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Abstract 

An investigation of the ability of a numerical model  I 
to predict the cross sectional shape of an alluvial channel 

 

Abstract 

The research analyses the behaviour of the flow in an open channel with self-

formed banksides, with the purpose of exploring the ability of a numerical model to 

predict such geometries. The strategy consists in contrast a numerical model with 

physical model data. With respect to the numerical model, it is divided in two main 

parts, the first one describing the flow and the second one defining the cross 

sectional geometry. For the first part, a quasi 2D flow structure was selected to model 

the flow, i.e. the Shiono and Knight Model (SKM) (Shiono and Knight, 1991), due to 

its simplicity and flexibility. It allows users to incorporate the variation of friction factor, 

f, secondary flow gradient, Γ, and dimensionless eddy viscosity, λ, across the section. 

In order to calculate the bankside geometry, the Yu and Knight Model (1998) was 

chosen, because it relates the equilibrium of  particles on the boundary to the shear 

stress, τ0, distribution. 

With respect to the physical model, the shape of a self-formed bankside has 

been reproduced and assessed in a tilting flume, in order to identify its flow pattern 

by measuring velocity and shear stress. Such data was used for calibration and 

validation of the numerical model. The cross section was inspired in the bankside 

obtained by Ikeda (1981), fitting it into a flume 46cm wide. The experiment consists 

of testing the channel by three different slopes, three depths and two surfaces 

(smooth and rough), mapping velocity and measuring shear stress on the boundary 

across the section. The novelty of the work is to improve the flow estimation for this 

type of cross section, incorporating the secondary flow, and subsequently enhancing 

the approximation to the geometry that will be formed in alluvial channels. 
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A : hydraulic area 
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a0 : coefficients proposed by Vigilar and Diplas (1998) 

a1 : coefficients proposed by Vigilar and Diplas (1998) 

a2 : coefficients proposed by Vigilar and Diplas (1998) 
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b: width of the central flatbed 
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bx : transversal width of the transition at a distance x 

C: coefficient  of secondary flow 

C2: coefficient depending on μ and β 

C3: coefficient depending on μ and β 

C4: coefficient depending on μ and β 
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CL: centerline of the channel 

Cu: coefficient of uniformity 

 

 

a function of the diameter 

 

  diameter of the Preston tube 

d: diameter of the soil particle 

d50 : median diameter size 

d90: representative diameter that is bigger than the 90% of the sample 

f: Darcy-Weisbach friction factor 

F1: lift force 

Fd: drag force 

g: acceleration due to gravity 

h*: dimensionless local depth, h/hc 

h:  local depth 

hc: central depth 

D̂  
1 32ˆ 2D d g  
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R
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SKM: Shiono and Knight Method 
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Vo: mean velocity at the centre of the channel 

VPitot: Average velocity of the section obtained by Pitot-Static tube measurements 

y*: dimensionless horizontal distance from the junction 

y: transversal distance from the centre 

z: vertical distance from the bottom 

ZT : vertical elevation at x 

α’: inclination of the manometer, degrees 

β: ratio of lift to drag force, taken as 0.85 

βs : dimensionless secondary flow, taken as 0.15 

Γ : lateral gradient of secondary flow , also known as secondary flow 
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CHAPTER 1 

INTRODUCTION         

 

A common problem in river engineering is to predict the stable cross section 

that a stream can form, due to be under a dynamic process of erosion-deposition that 

alters its shape and by this, its conveyance capacity. To overestimate such 

geometries implies a waste of resources, and to underestimate them to put the 

surrounding area under flood risk. The stable condition of a section will be reached 

when the sediments inflow are equal to the sediments outflow.  

 

Figure 1. A reach of the river Thames at Desborough Channel. 

 

In order to predict this kind of section numerous methods exist, which can be 

separated interactive force and regime theory, this last can be divided in empirical 

(e.g. Kennedy, 1895, Lacey, 1930, Leopold and Maddock, 1953, etc.)  and analytical 
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or rational (e.g. Griffiths, 1981, Julien and Wargadalam, 1995, Cao and Knight, 

1996a, Yalin and Da Silva, 1999, Huang et al., 2002, Lee and Julien, 2006, etc). 

Among the methods, some others were found that predict the geometry of stable 

cross sections, like the regime theory, but defining the bankside shape, and taking 

into account the resistant shear stress of the bottom material, for example: Glover 

and Florey (1951), Henderson (1961), Stebbings (1963), Parker (1978a, 1978b, 

1979), Diplas and Vigilar (1992), Cao and Knight (1996b, 1997, 1998), Yu and Knight 

(1998), Dey (2001), Ikeda (1981), Ikeda et al. (1988), Diplas (1990), Babaeyan-

Koopaei and Valentine (1998), Vigilar and Diplas (1997, 1998) and Paquier and 

Knodashenas (2002).With respect to the drawbacks, it was found that: little attention 

has being paid to the influence of the secondary flow to the banksides, when 

evidence shows its existence and impact on the boundary (see Ikeda, 1981, Diplas, 

1990); the shape of the central channel bed is not defined, and is not flat; most of the 

approaches are for nonuniform material, except from Ikeda (1988) and Cao and 

Knight (1998); and neither vegetation nor cohesive material were not considered by 

any author. 

1.1 Aim 

Hence, the aim of this research is to investigate the capacity of a simple quasi 

2D flow model, i.e. the SKM(Shiono and Knight, 1990), in combination with bank side 

equations, to determine the bed profile of an alluvial channel, incorporating the 

secondary flow variables. It is expected to obtain flow parameter relations, that will 

clarify the mechanisms involved in rivers. This will enable engineers to predict stable 

self-formed sections in a long term, by using powerful and accessible methods. This 

fits in improving the prediction of natural streams, its hydraulic capacity estimation, 
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helping to prevent floods, protecting urban infrastructure and human life. 

1.2 Objectives 

In order to accomplish the aim, the following objectives were followed: 

1. Numerical modelling. To build a numerical model that predicts the flow behaviour 

and the prediction  of  self-formed cross sections, i.e .the Yu and Knight (1998).  

2. Physical experiments. To design, construct and implement a physical model to 

observe the flow behaviour in a cross section representing a self-formed bankside. 

It consists of a tilting flume using a parabolic section, inspired in the shape 

obtained experimentally by Ikeda (1981). The channel was tested by two surfaces, 

one smooth (PVC) and one rough (glue sand). The variables measured were 

discharge, water surface slope, and the distributions across the section of velocity 

and boundary shear stress. 

3. Calibration and comparisons. To calibrate the numerical models with the 

physical results, adjusting three key factors: friction, f, secondary flow gradient, Γ, 

and dimensionless eddy viscosity, λ.  

4. Analysis. From the calibration procedure, parameters for the hydraulics variables 

are proposed. 

5. Validation. The relations proposed were applied to different examples, i.e.in order 

to corroborate them. 

1.3 Structure of the document 

The document is divided into: introduction, literature review, numerical model,  

physical model, calibration and validation, and finally conclusions. The literature 

review is about methods to predict self-formed cross section. The numerical model 
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explains the relationship between the flow model and the self-formed section. 

Meanwhile, the physical model refers to the lab experiment and the apparatus. The 

calibration and validation process shows the relationships obtained and its 

corresponding procedure.  Finally the conclusions summarizes the findings obtained 

by the research. Furthermore, two appendices are included: appendix A reports the 

relationships between bankside width and depth by four methods; and appendix B 

shows the results of the simulations to determine the limits of the numerical model; 
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2 CHAPTER 2 

LITERATURE REVIEW         

Prediction of self-formed cross sections 

Alluvial streams are erodible channels, characterized by transported 

sediments, reaching the dynamic stable condition when the inflow sediments are 

equal to the outflow sediments of a cross section. In order to predict this kind of 

channel, two main types of methods have been applied: the tractive force, and the 

regime theory. The regime theory consists of a set of equations proportioning the 

stable width, depth and slope of a stream, depending only on the discharge and the 

channel soil material. The first attempt of this type was given by Kennedy (1895), 

when he found a relationship between the main velocity and the depth of an 

irrigational channel without silting or scouring, based on observations on the Bari 

Doab canal system in India. His work was continued by Lindley, Ingles and Blench, 

and Lacey, producing the first set of equations (according to Simons and Senturk, 

1992). Numerous efforts have been developed since then, and among authors the 

regime approaches can be divided into: empirical (e.g. Lacey, 1930, Leopold and 

Maddock, 1953) and analytical or rational (e.g. Huang et al., 2002, Yalin and Da 

Silva, 1999, Cao and Knight, 1996a, Griffiths, 1981, Julien and Wargadalam, 1995, 

Lee and Julien, 2006). The first type is based in geometrical observations, and the 

second one in physical laws that form part of the phenomenon. 

Originally, the hydraulic geometry for alluvial streams was considered 

rectangular or trapezoidal. Later the importance of the banksides was noticed, as 
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proposed by Glover and Florey(1951) the first banksides in threshold of motion as 

parabolas connected by a central flatbed (see figures2 and 3). Later, Henderson 

(1961) continued the work and incorporated the critical shear stress of Shields to the 

central flatbed, methodology that was subsequently adopted by the USBR. The 

parabolic shape is mentioned by Chow (1959) as the a common section formed by 

rivers, while Mironenko et al.(1984) and Babaeyan-Koopaei et al.(2000) remarked its 

stability similar to a trapezoidal channel. 

 

Figure 2. Cross section of a channel in threshold without flatbed. 

 

Stebbings (1963) conducted experiments in a tilting flume (8.23m long, 

91.5cm wide, and 25.4cm deep)  with a bed full of uniform sand (d50=0.88mm, 

σ=1.30), obtaining self-formed channels with cross sections at threshold of motion. 

The shape of such sections was parabolic and an equation describing them was 

proposed. Further approaches have been developed, being the one of Parker 

(1978b, and 1979) one of the most significant, due to infer a dynamic equilibrium  

between banks at threshold and an active bed, being this incompatible for a 

threshold channel, it was called the stable channel paradox (see figure 3). 

hc 
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Figure  3. Cross sectional shape of a self-formed channel, constituted by banks in threshold and an 
active central flatbed. 

 

 Following the conceptof a parabolic bank profile, the next researches were: 

Diplas and Vigilar (1992), Cao and Knight (1996b, 1997, and 1998), and Yu and 

Knight (1998), and Dey (2001). While others have proposed equations describing the 

whole cross section, based on laboratory best fitted curves, for example: Ikeda 

(1981), Diplas (1990), and Babaeyan-Koopaei and Valentine(1998). These 

approaches provide a different solution to the Parker’s (1978b, and 1979) paradox, 

but still an active bed exists. While Paquier and Khodashenas (2002) combined the 

shear stress variation with respect to the depth from the Merged Perpendicular 

Method (Khodashenas and Paquier, 1999) with the sediment conservation mass 

equation to determine an stable cross section, being the obtained shape similar to 

the one of Diplas and Vigilar (1992). 

The experiments of Ikeda (1981) and Diplas (1990) show parabolic shapes in 

the sides and ridges in the central bed. It was inferred by Ikeda (1981) the influence 

of the secondary flow in the formation of such bed forms, but it was not considered in 

their approaches.At the present, there are tools able to incorporate the secondary 

flow in a velocity distribution model, like the Shiono and Knight Method (SKM, 1991),  

subsequently the shear stress and bed load, improving the channel prediction 

b/2 T/2 
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approximation. 

The common suppositions for the different approaches are: noncohesive 

material, straight channels, no vegetation. While just a few considered nonuniform 

sand diameter (e.g. Ikeda et al., 1988, Cao and Knight, 1998).In order to examine 

them, they have been divided in: bank profile equations, cross sectional equations 

and computational approaches. 

In relation to the bankside equations the shapes draw parabolas joined by a 

central flatbed, resisting the critical shear stress, τcr, at the toe. While the cross 

sectional equations consist of exponential or hyperbolic functions, supporting τcr at 

the centreline. For both cases active beds are yielded. In the first type the shear 

stress is higher at the centreline than at the toe, and in the second type ridges are 

reported from experiments at the bottom of the channel. Such condition of stable 

sides and active bed satisfies the paradox of Parker (1978b, and 1979).  

With respect to the methods of estimating the boundary shear stress for self-

formed cross sections, four are reported: Lundgren and Jonsson(1964); Diffusion 

Momentum of Parker(1978a); Shiono and Knight Method (SKM, 1991); Merged 

Perpendicular Method (Khodashenas and Paquier, 1999). The penultimate was 

found with more advantages, being flexible enough to incorporate the variation of the 

friction factor,f, and secondary flow gradient,Γ, across the section, but this last was 

neglected on the original publication.It should be noted that all the methods were 

developed for:  noncohesive materials, no vegetation, straight channels, no wash 

load and uniform sand diameter, except for Ikeda et al. (1988) and  Cao and Knight 

(1998). 
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Ikeda (1981) and Diplas (1990) proportioned the geometry, velocity 

distribution and bed load measured, besides area, slope and discharge. The bottom 

of their channels presented ridges, and were analysed through the area method, 

neglecting the secondary flow. Nowadays, the SKM is available and is able to 

incorporate turbulence diffusion, as well as secondary flow variation to obtain the 

boundary shear stress, and subsequently the transversal geometry. 

From the analysis of Dey (2001), whom compared six bank equations, is noted that 

the following approaches are in the same order: Parker (1978b, and 1979), Dey 

(2001), Diplas and Vigilar (1992), and Yu and Knight (1998). Among them, the last 

one is distinguished, because it involves the SKM.  

In order to examine the different approaches to the optimized channel, they 

have been divided in: bank profile equations, cross sectional equations and 

computational approaches. The physical experiments are described in the same 

section that mentions the corresponding equation, and a global summary is added at 

the end of the section. 

 

2.1.1 Bank profile equations 

2.1.1.1 Shape of Glover and Florey 

The first researchers in suggest banks in threshold were Glover and 

Florey(1951) (see figure 2), while looking for a stable cross section for erodible 

channels, in order to  avoid changes in its geometry due scoring or deposition. They 

analysed the equilibrium of a particle in the sides, obtaining a cosine curve: 
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whereh is the local depth; hc, the central depth; y, the transversal distance from the 

centre; and φ, the angle of repose of the soil material. Determining hc from: 

2

o
c

c

V
Sh

V
 

 
  

 
           (2) 

where τ is the shear stress; ρ, the water density; S, longitudinal slope; Vo, the mean 

velocity at the centre of the channel; and Vc, the mean velocity of the flow in an 

infinitely wide channel. To obtain Vo/Vc,a diagram was proportioned with S as input 

datum. The equation is valid for noncohesive soil, under steady and uniform flow.  

 

2.1.1.2 Shape of Henderson 

Henderson (1961) took up the work of Glover and Florey(1951) (equation 1) 

and combined it with the critical shear stress of Shields,τcr. Then, the central depth,hc, 

was obtained from the shear stress equation to wide channels: 

 
0.056

1
c

cr

sS d





 


         (3) 

c cgh S             (4) 

where Ssis the ratio of solid to water density; γ, the water specific weight; d, the 

diameter of the soil particle; τc, the critical shear stress; and g, the acceleration due to 

gravity. Later, the method was adopted by the USBR. A central bed was added, 

assuming this as flat and with a depth equal to hc,obtaining a section without bed 

load (see figure 3). 
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2.1.1.3 Shape of Stebbings 

Stebbings (1963) did experiments in a tilting flume full of sand, looking for a 

self-formed channel in regime state (no silting or scouring). The test consisted in give 

a discharge to an incision made in the streamwise direction, with a top width of 7.62 

cm (3 in). The discharge, Q, was lightly increasing until the required value was 

obtained. Different values for Q were tested, obtaining a full range of cross section. 

The common behaviour among the experiments was a threshold cross section in the 

inlet (1) (figure 2), braiding before the outlet and, just before braiding,a cross section 

with parabolic sides joined by a flatbed (2) (figure 3). Between section 1 and 2 a 

range of cross sections were formed, with the bed load being the transport 

mechanism. Then, it is assumed that A has no bed load and B has the maximum. 

The figure 4 describes this. 

 

Figure 4. Change in channel cross section (Stebbings, 1963). 

Additionally, the equilibrium of a particle in the sides was analysed, adding the 

variation of shear stress through, obtaining a curve similar to the one of Henderson 

(1961), but based on the sine curve: 
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whereT is the top width of the channel in threshold (see figure 2); m, the mass of the 

soil particle; a, the area of the particle; and θlg, the longitudinal angle slope. The 

results were compared to the top width of threshold cross sections without central 

bed (section 1). 

2.1.1.4 Shape of Parker 

Parker (1978b, and 1979) noted that natural streams can transport its own 

bed-load without altering their width, contrasting with the threshold channel concept. 

Such concept states that every particle in the channel boundary should be at the 

edge of incipient motion, otherwise bed load will exist, modifying the cross section 

and subsequently its width. But, by applying the concept of lateral transfer of 

downstream momentum of Lundgren and Jonsson, Parker demonstrated the 

existence of stable banks along with an active bed-load. The combination of both 

ideas (sides at threshold and active bed) is called the stable channel paradox.  

The model does not consider the secondary flow into account, assuming it as 

week to alter the bank shape. Also, a particle equilibrium analysis was done, 

incorporating submerged static coefficient of Coulomb friction,μ, and the ratio of lift to 

drag force,β, obtaining a cosine curve (equation 8). The central depth,hc, was 

determined by the critical Shield stress, as Henderson (1961). 
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2.1.1.5 Shape of Diplas and Vigilar 

A polynomial approach was given by Diplas and Vigilar (1992), whom depart 

from the equilibrium of a particle affected by the shear stress distribution, based on 

the modified area method of Lundgren and Jonsson, as Parker (1978b, and 1979). 

The shape of the cross section is obtained from a third-order, nonlinear, 

nonhomogeneous, ordinary differential equation, which is solved numerically, finding: 

5 4 3 2
5 4 3 2* * * * * 1h C y C y C y C y            (9) 

whereh* is the dimensionless local depth; C5, C4, C3 andC2, coefficients depending on 

μ and β; and y*, the dimensionless transversal distance.  

2.1.1.6 Shape of Cao and Knight 

Cao and Knight (1996b, 1997, and 1998) departed from the entropy concept 

of Shannon (1951), applying it to the side slope probability of an alluvial channel. The 

result was a parabolic equation, depending on the submerged static coefficient of 

Coulomb friction,μ, and the top width,T: 
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Also, the same authors proposed the following equation in order to relate the 

central depth, hc, with the critical shields parameter, Θc, the streamwise slope, S, and 

the dimensionless secondary flow, βs (taken as 0.15): 
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where ρ* is the dimensionless submerged density of sediments [(ρs - ρ) /ρ]. Then, if 

the diameter, d, and the streamwise slope, S, are known, the system can be solved. 

The velocity and shear stress distributions are obtained by the Shiono and Knight 

Method (SKM, 1991), which has the advantage to take the secondary flow, Γ, and the 

eddy viscosity, λ, into account.  Assuming the banks in threshold, a flatbed was 

incorporated, as previous authors, with the same depth as hc, being consistent with 

the Parker’s paradox and improving it by the use of Γ and λ.  

Cao and Knight (1998) mention an averaged difference of 18.6% between the 

shear stress at the centreline and at the junction of a channel. This implies a bed 

load, but not necessary means that the calculated bed load, Qsc, will be equal than 

the observed one, Qso, just the stability of the sides. By corroborating both data, a 

better approximation for the shape of the central bed will be obtained. 

2.1.1.7 Shape of Yu and Knight 

Yu and Knight (1998) proposed a shape function for self-formed banks for 

straight channels in threshold and with uniform bed material, based on the static 

equilibrium of particles on the channel boundary. The novelty in this work is the 

incorporation of the shear stress distribution to determine the side slope variation. 

The equation found and the free body diagram is shown below. 
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Figure  5. Forces acting on a particle on channel boundary (Yu and Knight, 1998). 
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Where θis the side slope angle; τ0, the local boundary shear stress; τ0c, the 

boundary shear stress at channel centreline; F1, the lift force; Fd, the drag force; β, the 

ratio F1/Fd, taken as 0.85. The shear stress distribution is obtained through the SKM, 

capable of incorporate the secondary flow, Γ, and the dimensionless eddy viscosity, 

λ. But in the original publication the authors took Γ=0.The input data for the model are 

the diameter, d, the longitudinal slope, S, and the central depth, hc. This last is 

determined by a critical shear stress condition, the authors suggest the one of van 

Rijn, because it proportions different values to the dimensionless critical shear stress 

according to d. So far no published document has used this method to predict an 

optimum cross section for a given discharge, but it is inferred that a flatbed can be 

add between the sides in threshold. In this thesis is presented an example using this 

shape.  

2.1.1.8 Shape of Dey 

Dey (2001) presented an approach based on the equilibrium of a particle on 

the side slope expressed by Ikeda (1982), in combination with  the modified area 
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method of Lundgren and Jonsson. The equilibrium of the particle takes into account 

its submerged weight, the lift force and drag force, through the relative shear stress 

of a particle in threshold,
c    . The integration of this elements results in a 

differential equation drawing a parabola: 
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where ẑ  is the dimensionless vertical distance, ˆ
c

z z h ; ŷ , the dimensionless 

transverse distance, ˆ
c

y y h ; C and m, coefficients given by Stebbings (1963). In 

order to determine hc, the author proportioned four relationships for the threshold 

shear stress, τ0c, when    , similar to the work of van Rijn: 
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where̂ is the dimensionless shear stress in threshold when θ=0; D̂ , a function of the 

diameter, d; and ν, the kinematic viscosity of water. A cross section in threshold 

without flatbed was compared with the experimental data of Stebbing (1963), finding 

its calculations in agreement with the observations.  
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2.1.2 Cross sectional equations 

2.1.2.1 Work of  Ikeda 

Ikeda (1981) carried out experiments looking for the self-formed shape of a 

channel. The experiments were done in two different tilted flumes full of sand, with an 

initial trapezoidal cross section, working at bankfull, deforming the cross section by 

the flow. The water, as well as the sediment flow were recirculated. A stable cross 

section in threshold was obtained after approximately 10 hours. The sand diameter 

used was d50=1.3 mm, where 90 50/ 1.38d d   . The shape of the cross section fits 

an exponential function, being the first attempt to predict it with a single expression: 

1
c

h
e

h



             (19) 

Where h is the local depth; hc, the depth at centreline; ξ, the lateral distance from the 

margin; and Δ, the dimensionless area between the curve and the bottom of the 

channel. The author does not provide any clue for determining Δ, but remarks that 

the exponential function describes the shape of the channel better than a cosine 

curve. Also, the relationship is valid even for the widening process regardless the 

initial shape, discharge and sand diameter.   

During the experiments, parallel ridges were formed along the bed of the 

channel, attributing them to the secondary flow. This differs with other theories were 

the secondary flow was not considered a factor to shape margins and was neglected 

to affect the bottom of the self-formed channel. Additionally, this activity in the bed 

agrees with the stable channel paradox of Parker (1978b, and 1979), because it 

describes well the banks with a central bed-load. 

Ikeda et al.(1988) repeated the experiment, but this time with nonuniform soil 
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material, employing the same d50=1.3 mm and different σ, 1.72, 1.89 and 2.44.  This 

coefficient was incorporated to the analysis, which departed from the bank equation 

of Parker (1978b) and the lateral diffusion momentum of Lundgren and Jonsson. 

Four equations describing the optimum channel geometry were obtained: 
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where ρ* is the dimensionless submerged density of sediments; S, longitudinal slope; 

B, surface top width; b, width of the central flatbed; T, top width corresponding to the 

side banks; Q, discharge; and 90 501.50 1.5k d d  .  

 The shape of the channel agrees with the paradox of Parker (1978b). With 

respect to the heterogeneous soil material, it is demonstrated that increasing 

gradation increases the critical shear stress, obtaining a bigger depth and decreasing 

the width. The model was compared to laboratory and field data, finding agreement. 

2.1.2.2 Equation of Diplas 

Following the same strategy as Ikeda (1981), Diplas (1990) carried out 

experiments in a tilted flume full of sand, recirculating water and sediments. The 

flume used was 14.6 m long and 0.53 m wide, measuring the discharge, sediment 

load and velocity profiles. He also departed from a trapezoidal channel and after 
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approximately 17hoursit reached a stable condition. The expression obtained 

describing the cross section, was exponential as well, depending on the central 

depth, hc, and surface top width, B. The top width can be obtained from the cross 

section area expression, A, and hc from a critical threshold shear stress condition 

(e.g. equation 3and 4). Then, the section is proposed, the discharge is calculated, Q, 

modifying B until satisfy Q. The equations involved are shown below. 
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The stable cross section reached from experiments also presents ridges along 

the stream, that are suggested to be because of the secondary flow as Ikeda (1981) 

pointed out. 

2.1.2.3 Equation of Babaeyan-Koopaei and Valentine 

Babaeyan-Koopaei and Valentine(1998) conducted physical experiments, like 

the type of Ikeda (1981, and 1988) and Diplas (1990). The flume used was 22 m long 

and 2.5 m wide, using uniform sand (d50=1 mm). The initial cross section was 

trapezoidal as well. From the laboratory data, two best fitted curves were obtained, 

both of them hyperbolic, one for the bank profile and the other for the whole cross 

section: 

4

1 3.5 tanh
4c c

h y

h h

  
    

  
         (27) 
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 
 

          (28) 

where h is the local depth; hc, the central depth; y, the lateral distance from the 

centre; and B, the surface top width. It is implied that hc can be obtained from a 

critical shear stress condition (equations 3and 4). Both equations were compared to 

laboratory data and other approaches, achieving better results than the previous 

ones. 

2.1.3 Computational approaches 

2.1.3.1 Vigilar and Diplas 

Vigilar and Diplas (1997, and 1998) proposed a solution for the momentum-

diffusion equation given by Parker (1978b), finding an expression for the 

dimensionless stress depth, δ*. The shape of δ* along a cross section identifies the 

zones where the bed is active, happening this only in the central part of the channel, 

keeping the banks at threshold, satisfying the stable channel paradox of Parker. The 

differential equation obtained from δ* defines the geometry of the channel, in order to 

solve it, boundary conditions were given according the type of channel, sediment 

load and slope, subsequently a numerical solution was applied.  

The disadvantage of this model is its complexity, and in order to simplify it a 

graphical approach was proposed, depending on the static coefficient of Coulomb, μ, 

the ratio of lift to drag force,β, sand diameter, d, streamwise slope, S, and discharge, 

Q; obtaining the lengths of the flatbed, b, and banks, T, depth, h, and shape of the 

bank by the following equation: 

3 2
3 2 1 0* * * *h a y a y a y a             (29) 
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where h* is the dimensionless depth, / ch h ; y*, the dimensionless horizontal distance 

from the junction, / cy h ; and a3, a2, a1 and a0, coefficients proportioned by the author. 

The results were compared to experimental and field data, showing 

agreement. The model neglects the secondary flow, based on authors whom shown 

that its velocity is less than 1.5% of the maximum downstream velocity, simplifying 

the process. With respect to the new bank shape, it’s less steeper than a typical 

cosine curve (e.g. Parker, 1978b), finding this last as unstable. 

2.1.3.2 Paquier and Khodashenas 

Paquier and Knodashenas (2002) proposed a method to estimate the 

deformation of a cross section channel, based on the variation of the boundary shear 

stress,τ0, and bed load, Qs, through the equation of sediment mass 

conservation.τ0was obtained from the Merged Perpendicular Method (Khodashenas 

and Paquier, 1999) and Qs from the Meller-Peter and Muller equation.  

1 1 0
1

sD
QS

t x p


 

  
          (30) 

The conservation of sediment mass equation of Exner is expressed above, 

where 1DS is the deformation of the section in one direction; x, the distance along 

channel axis; t, time; and p, porosity. The expression finds 1DS , then is transformed 

in 2D based on the critical shear stress distribution on the sides of Ikeda. The model 

assigns erosion to the node if its shear stress is bigger than the critical, and 

deposition when the opposite. 

 The presented examples were compound channels, resulting in parabolic 
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shapes similar to other authors (e.g. Henderson, 1961, Parker, 1978b, Cao and 

Knight, 1996b), and in perfect agreement with Diplas and Vigilar (1992), see figure 6. 

The deposition process in the section is criticisable, especially in the banks, because 

the particle gets attached to the sides instead of follow the gravity. The shapes of 

Diplas (1992) and Ikeda (1981) are validated with self-formed channels obtained 

from a widening process. It is inferred that the deposition process is governed by 

gravity. 

 

Figure 6. Comparison between the section obtained of “Paquier and Knodashenas(2002)” and “Diplas 
and Vigilar (1992)”.  
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3 CHAPTER 3 

THE NUMERICAL MODEL  

 

The numerical model consists of the Yu and Knight Method to determine self-

formed cross sections. The methodology implies the SKM to link the shear stress 

variation across the section, and reach the equilibrium of the particle. Both parts are 

described following. 

