.g. Nap, Ace, Flt) yield NPAH products at higher NPAH 

yields than OH reactions. For example the yield of 1NNap, 2NNap and  2NFlt from OH reaction is 

reported to be 0.3%, 0.3% and 3% respectively, compared with yields of 17%, 7% and 24% 

respectively for NO3 reactions (Atkinson and Arey, 1994). This suggests that while NO3 reactions 

appear to be less significant than OH reactions as a PAH degradation process, night-time 

reactions of PAHs with NO3 may be a significant contributor atmospheric NPAH, in addition to 

daytime OH reactions.  

Experimental studies indicate reactions of PAH with O3 are much slower than OH and NO3 and this 

process is generally considered to be of negligible importance (Atkinson and Arey, 1994). The 

reaction of Acy is shown to be faster (~3 orders of magnitude) than other PAHs due to interaction 

of ozone with the >C=C< bond of the cyclopenta-fused ring (Reisen and Arey, 2002).  
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a) 

 

 

 

b)  

 

 

Figure 1.12. Proposed mechanisms for two possible further reaction pathways of the PAH-

OH adduct: a) reaction with NO2; b) reaction with O2 (Qu et al., 2006b). Originally presented 

in Keyte et al. (2013).   
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a) 

 

 

b) 

 

 

Figure 1.13. Proposed mechanisms for two possible further reaction pathways of the PAH-

NO3 adduct: a) reaction with NO2; b) reaction with O2 (Qu et al., 2006a) . Originally presented 

in Keyte et al. (2013).   
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1.5.3.2. Heterogeneous reactions  

The reaction kinetics, mechanisms and products of PAHs on solid substrates has been studied 

extensively in laboratory experiments.  

Substrate surfaces studied include both carbonaceous (graphite, soot, and diesel exhaust) and 

mineral (silica, MgO) particles for reactions with OH (Bedjanian et al., 2010; Bertram et al., 2001; 

Estéve et al., 2003,2004,2006; Jariyasopit et al., 2014; Miet et al., 2009a; Ringuet et al., 2012b), 

NO3/N2O5 (Karagulian and Rossi, 2007; Liu et al., 2012; Mak et al., 2007; Pitts et al., 1985a; 

1985b; 1985c; Zimmermann et al., 2013) , NO2 (Brorstrom-Lunden and Lindskog, 1985; Butler and 

Crossley, 1981; Guo and Kamens, 1991; Inazu et al., 1997; Jariyasopit et al., 2011; 2014; Ma et 

al., 2011; Miet et al., 2009c; Nguyen et al., 2009; Perraudin et al., 2005; Pitts et al., 1978; Ramdahl 

et al., 1984; Tokiwa et al., 1981; Wang et al., 2000; Zimmermann et al., 2013), , O3 (Brorstrom et 

al., 1983; Kahan et al., 2006; Katz et al., 1979; 2004; Kwamena et al., 2006; Lane and Katz, 1977; 

Lindskog et al., 1985; Miet et al., 2009b; Mmereki and Donaldson, 2003; Mmereki et al., 2004; 

Perraudin et al., 2007; Pitts et al., 1977; 1980). Derived rate coefficients for these processes are 

presented in Table A4 in Appendix 1. 

The rate, mechanism and products of atmospheric gas-particle PAH reactions are shown to 

depend strongly on the structure and UV-vis absorption spectra of the PAH compound as well as 

the physical and chemical nature of the particle surface to which they are associated (Finlayson-

Pitts and Pitts, 2000; Keyte et al., 2013). Reactions with OH and NO3/N2O5 are indicated to be the 

dominant pathway for heterogeneous degradation of PAHs compared with reactions with NO2 and 

O3. However, loss rates are shown to be more comparable when expected atmospheric 

concentrations of the oxidants are considered (Keyte et al., 2013).  

Particles are shown to exhibit an ‘inhibiting factor’ on PAH reactivity (Estéve et al., 2004,2006; E. 

Perraudin et al., 2007). For example OH reactions on carbonaceous particles are shown to 

proceed 1-3 orders of magnitude lower than corresponding gas-phase reactions. This stabilisation 

is shown to be variable between species and substrates and has been attributed to the relatively 
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slow diffusion of the oxidant or inaccessibility of PAHs in the bulk particle (Jariyasopit et al., 2014; 

Zimmermann et al., 2013).  

 

A wide variety of ring-opened and ring-retaining products have been identified from heterogeneous 

reactions of PAH including OPAH and NPAH compounds. 

In some cases, a distinction is noted between the products of gas-phase and particle-phase 

reactions. For example 1NPyr has been observed as a reaction product in the reaction of particle-

bound PAH (Miet et al., 2009c; Ramdahl et al., 1984; Wang et al., 2000), which is not observed in 

gas-phase reactions.  

However, other OPAH and NPAH e.g. 2NFlt, 2NPyr have been observed in both gas-phase and 

particle-phase reactions (Arey et al., 1986; Atkinson et al., 1990a; Inazu et al., 1997; Ringuet et al., 

2012b). Reaction pathways in the formation OPAH (Figure 1.14) and NPAH (Figure 1.15) products 

have been proposed for reactions of NO2 and O3 respectively (Keyte et al., 2013).  

Heterogeneous PAH reactivity with atmospheric oxidants is complex and is influenced by a number 

of factors including the PAH molecule, the nature (chemical composition, surface area, porosity) of 

the matrix, presence of other species (e.g. nitric acid, water or other organic species), oxidant 

concentration, and PAH surface concentration (Keyte et al., 2013 and references therein). For 

example, the reactivity of PAHs towards NO2 is shown to be enhanced by the presence of nitric 

acid and/or HNO2 gas on the particle surface (see Figure 1.15).  

 

It is suggested from these studies that particle-phase reaction can contribute to PAH degradation 

and OPAH or NPAH formation in the atmosphere. However, the wide diversity in chemical 

composition (organic, mineral, biogenic), sources (combustion, erosion, gas phase condensation), 

origin (natural, anthropogenic), formation conditions (temperature, pressure), physical properties 

(size, porosity, specific surface area) and surface coatings (water, nitric acid, organic molecules) of 

particles mean heterogeneous PAH reactivity will be extremely difficult to predict or assess in the 
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ambient atmosphere and the relative importance of these factors will be highly variable across 

different environments (Keyte et al., 2013).    

 

 

 

 

Figure 1.14. Suggested mechanisms for the heterogeneous reaction of anthracene with O3 

(Mmereki et al., 2004). Originally presented in Keyte et al. (2013). 
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Figure 1.15. Suggested mechanisms for the heterogeneous reaction of pyrene with NO2 

(Wang et al., 1999,2000). Originally presented in Keyte et al. (2013). 
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1.5.3.3. Evidence for PAH reactions in ambient air samples  

Laboratory investigations strongly indicate that gas- and particle-phase atmospheric reactions of 

PAHs can contribute to observed atmospheric levels of NPAH and OPAH. However, the 

applicability of laboratory data in the ambient environment is uncertain. For example recent studies 

observing heterogeneous formation of NPAHs on atmospheric PM from reactions of PAH with 

NO3/NO2/N2O5 have used oxidant concentrations that are >100 times higher than typically 

observed in the ambient atmosphere (Jariyasopit et al., 2014; Zimmermann et al., 2013).  

 

A number of ambient sampling approaches, in addition to or in conjunction with, laboratory reaction 

kinetics data, have been conducted to answer the key questions : i) To what extent do PAH 

reactions occur under ambient atmospheric conditions? ii) What is the relative contribution of 

reactions to observed atmospheric levels of OPAH and NPAH compared with primary combustion 

emissions?  

 

As discussed by Keyte et al. (2013), the position on the aromatic ring where PAH oxidation or 

nitration occurs will determine the specific OPAH or NPAH isomer formed. Differences in NPAH 

formation mechanism between combustion and atmospheric photoreaction processes are 

observed leading to distinct NPAH isomer distributions. Assessing the relative levels of these 

different NPAH isomers in the ambient atmosphere could therefore indicate the relative 

contribution of primary and secondary inputs.  

 

For example, in the case of Pyr and Flt, electrophilic nitration, expected to occur during primary 

combustion processes (Nielsen, 1984; Ruehle, 1985) is shown to produce 1NPyr and 3NFlt. 1NPyr 

has been identified in a number of combustion sources but is not observed as a gas phase 

reaction product, making it suitable as a marker for direct emissions (IARC, 1989). Conversely, the 

products of the gas phase OH and/or NO3 radical initiated reactions are 2NPyr and 2NFlt (Atkinson 

and Arey, 1994), which are typically not observed in primary combustion emissions.  
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2NFlt has been observed in a direct industrial emission from carbon electrode manufacture (Liberti 

and Ciccioli, 1986) but this is not considered to be a major contributor on a large scale. (Zhu et al., 

2003) also identified 2NFlt in diesel vehicle emissions but with an emission rate significantly lower 

(~0.2%) than that of 1NPyr. 

Due to their distinct origins, the ratio of 2NFlt to 1NPyr concentration ratio can be used to assess 

the relative contributions of atmospheric reactions (OH and/or NO3) and direct emissions (Ciccioli 

et al., 1989; Ciccioli et al., 1996; Feilberg et al., 2001; Marino et al., 2000; Wang et al., 2011a). 

Similarly, isomer profiles of NPAH products of Nap, methyl-Naps and ethyl-Naps (Reisen and Arey, 

2005; Wang et al., 2010) as well as nitro-triphenylenes (Kameda, 2011) have also been used to 

assess the relative importance of daytime OH and nighttime NO3 reactions and primary emissions.  

The ratios of OPAH or NPAH to their parent PAH in ambient samples and the temporal or seasonal 

trend in these ratios have also been used to assess the relative importance of atmospheric 

reactions (Alam et al., 2013; 2014; Reisen and Arey, 2005; Walgraeve et al., 2010).  

 

Diurnal profiles of NPAH and OPAH have been shown to be distinct from those of PAH (Hien et al., 

2007; Reisen and Arey, 2005; Tsapakis and Stephanou, 2005). Studies suggest that profiles of 

PAH and 1NPyr are driven by emission strength and losses due to reactivity, while 2NFlt and 

2NPyr are driven by atmospheric formation and loss processes.  

(Kojima et al., 2010) observed strong correlations between OPAH concentrations and primary 

emissions such as PAHs and CO in Tokyo in winter, while a much weaker correlation was 

observed in summer. Concentration ratios in summer:winter were shown to be higher for 2NFlt 

(0.36) than for 1NPyr (0.19-0.27), indicating the relative dominance of direct emissions in winter 

and a greater importance of atmospheric reactivity in summer.  

The ratio of ‘night time’ to ‘daytime’ PAH concentrations measured in the atmosphere have been 

shown to correlate with OH radical reaction rate coefficients, with the largest ratios being observed 

for PAHs most reactive towards OH radicals (Arey et al., 1989a; Phousongphouang and Arey, 

2002).  
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Atmospheric levels of NPAHs have been predicted based on calculations using experimental data 

(OH reaction rate coefficients, NPAH formation yields, measured parent PAH concentrations and 

NPAH photolysis rate) and have been observed to be in good agreement with concentrations in 

ambient air samples (Arey et al., 1990; Atkinson and Arey, 2007).  Furthermore, the concentration 

profile of NNap, methyl-NNap, dimethyl-NNap and ethyl-NNap isomer product profiles observed in 

laboratory OH and NO3 reaction experiments have been shown to closely resemble those of 

daytime (Reisen et al., 2003) and nighttime (Gupta et al., 1996) profiles from ambient sampling 

respectively.  

While PAH levels are shown to be higher in urban areas during winter compared to summer, 

OPAH and NPAH levels have been observed at higher levels downwind of an urban source area in 

summer (Reisen and Arey, 2005) indicating the influence of photochemical reactions. Eiguren-

Fernandez et al. (2008b) investigated the changes in phenanthrequinone (PQ) concentration with 

increasing distance downwind of the highly polluted Los Angeles basin. A significant increase in 

PQ concentration was observed along this trajectory with an estimated ~90% of PQ at the receptor 

site resulting from photochemical reactions. 

 

1.5.4. Reactions of OPAH and NPAH  

It is indicated that reaction with OH, NO3 and O3 is not a significant loss process for gas-phase 

NPAHs or OPAHs (Atkinson et al., 1989).  Photodegradation is considered to be the primary loss 

process for NPAH in the atmosphere in both gas- and particle-phases (Atkinson et al., 1989; Fan 

et al., 1995; Fan et al., 1996a; Feilberg and Nielsen, 2000; Phousongphouang and Arey, 2003a).  

While photolysis is expected to be the major loss process for during daylight hours, particle-bound 

NPAHs are shown to react with O3, which could present an additional degradation pathway at night 

(Fan et al., 1996b; Miet et al., 2009b; Ringuet et al., 2012b).  

Heterogeneous formation and decay have been observed for NPAHs due to reactions of OH, and 

O3/NO2 on natural aerosol particles (Ringuet et al., 2012b). The reaction particle-associated NPAH 
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and OPAH compounds with NO3 have been observed and product identification has been noted 

(Zhang et al., 2011) but this has not been investigated in terms of a potential atmospheric loss 

process.  

Relatively few data are available on the reaction processes of OPAHs in the atmosphere. Kamens 

et al. (1989) indicated that OPAHs such as AQ on wood smoke particles are relatively stable 

towards photolysis but are shown to decay when exposed to O3. (Ringuet et al., 2012b) 

demonstrated OPAHs are also degraded by OH radicals on natural aerosol particles. However, the 

kinetics of these processes are yet to be fully investigated.  

 

 
1.6. Project aims and objectives   

This introductory section has highlighted the following issues : 

PAHs, OPAHs and NPAHs are important pollutants influencing ambient air quality and public 

health, particularly in urban areas where source strength and population density is greatest. These 

compounds are likely to present a substantial toxic hazard, comprising a potentially important 

proportion of the mutagenicity and/or carcinogenicity of ambient air. An appropriate understanding 

of their sources, behaviour and fate is required in order to assess the exposure and risk presented 

to humans and the wider environment.  

PAHs, OPAHs and NPAHs display a wide range of physiochemical properties and can exist in both 

gas-phase and associated with atmospheric particulate matter. The nature and extent of their 

atmospheric processing will largely dictate their overall fate in the environment and the extent of 

human exposure.  

PAHs are emitted to the atmosphere via incomplete combustion of organic materials, mainly due to 

anthropogenic activities. The concentration of PAHs in the U.K. has declined significantly in the 

past 25 years, which has resulted in a shift in relative source profile. Current emissions are 

dominated by domestic wood combustion and vehicular traffic.  
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OPAH and NPAH can result both from primary combustion emissions and secondary input from 

gas-phase and heterogeneous reactions of PAH with atmospheric oxidants (e.g. OH, NO3,and O3) 

Therefore assessing the sources and behaviour of these compounds is rather more complex.  

PAH atmospheric reactivity is dependent on the specific PAH molecule, the concentration of 

atmospheric oxidants, the concentration and nature of particulate matter and the degree of phase 

partitioning. While the extent to which reactions can produce OPAH and NPAH compounds has 

been widely investigated in laboratory studies, limited work has been done in terms of field studies 

of the ambient atmosphere.  

While, PAHs have been monitored in the UK atmosphere for over 25 years, and much has been 

learned regarding their long- and short-term trends, much less is known regarding the levels of 

OPAH and NPAH in the U.K. atmosphere and the factors influencing their input and loss.  

The overall aim of this project was to investigate the concentrations of PAHs as well as key OPAH 

and NPAH derivative compounds in the U.K. urban atmosphere, and to interpret their observed 

levels and atmospheric behaviour to assess the importance of different primary (e.g. emissions 

from road traffic or other combustion activities) or secondary (e.g. reactive formation) sources and 

atmospheric sinks of these compounds.  

The specific objectives of the project were to : 

 Measure concentrations of PAHs, OPAHs and NPAHs at urban background and trafficked 

sites and investigate their sources, behaviour and trends and the factors governing these 

processes.  

 Investigate temporal trends and assess potential factors affecting long- and short-term 

variations in observed concentrations, with particular reference to changes in overall and 

relative source profiles.  

 Obtain a ‘traffic profile’ for target compounds from a trafficked environment to compare with 

ambient locations in order to gain a clearer understanding of the influence of primary traffic 
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sources to observed atmospheric concentrations in comparison with other input and loss 

mechanisms.  

 Obtain a diurnal profile for target compounds to provide more insight into the sources, 

meteorological factors and degradation processes influencing observed concentrations.  

 Investigate the potential influence of atmospheric reactions on the levels of OPAH and 

NPAH in comparison with primary combustion emissions.  

 Carry out a source apportionment analysis of PAH, OPAH and NPAH compounds using 

positive matrix factorisation (PMF).  
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Chapter 2 : Methodology  

 

 

2.1. Sampling Procedure  

2.1.1. Background  

2.1.1.1. Overview 

 

PAHs, OPAHs and NPAHs are present in the atmosphere in both particulate and gaseous phases 

and have the propensity to partition between the two phases (as discussed in Section 1.4.2). It is 

desirable, therefore, to collect samples of both gas-phase and particle-phase PAH simultaneously 

to gain clearer insights into key processes driving their atmospheric behaviour and fate (e.g. phase 

partitioning, chemical reactivity and/or wet and dry deposition).  

 

It is now common for air samples to be collected using high-volume air samplers adapted to collect 

both particle-phase and gas-phase pollutants separately (Finlayson-Pitts and Pitts, 2000). In this 

method, a motor-driven pump draws air through the inlet at the top of the sampler; the air passes 

first through a filter where airborne particulates are deposited, followed by an absorbent material to 

collect gas-phase components downstream (Finlayson-Pitts and Pitts, 2000 ; see Figure 2.2b).  

This approach has been utilised in a large number of ambient sampling studies for PAHs 

(Dimashki et al., 2000; 2001; Harrad and Laurie, 2005; Harrison et al., 2003; Keller and Bidleman, 

1984; Smith and Harrison, 1996; Wilson et al., 1995) as well as OPAHs and NPAHs (Albinet et al., 

2007a; 2008a; Bamford and Baker, 2003; Liu et al., 2006b; Wilson et al., 1995). This sampling 

approach was utilised in the present investigation. 
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2.1.1.2. Particle-phase sampling  

 

Particle-bound PAH compounds have been collected on a variety of different filter types (Liu et al., 

2007) including : 

 Glass fibre filters (GFFs) (Bamford and Baker, 2003; Barrado et al., 2012; Bi et al., 2005; 

Feilberg et al., 2001; Kim et al., 2012; Lin et al., 2002; Simcik et al., 1998); 

 Polytetrafluoroethylene (Teflon) membrane filters (TMFs) (Alam et al., 2013; Delgado-

Saborit et al., 2013; Ligocki and Pankow, 1989; Smith and Harrison, 1996) ;  

 Teflon coated glass fibre filters (TGFFs) (Alam et al., 2013; Allen et al., 1997; Arey et al., 

1987; Delgado-Saborit et al., 2013; Dimashki et al., 2000; 2001; Feilberg et al., 1999; 

Harrad et al., 2003; Harrad and Laurie, 2005; Harrison et al., 2003; Ligocki and Pankow, 

1989; Lim et al., 1999; Reisen and Arey, 2005; Smith and Harrison, 1996); 

 Quartz fibre filter (QFFs) (Fraser et al., 1998b; Lee et al., 2012; Nassar et al., 2011; Ringuet 

et al., 2012a; 2012c; Sienra, 2006; Wilson et al., 1995). 

 

Quartz fibre filters were chosen in the present study due to their relative cheapness and availability 

as well as their high retention efficiency and compatibility with available sampling equipment.  

 

2.1.1.3. Gas-phase sampling  

 

The desired sorbent material for collecting the gas-phase component should have large absorption 

capacity, low airflow resistance, reasonable chemical stability and ease of preparation and 

handling (Liu et al., 2007).  Common sorbent materials used to collect gaseous PAHs include : 

 

 Tenax-GC and Tenax-TA solid absorbents (Arey et al., 1989a; Baek et al., 1991; Hart and 

Pankow, 1994); 

 XAD material (Alam et al., 2013; Delgado-Saborit et al., 2013; 2014; Eiguren-Fernandez et al., 

2008a; Wilson et al., 1995); 
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 Polyurethane foams (PUFs) (Albinet et al., 2008a; Bamford and Baker, 2003; Dimashki et al., 

2000; 2001; Harrad and Laurie, 2005; Harrison et al., 1996; Kim et al., 2012; Reisen and Arey, 

2005; Yamasaki et al., 1982).  

 

PUF are commonly used due to their advantages of low-cost, ease of preparation and handling. 

Flame retardant (FR)-free PUF material is preferable as this will reduce air flow resistance and 

content of impurities in sample extracts. However, some breakthrough of LMW through PUFs can 

occur (Arey et al., 1989a). As noted by Finlayson-Pitts and Pitts (2000), PUFs may not be suitable 

for sampling highly volatile 2-ring PAH e.g. Nap and methyl-Nap (MNap) isomers. Indeed, 

evidence of significant evaporative losses of Nap, 1MNap and 2MNap was observed during the 

present study (see Section 6.1 for a discussion) therefore the concentrations of these compounds 

were not included in the results of this study.   

 

A number of studies have utilised diffusive denuders for the sampling of PAH, OPAH and NPAH 

(Delgado-Saborit et al., 2013; 2014; Eiguren-Fernandez et al., 2003; Goriaux et al., 2006; Liu et 

al., 2006b; Tsapakis and Stephanou, 2003). Denuders collect the gas-phase component using a 

solid sorbent coated on the surface of the trap, with the particulate-phase component collected on 

a filter downstream. These can therefore provide the dual function of separating out the gas- and 

particle-phase components of semi-volatile species (e.g. PAHs) and removing reactive oxidant 

species (e.g. O3) to prevent transformation of species during sampling (Delgado-Saborit et al., 

2014).  

For example, the design of sampling system utilising a micro orifice uniform deposit impactor 

(MOUDI) to collect the particulate phase with upstream multi-parallel denuder plates coated with 

XAD-4 to collect the gas phase component has been described (Delgado-Saborit et al., 2014; 

Eiguren-Fernandez et al., 2003).  This approach has been demonstrated to perform accurate, 

repeatable sampling with low-denuder breakthrough. However it has been noted that artefact 

formation (see Section 2.1.6) occurred during both denuded and un-denuded sampling (Delgado-

Saborit et al., 2014; Eiguren-Fernandez et al., 2003). 
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Liu et al. (2006b) measured atmospheric PAH and OPAH concentrations using samplers with and 

without a MnO2 denuder.  The undenuded sampler was shown to underestimate PAH 

concentrations and overestimate HMW OPAH concentrations. The authors attributed this to the 

occurrence of PAH reactivity with oxidants such as O3 during sampling. However, higher 

concentration of LMW OPAH e.g. 9F and AQ were found on the filters of denuded samplers, 

suggesting catalytic formation on the denuder surface.  Therefore OPAH artefact can be formed in 

both denuded and undenuded samplers.   

Furthermore, the flow rate achieved by a MOUDI sampler would sample <50 m3 of air in a 24 hour 

period. While this would be adequate to obtain a sample large enough to provide analytically 

detectable levels of PAH and OPAH (Alam et al., 2013; Delgado-Saborit et al., 2014), this may not 

provide detectable concentrations of some NPAH compounds, which are typically observed at 

much lower (~1-2 orders of magnitude) concentrations. Therefore a non-denuded sampling system 

was used in the present study. 

 

2.1.2. Sampling sites 

The sampling locations for the principal campaigns in this study were situated on the University of 

Birmingham campus (Latitude: 52.4797; Longitude: -1.8965). The University is located 

approximately 3 km south of Birmingham city centre (see Figure 2.1).  

Air sampling was conducted at two sites termed the Bristol Road Observatory Site (BROS) and the 

Elms Road Observatory Site (EROS). BROS is located on the south edge of the University 

adjacent to the A38 main road (Bristol Road). This road is a major commuting route to Birmingham 

city centre, with approximately 27,000 vehicles passing by  per day, as estimated by the 

Department of Transport (http://www.dft.gov.uk/traffic-counts). 
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Figure 2.1a. Locations of Birmingham sampling and monitoring sites used in the present 

investigation. West Midlands conurbation (upper) and central Birmingham (lower). Obtained 

from Ordnance Survey Getamap online resource. 
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Figure 2.1b. Locations of Birmingham sampling and monitoring sites used in the present 

investigation BROS and EROS at the University site (upper) and the Queensway Road 

Tunnel (lower). Obtained from Ordnance Survey Getamap online resource.  
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It is assumed that, due to the proximity of this site to a major traffic emission source, this site acts 

as a ‘polluted’ site. EROS is located on the north-west side of the campus in an open field ~1km 

north of BROS. The lack of major primary pollution sources in close proximity allows EROS to act 

as an ‘urban background’ site.  

 

2.1.3. Sampling campaigns  

The project consisted of a number of individual sampling campaigns at the sites described in 

Section 2.1.2.  Details (e.g. dates, times, meteorological conditions) for all individual samples taken 

during these campaigns are presented in Table 2.1 and a description of the different campaigns is 

provided below.  

2.1.3.1. Campaign 1 : seasonal 24 hour sampling 

For the principal period of this study, sampling was conducted during specific seasonal campaigns 

in October 2011 (autumn) ; Jan-Feb 2012 (winter) ; April-May 2012 (spring) ; and July 2012 

(summer). ~24 hour air samples were collected simultaneously at the BROS and EROS sites on 

weekdays during these campaigns. Samples were taken using high volume air samplers (Tisch 

Environmental Inc., Cleves, Ohio, USA) adapted to sample both particle-phase and gas-phase 

pollutants. The appearance and design of these samplers is shown in Figure 2.2. 

Total particulate matter was collected on quartz fibre filters (Whatman Int. Ltd, UK, obtained from 

VWR International Ltd, Lutterworth, Leicestershire, UK ; dimensions, 8” x 10”; retention efficiency 

>99%), loaded inside a slotted metal filter plate (filter holder). Gas-phase sample was collected 

using cylindrical PUF plugs (dimensions 3” x 3 3/8”, FR-free, Tisch Environmental Inc., Cleves, 

Ohio, USA). Two PUF plugs were loaded in series inside a cylindrical metal tube (PUF holder) 

fitted below the filter holder. This sampling apparatus was enclosed inside an aluminium casing to 

shelter equipment from sunlight and rainfall.  
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Table 2.1. Dates, approximate  times and average meteorological parameters, temperature 

(T), relative humidity (RH), pressure (PRES), solar radiation (SRAD), rainfall (RF), wind 

speed (WS), wind direction (WD) for all samples taken during this investigation.  

 

 Start 
Date 

Start  
Time 

approx. 

End Date End 
Time 

approx. 

T 
(oC) 

RH 
(%) 

PRES 
(hPa) 

SRAD 
(W/m2) 

RF 
(mm) 

WS 
(m/s) 

WD 
(deg) 

Campaign 1 
A1 18/10/11 11:58 19.10/11 12:30 7.6 69.8 1013 200 0.0 1.9 256 
A2 19/10/11 14:10 20/10/11 14:20 6.2 74.7 1023 222 0.2 1.2 269 
A3 01/11/11 11:30 02/11/11 11:46 9.7 87.1 1009 170 0.2 1.3 190 
A4 03/11/11 11:35 04/11/11 11:39 12.6 92.4 995 79 7.0 1.1 173 
W1 08/02/12 13:34 09/02/12 09:30 -1.4 81.6 1035 91 0.0 1.1 162 
W2 09/02/12 15:55 10/02/12 16:07 -0.4 91.8 1033 33 1.2 1.0 157 
W3 15/02/12 13:31 16/02/12 13:55 7.5 71.9 1026 111 0.0 1.8 290 
W4 20/02/12 10:00 21/02/12 10:14 6.2 78.4 1025 93 0.0 2.6 221 
W5 21/02/12 12:10 22/02/12 12:49 8.2 82.4 1022 43 0.8 3.7 215 
W6 22/02/12 14:48 23/02/12 15:19 12.0 85.0 1019 181 0.4 2.4 234 
W7 27/02/12 08:55 28/02/12 09:27 9.9 87.6 1021 57 1.0 1.6 246 
Sp1 30/04/12 09:07 01/05/12 09:30 12.1 72.9 999 145 8.4 2.9 41 
Sp2 01/05/12 09:45 02/05/12 09:55 8.7 94.7 1003 46 3.2 1.6 43 
Sp3 02/05/12 10:18 03/05/12 10:22 9.9 74.9 1000 127 1.4 2.5 33 
Sp4 03/05/12 10:43 04/05/12 11:22 6.4 93.8 994 34 7.6 0.9 37 
Sp5 07/05/12 10:11 08/05/12 10:25 11.9 62.4 991 219 0.0 1.4 118 
Sp6 08/05/12 10:44 09/05/12 10:52 11.9 62.4 991 219 0.0 1.4 118 
Sp7 16/05/12 10:31 17/05/12 11:00 8.6 65.1 1004 167 0.0 0.9 90 
Su1 05/07/12 13:33 06/07/12 13:47 17.5 77.6 993 106 0.4 0.9 86 
Su2 09/07/12 09:53 10/07/12 09:54 14.5 82.7 995 113 1.8 1.0 130 
Su3 12/07/12 13:17 13/07/12 13:30 13.6 88.7 989 107 12.8 1.0 76 
Su4 17/07/12 09:50 18/07/12 10:22 17.2 80.9 1001 160 0.6 2.8 115 
Su5 23/07/12 10:02 24/07/12 09:59 19.2 65.9 1003 324 0.0 1.6 118 
Su6 26/07/12 11:50 27/07/12 12:10 20.0 66.1 999 265 0.0 1.1 105 
Su7 30/07/12 11:08 31/07/12 11:13 13.5 72.5 998 205 4.6 1.3 116 

Campaign 2 
D1 07/08/12 07:08 07/08/12 11:11 15.1 84.1 1002 232 0.2 1.9 117 
D2 07/08/12 11:25 07/08/12 15:29 18.5 60.5 1003 536 0.0 2.5 117 
D3 07/08/12 15:44 07/08/12 18:36 16.3 74.3 1003 141 0.0 2.5 111 
D4 07/08/12 18:50 07/08/12 06:57 14.6 94.0 1004 15 1.8 0.5 89 
D5 08/08/12 07:13 08/08/12 10:46 17.1 78.2 1005 274 0.0 0.8 95 
D6 08/08/12 11:01 08/08/12 15:05 19.6 59.2 1006 417 0.0 1.1 115 
D7 08/08/12 15:21 08/08/12 18:37 20.8 50.2 1006 286 0.0 0.8 131 
D8 08/08/12 18:52 08/08/12 06:50 13.9 89.2 1007 18 0.0 0.3 45 
D9 09/08/12 06:55 09/08/12 10:48 18.6 60.4 1009 508 0.0 1.1 69 
D10 09/08/12 11:02 09/08/12 14:52 22.1 44.9 1009 622 0.0 1.2 109 
D11 09/08/12 15:07 09/08/12 18:51 22.3 42.0 1008 287 0.0 0.9 89 

Campaign 3 
Q1 11/09/12 07:36 12/09/12 07:34 10.5 70.9 998 152 0.6 1.6 126 
Q2 12/09/12 07:44 13/09/12 07:36 10.8 80.3 999 118 3.0 1.6 133 
Q3 13/09/12 07:45 14/09/12 unk 14.7 69.2 998 179 0.0 2.7 121 
Q4 18/09/12 09:22 19/09/12 09:10 9.8 68.6 1001 155 0.2 1.6 136 

Artefact Campaign 
AR1 01/10/13 10:20 02/10/13 10:35 14.4 81.3 1000 90 0.0 0.9 130 
AR2 04/10/13 16:40 05/10/13 17:00 14.1 78.7 993 43 0.8 1.3 63 
AR3 08/10/13 09:30 09/10/13 09:30 14.9 74.4 1006 100 0.0 1.3 133 
unk = unknown  
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Figure 2.2a. High volume sampler at the EROS location.  

 

 

 

Figure 2.2b. Schematic diagram of a high volume sampler used in the present investigation. 

Adapted from Finlayson-Pitts and Pitts (2000).   
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PUF and filter holders were pre-rinsed with solvent prior to loading PUFs and filter. Filters were 

pre-treated by heating at 450oC for 24 hours and were accurately weighed before and after 

sampling in order to obtain TSP concentration for collected samples. PUFs were pre-cleaned by  

ultrasonication twice (30 minutes) in a solvent mixture of DCM, hexane and methanol (1:1:1 by 

volume) followed by ultrasonication in hexane only (60 minutes).  

 

Sampler flow rates were calibrated according to manufacturer guidelines (Tisch TE-5000 

Operations Manual). Sampler calibrations were carried out each time a sampler motor was 

changed. The procedure for sampler calibration is described in detail in Appendix 2. Air flow rates 

during sampling were measured using a flow chart recorder and manometer readings were taken 

at the beginning and ending of sampling duration to assess change in flow rate during sampling. 

Total air volume sampled during ~24 hour sampling periods during this study varied from ~800-

1200 m3. 

After sampling, filters and PUFs were removed from the filter plate or PUF holder using pre-

cleaned stainless steel forceps, wrapped in aluminium foil and transported to the laboratory in a 

cool box.  Samples were contained inside a sealed polythene bag and stored at -10oC prior to 

extraction and analysis.   

 

2.1.3.2. Campaign 2 : diurnal sampling study  

A diurnal sampling study was conducted at the BROS and EROS sites on August 7th, 8th and 9th 

2012. Sampling during this campaign was conducted following the procedure detailed in Section 

2.1.3.1. 

Multiple samples were collected on these days to assess how concentrations of target pollutants 

vary throughout the day in response to different factors (variations in primary emission strength, 

levels of other gaseous pollutants, and meteorological conditions). The sampling times in this 

campaign were as follows (specific times of each sample are presented in Table 2.1) : 
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07:00 – 11:00 (morning) –  period of ‘rush hour’ with maximum traffic flow  

11:00 – 15:00 (daytime) – period of maximum sunlight/radiation levels, lower traffic flow  

15:00 – 19:00 (afternoon) – period of temperature maxima and afternoon traffic input  

19:00 – 07:00 (night-time) – period of low traffic and absence of sunlight  

 

2.1.3.3. Campaign 3: Queensway Road Tunnel sampling study  

As discussed in Section 1.4.6.2, it is important to obtain an accurate traffic profile of traffic-related 

PAH emissions in order to assess the relative importance of these compounds in the urban 

atmosphere. Road tunnels are expected to provide an ideal environment to assess traffic 

emissions of PAHs as the tunnel is assumed to be an ‘enclosed’ atmosphere containing only 

diluted exhausts from a realistic mixture of on-road vehicles. 

The aims of this campaign were to : 

 Measure levels of selected PAHs, OPAHs and NPAHs in a road tunnel. 

 Obtain a ‘traffic signature’ for these compounds for comparison with ambient 

measurements. 

  Assess the temporal trend of these compounds in the tunnel and relate this to observed 

changes in traffic characteristics.  

 

A sampling campaign was conducted inside the Queensway Road Tunnel (see Figure 2.1b) in 

central Birmingham in September 2012. The tunnel passes under Birmingham city centre, 

providing a main through route for the A38 dual carriageway, which constitutes part of the A4400 

inner city ring road. The tunnel is approximately 544m long with natural ventilation (Amey, 

pers.comm.). The speed limit in the tunnel is 30 mph.  The average number of vehicles passing 
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through the tunnel per day is estimated to be 89,000. This value is an estimate for 2010 

extrapolated from Birmingham City Council data from 2005 (Amey, pers. comm.).  

24 hour air samples were collected during this campaign, following the procedure detailed in 

Campaign 1. The sampler was set up in an emergency breakdown lay-by in the southbound 

section of the tunnel. The two carriageways were separated by a concrete dividing wall. 

Concurrent sampling was conducted at EROS to provide ‘background’ concentrations to be 

subtracted from the tunnel concentrations to calculate a ‘traffic’ concentration.  

 

2.1.4. Meteorological data  

For sampling periods during each campaign, mean values for key meteorological parameters 

(temperature, pressure, relative humidity, wind speed, wind direction, solar radiation), as well as 

total rainfall, were measured. These data were obtained from the Elms Cottage Automated 

Weather Station, which is located adjacent to the EROS sampling site. These data are used for 

both EROS and BROS samples.  

 

2.1.5. Inorganic gaseous pollutants 

For each sampling period during each campaign, mean concentrations of key gaseous pollutants 

(NOx , O3 and SO2) were obtained. These data were derived from measurements at the 

Birmingham Tyburn monitoring site (UKA00479), operated as part of the Defra Automatic Urban 

and Rural Network (AURN) (http://uk-air.defra.gov.uk/networks). Birmingham Tyburn is located to 

the north-west of Birmingham city centre (see Figure 2.1a) and is designated an ‘urban 

background’ site.  
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2.1.6. Quality control : the potential impact of sampling artefacts  

Ambient sampling of PAHs using the filter/sorbent technique, as performed in the present study, 

can be subject to positive or negative ‘artefacts’ that may lead to significant deviations away from 

‘true’ concentrations present in the atmosphere, particularly for semi-volatile 3-4 ring compounds 

(Finlayson-Pitts and Pitts, 2000 and references therein). This can be caused by disruptions in gas-

particle partitioning equilibrium or by chemical reactivity of adsorbed PAHs during sampling.  

 

2.1.6.1. Gas-phase vs. particle-phase artefacts  

Two key phenomena can occur during a relatively long (i.e. 24 hr) sampling study to disrupt 

‘natural’ gas-particle phase equilibrium conditions, thus creating sampling artefacts (Finlayson-Pitts 

and Pitts, 2000 and references therein) : 

i) Vapour-phase PAH can adsorb to the filter or adsorbed particles due to either a decrease in 

temperature or increase in pollutant concentration during sampling (Finlayson-Pitts and Pitts, 2000 

and references therein). This would therefore overestimate particle-phase concentrations and 

underestimate gas-phase concentrations.  For example, Hart and Pankow (1994) demonstrated 

that the use of quartz fibre filters can lead to gas-phase adsorption leading to an overestimation of 

the particle-phase component by a factor of 1.3 to 1.6.  

ii) Volatilisation (“blow off”) of PAH collected on filter and/or breakthrough of ultrafine particles 

though the filter and collection by the absorbent can occur (Kavouras et al., 1999; Wilson et al., 

1995). This may result from temperature increase, concentration decrease or drop in pressure 

during sampling. This would result in an underestimate of particle-phase PAH and an overestimate 

of gas-phase PAH concentrations (Finlayson-Pitts and Pitts, 2000 and references therein).  

2.1.6.2. Chemical reactivity during sampling   

As discussed in Section 1.5.3 PAH degradation and OPAH or NPAH formation on solid surfaces in 

laboratory experiments has been observed to occur due to chemical reactions, for example with O3 
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(Brorstrom et al., 1983; Katz et al., 1979; Lane and Katz, 1977; Lindskog et al., 1985; Pitts et al., 

1978; 1980; 1986; Van Vaeck and Van Cauwenberghe, 1984) or  NO2-N2O5-HNO3 (Jariyasopit et 

al., 2014; Pitts et al., 1985b; Pitts et al., 1985c; Zimmermann et al., 2013).  

If such chemical reactivity of filter-bound PAHs occurred during sampling, this could lead to 

underestimation of PAH concentrations and overestimation of observed levels of OPAHs and 

NPAHs formed. The occurrence and extent of this artefact formation during sampling experiments 

has been investigated but is subject to a number of conflicting observations in the literature.   

For example, several studies have reported contrasting or inconclusive results from O3 exposure 

studies for PAHs deposited on glass filters, diesel exhaust particles and ambient particles 

(Brorstrom et al., 1983; Grosjean, 1983). Coutant et al. (1988) reported that PAHs reacted readily 

with O3 in laboratory studies, but no evidence was found for reaction of O3 with particulate matter 

during the field sampling experiments. 

In more recent studies (Goriaux et al., 2006; Liu et al., 2006b; Schauer et al., 2003; Tsapakis and 

Stephanou, 2003) the impact of oxidation reactions during sampling on the concentrations filter-

bound PAHs and OPAHs has been investigated by sampling with and without an upstream 

denuder to remove atmospheric oxidants.  

These studies indicate ozonation reactions could result in an underestimation of particulate-phase 

PAH concentrations by up to a factor 2.  Furthermore, Liu et al. (2006) indicated particle-bound 

concentrations of certain OPAHs (e.g. AQ and BaAQ) were 10-40% higher without a denuder, 

indicating artefact formation of OPAHs due to the reaction of collected PAHs with ozone during 

sampling.   

Arey et al. (1988) observed formation of deuterated NPAHs on particulate samples deposited on 

glass fibre filter surfaces pre-spiked with deuterated PAHs, collected in a sampling study for 7-10 h 

with an NO2 concentration of ~160 ppb.  However, the maximum NPAH formation rates observed 

were generally very low (<3% for 1-nitropyrene-d9 ; 0.1% for 3-nitroperylene-d12) and no formation 

of NFlt isomers was observed. It was concluded that formation of nitro-pyrenes and nitro-
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fluoranthenes during high volume sampling does not significantly affect the measured 

concentrations.  

Similarly, Dimashki et al. (2000) carried out an artefact study in a road tunnel in Birmingham, UK. It 

was observed that, even in this high NO2 environment (~0.2 ppmv) the maximum NPAHs artefact 

formation during sampling was <0.1%. Formation of NPAH artefacts generally does not seem 

problematic in high volume sampling studies. 

Albinet et al. (2007b) measured concentrations of PAH, OPAH and NPAH using two different 

samplers (cascade impactor and conventional hi-vol) during summer and winter periods. It was 

shown that during winter, the sampler ‘underestimated’ concentrations of NPAHs by a factor of 3-4. 

This was attributed to the heating of the sampler PM10 head during winter, causing enhanced 

chemical degradation of particle-bound NPAHs collected on filters. No external heating was used 

in the present study so it is assumed this level of degradation did not occur during sampling.  

 

2.1.6.3. Artefact sampling experiment 

An experiment to assess the potential influence of sampling artefacts on the results obtained in this 

project was carried out. The aim of this experiment was to assess the extent to which sampling 

artefacts may have affected the measured concentrations of PAHs, OPAH and NPAH compounds 

during the sampling campaigns carried out in this project. This involved conducting a sampling 

campaign to monitor the possible loss of PAHs from the filter and the formation of OPAH and 

NPAH derivatives during sampling.   

Details of the methodology and a discussion of observed results from this experiment can be found 

in Section 4.4.  
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2.2. Sample extraction and clean-up  

2.2.1. Materials and chemicals  

All solvents (DCM, hexane, methanol) used in this study were HPLC grade (purity >98%), obtained 

from Fisher Scientific UK Ltd. Sodium sulphate absorbent and aminopropyl solid phase extraction 

tubes were obtained from Sigma-Aldrich Company Ltd., Gillingham, UK. Standards of 

perdeuterated and native PAH and NPAH compounds (>98% purity in toluene or isooctane) and p-

terphenyl-d14 recovery standard (>99% purity, in toluene) were obtained from Greyhound 

Chromatography, Merseyside, UK, as pre-prepared solutions by Chiron AS, Trondheim, Norway. 

Perdeuterated and native OPAH internal standards and 1-fluoro-7-nitrofluorene recovery standard 

(purity >98%)  were obtained initially as solids from Sigma-Aldrich Company Ltd., Gillingham, UK 

and solutions prepared by dilution with hexane.  Methane gas (99.9% purity) was obtained from 

Argo International Ltd, UK.  

2.2.2. Sample preparation  

The extraction, clean-up  and preparation of samples prior to analysis was conducted according to 

a standard operating procedure, previously produced by members of this research group 

(Delgado-Saborit and Baker, 2006) incorporating a solid phase extraction step developed from 

methods described by Albinet et al. (2006) and Cochran et al. (2012). All glassware was cleaned 

using this procedure; soaked and cleaned in Lipsol detergent (SciLabware Ltd), rinsing with 

deionised water and drying for >2 hr at 100 oC in a glass oven.  

2.2.3. Sample extraction  

2.2.3.1. Extraction background 

Extraction of PAH and related compounds from environmental samples is commonly achieved 

using an organic solvent such as dichloromethane (DCM), acetonitrile, benzene, toluene or 

cyclohexane (Liu et al., 2007).  
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Soxhlet extraction using DCM or other solvents (e.g. acetonitrile/acetone/benzene) is a common 

method (Becker et al., 2006; Dachs et al., 2002; Dimashki et al., 2001; Harrad et al., 2003; Harrad 

and Laurie, 2005; Harrison et al., 2003; Kim et al., 2012; Lim et al., 1999) and NPAH and OPAH 

derivatives (Andreou and Rapsomanikis, 2009; Arey et al., 1987; Bamford and Baker, 2003; 

Bamford et al., 2003; Dimashki et al., 2000; Gibson, 1982; Marino et al., 2000; Sienra, 2006; 

Wilson et al., 1995). This method is favoured due to high extraction efficiency (Yang, 1999), 

however, this approach is time-consuming and solvent- and energy-intensive, requiring 

considerable sample concentration prior to analysis (Liu et al., 2007).  

Ultrasonication offers reduced extraction time (0.25 – 1.5 hr), and utilises less solvent (15-20 mL) 

while maintaining satisfactory analyte recovery.  This method has been utilised for PAH extraction 

using DCM  (Bi et al., 2003; 2005; Chetwittayachan et al., 2002; Guo et al., 2003; Hayakawa et al., 

2002; Ohura et al., 2004; 2005; Park et al., 2002; Schnelle-Kreis et al., 2001; Tang et al., 2005). as 

well as toluene (Sharma et al., 2007) and dimethylformamide (DMF) (Mastral et al., 2003b) 

Ultrasonication has also been used for the extraction of OPAHs and NPAHs using DCM (Allen et 

al., 1997; Castells et al., 2003; Delgado-Saborit et al., 2013; Feilberg et al., 2001; Nielsen et al., 

1984; Schnelle-Kreis et al., 2001; Wei et al., 2012) as well as benzene/ethanol (3/1, v/v) (Hien et 

al., 2007; Murahashi and Hayakawa, 1997; Nassar et al., 2011; Tang et al., 2002; 2005), 

dichloromethane:acetonitrile (2:1 v/v) (Eiguren-Fernandez et al., 2008a) and methanol (Kishikawa 

et al., 2006).  

Pressurised liquid extraction has also been investigated for PAHs (Hien et al., 2007; Murahashi 

and Hayakawa, 1997; Nassar et al., 2011; Tang et al., 2002; 2005) and OPAHs and NPAHs 

(Albinet et al., 2006,2007a; 2008a; Wang et al., 2011a). However, this approach may lead to 

chemical degradation or rearrangement (Lintelmann et al., 2006) and the reproducibility of this 

method has been questioned (Walgraeve et al., 2010). Microwave-assisted extraction has also 

been applied for PAH and OPAH compounds (Barrado et al., 2012; McDonald et al., 2002) but this 

method is expensive and requires specific instrumentation.   
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Supercritical fluid extraction (SFE) has been shown to exhibit high extraction efficiency and good 

selectivity (Peltonen and Kuljukka, 1995) and has been applied for extraction of PAHs (Jonker et 

al., 2005; Romero et al., 2002; Shimmo et al., 2002; 2004a), OPAH and NPAH (Castells et al., 

2003). However, it has been noted that SFE displays poor recovery of polar compounds if CO2 is 

used, so requires a multi-step process involving solvent modifiers (Shimmo et al., 2004a; 2004b). 

2.2.3.2. Extraction method  

In accordance with Delgado-Saborit and Baker (2006), one quarter of the filter from each sample 

was used for extraction and analysis. Filters were cut into small pieces with a stainless steel 

scalpel, placed inside a glass flask and spiked with a known amount of internal standard (IS) 

mixture (deuterated PAH, NPAH and OPAH compounds; see Table 2.2 for details). Approximately 

15 mL DCM was added and the flask was covered with aluminium foil to prevent any evaporative 

loss of analyte and standard.  PUFs were placed and compressed inside a large glass beaker and 

spiked with a known amount of IS mixture. Approximately 300 mL dichloromethane was added for 

PUF extraction.  

Filter and PUF samples were extracted by ultrasonication in a water bath (~20oC, 30 minutes). Due 

to the larger volume of solvent used in PUF extractions, samples were initially transferred to 

Turbovap apparatus (Biotage Ltd, Uppsala, Sweden) and blown down under a gentle stream of 

nitrogen (~20oC) to reduce sample volume ~5 mL prior to sample clean-up. 

2.2.4. Clean-up  

2.2.4.1. Clean-up background  

Sample pre-treatment is a crucial step in order to remove impurities that may interfere with analysis 

of target compounds and/or create a high GC baseline. Preliminary clean-up methods for PAH 

compounds have been reviewed and discussed previously (Liu et al., 2007). PAHs can generally 

undergo analysis without substantial clean-up, however, polar derivatives, particularly NPAH often  
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require several purification steps due to their relatively low concentrations in atmospheric samples 

(pg m-3 range) (Albinet et al., 2006). Pre-treatment is usually achieved through solid phase 

extraction (SPE) or normal phase liquid chromatography techniques which can isolate specific 

classes of compounds (Cochran et al., 2012).   

2.2.4.2. Clean-up method  

In accordance with Delgado-Saborit and Baker (2006), sample extracts were initially eluted though 

an absorption chromatography column. Filter samples were passed through a Pasteur pipette 

containing ~1g anhydrous sodium sulphate in order to remove any macromolecules and water 

present in the sample extract. The column was pre-eluted with ~5 mL DCM before the crude 

solvent extracts were introduced to the head of the column with DCM washings from the flask or 

Turbovap tube. The column was finally eluted with ~5 mL DCM.  

In accordance with Delgado-Saborit and Baker (2006), all samples were then concentrated under a 

gentle stream of nitrogen to almost dryness and made up to 1mL with hexane. Sample extracts 

were then subject to a solid phase extraction step, based on the methodology described by 

Cochran et al., (2012). An aminopropyl solid phase extraction tube was pre-eluted with 3x 1mL 

aliquots of DCM followed by the same measure of hexane.   

The sample was then passed through the column and target compounds were eluted by the 

sequential DCM/hexane solvent gradient (3 x 1mL) of 20/80%, 35/65%, 50/50%. This resulted in 

optimum recovery of PAH, NPAH and OPAH compounds in one sample extract to undergo 

analysis for PAH and OPAH/NPAH separately. Extracts were further reduced under nitrogen to 

almost dryness.  

In accordance with Delgado-Saborit and Baker (2006), prior to analysis, a known amount of 

recovery standard was added to the sample. For this purpose, p-terphenyl-d14 was used for the 

analysis of PAHs and 1-fluoro-7-nitrofluorene (FNF) was used for the analysis of OPAH and 

NPAHs. Samples were made up to a final volume of 100 uL with nonane inside a glass vial insert.  
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Table 2.2. Internal standards, molecular ions and approximate retention times used to 

identify and quantify target PAH, OPAH and NPAH compounds in sample extracts.   

