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ABSTRACT 

Optimisation of potable water treatment could result in substantial cost savings for water 

companies and their customers. To address this issue, computational modelling of water 

treatment works using static and dynamic models was examined alongside the application of 

optimisation techniques including genetic algorithms and operational zone identification. These 

methods were explored with the assistance of case study data from an operational works. 

It was found that dynamic models were more accurate than static models at predicting the water 

quality of an operational site but that the root mean square error of the models was within 5% 

of each other for key performance criteria. Using these models, a range of abstraction rates, for 

which a water treatment works was predicted to operate sufficiently, were identified, dependent 

on raw water temperature and total organic carbon concentration. Genetic algorithms were also 

applied to the water treatment works models to identify near optimal design and operating 

regimes. Static models were identified as being more suitable for whole works optimisation 

than dynamic models based on their relative accuracy, simplicity and computational demands. 
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1 INTRODUCTION 

This thesis investigates the modelling of potable water treatment and the application of 

optimisation techniques including genetic algorithms. These methods are explored through the 

use of case study data from an operational works. 

1.1 Water treatment 

By continual and costly control of water quality, it has been possible to drastically reduce the 

harm caused by waterborne diseases (Tebbutt, 1992). Focusing on this goal, water supply up 

until the second half of the twentieth century was relatively simple (Binnie et al., 2006). Water 

abstracted from a reservoir supplied by a protected catchment or well was distributed after 

minimal treatment. River water sources received slightly greater treatment, whilst water from 

poor quality lowland rivers underwent extensive storage, to allow self-purification, before being 

slow sand filtered (Binnie et al., 2006). Up until 1958, when the World Health Organisation 

published its first drinking water standards, water quality in the UK was assessed on the basis 

of “wholesomeness” (Purcell, 2005). This in practice meant that there was a requirement for 

sampling and analysis of final water microbiological content and chlorine concentration (Binnie 

et al., 2006). 

In the late twentieth century, water treatment in developed countries began to focus on reducing 

exposure to man-made chemicals, including disinfection by-products (DBPs) such as 

trihalomethanes (THMs) and Haloacetic acids (HAAs).  
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This change in focus occurred in the UK due to: 

• improved analytical techniques allowing the identification of hundreds of trace 

chemicals produced by industrial processes and water/wastewater treatment; 

• heightened public concern about the consequences of man-made chemicals; 

• the application of water quality standards derived from the 1980 European Drinking 

Water Directive; and 

• additional regulations prompted by the privatisation of the water industry (Binnie et 

al., 2006). 

Alongside this change in focus, the risks posed by viruses and zoonotic pathogens (capable of 

transferring disease between species) were also identified. Some of the organisms of concern 

proved to be difficult to remove or inactivate, resulting in additional treatment being required 

(Crittenden et al., 2005). Due to these findings, the trade-off between achieving sufficient 

disinfection and minimising DBP formation became paramount. Increased removal of solids 

and inorganic compounds prior to disinfection, reducing free chlorine demand, became 

desirable at some WTWs in order to help achieve these conflicting disinfection goals. 

In the twenty first century, the removal of man-made and microbiological contaminants remain 

priorities along with the development of risk assessment methods to assess the impacts of trace 

quantities of harmful substances (Crittenden et al., 2005). Water provided to customers must be 

safe for consumption but must also be palatable and suitable for other domestic and industrial 

uses such as washing. To achieve these goals, the water must meet certain criteria to ensure 

acceptable levels of visible suspended matter, colour, taste, odour, harmful dissolved matter, 
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aggressive constituents, harmful man-made chemicals and bacteria indicative of faecal 

pollution (Tebbutt, 1992). 

1.2 Water treatment modelling 

Numerical modelling of water treatment works (WTWs) offers a means by which designers and 

operators can assess the likely impact of raw water quality or process modifications on treated 

water quality. This helps to provide an indication of the likelihood of failure to meet water 

quality standards under different scenarios. A variety of different programs have been written 

to model whole WTWs including OTTER (WRc), WATPRO (Hydromantis), Stimela (DHV), 

Metrex (University of Duisburg) and WTP (USEPA). However, there has been little use of 

these programs in comparison with wastewater programs (Dudley et al., 2008). Commonly used 

wastewater programs include GPS-X and BioWin (Phillips et al., 2009). Potable water 

modelling (developed in the 1990s) is thought to be less developed and applied than wastewater 

modelling (developed in the 1970s) due to the amount of time they have existed (Dudley et al., 

2008). Some existing water treatment modelling programs, such as OTTER, model whole 

works comprehensively and have been generally successful when used in several studies, but 

have required relatively extensive calibration data (Rietveld and Dudley, 2006, Dudley et al., 

2008). Other programs are more suitable for modelling specific water quality parameters, such 

as WATPRO, which has been found to be effective at predicting disinfection by-product 

formation but is otherwise a poor example of the state of the art in water treatment modelling 

(Rietveld and Dudley, 2006). The majority of the mathematical models available within these 

programs are empirical, but some of the models are based on fundamental scientific principles 
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and rate-type partial differential equations to perform mass balances. The mechanistic models 

are less dependent on arbitrary constants than the empirical models and they also attempt to 

model mechanisms that are prevalent in the processes. 

1.3 Optimisation of water treatment works using computational methods 

It has been estimated that 15% to 20% of the cost of supplying potable water is incurred at the 

treatment stage (Mhaisalkar et al., 1993). Significant cost savings can therefore be made to 

water companies and their customers if treatment is optimised. These optimisations will strive 

to achieve acceptable water quality whilst minimising capital, operational or whole life costs. 

Optimisation of water treatment is complex, as the performance of each individual process 

affects subsequent processes. For example, reducing the concentration of organic matter at the 

clarification stage results in reduced chlorine demand (Vasconcelos and Boulos, 1996) and 

trihalomethane production (Brown et al., 2011a) at the disinfection stage. Due to this inter-

dependency, it is advantageous to identify suitable designs or operating regimes that take into 

account the interactions between the processes. Optimising WTW involves multiple, non-linear 

relationships between solution parameters that are often constrained and multiple objectives 

that are often conflicting. Evolutionary algorithms (EAs) are a practical tool with which to 

approach these problems. The applicability of EAs is, however, limited by their potentially 

considerable computational demands and uncertainty in the quality of the solutions they 

identify (Nicklow et al., 2010).  

There have been previous attempts to optimise WTW performance using computational 

models, including the work of Mhaisalkar et al. (1993), Dharmappa et al. (1994a) and Gupta 
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and Shrivastava (2006, 2008, 2010). This previous work has primarily focused on suspended 

solids removal using static models. Mhaisalkar et al. (1993) applied deterministic conditions 

with dynamic programming to simulate the optimisation of operational WTW and identified 

potential cost savings of approximately 5%. Particle size distribution data were used with non-

linear programming by Dharmappa et al. (1994a) to identify a correlation between the 

proportion of fine particles in raw water and treatment costs. Most recently, Gupta and 

Shrivastava (2006, 2008, 2010) applied stochastic conditions to a pseudo-constrained WTW 

design problem using a genetic algorithm to successfully identify near-optimal solutions. 

Although WTW modelling has the potential to offer interesting insights into potentially 

effective treatment options and rough design parameters, computational modelling has not 

historically been accurate enough to replace laboratory or pilot plant testing for operational 

purposes (Gupta and Shrivastava, 2006, Dharmappa et al., 1994b). 
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1.4 Aims and objectives 

The primary aim of the work proposed here is to draw upon previous work undertaken at the 

University of Birmingham and elsewhere to develop a methodology and software tool to: 

A1. Compare the accuracy of static and dynamic models to predict the performance of an 

operational water treatment works (WTW) over multiple seasons, using data historically 

recorded for quality control purposes; 

A2. Identify operating conditions under which the WTW is expected to produce water of 

an acceptable water quality; and to  

A3. Optimise the design and operational regime of the WTW taking into account operating 

conditions and risk acceptance, using genetic algorithms and Monte Carlo techniques. 

Specifically, the objectives of the project are to: 

O1.  Develop overall static and dynamic, generic water treatment process models which 

could be applied to planned or existing water treatment works; 

O2.  Calibrate and verify the accuracy of these models using case study data. 

O3.  Specify performance criteria for acceptable WTW operation; 

O4.  Identify operating conditions for which an operational WTW is expected to meet 

specified performance criteria; 

O5.  Identify the probability distributions of key operational parameters; 

O6.  Assess the accuracy of applying Monte-Carlo techniques to WTW models to predict 

WTW reliability; and 

O7.  Compare the optimised designs and operational regimes identified for an examined 

WTW using static and dynamic models along with genetic algorithms. 
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1.5 Thesis layout 

This thesis aims to investigate how the comparative performance of WTWs could be assessed, 

what the most suitable methods of modelling entire WTWs are and what methods of 

optimisation could be applied successfully. Specifically, the chapters comprising this thesis are 

presented as follows: 

Chapter two provides the founding principles of water treatment modelling and genetic 

algorithm application. Water quality parameters and measurement techniques, conventional 

water treatment processes and previous water treatment modelling programs are described. This 

is followed by a description of the essential knowledge required for the implementation of 

genetic algorithms (GAs). The information in this chapter identifies the key water quality 

parameters relevant to the modelling processes and enables the development of a coherent 

method for optimising the performance of computationally modelled WTWs. This chapter 

closes with a summary of the knowledge gaps identified in the existing literature. 

Chapter three is dedicated to describing the generic water treatment models used in this work. 

The WTW modelling approaches and the programming methods used in this research are 

defined, along with a description of the modelling techniques used. 

Chapter four illustrates the performance and accuracy of the WTW process models when used 

to simulate an operational site using observed time series and Monte-Carlo operating 

conditions. This chapter describes the WTW modelled, the methods used to adapt the general 

models to the specific site, the data used to calibrate and verify the models and the verification 

results. 
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Chapter five covers the application of optimisation techniques along with the WTW process 

models calibrated to represent the conditions at an operational site. Three optimisation 

processes are investigated: the identification of operational conditions for which acceptable 

final water quality would be expected, the application of the models along with a genetic 

algorithm to identify solutions for minimising footprint area and unacceptable performance and 

the application of the models along with a genetic algorithm to identify solutions for minimising 

operating costs and unacceptable performance. The methods, results, analysis and conclusions 

of these optimisations are described. 

Chapter six discusses the findings of the modelling and optimisation work completed and 

examines their relevance and implications in a broader context. Chapter seven summarises the 

key findings and conclusions and chapter eight provides recommendations for future research. 
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2 FOUNDING PRINCIPLES 

This chapter provides the founding principles of water treatment modelling (section 2.1) and 

genetic algorithm application (section 2.2) used as the basis for the research in this thesis. 

2.1 Potable water treatment & modelling 

This section provides a description of how water quality is described and measured along with 

an overview of conventional water treatment processes. The research described in this section 

is vital in identifying the key water quality parameters modelled within this study.Water quality 

Because water has a high dielectric constant and low conductivity, many substances dissolve in 

it (Binnie et al., 2006). Water chemistry is therefore complex. This section gives an overview 

of the different groups of substances found in raw water sources followed by a description of 

common physical, chemical and biological parameters used to describe water’s characteristics. 

 Water’s impurities 

The different types of impurities in water, as described by Binnie et al. (2006), are summarised 

here: 

Suspended solids: Solid particles transported in running water. Higher velocities result in 

greater numbers and larger particles being transported. 

Colloids: Fine particles fail to coalesce into larger particles due to electrostatic repulsion. The 

self-repulsion is due to colloids having similar, usually negative, charges. Colloids are too small 

to be seen individually with the human eye but contribute to colour and turbidity. 



10 

 

Dissolved solids: A variety of chemicals dissolved into water as it passes through or over land. 

Naturally occurring dissolved solids are rarely harmful in low concentrations. 

Micro-organisms: Pollution from organic matter, particularly faecal, is of concern due to the 

risk of disease transmission. Most surface water sources will contain substantial amounts of 

coliform bacteria, including those that are faecal, but ground waters usually have greater 

biological purity. It is possible to identify individual disease causing organisms through analysis 

but this can be difficult, risky and for viruses, impractical. Instead, easily identifiable bacteria 

that are known to be present in human faeces are tested for and if they are not present the water 

is considered microbiologically safe. Viruses present in the water can be effectively inactivated 

by disinfection and there is little evidence of viral transmission by adequately treated water. 

Micro-pollutants: Some substances, although usually occurring in very low concentrations of 

µg/l or ng/l, may have significant adverse environment and human health effects (Jiang et al., 

2013). Examples of micro-pollutants include: some metal, metalloids, radioactive elements, 

pesticides, hydrocarbons, solvents, detergents, hormones, pharmaceuticals and endocrine 

disrupting chemicals. 

Natural organic matter: Some organic compounds are toxic, some are suspected of being 

carcinogenic and some can lead to taste and odour issues (Crittenden et al., 2005). These 

compounds can be formed from either natural or anthropogenic sources. Natural sources of 

organic matter can come from the chemical or biological degradation of vegetable and soil 

derived material, along with secretions from micro-organisms and excretions from aquatic 

organisms. Anthropogenic organic matter sources include landfills, chemical spills and 

effluents from manufacturing and water/wastewater treatment. 
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Organic matter comprises a complex matrix of organic chemicals which tend to give water an 

unappealing yellowish tinge. Historically, this discolouration has been an aesthetic concern, but 

more worryingly, organic matter is now also known to be a precursor for possibly carcinogenic 

disinfection by-products. Organic matter is also of concern as it: reacts with coagulants and 

disinfectants; adsorbs onto activated carbon, reducing its capacity for its target compounds; and 

can biodegrade in the distribution network, providing a food source for biological growth. 

Organic matter can form soluble complexes with metal and hydrophobic organic chemicals, 

including pesticides. Once these substances are dissolved they can be transported more easily 

and can be difficult to remove by conventional treatment processes. 

 Physical water parameters 

These properties are relatively easy to measure or observe. Some of these properties define the 

water quality but others are of interest as they will influence the effectiveness of water treatment 

processes. 

Solids content: Solids content can be either organic or inorganic in nature and can be either 

dissolved or suspended. Suspended solids can further be classified using a standard settling 

procedure to determine what proportion is settleable. 

Turbidity: Turbidity measures the cloudiness of water due to the presence of colloids, clay/silt 

particles and micro-organisms. A high degree of turbidity is aesthetically unappealing and a 

potential indicator of poor water quality. Turbidity has been and will continue to be a valuable 

tool in guiding and monitoring performance of water treatment and distribution systems. It is 

considered to be an effective method for assessing particulate matter concentrations in treated 

water and can be used as a relative measure of reliable treatment (Burlingame et al., 1998). 
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 Chemical quality parameters 

Alkalinity: Alkalinity represents the acid neutralising capacity of an aqueous system (Stumm 

and Morgan, 1970). If it is assumed that the aqueous carbonate system is dominant, making the 

influence of other hydrogen ion transferring substances in the water insignificant, then the 

alkalinity can be quantified as the additional concentration of hydrogen ions that can be added 

before the solution reaches an equivalence point where all of the carbonate exists as carbonic 

acid. Alkalinity can be measured as a molar concentration [Alk] but it is more commonly 

measured in units equivalent to a concentration of calcium carbonate (CaCO3) that would have 

the same acid neutralising capacity. 

The carbonic acid system’s equilibrium equations are shown in Equation 2-1 and Equation 2-2 

(Crittenden et al., 2005). The consequences of these equilibrium equations are that the carbonate 

species act as a pH buffer and the concentration of the carbonate species depends on the pH of 

the solution. 

 �����∗ ⇔�� 	 ����
 Equation 2-1 

 ����
 ⇔�� 	 ����
 Equation 2-2 

If enough hydrogen ions (H+) are introduced to the solution then the equilibrium moves towards 

an equivalence point where all of the carbonate exists as carbonic acid or dissolved CO2 

(H2CO3
*). If additional hydrogen ions are added to a pure carbonic acid system solution no 

buffering will occur and there will be a relatively large decrease in pH. 
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Organic matter parameters: The complex nature of organic matter makes it impractical to 

measure all its individual components. Instead, bulk parameters are used to describe its 

composition and concentration including organic carbon concentration, ultraviolet absorbency 

and fluorescence. Organic carbon is often measured as total (TOC) or dissolved (DOC) 

concentrations. Both of these measurements are based on completely oxidising the organic 

matter present and then measuring the concentration of carbon (DOC samples are first passed 

through a 0.45 µm filter). If treatment does not change the composition of the organic matter 

too considerably, organic carbon can be used a surrogate parameter for estimating the efficiency 

of organic matter removal. TOC is a suitable surrogate parameter for organic matter as it is 

relatively easy to analyse, includes all organic components and correlates well with 

trihalomethane formation potential (Chen et al., 1996, Wang et al., 2013). 

Ultraviolet absorbency is usually measured for light with a wavelength of 254 nm (UV254) in 

pre-filtered samples. Organic matter with specific molecular structures absorbs light, and if 

these structures are removed proportionally then UV254 can be used as a surrogate for organic 

matter removal. An additional assessment of the composition of organic matter can be made by 

using the specific ultraviolet absorbency (SUVA) which is the ratio of UV254 to organic carbon. 

SUVA is of interest because it has been found to be proportional to the adsorbable, hydrophobic 

fraction of organic matter (Edwards, 1997). 

Disinfection by-products (DBPs): Disinfectants which are strong oxidising agents do not only 

interact with pathogens but also with many other chemicals in the water. The products of these 

reactions, including those suspected of being harmful, are known as disinfection by-products 

(DBPs). DBPs are created by disinfectants including chlorine, chlorine dioxide, hydrogen 

peroxide, potassium permanganate and ozone. Perhaps the most commonly formed DBPs are 
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those produced by chlorine, particularly with humic and fulvic acids found in peaty soils, to 

form organochlorine compounds including: trihalomethanes (THMs) and haloacetic acids 

(HAAs). Commercial chlorine gas may also contain some bromine and this will also form 

THMs and HAAs. Although these substances have been identified as being carcinogenic to 

animals at high doses (Tebbutt, 1992) there is no conclusive evidence that these substances are 

harmful at the concentrations found in drinking water. It is, however, prudent to limit 

concentrations of these substances to reduce the consumption that individuals are exposed to 

during their lifetime. 

THMs have a chemical structure similar to methane (CH4) with one or more of the hydrogen 

atoms replaced with halogens (fluoride, chlorine, bromine or iodine). The four compounds that 

are commonly identified to represent total trihalomethane (TTHM) concentration are 

chloroform, bromoform, bromodichloromethane and dibromochloromethane, as defined in both 

the regulations of England, Wales and the US. The regulatory limit at consumers’ taps in 

England and Wales is 100 µg/l (DWI, 2010). 

 Biological quality parameters 

Historically water treatment has focused on controlling faecal-oral route diseases, which are 

spread by pathogens such as bacteria, protozoa and viruses. The risks posed by pathogens which 

can spread disease from other animals and opportunistic pathogens which reside in aquatic 

environments are now also of concern (Crittenden et al., 2005). 

Coliform bacteria: Coliform bacteria are an indicator of possible faecal contamination but they 

may also arise from other sources. Escherichia coli are a member of the coliform group but are 

almost exclusively from faecal sources and are of particular concern. Due to the relative concern 
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of these two groups of pathogens the regulatory limit for final water from a WTW in England 

and Wales is zero coliform bacteria per 100 ml sample with 95% compliance and zero 

Escherichia coli (E. coli) per 100 ml sample at all times from service reservoirs (DWI, 2010). 

Protozoa: Certain protozoa, including Cryptosporidium parvum and Giardia lamblia, can 

cause gastroenteritis. These protozoa have a complex reproductive cycle that includes the 

formation of oocysts which are thick walled, resistant to chemical attack and able to remain 

dormant for many months. Due to increasing concern over the presence of these organisms, all 

UK companies are required to carry out risk assessments for Cryptosporidium, produce water 

“wholesome” with regard to Cryptosporidium and reported any oocysts found in final water to 

the DWI so they can investigate if any regulations have been contravened (Foundation for 

Water Research, 2011). 

Viruses: Viruses are parasitic organisms which cannot grow outside of other living organisms. 

Human viral diseases include small pox, yellow fever and a range of gastroenteritis infections 

(Tebbutt, 1992). Viruses are present in most surface waters that are subject to pollution and due 

to their small size (less than 0.3µm) they are difficult to remove by conventional water treatment 

processes. Although they are difficult to remove, viruses are effectively inactivated by 

disinfection. 

Turbidity as a surrogate for microbiological quality: Past experience and data have shown 

that pathogen monitoring does not confirm absolute presence or absence of micro-organisms 

(Allen et al., 2000). The best method of ensuring microbiological quality of water is to protect 

the catchment, optimise the treatment process and maintain the infrastructure integrity. To help 

optimise the process, measurements should be made of parameters which effectively assess the 

efficiency of the treatment processes (Allen et al., 2000). No single parameter can be relied 
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upon to individually assess the efficiency of treatment (Nieminski et al., 2000). However, 

turbidity is often used as a key indicator of general works performance. 

CT as a measure of disinfection: The product of residual disinfectant concentration and 

contact time (CT) is used as an indicative measure of the disinfection performance of a contact 

tank. The contact time is usually taken as being t10, the time taken for 10% of the concentration 

of a tracer chemical to be detected at the outlet of the tank after being added at the inlet (Teixeira 

and Siqueira, 2008). The concentration of the disinfectant used is usually its residual value at 

the outlet of the contact tank. Under most conditions, a sufficient degree of inactivation can be 

defined by a target CT value. The use of CT values to define expected disinfection is consistent 

with other first order models such as Chick, Chick-Watson, Rennecker-Mariñas, Collins-

Selleck and under certain circumstances Hom-Haas (Crittenden et al., 2005). These models are 

based on the assumption that the inactivation of microbiological organisms is proportional to 

the concentration of the organisms (Chick, 1908) and the concentration of disinfectant (Watson, 

1908). 

The range of substances found in water and their influences on the quality of the water 

distributed are broad and it is important that they are all considered for a supplied water. For 

whole works optimisation purposes it may, however, be necessary that a reduced number of 

water quality considerations are investigated. 

2.1.2 Water Treatment 

 Overview 

Water treatment processes are physical, chemical or biological. The performance of physical 

treatment processes such as screening, clarification and filtration are predominantly influenced 
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by physical properties such as the size and density of suspended solids to be removed and the 

viscosity of the water. Chemical processes such as coagulation or liming are dependent on the 

interaction between the chemical properties of the impurities and the chemical reagents added. 

Finally, biological processes depend on creating conditions suitable for organisms which have 

a beneficial influence on water quality. Although some source waters could achieve the required 

improvement in water quality through the application of a single treatment process, it is more 

common that several complementary processes are applied. The information in this section was 

used to identify what treatment processes and mechanisms were likely to require modelling. 

The treatment applied to each individual source water is dependent on its unique water quality, 

the existing infrastructure, social, environmental and economic conditions, the strategic goals 

of the operator and the knowledge and preferences of the engineering decision makers. As there 

are many factors that influence what treatment is appropriate, a wide variety of approaches have 

been applied in the past. One of the most important factors in determining what treatment is 

suitable is the water source. Some ground waters will only require disinfection to achieve the 

desired degree of water quality. However, additional treatment to reduce the iron and nitrate 

concentration, soften or stabilise the water may also be necessary. Water abstracted from a 

protected upland catchment is likely to require greater additional treatment, including some 

form of screening to remove floating or suspended matter and possibly filtration or colour 

removal. Waters from lowland river extractions will usually require the greatest degree of 

treatment as they are more likely to be polluted by agricultural or urban runoff and point source 

pollution from wastewater discharges. Water abstracted from these lowland river sources is 

likely to require coagulation, clarification, filtration and disinfection and may require additional 

storage, adsorption or nitrate removal (Tebbutt, 1992). 



18 

 

There are a wide selection of traditional processes that have historically been applied to achieve 

the goal of preventing waterborne disease. However, with the more recent focus on reducing 

the presence of anthropogenic organic chemicals in water (see section 1.1), new treatment 

process have been developed to meet the fresh challenges. These traditional and modern 

treatment processes are listed in Table 2-1 (Binnie et al., 2006). 

Table 2-1 Surface water treatments (adapted from Binnie et al, 2006) 

Traditional Modern 

Storage Enhanced coagulation 

Screening Dissolved air flotation (DAF) 

Sedimentation Lamella separators 

Aeration Sludge blanket clarifiers 

Coagulation Ozonation 

Flocculation Activated carbon (granular and powdered) 

Filtration (slow, rapid gravity or pressure) Membranes 

Chlorination (contact tank and residual) Air Stripping 

Sludge dewatering and disposal Alternative disinfection 
(i.e. ultraviolet, ozonation or chlorine 

dioxide) 

The following sections give an overview of the theory and practical application of a selection 

of widely used surface water treatments. 

 Coagulation 

Larger suspended solids are more efficiently removed by physical removal processes such as 

clarification and filtration. In order to improve the solids removal it is necessary to target 

colloids (see section 2.1.1.1), which do not readily settle or coalesce. Their similar charge and 

small size results in them having a large surface area where surface phenomena predominate 

and gravitational effects are unimportant (Binnie et al., 2006). The coagulation and flocculation 
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processes bring about the agglomeration of colloids into larger particles called flocs which are 

more easily removed by physical treatment processes. Coagulation, which is the action of 

adding chemical coagulants to the water to increase attachment affinity between suspended 

substances, has the additional advantage that the coagulants also adsorb dissolved natural 

organic matter (NOM). The removal of NOM is of importance because it is formed of some 

precursors to disinfection by-products, including trihalomethanes. The coagulation process 

requires high energy mixing of the coagulant with the water to promote uniform distribution 

before stable complexes are formed (Binnie et al., 2006). The mixing during coagulation is 

achieved by turbines, propellers, static mixers or weirs (Binnie et al., 2006). 

Colloids can be destabilised by a variety of mechanisms including charge neutralisation; 

entrapment, bridging and double layer compression as described in Table 2-2 (Binnie et al., 

2006). A variety of these destabilisation mechanisms are exploited by coagulants, however, 

deliberate alteration of the ionic strength (increasing double layer compression) is not 

commonly practiced in water treatment (Crittenden et al., 2005). 

Figure 2-1 Double layer compression, adapted from Crittenden et al.(2005) 
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Table 2-2 Coagulation destabilisation mechanisms, adapted from Binnie et al. (2006) 

Destabilisation 

mechanism 

Description of mechanism Dosing considerations 

Charge 
neutralisation 

Ions with opposite charge to 
colloids are added and adsorbed 
onto the surface of colloid. This 

reduces the overall surface charge, 
reducing colloid repulsion. 

Dose required is proportional to 
colloidal concentration. 

Overdosing can result colloids 
polarity reversing. 

Entrapment in a 
precipitate 

Soluble salt is added to water and 
hydroxide flocs form around the 
colloids. Other colloids can also 

be captured as salts forms. 

Inverse relationship between 
concentration of colloid and 

coagulant dose required. 
Optimum pH for coagulant required 
to maximise precipitation (minimise 
solubility). This is obtained by jar 

tests. 
pH control hampered by acidity of 
some coagulants used and the low 

alkalinity of some waters. 
Minimum alkalinity is needed to 
react with some coagulants, if not 
present in sufficient concentration 

then addition required. 
Particle bridging Polymers are believed to work by 

bridging between colloids. High 
energy mixing is not needed in 

this process. 

Anionic and cationic polymers 
capable of use with negatively 

charged colloids. 
Often used during flocculation to aid 

agglomeration. 

Double layer 
compression 

Electrolyte is added to the water, 
increasing the number of ions. 

This reduces the thickness of the 
colloidal double layer, making it 

easier to get colloids close 
together for other forces to 

overcome double layer repulsion 
(see Figure 2-1). 

Effective whilst coagulant is in ionic 
form and no additional effect is seen 

once any resulting insoluble 
compounds are formed. 

The effectiveness of the process is 
independent of colloidal 

concentration. 
Effectiveness is proportional to the 

change in ionic concentration. 
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The type and dose of coagulant applied to water depends on the characteristics of the water to 

be treated. An overview of common coagulants is given in Table 2-3, which also includes 

additional chemicals used at this stage of treatment. 

The dose of coagulant was traditionally determined using jar tests to assess the degree of 

turbidity removal achieved by different coagulation concentrations. From these jar tests optimal 

doses were identified by trying to ensure that the incremental benefit of any additional coagulant 

was greater than the additional cost. Due to the concerns of disinfection by-products, of which 

natural organic matter (NOM) is a precursor, many WTWs now use ‘enhanced coagulation’ 

where a higher concentration of coagulant is used. The required concentration of coagulant is 

again identified using jar tests but with NOM removal as the performance indicator rather than 

turbidity. 

Table 2-3 Coagulant aids 

Coagulant aid Dosing considerations 

Aluminium sulphate (alum) 
Al2(SO4)3.14H2O (commercial composition) 

Risk of exceeding aluminium standards if 
raw water concentrations are high. 

Reacts with natural alkalinity 
Ferric sulphate  

Fe2(SO4)3 

More pH tolerant than alum and effective 
for decolourisation and clarification at low 

pH and removing Mn at high pH 
Reacts with natural alkalinity 

Ferric chloride 
FeCl3 

Relatively corrosive 
Reacts with natural alkalinity 

Polymerised aluminium and iron salts 
(polymers) 

More expensive than traditional salts 
Better performance at low temperatures; 

faster floc formation; lower dosage rates and 
less pH adjustment costs 

Lime 
Ca(OH)2 

Enables  precipitation of aluminium and 
iron salts whilst stabilising pH 

Weighters Fine material that increases the solids 
concentration enabling entrapment to occur 

at lower coagulant doses 
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 Flocculation 

Coagulated particles that have been destabilised by coagulation agglomerate into large 

particles, known as flocs, when agitated. This process is known as flocculation. Some long 

chain hydrophilic colloids with multiple charges can also be flocculated by entanglement even 

though they have not been coagulated. Flocculation can be achieved by either mixing, 

differential settling or Brownian motion (Binnie et al., 2006). Where mixing is applied, either 

by mechanical mixers, static mixers or a weir, the energy input to the water needs to be 

controlled so that floc accumulation and breakup are optimised to form floc of an acceptable 

size and strength. WTWs are generally designed to minimise floc breakage but high shear zones 

still exist, so flocs need to be strong to prevent fracturing as fragmented flocs are harder to 

remove (Jarvis et al., 2005a). The intensity of mixing is usually reduced as the flocculation 

process progresses to reduce the degree of floc breakage that occurs. The effectiveness of the 

flocculation process is usually considered to be dependent on the retention time and the mean 

velocity gradient (Binnie et al., 2006). Optimal values for these parameters are difficult to 

predict from water quality, so jar tests are often carried out to identify suitable values (Binnie 

et al., 2006). 

 Clarification 

Traditionally, settlement tanks were used to remove the majority of suspended solids but it is 

more common now to use sludge blanket or dissolved air flotation (DAF) clarifiers (Binnie et 

al., 2006). These clarification processes are commonly used to remove previously flocculated 

particles. When identifying a suitable clarification treatment, laboratory tests can be used to 

give an indication of suitable process, coagulant dose and surface loading but as it is difficult 
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to accurately predict the range of different conditions that will be experienced, generous safety 

factors are applied (Binnie et al., 2006). 

The settlement, or buoyancy in the case of DAF clarifiers, of suspended solids is inversely 

proportional to both the viscosity and temperature of water. The removal rate of clarifiers is 

approximately twice as great at 33°C as at 0°C. It is useful that the efficiency of clarification is 

greater during warmer weather as this is when water consumption tends to be greater. 

 

Water is passed up through these clarifiers whilst suspended solids settle. The buoyancy of 

these solids within the HBC is determined by the velocity of the water passing upwards through 

the clarifier and the settling velocity of the solids. Due to the hopper design, the velocity of the 

water is greater towards the bottom. The suspended solids in the HBC form a blanket of sludge 

at a height where their settling velocity is equivalent to the upwards velocity of the water. This 

sludge blanket acts to entrap smaller floc than would otherwise be removed by settling alone 

(Tebbutt, 1992). The sludge blanket has a variable solids concentration which helps to stabilise 

its height. As the blanket settles, it compresses and its solids concentration increases. The 

greater particle hindrance of the increased solids concentration of the blanket reduces its settling 

velocity and helps stabilise the blanket height. The hopper bottomed design also increases 

flocculation in the blanket. Surface loading rates typically vary from between 0.8 m/h to 5 m/h 

dependent on the type of water being treated and whether coagulant aids are used (Binnie et al., 

2006). 

One of the advantages of HBCs over other clarification processes is that its sludge can be easily 

removed using the available hydraulic head and without the need for mechanical scrapers. If 
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the discharge of a HBC is too great or increased too rapidly then it is possible that the sludge 

blanket can be lost, resulting in drastically reduced water quality and operational problems 

downstream, particularly at filtration. In the longer term, the solids removal efficiency of the 

HBC will be substantially reduced until a new sludge blanket is formed. The drawbacks to 

sludge blanket clarifiers are their limited ability to treat higher turbidity waters; the risk of the 

blanket overtopping, overturning or contaminating the clarified water and high construction 

costs for larger sites. 

 

Dissolved air flotation (DAF) works on the principle of joining flocs with air bubbles to form 

buoyant aggregates which float to the surface, where they are scraped to waste. A diagram of 

the process is provided in Figure 2-2. 

Figure 2-2 Schematic diagram of DAF tank (Edzwald, 2006) 
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A proportion of the treated water, usually between 8-12%, has air injected into it at high 

pressures of typically between 400 – 600 kPa using a saturator (Crittenden et al., 2005). This 

water is then returned to the inlet of the DAF tank where the sudden reduction in pressure 

supersaturates the water with air, releasing a cloud of fine air bubbles. These bubbles attach to 

flocs primarily in the contact zone before the floc-air aggregates rise to the surface in the 

separation zone where they are scraped to waste. Baffle walls are usually placed between the 

contact and separation zones to help ensure sufficient contact time between the flocs and air 

bubbles. The clarified water is finally drawn off from the bottom of the tank at the end of the 

separation zone. 

DAF clarification is suitable for waters that contain significant amounts of low density solids, 

including some algae which have densities lower than water. The process is also effective at 

removing colour, iron and manganese (Binnie et al., 2006). Suitable coagulation and 

flocculation are essential before DAF treatment as small, high relative surface area, destabilised 

flocs with low net charge and hydrophobic natures are required to achieve good attachment 

with air bubbles. Smaller flocs are also more capable of withstanding the high shear forces of 

the turbulent flow within DAF tanks (Crittenden et al., 2005). The bubbles used should be small 

(10 - 100µm) in order to achieve high relative surface area and to ensure laminar conditions. 

The presence of laminar conditions reduces detachment caused by shear forces. 

The DAF process is capable of high surface loading rates and so its footprint size is usually 

smaller than that of alternative treatments. Other advantages of the process include its potential 

to produce low turbidity clarified water, short start up times, high solids content sludge and 

lower capital costs. The process has high operational costs due to the energy requirements of 

pumping and air-saturating the recycle water (Tebbutt, 1992). 
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 Filtration 

Arguably the most important process in water treatment, filtration involves passing water 

through suitable media at relatively low speeds. The media retains the majority of the solid 

matter and a low solids content filtrate is produced. Except for very high quality ground waters, 

filtration is usually required after clarification. Filtered water’s solids content is therefore 

usually dependent on the performance of both of these processes. 

There are three main types of filter used in water treatment: rapid gravity, pressure and slow 

sand. This work will concentrate on the more common rapid gravity filtration (RGF). Rapid 

gravity filtration uses relatively coarse, permeable media at high filtration rates, usually 

downwards through the filter, to achieve purely physical removal. These filters are cleaned by 

reversing the direction of flow to wash out accumulated solids in a process known as 

backwashing. 

 

Suspended solids do not tend to be removed by the straining process of RGFs. This is fortunate, 

as if straining was the dominant removal process, filters would quickly become clogged with 

particles and require frequent backwashing. To prevent the filter becoming quickly fouled, it is 

desirable for the vast majority of particles entering the filter to be less than 20% of the diameter 

of the filter media (Binnie et al., 2006). This can be achieved by effective clarification, or for 

low solids content raw water, direct filtration can be applied without prior clarification. 

The removal of solids by filtration can be explained by five transportation mechanisms 

(interception, sedimentation, diffusion, hydrodynamic motion and inertia) along with 
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attachment (Binnie et al., 2006). The transportation mechanisms bring the suspended solids into 

contact with the filter media under the laminar conditions typical in filtration. 

Once the solids have come into contact with the filter media it is desirable that they are retained. 

Sufficient charge neutralisation needs to be achieved in order to prevent repulsion between 

similarly charged particles and filter media. Otherwise, attachment will not occur. If charge 

neutralisation has been achieved then inter-particle attractions such as van der Waals forces will 

be the dominant mechanism responsible for retention, particularly for smaller particles. 

Generally particles substantially smaller than a micron are removed by diffusion and particles 

substantially larger than a micron are removed by straining. Particles of approximately a micron 

in size are removed less effectively by a combination of interception and sedimentation (Binnie 

et al., 2006). It is therefore desirable to try to ensure that particles entering the filter are 

substantially smaller than a micron for effective treatment to take place. 

 

Once filters have accumulated so much solid material that they can no longer remove suspended 

solids effectively the quality of filtrate deteriorates rapidly and filters are said to have reached 

breakthrough. Filters can be thought of as containing a working layer which moves through the 

filter finally resulting in the breakthrough curve having an S shape. When this occurs, and 

preferably before, the filter needs to be backwashed in order to remove some of the solids that 

have been retained. Backwashes are either triggered by a schedule or due to filtered turbidity 

or head loss exceeding set values. Ideally, filters would reach their design limits for filtrate 

quality, head loss and maximum filtration run time simultaneously. If a filter is backwashed 

before turbidity or head loss increase substantially then this suggests that the filter’s capacity is 
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not being fully utilised. However, if backwashes are triggered by turbidity or head loss 

frequently then a filter would spend too much time backwashing, reducing its effective 

treatment capacity. For operational simplicity and in order to reduce the likelihood of multiple 

filters backwashing at the same time, backwashes are usually triggered according to a 

conservative schedule. 

After backwashing has been completed the filter is brought back into service gradually and run 

to waste until any remaining disturbed solids have been washed away and a sufficient amount 

of solids have attached themselves to the filter media to create an efficient collector surface. 

The initial period of instability in the performance of the filter is known as the ripening period 

and it has been suggested that its cause is due to differing removal mechanisms at the surface 

to within the filter (Saatci and Halilsoy, 1987) or because previously retained particles serve as 

additional collectors for suspended particles (Darby and Lawler, 1990). 