3.1 The SKM 

The SKM (Shiono and Knight, 1991) offers an ingenious solution to the 

Reynolds Averaged Navier-Stokes (RANS) equations, obtaining the streamwise 

depth-average velocity, Ud, distribution across the section, and subsequently the 

boundary shear stress,τ0, expressed as: 

 
1 2 1 2

2 2
2

11
8 8

d
d d d

Uf f
ghS U h U h UV

s y y y
   

     
                 

   (31) 

Where ρ is the water density; g, the acceleration due to gravity; h, the local depth; S, 

the longitudinal slope; f, the Darcy-Weisbach friction factor; s, the transversal slope; y, 

the transversal distance from centreline; λ, the dimensionless eddy viscosity; and 

 
d

h UV
y



  

, the lateral gradient of secondary flow, Γ. 
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Figure 7. Hydraulic parameters associated with flow in a two-stage channel (Shiono and Knight, 1991). 

 

It is possible to solve equation (1) using numerical or analytical techniques. 

The numerical solution can be solved, for example, by the finite volume method. 

While for the analytical two equations were proposed by the same authors, one for 

constant depth (equation32) and  other for side slope depth (equation33): 

1
2

1 2
k ky y

dU Ae A e k
     

         (32) 

 
3 4dU A h A h h

  
 

   
        (33) 

whereA1, A2, A3 and A4 are coefficients which are determined by employing boundary 

conditions; γk, k, α, ω, and η are functions of h, f, S, s, Γ and λ. The solution can be 

obtained from a linear system. 
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3.2 The Yu and Knight Model 

Yu and Knight (1998) proposed a shape function for self-formed straight 

channels in threshold and with uniform bed material, based on the static equilibrium 

of particles lying at threshold on the channel boundary (figure 8 and equation 34). 

 

Figure  8. Forces acting on a particle on channel boundary (Yu and Knight, 1998). 

 

 2 2 2
1sin cosdF W W F    

        (34) 

where Fd is the drag force; W, the submerged weight; θ, the angle of the side slope; μ, 

the Coulomb static friction of the sediment particle; and F1, the lift force. The equation 

34 can be rewritten as: 
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 
   (35) 

where 1 dF F  ,taken as 0.85; τ0, the local boundary shear stress; and τ0c, the 

boundary shear stress at channel centreline, defined as: 

With respect to τ0 and τ0c, these variables can be obtained by the Shiono and 

Knight Method (SKM) (Shiono and Knight, 1990, 1991). Then, combining these 

results with the threshold condition of Ackers and White (1975): 

 0  c cr s d               (36) 

and the resistance law of White et al. (1980) is possible to obtain a cross section in 

threshold of motion. The SKM applied by Yu and Knight did not consider secondary 

flow (Γ=0) and took the eddy viscosity as λ=0.16. 

 

3.3 Methodology 

The model requires as input data the mean material diameter, d, the 

longitudinal slope, So, and  the Coulomb skin friction of submerged sediments, μ. 

Then, a central depth is proposed, hc, follow by a top width, T. These two dimensions 

define the shape of the cross section, departing from a triangular bankside, dividing it 

into elements. Later the SKM is applied in order to obtain the depth velocity variation, 

Ud, and with it the shear stress variation, τo, through the cross section. Once τo is 

known, it is possible to determine a new cross section based on the equation 35. The 

new section is compared with the previous one and if the difference in depth, at a 
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given point, is more than the tolerance, then the section is recalculated, keeping the 

same hc and adopting the T of the new cross section. The process is repeated until 

the tolerance is reached. The next step is compare the shear stress in the centre, τ0c, 

with the shear stress in threshold, τ*cr, (equation 36), if this condition is not 

accomplish a new hc is proposed and the process restarts, until get 0 *c cr  . Then, 

the output data are the top width, T, the variation of depth, h, and subsequently the 

calculated discharge, Qc. Once the threshold condition is satisfied, the design 

discharge, Qd, is compared to the calculated one, Qc, and if 
c dQ Q , the central 

flatbed, b, is increased and the iteration process of hc is repeated until 
c dQ Q , 

obtaining an stable cross section on threshold.  

The output data delivers the cross section geometry, i.e. the top width, T, the 

variation of depth, h, followed by the discharge, Q. It should be noted that Yu and 

Knight (1998) did not explore the behaviour of their model with respect to the 

variation of flatbed. The figure 9 shows the flowchart of the computational procedure. 
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Figure9. Modified methodology flowchart of Yu and Knight (1998). 
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3.4 The numerical model behaviour 

It was noted that the bed shape of Yu and Knight (1998) is steeper when a 

flatbed exists, than without it. This was explained due to the maximum velocity 

moved from the junction point to the centre, displacing in the same direction the 

location of maximum shear stress. A comparison was carried out between those 

banks, where S=0.002146 d=1.3mm and μ=0.60, the central flatbed was considered 

infinitely wide. See figures 10, 11 and 12. 
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Figure 10. Comparison between two banks obtained for a self-formed cross section with flatbed and a 
bank without flatbed (threshold condition), both calculated by the Yu and Knight (1998) method. 
S=0.002146 d=1.3mm μ=0.60. 
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Figure 11. Comparison between the velocity profiles obtained for two banks obtained for a self-formed 
cross section with flatbed and  bank without flatbed, both calculated by the Yu and Knight (1998) 
method. S=0.002146 d=1.3mm μ=0.60. The centreline is located at y=0, and the margin at the extreme, 
i.e. y=0.12m and y=0.156m. 
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Figure 12. Comparison between the shear stress profiles obtained for two banks obtained for a self-
formed cross section with flatbed and a bank without flatbed, both calculated by the Yu and Knight 
(1998) method. S=0.002146 d=1.3mm μ=0.60. The centreline is located at y=0, and the margin at the 
extreme, i.e. y=0.12m and y=0.156m. 
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Therefore, in order to critically investigate the  behaviour of the Yu and Knight 

model (1998) in combination with the SKM (Shiono and Knight, 1991), the six 

variables that govern the model were evaluated: λ, dimensionless eddy viscosity; φ, 

angle of repose of the soil material; S, longitudinal slope; Γ, secondary flow gradient; 

and b/2hc, ratio between half central flatbed and central depth. Firstly, different values 

of  λ,  φ and S where organized in six cases (table 1). The two values of λ correspond 

to 0.16, that is the value recommended by Yu and Knight (1998), and 0.07 a value 

obtained from experimental measurements of the viscosity distribution (e.g. Knight et 

al., 2010, p. 120-121). The soil material considered was d=1.3 mm. With respect to 

the values of φ taken, these were 32.97º and 36.36º, being the first one the measured 

angle of soil repose of the experiments of Ikeda (1981), and  the second one resulted 

from a equation proposed by Yu and Knight (1998), which is based on d. About the 

slopes, 1/479 was considered due to is the one used in the run 16 of Ikeda (1981), as 

is the best known experimental cross section for self-formed channels. The other two 

were just smaller values (1/530 and 1/650).  

Table 1. The six cases evaluated, with their corresponding variables: λ, dimensionless eddy viscosity; φ, 
angle of repose of the soil material; S, longitudinal slope 

Case λ φ S 

I 0.16 32.97º 1/479 

II 0.07 32.97º 1/479 

III 0.07 36.36º 1/479 

IV 0.16 32.97º 1/530 1/650 

V 0.07 32.97º 1/530 1/650 

VI 0.07 36.36º 1/530 1/650 
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Then, each case was tried by five Γ values on the bankside, following the sign 

distribution shown on figure13: Γ/ρghcS=0, neglecting the secondary flow; 

Γ/ρghcS=0.05, a value used for inbank flow (Knight et al., 2010, p.123); Γ/ρghcS=0.15, 

a value used for overbank flow  (Knight et al., 2010, p.123); Γ/ρghcS=0.10, and 

Γ/ρghcS=0.025. Later, every combination was tested by different central flatbed values 

(see table 2):b/2hc=0, considering a cross section in threshold, without flatbed; 

b/2hc=2, a minimum observed value that has reached a stable T/hc; andb/2hc=0.25 

and 0.50, intermediate values between 0 and 2. The obtained output data for each 

condition were: central depth, hc, bankside shape and width, T, hydraulic area, A, 

depth average velocity, Ud, and boundary shear stress,τ0, profiles, friction factor, f, 

and discharge, Q. In total 120 simulations were carried out, their results were plotted 

in order to appreciate the distinct relationships between variables. 

 

Figure 13. Cross sectional shape of a self-formed channel, constituted by banks in threshold and an 
active central flatbed. Half of the cross section is divided in six SKM panels. 

 

 

CL b/2 T 

hc 

b 

B 

b/2 T 

Γ=0 Γ=0 Γ(+) 
Γ(+) 

Γ(-) 
Γ(-) 

Channel toe: junction between the 
central flat bed and the bankside 

b/4 T/4 b/4 T/4 T/4 T/4 



 

 

Chapter 3. The numerical model 

An investigation of the ability of a numerical model  33 
to predict the cross sectional shape of an alluvial channel 

 

Table 2. Summary of the combinations evaluated, obtaining their geometry, velocity and shear stress 
profiles. 

Cases: I II III IV V VI 

  S b/2  hc S b/2  hc S b/2  hc S b/2  hc S b/2  hc S b/2  hc 

Γ/ρghcS= 0 1/479 

0.00 

1/479 

0.00 

1/479 

0.00 

1/530 

0.00 

1/530 

0.00 

1/530 

0.00 

0.25 0.25 0.25 0.25 0.25 0.25 

0.50 0.50 0.50 0.50 0.50 0.50 

2.00 2.00 2.00 2.00 2.00 2.00 

Γ/ρghcS= 
0.025 

1/479 

0.00 

1/479 

0.00 

1/479 

0.00 

1/650 

0.00 

1/650 

0.00 

1/650 

0.00 

0.25 0.25 0.25 0.25 0.25 0.25 

0.50 0.50 0.50 0.50 0.50 0.50 

2.00 2.00 2.00 2.00 2.00 2.00 

Γ/ρghcS= 0.05 1/479 

0.00 

1/479 

0.00 

1/479 

0.00 

1/650 

0.00 

1/650 

0.00 

1/650 

0.00 

0.25 0.25 0.25 0.25 0.25 0.25 

0.50 0.50 0.50 0.50 0.50 0.50 

2.00 2.00 2.00 2.00 2.00 2.00 

Γ/ρghcS= 0.10 1/479 

0.00 

1/479 

0.00 

1/479 

0.00 

1/650 

0.00 

1/650 

0.00 

1/650 

0.00 

0.25 0.25 0.25 0.25 0.25 0.25 

0.50 0.50 0.50 0.50 0.50 0.50 

2.00 2.00 2.00 2.00 2.00 2.00 

Γ/ρghcS= 0.15 1/479 

0.00 

1/479 

0.00 

1/479 

0.00 

1/650 

0.00 

1/650 

0.00 

1/650 

0.00 

0.25 0.25 0.25 0.25 0.25 0.25 

0.50 0.50 0.50 0.50 0.50 0.50 

2.00 2.00 2.00 2.00 2.00 2.00 

 

 

The SKM was solved by the analytical solution (equations 32 and 33) using six 

panels: two equidistant for the flatbed and four equidistant for the bankside. The 

central panels were considered as Γ=0, in order to not affect the bankside flow 

behaviour. While Γ on the side used constant values Γ≠0, varying just the sign as: 

positive, positive, negative and negative, from the toe to the edge (see figure13). 

Such sign distribution was chosen, considering only one secondary flow cell, rotating 

clockwise on the on the right half cross sectional bankside, as Knight et al. (2007) 

mentioned. It was assumed uniform soil material across the section. 
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3.4.1 Results 

The simulation exercise can be summarize in the application of the Yu and 

Knight model (1998), altering five input variables (b/2hc, Γ, λ, φ, and S), and observing 

the reaction of the cross section geometry (T, hc and A)  and its flow characteristics 

(Ud, τ0, f and Q). Firstly, the changes of the dimensionless bankside, T/hc, with respect 

to the variation of the dimensionless half central bed, b/2hc, was plotted for the six 

cases mentioned on table 1, varying Γ (Γ/ρghcS =0, 0.025, 0.05, 0.10 and 0.15) for 

each case (figure 14). Secondly, in order to observe the effects of the remaining 

variables (Γ, λ, φ, and S), the output data (T, hc, A, Ud, τ0, f and Q) were plotted against 

b/2hc (figures20 to 24). 

 

Figure 14. Variation of the dimensionless bank side width, T/hc, with respect to the dimensionless half 
central width, b/2hc, for differences values of λ, φ, S and Γ. The arrows are representing how the curve 
T/hc vs b/2hc is rotating clockwise around a convergence point, sp, while Γ is growing. 
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3.4.2 Analysis 

3.4.2.1 Variation of T/hc with respect to b/2hc, Γ, λ, and φ 

The comparison of T/hc versus b/2hc shows that an increase in b/2hc produces 

an exponential decrease in T/hc, until it reaches a stable limit, sl, (where sl is a value of 

b/2hc, such that T/hc is constant) (b/2hc>sl) (figure 14). This can be explained due to 

the threshold condition, which is set at the bankside toe of the cross section. Such a 

condition implies that the critical shear stress of the soil is achieved at that point. 

Then, while b/2hc is growing the maximum shear stress moves from the toe to the 

centre line of the channel, consequently it changes the shape of the shear stress 

profile. This is because the SKM boundary condition at the centre line is 0dU y   , 

implying 0 0y   , implying a maximum value, which generates a smoother 

0 y  next to the centre and steeper 0 y  next to the margin. The consequence of 

this is a narrower bankside, which can be observed on figure  B- 3 (Appendix B), 

where four shear stress profiles are shown for the same hydraulic conditions, just 

altering the central flatbed, the corresponding cross sections and velocity profiles are 

presented on figures B- 1and B- 2 (Appendix B). 

With respect to the influence of λ on T/hc, figure 14 shows that an increase in λ, 

increases the dimensionless bank side width, T/hc. The explanation for this response 

is that a greater value of λ yields a lower shear stress on the boundary, τ0 (figures  B- 

3 and B- 6, Appendix B),requiring a higher central depth, hc, to satisfy the threshold 

condition. Subsequently the bankside, which is restricted by the soil repose angle, φ, 

at the margin, grows until it reaches the allowed hc (see figures B- 1and B- 4). Since 

φ<45º, the increase in the horizontal component, T, is greater than the increase in the 



 

 

Chapter 3. The numerical model 

An investigation of the ability of a numerical model  36 
to predict the cross sectional shape of an alluvial channel 

 

vertical one, hc, justifying the increase on T/hc. 

Examining the effect of φ on the bankside, when it increases a decrease in T/hc 

occurs. This happens due to the bankside equation of Yu and Knight (1998) 

(equation 35) trends to φ at the edge. Then, a bigger φ allows a steeper slope on the 

bankside, yielding a narrower T for the same hc. The figures B- 4 and B- 7on 

Appendix B illustrate such phenomenon. 

The effect of Γ on T/hc vs. b/2hc is more complex, because Γ is directly 

proportional to T/hc when b/2hc<sp (sp:spin point), and inversely proportional to 

b/2hc>sp, as is shown on figure 14. Then, the curves T/hc vs. b/2hc seems to be 

rotating clockwise around a convergence point, while Γ grows. Such point has been 

denominated sp (spin point), and is an element of b/2hc. It is known that when Γ 

increases, τ0 decreases. Later, the model requires a bigger hc to satisfy the threshold 

condition at the bankside toe. This is proven by the comparison of two cross 

sections, with their corresponding velocity and shear stress profiles, using different Γ 

values (figures B- 1, B- 2 and  B- 3, vs. B- 10, B- 11 and B- 12). On the other hand, 

an increment on hc yields an augment on T, as was seen above when φ is fixed. 

Then, it is possible to say Γ hc and Γ T . However, the impact of Γ on T is higher 

when b/2hc<sl (sl: stable limit), than when b/2hc>sl (figure 15), and even bigger than 

the impact of Γ on hc when b/2hc<sl (figure 16). Then, the combination of these factors 

(T and hc) with b/2hc and Γ yields a series of curves where Γ T / hc  when b/2hc<sp 

and  
1

Γ T / hc


  for b/2hc>sp (see figure 17). 



 

 

Chapter 3. The numerical model 

An investigation of the ability of a numerical model  37 
to predict the cross sectional shape of an alluvial channel 

 

 

Figure 15. Variation of the bankside width, T , with respect to the dimensionless half central flatbed, 
b/2hc, along with two hydraulic cases 

 

Figure 16. Variation of the central depth, hc, with respect to the dimensionless half central flatbed, 
b/2hc, along with two hydraulic cases 
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Figure 17.Variation of the dimensionless bankside, T/hc, with respect to the dimensionless half central 
flatbed, b/2hc, along with two hydraulic cases. Cases I and II 

 

3.4.2.2 Effect of the input variables on the model 

In order to observe the model response to the input variables (Γ, λ, S and φ), 

the output data (f, A, Q, V, Udmax, Udtoe, τmax, τtoe, T, hc, and T/hc) were analysed. The 

methodology was to plot the output results of four cases (see table 2, columns I, II, III 

and IV), being 20 data per case per variable, and compare them against their 

corresponding b/2hc values (see figures 20, 18, 21, 25, 22, 23 and 24). The result 

was the identification of proportionalities for Γ, λ, S and φ (tables 3, 4, 5 and 6).  

With respect to the impact of Γ to the model, when λ, S and φ are fixed, the 

result is that Γ is directly proportional to the hydraulic area, A, and to the discharge, 

Q. The reason behind is that when Γ increases, Ud decreases, then hc needs to grow 
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in order to satisfy the threshold condition at the toe. Subsequently, if hc grows, T 

increases as well, maintaining the cosine bankside shape. Then A is increased, and 

because A grows more than the velocity decrement, Q grows with Γ. For the average 

velocity, V, this trends to decrease when Γ increases, but when b/2hc is close to zero 

the trend is inverted (see table 3). 

Table 3. Effect of varying Γ and holding λ, S and φ on the Yu and Knight model. The symbol (+) 
represents increase; (-) decrease; and (=) no change. 

Variable Fixed variables +/- f A Q V Udmax Udtoe τmax τtoe T hc T/hc 

Γ λ, S, φ + + + + +/- - - + = + + +/- 

    - - - - +/- + + - = - - +/- 

 

The effect of λ on the model, when the rest of the input variables are fixed, is 

similar to the impact of Γ, because both factors are inversely proportional to Ud. This 

means that when λ increases, Ud decreases. Then, hc will increase, as was explained 

above. About the velocity, it was observed that Udtoe and Udmax are inversely 

proportional to λ, while the average velocity, V, is directly proportional when b/2hc 

trends to zero (table 4). 

Table 4. Effect of varying λ and holding Γ, S and φ on the Yu and Knight model. The symbol (+) 
represents increase; (-) decrease; and (=) no change. 

Variable Fixed variables +/- f A Q V Udmax Ud toe τmax τtoe T hc T/hc 

λ Γ, S, φ + + + + +/- - - - = + + + 

    - - - - +/- + + + = - - - 

 

About the impact of φ on the model, it consists in the reduction of the hydraulic 

area, A, when φ grows. This is because the cosine bank shape trends to be φ at the 

margin (equation 35), then when it increases, T  decreases. Furthermore, Udtoe 
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reduces when φ increases, allowing a higher depth, hc, to satisfy the threshold 

condition, but since T decreases, A decreases as well, regardless of the increment on 

hc. With respect to the impact of φ on the average velocity, V, these both are directly 

proportional, but the discharge, Q, is reduced because A decreased significantly. The 

ratio T/hc is inversely proportional to φ. Finally, it was not possible to identify a pattern 

for f and Udmax when φ varies (table 5). 

Table 5. Effect of varying φ and holding Γ, S and λ on the Yu and Knight model. The symbol (+) 
represents increase; (-) decrease; and (=) no change. 

Variable Fixed variables +/- f A Q V Udmax Ud toe τmax τtoe T hc T/hc 

φ Γ, S, λ + +/- - - + +/- - + = - + - 

    - +/- + + - +/- + - = + - + 

 

With respect to the effect of longitudinal slope, S, on the model, it is possible to 

say that it is inversely proportional to T and hc, and subsequently to the cross 

sectional area, A. But, these two variables (T and hc) change at the same rate, 

remaining unaltered the ratio T/hc. This can be explained due to the bankside 

equation used does not incorporate S to define the transversal geometry (see 

equation35).Then, T/hc prevails constant when Γ, φ and λ are fixed. Since the shape 

of the cross section does not change with the slope, and seeing that the threshold 

condition is fixed at the bankside toe, it is logical to expect no differences between 

shear stress profiles that vary only on slopes, producing equal τmax, as can be 

observed on figure 24.  

In relation to the impact of S on V, it sounds illogical the reduction of V when S 

is increased, but this can only be explained by the action of f,  being inversely 

proportional to V and directly proportional to S (table 6). This situation is also 
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expressed by the equation of Manning: 

2 3 1 21
V R S

n
            (37) 

where n is the Manning’s friction factor, that can be related to f as 

2 1 38f g n h (e.g.Knight et al., 2010). Hence, it is acceptable that S is inversely 

proportional to V, making emphasis on the sensibility of f to the model. It should be 

noted that f and n are altered by h, especially f when h is shallow, as have being 

shown by other authors, e.g. Sterling (1998, p. 6.9). 

Table 6. Effect of varying S and holding Γ, φ and λ on the Yu and Knight model. The symbol (+) 
represents increase; (-) decrease; and (=) no change. 

Variable Fixed variables +/- f R A Q V Udmax Ud toe τmax τtoe T hc T/hc 

S Γ, φ, λ + + - - - - - - = = - - = 

    - - + + + + + + = = + + = 
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3.4.3 Figures 

3.4.3.1 Variation of A with respect to b/2hc 

 

Figure 18. Variation of the hydraulic area, A, with respect to the dimensionless half central flatbed, 
b/2hc, along with two hydraulic cases. The input variables are Γ, S, λ and φ, corresponding to the cases 

shown on tables 1 and 2, also mentioned on the legend, and b/2hc. The output variable is A. 

 

Figure 18 shows the variation of the hydraulic area of the channel, A, with 

respect to the dimensionless half central flatbed, b/2hc, for the cases I-IV, the rest of 

the cases presentment the same pattern. It is observed that while b/2hc is growing, A 

tends to decrease, until it reaches a minimum and then increases. This can be 

explain due to A is directly proportional to the bankside width, T, and to the central 

depth, hc, being both variables affected by b/2hc as was seen on section 3.4.2.1 

(figures 15 and 16). Then, while b/2hc is growing A decreases due to a reduction on T 

and hc. The increment on b/2hc is not able to compensate the loss area until it has 
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passed the minimum value of the curve. Such minimum value of A does not coincide 

with the stable limit, sl, of the curve T/hc vs. b/2hc of the corresponding cases (figure 

17). On the other hand, it is observed on figure 18 that A is directly proportional to Γ 

and λ; and that A is inversely proportional to φ and S. 

 

3.4.3.2 Variation of R with respect to b/2hc 

 

Figure 19.Variation of the hydraulic radius, R, with respect to the dimensionless half central flatbed, 
b/2/hc, along with four hydraulic cases. The input variables are Γ, S, λ and φ, corresponding to the cases 

shown on tables 1 and 2, also mentioned on the legend, and b/2hc. The output variable is R. 

 

With respect to the variation of the hydraulic radius, R, against the 

dimensionless half central flatbed, b/2hc, the figure 19 is showing a pattern similar to 

the one of  A vs. b/2hc (figure  18). That is reducing R while b/2hc is growing, until it 

reaches a minimum, and then it increases proportionally to b/2hc. Such similarity 
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between figures 19 and 18 is due to R is directly proportional to A. From comparing 

curves with different values of Γ, λ, φ and S, it was found that R is directly proportional 

to Γ and λ; and inversely proportional to φ and S. 

 

3.4.3.3 Variation of  f  with respect to b/2hc 

 

Figure 20. Variation of the friction factor, f, with respect to the dimensionless half central flatbed, b/2hc, 
along with two hydraulic cases. The input variables are Γ, S, λ and φ, corresponding to the cases shown 

on tables 1 and 2, also mentioned on the legend, and b/2hc. The output variable is f. 

 

About the variation of the friction factor, f, with respect to b/2hc, it is observed 

on figure 20 that its behaviour is similar to the one of A and R on figures 18 and 19. 

That is reducing the value of f while b/2hc is growing, until it reaches a minimum, and 

then it increases. From observing the different curves, corresponding to distinct 

values of λ, Γ, φ and S, it was found that f is directly affected by Γ and λ, and inversely 
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proportional to S, without being able to identify a relationship between f and φ. By 

comparing figures 18 and 20, it is clear that f is directly related to A. It should be 

noted that the variation of each curve f vs. b/2hc was less than 3%. 

3.4.3.4 Variation of Q with respect to b/2hc 

 

Figure 21. Variation of the discharge, Q, with respect to the dimensionless half central flatbed, b/2hc, 
along with two hydraulic cases. The input variables are Γ, S, λ and φ, corresponding to the cases shown 

on tables 1 and 2, also mentioned on the legend, and b/2hc. The output variable is Q. 

 

With respect to the variation of the discharge, Q, along b/2hc, the figure 10 is 

showing different curves for distinct cases (table 1). It is observed that while b/2hc 

increases, Q decreases until it reaches a minimum and then increases. This is similar 

to the behaviour of A and R (figures 18 and 19), as was expected, due to Q is directly 

proportional to A and R. About its interaction with λ, Γ, φ, and S, it is shown that Q is 

directly proportional to Γ and λ, and inversely proportional to φ and S. 
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3.4.3.5 Variation of Ud with respect to b/2hc 

 

 

Figure 22. Variation of the Ud toe with respect to the dimensionless half central flatbed, b/2hc, along with 
two hydraulic cases. The input variables are Γ, S, λ and φ, corresponding to the cases shown on tables 

1 and 2, also mentioned on the legend, and b/2hc. The output variable is Udtoe. 

 

Figure 22 is showing the variation of the depth average velocity at the 

bankside toe, Ud toe, with respect to b/2hc for different hydraulic cases (see table 1). 

The pattern of each curve consists in to grow while b/2hc is increasing, until it reaches 

a maximum point and then decreases. The physical meaning of this behaviour is that 

when b/2hc=0, Ud toe constitutes the maximum depth average velocity of the cross 

section, Ud max, such that Ud max satisfies the threshold condition at that point, being the 

SKM boundary condition there  0dU y   . Then, while b/2hc is growing, 

0dU y   moves with it, yielding a higher Ud max located at the channel centre line, 

as can be observed on figure 23. 
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Figure 23. Variation of the Udmax with respect to the dimensionless half central flatbed, b/2hc, along with 
two hydraulic cases. The input variables are Γ, S, λ and φ, corresponding to the cases shown on tables 

1 and 2, also mentioned on the legend, and b/2hc. The output variable is Udmax. 

 

About Ud toe, it should be less than Udmax, obtaining its maximum value when A 

reaches its minimum (figure 18), what produces an accelerated flow. Subsequently, 

while b/2hc and A increase, 
dU y  at the bankside toe trends to be smoother, 

implying minor values for  Udtoe.  

By comparing the curves of distinct hydraulic cases for figures 22 and 23, it is 

observed that Udtoe is inversely proportional to λ, Γ, φ and S; and Udmax is inversely 

proportional to λ, Γ and S, with respect to φ, it is not possible to establish a 

relationship. 
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3.4.3.6 Variation of τmax with respect to b/2hc 

 

Figure 24. Variation of the τmax with respect to the dimensionless half central flatbed, b/2hc, along with 
two hydraulic cases. The input variables are Γ, S, λ and φ, corresponding to the cases shown on tables 

1 and 2, also mentioned on the legend, and b/2hc. The output variable is τmax. 

 

The figure 24 is showing the variation of the maximum boundary shear stress, 

τmax, with respect to b/2hc. Each curve is ascending with an step located on the 

minimum area zone (figure 18) and the maximum Ud toe zone (figure 22). As was 

explained above, the boundary condition of the SKM flow model is located at the 

centre line  0dU y   , where 
2 8df U   , and subsequently 0y    at the 

centre line. Then, as happened with Udmax, τmax keeps increasing while b/2hc does. The 

threshold condition is set at the bankside toe, thenτ0 should be constant at that point, 

being unnecessary to graph it. With respect to the influence of λ, Γ, φ and S to τmax, 

from observing figure 24, it is possible to say that τmax is directly proportional to Γ and 
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φ, inversely proportional to λ, and impact less to S. This last is not a surprise, due to S 

does not intervene on the Yu and Knight (1998) bank equation (equation35). 

 

3.4.3.7 Variation of V with respect to b/2hc 

 

Figure 25. Variation of the average velocity of the cross section, V, with respect to the dimensionless 
half central flatbed, b/2hc, along with hydraulic cases. The input variables are Γ, S, λ and φ, 

corresponding to the cases shown on tables 1 and 2, also mentioned on the legend, and b/2hc. The 

output variable is V. 