PAH Internal Standard M+ 
Retention 
time (min) Target compounds  M+ 

Retention 
time (min) 

p-Terphenyl-d14 244 31.2 n/a      

Acenaphylene-d8 160 12.7 Acenaphthylene 152 12.8 

Acenaphthene-d10 162 13.6 Acenaphthene 153 13.6 

Fluorene-d10 176 16.8 Fluorene 166 16.9 

Phenanthrene-d10 188 21.5 Phenanthrene 178 21.6

Anthracene-d10 188 21.7 Anthracene 178 21.8 

Fluoranthene-d10 212 28.2 Fluoranthene 202 28.3 

Pyrene-d10 212 
 

29.4 

Pyrene 202 
 

29.5 

Retene 219 

Benzo(a)anthracene-d12 240 36.5 Benzo(a)anthracene 228 36.6 

Chrysene-d12 240 36.6 Chrysene 228 36.7 

Benzo(b)fluoranthene-d12 264 42.3 Benzo(b)fluoranthene 252 42.4 

Benzo(k)fluoranthene-d12 264 42.4 Benzo(k)fluoranthene 252 42.5 

Benzo(e)pyrene-d12 264 43.5 Benzo(e)pyrene 252 43.6 

Benzo(a)pyrene-d12 264 43.8 Benzo(a)pyrene 252 43.9 

Indeno(1,2,3-cd)pyrene-d12 288 48.8 Indeno(1,2,3-cd)pyrene 276 48.9 

Dibenz(a,h)anthracene-d12 292 49.1 Dibenz(a,h)anthracene 278 49.3 

Benzo(ghi)perylene-d12 288 49.9 Benzo(ghi)perylene 276 50.2 

Coronene-d12 312 56.2 Coronene 300 56.4 

NPAH Internal Standard M-   Target compounds M-   

1-Fluoro-Nitro-Fluorene 229 29.8 n/a      

1-Nitronaphthalene-d7 180 17.7

1-Nitronaphthalene 173 17.8 

2-Nitronaphthalene 173 18.8 

2-Nitrofluorene-d8 220 30.7 2-Nitrofluorene 211 30.9 

3-Nitrofluoranthene-d9 256 

 
 

40.8 

1-Nitrofluoranthene 247 39.5 

2-Nitrofluoranthene 247 40.5 

3-Nitrofluoranthene 247 40.9 

1-Nitropyrene-d9 256 

 
42.3 

 

4-Nitropyrene 247 41.4 

1-Nitropyrene 247 42.4 

2-Nitropyrene 247 42.8 

6-Nitrochrysene-d11 284 47.2 6-Nitrochrysene 273 47.4 

OPAH Internal Standard M-   Target compounds  M-   

9-Fluorenone-d8 188 21.0 9-Fluorenone 180 21.1 

Anthraquinone-d8 216 

27.6 
 
 

Anthraquinone 208 27.7 

Methyl-anthraquinone 222 30.7
Benzo(a)anthracene-
7,12-dione 258 41.7 
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2.3. Sample analysis  

2.3.1. Background and analytical development  

Sample analysis during this study was conducted using gas chromatography-mass spectrometry 

(GC-MS) techniques, developed according to a standard operating procedure previously produced 

by members of this research group (Delgado-Saborit and Baker, 2006). GC-MS has been 

established as method of PAH detection and quantification for over 50 years and remains a widely 

used method for the analysis of environmental samples for PAH (Lee, 1995; Liu et al., 2007; 

Poster et al., 2006); OPAHs (Walgraeve et al., 2010) and NPAHs (Dimashki et al., 2000; Albinet et 

al., 2006, 2007a, 2008a).  

GC-MS analysis of PAH is commonly achieved operating in electron impact (EI) mode. As 

discussed by (Rood, 2001), this process involves the collision between relatively high energy 

electrons (~70 eV) and sample molecules, removing their outer shell electron(s) producing 

primarily positive molecular ions [M+] : 

M + e-  →  M+ + 2 e-            (2.1) 

However, the energy imparted by this ionization can result in molecular ion disintegration to a 

number of smaller fragmented ions, the nature and extent being dependent on the structure of 

parent molecule: 

M+ → F+            (2.2) 

An alternative technique has been adopted using negative ion chemical ionisation (NICI). This 

method involves the utilisation of a large amount of reagent gas (e.g. methane) in the ion source, 

which acts as a moderator to the high-energy electrons. In this process, methane is introduced to 

the ionisation chamber and collisions occur between methane molecules and high energy electron 

stream forming the CH4 molecular ion (CH4
+) and low-energy (thermal) electrons: 

CH4 + e- (high energy)  CH4
+ 2e- (thermal)       (2.3) 



82 
 

Molecules with high electron affinities (e.g. those containing electronegative substituent groups) 

such as oxy- or nitro- groups efficiently capture the electrons produced, forming negative ions: 

MX + e- (thermal)    MX-          (2.4) 

Because NICI formation involves a much lower energy transfer, this usually results in less 

molecular ion fragmentation so molecular ions (M-) are predominantly produced. Furthermore, no 

negative reagent gas ions are formed, reducing the number of background peaks. The collision 

rate of sample molecules with these low energy electrons is much faster than the rate of ion-

molecule collisions. Therefore this ‘softer’ ionization method allows lower detection limits for target 

compounds, with sensitivity up 10-1000 times higher than other CI and EI techniques (Albinet et 

al., 2006 ; Cochran et al., 2012).  

This is particularly pertinent for the analysis of NPAH which requires low detection limits to analyse 

levels in environmental samples. NICI methods have been widely used to analyse atmospheric 

samples for both OPAH and NPAH compounds (Dimashki et al., 2000; Cochran et al., 2012; 

Albinet et al., 2006, 2007a, 2008a ; Bezabeh et al., 1997 ; 2003 ; Bonfanati et al., 1996 ; Bamford 

et al., 2003 ; Dušek et al., 2003 ; Siegmund et al., 2003 ; Ramdahl and Urdal, 1982 ; Newton et al., 

1982). This method also allows direct analysis of these compounds without requiring additional 

modifications e.g. conversion to diacetyl derivatives that has previously been required (Cho et al., 

2004; Delgado-Saborit et al., 2013).  

 

2.3.2. Analysis method for PAHs :  GC-MS in EI mode 

This method was used for the analysis of PAH compounds in extracts of filter and PUF samples, in 

accordance with Delgado-Saborit and Baker (2006).  GC-MS analysis was carried out using an 

Agilent 5973 Network Mass Selective Detector (MSD) coupled to an Agilent 6890N Network GC 

system, operated in electron impact (EI) mode. 1 uL of sample was injected in splitless mode and 
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non-pulsed injection. Separation was carried out using an Agilent HP-5MS (5% phenyl methyl 

siloxane) capillary column (30m x 0.25 mm i.d. x 0.25 um film thickness).  

The ion source, inlet and transfer line temperatures were 230°C, 300°C and 280°C respectively. 

Helium was used as a carrier gas with a set flow rate of 1.0 mL min-1 The oven temperature was 

programmed as follows : starting temperature 100°C (held for 2 minutes), increased with a 

temperature gradient of 4°C min-1 to a final temperature of 300°C (held for 7 minutes). The total run 

time was 59.0 minutes.  

The mass selective detector was operated in Selective Ion Monitoring (SIM) mode, allowing 

detection of specific ions in set time windows, allowing optimum selectivity and sensitivity of the 

method. The molecular weight (MW) values of each peak used to identify PAH compounds and 

internal standards are shown in Table 2.2. Examples of the gas-chromatograph peaks for each 

target and internal standard compound, detected in prepared standards and sample extracts are 

shown in Appendix 3.  

In accordance with Delgado-Saborit and Baker (2006), before and after sample runs, a 

quantification standard containing all target compounds, internal standards and the recovery 

standard p-terphenyl-d14 was analysed to assess any changes in GC-MS performance. Tuning 

checks were also carried out with the reference compound perfluoro-tri-n-butylamine (PFTBA) on a 

regular basis and after any GC-MS maintenance was performed in order to maintain optimum 

detector response. Calibrations were routinely carried out for all target compounds and method 

adjustments made as required.  

2.3.3. Analysis for OPAH and NPAHs :  GC-MS in NICI mode 

This method was used for the analysis of OPAH and NPAH in extracts of filter and PUF samples.   

GC-MS analysis was carried out using an Agilent 5973 Network Mass Selective Detector (MSD) 

coupled to an Agilent 6890N Network GC system operated in negative ion chemical ionisation 

(NICI) mode. The GC-MS configuration utilised a Gerstel Multipurpose auto sampler MPSL. 
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Compound separation was carried out using an Rxi®-PAH GC (Restek Ltd, UK) column (60m, 

0.25 mm i.d., 0.10 um film thickness). This column displayed notably improved separation of 2-NFlt 

and 3-NFlt compound peaks, which previous studies have failed to achieve (Albinet et al., 2007).  

Improved peak separation achieved by the Restek®column was attributed to the narrower bore 

column and higher phenyl content of the column stationary phase. A comparison of the 2NFlt and 

3NFlt peak separation on the Restek®column and a conventional Agilent DB5-MS 60m column 

can be seen in Figure 2.3.  

The ion source, inlet and transfer line temperatures were 250°C, 300°C and 280°C respectively. 

Helium was used as a carrier gas with a set flow rate of 1.0 mL min-1. Methane was used as the 

reagent gas with a set flow rate of 2 mL min-1. The oven temperature was programmed as follows : 

starting temperature 60°C (held for 2 minutes), increased with a temperature gradient of 45°C min-1 

to 150 (held for 2 minutes) and further increased with a temperature gradient of 4°C min-1 to a final 

temperature of 320°C (held for 11 minutes). The total run time was 59.5 minutes.  

As with the EI GC-MS method, the mass selective detector was operated in SI mode. The 

molecular weight (MW) values of each peak used to identify OPAH and NPAH compounds and 

internal standards are shown in Table 2.1. Examples of the gas-chromatograph peaks for each 

target and internal standard compound, detected in prepared standards and sample extracts are 

shown in Appendix 3.  

As detailed above, in accordance with Delgado-Saborit and Baker (2006), tuning checks were also 

carried out with the reference compound perfluoro-tri-n-butylamine (PFTBA) on a regular basis and 

after any GC-MS maintenance was performed in order to maintain optimum detector response. 

Before and after sample runs, a quantification standard containing all target compounds, internal 

standards and the recovery standard 1-fluoro-7-nitrofluorene (FNF) was analysed to assess any 

changes in GC-MS performance. Calibrations were routinely carried out for all target compounds 

and method adjustments made as required.  
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Figure 2.3. Comparison between peak separation of MW 247 NPAH compounds using an 

Agilent DB5-MS 60m column (upper) and the Restek® 60m column (lower). 1 = 1NFlt, 2 = 

2NFlt, 3= 3NFlt, 4 = 4NPyr, 5 = 1NPyr, 6 = 2NPyr.  

 

 

 

 

 

1 

2 

3 

4 

5 

6 

1 

2 

d
1

5 

6 

Time (mins) 

Time (mins) 

Response  

Response  



86 
 

2.4. Sample Quantification  

2.4.1. Sample concentrations  

Quantification of all target compounds in collected samples was based upon the ratios of analyte 

response peak area to that of an appropriate deuterated internal standard (IS) (Laurie, 2003) 

(Table 2.1). 

Calibrations curves for each target compound were plotted using prepared standards of varying 

concentrations (10 – 1000 pg). Calibration plots for each compound quantified are shown in Figure 

2.4. It should be noted that in the case of 9-NAnt and 7-NBaA, quantification based on this 

calibration method were not valid due to peak fractionation of their natural and/or IS compound 

during GC-MS (NICI) analysis. In the case of these compounds, quantification was based on an 

external calibration, utilising a simple response to concentration relationship. 

The internal standards were used to calculated relative response factors (RRFs) for each target 

compound. RRFs are defined as ‘the instrument response for a unit amount of target pollutant 

relative to that obtained for the same amount of the internal standard’ (Laurie, 2003).  

 

RRF = (Anat / Ais) x (Cs x Cnat)        (2.5) 

Anat = peak area of the ‘native’ compound in the standard  

Ais = peak area of the internal standard in the standard 

Cs = concentration of the ‘native’ compound in the standard 

Cnat = concentration of the ‘native’ compound in the standard 
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Concentrations in samples are calculated using the following equation (Laurie, 2003) : 

Conc (pg/ul) = (Anat / Ais) x (1/RRF) x (Mis/SS) x 1/Er      (2.6) 

Where :  

Anat = peak area of the ‘native’ compound in the standard  

Ais = peak area of the internal standard in the standard 

RRF = relative response factor 

Mis = mass of internal standard added to sample (pg) 

SS = air sample volume (m3) 

Er = recovery 

 

  

   

Figure 2.4. Calibration curves for the quantification of all PAH, OPAH and NPAH compounds 

measured in the present investigation. 
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 Figure 2.4(cont). Calibration curves for the quantification of all PAH, OPAH and NPAH 

compounds measured in the present investigation. 
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Figure 2.4(cont). Calibration curves for the quantification of all PAH, OPAH and NPAH 

compounds measured in the present investigation. 
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Figure 2.4(cont). Calibration curves for the quantification of all PAH, OPAH and NPAH 

compounds measured in the present investigation. 
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Figure 2.4(cont). Calibration curves for the quantification of all PAH, OPAH and NPAH 

compounds measured in the present investigation. 
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2.4.2. Validating analytical method 

2.4.2.1. Recoveries  

Percentage recoveries of internal standards were calculated to assess loss of target compounds 

during extraction and clean-up procedure (Table 2.3). This was based on the calculation (Laurie, 

2003) :  

% Recovery = [(Ais / Ards)s x (Ards / Ais)std] x [(Cis / Crds)std x (Crds / Cis)s] x 100  (2.7) 

Where : 

(Ais/Ars)s = response ratio of internal standard to recovery standard (sample) 

(Ars/Ais)std = response ratio of recovery standard to internal standard (standard) 

(Cis/Crs)std = the concentration ratio of recovery standard to internal standard (standard) 

(Crs/Cis)s = the concentration ratio of internal standard to recovery standard (sample) 

 

Acceptable recoveries were considered to be in the range 30-150%. In some cases where 

recoveries fell outside of this range, the analyte concentration for the IS compound in question was 

removed when calculating the mean of this compound. 

 

2.4.2.2. Standard reference material analysis (SRM) 

In order to test the accuracy, precision and reproducibility of the extraction, clean-up and analysis 

methods, a validation experiment was carried out by performing replicate analysis of NIST 

Standard Reference Material 1649b (urban dust).  10 samples of ~10mg SRM 1649b material were 

weighed and extracted, cleaned up and analysed for all target compounds using the procedure 

described above.  
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Table 2.4. shows the mean concentrations measured in these samples and, where available, these 

are compared with the certified or reference concentrations provided by NIST. It can be seen that 

in all cases, the mean concentration measured with this method fell within or close to one standard 

deviation of the certified value. Therefore we can be reasonably confident of the precision and 

accuracy of the applied method in this investigation. 

 

2.4.2.3. Sample blanks  

In order to provide ‘blank’ field samples, filters and PUFs were prepared for sampling, as described 

in Section 1.3.1, transported to the sampling site(s) and installed inside the sampler. In these 

cases, the sampler was not run and the filters and PUFs were immediately transported to the 

laboratory. As these ‘samples’ had not been exposed to ambient air, they were used as sample 

blanks, representing concentrations of compounds resulting from contamination that may have 

occurred during preparation and transport of filters and PUFs.  

A total of eight sample blanks (filters and PUFs) were prepared in this way during the campaigns. 

Blank concentrations were calculated assuming a sampling volume of 1043 m3, the mean air 

volume of all air samples measured. The mean concentrations of target compounds in sample 

blanks in filters and PUFs, and their relative levels to annual mean measured concentrations, is 

shown in Table 2.4 and Table 2.5 respectively. These mean values were then subtracted from 

measured sample concentrations to take into account this background contamination.   

2.4.2.4. Detection Limits  

Instrument detection limits (IDLs) (i.e. the minimum analyte concentration required to obtain an 

instrument response) were calculated for each target compound for a signal to noise ratio of 5:1. 

Method Detection Limits (MDLs) (i.e. the minimum detectable atmospheric concentration in the for 

each target compound) were calculated assuming a final sample volume of 100uL and an air 
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sample volume of 1043 m3, the mean air volume of all air samples measured. IDL and MDL values 

are shown in Table 2.6. 

 

Table 2.3. Calculaed recoveries for all internal standards used in the analysis of samples 

from Campaigns 1, 2 and 3.   

  Filter PUF 

Internal Standard mean 
Recovery 

(%) 

# of 
samples 
>150% 

# of 
samples 

<30% 

mean 
Recovery 

(%) 

# of 
samples 
>150% 

# of 
samples 

<30% 
Acenaphylene-d8 74 2 2 48 1 3 

Acenaphthene-d10 66 1 2 50 2 5 

Fluorene-d10 78 2 3 57 2 4 

Phenanthrene-d10 70 1 2 54 1 3 

Anthracene-d10 68 1 3 60 3 4 

Fluoranthene-d10 73 2 2 51 3 5 

Pyrene-d10 74 1 3 57 2 4 

Benzo(a)anthracene-d12 68 1 2 61 1 3 

Chrysene-d12 78 1 2 63 1 3 

Benzo(b)fluoranthene-d12 69 1 3 57 0 2 

Benzo(k)fluoranthene-d12 72 1 2 52 1 3 

Benzo(e)pyrene-d12 56 0 4 41 0 2 

Benzo(a)pyrene-d12 75 3 2 43 0 2 

Indeno(1,2,3-cd)pyrene-d12 77 3 2 59 1 1 

Dibenz(a,h)anthracene-d12 79 2 3 56 2 2 

Benzo(ghi)perylene-d12 80 3 3 56 2 3 

Coronene-d12 69 0 4 43 1 3 

1-Nitronaphthalene-d7 71 2 2 72 3 2 

2-Nitrofluorene-d8 66 1 1 50 0 3 

3-Nitrofluoranthene-d9 62 0 2 49 1 3 

1-Nitropyrene-d9 58 0 2 52 1 3 

6-Nitrochrysene-d11 61 1 2 45 0 2 

9-Fluorenone-d8 80 3 2 70 3 1 

Anthraquinone-d8 76 2 1 60 3 1 
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Table 2.4. Measured mean and standard deviation for concentrations of PAH, OPAH and 

NPAH compounds in NIST Standard Reference Material 1649b (urban dust). 

PAHs Mean (mg/kg) SD (mg/kg) 
NIST value 

(mg/kg) 

Acenaphthylene 0.3 0.1 0.2±0.036b 

Acenaphthene 0.2 0.05 0.2±0.026b 

Fluorene 0.3 0.05 0.2±0.02b 

Phenanthrene 4 0.5 3.9±0.05a 

Anthracene 0.4 0.1 0.4±0.002b 

Fluoranthene 6 1 6.1±0.1a 

Pyrene 5 0.7 4.8±0.03a 

Retene 0.3 0.05 0.3±0.04a 

Benzo(a)anthracene 2 0.4 2.1±0.05a 

Chrysene 3 0.5 3.01±0.04a 

Benzo(b)fluoranthene 6 0.6 6±0.2a 

Benzo(k)fluoranthene 2 0.4 1.8±0.08a 

Benzo(e)pyrene 3 1 3±0.04a 

Benzo(a)pyrene 3 0.5 2.5±0.2a 

Indeno(1,2,3-cd)pyrene 1 0.1 1.1±0.4a 

Dibenz(a,h)anthracene 0.3 0.04 0.3±0.004a 

Benzo(ghi)perylene 4 0.2 3.9±0.05a 

Coronene 3 0.3 2.8±0.5b 

OPAHs 
Measured 

mean (mg/kg) 
Measured SD 

(mg/kg) 
NIST value 

(mg/kg) 
9-Fluorenone 1 0.2 1.4b 

Anthraquinone 2 0.2 1.8b 
2-Methyl-Anthraquinone 1 0.1 n/a 

Benzo(a)anthracene-7,12-dione 3 0.4 3.6b 

NPAHs 
Measured 

mean (ug/kg) 
Measured SD 

(ug/kg) 
NIST value 

(ug/kg) 

1-Nitronaphthalene 8 4 7.2±0.1b 

2-Nitronaphthalene 12 5 11.4±0.3b 

2-Nitrofluorene 59 12 n/a 

9-Nitroanthracene 39 11 34.6±0.7b 

1-Nitrofluoranthene 29 14 n/a 

2-Nitrofluoranthene 311 21 311±5b 

3-Nitrofluoranthene 6 2 4.6±0.1b 

4-Nitropyrene 7 4 5.5±0.1b 

1-Nitropyrene 68 9 71.8±1.3b 

2-Nitropyrene 17 7 10.8±0.3b 

7-Nitrobenzo(a)anthracene 25 4 24.2±0.7b 

6-Nitrochrysene 4 3 3.8±0.1b 
n/a = no value available; a = certified value; b = reference value 
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Table 2.5. Sample blank concentrations (filters) and comparison with mean annual levels 

measured at EROS and BROS.  

Mean 
Blank 

(pg m-3) 
Standard 
deviation 

EROS 
Mean 

(pg m-3)a 
% Blank 
(EROS) 

BROS 
Mean 

(pg m-3)a 
% Blank 
(BROS) 

Acy 0.4 0.3 7 5 17 2 
Ace 0.4 0.2 45 1 52 0.7 
Flo 0.9 0.4 12 8 27 3 
Phe 4 0.8 192 2 411 0.9 
Ant 0.1 0.0 21 0.7 47 0.3 
Flt 3 0.6 233 1 544 0.5 
Pyr 2 0.4 167 1 479 0.4 
Ret 2 1.1 132 1 187 1 
BaA 0.7 0.2 101 0.7 176 0.4 
Chr 1 0.2 239 0.5 354 0.3 
BbF 0.9 0.1 176 0.5 239 0.4 
BkF 0.6 0.3 171 0.3 238 0.2 
BeP 1 0.5 120 0.9 162 0.7 
BaP 0.8 0.4 102 0.8 167 0.5 
IPy 0.7 0.3 137 0.5 184 0.4 

DBA 0.6 0.3 33 2 42 1 
BPy 0.8 0.4 164 0.5 243 0.3 
Cor 2 0.5 83 2 98 2 

1NNap 0.03 0.01 2 1.8 5 0.7 
2NNap 0.02 0.01 1 1.8 4 0.6 
2NFlo 0.05 0.08 1 4 3 2 
9NAnt 0.1 0.3 11 1.1 20 0.7 
1NFlt 0.03 0.02 4 0.8 9 0.3 
2NFlt 0.03 0.01 25 0.1 37 0.1 
3NFlt 0.01 0.003 2 0.5 3 0.1 
4NPyr 0.01 0.003 3. 0.2 4 0.2 
1NPyr 0.03 0.02 7 0.4 19 0.2 
4NPyr 0.06 0.04 10 0.6 15 0.4 
7NBaA 0.02 0.02 5 0.5 8 0.3 
6NChr 0.01 0.002 0.7 1 1 0.3 

9F 0.3 0.2 72 0.4 156 0.2 
AQ 1.6 1.0 430 0.4 721 0.2 

MAQ 1 0.4 278 0.3 433 0.2 
BaAQ 0.6 0.5 78 0.5 111 0.5 

 

a : mean particle-phase concentration measured in samples from Campaign 1 (Section 3)  
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Table 2.6. Sample blank concentrations (PUF) and comparison with mean annual levels 

measured at EROS and BROS.  

Mean 
Blank 

(pg m-3) 
Standard 
deviation 

EROS 
Mean 

(pg m-3)a 
% Blank 
(EROS) 

BROS 
Mean 

(pg m-3)a 
% Blank 
(BROS) 

Acy 6 1 444 1.4 1775 0.4 
Ace 21.5 5 1609 1.3 1747 1 
Flo 41 5.5 2336 1.8 3708 1 
Phe 303 39 5839 5.2 9569 3 
Ant 16 3 579 2.7 1382 1 
Flt 56 7 2295 2.4 3798 1.5 
Pyr 60 11 1749 3.4 3058 2 
Ret 80 13 802 10.0 1209 7 
BaA 4.5 0.6 39 11.5 73 6 
Chr 10 1.5 72 13.7 131 8 
BbF 6 1 69 9.0 95 7 
BkF 4 0.8 74 5.7 86 5 
BeP 3 0.8 30 10.6 38 8 
BaP 3 1 19 18.1 32 11 
IPy 7 1 36 19.7 38 19 

DBA 1 0.4 4 27.3 14 8 
BPy 4 2 32 11.6 39 9 
Cor 1 0.2 7 14.5 6 18 

1NNap 0.5 0.4 90 0.5 233 0.2 
2NNap 0.3 0.1 61 0.6 110 0.3 
2NFlo 0.2 0.1 1 12 2 7 
9NAnt 0.04 0.02 7 0.5 9.5 0.4 
1NFlt 0.2 0.3 0.9 19 1 13 
2NFlt 0.1 0.1 4 2.5 4 2 
3NFlt 0.03 0.1 1 4 0.3 16 
4NPyr 0.1 0.1 1 24 0.6 25 
1NPyr 0.3 0.3 1 39 1 26 
4NPyr 0.3 0.5 2 17 2 18 
7NBaA 0.001 0.003 0.1 3 0.02 20 
6NChr 0.002 0.01 0.04 0.04 0.04 21 

9F 13 1 1394 1 2248 0.6 
AQ 12 2 274 3 395 3 

MAQ 1 0.7 76 1 81 2 
BaAQ 0.3 0.2 4 7.5 7 4 

 

a : mean gas-phase concentration measured in samples from Campaign 1 (Section 3) 
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Table 2.7. Instrument detection limits (IDLs) and method detection limits (MDLs).  

  

Instrument 
Detection Limit 

(IDL), pg 

Filter Method 
Detection Limit 
(MDL), pg/m3 

PUF Method 
Detection Limit 
(MDL), pg/m3 

PAH       

Acenaphthylene 1.87 0.72 0.07 

Acenaphthene 1.11 0.42 0.04 

Fluorene 2.35 0.9 0.09 

Phenanthrene 2.18 0.84 0.08 

Anthracene 2.89 1.11 0.11 

Fluoranthene 1.79 0.69 0.07 

Pyrene 2.18 0.84 0.08 

Retene 1.41 0.54 0.05 

Benzo(a)anthracene 2.68 1.03 0.1 

Chrysene 2.49 0.95 0.09 

Benzo(b)fluoranthene 2.44 0.94 0.09 

Benzo(k)fluoranthene 1.8 0.69 0.07 

Benzo(e)pyrene 1.47 0.56 0.05 

Benzo(a)pyrene 1.31 0.5 0.05 

Indeno(1,2,3-cd)pyrene 3.01 1.16 0.11 

Dibenz(a,h)anthracene 2.51 0.96 0.09 

Benzo(ghi)perylene 2.25 0.86 0.08 

Coronene 1.72 0.66 0.06 
OPAH       

9-Fluorenone 0.05 0.02 0.003 

Aceanthraquinone 0.16 0.06 0.01 

Methyl-Anthraquinone 0.14 0.05 0.004 
Benzo(a)anthracene-7,12-

dione 0.04 0.01 0.003 

NPAH       

1-Nitronaphthalene 0.11 0.04 0.003 

2-Nitronaphthalene 0.25 0.1 0.01 

2-Nitrofluorene 0.06 0.02 0.002 

9-Nitroanthracene 4.69 1.8 0.17 

1-Nitrofluoranthene 0.5 0.19 0.02 

2-Nitrofluoranthene 0.18 0.07 0.01 

3-Nitrofluoranthene 0.16 0.06 0.01 

4-Nitropyrene 0.06 0.02 0.006 

1-Nitropyrene 0.17 0.06 0.01 

2-Nitropyrene 0.54 0.21 0.02 

7-Nitrobenzo(a)anthracene 0.42 0.16 0.02 

6-Nitrochrysene 0.06 0.02 0.004 
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Chapter 3 : Concentrations and trends of PAHs, OPAHs 

and NPAHs in the ambient urban atmosphere  

 

3.1. Measured concentrations of PAH, OPAH and NPAH  

Details of the samples taken in Campaign 1 are provided in Table 2.1. The mean concentrations 

for all PAH, OPAH and NPAH compounds measured in Campaign 1 are presented in Table 3.1. 

Box plots of the measured concentrations for all compounds during this campaign are presented in 

Figure 3.1. Because sampling was conducted during all four seasons of the year, the mean 

concentrations measured are assumed to represent an ‘annual mean’ concentration.  

3.1.1 PAH and OPAH concentrations  

Annual mean concentrations (sum of particulate and vapour phases) of PAHs measured in 

Campaign 1 at BROS and EROS are shown in Figure 3.2. Annual mean total PAH concentrations 

(sum of 18 compounds measured) were 30.5 ng m-3 and 18.2 ng m-3 at BROS and EROS 

respectively. The most abundant PAHs at both sites were the 3- or 4-ring compounds Phe, Flo, Flu 

and Pyr. These compounds are shown to contribute >70% to the total PAH load at both sites. 

PAH concentrations observed at these sites are broadly of the same magnitude as levels typically 

observed in the UK atmosphere at urban, suburban and roadside locations (Brown et al., 2013; 

Halsall et al., 1993; Meijer et al., 2008; Prevedouros et al., 2004a). LMW (3-4 ring) PAHs, present 

predominantly in the gas-phase, dominate the total PAH load compared with HMW (5+ ring) PAHs, 

which are present mostly in the particulate phase. The average gas-phase/particulate-phase ratio 

for total PAH measured in this campaign was 8.8 and 9.6 for BROS and EROS respectively. The 

higher ratio at EROS may indicate an influence of phase-partitioning to the gas-phase occurred 

between sites (discussed further in Section 3.5).  



100 
 

Table 3.1. The mean and (range) of particle-phase (P), vapour-phase (V) and total (T) PAH, 

OPAH and NPAH concentrations measured during Campaign 1 at BROS and EROS (n=24).   

  BROS EROS 

  P (pg m-3) V (pg m-3) T (pg m-3) P (pg m-3) V (pg m-3) T (pg m-3) 

Acy 17 (2 – 54) 1775 (172 – 
11700) 

1792 (190 – 
11755) 

7 (<MDL – 18) 443 (404 – 
1723) 

450 (76 – 
2390) 

Ace 52 (17 – 138) 1747 (329 – 
5280) 

1800 (432 – 
5343) 

45 (8-74) 1609 (418 – 
4039) 

1653 (433 – 
4085) 

Flo 27 (7 – 65) 3708 (1556 – 
12570) 

3735 (1560 – 
12636) 

12 (6-31) 2336 (1047 – 
4135) 

2348 (1054 – 
4157) 

Phe 411 (100 – 
1602) 

9569 (2462 – 
21850) 

9980 (2632 – 
22173) 

192 (73 – 490) 5839 (2083 – 
17497) 

6031 (2220 – 
17728) 

Ant 47(3 –142) 1382 (319 – 
2713) 

1429 (415 – 
2801) 

21 (5 – 72) 579 (153 – 
1281) 

599 (160 – 
1046) 

Flt 544(112 –
1276) 

3798 (1421 – 
7362) 

4342 (1558 – 
7008) 

233 (75 – 658) 2295 (709 – 
4075) 

2528 (823 – 
4150) 

Pyr 479 (87 – 
1155) 

3058 (1700-
7972) 

3537 (1959 – 
5528) 

167 (64 – 513) 1749 (626 – 
5468) 

1916 (712 – 
3531) 

Ret 187 (69 – 
724) 

1209 (104 – 
2426) 

1395 (216 – 
2756) 

132 (42 – 407) 802 (58 – 1604) 934 (132 – 
1597) 

BaA 176 (27 – 
696) 

73 (5 – 235) 249 (64 – 828) 101 (19 – 373) 39 (8 – 174) 140 (39 – 548) 

Chr 354 (77 – 
1502) 

131 (<MDL – 
420) 

485 (158 – 
1922) 

239 (28 – 1006) 72 (9 – 240) 311(50 – 
1246) 

BbF 239 (68 – 
971) 

95 (<MDL – 
633) 

333 (100 – 
1180) 

176 (38 – 634) 69 (<MDL – 
249) 

245 (61 – 764) 

BkF 238 (65 – 
991) 

86 (<MDL – 
463) 

324 (95 – 1454) 171 (45 – 670) 74 (<MDL – 
295) 

244 (60 – 870) 

BeP 162 (49 – 
594) 

38 (5 – 125) 200 (77 – 645) 120 (34 – 436) 30 (1 – 71) 151 (46 – 507) 

BaP 167 (29 – 
668) 

32 (<MDL – 99) 200 (37 – 698) 102 (19 – 377) 19 (1 – 67) 121 (35 – 404) 

IPy 184 (52 – 
670) 

38 (0.7 – 100) 222 (89 – 770) 137 (38 – 473) 36 (6 – 106) 173 (68 – 579) 

DBA 42 (9 – 150) 
 

14 (<MDL – 71) 56 (12 – 150) 33 (8 – 96) 4 (<MDL – 25) 37 (8 – 96) 

BPy 243 (54 – 
841) 

38 (<MDL – 
123) 

282 (61 – 837) 164 (50 – 544) 32 (<MDL – 84) 195 (84 – 563) 

Cor 98 (50 – 269) 6 (0 – 22) 104 (42 – 284) 83 (24 – 172) 7  (<MDL – 61) 90 (34 – 252) 

9F 156 (11 – 
740) 

2248 (833 – 
4943) 

2404 (890 – 
5680) 

72 (10 – 330) 1394 (481 – 
2821) 

1466 (512– 
2973) 

AQ 721 (113 – 
1742) 

395 (132 – 983) 1086 (632 – 
2013) 

430 (90 – 984) 274 (72 – 821) 704 (451 – 
1023) 

MAQ 433 (203 – 
743) 

81 (23 – 193) 514 (253 – 794) 278 (121 – 453) 76 (<MDL – 
174) 

354 (183 – 
573) 

BaAQ 111 (32 – 
314) 

7 (<MDL – 23) 118 (32 – 312) 78 (34 – 204) 4 (<MDL – 10) 82 (32 – 203) 

1NNap 5 (0.4 – 11) 233 (78 – 676) 238 (81 – 686) 2 (<MDL – 7) 90 (41 – 261) 92 (42 – 264) 

2NNap 4 (0.7 – 10) 110 (51 – 214) 113 (53 – 224) 1 (0.6 – 3) 60 (32 – 168) 61 (32 – 169) 

2NFlo 3 (0.6 – 8) 2 (0.8 – 5) 5 (2 – 10) 1 (0.6 – 4) 1 (0.5 – 3) 3 (1.3 – 5) 

9NAnt 20 (3 – 49) 10 (2 – 18) 30 (6 – 56) 11 (2 – 26) 7 (2 – 15) 18 (5 – 32) 

1NFlt 9 (0.6 – 17) 1 (<MDL – 7) 10 (0.7 – 18) 4 (0.4 – 8) 1 (<MDL – 4) 4 (1 – 9) 

2NFlt 37 (4 – 163) 4 (0.7 – 14) 41 (9 – 169) 25 (4 – 94) 4 (<MDL – 23) 30 (5 – 94) 

3NFlt 3 (0.1 – 12) 0.3 (<MDL – 1) 3 (0.1 – 12) 2 (0.1 – 7) 0.5 (<MDL – 3) 2 (0.1 – 7) 

4NPyr 4 (0.8 – 20) 0.6 (<MDL – 2) 5 (0.9 – 20) 3 (0.2 – 13) 0.6 (<MDL – 4) 4 (0.4 – 13) 

1NPyr 19 (6 – 67) 1 (<MDL – 5) 20 (7 – 67) 7 (1 – 31) 0.9 (<MDL – 6) 8 (2 – 31) 

2NPyr 15 (4 – 11) 2 (4 – 6) 16 (5 – 107) 10 (<MDL – 62) 2 (<MDL – 6) 12 (2 – 62) 

7NBaA 8 (1 – 28) 0.02 (<MDL – 
0.2) 

8 (1 – 28) 5 (0.6 – 14) 0.1 (<MDL – 3) 5 (0.7 – 14) 

6NChr 1 (0.1 – 4) 0.04 (<MDL – 
0.5) 

1 (0.1 – 4) 0.7 (<MDL – 2) 0.02 (<MDL – 
0.2) 

0.7 (<MDL – 
2) 
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Figure 3.1. Box plots of PAH concentrations measured at BROS and EROS in Campaign 1 (n=24).  The upper and 
lower boundaries of the box represent the 75th and 25th percentile values respectively. The upper and lower 

boundaries of the whiskers represent the 90th and 10th percentile values respectively. The median value is 
represented by the vertical line within the box. Black dots represent outlier values.  
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Figure 3.1(cont). Box plots of PAH, OPAH and NPAH concentrations measured at BROS and 
EROS in Campaign 1 (n=24). 
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Figure 3.1(cont). Box plots of PAH, OPAH and NPAH concentrations measured at BROS and 
EROS in Campaign 1 (n=24). 
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Figure 3.1(cont). Box plots of PAH, OPAH and NPAH concentrations measured at BROS and 
EROS in Campaign 1 (n=24). 
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Figure 3.2. Mean concentrations (P + V) of PAH compounds measured at BROS and EROS 

and the ‘traffic increment’ (i.e. the BROS – EROS concentration) during Campaign 1 (n=24).  

 

The relative distribution of compounds is very similar at BROS and EROS, suggesting a common 

emission source is dominating both sites. These observations are in good agreement with the 

typical species distribution of PAHs observed previously at these sites (Alam et al., 2013; Delgado-

Saborit et al., 2013; Harrad and Laurie, 2005; Harrison et al., 2003), at other sites in the 

Birmingham area (Dimashki et al., 2001; Smith and Harrison, 1996), and at other urban and 
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suburban sampling locations in the UK (Eiguren-Fernandez et al., 2003; Halsall et al., 1993; Meijer 

et al., 2008; Prevedouros et al., 2004a). 

Annual mean concentrations (sum of particulate- and vapour- phases) of the four OPAH measured 

in campaign 1 are shown in Figure 3.3. 

9F AQ MAQ BaAQ
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 /m
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Figure 3.3. Mean concentrations (P + V) of OPAH compounds measured at BROS and EROS 

and the ‘traffic increment’ (i.e. the BROS – EROS concentration) during Campaign 1 (n=24).  

 

9F was the most abundant OPAH, present predominantly in the gas phase. AQ was present at 

levels a factor ~2 lower than 9F at both sites and is shown to undergo considerable partitioning 

between phases.  MAQ is present at levels 2-3 times lower than AQ. MAQ was present mostly in 

the particulate phase, in contrast to previous measurements at these sites (Alam et al., 2013; 

Delgado-Saborit et al., 2013), which suggested this OPAH was present mainly in the gas-phase.   
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Table 3.2 provides a comparison between measured OPAH and NPAH concentrations with those 

reported in previous studies.  Relatively few previous studies have measured OPAHs and NPAHs 

in the ambient atmosphere in both particulate and gas phases. Furthermore, many previous 

measurements have been carried out as seasonal campaigns, collecting samples in summer and 

winter months only so comparisons must be made with caution.  

Concentrations of 9F, AQ and BaAQ (P+V) concentrations measured at BROS in this study fall 

within the range of concentrations measured by (Albinet et al., 2008a) during winter and summer 

months in two Alpine valley locations in France. When just particulate-phase is considered, OPAH 

concentrations measured at BROS are generally similar to those measured previously in Paris, 

France (Nicol et al., 2001) ; Basel, Switzerland (Niederer, 1998) ; Munich, Germany (Schnelle-

Kreis et al., 2001); Augsberg, Germany (Liu et al., 2006b; Schnelle-Kreis et al., 2005; Sklorz et al., 

2007) ; Santiago, Chile (Sienra, 2006; Tsapakis et al., 2002); Finokalia, Crete (Tsapakis and 

Stephanou, 2007); Helsinki, Finland (Kallio et al., 2003; Shimmo et al., 2004a); Southern 

California, USA (Cho et al., 2004; Chung et al., 2006); Athens, Greece (Andreou and 

Rapsomanikis, 2009; Valavanidis et al., 2006); Tempe, Arizona, USA (Delhomme et al., 2008); and 

southern China (Wei et al., 2012; Yassaa et al., 2001). OPAH concentrations were lower than in 

more heavily polluted cities of less developed countries e.g. Algiers, Algeria (Yassaa et al., 2001) 

and in road tunnel studies (Oda et al., 2001).  

PAHs and OPAHs have been measured at these sites previously (Alam et al., 2013; Delgado-

Saborit et al., 2013; Harrad and Laurie, 2005). Concentrations of individual PAHs measured in the 

present study are shown to exhibit a strong (R2 > 0.9) correlation with concentrations measured by 

Harrad and Laurie (2005) at both BROS and EROS in 1999-2001. Similarly there is a strong 

correlation (R2 =0.94 and 0.98 for BROS and EROS respectively) between the mean winter 

concentrations measured in this study and those measured during the same period by (Alam et al., 

2013). This suggests the dominant sources and processes governing the observed levels of PAH 

and OPAH at these sites have not changed significantly in the last 15 years.   
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Table 3.2. Comparison of total (particulate + gas) OPAH and NPAH concentrations (pg/m3) 

measured at different locations.  

 

Chamonix 
valley, 

Francea 
Houston, 
Texasb 

Marseilles, 
Francec 

Baltimore, 
Marylandd 

 
Birmingham, 

U.K.e 
NPAHs  
1NNap 186 

56 
113 
403 208 

59 
8 

238 (81- 686) 

2NNap 66 
21 

20 
67 120 

39 
12 

113 (53 – 224) 

2NFlo 1 
4.3 nm 21 

0.4 
0.1 

5 (2 – 10) 

9NAnt 85 
22 

6 
60 107 

64 
53 

30 (6 – 56) 

1NFlt 
nm nm nm 

0.2 
0.03 

10 (0.7 – 18) 

2NFlt 

168 
30 

 

20 
49 

90 
 

60 
99 

41 (9 – 169) 

3NFlt 

nm 
0.5 
0.3 

3 (0.1 – 12) 

4NPyr 21 
3 nm 1.4 

2 
0.5 

5 (0.9 – 20) 

1NPyr 54 
8 

11 
6 61 

27 
8 

20 (7 – 67) 

2NPyr 186 
28 nm 34 

7 
3 

16 (5 – 107) 

7NBaA 13 
2 nm 4 

23 
3 

8 (1 – 28) 

6NChr 0.5 
1 

<1 
1.5 33 

0.4 
0.1 

1 (0.1 – 4) 

OPAHs  
9F 11123 

1770 nm 3577 nm 
2404 (890 – 

5680) 
AQ 3600 

970 nm 1398 nm 
1086 (632 – 

2013) 
MAQ nm nm nm nm 514 (253 – 794) 
BaAQ 550 

150 
77 
66 120 nm 

118 (32 – 312) 

 

a Albinet et al 2008, Traffic area, winter 2002-2003, n = 14 (upper) ; summer 2003 (2), n = 14 (lower) 

bWilson et al., 1995, Suburban area, Nov 1990 - Feb 1991, n=5 (upper) ; Aug-Sep 1990,  n=7 (lower) 

c Albinet et al 2007, Urban area, July 2004, n=12 

d Bamford and Baker, 2003, city centre , Winter (Jan) n =4(upper) ; Summer (July) n=5 (lower) 

eThis study, Traffic site (BROS), July 2011 – May 2012, annual mean and (range) n=24 
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PAH and OPAH concentrations were measured at these sites most recently in January 2010 (Alam 

et al., 2013; Delgado-Saborit et al., 2013). The concentrations of LWM (3-4 ring) PAH measured in 

these previous studies were a factor of 2-11 higher, and HMW (5+ ring) PAHs 0.7 - 4 times higher, 

compared with the mean concentrations measured during the winter months in the present study.  

The OPAHs MAQ and BaAQ were 1.2-5.1 times higher in the previous studies. In contrast AQ was 

measured at higher levels in the present study. This may be due to a greater proportion of AQ 

observed in the particle-phase in the present study which may protect it from photo degradation 

processes. Higher levels of AQ could also have resulted due to inputs from atmospheric reactivity 

or volatilisation from soil, vegetation or road surfaces.  

It should be noted  that the range of ambient temperature during sampling was narrower (1oC to 

4oC) in the studies by Alam et al. (2013) and Delgado-Saborit et al. (2013) compared to the winter 

sampling in the present study (-1 oC to 12oC).  The higher concentrations of PAH and OPAH 

observed in the previous studies may therefore be partly explained by lower temperatures and 

associated lower mixing height resulting in slower advective dispersion.  However, if the 

differences in concentrations were governed by temperature-driven variation in mixing height it 

may be expected that higher proportion of PAHs and OPAHs would be observed in the particle-

phase than in this study. In contrast the proportion of particle-phase component for most PAH and 

OPAH is lower than in the present study. 

As noted in Section 2.1.6, Alam and co-workers utilised a deunded sampling system, with 

upstream collection of the gas-phase component with XAD-4 (Delgado-Saborit et al., 2014). The 

results of the present study may therefore not be directly comparable with those of Alam et al. 

(2013) and Delgado-Saborit et al. (2013) as the differences in concentrations of, and overall 

contribution from, gas-phase PAH and OPAH compounds in these studies may have resulted due 

to differences in the sampling technique used to collect the gas-phase component.   
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3.1.2. NPAH concentrations  

Annual mean concentrations (sum of particulate- and vapour- phases) of NPAH compounds 

measured in this campaign at BROS and EROS are shown in Figure 3.4. 1NNap and 2NNap are 

the most abundant NPAHs at both sites, present almost completely in the gas-phase. These 

compounds are shown to result from both direct emissions and gas-phase reactions.  
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Figure 3.4. Mean concentrations (P + V) of NPAH compounds measured at BROS and EROS 

and the ‘traffic increment’ (i.e. the BROS – EROS concentration) during Campaign 1.  

 

2NFlt is the dominant particle-bound NPAH measured, in agreement with other studies in the USA 

(Arey et al., 1987; Bamford and Baker, 2003; Chuang et al., 1991; Zielinska et al., 1989) and 

Europe (Cecinato, 2003; Ciccioli et al., 1996; Dimashki et al., 2000; Feilberg et al., 2001; Marino et 
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al., 2000). 2NPyr is also present, mostly in the particulate-phase at lower levels than 2NFlt. Both of 

these compounds are expected to be present solely as a result of gas-phase PAH reactions in the 

atmosphere (Atkinson and Arey, 1994).    

1NPyr and 9NAnt, which result primarily from diesel exhaust emissions, were also observed in 

relatively high concentrations, predominantly in the particulate phase at both sites.  

NPAH concentrations have previously been measured simultaneously in gas- and particulate 

phases in urban , suburban or traffic locations in Maryland, USA (Bamford and Baker, 2003) the 

Chamonix Valley, France (Albinet at al., 2008a) Los Angeles and Riverside, USA (Reisen and 

Arey, 2005) Houston, USA (Wilson et al., 1995) in both summer and winter months (see Table 

3.3). Concentrations measured at BROS in this study were within the range or of the same order of 

magnitude of those reported in these previous studies.  

NPAH concentrations in the present study were lower than observed during photochemical smog 

events in California, USA (Arey et al., 1987, 1989) and those reported in more highly polluted 

urban centres or high traffic areas such as Copenhagen, Denmark (Feilberg et al., 2001); Ho Chi 

Minh City, Vietnam (Hien et al., 2007); Tokyo, Japan (Kakimoto et al., 2000; 2001; Kojima et al., 

2010); Beijing, China (Wang et al., 2011b) and Cairo, Egypt (Nassar et al., 2011).  

The presence of NPAH compounds that result from gas-phase reactions (2NFlt, 2NPyr), direct 

emissions (1NPyr) and a combination of both (1NNap, 2NNap) indicates that concentrations of 

OPAH (e.g. 9F, AQ) and NPAH compounds at these sites will be influenced by both direct 

emissions from traffic and secondary reactions of parent PAH with atmospheric oxidants e.g. OH, 

NO3, O3. 

 

3.1.3. BROS/EROS ratio comparisons  

The relative magnitude and seasonal variability of BROS/EROS concentration is dependent on a 

number of factors : the emission source strength from traffic, the influence of other non-traffic 
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combustion or non-combustion sources, levels of mobility and/or reactivity in the atmosphere, and 

the relative input of some NPAH and OPAH compounds from atmospheric PAH reactions.  

The mean BROS/EROS ratios for each compound measured in Campaign 1 are presented in 

Table 3.3. The annual mean concentrations of all PAH, OPAH and NPAH compounds measured 

were higher at BROS than at EROS. This is consistent with BROS being in closer proximity to the 

major local emission source (i.e. road traffic) and levels at EROS being depleted to a greater 

degree due to dispersion, deposition and/or chemical reactivity.  

Statistical analysis of results indicates a significant (p<0.01) correlation exists between the 

measured concentrations at BROS and EROS for all compounds (with the exception of Ant and 

Cor). A paired t-test of the BROS and EROS samples indicates that concentrations at BROS are 

significantly (p<0.01) higher at BROS for nearly all measured compounds. This is in agreement 

with the work of Alam et al. (2013) Alam et al. (2013) and Harrad and Laurie (2005) where 

significant inter-site differences were also reported.  These results strongly indicate that traffic is 

the dominant source influencing the observed concentrations of most compounds measured at 

these sites.   

However, no significant difference between sites was observed for Ace and Cor. Cor is typically 

used as a marker for traffic emissions, so higher levels at BROS may be expected. However, the 

lack of a statistical difference between sites may be explained by the relatively low volatility and 

reactivity of this compound, which may result in relatively low inter-site difference in concentration. 

For Ace, this may indicate a relatively low traffic input at these sites and the possibility of a non-

traffic input that is more prominent at EROS masking a traffic-related input.  

The magnitude of BROS/EROS ratios varies considerably between compounds. For PAHs, 

BROS/EROS ratios are generally higher for the LMW PAHs with 3-4 rings (1.1-3.8) compared to 

HMW PAH with 5+ rings (1.3 – 2.0). These ratios are broadly in good agreement those observed 

previously by Harrad and Laurie (2005) and Alam et al. (2013).   
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Table 3.3. Annual mean BROS/EROS concentration ratios for all PAH, OPAH and NPAH 

compounds. 

Annual mean BROS/EROS ratio 

Acy 3.8 

Ace 1.1 

Flo 1.6 

Phe 1.7 

Ant 3.1 

Flu 1.8 

Pyr 2.1 

Ret 1.6 

BaA 2.0 

Chr 1.9 

BbF 1.4 

BkF 1.5 

BeP 1.5 

BaP 1.7 

Ipy 1.4 

DBA 2.0 

BPy 1.5 

Cor 1.3 

9F 1.7 

AQ 1.5 

MAQ 1.5 

BaAQ 1.6 

1NNap 2.7 

2NNap 2.0 

2NFlo 2.0 

9NAnt 1.7 

1NFlt 2.3 

2NFlt 1.6 

3NFlt 1.6 

4NPyr 1.7 

1NPyr 2.9 

2NPyr 1.7 

7NBaA 1.6 

6NChr 1.7 
 

 

 



114 
 

The higher ratios observed for LWM PAHs may reflect the higher proportion of these compounds in 

the gas-phase and their subsequent susceptibility to reactive losses and more rapid dispersion. 

The relative magnitude of BROS/EROS ratios for different compounds may be due to their relative 

reactivity towards atmospheric oxidants (see Section 4.2).   

The lower ratios observed for HMW PAH are expected due their greater association with the 

particulate phase and greater stability towards degradation. Ace displays a relatively low ratio, 

possibly indicating a minor traffic input and/or additional source influencing predominantly at 

EROS. Ret is not expected to result from a traffic emission source, being a typical marker for wood 

combustion (Ramdahl, 1983). However, the BROS/EROS ratio observed for Ret is similar to those 

of other semi-volatile PAHs. This may indicate a non-traffic combustion source that displays a 

similar high input in close proximity to BROS relative to EROS.   

OPAHs generally display BROS/EROS ratios similar to those of semi-volatile 3-4 ring PAHs, 

suggesting the levels of these derivative compounds are governed by similar emission source and 

inter-site processing as ‘parent’ PAHs.  

For many NPAHs e.g. 1NNap, 2NNap, 2NFlo and 1NPyr, the BROS/EROS ratios are relatively 

high compared with corresponding semi-volatile 3-4 ring PAHs. This may be attributed to the 

prominence of these compounds in diesel exhaust emissions and relatively low proportions in other 

combustion sources and/or more rapid degradation in the atmosphere relative to ‘parent’ PAHs.  

It is expected that photolysis will be the dominant loss process for most gas-phase and particle-

phase NPAHs (Atkinson et al., 1989; Fan et al., 1996a; Feilberg et al., 1999; Nassar et al., 2011; 

Phousongphouang and Arey, 2003a). Indeed it has been indicated that the atmospheric lifetime of 

gas-phase NNaps towards photolytic degradation is comparable or faster than that of gas-phase 

PAH towards OH reactions (Atkinson and Arey, 1994).  

The mean inter-site ratio is shown to be larger for 1NNap than for 2-NNap. Experimental studies 

indicate 1NNap exhibits a rate of photolysis ~1.3 – 8 times higher than that of 2NNap (Atkinson et 

al., 1989; Niu et al., 2005; Phousongphouang and Arey, 2003a), which may partly explain this 
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observation. However, there is relatively little quantitative data on the rate of loss for particle-

phase NPAH towards photolysis or other reactive loss processes.  