 

When treating waters with a turbidity of less than 5 NTU, RGFs are capable of producing 

filtered waters with a turbidity of around 0.1 NTU. Due to outbreaks of cryptosporidiosis in the 

1980s and 1990s, the Badenoch (Packham, 1990) and Bouchier reports (Bouchier, 1998, 

Cunningham, 1999) were commissioned and made the following recommendations: turbidity 

should be monitored for individual filters with backwashing being triggered if breakthrough is 

observed; filters should brought back into service gradually after backwashing and run to waste 

after backwashing; sudden changes in filtration rate should be avoided and turbidity should also 

be monitored at the coagulation and clarification stages (Binnie et al., 2006). 
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 Adsorption 

Adsorption is the process of accumulating a dissolved substance onto the surface of a material. 

Once the adsorbate has made contact with adsorbent material, it is held in position by a mixture 

of physical, chemical and ionic forces (Tebbutt, 1992). The kinetics of adsorption is controlled 

by two mechanisms, the mass transfer between the water to the solid and intra-particle transport 

within the particle. The water to solid transfer rate is controlled by the surrounding laminar 

water film and the intra-particle transport within the particle by surface and pore diffusion 

(Rietveld and de Vet, 2009). 

Synthetic and natural organic substances in small concentrations can cause taste and odour 

issues and health concerns. As analytical processes have improved, it is now possible to detect 

specific organic compounds in very small concentrations. Recent concerns about long term 

exposure to these compounds has resulted in an increased focus on limiting their concentrations 

in drinking water. Adsorption has been identified as a suitable method to remove soluble 

organic compounds, including pesticides, as unlike many chemical oxidation processes it does 

not form potentially harmful by-products (Tebbutt, 1992). 

 

As adsorption is a surface mechanism, adsorbents should have a high surface area to volume 

ratio to maximise their effectiveness. A suitable media for this purpose is activated carbon. 

Activated carbon, in comparison with other adsorbents, has a wide range of pore sizes which 

make it suitable for removing a multitude of different dissolved organic compounds. 

Activated carbon can be produced either as powder or granules. Granular activated carbon 

(GAC) is usually applied in contact beds for continual treatment whilst powdered activated 
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carbon (PAC) is usually dosed for intermittent treatment issues or as a temporary measure until 

a fixed bed contactor can be installed. 

Where adsorption occurs in a fixed continuous flow bed, the majority of the removal of the 

adsorbate occurs in a segment of the bed known as the adsorption zone. This zone starts initially 

at the surface of the bed but as the upper levels reach equilibrium with the incoming water, the 

zone progresses downwards through the bed. When the adsorption zone reaches the outlet of 

the adsorption bed, the concentration of adsorbate is seen to increase rapidly and breakthrough 

is observed. The depth of the adsorption zone is dependent on the rate of removal and the 

velocity of the water through the bed. 

When the media needs replacing, as the risk of breakthrough occurring has become 

unacceptable, the GAC is usually removed and replaced as slurries (Binnie et al., 2006). The 

removed GAC can be regenerated either onsite or more often taken away to be processed by a 

specialist supplier (Tebbutt, 1992). The cost and environmental impact of GAC operation is 

dependent on the frequency of regeneration of the carbon. The frequency of the regeneration is 

in practice triggered when an effluent limit is exceeded. Measurements of individual micro 

pollutants which could be of concern for individual sites are measured infrequently due to 

relatively high costs (Rietveld and de Vet, 2009). 

Adsorption beds can require occasional backwashing to wash away accumulated solids. This 

backwashing can result in mixing of the media, with saturated media being distributed 

throughout the bed. This can result in the saturated media releasing contaminants back into the 

water, resulting in a reduction of the time to breakthrough. This issue can be reduced by fully 

fluidising the bed on backwash, encouraging the media to stay more localised, with finer graded 
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media near the surface and coarser media at the bottom. Another solution is to use multiple 

adsorbent beds in series. 

 Disinfection 

Physical removal of microbiological contaminants occurs before the disinfection stage. Any 

microbiological pathogens remaining are exposed to a disinfectant such as chlorine, which 

inactivates the majority of them. A residual concentration of disinfectant is then usually applied 

to maintain the microbiological quality of the water in the distribution system. 

Disinfection is applied in order to inactivate as many pathogenic bacteria, protozoa or viruses 

as possible. The inactivation of bacteria by oxidants is achieved by rupturing their cell 

membranes and destroying their enzymes. Although this is an effective way of inactivating 

many pathogens, certain protozoa oocysts such as Cryptosporidium parvum will have to be 

physically removed. E. coli is also relatively resistant to disinfection hence it is commonly used 

as an indicator organism (Binnie et al., 2006). Disinfection can be achieved through the 

application of chlorine gas, hypochlorite, on-site electrolyte chlorination (OSEC), 

chloramination, chlorine dioxide, ozone or ultraviolet radiation. 

 

The most common method of disinfection is chlorination, which used to be commonly applied 

as a pre-treatment, but is now, due to concerns about disinfection by-product formation, usually 

applied to otherwise fully treated water or very high quality ground waters. Chlorine, despite 

being a poisonous gas and being responsible for some taste and odour issues, is a popular 

disinfectant because it is readily available, cheap, highly stable, able to leave a residual and 

very toxic to most micro-organisms (Tebbutt, 1992). Chlorine is commonly applied using super 
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chlorination and residual dosing. Super chlorination is the process of adding a sufficient dose 

that the chlorine demand of the water is met, leaving a residual. This process usually occurs in 

a dedicated contact tank where sufficient time is provided for full disinfection to be achieved. 

These contact tanks are designed to have a consistent volume, independent of discharge, and 

have baffles to prevent the formation of short circuits and dead zones. The super chlorinated 

water requires dechlorination after it leaves the control tank, usually using sulphur dioxide, to 

achieve a residual dose for distribution of approximately 0.5 mg/l, which is low enough to 

minimise taste and odour issues. 

The rate of disinfection is dependent on the concentration of the active disinfectant present. The 

active disinfectants measured (molecular chlorine (Cl2), hypochlorous acid (HOCl), and 

hypochlorite ions (OCl-)) are reported as the free available chlorine concentration. When 

gaseous chlorine is added to water, it reacts to form hypochlorous acid and dissolved 

hydrochloric acid, as shown in Equation 2-3. Hypochlorous acid can go on to dissociate, as 

shown in Equation 2-4. The proportions of the substances in solution are heavily dependent on 

pH, with the addition of chlorine gas reducing pH and hypochlorite increasing pH. The 

equilibrium points of these reactions are of importance as hypochlorous acid is a more effective 

disinfectant than the chlorite ion (Tebbutt, 1992). 

 ��� 	 ���⇔���� 	 �� 	 ��
 
Equation 2-3 

 ����⇔�� 	 ���
 Equation 2-4 



33 

 

2.1.3 Existing WTW modelling programs 

Many commercial software programs able to model the performance of WTWs have been 

produced. These programs are similar in their modular approach, allowing different processes 

to be easily combined. Some key differences between the models are discussed below. 

Stimela (stimela.nl): Stimela was developed by Delft University of Technology, Kiwa and 

DHV (Stimela). It uses dynamic models made from partial differential equations that are 

numerically integrated, allowing water quality parameters to be traced temporally and spatially 

(Rietveld et al., 2010). The models are constructed in MATLAB/Simulink and within Stimela, 

the source code is accessible to allow development by competent users (Rietveld et al., 2004). 

The models have a standard modular format with a standardised handling of the models’ input 

and output. They can run online, allowing collaborative model building and development by 

different user groups (researchers, engineers and operators). The models are built to a consistent 

structure, which allows them to be connected in series or sequentially, enabling complete 

treatment works to be modelled (Rietveld et al., 2004). The model, however, is specialised for 

Dutch processes, and has a lack of coagulation/flocculation modules (Dudley et al., 2008), 

limiting its usefulness for UK WTW design. 

Metrex (www.uni-due.de/il/metrex): Metrex was developed as a research tool by Duisberg 

University of Technology (Dudley et al., 2008). It focuses on particle size distribution and 

requires the collection of a higher than average amount of data (Dudley et al., 2008). Like 

Stimela, Metrex is programmed in MATLAB/Simulink and has a standardised treatment design 

requiring all parameters to be passed through the model. This allows the user to take a modular 

approach to works design (Mälzer and Ding, 2006). It, unlike Stimela, does not expose the 
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MATLAB/Simulink environment, simplifying its interface but making it less flexible (Dudley 

et al., 2008). The models used are theoretical and in cases qualitative knowledge exists about 

the parameters’ range of values and their dependence on other variables. This enables the user 

to more reliably estimate suitable parameter values (Dudley et al., 2008). Two types of 

simulation are possible: whole WTW and single process. Whole WTW mode simulates the 

whole treatment process in operation mode whereas single process modelling gives guidance 

for designing and dimensioning single process steps. The major disadvantages of the model for 

UK works design are its specialisation as a research tool, its lack of critical review or use, its 

difficulty to use and its lack of current development (Dudley et al., 2008). 

Water treatment plant (WTP) simulation program (www.epa.gov): WTP was developed 

by the United States Environmental Protection Agency (USEPA) to model disinfection and 

disinfection by-products in support of the Disinfectant/Disinfection By-products Rule (Dudley 

et al., 2008). It models the general case rather than site specific conditions and is not designed 

to replace site-specific studies. It is mainly used for the evaluation of design rather than for 

optimisation and is designed for experienced engineers (Rietveld et al., 2010, Lemont, 2010). 

The WTP model uses empirical relations obtained from regression analysis. Its predictions 

reflect typical average performance values, and it is focused on the removal of NOM, the 

formation of DBPs and disinfection effectiveness. The major disadvantages of the model for 

UK works design include its focus on disinfection only and the significant reliance on the 

original database used to verify its predictions (although it was updated in 2000 (Dudley et al., 

2008)). 

WATPRO (www.hydromantis.com/WatPro.html): Using USEPA correlations, WATPRO 

is effective at modelling chlorination by-product formation. Other aspects of water treatment 
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are modelled by user specified removal rates or flow (Hydromantis, 2009). Due to its limitations 

of modelling aspects of treatment other than by-product formation it was considered a poor 

example of the state of the art in water treatment modelling by Rietveld and Dudley (2006). 

SimEau (www.techneau.org): Developed by the European Commission integrated project 

Techneau, SimEau hopes to build on the strengths of OTTER and Stimela. It plans to have 

improved performance over OTTER and Stimela by improving the existing models of processes 

(particularly coagulation/flocculation), simplifying the calibration process by focusing on the 

use of routine data improved validation of the models outside of their calibration zones (Dudley 

et al., 2008). The aims of the program are to model: the overall mass balance; the inactivation 

of microbiological organisms; the change in water chemistry and downstream dependence on 

upstream processes (Dudley et al., 2008). If the approach of using particle size distribution is 

found to be superior, it is believed that UK companies would invest in required online particle 

size monitors (Dudley et al., 2008). In order to ensure uptake of the new model by European 

users, the models will be verified using data from five works across Europe, this will ensure it 

is not only suitable for small regions of Europe. The program will be freely distributed via the 

internet and calibration support will be provided. 
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2.1.4 Water treatment and modelling summary 

This section investigated how water quality is described and measured, gave an overview of 

conventional water treatment practices and reviewed the performance of existing water 

treatment programs. This research influenced the subsequent choice of water quality parameters 

and modelling processes described in the proceeding chapters. 

Although all of the water quality parameters discussed in this chapter should be considered for 

a drinking water supply, for whole works modelling, it may be practical to model a reduced 

number of site specific water quality parameters and treatment processes due to either a lack of 

suitable treatment models or to limit model complexity. Through a study of water treatment 

quality parameters, turbidity, THM and organic compounds concentrations along with CT were 

identified as key parameters. Turbidity was identified as a useful indicator of solids removal 

efficiency that can be used as a potential surrogate parameter for total suspended solids content. 

The degree of disinfection required was found to be sufficiently specified by the CT value. 

THMs were identified as important as they are potentially carcinogenic and are currently 

legislated against in the UK. Finally, organic concentrations should be considered due to their 

influence on the production of DBPs and their interaction with coagulants, activated carbon, 

disinfectants and distribution systems. 

The degree of water treatment required is dependent on the source but often multiple 

complimentary processes are applied such as: coagulants to help colloids coalesce and to reduce 

organic compounds concentrations; flocculation to control the size and strength of floc; 

clarification and filtration to remove the majority of suspended matter; activated carbon to 

reduce the concentration of target organic compounds and disinfection to inactivate any 
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remaining pathogens. General models for these processes are described in detail in chapter 

three. 

The existing software was found to have varying availability and documentation. Processes 

modelled were also skewed towards those prevalent in the country where each program was 

produced. The existing software all model treatment processes as modules which could be 

organised to represent different sequential or parallel treatment streams and often use the 

MATLAB/Simulink modelling environment. 

2.2 Genetic algorithms 

A conceptual view of evolutionary computation and the main different types of algorithms that 

exist are described in this section. A description of how current genetic algorithms function, the 

advantages and drawbacks to using genetic algorithms and the different approaches that are 

applied are then discussed. The final part of this section looks at how GAs can be applied to 

solve multi-objective problems to optimise the design and operating regimes of water treatment 

works. In this last section WTW optimisation, multi-objective problems, the Pareto concept, 

multi-objective evolutionary algorithms (MOEA) and the Non-Dominated Sorting Algorithm 

II (NSGAII) are described. The use of the NSGAII algorithm to identify potential optimal 

designs and operating regimes for a case study site is described in chapter five. 

2.2.1 Overview of genetic algorithms 

Optimisation is the method of comparing alternatives using a standard measure of performance 

and iteratively improving performance by selecting better solutions over time (Fogel, 1994). 

Evolutionary algorithms (EAs) have proved to be a particularly robust method of achieving this 

goal. These programs, which were first developed in the 1960s, are based on the principles of 
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Darwinian evolution, applying the processes of variation and selection to solve problems which 

traditional methods could not resolve. 

Some alternatives to EAs exploit the best known solutions for further improvement without 

exploring for alternative solutions, whilst other random search techniques explore but do not 

take advantage of the best known solutions. What makes EAs such a powerful search technique 

is its capability of both exploring new solutions whilst simultaneously taking advantage of the 

known best solutions (Michalewicz, 1996). 

2.2.2 Evolutionary algorithms 

Evolutionary algorithms follow a common procedure of: 

1. Initialising a population of candidate individuals; 

2. Evaluating their fitness based on performance; 

3. Selecting which individuals get the chance to reproduce; 

4. Replacing individuals with the lowest fitness with offspring created using cross-over 

and/or mutation operators; and 

5. Repeating the process from stage two until the procedure is terminated. 

The amount of offspring insertion that occurs each generation can vary between complete 

replacement of parents to regimes where offspring only replace the worst, the oldest or their 

own parents (Fonseca and Fleming, 1998). 

Evolutionary Algorithms (EA) are broadly split into three groups of programs: Genetic 

Algorithms (GAs), Evolutionary Strategies (ESs) and Evolutionary Programs (EPs) (see Figure 

2-3). Each of these programs operates on a different scale of evolutionary unit. Genetic 

algorithms operate at the level of chromosomes, evolutionary strategies operate at the level of 
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individuals and evolutionary programming at the level of species. Evolutionary strategies are 

further differentiated from evolutionary programming by their reliance on deterministic 

selection and the presence of sexual communication between individuals in their populations 

(Fogel, 1994). 

Figure 2-3 Evolutionary computing hierarchy 

EAs have been used to solve a variety of problems where other techniques have performed 

unsatisfactorily (Fogel, 1994).  However, like other search and optimisation techniques, EAs 

do have limitations, including an inability to ensure true randomness, difficulty in identifying 

suitable EA parameters and high computational demands. These problems can be addressed in 

a number of ways. Random number generator algorithms are used to produce, as closely as 

possible, random numbers. In order to maximise the efficiency of the optimisation process, the 

parameters of EAs for population size and likelihood of cross-over and mutation should be 

selected appropriately. It is especially important to ensure the efficiency of the process as due 

to the lack of problem knowledge used within EAs, they can require substantial computational 

resources. 

2.2.3 Genetic algorithms 

Genetic algorithms (GAs) are the most popular application of evolutionary algorithms, which 

apply the theory of natural selection to identify near optimal solutions. In genetic algorithms, a 

random group of initial parent and offspring solutions are produced by applying crossover and 

mutation functions. Together these parent and offspring solutions make up the first generation 
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of solutions, which have their performance assessed before a second generation of parent 

solutions is identified. As the number of generations increases, the performance of the 

population should improve (see Figure 2-4). 

Figure 2-4 Flowchart of genetic algorithm process 

 Advantages and previous application of GAs 

GAs were chosen to optimise WTWs in this work for a number of reasons: they are based on 

the widely known theory of evolution; they can be applied to existing models; they contain all 

of the genetics-based processes present in more complex evolutionary algorithms; they can 
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search spaces with many local optima; they are able to estimate parameters that interact non-

linearly; they can handle non-continuous search spaces; they are usually insensitive to initial 

conditions; they can be used effectively to locate global peaks (Coley, 1999) and they present 

the opportunity to apply problem constraints directly by limiting chromosome values or 

indirectly by applying penalty functions to form pseudo-constraints. 

Genetic algorithms have been used to solve multi-objective problems, as well as problems 

involving chaos, chance, temporality and non-linearity (Fogel, 1994). GAs have been used to 

optimise a wide range of engineering problems in diverse fields such as parameter and signal 

identification, control, robotics, pattern and speech recognition, planning and scheduling, 

classification and engineering design problems (Man et al., 1996). GAs have been used in water 

sector applications, including the optimisation of regional wastewater pipelines and treatment 

(Brand and Ostfeld, 2011), agricultural management practices (Kaini et al., 2012), regional 

water use and water treatment processes (Tudor and Lavric, 2010), potable water distribution 

(Kadu et al., 2008) and potable water treatment works design (Gupta and Shrivastava, 2006, 

2008, 2010). 

 Limitations of GAs 

Genetic algorithms do have limitations. These limitations can be grouped into three main areas 

of concern: that non-optimal solutions may be identified, that large computational resource may 

be required and that solution quality can be uncertain. The causes of these limitations are 

provided here and some common approaches to limiting their influence are discussed later in 

this section. 

GAs are not guaranteed to identify optimal solutions due to their stochastic nature and many 

generations may be needed to achieve even near-optimal solutions (Izquierdo et al., 2004). Poor 
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optimisation performance is more likely if a low degree of population diversity occurs due to 

premature convergence to sub-optimal solutions in the early generations. Premature 

convergence is caused when there are many possible optimal solutions but only a limited 

population. Under these conditions the population tends to settle on a single or a few “good” 

solutions (Fonseca and Fleming, 1998). A symptom of premature convergence is that offspring 

cease to reliably outperform their non-optimal parents. Under these conditions, offspring 

represent their parents too closely and further optimisation becomes dependent on mutation, 

which tends to be slower (Fogel, 1994). A common cause of premature convergence is the 

selection of too low a population size (Man et al., 1996). 

Even if appropriate GA parameters are applied, there is no guarantee that optimal solutions will 

be identified. Some problems are just difficult to optimise using GAs. This is because poor 

performing offspring are sometimes prone to be generated through the combination of genes 

from successful parent solutions. These problems are said to contain GA-deceptive objective 

functions. Various approaches have been applied to try and treat these functions successfully, 

including code modification, chromosome inversion and messy GAs. These techniques 

themselves have drawbacks, including necessary prior knowledge of the objective function 

performance, additional complexity and in the case of chromosome inversion, lack of evidence 

of its effectiveness (Man et al., 1996). 

The last limitation outlined here is simple in nature. As GAs are random, it is sometimes 

difficult to decide whether the solutions identified are optimal or even near optimal. This is 

because only certain areas of the search space may have been explored and until all possible 

solutions have been evaluated it is impossible to know that no better solutions exist. As this 

could take an excessive amount of computational resources (and negate the purpose of the GA), 
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it is necessary to assess the solutions in other ways to decide when the solutions identified are 

good enough. 

 Solution evaluation 

Before the best solutions can be identified for a problem a method must be found to measure 

the fitness of different solutions. The evaluation of the solutions’ fitness is achieved using 

objective functions. These functions calculate values that describe how well each solution 

achieves certain goals. The form that the objective functions take is dependent on the problem 

being optimised and the desired characteristics of the final solution. Good objective functions 

will result in a fine graded differentiation between different solutions, enabling effective 

optimisation. Examples of objective functions include cost, failure rate or error.  Single or 

multiple objectives can be applied; multiple objective problems are discussed further in section 

2.2.4.1. 

Objective functions can also be used to implicitly set solution constraints by applying penalty 

functions if constraints are not met. If these penalties are significant enough, chromosomes 

which do not meet the constraints should be efficiently removed from the population. The 

advantage of applying pseudo-constraints is that chromosomes can be limited to meet objective 

targets even if the relationship between chromosome and objective functions are complex or 

unknown. If the magnitudes of penalty functions are too great then premature convergence can 

occur. This is because intermediate solutions, which may be necessary to achieve alternative 

solutions, are unable to pass on their genes in the early stages of evolution if they do not meet 

the constraint conditions (Michalewicz, 1996). Conversely, if the penalty functions applied are 

too small then optimal solutions may be identified which do not meet the desired constraints.  
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 Selection 

Identifying those chromosomes which are going to pass on their genes to the following 

generation is usually determined using two groups of techniques: those where the probability 

of selection is proportional to the performance of solutions and those where only solutions 

identified as being the fittest are selected. Using the proportional method, a chromosome with 

an objective functional score twice as great another has double the likelihood of passing on its 

genes. There are some drawbacks to this method, including the possibility of losing the best 

chromosomes from the population, the necessity for objective scores to be proportional to 

performance and the fact that to operate efficiently, objective scores need to vary significantly 

between chromosomes (Fogel, 1994). If the objective scores do not vary significantly then the 

selection process becomes akin to a random process. Some solutions have been proposed to 

these issues such as elitist selection (keeping the best chromosomes in a secondary population), 

scaling the objective function relative to the lowest scoring chromosome or ranking to 

determine the likelihood of selection (Fogel, 1994). In the alternative method, where only the 

fittest solutions are able to reproduce, tournament selection compares a limited number of 

solutions and selects the best solutions. This process is repeated until a sufficient number of 

solutions have been identified. 

As has already been mentioned, one of the biggest challenges to a GA is ensuring that solutions 

do not converge too quickly before the objective space has been sufficiently searched. Many of 

the methods which are used to prevent premature convergence take place during the selection 

phase of the genetic algorithm, including pre-selection and niching. Pre-selection ensures that 

each new generation of chromosomes contains a proportion of the previous generation’s 

chromosomes. Niching is achieved using crowding or fitness sharing functions which cause 

similar chromosomes to have their fitness reduced irrespective of how well they achieve the 
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primary objective functions. These methods result in isolated individuals being given a greater 

chance of survival. Fitness sharing imitates competition for finite resources in an environment 

by sharing a fitness value between all solutions inhabiting the same region of the search space 

(Fonseca and Fleming, 1998). Crowding operators measure the variation between different 

genes or objective functions and identify diverse solutions as being more desirable. 

 Reproduction 

Those chromosomes which have been selected for passing on their genes to the next generation 

can do so by either cloning themselves (asexual reproduction) or by mixing their genes with 

another chromosome (sexual reproduction). The offspring’s genes can then undergo possible 

mutation. It is argued by Fogel (1994) that, based on the probabilities of these processes 

occurring in historical studies (see Table 2-4), cross-over is the dominant feature of a genetic 

algorithm, with mutation existing purely to ensure that every possible solution can potentially 

enter the population. The literature emphasises the importance of avoiding premature 

convergence, which also highlights the significance of cross-over (Fogel, 1994, Man et al., 

1996, Fonseca and Fleming, 1998). 

 Cross-over  

Cross-over imitates sexual reproduction, with the genes of parents influencing the genes of their 

offspring. The proportion of offspring which are created by cross-over is defined by the cross-

over probability. The cross-over probability can influence the efficiency of the search 

procedure, with greater amounts of cross-over reducing the risk of premature convergence but 

increasing the likelihood that unpromising regions of the search space are explored. Cross-over 

can be achieved by swapping a single, random length of binary code between two 
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chromosomes. This method was identified as being preferable by Holland (1975, cited by Fogel, 

1994) to the random cross-over of individual genes, as it was thought that co-operative genes 

could be swapped together. This assumption was contradicted by Syswerda (1989, cited by 

Fogel, 1994), who found that uniform cross-over was able to identify generally better, faster 

solutions than both single and double point cross-over. 

Intermediate recombination performs an operation similar to that of cross-over by blending the 

values of genes using a range of statistical averaging techniques. Simulated binary cross-over 

(SBX) is one example of an averaging technique which has been shown to have the potential 

to outperform traditional binary cross-over in a direct comparison (Deb and Agrawal, 1995 

cited in Nicklow, 2010). 

 Mutation 

Mutation increases the diversity of the population by altering randomly selected genes of 

offspring. This ensures that all possible solutions could be examined, if the genetic algorithm 

were allowed to run indefinitely. The proportion of offspring genes which are altered in this 

way is defined by the mutation probability. If this is set too high then the evolutionary progress 

becomes more akin to a random search but if it is set too low then the ability of the GA to 

explore the search space is diminished. 

 GA internal parameters 

There are few clear conclusions, in the existing literature, about identifying appropriate genetic 

algorithm parameters and due to complex interactions between the parameters, fine tuning them 

is a difficult and time consuming process (Davis, 1991). It has been found that mutation 

probability should be kept below 5% to be effective (De Jong, 1975, Grefenstette, 1986), but a 
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complete lack of mutation is also associated with poorer performance (Grefenstette, 1986). 

Grefenstette’s (1986) work on identifying optimal GA parameters, also identified the benefits 

of higher proportions of the solution population being replaced each generation and the use of 

elitist selection policies. For smaller populations (approximately thirty), Grefenstette identified 

that higher cross-over probability (approximately 90%) was an important factor in the 

prevention of premature convergence. Optimal GA parameter settings have been found to: vary 

from problem to problem; be sensitive to alterations in genetic algorithm implementation 

(Davis, 1991) and be more influential for problems with a greater number of decision variables 

(Siriwardene and Perera, 2006). Despite the benefits of optimising GA parameters, it has been 

found that very good performance can also be obtained using a range of settings (Grefenstette, 

1986). For some problems, robust general GA parameters identified the same optimal solutions 

as optimised values (Franchini and Galeati, 1997). 
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 Efficient use of genetic algorithms 

In order that the objective space is thoroughly searched in a reasonable time period, it is possible 

to apply GAs over multiple processors, either as independent synchronous runs or as a method 

to distribute objective performance calculations for a single optimisation process. The 

advantage of multiple independent runs includes the reduced influence of any possible 

premature convergence to localised areas of the solution space. 

Due to the stochastic nature of GAs, it is possible that some optimal solutions may be lost before 

the final population is assessed. In order to avoid this, Van Veldhuizen and Lamont (2000) and 

Table 2-4 Genetic algorithm  parameterization sets used in previous work, where L is 
number of design parameters being optimised 
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Population 200 
(15-

25)*L 
50 500 10 200 200 50 100 

Probability 
of cross-

over 
0.70 0.90 0.80 0.90 1.00 0.70 0.90 0.98 0.9 

Cross-over 
distribution 

index 
10 2-10 n/a 20 n/a n/a n/a n/a 20 

Probability 
of mutation 

0.05 1/L 0.01 
0.05 -
0.08 

1/L 0.90 0.20 
0.01 -
0.05 

1/L 

Mutation 
distribution 

index 
20 10-50 n/a 20 n/a n/a n/a n/a 20 

Generations 500 100 100 1000 n/a 500 
500 -
800 

100 250 
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Horn (1997) recommend the collation of a secondary population, made up of all of the Pareto 

optimal chromosomes identified throughout the optimisation. 

2.2.4 Application of genetic algorithms to multi-objective problems 

 Multi-objective problems (MOPs) 

A multi-objective problem may arise, for example, during a manufacturing process, with the 

cost and quality of produced goods conflicting with each other. An optimisation of this problem 

would result in a selection of trade-offs between the two objectives and it would be necessary 

for a decision maker (DM) to select an appropriate solution. Different DMs could select 

different solutions to be applied based on their individual preferences. 

MOPs can be difficult to solve as they often have complex conflicting objective functions and 

require extensive computational resources (Van Veldhuizen and Lamont, 2000). Single 

objective problems often have a unique optimal solution but MOPs can potentially have an 

infinite number of optimal solutions, each of which represents a different trade-off between the 

different objectives. If the objectives were never conflicting then a single aggregated objective 

function could be used and the problem could be simplified to a single objective problem (Horn, 

1997). 

The greater the number of objective functions that are assessed in determining the fitness of 

chromosomes, the greater the number of chromosomes which could be determined as optimal 

(Van Veldhuizen and Lamont, 2000). In order to keep the number of optimal solutions 

manageable, the number of primary objective functions should be limited. It has been found 

that two or three primary objectives are sufficient to describe the performance of chromosomes. 
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Other additional secondary fitness functions can then be used to assist the optimisation process 

(Van Veldhuizen and Lamont, 2000). 

There are three main types of methods to identify the most desirable chromosomes based on 

their separate objective scores: those that make comparisons between the values of the 

individual objectives, those which consider the objectives separately and those which consider 

the objectives simultaneously but do not compare them. Those which compare the value of the 

separate objectives are aggregative and calculate a single summative objective score for each 

chromosome using either scalar-aggregative or order-aggregative approaches. The scalar 

approach uses either a linear combination of weighted objective scores or a non-linear approach 

where chromosomes are assigned penalty functions for any objectives not met (therefore 

possibly acting as a pseudo-constraint). The order-aggregative, also known as lexicographic, 

method orders the chromosomes by considering each objective in turn, only moving to 

secondary objectives when primary objective scores are tied (Horn, 1997). The method which 

considers the separate objective functions to be incomparable is known as the Pareto concept. 

To identify MOP solutions which represent the different trade-offs between the objectives, 

many researchers use this method, as described in the next section (Van Veldhuizen and 

Lamont, 2000). 

 The Pareto concept 

Multi-objective problems rarely have a unique solution, but rather a set of alternative trade-offs 

which are not dominated by each other. The Pareto concept allows these non-dominated 

solutions to be identified when it is not possible to directly compare different objective 

functions. The Pareto criterion defines a solution as dominating another only if is at least as 

good in all attributes and better in at least one (Horn, 1997). Solutions which are dominated are 
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clearly not optimal but the non-dominated solutions will potentially be incomparable with each 

other, being better in one regard but worse in another. The blue markers in Figure 2-5 represent 

the non-dominated solutions to a problem where both objective functions A and B are to be 

minimised. This set of solutions is known as the Pareto set and the interpolated line between 

them is known as the Pareto front. The solutions in the second Pareto front are dominated by 

the first front and dominate those in the third front. A decision maker can choose a suitable 

solution by using the Pareto set to identify whether a single optimal solution exists or if certain 

solutions stand out.  Some solutions may stand out, for example, if they are optimal in one of 

the objectives or they reside at a “knee” in the front, where a large sacrifice in one objective 

yields a small improvement in another. The accuracy of the decision maker’s choice of an 

appropriate solution depends on the identified Pareto set being close to the true Pareto set (Van 

Veldhuizen and Lamont, 2000). The Pareto concept gives an indication of how the objectives 

interact, allowing the nature of the observed trade-offs to be investigated and not just the 

solutions (Horn, 1997). 

Figure 2-5 Pareto front in objective space 

To order the fitness of chromosomes systematically, they can be ranked based on how close to 

being in the Pareto set they are. Two methods are primarily used to achieve this ranking. Both 
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methods operate by assigning the Pareto set to an elite rank and the other solutions to less 

desirable ranks. In a method proposed by Goldberg (1989, cited by Van Veldhuizen and 

Lamont, 2000), the Pareto set of solutions are assigned to the first Pareto rank and then removed 

from the selection population. Solutions non-dominated by the remaining solutions are then 

assigned to the second Pareto rank. This process is continued until all chromosomes have been 

assigned a Pareto ranking. The other ranking method outlined in Fonseca and Fleming (1998) 

ranks the Pareto set as belonging to a zeroth order rank and the other chromosomes are ranked 

on the basis of how many chromosomes dominate them. Fonseca and Fleming’s method enables 

finer grading of the chromosomes but there is no definitive evidence of either of these ranking 

systems being superior to the other (Van Veldhuizen and Lamont, 2000). 

 Multi-objective evolutionary algorithms 

Multi-objective evolutionary algorithms (MOEAs) were developed to solve complex problems 

with frequently conflicting multiple objectives in acceptable time frames (Van Veldhuizen and 

Lamont, 2000, Man et al., 1996). MOEAs are well placed to solve problems which cannot be 

easily solved by alternative methods (Horn, 1997), such as those which have complex Pareto 

fronts, possibly containing multiple peaks or discontinuities. MOEAs try to achieve two goals: 

to move the population towards the Pareto front and to maintain diversity in the population 

(Deb et al., 2002). There are many different MOEAs detailed in the literature but two in 

particular are prevalent (Hirschen and Schafer, 2006): the Improved Strength Pareto 

Evolutionary Algorithm (SPEA2) (Eckart et al., 2001) and the Non-Dominated Sorting 

Algorithm II (NSGAII) (Deb et al., 2002). It is the second of these two algorithms which is 

applied in this work. 
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 Non-dominated sorting genetic algorithm II (NSGAII) 

The Non-dominated sorting genetic algorithm II (NSGAII) (Deb et al., 2002) is a type of second 

generation multi objective evolutionary algorithm (MOEA). NSGAII finds and preserves the 

best solutions through the use of an elite preserving operator, the application of a fast algorithm 

to sort non-dominated fronts and the use of a two level ranking method to assign effective 

fitness to solutions. Solutions are first ranked by Pareto set and then by crowding, so that 

dissimilar solutions are favoured. NSGAII has been shown to exhibit good diversity 

preservation in comparison with other GAs (Deb et al., 2002, Laumanns et al., 2002) and to be 

able to identify Pareto fronts in both constrained and non-constrained problems. In comparisons 

performed by Deb et al. (Deb et al., 2002) against two other contemporary algorithms, Pareto-

archived evolution strategy (PAES) and Strength Pareto Evolutionary Algorithm (SPEA), and 

a binary coded version of NSGAII, a real-value coded version of NSGAII was found to perform 

best in nine test problems identified from past studies. This evaluation was based on the 

assessment of convergence to known optimal solutions and the degree of diversity achieved. A 

drawback to the NSGAII is that it allows non dominated solutions to replace each other, which 

over time can result in the deterioration of the population’s performance and therefore not 

guarantee convergence to the Pareto set. Further details of how the NSGAII algorithm is applied 

can be found in Appendix A). 

2.2.5 Genetic algorithms summary 

This section examined how GAs are applied to solve MOPs. The research of GAs is used to 

apply NSGAII algorithms to solve design and operating regime optimisation problems, which 

is described in chapter five. 
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The operation, advantages and limitations of GAs were investigated with the intention of using 

them to optimise the design and operating regime of a modelled WTW. GAs were found to be 

appropriate as they use variation and selection to solve MOPs by exploring within solution 

spaces whilst taking advantage of currently best known solutions. The use of the Pareto concept 

was considered appropriate where objectives are considered to be incomparable. The NSGAII 

was selected as an effective, widely used GA which uses the Pareto concept. This algorithm 

attempts to move the solution population towards the best possible solution population whilst 

maintaining solution diversity. A secondary population, made up of all of the Pareto optimal 

chromosomes identified throughout the optimisation can be compiled to avoid losing some non-

dominated solutions before the final population is assessed. 

2.3 Knowledge gap 

Based on the review of water treatment quality, treatment, existing programs and genetic 

algorithm optimisation covered in this chapter the following gaps in current knowledge are 

identified. 

• Historically poor uptake of water treatment modelling has been previously attributed to 

the quantity of non-standard calibration data required (Dudley et al., 2008). The 

performance of WTW models using only conventionally collected data is unknown. 

• The accuracy of water treatment solids removal models has typically been assessed 

using bench scale or pilot plants for periods of time of less than a week (Edzwald et al., 

1992, Adin and Rebhun, 1977, Saatci and Oulman, 1980) and occasionally using 

operational works for periods of time less than a month (Head et al., 1997). The accuracy 

of water treatment works models calibrated and verified over annual periods has not 
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been investigated. Assessing models over longer periods with greater diversity in 

operating conditions would allow influences such as seasonality to be investigated. 

• Previous water treatment modelling programs have taken either a static or dynamic 

approach to modelling processes (i.e. WRc’s dynamic OTTER and Hydromantis’s static 

WATPRO programs). A comparison of the relative accuracy of using both types of 

models for whole works modelling purposes has not been completed. 

• Water quality variance at operational sites has been described broadly by mean and 

standard deviation values (Clark et al., 2011). The variance of key water quality 

parameters have not been more fully defined by appropriate probability distributions. 

Distributions for key parameters have not been defined in detail from an operational 

site, along with an assessment of how accurately they approximate to standard 

distributions (such as normal, exponential or log-normal). 

• Due to multiple water quality parameters, being dependent on multifaceted operating 

conditions, it is problematic to gain simple guidance from a WTW model that can be 

applied by operational staff in real time. Simple methods of providing this guidance are 

presently missing. 

• Existing genetic algorithm optimisation studies of water treatment works have focused 

on solids removal, using static models for theoretical water treatment works (Gupta and 

Shrivastava, 2006, Gupta and Shrivastava, 2008, Gupta and Shrivastava, 2010). The 

concurrent optimisation of solids removal and disinfection processes using both static 

and dynamic models along with data from operational sites has not previously been 

examined. 
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3 GENERIC WTW MODELS 

To achieve the aims and objectives for this study (see section 1.4), computational models of 

common treatment processes for lowland surface waters in the UK are required. In order to 

develop and test these models, case study data from Trimpley, an operational WTW (see chapter 

four), is used. The processes modelled include: coagulation; dissolved air flotation (DAF) and 

hopper bottomed clarification (HBC); rapid gravity filtration (RGF); granular activated carbon 

(GAC) and super chlorination. The models described in this chapter are used to predict the 

performance of Trimpley WTW (see chapter four). The models are also used to theoretically 

optimise the design and operation of Trimpley WTW (see chapter five). 