 

Finally, the variation of the average velocity of the cross section, V, with 

respect to b/2hc is shown in figure 25. The curves present in general an ascending 

behaviour after passed the minimum area point (figure 18). However, the curves are 

descending before the minimum area point when Γ>0. The physical meaning is that 

when b/2hc is growing, A decreases, and V increases. But, when Γ>0, A is reduced at 
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a bigger rate (figure 18), descending V before reach the minimum area point. There 

is not a constant pattern between Γ and λ to V. With respect to φ, it is possible to say 

that φ is directly proportional to V, this is due to higher φ support greater τ0 and 

consequently greater V.  

About S, it is inversely proportional to V, because S is directly proportional to f 

(figure 20). Physically means that the slope is restricted by the threshold condition, 

that depends on the critical shear stress, τc, and this on the soil diameter, d, of the 

channel. Then, a channel with a steep S will have a smaller hc that satisfies the 

threshold condition, than another one with a smooth S, and subsequently a smaller A, 

R and V.  To guarantee this, the model increases f. 

3.5 Main findings 

The model of Yu and Knight (1998) predicts the self-formed cross section of 

an alluvial stream, based on the characteristics of the soil and flow. Because it 

depends on the flow, it can adjust the bank side according to the length of the 

flatbed, being the transversal slope steeper when a flatbed exists. 

One disadvantage of the methodology applied is that it yields four points on 

the bankside. This draws a poor shape with an initial slope at the toe greater than the 

experiments of Ikeda (1981), but coinciding with the width. In the publication Yu and 

Knight (1998) employed a numerical solution for the SKM, obtaining a better 

approximation, close to Ikeda (1981) data. 

On the other hand, it was noticed from figure 6 of Yu and Knight (1998) and 

figure 13 of Ikeda (1981), that Yu and Knight did not consider the flatbed of 17.8 cm 

for their example. However, their results are close to the ones of Ikeda (1981). From 
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the simulations, it was found that when such bed is taken into account the bank side 

becomes steeper, separating from Ikeda. This can be adjusted by adding the 

secondary flow, Γ, to the model of Yu and Knight(1998). Although standard values for 

this variable have not been calibrated for parabolic sections. 

Based on the previous analysis of the Yu and Knight model (1998), the 

mechanism that relates the variation of T/hc to b/2hc was identified. The impact of Γ, λ, 

φ and S was observed, and the physical meaning identified, founding proportionality 

relationships with respect to these variables and the output data.  

 

If λ, φ and S are constants, then: 

1
max c

d
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        (38) 

If Γ, φ and S are constants, then: 
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If Γ, λ and S are constants, then: 
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If Γ, λ and φ are constants, then: 
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
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and T/hc remains constant. 

 

From the cases analysed, it was shown that the curves T/hc vs b/2hc reach a 
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stable limit when b/2hc>2 approximately. Then, it is possible to say that for wide 

channels (B/h>15; B, top width of the channel) the value of T/hc always will correspond 

to the one at sl.  

It should be noted the importance of Γ and λ, due to they can modify the 

predicted cross sectional geometry of the channel. This impacts the estimated 

hydraulic capacity of the channel, underestimate it implies risk for the surrounding 

area. 
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4 CHAPTER 4 

PHYSICAL MODEL 

 

In order to determine the behaviour of the flow in a self-formed cross section, it 

was required to observe it by mapping its velocity distribution and measuring the 

boundary shear stress across the section, with the purpose of calibrating a quasi 2D 

flow model (SKM). Albeit velocity data are available (i.e Ikeda, 1981, and Diplas, 

1990), they correspond to a half section experiments, having a vertical wall in one 

side and a self-formed bankside on the other, altering its flow pattern. Then, a 

channel was constructed with a symmetrical shape inspired in the one of Ikeda 

(1981) on both margins (figure 26). The channel was tested by two surfaces one 

smooth (PVC) and one rough (glue sand, d50=1.41mm), being the objective of the first 

one to have a regular surface with a measurable friction factor (figure 27). While the 

second one was to validate the results found in the first one, and analyse the flow in 

a section with rough surface, as happens in self-formed channels. 
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Figure 26 . Upstream view of the flume during experiments on glue sand surface. Approximated depth: 
hc=3.5cm.  
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Figure  27. Downstream view of the channel without water. Above on smooth surface (PVC). Below on 
rough surface (glue sand). 
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4.1 The apparatus 

The flume employed is located in the hydraulics laboratory of The University of 

Birmingham. It tilts and has 11.5 m long, 46 cm width and 43 cm depth (figure 26). 

The inflow is provided by a pump connected to a 6 in. pipe diameter, who delivers the 

discharge vertically to the flume by an arrange of pipes (figure 28), being the gap 

between the pipe and the bed of the flume just 4 cm, producing high turbulence, 

making difficult the obtention of the fully developed flow condition. Hence, a 

honeycomb panel was added right after, helping to align the flow (figures 29). 

The flume allows setting a specific slope with a precision of 1/10,000 by 

adjusting the scale that elevates the flume, locating the jack point at half length of the 

channel. The device has a self-contained water tank with a capacity of 10 m3. With 

respect to the discharge capacity of the pump, the minimum is 1L/s and the 

maximum 40 L/s, controlled by a valve on the arrange of pipes, measured by a digital 

electromagnetic flowmeter (ABB Kent-Taylor MagMaster, figure 30), located after the 

valve. With respect to this last, it required to be under a calibration program, which 

was properly accomplished before starting the experiments. 
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Figure 28. Arrange of pipes conducting water from the tank to the entrance. 

 

 

 

 

Figure 29. View of the delivery pipe at the entrance of the flume. Four perspective are provided: (a) 
view from downstream; (b) aerial view; (c) profile view, pipe delivering and transition; and (d) 
downstream profile view. 
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Figure 30. Electromagnetic flowmeter used during the experiments: ABB Kent-Taylor MagMaster. 

 

4.2 The cross section 

The selected cross section is based on the run 16 of Ikeda (1981), which 

consists of a self-formed bankside with hc=4.05cm, d50=1.3mm and S=1/479, but 

scaled 1.27 times to fit the flume obtaining: hc=5.14cm, b=19cm, and d50=1.65mm. 

Later the margin slopes were prolonged 3cm, increasing hc to 7.17 cm and b to 22cm, 

leaving 2cm of central flatbed, i.e. a section 46cm wide (figure 31). The purpose of 

the flatbed is to make the shape tangent to the bottom, and the one of the extensions 

is to allow the corners to be measured since are difficult to reach. Among the 

advantages of the selected cross section are its symmetry and increment in size with 

respect to the original, allowing more data to be collected. Since the depth is just 

7.17 cm, it is not enough to use an Acoustic Doppler Velocimeter (ADV). Therefore, a 

Pitot-static tube was recommended instead to measure the longitudinal velocity, U, 
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and the boundary shear stress,τ0, by the Preston tube technique. With respect to the 

Preston tube technique, it was applied only to the smooth surface experiments (i.e. 

PVC surface), due to it presents problems finding precisely the position of the zero 

velocity datum and the subsequent methodology calibration. Hence, τ0 was obtained 

indirectly, by the relationship:  

2

8
df U

              (42) 

where f is Darcy´s friction factor; ρ, the water density; and Ud, the longitudinal depth 

average velocity. f can be found from the stage discharge curve of the channel, by 

calculating the average Manning´s n the for a corresponding S. While Ud is 

determined by finding the average of U along a particular depth. 

 

 

Figure 31. Design of the cross section and support to be placed in the flume. Where B=46cm, b=2cm, 
T=22cm, and hc=7.18cm, being B, top width; b, central flatbed; T, bankside width; and hc, central 
depth. 
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4.3 Matrix of experiments 

The Yu and Knight (1998) method is restricted by the threshold condition at 

the bankside toe (section 3.2), it requires that the shear stress at that point,
toe , 

should be equal to the resistant shear stress of the soil material, τcr, i.e. 

 toe cr s d     . Then, in order to observe the flow under such condition, it was 

required a slope that fulfils the requirement. For that purpose, an iteration process 

was done by using the numerical model (figure 9), changing the slope, S, until 

reaches 
toe cr  . The variables considered were: d=1.65mm, hc=5.14cm, n=0.014, 

Γ=0 and λ=0.07. Due to Г was unknown at this point, it was not taken into account in 

order to avoid interference, and λ was considered as previous authors have reported 

λ=0.07, e.g. Abril and Knight (2004). The result was S=1/500 that is bordering the 

critical flow (Fr=1). Hence, looking for a diameter able to be obtained by sieving, 

d=1.41mm was proposed (sieve N.14), determining S=1/575 that is farther from the 

critical slope. However, it was not possible to get commercial sand with such a 

diameter, but silica sand with similar characteristic was ordered: d50=1.46mm and 

Cu=1.46. Furthermore, it is desired to observe the behaviour of the flow when 

S<1/575 and S>1/575. Hence, one slope less than 1/575 and another greater were 

required. The proposed slope values were: S2=S5=1/575, S1=S6=1/675 and 

S3=S4=1/200. With respect to S1, it was planned for run experiments under subcritical 

flow and S3 for supercritical flow, in order to observe and analyse the flow under such 

circumstances. 

Although the slopes and depths were planned, it was difficult to reach the 

proposed values, due to the nature of the experiments. Hence, approximated 



 

 

Chapter 4. Physical Model 

An investigation of the ability of a numerical model  61 
to predict the cross sectional shape of an alluvial channel 

 

conditions were obtained, depths: H1≈3.50cm, H2≈5.0cm and H3≈7.17cm; and 

slopes: S1=1/673, S2=1/580, S3=4/793, S4=3/607, S5=1/574 and S6=1/675, noticing 

that S1≈S6≈1/675, S2≈S5≈1/575 and S3≈S4≈1/200 (table 7). 

Table  7. Code of the experiments with actual slopes tested, and proposed 
depths.

 

4.4 Construction of the channel 

4.4.1 Smooth surface 

In order to build the channel with the selected transversal geometry (section 

4.2), it was recommended to cut supports with such a shape (see figure 31). The 

material used was PVC, layers of 1cm thickness. Later the supports were placed into 

the flume, pasting them by using a commercial sealant (Sikaflex 512), being 

separated by 20cm, covering 10m length (figure 32). With respect to the surface, it 

was PVC as well, but in layers of 49 cm width, 2 m long and 2 mm thickness, sticking 

them to the supports by applying sealant between them and pressing the layers until 

they were able to hold the proposed shape (figures 34 and 35). This was done by 

using a timber board of 46 cm width and 2 m long with transversal templates made 

from the waste of the supports, the distance between them was 20 cm. In order to 

avoid leakage between the layers boundaries, they were covered by brown 

commercial tape, nullifying the water losses (figure 36). It should be noted that a PVC 

 

 

Smooth surface (PVC) 

   S1=1/673 S2=1/580 S3=4/793 

 H1≈3.5cm H1S1 H1S2 H1S3 

 H2≈5.0 cm H2S1 H2S2 H2S3 

 H3≈7.17 cm H3S1 H3S2 H3S3 

  

 

Rough surface (glue sand) 

   S4=3/607 S5=1/574 S6=1/675 

 H1≈3.5 cm H1S4 H1S5 H1S6 

 H2≈ 5.0 cm H2S4 H2S5 H2S6 

 H3≈7.17 cm H3S4 H3S5 H3S6 
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layer of 1mm thickness was tried on the channel, but it presented high sinuosity 

between the supports (peak to peak amplitudes of 2 mm) (figure 33), opting for the 

2mm PVC layer. 

 
Figure 32. Assembling of transversal supports along the flume. 

 
Figure 33. A PVC layer of 1mm was placed over the supports, showing a high undulation between them. 
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Figure 34. The 1 mm PVC layer was replaced by a 2mm layer, reducing the undulation. 

 

 

Figure 35. 2mm PVC surface installed. 
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Figure 36. In order to avoid leakage, brown tape was placed   between the boundaries. 

   

4.4.2 Rough surface 

Once the channel was constructed, and after the set of experiments in smooth 

surface had finished, a rough surface was installed. The technique consisted of apply 

a glue layer over the channel surface and then filled with sand, waiting 8 hours to 

remove the non-stuck sand. With respect to the type of sand used, it had 

ad50=1.46mmand a coefficient of uniformity Cu=1.46. Since the amount of sand was 

limited, and it was not possible to fill the whole channel at the same time, the glue 

was applied by segments (figures 37 to 39). 
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Figure 37. Glue sand (d50=1.46mm) was applied by segments. 

 

 

Figure 38. First, glue was applied over a PVC layer, later the section was filled with sand. At the 
following morning, the excess of sand was removed. 
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Figure 39.The full length of the channel with glue sand surface. 

 

 

 

4.4.3 The transition 

As mentioned above the flow was delivered by an arrange of pipes to the 

flume (figure 29), since the section of the flume was rectangular and the cross 

section of the channel cosinusoidal with a vertical step of 10 cm, it was required a 

transition. Among the literature, parameters were found for length, as well as 

horizontal and vertical contractions, expressed in the following equations given by 

Akan (2006): 
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    

  
          (45) 

where LT  is the transition length; ΔB, the contraction of the transition; mc, transversal 

slope (1:mc, vertical: horizontal); hc, depth at centre line; bx, transversal width of the 

transition at a distance x; bc, width of the contraction; bf, width of the flume; 
Tz , 

vertical elevation at x; Δz, length of the step between the flume and the channel 

(figure 40). The value of each variable is shown below: 

ΔB=44cm                            

mc=1.5 

hc=7.17 cm 

Δz=10 cm 

bf =46 cm 
2cm 46cm cb  

0 Tx L 

 

obtaining LT=121.15cm and rounding it to 130cm. Due to bc varies from 2cm to 46cm, 

multiple curves were obtained for bx (figure 41). Finally, the variation of ZT with 

respect to x can be observed on figure 42. 
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Figure  40. Plan view of the transition describing the variables of the horizontal contraction equation 
(44). Each curve represents a different horizontal contraction, that is combined with the elevation 
determined by equation 45 and figure 42. 
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Figure  41. bx curves for each bc, departing from the contraction at the origin (cosinusoidal channel) to 
the rectangular channel on the right hand side end. 
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Figure  42. The graph is showing the variation of ZT with respect to x, based on equation 45. 

 

Once bc and ZT were determined, their respective curves were pasted on the 

AutoCAD drawing, taking the vertical elevation from ZT for each bc (figures 43 and 

44). The material chosen for the transition was polystyrene, in layers of 10cm. With 

respect to the construction procedure, first 13 rectangular segments of 46x17cm 

were trimmed; secondly 13 transversal cross sections of the transition were printed 

from the drawing at each 10cm. Later the prints were pasted on the polystyrene 

panels, and by using an electrical saw they obtained the corresponding shape of the 

transition at a distance X form the cosinusoidal channel. Subsequently the panels 

were put in order (figure 45), and sanded down until obtain a smooth surface (figure 

46.a). Finally, the segments were installed into the flume entrance, pasting them with 

Sikaflex 512, covering the boundaries with brown tape. Additionally the surface was 

painted in order to protect the polystyrene (figure 46.b). 
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Figure 43. Isometric projection of the transition from the inlet. 

 

Figure 44. Isometric projection of the transition. 
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Figure 45. The material used in the transition was polystyrene. Several transversal panels were cut, and 
later sanded down. 

 

 

Figure 46. a) The transition already sanded down and covered with brown tape on the boundaries. b) In 
order to protect the material, paint was applied to the transition. 

 

a) b) 
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4.5 Methodology and procedures 

Before start taking velocity and/or shear stress measurements, it was required 

to set uniform flow with the corresponding designed slope and depth. Then, the 

following steps were followed: establishing of the channel bed slope, setting up of the 

normal depth, mapping the streamwise velocity of the cross section, and measuring 

the boundary shear stress across the section. Each of the mentioned steps was 

followed by a series of actions, describing them next. 

a) Establishing the channel bed slope 

In order to determine the bed slope, S, of the channel, it was required to set a 

horizontal line along the channel, and to measure the level difference along the 

channel. Then, the procedure was to fill the channel with water, sealing the outlet, 

producing a steady water level, and measuring the depths at every 40cm, hi. It was 

noticed that a small undulation exists on the channel (figure 35), locating the crests at 

the PVC supports and the troughs at the mid-distance between them. Hence, in order 

to incorporate such a difference into the slope, an additional depth was taken 10cm 

after each reading. 

The advantage of hi with respect to measuring only the extremes lies on 

collecting more data to include the small imperfections of the channel on the resulting 

S. Later hi was plotted against the longitudinal distance, x, proposing a best-fit linear 

equation, where Sis the slope of the equation (figure 47). It should be noticed that a 

similar plot was obtained for each set of experiments, but for practical purposes only 

one example is shown here. 
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Due to the flume has a jack point in the centre, and the inclination is controlled 

by a scale on the upstream extreme, a different slope, Si, was obtained for each scale 

reading, Sci. Hence, after moving the flume three times it was possible to set a linear 

equation relating Sci  and Si. This expression helps to reach the proposed slope faster 

and with a better approximation (figure 48). The procedure was repeated for both 

channel surfaces (smooth and rough), because after the application of glue sand 

small irregularities were added. 

 

Figure 47.Variation of depth along the channel for a particular slope with constant water level. 
Technique applied to determine the channel slope. 
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Figure 48.Variation of the governing scale with respect to the channel bed slope. The graph corresponds 
to the channel using a PVC surface. 

b) Stage-discharge curves 

Before setting the normal flow for a specific depth, hc, and once the desired 

bed slope, S, was established, it was required to know the corresponding discharge, 

Q, that would produce such hc. In order to fulfil such purpose, six stage discharge 

curves were determined, one for each S. The procedure consisted of varying the 

discharge eight times, from the channel bankfull condition (hc≈7.17cm) to the 

minimum discharge (1.5 L/s approximately), and relating Q with the corresponding 

normal depth, hc.  

Furthermore, with the data obtained for hc, Q and S, it was possible to calculate 

the Manning’s n for each discharge. Subsequently, an average for n per slope, navg, 

was determined. These results would help the simulation process later on. 
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c) Setting up normal flow 

The normal flow condition is reached when the water surface slope along the 

flow profile, Sw, is equal to the bed slope of the channel, S. Subsequently, the local 

depth, h, is constant upstream and downstream. 

In order to set normal flow for a particular central depth, hc, in subcritical 

condition, where Q and S are given, a protocol varying the tailgate aperture, tg, (figure 

49) was necessary, due to it affects hc and Sw. It consisted of changing Sw by 

adjusting tg, obtaining at least three flow profiles of two types, i.e. M2 (drawdown, 

Sw<0) and M1 (backwater, Sw>0), having at least one of a different kind. Such a 

procedure has been mentioned before by Sterling (1998) and Yuen(1989). 

 

Figure 49. Tailgate of the flume. The aperture mechanism consists of a series of blades that rotate on 
their own axis. 

 

With respect to Sw, it is defined as 
w cS S dh dx  , where dhc/dx is the variation 

of hc along the flow profile. Later a linear equation relating hc is proposed per profile, 

i.e.
c wh S x b  , determining hc for an arbitrary x at least 1m upstream of the tailgate, 

and being b  a reference depth over the flow profile. At the end of the procedure, 
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there should be at least three set of data, as table 8 is showing the variables.  

Since Sw and hc are affected by tg, and based on the data obtained, it is 

possible to express them like,
w gS f ( t ) and  

c gh g( t )  , by obtaining best fit 

equation for both functions. Once both expressions are known, and in order to obtain 

the normal flow condition, an iterative process is required to find the corresponding tg 

that yields Sw=S by adjusting
w gS f ( t ) . After finding the resulting tailgate aperture, tg 

r, hc can be determined from 
c gh g( t ) , determining the normal depth, hcn. 

Table 8. It is showing the three sets of variables required to determine the tailgate aperture that 
produces normal depth. 

 

Profile tg Sw c x
h  

M2 tg1 Sw1 hc1 

M1 tg2 Sw2 hc2 

M1 tg3 Sw3 hc3 

 

On the other hand, the steep slopes are producing flow profiles S2 type. They 

consist of an asymptote that is restricted downstream by the normal depth, hc n. 

Hence, for supercritical conditions, the uniform flow is reached meters before the 

tailgate, avoiding the previous iterative process.  

It should be noted that in order to verify the uniform flow condition, the depth 

as well as the velocity were measured upstream and downstream of the chosen 

section. 

d) Velocity measurements 

Once the normal depth was established for a particular S and Q, the next step 
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was to map the velocity across the channel section. It was done by a Pitot-static tube 

for only half section, in order to save time, taking measurements at each centimetre 

on the vertical direction, and at each 2cm on the horizontal direction, as figure 50 

illustrates. Eventually, additional points were added when possible, allocating them 

close to the water surface or next to the boundary. Thus, the number of readings 

taken varied depending on the cross sectional area. 

 

Figure 50. The distribution of velocity measurements taken by a Pitot-Static tube for half cross section. 
The vertical difference between them is approximately 1cm, while the horizontal one is 2cm. It should 
be noted that the mesh was set as constant for most of the cases, varying next to the boundary. 

 

With respect to the Pitot-Static tube, it is a device used to measure the fluid 

flow velocity in the longitudinal component by determining the differential pressure 

between the static and total pressures. It consists of an L tube composed by two 

pipes(figure 51): the entrance, located at the tip of the tube with a rounded shape, 

receiving the total flow pressure; and static taps, located perpendicular to the tube at 

the lower segment, they record the static pressure only. Each pipe is connected to a 

manometer and by determining their pressure difference, it is possible to find the 

longitudinal velocity, U. Since some bed slopes proposed were mild, expecting 

velocities under 0.50m/s, it was required to incline the manometer, increasing the 

difference between manometer readings, and subsequently reducing the error 

related to the device. The angle varied between 8º and 12º, depending on the 
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maximum pressure of each experiment. 

 

Figure 51.  Scheme of a typical Pitot-Static tube. Both parts of the tube can be appreciated: entrance 
and static taps.   

 

The pressure difference can be determined by applying the Bernoulli principle, 

at the two mentioned holes:  

2 2
1 2

1 22 2
ST

PU P U
z z

g g g g 
              (46) 

where the left hand side is evaluated at the static taps; and the right hand side at the 

entrance. U1 and U2 are the velocity components; PT, the total pressure; PS, the static 

pressure; Z1 and Z2, the elevation points; ρ, the water density; and g, the acceleration 

due to gravity. It is assumed that U2=0 and Z1=Z2, obtaining: 

2
1

2
S T

PU P
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             (47) 

being U1, the longitudinal velocity: 

1 2 T SP P
U



  
  

 
          (48) 

Due to the manometer had an inclination, it was required to consider this into 

the analisis. Hence, the total pressure head, T’, and static pressure head, S’, read at 

the manometer were affected by sin(α’) in order to find PT and PS: 

 sinTP T ' g '            (49) 
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 sinSP S' g '            (50) 

During the experiments, two distinct Pitot-Static tubes were used, with two 

different main diameters: 3.51mm and 4.0mm. This due to under low pressures, and 

subsequently low velocities, the smaller diameter presented high resistance to the 

water flow at the manometer, delaying the water level stabilization (up to 15min). On 

the other hand, during the opposite condition (high pressure), the Pitot tube with 

bigger diameter reduced the water flow resistance in the device, reaching an stable 

water level faster (less than 5min). However, the sensibility of the 4.0mm tube could 

be appreciated on the fluctuation of the water level, complicating its reading. Hence, 

for low pressures the 4.0mm diameter was preferred, and the 3.51mm for high 

pressures, optimising the time between measurements. 

e) Boundary shear stress measurements 

After measuring the velocity distribution across the channel for a given hc, S 

and Q, the boundary shear stress, τ0, was measured for the smooth surface set of 

experiments. It was evaluated by a Preston tube for the whole cross section taking 

readings at each 2cm on the horizontal direction, at the same points that the velocity 

measurements (figure 50). As the Preston technique requires, the tube was placed 

next to the boundary, and aligned in the streamwise direction (figure 52). The number 

of measurements varied depending on the water depth. 

With respect to the Preston tube used, two different diameters were tried 

3.0mm and 4.8mm. In this occasion, time was not a limitation as happened with the 

Pitot-Static tube and the velocity measurements, due to the readings converged 

relative fast, after just 5 minutes. But, the 3.0mm tube produced readings with less 
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level fluctuations, being preferable for most of the runs. The tube measured the total 

pressure, PT, and in order to assess the static pressure, Ps, a static tube of the same 

diameter was employed. 

 

Figure 52. Preston tube in working condition 

 

The Preston tube technique is based on the law of the wall common to 

boundary layers and in fully developed flow, which predicts the longitudinal velocity, 

U, at a certain point form the boundary, y : 

U yU *
f

U * 

 
  

 
           (51) 

U*



             (52) 

where U* is the shear velocity; ,  the water kinematic viscosity; τ0, boundary shear 

stress; and ρ, the water density. Since U can be related to the pressured difference, 
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ΔP=PT-PS , as was shown on equation 48, and due to the law of the wall involves U 

and τ0, Preston (1954) suggested the following correlation between ΔP and τ0: 

y* f ( x*)            (53) 
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d
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         (55) 

being  the diameter of the tube. He carried out experiments using four Pitot tubes 

with a flat entrance (the so-called Preston tube), obtaining a logarithmic equation: 

72 628
8

y* . x*              (56) 

Years later, Patel (1965) reviewed his research, identifying  an error in the 

calibration of the equation 56. In order to correct the work of Preston, Patel proposed 

an experimental program, employing 14 different tubes. The result was a 

segmentation of the relationship between τ0 and ΔP according to the type of flow. For 

turbulent and transition flow:  

   
2 3

if 1 5 5 3 then :

0 8287 0 1381 0 1437 0 0060

. y* .

y* . . x* . x* . x*

 

   
     (57) 

and for viscous: 

or if 1 5 then :
0 37 0 50

y* .

y* . . x*



 
         (58)  

Hence, the boundary shear stress can be determined by substituting and clearing τ0:  

 0 24 10y*

d






           (59) 
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It should be mentioned that the Preston tube technique presents problems 

when it is applied to a rough surface. This mainly because the difficulty to estimate 

the equivalent roughness to be used in the law of the wall. There have been attempts 

to correct the technique, one of the most significant is the work of Jin (1995), whom 

proposed an ingenious solution by combining the readings of two tubes. However, 

such a technique has not been validated yet, mainly due to the lack of data. Hence, 

for the glue sand surface experiments, τ0 was determined indirectly by the depth 

average velocity, Ud, by 2
0 8df U  , being highly inaccurate, as the uncertainty 

analysis shows. 
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5 CHAPTER 5 

PHYSICAL DATA RESULTS AND ANALYSIS 

 

The current chapter presents the physical data results and analysis of the 

experiments carried out. A description and analysis of them is presented. The 

experiments are divided into two stages, according to the boundary channel surface 

used. The first one corresponds to a smooth surface (PVC), while the second one 

employs a rough surface (glue sandd50=1.46mm). Three bed slopes were proposed 

per surface, trying three different depths for each slope. The tables 9 and 10 are 

showing the matrixes of experiments done. As mentioned on section 4.3, the slopes 

were distributed as: S1≈S6≈1/675, S2≈S5≈1/575 and S3≈S4≈1/200; but due to technical 

difficulties approximated values were obtained. All the slopes produced subcritical 

flow except from S3. With respect of the assessed depths, the original idea was to try 

hc≈7.1 cm (bankfull), hc≈5.1cm (end of the cosine section) and hc≈3.5cm (1.5 cm 

below the cosine section), but due to the nature of the experiment, approximated 

values were reached. 

Table  9. The matrix of experiments for smooth surface 

  

Smooth surface (PVC) 

 

  S1=0.001485 S2=0.001725 S3=0.005044 

 

H1 (cm) 3.340 3.520 3.395 

 

H2 (cm) 4.970 5.265 5.065 

 

H3 (cm) 7.020 7.080 6.950 
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Table 10.The matrix of experiments for rough surface. 

  

Rough surface (Glue sand d50=1.46mm) 

 

  S4=0.004943 S5=0.001742 S6=0.001482 

 

H1 (cm) 3.27 3.49 3.50 

 

H2 (cm) 5.05 5.02 5.02 

 

H3 (cm) 7.02 7.12 7.09 

 

In order to collect data, the procedure described in section 4.5 was followed: 

establishing of the channel bed slope, determination of the stage-discharge curve, 

setting up of the normal depth, mapping the streamwise velocity of the cross section, 

and measuring the boundary shear stress across the section. 

5.1 Stage-discharge curves and friction analysis 

A stage-discharge curve was obtained per slope, carrying out a friction 

analysis for each one. It consisted of obtaining the average of Manning’s n, nAverage. 