Gas-phase reaction products 2NFlt and 2NPyr exhibit lower ratios than primary emission-related 

1NPyr. This may indicate the possible input of the former two compounds between sites, while the 

latter is enhanced considerably at the roadside location and is expected to undergo relatively rapid 

degradation (see following sections for further discussion). A similar observation was made by 

Feilberg et al. (2001) where the ratios between urban and suburban areas were reported to be 

higher for 1NPyr than for 2NPyr, 2NFlt and 9NAnt which the authors attributed to direct emissions 

dominating the former and reactivity influencing the latter. 

 

3.1.4. Traffic increment 

It is assumed that if road traffic is the main emission source of PAHs, OPAHs and NPAHs 

measured in this campaign, the [BROS] – [EROS] value will represent a ‘traffic increment’ 

concentration for each compound (Alam et al., 2013). Analysis of these [BROS] – [EROS] values 

will therefore help to assess the potential influence of additional input from either primary or 

secondary sources and/or losses due to deposition or reactivity between sites. The traffic 

increment of PAH, OPAH and PAH compounds in the present study are shown in Figures 3.2, 3.3 

and 3.4 respectively.  

The highest traffic increments were observed for Phe, Flu and Pyr, in agreement with the results of 

Alam et al. (2013) and Harrad and Laurie (2005). Concentrations of all compounds measured in 

BROS and EROS were also measured in the Queensway Road Tunnel in Campaign 3 (see 

Section 5). The levels measured in the tunnel represent those expected from on-road vehicle 

emissions only, with losses due to dispersion, inputs from other combustion sources and losses 

due to chemical reactivity or photolysis all assumed to be minimal.  
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There is shown to be a strong positive correlation between the annual mean [BROS]-[EROS] traffic 

increment measured in Campaign1 and the mean concentrations measured in the Queensway 

Road Tunnel (see Figure 3.5). This indicates that for most compounds, observed concentrations 

are governed by traffic source input. This is in agreement with previous assessments of source 

contributions at the Birmingham University sampling sites (Harrad and Laurie, 2005; Harrison et 

al., 2003; Mari et al., 2010).  

Interestingly, the correlation is much stronger when Phe is removed from the regression analysis 

(see Figure 3.5). It is indicated that the traffic increment of Phe is a factor ~3 lower than expected, 

based on linear regression of the mean tunnel concentrations against the mean [BROS]-[EROS] 

plot. This result could possibly indicate a substantial input of Phe at EROS from non-traffic source, 

thus driving the observed B-E value lower than would be predicted. It has been suggested 

previously that this could be due to volatilisation of Phe previously deposited on soils/vegetation 

(Harrad and Laurie, 2005; Dimashki et al., 2001). This is discussed further in Section 3.3.  

There are other notable outliers to this ‘traffic increment’ regression.  Ret displays a higher-than-

expected BROS-EROS traffic increment. Ret is typically used as a marker for wood combustion 

(Fine et al., 2002; McDonald et al., 2000; Ramdahl, 1983; Simoneit et al., 1993). These results 

indicate input from wood combustion activity may be higher at BROS than EROS. This is 

consistent with BROS being in relatively close proximity to local houses that may use wood as a 

domestic heating fuel or have greater frequency of fires to dispose of garden waste.  

Ace displays a lower-than-expected BROS-EROS traffic increment. This suggests there is a 

relatively high non-traffic related input at EROS. This is consistent with the relatively low 

BROS/EROS ratio that is observed for Ace. The higher input of this compound at EROS relative to 

BROS suggests the source may not be wood combustion related as the converse is observed for 

Ret.  
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a  

b  

 

Figure 3.5. Correlation of measured PAH, OPAH and NPAH compounds in the Queensway 

Road Tunnel (Campaign 3) with the BROS-EROS concentration traffic increment (Campaign 

1) ; plots are shown including Phe (a) and excluding Phe (b).  
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3.1.5. Annual BaP concentrations and the UK Air Quality Objective 

The annual mean concentrations of BaP measured at BROS and EROS were 0.2 and 0.12 ng m-3 

respectively. These concentrations are of the same magnitude as reported for other sampling sites 

in urban and suburban locations in the UK in 2011 (Brown et al., 2013).  

Annual mean BaP levels in Birmingham therefore appear to be in compliance with the UK’s PAH 

Air Quality Objective of 0.25 ng m-3 annual mean for BaP. However, samples in the autumn and 

winter months at BROS and winter months at EROS display concentrations that often exceed 0.25 

ng m-3. It is suggested, therefore that areas of higher traffic flow and/or areas influenced 

significantly by other primary sources in the Birmingham area may exceed the objective value for 

BaP.  

However, monitoring data from other heavily trafficked areas in 2013 (e.g. Birmingham Tyburn and 

London Marylebone Road) display a similar seasonal pattern to that observed at the sites in this 

study. BaP concentrations tend to exceed 0.25 ng m-3 in winter months but tend to fall well below 

this value during spring and summer. Overall, annual mean concentrations appear to comply with 

the annual objective value in most urban and heavy traffic locations.  

 
 
 
3.2. Influencing factors governing observed concentrations  

 

Assessing how the measured concentrations of PAHs, OPAHs and NPAHs relate to each other as 

well as with other atmospheric species and meteorological variables can help gain further insight 

into the origins, behaviour and fate of these compounds. This section presents a statistical analysis 

of measured concentrations and atmospheric parameters from samples in Campaign 1 at both 

sites.  
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3.2.1. Inter-correlations of PAH, OPAH and NPAH concentrations  

Table 3.4a and 3.4b present the Pearson coefficients for the correlations between individual PAH, 

OPAH and NPAH compounds measured during Campaign 1 at BROS and EROS locations 

respectively.  It is noted that Ret does not correlate significantly with other compounds at BROS. 

This is consistent with Ret resulting predominantly from a wood combustion-related source rather 

than a traffic-related source, with the latter expected for most other compounds. However it is also 

noted that Ant does not correlate with other compounds, possibly indicating the presence of a 

different source in addition to vehicle exhaust for this compound.  

Phe correlates significantly at BROS with Flu and Pyr, which display a common diesel source, as 

well as Acy, Flo, BbF and BkF. Correlation between Phe and gasoline-related HMW PAH e,g, BaP, 

IPy, DBA, BPy, Cor as well as most OPAH and NPAH compounds is weaker or absent. At EROS, 

Phe does not display a significant correlation with other compounds, consistent with the deviation 

of Phe away from expected ‘traffic profile’, suggesting the influence of a different source at this site.  

Acy, Ace, Flo, BaA, Chr, BbF, BkF, BeP, BaP, IPy, DBA, BPY and Cor display significant (p<0.05) 

inter-correlations at both sites, suggesting a common source amongst these compounds. This is 

consistent with road traffic being the dominant emission source for these compounds at both 

BROS and EROS. Similar inter-correlations were noted by Kakimoto et al. (2001) in highly 

trafficked urban areas in Japan.  

Ace, Acy and Flo display stronger correlation with gasoline related HMW PAH such as Cor and 

BPy than for diesel-related compounds Phe, Flu and Pyr at both sites, as well as correlating 

strongly with each other. Pyr, Flth and Ret correlate strongly at EROS but do not correlate with 

other PAH, OPAH and NPAH compounds, suggesting Pyr and Flth may be influenced by a similar 

wood combustion-related source at this site.  

For each of the four OPAH measured, relatively weak or absent correlations are noted with diesel 

related Phe, Flt, Pyr. Stronger and more significant correlations are noted with gasoline-related
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Table 3.4a. Inter-correlations of PAH, OPAH and NPAH species at BROS. 

Key : ** Correlation is significant at the 0.01 level (2‐tailed) (green)  ; *Correlation is significant at the 0.05 level (2‐tailed) (yellow);  no statistically significant correlation (red) 

Pearson 

Correlation Acy Ace Flo Phen Anth Flth Pyr Ret B(a)A Chry B(b)F B(k)F B(e)P B(a)P IPy D(ah)A B(ghi)P Cor 9‐F AQ MAQ BaQ 1‐NNap2‐NNap DNN 2‐NFlo 9‐NAnt 1‐NFL 2‐NFL 3‐NFL 4‐NPy 1‐NPy 2‐NPy 7‐NBaA6‐NChr

Acy 1.00 .766
**

.930
**

.570
**

0.05 .564
**

0.36 ‐0.04 .877
**

.937
**

.807
**

.945
**

.878
**

.843
**

.901
**

.679
**

.855
**

.831
**

.662
**

.568
**

.465
*

0.38 .827
**

.682
**

.570
**

0.20 .636
**

0.21 .877
**

.817
**

.841
**

.839
**

.956
**

.771
**

0.13

Ace .766
**

1.00 .840
**

.412
*

0.01 .514
*

.422
*

‐0.14 .840
**

.886
**

.613
**

.787
**

.862
**

.828
**

.814
**

.625
**

.825
**

.813
**

.592
**

.626
**

.497
*

.444
*

.759
**

.678
**

.540
**

.427
*

.710
**

0.36 .725
**

.557
**

.661
**

.779
**

.724
**

.630
**

0.36

Flo .930
**

.840
**

1.00 .556
**

0.15 .546
**

0.40 ‐0.04 .866
**

.902
**

.733
**

.860
**

.827
**

.796
**

.814
**

.544
**

.794
**

.775
**

.552
**

.466
*

0.39 0.30 .748
**

.669
**

.543
**

0.14 .602
**

0.18 .847
**

.685
**

.750
**

.813
**

.898
**

.701
**

0.14

Phen .570
**

.412
*

.556
**

1.00 0.00 .552
**

.539
**

0.07 .450
*

.476
*

.729
**

.609
**

.508
*

0.38 .480
*

.480
*

0.32 0.32 0.33 0.21 0.18 ‐0.03 .467
*

.409
*

0.16 0.22 0.29 0.14 .469
*

0.39 .407
*

0.40 .518
**

0.38 ‐0.01

Anth 0.05 0.01 0.15 0.00 1.00 0.35 0.28 0.33 ‐0.06 0.01 ‐0.18 ‐0.03 ‐0.04 0.07 ‐0.07 ‐0.25 ‐0.02 0.02 0.01 ‐0.03 ‐0.06 ‐0.21 0.09 0.19 0.12 ‐0.09 ‐0.02 ‐0.03 0.21 0.07 0.14 0.00 0.08 ‐0.03 ‐0.15

Flth .564
**

.514
*

.546
**

.552
**

0.35 1.00 .654
**

0.23 0.35 .534
**

.429
*

.530
**

.471
*

.457
*

.467
*

0.39 .423
*

.452
*

.421
*

0.20 .416
*

0.14 .564
**

.639
**

0.14 0.22 0.38 0.31 .585
**

.623
**

.620
**

.488
*

.587
**

0.37 0.05

Pyr 0.36 .422
*

0.40 .539
**

0.28 .654
**

1.00 .411
*

0.30 0.33 0.30 0.33 0.36 0.29 0.29 0.27 0.27 0.29 0.39 0.20 0.40 0.16 .583
**

.609
**

0.20 0.33 .466
*

.573
**

.507
*

0.25 0.37 0.35 0.29 0.33 0.18

Ret ‐0.04 ‐0.14 ‐0.04 0.07 0.33 0.23 .411
*

1.00 ‐0.17 ‐0.12 ‐0.25 ‐0.11 ‐0.14 ‐0.17 ‐0.18 ‐0.26 ‐0.10 ‐0.14 0.14 ‐0.09 ‐0.05 ‐0.16 0.09 0.21 ‐0.19 0.00 0.03 0.26 ‐0.03 ‐0.12 ‐0.01 ‐0.18 ‐0.11 ‐0.12 ‐0.26

B(a)A .877
**

.840
**

.866
**

.450
*

‐0.06 0.35 0.30 ‐0.17 1.00 .925
**

.739
**

.904
**

.925
**

.917
**

.919
**

.664
**

.893
**

.848
**

.627
**

.680
**

.433
*

.494
*

.767
**

.561
**

.559
**

0.28 .695
**

0.16 .778
**

.648
**

.681
**

.766
**

.813
**

.820
**

0.29

Chry .937
**

.886
**

.902
**

.476
*

0.01 .534
**

0.33 ‐0.12 .925
**

1.00 .788
**

.961
**

.961
**

.939
**

.969
**

.754
**

.949
**

.914
**

.722
**

.692
**

.522
**

.523
**

.853
**

.692
**

.594
**

0.30 .745
**

0.22 .840
**

.751
**

.830
**

.872
**

.909
**

.829
**

0.28

B(b)F .807
**

.613
**

.733
**

.729
**

‐0.18 .429
*

0.30 ‐0.25 .739
**

.788
**

1.00 .885
**

.794
**

.759
**

.832
**

.796
**

.730
**

.693
**

.526
**

.425
*

0.25 0.26 .647
**

.422
*

.543
**

0.15 .561
**

0.20 .680
**

.625
**

.676
**

.678
**

.768
**

.737
**

0.10

B(k)F .945
**

.787
**

.860
**

.609
**

‐0.03 .530
**

0.33 ‐0.11 .904
**

.961
**

.885
**

1.00 .948
**

.920
**

.975
**

.806
**

.921
**

.879
**

.683
**

.667
**

.457
*

.463
*

.807
**

.619
**

.566
**

0.29 .710
**

0.21 .816
**

.773
**

.833
**

.804
**

.906
**

.856
**

0.16

B(e)P .878
**

.862
**

.827
**

.508
*

‐0.04 .471
*

0.36 ‐0.14 .925
**

.961
**

.794
**

.948
**

1.00 .935
**

.964
**

.748
**

.933
**

.896
**

.649
**

.749
**

.514
*

.537
**

.808
**

.623
**

.620
**

0.35 .755
**

0.28 .821
**

.676
**

.789
**

.841
**

.843
**

.821
**

0.35

B(a)P .843
**

.828
**

.796
**

0.38 0.07 .457
*

0.29 ‐0.17 .917
**

.939
**

.759
**

.920
**

.935
**

1.00 .964
**

.765
**

.967
**

.913
**

.680
**

.709
**

.462
*

.535
**

.780
**

.526
**

.631
**

0.35 .775
**

0.23 .753
**

.687
**

.742
**

.757
**

.802
**

.877
**

0.26

IPy .901
**

.814
**

.814
**

.480
*

‐0.07 .467
*

0.29 ‐0.18 .919
**

.969
**

.832
**

.975
**

.964
**

.964
**

1.00 .836
**

.966
**

.923
**

.708
**

.723
**

.510
*

.573
**

.820
**

.580
**

.579
**

0.36 .769
**

0.21 .779
**

.746
**

.797
**

.804
**

.866
**

.891
**

0.27

D(ah)A .679
**

.625
**

.544
**

.480
*

‐0.25 0.39 0.27 ‐0.26 .664
**

.754
**

.796
**

.806
**

.748
**

.765
**

.836
**

1.00 .771
**

.732
**

.653
**

.517
**

.463
*

.506
*

.694
**

.429
*

.443
*

.412
*

.638
**

0.21 .546
**

.574
**

.617
**

.583
**

.672
**

.742
**

0.12

B(ghi)P .855
**

.825
**

.794
**

0.32 ‐0.02 .423
*

0.27 ‐0.10 .893
**

.949
**

.730
**

.921
**

.933
**

.967
**

.966
**

.771
**

1.00 .940
**

.703
**

.730
**

.486
*

.561
**

.807
**

.600
**

.636
**

0.36 .849
**

0.30 .762
**

.697
**

.780
**

.750
**

.806
**

.876
**

0.22

Cor .831
**

.813
**

.775
**

0.32 0.02 .452
*

0.29 ‐0.14 .848
**

.914
**

.693
**

.879
**

.896
**

.913
**

.923
**

.732
**

.940
**

1.00 .698
**

.667
**

.430
*

.481
*

.827
**

.650
**

.702
**

0.27 .758
**

0.23 .773
**

.704
**

.839
**

.756
**

.830
**

.779
**

0.21

9‐F .662
**

.592
**

.552
**

0.33 0.01 .421
*

0.39 0.14 .627
**

.722
**

.526
**

.683
**

.649
**

.680
**

.708
**

.653
**

.703
**

.698
**

1.00 .648
**

.611
**

.472
*

.877
**

.681
**

.525
**

0.29 .685
**

0.25 .596
**

.630
**

.692
**

.643
**

.646
**

.617
**

0.29

AQ .568
**

.626
**

.466
*

0.21 ‐0.03 0.20 0.20 ‐0.09 .680
**

.692
**

.425
*

.667
**

.749
**

.709
**

.723
**

.517
**

.730
**

.667
**

.648
**

1.00 .675
**

.706
**

.609
**

.478
*

.525
**

.451
*

.701
**

0.34 .572
**

.573
**

.622
**

.584
**

.521
**

.569
**

.456
*

MAQ .465
*

.497
*

0.39 0.18 ‐0.06 .416
*

0.40 ‐0.05 .433
*

.522
**

0.25 .457
*

.514
*

.462
*

.510
*

.463
*

.486
*

.430
*

.611
**

.675
**

1.00 .797
**

.569
**

.482
*

0.26 0.33 .516
**

0.32 .530
**

.553
**

.554
**

.552
**

.502
*

.445
*

0.37

BaQ 0.38 .444
*

0.30 ‐0.03 ‐0.21 0.14 0.16 ‐0.16 .494
*

.523
**

0.26 .463
*

.537
**

.535
**

.573
**

.506
*

.561
**

.481
*

.472
*

.706
**

.797
**

1.00 .455
*

0.30 0.18 0.25 .500
*

0.15 .404
*

.406
*

.449
*

.465
*

0.40 .583
**

0.36

1‐NNap .827
**

.759
**

.748
**

.467
*

0.09 .564
**

.583
**

0.09 .767
**

.853
**

.647
**

.807
**

.808
**

.780
**

.820
**

.694
**

.807
**

.827
**

.877
**

.609
**

.569
**

.455
*

1.00 .850
**

.602
**

0.33 .760
**

0.36 .824
**

.649
**

.785
**

.783
**

.775
**

.728
**

0.30

2‐NNap .682
**

.678
**

.669
**

.409
*

0.19 .639
**

.609
**

0.21 .561
**

.692
**

.422
*

.619
**

.623
**

.526
**

.580
**

.429
*

.600
**

.650
**

.681
**

.478
*

.482
*

0.30 .850
**

1.00 .478
*

0.20 .630
**

0.39 .775
**

.556
**

.741
**

.670
**

.641
**

.472
*

0.18

DNN .570
**

.540
**

.543
**

0.16 0.12 0.14 0.20 ‐0.19 .559
**

.594
**

.543
**

.566
**

.620
**

.631
**

.579
**

.443
*

.636
**

.702
**

.525
**

.525
**

0.26 0.18 .602
**

.478
*

1.00 0.01 .586
**

.419
*

.697
**

.440
*

.669
**

.579
**

.559
**

.435
*

0.17

2‐NFlo 0.20 .427
*

0.14 0.22 ‐0.09 0.22 0.33 0.00 0.28 0.30 0.15 0.29 0.35 0.35 0.36 .412
*

0.36 0.27 0.29 .451
*

0.33 0.25 0.33 0.20 0.01 1.00 .489
*

.487
*

0.13 0.12 0.05 0.21 0.06 0.35 0.39

9‐NAnt .636
**

.710
**

.602
**

0.29 ‐0.02 0.38 .466
*

0.03 .695
**

.745
**

.561
**

.710
**

.755
**

.775
**

.769
**

.638
**

.849
**

.758
**

.685
**

.701
**

.516
**

.500
*

.760
**

.630
**

.586
**

.489
*

1.00 .547
**

.648
**

.558
**

.607
**

.526
**

.522
**

.752
**

0.31

1‐NFL 0.21 0.36 0.18 0.14 ‐0.03 0.31 .573
**

0.26 0.16 0.22 0.20 0.21 0.28 0.23 0.21 0.21 0.30 0.23 0.25 0.34 0.32 0.15 0.36 0.39 .419
*

.487
*

.547
**

1.00 .415
*

0.16 0.31 0.20 0.08 0.18 0.19

2‐NFL .877
**

.725
**

.847
**

.469
*

0.21 .585
**

.507
*

‐0.03 .778
**

.840
**

.680
**

.816
**

.821
**

.753
**

.779
**

.546
**

.762
**

.773
**

.596
**

.572
**

.530
**

.404
*

.824
**

.775
**

.697
**

0.13 .648
**

.415
*

1.00 .709
**

.880
**

.788
**

.853
**

.675
**

0.20

3‐NFL .817
**

.557
**

.685
**

0.39 0.07 .623
**

0.25 ‐0.12 .648
**

.751
**

.625
**

.773
**

.676
**

.687
**

.746
**

.574
**

.697
**

.704
**

.630
**

.573
**

.553
**

.406
*

.649
**

.556
**

.440
*

0.12 .558
**

0.16 .709
**

1.00 .831
**

.670
**

.835
**

.600
**

0.22

4‐NPy .841
**

.661
**

.750
**

.407
*

0.14 .620
**

0.37 ‐0.01 .681
**

.830
**

.676
**

.833
**

.789
**

.742
**

.797
**

.617
**

.780
**

.839
**

.692
**

.622
**

.554
**

.449
*

.785
**

.741
**

.669
**

0.05 .607
**

0.31 .880
**

.831
**

1.00 .770
**

.893
**

.640
**

0.10

1‐NPy .839
**

.779
**

.813
**

0.40 0.00 .488
*

0.35 ‐0.18 .766
**

.872
**

.678
**

.804
**

.841
**

.757
**

.804
**

.583
**

.750
**

.756
**

.643
**

.584
**

.552
**

.465
*

.783
**

.670
**

.579
**

0.21 .526
**

0.20 .788
**

.670
**

.770
**

1.00 .854
**

.680
**

.461
*

2‐NPy .956
**

.724
**

.898
**

.518
**

0.08 .587
**

0.29 ‐0.11 .813
**

.909
**

.768
**

.906
**

.843
**

.802
**

.866
**

.672
**

.806
**

.830
**

.646
**

.521
**

.502
*

0.40 .775
**

.641
**

.559
**

0.06 .522
**

0.08 .853
**

.835
**

.893
**

.854
**

1.00 .704
**

0.11

7‐NBaA .771
**

.630
**

.701
**

0.38 ‐0.03 0.37 0.33 ‐0.12 .820
**

.829
**

.737
**

.856
**

.821
**

.877
**

.891
**

.742
**

.876
**

.779
**

.617
**

.569
**

.445
*

.583
**

.728
**

.472
*

.435
*

0.35 .752
**

0.18 .675
**

.600
**

.640
**

.680
**

.704
**

1.00 0.19

6‐NChr 0.13 0.36 0.14 ‐0.01 ‐0.15 0.05 0.18 ‐0.26 0.29 0.28 0.10 0.16 0.35 0.26 0.27 0.12 0.22 0.21 0.29 .456
*

0.37 0.36 0.30 0.18 0.17 0.39 0.31 0.19 0.20 0.22 0.10 .461
*

0.11 0.19 1.00
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Table 3.4b. Inter-correlations of PAH, OPAH and NPAH species at EROS. 

 Key : ** Correlation is significant at the 0.01 level (2‐tailed) (green)  ; *Correlation is significant at the 0.05 level (2‐tailed) (yellow);  no statistically significant correlation (red)

Pearson 

Correlation Acy Ace Flo Phen Anth Flth Pyr Ret B(a)A Chry B(b)F B(k)F B(e)P B(a)P IPy D(ah)A B(ghi)P Cor 9‐F AQ MAQ BaQ 1‐NNap2‐NNap DNN 2‐NFlo 9‐NAnt 1‐NFL 2‐NFL 3‐NFL 4‐NPy 1‐NPy 2‐NPy 7‐NBaA6‐NChr

Acy 1 .636
**

.716
** .058 .036 .249 ‐.007 ‐.026 .826

**
.873

**
.709

**
.679

**
.782

**
.743

**
.837

**
.709

**
.695

**
.509

*
.594

**
.472

*
.575

** .018 .828
**

.755
**

.416
* .274 .656

** .397 .641
**

.554
**

.579
**

.755
**

.786
**

.564
**

.488
*

Ace .636
** 1 .834

** ‐.029 ‐.140 .311 ‐.067 ‐.128 .640
**

.612
**

.659
**

.632
**

.685
**

.727
**

.729
**

.427
* .402 .325 .235 .479

* .366 .041 .472
* .394 .143 .261 .572

** .355 .413
* .298 .260 .401 .504

* .375 .525
**

Flo .716
**

.834
** 1 ‐.087 ‐.086 .250 .011 ‐.050 .599

**
.604

**
.512

*
.531

**
.657

**
.608

**
.667

**
.533

**
.452

* .383 .326 .327 .384 .017 .488
*

.415
* .191 .218 .684

** .312 .517
** .236 .243 .447

*
.508

*
.423

*
.455

*

Phen .058 ‐.029 ‐.087 1 .249 .377 .217 .332 ‐.033 .001 .106 ‐.058 ‐.046 ‐.085 .038 ‐.083 ‐.120 ‐.187 ‐.008 ‐.214 .046 ‐.205 .076 .107 .044 .256 ‐.193 .095 .067 .140 .057 .167 .235 ‐.120 ‐.078

Anth .036 ‐.140 ‐.086 .249 1 .034 .108 .115 .230 .201 .091 ‐.009 .131 .190 .119 .246 .118 ‐.017 .398 .034 ‐.028 ‐.128 .061 .153 .225 .110 ‐.003 ‐.043 .209 .182 .013 .007 .162 .381 .225

Flth .249 .311 .250 .377 .034 1 .743
**

.629
** .052 .136 .218 .167 .195 .155 .124 .171 ‐.055 ‐.006 ‐.126 .040 .299 .253 .093 .017 .057 .394 .146 .440

* .186 .235 .158 .144 .059 .104 .428
*

Pyr ‐.007 ‐.067 .011 .217 .108 .743
** 1 .810

** ‐.204 ‐.074 ‐.141 ‐.116 ‐.144 ‐.163 ‐.111 .159 ‐.142 .070 ‐.146 ‐.221 .164 .121 ‐.085 ‐.122 ‐.119 .286 ‐.033 .133 ‐.036 .055 ‐.047 ‐.148 ‐.188 .011 .336

Ret ‐.026 ‐.128 ‐.050 .332 .115 .629
**

.810
** 1 ‐.103 ‐.004 .016 .053 ‐.033 ‐.081 ‐.031 .147 .056 .187 ‐.239 ‐.198 .020 .145 ‐.040 ‐.079 .194 .126 ‐.117 .063 .045 .098 .068 ‐.085 ‐.136 ‐.051 .176

B(a)A .826
**

.640
**

.599
** ‐.033 .230 .052 ‐.204 ‐.103 1 .973

**
.860

**
.822

**
.915

**
.926

**
.935

**
.793

**
.888

**
.657

**
.658

**
.670

**
.483

* .117 .763
**

.750
**

.535
** .206 .646

** .173 .663
**

.540
**

.601
**

.749
**

.740
**

.716
** .366

Chry .873
**

.612
**

.604
** .001 .201 .136 ‐.074 ‐.004 .973

** 1 .852
**

.822
**

.887
**

.895
**

.935
**

.825
**

.881
**

.664
**

.671
**

.673
**

.539
** .158 .801

**
.759

**
.567

** .219 .655
** .205 .641

**
.558

**
.657

**
.798

**
.762

**
.727

**
.436

*

B(b)F .709
**

.659
**

.512
* .106 .091 .218 ‐.141 .016 .860

**
.852

** 1 .944
**

.926
**

.925
**

.915
**

.675
**

.777
**

.531
**

.415
*

.568
**

.421
* .269 .729

**
.664

**
.542

** .291 .553
** .134 .647

**
.558

**
.625

**
.659

**
.709

**
.661

** .320

B(k)F .679
**

.632
**

.531
** ‐.058 ‐.009 .167 ‐.116 .053 .822

**
.822

**
.944

** 1 .924
**

.909
**

.895
**

.701
**

.791
**

.550
** .378 .570

** .338 .346 .752
**

.637
**

.591
** .218 .576

** .083 .687
**

.596
**

.706
**

.614
**

.666
**

.719
** .293

B(e)P .782
**

.685
**

.657
** ‐.046 .131 .195 ‐.144 ‐.033 .915

**
.887

**
.926

**
.924

** 1 .951
**

.913
**

.735
**

.816
**

.521
**

.518
**

.554
** .371 .204 .760

**
.685

**
.573

** .214 .669
** .116 .752

**
.601

**
.646

**
.715

**
.721

**
.764

** .343

B(a)P .743
**

.727
**

.608
** ‐.085 .190 .155 ‐.163 ‐.081 .926

**
.895

**
.925

**
.909

**
.951

** 1 .912
**

.708
**

.771
**

.540
**

.529
**

.659
** .374 .155 .687

**
.601

**
.525

** .303 .616
** .175 .601

**
.584

**
.559

**
.624

**
.663

**
.763

**
.425

*

IPy .837
**

.729
**

.667
** .038 .119 .124 ‐.111 ‐.031 .935

**
.935

**
.915

**
.895

**
.913

**
.912

** 1 .828
**

.859
**

.658
**

.553
**

.610
**

.506
* .171 .828

**
.791

**
.497

* .305 .674
** .219 .716

**
.536

**
.612

**
.671

**
.777

**
.682

**
.422

*

D(ah)A .709
**

.427
*

.533
** ‐.083 .246 .171 .159 .147 .793

**
.825

**
.675

**
.701

**
.735

**
.708

**
.828

** 1 .875
**

.772
**

.606
**

.559
**

.523
** .310 .708

**
.729

**
.450

* .389 .736
** .236 .667

** .391 .484
*

.515
*

.519
**

.745
** .370

B(ghi)P .695
** .402 .452

* ‐.120 .118 ‐.055 ‐.142 .056 .888
**

.881
**

.777
**

.791
**

.816
**

.771
**

.859
**

.875
** 1 .794

**
.584

**
.596

** .400 .257 .727
**

.755
**

.617
** .115 .658

** .045 .665
** .397 .572

**
.640

**
.608

**
.660

** .172

Cor .509
* .325 .383 ‐.187 ‐.017 ‐.006 .070 .187 .657

**
.664

**
.531

**
.550

**
.521

**
.540

**
.658

**
.772

**
.794

** 1 .271 .573
**

.496
* .183 .482

*
.571

** .270 .310 .577
** .103 .349 .227 .347 .348 .286 .408

* .114

9‐F .594
** .235 .326 ‐.008 .398 ‐.126 ‐.146 ‐.239 .658

**
.671

**
.415

* .378 .518
**

.529
**

.553
**

.606
**

.584
** .271 1 .486

*
.433

* .084 .600
**

.576
** .360 .140 .515

* ‐.008 .370 .195 .270 .458
*

.567
**

.591
** .332

AQ .472
*

.479
* .327 ‐.214 .034 .040 ‐.221 ‐.198 .670

**
.673

**
.568

**
.570

**
.554

**
.659

**
.610

**
.559

**
.596

**
.573

**
.486

* 1 .433
* .316 .479

*
.456

*
.439

* .223 .663
** .311 .235 .208 .418

* .378 .386 .469
* .345

MAQ .575
** .366 .384 .046 ‐.028 .299 .164 .020 .483

*
.539

**
.421

* .338 .371 .374 .506
*

.523
** .400 .496

*
.433

*
.433

* 1 .464
*

.487
*

.507
* ‐.100 .372 .360 .311 .282 .075 .250 .413

*
.413

* .218 .378

BaQ .018 .041 .017 ‐.205 ‐.128 .253 .121 .145 .117 .158 .269 .346 .204 .155 .171 .310 .257 .183 .084 .316 .464
* 1 .132 .076 .132 ‐.057 .197 .021 .256 ‐.194 .212 .091 .009 .247 .166

1‐NNap .828
**

.472
*

.488
* .076 .061 .093 ‐.085 ‐.040 .763

**
.801

**
.729

**
.752

**
.760

**
.687

**
.828

**
.708

**
.727

**
.482

*
.600

**
.479

*
.487

* .132 1 .938
**

.581
** .158 .588

** .244 .762
**

.683
**

.794
**

.685
**

.879
**

.533
** .324

2‐NNap .755
** .394 .415

* .107 .153 .017 ‐.122 ‐.079 .750
**

.759
**

.664
**

.637
**

.685
**

.601
**

.791
**

.729
**

.755
**

.571
**

.576
**

.456
*

.507
* .076 .938

** 1 .488
* .151 .597

** .210 .770
**

.600
**

.715
**

.633
**

.842
**

.467
* .174

DNN .416
* .143 .191 .044 .225 .057 ‐.119 .194 .535

**
.567

**
.542

**
.591

**
.573

**
.525

**
.497

*
.450

*
.617

** .270 .360 .439
* ‐.100 .132 .581

**
.488

* 1 ‐.129 .337 .092 .504
*

.484
*

.631
**

.469
*

.545
**

.408
* .130

2‐NFlo .274 .261 .218 .256 .110 .394 .286 .126 .206 .219 .291 .218 .214 .303 .305 .389 .115 .310 .140 .223 .372 ‐.057 .158 .151 ‐.129 1 .208 .396 ‐.003 .198 ‐.053 ‐.040 .001 .200 .180

9‐NAnt .656
**

.572
**

.684
** ‐.193 ‐.003 .146 ‐.033 ‐.117 .646

**
.655

**
.553

**
.576

**
.669

**
.616

**
.674

**
.736

**
.658

**
.577

**
.515

*
.663

** .360 .197 .588
**

.597
** .337 .208 1 .269 .576

** .230 .370 .414
*

.478
*

.639
** .353

1‐NFL .397 .355 .312 .095 ‐.043 .440
* .133 .063 .173 .205 .134 .083 .116 .175 .219 .236 .045 .103 ‐.008 .311 .311 .021 .244 .210 .092 .396 .269 1 .199 .259 .137 .132 .156 ‐.052 .489

*

2‐NFL .641
**

.413
*

.517
** .067 .209 .186 ‐.036 .045 .663

**
.641

**
.647

**
.687

**
.752

**
.601

**
.716

**
.667

**
.665

** .349 .370 .235 .282 .256 .762
**

.770
**

.504
* ‐.003 .576

** .199 1 .594
**

.714
**

.594
**

.748
**

.595
** .223

3‐NFL .554
** .298 .236 .140 .182 .235 .055 .098 .540

**
.558

**
.558

**
.596

**
.601

**
.584

**
.536

** .391 .397 .227 .195 .208 .075 ‐.194 .683
**

.600
**

.484
* .198 .230 .259 .594

** 1 .809
**

.605
**

.624
**

.498
* .151

4‐NPy .579
** .260 .243 .057 .013 .158 ‐.047 .068 .601

**
.657

**
.625

**
.706

**
.646

**
.559

**
.612

**
.484

*
.572

** .347 .270 .418
* .250 .212 .794

**
.715

**
.631

** ‐.053 .370 .137 .714
**

.809
** 1 .748

**
.722

**
.506

* .129

1‐NPy .755
** .401 .447

* .167 .007 .144 ‐.148 ‐.085 .749
**

.798
**

.659
**

.614
**

.715
**

.624
**

.671
**

.515
*

.640
** .348 .458

* .378 .413
* .091 .685

**
.633

**
.469

* ‐.040 .414
* .132 .594

**
.605

**
.748

** 1 .724
**

.552
** .168

2‐NPy .786
**

.504
*

.508
* .235 .162 .059 ‐.188 ‐.136 .740

**
.762

**
.709

**
.666

**
.721

**
.663

**
.777

**
.519

**
.608

** .286 .567
** .386 .413

* .009 .879
**

.842
**

.545
** .001 .478

* .156 .748
**

.624
**

.722
**

.724
** 1 .472

* .250

7‐NBaA .564
** .375 .423

* ‐.120 .381 .104 .011 ‐.051 .716
**

.727
**

.661
**

.719
**

.764
**

.763
**

.682
**

.745
**

.660
**

.408
*

.591
**

.469
* .218 .247 .533

**
.467

*
.408

* .200 .639
** ‐.052 .595

**
.498

*
.506

*
.552

**
.472

* 1 .295

6‐NChr .488
*

.525
**

.455
* ‐.078 .225 .428

* .336 .176 .366 .436
* .320 .293 .343 .425

*
.422

* .370 .172 .114 .332 .345 .378 .166 .324 .174 .130 .180 .353 .489
* .223 .151 .129 .168 .250 .295 1
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PAHs such as Cor, BPy and IPy, especially in the case of 9F and AQ. This may indicate the strong 

traffic input of AQ and 9F, more predominantly from gasoline-fuelled vehicles, with a relatively 

lower input of MAQ and BaAQ from traffic. This is in contrast to the study of Alam et al. (2013) 

which suggested MAQ as a possible marker for traffic-related emissions.  

BaAQ and MAQ are shown to be very strongly correlated, possibly indicating the presence of a 

common source for these compounds. At EROS, BaAQ shows no significant correlation with other 

PAH, OPAH and NPAH compounds, possibly suggesting the presence of a non-traffic source of 

this compound influencing predominantly at EROS.  

At both sites, 2NFlo, 6NChr and 1NFlu do not display significant correlation with most other 

compounds, possibly indicating the presence of a non-traffic source for these compounds. 1NNap, 

2NNap, 9NAnt, 1NPyr, 7NBaA are shown to be significantly inter-correlated at both sites and also 

strongly correlated with traffic-related HMW PAHs, such as Cor and BPy, consistent with traffic 

being the main source of these NPAHs at both sites.  The strongest NPAH inter-correlations at 

BROS and EROS are for 2NFlt and 2NPyr, possibly reflecting their common reactive input. This is 

in agreement with Feilberg et al. (2001) who measured NPAH concentrations in the urban 

atmosphere in Copenhagen, Denmark. 4NPyr also displays strong correlations with 2NFlt and 

2NPyr, possibly also indicating reactive input of this compound.  

Interestingly, 2NFlt and 2NPyr, do not display a correlation with their parent PAH. However, they 

do display strong correlations with compounds associated with primary emission sources e.g. 

1NPyr, BeP and IPy. Feilberg et al. (2001) also noted a significant correlation between 2NFlt and 

primary PAHs BeP and BPy at a rural site in Denmark. The authors suggested that the level of 

NPAHs formed via atmospheric reactions are also dependent on the PAH levels and that these 

compounds act as a better marker than the actual parent PAHs as they are present almost entirely 

in the particle-phase like the 2NFlt and 2NPyr while Flt and Pyr observed predominantly in the gas-

phase and are subject to temperature-dependent phase partitioning. 
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3.2.2. Correlations with inorganic air pollutants and meteorological parameters 

The relationship between measured PAH, OPAHs and NPAH concentrations and the levels of 

inorganic air pollutants such as TSP, NOx, O3 and SO2, as well as meteorological factors such as 

temperature, wind speed , wind direction, pressure and intensity of solar radiation, may also 

provide insight into the sources, behaviour and fate of these compounds.  

Table 3.5a and 3.5b provide Pearson correlation coefficients for the measured PAH, OPAH and 

NPAH compounds with these key parameters. It should be noted that the values for meteorological 

variables are provided for Birmingham University sampling site as a whole so may only be of 

limited usefulness for assessing differences in compound behaviour between sites. The 

concentrations of NOx, O3 and SO2 were obtained from the Birmingham Tyburn monitoring site, 

located ~6-7km away from BROS and EROS, therefore these relationships need to be viewed with 

caution as these may not adequately represent the levels observed at the sampling sites but offer 

the most representative values available.  

 

3.2.2.1. Correlations of PAH, OPAH and NPAH with TSP 

Most compounds at BROS correlate strongly with measured TSP concentration. This suggests that 

most compounds are associated strongly with freshly emitted local sources from Bristol Road 

traffic. The exceptions to this include LWM compounds Phe, Ant, Flth, Pyr, Ret and 2NFlo, possibly 

indicating the influence of additional/alternative sources dominating for these compounds. At 

EROS, the correlation with TSP appears to be weaker, although still statistically significant for most 

compounds, consistent with the traffic source dominating at both sites and the greater distance of 

EROS from the road traffic source.  

Interestingly, for OPAH compounds, while significant correlations with TSP are seen at BROS, 

indicating a close associating with primary emissions, no significant correlations are observed for 

these compounds at EROS. In the case of 9F and AQ, this may suggest the influence of increased 

partitioning into the gas-phase and/or secondary input from photooxidation reactions or local  
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Table 3.5a. Correlations of PAH, OPAH and NPAH concentrations with meteorological 
parameters and concentrations of inorganic air pollutants at BROS. 

 

 

Key : ** Correlation is significant at the 0.01 level (2‐tailed) (green)  ; *Correlation is significant at the 0.05 level (2‐tailed) (yellow);  

no statistically significant correlation (red) 

 

 

TSP T(degC)

T(degC) ‐ 

NOx Corr Hum (%) Pres (hPa) SR (W/m2) Rain (mm) WS (m/s)

COS(WD) 

(deg)

SIN(WD) 

(deg) NOx O3 SO2

Acy .706
**

‐.631
** .267 .321 .446

*
‐.437

* ‐.076 ‐.148 .320 ‐.142 .488
* ‐.366 .338

Ace .758
**

‐.708
** .385 .530

**
.447

*
‐.482

* .020 ‐.112 .319 ‐.085 .623
** ‐.400 .189

Flo .678
**

‐.562
** .525** .334 .293 ‐.375 ‐.011 ‐.247 .194 ‐.239 .546

** ‐.384 .256

Phen .274 ‐.283 .778** ‐.014 .020 ‐.112 ‐.096 ‐.201 .196 ‐.335 .258 ‐.205 .034

Anth ‐.186 .223 .405* .093 ‐.120 .265 .119 ‐.111 .036 .014 .142 ‐.314 ‐.192

Flth .382 ‐.192 .692** .193 .181 ‐.087 .007 .078 .439
* .021 .270 ‐.135 .098

Pyr .117 ‐.302 .751** .195 .130 ‐.183 .007 .039 .188 .117 .469
* ‐.282 ‐.211

Ret ‐.269 .349 .268 .045 ‐.036 .049 ‐.117 .108 ‐.229 .044 .093 ‐.234 ‐.241

B(a)A .763
**

‐.780
** .172 .364 .563

**
‐.475

* ‐.166 ‐.219 .259 ‐.103 .659
**

‐.458
* .281

Chry .810
**

‐.743
** .297 .447

*
.582

**
‐.488

* ‐.099 ‐.182 .396 ‐.135 .618
**

‐.441
* .294

B(b)F .535
**

‐.661
** .555** .083 .408

* ‐.209 ‐.285 ‐.241 .352 ‐.299 .467
* ‐.309 .205

B(k)F .740
**

‐.747
** .348 .280 .581

** ‐.386 ‐.200 ‐.222 .407
* ‐.200 .578

** ‐.402 .278

B(e)P .829
**

‐.828
** .380 .444

*
.601

**
‐.514

* ‐.094 ‐.230 .349 ‐.167 .606
**

‐.461
* .232

B(a)P .714
**

‐.824
** .131 .376 .716

** ‐.373 ‐.195 ‐.117 .406
* ‐.046 .687

**
‐.509

* .202

IPy .765
**

‐.831
** .320 .355 .689

**
‐.453

* ‐.180 ‐.154 .446
* ‐.091 .627

**
‐.446

* .262

D(ah)A .480
*

‐.727
** .472* .289 .616

** ‐.371 ‐.209 ‐.010 .605
** .103 .556

** ‐.400 .398

B(ghi)P .751
**

‐.812
** .163 .412

*
.707

**
‐.433

* ‐.144 ‐.139 .374 ‐.092 .680
**

‐.470
* .219

Cor .733
**

‐.727
** .387 .398 .611

** ‐.396 ‐.058 ‐.174 .288 .045 .681
**

‐.449
* .191

9‐F .483
*

‐.475
* .576** .375 .664

** ‐.388 ‐.247 .178 .322 .224 .618
** ‐.328 .079

AQ .719
**

‐.700
** .566**

.446
*

.725
**

‐.505
* ‐.235 ‐.043 .400 ‐.108 .379 ‐.294 ‐.010

MAQ .575
**

‐.500
* .687** .372 .521

**
‐.519

** ‐.011 .332 .384 .234 .135 .000 .138

BaQ .556
**

‐.615
** .164 .335 .656

**
‐.504

* ‐.203 .076 .458
* .197 .254 ‐.192 .163

1‐NNap .604
**

‐.605
** .566**

.478
*

.507
*

‐.488
* ‐.015 ‐.016 .333 .146 .691

**
‐.452

* .182

2‐NNap .565
** ‐.299 .628**

.532
** .161 ‐.457

* .162 ‐.202 .265 ‐.022 .556
** ‐.307 .224

DNN .479
*

‐.499
* .273 .379 .319 ‐.253 ‐.020 ‐.120 ‐.024 ‐.036 .452

* ‐.340 .073

2‐NFlo .282 ‐.563
** .789** .203 .456

* ‐.301 .015 .330 .493
* .029 .262 ‐.097 ‐.098

9‐NAnt .596
**

‐.727
** .238 .416

*
.617

**
‐.454

* ‐.124 .020 .321 ‐.108 .696
** ‐.377 .014

1‐NFL .258 ‐.365 .534** .173 .219 ‐.146 ‐.155 .286 .152 ‐.085 .142 .014 ‐.194

2‐NFL .737
**

‐.563
** .365 .359 .296 ‐.381 ‐.044 ‐.179 .246 ‐.119 .449

* ‐.301 .288

3‐NFL .625
**

‐.487
* .377 .179 .536

** ‐.354 ‐.238 .091 .477
* .000 .291 ‐.080 .262

4‐NPy .714
**

‐.506
* .379 .251 .459

* ‐.263 ‐.169 ‐.169 .302 ‐.064 .417
* ‐.197 .197

1‐NPy .744
**

‐.666
** .557**

.455
*

.451
*

‐.546
** .072 ‐.162 .345 ‐.085 .450

* ‐.286 .214

2‐NPy .707
**

‐.561
** .287 .292 .425

* ‐.369 ‐.055 ‐.183 .304 ‐.074 .426
* ‐.307 .355

7‐NBaA .588
**

‐.810
** .061 .143 .667

** ‐.334 ‐.218 ‐.139 .404 ‐.076 .681
** ‐.369 .181

6‐NChr .449
*

‐.464
* .384 .401 .370 ‐.578

** ‐.027 .198 .311 .071 .168 ‐.042 ‐.115

TOT PAH .653
**

‐.594
** .278 .299 ‐.328 ‐.029 ‐.161 .296 ‐.221 .514

* ‐.325 .169

TSP 1 ‐.639
** .379 .423

*
‐.497

* ‐.018 ‐.139 .237 ‐.249 .255 ‐.041 .265

degC ‐.639
** 1 ‐.257 ‐.733

**
.451

* .151 .031 ‐.540
** .307 ‐.052

% .379 ‐.257 1 .174 ‐.769
**

.418
* ‐.064 .344 ‐.638

** .388

hPa .423
*

‐.733
** .174 1 ‐.277 ‐.467

* .240 .476
* ‐.286 ‐.102

W/m2 ‐.497
*

.451
*

‐.769
** ‐.277 1 ‐.294 ‐.085 ‐.256 .384 ‐.462

*

mm ‐.018 .151 .418
*

‐.467
* ‐.294 1 ‐.120 ‐.128 ‐.058 .177

m/s ‐.139 .031 ‐.064 .240 ‐.085 ‐.120 1 ‐.268 .305 ‐.049

deg ‐.208 ‐.309 ‐.029 .701
** .072 ‐.470

* .166 .330 ‐.312 ‐.359

NOx .255 ‐.540
** .344 .476

* ‐.256 ‐.128 ‐.268 1 ‐.643
** .025

O3 ‐.041 .307 ‐.638
** ‐.286 .384 ‐.058 .305 ‐.643

** 1 ‐.195

SO2 .265 ‐.052 .388 ‐.102 ‐.462
* .177 ‐.049 .025 ‐.195 1
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Table 3.5b. Correlations of PAH, OPAH and NPAH concentrations with meteorological 
parameters and concentrations of inorganic air pollutants at EROS. 

 

 

Key : ** Correlation is significant at the 0.01 level (2‐tailed) (green)  ; *Correlation is significant at the 0.05 level (2‐tailed) (yellow);  

no statistically significant correlation (red) 

 

 

TSP T(degC)

T(degC)‐

NOx Corr Hum (%) Pres (hPa)

SR 

(W/m2) Rain (mm) WS (m/s)

COS WD 

(deg)

SIN WD 

(deg) NOx O3 SO2

Acy .407
*

‐.589
**

.512
*

.416
*

.354 ‐.580
**

‐.087 ‐.110 .464
*

‐.212 .463
*

‐.305 .334

Ace .724
**

‐.657
**

.338 .338 .416
*

‐.416
*

‐.089 .006 .281 ‐.120 .373 ‐.136 .115

Flo .526
**

‐.520
**

.684
**

.429
*

.283 ‐.555
**

.078 .024 .122 ‐.046 .488
*

‐.217 .150

Phen ‐.175 .095 .688
**

‐.169 ‐.200 .120 ‐.102 .033 .161 ‐.070 ‐.011 ‐.102 ‐.023

Anth ‐.013 ‐.006 .752
**

.247 .185 ‐.049 ‐.072 .156 .242 .097 .222 ‐.372 .007

Flth .062 ‐.296 .361 .072 .196 ‐.157 ‐.162 .163 .471
*

.126 .173 ‐.021 ‐.128

Pyr ‐.150 .034 .783
**

.000 .200 ‐.084 ‐.070 .272 .355 .304 .081 .018 ‐.276

Ret ‐.106 .021 .576
**

.008 .188 ‐.043 ‐.131 .014 .099 .038 .118 ‐.207 ‐.452
*

B(a)A .527
**

‐.630
**

.510
*

.418
*

.478
*

‐.481
*

‐.150 ‐.286 .329 ‐.255 .546
**

‐.428
*

.336

Chry .475
*

‐.640
**

.144 .427
*

.548
**

‐.529
**

‐.181 ‐.227 .442
*

‐.194 .548
**

‐.411
*

.319

B(b)F .632
**

‐.770
**

.158 .196 .582
**

‐.352 ‐.350 ‐.267 .372 ‐.294 .463
*

‐.341 .238

B(k)F .665
**

‐.807
**

.395 .183 .652
**

‐.375 ‐.298 ‐.290 .313 ‐.194 .519
**

‐.379 .187

B(e)P .641
**

‐.799
**

.106 .373 .540
**

‐.484
*

‐.145 ‐.317 .312 ‐.222 .618
**

‐.448
*

.311

B(a)P .657
**

‐.817
**

.140 .338 .656
**

‐.405
*

‐.240 ‐.195 .392 ‐.236 .551
**

‐.404 .225

IPy .640
**

‐.686
**

.174 .371 .543
**

‐.527
**

‐.231 ‐.223 .386 ‐.189 .546
**

‐.428
*

.333

D(ah)A .320 ‐.496
*

.298 .380 .490
*

‐.581
**

‐.174 ‐.128 .343 .003 .629
**

‐.431
*

.313

B(ghi)P .362 ‐.486
*

‐.013 .332 .432
*

‐.442
*

‐.186 ‐.401 .137 ‐.232 .604
**

‐.471
*

.274

Cor .307 ‐.217 ‐.041 .176 .286 ‐.336 ‐.126 ‐.283 .088 ‐.312 .324 ‐.141 .098

9‐F .147 ‐.285 .139 .326 .367 ‐.344 ‐.222 ‐.023 .282 ‐.002 .478
*

‐.331 .342

AQ .383 ‐.393 .479
*

.275 .443
*

‐.206 ‐.342 ‐.278 .390 ‐.228 .413
*

‐.202 .201

MAQ .227 ‐.108 .596
**

.233 .067 ‐.435
*

‐.141 ‐.035 .396 ‐.148 ‐.078 .039 .364

BaQ .027 ‐.172 .719
**

‐.065 .194 ‐.107 ‐.311 ‐.214 .108 .125 .090 ‐.069 ‐.005

1‐NNap .540
**

‐.530
**

.287 .338 .380 ‐.495
*

‐.136 ‐.216 .337 ‐.080 .435
*

‐.322 .389

2‐NNap .487
*

‐.324 .430
*

.315 .194 ‐.431
*

‐.090 ‐.261 .245 ‐.140 .370 ‐.258 .472
*

DNN .169 ‐.463
*

.488
*

.330 .495
*

‐.182 ‐.216 ‐.249 .109 .060 .658
**

‐.603
**

.002

2‐NFlo .124 ‐.245 ‐.224 ‐.020 .278 ‐.244 ‐.314 .440
*

.382 .039 .060 .021 .274

9‐NAnt .421
*

‐.458
*

.660
**

.249 .297 ‐.352 ‐.173 ‐.308 .236 ‐.247 .678
**

‐.179 .200

1‐NFL .041 ‐.177 .321 .295 ‐.022 ‐.318 ‐.078 .228 .285 .008 .020 ‐.055 .085

2‐NFL .454
*

‐.455
*

.603
**

.258 .169 ‐.380 ‐.042 ‐.351 .136 ‐.005 .522
**

‐.424
*

.333

3‐NFL .453
*

‐.559
**

.233 .168 .355 ‐.266 .078 ‐.048 .337 ‐.031 .217 ‐.165 .234

4‐NPy .430
*

‐.478
*

.439
*

.162 .333 ‐.302 ‐.061 ‐.333 .324 ‐.011 .289 ‐.211 .320

1‐NPy .228 ‐.518
**

.287 .341 .199 ‐.486
*

.150 ‐.323 .340 ‐.154 .332 ‐.244 .431
*

2‐NPy .485
*

‐.425
*

.558
**

.293 .254 ‐.279 ‐.106 ‐.254 .343 ‐.120 .396 ‐.362 .380

7‐NBaA .349 ‐.698
**

.380 .189 .592
**

‐.350 ‐.098 ‐.166 .431
*

‐.056 .634
**

‐.355 .206

6‐NChr .362 ‐.490
*

.065 .454
*

.522
**

‐.485
*

‐.270 .154 .576
**

.069 .287 ‐.248 ‐.120

TSP 1 ‐.549
**

.262 .439
*

‐.331 ‐.112 ‐.150 .177 ‐.232 .155 ‐.084 .149

degC ‐.549
**

1 ‐.257 ‐.733
**

.451
*

.151 .031 1 .072 ‐.540
**

.307 ‐.052

% .262 ‐.257 1 .174 ‐.769
**

.418
*

‐.064 .072 1 .344 ‐.638
**

.388

hPa .439
*

‐.733
**

.174 1 ‐.277 ‐.467
*

.240 .476
*

‐.286 ‐.102

W/m2 ‐.331 .451
*

‐.769
**

‐.277 1 ‐.294 ‐.085 ‐.256 .384 ‐.462
*

mm ‐.112 .151 .418
*

‐.467
*

‐.294 1 ‐.120 ‐.128 ‐.058 .177

m/s ‐.150 .031 ‐.064 .240 ‐.085 ‐.120 1 ‐.268 .305 ‐.049

deg ‐.151 ‐.309 ‐.029 .701
**

.072 ‐.470
*

.166 .330 ‐.312 ‐.359

NOx .155 ‐.540
**

.344 .476
*

‐.256 ‐.128 ‐.268 1 ‐.643
**

.025

O3 ‐.084 .307 ‐.638
**

‐.286 .384 ‐.058 .305 ‐.643
**

1 ‐.195

SO2 .149 ‐.052 .388 ‐.102 ‐.462
*

.177 ‐.049 .025 ‐.195 1
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volatilisation between the two sites. In the case of MAQ and BaAQ this may indicate an additional 

source that influences EROS to a higher degree than BROS.  