3.1 Model overview 

The models are programmed using Simulink, an extension of MATLAB that provides an 

interactive graphical environment for modelling time varying systems. Process models are built 

as modules that can be grouped together to represent whole WTWs. This allowed the effect of 

operational changes in proceeding treatment processes to be evaluated throughout the works. 

As MATLAB/Simulink is used, the models are easily accessible, the structure is open and 

flexible (van der Helm and Rietveld, 2002) and all routines, toolboxes and visualisation 

techniques of MATLAB/Simulink can be used. The ODE45 solver is used with a variable time 

step for all of the models in this work with a minimum time step of fifteen minutes, which is 

commonly the eSCADA data time step observed in the case study works. 

3.2 General models 

This section describes water characteristics, inter-relationships and processes that apply to 

WTWs as a whole and therefore cannot be assigned to single process models. 
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3.2.1 Water density 

Water density is determined using an empirical relationship with temperature as developed by 

Civan (2007) (Equation 3-1). The accuracy of this relationship was tested by Civan using the 

experimental data of Weast & Astle (1982). Weast & Astle reported 104 densities of water from 

-30 °C to 89 °C at 1 atm. The density / temperature relationship has a coefficient of 

determination (R2) of approximately 1.0, and an average relative deviation from the data of      

10-4 °C (Civan, 2007). The R2 value is a measure of the degree of variation in the response 

variable that is accounted for by the independent variables of a mathematical relationship 

(Nelson et al., 2003). 

 �
 = 1065 ∗ �1 − ���.����
�.����×�� !"��#�$ ��.��#�×��%!"��#�$& '( 
Equation 3-1 

Where: ρw = density of water (kg/m3) and T = temperature (°C). 

3.2.2 Dynamic viscosity 

Dynamic viscosity is calculated using Equation 3-2 from Kestin et al. (1978) for water at 

atmospheric pressure and temperature between 0 °C and 40 °C. The relationship is based on 

four independent data sets (Korson et al., 1969; Eicher & Zwolinski, 1971; Hardy and 

Cottington 1949 and Korosi and Fabuss, 1968), which were the most precise over particular 

temperature ranges at the time of Kestin et al’s analysis. The relationship has a reported error 

in reference viscosity of 0.1% and the temperature relationship has a standard deviation of 

0.1%. 
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Where: µ = dynamic viscosity (Ns/m2) and T = temperature (°C). 

3.2.3 Mixed flow within dynamic models 

Continuous stirred tank reactors (CSTRs) are used to model the degree of mixing that occurs 

within processes. A single CSTR models perfect mixing. The more tanks there are, the more 

the tanks act like a plug flow system. To model complete mixing within a CSTR where mass is 

conserved, the instantaneous change in the concentration of the reactor is calculated using an 

ordinary differential equation (ODE) as shown in Equation 3-3. A modified ODE can model 

non-conservative mechanisms by having additional terms added, for instance first order decay 

can be modelled as shown in Equation 3-4. 

 ?�?@ = A!�−��$B  
Equation 3-3 

 ?�?@ = A!�−��$B − C� 
Equation 3-4 

Where: C = outlet concentration, C0 = inlet concentration, t = time, Q = flow, V = volume and 

k = first order decay rate (h-1). 

3.2.4 Relationship between turbidity and suspended solids 

Many water treatment solids removal models use suspended solids (SS) as a performance 

parameter, i.e. Head et al. HBC model (1997); Edzwald DAF model (2006) and Adin and 
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Rebhun rapid gravity filtration model (1977). Most WTWs however, routinely measure 

turbidity as a surrogate parameter for SS concentration. In order to accurately gauge SS 

concentrations either continual SS sampling can be implemented or a correlation between 

turbidity and SS can be determined based on a period of sampling data. This relationship is 

usually expressed as a directly proportional relationship, as shown in Equation 3-5. This 

relationship may require continual adjustment to take into account seasonal and episodic events. 

 DD = E × FGH Equation 3-5 

Where: b = empirical parameter (mg/l.NTU). 

The value of the empirical parameter b in Equation 3-5 was found to vary between 0.7 to 2.2, 

for low colour water that predominantly required turbidity removal treatment by Cornwell et 

al. (1987) cited by AWWA (1999). 

Turbidity, when used as a surrogate for SS concentration, has some further limitations. Most 

importantly, turbidity and suspended solids do not measure the same constituents of the water, 

as shown in Figure 3-1. Turbidity measures the effects of conventional suspended solids as well 

as effects of other smaller and larger solids and dissolved compounds. For this reason it is 

possible that a high turbidity reading does not necessarily mean a high suspended solids 

concentration (Bilotta and Brazier, 2008).  

The turbidity of water, which relates to its propensity to scatter light, is also not solely 

dependent on the concentration of solids present. The size, shape and  refractive index of the 

suspended solids also affect turbidity readings (Mhaisalkar et al., 1993, Bilotta and Brazier, 



60 

 

2008), and these properties change during treatment (Mhaisalkar et al., 1993). For these reasons 

it is challenging to correlate accurately turbidity to SS (Mhaisalkar et al., 1993). 

Figure 3-1 Turbidity and suspended solids constituents (Bilotta and Brazier, 2008) 

Despite the limitations of correlating suspended solids concentrations to turbidity 

measurements, it is frequently done by environmental bodies such as the Australian and New 

Zealand Environment Conservation Council (ANZECC) and the United States Environmental 

Protection Agency (USEPA) due to its ease of application (Bilotta and Brazier, 2008). 

In the work reported here, the ratio between suspended solids (mg/l SS) and turbidity (NTU) is 

set at 2:1, as used as a default value in the OTTER program (WRc, 2002) and as suggested by 

Binnie et al. (2006), where sufficient data are not available to define it accurately. This is done 

so that the accuracy of the WTW models, which only use conventionally collected 

measurements, can be assessed. This ratio is likely to vary temporally and spatially in practice 

but is likely to range from approximately 0.5 to 3:1. 
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3.3 Coagulation and flocculation 

The coagulation module for both the dynamic and static models is identical and static in nature. 

It is assumed that either conventional ferric or aluminium salt based coagulants are applied. The 

pH and alkalinity both reduce due to the addition of acidic coagulant and the suspended solids 

concentration increases due to the formation of metal hydroxides. The total organic carbon (a 

surrogate parameter for NOM) that is removed during the clarification process is modelled as 

being dependent on the coagulant dose and as such is modelled as a coagulation process. 

3.3.1 Suspended solids adjustment 

Assuming that all of the metal ions in the ferric or aluminium based coagulants form metal 

hydroxides, which precipitate out of solution, then by stoichiometric analysis, the amount of 

suspended solids added by ferric sulphate is 1.9 g/g Fe3+ and by alum 2.9 g/g Al3+. This 

assumption is expected to be approximately true if: (i) reactions between TOC and coagulant 

formations are negligible; (ii) doses of coagulant are greater than 2 mg/l as Fe3+ and (iii) pH is 

such that iron has a low solubility (i.e. 4.0 < pH < 11.0) (Tseng and Edwards, 1999). It is likely 

that operating conditions at a WTW will be within these criteria. This method of calculating 

additional solids loading agrees with that reported by Warden (1983) as reported by Binnie et 

al.(2006). Any additional solids loading caused by the precipitation of metal-NOM complexes 

or adsorption of TOC on to the surface of the metal hydroxides formed is not calculated and is 

a limitation of the method. 

3.3.2 TOC Modelling 

Edwards’ (1997) model, based on the Langmuir equation, is used to model dissolved organic 

carbon (TOC) removal due to coagulation. The extent of TOC removal is predicted by the raw 
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water’s TOC concentration, ultraviolet absorption at 254 nm and the coagulated water’s pH. In 

the Edwards (1997) model, organic matter is assumed to be adsorbed onto the surface of metal 

hydroxide flocs that are formed by ferric or alum coagulants. The metal hydroxide ions Fe3+
 

and Al3+
 are considered to be almost completely insoluble over the operational pH range (3.0-

8.0 for ferric coagulants and 5.5-8.0 for alum coagulants) and so the available sorbent surface 

is considered to be proportional to the dose of coagulant (Edwards, 1997). Some of the organic 

matter is assumed to be non-adsorbable and the rest exists in equilibrium, between solution and 

adsorption, which is described by a Langmuir isotherm. A Langmuir isotherm was used by 

Edwards to describe the adsorption equilibrium in preference to Freundlich or diffuse layer 

modelling, due to superior agreement of 50 preliminary trials of each approach to experimental 

data (Edwards, 1997). A full description of this model is provided in Edwards (1997) and Tseng 

& Edwards (1999). 

The ‘general low DOC’ parameters are used to model TOC in this work.  The application of 

these parameters for TOC application is considered to be appropriate as TOC typically 

approximates to DOC to within 2-17% for low turbidity water sources (Owen et al., 1995). The 

accuracy of the low DOC model for TOC use, for a selection of jar, pilot and full scale tests is 

shown in Table 3-1, based on the reported analysis in Edwards (1997) and Tseng & Edwards 

(1999). A meta-analysis of these results indicates that the low DOC model for TOC use, has an 

accuracy described by a coefficient of determination (R2) between 0.76 – 0 .96 and a maximum 

standard error of 0.6 mg/l. Taking the results from Table 3-1 as a whole, the standard error of 

the model can be estimated as being approximately ± 20% or 0.5 mg/l. It is worth noting that 

the regulatory limit for bias and precision from Analytical Quality Control (AQC) 
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measurements is currently 5% (Mills, 2013), which is a significant fraction of the predicted 

model error. 

Table 3-1 Edwards’ TOC model accuracy (data from Edwards, 1997 unless otherwise 
stated) 

Data description n Number 

of tests 

Number of 

locations 

R2 RMSE 

Randke et al. 858 60 n/a 0.96 n/a 
TOC jar tests from AWWA 
survey 

1804 219 n/a 0.88 n/a 

Full scale and pilot scale multiple 
sampling events from NECSD 

n/a n/a 7 WTWs across  
5 states of USA 

0.89 0.3 mg/l 

Full scale and pilot scale single 
raw and coagulated water grab 
samples 

n/a n/a 17 WTWs across 
14 states of USA 

0.87 0.6 mg/l 

All jar test, full scale and pilot 
scale data applied to TOC model  

n/a n/a n/a n/a 12% 

Ferric, alum and poly aluminium 
chloride (treated as alum) 
coagulants full scale and pilot 
scale, grab and continuous data 
sets, cited in Tseng and Edwards 
(1999) 

n/a n/a 31 WTWs n/a Alum 
0.51 mg/l 
21% 
Ferric 
0.32 mg/l 
11% 

Where: n = number of data points; R2 = coefficient of determination; RMSE = route mean 

squared error; AWWA = American Water Works Association and NECSD = National 

Enhanced Coagulation and Softening Database. 

 Coagulant dosing model 

Based on the Edwards model, it is possible to calculate a coagulant dose to achieve a desired 

clarified total organic carbon (TOC) concentration. Based on the TOC and ultraviolet 

adsorption at 254 nm (UV254) of the initial water, the fraction of non-sorbable TOC can be 

calculated using Edwards’ model. This can be combined with a target TOC concentration to 

calculate a target equilibrium concentration of adsorbate in solution (Ceq) using Equation 3-6 
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 �IJ = G��KLMNIK − G��OPO Equation 3-6 

The coagulant dose is calculated using Equation 3-7 with a maximum limit specified for how 

much coagulant a works can dose. 

 Q = R1 	 E�IJS!G��� − G��OPO − �IJ$TE�IJ  
Equation 3-7 

Where: Ceq = equilibrium concentration of adsorbate in solution (mg/l); TOCtarget = target TOC 

(mg/l); TOCnon = non-sorbable TOC (mg/l); M = dose of coagulant (mMol Me3+) b = Langmuir 

adsorption equilibrium parameter (l/mg adsorbate); TOC0 = initial TOC (mg/l); a = maximum 

adsorbent-phase concentration of adsorbate at saturation (mg/l adsorbate/mMol/l adsorbent). 

In order to accurately predict the extent of organic matter removal using the Edwards (1997) 

model, it is necessary to predict the pH of the coagulated water. The coagulated water will have 

a lower pH than the source water due to the acidic nature of ferric and alum coagulants. The pH 

at which this coagulation occurs is fed back from the carbonate model (section 3.3.3). Applying 

this feedback mechanism resulted in a marginal increase in model run times (<5%) compared 

to when a coagulation pH was set at a representative value of 6.1. 

3.3.3 Carbonate system  

The model used to represent the influence of chemical addition on pH is based on the carbonate 

chemistry described in Stumm and Morgan (1970) and Snoeyink and Jenkins (1980a, Snoeyink 

and Jenkins, 1980b) and is similar to the method described in Najm (2001) which was 

independently developed. The coagulation process is treated as a closed system and ionic 

strength effects are assumed to be negligible due to the low concentrations of chemicals found 
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in water treatment. Instabilities in this carbonate model are limited through the application of 

the Newton-Raphson method to iteratively calculate representative pH values. Full details of 

the carbonate chemistry model are provided in Appendix B. Daly et al. (2007) compared the 

carbonate chemistry approach to an empirical method which was calibrated to evaluate the 

buffering capacity of a source. The carbonate chemistry approach was found to be more 

accurate when tested using jar tests and pH titrations and of a similar accuracy for pilot plant 

tests. 

3.4 Hopper bottomed clarification (HBC) 

3.4.1 Dynamic HBC model 

Floc blanket clarifiers are modelled using a similar method to that presented in Head et al. 

(1997). Head et al’s model was found to give good predictions of plant performance based on 

it predicting blanket concentration to ±5% and clarified turbidity to ±0.5 NTU. The predicted 

clarified turbidity identified trends in turbidity (over days) but not shorter term fluctuations 

(over hours), this was partly attributed by Head et al. to the nature of on line measurements. 

HBCs are represented by a series of homogeneous CSTR sections. Within a CSTR, solids either 

pass through or are absorbed into a sludge blanket. The model is based on the assumption that 

the flocs are bimodal, with smaller initial flocs and larger flocs within the blanket. All initial 

flocs are also assumed to be equally well removed by the sludge blanket. Figure 3-2 illustrates 

how the different aspects of the Head et al. (1997) HBC model interact. It should be noted that 

there are more links between the mechanisms than are shown in the diagram and that only the 

key relationships have been shown. 
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Figure 3-2 Illustration of key links between mechanisms within HBC clarifier model 

A full description of the HBC model’s mechanisms can be found in Head et al. (1997) and the 

OTTER manual (WRc, 2002); only deviations for the model’s standard application are noted 

here. The calibration parameters of the Barnea and Mizrahi (1973) equation can be identified 

for a specific works, but in this model, values from Head et al. (1997) were used to see how 

effectively modelling of a works could be achieved using only existing data collected from a 

WTW. The parameters used from Head et al (1997) are works specific and therefore if not 

representative of other works could be a substantial source of error. 

The settlement of flocs is also not modelled in this work. Removal due to settlement is not 

included due to the relative dominance of blanket removal (approximately 1% of solids 

removed were found to be due to settlement under conditions observed). Removal due to 

settlement is only significant at low flow rates, and in these conditions, removal due to blanket 
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formation would be effective. For this reason, modelling settlement would not significantly 

influence the likelihood of unacceptable HBC clarified turbidity being predicted, and so would 

not be of use in assessing the reliability of the process. 

3.4.2 Static HBC model 

Using the solids removal equation from the dynamic HBC model and making the assumptions 

that the blanket concentration and height remain consistent and the flow through the clarifier is 

plug flow, then the removal of solids can be approximated by Equation 3-8. Although 

turbulence at the inlet to the process is substantial, the degree of mixing within the majority of 

the clarifier is minimal and so plug flow is an appropriate approximation. The clarification 

efficiency parameter is found by optimising its value to reduce the summative error squared 

between predicted and actual clarified turbidity. 

 DD = DD� × �UV
WK Equation 3-8 

Where: SS = clarified suspended solids (mg/l); SS0 = flocculated suspended solids (mg/l); t = 

contact time (h) and k = clarification efficiency parameter (h-1). 

3.5 Dissolved air flotation (DAF) clarification 

The dynamic and static models described in this section are based on the static models 

developed by Edzwald (2006) and by their application for dynamic systems described in the 

OTTER WTW modelling program (WRc, 2002). 
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3.5.1 Dynamic DAF model 

The attachment efficiency of bubbles onto suspended solids by dissolved air flotation is based 

on Equation 3-9 and Equation 3-10 (Edzwald, 2006). These are based on the plug flow 

assumption of flow through the contact zone which was found to be approximately true 

(Haarhoff and Edzwald, 2004, reported in Edzwald, 2006). In order to make the Edzwald model 

dynamic, complete mixing is applied through the use of a representative number of CSTRs, and 

the entire tank is modelled as a contact zone. This is represented by Equation 3-11 as used in 

the OTTER program (WRc, 2002). In this model no flocculation occurs within the DAF tank 

and the removal performance is unaffected by the accumulation of floating sludge. 

 Efficiency = 1 −	�UV
W∗K Equation 3-9 

 

C = 	−
32YZ"[\]\?\  

Equation 3-10 

 ?DD
?@ = ADD�B − ^AB + C_ DD 

Equation 3-11 

Where: SS = clarified suspended solids (mg/l), SS0 = raw water suspended solids (mg/l), t = 

time (h), Q = flowrate (m3/h), V = volume of flotation tank (m3), k = floc flotation parameter 

(h-1), α = attachment coefficient (dimensionless), ηT = individual bubble collision efficiency 

(dimensionless), ϕb = bubble volume concentration (dimensionless), vb = bubble rise rate (m/h), 

db = bubble diameter (m). 

A full description of the HBC model’s mechanisms can be found in Edzwald (2006) and the 

OTTER manual (WRc, 2002). Only a description of the calculation of the individual bubble 

collision efficiency (ηT) is provided here, as it required further specification than was provided 

in Edzwald (2006) and WRc (2002). 
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 Individual bubble collision efficiency (ηT)  

Three factors contribute to the frequency of collisions between bubbles and flocs: Brownian 

diffusion, interception of the flocs by the bubbles and settling of the flocs onto the bubbles. At 

floc sizes larger than a micron, interception dominates and so only this mechanism, determined 

by bubble and floc size, is modelled. Equation 3-12 is used to calculate ηT as recommended by 

Edzwald (2006). 

 Z" = `?ab?\ 	 1c
�
− 3
2`
?ab?\ 	 1c 	

1
2 `
?ab?\ 	 1c


�
 

Equation 3-12 

Where: ηT = individual bubble collision efficiency (dimensionless), dfl = diameter of floc (m), 

db = diameter of bubble (m). 

Edzwald et al. (1992) found that DAF clarification using mean floc diameters of 30 microns 

(on a volume basis) was effective, producing clarified water with turbidity below 0.5 NTU. 

Adlan (1998), citing Klute et al. (1995) and Bunker et al (1995), reported effective sizes to be 

between 30 – 45 microns. Effective flocculation is assumed to occur with floc diameters of 30 

µm. Hence, that value has been adopted in this thesis. 

The bubble size formed in a DAF tank depends on the saturator pressure, the method of injection 

and the recycle rate (Edzwald, 2006). At some WTWs, the saturator pressure or recycle rate is 

automatically adjusted in order to stabilise the bubble volume concentration. This adjustment 

will alter the bubble size. However as the effect of the saturator pressure and recycle rate 

adjustment on bubble size is unknown, a consistent size is used here. The diameter of the 

bubbles are assumed to be 40 microns as given as a typical value in Edzwald et al. (1992). This 

fits below an upper estimate of 64 microns reported by Sebau (1997) as reported by Adlan 

(1998) for bubbles produced in the laboratory. 
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3.5.2 Static DAF Model 

A static model is produced based on Equation 3-9 and Equation 3-10. In fitting with Edzwald’s 

theory, attachment is assumed to occur only in the initial contact zone. All of the other 

parameters are defined in the same way as the dynamic model. 

3.6 Rapid gravity filtration (RGF) 

The dynamic and static RGF models described in this section are based on the Bohart and 

Adams Equation (1920). The filtration head loss in the dynamic model is described using the 

solids accumulation relationship identified by Adin and Rebhun (1977).  

3.6.1 Dynamic RGF model  

The removal of solids by filtration is modelled using the Bohart & Adams model (1920) as 

shown in Equation 3-13 (the derivation of this equation from first principles can be found in 

Appendix C). The Bohart & Adams model (1920) was originally developed for the adsorption 

of chlorine and  is based on the following assumptions: 

• The capacity of a media to remove substances reduces in proportion to the media 

capacity and the initial concentration of the substance being removed; and 

• The rate of media capacity reduction is equal to the rate of substance removal. 

These assumptions are in agreement with the experimental findings for filters that the rate of 

particle removal is dependent on the concentration of particles similar to a first rate equation 

(Iwasaki, 1937 referenced in Crittenden et al, 2005). 

The original work of Bohart & Adams defined the velocity in Equation 3-13 as the rate that the 

adsorbing material became saturated. For removal of solids by filters this velocity has been 
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redefined as the superficial velocity of the water through the media in Saatci and Oulman 

(1980), Saatci and Halilsoy (1987), Saatci (1989, 1990) and WRc (2002). The filter capacity is 

defined as the accumulated suspended solids concentration at which the rate of solids 

attachment and detachment is assumed to be equivalent and the media ceases to overall reduce 

the overall suspended solids concentration. 

 DD
DD� �

1
�def. g⁄ 
iejj. 	 1 

Equation 3-13 

Where: SS0 = flocculated SS (mg/l); SS = clarified SS (mg/l); x = depth of filter media (m); k 

= attachment coefficient (h-1); a0 = filter capacity (mg/l); v = superficial velocity of water 

through filter media (m/h) and t = time since last backwash (h). 

The Bohart & Adams model is static in nature and so assumes consistent operating conditions. 

In order to account for dynamic conditions, the input suspended solids concentration and the 

superficial velocity are taken as running means over a filtration run. This acts to dampen the 

response of the output turbidity to fluctuating water quality. Another dynamic aspect which was 

added to the model, is that backwashes can be triggered by head loss or filtered turbidity 

exceeding maximum limits. 

 Calibrating parameters for Bohart and Adams (1920) model 

The calibration of this filter model can be completed using representative pilot filters of 

differing length as described in Saatci and Oulman (1980). Saatci and Oulman (1980) also 

describe an alternative method for calibrating from operational initial breakthrough data, when 

pilot filter data are unavailable. Where insufficient breakthrough is observed from the 

operational data, it may be necessary to use a conservative estimate of the filter capacity (a0). 
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Based on the values reported in Table 3-2, a value of approximately 1000 (mg/l) is appropriate 

as for the majority of operational conditions it should result in a conservative estimate of the 

time until filter breakthrough. 

Table 3-2 Comparison of filter capacities estimated in previous research 

Source Conditions 

Filter 

capacity 

(mg/l) 

Saatci and Oulman 
(1980) using data from 
Cleasby’s doctoral 
dissertation, run 23, 1960. 

Filtration of iron by sand filter 
76 cm sand, effective diameter 1.05 mm 
14.4 m/h 
Initial iron concentration 7-9 mg/l 

8140 

Adin and Rebhun (1977) Filtration of 20 mg/l kaolinite suspension 
100 cm sand ,effective diameter 0.7 – 1.4 mm 
5 – 25 m/h 
Theoretical capacities 
Maximum observed capacities 

 
 
 

9700 – 81540  
2800 - 35500 

OTTER WTW program 
manual (WRc, 2002) 

Initial concentration of solids 4 mg/l 
60 cm filter 
10.5 m/h 
10% non-filterable solids 

950 

 Filter ripening model 

As discussed in section 2.1.2.5.2, after backwashing, the effectiveness of filters to remove 

suspended solids is temporarily reduced until the filter has gone through a ripening process. It 

is necessary to model this process in order to account for the temporary reduction in water 

quality that backwashing causes. 

Filter ripening is modelled by adjusting the attachment coefficient (k) using an empirical 

relationship (Equation 3-14) which WRc (2002) found gave a good fit to operational data.  
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Where: kt = attachment coefficient at time t; k = attachment coefficient; α = initial attachment 

factor (dimensionless) tr = ripening period (h); t = time since last backwash (h). 

Using turbidity and discharge eSCADA data from January 2012 the dynamic filter model is run 

with varying values of α and tr and the predicted and observed filtered turbidity against time 

since last assumed backwash is compared using lines of best fit produced using the two-term 

exponential fitting tool within MATLAB. As can be seen in Table 3-3, the maximum value of 

initial attachment factor (assuming an initial attachment coefficient of zero) and a ripening time 

of one hour is found to result in the smallest RMSE. 

Table 3-3 RMSE observed for combinations of α and tr 

Ripening 

period (tr) 

Initial attachment factor (α) 

0.1 0.5 1.0 

0.1 0.0442 0.0425 0.0403 
1.0 0.0427 0.0332 0.0243 
10 0.0412 0.0372 0.0970 

Using a filter capacity of 1000 mg/l and an attachment coefficient at 0.005 hr-1, predicted filtered 

turbidity for the initial six hours after assumed backwashes is compared to that observed and 

found to have a RMSE of 0.025 NTU and a similar profile and distribution of results (see  

Figure 3-3). 

 CK � CR1 − Y�
K/KlS Equation 3-14 
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Figure 3-3 Modelled vs. observed filter ripening 

 Clean bed head loss modelling 

The flow regime for rapid gravity filters is typically in the region of Darcy flow (Re < 1) and 

Forchheimer flow (1 < Re < 100) (Crittenden et al., 2005). Head loss estimated on the 

assumption of Darcy flow (using the Kozeny-Carman equation) or Forchheimer flow (using the 

Ergun equation) gradually deviates for Reynolds numbers greater than one (Crittenden et al., 

2005). Little difference (less than 1 cm) is observed between estimates made of clean bed head 

loss for typical operating conditions using the two methods. Due to its dependence on fewer 

empirical parameters the Kozeny-Carman method is used (Equation 3-15). 

 

mn = oW) �6!1 − p$q? '� rs�
tp�  

Equation 3-15 

Where: hL = clean filter head loss (m); Kk = Kozeny coefficient (dimensionless); µ = water 

dynamic viscosity (Ns/m2); ε = voidage (dimensionless); ψ= sphericity of filtration media 

(dimensionless); d = media diameter (m); ν = filtration rate (m/h); L = filter bed depth (m) and 

ρw = water density (kg/m3). 
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The filter length, media effective diameter, porosity and sphericity need to be specified, 

however, if porosity or sphericity data are not available then the values used in Table 3-4 can 

be applied as general values. As supplied media is made up of grains of varying diameter, it is 

necessary to take this into account when defining the size of media required. A commonly used 

method for characterising the media size distribution is by effective size (Crittenden et al., 

2005). The effective size is defined as being the diameter of media for which 10%, by mass, of 

the media is smaller. 

*These sphericities were calculated by Cleasby & Fan using the Ergun equation, which 

correlates pressure drop in a fixed bed with particle diameter, voidage, Reynolds number and 

sphericity. These values were modified by Dharmarajah and Cleasby to consider loose 

packaging of particles instead of tightly packed arrangements as were considered by Cleasby 

& Fan. 

 Head loss due to solids accumulation 

Adin & Rebhun (1977) provided experimental data for head loss due to solids accumulation 

from which they derived Equation 3-16 (see Appendix D for derivation). 

Table 3-4 General values of granular bed porosity and sphericity 

Media Granular bed porosity Sphericity 

Anthracite 0.5  
Typical value to 1 significant figure for 
use with effective sized media 
(Crittenden et al., 2005) 

0.6  
Typical value to 1 significant figure for 
UK anthracite (Dharmarajah and 
Cleasby, 1986)* 

Sand 0.4  
Midpoint of the range to 1 significant 
figure for use with effective sized 
media  
(Crittenden et al., 2005) 

0.8  
Typical value to 1 significant figure for 
UK sand of sizes between 0.5 mm to 2 
mm 
(Dharmarajah and Cleasby, 1986)*  
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 � � ��
R1 − u√wS� 

Equation 3-16 

Where: H = head loss (m); H0 = clean bed head loss (m); σ = accumulated solids concentration 

(mg/l) and β = rate of head loss coefficient (√l/√mg). 

The rate of head loss coefficient can be found empirically from plotting a graph of [(H/H0)1/3–

1] against √ σ and taking the gradient as β. The accumulated solids in the filter can be calculated 

based on the mass of suspended solids removed from treated water. If this method does not 

result in a clear linear relationship, then a best fit value of β can be identified. 

3.6.2 Static RGF model 

The Bohart & Adams equation, described in Equation 3-13, is used to statically model filter 

solids removal. The dynamic components which are not present in the static model are the use 

of running means of influent suspended solids concentration and superficial velocity, the 

calculation of predicted head loss and the use of non-scheduled backwashes. 

3.7 Granular activated carbon (GAC) adsorption 

The GAC model used here, predicts the removal of TOC, as a surrogate for natural organic 

matter. Although GAC is usually applied to target a specific organic compounds such as 

pesticides, only TOC removal is modelled in order to keep the number of water quality 

parameters investigated manageable and also because TOC was identified as a good indicator 

of adsorption performance by Lykins et al. (1988) as it is: easy to analyse, includes all organic 

components, and it correlated well with THM formation potentials. 
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At Trimpley WTW, TOC is recorded monthly in the reservoir water and final water, but not 

before and after GAC adsorption. This frequency of TOC measurement is typical of other 

WTWs operated by Severn Trent Water. As TOC removal will be influenced by processes other 

than GAC adsorption, in particular coagulation and filtration, it will not be possible to directly 

measure the influence of the GAC on TOC concentration. Collection of pre and post adsorption 

TOC concentrations are not measured as the potential for modelling WTWs using only 

historically collected data is examined. Due to the lack of appropriate data, TOC removal due 

to GAC adsorption and filtration is modelled as a fractional reduction as described in the next 

section. 

3.7.1 Combined TOC removal due to RGF and GAC 

It has been found that the TOC removal at WTWs predominantly occurs at the clarification 

stage. Brown et al. (2011b) reported TOC removal data for six large WTWs, in the West 

Midlands of the UK, for the summers of 2006 and 2007, with varying source waters and 

treatment processes. These data are reported in Table 3-5 and Figure 3-4. 
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Table 3-5 Comparison of removal due to different treatment processes, adapted from Brown 
et al. (2011b) 

WTW processes 
Removal due to process (%) 

1 2 3 4 5 6 Mean Min Max 

Coagulation, Flocculation & 
Clarification 

25 30 16 40 24 21 26.0 16.0 40.0 

Filtration 8 2 5 2 4 7 4.7 2.0 8.0 
GAC adsorption 13 8 10 15 18 16 13.3 8.0 18.0 

Disinfection and final water 
treatments 

3 5 2 1 6 -4 2.2 -4.0 6.0 

Figure 3-4 Comparison of removal across clarification vs. removal across filtration and GAC 
adsorption, adapted from Brown et al. (2011b) 

It can be seen in Table 3-5 that the largest amount of removal (~25%) occurred across the 

clarification process, which is in agreement with other studies of Severn Trent WTWs (Hua et 

al., 1999, Courtis, 2003). Considerable TOC removal also occurred across the filtration (~5%) 

and GAC adsorption processes (~20%). From Brown et al.’s data (2011b) a typical reduction 

from filtration and GAC adsorption is of the magnitude of 25% although for one site examined 

the reduction was more in the region of 15%. A reduction of 25% of clarified TOC due to 
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filtration and GAC adsorption can be assumed as typical. The inaccuracy of this assumption 

will have to be considered in any analysis made using it. 

3.7.2 GAC suspended solids removal  

Suspended solids (SS) removal by GAC is not be modelled, as although it has been shown to 

be at least as affective as conventional filtration media at removing SS from water (Love and 

Symons, 1978) this is not the process’s principal purpose at works where it is conventionally 

used as a tertiary treatment. Increased SS removal by the GAC process will lead to an increased 

need to backwash the activated carbon, which disrupts the mass transfer zone and causes 

premature breakthrough (Crittenden et al., 2005). This premature breakthrough along with the 

increased activated carbon loss, due to backwashing will result in more frequent reactivations 

of the carbon. Since regeneration contributes a “major part” of the total cost of the GAC system 

(Clements and Haarhoff, 2004) and production costs rise exponentially which decreased 

periods between regeneration (Gumerman et al., 1979a), all SS removal modelling is accounted 

for by clarification and filtration here. 
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3.8 Chlorination 

3.8.1 Initial chlorine concentration 

Due to the action of control systems which respond to changes in water quality, the 

concentration of chlorine dosed at WTWs fluctuates. To assess whether the chlorine dose can 

be modelled as a consistent value over continuous periods, a case study is completed using 2011 

eSCADA data for Trimpley WTW (Severn Trent, 2012a). At Trimpley the chlorine dosing 

point is approximately ten metres upstream from the entrance of the contact tank and so some 

chlorine decay and mixing occurs before the water reaches the contact tank. Both the dynamic 

and static models, described in this section, are run using contact tank inlet chlorine 

concentrations from either quarter hourly eSCADA data or from monthly mean values 

calculated from the same eSCADA data. The predicted residual chlorine concentrations using 

both models and methods of estimating the initial chlorine concentration are shown in Figure 

3-5 and Figure 3-6 along with the observed residual for the same period. 

Figure 3-5 Residual free chlorine concentrations from static model 
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Figure 3-6 Residual free chlorine concentrations from dynamic model 

Figure 3-5 and Figure 3-6 show that considering the chlorine dose to be consistent over monthly 

periods does not reduce the accuracy of the model substantially and also makes the variation in 

residual free chlorine concentration more representative of that observed. The static model in 

particular benefits from this approximation. Figure 3-5 and Figure 3-6 also suggest that the 

chlorine consumption is over-predicted for colder winter periods. 

3.8.2 Contact tank hydraulic efficiency 

Flow within contact tanks resembles plug flow with a degree of dispersion that can be accounted 

for by different modelling techniques. The flow regime of the contact tank is defined by the 

tanks hydraulic efficiency (t10:tθ). The hydraulic efficiency of a tank is defined as the ratio of 

the time taken for 10% of the concentration of a tracer chemical to be detected at the outlet of 

the tank (t10) to the theoretical contact time if perfect plug flow conditions were present (tθ). 

The observed time for 10% of tracer material to pass through a process (t10) was identified by 
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Teixeira and Siqueira (2008) as being the only hydraulic efficiency indicator examined that 

gave a statistically robust and fit for purpose short circuiting parameter. 

3.8.3 Chlorine decay 

In this work a first order decay equation is used, as only decay within the contact tank is 

considered. A first order equation is used as they are simple and have been applied successfully 

in previous studies (Powell, 1998, Gang et al., 2002). The chlorine decay model used is based 

on Brown (2009). In Brown’s work, chlorine decay at six WTWs in the West Midlands of the 

UK was investigated, via co-ordinated sampling campaigns and laboratory tests. 

Brown (2009) found that modelling the decay within the contact tank purely as first order decay 

resulted in under-prediction of the chlorine dose. The implications of this were that when actual 

initial chlorine doses were used with the relationships identified, overestimates of the free 

chlorine residuals from contact tanks were predicted. The influence of this undesirable 

characteristic was reduced by Brown, by the addition of an initial chlorine consumption value, 

to represent the decay that occurred within the first five minutes of chlorine addition 

(approximately 20% of total decay observed). 

The models and parameters identified in Brown (2009) for modelling chlorine decay are used 

as the basis for the models described here as the chlorine doses are similar to those used at 

typical UK operational sites and the model parameters are reported for a range of different 

source water characteristics and operating conditions. A general purpose model based on the 

mean of parameters reported by Brown are used here, as although the determination of decay 

parameters for individual sites is useful, it is expensive and time consuming, making it 

impractical as a routine operation. The instantaneous demand in this work is modelled using 
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Equation 3-17. The bulk decay of chlorine in the contact tank, after five minutes of exposure, 

is modelled using a decay rate parameter calculated using Equation 3-18 in the first order decay 

Equation 3-19. Representative decay rate parameters are identified from Table 3-6 based on 

what range of contact times are observed at WTWs. This theory is applied to the dynamic model 

using CSTRs and directly using Equation 3-19 in the static model. 

���	xyO = ��� × -z 	 !T × ���$ 	 !E × G$ 	 !{ × G��$ 	 !? × |}$1 Equation 3-17 

K� = A 	 !a × Cl�$ 	 !b × T$ 	 !c × TOC$ 	 !d × Br$ Equation 3-18 

 �� = ���	xyO�
��K Equation 3-19 

Where: Cl = residual free chlorine concentration (mg/l); Cl5 min = free chlorine dose after five 

minutes (mg/l); Cl0 = chlorine dose (mg/l); T = temperature (ºC); TOC = total organic carbon 

(mg/l); Br = Bromide (µg/l); Kb = decay rate parameter (hr-1) and t = contact time (hr). 
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Table 3-6 Mean parameters for initial five minute decay and bulk decay parameters, 
adapted from Brown (2009) 

Relationship A a b c d 

Initial 5 mins factor 0.940 0.042 -0.0037 -0.0470 -0.00043 
Kb ~ 5-30 mins 0.336 -0.302 0.0111 0.0964 0.00243 
Kb ~ 5-60 mins 0.221 -0.217 0.0086 0.0634 0.00180 
Kb ~ 5-90 mins 0.162 -0.168 0.0071 0.0548 0.00127 
Kb ~ 5-120 mins 0.104 -0.134 0.0064 0.0504 0.00083 

 Dynamic modelling of decay 

A representative number of CSTRs can be identified by using an estimate of contact tank 

hydraulic efficiency (t10:tθ) (see section 3.8.2), using Equation 3-20 (Michalewicz, 1996). 

Equation 3-20 is derived in Appendix E. This method was found to be effective by Teefy 

(1996). 
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 � = 1 − �
OKK̅ �1 	 � @@̅ 	 ⋯	 ^� @@_̅O
� 1!� − 1$!� Equation 3-20 

Where: F = fraction of tracer that has passed through after time t; n = representative number of 

CSTRs; t = time since beginning of tracer test (min) and @ ̅= mean residence time (min). 

Table 3-7 shows representative number of CSTRs for different t10:tθ values. These values are 

calculated using Equation 3-20 and Excel’s solver function. 