The procedure was to obtain the normal depth for each discharge, departing from a 

minimum discharge until reach the bankfull condition. Once the central depth, hc, and 

the discharge, Q, were known, and being the geometrical variables (area, A; wetted 

perimeter, P; hydraulic radius, R) obtained by AutoCAD, based on elevation 

measurements across the channel, it was possible to determine n and f per 

discharge by: 

2 1
3 21

Q AR S
n

                    (60) 

2 3 1 21 / /n R S
V

                    (61) 
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2
1 3

1 8f g n
R

                     (62) 

 Subsequently an average was obtained for the n values per slope, nAverage. 

See tables 11, 12 and 13 for smooth surface runs and tables 14, 15 and 16 for rough 

surface. It should be noted that for PVC 0 010Averagen . , as is commonly assumed. In 

fact, it was affected by the slope, obtaining nAverage1=0.00969, nAverage2=0.00968, and 

nAverage3=0.00844. Since S1=0.001485, S2=0.001725 and S3=0.005044, a first 

observation is that nAverage reduces slightly while S increases. However such 

hypothesis was not confirmed by the glue sand surface results, which present stable 

values for nAverage around 0.014 (nAverage4=0.01489, nAverage5=0.01474 and 

nAverage6=0.01443). 

 

Table 11. The experimental data that were used to plot the stage discharge curve for S=0.001485. Q and  
hc were measured in the lab, while A and P were obtained by AutoCAD. V was found by V=Q/A, 

2 3 1 2 1/ /n R S V  , and 2 1 38f gn R . 

S1= 0.001485 
      

Q (L/s) hc(cm) A(cm2) R (cm) P(cm) V (m/s) n f 

1.41 2.514 56.551 1.785 31.685 0.2486 0.0106 0.0337 

2.95 3.484 88.656 2.453 36.136 0.3322 0.0098 0.0259 

5.21 4.610 130.194 3.220 40.431 0.3998 0.0098 0.0235 

6.46 5.015 146.084 3.491 41.847 0.4421 0.0093 0.0208 

7.92 5.623 170.835 3.881 44.024 0.4638 0.0095 0.0210 

9.03 6.081 190.204 4.168 45.639 0.4747 0.0098 0.0216 

10.62 6.446 206.070 4.394 46.899 0.5155 0.0093 0.0193 

11.97 6.923 227.371 4.681 48.576 0.5263 0.0095 0.0197 

     

n Average1= 0.00969 

 

     

σ1= 0.00041 
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Table 12. The experimental data that were used to plot the stage discharge curve for S=0.001725. Q and 
hc were measured in the lab, while A and P were obtained by AutoCAD. V was obtained by V=Q/A, 

2 3 1 2 1/ /n R S V  , and 2 1 38f gn R . 

S2= 0.001725 
      

Q (L/s) hc (cm) A(cm
2
) R (cm) P(cm) V(m/s) n f 

1.24 2.244 48.66 1.60 30.34 0.2548 0.0104 0.0334 

2.01 2.763 64.74 1.96 32.97 0.3105 0.0097 0.0276 

3.49 3.721 97.41 2.62 37.14 0.3587 0.0102 0.0276 

4.96 4.333 119.98 3.04 39.47 0.4134 0.0098 0.0241 

7.25 5.170 152.69 3.60 42.42 0.4750 0.0095 0.0216 

9.47 5.775 177.62 3.98 44.60 0.5330 0.0091 0.0190 

11.91 6.566 211.81 4.47 47.34 0.5625 0.0093 0.0191 

14.17 7.202 240.57 4.87 49.41 0.5890 0.0094 0.0190 

     
n Average2= 0.00968 

 

     
σ2= 0.00044 

 
Table 13. The experimental data that were used to plot the stage discharge curve for S=0.005044. Q and  
hc were measured in the lab, while A and P were obtained by AutoCAD. V was obtained by V=Q/A, 

2 3 1 2 1/ /n R S V  , and 2 1 38f gn R . 

S3= 0.005044 

      Q (L/s) hc (cm) A (cm
2
) R (cm) P (cm) V (m/s) n f 

1.92 2.000 40.48 1.39 29.11 0.4753 0.0086 0.0244 

4.06 2.810 65.28 1.97 33.18 0.6220 0.0083 0.0201 

6.32 3.395 84.94 2.38 35.74 0.7442 0.0079 0.0170 

8.53 4.040 108.02 2.83 38.22 0.7893 0.0083 0.0180 

10.84 4.590 128.73 3.20 40.26 0.8423 0.0085 0.0178 

13.21 5.065 147.39 3.51 42.01 0.8964 0.0085 0.0173 

16.92 5.810 177.98 3.99 44.61 0.9504 0.0087 0.0175 

20.96 6.400 203.32 4.36 46.62 1.0307 0.0085 0.0163 

25.01 6.980 229.21 4.70 48.77 1.0912 0.0085 0.0156 

     

n Average3= 0.00844 

 

     

σ3= 0.00024 

 Table 14. The experimental data that were used to plot the stage discharge curve for S4=0.004943. Q  
and hc were measured in the lab, while A and P were obtained by AutoCAD. V was calculated by 
V=Q/A, 2 3 1 2 1/ /n R S V  , and 2 1 38f gn R . 

S4= 0.004943 

      Q (L/s) hc (cm) A (cm
2
) R (cm) P (cm) V (m/s) n f 

1.09 2.111 42.54 1.46 29.18 0.2569 0.0163 0.0857 

2.98 3.299 79.75 2.27 35.11 0.3732 0.0151 0.0633 

5.09 4.152 110.26 2.85 38.63 0.4615 0.0142 0.0520 

7.14 5.013 143.77 3.44 41.77 0.4969 0.0150 0.0541 

8.99 5.488 163.33 3.77 43.37 0.5503 0.0144 0.0483 

10.99 6.072 188.29 4.16 45.22 0.5839 0.0145 0.0474 

13.06 6.670 214.95 4.57 47.02 0.6074 0.0148 0.0481 

15.02 7.154 237.21 4.90 48.40 0.6334 0.0149 0.0474 

     

n  Average4= 0.01489 

 

     
σ4= 0.00066 
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Table 15. The experimental data that were used to plot the stage discharge curve for S4=0.001742. Q  
and hc were measured in the lab, while A and P were obtained by AutoCAD. V was calculated by 
V=Q/A, 2 3 1 2 1/ /n R S V  , and 2 1 38f gn R . 

S5= 0.001742 

      Q (L/s) hc (cm) A (cm
2
) R (cm) P (cm) V (m/s) n f 

1.09 2.666 59.10 1.84 32.14 0.1841 0.0158 0.0741 

2.16 3.644 91.75 2.51 36.59 0.2356 0.0152 0.0617 

3.26 4.310 116.23 2.96 39.23 0.2808 0.0142 0.0514 

4.25 4.898 139.16 3.36 41.37 0.3055 0.0142 0.0493 

5.38 5.523 164.79 3.79 43.48 0.3267 0.0144 0.0485 

6.54 6.123 190.52 4.20 45.38 0.3435 0.0147 0.0487 

7.59 6.569 210.37 4.50 46.72 0.3610 0.0146 0.0472 

8.68 7.028 231.37 4.82 48.05 0.3751 0.0147 0.0468 

     

n  Average5= 0.01474 

 

     
σ5= 0.00052 

  
Table 16. The experimental data that were used to plot the stage discharge curve for S4=0.001482. Q  
and hc were measured in the lab, while A and P were obtained by AutoCAD. V was calculated by 
V=Q/A, 2 3 1 2 1/ /n R S V  , and 2 1 38f gn R . 

S6= 0.001482 

      Q (L/s) hc (cm) A (cm
2
) R (cm) P (cm) V (m/s) n f 

1.20 2.796 63.18 1.93 32.78 0.1894 0.0146 0.0625 

2.16 3.728 94.73 2.56 36.94 0.2276 0.0147 0.0576 

3.04 4.335 117.17 2.98 39.32 0.2591 0.0143 0.0516 

4.22 5.085 146.68 3.49 42.01 0.2876 0.0143 0.0491 

5.10 5.529 165.03 3.79 43.50 0.3090 0.0141 0.0462 

6.18 6.106 189.82 4.19 45.33 0.3257 0.0143 0.0459 

7.31 6.623 212.83 4.54 46.88 0.3434 0.0143 0.0448 

8.21 6.956 228.02 4.77 47.84 0.3602 0.0140 0.0427 

     

n  Average6= 0.01432 
 

     

σ6= 0.00023 
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5.1.1 Uncertainty analysis of nAverage 

In order to determine the accuracy of nAverage  an uncertainty analysis was 

carried out, assuming the following systematic uncertainties: 

ΔQsys/Q:  Systematic discharge uncertainty of the electromagnetic flowmeter, 

error proportioned by the manufacturer, 0.50% 

Δhc:  Systematic depth uncertainty, varying from 0.05cm to 0.15cm due to it 

was affected by water surface undulation, increasing with hc 

ΔS/S:  Slope uncertainty, obtained from the slope setting, ΔS1/S1=0.949%, 

ΔS2/S2=0.906%, ΔS3/S3=0.095%, ΔS4/S4=0.14%, ΔS5/S5=1.10%, and 

ΔS6/S6=1.48%. 

By applying error propagation to equation 61, the expression: 

2 2 22 1
3 2

n R S V

n R S V

        
       

     
                 

(63) 

was found. The relative hydraulic radius uncertainty, ΔR/R, was determined by 

deriving a function that relates hc and R: 

cR = 0.6581 h  + 0.1613          (64) 

defining  c cR = h f ' h  , hence: 

cR = 0.6581 h            (65) 

With respect to the relative velocity uncertainty, ΔV/V, it was obtained by 

combining the discharge and area uncertainties: 
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2 2
V Q A

V Q A

    
    

  
         (66) 

The relative area uncertainty, ΔA/A, was found from an expression that combines 

area and depth: 

2

c cA = 1.5729 h  + 23.9340 h  - 13.2161       (67) 

obtaining  c cA = h g' h  , therefore: 

 c cA = h 23.934+3.1459 h          (68) 

Once the uncertainty Δn was known for each hc and Q, it was propagated to nAverage, 

as: 

 
1

1 Ñ

average i

k

n n
Ñ 

             (69) 

The calculations are shown on tables 17, 18, 19, 20, 21 and 22, 

finding Average1 Average1n / n =3.40% , Average1 Average1n / n =3.16% , Average1 Average1n / n =3.21% , 

Average4 Average4n / n =3.36% , Average5 Average5n / n =3.32%  , and Average6 Average6n / n =3.20% . 

Table 17. The calculations to determine the ΔnAverage1 for S1= 0.001485 and ΔS1/ S1=0.949%. 

Q (L/s) hc(cm) N ΔR / R ΔA / A ΔQ / Q ΔV / V Δn / n Δn 

1.406 2.514 0.0106 1.84% 2.82% 2.19% 3.57% 3.80% 0.00040 

2.945 3.484 0.0098 1.93% 2.83% 1.13% 3.05% 3.34% 0.00033 

5.205 4.610 0.0098 1.99% 2.88% 0.64% 2.95% 3.27% 0.00032 

6.458 5.015 0.0093 2.01% 2.90% 0.66% 2.98% 3.30% 0.00031 

7.923 5.623 0.0095 2.04% 2.94% 0.60% 3.00% 3.33% 0.00032 

9.030 6.081 0.0098 2.07% 2.96% 0.58% 3.02% 3.35% 0.00033 

10.623 6.446 0.0093 2.08% 2.99% 0.66% 3.06% 3.39% 0.00032 

11.967 6.923 0.0095 2.11% 3.02% 0.54% 3.06% 3.40% 0.00032 

       
ΔnAverage 1= 0.00033 

       

ΔnAverage 1/ nAverage 1= 3.40% 
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Table 18. The calculations to determine the ΔnAverage2 for S2= 0.001485 and ΔS2/ S2=0.906% 

Q (L/s) hc(cm) n ΔR / R ΔA / A ΔQ / Q ΔV / V Δn / n Δn 

1.240 2.244 0.0104 2.05% 3.18% 2.75% 4.21% 4.45% 0.00046 

2.010 2.763 0.0097 1.92% 2.88% 1.47% 3.23% 3.51% 0.00034 

3.494 3.721 0.0102 1.77% 2.58% 0.79% 2.70% 2.98% 0.00030 

4.959 4.333 0.0098 1.71% 2.47% 0.72% 2.58% 2.85% 0.00028 

7.252 5.170 0.0095 1.66% 2.39% 0.67% 2.48% 2.75% 0.00026 

9.467 5.775 0.0091 1.64% 2.35% 0.57% 2.42% 2.69% 0.00024 

11.914 6.566 0.0093 1.62% 2.32% 0.59% 2.39% 2.66% 0.00025 

14.170 7.202 0.0094 2.03% 2.90% 0.61% 2.97% 3.29% 0.00031 

       
ΔnAverage 2= 0.00031 

       

ΔnAverage 2/ n Average 2= 3.16% 
 

Table 19. The calculations to determine the ΔnAverage3 for S3= 0.005044 and ΔS3/ S3=0.90% 

Q (L/s) hc(cm) n ΔR / R ΔA / A ΔQ / Q ΔV / V Δn / n Δn 

1.924 2.000 0.0086 2.37% 3.73% 1.70% 4.10% 4.39% 0.00038 

4.061 2.810 0.0083 2.06% 3.09% 0.92% 3.23% 3.51% 0.00029 

6.322 3.395 0.0079 1.94% 2.85% 0.66% 2.93% 3.20% 0.00025 

8.526 4.040 0.0083 1.84% 2.69% 0.62% 2.76% 3.02% 0.00025 

10.843 4.590 0.0085 1.79% 2.60% 0.63% 2.67% 2.93% 0.00025 

13.211 5.065 0.0085 1.76% 2.54% 0.71% 2.64% 2.89% 0.00025 

16.916 5.810 0.0087 1.73% 2.48% 0.61% 2.55% 2.80% 0.00024 

20.956 6.400 0.0085 1.71% 2.45% 0.58% 2.52% 2.76% 0.00024 

       

ΔnAverage 3= 0.00027 

       

ΔnAverage 3/ nAverage 3= 3.21% 
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Table 20. The calculations to determine the ΔnAverage4 for S4=0.00494349andΔS4/ S4=0.143% 

Q (L/s) hc(cm) n ΔR / R ΔA / A ΔQ / Q ΔV / V Δn / n Δn 

1.093 2.111 0.0163 2.26% 3.59% 4.43% 5.71% 5.90% 0.00096 

2.977 3.299 0.0151 1.93% 2.87% 1.35% 3.17% 3.42% 0.00052 

5.088 4.152 0.0142 1.81% 2.63% 0.71% 2.73% 2.98% 0.00042 

7.144 5.013 0.0150 1.73% 2.50% 0.64% 2.58% 2.83% 0.00042 

8.988 5.488 0.0144 1.70% 2.45% 0.65% 2.54% 2.78% 0.00040 

10.994 6.072 0.0145 1.67% 2.41% 0.64% 2.49% 2.73% 0.00039 

13.057 6.670 0.0148 1.64% 2.38% 0.61% 2.45% 2.69% 0.00040 

15.024 7.154 0.0149 2.01% 2.94% 0.59% 3.00% 3.28% 0.00049 

       

ΔnAverage 4= 0.00050 

       

ΔnAverage 4/ n Average 4= 3.36% 

 

Table 21. The calculations to determine the ΔnAverage5 for S5= 0.001742 and ΔS5/ S5= 1.100% 

Q (L/s) hc(cm) n ΔR / R ΔA / A ΔQ / Q ΔV / V Δn / n Δn 

1.088 2.666 0.0158 1.79% 2.73% 5.28% 5.95% 6.09% 0.00096 

2.162 3.644 0.0152 1.68% 2.47% 1.78% 3.04% 3.29% 0.00050 

3.263 4.310 0.0142 1.63% 2.37% 1.05% 2.59% 2.86% 0.00041 

4.251 4.898 0.0142 1.60% 2.31% 1.00% 2.52% 2.79% 0.00040 

5.384 5.523 0.0144 1.57% 2.27% 0.76% 2.39% 2.67% 0.00039 

6.544 6.123 0.0147 1.55% 2.25% 0.68% 2.35% 2.63% 0.00039 

7.595 6.569 0.0146 1.54% 2.24% 0.68% 2.34% 2.61% 0.00038 

8.678 7.028 0.0147 2.05% 2.99% 0.69% 3.06% 3.40% 0.00050 

       

ΔnAverage 5= 0.00049 

       

ΔnAverage 5/ n Average 5= 3.32% 
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Table 22. The calculations to determine the ΔnAverage3 for S6=0.001482 and ΔS6/ S6=1.478% 

Q (L/s) hc(cm) n ΔR / R ΔA / A ΔQ / Q ΔV / V Δn / n Δn 

1.197 2.796 0.0146 1.71% 2.59% 4.34% 5.05% 5.23% 0.00076 

2.156 3.728 0.0147 1.63% 2.39% 1.68% 2.92% 3.20% 0.00047 

3.036 4.335 0.0143 1.59% 2.31% 1.07% 2.55% 2.86% 0.00041 

4.219 5.085 0.0143 1.56% 2.26% 0.90% 2.43% 2.74% 0.00039 

5.099 5.529 0.0141 1.55% 2.24% 0.74% 2.36% 2.68% 0.00038 

6.182 6.106 0.0143 1.53% 2.22% 0.76% 2.34% 2.66% 0.00038 

7.309 6.623 0.0143 1.52% 2.21% 0.97% 2.41% 2.72% 0.00039 

8.214 6.956 0.0140 2.07% 3.01% 0.77% 3.11% 3.48% 0.00049 

       

ΔnAverage 6= 0.00046 

       

ΔnAverage 6/ n Average 6= 3.20% 

 

5.1.2 Variation of n and f  respect hc 

The next step was to observe the variation of n with respect to hc, by plotting figure 

53. It was noted that n tends to be stable, enclosed in a certain range with the 

following standard deviations:  σ1=0.00041, σ2=0.00044,σ3=0.00024, σ4=0.00066, 

σ5=0.00052, and σ6=0.00023. This observation is confirmed by the experimental 

uncertainties of nAverage (ΔnAverage1=0.00033, ΔnAverage2=0.00031, ΔnAverage3=0.00027, 

ΔnAverage4=0.00050, ΔnAverage5=0.00049, and ΔnAverage6=0.00046), being relative close to 

their corresponding σi and in agreement with Manning’s equation. 

Figure 54 shows the variation of f due to hc. It is observed that f is inversely 

proportional to hc, as expected if equations 60 and 62 are combined. It should be 

noted that not all the points are following such a tendency, some of them were 

affected by the experimental error, but the majority of data fulfil the pattern.  
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Figure 53. The variation of Manning’s n with respect to hc, for PVC and glue sand surfaces. Both 
variables were obtained based on experiments, where n2is the rough surface and n1 the smooth one. 
The error bars can be observed. 

 
Figure 54. The variation of Darcy’s f with respect to 1/hc, for PVC and glue sand surfaces. Both variables 
were obtained based on experiments, where n2is the rough surface and n1 the smooth one. 
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5.1.3 Stage discharge curves 

Based on experimental results (tables 11 to 16), the stage-discharge curves were 

plotted, corresponding to both surfaces (smooth and rough) (see figures 55 and 56). 

For each case, a best-fit power curve was adjusted, obtaining coefficients of 

determination, R2, over 0.99. Additionally, an extra curve per slope was sketch along 

the experimental series, but made from simulations, using Manning’s equation 

(equation 60), and the average resistance friction factor, nAverage, found on section 5.1, 

improving their approach to the lab data. However, a difference exists between the 

experimental data and the calculated values, especially on S3. Such difference can 

be attributed to the turbulence generated, which seems to have greater impact when 

the slope is steeper. Trend lines were plotted for the simulated series as well, finding 

a good approximation for each one (R2>0.99). 

 

Figure 55. Stage discharge data for PVC surface, based on experiments. Additionally a Manning 
simulation is shown. Subsequently a trend line for each series was determined, as well as their 
equations. 
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Figure 56. Stage discharge set of data for glue sand surface d50=1.46mm, based on experiments. 
Additionally a Manning simulation is shown. Subsequently a trend line for each series was determined, 
as well as their equations. 

5.2 Velocity results 

The tables 23 and 24 show summaries of the experiments related to the velocity 

measurements for smooth and rough surfaces respectively. On it, the hydraulics 

variables can be appreciated (bed slope, S; central depth, hc; transversal area, A; 

wetted perimeter, P; hydraulic radius, R), as well as experimental data (average 

velocity by Pitot tube, VPitot; discharge based on VPitot, QPitot; discharge from flowmeter, 

Qflwmtr). VPitot was calculated by multiplying the depth average velocity, Ud j, of each 

vertical profile, j, times the area of the corresponding segment, As j, accumulating 

their products, and dividing it by A (figure 57): 

Pitot
1

1 N

d j s j

j

V U A
A 

            (70) 

Ud j was determined by integrating each vertical velocity profile, and dividing the 
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integral by its local depth, hj (figure 58): 

0

1 jh

d j i

j

U U dz
h

            (71) 

QPitot is defined as the average velocity measured by a Pitot-Static tube times the 

transversal area of the channel: 

Pitot PitotQ V A            (72) 

About Qflmtr, it was obtaining from an electromagnetic flowmeter, by reading up to 120 

measurements during 5min, and later determining an average. Complementary 

information is included on the table, like the Pitot-Static tube diameter used and the 

number of mapped points.  

With respect to the experimental error, EQ, it was defined as: 

flowmeter Pitot

flowmeter

100Q

Q Q
E %

Q


          (73) 

In general EQ is acceptable, varying from 0.82% to 9.56% in PVC, and 0.65% to 

7.33% in glue sand, since the experimental uncertainty, ΔQPitot/ΔQPitot, is between 

3.89% to 7.99% for PVC, and between 2.90% and 7.34% for glue sand. The 

corresponding uncertainty analysis was shown on section 5.2.1. 
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Figure 57.Distribution of segment areas, As j, that are multiplied by their corresponding depth average 
velocity, Udj. As j were determined by AutoCAD. This software was preferable due to it takes into 
account the deformations on the section. 
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Figure 58.A typical vertical velocity profile obtained from Ui measurements, where z represents the 
vertical direction. The profile corresponds to a random point across the section. 
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Table 23. Summary of the experiments carried out in PVC surface. The geometrical, velocity and 
discharge can be appreciated, as well as their uncertainties. 

 

Smooth surface (PVC) 

 

S1 S2 S3 

 

H1 H2 H3 H1 H2 H3 H1 H2 H3 

S 0.001485 0.001485 0.001485 0.001725 0.001725 0.001725 0.005044 0.005044 0.005044 

hc (cm) 3.34 4.97 7.02 3.53 5.27 7.08 3.40 5.07 6.95 

A (cm
2
) 84.00 144.69 228.77 87.82 154.51 234.99 85.41 147.39 227.85 

P (cm) 35.59 41.72 48.69 36.04 42.59 49.17 35.76 42.01 48.66 

R (cm) 2.36 3.47 4.70 2.44 3.63 4.78 2.39 3.51 4.68 

Pitot tube 
diameter (mm) 

4.00 3.51 4.00 4.00 4.00 4.00 4.00 4.00 4.00 

No.of Ui  

readings 
32 38 67 33 55 74 34 53 76 

VPitot (m/s) 0.3917 0.4428 0.5377 0.3886 0.4959 0.6223 0.7206 0.9104 1.0722 

QPitot (L/s) 3.29 6.41 12.30 3.51 7.76 14.62 6.15 13.42 24.43 

ΔQPitot /QPitot 7.99% 5.53% 4.44% 7.91% 5.00% 3.91% 7.76% 5.28% 3.89% 

Qflmtr  (L/s) 3.00 6.04 12.60 3.49 7.26 14.17 6.32 13.21 25.01 

ΔQflmtr/ Qflmtr 1.45% 0.68% 0.63% 0.80% 0.63% 0.63% 0.66% 0.71% 0.59% 

EQ% 9.56% 6.08% 2.37% 0.82% 6.90% 3.22% 2.65% 1.56% 2.32% 

 

Table 24. Summary of the experiments carried out in rough surface (d50=1.46mm). The geometrical, 
velocity and discharge can be appreciated, as well as their uncertainties. 

 

 

Glue sand surface (d50=1.46mm) 

 

S4 S5 S6 

 

H1 H2 H3 H1 H2 H3 H1 H2 H3 

S 0.004943 0.004943 0.004943 0.001742 0.001742 0.001742 0.001482 0.001482 0.001482 

hc (cm) 3.27 5.05 7.02 3.49 5.02 7.12 3.50 5.02 7.09 

A (cm
2
) 79.32 144.49 228.27 86.32 142.51 232.57 86.67 143.30 231.43 

P (cm) 34.83 41.86 48.47 35.82 41.52 48.79 35.86 41.76 48.70 

R (cm) 2.28 3.45 4.71 2.41 3.43 4.77 2.42 3.43 4.75 

Pitot tube 
diameter (mm) 

4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 

No.of Ui 

readings 
38 58 83 37 55 78 36 47 70 

VPitot (m/s) 0.4423 0.5031 0.6609 0.2158 0.3008 0.3642 0.2057 0.2831 0.3368 

QPitot (L/s) 3.51 7.27 15.09 1.86 4.29 8.47 1.78 4.06 7.79 

ΔQ Pitot /Q Pitot 4.60% 3.53% 2.90% 7.33% 4.59% 3.63% 7.34% 5.04% 4.25% 

Qflmtr (L/s) 3.31 7.17 14.99 1.95 4.52 8.83 1.92 4.20 8.41 

ΔQflmtr/ Qflmtr 1.02% 0.36% 0.26% 1.87% 0.58% 0.46% 1.92% 0.83% 0.62% 

EQ% 5.98% 1.43% 0.65% 4.62% 5.16% 4.08% 7.33% 3.39% 7.27% 
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5.2.1 Uncertainty analysis of  QPitot  and Qflmtr 

An uncertainty analysis was done with the purpose of determining the accuracy of 

QPitot. The following systematic uncertainties were assumed, conserving ΔQsys and ΔS 

from section5.1.1. 

Δhc:  Systematic depth uncertainty, influenced by water surface undulation, 

0.15cm 

ΔSm:  Systematic static head uncertainty of the inclined manometer, 0.10cm 

ΔTm:  Systematic total head uncertainty of the inclined manometer, 0.10cm 

Δα’:  Systematic angular uncertainty of the inclined manometer used. 0.10º 

ΔUsys /Ui: Systematic velocity uncertainty of the Pitot-Static tube used, 1.0% 

The followed procedure was to determine the uncertainty of each Ui, i.e. ΔUi, later it 

was propagated to Udj and subsequently transmitted to QPitot. ΔUi was obtained by 

spreading the error of Ui  from equation 48 (section 4.5.d): 

 

 

22
i

i

sin 'U d

U d sin '





   
         

        (74) 

depending on the angular uncertainty, Δα’: 

 

 

 

 

sin ' ' cos '

sin ' sin '

  

 

 
          (75) 

 and on the head difference uncertainty, Δd: 

m md T S             (76) 
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2 2
m m

m m

S Td

d T S

 



          (77) 

This last relies on the static and total head uncertainties. The ΔUsys was added to ΔUi, 

obtaining the total velocity uncertainty of a measurement, ΔUT: 

   
22

T i i sysU U U              (78) 

Once ΔUT was known, it was propagated to the average velocity uncertainty of each 

vertical profile, ΔUdj: 

1

1 N

d j T

ij

U U
h 

             (79) 

and later to the corresponding discharge segment, ΔQj, by affecting ΔUd j with the 

segment area uncertainty, ΔAsj: 

2 2

d j s jj

j d j s j

U AQ

Q U A

    
    

   
   

        (80) 

s j j j j

s j s j j

A b h h

A A h

  
           (81) 

Finally ΔQj was accumulated, finding the discharge uncertainty, ΔQPitot, for the whole 

cross section measured by a Pitot-Static tube: 

1

1 M
Pitot

j

jPitot Pitot

Q
Q

Q Q 


           (82) 

The corresponding Pitot PitotQ Q of each run is shown on tables 23 and 24.   
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5.2.2 Isovelocity contours 

The velocity was mapped by using a Pitot-Static tube, and following the pattern 

shown on figure 50. Once Ui was determined, the isovelocity contours were obtained 

by using the software package Tecplot 10, plotting half cross sections (see figures 60 

to 77).  