3.2.2.2. Correlations of PAH, OPAH and NPAH with NOx 

Most compounds in this study display a significant positive correlation with NOx, This can be 

interpreted in a number of ways: 

Firstly, NOx is expected to result predominantly from local road traffic in this area (Lim et al., 1999) 

therefore this relationship may reflect the intensity of vehicle exhaust input. For example, Feilberg 

et al. (2001) indicted that at an urban location in Copenhagen,  1NPyr and 9NAnt correlated with 

traffic gas NO while 2NFlt and 2NPyr did not, reflecting the importance of direct vehicle emissions 

over atmospheric formation. However, in the present study 1NPty, 9NAnt, 2NFlt and 2NPyr were 

shown to correlate with NOx at BROS and/or EROS. A number of compounds (e.g. Phe, Ant, Flt, 

Pyr, Ret, AQ, MAQ, BaQ, 2NFlo, 1NFlt, 3NFlt, 6NChr) display weaker or no correlation with NOx, 

possibly indicating different primary sources and/or processes governing their concentrations. 

It has also been suggested that NPAH may be formed (in the particle-phase) from direct reaction of 

PAH with NO2 (Inazu et al., 1997; Kwok et al., 1995; Ma et al., 2011; Miet et al., 2009c; Wang et 

al., 2000) therefore it has been suggested a positive correlation could reflect secondary NPAH 

input in this way (Feilberg et al. 2001). This was observed for a number of NPAHs at BROS. The 

compounds for which a significant correlation remains at EROS include 9NAnt, 2NFlt and 7NBaA 

which have been observed as NO2 heterogeneous reaction products (Inazu et al., 1997; Liu et al., 

2012; Ma et al., 2011; Zhang et al., 2011).  

However, NOx also displays a significant (p<0.01) negative correlation with temperature. Since NOx 

is expected to result primarily from local road traffic in this area, this relationship indicates that the 

relationship observed between PAH, OPAH and NPAH with NOx may be more reflective of the 

temperature-dependence of the atmospheric boundary layer (ABL) height rather than the 

magnitude of primary or secondary input.  
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3.2.2.3. Correlations of PAH, OPAH and NPAH with O3 

A number of compounds display a weak (yet statistically significant) negative correlation with O3 

concentrations. This was observed more commonly for compounds found predominantly in the 

particulate phase (e.g. BaA, Chr, IPy, BeP, BaP, DBA, BPy and Cor).   

It has been shown that these compounds can undergo heterogeneous reactions with O3 on particle 

surfaces (Kwamena et al., 2004; 2006; Perraudin et al., 2007). Relatively weak negative 

correlations were between NPAHs with O3 were previously reported by Feilberg et al. (2001) 

possibly indicating O3 reactions as a possible nighttime degradation pathway. However, this was 

not indicated to be a significant process for NPAHs in this study with only a small number of 

compounds displaying weak negative correlation with O3.  

It is expected that heterogeneous reactivity is not the cause of the negative correlation observed in 

the present study as this is more consistent with the strong negative correlation observed between 

O3 and NOx which is likely to be due to reactions occurring between O3 and NO.  

 

3.2.2.4. Temperature-dependence of PAH, OPAH and NPAH concentrations  

Most compounds (with the exception of Phe, Ant, Flt, Pyr, Ret, 2NNap and 1NFlt) display a 

significant negative correlation with temperature. This is more prevalent at BROS with weaker or 

absent correlations present for some compounds at EROS. A similar observation was made for 

PAH, OPAH and NPAH in southern China (Wei et al., 2012). This could indicate the primary 

sources influencing the levels of these compounds are seasonal in nature, with higher emission 

strength occurring in winter, for example due to domestic combustion of solid fuels for space 

heating.  

However, the negative correlation between temperature and NOx highlights the possible 

importance of the ABL height on pollutant concentrations.  To test this theory, measured PAH, 

OPAH and NPAH concentrations were ‘corrected’ by dividing the observed concentrations by the 



128 
 

corresponding NOx concentration at Birmingham Tyburn (see Section 2) for each sampling period 

to reflect the seasonal variation in ABL height, so variations caused only by source strength can be 

assessed. It should be noted that CO has been previously used for PAH ‘corrections’ as it is 

considered a more appropriate traffic-marker compound (Reisen and Arey, 2005). However, CO 

measurements were not available as this species is no longer measured at the Birmingham Tyburn 

site. The NOx-corrected concentrations were then correlated with temperature. This method has 

been utilised at this site previously by Dimashki et al. (2001). The authors hypothesised that 

following correlation behaviour could be interpreted in terms of the prevailing emissions sources as 

follows : 

i) a significant negative correlation would indicate seasonally modulated space heating as a 

dominant source 

ii) no significant correlation would indicate the dominance of road traffic as an emission source  

iii) a significant positive correlation would indicate the influence of volatilisation from surfaces.  

 

It is shown (Table 3.6) that the correlation of most NOx-corrected compounds with temperature is 

not significant, consistent with traffic being the dominant emission source at both sites. It is 

expected, therefore that highest concentrations of most compounds occur under relatively cold, 

stable conditions when vertical transport is restricted, leading to relatively slow dispersion. This is 

also consistent with a significant positive correlation observed for most compounds with 

atmospheric pressure.  

For a number of compounds, a significant positive correlation is observed between NOx-corrected 

concentrations and temperature (Table 3.6). This positive correlation could be indicative of input 

via volatilisation from road, pavement, vegetation or soil surfaces at these sites, which is likely to 

be enhanced during warmer conditions.   
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This behaviour is observed mostly for LMW 3-4 ring species (e.g. Flo, Phe, Ant, Flt, Pyr, Ret, 9F, 

AQ, 1NNap, 2NNap, 2NFlo) and relatively few HMW compounds (1NFlt, 1NPyr, MAQ, BaQ). This 

is consistent with higher volatility of these lighter compounds, possibly facilitating a higher 

tendency towards evaporation from surfaces or soil.  

Dimashki et al. (2001) also found no correlation with temperature for most NOx corrected PAHs in 

Birmingham, consistent with a non-seasonal traffic source dominating, but observed positive 

correlations for LMW PAHs Phe, Flo and Flu, indicating the possible input of these compounds 

from surface volatilisation. Similarly, Harrad and Laurie (2005) observed no correlation between 

‘non-corrected’ PAH concentrations and temperature at these sites, which the authors attributed to 

a seasonal pattern (higher emissions in winter) being buffered by volatilization during summer.  

Interestingly, positive correlations of ‘corrected’ concentrations of 9NAnt, 2NFlt, 4NPyr and 2NPyr 

are observed at EROS but not BROS. These compounds are formed, partly or entirely, by 

photochemical reactions, which may be higher during the warmer summer conditions. However, no 

correlation was noted for these compounds with solar radiation intensity so the nature of apparent 

the temperature-dependence of these compounds is unclear.  

 

3.2.2.5. Correlations of PAH, OPAH and NPAH with rainfall, wind speed and wind direction 

No correlation was observed for PAH, OPAH or NPAH concentrations with rainfall. This is 

consistent with previous studies at these sites (Laurie, 2003). Prevedouros et al. (2004b) also 

indicated that the influence of scavenging by rainfall will have minor influence on atmospheric PAH 

concentrations.  

Furthermore, no correlation was noted between any measured compound and wind speed at either 

site. This is in contrast to the findings of Harrad and Laurie (2005) where a significant negative 

correlation was observed for most PAHs at both sites, the authors suggesting higher 

concentrations were therefore observed under relatively still, calm conditions.  



130 
 

The measurement Sin(WD) is an indication of east-west wind direction. No significant correlation 

was observed between compound concentrations and Sin(WD), suggesting the absence of a 

significant emission source to the east or west of the sampling sites. This is broadly consistent with 

the findings of Harrad and Laurie (2005) 

Cos(WD) is an indication of the north-south wind direction. Weak yet significant negative 

correlation between concentrations and Cos(WD) was observed for only for a small number of 

compounds (BkF, BaP, DBA, BaAQ, 2NFlo, 3NFlu at BROS ; Acy, Flu, Chr, 7BaA, 6NChr at 

EROS). Harrad and Lauie (2005) previously reported a significant negative correlation for most 

LMW PAHs with cosWD at BROS but not at EROS. This suggested the levels of LMW PAHs were 

higher during periods of low wind and air arriving from the south (Bristol Road) but were not 

influenced to a large degree by wind direction at EROS. Most HMW PAH did not show a significant 

correlation with cosWD.  

 

3.3. Seasonal variation in PAH, OPAH and NPAH levels  

3.3.1. PAH seasonality  

The mean concentrations (particulate + vapour) of PAHs measured only in summer and winter 

samples are compared in Figure 3.6a and 3.6b for BROS and EROS respectively.   It should be 

noted that these ‘seasonal’ concentrations are based on a relatively small number of samples 

(n=7) taken during the summer and winter months respectively.  

It assumed that these values are representative of concentrations for the full season, which may 

not be the case so results need to be interpreted with caution.  The mean temperature measured 

on the ‘winter’ sampling days was ~6 oC while the mean temperature on ‘summer’ sampling days 

was ~15 oC. Interestingly, the mean temperature measured at Birmingham Tyburn during all winter 

days (Dec 2011 – Feb 2012) was 4.8 oC while the mean summer temperature (June 2012 – Aug 

2012) was 14.9 oC.  
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Mean NOx concentrations measured at Tyburn were 55 μg/m3 and 38 μg/m3 during the winter and 

summer sampling days respectively. The mean NOx concentration measured at Tyburn for the 

whole seasons was 76 μg/m3  for winter months and 33 μg/m3 for summer months. This may 

therefore suggest that the observed concentrations and conditions in this campaign may be 

representative of the respective seasons.  

Generally, higher concentrations are observed in winter at both sites for most compounds 

compared with summer samples. However the nature and extent of the observed seasonal profile 

is highly variable between species and between the two sites. The observed winter (W) to summer 

(S) ratio of >1 could be caused by an increased concentration in winter and/or reduced 

concentration in summer. 

This seasonal trend has been observed for PAHs in previous air sampling studies (Cortes et al., 

2000; Cortes and Hites, 2000; Dimashki et al., 2001; Holoubek et al., 2007; Meijer et al., 2008; 

Smith and Harrison, 1996; Sun et al., 2006).   

The key factors that govern the observed seasonal profiles are i) differences in source strength 

and/or relative contributions from different sources, and ii) changes in the meteorological 

conditions influencing the rate of dispersion or deposition and the changes in the oxidative capacity 

of the atmosphere controlling the rate of loss for PAH and/or input of OPAH and NPAH.  

Acy is shown to display the highest W:S ratio of the LWM (3-ring) PAH compounds at both sites. 

This is consistent with the relatively high reactivity towards OH radicals (Atkinson and Arey, 1994), 

which is likely to cause significant depletion during summer months when photochemical activity is 

enhanced. This ratio is more pronounced at BROS, possibly due to the closer proximity to the 

traffic source and the relatively low mixing heights in winter but might also suggest an additional 

local input influencing the levels of this compound primarily at EROS.  

 

 



132 
 

a)  

b)  

Figure 3.6. Mean PAH concentrations (P+V) measured in winter (n=7) and summer (n=7) 

samples only at BROS (a) and EROS (b). 
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A similar profile could be expected for Ant which is also highly reactive towards OH (Brubaker and 

Hites, 1998). However, relatively low W:S ratios of 0.8 and 1.4 were observed at BROS and EROS 

respectively. This may suggest that concentrations of Ant are being ‘buffered’ by a non-traffic 

related source at these sites during summer.  

Phe also displays relatively low seasonal variation with W:S ratios of 1.3 and <1 at BROS and 

EROS respectively. Analysis of the PAH traffic profile (Section 3.1) indicated the presence of a 

non-traffic source of Phe, primarily influencing EROS.  

It was indicated from the observed traffic profile that concentrations of Ace and Ret are not 

dominated by traffic inputs and may originate from other combustion sources. Ace displays 

relatively high W:S ratios. This may result from higher emission rates in winter due seasonally 

variable activities such as solid fuel combustion for space heating. However, Ret does not display 

the same profile. This compound is associated with wood combustion but does not display a 

pronounced seasonal profile. This may suggest that Ret levels observed at these sites are 

influenced primarily by a non-seasonal wood combustion source.  

HMW PAH compounds IPy, BPy and Cor are commonly associated with road traffic emissions 

(Ravindra et al., 2008). W:S ratios of these compounds are relatively high at BROS, which is 

consistent with  traffic dominating the source profile of these compounds and a seasonal profile 

resulting due to the colder, more stable conditions prevailing during winter, resulting in reduced 

vertical transport and dispersion relative to summer months. Ratios at EROS are lower for these 

compounds, presumably due to a dilution effect caused by greater distance from the local emission 

source.   

Other PAHs such as BaA, BbF, BkF, BeP, BaP and DBA display higher W:S ratios at EROS 

possibly indicating the presence of an additional seasonally-dependent source of these 

compounds that may influence EROS more than BROS.  This is notably most pronounced for 

DBA, suggesting this compound is not strongly emitted from road traffic and is predominantly 

associated with a seasonally-mediated combustion source. This is consistent with the study by 
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Jang et al. (2013) which demonstrated a relatively small input of DBA from ‘net traffic’ relative to 

‘net urban’ profiles at monitoring sites in London.   

Prevedouros et al. (2004b) modelled the predicated seasonal variation in PAH concentrations 

when emissions are constant but environmental conditions (e.g. temperature rainfall, wind speed, 

TSP concentration, OH reaction rate and boundary layer height) are variable. It was predicted that 

this would result in relatively high W:S ratios (~4-6) for LMW PAHs and lower ratios (1.5-2) for 

HMW PAHs.  

However this trend was not observed in the present study or in previous urban air sampling studies 

in the U.K. (Baek et al., 1991; Halsall et al., 1993; Prevedouros et al., 2004b). While in the present 

study, the W:S ratios of HMW PAHs are broadly consistent with modelling predictions, the 

seasonality of LMW PAHs is shown to be much lower than predicted.  

Prevedouros et al. (2004b) suggest summer emissions would need to be 1-16 times higher than 

winter emissions in order to account for the discrepancy between modelled and measured PAH 

concentrations. The authors highlight a number of potential summer PAH sources that may be 

responsible, including volatilisation from soil, vegetation, water or impermeable urban surfaces, 

burning of garden residues and microbially-mediated natural input, and caution that these sources 

are extremely difficult to characterise and quantify.   

 

3.3.2. OPAH and NPAH seasonality  

OPAH and NPAH seasonal profiles are displayed in Figure 3.7 and 3.6 respectively  

OPAH compounds 9F, AQ and MAQ display similar W:S ratios of 1.8-2.2 at BROS and 1.4-1.5 at 

EROS. This suggests these compounds are subject to similar seasonal variability in input and/or 

loss processes. The lower W:S ratios observed at EROS may suggest a more enhanced input of 

these compounds at this site during summer.  
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Figure 3.7. Mean OPAH concentrations (P+V) measured in winter (n=7) and summer 

samples (n=7) only at BROS (a) and EROS (b). 
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a)   

b)    

Figure 3.8. Mean NPAH concentrations (P+V) measured in winter (n=7) and summer 

samples (n=7) only at BROS (a) and EROS (b). 
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Walgraeve et al. (2010) reviewed a large number of OPAH sampling studies from different 

locations, and reported that median concentrations are 3-4 times higher during winter than during 

summer. The relatively lower W:S values observed in the present study may therefore reflect the 

dominance of non-seasonal road traffic as a primary emission source and the possible additional 

input of OPAHs due to non-traffic related sources during summer.  

NPAHs display relatively high W:S ratios at BROS compared with most PAH and OPAH. This may 

be attributed to photolysis being the primary loss process for these compounds, with rates of 

degradation being relatively suppressed during the colder winter months and higher during 

summer. It is noted that the 1NNap W:S ratio is ~2 times higher at BROS than that of 2NNap, 

which may be attributed to the faster rate of photolysis observed for 1NNap relative to 2NNap 

(Atkinson et al., 1989; Niu et al., 2005; Phousongphouang and Arey, 2003a).  

The relatively high ratios observed for 7NBaA and 6NChr at BROS may indicate the more 

dominant influence of a seasonally-dependent combustion source for these compounds. To date, 

no data on non-traffic emissions of these compounds has been provided. The lower W:S ratios 

observed for NPAHs at EROS may reflect the relatively more ‘aged’ air mass at this site and/or the 

influence of secondary input from non-traffic sources such as surface volatilisation or atmospheric 

reactions.  

3.3.3. Factors influencing seasonal trends  

3.3.3.1. Seasonal variation in source strength  

Previously, relatively high W:S ratios of PAH, NPAH and OPAH observed in urban areas has been 

associated with a stronger seasonal source strength, with higher concentrations in winter 

associated, for example with higher emissions from space heating (Andreou and Rapsomanikis, 

2009; Coleman et al., 1997; Eiguren-Fernandez et al., 2008a; Harrison et al., 1996; Smith and 

Harrison, 1996). However, the dominant emission source at the University of Birmingham sites is 

expected to be road traffic with a much lower contribution from domestic emission sources.  
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The seasonal variability of traffic-related PAH, NPAH and OPAH emissions is difficult to predict 

and the lack of data on the seasonal variability of traffic flow at the sampling sites means there is 

uncertainty regarding this trend. As discussed by Prevedouros et al. (2004b), the level of vehicle 

usage may be higher during summer (for example due to a greater number of people taking 

vacations and the longer average length of ‘daytime’). However, the contribution due to ‘cold start’ 

emissions is likely to be higher in winter. 

Based on the lack of significant correlation between temperature and PAH/NOx for traffic marker 

compounds such as Cor, BeP and BPy (see Section 3.2), it is assumed that traffic emissions do 

not display significant seasonality and that variability in the emission source strength will not 

influence the seasonal concentration variation at these sites.  Reisen and Arey (2005) noted the 

seasonal variation of 1NPyr (normalised to CO) was lower than for reaction products 2NFlt and 

2NPyr, and suggested this indicated traffic sources were relatively non-seasonal . 

A lack of seasonality in emission sources would partly account for the relatively low W:S variability 

between seasons observed in this study in relation to sampling studies, for example close to 

Birmingham city centre (Smith and Harrison, 1996).  

 

3.3.3.2. Seasonality of atmospheric boundary layer height  

The height of the ABL can influence the concentrations of air pollutants as this will dictate the 

degree of atmospheric stability and rate of dispersion (Williams, 2001 ; Holloway and Wayne, 

2010). The height of the ABL exhibits seasonal and diurnal patters with daytime summer heights of 

~1000m and nighttime winter heights of ~100m (Williams, 2001). It has been indicated, based on 

the significant (p<0.01) negative correlation between temperature and NOx concentration, that the 

ABL height displays seasonality at these sites.   

Higher levels of OPAH and NPAH in urban areas where higher emissions from space heating are 

not likely to occur have been attributed to colder temperature resulting in lower ABL height, less 
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rapid photooxidation and associated accumulation of pollutants (Albinet et al., 2008a; Bamford and 

Baker, 2003; Kakimoto et al., 2000; Kakimoto et al., 2001; Marino et al., 2000; Wei et al., 2012). 

It is suggested, therefore that seasonality in temperature may be the dominant factor governing 

observed seasonal PAH, OPAH and NPAH concentration variations at these sites. It should be 

noted, however that the annual variation in temperature was relatively narrow. Mean ambient 

temperature from the winter samples was 6°C compared with ~15°C in summer samples.  

Albinet et al. (2008a) measured concentrations of OPAH and NPAH at a traffic site in France 

during winter and summer, observing higher W:S ratios than were observed in the present study. 

In summer, Albinet et al. (2008a) reported a concentration of BaP of 0.12 ng m-3 in very good 

agreement with the summer mean concentration observed at BROS. This suggests the rate of 

primary pollutant input is broadly similar in the two studies. The seasonal temperature trend 

reported by Albinet et al. (2008a) varied from a mean winter temperature of -3°C to a mean 

summer temperature of 17°C.  

This much wider range of temperature may therefore account for the observed differences in 

OPAH and NPAH seasonality between these two studies, with higher accumulation in the colder 

winter caused by a lower ABL height and slower photodegradation, and more rapid loss in the 

much warmer summer months. Indeed Albinet and co-workers report a winter BaP concentration 

~9 times higher that was observed at BROS, therefore indicating the influence of a lower mixing 

height during winter in the previous study.  

 

3.3.3.3. Influence of volatilisation from surfaces 

It has been previously been indicated  that PAH concentrations measured in the U.K. atmosphere 

can be influenced by the secondary input due to volatilisation from soil, vegetation and/or road 

surfaces in urban areas (Dimashki et al., 2001; Harrad and Laurie, 2005; Lee and Jones, 1999) or 

from the sea in coastal areas (Meijer et al., 2008).  
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Vegetation can represent an important compartment in the scavenging of atmospheric PAH 

(Simonich and Hites, 1994). For example, it has been demonstrated that PAHs can accumulate in 

leaf foliage (Keyte et al., 2009; Wild et al., 2006) particularly the waxy cuticle layer on the 

vegetation surface (Wild et al., 2007). It has been suggested in multimedia modelling study that 

semi-volatile organic compounds like PAHs can be subsequently released from this compartment 

to the atmosphere (Diamond et al., 2001). It has also been suggested that volatilisation from soil to 

air can also occur for LMW organic pesticides (Harner et al., 2001) and PAHs (Wei et al., 2014).  

Lee and Jones (1999) noted a significant positive correlation between 3 and 4 ring compounds 

Phe, Flt and Pyr concentration and temperature in a semi rural site in northern England, indicating 

the possibility of temperature-driven evaporation from vegetation and/or soils, contributing to 

observed ambient concentrations in summer. In contrast HMW 5 ring PAHs BbF and BkF were 

negatively correlated with temperature.  

In the present study, the trend between temperature and NOx-corrected concentrations was 

investigated to account for the seasonal trend in ABL height (see Section 3.2). Significant (p<0.05) 

positive correlations were noted at BROS for Flo, Phe, Ant, Flt, Pyr, BbF, DBA, 9F, AQ, MAQ, 

1NNap, 2NNap, 2NFlo, 1NFlt and 1NPyr; and at EROS for Acy, Flo, Phe, Ant, Pyr, Ret, BaA, AQ, 

MAQ, BaAQ, 2NNap, 9NAnt, 2NFlt, 4NPyr, 2NPyr. While this trend does not necessarily indicate 

the influence of volatilisation from surfaces at these sites, nor the relative significance of this 

source, it may suggest that a local temperature-driven secondary input may contribute to the 

observed concentrations of PAH, OPAH and NPAH, particularly in summer for LMW compounds.   

Dimashki et al. (2001) and Lim et al. (1999) indicated that volatilisation from surfaces was more 

significant in the city centre than at the University site. It was hypothesised that the greater area of 

impermeable surfaces and density of primary sources would mean road surfaces would represent 

an area with a greater ‘reservoir’ of previously deposited PAH compounds than the background 

site. 
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In the present study, however, it is unclear as to whether volatilisation is more significant at BROS 

or EROS. For example, the traffic increment profiles (Section 3.1) indicate a more distinct input of 

Phe from additional source exists at EROS, however the correlation between temperature and 

Phe/NOx is stronger at BROS. Similarly, it was indicated that a stronger additional source of Ret is 

present at BROS, however a significant trend between Ret/NOx and temperature is only indicated 

at EROS.  

 

3.3.4. Seasonal trend in PAH reactivity 

It is expected that during summer, higher concentrations of atmospheric oxidants will result in 

higher reactive input of OPAH and NPAH compounds. For example, Reisen and Arey (2005) 

observed S:W ratios for NNaps, 2NFlt and 2NPyr were 2.3, 5.2 and 1.5 respectively at the receptor 

suburban site Riverside, USA. The authors noted that NPAHs formed by OH reactions only (e.g. 

2NPyr) displayed lower summer/winter ratios than those formed by both OH and NO3 reactions 

(1NNap, 2NNap and 2NFlt) suggesting significant summer input from NO3 reactions.  

In the present study, mean 2NFlt/2NPyr ratios were relatively low (<6) at both BROS and EROS in 

all seasons, indicating minimal impact of NO3 reactivity relative to OH reactions. However, 

2NFlt/1NPyr ratios were higher at EROS relative to BROS in all sampling seasons. Ratios were a 

factor ~3.5 higher at EROS in summer, compared with an inter-site difference of factor ~2.3 in 

winter. This highlights the potential importance of OH reactions between sites and suggests this is 

more pronounced during the warmer summer months.   

The greater prominence of atmospheric reactivity during summer may be expected to cause 

NPAH/PAH and OPAH/PAH ratios to display similar seasonality. For example, Walgraeve et al. 

(2010) assessed the ratio of OPAH/ ‘parent’ PAH in a number of ambient sampling studies in the 

literature. It was shown that during winter, 50% of these ratios were between 0.006 and 0.16. In 

summer ratios were reported to be about 20 times higher, with 50% of ratios between 0.54 and 3.6 

(Keyte et al., 2013).  
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OPAH or NPAH ‘product’ / PAH rations (see Section 3.6) were shown to be highly variable and no 

distinct seasonal trend in ratio values or in the significance of atmospheric reactivity to the 

measured atmospheric concentrations of OPAH and NPAH could be observed.  

Other seasonal factors may occur which will also influence the relative value of these ratios. This 

includes differences phase partitioning, which can lead to protection of PAH, NPAH or OPAH from 

photolytic or reactive losses as well as possible influence of temperature-dependent volatilisation 

of compounds from surfaces, which may occur at differing levels of significance and occur at 

different rates for different PAH, OPAH and NPAH compounds.  

Similarly, Wei et al. (2012) showed that at sampling sites in southern China, NPAH/PAH and 

OPAH/PAH ratios displayed considerable spatial, seasonal and diurnal variations, likely influenced 

by a number of competing factors including changes in emission strength, reactivity rates and 

degree of phase partitioning.   

 

3.3.5. BROS/EROS ratio seasonality 

Table 3.6. presents the mean ratios of BROS/EROS concentrations measured for all compounds 

during each sampling season during Campaign 1.  

HMW (5+ ring) PAHs exhibit relatively small seasonal variation in BROS/EROS ratios, attributed to 

their relatively high stability, low volatility and strong association with PM expected in all sampling 

seasons. LMW PAHs may be expected to display higher BROS/EROS ratios during summer due 

to enhanced chemical reactivity between sites. However, this is not observed for most compounds.  

For PAHs, the highest ratios in all seasons are observed for the most reactive PAHs, Acy and Ant. 

However, opposing seasonal trends are observed for these compounds. Ant displays higher 

BROS/EROS ratios in spring and summer compared to autumn and winter, consistent with higher 

reactive losses between sites in the warmer months.  
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It is indicated above that the seasonal profile of Ant may be influenced by non-traffic sources 

during summer. These results suggest this if this phenomenon occurs, it is primarily influencing at 

BROS. Conversely, Acy displays higher BROS/EROS ratios in winter. This may indicate that levels 

of Acy may be ‘buffered’ to a certain degree by evaporative input from surfaces, primarily 

influencing EROS, as indicated by the significant (P<0.05) correlation between Acy/NOx and 

temperature at this site.  

Flt and Pyr display similar ratios in winter, indicating similar input and loss processes are affecting 

both compounds. However, in summer Flt displays higher BROS/EROS ratio while Pyr appears to 

show minimal seasonal variability. It has been indicated above that both Pyr and Flt may be 

influenced by an additional source at both sites (as suggested by their observed association with 

Ret; see Section 3.2). However, while both Flt/NOx and Pyr/NOx are shown to correlate 

significantly with temperature at BROS, only Pyr displays this trend at EROS. This may partly 

account for the discrepancy in the seasonal behaviour of the BROS/EROS ratios of these 

compounds.  

BROS/EROS ratios of Flo and Phe are highest in autumn and winter respectively and lower in 

summer. As indicated in the present and previous (Dimashki et al., 2001) studies, these 

compounds may be influenced by local input due to temperature-driven volatilisation from surfaces. 

These results would suggest this phenomenon is more prevalent at EROS than at BROS.  

Ret exhibits a higher BROS/EROS ratio in summer, suggesting the concentrations of Ret at these 

sites is not controlled by seasonally-mediated domestic wood combustion for space heating but 

rather a source that may be more prevalent at BROS in summer such as incineration of garden 

wastes. Ace displays ratios of <1 in spring and summer and >1 in winter, possibly indicating the 

influence of a seasonally-mediated combustion source that is more prevalent at BROS and/or a 

local input at EROS in summer, which masks the influence of a traffic related pattern.   

 



144 
 

Table 3.6. Mean BROS/EROS concentration ratios measured in each sampling season in 

Campaign 1. 

Autumn Winter Spring Summer 

Acy 4.4 4.0 3.8 3.3 

Ace 1.6 1.2 0.9 0.9 

Flo 1.8 1.6 1.6 1.5 

Phe 1.5 1.9 1.9 1.5 

Ant 2.3 2.2 3.3 4.6 

Flu 1.9 1.7 1.6 2.2 

Pyr 2.9 1.7 2.2 1.7 

Ret 1.6 1.2 1.8 2.0 

BaA 1.8 1.9 2.0 2.3 

Chr 1.7 1.5 1.8 2.4 

BbF 1.5 1.3 1.6 1.4 

BkF 1.4 1.3 1.7 1.5 

BeP 1.3 1.5 1.5 1.6 

BaP 1.9 1.8 1.6 1.8 

Ipy 1.6 1.4 1.3 1.2 

DBA 1.7 1.5 2.9 1.8 

Bpy 1.6 1.6 1.6 1.3 

Cor 1.6 1.2 1.4 1.0 

9F 1.9 2.2 1.5 1.3 

AQ 1.6 1.9 1.4 1.3 

MAQ 1.8 1.7 1.4 1.1 

BaAQ 1.3 2.3 1.4 1.1 

1NNap 3.2 3.1 2.9 1.9 

2NNap 2.2 2.1 2.0 1.7 

2NFlo 2.2 2.2 2.2 1.5 

9NAnt 2.4 2.0 1.4 1.2 

1NFlt 3.6 2.6 2.2 1.3 

2NFlt 1.9 1.5 2.2 0.7 

3NFlt 1.0 1.7 1.4 2.0 

4NPyr 1.6 2.0 1.6 1.6 

1NPyr 2.5 3.4 2.7 2.7 

2NPyr 1.2 2.1 2.0 1.2 

7NBaA 1.9 1.8 1.8 1.0 

6NChr 1.4 1.5 2.4 1.2 
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OPAHs and NPAHs generally display lower inter-site ratios during summer compared with other 

times of the year. For NPAHs, this observation is unexpected as relatively rapid photolytic 

degradation of these compounds would be expected to produce relatively large BROS/EROS 

ratios during summer, assuming a predominant traffic source from BROS.  

The observation of relatively lower BROS/EROS ratios may therefore reflect a greater influence of 

non-traffic related sources of these compounds during summer months e.g. input from garden 

bonfires, or volatilisation/resuspension.   

It is also suggested that NPAH and OPAH concentrations (for compounds such as 1NNap, 2NNap, 

2NFlt, 2NPyr, AQ and 9F) at EROS may be enhanced during summer due to higher input from 

atmospheric reactions between sites (see Section 3.6 and 4.3). For example a ratio of <1 is noted 

for 2NFlt during summer, suggests the more enhanced reactivity in the atmosphere during the 

warmer months.   

 
 
 
3.4. Temporal trend of PAHs at BROS and EROS  

3.4.1. Overview 

PAH concentrations have previously been measured at the University of Birmingham sites in 1997 

(Dimashki et al., 2001) and 1999-2001 (Harrad et al., 2003; Harrad and Laurie, 2005). A 

comparison between the annual mean concentrations of PAH and OPAH compound 9F measured 

in the present study and those in reported in the previous studies is shown in Figure 3.9. It should 

be noted that this comparison is made based on a relatively small number of individual samples 

taken at these sites in the present and previous studies, used as representative ‘annual mean’ 

concentrations. Differences in specific conditions (e.g. traffic flow, meteorological variables, 

analytical methods) may mean the annual concentration values derived may not be directly 

comparable. The interpretation of temporal pattern at these sites must therefore be made with 

caution.  
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Figure 3.9. The percentage change of PAH concentrations between mean annual values 

reported by Harrad and Laurie (2005) and the present study.  

 

Decreases in concentration are noted for most compounds at both sites. For BaP a decline of 51% 

and 61% is observed at BROS and EROS respectively. This is consistent with observed decreases 

in BaP concentrations at monitoring stations in similar urban locations across the U.K. over the 

same timescale (Brown et al., 2013). The reductions noted for most PAHs measured at BROS and 

EROS over the last decade are consistent with the ongoing downward trend in PAH concentrations 

observed at urban sites in the UK over the past century.  

As discussed by (Brown et al., 2013), the first PAH monitoring data in the U.K. was produced in 

1949-50 with levels of BaP reported to be over 60 ng m-3, approximately 300 times higher than the 

annual mean measured at BROS in this study. Monitoring of PAH levels in central London showed 

that BaP concentration declined by around 90% from 1949 to 1973 (Lawther and Waller, 1976). 

Jones et al. (1992) used plant foliage as a monitor of PAHs at the Rothemstead Experimental 

Station in Hertfordshire, U.K. and reported concentrations measured in the period 1985 to 1989 

were up to 4 times lower than those measured in the period 1965 to1969.  
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Smith and Harrison (1996) indicated that PAH concentrations measured at sites in Birmingham in 

1992 were 2 to 10 times lower than levels observed in 1976-1978 by Butler and Crossley (1979).  

Further decline of ambient PAH levels were noted during sampling studies in different urban 

locations in the UK during the 1990s (Coleman et al., 1997; Meijer et al., 2008). Dimashki et al. 

(2001) noted a 56% decrease in total PAH concentrations at the University of Birmingham campus 

in the period 1992-1997. Harrad and Laurie (2005) reported a further decrease of 31% at the 

University site between the 1997 and 1999-2001. 

The observed decline in PAH concentrations reported in ambient air measurements has been 

shown to correlate with reductions in estimated primary combustion emissions (Brown et al., 2013). 

These historical emission reductions have therefore been attributed to the introduction of the Clean 

Air Acts of 1956 and 1968 as well as the implantation of the Environmental Protection Act in 1990, 

which enforced emission reduction measures (Brown et al., 2013).  

Indeed, as discussed in Section 1.4.4, data from the NAEI indicates that the reductions in PAH 

concentrations observed over the last 20 years can be attributed largely to the almost complete 

reduction of PAH emissions from industrial metal processing and banning the burning of 

agricultural waste (Murrells et al., 2010). Additionally, the decline in PAH concentrations in 

Birmingham specifically have been attributed to the establishment of ‘smokeless zones’ in West 

Midlands area as wells as reduction in use of coal movement towards natural gas heating (Smith 

and Harrison, 1996). More recent decreases in PAH concentrations in the U.K. have been 

associated with the introduction of catalytic converters in 1993 and the associated reduction in 

emissions from on-road vehicles (Smith and Harrison, 1996 ; Dimashki et al., 2001).  

It is suggested, therefore, that the observed changes in concentrations and relative contributions of 

PAHs in the period 2000 to 2012 can be attributed to changes in local emission source profiles.  
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3.4.2. Temporal trend in PAH and OPAH concentrations  

As shown in Figure 1.1, the total emission of PAHs in the UK, as estimated by the NAEI, declined 

<10% between 2000 and 2012. The observed decline in concentrations for most PAH compounds 

at BROS and EROS over this period would therefore seem to be quite large in relation to this 

national trend.  

Figure 3.10 shows NAIE emission estimates for different individual PAHs resulting only from ‘urban 

traffic’, which is expected to be the primary source of PAHs at both sites in this study for most 

compounds. The observed decline in ƩPAH concentration was 28% and 22% for BROS and EROS 

respectively, while the estimated decline in total PAHs emissions from urban traffic over this period 

was 37%. This discrepancy may therefore suggest that PAH concentrations at these sites are 

being influenced by other non-traffic sources, either primary (e.g. other primary combustion 

sources) or secondary (e.g. resuspension or volatilisation from soil, vegetation or road surfaces).  

There is clearly considerable variability in the temporal trends of individual PAH compounds at 

these sites, which requires careful consideration. For many PAHs (e.g. Phe, Ant, BaA, BaP, IPy, 

DBA and BPy), the observed magnitude of atmospheric concentration decline appears to resemble 

the estimated national reduction in urban traffic emissions. This is consistent with traffic being the 

dominant source of most PAHs, OPAHs and NPAHs at both sites, as suggested by the observed 

‘traffic profiles’ (see Section 3.1).  

Exceptions to this include BbF, BkF, Chr which show lower concentration decreases than expected 

from their traffic emission behaviour, and Flo which displays a higher decrease than suggested by 

estimated traffic emissions. This may be due to relative changes in the contribution of non-traffic 

sources e.g. an increase in contribution from coal combustion (Khalili et al., 1995; Ravindra et al., 

2008) or a decrease in surface volatilisation contribution (Dimashki et al., 2001). More significant 

differences from the expected ‘traffic decrease’ were observed for Ace, Ret, Flt and Pyr which may 

reflect a relatively large contribution from non-traffic sources.  
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Figure 3.10. NAEI estimates for PAH emissions from urban road traffic (tonnes) 
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Figure 3.10. NAEI estimates for PAH emissions from urban road traffic (tonnes) 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

Chr
Diesel

Gasoline

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

BbF
Diesel

Gasoline

0.00

0.05

0.10

0.15

0.20

0.25

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

BkF
Diesel

Gasoline

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

BaP
Diesel

Gasoline

0.00

0.05

0.10

0.15

0.20

0.25

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

IPy
Diesel

Gasoline

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

BPy
Diesel

Gasoline

0.000

0.005

0.010

0.015

0.020

0.025

0.030

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

DBA
Diesel

Gasoline



151 
 

Ace and Ret both display substantial increases in annual concentration at both sites, in contrast to 

most other PAHs.  Harrad and Laurie (2005) also noted an increase in Ace concentration between 

1997 and 1999-2001. As noted above, these compounds displayed a deviation away from the 

expected ‘traffic profile’ correlation observed between road tunnel concentrations and [BROS – 

EROS] increment, indicating the possible influence of non-traffic source(s).  

Ret is commonly associated with wood combustion (McDonald et al., 2000; Ramdahl, 1983) and 

shown to display elevated concentrations during ‘bonfire night’ celebrations (Harrad and Laurie, 

2005 ; Mari et al., 2010). The increase in Ret concentrations of 179% and 133% at BROS and 

EROS respectively would appear to be consistent with NAEI emissions data indicating a 123% 

national increase in PAH emissions from domestic wood combustion over this period.  

However, seasonal (Section 3.3) and diurnal (Section 5) profiles of Ret suggest domestic 

combustion may not be the dominant source for this compound. PMF analysis (Section 4.3) 

suggests Ret concentrations are dominated by a non-traffic source attributed to wood combustion 

but it is suggested the specific source is more likely to be the periodic combustion of wood material 

for example in garden bonfires rather than a seasonal domestic source.  

A similar though smaller increase in concentration of Ace also indicates a strong influence from a 

non-traffic source. Furthermore, Flt and Pyr also do not display expected decreases in 

concentrations based on estimated traffic emission reductions, with levels either similar or higher 

than those measured in 1999-2001.  

Inter-correlations of species (Section 3.2) indicate Pyr and Flth are strongly associated at both 

sites and both are correlated with Phe at BROS. These compounds are commonly associated with 

diesel emissions so this may suggest the levels of these compounds at BROS may be influenced 

by a common diesel source. However, Flt and Pyr are not correlated with other PAHs at EROS 

with the exception of Ret. This suggests a common non-traffic source may influence Flt, Pyr and 

Ret at EROS and to a lesser degree at BROS.  
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Indeed, PMF analysis (see Section 4.3) suggests Phe, Flt and Pyr concentrations are strongly 

associated with the same source factor at Ret, suggesting the influence of wood combustion for 

these compounds. This is consistent with the observation that Pyr and Flt display relatively high 

levels in emissions from incineration (Ravindra et al., 2008).The temperature dependence of 

Flt/NOx, Pyr/NOx and Ret/NOx indicates the possible additional  influence of evaporative input of 

Pyr and Flt at BROS and Pyr and Ret at EROS.  

Ace was not strongly associated with Pyr, Flu or Ret at EROS but displays a weak (though 

significant) correlation with Pyr and Flt at BROS. This could indicate that these compounds are 

influenced to a degree by the common traffic source at BROS, but also influenced by separate 

non-traffic sources at both sites. PMF analysis indicted a strong association of Ace with a factor 

attributed mostly to volatilisation from road surfaces. However, this would not account for the 

relatively high increase in concentrations since 1999-2001 or the observed seasonal pattern for 

Ace (see Section 3.3). It is possible therefore that a domestic combustion source may also influce 

Ace concentrations at these sites.  

The observed decrease in concentrations of 9F at BROS and EROS, compared with 

measurements in 1999-2000 is higher than those observed for semi-volatile PAH compounds.  No 

emission estimates are available for OPAH compounds in the NAEI database but 9F has been 

observed in relatively high concentrations in gasoline and diesel exhaust emissions (Jakober et al., 

2007; Oda et al., 1998; Oda et al., 2001; Zielinska et al., 2004b). Inter-correlations of 9F with other 

PAHs at these sites suggest a stronger with gasoline emissions than diesel. Therefore a relative 

decline in concentration similar to other gasoline-related PAH compounds e.g. BPy and IPy would 

appear sensible.  

9F has also been shown to result for atmospheric reactions (Wang et al., 2007b). Therefore, it 

might have been expected that while direct emissions decline, the levels of such compounds may 

be ‘buffered’ to a degree by reactive input, as observed for 2NFlt by Kojima et al. (2010) and Wang 

et al. (2011a) in urban areas where emission control measures were implemented. The relatively 
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substantial decline may indicate, therefore that reactivity (and volatilisation from surfaces) has not 

influenced the temporal trend of this compound.   

 

3.4.3. Temporal trend in NPAH concentrations 

The relative lack of NPAH measurements carried out in the UK prior this study makes an 

assessment of temporal variation difficult. However, NPAH concentrations were previously 

measured in Birmingham city centre in 1995/6 in the period Nov to Feb (Dismashki et al., 2000). 

Table 3.7 provides a comparison between the NPAH concentrations measured in the previous 

study and those measured in the present study at BROS. The mean of winter samples is used and 

BROS chosen for comparison due to its close proximity to relatively high traffic levels.  

The levels of gas-phase NNap compounds in the present study are a factor ~4 and ~2 higher than 

measured by Dimashki et al. (2000) in 1995/6 for 1NNap and 2NNap respectively. In contrast, 

concentrations of compounds associated primarily with particulate matter (e.g. 1NPyr, 9NAnt and 

2NFlt) are 2.5 to 5 times lower at BROS compared with concentrations in the previous study. The 

sampling sites in the present study are ~3km south of the city centre so measurements may not be 

directly comparable so assessment of relative levels needs to be made with caution.  

Indeed, traffic counts adjacent to the city centre sampling site are estimated to be 3-4 times higher 

than at BROS (DfT figures).  Also, the contribution of traffic to the observed PAH levels have been 

estimated to be higher at the city centre (80-82%) compared to the University campus site (61-

67%) (Lim et al., 1999). Therefore, the lower concentrations of particulate-phase NPAH observed 

in this study may not be entirely associated with reduction in NPAH concentrations over time.    
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Table 3.7. Mean total (particulate + vapour) NPAH concentrations (pg m3) measured by 

Dimashki et al. (2000) at Birmingham city centre in Nov 1995-Feb 1996 and in the present 

study during winter at BROS in 2011-2012.  

NPAH Compound Birmingham City Centre, 

winter 1996 (pg m3) 

BROS,  

winter 2012 (pg m3) 

1-NNap 90 338 

2-NNap 70 130 

9-NAnt 190 40 

1-NPyr 90 28 

2-NFlth 220 54 

7-NBaA 30 12 

 

 

These results are difficult to interpret definitively. It is unclear why gas-phase NNap compounds 

display higher concentrations in the present study compared to the previous study. If the relative 

increase in diesel emissions over this time had dictated observed NPAH concentrations, a 

corresponding increase should be noted for 1NPyr and 9NAnt. Conversely, if the campus site(s) 

experienced higher input from photochemical reactivity, this should also be observed for 2NFlt. The 

lower levels of particulate-phase NPAHs may partly indicate a temporal decline in concentrations 

but this may also simply reflect differences in emission strength at two different sites. It is not 

possible to conclude the level of temporal change for NPAH at these sites relative to the trend for 

PAH. 
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Chapter 4 : Gas-particle partitioning, chemical reactivity 

and source apportionment of PAHs, OPAHs and 

NPAHs, and the influence of sampling artefacts  

 

4.1. Gas-particle partitioning of PAHs, OPAHs and NPAHs  

4.1.1. Phase partitioning overview  

The distinction between the gas-phase and particulate-phase fraction was taken be the proportion 

present in the PUF material and filter respectively. The mean percentages of PAH, OPAH and 

NPAH compounds in the gas- and particulate-phases in the samples from Campaign 1 are 

presented in Figure 4.1. It is expected that sampling artefact has not influenced gas-particle 

partitioning to a significant degree in this study (see Section 4.4).  

4.1.1.1. Phase partitioning of PAHs 

The PAH phase distribution observed in the present study is generally consistent with previous 

sampling studies from the urban locations such as Tokyo, Japan (Yamasaki et al., 1982), London, 

U.K. (Baek et al., 1991) and Chicago, USA (Simcik et al., 1998). LMW PAHs (MW<228) are shown 

to be present predominantly in the gas-phase while HMW PAHs (MW>228) are mainly associated 

with the particulate-phase. This partitioning behaviour is also similar to measurements previously 

reported at the Birmingham University site in 1999-2001 (Laurie, 2003) and by Harrison and co 

workers in 1992.  

There is only a very modest difference in average gas-particle profiles for most compounds 

between BROS and EROS locations, suggesting a limited degree of partitioning is occurring 

between the ‘polluted’ site and the ‘background’ site. This is also consistent with previous work at 

these sampling sites (Laurie, 2003).  
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A  

B  

Figure 4.1. Mean percentage of PAH, OPAH and NPAH compounds in the particulate (black) 

and gas (grey) phases at BROS (A) and EROS (B). Compounds are presented with 

increasing molecular weight from left to right.  

 

4.1.1.2. Phase partitioning of OPAHs and NPAHs  

There have been relatively few studies measuring OPAH and NPAH compounds in both 

particulate- and gas-phases (Alam et al., 2013; 2014; Albinet et al., 2008a; Bamford and Baker, 

2003; Delgado-Saborit et al., 2013). The partitioning profiles of OPAH and NPAH compounds in 
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the present study are broadly similar with that observed by Albinet et al. (2008a), Bamford and 

Baker (2003), Huang et al. (2014) and  Delgado-Saborit et al. (2013). As with unsubstituted PAHs, 

more volatile compounds (MW < 207) are predominantly present in the gas-phase while HMW 

compounds (MW > 247) are mainly associated with the particle-phase.  

Previously, Dimashki et al. (2000) measured NPAH concentrations in central Birmingham during 

winter. NNap isomers were shown to exist almost entirely in the gas-phase while HMW compounds 

2NFlt, 1NPyr and 7NBaA were shown to be almost entirely in the particulate phase. The more 

semi-volatile 9NAnt was shown to exhibit a particle-phase contribution of ~77%. This NPAH phase 

distribution is very similar to that observed in the winter samples of the present study.  

The phase-partitioning behaviour of individual PAH, OPAH and NPAH compounds, particularly 

those of intermediate size (234>MW>207) is highly dependent on the specific sampling location, 

ambient conditions, and the sampling method used (Baek et al., 1991; Yamasaki et al., 1982 ; 

Delgado-Saborit et al., 2013), and can display significant seasonal differences (see below).  

It is clear from Figure 3.10 that while molecular weight is a good predictor of PAH gas-particle 

partitioning, intermediate MW PAH, OPAH and NPAH compounds display very different partitioning 

behaviour, suggesting other/additional factors play an important role.  For example, the particle-

phase fraction of Ret, AQ, 2NFlo and 9NAnt are shown to display very different values despite 

relatively small differences in MW between these compounds.  