Table 3-7 Representative number of CSTRs for different t10:tθ 

values 

CSTRs t/�̅	nearest t/�̅	range 

1 0.105 0.000 to 0.186 
2 0.266 0.186 to 0.317 
3 0.367 0.317 to 0.402 
4 0.436 0.402 to 0.461 
5 0.487 0.461 to 0.506 
6 0.525 0.506 to 0.541 
7 0.556 0.541 to 0.569 
8 0.582 0.569 to 0.593 
9 0.604 0.593 to 0.613 

10 0.622 0.613 to 0.630 
11 0.638 0.630 to 0.645 
12 0.652 0.645 to 0.659 
13 0.665 0.659 to 0.671 
14 0.676 0.671 to 0.682 
15 0.687 0.682 to 0.691 
16 0.696 0.691 to 0.700 
17 0.704 0.700 to 0.708 
18 0.712 0.708 to 0.716 
19 0.720 0.716 to 0.723 
20 0.726 0.723 to 0.729 
21 0.733 0.729 to 0.735 
22 0.738 0.735 to 0.741 
23 0.744 0.741 to 0.746 
24 0.749 0.746 to 0.751 
25 0.754 0.751 to 1.000 
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In order that representative chlorine consumption is calculated for varying chlorine doses, it is 

necessary to have a set of parallel CSTRs, with no decay modelled, so that residual chlorine 

concentration can be compared. Where the inlet chlorine is modelled as a consistent 

concentration this additional set of CSTRs with no decay modelled, is unnecessary. 

3.8.4 THM formation 

The likelihood of harmful concentrations of disinfection by-products being formed is addressed 

by using trihalomethanes (THMs) as a reference pollutant. 

The kinetics of THM formation are complex and no analytical-mechanistic models exist. The 

modelling approach taken here is based on the methodology that links the formation of THMs 

to free chlorine consumption (Equation 3-21) following Clark and Sivaganesan (1998), Hua 

(2000) and Brown et al. (2010). The practical application of this method at operational sites is 

dependent on accurate measurement of chlorine consumption. 

 G�Q = �"�!��� − ��$ Equation 3-21 

Where: KTC = coefficient of proportionality between TTHM and chlorine consumption (µg/l 

per mg/l); Cl0 = chlorine dose (mg/l); Cl = residual chlorine (mg/l). 

KTC values reported by Hua (2000) and Brown (2009), for data from three and six WTWs in 

the West Midlands, were 45 and 34 µg/l per mg/l free chlorine consumed respectively. A 

conservative value of 45 µg/l per mg/l is used here to reduce the likelihood that THM production 

is underestimated. The TOC value used in Equation 3-17 and Equation 3-18 represents pre-

chlorination concentration taking into account TOC removal due to clarification, filtration and 
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GAC adsorption. The bromide concentration is taken as the raw water concentration as it is not 

removed effectively by conventional treatments pre-chlorination (Brown, 2009). 

3.8.5 Chlorination alkalinity modelling 

The influence of coagulants on alkalinity and pH is discussed in section 3.3.3. It is shown that 

the addition of coagulants reduces the alkalinity of the water. The addition of free chlorine at 

the super chlorination stage and some dechlorinating substances also reduces the alkalinity of 

the water further. In order that the final water entering the distribution network has enough 

buffering potential to reduce the risk of corrosion, slaked lime is often added to increase the 

alkalinity. A representative dose of slaked lime that results in the alkalinity of the final water 

returning to its raw water value is applied in this work. 

Whether chemicals increase or decrease the alkalinity is dependent on if the chemicals added 

are hydrogen donators or acceptors (donators decrease alkalinity). The influence of the 

individual chemicals on the alkalinity is given in greater detail in Appendix B. 
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3.9 Summary 

This chapter described the models that were produced for processes typically applied to lowland 

surface water sources in the UK. The models were developed using case study data from 

Trimpley WTW from July 2011 and January 2012. Models were produced for coagulation, 

DAF and HBC clarification, RGF, GAC and super chlorination. The models described in this 

chapter are used to model Trimpley WTW in greater detail (see chapter four) and to perform 

theoretical optimisations of Trimpley WTW (see chapter five). 

Static and dynamic models were produced for each treatment process as modules using 

MATLAB/Simulink. This was done so that the accuracy of these types of models could be 

compared. These modules could then be used in parallel or series to model different WTW 

designs. 

The removal of TOC due to the addition of ferric or aluminium salt coagulants was represented 

using the model developed by Edwards (1997) along with a carbonate model similar to the 

method described in Najm (2001). A coagulant dosing algorithm was also developed. This 

algorithm predicted the coagulant concentration required to limit clarified TOC below a 

designated concentration. 

HBC clarification was modelled dynamically, based on the model reported in Head et al. 

(1997). If the floc blanket within the dynamic model is assumed to remain consistent and the 

flow though the blanket assumed to be plug flow then the model simplifies to an exponential 

decay model. This simplified model was used to represent the process statically. 

The static DAF model was based on the model reported in Edzwald (2006) but with separation 

assumed to be perfect. The dynamic model, which was influenced by the model presented in 
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the OTTER program (WRc, 2002), defined the entire tank as the contact zone and modelled the 

degree of mixing through the use of multiple CSTRs. 

Rapid gravity filtration was modelled using the Bohart & Adams equation (1920), with the 

dynamic model being enhanced through the addition of running means for clarified turbidity 

and superficial filtration velocity and backwashes triggered by elevated head loss or filtered 

turbidity. 

Based on a study of TOC removal efficiency of other WTWs in the region (Brown et al., 2011b), 

a representative proportional reduction in TOC concentration due to filtration and GAC 

adsorption was applied. Solids removal by GAC was not modelled as this is not the processes 

primary purpose and solids removal can reduce the efficiency of the overall adsorption process. 

The degree of disinfection achieved was specified as the CT value. In order to calculate this, 

the residual free chlorine concentration and retention time (as t10) had to be determined. Bulk 

decay rate parameters were developed using a range of relationships reported in Brown (2009) 

for different ranges of detention time for WTWs in the West Midlands. A relationship also from 

Brown (2009) for the initial five minute decay was also developed. 

Through analysis of the case study chlorination data, some additional mechanisms that could 

require modelling were identified. The contact tank inlet concentration was seen to vary 

substantially in the case study data. It was found that modelling the inlet concentration as a 

representative, consistent value did not reduce the accuracy of the predicted residual 

concentration greatly (see Figure 3-5 and Figure 3-6). The draw-off from partially treated water 

for backwashing resulted in the contact tank discharge rate reducing by approximately 10%. 

This mechanism will need to be considered in future contact tank models.
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4 CASE STUDY 

The water treatment works (WTW) process models are used to simulate an operational site, in 

order to test their accuracy, when observed time series and Monte-Carlo operating conditions 

are applied. This chapter describes the site modelled, the methods that used to adapt the general 

models (see chapter three) to the specific site, the data used to calibrate and verify the model 

and the verification results. 

4.1 Overview 

Trimpley WTW is located in rural Worcestershire, England. The water treated at Trimpley is 

abstracted from the River Severn on a lowland reach before being impounded in a reservoir. 

Water abstracted from the reservoir can either be treated on site or transferred to supplement 

the supply of Frankley WTW, a larger works in Birmingham. Trimpley WTW has a maximum 

treatment capacity of 2500 m3/h (60 Ml/d) (Severn Trent, 2011). 

4.1.1 Trimpley WTW Description  

Figure 4-1 shows a schematic of Trimpley WTW. This figure illustrates what treatment is 

carried out at the site. The site had an observed abstraction rate of approximately 1570 m3/h 

(38 Ml/d) and a discharge of 1350 m3/h (32 Ml/d) in 2011. 
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Figure 4-1 Schematic of Trimpley WTW, adapted from Severn Trent (2012b) 

Source water is abstracted from the River Severn through bar screens and band screens before 

being stored in Trimpley Reservoir. This reservoir has a storage capacity of approximately one 

week and acts as a buffer to variation in river water quality. It also allows abstraction from the 

river to be stopped if the quality falls below an acceptable level, causing less disruption to 

supply. Water treated at Trimpley is divided into two treatment streams, one of which has floc 

blanket, hopper bottomed clarifiers (HBCs) (shown in cyan) and the other dissolved air 

flotation (DAFs) clarifiers (shown in magenta). In both streams the water has ferric sulphate 

coagulant added before flocculation and clarification. In the HBC stream a lower coagulant 

concentration of approximately 15 mg/l (as Fe3+) is dosed before a static mixing chamber 

leading to multiple HBCs. The DAF stream has a higher coagulant dose of approximately 17 

mg/l (as Fe3+) added before the flocculators. Post clarification, the waters are blended together 
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before being filtered through dual media (anthracite/sand) rapid gravity filters. The water then 

passes through a balance tank, to reduce the fluctuations in discharge that are caused by the 

backwashing of the filters, before being treated by granular activated carbon (GAC) adsorbers. 

Chlorine gas dosed upstream of the contact tank is controlled by a feedback loop that is 

dependent on the free chlorine concentration entering and exiting the contact tank. Disinfected 

water has sodium bisulphite added to reduce the free chlorine to a suitable residual 

concentration for distribution. To help reduce corrosion of the distribution network calcium 

hydroxide, traditionally called slaked lime, is added to increase the pH and orthophosphoric 

acid is added to encourage a protective coating to form in the distribution network. The water 

then enters a mixing tank before being distributed between Trimpley Top Reservoir and a 

supply main to Hollywaste Reservoir. Water abstracted from Trimpley Reservoir can 

optionally be diverted from Trimpley to Frankley WTW (shown in green). This transferred 

water goes to a flash mixer before entering the Frankley header tank, which reduces 

fluctuations in discharge for pumping to Birmingham. 

Throughout the WTW, in-line sensors measure specific water quality parameters at 15 minute 

intervals. These data are transferred to an electronic supervisory control and data acquisition 

(eSCADA) system, stored on site, and archived off site remotely by an external agency, CSE 

Servelec. All of the parameters investigated, as part of this project, are shown on Figure 4-1 in 

blue. 

4.1.2 Treatment process details 

All the treatment processes modelled at Trimpley are specified using information from 

inspection, documentation, eSCADA data and operator knowledge. The specification of the 
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processes is shown in Table 4-1 and diagrams showing the dimensions of the HBC and DAF 

clarifiers are shown in Figure 4-2 and Figure 4-3. The dimensions from the site schematics are 

in agreement with measurements taken onsite to within ± 1 m. 

Figure 4-2 HBC tank dimensions  

Figure 4-3 DAF tank dimensions 
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Table 4-1 Treatment process details 
Process Number of 

units 

Dimensions Individual tank 

discharge and 

contact time 

Chemical dose & 

other operational 

parameters 

Hopper 
bottomed 
clarifiers 

10 in 
continuous 
use 

Surface length: 
10.00 m 
Surface width: 
10.00 m 
Depth top square section: 
1.83 m 
Depth hopper section: 
7.62 m 
Base length: 
2.00 m 
Base width: 
2.00 m 
Volume: 
498 m3 

Discharge: 
65 m3/h 
Contact time: 
7.5 h 
 

Ferric sulphate: 
15 mg/l 

Dissolved 
air 
flotation 
clarifiers 

7 available, 
brought 
into service 
as required 

Width: 
5.12 m 
Initial depth: 
1.65 m 
End depth: 
2.23 m 
Contact zone length: 
1.09 m 
Contact zone volume: 
9.2 m3 
Separation zone length: 
6.78 m 
Total volume: 
78 m3 

Discharge: 
240 m3/h  
Contact time: 
20 min 

Ferric sulphate: 
17  mg/l 
Air supply: 
7 mg/l  
Saturator pressure: 
4 absolute bar 
Recycle rate: 
10% 

Rapid 
gravity 
filters 

8 in 
continuous 
use 

Length: 
13 m 
Width: 
4.5 m 
Top anthracite depth: 
0.60 m 
Middle sand depth: 
0.80 m 
Base gravel depth: 
0.40 m 

Discharge: 
180 m3/h 
Superficial velocity: 
3 m/h 

Backwash duration: 
48 hours 
Head loss limit: 
2 m  
Turbidity limit: 
0.5 NTU 

Contact 
tanks 

2 in parallel Length: 
32.18 m 
Width: 
7.5 m 
Operational depth: 
5 m 
Total volume: 
2400 m3 

Discharge: 
635 m3/h 
Contact time: 
115 min 

Free chlorine dose: 
1.6 mg/l 
Residual chlorine: 
1.3 mg/l 
Number of baffles: 
2 
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4.2 Data acquisition 

Archived quarter hourly eSCADA and monthly water quality assurance test data were provided 

by Severn Trent Water for Trimpley WTW initially for July 2011 and January 2012 for 

development of the WTW models. Further annual data sets from 2011 were then provided for 

calibration and for the first nine months of 2012 for verification. A data set for the entirety of 

2012 is not used due to incomplete data sets for some of the parameters required. The eSCADA 

data used is described in section 4.2.1. Manual monthly concentrations of alkalinity, bromide, 

trihalomethane, total organic carbon and measurements of UV254 absorbency and pH made by 

Severn Trent Services for the same period is described in section 4.2.2. 

4.2.1 eSCADA data 

The specifications of the sensors used is provided in Table 4-2. The turbidity of the water is 

manually measured for quality assurance at the reservoir intake and after clarification and 

filtration, and the free chlorine concentration is measured at the contact tank inlet and outlet 

manually by operators each day to highlight any possible malfunctioning in-line sensors. 

Sensors are identified as possibly being faulty and needing maintenance if the manual readings 

differ from in-line measurements by more than specified tolerance limits. The standard 

deviation between in-line and manual recordings recorded on log sheets at Trimpley works is 

also shown in Table 4-2. 
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Table 4-2 Specification of sensors used to calibrate and verify WTW models 
Parameter Location [SCADA ID] Specification Operators QA (2011) 

Temperature 
(°C) 

Intake from river [E521] YSI Sonde multi-head 
unit 
Resolution 0.01°C 
Accuracy ± 0.15°C  
(YSI, 2012) 

n/a 

Discharge 
(Ml/d) 

Pre HBCs [E23729] 
Pre DAFs [E4705] 
Post bank of filters [E4537] 
Post contact tank [E14635] 

Siemens’ Magflo 3000 
electromagnetic flow 
meters 
Accuracy ± 0.25%  
(Siemens, 1997) 

n/a 

Turbidity 
(NTU) 

Intake from reservoir 
[E22883] 
Post bank of HBCs [E14519] 
Post individual DAFs 
[E4525/E4526/E4527/E4531/
E4532/E4533/E4534] 
Post combined HBC & DAF 
[E4598] 
Post Individual filters 
[E4559/E4561/E4572/E4574/
E4586/E4588/E4600/E4602] 
Post bank of filters [E4564] 

Sigrist AquaScat WTM 
used throughout WTW 
except at filters and final 
waters where Hach 
1720D is used 
 
Hach 1720D 
Accuracy ± 2% or ±0.02 
NTU (whichever greater) 
from 0-40 NTU  
(Hach, 1999) 
 
Sigrist AquaScat WTM 
turbidity meters 
Resolution 0.001 FNU 
Accuracy not specified 
(SIGRIST, n.d.) 

Intake from reservoir 
n = 302 
Tolerance = 5 NTU 
σ = 4.6 NTU 
 
Post HBC 
n = 322 
Tolerance = 0.25 
σ = 0.08 
 
Post HBC & DAF 
n = 317 
Tolerance = 0.25 
σ = 0.13 
 
Post Individual filters 
n = 2162 
Tolerance = 0.1 
σ = 0.04 

Head loss 
(m) 

Post Individual filters 
[E4558/E4560/E4571/E4573/
E4585/E4587/E4599/E4601] 

Endress + Hauser 
Deltabar PMD 130 
Accuracy ±1% 
(Endress Hauser, n.d.) 

n/a 

Free chlorine 
(mg/l) 

Pre contact tank [E18605] 
Post contact tank [E18606] 
 

Capital Controls Series 
1930 
Sensitivity 0.004 mg/l 
Display resolution 0.01 
mg/l 
Accuracy ±0.1 mg/l  
(Severn Trent Services - 
Capital Controls, 1993, 
Trimpley Operators, 
2012-2013) 

Pre contact tank 
n = 318 
Tolerance = 0.1 mg/l 
σ = 0.08 mg/l 
 
Post contact tank 
n = 963 
Tolerance = 0.1 mg/l 
σ = 0.06 mg/l 

Where: n = number of readings; tolerance = limit of deviation between in-line and manual 

readings triggering inspection of in-line sensor and σ = Standard deviation between in-line and 

manual readings. 
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4.2.2 Water quality sampling 

To assess the water quality of the river, reservoir and final waters, additional manual 

measurements of approximately 200 water quality parameters are measured by Severn Trent 

Services for Trimpley WTW. Monthly concentrations of alkalinity, bromide, trihalomethane, 

total organic carbon and measurements of UV254 absorbency and pH were made during 2011 

and 2012 and were used to characterise water quality. A review of the accuracy of the manual 

measurements in comparison to Analytical Quality Control (AQC) samples taken from 

Trimpley is given in Table 4-3 (multiple readings indicate multiple tests of accuracy 

completed). Except for a single assessment of the precision of the bromide concentration 

measurement, the bias and precision of the methods is less than 5% and all within the regulatory 

limits. 
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Table 4-3 Review of accuracy of measurements taken at Trimpley WTW (Mills, 2013) 

Parameter Basis of Analytical 

Procedure 

Current Bias from 

Routine AQC 

(Regulatory Limit) 

Current Precision 

from Routine AQC 

(Regulatory Limit) 

Alkalinity as 
CaCO3 

Acid titration to end 
point of pH 4.5 using 
auto-titrator 

-0.91% (5%) 2.42% (5%) 

Bromide Ion chromatography 
with conductimetric 
detection 

0.27% 2.28% 

pH pH electrode 0.027 pH units  
(0.1 pH) 
0.016 pH units  
(0.1 pH) 

-0.02 pH units  
(0.2 pH) 
-0.03 pH units  
(0.2 pH) 

Specific 
Absorbance at 
254nm 

UV Spectrophotometry -2.06% 4.01% 

TOC TOC analyser – 
UV/persulphate 
digestion of organic 
carbon and detection of 
released CO2 by Infra-
Red (NDIR) 

-0.95% (5%) 2.01% (5%) 

THM Headspace GCMS (Gas 
Chromatography Mass 
Spectrometry). Total 
THM is the sum of four 
individual compounds: 
(a) chloroform 
(b) bromoform 
(c) bromodichloroform 
(d) dibromochloroform 

(a) -2.27% (12.5%) 
1.27% (12.5%) 

(a) 4.74% (12.5%) 
2.52% (12.5%) 

(b) 1.11% (12.5%) 
3.81% (12.5%) 

(b) 5.17% (12.5%) 
3.61% (12.5%) 

(c) -4.99% (12.5%) 
-3.34% (12.5%) 

(c) 3.27% (12.5%) 
3.48% (12.5%) 

(d) 2.71% (12.5%) 
3.39% (12.5%) 

(d) 3.97% (12.5%) 
3.96% (12.5%) 

4.2.3 Comparison of operating conditions in 2011 and 2012 

 Weather 

The weather for the years covered in this research are assessed using data provided by the MET 

Office website (2014) and unless otherwise stated comparisons are based on means for the 

period 1981 - 2010. In 2011, the year for which data were used to calibrate the WTW models, 
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the UK experienced its second warmest year observed since 1910 and central England 

experienced its second warmest year since 1659. The region of England around Trimpley 

WTW received less rainfall than usual with under 65% of the mean precipitation observed. In 

comparison, 2012 was a slightly cooler than average year in the UK (-0.1°C). 2012 was wetter 

than any other year in the 1981-2010 series and rainfall around Trimpley WTW was more than 

125% of the yearly mean. 2011 was generally a warm and dry year and 2012 a cooler and 

wetter year. 

 Water quality and operational regime 

A comparison of the operating conditions observed in 2011 and 2012 is shown in Figure 4-4. 

As would be expected for a cooler year, the mean water temperature in 2012 was substantially 

lower than in 2011 (-2.5°C). The mean concentration of organic content was greater (+ 0.7 

mg/l TOC and +0.03 cm-1 UV254) and the mean concentration of bromide also reduced by 21% 

in 2012 (which is in agreement with the inversely proportional relationship between bromide 

concentration and river flow, described in Brown (2009) for rivers in the same region). The 

mean reservoir turbidity was lower and turbidity varied less in 2012. Alkalinity, pH and contact 

tank inlet chlorine concentration also all varied less (as defined by standard deviation) in 2012. 

Although there were substantial differences in the weather and water quality observed in 2011 

and 2012, overall operational conditions were comparable and considered to be suitable for 

calibration and verification purposes. 
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Figure 4-4 Operating conditions 2011 – 2012 (error bars show standard deviation) 

A 

B 

C 
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4.3 Model description 

This section describes the methods used to adapt the general dynamic and static models 

described in chapter three to the conditions observed at Trimpley WTW. An overview of how 

the model appeared in Simulink is given in Figure 4-5. 

Figure 4-5 MATLAB/Simulink model of Trimpley WTW 

4.3.1 Suspended solids removal efficiencies 

In order to improve the accuracy of the clarification and filtration models, a cross comparison 

of mean monthly reservoir water quality parameters (WQPs): temperature, UV254, TOC, 

SUVA, turbidity, coagulant dose and estimated coagulated suspended solids concentration is 

made against monthly mean empirical removal efficiency parameters for Trimpley during 2011 

(see Table 4-4). Correlations are identified between raw turbidity and most of the empirical 

removal efficiency parameters (two thirds of relationships had R2 values greater than 0.5) and 
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these relationships are used to estimate the removal parameters temporally. The mean R2 value 

of these relationships for the dynamic model is 0.63, greater than the 0.50 value achieved for 

the static model. This “adjustment” of the removal efficiency parameters indicates that the 

models were otherwise failing to model some mechanisms sufficiently to account for the higher 

removal rates observed for more turbid raw waters. 

Table 4-4 Correlation between WQPs and empirical removal efficiency (R2) 
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Dynamic Kf 
(HBC) 

0.03 0.02 0.07 0.01 0.80 0.05 0.66 

Dynamic α 
(DAF) 

0.49 0.31 0.41 0.09 0.49 0.37 0.68 

Dynamic r 
(FILT) 

0.51 0.00 0.01 0.02 0.61 0.01 0.27 

Static k 
(HBC) 

0.10 0.02 0.05 0.00 0.19 0.03 0.31 

Static α 
(DAF) 

0.53 0.13 0.18 0.04 0.69 0.13 0.47 

Static r 
(FILT) 

0.39 0.04 0.01 0.01 0.61 0.01 0.19 

Mean 0.34 0.09 0.12 0.03 0.57 0.10 0.43 

The empirical removal parameters used are given in Table 4-5 and the improvement in turbidity 

prediction for the static and dynamic model using the 2011 calibration data is shown in Table 

4-5.  
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Table 4-5 Empirical removal parameters 

Parameter Empirical relationship 

Dynamic Kf (HBC) 0.307*NTUReservoir + 3.689 (for 2 CSTRs) 

Dynamic α (DAF) 0.017* NTUReservoir + 2.05 (for 1 CSTR) 
Dynamic r (FILT) 0.0003*NTUReservoir + 0.0038 
Static k (HBC) 0.016*NTUReservoir + 0.494 
Static α (DAF) 0.007*NTUReservoir + 0.234 
Static r (FILT) 0.0005*NTUReservoir + 0.0034 

Table 4-6 Improvement in turbidity prediction for 2011 calibration data 
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HBC 0.5453 0.2701 50% 
DAF 0.4224 0.3529 16% 

Combined 
clarified 0.4481 0.2823 37% 

Filter 0.0691 0.0461 33% 
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HBC 0.2718 0.1968 28% 
DAF 0.3450 0.2712 21% 

Combined 
clarified 0.3021 0.2308 24% 

Filter 0.1362 0.0357 74% 
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4.3.2 Division of abstraction discharge between HBC and DAF streams 

The division of abstracted flows between the treatment streams is analysed using eSCADA 

data from 2011 (shown in Figure 4-6). Approximately 55% of the treated water passes through 

the DAF treatment stream, although substantial deviation from this relationship exists. 

Figure 4-6 DAF stream discharge against abstraction discharge (RMSE 74.7 m3/h) 

4.3.3 Coagulation dosing 

The clarification models are calibrated using observed coagulant doses from 2011 and verified 

using doses from 2012. The coagulant dosing model (described in section 3.3.2.1) is also 

applied. The coagulant dosing model predicts a minimum coagulant dose to achieve a clarified 

TOC concentration below 2.5 mg/l. The coagulant dose also has to remain within the dosing 

range, of 7 to 25 mg/l as Fe3+, which is observed at Trimpley. The clarified TOC limit is set at 

2.5 mg/l as this results in a mean coagulant dose most similar to that observed in at Trimpley 

WTW in 2011 (alternative TOC limits were assessed in 0.5 mg/l increments). For these 

coagulation conditions, additional solids loading due to TOC removal could be up to 

approximately 8% of that assumed to occur due to iron hydroxide formation. 
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4.3.4 Intermittent operation of DAF tanks 

The individual DAF tanks at Trimpley have a maximum treatment capacity of 292 m3/h (7 

Ml/d). The discharge through each individual tank is calculated based on the estimated 

discharge through the DAF bank divided by the minimum number of DAF tanks required to 

avoid exceeding the individual tank treatment capacity. This mechanism results occasionally 

in DAF tanks being brought in and out of operation frequently, which causes the discharge for 

individual tanks to fluctuate unrepresentatively. Operators are able to make strategic decisions 

to minimise disruption to individual processes, run processes at optimum discharge rates and 

respond to undesirable process performance. The simple division of discharge modelled, 

between and within the clarification processes, results in substantially different flow division 

than was carried out by the operators but is used as replicating the operators control is 

considered to be prohibitively complex. 

4.3.5 Rapid gravity filtration (RGF) 

 RGF model Bohart and Adams calibration parameters  

Representative scale pilot filters were used, along with clarified water from Trimpley, to 

estimate the removal parameters of the anthracite and sand media (Omar, 2012, Yegorova, 

2013). The values identified by these investigations resulted in predicted removal efficiencies 

that were significantly greater than those observed in operation (filtered turbidity of 

approximately 0.001 NTU were predicted). Possible causes of this overestimation of 

performance include reported inefficient backwashing at Trimpley and uncertainty of the 

effective size of the sand media used, due to unrepresentative sampling from the surface of the 

sand supplied by the distributor. 
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The calibration of the Boharts and Adams parameters is completed using eSCADA data from 

2011. This data shows no signs of significant breakthrough, therefore, as described in section 

3.6.1.1, a conservative estimate of filter capacity is used (a0 1000 mg/l). 

 Clean bed head loss 

A full list of the parameters used to predict the head loss of the filters is given in Table 4-7. 

Table 4-7 Parameters for Kozeny-Carman cleanbed headloss equation 
Parameter Value 

Dynamic viscosity water 1.3x10-3 N.s.m-2 
Dynamic viscosity air 1.8x10-3 N.s.m-2 
Density of water 1000 kg/m3 
Density of air 1.3 kg/m3 
Depth of sand 0.8 m 
Depth of anthracite 0.6 m 
Voidage of sand 0.4 
Voidage of anthracite 0.5 
Sphericity of sand 0.8 
Sphericity of anthracite 0.6 
Diameter of sand 0.58 mm 
Diameter of anthracite 1.3 mm 

The filters show significant differences in head loss profiles. The July 2011 data shows a single 

broadly distributed band of head loss profile (see Figure 4-7), whereas the head loss observed 

in January approximately fits into three groups, shown in red, blue and green ellipses in Figure 

4-8. The general head loss profile of Trimpley’s filters for July 2011 and January 2012 is 

determined by fitting all of the representative data to a linear equation using MATLAB’s 

polyfit function with clean bed head losses were identified as intercept values. The clean bed 

head loss is simulated using the Kozeny-Carman equation with eSCADA data from July 2011 

and January 2012. The mean clean bed head loss predicted for July 2011 is 0.42m with a 

standard deviation of 0.05 and for January 2012 the mean is 0.64 m with a standard deviation 

of 0.08 m. The modelling of clean bed head loss using the Kozeny-Carman equation provides 



107 

 

a representative prediction of observed operation within the range of performance witnessed 

(mean clean bed head loss under-predicted by 5 cm in July 2011 and over-predicted by 20 cm 

in January 2012). 

Figure 4-7 Head loss versus time since last backwash from July 2011 

Figure 4-8 Head loss versus time since last backwash from January 2012 
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 Dynamic head loss accumulation calibration 

Due to discrepancies between the performances of the individual filters an empirical method is 

used to identify a representative head loss coefficient (β). β is varied by factors of ten and 

applied to the Adin & Rebhun (1977) head loss due to accumulation model. The head loss 

predicted using this method for July 2011 and January 2012 is shown in Figure 4-9 and Figure 

4-10). 

Figure 4-9 Head loss against time since last backwash July 2011 

Figure 4-10 Head loss against time since last backwash January 2012 
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Due to the difference in head loss observed between filters and seasons, a higher β value of 0.1 

√(l/mg) is identified as being appropriate, despite having a greater RMSE than a lower 0.01 

√(l/mg) value (approximately 0.6 m as opposed to 0.4 m) as it gives a more conservative 

estimate of when higher head loss (above 1 m) is likely. 

4.3.6 TOC removal by filtration and GAC adsorption 

The blended turbidity, total organic carbon (TOC) and alkalinity of the clarified water from the 

HBC and DAF treatment streams is calculated by applying mass balances.  TOC concentration 

is reduced by 25% to take into account removal by filtration and granular activated carbon, as 

described in section 3.7.1. The accuracy of this assumption is analysed by comparing the 

modelled and observed final water TOC concentrations (see Figure 4-11). This shows that the 

concentrations of the modelled and observed final water TOCs are comparable. The modelled 

final TOC has a RMSE of 0.2 mg/l, which is lower than the RMSE reported for the Edwards 

general TOC model (Tseng and Edwards, 1999). 

Figure 4-11 Comparison of modelled and observed final water TOC 
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4.3.7 Chlorination 

 Contact tank inlet chlorine concentration 

Chlorine is dosed approximately 10 m upstream of the contact tank and the free chlorine decay 

that occurs before entering the contact tank is assumed to be approximately equivalent to the 

initial five minute decay that Brown (2009) modelled separately (see section 3.8.3). The contact 

tank inlet free chlorine concentration has its decay modelled using the 5-120 minute parameters 

from Table 3-6 as these are most representative of contact times observed at Trimpley WTW. 

 Contact tank discharge 

An empirical relationship between the time since last backwash of the filters and the reduction 

in contact tank discharge is investigated, using eSCADA data from January 2012 (see Figure 

4-12). It can be seen that the discharge immediately after backwashing is higher than for the 

majority of the run. This is due to the diversion of flow through the other filters, whilst the 

backwashed filter discharges its drawdown water. The influence of backwashing is modelled 

by assigning no reduction in flow for the first hour (to represent draw down effect), a reduction 

of 20% of abstraction between one to three hours (to represent running to waste and increased 

backwash water abstraction from post GAC), and for other times a reduction of 10% (to 

represent water abstraction post GAC). This simple model is also illustrated in Figure 4-12. 
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Figure 4-12 Proportion of abstraction discharge disinfected against time since last backwash 

 Hydraulic efficiency 

The flow regime of the contact tank is defined by a representative number of CSTRs as 

identified by a previous step change tracer study carried out by Severn Trent Water, which 

estimated the t10:tθ efficiency of the tank as 73% (Morse, 2008). A t10:tθ efficiency of 73% using 

Table 3-7 results in 21 CSTRs being identified as being representative of the mixing that 

occurs. 

 THM formation 

The chlorine consumed in the contact tank and the THM measured in the final water are 

assessed using eSCADA data from 2011. As can be seen in Figure 4-13, the chlorine 

consumption fluctuates by approximately 0.5 mg/l due to continual adjustment of the chlorine 

by the control system and the instantaneous inlet and outlet concentrations being compared. 

No significant change in chlorine consumption pattern is observed during 2011, however the 

THM detected in the final water is seen to increase in the summer months. From these data, it 

is not possible to detect any influence of chlorine consumption on THM formation. To obtain 
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a representative KTC value for the works during 2011, the mean chlorine consumed within the 

contact tank is used along with the mean THM concentration detected in the final water to 

calculate a value of 44 µg/l per mg/l. This indicates that the mean value identified by Hua 

(2000) of 45 µg/l per mg/l is suitable for modelling THM formation at Trimpley. 

Figure 4-13 Comparison of free chlorine consumption and THM formation observed 2011 

4.4 Model verification 

The models are calibrated using eSCADA and water quality data from 2011 as described in 

sections 4.2.1and 4.2.2. The models are verified using data from the first nine months of 2012. 

The models are tested using observed input time series data to represent the operating 

conditions and synthetically produced Monte-Carlo time series data produced by random 

sampling of representative probability distribution functions every simulated day for a 

simulated year. 

4.4.1 Time series simulation 

As well as simulating the performance of the works using the input data described above, 

simulations are also run where the coagulant dose to both clarification streams is specified 
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using the dosing model described in sections 3.3.2.1 and 4.3.3. The results of these verification 

simulations follows. The values recorded by the eSCADA system during the verification period 

are also shown in the results as an ‘observed’ data set. 

Clarification flow rates 

The clarification processes’ flow rates are modelled using the same method in both the dynamic 

and the static models. The degree of accuracy achieved is given in Table 4-8. The mean and 

median values are predicted to within ±5% but the standard deviation of the quantity of water 

treated by the HBC process was over-predicted by 8% whilst the DAF process standard 

deviation was under-predicted by 28%. The RMSE of the volumes of water treated by both 

processes is approximately 10%. 

Table 4-8 Accuracy of modelled clarifier inlet flows 

Parameter �� �� σ RMSE 

QHBC (m3/h) 671 (+2%) 660 (-0.5%) 98 (+8%) 75 [11%] 
QDAF (m3/h) 842 (-2%) 839 (-3%) 115 (-28%) 73 [9%] 

Where: Q = flow to process (m3/h); U̅ = mean; U� = median; σ standard deviation; RMSE = root 

mean square error, ±% = variance with recorded values; and in [] brackets = percentile error. 

Clarified turbidity 

The dynamic model is more accurate at predicting the clarified turbidity of the HBC, DAF and 

mixed clarified waters as measured by mean and RMSE values (as shown in Table 4-9 and 

Table 4-10). The accuracy of the clarification models is worse than that of the QA tests carried 

out, but of a similar magnitude to the QA tolerance level set by Severn Trent Water (0.25 NTU). 
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Table 4-9 Dynamic model clarified turbidity accuracy 

Parameter 
Observed coagulant dose Modelled coagulant dose QA 

RMSE 

QA 

tolerance �� �� σ RMSE �� �� σ RMSE 

NTUHBC 
0.45 
+2% 

0.42 
±0% 

0.14 
-13% 

0.18 
[41%] 

0.53 
+20% 

0.48 
+14% 

0.20 
+25% 

0.22 
[50%] 

0.11 
[25%] 

0.25 
[56%] 

NTUDAF 
0.63 
-7% 

0.62 
±0% 

0.10 
-63% 

0.28 
[41%] 

0.67 
-1% 

0.67 
+8% 

0.12 
-56% 

0.29 
[43%] 

n/a 
0.25 
[37%] 

NTUCOMB 
0.55 
-17% 

0.54 
-13% 

0.09 
-65% 

0.26 
[39%] 

0.61 
-8% 

0.60 
-3% 

0.14 
-46% 

0.22 
[33%] 

0.13 
[19%] 

0.25 
[38%] 

Table 4-10 Static model clarified turbidity accuracy 

Parameter 
Observed coagulant doses Modelled coagulant doses QA 

RMSE 

QA 

tolerance �� �� σ RMSE �� �� σ RMSE 

NTUHBC 
0.33 
-25% 

0.28 
-32% 

0.20 
+25% 

0.26 
[59%] 

0.40 
-9% 

0.32 
-24% 

0.27 
+69% 

0.26 
[59%] 

0.11 
[25%] 

0.25 
[56%] 

NTUDAF 
0.62 
-9% 

0.59 
-5% 

0.21 
-22% 

0.34 
[50%] 

0.66 
-3% 

0.64 
+3% 

0.22 
-19% 

0.35 
[51%] 

n/a 
0.25 
[37%] 

NTUCOMB 
0.49 
-26% 

0.49 
-21% 

0.16 
-38% 

0.32 
[48%] 

0.54 
-18% 

0.53 
-15% 

0.19 
-27% 

0.28 
[42%] 

0.13 
[19%] 

0.25 
[38%] 

Where: NTU = post process turbidity (NTU); QA RMSE= RMSE of operators quality 

assurance measurements; QA tolerance = acceptable degree of variance between operators 

measurements and inline measurements. 

The lower degree of variation is also exhibited in the time series plots of clarified turbidity 

(Figure 4-14 to Figure 4-17) and the probability distributions (Figure 4-18 to Figure 4-21) 

where the sensitivity of the model in comparison to observed performance is limited. 
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Figure 4-14 Dynamic HBC models performance 

(A: 15 minute values, B: daily mean values) 

A 

B 
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Figure 4-15 Static HBC models performance 

(A: 15 minute values, B: daily mean values)  

A 

B 
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Figure 4-16 Dynamic DAF models performance 

(A: 15 minute values, B: daily mean values) 

  

A 

B 
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Figure 4-17 Static DAF models performance 

(A: 15 minute values, B: daily mean values) 

  

A 

B 
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Figure 4-18 Dynamic HBC turbidity PDF 

Figure 4-19 Static HBC turbidity PDF  

Figure 4-20 Dynamic DAF turbidity PDF 

Figure 4-21 Static DAF turbidity PDF 
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When modelled rather than observed coagulant doses are applied it is found that the mean dose 

increases from 14.7 mg Fe/l for HBC clarification and 17.1 mg Fe/l for DAF clarification to 

17.8 mg Fe/l for both processes. A time series comparison of the coagulant doses is shown in 

Figure 4-22. As can be seen, the modelled coagulant doses have a similar sensitivity to 

operating conditions as those prescribed by the operators, particularly in relation to the DAF 

process. 

Figure 4-22 Observed and modelled coagulant doses 2012 
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Filtered turbidity 

The accuracy of the dynamic model as measured by the mean, median and the RMSE is lower 

for the dynamic model than the static model (see Table 4-11). The lower accuracy of the static 

model is caused by the under-prediction of the mean filtered turbidity to a greater extent than 

the dynamic model and due to the static model having a substantially greater degree of 

deviation of filtered turbidity than was observed (σ is greater by approximately 60%). 