With respect to the behaviour of the flow, it can be observed from the graphs that the 

H1 experiments (hc≈3.5cm) present isovelocity contours nearly parallel to the 

boundary (figures 60 to 65). This makes difficult the identification of the secondary 

flow activity. But, when the depth increases, i.e. hc≈5.1cm on the H2 runs (figures 66 

to 71), the flow pattern starts changing. In most of the sets kinks were found in the 

contours, except on the run H2S3 (figures 68), indicating the presence of secondary 

flow. Following the experiments of some authors, e.g. Tominaga et al. (1989), Wang 

and Cheng (2005) and  Nezu et al. (1999), each twist in the isovels can be associate 

with a divide between secondary flow cells (figure 59). At this point, it is inferred that 

a higher depth corresponds to an increment in the secondary flow activity, being 

confirmed by the H3 experiments (hc≈7.1cm). In this set, divides were clearly 

identified (figures 72 to 77). 
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Figure 59. (a) Isovelocity contours obtained for a trapezoidal cross section. (b) Transversal velocity 
vectors, illustrating three secondary flow cells (Tominaga et al., 1989). 

 

On the other hand, the smooth and rough surface contours with approximated 

depths and slopes were compared. As expected, the experiments on PVC surface 

shown higher velocities. Additionally, it was noted that the isovelocity contours  

presented different flow patterns, noticing this on the divides location and form. This 

in agreement with Wang and Cheng (2005), where it can be appreciated that the 

isovels are affected by the surface boundary.  That is, for H3 experiments on smooth 

surface (figures 72 to 74) two divides were found, while for rough surface (figures 75 

to 77), three were spotted. Similar phenomenon can be appreciated on the H2 sets 

(figures 66 to 71), however there is no difference between the number of divides, 

identifying one for H2S3 and H2S6 (figures 68 and 71), and two for the rest. But, the 

location and inclination of the divides, as well as the contour pattern, are different for 

each surface condition. About the H1 experiments (figures 60 to 65), one divide was 

found, except for H1S5, who has two (figure 64). With respect to the low number of 

divides in the H1 runs, This can be attributed to the low velocity produced by such a 

depth (hc≈3.5cm), and to the number of readings taken 32 to 38 (tables 23 and 24), 

probably a finer mesh would have improve the resolution of the secondary flow. 

(a) (b) 
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The difference in the isovelocity contours patterns can be explained due to the 

change of boundary condition, which affects the velocity distribution across the 

section. By matching both types of surface experiments, it is noticed that the 

inclination of the divide in the rough surface sets implies smaller velocity gradients 

next to the margin (left hand side). This is verifiable by measuring the distance 

between isovels, being higher the gradient when the isovels are close to the margin. 

At this point it is possible to say that a rough surface presents a higher secondary 

flow activity, this based on the number of kinks and divides determined. In order to 

observe better the variation of the velocity across 6the section, it is necessary to 

analyse the respectively depth average velocity, Ud, profiles.  

 

Figure 60.Isovelocity contours for half cross section channel, corresponding to the experiment H1S1, 
with hc=3.34cm, S=0.001485 on PVC bed surface. The dashes represent the divides between secondary 
flow cells. 

 

Figure 61. Isovelocity contours for half cross section channel, corresponding to the experiment H1S2, 
with hc=3.52cm, S=0.001725 on PVC bed surface. The dashes represent the divides between secondary 
flow cells. 

x (cm) 

Ui  (m/s) 
 

y 
(c

m
) 

x (cm) 

Ui  (m/s) 

 

y 
(c

m
) 



 

 

Chapter 5. Physical data results and analysis 

An investigation of the ability of a numerical model  104 
to predict the cross sectional shape of an alluvial channel 

 

 

 

Figure 62. Isovelocity contours for half cross section channel, corresponding to the experiment H1S3, 
with hc=3.395cm, S=0.005044 on PVC bed surface. The dashes represent the divides between secondary 
flow cells. 

 

 

Figure 63. Isovelocity contours for half cross section channel, corresponding to the experiment H1S4, 
with hc=3.27cm, S=0.004943 on glue sand bed surface (d50=1.46mm). The dashes represent the divides 
between secondary flow cells. 
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Figure 64. Isovelocity contours for half cross section channel, corresponding to the experiment H1S5, 
with hc=3.49cm, S=0.001742 on glue sand bed surface (d50=1.46mm). The dashes represent the divides 
between secondary flow cells. 

 

 

Figure 65. Isovelocity contours for half cross section channel, corresponding to the experiment H1S6, 
with hc=3.50cm, S=0.001482 on glue sand bed surface (d50=1.46mm). The dashes represent the divides 
between secondary flow cells. 
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Figure 66. Isovelocity contours for half cross section channel, corresponding to the experiment H2S1, 
with hc=4.97cm, S=0.001485 on PVC bed surface. The dashes represent the divides between secondary 
flow cells. 

 

 

Figure 67. Isovelocity contours for half cross section channel, corresponding to the experiment H2S2, 
with hc=5.265cm, S=0.001725 on PVC bed surface.  The dashes represent the divides between 
secondary flow cells. 
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Figure 68. Isovelocity contours for half cross section channel, corresponding to the experiment H2S3, 
with hc=5.065cm, S=0.005044 on PVC bed surface. The dashes represent the divides between secondary 
flow cells. 

 

 

Figure 69. Isovelocity contours for half cross section channel, corresponding to the experiment H2S4, 
with hc=5.05cm, S=0.004943 on glue sand bed surface (d50=1.46mm). The dashes represent the divides 
between secondary flow cells. 
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Figure 70. Isovelocity contours for half cross section channel, corresponding to the experiment H2S5, 
with hc=5.02cm, S=0.001742 on glue sand bed surface (d50=1.46mm). The dashes represent the divides 
between secondary flow cells. 

 

 

Figure 71. Isovelocity contours for half cross section channel, corresponding to the experiment H2S6, 
with hc=5.02cm, S=0.001482 on glue sand bed surface (d50=1.46mm). The dashes represent the divides 
between secondary flow cells. 
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Figure 72. Isovelocity contours for half cross section channel, corresponding to the experiment H3S1, 
with hc=7.02cm, S=0.001485 on PVC bed surface. The dashes represent the divides between secondary 
flow cells. 

 

 

Figure 73. Isovelocity contours for half cross section channel, corresponding to the experiment H3S2, 
with hc=7.08cm, S=0.001725 on PVC bed surface. The dashes represent the divides between secondary 
flow cells. 
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Figure 74. Isovelocity contours for half cross section channel, corresponding to the experiment H3S3, 
with hc=6.95cm, S=0.005044 on PVC bed surface. The dashes represent the divides between secondary 
flow cells. 

 

 

Figure 75. Isovelocity contours for half cross section channel, corresponding to the experiment H3S4, 
with hc=7.02cm, S=0.004943 on glue sand bed surface (d50=1.46mm). The dashes represent the divides 
between secondary flow cells. 
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Figure 76. Isovelocity contours for half cross section channel, corresponding to the experiment H3S5, 
with hc=7.12cm, S=0.001742 on glue sand bed surface (d50=1.46mm). The dashes represent the divides 
between secondary flow cells. 

 

 

Figure 77.  Isovelocity contours for half cross section channel, corresponding to the experiment H3S6, 
with hc=7.09cm, S=0.001482 on glue sand bed surface (d50=1.46mm). The dashes represent the divides 
between secondary flow cells. 
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5.2.3 Depth average velocity profiles 

The depth average velocity, Ud, was obtained by following the equation 71 

(section 5.2), determining a value for each point across the channel, and 

subsequently plotting the transversal velocity profiles for each run. In order to 

analyse them, the vertical and horizontal axes were presented dimensionless: i.e. Ud 

with respect to VPitot (average velocity of the channel obtained by Pitot tube 

measurements), including their corresponding uncertainties; and the horizontal 

variable, y, respect to half width, W/2. Additionally, the runs with similar depths were 

grouped by boundary surface, producing two graphs: one for smooth and one for 

rough surface. Finally, an extra chart was obtained, contrasting both types of 

experiments. In total nine graphs were plotted, three per depth (figures 78 to 86). 

 

By observing H1 results (figures 78, 79 and 80), it is noted that the PVC runs 

are following the same pattern, and their data are within the uncertainty bars (figure 

78). Such curves are decreasing smoothly, identifying an inflection point at 

y/(W/2)=0.80, inferring two secondary flow cells in agreement with the isovels, but at 

different location. With respect to the glue sand curves (figure 79), two runs have a 

common behaviour, i.e. H1S5 and H1S6 with a change at y/(W/2)=0.48; however, half 

of H1S4 is within the error limits of the other curves, with an inflection point at and 

y/(W/2)=0.64, as the experiments on PVC surface. When both types of graphs are 

contrasted, two shapes can be easily spotted, noticing that the rough surface runs 

present a higher relative velocity, Ud /VPitot, than the smooth surface counterpart does, 

and decreasing faster while the curves approach to the margin. This can be explain 
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due to the resistant friction factor, f, varies different respect to the depth, h, depending 

on the boundary surface, as figure 54 illustrates due to the gradient Δ(1/hc)/Δf for 

rough and smooth boundary surfaces. 

 

 

Figure  78. Dimensionless variation of the experimental depth average velocity, Ud, with respect to the 
main velocity measured of the channel, VPitot, along the dimensionless half cross section, y/(W/2). The 
plot corresponds to the H1 experiments (hc≈3.5cm). Three series are shown, each one for a different 
slope (S1=0.001485, S2=0.001725 and S3=0.005044). The uncertainty bars indicate that most of the 
data are within the limits. The dashes represent the divides between secondary flow cells proposed. 

 

 

 



 

 

Chapter 5. Physical data results and analysis 

An investigation of the ability of a numerical model  114 
to predict the cross sectional shape of an alluvial channel 

 

 

Figure  79. Dimensionless velocity distribution of the H1 experiments carried out on rough surface 
(d50=1.46mm). Three sets are shown along with their uncertainty bars. It can be observed that two 
series are following the same pattern (H1S5 and H1S6), and that two thirds of H1S4 are within the 
uncertainty limits of the other two sets. The dashes represent the divides between secondary flow cells 
proposed. 

 

 

 

Figure 80.Summary of the six H1 experiments (hc≈3.5cm), corresponding to the dimensionless 
transversal velocity variation. Two behaivours can be indentified, one for the smooth surface 
experiments (PVC), i.e. H1S1, H1S2 and H1S3; and another one for the rough surface sets (d50=1.46mm), 
i.e. H1S4, H1S5 and H1S6. 
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With respect to H2 experiments (figures 81, 82 and 83), similar observations to H1 

are found. That is, a different pattern of curves was identified per surface, being the 

relative velocity, Ud /VPitot, of the glue sand sets higher at the centre line (y/(W/2)=0) 

than the PVC ones, decreasing faster while they approaches to the margin 

(y/(W/2)=1). Additionally, kinks in the curves were observed at y/(W/2)=0.24, 0.36 and 

0.74d for smooth surface experiments (figure 81), and at y/(W/2)=0.24 and 0.70 for 

rough surface sets (figure 82). These inflexion points correspond to the divides found 

on the isovelocity contours (figures 66 to 71, section 5.2.2), indicating secondary flow 

cells. However, additional twist were observed on the velocity profiles. 

 

Figure  81. Dimensionless variation of the experimental depth average velocity, Ud, with respect to the 
main velocity measured of the channel, VPitot, along the dimensionless half cross section, y/(W/2). The 
plot corresponds to the H2 experiments (hc≈5.0cm). Three series are shown, each one for a different 
slope (S1=0.001485, S2=0.001725 and S3=0.005044). The uncertainty bars indicate that most of the 
data are within the limits. The dashes represent the divides between secondary flow cells proposed. 
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Figure  82. Dimensionless velocity distribution of the H2 experiments carried out on rough surface 
(d50=1.46mm). Three sets are shown along with their uncertainty bars. It can be observed that the series 
are following the same pattern. The dashes represent the divides between secondary flow cells 
proposed. 

 

 

Figure  83. Summary of the six H2 experiments (hc≈5.00cm), corresponding to the dimensionless 
transversal velocity variation. Two behaviours can be identified, one for the smooth surface 
experiments (PVC), i.e. H2S1, H2S2 and H2S3; and another one for the rough surface sets (d50=1.46mm), 
i.e. H2S4, H2S5 and H2S6. 
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Finally, in the H3 experiments (figures 84, 85 and 86), two different shapes 

can be identified as well, depending on the boundary surface. With respect to the 

PVC sets (figure 84), inflection points were found at y/(W/2)=0.20, 0.44 and 0.80. 

While for the glue sand surface curves, three drastic changes were identified at  

y/(W/2)=0.40, 0.60 and 0.80. Both cases are in agreement with their corresponding 

isovels of section 5.2.2 (figures 72 to 77). This last confirms the existence of  

secondary flow cells, that the boundary modifies their behaviour, and that at higher 

depths the impact is more evident. Additionally, the difference in the divide location is 

explained due to the boundary material, affecting different the flow. In the case of the 

rough surface sets, the glue sand boundary provokes a faster decrement on Ud /VPitot, 

and a milder vertical velocity gradient due to a higher friction. 

 

Figure  84. Dimensionless variation of the experimental depth average velocity, Ud, with respect to the 
main velocity measured of the channel, VPitot, along the dimensionless half cross section, y/(W/2). The 
plot corresponds to the H3 experiments (hc≈7.0cm). Three series are shown, each one for a different 
slope (S1=0.001485, S2=0.001725 and S3=0.005044).  
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Figure 85. Dimensionless velocity distribution of the H1 experiments carried out on rough surface 
(d50=1.46mm). Three sets are shown along with their uncertainty bars. It can be observed that the series 
are following the same pattern.  

 

 

Figure 86. Summary of the six H3 experiments (hc≈7.00cm), corresponding to the dimensionless 
transversal velocity variation. Two behaivours can be indentified, one for the smooth surface 
experiments (PVC), i.e. H3S1, H3S2 and H3S3; and another one for the rough surface sets (d50=1.46mm), 
i.e. H3S4, H3S5 and H3S6. 
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5.3 Boundary shear stress results 

The summary of the results related to the boundary shear stress 

measurements, τ0, is shown on table 25. On it the geometrical characteristics (hc, A, 

P, R, S) of each run are mentioned, as well as the Preston tube used, the number of 

points taken, the average boundary shear stress measured, τPreston: 

0

1 P

Pr eston dp
P

             (83) 

its relative uncertainty, ΔτPreston/ τPreston, the theoretical average boundary shear stress, 

τ=ρgRS, and the error, Eτ, between τPreston and τ :  

Preston

Preston

100E %
 




           (84) 

Eτ is between 1.58% and 12.5%, considering acceptable since the average measured 

shear stress uncertainty, ΔPreston, is between 2.51% and 10.98%. The corresponding 

uncertainty analysis is shown on the section 0. 

With respect to Eτ, it is noted that it reduces when hc increases. This can be 

explained due to the accuracy of the Preston tube improves when the pressure 

difference between the total and the static, PT-PS, increases. Such a subtraction 

depends mainly on the increment of PT, due to PS is only affected by the depth. While 

PT is directly proportional to the flow velocity. Hence, a higher depth increases the 

velocity, also PT-PS does as well, and Eτ decreases. The corresponding uncertainty 

analysis is shown on the section 0. 
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Table  25.  A summary of the runs carried out is shown below,  presenting the results related to the 
measured boundary shear stress on smooth surface. The geometrical and experimental variables can be 
appreciated. 

 

Smooth surface (PVC) 

  S1 S2 S3 

 

H1 H2 H3 H1 H2 H3 H1 H2 H3 

S= 0.001485 0.001485 0.001485 0.001725 0.001725 0.001725 0.005044 0.005044 0.005044 

hc (cm)= 3.34 4.97 7.02 3.53 5.27 7.08 3.40 5.07 6.95 

A (cm
2
)= 84.00 144.69 228.77 87.82 154.51 234.99 85.41 147.39 227.85 

P (cm)= 35.59 41.72 48.69 36.04 42.59 49.17 35.76 42.01 48.66 

R (cm)= 2.36 3.47 4.70 2.44 3.63 4.78 2.39 3.51 4.68 

Preston tube 
diameter (mm)= 3.00 4.80 4.80 3.00 3.00 3.00 3.00 3.00 3.00 

No.of τ0 readings= 20 20 23 19 11 23 17 21 23 

τPreston (N/m
2
)= 0.3753 0.5410 0.6957 0.3482 0.5425 0.8462 1.2667 1.8694 2.2760 

τ=ρgRS (N/m
2
)= 0.3438 0.5053 0.6846 0.3864 0.6102 0.8037 1.1818 1.7357 2.3170 

Eτ%= 8.39% 6.60% 1.58% 10.99% 12.47% 5.02% 6.70% 7.15% 1.80% 

Δ τPreston/ τPreston = 10.00% 7.44% 7.58% 10.98% 8.44% 6.48% 2.56% 2.51% 2.68% 

 

 

As mentioned previously, the boundary shear stress was not measured for the 

glue sand surface experiments, but it was obtained indirectly by 2 8df U   . The 

summary of the results is shown in table 26. However, the error obtained is higher 

than the uncertainty determined, suggesting a review of the friction factor used and 

its distribution along the cross section. 
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Table 26. A summary of the boundary shear stress obtained for the experiments on glue sand surface 
(d50=1.46mm). It should be noted that τ0 was not measured, it was obtained indirectly based on the 
velocity measurements. 

  

 

S4 S5 S6 

 

H1 H2 H3 H1 H2 H3 H1 H2 H3 

S 0.00494 0.00494 0.00494 0.00174 0.00174 0.00174 0.00148 0.00148 0.00148 

hc (cm) 3.27 5.05 7.02 3.49 5.02 7.115 3.495 5.021667 7.09 

A (cm
2
) 79.32 144.49 228.27 86.32 142.51 232.57 86.67 143.30 231.43 

P (cm) 34.83 41.86 48.47 35.82 41.52 48.79 35.86 41.76 48.70 

R (cm) 2.28 3.45 4.71 2.41 3.43 4.77 2.42 3.43 4.75 

τ0= ρ f Ud
2 / 8 (N/m

2
) 1.45 1.54 2.25 0.31 0.49 0.65 0.25 0.46 0.53 

τ=ρgRS (N/m
2
) 1.10 1.67 2.28 0.41 0.59 0.81 0.35 0.50 0.69 

Eτ% 23.78% 8.86% 1.35% 33.74% 18.84% 24.40% 40.03% 9.23% 29.91% 

Δτ0 / τ0 6.33% 6.25% 6.09% 10.65% 7.84% 7.85% 10.66% 7.92% 8.25% 

 

5.3.1 Uncertainty analysis of  τPreston 

In order to determine the reliability of τPreston, an uncertainty analysis was 

required. The systematic assumptions related to the manometer and to the channel 

were considered in common with the ones of ΔQPitot (section 5.2.1). While the 

systematic relative shear stress uncertainty attributed to the Preston tube, 

Δτsys/τPreston, was taken as 2%. 

The procedure started propagating the uncertainty related to the manometer 

heads, ΔT and ΔS, to the total and static pressure uncertainties, ΔPT and ΔPS: 

 

 

22 sin
sin

T

T

P T

P T





   
         

        (85) 
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 

 

22 sin
sin

S

S

P S

P S





   
         

        (86) 

Later ΔPT and ΔPS were transmitted to Δx* derived from equation 55, and 

subsequently to Δy* from equation 57 (section 4.5.e) as: 

   

   

2 2
1

ln 10
T S

T S

P Px*

x* x* P P

  



         (87) 

 
20 1381 0 2874 0 018y* x*

. . x* . x*
y* y*

 
          (88) 

Once Δx* and Δy* where known, the next step was to find the uncertainty of the 

boundary shear stress, Δτ0, by spreading the error of τ0, that is defined as: 

 0 24 10y*

d






           (89) 

proposing Δτ0 as the derivative of τ0, with respect to y*, affected by Δy*: 

 0
0

d
y*

d y*


             (90) 

 
  

2
0

24 ln10 10y*
d

d y* d

 
          (91) 

After Δτ0 was determined, the systematic shear stress uncertainty, Δτsys, was taken 

into account, naming this variable ΔτT : 

   
22

0T j j sys j                (92) 

Finally, the average shear stress uncertainty of the whole cross section, ΔτPreston, was 

obtained by accumulating ΔτT along the differential wetted perimeter, δp, and dividing 

the sum by the wetted perimeter of the channel, P: 
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Preston
1

1 M

T j j

j

p
P

  


            (93) 

The corresponding results for each run are shown on table 25. 

5.3.2 Shear stress profiles 

The boundary shear stress measurements were plotted dimensionless for 

each run, obtaining transversal profiles. Later, they were grouped according to their 

depth, producing three graphs (figures 87, 88 and 89). The vertical axis corresponds 

to the relative shear stress, τ/ρgRS, and the horizontal axis to the relative distance 

from the centre line, y/(W/2). 

From each graph, it is observed that the curves are following the same 

pattern, varying for each depth, and that the data are falling within the common 

uncertainty, except for H1S2 and H2S2, but nearly half sections are between the 

limits. With respect to H2S2, it has the same shape that H2S1 and H2S3, just 

displaced, indicating a probable mistake during its measurements.  

Due to the irregularity that the profiles presented, it is not possible to identify a 

divide, as was noticed on the isovelocity contours, and velocity profiles. Such an 

irregularity can be attributed to the large uncertainty yield by the Preston tube.  

In general, the highest τ/ρgRS is located at the centre line, in agreement with 

the velocity profiles, decreasing while approaching to the margin. By comparing the 

three figures, it can be appreciated that the curves are behaving differently. The 

gradient of H1 is higher than the H2 gradient, being these milder, and the H3 semi-

constant during the first 60% of the section. These can be explained due to the 
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geometry affects the flow, although being the same channel, the margin slope varies 

for each depth. Hence, if the velocity and shear stress performs distinct for each 

channel shape, it is expected to find a particular  secondary flow pattern per 

geometry. 

 

Figure  87. Dimensionless variation of the experimental boundary shear stress, τ0, with respect to the 
average shear stress, ρgSR, along the dimensionless half cross section, y/(W/2). The plot corresponds to 
the H2 experiments (hc≈3.50cm). Three series are shown, each one for a different slope (S1=0.001485, 
S2=0.001725 and S3=0.005044). The uncertainty bars indicate that H1S1 and H1S3 are within the same 
limits, while H1S2 is not. 
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Figure  88. Dimensionless variation of the experimental boundary shear stress, τ0, with respect to the 
average shear stress, ρgSR, along the dimensionless half cross section, y/(W/2). The plot corresponds to 
the H3 experiments (hc≈5.0cm). Three series are shown, each one for a different slope (S1=0.001485, 
S2=0.001725 and S3=0.005044). The uncertainty bars indicate that H2S1 and H2S3 are within the same 
limits, while H2S2 is not. 

 

Figure  89. Dimensionless variation of the experimental boundary shear stress, τ0,with respect to the 
average shear stress, ρgSR, along the dimensionless half cross section, y/(W/2). The plot corresponds to 
the H3 experiments (hc≈7.0cm). Three series are shown, each one for a different slope (S1=0.001485, 
S2=0.001725 and S3=0.005044). The uncertainty bars indicate that most of the data are within the 
limits. 
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With respect to the experiments on glue sand surface, due to technical 

difficulties, it was not possible to measure τ0, but was it estimated by 2 8df U   . 

Such results were plotted, since they are based on Ud, their patterns are quite similar 

to the velocity profiles on section 5.2.3., an as expected the uncertainty is quite high, 

over 20% 

 

Figure  90. Dimensionless boundary shear stress distribution of the H1 experiments carried out on 
rough surface (d50=1.46mm). Three sets are shown along with their uncertainty bars. It can be observed 
that the series H1S5 and H1S6 are following the same pattern. 
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Figure  91. Dimensionless boundary shear stress distribution of the H2 experiments carried out on 
rough surface (d50=1.46mm). Three sets are shown along with their uncertainty bars. It can be observed 
that the sets are following the same pattern with slightly variations. 

 

 

Figure  92. Dimensionless boundary shear stress distribution of the H3 experiments carried out on 
rough surface (d50=1.46mm). Three sets are shown along with their uncertainty bars. It can be observed 
that the series H3S5 and H3S6 are following the same pattern, while only one third of H2S4 falls within 
the limits of the other two sets. 
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5.4 Main findings  

After the uncertainty analysis carried out for discharge, velocity and shear 

stress, it is possible to say that are acceptable. They constitute an important piece of 

data that will allow modellers to calibrate their numerical models. 

In general, with respect to the isovelocity curves, depth average velocity and 

shear stress profiles, similar patterns were found among the runs with equal depth 

and boundary condition. Specifically about the isovels, kinks were easily spotted, 

relating them to the presence of the secondary flow cells, in agreement with the 

observation of Tominaga et al (1989) and Wang and Cheng (2005). More kinks were 

found on rough surface experiments and on higher depths sets, implying more 

activity of secondary flow. 

In order to analyse the isovelocity contours, depth average velocity profiles 

were produced. The previous observations were validated, finding inflection points on 

the curves, that are associated with the divide between secondary flow cells. 

However, it was not possible to observe such patterns in the shear stress profiles, 

due to the nature of the Preston tube. 

The shape of the velocity and shear stress profiles are constants per channel 

geometry, without being affected by the slope. This confirms the observations on the 

numerical model simulations (table 6, section 3.4.2.2), whom states that the slope 

does not modify the ratio between bankside width, T, and central depth, hc.  

 

 

 



 

 

 Chapter 6. Calibration and Validation of the numerical model 

An investigation of the ability of a numerical model  129 
to predict the cross sectional shape of an alluvial channel 

 

6 CHAPTER 6 

CALIBRATION AND VALIDATION OF THE NUMERICAL 

MODEL 

 

6.1 Introduction 

The current section presents the calibration process carried out for the quasi 

2D flow model chosen, i.e. the SKM (Shiono and Knight, 1990), with an experimental 

cross section, representing a self-formed channel. By this, the ability of the numerical 

model to predict the water capacity of such geometries is explored. The behaviour of 

the flow in such geometries is particularly important due to it determines the stable 

cross section to be formed by the stream. 

It should be noted that one of the advantages of the selected flow model 

(SKM) is its flexibility, permitting adjustments in: geometry, slope, S, lateral variation 

of the friction factor, f, and transversal flow (that is, the secondary flow gradient, Γ, 

and eddy viscosity, λ. Hence, it is feasible to reproduce numerically the results 

obtained from the physical experiment. The information related to the lab work is 

shown in chapters 5. 

So far, there is a good understanding in predicting the flow lateral distribution 

for rectangular and trapezoidal cross sections(e.g. Knight, 2006), incorporating even 

the transversal flow. However the flow behaviour in self-formed stable geometries 

remains unclear, specifically the secondary flow terms (Γ and  λ in the case of the 
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SKM). With respect to the geometry of the mentioned sections, many authors have 

noticed that the shape is quasi-parabolic(e.g. Ikeda, 1981, Macky, 1999, Stebbings, 

1963, Babaeyan-Koopaei, 1997 , Diplas, 1990), being the side slope, next to the 

margin, equivalent to the angle of repose of the bed material. Hence, it is not a 

coincidence that some authors originally tried to represent natural sections as 

trapezoidal ones.  

The calibration strategy consisted of proposing values for f based on the 

experiments, and λ from the method of Lundgren and Jonsson (1964), which 

depends on the section geometry only. Hence, Γ was the only unknown variable, 

being possible to identify it by calibrating each experiment. The following sections 

describe the methodology carried out for f, λ and Γ. 

 

6.2 Friction factor 

6.2.1 Determination of the friction factor for smooth surface 

 

The friction factor, f, can be calculated from the lab work, by combining the 

depth average velocity, Ud, and the boundary shear stress, 2 8df U   . This was 

achieved for each experiment on PVC surface, obtaining the lateral variation of f. 

Once it was known, the numerical model was feed with such results. But since the 

employed numerical model uses the SKM analytical solution, dividing the section in 6 

panels, it was required to calculate an f average for each segment. The results for 

each case are shown in figures 93to 101, where the main values along the average 

can be observed. It should be noted that the dashed lines connecting the f values are 
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only showing the tendency. With respect to the panel next to the margin, only one 

point was considered, being the smaller one, due to it behaved better. 

By analysing the figures with f results, it is observed that smaller values are 

obtained next to the centreline (y=0), increasing while are approaching to the margin, 

yielding a parabolic shape. This is in agreement with the general assumption that a 

small depth implies a high flow restriction due to the bed surface, and vice versa. It 

was noticed that the f values at centreline were close to the ones obtained from the 

stage discharge curves, varying with each longitudinal slope, S, as tables 11 to 16 

are showing (section 5.1) 

Due to f was determined from measurements, it was required to run a 

uncertainty analysis in order to assess the confidence of the results. The variables 

implied were Ud and τ0, with their corresponding uncertainties ΔUd a Δτ0, whom were 

obtained on sections 5.2.1 and 5.3.1 (equations 74 and 90). The uncertainty of f, Δf, 

is defined as: 

2

8 2 d

d d

U
f

U U

 

 
 



  
   

 
          (94) 

 It was noted the great difference among uncertainties, being significant for 

some experiments, e.g. H1S1 (figure93), H1S2 (figure 96), and minimum for others, 

i.e. H1S3 (figure 99), H2S3 (figure 100) and H3S3 (figure 101). This can be 

explained due to small pressure differences produce high uncertainties, and in the 

case of S1 and S2 set of experiments, the flow pressures were smaller due to the 

flow velocity was small, yielding an small pressure difference. The pressure was 

measured by a manometer, and when the difference was small between the constant 
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and dynamic heads, the systematic errors meant an important percentage of the 

collected data, and subsequently a high uncertainty was produced. 