 

4.1.2. Physiochemical properties influencing partitioning  

The percentage proportion of PAH, OPAH and NPAH compounds in atmospheric measurements 

(%P) have previously been plotted with respect to their respective molecular weights by Albinet et 

al. (2008a), who observed a distinct pattern for the distribution of these compound classes for 

winter and summer sampling.   
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Delgado-Saborit et al. (2013) have also characterised PAH and OPAH phase partitioning based on 

molecular weight (MW) as well as other physiochemical properties including  vapour pressure, VP 

(to represent compound volatility); octanol-water partitioning coefficient,  Log Kow (to represent 

compound polarity); and Henry’s Law Constant, H (to represent a compound’s tendency to partition 

to the aqueous phase).  

This approach was applied to the sampling data from Campaign 1 of the present study, in order to 

compare observations with those of previous studies and extend the approach of Delgado-Saborit 

et al. (2013) to include NPAH compounds Plots of percentage particulate-phase contribution 

against MW, VP, logKow and H are shown in Figure 4.2, 4.3, 4.4 and 4.5 respectively, with different 

plots shown for each individual compound class. These include distributions for the mean %P 

value for all samples in the campaign as well as those for averages of winter and summer samples. 

Details of the sources for physiochemical metrics used in these plots can be found in Table 4.1.  

Experimental data were not available for all compounds and it should be noted than due to 

relatively few OPAH compounds measured in the study, curves could not be adequately fitted for 

certain parameters (e.g. log Kow and H) and plots for OPAH should interpreted with caution. 

Delgado-Saborit et al. (2013) provide plots using a more expansive range of measured OPAH 

compounds and a more detailed discussion of partitioning behaviour.  

Delgado-Saborit et al. (2013) demonstrated that a sigmodial logistic curve using 4 parameters (Eq 

4.1) provides a good fit for the plots of %P vs MW, %P vs VP and %P vs logKow and an 

exponential curve fitted for %P vs H for PAHs and OPAHs in samples collected at these sites.  

	           (4.1) 

This approach was used in the present study to provide comparable results to those of the 

Delgado-Saborit et al. (2013) study as to assess the suitability of this approach for NPAH 

compounds.  
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Table 4.1. Physiochemical properties (at 25 oC unless stated) of the PAH, OPAH and NPAH 

compounds in the present study,  molecular weight (MW) ; vapour pressure (VP) ; vapour 

pressure of the subcooled liquid, (P°L), solubility in water (S), octanol-water partition 

coefficient (KOW), octanol-air partition coefficient (KOA), Henry’s Law coefficient (H).  

a Finlayson-Pitts and Pitts, 2000 unless stated. ; b Estimated values (EPIWIN; USEPA) ; c Ma et al., 2010; d Walgeave et al., 2010 ;  

e WHO, 2000;  na= not available  

PAH MW 
(g mol-1) 

VPa 

(Pa) 
P°L 

(Pa)b 
S (mg/L)a Log 

KOW
c 

Log 
KOA

c 
H 

(Pa m3 mol-1)a 
Acy 152.2 9 x 10-1 4.2 16.1 3.9 6.5 8.4 
Ace 154.2 3 x 10-1 1.4 3.8 4 6.4 12.2 
Flo 166.2 9 x 10-2 6 x 10-1 1.9 4.1 6.9 7.9 
Phe 178.2 2 x 10-2 9 x 10-2 1.1 4.5 7.6 3.2 
Ant 178.2 1 x 10-3 7 x 10-2 5 x 10-2 4.6 7.7 4 
Pyr 202.3 6 x 10-4 1 x 10-2 1 x 10-1 5 8.9 0.9 
Flt 202.3 1 x 10-3 8 x 10-3 3 x 10-1 5 8.8 1 
Chr 228.3 6 x 10-7 2 x 10-4 2 x 10-3 5.7 10.3 0.01 
BaA 228.3 3 x 10-5 1 x 10-4 1 x 10-2 5.8 10.3 0.6 
Ret 234.3 na na na  na na   na 
BbF 252.3 5 x 10-8 2 x 10-4 1.5 x 10-3 5.9 11.3  na 
BkF 252.3 5 x 10-8 1 x 10-5 8 x 10-4 5.9 11.4 0.02 
BeP 252.3 7 x 10-7 2 x 10-5 4 x 10-3 6.4 11.1a 0.02 
BaP 252.3 7 x 10-7 4 x 10-3 4 x 10-3 6.1 11.5 0.05 
DBA 278.4 4 x 10-10 3 x 10-5 6 x 10-4 6.8b 11.2b 0.0002 
Bpy 276.3 7 x 10-8 8 x 10-6 3 x 10-4 6.6 12.6 0.075 
IPy 276.3 1 x 10-8 9 x 10-4  6.6 12.4  na 
Cor 300.4 2 x 10-10 5 x 10-6 1 x 10-4 6.5b 12.7b na  

OPAH MW 
(g mol-1) 

VP (Pa)d P°L  
(Pa)b 

S (mg/L)d Log 
KOW

d 
  Log 
  KOA 

H 
(Pa m3 mol-1)d 

9F 180.2 8 x 10-3 3 x 10-2 25 3.6 na 7 x 10-2 
AQ 208.2 2 x 10-5 6 x 10-3 1 3.4 na 2 x 10-3

MAQ 222.2 10 x 10-5 4 x 10-3 0.7 3.8 na 3 x 10-2

BaAQ 258.3 5 x 10-6 2 x 10-4 0.3 4.4 na 3 x 10-5

  NPAH MW 
(g mol-1) 

VP (Pa)e P°L 
(Pa)b 

S (mg/L)e Log 
KOW

e 
   Log 
   KOA 

H 
(Pa m3 mol-1)e 

1NNap 173.2 3 x 10-2 2 x 10-7 34   3.2 na 6 x 10-1 
2NNap 173.2 3 x 10-2 3 x 10-7 26  3.2 na 6 x 10-1 
2NFlo 211.2 10 x 10-5 3 x 10-8 2  4.1 na 9.5 x 10-2 
9NAnt 223.2 na 1 x 10-9 na 4.2 na  na 
1NFlt 247.3 na 5 x 10-11 na 4.7 na  na 
2NFlt 247.3 10 x10-7 5 x 10-11 2 x 10-3 na na 1 x 10-2 
3NFlt 247.3 na 5 x 10-11 na 5.2 na na 
4NPyr 247.3 4 x 10-6 5 x 10-11 2 x 10-3 na na 6 x 10-2 
1NPyr 247.3 4 x 10-6 5 x 10-11 2 x 10-3 4.7 na 6 x 10-2 
2NPyr 247.3 4 x 10-6 5 x 10-11 2 x 10-3 na na 6 x 10-2 
7NBaA 273.3 na 7 x 10-12 na 5.3 na na 
6NChr 273.3 na 7 x 10-12 na 5.4 na na 



160 
 

MW
140 160 180 200 220 240 260 280 300 320

%
 p

a
rt
ic

ul
a
te

-p
ha

se

0

20

40

60

80

100

 

MW
140 160 180 200 220 240 260 280 300 320

%
 p

a
rt
ic

ul
a
te

-p
ha

se

0

20

40

60

80

100

 

Figure 4.2a. Plots of %P vs MW for PAH at A) BROS and B) EROS for annual mean (black 

circles, solid black line) ; winter (white circles, dashed line) ; and summer (black triangle, 

dotted line). Data are fitted with a sigmoidal curve with 4 parameters (see Eq 4.1).  
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Figure 4.2b. Plots of %P vs MW for OPAH at A) BROS and B) EROS for annual mean (black 

circles, solid black line) ; winter (white circles, dashed line) ; and summer (black triangle, 

dotted line). Data are fitted with a sigmoidal curve with 4 parameters (see Eq 4.1). 
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Figure 4.2c. Plots of %P vs MW for NPAH at A) BROS and B) EROS for annual mean (black 

circles, solid black line) ; winter (white circles, dashed line) ; and summer (black triangle, 

dotted line). Data are fitted with a sigmoidal curve with 4 parameters (see Eq 4.1). 
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Figure 4.3a. Plots of %P vs VP for PAH at A) BROS and B) EROS for annual mean (black 

circles, solid black line) ; winter (white circles, dashed line) ; and summer (black triangle, 

dotted line). Data are fitted with a sigmoidal curve with 4 parameters (see Eq 4.1). 
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Figure 4.3b. Plots of %P vs VP for OPAH at (A) BROS and (B) EROS for annual mean (black 

circles, solid black line) ; winter (white circles, dashed line) ; and summer (black triangle, 

dotted line). Data are fitted with a sigmoidal curve with 4 parameters (see Eq 4.1). 
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Figure 4.3c. Plots of %P vs VP for NPAH at (A) BROS and (B) EROS for annual mean (black 

circles, solid black line) ; winter (white circles, dashed line) ; and summer (black triangle, 

dotted line). Data are fitted with a sigmoidal curve with 4 parameters (see Eq 4.1). 
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Figure 4.4a. Plots of %P vs log Kow for PAH at (A) BROS and (B) EROS for annual mean 

(black circles, solid black line) ; winter (white circles, dashed line) ; and summer (black 

triangle, dotted line). Data are fitted with a sigmoidal curve with 4 parameters (see Eq 4.1). 
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Figure 4.4b. Plots of %P vs log Kow for PAH at (A) BROS and (B) EROS for annual mean 

(black circles, solid black line) ; winter (white circles, dashed line) ; and summer (black 

triangle, dotted line). Data are fitted with a sigmoidal curve with 4 parameters (see Eq 4.1). 
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Figure 4.5a. Plots of %P vs H for PAH at A) BROS and B) EROS for annual mean (black 

circles, solid black line) ; winter (white circles, dashed line) ; and summer (black triangle, 

dotted line). Data are fitted with a sigmoidal curve with 4 parameters (see Eq 4.1). 
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Figure 4.5b. Plots of %P vs H for NPAH at A) BROS and B) EROS for annual mean (black 

circles, solid black line) ; winter (white circles, dashed line) ; and summer (black triangle, 

dotted line). Data are fitted with a sigmoidal curve with 4 parameters (see Eq 4.1). 
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It is shown in Figures 4.2. 4.3, 4.4 and 4.5 that the slopes of these plots are broadly similar 

between BROS and EROS, suggesting very similar partitioning behaviour for these compound 

classes at the two sites.  

Plots of %P vs MW display similar curves to those observed by Albinet et al. (2008a). Interestingly, 

Delgado-Saborit et al. (2013) observed a shallower slope for OPAH compared with PAH, in 

contrast to the work present here and by Albinet et al. (2008a). It should be noted, however that 

relatively fewer data were used in the plots in the present study compared with the Delgado-

Saborit et al. (2013) study.  

The seasonality of partitioning for semi-volatile (240>MW>200) compounds is apparent from these 

plots. As with the plots of %P vs MW produced by Albinet et al. (2008a), a notable shift in curve 

position is observed for PAH, OPAH and NPAH. As reported by Albinet et al. (2008) a relatively 

large seasonal shift in proportion of compounds present in the particulate phase is observed for 

OPAH and NPAH compared with PAH. However it is noted that HMW PAH compounds display 

relatively higher seasonal change compared with LMW species.   

PAHs, OPAH and NPAHs display broadly similar %P vs VP curves, which is expected due to 

similar relationships between MW and VP for these compound classes (see Table 3.9). Plots 

of %P vs Log Kow for PAH are generally in agreement with that reported by Delgado-Saborit et al. 

(2013) with a similar although slightly steeper curve than that observed for the %P vs MW plot. The 

plot for NPAH compounds displays a similar pattern to this. The plots of %P vs H for PAH are fitted 

by an exponential curve, in agreement with Delgado-Saborit et al. (2013) with NPAH compounds 

displaying a similar pattern.  

It is perhaps surprising that different physiochemical properties display similar curves defining the 

partitioning behaviour of PAHs, OPAHs and NPAHs. The similar influence of these different 

physiochemical variables for both PAH and OPAH compounds was observed previously (Delgado-

Saborit et al.,2013). It is shown that good correlations exist between these different properties for 

both PAH and OPAH compounds, which may explain why similar curves are observed between 
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%P and these different properties Delgado-Saborit et al. (2013). Correlations are also noted for the 

NPAHs included in the present study, however it should be noted that relatively few experimental 

data are available for NPAH compounds.  

OPAH and NPAH display lower log Kow and H values than unsubstituted PAH. This would indicate 

these compounds will exhibit a higher affinity towards aqueous atmospheric droplets or water on or 

within atmospheric particles. This is expected due to the higher polarity of these –NO2 or =O 

containing compounds Delgado-Saborit et al. (2013). This behaviour may partly explain the 

differences in partitioning behaviour for OPAH and NPAH compounds compared with PAHs of 

similar MW.  

More work is clearly required to investigate differences in phase-partitioning of PAHs and their 

OPAH and NPAH derivatives. A further property that could be investigated as a predictor for 

partitioning behaviour is the octanol-air partitioning coefficient (Koa) (Harner and Bidleman, 1998; 

Huang et al., 2014). For example, investigating the partitioning behaviour of PAHs with respect to 

Koa would allow researchers to asses the impotance of absorption into the organic fraction of 

atmospheric PM on this process. However, limited experimental data are available on Koa values 

for OPAH and NPAH compounds.  

4.1.3. Seasonality in partitioning behaviour 

Despite a considerable number of studies measuring both particle- and gas-phases of PAHs and 

(to a lesser extent) OPAHs and NPAHs, relatively little discussion in the literature exists regarding 

the seasonal variation in partitioning behaviour of these compounds (Yamaski et al., 1982 ; Baek et 

al., 1991 ; Smith and Harrison, 1996 ; Albinet et al., 2008a). As demonstrated in Figure 3.10, the 

PAH, OPAH and NPAH compounds measured in the present study display seasonally-dependent 

behaviour, likely to be driven by temperature differences between warmer summer and colder 

winter months .  

Clearly, the proportion of compounds present in the particulate phase is reduced in summer 

relative to winter, in agreement previous sampling studies in urban or trafficked sites for PAHs 
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(Baek et al.,1991 ; Yamasaki et al., 1982), NPAHs and OPAHs (Bamford and Baker, 2003; Albinet 

et al., 2008a). However Smith and Harrison (1996) reported a higher proportion of 3-4 ring PAH in 

the particulate-phase during summer in Birmingham in contrast to the present study. This would 

suggest a temperature-driven partitioning of species is occurring, with low temperatures in winter 

facilitating more pronounced association with particulate matter in winter and higher temperatures 

resulting in more enhanced partitioning to the gas-phase in summer. However, it should be noted 

that, similar to the observation of Albinet et al. (2008a), no correlation was found between the 

percentage of compound in the particulate phase and ambient temperature in the present study. 

The TSP concentration was also shown to be higher in winter samples compared with summer 

samples in the present study. The mean TSP concentration in only winter and summer samples 

were ~32 μg m-3 and ~17 μg m-3 respectively at BROS and ~24μg m-3 and ~13 μg m-3 respectively 

at EROS. A higher concentration of TSP in winter relative to summer could therefore be an 

important driver to higher particle-phase fraction of PAHs and derivatives in these samples.  

The observed seahesonality of %P for intermediate MW compounds is much less pronounced than 

has been reported in previous studies. For example, Albinet et al. (2008a) reported a much greater 

winter/summer differential in the partitioning behaviour for intermediate molecular weight NPAH 

compounds such a 2NFlo and 9Ant and OPAH compounds such as 9F and AQ in a trafficked site 

in a French Alpine valley. A similar observation was reported by Bamford and Baker (2003) for Flt, 

Pyr, 2NFlo and 9NAnt in Baltimore, USA.  

As mentioned above, the difference in average seasonal temperature could partly explain this 

discrepancy. For example, the mean ambient temperature measured for the winter and summer 

samples in the present study were 6oC and 15oC respectively. In the study by Albinet et al. (2008) 

the mean winter and summer temperatures were -3oC and 17oC respectively. The relatively cold 

winter temperatures in the previous study could facilitate a higher association with the particulate 

phase.  
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4.1.4. Phase partitioning equilibrium behaviour 

For all compounds measured in each individual sample in Campaign 1, Kp values were calculated 

according to (Equation 1, Section 1). The values of Kp are shown to be a function of the 

compound’s subcooled liquid vapour pressure (PL
o) (Pankow, 1987; Pankow and Bidleman, 1992), 

as described by the formula: 

log Kp = m log PL
o + b         (4.2) 

    

Plots of log Kp vs log PL
o were produced, where slope gradient = m and intercept = b. Separate 

plots were made for the PAH, NPAH and OPAH species in each sample. Summaries of the results 

of these plots are shown in Table 4.2 and an example plot of these data is shown in Figure 4.6. PL
o 

values were obtained from (Finlayson-Pitts and Pitts, 2000). Experimental data were only available 

for PAH compounds. For NPAH and OPAH compounds, experimental values of PL
o values were 

not available and were derived from estimates using the USEPA EPISUITE MPBPWIN v1.42 

model.   

When phase-partitioning equilibrium prevails, it is expected that the value of m will approach -1 

(Pankow and Bidleman, 1992) assuming a) partitioning behaviour is governed by adsorption 

processes; b) the difference between the enthalpies of desorption and volatilisation and the 

number of available adsorption sites remain constant over a compound class; c) activity 

coefficients remain constant over a compound class (Simick et al., 1998 and references therein).  
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Table 4.2. Slope (m), intercept (b) and correlation coefficient (R2) values for the  log Kp vs log PL
o plots produced for PAH, OPAH and 

NPAH sampling data 

 PAH NPAH OPAH 
BROS EROS BROS EROS BROS EROS 

 R2 m b R2 m b R2 m b R2 m b R2 m b R2 m b 
A1 0.75 -0.45 -2.79 0.76 -1.59 -4.70 0.61 -0.60 -6.55 0.76 -0.66 -6.78 0.73 -0.62 -2.41 0.94 -1.01 -3.22 
A2 0.74 -0.54 -2.90 0.77 -0.56 -2.84 0.81 -0.98 -9.55 0.82 -0.79 -8.07 0.66 -0.78 -3.14 0.79 -0.87 -3.36 
A3 0.79 -0.61 -3.10 0.80 -1.36 -4.57 0.85 -0.74 -7.80 0.83 -0.74 -7.59 0.76 -0.89 -3.42 0.76 -1.11 -3.79 
A4 0.62 -0.51 -2.94 0.68 -1.12 -4.33 0.85 -0.75 -7.78 0.59 -0.71 -7.27 0.50 -0.78 -3.22 0.71 -1.13 -4.02 
W1 0.75 -0.67 -3.48 0.68 -1.01 -4.38 0.80 -0.73 -7.76 0.83 -0.98 -9.69 0.81 -1.09 -3.56 0.97 -1.02 -3.44 
W2 0.73 -0.69 -3.64 0.72 -0.98 -4.08 0.71 -1.01 -9.86 0.80 -1.10 -10.3 0.82 -1.11 -3.95 0.56 -0.83 -3.37 
W3 0.75 -0.68 -2.99 0.61 -1.01 -3.87 0.79 -0.75 -7.38 0.83 -0.77 -7.36 0.78 -1.11 -3.46 0.81 -0.91 -2.74 
W4 0.76 -0.53 -3.13 0.73 -1.29 -4.72 0.84 -0.84 -8.38 0.72 -0.78 -7.77 0.60 -0.98 -3.35 0.75 -0.84 -8.38 
W5 0.67 -0.84 -3.30 0.68 -0.75 -3.61 0.86 -0.96 -9.33 0.80 -0.80 -7.87 0.59 -1.09 -3.54 0.75 -1.28 -3.54 
W6 0.67 -0.71 -2.97 0.71 -0.94 -3.67 0.83 -0.81 -7.98 0.83 -0.82 -7.64 0.64 -1.16 -3.67 0.96 -2.53 -6.10 
W7 0.69 -0.89 -3.14 0.65 -0.98 -3.93 0.83 -0.79 -7.88 0.87 -0.87 -8.26 0.36 -0.67 0.41 0.41 -1.00 -0.40 
Sp1 0.81 -0.53 -3.22 0.74 -1.04 -4.32 0.76 -0.66 -7.17 0.42 -0.49 -5.64 0.92 -1.15 -4.23 0.99 -0.85 -3.28 
Sp2 0.84 -0.55 -3.41 0.78 -1.13 -4.57 0.78 -0.78 -8.30 0.71 -0.96 -9.74 0.66 -0.95 -3.78 0.73 -1.10 -4.16 
Sp3 0.65 -0.48 -3.14 0.75 -1.09 -4.23 0.84 -0.72 -7.74 0.72 -0.73 -7.82 0.30 -0.55 -2.78 0.37 -0.69 -2.94 
Sp4 0.72 -0.72 -3.49 0.74 -1.07 -3.77 0.84 -0.76 -8.25 0.82 -0.88 -8.51 0.97 -1.60 -4.63 0.82 -1.20 -3.54 
Sp5 0.55 -0.53 -0.30 0.61 -0.99 -3.94 0.74 -0.64 -0.74 0.71 -0.62 -6.66 0.98 -1.21 -3.79 0.98 -1.32 -4.15 
Sp6 0.13 -0.31 -1.98 0.62 -1.04 -4.01 0.81 -0.65 -6.75 0.86 -0.74 -7.56 0.83 -1.17 -3.77 0.92 -1.60 -4.56 
Sp7 0.48 -0.57 -2.90 0.54 -1.06 -4.31 0.69 -0.66 -7.05 0.68 -0.65 -7.13 0.70 -0.86 -3.16 0.68 -1.12 -3.60 
Su1 0.62 -0.62 -3.66 0.73 -1.36 -3.96 0.89 -0.77 -8.31 0.86 -0.66 -8.31 0.84 -1.23 -4.75 0.85 -1.14 -3.77 
Su2 0.53 -0.50 -0.31 0.57 -1.53 -5.10 0.76 -0.60 -6.65 0.80 -0.55 -6.39 0.67 -1.02 -3.66 0.73 -1.23 -4.28 
Su3 0.70 -0.46 -2.53 0.66 -1.42 -4.87 0.80 -0.80 -8.07 0.27 -0.26 -4.15 0.96 -1.43 -4.12 1.00 -1.99 -5.55 
Su4 0.73 -0.48 -3.01 0.79 -1.29 -4.58 0.81 -0.60 -6.58 0.78 -0.52 -6.24 0.71 -0.90 -3.53 0.81 -1.17 -4.28 
Su5 0.56 -0.49 -3.19 0.80 -1.13 -4.21 0.87 -0.70 8.10 0.70 -0.68 -7.99 0.75 -1.23 -5.00 0.94 -1.71 -5.81 
Su6 0.75 -0.45 -2.79 0.80 -1.13 -4.21 0.74 -0.58 -6.28 0.74 -0.48 -5.58 0.75 -0.84 -3.37 0.73 -1.25 -4.28 

Mean 0.67 -0.58 -2.85 0.70 -1.12 -4.20 0.80 -0.75 -6.84 0.74 -0.72 -7.51 0.72 -1.02 -3.49 0.79 -1.20 -4.02 
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a  

b  

c  

Figure 4.6. Plots of log Kp (m
3 ng-1, x axis) vs log PL

o (Pa, y axis) for PAHs (a), NPAHs (b) and 

OPAHs (c) in Campaign 1 sample W2 (10/2/12).  
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For PAHs , strong correlations are noted for most samples. In all samples the slope of these plots 

were steeper for EROS samples than the corresponding sample at BROS with m values 

approaching or exceeding -1, despite the relatively minor overall partitioning pattern observed 

between the two sites indicated in Figure 4.6.  

This can be attributed to the closer proximity of BROS to freshly emitted PAHs from road traffic and 

suggests the PAHs measured at this site have not reached partitioning equilibrium. Samples at 

EROS are expected to have had a longer exposure time and display partitioning values that are 

much closer to equilibrium due to a temperature-driven partitioning from the particle-phase to the 

gas-phase.  

The difference in gradient of these plots is notably higher for summer samples relative to winter 

samples, which may be due to higher ambient temperature during summer leading to a relatively 

larger degree of PAH phase partitioning occurring between sites.  

A similar observation was made by Cotham and Bidleman (1995) where PAH concentrations were 

measured at the urban location Chicago and rural location Green Bay, USA. The authors reported 

relatively shallow log Kp vs log PL
o slopes at the Chicago location with steep slopes, approaching -

1, at Green Bay. It was suggested this could be attributed to PAHs moving further towards 

equilibrium with increasing distance (and hence increasing aerosol ageing) from source region to 

remote region.  

In contrast, Simick et al. (1998) did not observe notable changes in slope values for PAHs between 

the urban Chicago area and the adjacent coastal area  The authors therefore suggested the 

necessity of the slope approaching a value of -1 to describe equilibrium conditions does not always 

hold true in all environments.  

As noted in Keyte et al., 2013 interpreting variation in m and b values from these plots is complex 

and can be influenced by myriad factors such as : 

 Changes in temperature or compound concentrations during sampling 
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 Differences and variation in sorption kinetics between gas and solid surfaces, mediated by 

a number of factors e.g. adsorption to OM, enthalpy of desorption and volatilization  

 Kinetic constraints (e.g. introduction of fresh particles) or presence of non-exchangeable 

compounds on or within the particle matrix.  

 The occurrence of sampling artefacts (see Section 4.4).  

Therefore results need to be interpreted with caution as many of these factors are extremely 

difficult to fully characterize or quantify. The concentration of PAH, OPAH and NPAH are shown to 

vary during the 24hr sampling period due to the diurnal traffic pattern (see Section 4) and 

temperatures during sampling typically changed by up to 10oC during summer with lower (~4oC) 

changes observed in winter. However, it is unclear how these factors influence partitioning 

behaviour.  

Slope and intercept values for OPAH and NPAH are shown to be more variable between different 

samples, with more modest differences observed between the two sampling sites. There are a 

number of possible explanations for the similar slopes of NPAH and OPAH plots : i) the OPAH and 

NPAH derivatives are approaching equilibrium relatively rapidly upon emission ; ii) the OPAH and 

NPAH derivatives are approaching equilibrium relatively slowly upon emission; iii) OPAH and 

NPAH equilibrium behaviour is not well defined by the slope of the log Kp vs log PL
o plot and/or the 

data is not complete enough to produce appropriate plots; iv) the partitioning of OPAHs and 

NPAHs is governed by different mechanisms and/or influencing factors (see above) .  

This approach has not been applied to OPAH or NPAH compounds previously.  Albinet et al. 

(2008a) measured OPAH and NPAH concentrations in the particulate- and gas-phases in 

trafficked, suburban and rural locations. Using the data reported from this previous study, log Kp vs 

log PL
o plots for NPAH compounds were derived for the traffic, suburban and rural sites. The slopes 

from all three location types were approximately -1. This suggests the equilibrium conditions for 

NPAHs are not greatly influenced by proximity to local sources, in agreement with observations in 

the present study.  
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However, the relatively small number of OPAH and NPAH compounds used to produce the plots in 

Figure 4.6 compared with PAHs, as well as the lack of experimentally derived PL
o values for these 

compounds, mean the plots should be viewed with caution and it is not possible to gain definitive 

insight into the main factors driving the partitioning behaviour of these compounds from this 

investigation.  

 

 
4.2. Assessing the importance of PAH reactivity in the urban atmosphere  

4.2.1. PAH degradation rates  

Atmospheric reactivity, predominantly due to daytime reaction with OH or O3 can results in 

atmospheric lifetimes for LWM PAHs of the order of hours (Atkinson and Arey, 1994; 2007; Keyte 

et al., 2013). Therefore, the effect of reactive losses on the relative PAH concentrations between 

BROS and EROS may be observed during 24hr sampling. The ratio between observed BROS and 

EROS concentrations can therefore be interpreted in terms of differences in the relative chemical 

reactivity of individual PAHs.  

Alam et al. (2013) previously noted the good agreement between observed BROS/EROS 

concentration ratios of LWM PAHs and their respective reaction rate coefficient with respect to OH 

in the gas phase. The relationship between annual mean BROS/EROS ratio (particle- + vapour-

phases) and experimentally derived reaction rate coefficient with respect to OH is shown in Figure 

4.7. Ace was not included because, as discussed in Section 3.1, this compound did not appear to 

display the same traffic-related profile at these sites in contrast to the other LWM PAH compounds.  

The order or observed BROS/EROS ratios, Acy >  Ant > Pyr > Flth > Phe > Flo  is broadly 

reflected in the gas-phase reactivity rates towards OH. This is in agreement with the observations 

of Alam et al. (2013) where samples were only taken during winter months. It is notable that the 

BROS/EROS ratio for Ant is lower than might be expected based on its relatively high OH 

reactivity, possibly indicating the presence of an additional source of Ant at EROS.  



179 
 

 

Figure 4.7. Relationship between the observed annual mean BROS/EROS concentration 

ratio for LMW PAHs and the corresponding OH reaction rate coefficient as derived by 

Reisen and Arey (2002) ; Brubaker and Hites (1998) ; Atkinson et al. (1990) 

 

In contrast to the relationship with OH reaction rate coefficient, no relationship between 

BROS/EROS ratio and rate coefficients for gas-phase reaction with NO3 was observed. This 

indicates that NO3 reactivity has a minimal impact on PAH loss and the inter-site variability of LMW 

PAHs is driven mainly by gas-phase reactions with OH, as previously indicated in urban and traffic 

locations (Wang et al., 2011 ; Mario et al., 2000 ; Feilberg et al., 2001).  

 

4.2.2. 2NFlt / 1NPyr ratios 

As discussed in Section 1.3.3.3, the concentration ratio of 2NFlt to 1NPyr in ambient samples is 

commonly used to assess the relative importance of primary combustion emissions and secondary 

input from photochemical (OH and NO3) reactions, with 1NPyr representing a marker for the former 

and 2NFlt a marker for the latter (Bamford and Baker, 2003; Ciccioli et al., 1989; 1996; Feilberg et 

al., 2001; Marino et al., 2000; Wang et al., 2011a).  
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It is suggested that, assuming comparable emission rates and atmospheric concentrations of Flt 

and Pyr and comparable dispersion and photolytic loss rates of 2NFlt and 1NPyr, a 2NFlt/1NPyr 

ratio of >5 indicates the dominance of atmospheric reactions while a ratio of <5 indicates the 

dominance of direct combustion emissions (Albinet et al., 2008a; Ciccioli et al., 1996). 

These ratios were highly variable between sampling days at both the BROS and EROS locations, 

ranging from 0.7 to ~13 over the full sampling period. The annual mean 2NF/1NP ratio at BROS 

and EROS measured during Campaign 1 was 2.1 and 4.6 respectively. A comparison between 

2NFlt/2NPyr ratios observed in this study and other sampling studies in different locations is 

provided in Table 4.3.  

2NFlt /1NPyr values of >5 is more commonly observed (Bamford and Baker, 2003; Ciccioli et al., 

1996; Reisen et al., 2003; Wang et al., 2011a), indicative of atmospheric formation dominating in 

these environments.  Lower (<5) ratios, are commonly observed in  heavily trafficked areas 

(Dimashki et al., 2000; Feilberg et al., 2001; Hien et al., 2007) and large urban centres (Bamford 

and Baker, 2003; Murahashi and Hayakawa, 1997; Reisen and Arey, 2005).  

Observations in the present study are therefore broadly consistent with previous observations in 

trafficked and urban locations. The relatively low ratios, particularly at BROS are likely to have 

resulted by virtue of the close proximity to a traffic source, which contributes a fresh source of 

1NPyr throughout the year.  

2NFlt /1NPyr ratios are generally higher at suburban sites relative to their proximate urban site 

(Bamford and Baker, 2003; Feilberg et al., 2001; Marino et al., 2000). In this study, ratios are 

consistently higher at EROS than at BROS. A paired t-test revealed the difference in ratios 

between the two sites was statistically significant (p<0.01). This could be attributed to a longer 

exposure time of the air mass to photochemical oxidants (OH and/or NO3) at EROS relative to 

BROS (Ciccioli et al., 1996). 
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Table 4.3. Summary of 2NFlt/1NPyr ratios from ambient measurements (Keyte et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3. 2NFlt/2NPyr ratios  

Laboratory studies indicate that 2N-Flt are formed via both OH and NO3 initiated reactions (Arey et 

al., 1986; Atkinson et al., 1990a), while 2N-Pyr is formed from OH-initiated reactions only (Atkinson 

et al., 1990a; Zielinska et al., 1986). The ratio between these two isomers can therefore be used as 

 
 

Details 2NFlt/1NPyr 
 

Reference 
 

Birmingham, UK Traffic site (BROS) 2.1 This study 
Birmingham, UK Background site (EROS) 4.6 This study 

Marseilles area, France Urban and suburban  <5 Albinet et al.(2007a) 
Marseilles area, France Rural  >10 Albinet et al. (2007a) 
Alpine Valley locations, 

South France  
Mean summer value 

(one location) 
>20 Albinet et al.(2008a) 

Alpine Valley locations, 
South France  

Mean winter value (all 
locations) 

<10 Albinet et al. (2008a) 

Baltimore, USA Urban, winter  1 – 3 Bamford and Baker (2003) 
Baltimore, USA Urban, summer 6 – 24 Bamford and Baker (2003) 
Baltimore, USA Suburban 1 – 10 Bamford and Baker (2003) 
Baltimore, USA Urban  8 – 30 Bamford and Baker (2003) 

Barcelona, Spain  Residential area 4 Bayona et al. (1994) 
Milan, Italy Residential area 6.1 Cecinato et al.(2003) 
Rome, Italy  Residential area 1.4 Cecinato et al.(2003) 

Columbus, USA Residential area 2.5 Chuang et al. (2006) 
Rome, Italy Urban 6.7 Ciccioli et al. (1996) 
Milan, Italy Urban 5.2 Ciccioli et al. (1996) 

Naples, Italy Residential area 1 Ciccioli et al. (1996) 
Montelibretti, Italy Suburban 9 Ciccioli et al. (1996) 

Madrid, Spain Suburban 7 Ciccioli et al. (1996) 
C.Porziano, Italy Suburban 12 Ciccioli et al. (1996) 
Birmingham, UK Roadway tunnel 2.5 Dimashki et al.(2000) 

Ho Chi Minh City, Vietnam Urban 21 Hien et al. (2007) 
Ho Chi Minh City, Vietnam Traffic site 2.7 Hien et al. (2007) 

Copenhagen, Denmark Traffic site 0.72 Feilberg et al. (2001) 
Tokyo, Japan Urban (summer) 8.9 Kojima et al. (2010) 
Tokyo, Japan Urban (winter) 5.4 Kojima et al. (2010) 

Kanazawa, Japan Urban 1.8 Murahashi and Hayakawa 
(1997) 

Athens, Greece Urban 2.1 Marino et al. (2000) 
Riverside, USA Urban background  8.75 Pitts et al. (1985c) 

Los Angeles, USA Urban 3.9 Reisen and Arey (2005) 
Claremont, USA Urban background  7.8 Ramdahl et al. (1986) 
St Louis, USA SRM (1648) 3.5 Ramdahl et al. (1986) 

Washington DC, USA SRM (1649) 3 Ramdahl et al. (1986) 
Aurskog, Norway  Rural residential  3.7 Ramdahl et al. (1986) 

Beijing, China 2008 Olympic Games 25-46 Wang et al. (2011) 
Houston, USA Suburban 4.2 Wilson et al. (1995) 

Claremont, USA Urban 21 Zielinska et al. (1989) 
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an indicator for the relative importance of OH (daytime) and NO3 (night time) reaction pathways 

(Bamford and Baker, 2003; Feilberg et al., 2001; Tsapakis and Stephanou, 2007). A ratio value of 

between 5 and 10 indicates the dominance of OH reactions, while a value of above 100 suggests  

the enhanced importance of NO3 reactions (Albinet et al., 2008a).  

The mean 2NFlt/2NPyr ratio at BROS and EROS measured in samples during Campaign 1 was 

2.1 and 3.3 respectively.  These ratios were shown to be relatively low (<8) in all samples and 

display low inter-site and inter-season variability. Higher mean ratio at EROS compared to BROS 

may indicate the occurrence of NO3 reactivity between sites. However, a paired sample t-test 

revealed no significant difference in ratios between sites.  

A comparison between the 2NFlt/2NPyr ratios observed in this study and other sampling studies in 

different locations is provided in Table 4.4. The relatively low (<10) 2NFlt /2NPyr ratios observed in 

most urban and trafficked locations (Cecinato, 2003; Ciccioli et al., 1996; Marino et al., 2000; Wang 

et al., 2011a), are in agreement with the ratios observed in the present study, and are indicative of 

daytime OH-initiated reactions dominating over NO3-initiated reactions.  

It is commonly considered that NO3 levels (and by extension PAH reactions with NO3) will be 

minimal during the day due to the photolytic loss of NO3 in sunlight (Atkinson et al., 1990a; Graham 

and Johnston, 1978; Magnotta and Johnston, 1980) :  

NO3 + hv → NO + O2          (4.3a) 

 

However, NO3 can also be removed from the atmosphere by reaction with nitrogen oxide (NO) :  

NO3 + NO → 2 NO2          (4.3b) 

 

NO is primarily associated with traffic emissions, therefore the close proxity of a traffic source to 

the sampling locations in this study may lead to relatively low NO3 concentrations throuout the 

year. Higher 2NFlt / 2NPyr ratios have been noted in rural areas compared to urban areas (Albinet 
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et al., 2007a; Albinet et al., 2008a), and suburban areas downwind of polluted urban sites (Reisen 

and Arey, 2005) suggesting increased importance of NO3 reactions, which may be attributed to 

lack of fresh inputs of NO (Albinet et al., 2008a; Bamford and Baker, 2003).  

 

Table 4.4. Summary of 2NFlt/2NPyr ratios from ambient measurements (Keyte et al., 2013). 

 

Location Details 2NFlt/2NPyr 

 
Reference 

 
 

Birmingham, UK Traffic site (BROS) 2 This study 
Birmingham, UK Background site (EROS) 3.3 This study 

Marseilles area, France Rural  3.7 Albinet et al.(2007a) 
Alpine Valley locations, 

France  
Mean summer value (one 

location) 
<60 Albinet et al.(2008a) 

Alpine Valley locations, 
France  

Mean winter value (all 
locations) 

<10 Albinet et al.(2008a) 

Baltimore, USA Urban 5 – 57 Bamford and Baker 
(2003) 

Baltimore, USA Suburban 7 – 60 Bamford and Baker364 
Barcelona, Spain  Residential area 6 Bayona et al. (1994) 

Rome, Italy  Residential area 2.2 Cecinato et al.(2003) 
Milan, Italy Residential area 4.6 Cecinato et al.(2003) 

Naples, Italy Residential area 1.7 Ciccioli et al. (1996) 
Montelibretti, Italy Suburban 4.5 Ciccioli et al. (1996) 

Madrid, Spain Suburban 3.5 Ciccioli et al. (1996) 
C.Porziano, Italy Suburban 6 Ciccioli et al. (1996) 

Copenhagen, Denmark  Urban and Suburban  < 10  Feilberg et al. (2001) 
Copenhagen, Denmark  Urban and Suburban  14.2 Feilberg et al. (2001) 

Athens, Greece Urban 1.9 Marino et al. (2000) 
Riverside, USA Ambient POM  23.3 Pitts et al. (1985c) 
Claremont, USA Urban background  35 Ramdahl et al. (1986) 
St Louis, USA SRM (1648) 9.3 Ramdahl et al. (1986) 

Washington DC, USA SRM (1649) 12 Ramdahl et al. (1986) 
Aurskog, Norway  Rural residential  3.3 Ramdahl et al. (1986) 
Los Angeles and 
Riverside, USA 

Winter 16±7 Reisen and Arey (2005) 

Los Angeles and 
Riverside, USA 

Summer >35 Reisen and Arey (2005) 

Finokalia, Crete Mean value from a diurnal 
study, marine background 

location  

3.5 Tsapakis and Stephanou 
(2007) 

Beijing, China  2008 Olympic games 3.4 – 4.8 Wang et al. (2011) 
 

Results of 2NFlt/2NPyr analysis from other sampling studies have been subject to conflicting 

conclusions. While studies (Feilberg et al., 2001 ; Bamford and Baker, 2003) have concluded that 

the contribution of the OH mechanism is generally dominant (>90%) in relation to NO3 reactions, it 
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is suggested the NO3 mechanism may be important in some circumstances. However, while 

Feilberg et al. (2001) indicate NO3 reactivity may be more important during wintertime when OH is 

relatively low, Bamford and Baker (2003) and Reisen and Arey (2005) suggest the NO3 

mechanism can become more significant in summer.  

It should be noted that the 2NFlt /1NPyr and 2NFlt /2NPyr ratios reflect simply the relative levels of 

these isomers in the atmosphere and while they can be used as a reasonable marker for OH 

and/or NO3 initiated reactions in the atmosphere, these ratios can be influenced by other factors 

such as the relative input and removal rates of particulate matter and meteorological factors such 

as changes in mixing height or intensity of solar irradiation, which can influence the degree of their 

dispersion and photolytic loss respectively (Keyte et al., 2013). The use of these ratios should 

therefore be used with caution when assessing the relative importance of OH and/or NO3-induced 

PAH reactivity.  

 

4.2.4. Product to reactant ratios  

The relative levels of ‘product’ compounds (i.e. OPAH and NPAH species) to ‘reactant’ compounds 

(i.e. parent PAH compounds) observed in ambient samples can be used as an indicator for the 

extent to which reactivity is influencing the OPAH or NPAH concentrations in ambient samples 

(Alam et al., 2013; Nassar et al., 2011; Wei et al., 2012).  

There are relatively few studies that have used this metric to assess the importance of PAH 

reactivity on the observed concentrations of OPAH and NPAH. This method assumes that the rate 

of primary input (i.e. from traffic or other combustion sources), atmospheric behaviour (i.e. phase 

partitioning) and loss (i.e. reactive, photolytic or deposition) is similar for both parent and product, 

with secondary input of OPAH or NPAH driving the variability in observed ratios. However, it 

should be noted that results from the present investigation e.g. tunnel/ambient ratios (Section 6.3) ; 
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phase partitioning (Section 4.1) and source apportionment (Section 4.4) may suggest this 

assumption may not hold for these product/parent ratios.  

However it must be considered that the rate of primary input from traffic may be different and more 

variable for parent and product, the rate of phase partitioning and loss may not be the same for 

these compounds, and the ratios may be influenced by input of both parent and product from 

additional sources. Therefore, while product/parent ratios can be used as a tentative assessment 

of PAH reactivity in ambient samples, these values must be viewed with caution. 

The ratios chosen for assessment in this study are 9F/Flo, AQ/Ant, BaAQ/BaA, 9NAnt/Ant, 

2NFlt/Flt and 2NPyr/Pyr. 9F has been identified as gas-phase reaction products of both Flo 

(Helmig et al., 1992a; Kwok et al., 1997) and Phe (Lee and Lane, 2010; L Wang et al., 2007b). The 

formation yield of 9F from OH reactions is shown to be higher from Flo (~9% ; Helmig et al., 1992) 

compared with Phe (~0.3% ; Wang et al., 2007).  

AQ has been identified as a reaction product of Ant in heterogeneous reactions with O3 (Kwamena 

et al., 2006; Mmereki et al., 2004; Perraudin et al., 2007), NO2 (Ma et al., 2011) and NO3 (Zhang et 

al., 2011). BaAQ has been identified as a product if the heterogeneous reaction of BaA with NO3 

(Liu et al., 2012; Zhang et al., 2011).  

2NFlt and 2NPyr have been identified from both gas-phase (Atkinson and Arey, 1994) and 

heterogeneous (Inazu et al., 1997; Ringuet et al., 2012b) reactions of Flt and Pyr respectively. 

There is not expected to be a primary input of these compounds so these ratios are rather simpler 

to interpret.  

The ratios of OPAH/PAH and NPAH/PAH for individual samples throughout Campaign 1 are 

shown in Figure 4.8. It can be seen in these plots, that there is considerable variability in ratios 

between individual samples and it is not possible to draw definitive conclusions regarding trends in, 

and contribution of chemical reactivity to the levels of OPAH or NPAH in the collected samples 

based on these ratios.  
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It is interesting to note, however, that OPAH/PAH and NPAH/PAH ratios are generally higher at 

EROS than at BROS, as noted by Alam et al. (2013), and this was particularly distinct in the spring 

and summer samples. While these ratios may suggest that atmospheric reactivity may not 

dominate the overall input of OPAH and NPAH compounds relative to direct emissions, they do 

suggest the influence of reactivity occurring between sampling sites.  
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Figure 4.8. Ratios of measured OPAH or NPAH compounds to the parent PAH at BROS 

(black dot) and EROS (white dot) in each individual sample in Campaign 1. a) 9F/Phe ; b) 

9F/Flo ; c) AQ/Ant ; d)BaAQ/BaA; e) 2NFlt/Flt (x1000); f) 2NPyr/Pyr (x 1000) .  

 

BaAQ/BaA 

2NFlt/Flt 

2NPyr/Pyr 



188 
 

Ratios of OPAH/PAH compounds have been measured by Alam et al. (2013) at the BROS and 

EROS samples during the winter months. The authors noted higher ratios at EROS compared to 

BROS. The results of this study are broadly in agreement with this observation, with a more 

pronounced difference in ratios noted for spring and summer samples. This may indicate the 

possible influence of inter-site chemical reactivity influencing the concentrations of OPAH and 

NPAH, particularly during the warmer summer months  

Alam et al. (2013) reported BaAQ/BaA ratios ranging from <0.05 to ~0.5 in a winter sampling 

campaign. Most of the winter samples in the present study displayed similar ratios to the previous 

study, with higher values (up to a factor 3) observed in spring and summer, particularly at EROS. 

AQ/Ant ratio values are shown to be much higher (up to >10 times) and more variable in this study 

than previously measured by Alam et al. (2013). This could indicate a greater role of reactive input 

is influencing the samples in the present study, However, it should also be noted that the fraction of 

AQ in the particulate phase in the previous study was ~50%, which is lower than the fraction notes 

in the present study during autumn (65%), winter (82%) and spring (67%). This could indicate that 

AQ in the present study was more protected towards reactive and/or photolytic losses than in the 

previous study, which could also contribute towards higher observed ratios.  

 

4.3. Source apportionment of PAH, OPAH, NPAH compounds using Positive Matrix 

Factorization (PMF) 

4.3.1 Introduction 

Positive Matrix Factorization (PMF) is a multivariate factor analysis tool that can resolve the 

identities and contributions of the components in a mixture of unknown composition (Reff et al., 

2007). The model assumes p source types (factors) contribute linearly to the observed 

concentrations of defined species at a specific receptor site.  
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This method treats factor analysis as a true least squares problem i.e. a data set denoted by a 

matrix, X where: 

X = G F + E           (4.4) 

Where : G = factor contribution matrix 

  F = factor profile matrix 

  E = residual matrix  

This equation can be written in an index notation (Reff et al., 2007) : 

	 	  

(4.5) 

Where 	= concentration of species j in sample i 

 p = number of factors contributing to the samples  

  = concentration of species j in factor profile k  

  = relative contribution of source k to sample i 

	= the error of the model for species  j measured in sample i 

 

The objective of the PMF model is to derive suitable values for 	, 	and p that can best 

reproduce  . To do this the model produces a value of Q, an object function of the residual 

matrix : 
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Q 	 /  

            (4.6) 

  = error of the PMF model (residuals) for species j measured in sample i   

 = uncertainty of the jth species concentration in sample i  

n = number of samples   

m = number of species  

The Q value must be minimised to derive the most appropriate factor contributions and profiles. 

The values of 	and  are adjusted until a minimum Q value for a defined p value is obtained.  

PMF is considered to be a suitable method for modelling environmental data because it : a) 

incorporates variable uncertainties commonly found in environmental samples; and b) constrains 

the solution profiles (F) and concentrations (G) to be non-negative (Reff et al., 2007). This method 

has been applied previously to source apportionment of atmospheric PAHs (Hanedar et al., 2014; 

Jang et al., 2013; Okuda et al., 2010; Prevedouros et al., 2004a; Sofowote et al., 2011). 

Previously, principal component analysis (PCA) has been a popular technique for carrying out 

source apportionment for PAH (Harrison et al., 1996; Harrison et al., 2003; Mari et al., 2010; 

Ravindra et al., 2008) and NPAH (Bamford and Baker, 2003).  

However, PMF is preferable over PCA because it allows each sample and variable to be weighted 

individually, unlike PCA where all are equally weighted (Park et al., 2012). Furthermore, PMF can 

identify factor contributions directly without requiring further multiple regression analysis (Jang et 

al., 2013). While PMF has been applied to PAHs, it has yet to be used for NPAH and OPAHs for 

atmospheric source apportionment.  

The initial data analysis of samples collected from the Queensway Road Tunnel and ambient sites 

BROS and EROS suggest traffic is the dominant source to the Birmingham University sites but 
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other potential sources may also influence the observed concentrations (e.g. non-traffic 

combustion sources, volatilisation or chemical reactivity). In the present study, PMF was applied 

for source apportionment of selected PAH, OPAH and NPAH compounds to assess potential 

source profiles.  

 

4.3.2. Method 

The model was run using EPA PMF 5.0. Model input data files were produced using ‘receptor’ 

concentration (C) and uncertainty (U) matrices, as previously described by Jang et al. (2013).  

 

For measured concentration above the MDL, the input values c and u were calculated as follows : 

Ci = Cm            (4.7a) 

Ui = 0.1Cm + MDL/3          (4.7b) 

 

For measured concentrations below the MDL, the input values C and U were calculated : 

Ci = MDL/2           (4.8a) 

Ui = 0.2 Ci + MDL/3          (4.8b) 

where : 

Ci = input concentration  

Cm = measured concentration  

Ui = input uncertainty  

MDL = method detection limit (calculated separately for filter and PUF components)  
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Total concentration (particulate + vapour) values from BROS, EROS and the Queensway Road 

Tunnel samples obtained in campaigns 1, 2 and 3 were combined in the model input to ensure 

there was sufficient number of samples to obtain adequate model performance. The total number 

of 60 samples was included.   

Due to the relatively low number of samples collected in this study, not all target compounds 

measured in this investigation could be considered in the model. Base model data was assessed 

prior to running the model to select the most appropriate compounds to include. Significant 

correlations between compounds at each sampling site (see Section 3.2) allowed certain 

compounds to be excluded from the model and assumed to display similar prevailing sources and 

atmospheric behaviour patterns.  

For example species IPy, BPy and Cor were shown to correlate strongly at both sites and are all 

assumed to result predominantly from gasoline fuel combustion (Marr et al., 1999; Ravindra et al., 

2008; Staehelin et al., 1998). Similarly, 1NNap and 2NNap are assumed to display similar sources 

and atmospheric behaviour.   

Since both BROS and EROS samples were used in this analysis, both Acy and Ace were not 

included as these have been shown to be the most reactive PAHs (Atkinson and Arey, 1994; 

Brubaker and Hites, 1998; Reisen and Arey, 2002). Similarly, 2NFlt and 2NPyr were not included 

in the analysis as the presence of these compounds is known to result entirely from atmospheric 

reactions.   

Some compounds and a small number of individual samples, where modelled data points were 

shown to deviate significantly from observed data, were excluded from the analysis in order to 

achieve optimal model performance. All included species displayed a correlation coefficient of >0.7 

for the plot of observed vs. modelled concentrations. The final model runs included 9 PAHs, 1 

OPAH and 3 NPAHs : Ace, Phe, Flt, Pyr, Ret, Chy, BbF, BaP, IPy, AQ, 1NNap, 9NAnt and 1NPyr.   

The PMF model was run in ‘robust mode’, where model outliers are not allowed to overly influence 

the fitting of the contributions and profiles. To achieve this, uncertainties for species or samples 
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with uncertainty-scaled residual values greater than an outlier distance of four, (eij / uij)
2 >4, are 

increased to downweight their influence on the PMF solution.   

 

The distribution of intra-run residuals was analysed for each species, with all included species 

displaying normally distributed residuals between values of -3 and +3, considered to be an 

adequate range to provide reliable model results. The optimal number of factors required to obtain 

an adequate model fit was investigated with a 4 factor found to be the best fit for modelled data.  

The model also allows an additional percentage of uncertainty to be added. A varying degree of 

additional uncertainty was tested, with a value of 3% found to result in optimal model performance.   