Table 4-11 Modelled filtered turbidity accuracy 

Model 
Observed coagulant dose Modelled coagulant dose QA 

RMSE 

QA 

tolerance �� �� σ RMSE �� �� σ RMSE 

Dynamic 
NTUFILT 

0.077 
-2% 

0.070 
-14% 

0.032 
-6% 

0.035 
[44%] 

0.087 
+10% 

0.076 
-6% 

0.043 
+26% 

0.037 
[47%] 

0.035 
[44%] 

0.10 
[125%] 

Static 
NTUFILT 

0.065 
-18% 

0.056 
-31% 

0.042 
+24% 

0.045 
[58%] 

0.074 
-6% 

0.061 
-25% 

0.053 
+56% 

0.049 
[62%] 

0.035 
[44%] 

0.10 
[125%] 

It can be seen in Figure 4-23 and Figure 4-24 that both models are more sensitive to short term 

variations in operating conditions than the observed performance, particularly the static model. 

This difference between the variance predicted by the models and that observed is also 

illustrated in Figure 4-25 and Figure 4-26. The RMSE of the dynamic model filtered turbidity 

is similar to the QA tests carried out by the site operators (both 44%), whereas the static models’ 

RMSE is substantially greater (58%) than the QA tests but still within the QA tolerance limit 

of 0.1 NTU. Both of the models correctly identify the general seasonality of the filtered 

turbidity, predicting that it will be greater in the autumn than in the spring (see Figure 4-23 and 

Figure 4-24 ). 
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Figure 4-23 Dynamic RGF models performance 

(A: 15 minute values, B: daily mean values) 

  

A 

B 



123 

 

Figure 4-24 Static RGF models performance 

(A: 15 minute values, B: daily mean values) 

  

A 

B 
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Figure 4-25 Dynamic filtered turbidity PDF 

Figure 4-26 Static filtered turbidity PDF 

Empirical solids removal efficiency parameters 

The use of the empirical solids removal efficiency parameters discussed in section 4.3.1, results 

in an average reduction in RMSE of approximately 15% when the verification data were 

applied (see Table 4-12). 

Table 4-12 Improvement in turbidity prediction for 2012 verification data 

M
o

d
el

 

Outlet Turbidity 

RMSE (NTU) for efficiency 

parameter 
Reduction in 

RMSE 
Consistent 

Reservoir 

water NTU 

dependent 

S
ta

ti
c 

HBC 0.2881 0.2457 15% 

DAF 0.3618 0.3417 6% 

Combined clarified 0.3964 0.3169 20% 

Filter 0.0575 0.0456 21% 

D
yn

am
ic

 HBC 0.207 0.1844 11% 

DAF 0.2972 0.2812 5% 

Combined clarified 0.3265 0.2581 21% 

Filter 0.0436 0.0349 20% 
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Disinfection 

The contact tank residual free chlorine concentration is found to be under-predicted by the 

static and dynamic models, with mean and median values within -5% of those observed (see 

Table 4-13 and Table 4-14). The models predict a greater degree of deviation of residual free 

chlorine concentration, particularly the static model which does not model any degree of 

mixing within the contact tank. This unrepresentative variation in residual free chlorine 

concentration causes the RMSE of the models to be greater than both the QA tests and tolerance 

limits. 

Where: Cl = contact tank inlet free chlorine concentration (mg/l); CT = product of Cl and t10 

contact time (mg.min/l), maximum value specified as 200 mg.min/l. 

The static and dynamic models have similar accuracy, with mean values over-predicted by 

approximately 5% and a degree of variation similar to that observed at the works. The over-

prediction of CT is due to the over-prediction in residual chlorine just discussed. The RMSE 

of the CT values by the models was approximately 20%. Some of this error is attributable to 

Table 4-13 Dynamic model residual free chlorine and CT accuracy 

Parameter 
Observed coagulant dose Modelled coagulant dose QA 

RMSE 

QA 

tolerance �� �� σ RMSE �� �� σ RMSE 

Cl (mg/l) 
1.37 
+5% 

1.36 
+5% 

0.10 
+67% 

0.14 
[11%] 

1.38 
+6% 

1.38 
+7% 

0.09 
+50% 

0.14 
[11%] 

0.06 
[5%] 

0.1 
[8%] 

CT 
(mg.min/l) 

114 
+5% 

113 
+7% 

21 
±0% 

22 
[20%] 

114 
+5% 

114 
+8% 

20 
-5% 

22 
[20%] 

n/a n/a 

Table 4-14 Static model residual free chlorine and CT accuracy 

Parameter 
Observed coagulant dose Modelled coagulant dose QA 

RMSE 

QA 

tolerance �� �� σ RMSE �� �� σ RMSE 

Cl (mg/l) 1.37 
+5% 

1.36 
+5% 

0.14 
+133% 

0.17 
[13%] 

1.38 
+6% 

1.37 
+6% 

0.08 
+33% 

0.13 
[10%] 

0.06 
[5%] 

0.1 
[8%] 

CT 
(mg.min/l) 

113 
+4% 

112 
+6% 

21 
±0% 

23 
[21%] 

113 
+4% 

113 
+7% 

18 
-14% 

21 
[19%] 

n/a n/a 
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the relatively high frequency reductions in discharge rates caused by backwashing of the rapid 

gravity filters and granular activated carbon beds which are triggered as required. 

When the influence of the high frequency variation in discharge is smoothed by taking daily 

averages of values, as shown in Figure 4-27 and Figure 4-28, the models correctly identify 

periods of lower than and greater than average disinfection. When modelled, rather than 

observed, coagulant doses are applied to the models, the residual chlorine and CT mean values 

are similar (±1%). The degree of deviation of these values, however, decreases due to the 

stabilisation of the TOC concentration entering the contact tank. Figure 4-29 and Figure 4-30 

show that the modelled CT distributions are more negatively skewed than that observed. 
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Figure 4-27 Dynamic disinfection models CT performance 

(A: 15 minute values, B: daily mean values) 

  

A 

B 
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Figure 4-28 Static disinfection models CT performance 

(A: 15 minute values, B: daily mean values) 

  

A 

B 



129 

 

Figure 4-29 Dynamic CT PDF 

Figure 4-30 Static CT PDF 

THM formation 

The formation of THMs is under-predicted by the dynamic and static models with the mean 

predicted by the static model being under-predicted by approximately 20% and the static model 

under-predicted by approximately 30%. The dynamic model is also found to be more accurate 

in terms of median values predicted and RMSE value. Both of the models are less accurate than 

both the QA test and tolerance values set for THM concentrations (see Table 4-3 and Table 

4-15). Despite the limited accuracy of the modelled THM concentrations, the seasonal 

sensitivity of the models is found to be accurate, with higher concentrations predicted in the 

summer months, as can be seen in Figure 4-31 to Figure 4-32. 
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Table 4-15 Modelled THM formation accuracy 

Model 
Observed coagulant dose Modelled coagulant dose QA 

RMSE 

QA 

tolerance �� �� σ RMSE �� �� σ RMSE 

Dynamic 
THM 
(µg/l) 

7.84 
-21% 

9.07 
-9% 

4.77 
+31% 

3.03 
[31%] 

7.49 
-24% 

7.24 
-27% 

3.81 
+5% 

3.35 
[34%] 

[5%] [12.5%] 

Static 
THM 
(µg/l) 

6.99 
-29% 

8.60 
-13% 

4.71 
+30% 

3.39 
[34%] 

7.19 
-27% 

7.64 
-23% 

3.55 
-2% 

3.47 
[35%] 

[5%] [12.5%] 

When the coagulant dose is modelled, to maintain a consistent clarified TOC, the standard 

deviation of THM concentrations reduces from +30% to ±5% of that observed. This, however, 

is found to have a limited influence on the RMSE accuracy of the model (±5%). Figure 4-33 

and Figure 4-34 show the modelled THM production to be more positively skewed than that 

observed. 
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Figure 4-31 Dynamic disinfection models THM performance 

(A: 15 minute values, B: daily mean values) 

  

A 

B 
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Figure 4-32 Static disinfection models THM performance 

(A: 15 minute values, B: daily mean values) 

  

A 
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Figure 4-33 Dynamic THM PDF 

Figure 4-34 Dynamic THM PDF 

4.4.2 Monte-Carlo (MC) simulation 

In order that the performance of the WTW can be assessed for conditions other than those 

observed, synthetic time series data are produced using a Monte-Carlo approach. In the Monte-

Carlo simulations, the model inputs are varied each simulated day for a simulated year, using 

randomly produced values from probability distributions that are representative of the 

conditions observed in 2012. The values are applied alongside coagulant doses calculated using 

the predictive algorithm. This technique allows an almost infinite combination of operating 

conditions to be applied to the WTW models. 

The eSCADA and QA data collected from Trimpley WTW are assessed to see if they 

approximate to a selection of ‘standard’ distributions using the Anderson-Darling test (adtest) 

function within MATLAB. This test is used as it places greater emphasis on detecting if 
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outlying values depart from the distributions being assessed. The likelihood of the operating 

condition parameters coming from ‘standard’ distributions is shown in Table 4-16. As the 

operating conditions parameters are found to approximate to different or none of the ‘standard’ 

distributions, non-standard distributions (as shown in Figure 4-35 to Figure 4-43) are used to 

define each to maintain a consistent approach. 

Table 4-16 Likelihood of parameters coming from ‘standard’ distributions  

Distribution Normal Exponential 
Extreme 

value 

Log 

normal 
Weibull 

Alkalinity � � � � � 
Bromide concentration � � � � � 
Turbidity � � � � � 
pH � � � � � 
Abstraction rate � � � � � 
Water temperature � � � � � 
TOC concentration � � � � � 
UV254 absorption � � � � � 
Contact tank inlet 
chlorine concentration 

� � � � � 

Where: � = null hypothesis that the data are from a population with specified distribution is 

rejected at the 5% significance level and � null hypothesis is not rejected at the 5% significance 

level. 
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Figure 4-35 Alkalinity CDF 

Figure 4-36 Bromide CDF 

Figure 4-37 Turbidity CDF 

Figure 4-38 pH CDF 
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Figure 4-39 Abstraction rate CDF 

Figure 4-40 Water temperature CDF 

Figure 4-41 TOC CDF 

Figure 4-42 UV254 CDF 
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Figure 4-43 Inlet chlorine conc CDF 

In the comparison of results which follows, the influence of applying Monte-Carlo conditions 

to the models is compared to the performance of the models when the time series data were 

applied along with modelled coagulant dosing (shown in section 4.4.1). This is done so that the 

influence of applying Monte-Carlo conditions can be observed more clearly. 

Clarification flow rates 

Under Monte-Carlo conditions, the mean, median and standard deviation of flow treated by 

each clarification stream is less than predicted under time series conditions (see Table 4-17). 

The mean flows vary by less than 1%, whilst the standard deviations vary by less than 10% 

between the three simulations run. 

Table 4-17 Accuracy of Monte-Carlo modelled clarifier inlet flows 

 Run 1 Run 2 Run 3 
Variance from 

time series results 

Parameter �� �� σ �� �� σ �� �� σ �� �� σ 

QHBC (m3/h) 645 631 96 644 635 90 648 642 97 
-4% 
to 

-3% 

-4% 
to 

-3% 

-8% 
to 

±0% 

QDAF (m3/h) 788 772 118 785 777 110 786 777 118 
-7% 
to 

-6% 

-8% 
to 
-7 

-4% 
to 

+3% 
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Clarified turbidity 

Both the dynamic and static HBC models mean HBC clarified turbidity reduces under Monte-

Carlo conditions (by more than 5%). The degree of deviation in HBC clarified turbidity reduces 

on average, with the most varied simulation having a standard deviation comparable to those 

predicted when time series data were applied (±5%). The DAF clarification models, in 

comparison, do not predict significantly reduced clarified turbidity under Monte-Carlo 

conditions and see a reduction in the deviation of results (see Table 4-18 and Table 4-19). 

Table 4-18 Dynamic model Monte-Carlo clarified turbidity accuracy 

Parameter 
Run 1 Run 2 Run 3 

Variance from 

time series results 

�� �� σ �� �� σ �� �� σ �� �� σ 

NTUHBC 0.48 0.44 0.20 0.48 0.45 0.17 0.49 0.45 0.18 
-9% 
to 

-8% 

-8% 
to 

-6% 

-15% 
to 

±0% 

NTUDAF 0.66 0.64 0.14 0.66 0.65 0.14 0.66 0.64 0.16 
 

-1% 
 

-4% 
to 

-3% 

+17%
to 

+33%

NTUCOMB 0.59 0.57 0.15 0.59 0.57 0.14 0.59 0.56 0.15 
 

-3% 
 

-7% 
to 

-5% 

±0% 
to 

+7% 

Table 4-19 Static model Monte-Carlo clarified turbidity accuracy 

Parameter 
Run 1 Run 2 Run 3 

Variance from 

time series results 

�� �� σ �� �� σ �� �� σ �� �� σ 

NTUHBC 0.34 0.27 0.26 0.33 0.28 0.22 0.33 0.28 0.21 
-18%

to 
-15% 

-16% 
to 

-13% 

-22% 
to 

-4% 

NTUDAF 0.68 0.60 0.27 0.69 0.67 0.25 0.68 0.62 0.31 
+3% 

to 
+5% 

-6% 
to 

+5% 

+14%
to 

+41%

NTUCOMB 0.53 0.48 0.21 0.53 0.51 0.19 0.52 0.48 0.22 
-4% 
to 

-2% 

-9% 
to 

-4% 

±0% 
to 

+16%
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Although it is possible to observe substantial variation in the distribution of clarified turbidity 

between Monte-Carlo simulation runs in Figure 4-44 to Figure 4-47, the general profiles of the 

distributions are in agreement with those produced when time series data are applied (see 

Figure 4-18 to Figure 4-21). 

Figure 4-44 MC dynamic HBC turbidity PDF 

Figure 4-45 MC static HBC turbidity PDF  
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Figure 4-46 MC Dynamic DAF turbidity PDF 

Figure 4-47 MC Static DAF turbidity PDF 

  

Table 4-20 Modelled Monte-Carlo filtered turbidity accuracy 

Model 
Run 1 Run 2 Run 3 

Variance from 

time series results 

�� �� σ �� �� σ �� �� σ �� �� σ 

Dynamic 
NTUFILT 

0.079 0.069 0.056 0.081 0.073 0.074 0.078 0.072 0.034 
-10% 

to 
-7% 

-9% 
to 

-4% 

-21% 
to 

+72%

Static 
NTUFILT 

0.065 0.052 0.049 0.064 0.054 0.041 0.067 0.057 0.050 
-14%

to 
-9% 

-15% 
to 

-7% 

-23%
to 

-6% 
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Filtered turbidity 

The mean filtered turbidity predicted by both models is less than when time series conditions 

are applied (dynamic model filtered turbidity reduces by as much as 10%, static by 14%). The 

standard deviation from the dynamic model varies from -20% to +80% whilst the static model 

exhibits reduced deviation by as much as -20% of that predicted when time series operating 

conditions were applied (see Table 4-20). The distribution of filtered turbidity under Monte-

Carlo conditions is seen to be comparable for the dynamic model but the static model 

distribution exhibits greater positive skew (see Figure 4-48 and Figure 4-49). 

Figure 4-48 MC dynamic filtered turbidity PDF  

Figure 4-49 MC static filtered turbidity PDF 
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Disinfection 

The mean contact tank residual free chlorine concentration is predicted by both models to 

increase by 3% under Monte-Carlo conditions, whilst the degree of variation decreases. This 

contributes towards mean CT values increasing by 7%. The increased CT values have greater 

absolute standard deviations of +10% to +20%, but have similar relative standard deviations 

as those observed under time series operating conditions (within +5%) (Table 4-22 and Table 

4-21). The distribution of CT under Monte-Carlo conditions is seen to skew negatively in 

agreement with the increase in mean values observed but otherwise the distribution is similar 

as for time series conditions (see Figure 4-29, Figure 4-30, Figure 4-50 and Figure 4-51). 

 

Table 4-21  Dynamic model Monte-Carlo residual free chlorine and CT accuracy 

Parameter 
Run 1 Run 2 Run 3 

Variance from 

time series results 

�� �� σ �� �� σ �� �� σ �� �� σ 

Cl (mg/l) 1.42 1.42 0.05 1.41 1.42 0.07 1.42 1.42 0.07 
+2% 

to 
+3% 

+3% 
-44% 

to 
-22% 

CT 
(mg.min/l) 

122 120 22 121 120 20 121 120 21 
+6% 

to 
+7% 

+5% 
±0% 

to 
+10%

Table 4-22  Static model Monte-Carlo residual free chlorine and CT accuracy 

Parameter 
Run 1 Run 2 Run 3 

Variance from 

time series results 

�� �� σ �� �� σ �� �� σ �� �� σ 

Cl (mg/l) 1.42 1.43 0.06 1.41 1.42 0.07 1.42 1.42 0.07 
+2% 

to 
+3% 

+4% 
-25% 

to 
-13% 

CT 
(mg.min/l) 

122 120 22 121 119 20 121 119 19 
+7% 

to 
+8% 

+5% 
to 

+6% 

+6% 
to 

+22%
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Figure 4-50 MC dynamic CT PDF 

Figure 4-51 MC static CT PDF 
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THM formation 

Due to the reduction in predicted free chlorine consumed under the Monte-Carlo conditions, 

the mean production of THMs is also predicted to decrease, by up to 14% for the dynamic 

model and 19% for the static model. The degree of variation in THM production is also found 

to reduce for both models by approximately 40% (see Table 4-23). This overall reduction in 

THM production also results in the likelihood that the concentration of THMs will be greater 

than 15 µg/l decreasing, as seen in Figure 4-33, Figure 4-34, Figure 4-52 and Figure 4-53. 

Figure 4-52 MC dynamic THM PDF 

Figure 4-53 MC static THM PDF 
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4.4.3 Failure rate analysis 

In order to have an indication of how well the models will be able to optimise the design and 

operation of a water treatment works (WTW) it is important to know how accurately the models 

predict when a WTW’s performance will not meet set performance criteria. The performance 

criteria selected to represent “good” operation are described in this section followed by an 

assessment of how well the models managed to predict the likelihood of failing the criteria. 

 Performance criteria 

In order to perform optimisations using the WTW models, it is necessary to identify “good” 

performance criteria to be achieved. These criteria are listed in Table 4-24. 

Table 4-24 Good operating performance criteria 

Failure parameter Failure condition 

Blended clarified turbidity > 1 NTU 
Filtered turbidity > 0.1 NTU 
Free chlorine concentration multiplied by contact time (CT) < 60 mg.min/l 
Trihalomethanes (THM) > 25 µg/l 
Flow through DAF clarification > 300 m3/h 
Flow through HBC tank > 200 m3/h 

Table 4-23 Modelled Monte-Carlo THM formation accuracy 

Model 
Run 1 Run 2 Run 3 

Variance from 

time series results 

�� �� σ �� �� σ �� �� σ �� �� σ 

Dynamic 
THM (µg/l) 

7.06 6.96 2.44 6.44 6.64 3.01 6.65 7.29 2.30 
-14% 

to 
-6% 

-8% 
to 

+1% 

-40% 
to 

-21% 

Static 
THM (µg/l) 

6.83 7.62 3.20 5.85 5.75 3.06 6.95 7.59 2.08 
-19%

to 
-3% 

-25% 
to 

±0% 

-41%
to 

-10% 
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The blended clarified turbidity target is set as 1 NTU, which is greater than the observed mean 

value of 0.6 NTU for in 2011. The target turbidity is equivalent to the WTW final water 

legislative limit (2010), allowing clarification and filtration to act as a multiple barriers for 

achieving legislative compliance. The filtered turbidity target is set at 0.1 NTU to achieve final 

water turbidity comparable to the current quality (mean value observed for 2011 is 0.08 NTU). 

The degree of disinfection required is set as 60 mg.min/l, which is twice the recommended 

limit for treating reservoir abstracted waters (Cooperative Research Centre for Water Quality 

Treatment, 2007) and equivalent to the recommended limit for treating water directly 

abstracted from the river at the site (Morse, 2008). This limit is less than the observed mean 

degree of disinfection observed, which have a median value of 105 mg.min/l and a 5th percentile 

value of 79 mg.min/l (the mean value is heavily skewed by a few extremely high values). It is 

assumed that approximately half of trihalomethanes (THMs) formed due to chlorination are 

formed in the distribution system, as indicated by Brown (2009). Therefore a WTW final water 

THM limit of 25 µg/l should result in THM concentrations at customers’ taps being kept at 

approximately half of the legislative limit of 100 µg/l (Water Supply Regulations, 2010). This 

THM limit is above the mean concentration of 9.4 mg/1 observed in 2011. The maximum 

discharges of the clarification processes are based on the process specifications for Trimpley 

WTW (Severn Trent, 2011). The individual DAF tanks have their discharge limited to 292 

m3/h, and the HBC tanks are limited to 200 m3/h. 

 Failure rate results 

The likelihood of failing clarified and filtered turbidity, CT and THM performance targets is 

predicted to within 15% for both models when time series data or Monte-Carlo conditions are 

applied (see Table 4-25 and Table 4-26 for details). 
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When the time series operating conditions are applied, with actual and predicted coagulant 

doses, the static model is more accurate at predicting the likelihood of the DAF clarified 

turbidity increasing above 1 NTU than the dynamic model. The static model is able to predict 

the likelihood of failing this criteria within 2% whilst the dynamic model significantly under-

predicts this failure rate by more than 5%. Under Monte-Carlo conditions, the likelihood of 

DAF clarified turbidity exceeding 1 NTU predicted by the dynamic model remains similar 

whilst the static model’s failure rate approximately trebles. 

The dynamic model’s ability to predict the failure likelihood of the HBC clarified turbidity 

criteria is good, being within ±0.1% of that observed for time series operating conditions with 

actual coagulant doses applied. The static model, in comparison, over-predicts the failure rate 

by 1%. When predicted coagulant dosing is applied to the models, due to the mean increase in 

dose, the likelihood of failure of the HBC turbidity criteria increases for both models. This 

failure likelihood reduces by up to 2% when Monte-Carlo condition are applied. 

Under time series conditions with actual coagulant doses applied both of the models under-

predict the likelihood of the filtered turbidity exceeding 0.1 NTU by approximately half. When 

predicted coagulant dosing is applied, the predicted failure rate of both of the models increases 

by more than 5% and when Monte-Carlo conditions are applied the likelihood of exceeding 0.1 

NTU reduces by up to 15%. 

The likelihood of the degree of disinfection, as measured by CT, falling below 60 mg.min/l is 

accurately predicted by both models to within 0.1%. However, when Monte-Carlo conditions 

are applied the likelihood of failure of this criteria falls below the models’ detection limits. 

Exceeding the THM concentration limit is not predicted to occur by the models in agreement 

with the observed measurements. Any prediction of the THM concentration exceeding 25 µg/l 
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will therefore be likely to be for conditions beyond the range of conditions observed in the 

2012 verification data set. 

Table 4-25 Failure likelihood observed and predicted by dynamic WTW model 

Parameter Observed 

Modelled 

with observed 

coagulant 

dose 

Modelled 

with TOC 

dependent 

coagulant 

dose 

MC run 1 MC run 2 MC run 3 

DAF 
(> 1 NTU) 

6.8% 0.2% 1.0% 0.6% 0.3% 2.2% 

HBC 
(> 1 NTU) 

0.1% 0.1% 2.4% 2.3% 2.2% 0.2% 

COMB 
(> 1 NTU) 

7.5% 0.0% 0.4% 1.2% 0.8% 0.1% 

FILT 
(> 0.1 NTU) 

30.7% 18.1% 27.0% 15.2% 10.2% 15.3% 

CT 
(< 60 mg.min/l) 

0.1% 0.2% 0.2% 0.0% 0.0% 0.0% 

THM 
(> 25 µg/l) 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Table 4-26 Failure likelihood observed and predicted by static WTW model 

Parameter Observed 

Modelled 

with observed 

coagulant 

dose 

Modelled 

with TOC 

dependent 

coagulant 

dose 

MC run 1 MC run 2 MC run 3 

DAF 
(> 1 NTU) 

6.8% 5.0% 5.7% 14.4% 13.7% 18.7% 

HBC 
(> 1 NTU) 

0.1% 1.1% 4.0% 2.6% 1.8% 0.8% 

COMB 
(> 1 NTU) 

7.5% 0.2% 2.0% 2.1% 1.1% 3.9% 

FILT 
(> 0.1 NTU) 

30.7% 14.2% 21.5% 15.9% 10.9% 15.2% 

CT 
(< 60 mg.min/l) 

0.1% 0.2% 0.0% 0.0% 0.0% 0.0% 

THM 
(> 25 µg/l) 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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4.5 Summary 

This chapter described the creation of dynamic and static models of Trimpley WTW and their 

calibration and verification using a mixture of eSCADA and monthly water quality data from 

2011 and 2012. The water quality at various stages of treatment was found to be reasonably 

consistent due to the necessity to provide an acceptable final water quality for consumers. This 

limited the range of operating conditions that were examined. In order to account for improved 

solids removal efficiency observed for higher turbidity waters, empirical relationships between 

reservoir turbidity and treatment efficiency parameters were developed for the solids removal 

models (clarification and filtration). 

Using the static and dynamic models of Trimpley WTW, the following findings were observed: 

• The coagulant dosing algorithm predicted similar doses and sensitivity to operating 

conditions as those applied by the operators at Trimpley (see Figure 4-22). 

• The use of the empirical solids removal efficiency parameters resulted in an average 

reduction in RMSE of approximately 15%. Due to the increased complexity and less 

conservative predictions of WTW performance that these parameters introduce, the 

justification for application of similar relationships in future work is limited. 

• The modelling of the DAF process was found to be complicated by the operational 

regime of bringing in additional tanks as they were required. The ability to replicate the 

DAF clarified turbidity was also limited by the different performance of the individual 

tanks due to operational setup and maintenance condition.  

• The calibration of the filtration model was found to be problematic due to lack of 

turbidity breakthrough observed in the eSCADA data and an inability to replicate 

representative filter performance in pilot filter plants. A general, conservative estimate 
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of filter capacity was eventually applied, along with empirically determined attachment 

coefficients. 

• The dynamic models were found to be more accurate than the static models. When 

observed time series input data were applied to the models, the RMSE of the dynamic 

model was found to be at least 5% less for the solids removal models (HBC and DAF 

clarified and rapid gravity filtered turbidity) and between 1% to 3% less for the 

disinfection models (residual chlorine concentration, CT and THM formation). 

• Clarified and filtered turbidity was predicted with RMSEs less than 50%. Due to this 

relatively low degree of accuracy over annual periods, it seems that the justification for 

the complexity of some of the models along with the considerable amounts of 

calibration data they require is limited for whole works modelling. 

• The dynamic filtration model was found to have a RMSE equivalent to that achieved 

by manual water quality tests made (0.035 NTU) and within the tolerance limit set for 

filtered turbidity measurements (0.1 NTU). The static filtration model had a slightly 

greater RMSE (0.045 NTU). 

• Decay within the contact tank was modelled using parameters based on those reported 

by Brown (2009) for decay that occurs between 5 – 120 minutes after dosing. This 

method was found to under-predict chlorine decay, presumably because some of the 

initial chemical reactions with fast kinetics (represented by Brown as reactions that 

occurred in the first five minutes) were still occurring. The RMSE of the residual 

chlorine concentration using both models was approximately 0.15 mg/l. 

• The under-prediction of chlorine consumption resulted in the degree of disinfection 

achieved (measured as CT) being over-predicted (+5%) and the production of THMs 

being under-predicted (-20% to 30%). 
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• The operating condition parameters (reservoir alkalinity, bromide concentration, 

turbidity, pH, abstraction rate, temperature, TOC, UV254 and contact tank inlet free 

chlorine concentration) were found to possibly approximate to different or no standard 

distributions (normal, exponential, extreme value, log normal or weibull) and so were 

represented by non-standard distributions. 

• The pseudo-random sampling of the operating condition parameters each simulated day 

for a simulated year resulted in the mean values of the performance parameters varying 

by up to 15% with the dynamic model and up to 20% for the static model, compared 

with the application of time series operating conditions. 

• The likelihood of failing clarified and filtered turbidity, CT and THM performance 

targets was predicted to within 15% for both models when time series data were applied 

under Monte-Carlo conditions. 
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5 OPTIMISATION CASE STUDY 

The dynamic and static models developed and calibrated for Trimpley WTW are applied to 

three optimisation processes which are: 

1. The identification of abstraction rates for which the WTW is predicted to operate 

acceptably for different raw water temperatures and total organic carbon (TOC) 

concentrations; 

2. The application of the models along with a genetic algorithm to identify solutions for 

minimising footprint area and unacceptable performance; 

3. The application of the models along with a genetic algorithm to identify solutions for 

minimising operating costs and unacceptable performance. 

The University of Birmingham’s BlueBEAR high powered computing cluster (HPC) is used 

to complete the optimisations. Optimisations are carried out using multiple 48 hour sessions 

on a single core of a 64-bit 2.2 GHz Intel Sandy Bridge E5-2660 worker with 32 GB of 

memory. This chapter describes the methods, results, analysis and conclusions of these 

optimisations. 

5.1 Operating zone identification 

As the operating conditions change at a WTW, the range of abstraction rates which result in a 

final water of an acceptable water quality varies. For instance, for a raw water with a specific 

water quality, if the abstraction rate was set too high then the solids removal processes would 

be overloaded and final water would be unacceptably turbid. Alternatively, for the same 

conditions, if the abstraction rate was set too low then the contact time would be excessively 

long and the formation of disinfection by-products could be unacceptably great. An “operating 

zone” defines the range of operating conditions for which a WTW is expected to produce water 
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of an acceptable water quality. This operating zone could be used by operational and resource 

planning staff to predict the range of abstraction rates at which WTWs should be operated 

depending on raw water quality. The use of this information could reduce the frequency at 

which final water of an unacceptable water quality is produced. 

In defining the operating zone for Trimpley WTW, temperature and TOC concentration are 

selected as variable parameters alongside abstractions rate due to their influence on both the 

solids removal and disinfection processes. Other water quality, design and operational 

parameters are assigned set values approximately equivalent to those observed in 2011. 

Coagulant dose is predicted using the method described in section 4.3.3. The values applied 

are given in Table 5-1. The water quality is assumed to be of an acceptable quality if the “good” 

performance criteria (as defined in section 4.4.3.1) are achieved. 

Table 5-1 Operating zone parameters used 

Parameter Value 

HBC units 10 
DAF units 7 
RGF units 8 

Contact tank volume 2400 m3 
Filtration run length 48 hours 

Proportion of abstracted water 0.55 
DAF compressor pressure 400 kPa 
Contact tank inlet free Cl 1.6 mg/l (1.56 mg/l observed) 

Reservoir turbidity 5 NTU (4.7 NTU observed) 
Reservoir alkalinity 80 mg/l as CaCO3 (78 mg/l observed) 
Reservoir UV254 0.17 cm-1 (0.173 cm-1 observed) 

Reservoir pH 7.7 (7.72 observed) 
Reservoir bromide 50 (63 µg/l observed) 

Reservoir TOC concentration 1 to 10  mg/l in single unit increments (range 3.3  
mg/l to 6.2 mg/l observed) 

Reservoir temperature 0 to 30 ⁰C  in single unit increments (range 1.7 ⁰C to ⁰Abstraction rate 100 to 2500 m3/h in 100  m3/h increments (maximum 
Clarified TOC target 2.5 mg/l 

Time simulated 50 hours spin up, 50 hours measured 
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A range of reservoir TOC concentrations and temperatures are applied, beyond but of the same 

magnitude to those observed in 2011. Abstraction rates vary from a minimum value of 100 

m3/h and increase in 100 m3/h increments until a complete maximum discharge surface is 

identified. The clarified TOC target value is selected as being representative of operating 

conditions at Trimpley, as described in chapter four. As the filtration run length is set at forty 

eight hours and the minimum abstraction rate is set at 100 m3/h, the maximum theoretical 

contact tank retention time is twenty four hours. Fifty hours is therefore reasoned, and found, 

to be a sufficient simulated time for the models to initialise. The performance of the works is 

assessed over a subsequent fifty hour period, covering a period just over that taken to complete 

two complete filtration sequences. 

The observed performance of the Trimpley WTW was “good” 67% of the time in 2011. The 

observed filtered turbidity failed to meet the “good” criteria 31% of the time, blended clarified 

turbidity 1.6% and disinfection, as measured by CT, 0.16%. The “good” performance criteria 

has to be met 90% of the time for a solution to be acceptable, an improvement on the 

performance currently observed but of the same magnitude. The models are simulated for every 

combination of reservoir TOC concentration, temperature and abstraction rate listed in Table 

5-1 (7750 combinations) and operating zones are identified. Surface plots are then produced of 

the minimum and maximum abstraction rates which achieve the “good” performance criteria 

(see section 5.1.1). 
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5.1.1  Operating zone results 

The results of the operating zone analysis are shown in Figure 5-1 and Figure 5-2. These 

graphs show the range of abstraction rates for which acceptable works performance is 

predicted for varying raw water temperature and TOC concentrations. The maximum 

abstraction rates for which acceptable works performance is predicted is shown for the static 

and dynamic models as red and blue surfaces respectively and the minimum abstraction rate 

for which acceptable works performance is predicted is shown for the static and dynamic 

models as magenta and cyan surfaces respectively. Abstraction rates between these limits was 

predicted to result in acceptable works performance. These graphs also show the mean 

abstraction rates which were observed at Trimpley during 2012 for varying temperature and 

TOC concentration conditions. 

Figure 5-1 Predicted operating zone  
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Figure 5-2 Individual relationships between operating zone parameters 

B 

C 

A 
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5.1.2 Operating zone analysis 

The abstraction rates identified using the dynamic and static models have similar minimum and 

maximum profiles (see Figure 5-1), indicating that the same causes of failure are likely to limit 

abstraction rates for both models. For raw water TOC concentrations below the clarified TOC 

target (2.5 mg/l), a minimal dose of coagulant will be added. For these conditions, the 

maximum abstraction rate is limited by the ability to achieve sufficiently low clarified and 

filtered turbidity. 

Both models predict that for low raw TOC concentrations, the maximum abstraction rate 

increases by 400 m3/h (20%), as the temperature increases from 0 ⁰C to 30 ⁰C (see Figure 5-2 

C). For these low raw TOC concentration conditions, greater maximum abstraction rates are 

observed for higher temperatures. This is because the faster settling velocities caused by lower 

viscosities result in more efficient clarification. 

For low raw organic compounds concentrations reduced free chlorine decay occurs, making 

failure due to insufficient disinfection and excessive THM formation unlikely. As the raw TOC 

concentration increases above the clarified target level, the maximum abstraction rates fall 

significantly due to the extra solids loading on the clarification and filtration stages (see Figure 

5-2 B). This is due to the increased coagulant doses applied. 

For waters cooler than 18 ⁰C and initial TOC concentrations above 6 mg/l (where the maximum 

coagulant dose would have been applied), both models predict no correlation between the 

maximum abstraction rate and raw TOC concentration. For these elevated initial TOC 

concentrations, the clarified water TOC concentration will be above its target concentration. 

Although elevated TOC concentrations, for cooler waters, are not predicted to produce 

unacceptable WTW performance, the influence of higher TOC concentrations in the 
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distribution network could result in increased biological growth. For this reason, it could be 

desirable to set a target final water TOC concentration for works optimisation. 

The vast majority of the reservoir water quality and operating conditions are set to consistent, 

representative values. Under these conditions, it is found that the dynamic model’s maximum 

abstraction rate is more sensitive to TOC concentration and temperature than the static model’s 

(57% greater range of values observed). The difference can be accounted for by the explicit 

modelling of water viscosity in the dynamic HBC and filtration models, not present in their 

static counterparts. 

The dynamic model predicts a lower maximum abstraction rate for the majority of the operating 

zone (see Figure 5-1).  The differing performance of the models indicates that, for the 

conditions set, the static model removes a greater proportion of the suspended solids introduced 

through coagulant addition than the dynamic model. 

The models have comparable maximum abstraction rates when minimum coagulant doses are 

applied and the dynamic model has significantly lower maximum abstraction rates for higher 

coagulant doses. The maximum abstraction rates predicted by the two models have disparities 

of up to ±300 m3/h for similar conditions. 

The dynamic model’s predictions of maximum discharges are below the mean operating 

conditions observed in 2011 for comparable conditions (see Figure 5-2). This indicates that the 

dynamic model gives a conservative estimate of maximum discharge, whilst the static model’s 

predictions are vice-versa. It should be noted that the relative acceptable abstraction rates 

identified by both models may be dependent on the specific values used to define the raw water 

quality and operating conditions. 
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Acceptable minimal abstraction rates for both models are found to be dependent on reservoir 

water temperature and TOC concentration (see Figure 5-1). Higher temperatures and initial 

TOC concentrations result in increased THM formation or reduced disinfection (as measured 

by CT value). The minimal abstraction rates become more significant at temperatures above 

18 ⁰C and initial TOC concentrations above 6 mg/l. Under these conditions, the maximum and 

minimum abstraction rates converge, making acceptable treatment unachievable (see Figure 

5-2). Under these conditions, abstractions rates are either too high to achieve acceptable solids 

removal, or too low to achieve low enough THM concentrations or high enough CT values. 

The lower maximum abstraction rates predicted by the dynamic model result in its 

“untreatable” zone being larger than that identified by the static model. In practice, under these 

“untreatable” conditions, the operational regime of the works could be altered to either improve 

solids removal (i.e. higher DAF compressor pressure) or the chlorine consumption could be 

reduced temporally, assuming sufficient disinfection could still be achieved. In 2012 these 

“untreatable” conditions were not observed at Trimpley WTW. 

The use of operational zone graphs could assist operators, or automated control systems, in the 

identification of suitable WTW abstraction rates, dependent on the observed water temperature 

and TOC concentration. This could result in the instances where a WTW’s performance is 

substandard being reduced. In reality, all of the raw water quality and operational values set as 

constant values would vary and influence the performance of the works. The degree of variation 

from the assumed conditions would need to be taken into account when using the operating 

zone. 
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5.2 Genetic algorithm optimisations 

Two separate optimisations are carried out based on the model developed of Trimpley WTW 

which was described in chapter four. A design optimisation to minimise the footprint of the 

works and an operating regime optimisation to minimise the operational costs of the works are 

carried out. In this section the optimisation problems are defined in greater detail, the 

optimisation process described and the results of the optimisations presented. 