 

Figure 93. Friction factor, f, of the run H1S1. Two series are presented: H1S1 that was obtained based 
on velocity and boundary shear stress measurements (error bars are shown); and H1S1-favg that is the 
average value considered for calibration. This last was divided in five segments, corresponding to the 
SKM panels. 
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Figure 94. Friction factor, f, of the run H2S1. Two series are presented: H2S1 that was obtained based 
on velocity and boundary shear stress measurements (error bars are shown); and H2S1-favg that is the 
average value considered for calibration. This last was divided in five segments, corresponding to the 
SKM panels. 

 

 

Figure 95. Friction factor, f, of the run H3S1. Two series are presented: H3S1 that was obtained based 
on velocity and boundary shear stress measurements (error bars are shown); and H3S1-favg that is the 
average value considered for calibration. This last was divided in five segments, corresponding to the 
SKM panels. 
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Figure 96. Friction factor, f, of the run H1S2. Two series are presented: H1S2 that was obtained based 
on velocity and boundary shear stress measurements (error bars are shown); and H1S2-favg that is the 
average value considered for calibration. This last was divided in five segments, corresponding to the 
SKM panels. 

 

Figure 97. Friction factor, f, of the run H2S2. Two series are presented: H2S2 that was obtained based 
on velocity and boundary shear stress measurements (error bars are shown); and H2S2-favg that is the 
average value considered for calibration. This last was divided in five segments, corresponding to the 
SKM panels. 
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Figure 98. Friction factor, f, of the run H3S2. Two series are presented: H3S2 that was obtained based 
on velocity and boundary shear stress measurements (error bars are shown); and H3S2-favg that is the 
average value considered for calibration. This last was divided in five segments, corresponding to the 
SKM panels. 

 

 

Figure 99. Friction factor, f, of the run H1S3. Two series are presented: H1S3 that was obtained based 
on velocity and boundary shear stress measurements (error bars are shown); and H1S3-favg that is the 
average value considered for calibration. This last was divided in five segments, corresponding to the 
SKM panels. 
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Figure 100. Friction factor, f, of the run H2S3. Two series are presented: H2S3 that was obtained based 
on velocity and boundary shear stress measurements (error bars are shown); and H2S3-favg that is the 
average value considered for calibration. This last was divided in five segments, corresponding to the 
SKM panels. 

 

 

 

Figure 101. Friction factor, f, of the run H3S3. Two series are presented: H3S3 that was obtained based 
on velocity and boundary shear stress measurements (error bars are shown); and H3S3-favg that is the 
average value considered for calibration. This last was divided in five segments, corresponding to the 
SKM panels. 
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6.2.2 Determination of the friction factor for rough surface 

With respect to the calibration of the glue sand experiments, it was not 

possible to obtain the friction factor based on measurements. This because the 

boundary shear stress,τ0, was not taken, due to the Preston tube technique, same 

that was used for PVC, is not valid for rough surface (e.g. Barlow et al., 1999). 

Hence, an ingenious methodology was proposed. It was found by observing the 

behaviour of the lateral variation of the friction factor (figures 93 to 101).  

As was mention on section 6.2.1, the distribution of f  was parabolic, and it 

was noticed that the values were close for similar depths, e,g, H1S1, H1S2 and 

H1S3 (figures93, 96 and 99). Then, the next step was to compare the f curves having 

common depths (figures 102, 105 and 108). From such contrapositions, it was 

observed that f values were in the same order of magnitude, changing with the depth 

and slope. However, the parabolic shape was kept, identifying a pattern. Hence it 

was suggested to divide each curve by its central friction value, fc, in the vertical, and 

by half width on the horizontal, W/2, comparing them (figures 103, 106 and 109). The 

graphs presented a remarkable coincidence, especially for small depths (H1, figure 

103), subsequently an uncertainty analysis was carried out, being the curves within 

the limits.  

In order to explain the similar pattern followed by the behaviour of f/fc, the 

depth average velocity, Ud, and boundary shear stress, τ0, distributions were plotted 

dimensionless, i.e. Ud divided by the average velocity measured by a Pitot tube, VPitot, 

τ0 by the average shear stress, ρgRS, along with their corresponding uncertainty 
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analysis, and finally the horizontal, y, by half width, W/2. The velocity comparisons are 

shown in figures 78, 81 and 84, and the shear stress ones in figures 87, 88  and 89. 

With respect to Ud/VPitot, the curves are in agreement, particularly those of H1 (figure 

78), being slightly wider in H2 and H3 (figures 81 and 84), but within the uncertainty 

limits. This was explained in chapter 3, where it was found that the shape of the 

lateral Ud distribution is constant, and independent of the slope, and demonstrated 

here.  

On the other hand, the τ0/ρgRS curves present higher irregularities, being most 

of them in agreement and satisfying the uncertainty, except for H1S2 and H2S2 

(figures 87 and 88). Then, it was recommended to remove such experiments from the 

calibration process. This pattern can be explained due to τ0 is directly proportional to 

Ud, and both lateral variation shapes are non-related to the longitudinal slope, S. 

Hence, it is expected a narrow lateral distribution for f curves, which are affected by S 

but its influence reduced when f is affected by fc, yielding compact curves (figures 

103, 106 and 109). 

Once the relationship f/fc was accepted as constant for each depth of the 

experiments, a best fit polynomial equation was obtained of the type 

  2cf f g y W  (figures 104, 107 and 110). As mentioned above, fc was taken 

from the friction factor obtained from the stage discharge curves previously done 

(section 5.1), and W/2 was already given for each cross section. Then, the rough 

surface experiments considered the lateral distribution of f during the calibration 

process. 
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Table 27.  Summary of the values of f found during the calibration per experiment, and per panel. 

1 2 3 9 10 11 12 13 

   
f 

 
Material Exp. P1 and P2 P3 P4 P5 P6 

H1 

PVC h1s3 0.0194 0.0197 0.0203 0.0220 0.0266 

PVC h1s1 0.0200 0.0203 0.0199 0.0224 0.0263 

Glue Sand h1s4 0.0628 0.0617 0.0628 0.0696 0.0764 

Glue Sand h1s6 0.0567 0.0557 0.0567 0.0629 0.0690 

Glue Sand h1s5 0.0601 0.0591 0.0601 0.0667 0.0731 

PVC h1s2 0.0188 0.0184 0.0190 0.0210 0.0242 

H2 

Glue Sand h2s4 0.0529 0.0538 0.0559 0.0602 0.0647 

Glue Sand h2s6 0.0490 0.0498 0.0517 0.0558 0.0599 

Glue Sand h2s5 0.0519 0.0528 0.0548 0.0591 0.0635 

PVC h2s3 0.0186 0.0185 0.0185 0.0195 0.0228 

PVC h2s1 0.0208 0.0214 0.0223 0.0249 0.0319 

PVC h2s2 0.0169 0.0168 0.0180 0.0193 0.0225 

H3 

Glue Sand h3s5 0.0472 0.0494 0.0490 0.0539 0.0581 

Glue Sand h3s6 0.0447 0.0467 0.0464 0.0510 0.0550 

PVC h3s2 0.0173 0.0177 0.0177 0.0198 0.0225 

Glue Sand h3s4 0.0484 0.0506 0.0502 0.0553 0.0596 

PVC h3s3 0.0156 0.0172 0.0167 0.0172 0.0201 

PVC h3s1 0.0193 0.0196 0.0199 0.0214 0.0252 
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6.3 H1 experiments 

 

Figure 102.Variation of the friction factor, f, along half cross section of the H1 experiments 
(i.e.hc≈3.5cm).Three series are presented, with their error bars, corresponding to the three slopes 
employed (S1=0.001485, S2=0.001725 and S3=0.005044). 

 

 

Figure 103. Friction factor variation of the H1 experiments (i.e.hc≈3.5cm) with respect to the central 
friction value, fc, along half dimensionless cross section,  y/(w/2). Three series are presented, with their 
error bars, corresponding to the three slopes employed (S1=0.001485, S2=0.001725 and S3=0.005044). 
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Figure 104. Best fit polynomial equation corresponding to the variation of the friction factor, f, with 
respect to the central value, fc, for H1 experiments (i.e. H1S1, H1S2, H1S3, with hc≈3.5cm). The 
uncertainty bars are showing that most of the points are within the limits. 
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6.4 H2 experiments 

 

Figure 105. Variation of the friction factor, f, along half cross section of the H2 experiments 
(i.e.hc≈5.0cm). Three series are presented, with their error bars, corresponding to the three slopes 
employed (S1=0.001485, S2=0.001725 and S3=0.005044) 

 

 

Figure 106. Friction factor variation of the H2 experiments (i.e.hc≈5.0cm) with respect to the central 
friction value, fc, along half dimensionless cross section,  y/(w/2). Three series are presented, with their 
error bars, corresponding to the three slopes employed (S1=0.001485, S2=0.001725 and S3=0.005044). 
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y = 58.311x6 - 130.55x5 + 111.11x4 - 44.353x3 + 8.4853x2 - 0.5651x + 1.0017
R² = 0.967
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Figure 107.Best fit polynomial equation corresponding to the variation of the friction factor, f, with 
respect to the central value, fc, for H2 experiments (i.e. H2S1, H2S2, H2S3,  with hc≈5.0cm). The 
uncertainty bars are showing that most of the points are within the limits. 
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6.5 H3 experiments 

 

 

Figure 108.Variation of the friction factor, f, along half cross section of the H3 experiments 
(i.e.hc≈7.00cm). Three series are presented, with their error bars, corresponding to the three slopes 
employed (S1=0.001485, S2=0.001725 and S3=0.005044) 

 

Figure 109. Friction factor variation of the H3 experiments (i.e.hc≈7.0cm) with respect to the central 
friction value, fc, along half dimensionless cross section,  y/(w/2). Three series are presented, with their 
error bars, corresponding to the three slopes employed (S1=0.001485, S2=0.001725 and S3=0.005044). 
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y = 103.97x6 - 252.14x5 + 227.37x4 - 90.974x3 + 14.829x2 - 0.4773x + 1.0037
R² = 0.9858

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

f 
/ 

 f
c

y / (W/2)

H3

H3

f/fc cal

Poly. (H3)

 

Figure 110.Best fit polynomial equation corresponding to the variation of the friction factor, f, with 
respect to the central value, fc, for H3 experiments (i.e. H3S1, H3S2, H3S3,  with hc≈7.0cm). The 
uncertainty bars are showing that most of the points are within the limits. 

 

6.6 Determination of  λ 

In order to determine the dimensionless eddy viscosity, λ, to be used by the 

numerical model for a self-formed cross section, it was proposed to use a 

methodology first used by Lundgren and Jonsson (1964). The approach consisted of 

relating λ completely to the geometry of the section, being this an advantage due to 

the difficulty to measure the depth average eddy viscosity, 
yx . It should be noted 

that the method was developed for curve shapes. The definition of λ is expressed as: 

*
yx

U h


 

                     

(95) 

where U* is the shear friction velocity, and h the local depth. 
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Lundgren and Jonsson (1964) obtained the local eddy viscosity, εyx, based on 

U*, the local curvature, c, the perpendicular depth, d, and the perpendicular distance 

with respect to the bottom, z’: 

 

 

1 '
' 20.4 * 1

1 1 '
2
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c
d z

z
U z

c dd
c z



 
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     
     
         (96) 

0U*



             (97) 

Since εyx was determined for each point within the cross section, an average was 

required in order to obtain λ with equation95. It was solved by integrating equation 

with respect to z’: 

0

1 '
d

yx Avg yx dz
d
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    (99) 

 

The results are shown in figure 111. It is observed that the λ values of the 

three depths are in the same order of magnitude, increasing with depth. Due to the 

methodology is valid for curve shapes, λ was not calculated for 0≤y<0.01 and 

0.20<y<0.23, because such segments had none curvature (c=0). Subsequently a λ 

average was obtained for each type of section, shown in table 28, noticing that three 

of them are around 0.070. This is in agreement with other authors, e.g. Ikeda (1981), 
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Nezu and Nakagawa (1993). For practical reasons, λ was taken as 0.070 during the 

calibration, because it has been observed that the variation of λ has a minor impact 

on the SKM results (Knight et al., 1996). 

 

Figure 111. Variation of λ along half cross section obtained by Lundgren and Jonsson (1964) 

 

Table 28.  Average values obtained for each cross sectional geometry based on the results of figure 111. 

hc yx U * h   

3.14 0.06936 

5.00 0.07212 

7.14 0.07323 
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6.7 Γ calibration 

Once f and λ were obtained, the only unknown variable was Γ. In order to 

determine it, a calibration process was required. It consisted of matching the 

numerical model with the experimental data, for depth average velocity, Ud, and 

boundary shear stress, τ0, in the case of smooth surface (PVC), and only Ud for glue 

sand experiments (d50=1.46mm). However, due to τ0 can be calculated from Ud, τ0 

was considered as well for rough surface. The procedure evaluated different Γ values 

for the six different SKM panels, summing the differences between the calculated 

and the experimental results, Σ, choosing the Γ yielding the smaller sum. In order to 

give confidence to the calibration, an uncertainty analysis was run.  

The calibrated results plotted along the physical data were attached in the 

Appendix C. On it, all the runs are found, for smooth and rough surface, for velocity 

and shear stress. A summary was plotted in this section, grouping them by depth and 

surface (figures 112 to 135, section 6.7.1). For comparison purposes the graphs 

were presented dimensionless, i.e. Ud/(Q/A) and τ0/ρgRS, where Q is the discharge of 

the corresponding run, that was measured by an electromagnetic flowmeter; A, the 

cross sectional area; and  ρgRS, being the average shear stress. It is possible to say 

that all the calibrations reached an acceptable level, due to all the cases are falling 

within the uncertainty bars of the physical data. 
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6.7.1 Calibrated plots 

The section is showing first the runs on smooth surface, starting with the H1 

simulated data profiles, and subsequently  graph showing both sets of data: 

calculated and physical data. Then, following the same logic the shear stress profiles 

for H1 are presented. Later, the same order for H2 runs is taken, and finally for H3. 

The process is repeated for rough surface experiments. 

From the 18 sets of data calibrated (9 in PVC surface and 9 in glue sand 

surface), four of them seem to be out of the pattern. These are H1S2, failing on its τ0 

curve (figures 114 and 115); H1S4, on Ud and τ0 (figures 79, 90 and 127); H2S2, on 

τ0 (figures 118 and 119); and H3S4, on τ0as well (figure 92). Those calibrations were 

not taken into account for the conclusions, due to their inconsistency. 

The steps that can be appreciated on the shear stress graphs correspond to 

the friction factor variation. This due to it is not changing smoothly, it is varying 

drastically at the SKM panels. However, the impact of f on Ud is not as dramatic. 
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Figure  112. Dimensionless calibrated velocity distribution of the H1 experiments carried out on smooth 
surface (PVC). It can be observed that the series are following the same pattern with slightly variations. 

 

 

Figure 113. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, corresponding to the H1 sets on smooth surface (PVC). It can be observed that the 
calibrated simulations fall within the limits. 
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Figure 114. Dimensionless calibrated boundary shear stress distribution of the H1 experiments carried 
out on smooth surface (PVC). Two patterns can be observed, one for H1S3 and H1S1, and another one 
for H1S2. 

 

 

Figure 115. Dimensionless calibrated boundary shear stress distributions along the experimental data 
with their uncertainty bars, corresponding to the H1 sets on smooth surface (PVC). It can be observed 
that the calibrated simulations fall within the error limits. 
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Figure 116. Dimensionless calibrated velocity distribution of the H2 experiments carried out on smooth 
surface (PVC). It can be observed that the series are following the same pattern with slightly variations. 

 

 

Figure 117. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, corresponding to the H2 sets on smooth surface (PVC). It can be observed that the 
calibrated simulations fall within the limits. 
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Figure 118. Dimensionless calibrated boundary shear stress distribution of the H2 experiments carried 
out on smooth surface (PVC). Two patterns can be observed, one for H2S3 and H2S1, and another one 
for H2S2. 

 

Figure 119. Dimensionless calibrated boundary shear stress distributions along the experimental data 
with their uncertainty bars, corresponding to the H2 sets on smooth surface (PVC). It can be observed 
that the calibrated simulations fall within the error limits. 
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Figure 120. Dimensionless calibrated velocity distribution of the H3 experiments carried out on smooth 
surface (PVC). It can be observed that the series are following the same pattern with slightly variations. 

 

Figure 121. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, corresponding to the H3 sets on smooth surface (PVC). It can be observed that the 
calibrated simulations fall within the limits. 
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Figure 122. Dimensionless calibrated boundary shear stress distribution of the H3 experiments carried 
out on smooth surface (PVC). It can be observed that the series are following the same pattern with 
variations. 

 

 

Figure 123. Dimensionless calibrated boundary shear stress distributions along the experimental data 
with their uncertainty bars, corresponding to the H3 sets on smooth surface (PVC). It can be observed 
that the calibrated simulations fall within the error limits. 
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Figure  124. Dimensionless calibrated velocity distribution of the H2 experiments carried out on rough 
surface (d50=1.46mm). Two different patterns can be observed. 

 

 

 

Figure 125. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, corresponding to the H1 sets onrough surface (d50=1.46mm). It can be observed that 
the calibrated simulations fall within the limits. 
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Figure  126. Dimensionless calibrated boundary shear stress distribution of the H1 experiments carried 
out on rough surface (d50=1.46mm). Two patterns can be observed, one for H1S5 and H1S6, and another 
one for H1S4. 

 

Figure  127. Dimensionless calibrated boundary shear stress distributions along the experimental data 
with their uncertainty bars, corresponding to the H1 sets on rough surface (d50=1.46mm). It can be 
observed that the calibrated simulations fall within the error limits. 
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Figure 128. Dimensionless calibrated velocity distribution of the H2 experiments carried out on rough 
surface (d50=1.46mm). It can be observed that the series are following the same pattern with slightly 
variations. 

 

 

 

Figure 129. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, corresponding to the H2 sets onrough surface (d50=1.46mm). It can be observed that 
the calibrated simulations fall within the limits. 
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Figure 130. Dimensionless calibrated boundary shear stress distribution of the H3 experiments carried 
out on rough surface (d50=1.46mm). It can be observed that the series are following the same pattern 
with small variations. 

 

 

Figure 131. Dimensionless calibrated boundary shear stress distributions along the experimental data 
with their uncertainty bars, corresponding to the H2 sets on rough surface (d50=1.46mm). It can be 
observed that the calibrated simulations fall within the error limits. 
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Figure 132. Dimensionless calibrated velocity distribution of the H3 experiments carried out on rough 
surface (d50=1.46mm). It can be observed that the series are following the same pattern with slightly 
variations. 

 

 

Figure 133. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, corresponding to the H3 sets onrough surface (d50=1.46mm). It can be observed that 
the calibrated simulations fall within the limits. 



 

 

 Chapter 6. Calibration and Validation of the numerical model 

An investigation of the ability of a numerical model  161 
to predict the cross sectional shape of an alluvial channel 

 

 

Figure 134. Dimensionless calibrated boundary shear stress distribution of the H3 experiments carried 
out on rough surface (d50=1.46mm). Two patterns can be observed, one for H3S5 and H3S6, and another 
one for H3S4. 

 

Figure  135. Dimensionless calibrated boundary shear stress distributions along the experimental data 
with their uncertainty bars, corresponding to the H3 sets on rough surface (d50=1.46mm). It can be 
observed that the calibrated simulations fall within the error limits. 
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6.7.2 Γ results 

The calibrated values of Γ are shown in table 29, for the 18 experiments. The 

first column notes the depth key (H1, H2 or H3), the second one the type of surface 

material (glue sand or PVC), the third one the code of the experiment, composed by 

a depth and slope (e.g. h1s1). From the 4th to the 8th columns, multiples of:  

p=Γ/CρgShc             (100) 

are shown for each SKM panel, where p is the secondary flow factor per panel, and C 

the coefficient  of secondary flow for self-formed bankside. The 9th to the 13th 

columns are indicating the value used for f per panel. On the 14th the value of C is 

shown (equation 100). With respect to the 15th and 16th, the sum of the differences 

between experimental and simulated values is indicated for velocity and shear stress. 

From the 17th to the 20th, geometrical values are presented, i.e. central depth, hc, 

longitudinal slope, S, and hydraulic radius, R, as well as the average shear stress, 

τaveg. Finally, the 21st to 25th are showing the actual Γ data. 

                    

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Material Exp. P1 and P2 P3 P4 P5 P6 P1 and P2 P3 P4 P5 P6 C Σ=|U dPitot  - U dSKM | Σ=|τ m  - τ SKM | h S R τ aveg P1 and P2 P3 P4 P5 P6

PVC h1s3 1 1 1 -2 -4 0.0194 0.0197 0.0203 0.0220 0.0266 0.055 0.1036 0.3183 0.034 0.00504 2.39 1.6798 0.0924 0.0924 0.0924 -0.1848 -0.3696

PVC h1s1 1 1 -1 -1 -3 0.0200 0.0203 0.0199 0.0224 0.0263 0.070 0.0401 0.2170 0.033 0.00149 2.36 0.4866 0.0341 0.0341 -0.0341 -0.0341 -0.1022

Glue Sand h1s4 -1 -1 -1 -1 -1 0.0628 0.0617 0.0628 0.0696 0.0764 0.175 0.0597 0.3676 0.033 0.00494 2.28 1.5857 -0.2775 -0.2775 -0.2775 -0.2775 -0.2775

Glue Sand h1s6 1 1 1 1.25 1 0.0567 0.0557 0.0567 0.0629 0.0690 0.195 0.0710 0.0867 0.035 0.00148 2.42 0.5081 0.0991 0.0991 0.0991 0.1239 0.0991

Glue Sand h1s5 1 1 1 1.5 1 0.0601 0.0591 0.0601 0.0667 0.0731 0.200 0.0446 0.1172 0.035 0.00174 2.41 0.5964 0.1193 0.1193 0.1193 0.1789 0.1193

PVC h1s2 1 1 1 0.5 -0.5 0.0188 0.0184 0.0190 0.0210 0.0242 0.245 0.0491 0.2421 0.035 0.00172 2.44 0.5964 0.1461 0.1461 0.1461 0.0731 -0.0731

Glue Sand h2s4 -1 2 2 0.5 1 0.0529 0.0538 0.0559 0.0602 0.0647 0.060 0.1004 0.5760 0.051 0.00494 3.45 2.4488 -0.1469 0.2939 0.2939 0.0735 0.1469

Glue Sand h2s6 1 1 1 1 2 0.0490 0.0498 0.0517 0.0558 0.0599 0.085 0.0389 0.1196 0.050 0.00148 3.43 0.7301 0.0621 0.0621 0.0621 0.0621 0.1241

Glue Sand h2s5 1 1 1 0.5 1 0.0519 0.0528 0.0548 0.0591 0.0635 0.100 0.0499 0.1654 0.050 0.00174 3.43 0.8579 0.0858 0.0858 0.0858 0.0429 0.0858

PVC h2s3 1 1 0.333 -1 -3.5 0.0186 0.0185 0.0185 0.0195 0.0228 0.105 0.3381 0.4034 0.051 0.00504 3.51 2.5061 0.2631 0.2631 0.0877 -0.2631 -0.9210

PVC h2s1 0.5 1 0.5 -1 -2.5 0.0208 0.0214 0.0223 0.0249 0.0319 0.115 0.0824 0.2778 0.050 0.00149 3.47 0.7240 0.0416 0.0833 0.0416 -0.0833 -0.2082

PVC h2s2 1 1 0.5 0.5 -1 0.0169 0.0168 0.0180 0.0193 0.0225 0.295 0.1568 0.1744 0.053 0.00172 3.63 0.8909 0.2628 0.2628 0.1314 0.1314 -0.2628

Glue Sand h3s5 1 1 8 -1 2 0.0472 0.0494 0.0490 0.0539 0.0581 0.045 0.0594 0.2465 0.071 0.00174 4.77 1.2159 0.0547 0.0547 0.4377 -0.0547 0.1094

Glue Sand h3s6 1 2 4 1 1 0.0447 0.0467 0.0464 0.0510 0.0550 0.050 0.1695 0.5378 0.071 0.00148 4.75 1.0308 0.0515 0.1031 0.2062 0.0515 0.0515

PVC h3s2 1 1 0.5 -0.5 -2 0.0173 0.0177 0.0177 0.0198 0.0225 0.155 0.2205 0.3887 0.071 0.00172 4.78 1.1980 0.1857 0.1857 0.0928 -0.0928 -0.3714

Glue Sand h3s4 -1 -1 1.5 -2 0.5 0.0484 0.0506 0.0502 0.0553 0.0596 0.155 0.1831 1.3333 0.070 0.00494 4.71 3.4041 -0.5276 -0.5276 0.7914 -1.0553 0.2638

PVC h3s3 0.25 1 0.5 -2 -1 0.0156 0.0172 0.0167 0.0172 0.0201 0.226 0.4230 0.8018 0.070 0.00504 4.68 3.4387 0.1943 0.7772 0.3886 -1.5543 -0.7772

PVC h3s1 1 1 0.5 -0.333 -1.5 0.0193 0.0196 0.0199 0.0214 0.0252 0.240 0.3059 0.2107 0.070 0.00149 4.70 1.0227 0.2454 0.2454 0.1227 -0.0818 -0.3682

Γ 

H1

H2

H3

p f

Table  29. Results obtained and data used to calibration Γ/ρgRS. The experiment key is shown in column 3; the geometrical characteristics on columns 17-19; the 
surface material on column 2; the panel coefficients on columns 4-8; the friction factor used in each panel, on columns 9-13; calibrated Γ/ρgRS, column 14; velocity 
errors on column 15; boundary shear stress error  on column 16; actual value of Γ on columns 21-25. 
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In order to appreciate better the behaviour of the secondary flow gradient, Γ, 

the Γ calibrated (table 29) values were plotted, dividing the results in three graphs 

according to their depths (figures 136, 137 and 138). Additionally, the coefficient 

p=Γ/CρgShc were sketched in the same way (figures 139, 140 and 141). From such 

figures and table 29, it was possible to identify the patterns followed by Γ for their 

corresponding surface and depth, summarizing it on table 30. It should be noted that 

while Γ is increasing along with the depth, for PVC surface, the opposite is happening 

for glue sand surface. Additionally, p=Γ/CρgShc was in agreement for the cases with 

equal surface and depth, also the p was close as well, except for H2S4 and H3S2. 

Hence, it was possible to propose an average for p and its multiples for each depth 

and surface material, shown in table 31. The differences between p values can be 

attributed to the cross sectional variation, in spite of being the same section, the 

hydraulic radius and side slope are changing, altering Γ. Finally, for the prediction of 

self-formed cross sections, it is recommended to use C=Γ/ρgpShc=0.093, and the 

panel multiples as p1=p2=1, p3=1, p4=1, p5=0.75, and p6=1.50. 
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Figure 136. Actual value of Γ obtained after a calibration process for each panel (e.g. P1 and P2). Four 
series are presented, corresponding to the H1 experiments. Similar behaviour can be observed for h1s6 
and h1s5, whom used rough surface (d50=1.46mm). 

 

 

 

Figure 137. Actual value of Γ obtained after a calibration process for each panel (e.g. P1 and P2). Five 
series are presented, corresponding to the H2 experiments. Similar behaviour can be observed forh2s5 
and h2s6, whom used rough surface (d50=1.46mm), and for h2s3 and h2s1, whom used smooth surface 
(PVC). 
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Figure 138. Actual value of Γ obtained after a calibration process for each panel (e.g. P1 and P2). Five 
series are presented, corresponding to the H3 experiments. Similar behaviour can be observed for h3s5 
and h3s6, whom used rough surface (d50=1.46mm), and for h3s1 and h3s2, whom used smooth surface 
(PVC). 

 

 

 

Figure 139. Values obtained for p per panel. Four series are presented, corresponding to the H1 
experiments. Similar behaviour can be observed for h1s5 and h1s6, whom used rough surface 
(d50=1.46mm), and for h1s1 and h1s3, whom used smooth surface (PVC). 
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Figure 140. Values obtained for p per panel. Five series are presented, corresponding to the H2 
experiments. Similar behaviour can be observed for h2s4, h2s5 and h2s6, whom used rough surface 
(d50=1.46mm), and for h2s1 and h2s3, whom used smooth surface (PVC). 