 

4.3.3. Results  

4.3.3.1. Overview 

The distribution of species concentration between the 4 model factors and the percentage 

contribution of each factor to the modelled PAH, OPAH and NPAH concentrations is shown in 

Figure 4.9. This section discusses the model performance/uncertainty and the possible sources 

attributed to each factor.  

4.3.3.2. Model uncertainty and rotational freedom  

Uncertainty in the PMF model was estimated using a bootstrap technique. This involved 

performing 250 bootstrap model runs with a correlation set at 0.75. The estimated uncertainty, in 

terms of the percentage contribution of each factor for the modelled species’, derived in this study 

is shown in Figure 4.10. The bootstrapping output estimated the percentage of ‘factor swaps’ in 

this study was <20% for all factors. The results of the PMF model can therefore be considered 

sufficiently robust for source interpretation.  

PMF analysis is complicated by the fact that there can theoretically exist multiple F and G values 

that can produce the same minimum Q value (Reff et al., 2007). This is known as rotational 

freedom. This phenomenon can be assessed and reduced by the parameter Fpeak, where new 



194 
 

matrices are produced by forcing rows and columns of F and G matrices to be added or subtracted 

to or from each other (depending on the positive or negative Fpeak value).   

 

 

Figure 4.9. Results of the 4 factor PMF model displaying the concentration of each species 

attributed to each factor (blue bar) and the percentage contribution of each factor to the 

total modelled concentration of each species (red marker). 
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Figure 4.10. Results of the PMF bootstrapping analysis for each factor. Box plots display 

the median percentage contribution (green line) and the upper and lower edges of the box 

denote the 75th and 25th percentile values respectively. The percentage contribution 

predicted in the original base run is denoted by a blue square. 

Factor 1 

Factor 2 

Factor 3 

Factor 4 
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Fpeak values from -1 to +1 were investigated in this study. A final Fpeak value of -0.1 was selected 

as the most appropriate, based on relatively large change in Q observed from Fpeak values tested 

either side of this value (Reff et al., 2007). Only modest changes in the factor profiles, scaled 

residuals and correlations of observed and modelled data were observed compared with original 

base runs. The factor profiles in Figure 4.9 were derived using this ‘rotated’ analysis.  

 

4.4.3.3. Source contributions  

The distribution of factor contributions for each individual compound measured is shown in Figure 

4.11. Primary emission sources have been attributed to each of the factors as follows :   

Factor 1 is shown to display high percentage contributions for 1NPyr and 1NNap with this factor 

contributing 65% and 57% of their modelled concentrations respectively.  

These two compounds are shown to be present predominantly diesel emissions (Draper, 1986; 

IARC, 1989; Reff et al., 2007; Schuetzle et al., 1981; 1982; Schuetzle and Perez, 1983; Zhu et al., 

2003). This factor can therefore reasonably be attributed to emissions from diesel vehicles.  

It is interesting to note that 9NAnt is also strongly associated with diesel exhaust, however PMF 

analysis in the present study associates only ~28% of 9NAnt concentrations to this factor. Other 

potential combustion sources of this compound have not been characterised (Keyte et al., 2013).  

PAH compounds Phe, Flu and Pyr are emitted from diesel vehicles in relative high concentrations 

(Oda et al., 1998; Staehelin et al., 1998)  and have been previously observed contributing relatively 

high loadings to factors in PCA analysis attributed to diesel emissions (Harrison et al., 2003; Mari 

et al., 2010). The relatively low loading of Phe, Flt and Pyr (25%, 36%, 34% respectively) is 

somewhat unexpected and suggests other sources influence levels of these compounds.  

Factor 2 displays relatively high loadings for HMW PAH compounds. The contribution of this factor 

to modelled concentrations of Chr, BbF, BaP, IPy was 45%, 62%, 54% and 47% respectively. 

These compounds found at relatively high levels in vehicular emission (Fraser et al., 1998a; Oda et 
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al., 1998). It is considered that HMW 5 ring PAH compounds are a marker for gasoline emissions, 

while LMW 3 ring PAH are more associated with diesel emissions (Miguel et al., 1998; Perrone et 

al., 2014; Phuleria et al., 2006; Schauer et al., 2003; Schauer et al., 1999). This factor can 

therefore be attributed to gasoline vehicle emissions. This is in agreement with PCA analysis 

previously conducted at these sites (Mari et al., 2010).  
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Figure 4.11. Contributions of each individual factor to the modelled concentrations of each 

species, as predicyed by the PMF model.  

62%
32%

6%

BbF
Diesel

Gasoline

Wood 
combustion

Volatilisation/
domestic

22%

54%

6%

18%

BaP
Diesel

Gasoline

Wood 
combustion

Volatilisation/
domestic

13%

47%15%

25%

IPy
Diesel

Gasoline

Wood 
combustion

Volatilisation
/domestic

32%

17%
9%

42%

AQ
Diesel

Gasoline

Wood 
combustion
Volatilisation/
domestic

57%
25%

12%

6%
1NNap

Diesel

Gasoline

Wood 
combustion
Volatilisation/
domestic

28%

41%

21%

10%

9NAnt
Diesel

Gasoline

Wood 
combustion
Volatilisation/
domestic

65%

30%

4% 1%
1NPyr

Diesel

Gasoline

Wood 
combustion
Volatilisation/
domestic



199 
 

AQ is emitted from both gasoline and diesel vehicles (Jakober et al., 2007; Oda et al., 2001; Rogge 

et al., 1993a; Sidhu et al., 2005; Strandell et al., 1994; Zielinska et al., 2004b) . PMF results in the 

present study indicate an equal contribution of gasoline and diesel emissions, with a total traffic 

input contributing ~50% of AQ concentrations to the Birmingham University sites.  

Factor 3 is characterised by a high loading of Ace (67%) with relatively smaller contributions for 

other PAHs.  

It has been suggested in previous sections and by Dimashki et al. (2001), that concentrations of 

PAHs at these sites may be influenced by localised resuspension or volatilisation of components 

from the ground surface. This may result from unburned components in vehicle exhausts being 

deposited on the road surface (Rogge et al., 1993b), then undergoing temperature-driven 

volatilisation to the atmosphere. PAHs can also be volatilised from soil or vegetation surfaces 

(Diamond et al., 2001; Lee and Jones, 1999).  

However, this does account for the relatively high loading of Ace in this factor. As discussed in 

Section 3.4, a relatively large increase in Ace concentration has been indicated at these sites since 

1999-2001. Furthermore, the seasonal profile (Section 3.3) suggests levels of Ace at the University 

sites are much higher during the winter, suggesting the influence of a seasonally-mediated source.  

Previously, a PCA factor containing high loading of Ace was attributed to “a specific fuel 

combustion source” (Mari et al., 2010). This factor is therefore attributed to domestic wood 

combustion. 

This would seem consistent with the increase in NAIE estimated emissions of PAH from domestic 

wood in the last 10 years, however it is unclear why this source produces elevated Ace 

concentrations but this is not observed for other LMW PAHs that are also associated with domestic 

wood combustion.  

Factor 4 is characterised by a very high (80%) contribution to Ret concentration. Ret is typically 

associated with wood combustion (Bari et al., 2010; Fine et al., 2002; McDonald et al., 2000; 
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Ramdahl, 1983).  Mari et al. (2010) previously conducted PCA source apportionment to BROS and 

EROS sampling data. The authors reported a PCA factor with a very high loading of Ret, which 

displayed high contribution around November 5th ‘bonfire night’ celebrations.   

Phe, Flt, Pyr also have relatively high (38%, 22%, 38% respectively) contribution from this factor. 

While these compounds have been observed in traffic emissions (see Section 5.1), particularly 

diesel (Zhu et al., 2003), these results suggest non-traffic sources such as wood combustion 

significantly influence the levels of these compounds at BROS and EROS. This could provide an 

explanation for the lack of substantial temporal decrease in Flt and Pyr concentrations observed at 

these sites (Section 3.4).  

The seasonal profile (Section 3.3) of Ret, Phe, Flt and Pyr, with relatively small differences 

observed between summer and winter concentrations may suggest the dominant source of these 

compounds is not seasonally mediated. These compounds have been shown to exhibit high levels 

in emissions from incineration (Harrison et al., 1996; Ravindra et al., 2008). This factor may 

therefore be associated with localised emissions from burning garden waste, which may be more 

prominent in summer. Indeed Ret displays higher concentrations in summer relative to winter at 

BROS, which may be explained by the close proximity of this site to local houses.  

Jang et al. (2013) previously applied PMF source apportionment to airborne PAH concentration 

data from various U.K. urban monitoring sites. The authors identified four source factors for these 

data assigning the source contribution for urban sites ; unburned gasoline fuel (50.5%), diesel fuel 

(21.4%,) coal combustion (15.0%) and wood combustion (13.1%).    

Coal combustion was more strongly associated with locations of known industrial activity, with 

48.5% of total PAH associated with this factor compared with 34.1% and 17.5% for unburned 

petroleum and diesel respectively at industrial locations (Jang et al., 2013).  

Clearly, different urban locations will exhibit different source profiles so comparison between the 

analysis of these combined 14 urban sites and the present study are not directly applicable. It is 

not expected that coal combustion has influenced the Birmingham University site to a significant 
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degree. Indeed PCA analysis of measured PAH concentrations by Mari et al. (2010) did not 

attribute any of the identified source factors to an industrial emission source.   

It has previously been estimated that traffic is the main contributor of PAHs to the urban 

atmosphere in Birmingham (Harrison et al., 1996; Lim et al., 1999). However, the results of the 

present study indicate PAH concentrations at these sites are also influenced by other sources.  

This work has demonstrates that PMF source apportionment analysis can be applied to OPAHs 

and NPAHs in air samples, suggesting the possible application of this tool for more extensive 

studies with greater numbers of samples and species.  

 

4.4. Sampling artefact study  

As discussed in Section 2.1 atmospheric sampling of PAHs can be influenced by the occurrence of 

sampling artefacts, which can alter both the measured concentrations of collected PAHs, OPAHs 

and NPAHs and the observed gas-particle partitioning behaviour of these compounds. In order to 

examine the potential influence of sampling artefacts under the sampling conditions and methods 

used in the present study, and determine if the results obtained in the present investigation are 

sufficiently robust, a quality control sampling experiment was conducted.  

4.4.1. Methodology  

4.4.1.1 Sampling  

A sampling study was conducted for three sampling days in October 2013 at EROS. Two high 

volume samplers were operated at the site simultaneously, one acting as a ‘sample test’ sampler 

the other as a ‘sample blank’ sampler. The sampling materials were prepared, and the samplers 

calibrated and operated as described in Section 2.1.   

Briefly, both ‘sample test’ and ‘sample blank’ samplers used quartz fibre filters to collect particulate 

matter (PM10) with two PUF plugs downstream to collect the gas-phase component. Both samplers 
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were run for ~12-24 hours prior to the artefact experiment to pre-load the filters with ambient 

particulate matter.  

Prior to the start of the experiment the ‘sample test’ filter was spiked with 250uL of PAH internal 

standard, a solution of deuterated PAH mixture made up with hexane (1000 pg/uL). The 

deuterated PAH compounds that were present in this mixture are shown in Table 4.5. These 

compounds are synthetic and are not found naturally in the environment. However, they display 

identical physiochemical properties as ‘natural’ PAH in collected samples.  

There is assumed to be no natural addition of these deuterated compounds during sampling so 

their presence can be used to monitor possible PAH losses, due to volatilisation, breakthrough 

from the filter and/or chemical reactions. Monitoring the levels of the equivalent OPAH and NPAH 

deuterated internal standards (which are also not naturally present in the atmosphere) will also 

help to assess to what extent reactions of filter-bound PAH may have occurred during sampling 

and hence influenced the measured levels of PAH, OPAH and NPAH compounds. The ‘sample 

blank’ filter was not spiked and acted as a control sample. Both samplers were then run for a ~24 

hours sampling period.  

4.4.1.2. Analysis  

Collected filter and PUF samples were prepared, extracted and analysed as described in Section 

2.3. Briefly, samples were extracted in DCM using ultrasonication, blown to almost dryness by a 

gentle stream of nitrogen gas and made up to ~1mL volume in hexane. Sample extracts were 

cleaned up using an aminopropyl solid phase extraction column and finally made up to a final 

volume of 250uL in nonane for GC-MS analysis. In addition to ‘sample test’ and ‘sample blank’ 

samples, ‘lab blank’ filters was analysed for comparison with collected samples. These were filters 

spiked with the PAH IS mix but these were not exposed to sampling conditions, but immediately 

extracted and analysed.  

 



203 
 

4.4.1.3. PAH recovery 

Collected filter and PUF samples were analysed for deuterated PAH concentrations using GC-MS 

operated in EI mode (see Section 2 for full instrumental details) to assess the recovery of PAH 

compounds during sampling, based on comparison with levels measured in lab blank filters. 

Calibration curves for each compound were produced from prepared standard solutions based on 

response ratios relative to the internal standard p-terphenyl-d14. A known amount of the p-

terphenyl-d14 internal standard was spiked on to samples prior to extraction and analysis. 

Concentrations were calculated as described in Section 2.3.  

4.4.1.4. OPAH and NPAH formation 

Concentrations of detuterated OPAHs and NPAHs, corresponding to appropriate deuterated PAH 

compounds (see Table 1) were analysed by GC-MS operated in NICI mode (see Section 2 for full 

instrumental details). Concentrations were calculated based on calibration standards, prepared 

using 2-fluoronitrofluorene (FNF) as an internal standard. A known amount of FNF internal 

standard was spiked on to filter and PUF samples prior to analysis.  

 

4.4.2. Results  

4.4.2.1. Observed PAH losses 

Deuterated PAH concentrations in sample blank extracts were very low (0 to 1.5%) relative the lab 

blank extracts. Therefore, we can reasonably conclude that levels of these deuterated PAH 

compounds observed in sample test extracts have resulted from the initial spike of PAH internal 

standard mixture prior to sampling. 

The recoveries of deuterated PAHs from the internal standard mixture, measured in sample test 

filter extracts were based on the calculation :  

Filter Recovery (%) = [(CST – CSB)FILT / (CLB)FILT] x 100     (4.9) 
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Where : CST = concentration in ‘sample test’  

CSB = concentration in ‘sample blank’ 

CLB = concentration in ‘lab blank’ 

FILT denotes filter concentration 

 

Table 4.5. Deuterated PAH, OPAH, and NPAH compounds measured in the artefact study  

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Spiked IS mixture compounds  Associated target OPAH and NPAH 

compounds  

Acenaphthylene-d8   

Acenaphthene-d10   

Fluorene-d10  2-Nitrofluorene-d8 

9-Fluorenone-d8 

Phenanthrene-d10  9-Fluorenone-d8 

Anthracene-d10  9-Anthraquinone-d8 

Fluoranthene-d10  3-Nitrofluoranthene-d9 

Pyrene-d10 1-Nitropyrene-d9 

Chrysene-d12  6-Nitrochrysene-d11 

Benz[a]anthracene-d12   

Benzo[a]pyrene-d12   

Benzo[b]fluoranthene-d12   

Benzo[k]fluoranthene-d12   

Benzo[ghi]perylene-d12   

Indeno[1,2,3-cd]pyrene-d12  

Dibenz[a,h]anthracene-d14   
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The mean filter recoveries for the PAH compounds calculated in this study are shown in Table 4.6. 

For HMW (5+ ring) compounds, which are predominantly found in the particulate-phase in the 

atmosphere (Smith and Harrison, 1996 ; Alam et al., 2013; Delgado-Saborit et al., 2013), the 

recoveries were generally high (77 to 100%). This suggests the minimal losses from the filter 

during sampling and the levels of these HMW compounds measured with these samplers are 

reasonable agreement with ‘true’ levels present in the atmosphere. This is consistent with the 

relatively high vapour pressures and subsequent low volatility of these compounds.  

Recoveries of more volatile (3-4 ring) compounds were much lower (15-50%) suggesting these 

compounds may be subject to losses from the filter during sampling and hence their levels may be 

underestimated. This may have resulted due to volatilization, filter break-through or chemical 

reaction during sampling. It is assumed that the use of a relatively non-volatile solvent (hexane) for 

the IS spike prior to sampling meant that loss of PAH compounds prior to sampling was minimal. 

However, it is possible some loss of more volatile compounds may have occurred prior to the 

beginning of sampling .   

Previously, Delgado-Saborit et al. (2013) collected PAH and OPAH at the BROS location using a 

denuder system which collected the gas-phase component using XAD-4 upstream of a MOUDI 

collecting the particulate-phase component on PTFE filters. This sampling system also used a PUF 

plug downstream to monitor the amount of blow-off from the filter. The authors noted more volatile 

3-ring PAHs displayed relatively high (18-63%) artefact levels compared with PAHs with 4+ rings 

(0-10%). 

The volatilisation artefact in the present study is relatively high for most compounds in relation to 

this previous study, however the general trend of higher loss for LMW (3-4 ring) compounds 

relative to HMW (5+ ring) compounds is consistent with the observation made by Delgado-Saborit 

et al. (2013).  



206 
 

Kavouras et al. (1999) also utilised a denuded sampling system, observing particle-phase losses 

for 3-4 ring PAH of 56-97% with much lower losses of 5+ ring PAH, which is also consistent with 

losses during the present study.  

It has been noted in studies utilising denuded sampling systems, that volatilisation from particles 

can be enhanced in a denuded system as, by removing the gas-phase component upstream of the 

particle component, the phase-partitioning equilibrium of the PAH compounds will be disrupted, 

leading for a higher tendency for particle-bound fraction to partition to the gas-phase to move 

towards equilibrium (Delgado-Saborit et al., 2014; Kavouras et al., 1999) 

This study therefore demonstrates the loss of particle-phase component during sampling is a 

phenomenon that influences both denuded and undenuded systems.  The relatively high loss rates 

of 3-4 ring PAH indicates that volatilisation/breakthrough from the filter and/or chemical reaction of 

PAH with atmospheric oxidants are more significant processes influencing these PAHs than 

adsorption of gas-phase components to the filter.  

In order to assess whether loss of particle-associated semi-volatile PAH is predominantly due to 

blow off/breakthrough or reactivity during sampling, the PAH levels present in the PUF material 

downstream of the filter were also taken into account. The ‘total’ PAH recovery was calculated and 

these recoveries are shown in Table 4.7 derived using the formula :  

Total Recovery (%) = [(CST – CSB)FILT  + (CST – CSB)PUF / (CLB)FILT] x 100   (4.10) 

Where : CST = concentration in ‘sample test’  

CSB = concentration in ‘sample blank’ 

CLB = concentration in ‘lab blank’ 

FILT – denotes filter concentration 

PUF – denotes PUF concentration  

 



207 
 

Table 4.6. Mean filter recoveries of PAH compounds measured on sample test filters 

Compound Mean SD 

Acenaphylene-d8 51.6 23.9 

Acenaphthene-d10 46.8 3.1 

Fluorene-d10 21.8 10.4 

Phenanthrene-d10 15.5 6.9 

Anthracene-d10 23.4 10.6 

Fluoranthene-d10 22.5 6.7 

Pyrene-d10 27.9 2.4 

Benzo(a)anthracene-d12 26.0 7.9 

Chrysene-d12 31.7 10.2 

Benzo(b)fluoranthene-d12 79.4 12.7 

Benzo(k)fluoranthene-d12 77.1 5.1 

Benzo(a)pyrene-d12 94.1 2.7 

Indeno(1,2,3-cd)pyrene-d12 103.3 9.8 

Dibenz(a,h)anthracene-d12 102.4 11.0 

Benzo(ghi)perylene-d12 103.4 7.3 

 

When the concentrations measured in PUFs is taken into account, total recoveries for most 

compounds are generally high (>75%). These results suggest that in cases where filter recovery 

was low, it is as a result of volatilisation/breakthrough from the filter to the PUF. If this behaviour 

indeed occurred during sampling, this may influence the gas-particle partitioning behaviour of the 

semi-volatile PAHs as the ‘real’ concentration of the compound in the particulate phase may have 

been higher than reported.  

This behaviour is likely to influence the semi-volatile PAHs, Pyr and Flt (and Ret which may be 

assumed to display similar behaviour) primarily as the partitioning behaviour of these compounds 
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may to be subject to variability, driven by changes in temperature. The annual average contribution 

of the particulate-phase to the concentrations of these compounds is 10%, 11% and 18% 

respectively. 

Table 4.7. Mean total recoveries of PAHs measured on sample test filters + PUFs 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of this experiment suggest the particle-phase contribution of these compounds may 

have been up to a factor 4 higher than reported in the present study.  

However, for purposes of assessing total PAH concentrations, total recoveries were relatively high, 

therefore subsequent analysis of concentration trends and correlations using ‘total’ concentrations 

Compound Mean (%) SD (%) 

Acenaphylene-d8 76.5 15.2 

Acenaphthene-d10 66.9 3.5 

Fluorene-d10 53.5 23.6 

Phenanthrene-d10 68.8 7.5 

Anthracene-d10 88.5 8.7 

Fluoranthene-d10 96.7 17.4 

Pyrene-d10 98.1 9.4 

Benzo(a)anthracene-d12 102.3 24.4 

Chrysene-d12 86.8 13.9 

Benzo(b)fluoranthene-d12 100.6 8.9 

Benzo(k)fluoranthene-d12 94.8 13.9 

Benzo(a)pyrene-d12 100.6 4.1 

Indeno(1,2,3-cd)pyrene-d12 103.4 9.7 

Dibenz(a,h)anthracene-d12 102.6 10.9 

Benzo(ghi)perylene-d12 103.5 7.3 
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will be valid. A number of LMW compounds (Ace, Acy, Flo, Phe) have lower (<77%) total filter 

recoveries. This indicates these compounds are subject to losses from the filter and not recovered 

by PUFs. This will result in overall loss and underestimation of total PAH concentration.  

For 3-ring PAHs, which are typically found predominantly in the gas-phase, the influence of 

observed loss rates from the filter is not likely to influence their partitioning or total concentrations 

significantly. Considering the mean total (gas+particle) concentrations of PAHs measured in 

campaign 1, the calculated loss of particle-phase 3-ring PAHs from filters during this artefact 

experiment is likely to represent <1% decrease in total concentration.  

While NPAH and OPAH losses were not directly monitored in this study, it is suggested that more 

volatile compounds (MW<200) e.g. 1NNap, 2NNap and 9Flo may exhibit a similar level of loss as 

more volatile PAHs 

It is assumed that gas-phase loss from PUFs is minimal during sampling. PUFs have been widely 

used in previous sampling studies collecting gas-phase 3-4 ring PAH, OPAH and NPAH (Yamasaki 

et al., 1982 ; Keller and Bidleman, 1984; Harrison et al., 1996; Dimashki et al., 2000; 2001, 

Bamford and Baker, 2003; Harrad and Laurie, 2005; Reisen and Arey, 2005; Albinet et al., 2008a, 

Kim et al., 2012). 

Keller and Bidleman (1984) demonstrated that PUF plugs of similar dimensions to those used in 

this study, 3-ring PAH displayed <15% and 4-ring PAH <10% breakthrough during 24 hour 

sampling studies. The use of 2 plugs in series therefore means we can be reasonably confident 

that minimal loss of gas-phase species occurred during sampling in the present study.  

Because the artefact sampling experiment was conducted for a specific period of the year in early 

autumn, the meteorological conditions observed during this period were compared with those 

during Campaign 1 to assess whether the results observed are likely to be representative for other 

periods of Campaign 1, 2 and 3 (see Section 2) Meteorological data measured during the artefact 

study are shown in Tables 4.8, along with mean values for each seasonal period of sampling 

campaign 1.   
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Table 4.8. Mean values for meteorological measurements, temperature (TDRY), relative 

humidity (RELH), Pressure (PRES) and solar radiation (SRAD) and total rainfall (RTOT) for 

the sampling campaigns during autumn (A); winter (W); spring (Sp), summer (Su) and the 

artefact study (ART).   

TDRY (oC) RELH (%) PRES (hPa) SRAD (W/m2) RTOT (mm) 

A 10.5 82.3 1012.2 156.1 3.5 

W 6.0 82.7 1025.9 87.0 0.5 

Sp 9.9 75.2 997.5 136.7 2.9 

Su 16.5 76.3 996.7 183.1 2.9 

ART 14.5 78.1 999.7 78.0 0.3 

 

 

It can be seen that mean temperature during the artefact study was higher than that during the 

autumn, winter and spring periods of Campaign 1, and slightly lower than measured during 

summer. Other meteorological parameters (relative humidity, pressure) measured during the 

artefact study and those measured in spring/summer were broadly comparable. However, solar 

radiation levels during the artefact study were considerably lower. It is possible, therefore that 

volatile losses of PAH compounds may have been more pronounced during the summer periods 

when temperature and solar radiation levels were higher.  

4.4.2.2. Conversion of PAH to OPAH or NPAH during sampling  

Peaks on the gas chromatograph were identified corresponding at times consistent with the OPAH 

and NPAH compounds. However these were noted in both ‘sample test’ and ‘sample blank’ 

extracts. This suggests that these peaks may not be attributable solely to the presence of 

deuterated OPAH and NPAH compounds.   
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However, peak area of ‘sample test’ peaks were consistently much greater than those in ‘sample 

blanks’ and only very minor peaks corresponding to deuterated OPAH and NPAH compounds was 

observed in lab blank extracts. It is suggested, therefore that the presence of gas chromatograph 

peaks for sample test extracts is predominantly due to reaction products of deuterated PAH 

compounds spiked to the test filter, with minor amounts of interference contaminant species 

transferred to the filter during sampling and/or analysis.  

Total conversion of PAH to OPAH and NPAH derivatives was calculated for each compound based 

on the calculation : 

 

Total Conversion (%) =  

([(CDER)ST - (CDER)SB ]FILT +  [(CDER)ST - (CDER)SB ]PUF / (CPAH)LB) x 100  (4.11) 

 

Where : 

C = concentration  

PAH = concentration of deuterated PAH compound  

DER= concentration of deuterated oxy/nitro derivative compound 

ST = concentration in ‘sample test’  

SB = concentration in ‘sample blank’ 

LB = concentration in ‘lab blank’ 

FILT – denotes filter concentration 

PUF – denotes PUF concentration  
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For all tested OPAH and NPAH compounds (Table 1) total conversion for the 24 hour sampling 

period was <1%.  The conversion to 9-Fluorenone-d8 ; Anthraquinone-d8 ; 2-Nitrofluorene-d8; 3-

Nitrofluoranthene-d9 ; 1-Nitropyrene-d9 ; 6-Nitrochrysene-d11 were 0.67%, 0.95%, 0.76%, 0.34%, 

0.00%, 0.05% respectively.  

This suggests that the measured levels of OPAH and NPAH compounds measured in this 

investigation are not significantly influenced by artefact formation on the filter so the concentrations 

measured during this investigation are broadly an accurate reflection of ‘true’ levels in the 

atmosphere  

It should be noted for most compounds the majority of observed detuterated OPAH or NPAH (with 

the exception of 6NChr-d11) were detected in PUFs, suggesting formation had occurred on the 

filter surface followed by volatilisation and/or break through to the PUF downstream.   

Taking into account the mean particulate concentrations of PAH, OPAH and NPAH measured at 

BROS and EROS in campaign 1, it is clear that a <1% conversion of PAH to their associated 

derivatives will have a negligible influence of the overall concentrations of most PAH, OPAH and 

NPAH measured during this study.   

However, relatively low annual mean concentrations of 3NFlt and 6NChr suggest even minimal 

artefact formation could influence these compounds. Indeed, considering the annual mean 

particulate concentrations the conversion rates of 0.34% and 0.05% respectively of Flt and Chr 

could lead to an overestimate of 3NFlt and 6NChr concentrations of >100%.  

The extent of PAH reactivity towards oxidants during sampling will be highly dependent on the 

oxidant concentration in the atmosphere. For example, Schauer et al. (2003) observed a 

correlation between the denuded : undenuded PAH concentrations and the mixing ratio of O3. 

In order to assess how the potential for oxidation reaction may vary during the sampling campaigns 

in this project, and to compare the results of the present artefact study with previous studies, mean 
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concentrations of O3 and NOx concentrations measured at Birmingham Tyburn during both 

campaign 1 and the artefact study are shown in Table 4.9.  

 

Table 4.9. Mean concentrations of inorganic pollutants (ug/m3) measured during autumn 

(A); winter (W); spring (Sp), summer (Su) samples in campaign 1 and artefact (ART) study.  

NOx O3 

Mean A 61.4 27.2 

Mean W 54.8 32.1 

Mean Sp 40.2 52.0 

Mean Su 37.6 36.5 

Mean ART 36.5 29.2 

 

 

Arey et al. (1988) investigated the formation of NPAH artefacts during high-volume air sampling by 

exposing perdeuterated Flt, Pyr and BaP compounds spiked on a filter. While it was shown that 

6NBaP was formed from BaP during sampling, no formation of NFlt and <3% formation of 1NPyr 

was observed. It should be noted that Arey et al. (1988) conducted sampling during a high 

pollution episode, where NO2 concentrations were reported to be 4 to >10 times higher than the 

average concentration in the present artefact study. The results of the present study suggest, in 

agreement with Dimashki et al. (2000), that reactivity with NO2 was not a significant sink for PAH, 

nor a source of NPAH artefact formation during the sampling campaigns of this project.  

Previous studies have indicated that on undenuded samplers, O3 reactivity can result in an 

underestimation of particulate-phase PAH concentrations by up to a factor 2 (Goriaux et al., 2006; 

Schauer et al., 2003; Tsapakis and Stephanou, 2003). However, Brown and Brown (2013) noted a 
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relatively small (~6%) underestimation in BaP concentrations due to reactive loss during 24 hr 

sampling studies. 

It is interesting to note that negligible loss of BaP is noted in this study, while previous studies have 

noted this compound as one of the most reactive PAHs on the filter surface (Goriaux et al., 2006; 

Liu et al., 2006; Tsapakis and Stephanou, 2003). This observation, in addition to the very low 

conversion rates of PAHs to OPAH in this study suggest O3 reactivity on the filter surface was not 

a significant process during this sampling experiment.   

Furthermore, during the study of Tsapakis and Stephanou (2003) the O3 mixing ratio was >50ppb, 

more than 3 times higher than was observed during the present study. Similarly, Liu et al. (2006) 

noted 20% loss of BaP during sampling in an experiment where O3 mixing ratio was reported to be 

70 μg/m3 , over a factor 2 higher than the present study. It is suggested, therefore that the 

occurrence of artefact formation during sampling in these previous studies, and relative absence of 

such an effect in the present study was as a result of  much lower concentrations of reactant 

species.  

It can be seen in Table 4.9 that levels of NOx during the artefact study were similar to those 

observed during spring and summer campaigns with higher levels observed during autumn and 

winter. It is possible therefore, that while negligible levels of chemical conversion were indicted in 

the artefact study, reactions of filter-bound PAH towards NOx may have been more enhanced 

during winter. 

The converse situation is true for O3 concentrations, for which levels during the artefact study are 

similar to the autumn and winter concentrations but much lower than spring and summer 

concentrations. It is possible therefore, that while negligible levels of chemical conversion were 

indicted in the artefact study, reactions of filter-bound PAH towards O3 may have been more 

enhanced during spring and summer. 
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4.4.3. Summary   

The results of this quality control experiment suggest that sampling artefacts did not significantly 

influence the total concentrations of target PAH or derivative compounds measured in the three 

campaigns of this investigation.  

Breakthrough and/or volatilisation of LMW 3-4 ring PAH was shown to occur, which resulted in 

either loss of particulate component of these compounds to the atmosphere or to the downstream 

PUF plug. However, because it is expected that vast majority of these 3-4 ring compounds will be 

present in the atmosphere the gas-phase, the influence of this process on total concentration and 

phase partitioning behaviour of these compounds is not expected to be significant.  

It was shown that reactivity of PAH on the filter results in negligible levels of PAH loss and NPAH 

or OPAH formation during sampling for most compounds. Based on these results, we can be 

confident of the validity of assessments made using ‘total’ (vapour + particulate) concentrations as 

total loss of PAH and derivatives is likely to be minimal.  
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Chapter 5. Diurnal profiles of PAH, OPAH and NPAH  

 

5.1. BROS and EROS diurnal profiles 

Diurnal profiles of PAHs, NPAHs and OPAHs compounds at BROS and EROS were derived from 

sampling in Campaign 2. Details of the samples taken in Campaign 2 are provided in Table 2.1.  

The profiles of ƩPAH concentrations at BROS and EROS, as well as the concentrations of O3 and 

NOx are shown in Figure 5.1. It should be noted that the nighttime samples BD12 and ED12 taken 

on 9/8/2012 displayed unusual behaviour. These samples were characterised by very high (>100 

μg/m3) average nighttime NOx concentration at Tyburn and unexpectedly high concentrations of 

HMW particle-phase PAHs. However the observed concentrations of LMW gas-phase compounds 

and OPAH and NPAH compounds did not appear higher than expected. This could possibly 

suggest the occurence of external pollution ‘episode’ influencing the Birmingham area during this 

time or an error in extraction/analysis for these samples. These samples are excluded from the 

calculation of mean diurnal patterns and any statistical analyses performed.  

These profiles are based on mean values from each time period during the three sampling days of 

this campaign during the summer months and therefore represent concentrations at these sites 

and on these specific days. Given the spatial and temporal variation PAH, OPAH and NPAH 

concentrations can exhibit, these diurnal profiles must be viewed with caution and may not be 

representative of the wider area throughout other times of the year.  

For ƩPAH at BROS, the highest concentrations are observed in the morning (0700 – 1100). This is 

consistent with traffic being the principal source of compounds at these sites and emission strength 

being strongest during the morning ‘rush hour’ period. Indeed, the profile for ƩPAH at BROS 

appears to follow a distinct PAH ‘traffic’ pattern (Nielsen et al., 1999). The concentration peak in 

the morning is followed by a sharp decline during daytime (1100 – 1600), possibly due to reduced 
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traffic flow and maximum reactive loss of compounds with higher levels of atmospheric oxidants, 

as indicated by increased O3 concentrations.  

Concentrations are shown to increase during the afternoon (1600 – 1900), possibly in response to 

increased traffic flow during the evening rush hour, although this may also be due to temperature-

driven local input e.g. volatilisation from road and/or vegetation and soil surfaces.  Lowest 

concentrations are observed during the nighttime (1900 – 0700) period when the emission source 

strength from road traffic is likely to be lowest. ƩPAH at EROS is shown to follow a similar, but 

much weaker trend, consistent with the greater distance of this site from the traffic emission 

source. A similar traffic pattern has been observed for PAHs at these sites previously (Laurie, 

2003).  

 

 

Figure 5.1.  Diurnal profiles of total PAH concentrations at BROS and EROS, O3 and NOx, 

derived from mean values taken during morning (0700 – 1100), daytime (1100 – 1600), 

afternoon (1600 – 1900) and night (1900 – 0700). 
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The PAH trend at BROS, and to a lesser extent at EROS is followed, at least partially by the trend 

in NOx concentrations. The close association of PAHs and traffic-related gases such as NOx and 

CO have previously been observed by Nielsen (1996). This indicates NOx levels are predominantly 

governed by road traffic input. The observed increase in NOx concentration in nighttime samples is 

therefore somewhat unexpected and may indicate the influence of non-traffic related combustion 

sources at night and/or lower atmospheric losses of NOx resulting from reaction with OH.  

Concentrations of NOx are shown to correlate significantly (p>0.05) with ambient temperature, 

indicating the height of atmospheric mixing layer varies during the day, which will also influences 

the observed diurnal patterns. For example, relatively high nighttime PAH concentrations have 

previously been observed at night, attributed to thermal inversions in mixing height (Ringuet et al., 

2012a; Wu et al., 2010).  

The diurnal profiles for individual PAH, OPAH and NPAH compounds at BROS and EROS are 

presented in Figure 5.2. The relative distribution of PAH, OPAH and NPAH compounds, throughout 

the diurnal cycle is shown to be broadly similar to that of seasonal samples collected in Campaign 

1. 

While the characteristic traffic-related pattern is observed for Phe at BROS, the daytime and 

afternoon concentrations are higher at EROS than may be expected from traffic input. As 

discussed in previous sections, this may be due to relatively high evaporative input from surfaces 

causing a considerable variation from a traffic-mediated pattern, influencing more significantly at 

EROS.  

Ant displays highest concentrations during the afternoon at both sites. Ant displays high reactivity 

towards OH (Atkinson and Arey, 1994; Brubaker and Hites, 1998) so might be expected to display 

a relatively large decline in concentration during the daytime. Similarly, Acy, which is shown to be 

the most reactive PAH towards OH (Reisen and Arey, 2002) does not display relatively steep 

decline in daytime concentrations. Furthermore, while Flo follows a traffic-related pattern at both 

sites, the trend is much weaker than observed for other compounds. The observed diurnal 
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behaviour of these LMW compounds suggests possible  influence of an additional source during 

the daytime, possibly due to volatilisation from soil, vegetation and/or road surfaces, as indicated 

by the positive correlation between temperature and NOx-corrected concentrations at both sites 

(although this is not observed for Acy at BROS).  

 

 

  

Figure 5.2. Diurnal profiles of PAHs, OPAHs and NPAHs at BROS and EROS. Morning = 
0700 – 1100; Daytime = 1100 – 1500; Afternoon = 1500 – 1900; Night = 1900 – 0700. 
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Figure 5.2 (cont) . Diurnal profiles of PAHs, OPAHs and NPAHs at BROS and EROS. 
Morning = 0700 – 1100; Daytime = 1100 – 1500; Afternoon = 1500 – 1900; Night = 1900 – 
0700. 
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Figure 5.2 (cont) . Diurnal profiles of PAHs, OPAHs and NPAHs at BROS and EROS. 
Morning = 0700 – 1100; Daytime = 1100 – 1500; Afternoon = 1500 – 1900; Night = 1900 – 
0700. 
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It is interesting to note that Ace displays a characteristic traffic pattern at both BROS and EROS, 

despite seasonal (Section 3) and tunnel (Section 6) measurements suggesting a deviation away 

from this behaviour. This may suggest measured concentrations in Campaign 1 are influenced by 

a number of relatively isolated episodic emissions of Ace that mask the influence of traffic at these 

sites. 

Ret also displays a profile similar to a traffic-pattern, although relatively weakly, which is 

unexpected because this compound has a relatively minor traffic input. It is suggested this profile is 

primarily governed by variation in mixing layer height, with afternoon levels influenced by 

evaporative input, particularly at EROS, as indicated by temperature-dependent behaviour of NOx-

corrected concentration (see Section 3.2).  

At BROS, Flt and Pyr seem to follow a characteristic traffic pattern. However, at EROS, the 

relatively shallow decline during the daytime, and rapid increase during the afternoon from these 

compounds suggests the influence of an additional local daytime source, possibly volatilisation 

from surfaces.   

HMW PAHs (5+ ring) are shown to display the most pronounced morning rush hour peaks and 

daytime declines of the PAHs measured. Since these compounds are not expected to display 

significant reactive losses, this trend is expected to mostly indicate the impact of traffic flow 

variation between morning and daytime.   

However, afternoon concentrations are not shown to increase in correspondence with afternoon 

rush hour, suggesting that afternoon traffic may have a minimal impact on the PAH profile and 

afternoon increases observed for more volatile LMW compounds is due to contribution from 

evaporative input. Fine et al. (2004) observed a diurnal profile for particle-bound BPy in Los 

Angeles and Riverside, USA very similar to that of this study.  

Reisen and Arey (2005) investigated diurnal variations of PAH and NPAH levels to assess 

atmospheric reactivity by sampling over four time periods (morning, day, evening and night) in 
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California, USA. It was shown that, in summer, PAH concentrations clearly decrease during the 

day and evening periods, in agreement with the observation in the present study.  

While the diurnal pattern of PAH is likely to reflect relative source strength and photostability of 

compounds (Dachs et al., 2002; Souza et al., 2014; Wu et al., 2010), the interpretation of OPAH 

and NPAH diurnal patterns is more complex, due to the potential influence of secondary input from 

atmospheric reactivity for some compounds. For example Souza et al. (2014) measured the diurnal 

profile PAH, OPAH and NPAH in PM in Sao Paulo and indicated that direct emission from vehicles 

influence concentrations of these compounds, but photochemical production contributes to levels 

of NPAH and OPAH and photolysis of NPAH is also a significant loss process.  

All for OPAH compounds measured concentrations display a morning peak in concentrations and a 

decline throughout the day at BROS. However, it should be noted that this daytime decline is less 

pronounced than for HMW PAHs and NPAH compounds. The relatively low concentrations during 

the afternoon may be consistent with the relatively low impact of afternoon traffic at these sites but 

may also indicate daytime concentrations are higher than expected due to additional input from 

reactivity and/or volatilisation. The temperature dependence of NOx-corrected concentrations might 

suggest the latter for 9F, AQ, MAQ (Section 3.2).  

For 9F, AQ and MAQ, highest levels at EROS are observed during the daytime period, suggesting 

a deviation away from a traffic-mediated profile. While NOx-corrected MAQ displays positive 

correlation with temperature, this relationship is not observed for 9F and AQ. This might suggest 

MAQ concentrations are influenced by volatilisation during the day at EROS while reactive input is 

a more important factor contributing to 9F and AQ levels at EROS during the day.  

1NNap and 2NNap levels display a morning rush hour peak at BROS with a relatively steep 

decline in concentrations during the day. The decline is notably more pronounced for 1NNap than 

2NNap, which is attributed the faster rate of photolysis for 1NNap.    

At EROS, the profiles display an increase (1NNap) and relatively low decrease (2NNap) in 

concentration between morning and daytime, which may indicate an additional source, possibly 
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from reactive or evaporative input, is influencing the concentrations of these compounds. A positive 

correlation between temperature and NOx-corrected concentration is noted for 1NNap but not 

2NNap at EROS. 

1NPyr and 9NAnt are expected to be most prevalent in diesel exhaust emissions and are likely to 

represent a traffic-related pattern for particle-phase NPAHs. These compounds display similar 

patterns at BROS and EROS with a peak in the morning period followed by a steep decline during 

daytime.  

Kameda et al. (2004) investigated the diurnal pattern of 1NPyr concentration in Osaka, Japan and 

observed higher concentrations during the morning and late evening, when traffic levels were 

higher. The lack of a significant increase in concentrations during the afternoon may be due to a 

minimal afternoon traffic impact at these sites, as observed with HMW PAHs. 1NFlt, 3NFlt, 6NChr 

and 7NBaA display similar trend, indicating a similar traffic-related behaviour.  

At BROS, reaction product compounds 2NFlt and 2NPyr display a similar traffic-related pattern to 

other NPAH, indicating that levels of these reaction product compounds is dictated predominantly 

by the primary input of precursor PAH compounds and reactive input is not significant that this site 

relative to the strength of primary emissions. However, the daytime decline in concentration is 

lower than observed for 1NPyr or 3NFlt, possibly indicating the impact or reactive or evaporative 

input of these compounds at BROS. 

At EROS, highest 2NFlt and 2NPyr concentrations are observed during the daytime period, when 

OH radical concentration is expected to be highest, suggesting reactive input is an important 

factor. The diurnal profile of 2NFlt and 2NPyr have been shown to closely follow the measured 

concentration of OH, with highest concentrations observed during the daytime (1100-1500) period 

(Tsapakis and Stephanou, 2007). Kameda et al. (2004) also observed a significant (p<0.05) 

correlation between 2NFlt and estimated OH concentrations during a diurnal study.  

A number of studies have noted lower levels of PAH, OPAH and NPAH during the day compared 

with nighttime levels or a rapid decline during the daytime or afternoon, which is attributed to rapid 
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photodecomposition (Ciccioli et al., 1996; Hien et al., 2007; Ringuet et al., 2012a; Tsapakis and 

Stephanou, 2007; Wu et al., 2010; Zielinska et al., 1989). The relatively steep decline in NPAH 

concentrations during the day, in comparison with PAH and OPAH during the day, may indicate the 

relatively rapid photolytic loss for these compounds.  

 

4.2. NOx-corrected diurnal profiles 

In an investigation of PAH and NPAH diurnal patterns in California, USA by  Reisen and Arey 

(2005) normalised observed concentrations to CO levels (used as a traffic marker) to compensate 

for variation in ABL height during the diurnal cycle and the dilution of traffic-generated emissions 

between urban and suburban sites. It was shown that normalising the PAH and NPAH levels 

removed much of the traffic- or mixing height- mediated profile and allowed closer insight into the 

processes driving the short term variations in concentrations. In this study NOx was used as a 

traffic marker to normalise the PAH, OPAH and NPAH concentrations as data for CO were not 

available. Normalised diurnal profiles for a number of selected PAH, OPAH and NPAH are 

presented in Figure 5.3.   

It is notable that highest normalised concentrations of the LWM (3-4 ring) PAHs (e.g. Phe, Flo, 

Acy, Pyr and Flt) are highest during the daytime and/or afternoon periods at both sites, when 

temperature is shown to be highest. This indicates the potential importance of temperature-driven 

volatilisation from soil, vegetation or road surfaces on the concentrations of these compounds at 

these sites. It is suggested, therefore, that while direct emissions of road traffic is likely to govern 

the concentrations of these LMW PAHs, local input will also be an important factor, particularly in 

warmer conditions.  

For HMW compounds, the observed diurnal trend is either removed (e.g. IPy, BPy) or unchanged 

(e.g. BaP, BeP) suggesting these compounds are not influenced significantly by reactive loss or 

evaporative input.  Interestingly, for OPAH compounds, highest normalised concentrations are 

observed during the daytime period, when the intensity of solar radiation is highest. This indicates 
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the influence of surface volatilisation and/or input from atmospheric reactions of PAH with OH 

radicals or O3 , consistent with the un-normalised traffic pattern observed for these compounds.  

For NPAH, compounds more closely associated with diesel exhaust (e.g. 1NPyr and 9NAnt) show 

highest normalised concentrations at BROS during the morning rush hour period, with much lower 

levels at EROS and during other periods of the day. This indicates the diurnal behaviour of these 

compounds is governed predominantly by the strength of road traffic source and relatively rapid 

photodegradation during the day, with minimal impact of other sources such as heterogeneous 

reactivity of parent PAH.  

     

      

 

Figure 5.3. NOx-corrected diurnal concentration profiles for key PAH, OPAH and NPAH 
compounds. 
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Figure 5.3 (cont).  NOx-corrected diurnal concentration profiles for key PAH, OPAH and 
NPAH compounds. 
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A broadly similar trend in the normalised profile of 1NPyr was observed by Reisen and Arey (2005) 

in Los Angeles and Riverside, USA, suggesting urban and suburban areas display similar 

behaviour for marker compounds of diesel traffic emissions.  

NNap compounds display a similar normalised profile to those of 1NPyr and 9NAnt, with peak 

concentrations during the morning rush hour and lower concentrations during the daytime and 

afternoon. This would suggest the profiles of these compounds are more dominated by traffic-

generated input and photolytic loss, with a minor contribution from atmospheric reactions. 

However, it should be noted that at EROS, while concentrations of 1NPyr and 9NAnt decrease 

between morning and daytime, an increase in concentration is observed for NNap compounds over 

this period. This may indicate an influence of OH reactivity between sites influencing the 

concentrations of 1NNap and 2NNap at the background site.  

Normalised concentrations of 2NFlt and 2NPyr are highest at EROS during the daytime period, 

consistent with the profiles in Figure 5.2. This suggests that while reactive input from OH-initiated 

input is not significant at the traffic site, the contribution of reactions between sites leads to 

relatively high 2NFlt and 2NPyr concentrations at EROS. However, it should also be noted that 

temperature-driven volatilization may also influence concentrations of these compounds at EROS. 

The normalised concentrations of 2NFlt and 2NPyr are relatively low at both sites at night. This 

suggests that the influence of NO3 reactions on the levels of these compounds at night may be 

minimal.  

It is interesting to note that Reisen and Arey (2005) observed peaks in NNap, 2NFlt and 2NPyr 

normalised concentrations in Riverside during the night, indicating NO3 reactivity was occurring 

between Los Angeles and this background site. This may be due to the much greater distance 

between ‘polluted’ and ‘background’ sites in this previous (~90km) and present (~1km) study, 

allowing increased time for reactions to occur and a much greater reduction in NO concentrations 

in the atmosphere.  
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4.3. Assessing role of PAH degradation and reactive input of NPAH and OPAH  

4.3.1. PAH degradation  

It is considered that OH reactions will be the dominant loss process influencing LMW PAHs in the 

atmosphere (Atkinson and Arey, 1994; 2007; Keyte et al., 2013).  

Arey et al. (1989a) measured 12-hr daytime and night time concentrations of LMW PAHs during a 

photochemical air pollution episode in the Los Angeles Basin. The nighttime/daytime concentration 

ratios were shown to correlate with the laboratory-derived second order OH radical reaction rate 

coefficients (see Appendix 1), for example with the largest ratios being observed for PAHs that 

display the higherst rate coefficients for OH reactions, such as Acy and Ace.  This indicates the 

occurrence of OH-induced reactions occurring in the atmosphere at similar rates to those predicted 

by laboratory-derived kinetics data.  Furthermore, Dachs et al. (2002) estimated OH rate coefficient 

values based on daytime and nighttime PAH profiles, which were in good agreement with literature 

values.  

Similarly, a linear correlation has been observed between the OH reaction rate coefficients for Nap, 

methyl-Nap, ethyl-Nap and dimethyl-Nap compounds and both corresponding nighttime/daytime 

concentration ratios measured in Riverside, USA (Phousongphouang and Arey, 2003b) and 

morning/daytime concentration ratios measured in Los Angeles, USA (Reisen and Arey, 2005). 

The slope of the latter trend was shown to be steeper in summer compared to winter, providing 

further evidence for the dominant role of OH reaction chemistry on the observed degradation of 

PAHs in the atmosphere.  

While the annual mean BROS/EROS concentration ratios have been shown to agree well with OH 

reactivity rates (Section 3.6), no correlation was observed between OH reaction rate coefficients 

and nighttime/dayime or morning/daytime concentration ratios at either site for the diurnal samples. 

This may partly be explained by the close proximity of these sites to a local traffic source which 

dominates the observed PAH diurnal profiles. Additionally, as discussed above, the levels of LMW 

PAHs may be influenced by local input from local temperature-driven volatilisation from surfaces at 
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both sites. This may affect the concentrations of compounds during the day to differing degrees 

and potentially mask the influence of OH-initiated degradation.   

It should also be noted that the previous studies were conducted in California, where the 

meteorological conditions are likely to be more conducive to atmospheric reactivity. For example 

the study by Arey et al. (1989) was conducted during a photochemical pollution ‘episode’ and other 

O3 concentrations in previous studies ranged between 40-140 ppb (Phousongphouang and Arey, 

2003b; Reisen and Arey, 2005) compared to a maximum level of 40 ppb in the present study. The 

oxidising potential of the atmosphere in these previous studies is therefore likely to have been 

much higher than in the present study.  

 

4.3.2. 2NFlt/1NPyr and 2NFlt/2NPyr Ratios 

 

The reaction source marker ratios of 2NFlt/1NPyr and 2NFlt/2NPyr were calculated for the samples 

in Campaign 3 to assess the potential influence of OH and NO3 reactivity over the diurnal cycle. 

The mean ratios for each time period are shown in Figure 5.4.   

The 2NFlt/1NPyr ratio at BROS is shown to be low (<5) throughout the diurnal cycle, indicative of 

vehicular traffic emissions dominating over secondary input at this site. However, at EROS, the 

ratio was shown to be relatively high (>9) during the daytime (1100 – 1600) and night (1900 – 

0700) periods, possibly indicating the greater influence of both OH and NO3 reactivity at the 

background site. Similarly, noted 2NFlt/1NPyr values <5 at a traffic site and >5 at a suburban site 

in both daytime and nighttime samples.   

2NFlt/2NPyr ratios are low (<7) at both sites during morning, daytime and afternoon periods. This 

is consistent with negligible influence of NO3 reactivity during daylight hours. This is also consistent 

with the yield ratio from OH reactivity (assuming identical levels of Flu and Pyr in the air) of 

2NFlt/2NPyr = 6 (Atkinson and Arey, 1994).   
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a  

 

b  

   

Figure 5.4.  The diurnal profile of NPAH isomer ratios a) 2NFlt / 1NPyr and b) 2NFlt / 2NPyr 

measured at BROS and EROS.  