5.2.1 Footprint and failure rate optimisation 

A multi-objective optimisation problem is set to minimise the footprint and failure likelihood 

of WTW designs for operating conditions similar to those observed at Trimpley WTW. Capital 

costs of WTW processes are traditionally specified by treated volumes independent of quality 

(McGivney and Kawamura, 2008, Gumerman et al., 1979b, Clark, 1982) rather than 

constructional considerations, such as volume and pump specifications. This resulted in the 

design of the works being optimised based on minimising the footprint area. The design options 

are limited (as shown in Table 5-3) and the failure likelihood is based on the performance 

criteria described in section 4.4.3.1. The operating regime of the works in terms of the target 

clarified TOC concentration, DAF compressor pressure, filtration duration and contact tank 

inlet chlorine concentrations are all set to be representative of those observed at Trimpley (as 

defined in Table 5-1). The performance of the designs is evaluated over simulated years, with 

water quality and abstraction rates sampled each simulated day, from probability distributions 

characteristic of conditions observed in the first nine months of 2012 (see section 4.4.2). The 

footprint areas of each process are based on the dimensions of the processes observed at the 

Trimpley site. 
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Table 5-2 Design options 

Parameter Range Increments Footprint 

Proportion of water treated by DAF stream 0% to 100% 10% None 
HBC units 0 to 10 1 100 m2

 per unit 
DAF units 0 to 10 1 40 m2 per unit 
RGF units 1 to 10 1 60 m2 per unit 

Contact tank volume (m3) 400 to 4000 400 0.2 m2/m3 

5.2.2 Operating cost and failure rate optimisation 

The second objective function minimisation optimisation problem is carried out using the same 

method as that used in the footprint area optimisation problem except this time the design of 

the works is fixed and the operating regime parameters are varied. The problem set is to 

minimise the operating costs (as calculated in section 5.2.3) and failure likelihoods (as defined 

in section 4.4.3.1). The operating regimes are limited as shown in Table 5-3. The design of the 

works in terms of the numbers of clarification and filtration units, and the volume of the contact 

tank are set to be representative of Trimpley WTW as defined in Table 5-1. 

Table 5-3 Operating regime options 

Parameter Range Increments 

Proportion of water treated by DAF stream 0% to 100% 1% 
Target clarified TOC concentration (mg/l) 1 to 5 0.1 

DAF compressor pressure (kPa) 300 to 700 10 
Filtration run duration (hrs) 24 to 96 1 

Contact tank inlet chlorine concentration (mg/l) 1 to 5 0.1 

5.2.3 Operational costs 

In order that different operating regimes can have their comparative costs compared, costing 

formulas are produced. All costs are calculated at current value (taken as being December 

2012) and where historical data are used it was adjusted to current value based on the consumer 

price indices produced by the Office for National Statistics (2013). 
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The total annual comparative cost of operating the works are calculated as shown in Equation 

5-1. The costing formulas and chemical costs are given in Appendix F. 

£KPKLb � £�PLN�bLOK 	 £� ¡ 	 £\L�W
L¢£ 	 £¢b�¤NI 	 £�b& 	 £¥¦¥ 	 £byxI Equation 5-1 

Where: £total = total comparative cost (£); £coagulant = cost of coagulant (£); £DAF = cost of DAF 

clarification (£); £backwash = cost of filter backwashing (£); £sludge = cost of sludge disposal (£); 

£Cl2 = cost of chlorination (£); £SBS = cost of sodium bisulphite (£) and £lime = cost of lime (£). 

5.2.4 Identification of a robust parameterisation set for NSGAII 

The optimisation of both objective function minimisation problems is carried out using genetic 

algorithms (GAs) based on the NSGAII method described in section 2.2.4.4. The NSGAII is 

modified for use in this work by introducing maximum and minimum limits and discrete values 

for the parameters to be optimised. These adjustments are made due to functional limitations 

of the models and also to reduce the computational demand, as only distinctly unique solutions 

are simulated. 

In order to identify suitable internal parameters for the NSGAII algorithm, preliminary 

optimisations were carried out over 12 hours using a control set of parameters (pop = 30, Pc = 

0.7, ηc = 20, pm = 0.1 and ηm = 20) and alternative runs where individual parameters were 

adjusted. The final generation of solutions identified by the genetic algorithms were used to 

assess the effectiveness of the optimisations based on: how many unique solutions were 

identified; how many Pareto optimal solutions were identified (out of the global set) and the 

summation of the crowding parameter of the unique solutions (as described in section 2.2.3.4). 

The number of unique solutions along with the summation of the crowding parameter was used 

to assess the degree of convergence that had occurred and how well the search space had been 

explored. The crowding values for the failure probability and either the footprint area or 
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operating cost (depending on the optimisation being completed) were normalised by dividing 

by the greatest value observed for each value in the whole data set to balance the influence of 

the objective functions. The summation of the crowding factors did not include infinite values 

to allow comparison between the solutions. The results of this sensitivity analysis is shown in 

Table 5-4. 

Through examination of the sensitivity analysis results, no clearly optimal set of parameters 

are identified for use in each optimisation problem but a few conclusions are be made about 

some of the parameters based on agreement across all of the runs carried out. A lower 

population of ten, a lower cross-over probability of 50% and a cross-over distribution index of 

thirty are identified as being more likely to result in premature convergence. They are 

considered to be more likely to result in premature convergence as their use results in less 

unique solutions and/or the reduction in the crowding parameter. It is also identified that a 

lower mutation probability is more likely to result in a greater number of Pareto solutions being 

identified and that the mutation distribution index has very little influence on the performance 

of the GA. The inability to clearly identify optimal parameters from this process is possibly 

due to complex interactions between the parameters (a complete cross comparison between the 

parameters was not completed due to the prohibitive computation demands of achieving this) 

and also due to the random nature of the process. The GA internal parameters finally applied 

(see Table 5-5) are based on the control set of parameters used in the sensitivity analysis with 

the reduction of the mutation probability down to 5% and the reduction of the cross-over 

distribution index to ten. The mutation probability is reduced based on the increased number 

of Pareto solutions identified through its use and the recommendations of De Jong (1975) and 

Grefenstette (1986). The cross-over distribution index meanwhile is reduced based on the 

assumption that higher values can result in premature convergence and the finding in Sharifi 
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(2009) that a value of ten resulted in the identification of a greater proportion of Pareto solutions 

and higher quality solutions than other values. The suitability of using a hundred generations 

is assessed by assessing the influence of simulating an additional hundred generations on the 

performance of the GA (see section 5.2.6.4). 

To make the search for near-optimal solutions more thorough, and to reduce the influence of 

possible premature convergence, each optimisation is carried out three times using different 

initial random seeding of the Mersenne Twister random number generator (Matsumoto and 

Nishimura, 1998, Moler, 2008). The loss of Pareto solutions, a known deficiency of the 

NSGAII process is addressed through the compilation of a secondary population of all parent 

solutions identified through each population. 

Table 5-5 NSGAII parameters used 

pop Pc ηc Pm ηm Generations 

30 0.7 10 0.05 20 100 

Where: pop = population; Pc = probability of cross-over; ηc = cross-over distribution index; Pm 

= probability of mutation and ηm = mutation distribution index. 

Table 5-4 Sensitivity analysis of GA parameters 

 

Footprint and failure rate optimisation Operating cost and failure rate 

optimisation 

Dynamic model Static model Dynamic model Static model 
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Control 15 3 2.72 15 1 2.48 10 0 1.02 23 0 1.91 

pop = 10 -11 -2 -1.83 -11 +2 -0.25 -9 ±0 -1.02 -14 ±0 -0.43 
pop = 50 +17 -3 +0.02 ±0 +4 -0.14 ±0 ±0 -0.05 -7 +1 -0.14 
Pc = 0.5 ±0 +3 +0.15 -5 +5 +0.22 -4 ±0 -0.55 ±0 +5 -0.41 
Pc = 0.9 +9 -3 -0.48 -1 ±0 +0.48 +7 +8 -0.20 -18 ±0 +0.51 
ηc =10 -1 -3 -0.24 -4 +1 +0.01 -2 +4 -0.21 +5 +3 +0.09 
ηc =30 -1 -2 -0.83 -3 +8 -0.02 -2 ±0 -0.15 -4 ±0 +0.43 

Pm = 0.05 -8 ±0 -0.67 -4 +2 +0.20 +13 +20 -0.25 ±0 +4 +0.16 
Pm = 0.15 +1 -3 -0.42 -3 +5 -0.26 -5 ±0 +0.06 ±0 +13 -0.38 
ηm =10 ±0 ±0 ±0.00 -4 ±0 -0.59 ±0 ±0 ±0.00 -1 +7 +0.23 
ηm =30 ±0 ±0 ±0.00 -2 ±0 -0.15 +7 ±0 -0.20 -2 ±0 +0.94 
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5.2.5 Computational demand 

The mean computational time required to simulate generations of solutions using the dynamic 

model is found to be between twice (for the operational cost optimisation) and eight times as 

long (for the footprint area optimisation) as that required by the static model (see Figure 5-3 

and Figure 5-4). The relative simulation time of the dynamic model for single solutions is even 

greater, as the use of the static model results in more unique solutions typically having to be 

simulated each generation (see Table 5-6 and Table 5-7). The computational time required by 

the dynamic model, in both optimisations, is more dependent on the solutions simulated, with 

less optimised solutions in earlier generations taking considerably longer to simulate than later 

generations and considerable difference in simulation speed between the different runs due to 

the random nature of the solutions identified (see Figure 5-3 and Figure 5-4). In the operating 

zone identification (section 5.1), the dynamic model is observed to take considerably longer to 

simulate conditions where the reservoir TOC concentration is similar to the clarified target 

value. This indicates that the computational resources required to optimise the dynamic model 

are dependent on the solutions and conditions modelled and that greater restriction of the 

possible solution parameters could result in reduced demands. Overall, the static model is found 

to simulate generations of solutions more quickly and more reliably than the dynamic model. 
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Figure 5-3 Simulation speed of footprint area optimisation 

Figure 5-4 Simulation speed of operational cost optimisation 
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5.2.6 Degree of optimisation achieved 

In order to compare the solutions identified by the dynamic and static models, it is necessary 

to determine whether the solutions can be considered near-optimal. Without assessing the 

performance of every possible combination of solution parameters, it is not possible to be 

certain that the solutions identified by a GA are true Pareto solutions or that all possible true 

Pareto solutions have been identified. It is therefore advantageous to measure how the solutions 

identified vary generationally to assess how likely it is that considerably fitter solutions are still 

likely to be found. 

The degree of optimisation achieved by the GA is assessed by observing the variance of four 

optimisation metrics. These metrics assess how the objective functions, non-dominated fraction 

and convergence of the solution population vary generationally. A greater degree of 

optimisation is assumed if these metrics are found to stabilise, indicating that the solution set 

is not evolving significantly towards fitter solutions. In order to give greater confidence in the 

degree of optimisation achieved after an initial hundred generations, an additional hundred 

generations is simulated for comparison. 

The objective functions are assessed using the mean value from the Pareto optimal solutions 

for each optimisation run’s population. The non-dominated fraction is calculated on the basis 

of the number of designs which are found to be in the first Pareto front of the solution space. 

The convergence metric (developed by Deb & Jain, 2002 as described in Shi & Reitz, 2010) is 

a measure of how the Pareto solutions identified in any generation compare with the Pareto 

solutions from the preceding generation. The convergence metric is calculated as described in 

Shi & Reitz (2010). Higher convergence metric values indicate a greater degree of variance 

between two generations, whereas a convergence metric value of zero indicates that all 
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solutions had counterparts with identical objective function scores in the previous generation. 

Unlike their application in Shi & Reitz (2010), the convergence metric values are not 

normalised to allow more direct comparison between different runs of the optimisation 

processes. Optimal solutions, using each model, are defined as being the Pareto optimal 

solutions of all the solutions simulated in the initial one hundred generations of three runs of 

the genetic algorithm.  
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 Footprint and failure rate optimisation metrics 

Figure 5-5 Convergence metric - footprint - dynamic 

Figure 5-6 Convergence metric - footprint - static 

Figure 5-7 Mean footprint - footprint - dynamic 

Figure 5-8 Mean foot print - footprint - static  
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Figure 5-9 Mean P(fail) - footprint - dynamic 

Figure 5-10 Mean P(fail) - footprint - static 

Figure 5-11 Proportion of Pareto - footprint - dynamic 

Figure 5-12 Proportion of Pareto - footprint - static  
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 Operating cost and failure rate optimisation metrics 

Figure 5-13 Convergence metric - operating cost – dynamic 

Figure 5-14 Convergence metric - operating cost - static 

Figure 5-15 Mean cost - operating cost - dynamic 

Figure 5-16 Mean cost - operating cost - static  
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Figure 5-17 Mean P(fail) - operating cost - dynamic 

Figure 5-18 Mean P(fail) - operating cost - static 

Figure 5-19 Proportion of Pareto - operating cost - dynamic 

Figure 5-20 Proportion of Pareto - operating cost - static 
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 Pareto solutions after 100 and 200 generations 

 Degree of optimisation analysis 

Based on visual assessment of the optimisation metrics (convergence metric, mean cost 

function, mean failure rate and proportion of Pareto solutions) over 200 generations, near 

optimal solutions are predicted to have been achieved after 100 generations for both 

optimisation problems. This judgement is made on the basis of similar optimisation metric 

behaviour after 100 and 200 generations (see Figure 5-5 to Figure 5-20). There are some 

exceptions: a decreasing trend for the mean footprint identified in run two of the footprint 

optimisation using the static model (Figure 5-8); an increasing trend for the mean operating cost 

identified in all runs of the cost optimisation using the static model (Figure 5-16) and mean 

Table 5-6 Comparison of Pareto solutions – footprint and failure rate optimisation 

Model 
Unique Pareto solutions identified after 

100 generations 200 generations 

Dynamic model 34 
41 (4 solutions from 100th 

generation dominated and 11 new 
solutions identified) 

Static model 37 
45 (2 solutions from 100th 

generation dominated and 10 new 
solutions identified) 

Table 5-7 Comparison of Pareto solutions – operating cost and failure rate optimisation 

Model 
Unique Pareto solutions identified after 

100 generations 200 generations 

Dynamic model 18 
19 (2 solutions from initial 100 

generations dominated and 3 new 
solutions identified) 

Static model 32 
32 (2 solutions from initial 100 

generations dominated and 2 new 
solutions identified) 
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failure rate peaking after 100 generations in all runs of the cost optimisation using the static 

model (Figure 5-18). 

Pareto fronts for each optimisation problem are plotted for the non-dominated solutions 

identified after 100 and 200 generations (Figure 5-23 and Figure 5-24). In the footprint 

optimisation, the performance of the new non-dominated solutions, identified using both 

models, are seen to be different enough to be clearly visible in the functional space. The 

majority of the new solutions identified fit approximately on the existing Pareto front, 

representing only a diversification of solutions rather than improvement in solutions. 

Exceptions to this are circled in Figure 5-23, where a clear improvement in the Pareto front can 

be observed. For the cost optimisation, the Pareto fronts identified using both models are not 

significantly different enough between the 100th and 200th generations to be visible in the 

functional space (seen in Figure 5-24). From these observations, it is concluded that the 

solutions from the footprint optimisation undergo a greater degree of additional optimisation 

than the cost optimisation beyond the 100th generation, and for the footprint area optimisation, 

solutions using the static model undergo greater additional optimisation than from using the 

dynamic model. The general profile of the Pareto fronts, for both optimisation problems, using 

both models, does not change considerably beyond the 100th generation in comparison to the 

significantly different results identified using the two different models. Therefore, for the 

purposes of comparing solutions identified using the dynamic and static models, the Pareto 

solutions identified after simulating 100 generations are considered to be representative. 

The optimisation metrics discussed in this section are examined primarily to assess the degree 

of optimisation achieved but they also provided information that is used to identify 

characteristic differences in optimisation processes using the dynamic and static models. The 
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optimisations using the dynamic model has solution populations which are less diverse, both in 

terms of the numbers of unique solutions identified and the dispersion of solutions across the 

failure range. This lower diversity in the solution population coincides with a lower mean 

proportion of solutions being Pareto optimal each generation. The lower proportion of Pareto 

solutions is due to the less diverse solution population being less able to respond to generational 

variability in the stochastic conditions. 

5.2.7 Reliability distribution of solutions 

Figure 5-21 Distribution of footprint and failure rate solutions 

Figure 5-22 Distribution of operating cost and failure rate solutions 
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For most of the optimisations examined, the majority of the Pareto optimal solutions identified 

after 100 generations have failure rates greater than 50% (see Figure 5-21 and Figure 5-22). 

The exception being operational cost optimisation using the dynamic model. Reliable solutions, 

with failure rates less than 5%, in all cases account for a minority of solutions (1.4% to 42.6%). 

This indicates that the use of the NSGAII, without the application of constraints or penalty 

functions explicitly favouring high reliability solutions, is not an efficient method of identifying 

reliable WTW designs and operating solutions. The optimisation of solutions with higher failure 

rates reduces the computational resources dedicated to identifying high reliability solutions. 

The optimisation method also results in solutions from the two models being difficult to 

compare, due to the differing reliabilities of the solutions identified. 



177 

 

5.2.8 Pareto fronts 

Figure 5-23 Footprint area vs. failure rate of Pareto optimal solutions 

Figure 5-24 Comparative cost vs. failure rate of Pareto optimal solutions 

For both optimisations, the gradients of the Pareto fronts tends to be inversely proportional to 

the failure rate, with some other notable points of interest, such as the rapidly decreasing 

footprint areas of WTW designs as failure rates approach 100%, or the sharp reduction in 

operating costs for operating regimes with failure rates between 40% and 50%. The correlation 

between failure rate and cost function is most pronounced for operational cost optimised 

solutions with failure rates below 5%. For the majority of near-optimal solutions identified, the 

additional resources required to achieve incremental improvements in reliability are 
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proportional to the existing reliability of the solutions. This is due to the increasingly high 

incremental costs required to operate the WTW at a “good” performance level for rarer and 

increasingly severe operating conditions. 

The footprint areas rapidly reduce towards minimum sized solutions for near-optimal designs 

with failure rates approaching 100%. This effect is observed because considerably greater 

resources are required to provide a solution which fails the performance criteria most of the 

time compared to one which fails them all of the time. The same effect is not observed in the 

cost optimisation, as even the minimal cost solutions do not predict failure rates of 100%. This 

again shows that the operational cost optimisation parameters are more restricted to values 

representative of those found at operational sites than in the footprint area optimisation. 

The application of dynamic or static models is not found to consistently identify more optimistic 

or conservative solutions to optimisation problems. The relative costs of the solutions identified 

are dependent on the multi-objective problems set and the reliability of the solutions identified. 
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5.2.9 Solutions identified 

 Solution analysis 

This section compares the individual solution parameters, identified using both models, for each 

optimisation problem. 

Coagulation 

Optimal target clarified TOC concentrations of between 4 to 5 mg/l are identified using both 

models, approximately double the current predicted concentration. The target TOC 

concentrations predicted using both models are similar; with their Pareto optimal solutions both 

having mean values of 4.9 mg/l and standard deviations of 0.2 mg/l (see Figure 5-34). The 

higher target clarified TOC concentrations result in lower coagulant doses, subsequently 

reduced: (i) coagulant; (ii) pH/alkalinity adjusting chemical; and (iii) sludge disposal costs. 

Lower solids loading of the clarification and filtration stages is also achieved. However, higher 

TOC concentrations could result in increased THM formation and biological growth in the 

distribution system. 

Operational cost optimised solutions, which predict no failure events, have maximum target 

clarified TOC concentrations (5.0 mg/l) along with contact tank inlet chlorine concentrations 

comparable to those currently observed (1.8 mg/l using the dynamic model, 1.5 mg/l using the 

static model and 1.6 mg/l observed). This indicates that either the site has the potential to 

remove significantly less TOC without increasing THM concentrations beyond the target limit 

of 25 µg/l (observed THM concentrations were less than 15 µg/l) or that THM formation is 

under-predicted by the models. 
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Clarification 

In the footprint area optimisations, it is found that a lower proportion of treatment by the DAF 

stream, along with a greater number of DAF and HBC clarification tanks, results in improved 

reliability. For solutions with failure rates of 100%, a wide range of proportions of water treated 

by DAF clarification are observed. For these solutions, the division between the clarification 

processes does not affect WTW performance, as no clarification took place. 

Solutions with failure rates above 30% have greater proportions of their water treated by DAF 

clarification, due to the process’s ability to treat higher volumes of water to the required 

standard, per footprint area. For solutions with lower failure rates, both models identify 

complete treatment by DAF clarification. The more reliable solutions have a more comparable 

split of treatment between the two clarification processes. 

The number of DAF tanks in operation is limited, with additional tanks, if available, being 

brought into service for every 293 m3/h of water being treated. As the potential number of DAF 

tanks provided a greater treatment capacity than is required, additional HBC clarification tanks 

are identified for achieving the highest reliability solutions because treatment by additional 

HBC units provide more reliable clarified turbidity performance than is possible by additional 

DAF units. This is because all HBC tanks present are always in operation, meaning that 

additional tanks always result in lower superficial velocities and greater solids removal rates. 

The use of the dynamic model results in a higher proportion of water being treated by the DAF 

stream for higher reliability Pareto solutions and a greater dependency on DAF clarification 

than found using the static model (see Figure 5-25 to Figure 5-27). For comparable solutions 

with failure rates greater than 30%, which are only treated by DAF clarification, the number of 

DAF units identified using both models are similar (see Figure 5-27). This suggests that the 
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relative reliability of the DAF treatment process, in comparison to the HBC clarification 

process, is greater in the dynamic model than in the static model. As greater dependence on 

DAF clarification results in reduced footprint area, greater dependency on DAF clarification 

indicates that the dynamic DAF model predicts performance failure events less often than the 

static model, for comparable solutions, in the size optimisation problem. 

Greater proportions of water being treated by DAF clarification is found to result in improved 

reliability of solutions in the operating cost optimisations (see Figure 5-30). This indicates that 

DAF clarification more reliably meets the performance criteria than HBC clarification, for the 

typically lower coagulant doses and increased DAF compressor pressures identified in the 

operating cost optimisation. When the static model is used it is found that, for lower reliability 

solutions where the probability of failure is greater than approximately 45%, the proportion of 

DAF treatment is the dominant factor in determining the failure rate of solutions. This is 

concluded from the stronger degree of correlation between proportion of DAF treatment and 

failure rate than seen for the other solution parameters (see Figure 5-30 to Figure 5-34). 

The DAF compressor pressure appears to be weakly optimised as there is little correlation 

between compressor pressure and the reliability of solutions (see Figure 5-31). This is because 

DAF air compression costs are underestimated, making cost savings due to compressor pressure 

optimisation more difficult to identify (maximum annual costs are approximately £500, 

comparable to the random variation in total operating costs due to the stochastic conditions). 

For the most reliable Pareto solutions identified (those with failure rates less than 5%) it is 

found that using the dynamic model solutions have larger mean proportions of DAF treatment 

(90.2% vs. 72.2%) and greater mean DAF compressor pressures (649 kPa vs. 458 kPa) than 

those identified using the static model. The greater degree of DAF clarification, again identified 
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by the dynamic model, is another indicator that the relative reliability of the DAF treatment 

process, in comparison to the HBC clarification process, is greater in the dynamic model than 

in the static model. 

Filtration 

In the footprint area optimisation, reliable solutions, with failure rates less than 35%, are found 

to identify the maximum number of filters, ten, as near-optimal (see Figure 5-28). This indicates 

that these solution’s failure rates are strongly influenced by filtered turbidity exceeding its limit. 

At present, eight rapid gravity filters are installed at Trimpley WTW which operate at the 

relatively low filtration rates of approximately 3 m/h. The results from this optimisation 

suggests that to ensure a highly reliable supply of filtered turbidity below 0.1 NTU even lower 

filtration overflow rates could be required. The dynamic and static models both identify a 

similar number of filters as near-optimal across their Pareto fronts. 

The near-optimal filtration run lengths identified in the operational cost optimisation are in the 

region of the maximum value of 96 hours (see Figure 5-32), with low standard deviations and 

negligible correlation with failure rate (dynamic model mean 95.3 ± 2.7 hours, static model 

mean 95.1 ± 3.7 hours). The models therefore predict that filtration run durations could be 

increased significantly beyond their current interval of 48 hours, without reducing the reliability 

of the works. As solutions identified using the static model frequently predict these extended 

durations, frequent unscheduled backwashes are not required to achieve this performance and 

therefore disruption to operational routine is predicted to be minimal. 

The similarities between the number of filters and filtration durations identified as optimal using 

both models indicates that the extra complexity and associated additional computational 

resources of the dynamic model is not justified for this application. This conclusion is based on 
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the assumption that, for both models, the solids loading on the filters was comparable. This is 

assumed because the clarified turbidity in both models is limited to the same extent by the 

clarified turbidity limit (1 NTU) influencing the performance of the optimised solutions. 

Chlorination 

In the footprint area optimisations, the volume of the contact tank correlates with the reliability 

of the solutions. This is because larger contact tanks improve the probability that the required 

degree of disinfection, as measured by CT, is achieved. Maximum contact tank volume could 

have been limited by smaller tanks achieving no failure events and by larger contact tanks 

possibly producing THM concentrations greater than their target limit. 

Use of both models results in the near-optimal contact tank volume reducing for solutions with 

failure rates below 5%. This is due to the volume of the contact tank being optimised for two 

separate groups of solutions whose failure rates are predominantly due to clarified and filtered 

turbidity limits being exceeded. This results in the contact tank volume forming two separate 

correlations with failure rate: one for failure rates below 5% and another for solutions with 

failure rates above 10% (see Figure 5-29). 

For solutions with failure rates of approximately 10% to 20%, the contact tank volume 

identified using the static model is considerably greater than that using the dynamic model. The 

higher contact tank volumes identified using the static model indicate that the static model 

predicts failure due to insufficient disinfection, as measured by CT, more often than the 

dynamic model for some solutions. This could be due to chlorine consumption in the static 

model being more influenced by fluctuating conditions or due to contact tank discharge being 

reduced in the dynamic model by unscheduled backwashes. The contact tank volumes in the 

solutions identified using the dynamic model, with failure rates less than 20%, show greater 
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correlation with failure rate. This could be due to the static model’s limitations in optimising 

contact tank volume. 

In the operating cost optimisation, the correlation between inlet contact tank chlorine 

concentration and failure rate are comparable between solutions from both models (see Figure 

5-33). Solutions with failure rates less than 40% are found to require greater than 1 mg/l of free 

chlorine and the maximum dose identified using the dynamic model was 1.8 mg/l in comparison 

to 1.5 mg/l using the static model. The lower maximum chlorine concentration identified by the 

static model could be due to higher reliability solutions with greater chlorine concentrations not 

having evolved. It can be seen that a significantly greater number of solutions with failure rates 

under 5% are identified using the dynamic model (see Figure 5-22). These results indicate that 

for the observed operating conditions, the current inlet concentration of 1.6 mg/l appears to 

ensure that the required degree of disinfection is provided reliably without significant risk of 

exceeding the final water THM concentration limit set. 
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 Footprint and failure rate optimisation solutions 

Figure 5-25 Proportion treated by DAF vs. failure rate of Pareto optimal solutions 

Figure 5-26 Number of HBC units vs. failure rate of Pareto optimal solutions 
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Figure 5-27 Number of DAF units vs. failure rate of Pareto optimal solutions 

Figure 5-28 Number of filters vs. failure rate of Pareto optimal solutions 

Figure 5-29 Contact tank volume vs. failure rate of Pareto optimal solutions 
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 Operating cost and failure rate solutions 

Figure 5-30 Proportion treated by DAF vs. failure rate of Pareto optimal solutions 

Figure 5-31 Compressor pressure vs. failure rate of Pareto optimal solutions 
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Figure 5-32 Filtration run length vs. failure rate of Pareto optimal solutions 

Figure 5-33 Contact tank chlorine concentration vs. failure rate of Pareto optimal solutions 

Figure 5-34 Target clarified TOC vs. failure rate of Pareto optimal solutions  
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5.3 Summary 

In this chapter, abstraction rates predicted to result in “good” performance at an operational 

WTW were investigated. This investigation was completed separately using both dynamic and 

static computational models. Simulated water temperature and total organic carbon (TOC) 

concentrations were adjusted and the range of abstraction of rates for which “good” 

performance was predicted was identified. The following key observations were made: 

• Both models identified similar relationships between raw water temperature, TOC 

concentration and abstraction rates, indicating that the same causes of failure were likely 

to be limiting their operating zones (see Figure 5-1). 

• For raw waters with temperatures below 18 °C and TOC concentrations below 6 mg/l, 

the predominant limiting factor of maximum abstraction rate was the achievement of a 

sufficiently low clarified and filtered turbidity. 

• The minimum abstraction rate was limited by achieving sufficient residual free chlorine 

concentration and limiting THM production. 

• The maximum abstraction rate was found to increase at higher temperatures due to 

increased solids removal by clarification. 

• The maximum abstraction rate was found to be strongly dependent on the raw TOC 

concentration, due to the additional solids loading caused by increased coagulant doses. 

• For the operational conditions simulated, the use of the dynamic model resulted in a 

greater range of and, for the vast majority of raw water conditions examined, lower 

maximum abstraction rates. 
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• The maximum abstraction rates predicted using the dynamic model were lower than 

observed abstraction rates for similar conditions in 2012, indicating that these predicted 

maximum abstraction rates gave conservative estimates. 

• The maximum abstraction rates predicted using the static model were greater than the 

observed abstraction rates for similar conditions in 2012. 

• For warmer raw waters with elevated TOC concentrations, it was found that “good” 

performance could not be achieved purely through abstraction rate control, due to either 

clarified / filtered turbidity or THM production being too great or insufficient 

disinfection (measured as CT) being achieved. 

• Due to the similar predictions made by the different models it is concluded that the use 

of a static WTW model would be sufficient for this type of analysis in future as a result 

of its lower complexity and computational demands. 

Two multi-objective optimisations of the WTW were completed using genetic algorithms based 

on the NSGAII. The first optimisation identified WTW designs that minimised footprint area 

and failure rate, with a fixed WTW operating regime. The second optimisation identified 

operating regimes that minimised the operational cost and failure rate, with a fixed WTW 

design. Near-optimal solutions were identified as being the Pareto solutions from all the 

simulated generations. The following conclusions were drawn from the results of these 

optimisations: 

• During an attempted calibration of the GA internal parameters, variation of most of the 

parameters identified solution populations with comparable fitness in terms of the 

number of Pareto solutions they identified and degree of diversity achieved. It was 

concluded that future investigations which are concerned with using GAs, rather than 
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developing them, should apply appropriate values based on the state-of-the-art guidance 

rather than calibrate them to the individual problem. 

• For the purposes of comparing the dynamic and static model solutions, 100 generations 

was identified as achieving an acceptable degree of optimisation because Pareto fronts 

changed very little after simulating an additional 100 generations. 

• Reliable solutions (those with P(fail) < 5%), in all cases, accounted for a minority of 

solutions identified (1.4% to 42.6%). It was found that the operational cost optimisation 

produced a higher proportion of reliable solutions than the footprint area optimisation. 

This was due to the parameters in the operational cost optimisation being more 

constrained. 

• The dynamic model identified solutions with failure rates greater than approximately 

50% as non-optimal due to the additional backwash costs associated with less intensive 

clarification treatment. 

• Allowing increased clarified TOC to approximately twice their current predicted 

concentrations was identified as near-optimal. This was due to predicted reduced 

coagulant costs and low likelihood of substantially increased THM production. 

• DAF compressor pressures were poorly optimised due to the underestimation of 

compressor costs, making savings due to optimisation more difficult to identify. 

• Greater proportions of DAF clarification were identified using the dynamic model. It 

was therefore concluded that the relative reliability of the DAF process, in comparison 

to the HBC process, was greater than that found using the static model. 

• Filtration run durations of 96 hours (twice as long as those currently applied) were 

identified as being able to achieve “good” WTW performance for conditions with 

reduced coagulant doses without the need for frequent unscheduled backwashing. 
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• The mean computational time required to simulate generations of solutions using the 

dynamic model was found to be between twice (for the operational cost optimisation) 

and eight times as long as that required by the static model (for the footprint area 

optimisation). 

• The computational time required by the dynamic model, in both optimisations, was 

more dependent on the solutions simulated and could be reduced by restricting solution 

parameters further. 

• The application of dynamic or static models was not found to consistently identify more 

optimistic or conservative solutions to optimisation problems. The relative costs of the 

solutions identified were dependent on the multi-objective problems set and the 

reliability of the solutions identified.
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6 DISCUSSION 

6.1 Introduction 

The use of computational models to optimise the performance of water treatment works 

(WTWs) is examined in this thesis. Generic, static and dynamic WTW models are used, 

developed from state of the art process models. These models are programmed in the 

MATLAB/Simulink block diagram environment. Trimpley WTW is modelled by applying 

these generic models to specific site conditions. The accuracy of static and dynamic WTW 

models is for the first time assessed over annual periods using separate calibration and 

verification data from an operational WTW. 

The models apply both observed coagulant doses and those predicted by a coagulant dosing 

algorithm. The dosing algorithm applies a coagulant concentration that is predicted to maintain 

the clarified total organic carbon (TOC) concentration below a specified limit. It is necessary 

to predict coagulant dose as operators vary it substantially over the year. Coagulant dose 

prediction allows future or stochastic conditions to be modelled more representatively. 

The verified models of Trimpley WTW are used to identify a range of abstraction rates for 

which performance criteria are expected to be achieved for varying reservoir water quality. The 

operating conditions for which acceptable performance is expected are identified as the WTW’s 

“operating zone”. The performance criteria include turbidity, disinfection, disinfection by-

product and surface loading limits for individual processes and the reservoir water quality is 

varied in terms of temperature and TOC concentration. 
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The performance of a WTW for theoretical adjusted designs of operating regimes can also be 

predicted by computational models. These assessments can be carried out with no risk posed to 

operational performance or consumer health and at potentially lower cost than alternative pilot 

plant studies. Due to the complex, multiple, non-linear relationships between raw water quality, 

WTW design, operating regime, final water quality and operating costs, optimisation of WTWs 

poses difficult problems for which the application of Monte-Carlo techniques and genetic 

algorithms are suitable. Solutions identified through these methods may not be intuitively 

identified through conventional methods due to the complex interactions present. The solutions 

found by Monte-Carlo techniques also have the advantage that they have a predicted likelihood 

of failure, which is not provided for solutions identified using deterministic conditions. 

A Monte-Carlo technique is applied here using stochastic data sampled every simulated day, 

from representative probability distributions, for a simulated year. The predicted performance 

of the WTW under Monte-Carlo conditions is then compared to its time series performance. 

The models in this work are also applied under Monte-Carlo conditions with NSGAII inspired 

algorithms to identify near-optimal designs and operating regimes. These optimisations are 

multi-objective with both a cost function and a reliability criteria to minimise. The multiple-

objectives result in Pareto sets of solutions being identified, which cover a range of failure rates 

and costs but which are not superior to each other in both respects. 

The discussion in this section focuses on the development and application of static and dynamic 

water treatment models to replicate the performance of an operational works and the application 

of optimisation techniques to suggest efficient design and operational regime solutions for this 
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site. Practical applications of findings made from the observed data, modelling and optimisation 

are also discussed. The key findings are: 

• Dynamic WTW models are more accurate than static models at predicting the water 

quality at an operational site but the RMSE of static models is within 5% of the dynamic 

models for all of the performance criteria assessed. 

• When genetic algorithms are applied alongside dynamic and static WTW models to 

design and operational regime optimisation problems, they identify substantially 

different solutions from each other. 

• Overall, static models are identified as being more suitable for whole works 

optimisation purposes. 

6.2 WTW operation and modelling 

6.2.1 Need to assess solids removal and disinfection performance 

Previous attempts to predict the performance of WTWs has focused on either solids removal, 

such as the optimisation work carried out by Gupta and Shrivastava (2006, 2008, 2010), or 

disinfection, such as the climate change work of Clark et al (2011). It is predicted in this thesis 

that increased coagulant doses added at a WTW in response to increased source water TOC 

concentration can reduce the maximum abstraction rate due to increased solids loading (see 

section 5.1). Owing to the inter-relationships between these two facets of water treatment, it is 

considered important to consider them together. 
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6.2.2 Division of flow between DAF and HBC clarifiers 

At Trimpley WTW, it is observed that the HBC process produces lower and more consistent 

clarified turbidity than the DAF process (0.44 NTU vs. 0.68 NTU). The DAF process is also 

known to be more energy demanding and therefore it is recommended that a greater proportion 

of water be processed by the HBC tanks. It makes economic sense that the proportion of water 

treated by the HBC process should be increased until its clarified turbidity is at least as high as 

the more operationally costly DAF process. 

6.2.3 Coagulation and flocculation 

It is, perhaps, surprising that the models used in this research do not attempt to predict the 

influence of coagulant on floc formation potential and instead are limited to predicting the 

reduction in TOC and increase in suspended solids concentration. Floc formation is not 

modelled in this research due to the lack of appropriate models. In some previous whole WTW 

modelling programs such as WATPRO and Stimela, floc size was not modelled. In OTTER, 

flocs were assumed to have a diameter of 5 microns after coagulation and to have a maximum 

flocculated floc size predicted by Parker et al’s (1972) equation. The maximum floc size was 

then adjusted in OTTER based on an unreferenced relationship to give a representative 

flocculated floc size. The models in this research are applied on the assumption that the 

application of enhanced coagulation doses and flocculation results in flocs which can be 

efficiently removed by the solids removal processes. If this assumption is not accurate, the 

models can be expected to over-predict the efficiencies of the solids removal processes. 

The models take into account the potential formation of metal hydroxide precipitates caused by 

the addition of certain coagulants. Ensuring an efficient balance between achieving sufficient 
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TOC removal and minimising additional suspended solids content is addressed in two ways in 

this research: the application of a coagulant dosing algorithm that attempts to achieve a 

specified clarified TOC concentration and the identification of an optimal clarified TOC 

concentration for minimising the fraction of the time that a works is not achieving its water 

quality goals. 

The TOC dosing algorithm is found to show some correlation with operator specified doses 

(see Figure 4-22). It is suggested by the modelling and optimisations carried out here that raw 

water TOC concentrations could be used to specify coagulant doses using the Edwards (1997) 

TOC adsorption isotherm (as described in section 3.3.2.1). This application would be similar to 

the empirical methods developed by van Leeuwen et al. (2003, 2009). If this type of coagulant 

dosing was applied at the Trimpley WTW (which would require in-line TOC monitoring to be 

installed), it is possible that coagulant could be dosed more efficiently. This would result in 

more consistent chlorine demand and THM production, due to a more stable organic content. 