 

 

 

 

Figure 141. Values obtained for p per panel. Five series are presented, corresponding to the H3 
experiments. Similar behaviour can be observed for h3s5 and h3s6, whom used rough surface 
(d50=1.46mm), and for h3s1, h3s2 and h3s3, whom used smooth surface (PVC). 
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Table  30. Summary of the calibrated values found for p and C, per experiment and panel. 

1 2 3 4 5 6 7 8 9 

   
p 

 

 
Material Exp. p1 and p2 p3 p4 p5 p6 C 

H1 

PVC h1s3 1 1 1 -2 -4 0.055 

PVC h1s1 1 1 -1 -1 -3 0.070 

Glue Sand h1s6 1 1 1 1.25 1 0.195 

Glue Sand h1s5 1 1 1 1.5 1 0.200 

H2 

Glue Sand h2s4 -1 2 2 0.5 1 0.060 

Glue Sand h2s6 1 1 1 1 2 0.085 

Glue Sand h2s5 1 1 1 0.5 1 0.100 

PVC h2s3 1 1 0.3333 -1 -3.5 0.105 

PVC h2s1 0.5 1 0.5 -1 -2.5 0.115 

H3 

Glue Sand h3s5 1 1 8 -1 2 0.045 

Glue Sand h3s6 1 2 4 1 1 0.050 

PVC h3s2 1 1 0.5 -0.5 -2 0.155 

PVC h3s3 0.25 1 0.5 -2 -1 0.226 

PVC h3s1 1 1 0.5 -0.3333 -1.5 0.240 

 

 

Table 31. Summary of the calibrated values found for p and C, per depth, surface material and panel. 

1 2 3 4 5 6 7 8 

  
p 

 

 
Material P1 and p2 p3 p4 p5 p6 C 

H1 
Glue Sand 1 1 1 1.375 1 0.198 

PVC 1 1 0 -1.5 -3.5 0.063 

H2 
Glue Sand 1 1 1 0.75 1.5 0.093 

PVC 0.75 1 0.4167 -1 -3 0.110 

H3 
Glue Sand 1 2 6 0 1.5 0.048 

PVC 0.625 1 0.5 -1.1667 -1.3 0.233 
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6.8 Validation 

In order to corroborate the results obtained in the previous section, where 

C=Γ/ρgpShc=0.093,using six SKM panels, and the methodology for the variation of f, it 

was required to try them on the Yu and Knight (1998) model for the prediction of self-

formed channels and compare the products with experimental data, i.e. Babaeyan-

Koopaei (1997 ) and Macky (1999).  The model was described in chapter 3and 

analysed in section 3.4, employing six SKM panels, two for the central flatbed and 

four equidistant on the bankside, affecting Γ on each panel by the following factors, 

p1=p2=1, p3=1, p4=1, p5=0.75, and p6=1.50 (pi, panel i). 

 

With respect to the set of experimental data selected to compare the proposed 

factors, they were the experiments of Babaeyan-Koopaei (1997 ) (table 35) and 

Macky (1999) (table 32), whom produced self-formed sections in the laboratory, 

using d50=1mm and d50=3.42mm. The advantage of these experiments was that they 

were alternative to the ones carried out by Ikeda (1981), and in the case of 

Babaeyan-Koopaei (1997 ), more information was provided, e.g. hydraulic area, A, 

carved slope, Sbed, water surface slope, Sw, and the transversal geometry. 
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Table 32. Experimental results for self-formed cross sections provided by Macky (1999). The material 
used was uniform sand d50=3.42, α=36.5º and μ=0.74. 

  S Q W hc Qs 

Run   (L/s) (m) (m) ml/s 

2 0.00958 51.00 1.86 0.0409 2.20 

3 0.00800 92.20 3.27 0.0455 6.20 

4 0.00681 176.20 4.47 0.0523 22.00 

5 0.00638 12.10 0.50 0.0476 0.00 

6 0.00535 72.40 2.19 0.0657 0.70 

7 0.00529 159.40 3.48 0.0692 6.10 

8 0.00593 257.20 5.06 0.0724 25.60 

9 0.00350 111.40 2.38 0.0964 0.60 

 

The validation process consisted of compare the results of the numerical 

model employing Γ/ρgpShc=0, as was originally proposed by Yu and Knight (1998), 

and Γ/ρgpShc=0.093, value found in this research, against the experimental data 

(tables 33 and 34). Then, the numerical model was fed by the corresponding 

longitudinal slope, S, sand diameter, d, and discharge, Q, of each lab test, obtaining 

two sets of results per run with the geometrical information of the cross section, i.e. 

centre line depth, hc, top with, W, and half central flatbed, b/2. Later the errors 

between the calculated and the lab data were obtained and reported in percentage, 

being ΔQ, Δhc, ΔW and ΔA. Such results are shown in tables 33 and 34, for Macky 

(1999), and tables 36 and 37, for the data of Babaeyan-Koopaei  (1997 ). 
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Table 33. The results of the simulations trying to reproduce the experiments of Macky (1999) (table 32). 
The numerical model employed was the one of Yu and Knight (1998), using  Γ/ρgpShc=0.10 and the 
variation of f for the bank side, f/fc. The errors with respect to the lab data are provided as well (ΔQ, 

ΔW and Δhc). 

  Yu and Knight Model, Γ/ρgpShc =0.10 Errors 

  Qs Q W hc A b/2 T/2 (T/2) / hc ΔQ ΔW Δhc 

Run ml/s (L/s) (m) (m) (m
2
) (m)     (%) (%) (%) 

9 0.00 111.40 2.1887 0.0868 0.1724 0.8882 0.2061 2.3753 0.00% 8.04% 9.99% 

6 0.60 72.40 2.2774 0.0566 0.1203 1.0049 0.1338 2.3624 0.00% 4.09% 13.79% 

5 0.70 12.10 0.5600 0.0474 0.0221 0.1681 0.1119 2.3572 0.00% 12.67% 0.32% 

7 2.20 159.40 4.7839 0.0573 0.2616 2.2566 0.1353 2.3627 0.00% 37.31% 17.22% 

3 6.10 92.20 4.5459 0.0378 0.1651 2.1841 0.0888 2.3495 0.00% 39.10% 16.93% 

4 6.20 176.20 7.0916 0.0444 0.3039 3.4412 0.1046 2.3547 0.00% 58.58% 15.03% 

2 22.00 51.00 3.1566 0.0315 0.0954 1.5044 0.0739 2.3435 0.00% 69.71% 22.91% 

8 25.60 257.20 8.7332 0.0511 0.4304 4.2461 0.1205 2.3591 0.00% 72.46% 29.46% 

                  Average: 37.74% 15.71% 

 

 

Table 34. The results of the simulations trying to reproduce the experiments of Macky (1999) (table 32). 
The numerical model employed was the one of Yu and Knight (1998), using  Γ/ρgShc=0 and the variation 
of  f on the bank side, f/fc. The errors with respect to the lab data are provided as well (ΔQ, ΔW and 

Δhc). 

  Yu and Knight, Γ=0 Errors 

  Qs Q W hc A b/2 T/2 (T/2) / hc ΔQ ΔW Δhc 

Run ml/s (L/s) (m) (m) (m^2) (m)     (%) (%) (%) 

9 0.00 111.40 2.4619 0.0812 0.1830 1.0181 0.2129 2.6204 0.00% 3.44% 15.73% 

6 0.60 72.40 2.5877 0.0530 0.1287 1.1555 0.1383 2.6087 0.00% 18.27% 19.29% 

5 0.70 12.10 0.6196 0.0444 0.0233 0.1941 0.1157 2.6039 0.00% 24.66% 6.67% 

7 2.20 159.40 5.4670 0.0536 0.2807 2.5936 0.1399 2.6090 0.00% 56.92% 22.50% 

3 6.10 92.20 5.2260 0.0354 0.1780 2.5211 0.0919 2.5971 0.00% 59.92% 22.24% 

4 6.20 176.20 8.1453 0.0416 0.3273 3.9644 0.1082 2.6018 0.00% 82.14% 20.45% 

2 22.00 51.00 3.6341 0.0295 0.1030 1.7406 0.0765 2.5916 0.00% 95.38% 27.84% 

8 25.60 257.20 10.0185 0.0478 0.4629 4.8847 0.1246 2.6058 0.00% 97.84% 33.96% 

                  Average: 54.82% 21.09% 
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While comparing the errors between tables 38 and 39, it is observed that in 

average, and in all the cases, the simulated results are closer to the experimental 

data when Γ/ρgpShc=0.10 than Γ/ρgpShc=0, decreasing the error significantly when the 

sediment discharge, Qs, trends to cero. This confirms the stable channel paradox of 

Parker (1978b, and 1979), that predicts stable banksides in threshold condition with a 

central bed carrying material. However, it is inferred that when Qs is higher the 

accuracy of the geometry estimation decreases, perhaps due to the channel bottom 

is moving, altering slightly its hydraulic capacity. 
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Table 35. The results of the experiments carried out by Babaeyan-Koopaei  (1997 ) for self-formed cross 
sections. The used uniform sand material with d50=1mm. 

Test No  Sbed Sw Q W hc A Sw Qs V ΔS 

  Carved   (L/s) (m) (m) (m^2)   (mg/I) m/s 

   channel                 

 1 0.0028 0.00254 4.0 0.4961 0.0248 0.01227 0.00254 527.90 0.33 10.28% 

2 0.0028 0.00298 4.0 0.6065 0.0216 0.01309 0.00298 709.90 0.31 5.88% 

3 0.0028 0.00270 4.0 0.5507 0.0233 0.01278 0.00270 222.20 0.31 3.67% 

4 0.0028 0.00256 4.0 0.5114 0.0239 0.01219 0.00256 105.50 0.33 9.29% 

5 0.0027 0.00268 4.0 0.5111 0.0225 0.01146 0.00268 91.40 0.35 0.63% 

6 0.0027 0.00283 3.0 0.4354 0.0199 0.00867 0.00283 - 0.35 4.59% 

7 0.0028 0.00293 3.0 0.4218 0.0208 0.00875 0.00293 159.00 0.34 4.37% 

8 0.0027 0.00302 2.0 0.3061 0.0185 0.00567 0.00302 - 0.35 10.68% 

9 0.0029 0.00293 2.5 0.3549 0.0203 0.00720 0.00293 101.30 0.35 1.06% 

10 0.0028 0.00281 3.5 0.4569 0.0229 0.01046 0.00281 150.60 0.33 0.28% 

11 0.0030 0.00284 3.5 0.4703 0.0218 0.01024 0.00284 130.80 0.34 5.63% 

12 0.0029 0.00276 3.5 0.4644 0.0228 0.01059 0.00276 130.90 0.33 4.96% 

13 0.0030 0.00280 3.5 0.4730 0.0222 0.01048 0.00280 115.70 0.33 7.30% 

14 0.0028 0.00274 4.0 0.5038 0.0239 0.01204 0.00274 112.70 0.33 2.23% 

15 0.0029 0.00287 4.0 0.5141 0.0232 0.01187 0.00287 87.60 0.34 1.08% 

16 0.0028 0.00272 4.0 0.5294 0.0226 0.01190 0.00272 - 0.34 2.94% 

17 0.0030 0.00288 4.0 0.5663 0.0212 0.01198 0.00288 - 0.33 4.35% 

18 0.0029 0.00310 4.0 0.5787 0.021 0.01210 0.00310 125.80 0.33 6.45% 

19A 0.0024 0.00275 2.5 0.3670 0.0208 0.00766 0.00275 334.60 0.33 12.73% 

20A 0.0024 0.00269 2.5 0.3560 0.0213 0.00760 0.00269 246.40 0.33 10.78% 

21A 0.0024 0.00254 3.0 0.4060 0.0218 0.00886 0.00254 176.80 0.34 5.51% 

22A 0.0025 0.00254 3.5 0.4550 0.0228 0.01041 0.00254 145.90 0.34 1.57% 

23A 0.0026 0.00236 4.0 0.5270 0.0255 0.01190 0.00236 37.10 0.34 10.17% 

24A 0.0027 0.00230 4.0 0.5320 0.0228 0.01219 0.00230 25.80 0.33 17.39% 

25A 0.0026 0.00219 4.0 0.5260 0.0232 0.01223 0.00219 15.60 0.33 18.72% 

26A 0.0025 0.00265 2.5 0.3550 0.0219 0.00779 0.00265 188.10 0.32 5.66% 

27A 0.0026 0.00254 2.5 0.3500 0.0217 0.00761 0.00254 152.00 0.33 2.36% 

28A 0.0024 0.00223 4.0 0.4840 0.0247 0.01199 0.00223 104.80 0.33 7.62% 

29A 0.0024 0.00221 4.0 0.4900 0.0244 0.01201 0.00221 67.60 0.33 8.60% 

30A 0.0025 0.00234 4.0 0.4990 0.0239 0.01191 0.00234 91.70 0.34 6.84% 

31A 0.0026 0.00218 4.0 0.5030 0.0245 0.01235 0.00218 17.70 0.32 19.27% 

32A 0.0026 0.00251 2.5 0.3600 0.022 0.00791 0.00251 119.80 0.32 3.59% 

33A 0.0026 0.00240 2.5 0.3380 0.0225 0.00763 0.00240 124.50 0.33 8.33% 

34A 0.0021 0.00227 2.5 0.3300 0.025 0.00825 0.00227 39.90 0.30 7.49% 

35A 0.0020 0.00223 2.5 0.3050 0.0261 0.00799 0.00223 54.90 0.31 10.31% 

36A 0.0019 0.00210 2.5 0.3050 0.0268 0.00818 0.00210 53.40 0.31 9.52% 

37A 0.0016 0.00202 2.5 0.3050 0.0269 0.00821 0.00202 41.50 0.30 20.79% 

38A 0.0017 0.00199 2.5 0.3070 0.0269 0.00824 0.00199 37.40 0.30 14.57% 

39A 0.0018 0.00203 2.5 0.3160 0.0263 0.00832 0.00203 36.50 0.30 11.33% 
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With respect to the experiments of Babaeyan-Koopaei  (1997 ), simulations 

were obtained and presented on tables 36 and 37. The summary of the errors is 

shown in tables 38 and 39, respectively for Γ/ρgpShc=0.10 and Γ/ρgpShc=0. It was 

noticed that the uniform flow condition was not satisfied for every test, differing the 

longitudinal bed slope, Sbed, with the water surface slope, Sw, up to 20.79% (test 37A). 

Based on this, it was inferred that simulation errors (ΔQ, Δhc, ΔW and ΔA) trends to 

increase when the difference between slopes, ΔS=|Sbed-Sw|/Sw, was higher. Then, the 

results were ordered from the largest to the smallest ΔS for each set, obtaining 

averages for ΔQ, Δhc, ΔW and ΔA for several ΔS ranges. This last were varying from 

cero, increasing the top limits of ΔS, e.g.0<ΔS<2%and  0<ΔS<4% (tables  38 and 39); 

additionally the bottom limit was increasing as well, e.g.0<ΔS<2%and2<ΔS<4%(tables 

40 and 41). 

Hence, by comparing tables 38 and 39, it was observed that ΔW is smaller 

when Γ/ρgpShc=0.10, improving ΔW from 13.89% to 5.54%, meanwhile Δhc is in the 

same order of magnitude for both sets, and ΔA trends to be higher for Γ/ρgpShc=0.10. 

Such tendencies did not change for the ranges analysed. With respect to the 

comparison of tables 40 and 41, a similar behaviour was detected, reducing ΔW 

significantly when Γ/ρgShc=0.10, being both Δhc sets close, and ΔA was smaller for 

Γ/ρgShc=0. Then, it can be said that Γ/ρgShc=0.10 improves the top width estimation, 

W, while Δhc and ΔA attributed to the active bed, expressed as sediment discharge, 

Qs. 

From the analysis of both comparisons, i.e. experiments and simulations for 

Macky (1999) and Babaeyan-Koopaei  (1997 ), it is possible to say that by using 

Γ/ρgShc=0.10, the numerical model of Yu and Knight (1998) enhances the top width 
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estimation, W, and does not affect the prediction of the central depth, hc. 

Table 36. The results of the simulations attempting to reproduce the experiments of Babaeyan-Koopaei  
(1997 ) (table 35), employing the numerical model of Yu and Knight (1998) are shown below. The value 
for Γ/ρgShc was 0.10, and the lateral variation of f for the bank side, f/fc, was used. Additionally, the 
errors with respect to the lab data are provided (ΔQ, ΔW and Δhc). 

  

Yu and Knight model , Γ= 0.10 Errors 

Test No  ΔS Q W hc A b/2 T/2 ΔQ ΔW Δhc ΔA 

    (L/s) (m) (m) (m
2
) (m)   (%) (%) (%) (%) 

37A 20.79% 2.50 0.3026 0.0307 0.00723 0.0690 0.0823 0.02% 0.79% 14.16% 11.95% 

31A 19.27% 4.00 0.4593 0.0285 0.01118 0.1535 0.0762 0.04% 8.68% 16.12% 9.52% 

25A 18.72% 4.00 0.4609 0.0283 0.01117 0.1546 0.0758 0.00% 12.38% 22.08% 8.61% 

24A 17.39% 4.00 0.4799 0.0270 0.01121 0.1678 0.0721 0.00% 9.79% 18.25% 8.05% 

38A 14.57% 2.50 0.2999 0.0312 0.00724 0.0663 0.0837 0.00% 2.32% 15.99% 12.22% 

19A 12.73% 2.50 0.3759 0.0225 0.00728 0.1278 0.0602 0.00% 2.43% 8.32% 4.97% 

39A 11.33% 2.50 0.3033 0.0306 0.00723 0.0697 0.0820 0.00% 4.01% 16.24% 13.07% 

20A 10.78% 2.50 0.3692 0.0230 0.00727 0.1231 0.0615 0.00% 3.70% 8.15% 4.35% 

8 10.68% 2.00 0.3377 0.0205 0.00593 0.1142 0.0546 0.01% 10.31% 10.74% 4.60% 

35A 10.31% 2.50 0.3216 0.0278 0.00722 0.0864 0.0744 0.03% 5.45% 6.51% 9.56% 

1 10.28% 4.00 0.5235 0.0244 0.01131 0.1965 0.0652 0.03% 5.52% 1.56% 7.80% 

23A 10.17% 4.00 0.4906 0.0263 0.01123 0.1750 0.0703 0.00% 6.91% 3.03% 5.60% 

36A 9.52% 2.50 0.3095 0.0296 0.00722 0.0756 0.0792 0.02% 1.46% 10.26% 11.66% 

4 9.29% 4.01 0.5283 0.0242 0.01134 0.1995 0.0647 0.20% 3.31% 1.27% 7.03% 

29A 8.60% 4.00 0.4643 0.0281 0.01118 0.1570 0.0751 0.00% 5.25% 15.03% 6.87% 

33A 8.33% 2.50 0.3381 0.0259 0.00723 0.0999 0.0691 0.02% 0.02% 14.89% 5.23% 

28A 7.62% 4.00 0.4677 0.0278 0.01119 0.1594 0.0744 0.00% 3.36% 12.60% 6.72% 

34A 7.49% 2.50 0.3251 0.0273 0.00722 0.0894 0.0731 0.04% 1.49% 9.32% 12.46% 

13 7.30% 3.50 0.5088 0.0222 0.01004 0.1953 0.0591 0.00% 7.57% 0.19% 4.15% 

30A 6.84% 4.01 0.4878 0.0265 0.01124 0.1730 0.0709 0.19% 2.25% 10.88% 5.61% 

18 6.45% 4.00 0.6344 0.0200 0.01157 0.2640 0.0532 0.05% 9.62% 5.00% 4.35% 

2 5.88% 4.00 0.6090 0.0208 0.01151 0.2490 0.0555 0.02% 0.40% 3.70% 12.03% 

26A 5.66% 2.50 0.3646 0.0234 0.00726 0.1198 0.0625 0.03% 2.71% 6.85% 6.80% 

11 5.63% 3.50 0.5166 0.0218 0.01006 0.2001 0.0582 0.00% 9.83% 0.00% 1.77% 

21A 5.51% 3.01 0.4104 0.0244 0.00861 0.1400 0.0652 0.19% 1.09% 11.93% 2.75% 

12 4.96% 3.50 0.5038 0.0224 0.01003 0.1921 0.0598 0.01% 8.48% 1.75% 5.21% 

6 4.59% 3.00 0.4499 0.0219 0.00868 0.1665 0.0584 0.08% 3.33% 10.05% 0.10% 

7 4.37% 3.00 0.4646 0.0211 0.00870 0.1760 0.0563 0.13% 10.14% 1.44% 0.61% 

17 4.35% 3.99 0.5870 0.0216 0.01144 0.2360 0.0575 0.21% 3.66% 1.65% 4.50% 

3 3.67% 4.01 0.5546 0.0230 0.01139 0.2160 0.0613 0.14% 0.70% 1.50% 10.88% 

32A 3.59% 2.50 0.3494 0.0247 0.00724 0.1087 0.0660 0.04% 2.93% 12.27% 8.49% 

16 2.94% 4.00 0.5578 0.0228 0.01139 0.2180 0.0609 0.09% 5.36% 0.88% 4.23% 

27A 2.36% 2.50 0.3524 0.0244 0.00723 0.1110 0.0652 0.14% 0.69% 12.44% 4.94% 

14 2.23% 4.01 0.5627 0.0226 0.01141 0.2210 0.0603 0.13% 11.69% 5.44% 5.19% 

22A 1.57% 3.50 0.4668 0.0244 0.00995 0.1682 0.0652 0.04% 2.60% 7.02% 4.36% 

15 1.08% 4.00 0.5873 0.0216 0.01147 0.2360 0.0576 0.09% 14.23% 6.90% 3.40% 

9 1.06% 2.50 0.3976 0.0211 0.00732 0.1425 0.0563 0.06% 12.03% 3.94% 1.61% 

5 0.63% 4.01 0.5514 0.0231 0.01139 0.2140 0.0617 0.17% 7.88% 2.67% 0.65% 

10 0.28% 3.50 0.5100 0.0221 0.01005 0.1960 0.0590 0.00% 11.61% 3.49% 3.97% 
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Table 37. The results of the simulations attempting to reproduce the experiments of Babaeyan-Koopaei  
(1997 ) (table 35), employing the numerical model of Yu and Knight (1998) are shown below. The value 
for Γ/ρgShc was 0, and the lateral variation of f for the bank side, f/fc, was used. Additionally, the errors 
with respect to the lab data are provided (ΔQ, ΔW and Δhc). 

  

Yu and Knight Model, Γ=0 Errors 

Test No  ΔS Q W hc A b/2 T/2 ΔQ ΔW Δhc ΔA 

    (L/s) (m) (m) (m^2) (m) 

 

(%) (%) (%) (%) 

37A 20.79% 2.50 0.3280 0.0288 0.0075 0.0790 0.0850 0.00% 7.55% 7.01% 8.71% 

31A 19.27% 4.00 0.5082 0.0267 0.0117 0.1755 0.0786 0.00% 1.04% 8.81% 4.89% 

25A 18.72% 4.00 0.5102 0.0265 0.0118 0.1769 0.0783 0.00% 2.99% 14.38% 3.88% 

24A 17.39% 4.00 0.5330 0.0253 0.0118 0.1920 0.0745 0.00% 0.18% 10.79% 3.10% 

38A 14.57% 2.50 0.3249 0.0292 0.0075 0.0761 0.0863 0.00% 5.82% 8.63% 9.07% 

19A 12.73% 2.50 0.4171 0.0211 0.0077 0.1464 0.0621 0.00% 13.66% 1.48% 0.16% 

39A 11.33% 2.50 0.3291 0.0286 0.0075 0.0800 0.0845 0.00% 4.14% 8.90% 9.83% 

20A 10.78% 2.50 0.4091 0.0216 0.0077 0.1410 0.0635 0.00% 14.91% 1.32% 0.71% 

8 10.68% 2.00 0.3748 0.0192 0.0063 0.1310 0.0564 0.00% 22.44% 3.74% 10.28% 

35A 10.31% 2.50 0.3514 0.0261 0.0075 0.0989 0.0768 0.00% 15.22% 0.16% 5.69% 

1 10.28% 4.00 0.5844 0.0229 0.0120 0.2248 0.0674 0.00% 17.80% 7.78% 2.51% 

23A 10.17% 4.00 0.5456 0.0246 0.0118 0.2003 0.0725 0.00% 3.53% 3.47% 0.42% 

36A 9.52% 2.50 0.3367 0.0277 0.0075 0.0867 0.0817 0.00% 10.38% 3.29% 8.19% 

4 9.29% 4.00 0.5895 0.0227 0.0120 0.2280 0.0667 0.00% 15.27% 5.17% 1.81% 

29A 8.60% 4.00 0.5143 0.0263 0.0118 0.1796 0.0775 0.00% 4.97% 7.76% 2.02% 

33A 8.33% 2.50 0.3718 0.0242 0.0076 0.1146 0.0713 0.00% 10.00% 7.57% 0.77% 

28A 7.62% 4.00 0.5184 0.0261 0.0118 0.1824 0.0768 0.00% 7.11% 5.50% 1.82% 

34A 7.49% 2.50 0.3561 0.0256 0.0075 0.1026 0.0755 0.00% 7.91% 2.39% 8.57% 

13 7.30% 3.50 0.5694 0.0208 0.0106 0.2236 0.0611 0.00% 20.39% 6.49% 1.54% 

30A 6.84% 4.00 0.5414 0.0248 0.0118 0.1975 0.0732 0.00% 8.49% 3.88% 0.64% 

18 6.45% 4.00 0.7143 0.0187 0.0123 0.3022 0.0550 0.00% 23.44% 10.89% 1.79% 

2 5.88% 4.00 0.6844 0.0195 0.0122 0.2849 0.0573 0.00% 12.85% 9.71% 6.54% 

26A 5.66% 2.50 0.4038 0.0219 0.0076 0.1374 0.0645 0.00% 13.73% 0.04% 1.95% 

11 5.63% 3.50 0.5783 0.0204 0.0107 0.2290 0.0601 0.00% 22.95% 6.26% 4.11% 

21A 5.51% 3.00 0.4545 0.0229 0.0091 0.1599 0.0673 0.00% 11.95% 4.87% 2.26% 

12 4.96% 3.50 0.5629 0.0210 0.0106 0.2196 0.0618 0.00% 21.21% 7.86% 0.35% 

6 4.59% 3.00 0.5021 0.0205 0.0092 0.1907 0.0603 0.00% 15.33% 3.06% 5.83% 

7 4.37% 3.00 0.5188 0.0198 0.0092 0.2011 0.0583 0.00% 23.01% 4.72% 5.35% 

17 4.35% 4.00 0.6608 0.0202 0.0122 0.2710 0.0594 0.00% 16.70% 4.79% 1.61% 

3 3.67% 4.00 0.6207 0.0215 0.0121 0.2471 0.0633 0.00% 12.71% 7.76% 5.67% 

32A 3.59% 2.50 0.3856 0.0231 0.0076 0.1246 0.0681 0.00% 7.11% 5.17% 3.92% 

16 2.94% 4.00 0.6250 0.0213 0.0121 0.2497 0.0628 0.00% 18.07% 5.57% 1.44% 

27A 2.36% 2.50 0.3894 0.0229 0.0076 0.1274 0.0673 0.00% 11.26% 5.36% 0.04% 

14 2.23% 4.00 0.6294 0.0212 0.0121 0.2523 0.0624 0.00% 24.93% 11.33% 0.38% 

22A 1.57% 3.50 0.5196 0.0229 0.0105 0.1925 0.0673 0.00% 14.19% 0.27% 0.94% 

15 1.08% 4.00 0.6594 0.0202 0.0122 0.2702 0.0595 0.00% 28.27% 12.81% 2.48% 

9 1.06% 2.50 0.4420 0.0198 0.0077 0.1628 0.0582 0.00% 24.55% 2.47% 7.28% 

5 0.63% 4.00 0.6166 0.0216 0.0120 0.2446 0.0637 0.00% 20.65% 3.83% 5.10% 

10 0.28% 3.50 0.5718 0.0207 0.0106 0.2251 0.0608 0.00% 25.16% 9.74% 1.77% 
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Table 38. The ranges of error average analysed, corresponding to different ΔS of table 36, where  
Γ/ρgpShc=0.10 was used. 

 

Average 

ΔS ΔW Δhc ΔA 

  (%) (%) (%) 

0<ΔS<2% 9.67% 4.80% 2.80% 

0<ΔS<4% 6.97% 5.66% 4.77% 

0<ΔS<5% 6.81% 5.10% 4.15% 

0<ΔS<6% 6.08% 5.22% 4.53% 

0<ΔS<8% 5.81% 5.74% 4.99% 

0<ΔS<10% 5.32% 6.42% 5.39% 

0<ΔS<11% 5.49% 6.35% 5.55% 

0<ΔS<15% 5.27% 6.97% 5.94% 

0<ΔS<21% 5.54% 8.06% 6.31% 

 

Table 39. The ranges of error average analysed, corresponding to different ΔS of table 37, where 
Γ/ρgpShc=0 was used. 