 

The ratio is higher (>12) at both sites during the night indicating NO3 reactivity can play a more 

important role at night when the concentrations of this species will be higher due to absence of 

sunlight and lower levels of NO. The higher ratio at EROS relative to BROS may indicate the 

occurrence of NO3 reactivity between sites.  
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However,  overall the role of NO3 is not significant at these sites, as indicated previously in urban 

(Feilberg et al., 2001; Marino et al., 2000; Wang et al., 2011a), suburban (Ciccioli et al., 1996) and 

background (Tsapakis and Stephanou, 2007) sites. However, much higher ratios have been noted 

in other studies during summer months in urban and suburban sites (Albinet et al., 2008a; Bamford 

and Baker, 2003; Reisen and Arey, 2005; Ringuet et al., 2012a).  

 

5.3.3. Reactant/Parent Ratios 

The ratios of OPAH or NPAH ‘product’ to PAH ‘parent’ for the diurnal samples were also assessed. 

The ratios calculated during each time period at the two sites are presented in Figure 5.5. 

OPAH/PAH ratios are generally higher at BROS relative to EROS during most time periods 

indicating 9F and AQ are more strongly associated with primary vehicular emissions at the traffic 

site than at the background site.   

The decline in 9F/Flo ratio from morning rush hour peak throughout the daytime period at BROS is 

likely to reflect the traffic-related profile of both compounds. The increases in 9F/Flo, 9F/Phe and 

AQ/Ant during the daytime period at EROS may be a reflection of OH-generated input (and/or 

reaction with O3 in the case of AQ) during the period of maximum solar radiation and high O3 

concentrations.  

However, AQ/NOx and 9F/NOx displayed a significant (p>0.01) correlation with temperature, 

indicating the possible input from resuspension or volatilisation from surfaces at this site. However 

it should be noted that Flo, Phe and Ant also displayed this trend. The distinction between reactive 

and evaporative input at BROS is therefore unclear from these profiles.  
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a  

b  

Figure 5.5. Mean ratios of ‘reaction product’ OPAH and (NPAH x10) to ‘parent’ PAH in 

diurnal samples at BROS (a) and EROS (b).  

 

Observed nighttime increases in OPAH/PAH ratios at both sites may indicate the influence of NO3 

reactions which have been shown to produce 9F from Phe (L Wang et al., 2007b) and Flo (Kwok et 

al., 1997) in the gas phase and AQ from Ant (Zhang et al., 2011) in the particle phase.  

The NPAH/PAH ratios are shown to be higher at EROS than BROS during the daytime, indicting a 

greater reactive input at the background site, consistent with samples at this site representing a 
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more ‘aged’ air mass. The lack of an increase in NPAH/PAH ratio between morning and daytime at 

BROS indicates a less significant input from OH-initiated reactions at the traffic site.  

At EROS, ratios were higher during daytime than morning, indicting the formation of 2NFlt and 

2NPyr during the period when OH concentrations are likely to be highest.  However, as with 

OPAH/PAH, the ratios at EROS are likely to be influenced by volatilization of PAH and NPAH 

compounds from surfaces making the distinction between reactive and evaporative input more 

complex.  

At both BROS and EROS 2NFlt/Flt ratios display a marked increase at night, indicating the 

influence of NO3-initiated input of 2NFlt during this period.  The lack of increase in 2NP/Pyr during 

the night is consistent with the observation that 2NPyr does not result from NO3 reactions, in 

contract to 2NFlt. Similar diurnal variability in these NPAH/PAH ratios was observed by (Wei et al., 

2012) at sampling sites in southern China where 2NFlt/Flt shown to be higher during the night than 

during the day in summer and the converse trend was noted for 2NPyr/Pyr.  

Interestingly, Wei et al. (2012) noted much higher 7NBaA/BaA ratios at night than during the day. 

The authors indicated this may be due to a strong night-time emission source of 7NBaA rather than 

due to atmospheric reactivity. In this study, this ratio strongly indicated the dominance of morning 

emissions of 7NBaA, suggesting this compound is primarily emitted from road traffic, in contrast to 

the seasonal (Section 3.3) and traffic (Section 3.1) patterns. The origin of this NPAH compound is 

therefore rather unclear.  
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Chapter  6. Concentrations of PAHs, OPAHs and NPAHs 

in the Queensway Road Tunnel   

 

6.1. Tunnel concentrations of PAHs, OPAHs and NPAHs  

Details of the samples taken in Campaign 3 are provided in Table 2.1. Mean concentrations of 

PAHs, OPAHs and NPAHs measured in the Queensway Road Tunnel during Campaign 3 

(calculated by subtracted corresponding EROS concentration from measured tunnel 

concentration), and the proportion of each compound present in the particle-phase, are presented 

in Table 6.1. A comparison with concentrations measured simultaneously at EROS is provided.  

The relative proportions of PAHs, OPAHs and NPAHs present in the tunnel were broadly similar to 

those measured at the ambient roadside location BROS (see Section 3). Since it is assumed that 

road traffic is the only source influencing levels in the road tunnel, this indicates that traffic is the 

dominant source of most of these compounds at BROS also.  

6.1.1. PAH and OPAH concentrations  

EROS-corrected tunnel concentrations of PAHs and OPAHs in the Queensway Road Tunnel, and 

their distribution between the gas-phase and particle-phase are shown in Figure 6.1 and 6.2 

respectively. LMW PAHs (MW<203) comprised ~93% of total PAH mass, with concentrations 

ranging from 3.3 ng m-3 (Ace) to 81 ng m-3 (Phe). HMW (MW>228) PAHs were present at much 

lower levels, with concentrations ranging from 0.1 ng m-3 (DBA) to 0.9 ng m-3 (BPy).  

Concentrations of the OPAHs measured in the tunnel were lower than their corresponding semi-

volatile 3-4 ring PAHs. 9F was the dominant OPAH compound measured with lower levels of AQ 

and MAQ. BaAQ was present at very low concentration, indicating a relatively low traffic input of 

this compound. 9F was observed predominantly in the gas phase, while AQ, MAQ and BaAQ were 

present mainly in the particulate-phase.  
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Table 6.1. Mean±standard deviation of PAH, OPAH and NPAH concentrations measured in 

the Queensway Road Tunnel and EROS during Campaign 3 (n=4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The high proportion of gas-phase LWM PAH (3-4 rings) relative to particulate phase HMW PAH 

(5+ rings) has been observed in previous tunnel air samples (Fraser et al., 1998a; Khalili et al., 

1995) and emission studies of gasoline and diesel vehicles (Schauer et al., 1999,2002; Zhu et al., 

 
PAHs 

Mean Tunnel 
(ng/m3) 

% particle-
phase 

Mean EROS 
(ng/m3) 

% particle-
phase 

Acy 10±4 1 0.2±0.1 2 
Ace 3±2 3 0.4±0.2 4 
Flo 12±13 1 4±1.1 1 
Phe 81±26 5 26±1.3 4 
Ant 8±3 7 2±1 5 
Flt 14±4 49 3±1 10 
Pyr 11±4 67 4±0.6 11 
Ret 0.8±0.3 67 2±0.3 18 
BaA 1±0.3 72 0.1±0.01 69 
Chr 2±0.7 70 0.1±0.03 75 
BbF 0.8±0.4 88 0.4±0.2 71 
BkF 1±0.5 79 0.2±0.04 72 
BeP 0.8±0.3 90 0.1±0.04 77 
BaP 0.9±0.4 91 0.1±0.02 80 
IPy 0.8±0.4 95 0.2±0.1 78 

DBA 0.2±0.2 65 0.1±0.1 91 
Bpy 2±0.7 95 0.3±0.1 81 
Cor 0.8±0.2 99 0.1±0.01 91 

OPAHs 
Mean Tunnel 

(ng/m3) 
% particle-

phase 
Mean EROS 

(ng/m3) 
% particle-

phase 
9F 7±3 18 0.3±0.1 6 
AQ 4±1 94 0.3±0.1 61 

MAQ 2±0.3 100 0.2±0.02 78 
BaAQ 0.02±0.02 100 0.1±0.04 95 

NPAHs 
Mean Tunnel 

(pg/m3) 
% particle-

phase 
Mean EROS 

(pg/m3) 
% particle-

phase 
1NNap 1918±461 2 118±58 2 
2NNap 980±820 3 135±103 2 
2NFlo 94±85 95 13±10 50 
9NAnt 294±165 88 34±16 59 
1NFlt 19±24 75 13±15 79 
2NFlt 9±11 100 11±4 83 
3NFlt 18±16 95 1±0.4 76 
4NPyr 8±1 89 2±1 80 
1NPyr 343±157 96 5±3 86 
2NPyr 15.2±8 86 6±5 81 
7NBaA 2±3 94 1±1 96 
6NChr 5±3 88 0.4±0.3 94 
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2003; Zielinska et al., 2004a; 2004b). However, previous studies have noted much higher 

proportions of 3-ring compounds Ace, Acy and Flo in gasoline and diesel emissions (Fraser et al., 

1998a; Khalili et al., 1995; Zielinska et al., 2004b), relative to 4-ring PAHs such as Flt and Pyr, than 

were measured in the present tunnel samples. In contrast, Schauer and co workers observed that 

levels of Ace, Acy and Flo were much higher than Flt and Pyr in gasoline emissions but were 

relatively lower in diesel emissions.  

 

Figure 6.1. Mean PAH concentrations measured inside the Queensway Road Tunnel 

 

Emission rates of OPAHs have also been measured previously in tunnel sampling studies (Fraser 

et al., 1998; Oda et al., 1998) and dynamometer studies of gasoline and diesel vehicles. Zielinska 

et al. (2004b) indicated that gasoline emissions produce higher levels of AQ and 9F than diesel 
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emissions. However, other emission studies have indicated that diesel emissions can produce 

higher levels of 9F than catalyst-equipped gasoline emissions (Schauer et al., 1999, 2002). 

Oda et al. (1998) measured particulate-phase emission factors for OPAHs from traffic in a road 

tunnel. They indicated that particulate-phase emissions of AQ were a factor ~2 higher than 9F and 

MAQ. This is consistent with the findings in the present study when only the particle phase sample 

is considered. It has been shown that 9F is present mainly in the gas-phase in tunnel samples 

(Fraser et al., 1998), diesel emissions (Schauer et al., 1999) and gasoline emissions (Schauer et 

al., 2002), consistent with the Queensway Tunnel samples.  

When gas-phase contribution is considered, the ratio of 9F to AQ in the present study was ~1.8. 

Other studies indicate higher ratios (~5-50) have been observed in tunnel measurements (Fraser 

et al., 1998) and gasoline emission studies (Rogge et al., 1993a; Schauer et al., 2002; Zielinska et 

al., 2004b). However it should be noted that lower 9F:AQ ratios have been noted for diesel 

emissions relative to gasoline emissions (Rogge et al., 1993a; Zielinska et al., 2004b). The 

relatively low 9F:AQ ratio measured in this study could therefore indicate a relatively higher 

contribution from diesel vehicles in the tunnel.  

The parent PAH to OPAH ratio for Flo / 9F and Ant / AQ in the tunnel were ~1.7 and ~2 

respectively. Lower ratios have been observed in gasoline and diesel emissions for both Flo / 9F 

(Rogge et al., 1993a; Schauer et al., 1999,2002; Zielinska et al., 2004b) and Ant / AQ (Zielinska et 

al., 2004b). However, much higher ratios have been noted in other tunnel studies where a mixture 

of vehicles is present (Fraser et al., 1998a). It has been observed that PAH/OPAH ratios are higher 

for diesel emissions than gasoline emissions (Schauer et al., 1999,2002; Zielinska et al., 2004b).   

 

6.1.2. NPAH concentrations  

Measured concentrations of NPAH compounds in the Queensway Road Tunnel, and their 

distribution between the gas-phase and particle-phase are shown in Figure 6.3. 1 and 2NNap 
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isomers were the most abundant NPAHs compounds measured, predominantly present in the gas-

phase. The observed ratio of 1NNap/2NNap was ~1.8. This ratio is slightly higher than previously 

observed in the same tunnel by Dimashki et al. (2000).  
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Figure 6.2. Concentrations of OPAH compounds measured inside the Queensway Road 

Tunnel in Campaign 3.  

 

Direct vehicular emission data for NNap compounds, and relative production of 1- and 2- isomers 

is lacking and is typically only available for particulate-phase emissions (Draper, 1986; Zhu et al., 

2003; Zielinska et al., 2004b). Electrophillic nitration of Nap, likely to occur during the combustion 

process is expected to produce 1- and 2NNap at yields of 95% and 5% respectively (Ruehle, 

1985). Therefore it would be expected for 1NNap to be present at much higher levels than 2NNap 

in diesel emissions. It is indicated by some studies that the 1NNap isomer is dominant in diesel 
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emissions (Zielinska et al., 2004b) while others indicate emissions of 2NNap isomer can be higher 

(Ratcliff et al., 2010).  

1NPyr and 9NAnt are the dominant particle-phase NPAHs measured in the tunnel. These 

compounds have been identified as the two principal NPAHs present in diesel emissions 

(Campbell and Lee, 1984; Newton et al., 1982; Paputa-Peck et al., 1983; Ratcliff et al., 2010; 

Schuetzle et al., 1981; Schuetzle et al., 1982; Zhu et al., 2003; Zielinska et al., 2004b).  
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Figure 6.3. Concentrations of NPAH compounds measured inside the Queensway Road 

Tunnel in Campaign 3.  

 



241 
 

Dynamometer studies indicate diesel vehicles produce 1NPyr at levels a factor ~2 to 6 higher than 

9NAnt (Zhu et al., 2003; Zielinska et al., 2004b). However in the present study, the two compounds 

are present at similar levels. This is consistent with samples previously collected in the same 

tunnel by Dimashki et al. (2000). Furthermore, 9NAnt has been observed at higher concentration 

than 1NPyr at high traffic locations in the ambient atmosphere (Albinet et al., 2008a; Valle-

Hernandez et al., 2010).  

2NFlo was present in the tunnel at levels a factor ~3 lower than 1NPyr and 9NAnt. No previous 

data on emission rates of 2-NFlo from vehicular traffic are available for comparison. Other NPAH 

compounds 1NFlt, 3NFlt, 4NPyr, 7NBaA and 6NChr were identified in the tunnel at much lower 

concentrations. These compounds are typically found in relatively low concentrations in diesel 

emissions (Zhu et al., 2003; Zielinska et al., 2004b).  

2NPyr and 2NFlt are found in relatively low levels in the tunnel. These compounds are generally 

not observed in vehicular emissions and are the principal products of gas-phase (OH and/or NO3 

initiated) reactions of Pyr and Flth respectively (Atkinson and Arey, 1994). The low concentration of 

these compounds found in the tunnel is in agreement with previous measurements by Dimashki et 

al. (2000) and is consistent with the absence of direct sunlight and low oxidant concentrations 

resulting in negligible photochemical reactivity inside the tunnel. The relatively small amounts of 

these compounds observed in the tunnel can probably be attributed to the migration of air from 

outside of the tunnel.   

However, the possible formation of gas-phase reaction products, 2NFlt and 2NPyr, as well as 1-

NNap and 2-NNap inside the tunnel has been proposed (Dimashki et al., 2000). This involves the 

possible dark formation of OH radicals via the rapid conversion of NO to NO2 in diluted diesel 

exhaust (Shi and Harrison, 1997). This is further discussed in Section 6.3.  
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6.1.3. Comparison with other Tunnel studies  

Many previous on-road emission studies have sampled only particle-phase PAH (Chen et al., 

2013; Eiguren-Fernandez and Miguel, 2012; Marr et al., 1999; Miguel et al., 1998; Phuleria et al., 

2006). Furthermore, a large number of studies report results in terms of PAH emission factors i.e. 

mass emitted per unit volume/weight of fuel consumed (Marr et al., 1999; Miguel et al., 1998) or 

unit distance of vehicle travel (Fraser et al., 1998a; Kam et al., 2012; Staehelin et al., 1998).  

Table 6.2 provides a comparison between PAH levels observed in the present study with three 

previous investigations that measured total (particulate- + gas-phase) PAH concentrations in road 

tunnel studies.  

Pollutant concentrations in different locations can vary considerably due to differences in traffic 

fleet composition (e.g. relative level of gasoline- and diesel-fuelled vehicles), level of traffic 

congestion, fuel formulations, emission control measures (e.g. legislative requirements), tunnel 

characteristics (e.g. dimensions, level of ventilation) and meteorological conditions (e.g. relative 

humidity, temperature).  

Benner et al. (1989) measured considerably higher levels of HMW (5+ ring) PAHs than in the 

present study and the other studies. This is consistent with the relatively higher proportion of 

gasoline-fuelled vehicles present in the vehicle fleet. Indeed, it was estimated that the vehicle fleet 

in the Baltimore Harbour Tunnel comprised >80% gasoline-fuelled light duty vehicles. Semi-volatile 

3-4 ring PAHs were also present in high relatively high concentrations in this previous study, 

possibly due to the presence of a considerable proportion (>20%) of un-catalysed vehicles.  

The levels of HMW PAHs are relatively low in the other studies. This suggests a lesser proportion 

of gasoline-fuelled vehicles and/or similar emission control technologies being utilized in these 

locations. However there is considerable variation in the relative levels of LMW (3-4 ring) species 

between studies.    
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Wingfors et al. (2001) indicated that levels of Phe and Ant measured in a road tunnel correlated 

with the proportion of diesel-fuelled HDVs present in the vehicle fleet. The estimated proportions of 

diesel HDVs in the relevant studies were <3% (this study; Amey pers. comm) ; 9% (Benner et al., 

1989); 8-24% (Wingfors et al., 2001); and 47% (Ho et al., 2009). This could therefore partly provide 

an explanation for the observed differences in the levels of Phe and Ant between these tunnel 

studies.  

 

Table 6.2. Comparison of total (P+V) PAH concentrations and percentage of concentration 

in the particulate phase (%P) in different road tunnel measurements.  

  This studya 
Ho et al. 
(2009)b 

Benner et al. 
(1989)c 

Wingfors et al. 
(2001)d 

ng/m3 %P ng/m3 %P ng/m3 %P ng/m3 %P 

Acy 10 1.2 645 0 nm nm 12 4 

Ace 3 3 1748 0 nm nm 8 15 

Flo 12 1.2 209 0.7 nm nm 46 3 

Phe 81 5 205 4 209 12 179 21 

Ant 8 7 32 4 38 14 15 51 

Flt 14 49 45 46 56 55 73 84 

Pyr 11 67 45 59 58 51 87 87 

Ret 0.8 67 nm nm nm nm 0.3 100 

BaA 1 72 5 99 8 99 3 100 

Chr 2 70 8 74 14 85 4 97 

BbF 0.8 88 1 100 11 100 1 100 

BkF 1 79 0.3 100 11 100 0.1 100 

BeP 0.8 90 0 n 5 100 1 100 

BaP 0.9 91 1 100 6 100 1 100 

IPy 0.8 95 0.2 100 5 100 0.5 100 

DBA 0.2 65 0.3 100 nm nm 0.2 100 

BPy 2 95 0 nm 8 100 2 100 

Cor 0.8 99 nm nm nm nm 0.5 100 
 

a – Queensway Road Tunnel, Birmingham; Sept 2012; estimated 89 000 vehicles per day  

b – Shing Mun Tunnel, Hong Kong; Weekday noon samples; summer 2003; 53 000 vehicles per day.   

c – Baltimore Habor Tunnel, USA; 1985-86; mechanical ventilation; traffic flow unknown 

d – Ludby Road Tunnel in Gothenberg, Sweden; April 2000; 20 000 vehicles per day  

nm – not measured  
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No correlation with proportion of HDVs was found for other 3-4 ring species Ace, Acy, Flo, Flt and 

Pyr, which have been observed in relatively high concentrations in diesel emissions (Ratcliff et al., 

2010; Rogge et al., 1993a; Schauer et al., 1999; Zhu et al., 2003; Zielinska et al., 2004b).  

Differences in traffic numbers could potentially account for differences in observed concentrations 

of these PAHs.  

It should be noted that estimated traffic flow for Queensway tunnel, as provided by engineering 

consultancy Amey, was ~4-5 and ~1.7 times higher than the tunnel studies by Wingfors et al. 

(2001) and Ho et al. (2009) respectively. The observation of lower concentrations of 3-4 ring 

species in this study compared with the other studies is therefore somewhat unexpected.   

This could indicate the traffic flow in the Queensway Tunnel has been overestimated.  Accurate 

daily traffic data is not available for the tunnel itself and traffic counts were not performed during 

sampling. Traffic counts, supplied by the Department of Transport are available for sites on the 

same road approximately 200m away at either end of the tunnel , Daily traffic counts in 2012 at 

these sites were ~75 000 and ~25 000 for roads to the south and north east of the tunnel 

respectively. Only an unknown proportion of the traffic at these sites is expected to have passed 

through the tunnel. It is assumed, based on the number of potential traffic routes/origins available, 

that the lower of these traffic counts will be a better approximation of tunnel traffic flow, thus 

strongly suggesting that the traffic count supplied by Amey is an overestimate.  

Total PAH concentrations measured by Ho et al. (2009) were ~7 and ~20 times higher than the 

Wingfors et al. (2001) study and the present study respectively. Specifically, levels of Ace and Acy 

were considerably (60-600 times) higher. This was attributed to the high ratio of HDV diesel 

vehicles to gasoline vehicles present in the Ho et al. (2009) study, Indeed, the diesel emission 

factor was shown to be ~5 times higher than gasoline vehicles.  

Wingfors et al. (2001) and Ho et al. (2009) derived emission factors for PAHs in road tunnels, 

based on measured PAH concentrations, traffic numbers, tunnel dimensions and wind speed. It 

can be seen in Figure 5.4 that a very good correlation (R2>0.9) is observed between measured 
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concentrations in this study and the emission factors calculated by Wingfors et al. (2001). This is 

largely driven by high concentration and estimated emission factors for Phe. Correlation between 

these two data sets was weaker when Phe was removed (R2~0.77). 

It should be noted that, when the measured concentrations of Nap, 1MNap and 2MNap were 

included in this plot, a substantial discrepancy was observed between measured tunnel 

concentrations and the emission factors derived by Wingfors et al. (2001). This suggesed the 

occurrence of significant evaporative loss of these 2-ring PAH compounds during sampling, as 

previously suggested by Atkinson and Arey (pers. comm). Therefore, these compounds are not 

considered in the results of this investigation, as detailed in Section 2.1. 

 

 

Figure 6.4. Comparison of measured PAH concentrations inside the Queensway Tunnel in 

the present study with tunnel emission factors derived by Wingfors et al. (2001)  
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The two tunnels were similar (vehicle speed limit of ~70 km hr -1, natural ventilation), and sampling 

techniques were identical. The good agreement between measured concentrations and previous 

emission factors indicates broadly similar traffic characteristics (vehicle types and fuel 

compositions) and emission controls measures are influencing both tunnels. 

However, it can be seen that concentrations of Flo, Flt and Pyr measured in the present study fall 

below the expected level based on emission factors. This may be due to the higher proportion of 

diesel HDVs present in the Swedish tunnel. No correlation was found between measured 

concentrations in the Queensway Tunnel and the emission factors derived by Ho et al. (2009). This 

suggests very different traffic fleet composition, emission control measures and/or fuel formulations 

exist between the two location and this causes considerable differences in PAH emission profiles.  

Measured concentrations of OPAHs and NPAHs in road tunnels are lacking in the literature. 

NPAHs were measured previously in the Queensway Road Tunnel in 1996 by Dismashki et al. 

(2000). Comparison between the two studies is discussed in detail below as this will provide an 

assessment of temporal changes in traffic sources.   

Gorse et al. (1983) measured 1NPyr concentrations in the Allegheny Mountain Tunnel in 

Pennsylvania, USA in 1981. The maximum reported concentration was ~3 times lower than the 

mean concentration measured in the present investigation. Benner (1988) measured mean 

concentrations of ~0.3 ng/m3 for 1NPyr and 9NAnt in the Baltimore Harbour Tunnel in 1985, in 

good agreement with the levels observed in the present study. Given that the Baltimore Harbour 

Tunnel was artificially ventilated, while the Queensway Road Tunnel is not, the similar levels may 

result from a higher overall traffic flow in the previous study, differences in the relative proportion of 

diesel-fuelled vehicles and/or improved emission control technologies in the present study.  

 

6.1.4. Gas-particle phase partitioning  

Gas-phase compounds are shown to dominate the PAH burden in the tunnel environment, 

comprising ~82% of the total PAH mass. This is broadly consistent with ambient measurements  at 
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roadside locations and in other tunnel measurements (see Section 3 ; Harrad and Laurie, 2005; 

Smith and Harrison, 1996; Benner et al., 1989 ; Ho et al., 2009; Fraser et al., 1998, Khalili et al., 

1995).  

For example, Wingfors et al. (2001) indicated that ~81% of PAHs in a road tunnel were emitted in 

the gas-phase. Zielinska et al. (2004b) also showed that the bulk of PAH emissions from gasoline 

and diesel vehicles are in the gas-phase. Furthermore, Khalili et al. (1995) observed that 92% of 

the measured PAH in a road tunnel in Chicago were 2-3 ring PAHs present in the gas-phase. 

The relative level of PAH, OPAH and NPAH phase partitioning varies between tunnel and ambient 

measurements (see Table 6.1). For most LMW 3-ring compounds and HMW 5+ ring compounds, 

the proportion of compounds in the particle-phase in the tunnel is only slightly higher than that 

observed at EROS. However, semi-volatile compounds (e.g. Pyr, Flt, Ret, 9F, AQ, MAQ, 2NFlo) 

display markedly higher proportions in the particle-phase in the tunnel than in the ambient 

atmosphere. The phase partitioning behaviour of PAH, OPAH and NPAH as a function of 

compound MW is therefore markedly different for the tunnel and ambient samples (see Figure 6.5) 

with greater proportions of each compound class present in the particulate phase. 

Higher particulate-phase contributions may reflect more dominant role of direct emissions from 

vehicles in the tunnel, which may be associated to a greater extent with fine particles (Albinet et al., 

2008b; Zielinska et al., 2004a). Zielinska et al. (2004a) investigated phase partitioning of PAHs 

from diesel and gasoline vehicles. They found that Flt and Pyr were predominantly in the gas-

phase when vehicles were idle or at low engine loads but at higher vehicle load, a much larger 

proportion of these compounds were present in the particulate phase, particularly for diesel 

vehicles. This could indicate vehicles in the tunnel were operating under relatively higher load, thus 

contributing to higher particulate concentrations of these compounds.  

However, Ret has been shown to display an emission factor >250 times smaller than Flt and Pyr in 

a road tunnel (Wingfors et al., 2001), and is typically a marker for wood combustion (Ramdahl, 

1983). In this study Ret concentrations in the tunnel were lower than observed at EROS (see 
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Section 5.3). This indicates the dominant source of Ret is not road traffic and transportation of Ret 

from the ambient atmosphere outside the tunnel may be responsible for observed concentrations.  
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Figure 6.5. Plots of % of component in the particulate phase vs. molecular weigh for a) 

PAHs, b) OPAHs and c) NPAHs, measured in the tunnel (black dots, solid black line) and at 

EROS (white dots, dotted line).  
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If this is the case, it would suggest the tunnel environment (enclosed location, low ventilation rate 

and an assumed low, constant temperature) facilitates a more rapid partitioning of semi-volatile 

species to the particulate-phase than the ambient atmosphere (Kam et al., 2012). Furthermore it is 

noted that the concentration TSP in the tunnel was ~4-5 times higher than the annual mean at 

EROS. Ambient measurements will represent a more ‘aged’ PAH profile with contributions from 

other combustion sources and variations in meteorological conditions (e.g. temperature) which 

may drive partitioning into the gas-phase.  

Ho et al. (2009) and Benner et al. (1989) measured similar distribution of partitioning for 4-ring 

PAH in tunnel sampling studies. Wingfors et al. (2001), utilizing the same sampling technique as 

used in this study, found higher relative concentrations in the particle-phase for Flt and Pyr, with 

~84% and ~89% measured in the particulate phase respectively, compared with 49% and 67% in 

the present study.  This may be attributed to higher levels of TSP, which were ~6 times higher in 

the Swedish tunnel than in the present study.  

As indicated in Section 4.1, PAH partitioning at EROS appears to be approaching equilibrium 

behaviour. However, the situation was more unclear in the case of NPAH and OPAH compounds.  

The difference in partitioning behaviour between tunnel and ambient environments could possibly 

be attributed to compounds in the tunnel atmosphere representing a freshly emitted air mass 

where compounds have not reached partitioning equilibrium. To test this theory, as in Section 4.1, 

plots of log Kp vs log PL
o were produced for both tunnel and EROS samples. While the slopes for 

EROS plots were each approximately -1, the plots for tunnel samples produced more variable 

slopes, ranging from -0.5 to -1.1. This variation in slope values and the relatively small number of 

samples taken in this campaign mean is unclear how the difference in equilibrium conditions 

influences the gas-particle partitioning of PAHs in the tunnel.  

 

 



250 
 

6.2. Temporal trend in PAH and NPAH concentrations  

Previously sampling studies have measured concentrations of PAHs (Smith and Harrison, 1996) 

and NPAHs (Dimashki et al., 2000) in the Queensway Road Tunnel. Comparing the results of 

these previous studies with the current study can therefore provide an assessment of changes in 

emission profiles and possible reasons for observed changes over time. Concentrations of OPAHs 

have not previously been measured in the tunnel.  

6.2.1. Temporal trend of PAHs 

A comparison of PAH levels measured in the tunnel in 2012 and 1992 and the relative decline in 

compound concentrations is shown in Table 6.3. It should be noted that both studies were based 

on a relatively small number of samples and Smith and Harrison (1996) collected ~2 hr samples at 

unspecified times so comparisons should be made with caution.  

 

Table 6.3. Comparison of mean total (particulate + vapour) PAH concentrations measured in 

the Queesnsway Road Tunnel in 1992 (Smith and Harrison, 1996) and 2012 (present study).  

 

  

Tunnel concentration (ng/m3) 

% Decline 1992 (n=8) 2012 (n=4) 

Acy 95 10 90 

Ace 114 3 97 

Flo 167 12 93 

Phe 333 81 76 

Ant 51 8 84 

Flt 48 14 71 

Pyr 55 11 80 

BaA 14 1 93 

Chr 26 2 94 

BbF 13 0.8 93 

BkF 5 1 88 

BaP 13 0.9 93 

IPy 22 0.8 96 

DBA 4 0.2 95 

BPy 35 2 95 

Cor 12 1 94 
∑PAH 1122 158 86 
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The concentration of total PAH (comparing only the compounds measured in both studies) in 2012 

was ~85% lower than that reported in 1992. The magnitude of concentration reduction varies 

considerably between individual PAH compounds. The majority of compounds (Ace, Flo and HMW 

compounds) exhibit a decline of >90% while Phe, Flt and Pyr exhibit a decline of <80%. The 

differences in relative concentration decline decrease between compounds has resulted in a 

notable change in relative contributions of individual compounds to the total PAH burden inside the 

tunnel (see Figure 6.6). 

a  
 

b  
 

Figure 6.6. Contribution of individual PAHs to total PAH burden measured inside the 

Queensway Road Tunnel in a) 1992 (Smith and Harrison, 1996) and b) 2012 (present study).  
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The NAEI provides an estimate for emissions of individual PAH compounds from both gasoline- 

and diesel-fuelled urban vehicular traffic (Figure 3.9, Section 3.4). Estimated total emission decline 

from urban traffic over this time are shown to range from 23% and 70% for different PAHs with 

HMW compounds displaying more pronounced decreases than LMW compounds. It is indicated 

that the observed decline in PAH concentrations in the Queensway Road Tunnel between 1992 

and 2012 is generally higher than predicted by the NAEI emission estimates.  

However, emissions from gasoline vehicles only are shown to be relatively high (>65%) for most 

compounds over this time period. The relative reduction in diesel-fuel emissions over this time is 

shown to be generally lower and more variable between species. It should be noted that the 

emission inventory estimates are subject to a degree of uncertainty and that a national estimate 

may not be directly comparable with measurements in a specific traffic location.  

Historical reduction in PAH levels have been reported previously in road tunnel studies (Benner et 

al., 1989; Eiguren-Fernandez and Miguel, 2012). A number of factors have been shown to be 

responsible for reduction of PAHs from road vehicles. These include changes to fuel formulations 

(Westerholm and Egebäck, 1994)  e.g. uses of biofuels (Ratcliff et al., 2010) or use of additives to 

enhance the cetane or octane number (Williams et al., 1986; Zhu et al., 2003); innovations in 

engine design e.g. use of three-way catalysts (Rogge et al., 1993a; Schauer et al., 2002; 

Westerholm and Egebäck, 1994; Zielinska et al., 2004b) and improvement in exhaust emission 

control measures e.g. particulate filters (Hu et al., 2013), with their implementation being principally 

driven by increasingly strict government legislation (Perrone et al., 2014). Other factors e.g. state 

of vehicle maintenance and ambient conditions (temperature) of the vehicle are also shown to 

influence PAH emissions from road traffic (Zielinska et al., 2004b).   

For example, Eiguren-Fernandez and Miguel (2012) calculated emission factors (EFs) for particle-

phase PAH in the Caldercott Tunnel in Berkeley, California, where emissions from gasoline-fuelled 

LDVs and diesel-fuelled HDVs could be measured separately. EFs calculated were 9 and 17 times 

lower in 2004 than had been measured in the same tunnel in 1997 (Marr et al., 1999) for HDV and 
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LDV vehicles respectively. This was attributed to reformulated gasoline fuel and removal of older, 

higher-emitting vehicles from the fleet over this period (Phuleria et al., 2006).  

The reduction of PAH levels on the Queensway Road Tunnel can be attributed, to a large degree, 

to the introduction of mandatory catalytic converters to the UK in 1993. Catalytic converters have 

been shown to reduce the emissions of PAHs in gasoline-fuelled vehicles by 92-99% and 

reductions in OPAHs by ~79-97% (Rogge et al., 1993a; Schauer et al., 2002; Westerholm and 

Egebäck, 1994; Zielinska et al., 2004b). For example, Benner et al. (1989) measured PAH 

concentrations in the Baltimore Harbour Tunnel, USA, a factor 5-10 lower than a study conducted 

10 years earlier (Fox and Stanley, 1976). This was attributed to the introduction of catalytic 

converters which were first used in the USA in 1974.  

Figure 6.6 indicates that three compounds display an increase in relative contribution to total PAH 

burden in the tunnel; Pyr and Flth show relatively small increases while Phe which displays a larger 

increase. Other PAHs have reduced contributions compared with 1992 levels. The combined 

contribution of (Phe + Flt + Pyr) to ƩPAH burden has increased from ~44% in 1992 to ~72% in 

2012.  

The composition of the vehicle fleet has a major influence on the PAH emission profile. As 

discussed in previous sections, a large number of tunnel sampling and chassis dynamometer 

studies have identified the differences in PAH emission profiles for gasoline and diesel fuelled 

vehicles (Westerholm and Egebäck, 1994; Zielinska et al., 2004b).  

Gasoline-fuelled vehicles shown to emit higher levels of HMW compounds e.g. BaP, IPy, BPy, Cor 

(Marr et al., 1999; Miguel and Pereira, 1989; Miguel et al., 1998; Perrone et al., 2014), while diesel 

is generally shown to be a greater source of semi-volatile compounds such as Phe, Flt, and Pyr 

(Chen et al., 2013; Harrison et al., 1996; Miguel et al., 1998; Perrone et al., 2014). The results 

presented here may therefore be indicative of a more important role of diesel emissions to the total 

PAH burden than was observed in 1992.  
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However, it has been indicated that different stages of EU legislation on new vehicle emission 

limits (91/441/EEC) has resulted in progressively reduced PAH emissions from both gasoline and 

diesel since 1993 (Perrone et al., 2014). This may explain why, despite the stronger association 

with diesel exhaust, concentrations of LMW PAHs such as Phe have also decreased significantly, 

albeit to a lesser degree than gasoline-related compounds.  

 

6.2.2. The driving force behind emission changes  

The number of vehicles on the road in Great Britain increased by over 10 million between 1992 

and 2012, mostly due to passenger cars, taxis and vans (DfT, 2014).  

This period has also seen a notable shift in the relative distribution of gasoline- and diesel-fuelled 

vehicles in the traffic fleet (Figure 6.7). While there has been a modest (~500,000) decrease in the 

number of gasoline-fuelled cars in Great Britain since 1994, the number of diesel-fuelled 

passenger cars has increased by ~7.8 million. This trend has seen the relative proportion of diesel 

cars in the traffic fleet increase from ~7% in 1994 to ~33% in 2012 (DfT, 2014).  

This change has largely come about because diesel-fuelled vehicles have become more popular. 

Diesel vehicles tend to display a superior fuel economy, therefore making them cheaper to run, as 

well as producing lower emission CO2. Cars with lower CO2 emissions fall into cheaper Vehicle 

Excise Duty (car tax) bands. This provides the consumer with a financial incentive to purchase 

diesel cars. Furthermore, the legally binding EU CO2 emission targets give the car manufacturers 

further incentive to bring lower emission vehicles, such as diesel cars into the market at 

competitive prices. 
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Figure 6.7. Total number of gasoline and diesel fuelled passenger cars licensed in Great 

Britain (Dft, 2014).  

 

The trend in the number of gasoline and diesel vehicles on the road is reflected in national fuel 

sales. In the UK, sales of gasoline fuel decreased by ~43% between 1990 and 2011, from 33 

billion litres to 19 billion litres. Meanwhile the sales of diesel fuel more than doubled over this 

period, from ~12 billion litres in 1992 to ~25 billion litres in 2011 (UKPIA, 2012). The results of the 

present study therefore indicate the increased role of diesel emissions on the overall and relative 

levels of different PAHs in the urban atmosphere. For example this may provide an explanation for 

the change in relative contribution of individual compounds such as Phe, Pyr and Flt to the 

observed in the Queensway Road Tunnel.  

 

6.2.3. Temporal trend of NPAHs  

A comparison in concentrations of four NPAHs measured in the present study and those measured 

by Dimashki et al. (2000) in 1996 is shown in Table 6.4. In contrast to the significant decline noted 

for PAH concentrations, little or no decline in concentration is noted for NPAHs. The mean levels of 
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NNap isomers measured in the tunnel in 2012 fall within the range of concentrations measured in 

1996. The concentrations of 9NAnt and 1NPyr display levels only slightly lower (within 1 standard 

deviation) than the lower range of concentrations measured by Dimashki et al. (2000). The 

previous measurements were made on only one sampling day, while the current study is the 

average of four separate sampling days so comparison of results must be done with caution. 

Nevertheless, this observation is striking.  

 

Table 6.4. Comparison of total (particulate + vapour) NPAH concentrations measured in the 

Queensway Tunnel in 1996 (Dimashki et al., 2000) and 2012 (present study).   

 

  

Tunnel concentration (pg/m3) 

2012 (This Study) 1996 (Dimashki et al., 2000) 

1NNap 1918±461 560-2120 

2NNap 980±820 620-1570 

9NAnt 294±165 370-760 

1NPyr  343±157 440-690 

 

To our knowledge, this is the first study to investigate temporal variations in traffic profiles of 

NPAHs. 1NNap, 2NNap, 9NAnt and 1NPyr are all present in diesel exhaust emissions in relatively 

high levels (Campbell and Lee, 1984; Draper, 1986; Paputa-Peck et al., 1983; Zhu et al., 2003) 

and are present in low/negligible emissions from gasoline vehicles (Zielinska et al., 2004b).  

The difference between the temporal trends observed for NPAH compared with PAH may therefore 

be associated with the greater contribution of diesel vehicles to NPAH compounds. The overall and 

relative increase in diesel vehicles in the traffic fleet since 1996 may therefore account for a lack of 

decrease in NPAH concentrations.  

Evidence for the increased importance of NPAH over time in urban air has been indicated 

previously. For example, Matsumoto et al. (1998) noted the concentration of BaP declined 
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significantly in the period 1975 to 1992 in the heavily trafficked region of Sapporo, Japan, while the 

mutagenicity of collected particles remained unchanged. The authors suggested this could be 

attributed to an increase in diesel traffic and the possible associated increase in NPAH 

concentrations. 

The lack of increase in observed NPAH levels in the tunnel over this time may suggest that while 

the volume of diesel traffic has increased, the net emissions of NPAHs from diesel vehicles may 

have declined. Indeed, improved engine design (e.g. use of catalytic devices or particulate traps) 

and fuel formulation has been shown to reduce NPAH and OPAH concentrations as well as PAH 

(Fiedler and Mücke, 1991; Marinov et al., 2009; Nielsen et al., 1999; Ratcliff et al., 2010; 

Westerholm and Egebäck, 1994; Zhu et al., 2003).  

 

Perrone et al. (2014) indicated that increasingly stringent EU legislation on exhaust emissions of 

new vehicles (91/441/EEC) since 1993 has led to decreases in PAH emissions from both gasoline 

and diesel vehicles. Therefore, it may be expected that a decrease in NPAH emissions may have 

also resulted. However, as yet emission studies on NPAH have not been conducted to confirm this.  

The results of the present study suggest the temporal variation in NPAH concentrations in the 

Queensway Road Tunnel have been influenced by competing factors : i) an increase in the number 

of diesel vehicles on U.K roads, and ii) a net reduction in emissions from individual diesel vehicles 

in response to changes in fuel formulation and engine/exhaust system design.  

Despite these observations being based on a small number of relatively small sampling 

campaigns, it is indicated that the relative concentration of NPAH in vehicular emissions relative to 

PAHs has increased considerably in the past 20 years.  For example, the ratio of 1NPyr to BPy in 

Queensway Tunnel samples in the present study (~0.16) is an order of magnitude higher than the 

ratio using the concentrations of 1NPyr and BPy reported by Dimashki et al. (2000) and Smith and 

Harrison (1996) for concentrations in 1996 and 1992 (0.016).  
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6.3. Comparison of tunnel vs. ambient concentrations 

 

6.3.1. Overview 

It is assumed that concentrations of PAHs, OPAHs and NPAHs measured in the tunnel will result 

entirely from the emissions of gasoline and diesel traffic. Comparing levels of compounds 

measured in the tunnel with those observed in the ambient atmosphere (tunnel/ambient ratios) will 

allow the assessment of other influences (e.g. non-traffic sources, relative rates of loss processes) 

potentially affecting their overall and relative concentrations in the urban atmosphere.   

The ratios between mean concentrations measured in samples from the Queensway Road Tunnel 

to those measured simultaneously at EROS are shown in Figure 6.8. It can be seen that these 

ratios vary considerably for different individual compounds. This section discusses these 

differences and the possible explanations for the observed variations. It should be noted that these 

ratios represent the mean concentrations measured on only 4 individual sampling days, therefore 

may not necessarily be representative of compound behaviour over longer time scales.  

For most PAHs, OPAHs and NPAHs, concentrations are higher in the tunnel environment than 

were measured at the ambient background location. Total PAH concentration was ~4.5 times 

higher in the tunnel than the mean concentration at ambient EROS. This is generally consistent 

with the lower rate of dispersion and lower chemical reactivity expected in the tunnel environment.  

Similar observations have been noted in previous studies. Kim et al. (2012) noted that PAH 

concentrations were ~6 and 10 times higher in the Bukak Tunnel in Seoul, South Korea, than were 

measured at an ambient roadside location during spring and winter respectively. Similarly, 

Wingfors et al. (2001) also noted total PAH concentrations in the Ludby Tunnel in Gothenburg, 

Sweden were an order of magnitude higher than those measured in heavily trafficked urban areas.  
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Figure 6.8. Mean ratios of concentrations measured in the Queensway Road Tunnel to those 

measured simultaneously at EROS for samples taken in Campaign 3.  

 

6.3.2. Tunnel/EROS ratios of PAHs  

It can be seen that ratios for most PAH and OPAH compounds are in the range 2.5-8.5, however 

there is considerable variability between compounds, which can be attributed to differences in 

source contribution at the ambient site,  physiochemical properties, and/or relative reactivity rates 

of individual PAHs.  
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Reaction with OH is expected to be the dominant loss process for gas-phase LMW PAHs in the 

ambient atmosphere (Atkinson and Arey, 1994; Brubaker and Hites, 1998). However, as was 

observed with the diurnal pattern of these compounds, no trend was observed between [tunnel] / 

[ambient] concentration ratios and experimentally derived rate coefficients for gas-phase reaction 

towards OH. This suggests the ambient concentrations at BROS and EROS are influenced by 

other potential input and/or loss factors.  

The only PAH compound to exhibit a tunnel/ambient ratio of <1 was Ret. This is consistent with 

this compound resulting primarily from wood combustion rather than road traffic (Bari et al., 2010; 

Fine et al., 2002; McDonald et al., 2000; Ramdahl, 1983). Indeed, PMF analysis (see Section 3.7) 

suggested this Ret concentrations at the ambient sites result primarily from this source. Ret has 

not been measured in traffic exhaust emissions, however Wingfors et al. (2001) did measure very 

low levels of Ret in a road tunnel, suggesting a small contribution from vehicle emissions or 

transfer of air from outside of the tunnel.  

LMW (3-4 ring) compounds Flo, Phe, Ant, Flth, Pyr display relatively low (3 – 4.5) tunnel/ambient 

ratios. Given that these compounds, are expected to be relatively abundant in traffic emissions this 

observation is somewhat surprising. For example, Phe, Flt and Pyr are the dominant PAHs in 

diesel exhaust (Ratcliff et al., 2010 ; Zhu et al. , 2003) and therefore may be expected to display 

enhanced ratios.  

However, PMF analysis indicated that <45% of Phe, Flt and Pyr measured at the ambient sites 

result from traffic. The abundance of non-traffic sources at the ambient sites  e.g. wood combustion 

or revolatilisation of pollutants from road and or soil/vegetation surfaces, may therefore explain the 

relatively low ratios of these compounds.  

Interestingly, the tunnel/ambient ratio of Flt is higher than that of Pyr, despite higher OH reactivity 

noted for Pyr relative to Flt (Atkinson et al., 1990a; Bari et al., 2010; Brubaker and Hites, 1998; 

Fine et al., 2002; McDonald et al., 2000; Ramdahl, 1983).   
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It was noted in Section 3.2 that the positive correlation between NOx-corrected concentration and 

temperature was observed for Pyr but not Flt, suggesting Pyr concentrations at EROS may be 

‘buffered’ by volatilisation from soil or vegetation surfaces to a much greater degree than Flt 

resulting in lower tunnel/ambient ratio. This may account for lower tunnel/ambient ratios for Pyr 

relative to Flt.  

The tunnel/ambient ratio of Acy was considerably higher than those of other PAHs. This is 

consistent with relatively high gas-phase OH reactivity of this compound (Brubaker and Hites, 

1998; Reisen and Arey, 2002). The lack of direct sunlight inside the tunnel is likely to result in 

minimal reactivity, leading to enhanced ratios. 

However, while Ant is shown to display similarly fast reactivity towards OH (Brubaker and Hites, 

1998), the observed tunnel/ambient ratio is relatively lower than expected.   This may suggest the 

ambient concentration of these PAHs is influenced by non-traffic sources, either primary or non-

combustion related, as indicated by the seasonal (Section 3.3) and diurnal (Section 5) profiles of 

this compound.   

Ace displays relatively high tunnel/ambient ratios compared with other semi-volatile PAHs. This 

observation indicates a dominant traffic input at the ambient sites in these samples. This is 

consistent with the diurnal pattern observed for of Ace (Section 5). However the [BROS] – [EROS] 

traffic profile (Section 3.1) and temporal trend (Section 3.4) suggests the Ace concentration at the 

ambient sites is influenced significantly by a non-traffic seasonally-mediated source. PMF analysis 

suggested Ace concentrations are dominated by a specific source attributed to volatilisation from 

road surfaces, however it was noted that this does not account for the seasonal profile in Ace 

concentrations, suggesting a possible additional contribution from a domestic combustion source.  

Most HMW PAHs (MW>228) display relatively high tunnel/ambient ratios compared with most 

LMW PAHs.   BaA and Chy display particularly high ratios compared with other PAHs. Which may 

reflect a relatively low contribution of non-traffic related source of these compounds at the ambient 
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sites, as indicated by PMF analysis for Chr (see Section 3.7), and/or the additional influence of 

heterogeneous reactivity influencing these compounds.  

The relative differences in tunnel/ambient ratios between these compounds may be attributed to 

the relative stability of these compounds and/or the relative contribution of non-traffic sources to 

their ambient concentrations. For example, BaP displays a relatively higher ratio compared with 

other 5 ring PAH compound, despite PMF analysis attributing a significant proportion of BaP 

concentration to ambient concentrations at these sites (Section 4.3). This may be attributed to 

greater susceptibility of BaP to heterogeneous reactivity in the ambient atmosphere (Perraudin et 

al., 2007). 

DBA displays a relatively low tunnel/ambient ratio. This is consistent with a relatively low input from 

road traffic, as indicated by Jang et al. (2013) who assessed a ‘traffic’ profile at London monitoring 

sites, and may indicate an alternative seasonally-dependent combustion source influencing the 

ambient sites. BbF also displays a relatively low tunnel/ambient ratio despite PMF analysis 

suggesting a relatively high (~62%) contribution from traffic at the ambient sites. This observation 

is therefore somewhat unexpected.  

 

6.3.3. Tunnel/EROS ratios of OPAHs  

The OPAHs 9F, AQ and MAQ display higher tunnel/ambient ratios than those of most semi-volatile 

3-4 ring PAH compounds.  

It has been indicated in Section 3, 4 and 5, that concentrations of 9F, AQ and MAQ may be 

influenced by secondary input due to volatilisation from surfaces, wood combustion and/or 

chemical reactivity between sites. Indeed, the PMF analysis performed for AQ indicates a 

contribution from traffic of ~50% at these sites. However, the relatively high ratios suggest that 

concentrations at the ambient sites are dominated by traffic emissions and that non-traffic sources 

(both primary and secondary) do not control the concentrations of these compounds.  
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It has been demonstrated that particulate-phase OPAH are relatively stable towards photolysis but 

are shown to decay when exposed to ozone with half lives on wood smoke particles of 80-200 

mins (Kamens et al., 1989). However, it is noted that O3 concentrations used in this experiment 

were >10 times higher than the atmospheric O3 concentration observed in this study. It is 

suggested, therefore that OPAH concentrations are not influenced significantly by photolytic or 

reactive losses between BROS and EROS.  

The low (<1) ratios observed for BaAQ indicate that this compound is not emitted to a significant 

degree by road vehicles and is present in much higher levels in the ambient atmosphere. This 

suggests levels of this compound observed at BROS and EROS result primarily from a non-traffic 

combustion source such as natural gas home appliances (Rogge et al., 1993c) or uncontrolled 

domestic waste combustion (Sidhu et al., 2005). However, it should also be noted that a 

statistically significant ‘traffic increment’ was observed for this compound.   

 

6.3.4. Tunnel/EROS ratios of NPAHs  

NPAHs generally display higher tunnel/ambient ratios than unsubstituted PAHs, although, as noted 

with PAHs there is wide variability between individual compounds.  

Relatively high ratios were observed for 1NNap, 2NNap, 2NFlo, 9NAnt, 3NFlt, 1NPyr and 6NChy. 

These compounds are expected to be predominantly associated with diesel exhaust emissions 

(Ball and Young, 1992; Campbell and Lee, 1984; IARC, 1983 ; Paputa-Peck et al., 1983; 

Rappaport et al., 1982; Schuetzle et al., 1982; Schuetzle and Perez, 1983; Zhu et al., 2003; 

Zielinska et al., 2004a; 2004b) with lower input from other combustion sources (WHO, 2000).  