The use of the coagulation dosing model is found to alter predicted mean THM concentrations 

by less than ±0.5 µg/l and reduce the standard deviation by 20% for the dynamic model and 

25% for the static model (see Table 4-15). The use of the dosing model in the operating cost 

optimisations results in a reduced mean coagulant dose without predicting prohibitively high 

concentrations of THMs.  Lower mean doses would result in reduced coagulant and sludge 

treatment costs. These predictions are based on the coagulation and flocculation at the works 

still being able to produce flocs which are equally easily removed by the solids removal 

processes with lower coagulant doses. If the minimal coagulant dose of 7 mg/l as Fe is applied, 

as identified as acceptable by the operational regime genetic algorithm, then the coagulation 

and sludge disposal costs are predicted to approximately half. This reduction would equate to a 
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predicted saving in coagulant costs of approximately £250,000 per year and sludge disposal 

costs of approximately £19,000 per year (based on a reduction of coagulant dose from 16 mg/l, 

a mean abstraction rate observed in 2011 of 38Ml/d and costs given in Appendix F). The 

identified optimal  clarified TOC concentrations are likely to be too great as: i) the identified 

TOC removal efficiencies are less and the final water TOC concentrations greater than those of 

other WTWs in the region (Brown, 2009); ii) a strong correlation between TOC concentration 

and THM formation has previously been identified (Powell et al., 2000, Golfinopoulos and 

Arhonditsis, 2002) and iii) iron based coagulant doses (as Fe) less than initial TOC 

concentrations have been found to result in poor floc formation (Jarvis et al., 2005b). 

6.2.4 Solids removal 

 General 

Suspended solids will not all be removed equally easily. Individual particles’ physical and 

chemical properties and their interactions with process chemicals and processes will influence 

their propensity to be removed. When the removal efficiency parameters for the models are 

calculated for monthly periods, they are found to vary with a standard deviation of 9% to 32% 

in 2011. This variation in clarification performance was not reported by Head et al. (1997) for 

the dynamic HBC model or by Edzwald (2006) for the static DAF model. Substantial variation 

in removal efficiency may not have been observed in these previous studies because they were 

tested over shorter periods. This variation in mean monthly removal efficiency is possibly due 

to a variation in the average properties of the particles each month. It is found that by 

introducing removal efficiency relationships dependent on initial turbidity, a mean reduction of 

predicted turbidity RMSE of 35% is achieved for the calibration data. This improvement is 
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found to reduce to 15% when the verification data is applied, implying some degree of 

correlation rather than causation in the relationship. With the lower RMSE improvement 

identified for independent data sets, the increased complexity and less conservative predictions 

of WTW performance, the justification for application of similar relationships in future work is 

limited. 

The accuracy to which WTW solids removal can be modelled is limited to some extent by the 

variation in performance of different units of the same process. The individual DAF tanks mean 

clarified turbidity for January 2012 is found to vary with a standard deviation of 36% and the 

mean filtered turbidity for July 2011 and January 2012 is found to vary with a standard deviation 

of 13% to 38% between filters. This variation in performance indicates that process control at 

WTWs could be a considerable limitation in the accuracy of WTW models. Previous 

documentation of the models that are developed here do not disclose their predictive accuracy 

and restrict themselves to application using bench scale or pilot plants for periods of time of 

less than a week (Edzwald et al., 1992, Adin and Rebhun, 1977, Saatci and Oulman, 1980), 

occasionally using operational works for periods of time less than a month (Head et al., 1997). 

It is found that clarified and filtered turbidity can be predicted with RMSEs under 50%. Due to 

the relatively low degree of accuracy when replicating the performances over annual periods, 

it seems that the justification for the complexity of some of the models, along with the 

considerable amounts of calibration data they require, is limited for whole works modelling. 

The application of simpler models calibrated using limited process and telemetry data could be 

more suitable, providing that conservative estimates of performance and caution over the 

reliability of results is used. 



200 

 

Unlike the method applied in Gupta and Shrivastava (2006, 2008, 2010), where only final water 

solids content was assessed, acceptable water treatment is judged to only occur in this work if 

solids content after clarification and filtration meet set criteria. These dual criteria for solids 

removal are set because reducing the solids content below target concentrations does not 

guarantee microbiological quality but merely indicates that processes are operating effectively 

(Allen et al., 2000). It is important that clarification and filtration are both operating effectively 

in order minimise the likelihood of pathogens passing through to the disinfection stage. A 

second reason for setting a separate clarified solids content limit is that, when applied alongside 

an optimisation process, it acts to promote solutions that have similar clarified turbidity as that 

used to calibrate the filter models originally, increasing the reliability of the predictions made. 

Although the models in the operational zone analysis (section 5.1) predict that warmer water 

would result in an increase in the maximum possible abstraction rate, this does not indicate that 

climate change, resulting in possibly warmer mean temperature, will be likely to result in lower 

turbidity final waters. Climate change could also influence other water properties such as 

alkalinity, hardness, TOC and ammonia concentrations. Clark et al. (2011) reported that for a 

river they investigated, TOC was predicted to increase in the future (by 0.03 mg/l per annum) 

and that TOC was identified as being the dominant parameter in determining disinfection by-

product concentrations. It is shown in Section 5.1 that controlling TOC concentrations using 

enhanced coagulation could reduce the maximum abstraction rate of a WTW considerably and 

so there is uncertainty in the influence of climate change on the operation of WTWs. 
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 Hopper Bottomed Clarification (HBC) 

Two different approaches are taken to modelling Hopper Bottomed Clarifiers. In the static 

model, exponential decay of solids content is applied and in the dynamic model a more complex 

CSTR approach is taken, based on the model described in Head et al. (1997). The more complex 

model takes into account additional mechanisms such as the influence of sludge blanket 

thickness on removal rate and the potential for the sludge blanket to overtop. Head et al. tested 

the dynamic HBC model using separate calibration and verification data over approximately a 

month and reported accuracy of a similar degree to that achieved in this work, which Head et 

al. described as “good”. Head et al. also observed peaks in clarified turbidity due to line flushing 

(two of which can be seen in Figure 6-1). 

Figure 6-1 Performance of dynamic model as applied in Head et al. (1997) 

The RMSE of the more complex dynamic model is less than that of the static model, but of a 

similar magnitude (RMSE ± 0.1 NTU). In light of this, the use of static decay equations to 

model solids removal by HBC clarifiers is recommended, with conservative limitations placed 

on surface loading rates in order to reduce the likelihood of loss of the sludge blanket. 
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Although it is found that the improvement in accuracy of predicting HBC clarified turbidity 

using a dynamic model, in comparison to using a simpler exponential decay model, is limited, 

some insight into applying the dynamic model for whole works reliability studies is gained. It 

is found that: (i) the settlement of primary particles does not require modelling; (ii) setting an 

initial sludge blanket concentration reduces initialisation time; (iii) the accuracy of the model 

is insensitive to the number of continuously stirred tank reactors (CSTRs) used; (iv) the 

application of non-works specific hindered settling parameters can result in unrepresentative 

sludge concentrations being predicted and (v) the model is capable of predicting clarified 

turbidity to a reasonable accuracy when general, non-works specific calibration parameters are 

applied. 

The modelling of primary particles is found not to be necessary, as under low surface loading 

rates, which are the only conditions where this mechanism is likely to have a substantial 

influence, sludge blanket removal is likely to result in sufficient solids removal. The use of 

general Barnea and Mizrahi (1973) hindered settling parameters from Head et al’s (1997) 

previous study in the dynamic HBC model is found to result in a greater than expected 

volumetric blanket concentration (approximately 60% as opposed to an expected concentration 

below 30%). It is possible, however, that the low overflow rate of the HBCs at Trimpley WTW 

could develop a thicker than average blanket. 

 Dissolved air flotation (DAF) clarification  

A lower degree of accuracy is achieved in predicting DAF clarified turbidity than HBC clarified 

turbidity using static and dynamic models. The lower degree of accuracy achieved is partly due 

to individual tanks being brought in and out of service and them appearing to have substantially 
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different removal efficiencies (mean turbidity of different tanks is found to have a standard 

deviation of 34%). The difference in turbidity removal efficiency between the DAF tanks could 

be due to their maintenance condition or small differences in their setup. The DAF clarified 

turbidity is also found to spike more often (see Figure 4-16 and Figure 4-17) and have a greater 

standard deviation than HBC clarified turbidity (0.27 NTU vs. 0.16 NTU). The greater degree 

of variation in solids removal performance by the DAF process indicates possible operational 

deficiencies such as floc carry over or streaming which is not replicated by the models. 

The static and dynamic models that were both based on the attachment model described in 

Edzwald (2006) are found to have comparable accuracy in predicting clarified turbidity, with 

the dynamic model having a RMSE 0.06 NTU lower than the static model. Due to the 

difficulties identified for predicting DAF solids removal efficiency, it is possible that simpler 

static decay rate equations could be used to predict the performance of the process for whole 

works modelling to a sufficient degree of accuracy. 

 Filtration 

Due to the lack of turbidity breakthrough observed at Trimpley WTW, it is possible that 

increasing the durations of filtration runs may result in: the mean filtered turbidity reducing 

(due to filter ripening occurring less often), a reduction in backwashing energy use, less loss of 

partially treated water and less disruption of disinfection discharge. For these reasons, it is 

recommended that increasing the duration of filtration runs at Trimpley is investigated further. 

Turbidity breakthrough of the filters is not observed at Trimpley WTW and two individual pilot 

plant studies failed to accurately identify filtration parameters (Omar, 2012, Yegorova, 2013). 

The pilot plant studies identified parameters which substantially over-predicted the solids 
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removal ability of Trimpley WTW’s rapid gravity filters, despite using water sourced from 

upstream of the operational filters, using representative filter media and depths. Some of the 

difficulty in identifying representative parameters for the filtration model may be due to the 

filters at Trimpley WTW not sufficiently representing ideal filters. Evidence that some filters 

were not operating optimally is identified in the variance in mean filtered turbidity and head 

loss between filters (measured over month long periods). This variation in performance is 

defined by mean filtered turbidity standard deviations of 13% to 38% and mean head loss 

standard deviations of 51% to 66% between filters, for data collected in July 2011 and January 

2012. Due to the difficulties identified in defining the performance of the filters, the Bohart & 

Adam equation is adopted due to its lower computational requirements and the necessity to only 

subjectively identify a single removal efficiency parameter. 

The accuracy of the dynamic filter model is better than the static model, with RMSEs of 0.035 

NTU and 0.045 NTU respectively. Some of the additional error of the static filtration model 

comes from the tendency of its predicted filtered turbidity to fluctuate to a greater extent than 

is observed in reality. This fluctuation is due to the static model not having a mechanism to 

dampen the influence of short term fluctuations in operating conditions. As the RMSEs of the 

two models are similar (± 0.01 NTU) and the likelihoods of exceeding the target filtrated 

turbidity of 0.1 NTU are also similar (± 5%), this indicates that the additional complexity of the 

dynamic model may not be justified for whole works modelling. 

The use of a filter ripening mechanism results in filtered turbidity within the initial six hours 

after backwashing being predicted with a RMSE of 0.025 mg/l. The influence of the ripening 

process is reduced at operational sites by running initial flows after backwashing to waste until 
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filtered water turbidity reduces below a prescribed value (0.5 NTU at Trimpley). If it is assumed 

that this degree of temporary increase in filtered turbidity is acceptable, as at Trimpley, and that 

the energy costs of backwashing and the chemical costs of passing previously coagulated water 

to waste are sufficient to identify longer filtration durations then it may be acceptable not to 

model ripening for WTW optimisation purposes. 

It is shown in this discussion that the certainty in the modelled filter performance is limited, 

due to performance variation between filters in the same bank and difficulty in identifying 

robust process parameters. It is also found that applying dynamic aspects to the nominally static 

logistic curve approximation of filter performance improves predictive ability marginally and 

that the influence of ripening could be considered negligible for whole works optimisation 

purposes. If it is also assumed that the influence of backwashing on contact tank discharge 

(discussed further in section 6.2.6) is not modelled and that a conservative approach is required 

to predicting filter performance, then a very simple filter model could be appropriate. It is 

possible that the Bohart & Adam equation could be applied statically to represent the mean 

performance of a bank of filters with the time since last backwash parameter consistently set as 

being the filter run duration. This simple solids removal model could be applied alongside a 

head loss model which limits clean head loss to a fraction of the maximum head loss 

permissible. 

6.2.5 Adsorption 

When modelling of TOC removal by GAC was attempted at Trimpley WTW, it was found that 

sufficient data were not available to model the temporal variation of performance, as only 

monthly reservoir and final water TOC concentrations were routinely recorded. This resulted 
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in a decision to model TOC removal due to GAC and filtration together, using a fractional 

reduction typical for WTWs in the surrounding area. This method resulted in representative 

final TOC concentrations being predicted. 

6.2.6 Chlorine disinfection and disinfection by-product formation 

In this work, some empirical, general site, very fast free chlorine concentration consumption 

(occurring within the first five minutes) and fast first order decay chlorine parameters (for five 

minutes to two hours) are used to predict chlorine consumption. These relationships are 

developed from the site specific relationships reported by Brown (2009) for WTW in the West 

Midlands, UK. Contact tank inlet free chlorine concentration data are available for this site and 

the accuracy of applying the first order decay equations to a static plug flow and a dynamic 

multiple CSTR model are assessed. The decay occurring in the initial five minutes is assumed 

to occur between the dosing point and the contact tank. The contact times at Trimpley are found 

to exceed two hours approximately a third of the time, which is longer than any of the durations 

investigated in the decay relationships reported by Brown (2009). Free chlorine consumption 

is found to be under-predicted by approximately 5% in the models used. This indicates that 

either the non-site specific relationship used to predict chlorine decay is too conservative or that 

a substantial amount of fast initial chlorine decay reactions are still occurring as the chlorinated 

water enters the contact tank. It is likely that free chlorine decay could be modelled more 

accurately if initial dose data was available. THM formation is predicted based on a direct 

correlation with free chlorine consumption, as applied by Hua (2000) and Brown et al. (2010), 

due to its simplicity and basis on rational theory. 
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In assessing the performance of Trimpley WTW, the contact tank inlet and outlet free chlorine 

concentrations are found to vary with a standard deviation of approximately 0.1 mg/l. This 

variation is thought to be due to varying initial water quality and the presence of chlorine dosing 

feedback control. The backwashing of filters and adsorption beds is also found to influence the 

volumetric discharge of contact tanks as a result of irregular draw-off of partially treated water 

for backwashing purposes. The influence of this draw-off is seen to include a temporary 

increase in discharge when treatment beds are drawn down. This additional variance of contact 

tank discharge rate is likely to affect disinfection and the production of disinfection by-products. 

No clear correlation between free chlorine consumption within the contact tank and THM 

formation is observed, although the frequency of THM concentration readings is low (once a 

month). If the recorded data are representative of THM formation, then it is possible that the 

formation of THMs is strongly dependent on the initial chlorine consumption that took place 

before the contact tank that is not measured. Despite this, THM formation prediction based on 

predicted chlorine consumption is found to have a RMSE less than 5 µg/l. This indicates that 

the chlorine consumption / THM formation correlation applied may not have a strong causal 

relationship. 

The dynamic model’s RMSEs for predicting CT, THM formation and residual free chlorine 

concentration are found to be lower than those predicted using the static model, but of the same 

magnitude (±3%). The accuracy of the models for predicting CT, THM formation and residual 

free chlorine concentration is approximately ±10%, ±20% and ±30% respectively. Overall, for 

whole works modelling, the marginal improvement in predictive ability is not sufficient to 
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justify the increase in complexity and computational resources required to model disinfection 

dynamically. 

The majority of the error observed in the THM models is caused by a general under-prediction 

of THM production (mean concentrations are 21% to 29% lower than observed). Chlorine 

consumption between the dosing point and the contact tank inlet not being calculated and under-

prediction of chlorine consumption within the contact tank (residuals approximately 5% greater 

than observed) would have contributed towards this under-prediction of THM formation. If free 

chlorine consumption before the contact tank had been predicted accurately, and included in 

the total consumption, then an improved estimate of THM formation could have been made. 

When Monte-Carlo conditions are applied to the models, despite a marginal decrease in mean 

abstraction rates, it is found that the models predict lower chlorine consumption and THM 

formation than when time series data are applied. A possible reason for this is that under Monte-

Carlo conditions, correlations between water quality parameters are not represented, such as 

between TOC or bromine concentration with UV254 absorption. These correlations, which have 

been shown to exist elsewhere by Clark et al. (2011), may be accountable for the higher mean 

THM concentration predicted for time series conditions. 

6.3 Accuracy of static and dynamic WTW models 

6.3.1 Calibration and verification data 

The data used to calibrate the models comes from a warmer drier year whereas the data used to 

verify the models comes from a cooler wetter year. According to previous research, the change 

in conditions between the calibration and verification years should have resulted in: (i) mean 
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TOC concentration and solubility reducing but with greater concentration flux; (ii) a reduction 

in coagulation efficiency; (iii) reduced THM formation and (iv) reduced reservoir residence 

time leading to larger more easily removed organic matter reaching the WTW (Ritson et al., 

2014). It is actually observed, in contradiction to the findings reported in Ritson et al. (2014), 

that the mean TOC concentration increased whilst its standard deviation reduced and the 

production of THMs increased. The mean dose of coagulant and clarified turbidity did, 

however, increase during the verification period, supporting the prediction that the coagulation 

efficiency should reduce. These results provide an indication of the uncertainty of the 

implications of climate change on the performance of WTWs. This variation in the weather and 

water quality between the calibration and verification data are also likely to have reduced the 

accuracy of the models. Both of the years examined also had cool summers, limiting the peak 

reservoir water temperature. This is likely to have limited the THM production observed in both 

years. The water temperature used in the modelling is from the river abstraction point, which is 

likely to fluctuate more than the reservoir that would have acted as a thermal store. This means 

that the model is likely to have exhibited greater extremes of water temperature than are actually 

experienced at the WTW. 

As the data used to calibrate and verify the model come from an operational WTW, the range 

of performance observed is limited, due to the operators striving to provide a satisfactory water 

quality for consumers. In particular, the inability to observe clearly the breakthrough 

characteristics of the rapid gravity filters has limited the ability to model filtration to a high 

degree of certainty. This means that when unsatisfactory performance is predicted (as defined 

in section 4.4.3.1), the model is likely to be operating at, or beyond, the range of the calibration 

and verification data. The considerable uncertainty in modelled failure prediction could result 
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in substantial operational savings not being identified for the sake of minimal reductions in the 

likelihood of WTWs not achieving their operational goals. 

6.3.2 Time series performance 

The RMSE achieved in replicating key performance criteria are shown in Table 6-1. 

Table 6-1 RMSE of models 

Parameter Static model Dynamic model 

HBC clarified turbidity (NTU) 0.26 0.18 
DAF clarified turbidity (NTU) 0.28 0.34 
Rapid gravity filtered turbidity (NTU) 0.045 0.035 
Residual free chlorine concentration (mg/l) 0.17 0.14 
Product of residual free chlorine 
concentration and t10 contact time 
(mg.min/l) 

23 22 

THM production (µg/l) 3.0 3.4 

The RMSE accuracy of the static and dynamic models is comparable to the quality assurance 

targets set for measurements taken from Trimpley WTW by Severn Trent Water. The RMSE 

of the THM predictive models is greater than the operators’ quality assurance limit but the 

RMSE of the readings is within 5 µg/l and is compared to infrequent (monthly) measurements. 

The dynamic models were found to be more accurate than the static models, with the RMSE of 

the dynamic model at least 5% less than that of the static model for the solids removal processes 

(HBC and DAF clarified and rapid gravity filtered turbidity) and between 1% to 3% less for the 

disinfection models (residual chlorine concentration, CT and THM formation). For Trimpley 

WTW, the RMSE of the clarification models used is greater than the difference in mean 

clarified turbidity from the HBC and DAF processes. The accuracy of any optimisation process 

which attempts to compare the performance of these two clarification processes is, therefore, 

likely to be minimal (see Table 4-9 and Table 4-10). 
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When the models are used to predict the fraction of time that key water quality goals could be 

met, an accuracy of ±15% is achieved. For observed time series conditions, the static model is 

found to be more likely to predict elevated clarified turbidity (NTU > 1) whilst the dynamic 

model is found to predict elevated filtered turbidity (NTU > 0.1) more often. Both models 

predict similar likelihoods of achieving insufficient disinfection (CT < 60 mg.min/l) or elevated 

THM concentration (THM > 25 µg/l) (±3%) (Table 4-25 and Table 4-26). The dynamic model 

predicts a higher likelihood of filtered turbidity exceeding 0.1 NTU due to interventional 

backwashes, which cause filter ripening to occur. Although the filtered turbidity is higher than 

usual during filter ripening, it can be ensured that filtered water is run to waste until a specified 

turbidity is achieved. Assuming this is acceptable, the static models are likely to identify more 

robust, conservative, solutions than the dynamic models when applied to optimisation 

processes. 

6.3.3 Monte-Carlo Analysis 

In order to assess the performance of the examined WTW stochastically, it is necessary to define 

the probability distributions of the observed water quality parameters. The likelihood that the 

probability distributions of the water quality parameters could be approximated to a selection 

of standard distributions is assessed to a 5% significance level using the Anderson-Darling test 

(see Table 4-16). However, for a consistency of approach, non-standard distributions are used 

to represent the operating conditions in this thesis. Operating conditions are sampled, each 

simulated day, over a simulated year, in each Monte-Carlo run. 

The synthetically produced time series data used in the Monte-Carlo analysis will not be 

completely representative of the conditions observed at the works. The non-standard 
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distributions, which are used to represent the operating conditions observed at Trimpley, are 

produced by interpolating between the lower boundary values of the cumulative frequency bins 

used to segment the recorded data. This procedure results in a slight under-estimation of the 

operating condition parameters used in the Monte-Carlo analysis. The independent simulated 

daily sampling of all of the operating conditions also results in conditions that differ from 

observed time series data as the recorded data’s parameters are seen to vary in magnitude over 

different time frames. Any correlations between the operating conditions, which were identified 

by Clark et al. (2011) to exist at another WTW are also not represented. 

When Monte-Carlo conditions are applied, the mean of the key performance parameters 

adjusted by up to 15% for the dynamic model and up to 20% for the static model, in comparison 

with the application of time series data (see Table 4-18 to Table 4-23). This variation in 

performance is likely to be caused by the random nature of the Monte-Carlo process, inexact 

representation of operating conditions and the lack of correlation between operating conditions 

modelled. Some of the variation in performance, under Monte-Carlo conditions, could be 

reduced through the use of greater sampling of operating conditions for each simulation. This 

would act to reduce the performance variation between independent runs. The range of mean 

key performance values, produced from three separate Monte-Carlo runs, is found to be less 

than 5%, except THM production. The high degree of variation predicted for THM production 

indicates that predicted chlorine consumption is sensitive to particular combinations of 

operating condition parameters, and therefore requires a greater number of operating condition 

samples to be made, to achieve more consistent performance. 
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Both models, for time series and Monte-Carlo conditions, are found to predict the likelihood of 

failing the specified water quality goals to within 15% of that observed operationally (see Table 

4-25 and Table 4-26). The application of the Monte-Carlo techniques is found to vary failure 

rates by less than 5%, except for filtered turbidity for both models and DAF clarified turbidity 

for the static model. The static model’s DAF clarified turbidity exceeds 1 NTU significantly 

more often under Monte-Carlo conditions (+10%) and this is possibly due to the loss of some 

correlation between operating conditions. The decrease in the fraction of time that filtered 

turbidity is predicted to exceed 0.1 NTU under Monte-Carlo conditions (-10%) could partially 

be caused by the mean abstraction rate applied being slightly lower than that observed. 

Application of Monte-Carlo conditions to the WTW models results in: the predicted likelihood 

of the performance criteria not being met differing from those made using time series data (by 

up to approximately 10%), with a precision of ±5% and an accuracy of ±15%. The static WTW 

models are able to predict the likelihood of the performance criteria not being met to a similar 

degree of accuracy as the more complex dynamic models and so are more suitable for whole 

works modelling. 

6.4 Water treatment works optimisation 

6.4.1 Operating zone analysis 

Computational models of WTWs are not commonly used for day to day operational guidance. 

This is because there are multiple, complex relations between the operating conditions and the 

process found at WTWs. It is therefore difficult to make simple recommendations based on a 

manageable number of water quality parameters. A novel method to address this issue is 

applied. The majority of operating conditions are set to values typical of those observed at 
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Trimpley WTW and the source water temperature and TOC concentration are varied in multiple 

simulations. For each set of conditions, the minimum and maximum abstraction rate for which 

the WTW is expected to meet its performance targets is predicted using both the static and the 

dynamic models. The results from this analysis is graphically presented in a 3D “operating 

zone”. This diagram could be used by operators to give guidance as to what range of abstraction 

rates should result in acceptable WTW performance, dependent on water temperature and TOC 

concentration. 

It is found that the static and dynamic models identified similar “operating zones”, indicating 

that the same failure mechanisms are likely to be limiting their range of abstraction rates. For 

raw waters with temperatures below 18 °C and TOC concentrations below 6 mg/l, the 

predominant limiting factor of maximum abstraction rate is the achievement of a sufficiently 

low clarified and filtered turbidity. As raw water TOC concentration increases, the maximum 

abstraction rate reduces due to extra solids loading caused by the need for additional coagulant. 

This relationship is not observed for conditions where higher raw water TOC concentrations 

require the specified maximum coagulant dose. For raw waters warmer than approximately 

18°C, with TOC concentrations above approximately 6mg/l, it is found that “good” 

performance could not be achieved purely through abstraction rate control. This is because 

either the clarified or filtered turbidity is too great or because of excessive THM production. 

For the operational conditions simulated, the use of the dynamic model results in a greater range 

of and lower maximum abstraction rates, for the vast majority of conditions examined. The 

greatest difference in the acceptable maximum abstraction rate predicted by the models is 300 

m3/h. 



215 

 

Due to the similar predictions made by the different models, it is concluded that the use of a 

static WTW model would be sufficient for this type of analysis in future as a result of its lower 

complexity and computational demands. The simulation results indicate that the maximum 

abstraction rate of a WTW is highly dependent on the raw water temperature and TOC 

concentration (if coagulant is being dosed to limit its clarified concentration). The plateauing 

of maximum abstraction rates for TOC values above 6 mg/l and subsequent analysis of the 

coagulant dosing algorithm suggests that if reservoir TOC concentrations rise substantially 

above their current mean concentrations of 5.4 mg/l, the current maximum dosing of coagulant 

at Trimpley would be insufficient to maintain current, predicted, clarified TOC concentrations. 

Perhaps most importantly, the operating zone analysis predicts that for warm waters with high 

TOC concentrations, it may not be possible to meet the specified operating criteria under the 

current operating regime. If the reservoir water is warmer with elevated TOC concentrations, 

relatively frequently because of changes in climate or catchment management, then the 

operating regime or capital infrastructure may need to be adjusted in the future. 

6.4.2 Application of genetic algorithms (GAs) to WTW optimisation problems 

 Optimisation problems and techniques 

The design of the works is optimised by minimising the footprint area and a separate 

optimisation is carried out for operational costs. In both optimisation problems, the fraction of 

the time that performance targets are not achieved is also minimised. As each optimisation has 

two objectives, multiple Pareto optimal solutions are identified (see section 2.2.4.2). Each of 

the optimisation problems set has five decision variables, for which a range and a precision is 

specified. The range and precision of the variables is limited so that the computation demand 
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of the optimisation process is reduced. As a result of these limits, the number of possible 

solutions reduces from being infinite to approximately one hundred thousand and seven 

hundred million solutions for the design and operating regime problems respectively. 

The NSGAII algorithm is applied to both of the optimisation problems and found to identify 

sufficiently converged solution populations after a hundred generations, to represent a pseudo-

Pareto set. The failure rate of the solutions is unconstrained and the majority of Pareto solutions 

identified have failure likelihoods greater than 50%. As unreliable solutions are of less interest, 

the use of some mechanism to limit the failure likelihood could have resulted in more efficient 

use of computational resources, although premature convergence could be a concern. Another 

problem with not constraining the failure rate of solutions is that the optimal solutions identified 

by the static and dynamic models are difficult to compare, as they inhabit different regions of 

the reliability search space. The use of constrained or pseudo-constrained acceptable failure 

rates, as carried out by Gupta and Shrivastava (2006, 2008, 2010), would have allowed easier 

comparison of solutions identified through the use of the different models. Constraining the 

precision of solutions and simulating only unique solutions improves the efficiency of the 

search process but solutions identified in previous generations require their reliability to be 

reassessing each generation. This is necessary because of the variance in conditions between 

runs (found to result in approximately a 5% variance in failure rate during model verification). 

This continual assessment of reliability does have the advantage that over multiple generations, 

the solution population is assessed against an increasingly diverse set of conditions, resulting 

in a more robust population evolving. If the sampling of the conditions is increased so that the 

variance in performance of the model is negligible between runs, then it could be possible that 

only newly identified solutions would need their reliability evaluated. For computationally 
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demanding models this could improve the reliability of results (as a greater combination of 

conditions could be assessed) and reduce the computational demand (as individual solutions 

would only be assessed once). 

 Identification of suitable genetic algorithm internal parameters 

The influence of using a lower, intermediate and higher values for each internal parameter is 

investigated, as in Sharifi (2009). Owing to the higher computational resources required by the 

models in this work, a full cross comparison of different combinations of parameters is not 

carried out. Instead, a control set of intermediate parameter values is identified and then the 

influence of applying higher and lower values to each parameter is investigated. The variation 

of most of the internal parameters identified solutions populations with comparable fitness in 

terms of the number of Pareto solutions identified and the degree of diversity exhibited (see 

Table 5-4). Although this method does not identify a clear set of optimal GA internal 

parameters, it does identify a few parameter values as being either preferable or unsuitable. The 

difficulty in identifying optimal internal parameters is due to the complex interactions between 

them and the inherent randomness of the GA process. The GA internal parameters are not 

optimised for each combination of model type (static or dynamic) and optimisation problem 

(design or operating regime), as it is preferable to assess the optimal solutions identified by the 

models using identical GAs. Using guidance from the internal parameters sensitivity analysis, 

along with recommendations from previous research (see section 2.2.3.8), a set of reasonable 

GA internal parameters is identified. The values applied are considered to be appropriate based 

on previous findings that a range of settings can result in good performance (Grefenstette, 1986) 

and that the same solutions can be found using GAs with either general or optimised internal 
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parameters (Franchini and Galeati, 1997). The influence of possible premature convergence or 

loss of Pareto solutions is addressed through the application of multiple independent runs of the 

GAs and the compilation of a secondary population of all Pareto solutions identified. The use 

of the NSGAII inspired genetic algorithm with: (i) a population of thirty, (ii) cross-over 

probability of 70% and distribution index of ten along with (iii) a mutation probability of 5% 

and distribution index of twenty is found to result in sufficiently converged solution populations 

after a hundred generations. It is concluded that future investigations that are concerned with 

using GAs, rather than developing them, should in many instances identify appropriate values 

based on state-of-the-art guidance rather than calibrate them to individual problems. 

 Solutions identified 

In this work, for the first time, designs and operating regimes, identified by genetic algorithms 

from performance criteria assessed by static and dynamic WTW models, are compared. This 

work is also novel in the application of whole works optimisation techniques to case study data 

from an operational works. The models used are calibrated and verified to observed 

performance and both solids removal and disinfection performance criteria are assessed. This 

is unlike past studies, which have tended to focus on one or the other (Gupta and Shrivastava, 

2008, Clark et al., 2011). 

Despite the similarity in predictive ability of the static and dynamic models in terms of their 

RMSE (±5%) and likelihood of failing the performance targets (±5%), the designs and 

operating regimes identified through the use of a genetic algorithm are substantially different. 

This is particularly prominent in the weighting placed on the alternative clarification processes. 

It is found that the use of the dynamic model results in a greater emphasis being placed on DAF 
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clarification. From this, it is concluded that the relative reliability of the DAF process, in 

comparison to the HBC process, is greater in the dynamic rather than static model (see Figure 

5-25 and Figure 5-27). Despite the differences in solutions identified using the static and 

dynamic models, it is found that neither model results in the identification of consistently more 

costly or reliable solutions. The relative costs of the solutions identified by the models is 

dependent on the multi-objective problem set and the reliability of the solutions identified. 

The observed difference in mean clarified turbidity between the HBC and DAF processes at 

Trimpley WTW (±0.24 NTU) is comparable to the RMSE of the clarification models produced 

(0.18 NTU to 0.34 NTU). This indicates that the accuracy of the clarification models is 

insufficient to reliably differentiate between the two processes. For future WTW optimisation 

studies using computational models, it is recommended that alternative treatments are not 

investigated until the potential to successfully optimise a simple linear treatment chain has been 

substantiated. 

The optimisations identify maximum contact tank volumes and inlet chlorine concentrations 

comparable to those currently used in operation at Trimpley WTW. The observed contact tank 

inlet free chlorine concentration (1.6 mg/l) lies between the maximum identified by the static 

model (1.5 mg/l) and the maximum identified by the dynamic model (1.8 mg/l). Although this 

shows that the process is able to identify contact tank inlet free chlorine concentrations similar 

to those applied in reality, in future it could be more useful to optimise contact tank outlet 

concentrations. The maximum contact tank volumes identified as optimal are larger than those 

observed at the site (2400 m3), with the static model identifying a maximum volume of 3200 

m3 and the dynamic model identifying a maximum volume of 2800 m3. This indicates that the 
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contact tank at Trimpley may be under-sized for the conditions it operates under. This 

conclusion is supported by the observed CT value at Trimpley WTW being seen to fall to almost 

60 mg.min/l in the summer months. A relatively high target clarified TOC concentration 

(approximately 5 mg/l) is identified as being optimal due to the lower doses of coagulant 

required. Although this is predicted to not result in excessive free chlorine consumption or 

disinfection by-product formation, application of this operating regime may not be suitable, as 

insufficient destabilisation of colloids or excessive organic growth in the distribution network 

could result. Longer duration filtration runs are also identified as being preferable at Trimpley. 

This is in agreement with the observed performance, where excessive head loss or turbidity 

breakthrough are rarely observed. As the identified optimal filtration duration (96 hours) is 

considerably outside the calibration conditions observed, limited confidence should be placed 

in this estimate but it is believed that the application of long filtration runs should be considered 

at Trimpley WTW. 

6.5 Benefits of static models for optimisation 

It is found that static models are more suitable for whole WTW modelling than dynamic models. 

Static models, in comparison to dynamic models, are shown to be able to predict more 

conservative estimates of the likelihood of WTW failing performance criteria, whilst having 

similar RMSE accuracies and predicting comparable cost solutions when used to solve 

optimisation problems. The use of static models reduces the computational requirements of 

carrying out optimisations (the optimisations using the dynamic models are found to take two 

to eight times the computational resources of the static models), allowing a greater number of 

operating conditions to be considered and/or generations to be simulated. Static models also 
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have no requirement for the sampling frequency of operating condition parameters be defined. 

Static models, due to their lack of necessity for differential equations, are faster to simulate and 

more consistent in their computational requirements. When applied along with genetic 

algorithms, it is possible to more accurately estimate the computational resources and time 

required to complete an optimisation process.
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7 CONCLUSIONS 

This thesis investigates the development of a software tool to: identify operating conditions 

under which water treatment works (WTWs) are expected to produce water of an acceptable 

water quality and to minimise WTW design and operational costs, using genetic algorithms and 

Monte Carlo methods. A summary of the conclusions of this research are outlined below in 

further detail with the aims and objectives they relate to shown in square brackets. 

7.1 WTW Modelling 

1. Dynamic WTW models are found to be more accurate than static models at predicting 

the performance of an operational site over a nine month period. The RMSE of the 

dynamic model is found to be at least 5% less than the static model for the solids removal 

processes and 1% to 3% less for the disinfection and disinfection by-product formation 

processes [A1, O2]. 

2. Clarified and filtered turbidity are predicted to a RMSE of under 50% [A1, O2]. 

3. The use of the empirical solids removal efficiency parameters (dependent on initial 

turbidity) results in an average reduction in RMSE of approximately 15% [A1, O1, O2]. 

4. The backwashing of filters and adsorption beds can influence the volumetric discharge 

of contact tanks [O1]. 

5. No correlation between chlorine consumption within the contact tank and THM 

formation is observed at the examined site [O1]. 
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7.2 Use of Monte-Carlo analysis for analysing WTW performance 

6. The likelihood that the probability distributions of a range of key operating conditions 

could come from a selection of standard distributions is assessed to a 5% significance 

level using the Anderson-Darling test (see Table 4-16) [A3, O5]. 

7. The application of stochastic operating conditions to the WTW models is found to vary 

mean performance parameters by approximately 15% [A1, O6]. 

8. “Good” WTW performance, defined by taking into account legislative limits and 

observed operational performance, is defined (as shown in Table 4-24) [A2, A3, O3]. 

9. The likelihood of failure to achieve specified water quality goals is predicted to within 

15% (see Table 4-25 and Table 4-26) [A1, O6]. 

7.3 Operating zone analysis 

10. Static and dynamic models identified similar relationships between raw water 

temperature, TOC concentration and acceptable abstraction rates [A2, O4]. 

11. Maximum abstraction rate is found to be inversely correlated with initial TOC 

concentrations below 6 mg/l [A2, O4]. 

12. For raw waters warmer than approximately 18 °C with TOC concentrations above 

approximately 6mg/l, it is predicted that “good” performance cannot be achieved purely 

through abstraction rate control, due to either clarified / filtered turbidity or THM 

production being too great or insufficient disinfection [A2, O4]. 
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7.4 Optimisation of WTW design and operating regime using genetic algorithms 

13. The optimisation process is found to be relatively insensitive to the internal parameters 

applied. Use of typical values from state-of-the-art guidance is found to be effective 

[A3, O7]. 

14. The application of dynamic or static models is not found to consistently identify more 

optimistic or conservative solutions to optimisation problems [A3, O7]. 

7.5 Benefits of static models for optimisation purposes 

15. The static models used are faster to simulate and more consistent in their computational 

requirements than the dynamic models [A3, O7]. 