  Average 

ΔS ΔW Δhc ΔA 

  (%) (%) (%) 

0<ΔS<2% 22.56% 5.83% 3.51% 

0<ΔS<4% 18.69% 6.43% 2.90% 

0<ΔS<5% 18.80% 6.05% 3.01% 

0<ΔS<6% 18.03% 5.87% 3.17% 

0<ΔS<8% 17.04% 5.86% 3.10% 

0<ΔS<10% 16.02% 5.87% 3.12% 

0<ΔS<11% 15.83% 5.47% 3.24% 

0<ΔS<15% 15.15% 5.54% 3.51% 

0<ΔS<21% 13.89% 6.03% 3.68% 
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Table 40. The ranges of error average analysed, corresponding to different ΔS of table 36, where  
Γ/ρgShc=0.10 was used. 

 

Average 

ΔS ΔW Δhc ΔA 

  (%) (%) (%) 

0<ΔS<2% 9.67% 4.80% 2.80% 

2<ΔS<4% 4.27% 6.51% 6.75% 

4<ΔS<5% 6.40% 3.72% 2.61% 

5<ΔS<6% 3.51% 5.62% 5.84% 

6<ΔS<8% 4.86% 7.60% 6.66% 

8<ΔS<10% 2.51% 10.36% 7.70% 

10<ΔS<11% 6.38% 6.00% 6.38% 

11<ΔS<15% 2.92% 13.51% 10.09% 

15<ΔS<21% 7.91% 17.65% 9.53% 

 

 

Table 41. The ranges of error average analysed, corresponding to different ΔS of table 37, where 
Γ/ρgShc=0 was used. 

 

Average 

ΔS ΔW Δhc ΔA 

  (%) (%) (%) 

0<ΔS<2% 22.56% 5.83% 3.51% 

2<ΔS<4% 14.82% 7.04% 2.29% 

4<ΔS<5% 19.06% 5.11% 3.28% 

5<ΔS<6% 15.37% 5.22% 3.71% 

6<ΔS<8% 13.47% 5.83% 2.87% 

8<ΔS<10% 10.15% 5.95% 3.20% 

10<ΔS<11% 14.78% 3.29% 3.92% 

11<ΔS<15% 7.87% 6.34% 6.35% 

15<ΔS<21% 2.94% 10.25% 5.15% 
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6.9 Discussion and findings 

With respect to the findings obtained in this chapter, it is possible to 

summarize them as: 

 A good approximation was found by using the experimental friction 

factor, f, for the PVC surface experiments, and by employing the 

variation of f with respect to the centreline friction factor, fc, f/fc, for the 

rough surface set. 

 The use of the methodology of Lundgren and Jonsson (1964) to 

determine λ for self-formed banksides yields approximately 0.070, being 

in agreement with other authors that obtained such result 

experimentally, i.e. Nezu and Nakagawa (1993). Hence it is 

recommended to use λ=0.07 for practical purposes. 

 It was confirmed experimentally that the dimensionless shape of the 

depth average velocity, Ud/Q/A, and shear stress lateral distributions, 

τ0/ρgRS, are not affected by the slope. Such an observation was spotted 

on chapter 3. 

 Different dimensionless velocity, Ud/(Q/A), and shear stress, τ0/ρgRS, 

lateral distribution shapes were found, changing for each bed surface. 

This alteration was attributed by the influence of the secondary flow, 

being corroborated by obtaining a distinct Γ/ρgSR per surface (Table 

31). 
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Additionally the equation 101 proposed by Ikeda(1981) is in agreement 

with the previous observation. It expresses the relationship between 

transversal velocity, V, shear velocity, U*, and subsequently to 

boundary shear stress, τ0, same variable that changes according to the 

bed surface. 

 Γ/ρgSR=pC values for smooth and rough surfaces were proposed in 

table 31, for the three depths analysed, recommending C=0.093, or 0.10 

for practical purposes, for the prediction of self-formed cross sections, 

with panel factors as p1=p2=1, p3=1, p4=1, p5=0.75, and p6=1.50. The 

rest of the Γ/ρgSR=pC can be used to assess existing sections, i.e. the 

discharge, velocity and shear stress distribution when the section does 

not work at bankfull. 

 With respect to the flow cells identified on section 5.2.2. They followed 

the same Γ signal variation for the smooth surface experiments only. 

This last in agreement with the research of Omran (2005), whom used 

glass surface and obtained p3>0, p4>0, p5<0 and p6<0. However, for 

rough surface, the same pattern was not confirmed, finding p3>0, p4>0, 

p5>0 and p6>0. 

 This variation in the flow pattern is attributed to the boundary surface. 
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7 CHAPTER 7 

CONCLUSIONS 

 

The aim of this research was to investigate the capacity of a simple quasi 2D 

flow model, i.e. the SKM (Shiono and Knight, 1990), in combination with bank side 

equations, i.e. the Yu and Knight model (1998), to determine the bed profile of an 

alluvial channel,  incorporating the secondary flow variables. In order to accomplish 

this purpose, the numerical model was build and analysed, a physical model was 

constructed, representing a self-formed channel, and 18 lab experiments were ran. 

Later a calibration-validation process was carried out.  

The document is organized in 7 chapters, being the first one the introduction 

stating the problematic, the aim and objectives of the thesis. The second one 

consists of the literature review, where the different bank profile equations were 

described and the knowledge gap identified. With this respect, it was found that the 

central bed of a self-formed cross section is not flat, as some numerical models try to 

represent. Also it was not clear which value of dimensionless eddy viscosity, λ, was 

appropriate for self-formed geometries. Additionally the lateral variation of the friction 

factor, f, on the bankside was unknown and the effect of Γ on the formation of cross 

sections had not been evaluated. On the other hand the numerical model studied (i.e. 

Yu and Knight, 1998) was developed for granular, uniform material and without 

vegetation. Such model has the potential to develop a graphical solution, similar to 

the one of Diplas and Vigilar (1998) and to propose a deformation of a channel along 
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time, in the same way than Paquier and Khodashenas (2002). 

From the previous findings it was decided to explore  the dimensionless eddy 

viscosity, λ, the lateral variation of the friction factor, f, and the secondary flow 

gradient, Γ. Subsequently the behaviour of the numerical model was analysed in 

chapter 3, discovering that the bank side width, T,  is affected by the central bed  

width, b. This last, due to the lateral geometry of the section is related to the 

boundary shear stress, τ0, distribution, being affected by b, and it is inversely 

proportional to T, but reaching an stable limit, sl, when b/2hc>2 approximately, being 

this the case of wide channels (B/h>15). Additionally, the impact of Γ, λ, φ and S on 

the numerical model were identified, finding the following relationships: 

If λ, φ and S are constants, then: 

1
max c

d

f , A, Q, , , T , h
U

 

                    (102) 

If Γ, φ and S are constants, then: 

1 1
c

d max c

T
f , A, Q, , , T , h ,

U h





                   (103) 

If Γ, λ and S are constants, then: 

1
1 1 1

max c

c

T
, ,V , , , h ,

A Q T h
 



 
  

 
                   (104) 

If Γ, λ and φ are constants, then: 

1 1 1 1 1 1

d c

S f , , , , , ,
A Q V U T h



                    (105) 

 From the relationships above, it is noted the impact of Γ and λ, on the 

estimation of the transversal geometry, the hydraulic area and subsequently the 
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water capacity of the section.  

Based on the experimental work, validation and calibration (chapters 5 and 6), 

where a relationship was proposed for the lateral variation of the friction factor, f, 

values found for Γ and  λ obtained from the methodology of Lundgren and Jonsson 

(1964). It was observed a good performance for  the numerical model , improving the 

estimation of the top width, W, significantly, without affecting the central depth, hc. 

With respect to the friction factor variation, it was determined from the PVC 

surface experiments, relating f to the central friction factor, f/fc, that was assumed as 

the global one obtained from the corresponding stage discharge curves. In the future 

it is recommended to use the global f of the section for fc and then carry on with the 

variation of f per SKM panels. 

About the dimensionless eddy viscosity, λ, the proposal of Lundgren and 

Jonsson (1964) was applied obtaining values close to 0.070, as other researchers 

determined based on experiments, i.e. Nezu and Nakagawa (1993). Hence, for 

practical reasons λ=0.07 is recommended. The advantage of this methodology is that 

it is based on the geometry of the section, and it is valid for curved shapes. 

As was noted during the numerical model behaviour (section 3.4), it was 

confirmed during the experiments, that, the dimensionless shape of the velocity, 

Ud/Q/A, and shear stress, τ0/ρgRS, distributions are not affected by the slope. 

However, they are highly affected by the bed surface, obtaining a characteristic 

profile per depth and per surface. This difference is attributed to boundary shear 

stress, τ0, affecting the lateral distribution. Such observations are in agreement with 

the work of Ikeda (1981), whom proposed a relationship for the transversal velocity, 
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V. 

With respect to the secondary flow, values were obtained for Γ/ρgSR per depth 

and surface, reaching a good approximation during the calibration. The range of 

values can be observed on table 31. There can be observed that the experiments on 

smooth surface are producing the following variation of secondary flow factors: p3>0, 

p4>0 and p5<0, p6<0. On the other hand, the sets carried out on rough surface are 

showing: p3>0, p4>0, p5>0, and p6>0. It is evident that the PVC experiments are 

following the same signal variation that a trapezoidal bankside, as Omran and Knight 

(2006) shown, using the data of Tominaga et al.(1989), proposing two flow cells, but 

they did experiments in glass surface. 

For practical purposes, during the estimation of self-formed cross sections, it is 

recommended the use of C=0.010, with the following panel factors: p1=p2=1, p3=1, 

p4=1, p5=0.75, and p6=1.50, where Γ/ρgSR=pC Also in combination with the 

relationship f/fc for the bank side friction factor, and using λ=0.070. 

However, there is still work to do in this area, since the behaviour of the 

secondary flow cells on the central belt were not taken into account, and evidence 

show us that the depth is not constant, making room for a further research. 

It should be mentioned that this research was founded by the National Council 

of Science and Technology (CONACYT, Mexico) in combination with a PGTA. A 

conference paper was produced from this research and presented in a symposium 

organized by CONACYT  in Strasburg, November 2012.  
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Table 42. Data from Yu and Knight (1998), it is observed that T/hc is constant per method, d=0.88mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Q (L/s) Authors S0 / 1000 T (cm) hc (cm) T / hc 

50.00 USBR 0.412 110.60 17.70 6.2486 

200.50 USBR 0.217 209.80 33.50 6.2627 

150.10 USBR 0.248 183.60 29.30 6.2662 

101.00 USBR 0.298 152.90 24.40 6.2664 

24.40 The model 0.412 90.60 11.90 7.6134 

72.40 The model 0.248 151.00 19.80 7.6263 

18.80 The model 0.466 80.10 10.50 7.6286 

75.60 The model 0.243 154.10 20.20 7.6287 

136.90 The model 0.184 203.80 26.70 7.6330 

150.40 The model 0.176 213.00 27.90 7.6344 

90.80 The model 0.223 168.00 22.00 7.6364 

181.80 The model 0.161 233.00 30.50 7.6393 

45.60 The model 0.308 121.50 15.90 7.6415 

96.20 The model 0.217 172.70 22.60 7.6416 

50.00 The model 0.295 126.90 16.60 7.6446 

100.10 The model 0.213 175.90 23.00 7.6478 

37.60 The model 0.337 110.90 14.50 7.6483 

56.80 The model 0.278 134.70 17.60 7.6534 

48.90 The model 0.298 125.60 16.40 7.6585 

199.90 The model 0.154 243.60 31.80 7.6604 

100.00 Cao and Knight 0.337 172.80 21.60 8.0000 

200.00 Cao and Knight 0.243 239.30 29.90 8.0033 

50.00 Cao and Knight 0.466 124.90 15.60 8.0064 

150.00 Cao and Knight 0.278 209.10 26.10 8.0115 

50.00 Diplas 0.308 135.10 16.10 8.3913 

150.00 Diplas 0.184 226.20 26.90 8.4089 

100.00 Diplas 0.223 187.00 22.20 8.4234 

200.00 Diplas 0.161 259.10 30.70 8.4397 
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The current appendix presents the cross sectional graphs, velocity and shear 

stress profiles for the cases I to III of the simulations of section 3.4.1.  With respect to 

the vertical lines on the left hand side, they are representing the centreline of the 

channel. The origin the toe (junction between flatbed and bankside), and the margin 

is located at the right extreme. 

About the cross sections, the inflection points on the bankside are due to they 

were plotted with four point only. But their effect cannot be appreciated on the 

velocity or shear stress distributions. 
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Figure B- 1. Cross sections obtained for λ=0.16,S=1/479, θ=32.95º, and Γ/γRS=0, when b/2hc=0, 0.25, 0.5 
and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 2. Velocity profiles obtained for λ=0.16,S=1/479, θ=32.95º, and Γ/γRS=0, when b/2hc=0, 0.25, 
0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 3. Shear profiles obtained for λ=0.16,S=1/479, θ=32.95º, and Γ/γRS=0, when b/2hc=0, 0.25, 0.5 
and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 4. Cross sections obtained for λ=0.07,S=1/479, θ=32.95º, and Γ/γRS=0, when b/2hc=0, 0.25, 
0.5 and 2.0. The origin (y,z) is placed at the toe. 

 

Figure B- 5. Velocity profiles obtained for λ=0.07,S=1/479, θ=32.95º, and Γ/γRS=0, when b/2hc=0, 0.25, 
0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 6.  Shear stress profiles obtained for λ=0.07,S=1/479, θ=32.95º, and Γ/γRS=0, when b/2hc=0, 
0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 

 

Figure B- 7. Cross sections obtained for λ=0.07,S=1/479, θ=36.36º, and Γ/γRS=0, when b/2hc=0, 0.25, 0.5 
and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 8. Velocity profiles obtained for λ=0.07, S=1/479, θ=36.36º, and Γ/γRS=0, when b/2hc=0, 0.25, 
0.5 and 2.0. The origin (y,z) is placed at the toe. 

 

Figure B- 9. Shear stress profiles obtained for λ=0.07, S=1/479, θ=36.36º, and Γ/γRS=0, when b/2hc=0, 
0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 10. Cross sections obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.025, when b/2hc=0, 
0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 11. Velocity profiles obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.025, when b/2hc=0, 
0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe 



 

 

Appendix B 

An investigation of the ability of a numerical model  195 
to predict the cross sectional shape of an alluvial channel 

 

0,0000

0,2000

0,4000

0,6000

0,8000

1,0000

1,2000

-0,1000 -0,0500 0,0000 0,0500 0,1000 0,1500 0,2000 0,2500

τ
 /

 (
ρ
g

 h
c
 S

)

y (m)

b/2 / hc =0

b/2 / hc=0.25

b/2 / hc=0.50

b/2 / hc=2.0

Case I,   Γ/ (γhc S)=0.025
λ=0.16, S=1/479, θ=32.95º and Γ/(γhc S)=0.025

 

Figure B- 12. Shear stress profiles obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.025, when 
b/2hc=0, 0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe 
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Figure B- 13. Cross sections obtained for λ=0.16, S=1/479, θ=32.95º, andΓ/γRS=0.05, whenb/2hc=0, 
0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe 
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Figure B- 14. Velocity profiles obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.05, whenb/2hc=0, 
0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 15. Shear stress profiles obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.05, 
whenb/2hc=0, 0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 16. Cross sections obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.10, whenb/2hc=0, 
0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 17. Velocity profiles obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.10, whenb/2hc=0, 
0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 18. Shear stress profiles obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.10, 
whenb/2hc=0, 0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 19. Cross sections obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.10, whenb/2hc=0, 
0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 20. Velocity profiles obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.15, whenb/2hc=0, 
0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Figure B- 21. Shear stress profiles obtained for λ=0.16, S=1/479, θ=32.95º, and Γ/γRS=0.15, 
whenb/2hc=0, 0.25, 0.5 and 2.0. The origin (y,z) is placed at the toe. 
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Appendix C 

 

The current section presents the results of the calibrated simulations 

employing the numerical model (SKM) for the 18 experimental sets. Each set comes 

with two half sectional profiles, one for depth average velocity, Ud, and one for 

boundary shear stress, τ0. Both graphs are displayed dimensionless, being Ud 

expressed with respect to the average velocity, V, obtained by V=Q/A; and τ0, with 

respect to the average shear stress, τ0=ρgRS. While the horizontal component, y, is 

expressed in terms of the half cross sectional width, W/2. 

The experiments are divided in smooth and rough surface, being nine per 

surface. For each one, three depths were evaluated, corresponding to three slopes 

per depth.  

With respect to the physical data, Ud was obtained based on Static Pitot tube 

measurements, while τ0, from Preston tube. Velocity and shear stress graphs are 

provided for both types of surfaces. However, it was not possible to use the Pitot tube 

to measure τ0 on rough surface, hence it was determined by 2 8df U   .The friction 

factor, f, was obtained by the methodology proposed on ta section 6.2.2, obtaining an 

average value per SKM panel. Such a values can be found on table 27. 

About the rest of the variables used during the calibration process, they are 

found on table 29 with details. Additionally, each plot comes with its appropriate 

caption, mentioning the input data employed. 
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Figure C- 1. Dimensionless calibrated velocity distribution along the experimental data with their 
uncertainty bars, for H1S1 PVC, using hc=3.34cm, S=0.001485, f1,2= 0.0200, f3= 0.0203, f4= 0.0199, f5= 
0.0224, f6= 0.0263, p1,2=1, p3=1, p4=-1, p5=-1, p6=-3, C=0.070, and λ=0.07.  

 

Figure C- 2. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with uncertainty bars, for H1S1 on PVC, using hc=3.34cm, S=0.001485, f1,2= 0.0200, f3= 0.0203, f4= 
0.0199, f5= 0.0224, f6= 0.0263, p1,2=1, p3=1, p4=-1, p5=-1, p6=-3, C=0.070, and λ=0.07.  
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Figure C- 3. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H1S2 on PVC, using hc=3.52cm, S=0.001725,f1,2= 0.0188, f3=0.0184, f4= 0.0190, f5= 
0.0210, f6= 0.0242, p1,2=1, p3=1, p4=-1, p5= 0.5,  p6=-0.5,C= 0.245, and λ=0.07.  

 

Figure C- 4. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H1S2 on PVC, using hc=3.52cm, S=0.001725, f1,2= 0.0188, f3=0.0184, f4= 
0.0190, f5= 0.0210, f6= 0.0242, p1,2=1, p3=1, p4=-1, p5= 0.5,  p6=-0.5,C= 0.245, and λ=0.07.  
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Figure C- 5. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H1S3 on PVC, using hc=3.395cm, S=0.005044, f1,2= 0.0194, f3=0.0197, f4= 0.0203, f5= 
0.0220, f6= 0.0266, p1,2=1, p3=1,p4=1, p5=-2, p6=-4, C= 0.055, and λ=0.07. 

 

Figure C- 6. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H1S3 PVC, using hc=3.395cm, S=0.005044, f1,2= 0.0194, f3=0.0197, 
f4=0.0203, f5= 0.0220, f6= 0.0266, p1,2=1, p3=1, p4=1, p5=-2, p6=-4, C= 0.055, and λ=0.07. 
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Figure C- 7. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H2S1 on PVC, using hc=4.97cm, S=0.001485, f1,2= 0.0208, f3=0.0214, f4= 0.0223, f5= 
0.0249, f6= 0.0319, p1,2=0.5, p3=1, p4=0.5, p5=-1, p6=-2.5, C=0.115, and λ=0.07.  

 

Figure C- 8. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H2S1 on PVC, using hc=4.97cm, S=0.001485, f1,2= 0.0208, f3=0.0214, f4= 
0.0223, f5= 0.0249, f6= 0.0319, p1,2=0.5, p3=1, p4=0.5, p5=-1, p6=-2.5, C=0.115, and λ=0.07. 
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Figure C- 9. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H2S2 PVC, using hc=5.265cm, S=0.001725, f1,2= 0.0169, f3=0.0168, f4= 0.0180, f5= 
0.0193, f6= 0.0225, p1,2=1, p3=1, p4=0.5, p5=0.5, p6=-1, C=0.295, and λ=0.07.  

 

 

Figure C- 10. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H2S2 on PVC, using hc=5.265cm, S=0.001725, f1,2= 0.0169, f3=0.0168, f4= 
0.0180, f5= 0.0193, f6= 0.0225, p1,2=1, p3=1, p4=0.5, p5=0.5, p6=-1, C=0.295, and λ=0.07.  
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Figure C- 11. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H2S3 set on PVC, using hc=5.065cm, S=0.005044, f1,2= 0.0186, f3=0.0185, f4=0.0185, 
f5=0.0195, f6=0.0228, p1,2=1, p3=1, p4=0.3333, p5=-1, p6=-3.5, C=0.105, and λ=0.07.  

 

Figure C- 12. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H2S3 on PVC, using hc=5.065cm, S=0.005044, f1,2= 0.0186, f3=0.0185, 
f4=0.0185, f5=0.0195, f6=0.0228, p1,2=1, p3=1, p4=0.3333, p5=-1, p6=-3.5, C=0.105, and λ=0.07.  
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Figure C- 13. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H3S1 on PVC, using hc=7.02cm, S=0.001485, f1,2= 0.0193, f3=0.0196, f4=0.0199, 
f5=0.0214, f6=0.0252, p1,2=1, p3=1, p4=0.5, p5=-0.3333, p6=-1.5, C=0.240, and λ=0.07.  

 

Figure C- 14. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H3S1 PVC, using hc=7.02cm, S=0.001485, f1,2= 0.0193, f3=0.0196, 
f4=0.0199, f5=0.0214, f6=0.0252, p1,2=1, p3=1, p4=0.5, p5=-0.3333, p6=-1.5, C=0.240, and λ=0.07. 
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Figure C- 15. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H3S2 on PVC, using hc=7.08cm, S=0.001725, f1,2= 0.0173, f3=0.0177, f4=0.0177, 
f5=0.0198, f6=0.0225, p1,2=1, p3=1, p4=0.5, p5=-0.5, p6=-2, C=0.155, and λ=0.07. 

 

Figure C- 16. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, corresponding to the set H3S2 on smooth surface (PVC). 
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Figure C- 17. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H3S3 PVC, using hc=6.95cm, S=0.005044, f1,2= 0.0156, f3=0.0172, f4=0.0167, 
f5=0.0172, f6=0.0201, p1,2=0.25, p3=1, p4=0.5, p5=-2, p6=-1, C=0.226, and λ=0.07.  

 

Figure C- 18. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, corresponding to the set H3S3 on smooth surface (PVC). 



 

 

Appendix C 

An investigation of the ability of a numerical model  210 
to predict the cross sectional shape of an alluvial channel 

 

 

Figure C- 19. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H1S4 on rough surface, using hc=3.27cm, S=0.004913, f1,2= 0.0628,f3=0.0617, 
f4=0.0628, f5=0.0696, f6=0.0764, p1,2=-1, p3=-1, p4=-1, p5=-1, p6=-1, C=0.175, and λ=0.07.  

 

Figure C- 20. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with error bars, for H1S4 on rough surface, using hc=3.27cm, S=0.004913, f1,2= 0.0628,f3=0.0617, 
f4=0.0628, f5=0.0696, f6=0.0764, p1,2=-1, p3=-1, p4=-1, p5=-1, p6=-1, C=0.175, and λ=0.07. 
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Figure C- 21. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H1S5 set on rough surface, using hc=3.49cm, S=0.001742, f1,2= 0.0601,  f3=0.0591, 
f4=0.0601, f5=0.0667, f6=0.0731, p1,2=1, p3=1, p4=1, p5=1.5, p6=1, C=0.200, and λ=0.07.  

 

Figure C- 22. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H1S5 on rough surface, using hc=3.49cm, S=0.001742, f1,2= 0.0601,  
f3=0.0591, f4=0.0601, f5=0.0667, f6=0.0731, p1,2=1, p3=1, p4=1, p5=1.5, p6=1, C=0.200, and λ=0.07.  
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Figure C- 23. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H1S6 set on rough surface, using hc=3.50cm, S=0.001482, f1,2= 0.0567, f3=0.0557, 
f4=0.0567, f5=0.0629, f6=0.0690, p1,2=1, p3=1, p4=1, p5=1.25, p6=1, C=0.195, and λ=0.07. 

 

Figure C- 24. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H1S6 on rough surface, using hc=3.50cm, S=0.001482, f1,2= 0.0567, 
f3=0.0557, f4=0.0567, f5=0.0629, f6=0.0690, p1,2=1, p3=1, p4=1, p5=1.25, p6=1, C=0.195, and λ=0.07. 
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Figure C- 25. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H2S4 set on rough surface, using hc=5.05cm, S=0.004943, f1,2= 0.0529, f3=0.0538, 
f4=0.0559, f5=0.0602, f6=0.0647, p1,2=-1, p3=2, p4=2, p5=0.5, p6=1, C=0.060, and λ=0.07.  

 

 

Figure C- 26. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H2S4 on rough surface, using hc=5.05cm, S=0.004943, f1,2= 0.0529, 
f3=0.0538, f4=0.0559, f5=0.0602, f6=0.0647, p1,2=-1, p3=2, p4=2, p5=0.5, p6=1, C=0.060, and λ=0.07.  
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Figure C- 27. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H2S5 set on rough surface, using hc=5.02cm, S=0.001742, f1,2= 0.0519, f3=0.0528, 
f4=0.0548, f5=0.0591, f6=0.0635, p1,2=1, p3=1, p4=1, p5=0.5, p6=1, C=0.100, and λ=0.07.  

 

 

Figure C- 28. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H2S5 on rough surface, using hc=5.02cm, S=0.001742, f1,2= 0.0519, 
f3=0.0528, f4=0.0548, f5=0.0591, f6=0.0635, p1,2=1, p3=1, p4=1, p5=0.5, p6=1, C=0.100, and λ=0.07.  

 



 

 

Appendix C 

An investigation of the ability of a numerical model  215 
to predict the cross sectional shape of an alluvial channel 

 

 

Figure C- 29. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H2S6 set on rough surface, using hc=5.02cm, S=0.001482, f1,2= 0.0490, f3=0.0498, 
f4=0.0517, f5=0.0558, f6=0.0599, p1,2=1, p3=1, p4=1, p5=1, p6=2, C=0.085, and λ=0.07. 

 

 

 

Figure C- 30. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H2S6 rough surface, using hc=5.02cm, S=0.001482, f1,2= 0.0490, 
f3=0.0498, f4=0.0517, f5=0.0558, f6=0.0599, p1,2=1, p3=1, p4=1, p5=1, p6=2, C=0.085, and λ=0.07.  
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Figure C- 31. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H3S4 set on rough surface, using hc=7.02cm, S=0.004943, f1,2= 0.0484, f3=0.0506, 
f4=0.0502, f5=0.0553, f6=0.0596, p1,2=-1, p3=-1, p4=1.5, p5=-2, p6=0.5, C=0.155, and λ=0.07.  

 

 

 

 

Figure C- 32. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H3S4 on rough surface, using hc=7.02cm, S=0.004943, f1,2= 0.0484, 
f3=0.0506, f4=0.0502, f5=0.0553, f6=0.0596, p1,2=-1, p3=-1, p4=1.5, p5=-2, p6=0.5, C=0.155, and λ=0.07.  
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Figure C- 33. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H3S5 on rough surface, using hc=7.12cm, S=0.001742, f1,2= 0.0472, f3=0.0494, 
f4=0.0490, f5=0.0539, f6=0.0581, p1,2=1, p3=1, p4=8, p5=-1, p6=2, C=0.045, and λ=0.07 

 

 

Figure C- 34. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H3S5 on rough surface, using hc=7.12cm, S=0.001742, f1,2= 0.0472, 
f3=0.0494, f4=0.0490, f5=0.0539, f6=0.0581, p1,2=1, p3=1, p4=8, p5=-1, p6=2, C=0.045, and λ=0.07.  
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Figure C- 35. Dimensionless calibrated velocity distributions along the experimental data with their 
uncertainty bars, for H3S6  on rough surface, using hc=7.09cm, S=0.001482, f1,2= 0.0447, f3=0.0467, 
f4=0.0464, f5=0.0510, f6=0.0550, p1,2=1, p3=2, p4=4, p5=1, p6=1, C=0.050, and λ=0.07.  

 

 

 

Figure C- 36. Dimensionless calibrated boundary shear stress distribution along the experimental data 
with their uncertainty bars, for H3S6 on rough surface, using hc=7.09cm, S=0.001482, f1,2= 0.0447, 
f3=0.0467, f4=0.0464, f5=0.0510, f6=0.0550, p1,2=1, p3=2, p4=4, p5=1, p6=1, C=0.050, and λ=0.07.  

 