The principal atmospheric loss process for NPAHs is expected to be photolysis (Atkinson et al., 

1989; Fan et al., 1995; 1996a; 1996b; Phousongphouang and Arey, 2003a). This process is not 

expected to occur significantly in the tunnel environment where direct sunlight is absent. The high 
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ratios may therefore reflect the relative lack of non-traffic input of these compounds in the ambient 

atmosphere and the rapid photolytic and/or reactive losses in the ambient atmosphere. 

Indeed, both PMF analysis of 1NPyr and 1NNap concentrations indicate the strong influence of 

diesel emissions for these compounds at the ambient sites and the relatively low (3% and 18% 

respectively) from non-traffic sources.  The extremely high tunnel/ambient ratio observed for 1NPyr 

in summer at EROS suggests this compound is the most susceptible to photolytic degradation. 

Relatively few quantitative data are available for NPAH loss rates due to photolysis.  

While Fan et al. (1996a) indicated the structure of particle-associated NPAH compounds does not 

influence the rate of degradation, it has been suggested elsewhere that the isomeric structure of 

the compound does influence the rate of photolytic decay (Pitts, 1983). For example, Holloway et 

al. (1987) and Feilberg and Nielsen (2000) have indicated 1NPyr decays up to 10 times more 

rapidly than other MW 247 NPAHs.  

Previously, Dimashki et al. (2000) observed levels of 1NPyr and 9NAnt in the tunnel were ~6  and 

~2 times higher in the Queensway Road Tunnel than in the ambient atmosphere of Birmingham 

respectively. The ambient sampling in this previous study was conducted in central Birmingham 

during winter.  

The Tunnel/EROS ratio in the present study is shown to be a factor ~10 and ~4.5 higher than the 

previous study for 1NPyr and 9NAnt respectively. This may partly be attributed to higher input of 

pollutants in the city centre compared to the background University site and the fact that sampling 

in the present study was conducted in the late summer/early autumn with associated higher 

temperatures leading to potentially higher degradation rates in the ambient atmosphere.  

The tunnel/ambient ratio of 1NNap is a factor ~2.2 higher than 2NNap. Experimental studies 

indicate 1NNap will exhibit a rate of photolysis ~1.3 – 8 times higher than that of 2NNap (Atkinson 

et al., 1989; Niu et al., 2005; Phousongphouang and Arey, 2003a). This would suggest the 

observed difference in ratios for the two NNap isomers is due to differences in the rates of 

photolytic degradation and the relatively long exposure time of air samples collected at EROS.   
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NNap isomers are also shown to originate from secondary reactions from OH and NO3 reactions. 

The yield of 1NNap resulting from NO3 reactions with Nap has been shown to be higher (17%) 

than for 2NNap (7%) (Atkinson et al., 1989). However, it is indicated from diurnal profiles (see 

Section 4) that NO3 reactivity is of minor importance to these compounds at these sampling sites. 

NNap photolysis is rate is likely to be much faster than the reaction rate of Nap with OH (Atkinson 

and Arey, 1994) so it is suggested this process is not likely to have a substantial impact on 

observed tunnel/ambient ratios.  

The relatively low ratios observed for 1NFlt and 7NBaA indicate only a minor contribution from 

traffic for these compounds at the ambient sites. There is almost a complete absence of previous 

sampling (Bamford and Baker, 2003) and source emissions data available for 1NFlt.  7NBaA has 

been measured in vehicular emissions (Karavalakis et al., 2009; Zhu et al., 2003). However, the 

previous study in Birmingham did not detect this compound in the Queensway Road Tunnel but did 

observe measureable levels in the city centre (Dimashki et al., 2000).  

2NFlt and 2NPyr are expected to result from atmospheric reactions with minor input from road 

traffic (Atkinson and Arey, 1994). A tunnel/ambient ratio of <1 was observed for 2NFlt, consistent 

with low reactivity chemical in the tunnel. However, 2NPyr displays a ratio of ~5 which is 

unexpected. While relatively higher concentrations inside the tunnel may have been caused by 

transport of pollutants from outside the tunnel, this may not account for the relatively high ratio 

observed for 2NPyr 

It has been suggested that OH can be generated in-situ via the rapid conversion of NO to NO2 , 

that can take place in the absence of light in dilute vehicle emissions (Shi and Harrison, 1997).  

The proposed sequence of reactions would be initiated by diene components found in gasoline 

vehicle exhaust reacting with oxygen : 

R + O2  → RO2      (R=conjugated diene component)  

RO2 + NO2 → NO2 + RO 
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RO + O2  → R’CHO + HO2 

HO2 + NO  → NO2 + OH 

It is possible, therefore, that OH reactivity may occur inside the tunnel despite the absence of direct 

sunlight. However, more work is clearly required to establish if these reactions do indeed result in 

NPAH formation.  

It is not expected that gas-phase reactivity will not contribute significantly to the levels of 1NNap 

and 2NNap present in the tunnel, even if significant in-situ OH formation occurred as formation 

yields from OH-initiated reactions are relatively low (~1%) compared with NO3-initiated reactions 

(7-24%) (Atkinson and Arey, 1994). The high NO levels expected in the tunnel would result in very 

low NO3 concentrations.    
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Chapter 7. Summary and conclusions  

 

7.1. Investigation summary  

In this investigation the airborne concentrations of PAH, OPAH and NPAH compounds have been 

measured at ambient sites in trafficked and urban background locations and inside a road traffic 

tunnel. High volume air samplers were used to collect both particulate- and gas-phase air samples 

in a number of different sampling campaigns, designed to investigate different aspects of PAH 

behaviour and fate such as traffic source profiles, seasonality, phase partitioning, diurnal patterns 

and chemical degradation and/or formation.  

The difference in traffic source profiles, as well as spatial and temporal variations for individual 

PAH, OPAH and NPAH compounds has allowed an assessment of the factors governing their 

concentrations, behaviour and fate in the urban atmosphere. The following conclusions can be 

drawn :  

Concentrations of PAH, OPAH and NPAH compounds at the trafficked location  BROS were 

generally higher than at the urban background site EROS, due to the closer proximity to the traffic 

source. Relative inter-site differences were variable between species and also displayed distinct 

seasonality. This was attributed to differences in relative rates of atmospheric degradation and 

relative input from non-traffic sources (such as wood combustion, volatilisation from surfaces and 

photochemical reactions) for different compounds. The traffic increment (that is BROS – EROS) 

concentrations of most compounds was reflected in the relative concentrations measured in the 

Queensway Road Tunnel, suggesting traffic is the dominant source for most compounds at BROS. 

Concentrations at EROS were correlated with BROS concentrations for most compounds 

suggesting traffic is the dominant source at EROS also.  

Concentrations of most PAH appear to have declined substantially at these sites over the past 10 

years. This is broadly consistent with the estimated reduction of PAH emissions over this time, 
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particularly those associated with urban traffic. However, a number of compounds such as Ret, 

Ace, Pyr and Flt did not display this trend, suggesting the increased importance of non-traffic 

sources such as wood combustion at these sites.  

Concentrations of PAH, OPAH and NPAH compounds were generally much higher in the 

Queensway Road Tunnel than observed in the ambient atmosphere, due to the higher volume of 

traffic and the reduced dilution and chemical reactivity inside the tunnel. However, considerable 

variation was noted in tunnel/ambient behaviour between compounds, which was attributed to 

differences in the relative level of input from non-traffic sources and the role of photochemical 

degradation and/or input for PAHs, OPAHs and NPAHs in the ambient environment. The potential 

occurrence of OH radical reaction with PAHs in vehicle exhaust was also suggested.  

The concentrations of PAH compounds measured inside the Queensway Road Tunnel displayed a 

substantial decline compared with measurements taken in 1992. This was linked mainly to the 

introduction of catalytic converters as well as increasingly stringent vehicle emission legislation 

since the previous studies. In contrast, concentrations of NPAHs in the tunnel were similar to those 

measured in 1996. These results suggest that the increased numbers and relative proportion of 

diesel passenger vehicles over this time has impacted on the overall and relative concentrations of 

PAH and NPAH emissions from vehicles in the UK. These results suggest relative emissions of 

NPAH from traffic relative to PAHs have increased substantially in the past 20 years.  

The observed temporal, seasonal and diurnal patterns of PAH,OPAH and NPAH concentrations, 

and their inter-site variation between BROS and EROS indicate the potential importance of non-

traffic sources affecting the concentrations of a number of compounds at these sites.  PMF source 

apportionment analysis was carried out for some key PAHs and a small number of NPAH and 

OPAH compounds. The results suggest the potential importance of wood combustion at these 

sites, consistent with the estimated growth in emissions from this source nationally over the past 

10 years. The results also indicate a distinction between PAH source patterns from domestic 

heating and non-domestic heating combustion activities.  
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Concentrations for most compounds were higher during the winter months compared to summer. 

This was mainly associated with colder temperature and the resultant reduction in dispersion rate 

in winter, as well as lower rate of photochemical degradation. However, seasonal differences were 

relatively low, especially for LMW PAH compounds. This was attributed to the dominane of a non-

seasonal traffic source, relatively low seasonal variation in ambient temperature and possible 

influence of additional input of compounds from chemical reactions and/or volatilisation from 

surfaces during summer.  

Diurnal patterns derived in this study appear to be dominated for most compounds by a 

characteristic traffic profile with highest concentrations observed during morning rush hour. 

However, when concentrations were normalised with traffic marker compound NOx, the influence 

of a potential daytime source for LMW compounds was highlighted. It was suggested that 

temperature-driven volatilisation from soil, vegetation or road surfaces may be the cause of this 

pattern.  

PAHs, OPAHs and NPAHs exhibited characteristic gas-particle partitioning behaviour.  It was 

shown that the proportion of these compounds in the particulate phase is well characterised by 

different physiochemical properties such as MW, VP, Kow and H.  Phase partitioning of PAHs at 

background site EROS appeared to be approaching equilibrium conditions in contrast to trafficked 

site BROS, consistent with established partitioning models. However the factors influencing 

partitioning behaviour of OPAH and NPAH compounds were less clear.  

The importance of chemical reactivity as a PAH degradation process was indicated by the 

relatively large differences in concentration for highly reactive species such as Acy and Ant 

between trafficked and background sites. The ratio between BROS and EROS concentrations of 

LMW PAHs was shown to display distinct seasonally and association with measured OH reaction 

rate coefficients, although this was possibly masked to a degree by input from non-traffic sources.   

It was not possible to make a quantitative assessment on the relative contribution of secondary 

NPAH or OPAH input due to PAH reactivity at these sites. This was due to the relatively short 
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distance between traffic and background sites. However, the occurrence of photochemical input of 

NPAH (and OPAH) compounds between BROS and EROS samples was indicated by the inter-site 

differences and diurnal and seasonality patterns of 2NFlt/1NPyr ratios and product/reactant 

concentration ratios. It is indicated that OH radical input is dominant over NO3-related input at 

these sites.  

 

7.2. Recommendations for future work  

 

The following aspects are identified as potential areas for future investigation : 

i)  This investigation presents the first instance of a regular year-long measurement campaign for 

OPAH and NPAH concentrations in the U.K. It is suggested that there is a requirement for more 

regular monitoring of NPAHs and OPAHs in the long-term at different locations and better 

characterisation of their primary sources. This will help establish a longer-term profile for their 

concentrations and a better understanding of how this is influenced by changes in primary 

emissions in relation to secondary input from PAH reactivity.  

ii) This investigation highlights the potential for PMF source apportionment to be applied to OPAH 

and NPAH compounds. A larger scale long-term monitoring of these compounds would allow a 

relatively large data set to be available for this analysis in future. This would allow a more 

extensive suite of compounds to be considered and would enhance our understanding of the 

sources of NPAH and OPAH in the U.K.  

iii) It is clear that more work is required to fully understand the factors influencing the gas-particle 

partitioning of PAH, OPAH and NPAH. An important pre-requisite for this will be to obtain reliable 

experimental data for the key physiochemical properties of PAH, OPAH and NPAH compounds 

that are shown to play an important role in this process. For example, data on specific parameters 
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such as vapour pressure, octanol-air partitioning coefficient (Koa) and Henry’s Law constant, are 

lacking for many NPAH compounds.  

iv) Investigations of PAH, NPAH and OPAH emissions from vehicles often focus solely on particle-

phase extracts. The present investigation highlights the need for a better understanding of gas-

phase emissions in vehicle exhaust to better understand the relative role of primary traffic 

emissions vs. secondary atmospheric formation on the observed concentrations of LMW NPAH 

and OPAH compounds. 

v) Measurement of NPAH compounds in the present study indicate the possibility of reactions of 

PAH with OH radicals occurring in road tunnels. Further investigation of potential PAH + OH 

reactivity in vehicle exhaust emissions should be investigated to assess if this process can 

influence the nature and extent of NPAH input in the urban atmosphere.  

vi) This investigation also highlights how the concentrations of PAH, OPAH and NPAH compounds 

have been influenced by changes to vehicle emission control technologies, fuel formation and 

legislative measures. Future measures imposed to improve air quality e.g. introduction of low 

emission zones, should be accompanied by concurrent monitoring studies to assess the impact on 

PAH, OPAH and NPAH concentrations, with particular focus on potentially differing impacts on 

compounds on primary and secondary origin. Effective emission control measures to reduce NPAH 

emissions from vehicles should also be further investigated.  

vii) The majority of reaction products from PAH photochemical degradation processes remain 

unidentified. A more comprehensive elucidation of products from the reactions of many PAHs with 

OH, NO3 and O3 in both gas-phase and heterogeneous phases is required. This will allow more 

specific species to be targeted in air sampling studies to better investigate the role of PAH 

reactivity in observed atmospheric levels of NPAH and OPAH compounds.  
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Appendix 1. Reaction kinetics data for gas phase and 

heterogeneous PAH reactions  

 

 

The rate coefficients for the reactions of PAHs in both gas-phase and heterogeneous processes 

with a number of known atmospheric oxidants (e.g. OH, O3, NO3/N2O5) have been widely 

investigated in experimental laboratory studies. In the review paper by Keyte et al. (2013) these 

kinetics data for individual PAH compounds were complied.  

Presented here are the tables of derived rate coefficients from these studies. For a more complete 

discussion of these processes, the reader is directed to the Keyte et al. (2013) review paper and 

the references therein.  

 

The tables included in this section are as follows : 

Table A1 – Gas-phase reactions of PAHs with OH radicals 

Table A2 – Gas-phase reactions of PAH with NO3 radicals  

Table A3 – Gas-phase reactions of PAH with O3 

Table A4 – Heterogeneous reactions of PAHs with OH, NO2, O3 and O3/N2O5
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Table A1.  Second-order rate coefficients k(2) for gas-phase reactions of PAH with OH radicals (Keyte et al., 2013). 

 

 kOH                            
(cm-3 molecules-1 s-1) 

Reference T(K) Notes

Nap 2.4 x 10-11 (Phousongphouang and Arey, 
2003b) 

298 ± 2 RR relative to k(1,2,3-trimethylbenzene) = 3.27 x 10-11 cm-3 
moleculues-1 s-1 

 2.2 x 10-11 (Atkinson, 1989) 298 recommended value based on previous data, overall uncertainty of  
±30% 

 2.3 x 10-11 (Brubaker and Hites, 1998) 298 measured over the temperature range 306-366K 

 2.7 x 10-11 (Klamt, 1993) n/a theoretical calculation based on a new molecular orbital based 
estimation method 

 2.4 x 10-11 (Biermann et al., 1985) 298 ± 1 RR, relative to k(propene) = 2.63 x 10-11 cm-3 molecules-1 s-1 

 1.9 x 10-11 (Lorenz and Zellner, 1983) 300 Absolute rate, temperature range 300 - 873 K, extrapolated using 
Arrhenius parameter 

 2.2 x 10-11 (Klopffer et al., 1986) 300 RR, relative to k(ethene) = 8.44 x 10-12 cm-3 molecules-1 s-1 

 2.4 x 10-11 (Atkinson et al., 1984) 294 ± 1 RR, relative to k(n-nonane) = 1.07 x 10-11 cm-3 molecules-1 s-1 

 2.6 x 10-11 (Atkinson and Aschmann, 1986) 295 ± 1 RR, relative to k(2-methyl-1,3-butadiene) = 1.02 x 10-10 cm-3 
molecules-1 s-1 

1M-Nap 4.1 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1 , 
derived from the same work 

 5.3 x 10-11 (Atkinson and Aschmann, 1987) 298 ± 2 RR, 2-methyl-1,3-butadiene used as reference compound, T= 298±2 

 6.0 x 10-11 (Klamt, 1993) n/a theoretical calculation based on a new molecular orbital based 
estimation method 

2M-Nap 4.9 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 

 5.2 x 10-11 (Atkinson and Aschmann, 1986) 295 ± 1 RR, relative to k(2-methyl-1,3-butadiene) = 1.02 x 10-10 cm-3 
molecules-1 s-1 

 5.7 x 10-11 (Klamt, 1993) n/a theoretical calculation based on a new molecular orbital based 
estimation method 

1E-Nap 3.6 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 
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2E-Nap 4.0 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1 , 
derived from the same work 

1,2DM-Nap 6.0 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 

1,3DM-Nap 2.2 x 10-11 (Banceu et al., 2001) 295 RR [relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1 

 7.5 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 

1,4DM-Nap 5.8 x 10-12 (Klamt, 1993) n/a theoretical calculation based on a new molecular orbital based 
estimation method 

 5.8 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 

1,5DM-Nap 6.0 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 

1,6DM-Nap 6.3 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 

1,7DM-Nap 6.8 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 

1,8DM-Nap 6.3 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 

2,3DM-Nap 6.2 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 

 1.0 x 10-10 (Klamt, 1993) n/a theoretical calculation based on a new molecular orbital based 
estimation method 

 7.7 x 10-11 (Atkinson and Aschmann, 1986) 295 ± 1 RR, relative to k(2-methyl-1,3-butadiene) = 1.02 x 10-10 cm-3 
molecules-1 s-1 

2,6DM-Nap 6.7 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1, 
derived from the same work 

2,7DM-Nap 6.9 x 10-11 (Phousongphouang and Arey, 2002) 298 ± 2 RR, relative to k(naphthalene) = 2.39 x 10-11 cm-3 molecules-1 s-1 , 
derived from the same work 

Ace 8.0 x 10-11 (Reisen and Arey, 2002) 296 RR [relative to k(trans-2-butene) = 6.48 x 10-11 cm-3 molecules-1 s-1 

 5.8 x 10-11 (Brubaker and Hites, 1998) 298 measured over the temperature range 325-365K 

 1.0 x 10-10 (Atkinson and Aschmann, 1987) 296 ± 1 RR [relative to k(2,3-dimethyl-2-butene) = 1.11 x 10-10 cm-3 molecules-1 
s-1 

 5.8 x 10-11 (Klopffer et al., 1986) 300 RR [relative to k(ethene) = 10-12 cm-3 molecules-1 s-1 

 6.4 x 10-11 (Banceu et al., 2001) 295 RR [relative to k(naphthalene) = 2.2 x 10-11 cm-3 molecules-1 s-1 

 8.0 x 10-11 (Klamt, 1993) n/a theoretical calculation based on a new molecular orbital based 
estimation method 
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Acy 1.2 x 10-10 (Reisen and Arey, 2002) 296 RR [relative to k(trans-2-butene) = 6.48 x 10-11 cm-3 molecules-1 s-1 

 1.3 x 10-10 (Banceu et al., 2001) 295 RR [relative to k(naphthalene) = 2.2 x 10-11 cm-3 molecules1 s-1 

 1.1 x 10-10 (Atkinson and Aschmann, 1987) 296 ± 1 RR [relative to k(2,3-dimethyl-2-butene) = 1.11 x 10-10 cm-3 molecules-1 
s-1 

Fln 1.6 x 10-11 (Kwok et al., 1994b) 297 placed on an absolute basis by using k2(cyclohexane = 7.47 x 10-11 
cm-3 molecules-1 s-1 

 1.3 x 10-11 (Brubaker and Hites, 1998) 298 measured over the temperature range 326-366K 

 9.9 x 10-12 (Klamt, 1993) n/a theoretical calculation based on a new molecular orbital based 
estimation method 

 1.3 x 10-11 (Klopffer et al., 1986) 300 RR [relative to k(ethene) = 7.47 x 10-12 cm-3 molecules-1 s-1 

Phe 3.4 x 10-11 (Biermann et al., 1985) 298 ± 1 RR [relative to k(propene) = 4.85 x 10-12 e504/T  cm-3 molecules-1 s-1 

 3.1 x 10-11 (Atkinson, 1989) 298 recommended value based on previous data, overall uncertainty of  
±30% 

 2.6 x 10-11 (Klamt, 1993) n/a theoretical calculation based on a new molecular orbital based 
estimation method 

 1.6 x 10-11 (Lorenz and Zellner, 1983) 338 Absolute rate study, measured over a temperature range 338 - 748 K 

 1.3 x 10-11 (Kwok et al., 1994b) 296 RR [relative to k(propene) = 2.66 x x 10-11 cm-3 molecules-1 s-1 

 2.7 x 10-11 (Brubaker and Hites, 1998) 298 measured over the temperature range 346-386K, extrapolated using 
Arrhenius parameters 

 3.2 x 10-11 (Lee et al., 2003) 298 measured over the temperature range 298-386K, extrapolated using 
Arrhenius parameters 

 4.98 ± 2.96 x 10-6 T-1.97 ± 0.10 (Ananthula et al., 2006) 373-1000  two-parameter expression to best fit experimental data 

1M-Phe 2.9 x 10-11 (Lee et al., 2003) 298 measured over the temperature range 363-403K, extrapolated using 
Arrhenius parameters 

2M-Phe 6.5 x 10-11 (Lee et al., 2003) 298 measured over the temperature range 338-398K, extrapolated using 
Arrhenius parameters 

3M-Phe 6.6 x 10-11 (Lee et al., 2003) 298 measured over the temperature range 353-388K, extrapolated using 
Arrhenius parameters 

9M-Phe 7.6 x 10-11 (Lee et al., 2003) 298 measured over the temperature range 333-373K, extrapolated using 
Arrhenius parameters 

Ant 1.1 x 10-10 (Biermann et al., 1985) 325 ± 1 RR [relative to k(propene) = 2.29 x x 10-11 cm-3 molecules-1 s-1 

 1.9 x 10-10 (Brubaker and Hites, 1998) 298 measured over the temperature range 346-365K 
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 1.3 x 10-11 (Kwok et al., 1994b) 296 based on a derived k(anthracene)/k(phenanthrene) value of 1.0 ± 0.5 

 2.0 x 10-10 (Klamt, 1993) n/a theoretical calculation based on a new molecular orbital based 
estimation method 

 1.3 x 10-10 (Atkinson, 1989) ; (Biermann et al., 
1985) 

298 recommended value based on previous data, overall uncertainty of  
±30% 

 1.12 x 10-10 (T/298)-0.46 (Goulay et al., 2005) 58-470 two-parameter expression to best fit experimental data 

 8.17 x 10-14 T-8.3 e (-3171.71 / T)   (Ananthula et al., 2006) 373-923 modified Arrhenius equation to best fit experimental data 

 2.18 x 10-11 e(-1734.11 / T) (Ananthula et al., 2006) 999-1200 modified Arrhenius equation to best fit experimental data 

Flt 1.1 x 10-11 (Brubaker and Hites, 1998) 298 measured over the temperature range 346-366K 

Pyr 5.0 x 10-11 (Atkinson et al., 1987a) 296±2 RR Relative to k(naphthalene) = 3.6 x 10-28 cm-3 molecules-1 s-1 

1N-Nap 5.4 x 10-11 (Atkinson, 1989) 298 recommended value 

2N-Nap 5.6 x 10-11 (Atkinson, 1989) 298 recommended value 
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Table A2.  Second-order rate coefficients k(2) for gas-phase reactions of PAH with NO3 radicals (Keyte et al., 2013). 

 kNO3                  
(cm-3 molecules-1 s-1) 

 
(x [NO2] ) 

kNO3

(cm-3 molecules-1 s-1) 
 

[NO2] = 6.91 x 1011 

molecule cm-3 a 

Reference T (K) Note

Nap 8.5 x 10-28 1.1 x 10-16 (Pitts et al., 1985c) 298±2 RR Relative to K5(NO3 + NO2 – N2O5) = 3.41 x 10-11 
cm-3 molecules-1 s-1 

 4.8 x 10-28 6.2 x 10-17 (Atkinson et al., 1987b) 298±2 RR Relative to K5(NO3 + NO2 – N2O5) = 3.41 x 10-11 
cm-3 molecules-1 s-1 

 3.3 x 10-28 4.3 x 10-17 (Atkinson and Aschmann, 1988) 296±2 RR Relative to k(propene) = 9.45 x 10-15 cm-3 
molecules-1 s-1 

 3.7 x 10-28 4.7 x 10-17 (Atkinson et al., 1990a) ~297 RR Relative to k(thioprene) = 9.93 x 10-14 cm-3 
molecules-1 s-1, Measured over temp range 272-

297K 
 4.2 x 10-28 5.5 x 10-17 (Atkinson et al., 1990a) ~297 RR Relative to K5(NO3 + NO2 – N2O5) = 1.26 x 10-27 

e11275/T cm-3 molecules-1 s-1, Measured over temp 
range 272-297K 

 3.6 x 10-28 4.6 x 10-17 (Atkinson, 1991) 298 Recommended value 

1M-Nap 8.4 x 10-28 1.1 x 10-16 (Atkinson and Aschmann, 1987) 298±2 RR Relative to k(naphthalene) = 3.6 x 10-28 cm-3 
molecules-1 s-1 

 7.0 x 10-28 9.0 x 10-17 (Atkinson and Aschmann, 1988) 296±2 RR Relative to k(trans-2-butene) = 3.89 x 10-13cm-3 
molecules-1 s-1 

 7.7 x 10-28 9.9 x 10-17 (Atkinson, 1991) 298 Recommended value 

 7.2 x 10-28 9.2 x 10-17 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1, derived from the same work 

2M-Nap 1.1 x 10-27 1.4 x 10-16 (Atkinson and Aschmann, 1987) 298±2 RR Relative to k(naphthalene) = 3.6 x 10-28 cm-3 
molecules-1 s-1 

 1.1 x 10-27 1.4 x 10-16 (Atkinson and Aschmann, 1988) 296±2 RR Relative to k(propene) = 9.45 x 10-15 cm-3 
molecules-1 s-1 

 1.1 x 10-27 1.4 x 10-16 (Atkinson, 1991) 298 Recommended value 

 1.0 x 10-27 1.3 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1 , derived from the same work 
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1E-Nap 9.8 x 10-28 1.3 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1 , derived from the same work 

2E-Nap 8.0 x 10-28 1.0 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1 , derived from the same work 

1,2DM-
Nap 

6.4 x 10-27 8.3 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(2,7-DMN) = 21 x 10-28 cm-3 
molecules-1 s-1 , derived from the same work 

1,3DM-
Nap 

2.1 x 10-27 2.7 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1 , derived from the same work 

1,4DM-
Nap 

1.3 x 10-27 1.7 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1 , derived from the same work 

1,5DM-
Nap 

1.4 x 10-27 1.8 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1, derived from the same work 

1,6DM-
Nap 

1.7 x 10-27 2.1 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1 , derived from the same work 

1,7DM-
Nap 

1.4 x 10-27 1.7 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x x 10-28 cm-3 
molecules-1 s-1 , derived from the same work 

1,8DM-
Nap 

2.1 x 10-26 2.7 x 10-15 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(2,7-DMN) = 21 x 10-28 cm-3 
molecules-1 s-1 , derived from the same work 

2,3DM-
Nap 

1.5 x 10-28 1.9 x 10-17 (Atkinson and Aschmann, 1987) 298±2 RR Relative to k(naphthalene) = 3.6 x 10-28 cm-3 
molecules-1 s-1 

 1.6 x 10-27 2.1 x 10-16 (Atkinson and Aschmann, 1988) 296±2 RR Relative to k(propene) = 9.45 x  10-15 cm-3 
molecules-1 s-1 

 1.6 x 10-27 2.0 x 10-16 (Atkinson, 1991) 298 Recommended value 

 1.5 x 10-27 2.0 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1, derived from the same work 

2,6DM-
Nap 

2.1 x 10-27 2.7 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1 , derived from the same work 

2,7DM-
Nap 

2.1 x 10-27 2.7 x 10-16 (Phousongphouang and Arey, 
2003b) 

298±2 RR Relative to k(naphthalene) = 3.65 x 10-28 cm-3 
molecules-1 s-1 
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a [NO2] = 6.91 x 1011 molecule cm-3; annual  average, Harwell, U.K. (2011) 

b [NO2] = <1.2 x 1015 molecule cm-3 

c [NO2] = (7.2-24) x 1013 molecule cm-3 

d [NO2] = (4.8-24) x 1013 molecule cm-3 

 

 

 

 

 

 

 

 

Ace  4.6 x 10-13 b (Atkinson and Aschmann, 1988) 296±2 RR Relative to k(trans-2-butene) = 3.89 x 10-13 cm-3 
molecules-1 s-1 

 1.7 x 10-27 2.1 x 10-16 (Atkinson and Aschmann, 1988) 296±2 RR Relative to k(trans-2-butene) = 3.89 x 10-13 cm-3 
molecules-1 s-1 

Acy  5.5 x 10-12 b (Atkinson and Aschmann, 1988) 296±2 RR Relative to k(trans-2-butene) = 3.89 x 10-13 cm-3 
molecules-1 s-1 

Fln  3.5 x 10-14 c (Kwok et al., 1997) 297±2 RR Relative to k(1-butene) = 1.19 x 10-14  cm-3 
molecules-1 s-1 

Phe  1.2 x 10-13 d (Kwok et al., 1994a) 296±2 RR Relative to k(1-butene) = 1.19 x 10-14  cm-3 
molecules-1 s-1 

Flt 5.1 x 10-28 6.6 x 10-17 (Atkinson et al., 1990a) 296±2 RR Relative to k(naphthalene) = 3.6 x 10-28 cm-3 
molecules-1 s-1 

Pyr 1.6 x 10-27 2.1 x 10-16 (Atkinson et al., 1990a) 296±2 RR Relative to k(naphthalene) = 3.6 x 10-28 cm-3 
molecules-1 s-1 

1N-Nap 3.0 x 10-28 3.9 x 10-17 (Atkinson, 1991) 298 Recommended value 

2N-Nap 2.7 x 10-28 3.5 x 10-17 (Atkinson, 1991) 298 Recommended value 
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Table A3.  Second-order rate coefficients k(2) for gas-phase reactions of PAH with O3 (Keyte et al., 2013). 

 

 

 kO3                   
(cm-3 molecules-1 s-1) 

Reference T (K) Notes

Nap <2.0 x 10-19 (Atkinson et al., 1984) 294±1 Upper limit 

 <3.0 x 10-19 (Atkinson and Aschmann, 1986) 295±1 Upper limit 

1M-Nap <1.3 x 10-19 (Atkinson and Aschmann, 1987) 298±2 Upper limit 

2M-Nap <3.0 x 10-19 (Atkinson and Aschmann, 1986) 295±1 Upper limit 

 <4.0 x 10-19 (Atkinson and Aschmann, 1987) 295±2 Upper limit 

Ace <5.0 x 10-19 (Atkinson and Aschmann, 1988) 296±2 Upper limit 

Acy 5.5 x 10-16 (Atkinson and Aschmann, 1988) 296±2  

 1.6 x 10-16 (Reisen and Arey, 2002) 296±2 RR, relative to k(2-methyl-2-butadiene) = 3.96 x 10-16 cm-3 
molecules-3 s-1 

2,3DM-Nap <4.0 x 10-19 (Atkinson and Aschmann, 1986) 295±1 Upper limit 

 <2.0 x 10-19 (Kwok et al., 1994b) 
 

297±2 Upper limit 

Phe 4.0 x 10-19 (Kwok et al., 1997) 
 

296±2  

1N-Nap <6.0 x 10-19 (Atkinson, 1994) 298±2 Upper limit 

2N-Nap <6.0 x 10-19 (Atkinson, 1994) 298±2 Upper limit 
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Table A4.  Second-order rate coefficients k(2) for heterogeneous reactions of PAH with OH, NO2, O3 and NO3/N2O5 (Keyte et al., 2013). 

 

PAH OH Reactions NO2 Reactions O3 Reactions NO3 reactions  

kOH (cm3 
molec-1 s-1) 

Reference Notes kNO2 (cm3 
molec-1 s-1) 

Reference Notes kO3 (cm3 
molec-1 s-1) 

Reference Notes kNO3 (cm3 
molec-1 s-1) 

Reference Notes 

Nap             0.9 x 10-18 / 
(1/cO3 + 10-

15) 

(Kahan et 
al., 2006) 

Octanol       

Phe 5.0 x 10-12 (Estéve et 
al., 2004) 

Graphite 
particles 

2.8 x 10-19 (Perraudin 
et al., 2005) 

Silica 
particles 

2.4 x 10-17 (Perraudin 
et al., 
2007) 

Graphite 
particles 

      

3.2 x 10-13 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 
1650a 

3.4 x 10-18 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

2.3 x 10-17 (Perraudin 
et al., 
2007) 

Silica 
particles 

      

      3.5 x 10-17 (Estéve et 
al., 2004) 

Graphite 
particles 

2.3 x 10-19 / 
(1/cO3 + 4.6 

x 10-16) 

(Kahan et 
al., 2006) 

Octanol       

      1.1 x 10-17 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 1650a 

1.0 x 10-18 / 
(1/cO3 + 1.4 

x 10-16) 

(Kahan et 
al., 2006) 

Ice       

      2.3 x 10-21 (Butler and 
Crossley, 

1981) 

Ethylene 
flame soot 

            

Ant 4.4 x 10-12 (Estéve et 
al., 2006) 

Graphite 
particles 

1.0 x 10-16 (Perraudin 
et al., 2005) 

Silica 
particles 

9.8 x 10-17 (Perraudin 
et al., 
2007) 

Graphite 
particles 

      

      3.4 x 10-18 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

1.4 x 10-16 (Perraudin 
et al., 
2007) 

Silica 
particles 

      

      6.9 x 10-17 (Estéve et 
al., 2004) 

Graphite 
particles 

5.1 x 10-18 / 
(1/cO3 + 

1.96 x 10-

15) 

(Kwamena 
et al., 
2006) 

Octanol       
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1.0 x 10-16 

(Ma et al., 
2011) 

Silica 
particles 

1.3 x 10-16/ 
(1/cO3 + 2.2 

x 10-15) 

(Kwamena 
et al., 
2007) 

Azelaic 
acid (wet) 

      

       
5.3 x 10-17 

(Ma et al., 
2011) 

MgO 
particles 

1.0 x 10-15 / 
(1/cO3 + 10-

13) 

(Kwamena 
et al., 
2007) 

Phenylsilox
ane oil 

      

            1.2 x 10-18 / 
(1/cO3 + 1.2 

x 10-18) 

(Mmereki 
et al., 
2004) 

Water       

Flt 1.4 x 10-14 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot  

3.2 x 10-21 (Perraudin 
et al., 2005) 

Silica 
particles 

1.9 x 10-17 (Perraudin 
et al., 
2007) 

Graphite 
particles 

      

3.2 x 10-12 (Estéve et 
al., 2004) 

Graphite 
particles 

1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

1.5 x 10-17 (Perraudin 
et al., 
2007) 

Silica 
particles 

      

3.8 x 10-13 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 
1650a 

2.9 x 10-17 (Estéve et 
al., 2004) 

Graphite 
particles 

            

      1.0 x 10-17 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 1650a 

            

      2.5 x 10-21 (Butler and 
Crossley, 

1981) 

Ethylene 
flame soot 

            

Pyr 1.6 x 10-14 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

2.0 x 10-17 (Perraudin 
et al., 2005) 

Silica 
particles 

2.5 x 10-17 (Perraudin 
et al., 
2007) 

Graphite 
particles 

6.4 x 10-12 (Liu et 
al., 2012) 

Azelaic 
acid 

particles 
3.2 x 10-12 (Estéve et 

al., 2004) 
Graphite 
particles 

1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

5.9 x 10-17 (Perraudin 
et al., 
2007) 

Silica 
particles 

      

4.1 x 10-13 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 
1650a 

5.1 x 10-17 (Estéve et 
al., 2004) 

Graphite 
particles 

9.3 x 10-17 (Miet et al., 
2009b) 

Silica 
particles 
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2.4 x 10-13 (Miet et al., 
2009a) 

Silica 
particles 

1.5 x 10-17 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 1650a 

2.2 x 10-19 / 
(1/cO3 + 3.1 

x 10-16) 

(Kahan et 
al., 2006) 

Octanol       

      4.8 x 10-21 (Butler and 
Crossley, 

1981) 

Ethylene 
flame soot 

            

      3.2 x 10-16 Miet et al.277 Silica 
particles 

            

Chr 9.2 x 10-15 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

6. 0 x 10-19 (Perraudin 
et al., 2005) 

Silica 
particles 

1.5 x 10-17 (Perraudin 
et al., 
2007) 

Graphite 
particles 

4.0 x 10-12 (Liu et 
al., 2012) 

Azelaic 
acid 

particles 
5.0 x 10-12 (Estéve et 

al., 2004) 
Graphite 
particles 

1. 0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

3.1 x 10-17 (Perraudin 
et al., 
2007) 

Silica 
particles 

      

4.4 x 10-13 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 
1650a 

3.9 x 10-17 (Estéve et 
al., 2004) 

Graphite 
particles 

            

      1.0 x 10-17 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 1650a 

            

      2.6 x 10-21 (Butler and 
Crossley, 

1981) 

Ethylene 
flame soot 

            

BaA 9.2 x 10-15 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

6.7 x 10-18 (Perraudin 
et al., 2005) 

Silica 
particles 

2.8 x 10-17 (Perraudin 
et al., 
2007) 

Graphite 
particles 

4.3 x 10-12 (Liu et 
al., 2012) 

Azelaic 
acid 

particles 
5.6 x 10-13 (Estéve et 

al., 2004) 
Graphite 
particles 

1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

8.7 x 10-17 (Perraudin 
et al., 
2007) 

Silica 
particles 

      

3.2 x 10-13 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 
1650a 

3.3 x 10-17 (Estéve et 
al., 2004) 

Graphite 
particles 

            

      1.3 x 10-17 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 1650a 
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      6.2 x 10-21 (Butler and 
Crossley, 

1981) 

Ethylene 
flame soot 

            

BkF  1.0 x 10-14 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

2.2 x 10-18 (Perraudin 
et al., 2005) 

Silica 
particles 

1.9 x 10-17 (Perraudin 
et al., 
2007) 

Graphite 
particles 

      

3.5 x 10-12 (Estéve et 
al., 2004) 

Graphite 
particles 

1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

3.6 x 10-17 (Perraudin 
et al., 
2007) 

Silica 
particles 

      

      2.5 x 10-17 (Estéve et 
al., 2004) 

Graphite 
particles 

            

BaP 1.1 x 10-14 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

9.3 x 10-16 (Perraudin 
et al., 2005) 

Silica 
particles 

5.3 x 10-17 (Perraudin 
et al., 
2007) 

Graphite 
particles 

      

4.1 x 10-12 (Estéve et 
al., 2004) 

Graphite 
particles 

1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

1.4 x 10-16 (Perraudin 
et al., 
2007) 

Silica 
particles 

      

2.9 x 10-13 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 
1650a 

7.8 x 10-17 (Estéve et 
al., 2004) 

Graphite 
particles 

2.0 x 10-18 / 
(1/cO3 + 3.6 

x 10-16) 

(Kahan et 
al., 2006) 

Octanol       

      1.5 x 10-17 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 1650a 

<3.8 x 10-

18 / (1/cO3 + 
10-16) 

(Kwamena 
et al., 
2004, 
2006) 

NaCl       

       

1.0 x 10-20 

 

(Butler and 
Crossley, 

1981) 

Ethylene 
flame soot  

4.2 x 10-15 / 
(1/cO3 + 2.8 

x 10-13) 

(Kwamena 
et al., 
2006; 

Pöschl et 
al., 2001) 

Soot       

            1.7 x 10-16 / 
(1/cO3 + 1.2 

x 10-15) 

(Kwamena 
et al., 
2004)  

azelaic 
acid (wet) 

      

         3.0 x 10-16 / 
(1/cO3 + 

9.50 x 10-

15) 

(Kwamena 
et al., 
2006) 

Silica 
particles 

      

BeP 1.1 x 10-14 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

2.9 x 10-18 (Perraudin 
et al., 2005) 

Silica 
particles 

1.6 x 10-17 (Perraudin 
et al., 
2007) 

Graphite 
particles 

      

4.7 x 10-12 (Estéve et 
al., 2004) 

Graphite 
particles 

1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

2.9 x 10-17 (Perraudin 
et al., 

Silica 
particles 
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2007) 

4.7 x 10-13 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 
1650a 

3.5 x 10-17 (Estéve et 
al., 2004) 

Graphite 
particles 

            

      7.5 x 10-18 (Estéve et 
al. 2006) 

Diesel 
exhaust 
particles 

SRM 1650a 

            

      2.8 x 10-21 (Butler and 
Crossley, 

1981) 

Ethylene 
flame soot 

            

Per 5.0 x 10-12 (Estéve et 
al., 2004) 

Graphite 
particles 

1.1 x10-16 (Estéve et 
al., 2004) 

Graphite 
particles 

            

IPy 3.5 x 10-13 (Estéve et 
al., 2006) 

Diesel 
exhaust 
particles 

SRM 
1650a 

6.2 x 10-18 (Perraudin 
et al., 2005) 

Silica 
particles 

1.9 x 10-17 (Perraudin 
et al., 
2007) 

Graphite 
particles 

      

      1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

3.8 x 10-17 (Perraudin 
et al., 
2007) 

Silica 
particles 

      

      7.5 x 10-18 Estéve et 
al., 2006 

Diesel 
exhaust 
particles 

SRM 1650a 

            

BgP 5.9 x 10-12 (Estéve et 
al., 2004) 

Graphite 
particles 

4.7 x 10-17 (Perraudin 
et al., 2005) 

Silica 
particles 

            

      1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

            

      3.8 x 10-17 Estéve et 
al., 2004 

Graphite 
particles 

            

      7.9 x 10-21 (Butler and 
Crossley, 

1981) 

Ethylene 
flame soot 

            

BgF 8.4 x 10-15 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

            

AcP 1.0 x 10-14 (Bedjanian Kerosene 
flame 

1.0 x 10-19 (Nguyen et Kerosene 
flame soot 
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et al., 2010)  soot al., 2009)

DBahA 1.6 x 10-14 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

            

DBaeP 1.0 x 10-14 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

            

BbF 1.2 x10-14 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

            

Cor 1.1 x 10-14 (Bedjanian 
et al., 2010) 

Kerosene 
flame 
soot 

1.3 x 10-18 (Perraudin 
et al., 2005) 

Silica 
particles 

            

      1.0 x 10-19 (Nguyen et 
al., 2009) 

Kerosene 
flame soot 

            

      2.3 x 10-21 (Butler and 
Crossley, 

1981) 

Ethylene 
flame soot 

            

DBalP       1.8 x 10-16 (Perraudin 
et al., 2005) 

Silica 
particles 

1.3 x 10-16 (Perraudin 
et al., 
2007) 

Graphite 
particles 

      

            1.3 x 10-16 (Perraudin 
et al., 
2007) 

Silica 
particles 

      

1-NP 1.0 x 10-13 (Miet et al., 
2009a) 

Silica 
particles 

6.2 x 10-18 (Miet et al., 
2009c) 

Silica 
particles 

2.2 x 10-17 (Miet et al., 
2009b) 

Silica 
particles 

1.3 x 10-12 (Liu et 
al., 2012) 

Azelaic 
acid 

particles 
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Appendix 2 : Sampler Calibration and total air flow calculation   

 

Sampler flow rates were calibrated according to manufacturer guidelines (Tisch TE-5000 

Operations Manual). Sampler calibrations were carried out each time a sampler motor was 

changed. A Fixed Orifice Calibrator (Tisch Environmental Inc.) was used, utilizing 5 plates of 

differing resistance to simulate a variation in airflow across the sampler. Flow chart recorder and 

manometer measurements were taken for each of the five resistances. Actual air flow rates for 

these readings were calculated according to the formula (Tisch TE-5000 Operations Manual) :  

Qa = 1/m[Sqrt((H2O)(Ta/Pa))-b]        (B1) 

where: 

 Qa = actual flow rate as indicated by the calibrator orifice (m3/min) 

H20 = orifice manometer reading (inches)  

Ta = ambient temperature (K)  

Pa = ambient barometric pressure (mm Hg)  

m = slope of orifice calibration relationship – obtained from data sheet provided by manufacturer  

b = intercept of orifice calibration relationship – obtained from data sheet provided by manufacturer  

 

Flow recorder readings were corrected to the prevailing meteorological conditions during 

calibrations using the equation (Tisch TE-5000 Operations Manual) :  

 

IC = I[Sqrt(Ta/Pa)]           (B2) 

 

where:  
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IC = flow chart recorder readings corrected to measured Ta and Pa (m3/min) 

I = flow recorder reading (m3/min) 

Pa = ambient barometric (mm Hg) 

Ta = ambient temperature during calibration (K) 

A plot of Qa vs. IC forms a 5 point calibration curve for the sampler (see Figure 2.3).  

Overall flow rates for each sample were then calculated using the formula (Tisch TE-5000 

Operations Manual):  

Qs= 1/m((I)[Sqrt(Tav/Pav)]- b)         (B3) 

 

where :  

Qs = Sampler flow rate (m3/min) 

m = calibration slope  

b = calibration intercept  

I = average flow chart recording during sampling period (m3/min)  

Tav = average ambient temperature (K) 

Pav = average ambient pressure (mm Hg)  

 

Total air flow during each sampler run can then be calculated (Tisch TE-5000 Operations Manual) : 

QT = QS x 60 x T          (B4) 

where :  

QT = Total air flow (m3) 

QS = Sampler flow rate (m3/min) 

T = sampler run time (hours) 
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Figure B1. Example calibration curve for high volume samplers 
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Appendix 3 : PAH, OPAH and NPAH gas chromatograph peaks    

 

Separate GC-MS techniques were used for the analysis of PAH compounds and the analysis of 

OPAH and NPAH compounds 

The gas-chromatograph peaks for all measured PAH compounds and detuerated standards, 

measured in both sample extracts and internal standards in this study are shown in Figure C1. 

The gas-chromatograph peaks for all measured OPAH and NPAH compounds and detuerated 

standards, measured in samples and internal standards in this study are shown in Figure C2.  
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Figure C1a. GC-MS peaks for the recovery standard compound PT-d14 (M+ = 244) in the 

standard (upper) and sample extract (lower).  
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Figure C1b. GC-MS peaks for M+ = 160 in the standard (upper) and sample extract (lower).   

1 = Acy-d8.  
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Figure C1c. GC-MS peaks for M+ = 162 in the standard (upper) and sample extract (lower).   2 

= Ace-d8.  
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Figure C1d. GC-MS peaks for M+ = 176 in the standard (upper) and sample extract (lower).   

3 = Flo-d10.  
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Figure C1e. GC-MS peaks for M+ = 188 in the standard (upper) and sample extract (lower).   4 

= Phe-d10, 5 = Ant-d10.  
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Figure C1f. GC-MS peaks for M+ = 212 in the standard (upper) and sample extract (lower).   6 

= Flt-d10, 7 = Pyr-d10.  
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Figure C1g. GC-MS peaks for M+ = 240 in the standard (upper) and sample extract (lower).   

8 = BaA-d12, 9 = Chr-d12.  
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Figure C1h. GC-MS peaks for M+ = 264 in the standard (upper) and sample extract (lower).   

10 = BbF-d12, 11 = BkF-d12, 12 = BeP-d12, 13 = BaP-d12.  
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Figure C1i. GC-MS peaks for M+ = 288 in the standard (upper) and sample extract (lower).   

14 = IPy-d12, 15 = BPy-d12. 
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Figure C1j. GC-MS peaks for M+ = 292 in the standard (upper) and sample extract (lower).   

16 = DBA-d12.  
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Figure C1k.  GC-MS peaks for M+ = 312 in the standard (upper) and sample extract (lower).   

17 = Cor-d12.  
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Figure C1l.  GC-MS peaks for M+ = 152 in the standard (upper) and sample extract (lower).   1 

= Ace.  
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Figure C1m. GC-MS peaks for M+ = 153 in the standard (upper) and sample extract (lower).   

2 = Acy.  
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Figure C1n. GC-MS peaks for M+ = 166 in the standard (upper) and sample extract (lower).   

3 = Flo.  
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Figure C1o. GC-MS peaks for M+ = 178 in the standard (upper) and sample extract (lower).   

4 = Phe, 5 = Ant.  
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Figure C1p. GC-MS peaks for M+ = 202 in the standard (upper) and sample extract (lower).   

6 = Flt, 7 = Pyr.  
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Figure C1q. GC-MS peaks for M+ = 219 in the standard (upper) and sample extract (lower).   

8 = Ret.  
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Figure C1r. GC-MS peaks for M+ = 228 in the standard (upper) and sample extract (lower).   9 

= BaA, 10 = Chr.  
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Figure C1s. GC-MS peaks for M+ = 252 in the standard (upper) and sample extract (lower).   

11 = BbF, 12 = BkF, 13=BeP. 14=BaP.  
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Figure C1t. GC-MS peaks for M+ = 276 in the standard (upper) and sample extract (lower).   

15 = IPy, 16 = BPy.  
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Figure C1u. GC-MS peaks for M+ = 278 in the standard (upper) and sample extract (lower).   

17 = DBA. 
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Figure C1v. GC-MS peaks for M+ = 300 in the standard (upper) and sample extract (lower).   

18 = Cor.  
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Figure C2a. GC-MS peaks for recovery standard FNN (M- = 229) observed in the standard 

(upper) and sample extract (lower).    

 

 

 

 

 

FNF

FNF

Time (mins) 

Time (mins) 

Response 

Response 



347 
 

 

 

 

 

 

Figure C2b. GC-MS peaks for M- = 188 in the standard (upper) and sample extract (lower).   

1= 9F-d8.   
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Figure C2c. GC-MS peaks for M- = 216 in the standard (upper) and sample extract (lower).   

2= AQ-d8.  
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Figure C2d. GC-MS peaks for M- = 180 in the standard (upper) and sample extract (lower).   

1= 9F.  
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Figure C2e. GC-MS peaks for M- = 208 in the standard (upper) and sample extract (lower).   

2= AQ.  
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Figure C2f. GC-MS peaks for M- = 222 in the standard (upper) and sample extract (lower).   

2= MAQ.  
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Figure C2g. GC-MS peaks for M- = 258 in the standard (upper) and sample extract (lower).   

4= BaAQ.  
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Figure C2h. GC-MS peaks for M- = 180  in the standard (upper) and sample extract (lower).   

1 = 1NNap-d7.  
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Figure C2i. GC-MS peaks for M- = 220  in the standard (upper) and sample extract (lower).   

2= 2NFlo-d8.  
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Figure C2j. GC-MS peaks for M- = 256  in the standard (upper) and sample extract (lower). 3 

= 3NFlt-d6, 4 = 1NPyr-d9.  
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Figure C2k. GC-MS peaks for M- = 284 in the standard (upper) and sample extract (lower).   5 

= 6NChr-d11.  
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Figure C2l. GC-MS peaks for M- = 173 in the standard (upper) and sample extract (lower).   

1= 1NNap, 2= 2NNap.  
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Figure C2m. GC-MS peaks for M- = 211 in the standard (upper) and sample extract (lower).   

3= 2NFlo.. 
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Figure C2n. GC-MS peaks for M- = 223 in the standard (upper) and sample extract (lower).   

4= 9NAnt.  
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Figure C2o. GC-MS peaks for M- = 247 in the standard (upper) and sample extract (lower).   5 

= 1NFlt, 6 = 2NFlt, 7 = 3NFlt, 8 = 4NPyr, 9 = 1NPyr, 10 = 2NPyr,  
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Figure C2p. GC-MS peaks for M- = 273 in the standard (upper) and sample extract (lower).   

11 = 7NBaA, 12 = 6NChr.  
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