16. Static models are found to be more suitable for whole WTW optimisation modelling. 

Static models are shown to predict failure of water quality goals more often for existing 

conditions at an observed site whilst having a similar RMSE accuracy and predicting 

solutions of comparable cost when applied to optimisation problems [A1, A3, O7].
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8 RECOMMENDATIONS FOR FURTHER WORK 

8.1 Introduction 

This thesis presents the modelling of a water treatment works (WTW) and the application of 

optimisation techniques including: the identification of operational conditions for which “good” 

water quality could be expected; and the use of genetic algorithms to identify near-optimal 

works designs and operating conditions. This chapter suggests recommendations for future 

work. 

8.2 Modelling 

8.2.1 General 

• Future WTW optimisation studies should initially be applied to operational sites which 

do not have alternative processes or that the dependence on each alternative process is 

not attempted to be optimised (as current models appear to not be capable of accurately 

modelling their relative performance). WTWs which exhibit signs of turbidity 

breakthrough at the end of filtration cycles should also be examined. Alternatively, the 

construction of a pilot plant which replicates whole works treatment could be used to 

examine water treatment optimisation. This would enable greater control of operating 

conditions and of water quality measurement. 

• The application of control systems for determining the division of flows between 

alternative treatment streams dependent on raw and treated water quality measurements 

could be examined to improve operational efficiency. 
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8.2.2 Coagulation & flocculation 

• The dosing algorithm described in this work could be applied to operational as its 

sensitivity to changing operational conditions is found to approximately correlate with 

those applied by operational staff for the DAF stream at the examined site. If successful, 

this algorithm could have the potential to respond to changing water quality more 

rapidly than operators and could also enable greater automation of process control. The 

dosing of coagulant could even take into account predicted chlorine decay and 

trihalomethane production to optimise coagulant dose further. 

• The potential to control the dose of coagulant and pH to achieve optimal TOC 

adsorption could be examined. This could predict the magnitude of cost savings of 

reducing the quantities of coagulants applied whilst also examining the influence of 

disinfection. At present the influence of water quality, coagulant dose and flocculation 

on the solids removal efficiencies of clarification and filtration process is not understood 

sufficiently to enable accurate modelling and could be examined further. 

8.2.3 Solids removal 

• Due to the difficulty in predicting the solids removal efficiency of clarification and 

filtration processes for varying initial turbidity water, it would be interesting to see how 

much of this variation can be explained by non-linearity of the turbidity suspended 

solids relationship and/or the variation in the distribution of particle size with turbidity. 

The variation in these relationships between WTWs and seasons would also be of 

interest and of potential benefit to the modelling process. 
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8.2.4 Disinfection 

• The potential for incorporating free chlorine decay relationships, dependent on the 

contact tank inlet water quality, into control systems to maintain target residual 

concentrations could be investigated. 

• As no strong correlation is identified between free chlorine consumption within the 

contact tank and THM formation at the WTW examined but previous studies have found 

there to be a correlation between total free chlorine consumption and THM formation, 

the relationship between the fast initial decay reactions of free chlorine and the 

formation of THMs should be examined in greater detail. 

8.3 Optimisation 

• As the accuracy of the static and dynamic water treatment works models are found to 

be comparable for whole works optimisation, it would be prudent to research the 

potential for simplifying the modelling process further and identify the influence on 

optimisations carried out. The relative accuracy of models where each process is 

represented by a single unit with its depth and total footprint area defined should be 

examined. These models would not take into account the influence of intermittent or 

cyclical individual process units (such as DAF tanks and filters) which would reduce 

their complexity substantially as well as allowing greater precision in the optimised 

solutions identified. 

• The WTW construction costing equations which exist (McGivney and Kawamura, 

2008, Clark, 1982, Gumerman et al., 1979b) are approximate and are not suitable for 

optimisation work. As the building of WTWs is a fairly infrequent event and their 

costing commercially sensitive, it is unlikely that sufficiently accurate costing models 
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are going to be available in the foreseeable future. It is therefore recommended that 

future WTW optimisation study focuses on operational costs. Also, due to an 

insufficient degree of certainty in solids removal modelling, optimisation should focus 

on the coagulation and disinfection stages with solids removal purely modelled to assess 

whether solids loading originating from coagulant addition is likely to be acceptable. 

• For the further assessment of the use of Monte-Carlo methods for WTW optimisation, 

the consequences of approximating operating conditions to standard distributions (such 

as normal etc.) and/or applying observed correlations between raw water quality 

parameters, as identified in Clark et al. (2011), could be examined.
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NSGAII Procedure 

The NSGAII operation procedure outlined here (see Figure A-A) is based on the description 

provided in Deb et al. (2002). Initially, a random parent population is produced (Pt) and an 

offspring population is generated (Qt) using simulated binary crossover (SBX) and polynomial 

mutation. The combined population (Rt) is then graded by Pareto rank (F1, F2, F3 etc.) and sub-

graded by crowding parameter in either the genetic or objective space (Deb et al., 2002). Using 

this grading system, the subsequent parent population (Pt+1) is filled with the fittest solutions. 

Where: Pt = parent population; Qt = offspring population; Rt = combined population; F1 = Pareto 

optimal set; F2 = second Pareto rank; F3 = third Pareto rank and Pt+1 = subsequent parent 

population. 

Figure A-A NSGAII procedure (Deb et al., 2002) 

Simulated binary crossover (SBX) 

The SBX operator can imitate sexual reproduction, creating offspring chromosomes based on 

the genes of parents. Two parent solutions are selected at random and a random number between 

zero and one is generated in order to ascertain whether cross-over occurs. If this random number 

is less than the specified cross-over probability then sexual reproduction takes place. If they do 

not sexually reproduce then asexual reproduction occurs. The SBX process calculates the value 



241 

 

of each gene of offspring solutions X and Y, based on the genes of the parents A and B, using 

the following method outlined in Deb (2000): 

1. Randomly generate a number u between zero and one 

2. Calculate spread factor parameter β using a polynomial distribution described by 

Equation A-A, where ηc is the cross-over distribution index which can take any positive 

value. Smaller values of ηc make it more likely that solutions dissimilar to the parent 

solutions are predicted. 

 §¨	©	 ≤ 0.5, u � !2©$ �¬­�� 
Equation A-A 

 ��®�, u = � 12!1 − ©$'
�¬­��

 
 

3. Calculate the offspring genes’ values using Equation A-B and Equation A-C 

 ¯ = 0.5-!z 	 |$ − u|| − z|1 Equation A-B 

 ± = 0.5-!z 	 |$ 	 u|| − z|1 Equation A-C 
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Polynomial mutation 

All offspring solutions genes have a possibility of undergoing mutation. If a randomly generated 

number between zero and one is less than the specified mutation probability then mutation 

occurs. Polynomial mutation is performed as described in Deb (2000): 

1. Randomly generate a number u between zero and one 

2. Calculate spread factor parameter δ using polynomial distribution described by 

Equation A-D, where ηm is the mutation distribution index which can take any positive 

value. Smaller values of ηm make it more likely that genes will vary significantly. 

 §¨	©	 ≤ 0.5, ² � !2©$ �¬³�� − 1 
Equation A-D 

 ��®�, ² = 1 − -2!1 − ©$1 �¬³�� 
 

3. Calculate the offspring gene value X using Equation A-E, where A is the original value 

of the gene and ∆max is the maximum variation allowed in the parent solution (i.e. the 

difference between the maximum and minimum value specified for a gene).  

 ¯ = z 	 ²!ΔxLµ$ Equation A-E 

Pareto ranking of solutions 

The ordering into Pareto rank can be accomplished by selecting two random solutions and 

placing them into a preliminary first Pareto set (F1). If either of these solutions is dominated by 

the other then it is removed from the preliminary first Pareto set. All of the other solutions are 

then randomly entered into the preliminary first Pareto set and compared to the existing 
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members; again any dominated solutions are removed. Once this process is completed, the 

members of the first Pareto set are defined and removed from the combined population (Rt) 

before the process is repeated to find subsequent Pareto sets. 

Crowding parameter  

The crowding parameter measures how dissimilar a particular solution is in comparison with 

the rest of the population. It can be calculated in either the genetic or objective space. The 

method is performed as described in Deb et al. (2002): 

1. The solutions are ranked by the first parameter to be compared.  

2. The difference between the parameter value of the solutions just larger and smaller than 

the solution of interest is recorded. Solutions which have maximum or minimum 

parameter values are given a crowding value of infinity.  

3. The solutions are then ranked and the crowding values calculated for any additional 

parameters to be compared. 

4. The final crowding parameter is calculated by summing the crowding values of all the 

parameters compared. 

The calculation of the crowding parameter is shown in Figure A-B. In this situation, variance 

in two parameters is measured for a solution (k) by summing the horizontal and vertical distance 

between k-1 and k+1. Solutions which are less crowded are favoured in order to promote 

diversity. 

Figure A-B Crowding parameter calculation (Deb et al., 2002) 
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Alkalinity adjustment due to coagulant addition 

Aluminium sulphate (Al2(SO4)3.xH2O), aluminium chloride (AlCl3), ferric sulphate (Fe2(SO4)3) 

and ferric chloride (FeCl3) are all common coagulants used in water treatment. When they are 

added to water they dissociate to form trivalent metals ions of either Fe3+ or Al3+, hereon 

referred to as Me3+
 ions. Each mole of Me3+

 ion added to the water will produce a mole of metal 

hydroxide (Me(OH)3) and three moles of hydrogen ions, and consume three moles of alkalinity, 

as shown in Equation B-A (Crittenden et al., 2005, Tseng and Edwards, 1999). This is 

approximately true if TOC-coagulant precipitates are negligible, coagulant doses are greater 

than 1 mg/l as Me3+ and solubility of the coagulant metal is low, which it is at pH 5.5-8.0 for 

alum and 4.0-8.0 for ferric coagulants (Tseng and Edwards, 1999). The alkalinity reduction due 

to the addition of coagulant is shown in Equation B-B where eqM(CaCO3) is the equivalent 

molar mass of calcium carbonate and M(Me3+) is the molar mass of the metal ion. 

 Q��� 	 3���⇔ z�!��$�!Lx$ 	 	3�� Equation B-A 

 z�CT�§�§@¶·I 2 = −3Q��� × �¸Q!�T���$Q!Q���$  
Equation B-B 
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Chlorine 

When gaseous chlorine is used to chlorinate water, due to its low concentration, it behaves as a 

strong acid. This results in the equilibrium shown in Equation 2-1 being forced to the far right 

donating a mole of hydrogen ions. Further dissociation of the hypochlorous acid (HOCl) as 

shown in Equation 2-2 donates further hydrogen but the extent of this dissociation is dependent 

on the pH and temperature (Black & Veatch Corporation, 2010). 

Further hydrogen donation may occur as the chlorine reacts with other chemicals in the water 

(such as arsenic, carbon, cyanide, hydrogen sulphide, iron, manganese, or nitrites) and as the 

exact composition of the water is rarely known, a good estimate of hydrogen production can be 

made by assuming that each mole of molecular chlorine (Cl2) produces two moles of hydrogen 

ions (Black & Veatch Corporation, 2010) which consume two moles of alkalinity. The 

alkalinity reduction as CaCO3 due to the addition of a chlorine gas is shown in Equation B-C. 

 z�CT�§�§@¶�b& = −��� �¸Q!�T���$�¸Q!���$  
Equation B-C 

Where: AlkalinityCl2 = Alkalinity alteration due to addition of free chlorine (mg/l CaCO3); Cl2 

= concentration of chlorine added (mg/l); eqM(CaCO3) = equivalent molar mass of calcium 

carbonate (50 g/mol) and eqM(Cl2) = equivalent molar mass of chlorine (35.5 g/mol). 
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Sodium bisulphite 

Dechlorination is carried out to reduce the residual free chlorine concentration from the contact 

tank, after super chlorination, so that it is suitable for distribution. Although sulphur dioxide 

(SO2) is more commonly used, sodium bisulphite (NaHSO3) is sometimes used where feed rates 

of SO2 would be too low to be practical or where SO2 storage is considered too hazardous.  

The reaction between sodium bisulphite and chlorine is shown in Equation B-D. Each mole of 

sodium bisulphite donates two moles of hydrogen ions (Black & Veatch Corporation, 2010) 

which consume two moles of alkalinity. The dose of sodium bisulphite required to reduce the 

concentration down to a specified distribution concentration is shown in Equation B-E. The 

alkalinity reduction as CaCO3 due to the addition of a sodium bisulphite is shown in Equation 

B-F.  

 FT�D�� 	 ��� 	 ��� →FT�D�� 	 2�� 	 2��
 Equation B-D 

 FT�D�� = �¸Q!FT�D��$�¸Q!���$ × !���MI¢ − ���¤y¢$ Equation B-E 

 z�CT�§�§@¶ºL»¥¼ = −FT�D�� �¸Q!�T���$�¸Q!FT�D��$ Equation B-F 

Where: NaHSO3 = concentration of sodium bisulphite; eqM(NaHSO3) = equivalent molar mass 

sodium bisulphite (52 g/mol); Cl2res = residual contact tank free chlorine; Cl2dis = target 

distribution network free chlorine (mg/l) and AlkalinityNaHSO3 = Alkalinity alteration due to 

addition of sodium bisulphite (mg/l CaCO3). 
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The dose of sodium bisulphite required at any time was calculate as the dose necessary to reduce 

the contact tank residual chlorine concentration to 0.6 mg/l of free chlorine. 

Slaked lime 

Slaked lime, also known as hydrated lime or calcium hydroxide (Ca(OH)2), can be added to the 

water to increase the alkalinity. As calcium hydroxide is a strong base and almost completely 

dissociates in water, each mole of calcium hydroxide accepts two moles of hydrogen ions from 

solution (Equation B-G) and increases the alkalinity by two moles (Equation B-H). 

 �T!��$� 	 2�� → �T�� 	 2��� Equation B-G 

 z�CT�§�§@¶�L!¼»$& = 	�T!��$� �¸Q!�T���$�¸Q!�T!��$�$ Equation B-H 

Where: AlkalinityCa(OH)2 = Alkalinity alteration due to addition of slaked lime (mg/l CaCO3); 

Ca(OH)2 = concentration of slaked lime (mg/l) and eqM(Ca(OH)2) = equivalent molar mass 

slaked lime (37g/mol). 
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Total carbonate concentration (CT) 

Considering only the carbonate species, the alkalinity of a solution is described by Equation 

B-I to Equation B-O (Stumm and Morgan, 1970, Snoeyink and Jenkins, 1980b). 

 -z�C1 = -����
1 	 2-����
1 	 -��
1 − -��1 Equation B-I 

 -����
1 = �"Y� Equation B-J 

 -����
1 = �"Y� Equation B-K 

 Y� = 1-��1�� 	 1 	 ��-��1 
Equation B-L 

 Y� = 1-��1����� 	 -��1�� 	 1 
Equation B-M 

 -��1-����
1-�����∗] � �� 
Equation B-N 

 [��][����
][����
] � �� 
Equation B-O 

Where: CT = total carbonic species concentration (mol/l), K1 = acidity constants for carbonic 

acid (dimensionless), K2 = acidity constants for bicarbonate ion (dimensionless) and [H2CO3
*] 

= molar concentration of H2CO3 and CO2(aq). 
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The equilibrium constants for carbonic acid (K1) and the bicarbonate ion (K2) are reported as 

being 10-6.3 and 10-10.3 respectively at 25 °C (Stumm and Morgan, 1970, Snoeyink and Jenkins, 

1980b). It is assumed that K1 and K2 are temperature dependent and by applying Arrhenius’ 

equation as shown in Equation B-P, along with the reported standard enthalpy changes for both 

reactions as in the Water Treatment Plant Simulation Program Manual (USEPA, 1992), 

Equation B-Q and Equation B-R can be used to give a temperature-dependent estimate of K1 

and K2. 

 � � �UV ½�∆���.�¿ ! 1G��.� − 1G' − �����.�À Equation B-P 

 �� = �UV ½� 7700Â/ÃÄ�8.314Â/ÃÄ�.P � ! 1298.15P� − 1G' − 14.5À Equation B-Q 

 �� = �UV ½� 14900Â/ÃÄ�8.314Â/ÃÄ�.P � ! 1298.15P� − 1G' − 23.7À Equation B-R 

Combining Equation B-I and Equation B-M yields Equation B-S, which can be used to estimate 

the total carbonic species concentration (CT) using the initial water alkalinity and pH. 

 -�"1 = -z�C1 − -��
1 	 -��11-��1�� 	 1 	 ��-��1 	 2 1-��1����� 	 -��1�� 	 1
 

Equation B-S 
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Coagulated pH calculation 

Using the total carbonic species concentration (CT) of the initial water, it is possible to estimate 

the hydrogen ion concentration (and therefore pH) after any alkalinity alteration due to 

coagulation (Equation B-T; simply a rearrangement of Equation B-S). This technique is similar 

to the graphical method described in Snoeyink and Jenkins (1980b). 

 -��1 = -�"1 È �-É21.ÊË ��� Ê&-É21.
	 �

-É21.&ÊËÊ& �-É21.Ê& ��Ì	 WÍ-»21. − -z�C1 Equation B-T 

As [H+] appears on both sides of the equation, it is necessary to use an iterative method to 

identify a suitable concentration of hydrogen ions. When Equation B-T was applied, in this 

work, using a direct iterative method it was found to be unstable, resulting in the solution 

moving to maxima or minima positions. The Newton-Raphson method was used to solve this 

iterative equation, as described in Equation B-U where [H+]0 is the previous estimate of [H+], 

f([H+]0) is the current estimate of [H+] using Equation B-T, and f’([H+]0) is the product of the 

derivative of f([H+]0), as shown in Equation B-V.  

 -��1 = -��1� − ¨!-��1�$¨′!-��1�$ Equation B-U 



251 

 

 ?-��1?-��1� = -�"1 Ï ��R���� − -��1��S〈��!�� 	 -��1�$ 	 -��1��〉�
− 2����!�� 	 2-��1�$〈��!�� 	 -��1�$ 	 -��1��〉�Ð − C
-��1� 

Equation B-V 

In order to stabilise the performance of the pH predictive model, the rate of change of the pH 

was set as 6 pH unit/h. The rate limit was identified as being the highest rate (to the nearest 0.5 

pH unit/h) that did not result in the pH fluctuating on occasion to maxima or minima positions. 
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The capacity of the filter media to remove substances from a solution decreases in proportion 

to the current capacity and the concentration of the incoming substances. 

 ÑTÑ@ = −CT{ Equation C-A 

Where: a = residual capacity; c = concentration at distance x from start and k = rate parameter. 

 ÑTÑ@ × Ò�Ò� = −CT{ × Ò�Ò� → ÑTÑU = −CT{r  Equation C-B 

Rate of capacity reduction = rate of removal of substances 

 Ñ{ÑU = −CT{r  Equation C-C 

From Equation C-A 

 Ñ TÓÔÑ@ÕÖÔ = −Õ TÓÔ {ÖÔ 
Equation C-D 

From Equation C-C 

 Ñ {ÖÔÑU ÕÓÔ× = −Õ TÓÔ {ÖÔ×  
Equation C-E 

If a’ = a/a0; c’ = c/c0; t’ = tkc0; x’ = xka0/v; then 

 ÑT′Ñ@′ = −T′{′ Equation C-F 
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 Ñ{′ÑU′ = −T′{′ Equation C-G 

From Equation C-F 

 ÑT′Ñ@′ 1T′ = −TØ{Ø →→ ln TØ =	−{Ø@Ø Equation C-H 

 Ñ ln TØÑ@Ø = −?{′@′?@′ → Ñ ln TØÑ@Ø = −{′ Equation C-I 

From Equation C-G 

 Ñ{′ÑU′ ÚÖ′ = −T′Ö′ Equation C-J 

 Û 1{Ø Ñ{Ø = Û−T′ ÑUØ Equation C-K 

 ln {Ø =	−TØUØ Equation C-L 

 Û 1TØ ÑTØ = Û−{′ Ñ@Ø Equation C-M 

 Ñ ln {ØÑUØ = −?T′U′?U′  Equation C-N 

 Ñ ln {ØÑUØ = −T′ Equation C-O 

From Equation C-H 
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 ÛÑ ln TØÒ�Ø = Û−{′Ò�Ø Equation C-P 

 

When x’ = 0, c’ = 1 

 ln T′ = −@ → TØ = �
KØ Equation C-Q 

From Equation C-O 

 ÛÑ ln {ØÒ�Ø = Û−T′Ò�Ø Equation C-R 

When t’ = 0, a’ = 1 

 ln {′ = −U → {Ø = �
µØ Equation C-S 

From Equation B-Q and Equation C-S 

 T′{′ = �
KØ�
µØ → �µØ
KØ Equation C-T 

 {′T′ = �
µØ�
KØ → �KØ
µ′ Equation C-U 

From Equation C-F 

 ÑTØÑ@ØÓØÜ = −TØ{ØÓØÜ → − {ØTØ Equation C-V 

From Equation B-U 
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 − {ØTØ = −�KÝ
µÝ Equation C-W 

 Û 1TØ� ÑTØ = Û−�KÝ
µÝ Ñ@ Equation C-X 

 −1T = −�KØ
µØ − C Equation C-Y 

When t’ = 0, a’ = 1 

 11 = �
µÝ 	 C Equation C-Z 

 C = 1 − �
µÝ Equation C-AA 

 1T′ = �KØ
µØ − �
µÝ 	 1 Equation C-BB 

 TØ = 1�KÝ
µÝ − �
µÝ 	 1 = �µØ�KØ 	 �µØ − 1 Equation C-CC 

As -1 is negligible except for very small values of t’ and x’ 

 TØ = �µØ�KØ 	 �µØ = 1�KÝ
µÝ 	 1 Equation C-DD 

From Equation C-G 

 Ñ{ØÑUØÖØÜ = −TØ{ØÖØÜ  Equation C-EE 

From Equation B-Q 
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 −TØ{Ø = −�µÝ
KÝ Equation C-FF 

 Û 1{Ø� Ñ{Ø = Û−�µÝ
KÝ ÑU Equation C-GG 

 −1{ = −�µØ
KØ − C Equation C-HH 

When x’ = 0, c’ = 1 

 11 = �
KÝ 	 C Equation C-II 

 C = 1 − �
KÝ Equation C-JJ 

 1{′ = �µØ
KØ − �
KÝ 	 1 Equation C-KK 

 {Ø = 1�µÝ
KÝ − �
KÝ 	 1 = �KØ�KØ 	 �µØ − 1 Equation C-LL 

As -1 is negligible except for very small values of t’ and x’ 

 {Ø = �KØ�KØ 	 �µØ = 1�µÝ
KÝ 	 1 Equation C-MM 

 TT� = 1�ieÞ.
def. g⁄ 	 1 Equation C-NN 

 {{� = 1�def. g⁄ 
ieÞ. 	 1 Equation C-OO 

As a’+ c’ = 1 
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 TT� = 1 − {{� Equation C-PP 
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Figure D-A Hydraulic conductivity, solids accumulation relationship  

Where: K = hydraulic conductivity (m/h); K0 = clean bed hydraulic conductivity (m/h); σ = 

accumulated solids concentration (mg/l) and F = accumulated solids concentration capacity 

(mg/l). 

 √� = ß�� − ß�� 
√� √w 

Equation D-A 

Divide through by 3√K0 

 √� 
ß�� = 1 − √w√� 

Equation D-B 

Cube 

 ��� = `1 − √w√�c
�
 

Equation D-C 

K/K0 = H0/H where H is head loss 
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 ��� = `1 − √w√�c
�
 

Equation D-D 

 � = ��
`1 − √w√�c

� 
Equation D-E 

 1√� = u 
Equation D-F 

 � = ��R1 − u√wS� 
Equation D-G 
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A contact tank is represented by four tanks in series as shown in Figure E-A which are perfectly 

mixed then the concentration in each tank is equal to the concentration leaving each tank. 

Figure E-A Representation of a contact tank as four CSTRs 

Where: c = concentration of tracer; q = mass of tracer transferring between sections; v = flow 

rate and V0 = volume of each section. 

A plug tracer test is performed and during a portion of time dt a quantity of tracer, q0 = v dt, 

enters the first tank. At t = dt the concentration in the first tank c1 = q0/Vo and the rate of outflow 

is vq1/V0. No new tracer enters the first tank and no decay is assumed to occur. This is 

represented in Equation E-A and Equation E-B. 

 ?¸�?@ = 	−r¸�B�  
Equation E-A 

 ¸� = ¸��
àKá.  
Equation E-B 

For the second tank the mass balance can be described as shown in Equation E-C. 

 ?¸�?@ = r¸�B� − r¸�B�  
Equation E-C 

Substitution q1 from Equation E-A into Equation E-C gives Equation E-D. 

c1 q1 v c2 q2 v c3 q3 v c4 q4 v c0 q0 v 
c1 c2 c3 c4 
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 ?¸�?@ 	 r¸�B� =	 rB� ¸��

àKá.  

Equation E-D 

Using integrating factors as described in Stroud and Booth (2000) Equation E-E, Equation E-F 

and Equation E-G. 

 ?¶?U 	 â¶ = A 
Equation E-E 

 ã�@�t}T@§�t	¨T{@Ä} = 	�äå¤µ Equation E-F 

 ??U R¶�äå¤µS = A�äå¤µ 
Equation E-G 

Equation E-D can be solved as shown in Equation E-H, Equation E-I and Equation E-J. 

 ??@ ^¸��àKá._ = rB� ¸� 
Equation E-H 

 ¸��àKá. = Û rB� ¸�?@ = rB� ¸�@ Equation E-I 

 ¸� = rB� ¸�@�

àKá.  

Equation E-J 

The mass balance for the third tank can be calculated using the same method. 
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 ?¸�?@ = r¸�B� − r¸�B�  
Equation E-K 

Substitution q2 from Equation E-J to Equation E-K 

 ?¸�?@ 	 r¸�B� = ^ rB�_
� ¸�@�
àKá.  

Equation E-L 

Using integrating factors. 

 ??@ ^¸��àKá._ = ^ rB�_
� ¸�@ Equation E-M 

 ¸��àKá. = Û^rB�_
� ¸�@?@ = ^r@B�_

� ¸�2  
Equation E-N 

 ¸� = ^r@B�_
� ¸��
àKá.2  

Equation E-O 

The mass balance for the fourth tank can be calculated using the same method. 

 ?¸�?@ = r¸�B� − r¸�B�  
Equation E-P 
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Substitution in q3 from Equation E-O to Equation E-P. 

 ?¸�?@ 	 r¸�B� = ^ rB�_
� ¸�@��
àKá.2  

Equation E-Q 

Using integrating factors 

 ??@ ^¸��àKá._ = ^ rB�_
� ¸�@�2  

Equation E-R 

 ¸��àKá. = Û^ rB�_
� ¸�@�2 ?@ = ^r@B�_

� ¸�6  
Equation E-S 

 ¸� = ^r@B�_
� ¸��
àKá.6  

Equation E-T 

B general pattern follows that for the nth tank the quantity of tracer can be calculated as: 

 ¸O = ^r@B�_
O
� ¸��
àKá.!� − 1$! 

Equation E-U 

The fraction of tracer that has left the nth tank can be calculated as: 

 � = ¸� − !¸� 	 ¸� 	⋯	 ¸O$¸�  
Equation E-V 
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Substitute Equation E-B, Equation E-J and Equation E-U into Equation E-V. 

 

� =	¸� − !¸��
àKá. 	 rB� ¸�@�
àKá. 	⋯	 ær@B�çO
� ¸��
àKá.!� − 1$!$¸�  

Equation E-W 

Factorise. 

 � = 1 − �
àKá. �1 	 r@B� 	⋯	 ^r@B�_
O
� 1!� − 1$!� Equation E-X 

The mean residence time is calculated as shown in Equation E-YEquation E-Y 

 @̅ = �B�r  
Equation E-Y 

Applying this to Equation E-X results in the more useful form: 

 � = 1 − �
OKK̅ �1 	 � @@̅ 	 ⋯	 ^� @@_̅O
� 1!� − 1$!� Equation E-Z 
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Chemical, sludge disposal and energy costs 

In order to calculate the operating costs of the different processes it was necessary to have 

estimates of the costs to purchase chemicals, dispose of sludge and power processes. The values 

used are shown in Table F-A. 

All the suspended solid removed at the clarification and filtration stage, including those 

introduced through the addition of coagulant are assumed to contribute to the total mass of 

sludge that needs disposing. Total costs of chemicals used (ferric sulphate, chlorine, sodium 

bisulphite and lime) and sludge requiring disposal were calculated based on cumulative mass 

over the simulation period converted to an annual cost. 

Table F-A Chemical, sludge and energy costs 

Item Cost 

Ferric sulphate £2000 per tonne as Fe 
Chlorine £400 per tonne 
Sodium bisulphite £600 per tonne 
Slaked lime £70 per tonne 
Sludge disposal £80 per tonne 
Electricity £0.08 per kWh 

Operating costs were calculated per annum. Costs were converted to annual estimates. All costs 

were at current value (December 2012) and where historical data is used it is adjusted to current 

values based on the consumer price indices produced by the Office for National Statistics 

(2013). 
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Ferric sulphate 

Table F-B Costs of ferric sulphate 

Source Iron concentration 
(%) 

Cost per tonne 
(£) 

Cost per tonne Fe 
(£) 

Trimpley, Severn Trent 
(2012b) 

12.5 n/a n/a 

Kemira (2013)* 12.5  140 1120 
Brenntag (2013)** 12.6 199 1579 
Keeley et al. (2012)*** 4.34 85 2004 

*Value based on location of WTW, long term supply, 28 tonne tanker delivery to on site tank, 

WTW quality product PIX112 as used at Trimpley. 

** Based on 8 tonne bulk tanker deliveries. 

*** Values provided by UK water utilities and chemical suppliers. Costs based on 200 MLD 

WTW which is larger than Trimpley (60 MLD). Cost per tonne would be expected to be lower 

for a larger WTW due to economies of scale. Cost liable to market fluctuations. 

Estimated cost of coagulant taken as £2000 per tonne based on more diverse range of sources 

investigated by Keeley et al. (see Table F-B). 

  



267 

 

Chlorine gas 

Table F-C Costs of chlorine gas 

Source Daily consumption (kg/d) Cost per tonne (£) 

Trimpley, Severn Trent (2012b) 49 n/a 
ICIS (2006)* n/a 161-276 
ICIS (2013)** n/a 200 
Capital Controls (2000)*** 8 795 
Capital Controls (2000)*** 45 398 
Capital Controls (2000)*** 189 297 

*Indicative prices, S Gulf, domestic, quarter contract. 

**Time series of end user costs, given in cents per pound for 2013. 

***Based on theoretical scenarios, given in cents per pound. Costs are approximate and caution 

is recommended for their use based on regional factors including freight, contracts and volumes. 

Estimated cost of chlorine taken as £400 per tonne based on consumption rate and application 

specificity of Capital Controls’ estimates (Table F-C), and market fluctuation as indicated in 

the ICIS data and time series (Figure F-A). 

Figure F-A End user cost of chlorine (ICIS, 2013) 
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Sodium bisulphite 

Table F-D Costs of sodium bisulphite 

Source Sodium bisulphite 

solution concentration 

(%) 

Costs per 

tonne (£) 

Costs per tonne 

Sodium bisulphite (£) 

Trimpley, Severn 
Trent (2012b) 

20 n/a n/a 

Brenntag (2013) 37 282 762 
ICIS (2006)** 38 406, 509 1069, 1338 
Tampa Bay Water 
(2011)*** 

40 179, 173, 228 448, 432, 569 

* 8000 litre delivery 23% as SO2. 

**Price based on per 100 lb. 

***From water companies awarded contracts, concentration stated for first contract price and 

for others assumed to be the same. 

Estimated cost of sodium bisulphite taken as £600 per tonne based on Tampa Bay Water’s 

specific application to water treatment (see Table F-D). 
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Slaked lime 

Table F-E Costs of slaked lime 

Source Costs per tonne (£) 

Trimpley, Severn Trent  n/a 
Brenntag (2013)* £215 
ICIS (2006)** £55-62 
Keeley et al. (2012)*** £70 
Des Moines Water Works (2012)**** £48, £59 

*Hydrated, Ultralime 40 x 25kg bags 

**Hydrated, bulk, f.o.b. works 

*** Values provided by UK water utilities and chemical suppliers. Costs based on 200 MLD 

WTW which is larger than Trimpley (60 MLD). Cost per tonne would be expected to be 

lower for a larger WTW due to economies of scale. Cost liable to market fluctuations. 

****Based on contracts awarded by company for quick lime which is assumed to be pure 

Estimated cost of slaked lime taken as £70 per tonne based on UK basis of Keeley et al. 

approximation which is of same magnitude as ICIS and Des Moines Water Works values (see 

Table F-E). 
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Sludge disposal 

The mass of sludge produced from the WTW was based on the removal rate of solids from the 

clarification and filtration stages. These solids are stored at sludge lagoon at Trimpley WTW 

which requires occasional dredging. When the lagoon is dredged its sludge requires disposal. 

As the opportunities for different disposal options in the future are unknown and based on the 

majority of sludge going to landfill in the UK, disposal by landfill after storage at lagoon was 

assumed to be £80 per tonne. The costs for this treatment alongside alternative management 

strategies are presented in Table F-F. 

Table F-F Disposal costs of sludge, adapted from UKWIR (1999) 

Disposal method Mean cost (£ per tonne dry solids) Proportion of sludge 

(%) 

Landfill 81 57.7 
Foul sewer to Waste 
WTW 

Not internally charged 24.6 

Transport to Waste WTW 243 4.2 
Lagoon 0.6 2.0 
Water environment 22 2.3 
Land spreading 46 8.7 
Construction materials 63 0.5 
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Electricity 

The cost of electricity fluctuates with market forces. Recent price fluctuation is shown in Figure 

F-B for extra-large industrial users inclusive of tax (Department of Energy & Climate Change, 

2012). Based on recent market conditions an estimated cost of electricity was taken as eight 

pence per kWh. 

Figure F-B Fluctuation in electricity 
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DAF operating costs 

Due to a lack of DAF energy requirement data also identified by others (Jarvis et al., 2009) 

DAF aeration costs were calculated from fundamental principles. The actual DAF compressors 

are operated intermittently to maintain a sufficient pressure. The approximation of the energy 

consumption assumes continual compression is less efficient. The power required by the DAF 

compressors was calculated using Equation F-A (Geankoplis, 1993) for adiabatic compression 

which is what most compressors approximate to (Perry et al., 1998). 

 â = CC − 1¿G�ÃQ è^V�V�_
W
�W − 1é Equation F-A 

Where: P = useful power (W); k = ratio of specific heat at constant pressure to that at constant 

volume (1.4 dimensionless) (Wong and Embleton, 1984); R = gas constant (8314 J/kg.K); T1 = 

inlet gas temperature (K); m mass flow rate (kg/s); M molar mass (air 29 g/mol) p1 = inlet 

pressure (N/m2) and p2 = discharge pressure (N/m2).  

The volumetric flow rate can be calculated based on the volumetric concentration of air entering 

the DAF tank (φ), the discharge rate of the process and adiabatic relationship shown in Equation 

F-B (Perry et al., 1998). 

 ALyM	yO	�PxêMI¢¢PM = ^V�V�_
�W [A
LKIM	yO	� ¡ 

Equation F-B 

Where: Qair entering compressor = volumetric flow entering compressor (m3/s); p1 = inlet pressure 

(N/m2); p2 = discharge pressure (N/m2); k = ratio of specific heat at constant pressure to that at 

constant volume (1.4 dimensionless) (Wong and Embleton, 1984); φ = DAF bubble volume 

concentration (dimensionless) and Qwater in DAF = DAF discharge (m3/s).  
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The mass flow rate is calculated from the volumetric flow rate and the density of air from the 

ideal gas law (Equation F-C). 

 � = VQ¿G  Equation F-C 

Where: ρ = density (kg/m3); p = pressure (N/m2); M molar mass (air 29 g/mol); R = gas constant 

(8314 J/kg.K) and T = temperature (K).  

Combining Equation F-A, Equation F-B and Equation F-C gives compressor power Equation 

F-D 

 â = CC − 1 ^V�V�_
�W V�[A
LKIM	yO	� ¡Z è^V�V�_

W
�W − 1é Equation F-D 

Where: P = power required (W); k = ratio of specific heat at constant pressure to that at constant 

volume (1.4 dimensionless) (Wong and Embleton, 1984); p1 = inlet pressure (N/m2); p2 = 

discharge pressure (N/m2); φ = DAF bubble volume concentration (dimensionless); Qwater in DAF 

= DAF discharge (m3/s) and η = overall efficiency of compressor. 

Total cost of DAF aeration was based on the cumulative energy consumption and the cost of 

electricity. For a typical DAF discharge of 800 m3/h, saturator pressure of four bar, bubble 

volume concentration of 0.007 and compressor efficiency of 50% equates to power output of 

0.14 kW and a daily cost of £0.27. This appears to be an under estimation of compression costs. 

Filtration backwashing costs 

Due to a lack of backwashing energy data, costs were calculated from fundamental principles. 

The energy requirement of the backwash was calculated based on the increase in head of fluid 

through the filter and an estimation of the head loss through the filter. The head loss through 

the filter was estimated using the Kozeny-Carmen equation for clean-bed head loss for each 

stage of the backwash which is then doubled to take into account the effect of solids retained in 
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the filter. This is in agreement with head loss observed at Trimpley prior to backwash being 

approximately double that at the start of a filter run for treated water. 

The water that is used for backwashing, abstracted post GAC, and water that is run to waste at 

the start of a filter run are discharged to the sludge lagoon. This water will have been coagulated 

and a proportion of it will have been aerated. The costs of treating additional water is calculated 

based on the volume of water sent to the lagoon per backwash (556 m3), the mean dose of 

coagulant, the mean cost of DAF treatment and the proportion of water being treated by DAF.  

The cost per backwash for coagulant doses observed (15 mg/l) is approximately £16.50 and the 

cost of additional DAF treatment is approximately £0.01. 

Table F-G Predicted energy requirements of backwashing 

Backwash 

stage 

Velocity 

(m/h) 

Clean bed 

headloss (m) 

Required 

head (m) 

Volume 

(m3) 

Energy 

required (J) 

Air 65.0 104.9 211.3 433.6 1,195,191 
Air/Water – Air 65.0 104.9 211.3 316.9 853,708 
Air/Water – 
Water 

9.4 1.4 4.2 45.8 1,888,411 

Water 37.6 5.7 12.8 183.3 23,020,381 
Total useful energy (J) 26,957,691 
Total useful energy (kWh) 7.5 
Total energy consumption assuming 50% pump efficiency (kWh) 15.0 
Cost per backwash @ 0.08 £/kWh (£) 1.20 


